':' @2,
4
”

Iy hea

BEA Tuxedo

Programming a BEA Tuxedo
Application Using COBOL

Copyright
Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, and WebLogic Enterprise
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
Programming a BEA Tuxedo Application Using COBOL

Document Edition Date Software Version

7.1 May 2000 BEA Tuxedo Release 7.1

Contents

1.

Introduction to BEA Tuxedo Programming

BEA Tuxedo Distributed Application Programmingccccceeviveeeeininieeennans 1-1
Communication ParadigMmscoouuiieiiiiiiie ettt 1-3
BEA TUXEAO ClIENES.....eiiiiiiiie ettt 1-4
BEA TUXEUO SEIVEIS ...ciiiiitiiiie ettt ettt ettt s 1-6
BasiC Server OPEration..........coiuviieeiiiiiien ittt 1-6
SErvers as REQUESTEISuuiiiiiii ittt 1-8
BEA TUXEdO AP ATMI .ottt 1-9

Programming Environment

Updating the UBBCONFIG Configuration File.............ccccvuiiieiniiiiniiieecns 2-1

Setting Environment Variables..........c..cooiiiiiii e 2-5
Defining Equivalent Data TYPESuveii ittt 2-8
Starting and Stopping the AppliCatioN ..o 2-9

Managing Typed Records

Overview Of TYPed RECOMS.........ueiiiiiiit ettt 3-1
Defining TYPed RECOMS........coiiiiiiiiieiiie ettt e 3-6
Using a VIEW Typed RECOI..........uuiiiiiiiiie et 3-7
Setting Environment Variables for a VIEW Typed Record....................... 3-8
Creating a View Description File...........ccccoiiiiiiiniiiiie e 3-8
Executing the VIEW COMPIIETeeiiiiiiiiie e 3-12
Using an FML Typed RECOId..........coouiiiiiiiiiiie et 3-15
Setting Environment Variables for an FML Typed Record..................... 3-15
Creating a Field Table File.........c..ccoo i 3-16
Initializing a Typed RECOI........cccuviiiiiiiiiien e 3-17

Programming a BEA Tuxedo Application Using COBOL i

iv

Creating an FML Header File..........cccuvuiiiiiiiiiie e 3-2(

Using an XML Typed RECOIcccoiiiiiiiiiiiiie it 3-2:
Writing Clients
JOINING &N APPIICALIONoiitiiiieei ittt 4-
Using Features of the TPINFDEF-REC ReCOrd..........cccceeiiiiiiieiiiiiiieciiiee e 4-
ClENT NAMING ..eeeiiitiee e et 4-
Unsolicited Notification Handling ..o 4-6
SYStEM ACCESS MOUE........eiiiiiiieiiiie et 4-
Resource Manager ASSOCIAtIONueeeiiiiiiiiie it 4-
Client AUtNENTICALION.iiiiiiiie e 4-¢
Leaving the APPlCAtioN ... e 4-
BUIIAING CHIENES ...eeii it 4-
SBE AlSO ... it e 4-1
Client Process EXAMPIESooiiiiiiiiiiiiit et 4-!

Writing Servers

BEA Tuxedo System Controlling Programccccoceueviriniiieeenniece e 5-1
System-supplied Server and SEIVICESccuiiiriii i 5
System-supplied Server: AUTHSVR() c.uevviiiiiieiiiieen e 5-3
System-supplied Services: TPSVRINIT Routine..........cccccovviiieiniiiieennnnn 5-4
System-supplied Services: TPSVRDONE RoOUtINE.........c.ocvveiriiiiriniinen, 5-¢
Guidelines for WItiNg SEIVEIS.........cooiiiiiiiiiiiiiis ettt 5-¢
DEefiNING @ SEIVICE ...ttt 5-1
Terminating a Service ROULINEcoouiiiiiiiiiii e 5-1
SENAING REPIES ..o 5-1
INvalidating DESCIIPLOISceiiiiiie ettt 5-2:
Forwarding REQUESTESccuuiiieiiieiie et 5-2
Advertising and UnadvertiSing SErVICEScccoviiiiiiieeiiiiieee i 5-2
AVEITISING SEIVICES.....uiiiiiiiiie ettt 5-2
UNadVertiSiNGg SEIVICESuuiiiiiiiiie ittt 5-2
Example: Dynamic Advertising and Unadvertising of a Service............. 5-29
BUIIAING SEIVEISoiiieie et 5-3
SEE AlSO ... it 5-3

Programming a BEA Tuxedo Application Using COBOL

6. Writing Request/Response Clients and Servers

Overview of Request/Response CommuUNICAtioNcoocvieeriieien e 6-1
Sending SYNCNrONOUS MESSATES.ccciiuuitieeiriiiiiei ettt 6-3
Example: Using the Same Record for Request and Reply Messages 6-4
Example: Sending a Synchronous Message with TPSIGRSTRT Set........ 6-6
Example: Sending a Synchronous Message with TPNOTRAN Set........... 6-8
Sending ASYNChroNOUS MESSAJESeeiiiuriiiieeiiieie ettt ettt 6-10
Sending an ASynchronous REQUESTooviiiiiriiiiie it 6-11
Getting an ASynchronous REPIYc.ueeeiiiiiiiiiiiiiiie e 6-14
Setting and Getting Message PrOMteSoooiiiiieeriiiee e 6-14
Setting a MesSage PriOMtY........cooiiiiiiiii e 6-15
Getting a8 MeSSage PrIOMLYcooueiiiiiiiiiiee ettt 6-17

7. Writing Conversational Clients and Servers

Overview of Conversational CommuniCatioNc.coieiiiieeeriiiiee e 7-1
JoINING 8N APPIICALIONeiiiiiiiie it 7-3
Establishing @ CONNECLIONccoiiiiiiiii e 7-4
Sending and ReCeIVING MESSAJESucuiieiiiiiiieaiiiiie et ee et 7-5
SENAING MESSAGES .. .ueeiiiiiitiiiie ettt bbb et e e et ree e e 7-6
RECEIVING MESSAGESeeiiii ittt 7-7
ENding @ CONVEISALIONoeiiiiiiiie ettt ettt sn e e 7-8
Example: Ending a Simple Conversation............ccccvveeeiiniiieeee i 7-9
Example: Ending a Hierarchical Conversationc..ccccevviiieiiniennnne. 7-10
Executing a Disorderly DISCONNECE............uueiiiiiiiiiiiiiie e 7-12
Building Conversational Clients and SEervers.........cccccueeeiiieeeniiiiee e 7-13
Understanding Conversational Communication Events............c..ccocovvevenenenn. 7-13

8. Writing Event-based Clients and Servers

OVEIVIEW OF EVENTS ...eiiiiiieieiie e 8-1
UNSOIICItEA EVENTS.....c..eiiieiiiiii ettt e 8-2
Brokered EVENLSoiiiiiiie e 8-2

Defining the Unsolicited Message Handler...........cccooooeiiiiiiiie e 8-5

Sending UnSOlIiCIted MESSAGESuvvviieiiiii ettt et 8-6
Broadcasting Messages By NamMe ... 8-7
Broadcasting Messages by ldentifierccooueiiiiiinee e 8-9

Programming a BEA Tuxedo Application Using COBOL v

Checking for Unsolicited MESSAQGESueeiiiiiiiiiriieit ettt 8-
Getting UNSoliCited MESSAGEScoivuviieiiiiiiie ettt 8-1
SUDSCIIDING t0 EVENES ...t 8-1
Unsubscribing from EVENTSoiiiiiiiii e 8-1
POSHING EVENES ...ttt ettt et be e e e 8-!
9. Writing Global Transactions
What Is @ Global TranSaCtioN?coieviiiiiiiiee it 9-
Starting the TranSACHONccoiiiiiii e 9.
Terminating the TranSaCtONooiiiiiiii e 9-1
Committing the Current TranSaCtioN..........ccoovveeririiiieiie e 9-1(
Aborting the Current TranSaCHON........cccvuvie et 9-1:
Example: Committing a Transaction in Conversational Mode................. 9-14
Example: Testing for PartiCipant ErrOrS...........ccccveiiiiiieeniiiiiien e 9-1¢
Implicitly Defining a Global Transaction...........c.ccccceviieiiienie e 9-17
Defining Global Transactions for an XA-Compliant Server Group................ 9-18
Testing Whether a Transaction Has Startedc.ocooeviiiiiiieniiiee e 9-:
SEE AlSO ... et 9-2
10. Programming a Multithreaded and Multicontexted
Application
Support for Programming a Multithreaded/Multicontexted Application......... 10-2
Platform-specific Considerations for Multithreaded/Multicontexted
APPICALIONS ...ttt 10-2
Planning and Designing a Multithreaded/Multicontexted Application........... 10-3
What Are Multithreading and MulticontexXtingcccoevriniiiie e, 10-4
What IS MUltIthreading.........cooiiiiiiiiiii e 10-4
What IS MUIICONTEXEING ...ccoiitiiiiiei e 10-6
Licensing a Multithreaded or Multicontexted Application 10-8
Advantages and Disadvantages of a Multithreaded/Multicontexted
APPICALION 1. 10-¢
Advantages of a Multithreaded/Multicontexted Application................... 10-9
Disadvantages of a Multithreaded/Multicontexted Application............. 10-10
How Multithreading and Multicontexting Work in a Client....................... 10-11
StArt-UP PRaSeoooiiii e 10-

Programming a BEA Tuxedo Application Using COBOL

WOIK PRASE ...ttt et e e e e e e e e e reaa e ee e 10-13

COMPIELION PRASE.......eeiiiiiiiiie e 10-16
How Multithreading and Multicontexting Work in a Servercccccocuee.. 10-17
SEArt-UP PRaSE.....coiiiiii i 10-18
WOTK PRESE ..ottt 10-18
CoMPIEtION PRASE.......eeiiiiiiiiie e 10-21
Design Considerations for a Multithreaded and Multicontexted
APPHCALION ... 10-22
Environment REQUINEMENTScoiiiiiiiiieiiie et 10-23
Design REQUIFEIMENTESooiuiiiieiiiiiie et 10-24
Is the Task of Your Application Suitable for Multithreading and/or
MUIRICONEEXEING ... 10-24
How Many Applications and Connections Do You Want..................... 10-25
What Synchronization Issues Need to Be Addressedccccvveeeeennn. 10-26
Will You Need to Port Your Application............cceeeerieeeeeniiiiee e 10-26
Which Threads Model IS BESt fOr YOUcccccvveviiiiiiiiiiiiiiie e 10-26
Interoperability Restrictions for Workstation Clients...........c.cccceevvnee. 10-27
Implementing a Multithreaded/ Multicontexted Application........................ 10-28
Preliminary Guidelines for Programming a Multithreaded/Multicontexted
APPHCALION ... 10-28
Prerequisites for a Multithreaded Applicationcccocvieeniiieeennee. 10-29
General Multithreaded Programming Considerations..............ccccceeene. 10-29
Concurrency CONSIAErationsccuveeeiiiiieer e 10-30
Writing Code to Enable Multicontexting in a Client............cccccceeviiieeniee. 10-31
CoNteXt AMDULES ..ot 10-32
Setting Up Multicontexting at Initialization.............ccoccvevriiiiiiieininnens, 10-33
Implementing Security for a Multicontexted Clientccccevvnnneee. 10-34
Synchronizing Threads Before a Client Terminationc....cc..... 10-34
SWItChING CONEXLS ...eeeiiiiiiiieiiiii et 10-35
Handling Unsolicited MESSAQESc.ooiiuiiiieiiiiiiie et 10-38
Coding Rules for Transactions in a Multithreaded/Multicontexted
APPHCALION ...t 10-39
Writing Code to Enable Multicontexting and Multithreading in a Server 10-40
CoNteXt AMDULES ..ot 10-40
Coding Rules for a Multicontexted Server..........cccocceeriiieeeniieee i 10-41

Programming a BEA Tuxedo Application Using COBOL vii

Initializing and Terminating Servers and Server Threads...................... 10-4:

Programming a Server to Create Threadsccocviviiirieieren e 10-4
Sample Code for Creating an Application Thread in a Multicontexted
SBIVEI ettt 10-4.
Writing a Multithreaded CHENt............ooiiiiiii e 10-45
Coding Rules for a Multithreaded Clientccoooeiiiiniiie e, 10-46
Initializing a Client to Multiple ContextS.........occeiviiiieenieiiie e 10-47
Context State Changes for a Client Threadccccceviiiiiininiiiiiennnn, 10-4
Getting Replies in a Multithreaded Environment.................ccoeeeiennnen. 10-50
Using Environment Variables in a Multithreaded and/or Multicontexted
ENVIFONMENT ... e 10-51
Using Per-context Functions and Data Structures in a Multithreaded
(O 1= | P O P TP PPPP P TUPRPRTN 10-5:
Using Per-process Functions and Data Structures in a Multithreaded
(O3 1= | O O PPPPPPPPPPRN 10-5¢
Using Per-thread Functions and Data Structures in a Multithreaded
(O3 1= | O O PPPPPTUPPPRTN 10-5¢
Sample Code for a Multithreaded Client..........cccccceeeiiiiiiiiiiee s 10-5°
Writing a Multithreaded Server ... 10-5¢
Compiling Code for a Multithreaded/Multicontexted Application 10-60
Testing a Multithreaded/Multicontexted Applicationccccceeviieeennnne. 10-61
Testing Recommendations for a Multithreaded/Multicontexted
APPHCALION ..t e 10-61
Troubleshooting a Multithreaded/Multicontexted Application.............. 10-62
Error Handling for a Multithreaded/Multicontexted Application 10-63

11. Managing Errors

SYSIEM EITOIS ..ottt et e e 11
F Y oY) 4 B = 1 (0] £ OSSO PSR PPRRRRRS 11-
BEA Tuxedo SYStEM EITOISccoiiiiiiiiiiiie ettt e 11-
Communication Handle EITOrS........cccoooiiiiiiiiiiiiiiee e e 11-

LIMIE EITOIS oottt e e e e e e e e e e et e et e e e e e e e e e e e et e e e arereanaaarnnaes 11-4

INValid DESCIIPLOr EFTOISviiiiiiiieiie ettt 11-5
CONVErSAtIONAl EITOIS ...vuuvuiiiiiiiiti e ee e e et se e ee e e e e e e e e e e e e e e e e e eeee e e eeeee e aeeaevereeaeareees 11
Duplicate ODJECE EFTON........cuiiiiiiiiie ettt ettt e 11-
General Communication Call EITOrScooiiioiiiiiiieieiee e 11-

viii Programming a BEA Tuxedo Application Using COBOL

TPESVCFAIL and TPESVCERR EITOrS.......ccciiiiiiiiiiiiiiei e 11-7

TPEBLOCK and TPGOTSIG EFTOISccooiiiiiiieiiiiiiee e 11-7
INValid ArQUMENT EFTOIS.....eiiiiiiiiie ettt e 11-8
NO ENIY EITOIS ..o s 11-8
Operating SYSIEIM EFTOISuiiiiiiiiiiie ettt 11-9
PEerMISSION EITOIS .ottt e e e e e e et ae e e e ee e e s ennnnns 11-9
o) (oTo]o] I =1 o (o] ¢TSRS 11-10
QUEUING EFTON ..ttt ettt 11-10
Release Compatibility ErrOr..........coooiiiiiiiiiieii et 11-11
Resource Manager EITOrS..... ..o 11-11
LT LS Te 101 = 4 0] £ PSP 11-11
TraNSACHON EITOIS ...ttt ettt e 11-12
TYPEA RECOI EITOIS ...eiiiiiiiiie ettt ettt 11-13
APPHCALION EITOIS ...ttt 11-14
HaNAIiNG EFTOIS ...ttt 11-14
Transaction CONSIAErAtIONSuiiiiiiriir et 11-15
Communication EHQUELEoiiiiiiiie e 11-15
TraNSACHON EITOIS ...ttt et e 11-16

Non-fatal TransSaction ErTOrS...........uvieoiiiiiiiriiie e 11-17

Fatal Transaction ErTOrScoooiiiie i 11-18

Heuristic DeCISION EFTOrScuuiiiiiiiiieie et 11-19
TranSaction TIME-0ULSccoiiuiiiiiiiieie ettt 11-20

TPNOTRAN. . ettt et e e b e 11-20

TPRETURN and TPFORWAR CallScooviiiiiiiiiiieeeeceiee e 11-21
EPLErM() FUNCHION ... e 11-21
RESOUICe MaNAQJEISccoooieiiiiieeee e 11-22
Sample TranSaction SCENANOS.ccciiuriiiiiieie et 11-23

Called Service in Same Transaction as Callercccvccveeiniiieeenenn 11-23

Called Service in Different Transaction with AUTOTRAN Set............ 11-24

Called Service that Starts a New Explicit Transactionccccceeene. 11-25
BEA TUXEDO System-supplied SUBIOULINESueeiiiiiiiiiiiiee e 11-26
Central EVENE LOG. .. uuueiiiiiiiiie ettt et 11-27

LOG NAME ... 11-27

Log ENntry FOrmMat ... 11-28

WIiting t0 the EVENE LOQ.....ccciiiiiiiiiiiiiii it 11-29

Programming a BEA Tuxedo Application Using COBOL ix

12. COBOL Language Bindings for the Workstation Component

UNEX BINAINGS -ttt etttk b e e e nre e ee e 12-1
WIriting ClIENt Programs.oeiiiiiiee ittt 12-2
Building Client Programscooiiiiiieiiiieee et 12-2
Setting Environment Variables.ccccc i 12-

Microsoft WIindows BindiNgS...........cooouuieaiiiiiieiiiiie e 12-4
WIriting ClIeNt Programs.ceioiiiiee ettt 12-¢
Building Client Programscoooiiiiieiiiieiee et 12-F
Building ACCEPT/DISPLAY ClIENtSccciiiiiiiiiiiiiieeeie e 12-6

Programming a BEA Tuxedo Application Using COBOL

CHAPTER

1 Introduction to BEA
Tuxedo Programming

m BEA Tuxedo Distributed Application Programming
m Communication Paradigms

m BEA Tuxedo Clients

m BEA Tuxedo Servers

m BEA Tuxedo API: ATMI

BEA Tuxedo Distributed Application
Programming

A distributed applicatiorconsists of a set of software modules that reside on multiple
hardware systems, and that communicate with one another to accomplish the tasks
required of the application. For example, as shown in the following figure, a
distributed application for a remote online banking system includes software modules
that run on a bank customer’'s home computer, and a computer system at the bank on
which all bank account records are maintained.

Programming a BEA Tuxedo Application Using COBOL 1-1

1

Introduction to BEA Tuxedo Programming

1-2

Figure 1-1 Distributed Application Example - Online Banking System

Cusiomer Heguast: Chesk Account Balance 2 £

h

4
System Response: £ 26,76 i

Customer's Bank's Compufar on Which
Home Computsr Account Records Are Stored

The task of checking an account balance, for example, can be performed simply by
logging on and selecting an option from a menu. Behind the scenes, the local softwal
module communicates with the remote software module using special Application
Programming Interface (API) routines.

The BEA Tuxedo distributed application programming environment provides the API
routines necessary to enable secure, reliable communication between the distribute
software modules. The BEA Tuxedo API is referred to as the
Application-to-Transaction Monitor Interface (ATMI)

The ATMI enables you to:

Send and receive messages between clients and servers, possibly across a
network of heterogeneous machines

Establish and use client naming and security features
Define and manage transactions in which data may be stored in several location:

Generically open and close a resource manager such as a Database Manageme
System (DBMS)

Manage the flow of service requests and the availability of servers to process
them

Programming a BEA Tuxedo Application Using COBOL

Communication Paradigms

Communication Paradigms

The following table describes the BEA Tuxedo communication paradigms available to
application developers.

Table 1-1 Communication Paradigms

Paradigm Description
Request/Response Request/response communication enables one software module
Communication to send a request to a second software module and wait for a

response. Can be synchronous (processing waits until the
requester receives the response) or asynchronous (processing
continues while the requester waits for the response).

This mode is also referred to as client/server interaction. The
first software module assumes the role of the client; the second,
of the server.

Refer to “Writing Request/Response Clients and Servers” on
page 6-1 for more information on this paradigm.

Conversational Conversational communication is similar to request/response

Communication communication, except that multiple requests and/or responses
need to take place before the “conversation” is terminated. With
conversational communication, both the client and the server
maintain state information until the conversation is
disconnected. The application protocol that you are using
governs how messages are communicated between the client
and server.

Conversational communication is commonly used to buffer
portions of a lengthy response from a server to a client.

Refer to “Writing Conversational Clients and Servers” on page
7-1 for more information on this paradigm.

Programming a BEA Tuxedo Application Using COBOL 1-3

1 introduction to BEA Tuxedo Programming

Paradigm Description

Application Queue-based Application queue-based communication supports deferred or

Communication time-independent communication, enabling a client and server
to communicate using an application queue. The BEA
Tuxedo/Q facility allows messages to be queued to persistent
storage (disk) or to non-persistent storage (memory) for later
processing or retrieval.

For example, application queue-based communication is useful
for enqueuing requests when a system goes off-line for
maintenance, or for buffering communications if the client and
server systems are operating at different speeds.

Refer toUsing the BEA Tuxedo /Q Componé&tmore
information on the /Q facility.

Event-based Event-based communication allows a client or server to notify a
Communication client when a specific situation (event) occurs.

Events are reported in one of two ways:

m Unsolicited events are unexpected situations that are
reported by clients and/or servers directly to clients.

m Brokered events are unexpected situations or predictable
occurrences with unpredictable timeframes that are reported
by servers to clients indirectly, through an “anonymous
broker” program that receives and distributes messages.

Event-based communication is based on the BEA Tuxedo
EventBroker facility.

Refer to “Writing Event-based Clients and Servers” on page 8-1
for more information on this paradigm.

BEA Tuxedo Clients

A BEA Tuxedoclientis a software module that collects a user request and forwards it
to a server that offers the requested service. Almost any software module can becor
a BEA Tuxedo client by calling the ATMI client initialization routine afjairiing”

the BEA Tuxedo application. The client can then exchange information with the
server.

1-4 Programming a BEA Tuxedo Application Using COBOL

BEA Tuxedo Clients

The client calls the ATMI termination routine te&vé the application and notify the
BEA Tuxedo system that it (the client) no longer needs to be tracked. Consequently,
BEA Tuxedo application resources are made available for other operations.

The operation of a basic client process can be summarized by the pseudo-code shown
in the following listing.

Listing 1-1 Pseudo-code for a Client

START PROGRAM

enroll as a client of the BEA TUXEDO application
place initial client identification in data structure
perform until end

get user input

place user input in DATA-REC

send service request

receive reply

pass reply to the user

end perform

leave application

END PROGRAM

Most of the actions described in the above listing are implemented\ivith calls.
Others—placing the user input@ATA-RECand passing the reply to the user—are
implemented with COBOL routines.

A client may send and receive any number of service requests before leaving the
application. The client may send these requests as a series of request/response calls or,
if it is important to carry state information from one call to the next, by establishing a
connection to a conversational server. In both cases, the logic in the client program is
similar, but different ATMI calls are required for these two approaches.

Before you can execute a client, you must rurbtlieclient -C command to
compile it and link it with the BEA Tuxedo ATMI and required libraries. Refer to
“Writing Clients” on page 4-1 for information on theildclient command.

Programming a BEA Tuxedo Application Using COBOL 1-5

1 introduction to BEA Tuxedo Programming

BEA Tuxedo Servers

A BEA Tuxedoserveris a process that provides one or megeviceso a client. A
service is a specific business task that a client may need to perform. Servers receive
requests from clients and dispatch them to the appropriate service subroutines.

Basic Server Operation

To build server processes, applications combine their service subroutines with a
controlling program provided by the BEA Tuxedo system. This system-supplied
controlling program is a set of predefined routines. It performs server initialization and
termination and places user input in data structures that can be used to receive and
dispatch incoming requests to service routines. All of this processing is transparent t
the application.

The following figure summarizes, in pseudo-code, the interaction between a server an
a service subroutine.

1-6 Programming a BEA Tuxedo Application Using COBOL

BEA Tuxedo Servers

Figure 1-2 Pseudo-code for a Request/Response Server and a Service Subroutine

Provided by the BEA Tuxedo System

r—-——————
I START PROGRAM I
| enroll as a server in the BEA Tuxedo application |

I advertise services

| perform until end |

| check message queue for service request |

| dequeus request |

| dispatch request to service subrouting _—
I

receive control back from subroutine 4 |
end perform

e e e ¥ Eama e, e, it . e 3 e, s s, iy i i s, iy Yt iy ¥ s, i, i, i

| SERVICE SUBROUTINE + i
| receive control from server |
| |
| I

process request
return contral to server

After initialization, waits until a request message is delivered to its message queue,
dequeues the request, and dispatches it to a service subroutine for processing. If a reply
is required, the reply is considered part of request processing.

The conversational paradigm is somewhat different from request/response, as
illustrated by the pseudo-code in the following figure.

Programming a BEA Tuxedo Application Using COBOL 1-7

1 introduction to BEA Tuxedo Programming

Figure 1-3 Pseudo-code for a Conversational Service Subroutine

SERVER 4

CONYERSATICNAL SERVICE SUBRCU TIMN E4—

Eceive contm | from ssrer

performm while true
receivwe dats from cone rsstionad client
pocess Equest
s=nd dads © comersational client

end perorm

eturn contm | 1o s=ner.

The BEA Tuxedo system-supplied controlling program contains the code needed to
enroll a process as a server, advertise services, and dequeue requests. ATMI calls
used in service subroutines that process requests. When you are ready to compile a
test your service subroutines, you must link edit them with the server and generate &
executable server. To do so, run taédserver -C command.

Servers as Requesters

If a client requests several services, or several iterations of the same service, a sub:
of the services might be transferred to another server for execution. In this case, the
server assumes the role of a clientremuester Both clients and servers can be
requesters; a client, however, can only be a requester. This coding model is easily
accomplished using the BEA Tuxedo ATMI calls.

Note: A request/response server can also forward a request to another server. In th
case, the server does not assume the role of client (requester) because the re
is expected by the original client, not by the server forwarding the request.

1-8 Programming a BEA Tuxedo Application Using COBOL

BEA Tuxedo API: ATMI

BEA Tuxedo API: ATMI

In addition to the COBOL code that expresses the logic of your application, you must
use the Application-to-Transaction Monitor Interface (ATMI), the interface between
your application and the BEA Tuxedo system.

The ATMI is a reasonably compact set of calls used to open and close resources, begin

and end transactions, and support communication between clients and servers. The
following table summarizes the ATMI calls. Each call is described iBE? Tuxedo

COBOL Function Reference

Table 1-2 Using the ATMI Calls

For a Task Related Use This COBOL To... For More
to... Function . . . Information,
Referto. ..
Client membership TPINITIALIZE Have a client join an application “Writing Clients” on
page 4-1
TPTERM Have a client leave an
application
Multiple application TPGETCTXT(3chl) Retrieve an identifier for the “Programming a
context management current threads context Multithreaded and
Multicontexted
TPSETCTXT(3chl) Set the current thread’s context Application” on page
in a multicontexted process 10-1
Service entry and return TPSVCSTART Get service information “Writing Servers” on
page 5-1
TPSVRINIT Initialize a server
TPSVRDONE Terminate a server
TPRETURN End a service routine
TPFORWAR Forward a request

Dynamic advertisement TPADVERTISE

Advertise a service name “Writing Servers” on

TPUNADVERTISE

page 5-1
Unadvertise a service name

Programming a BEA Tuxedo Application Using COBOL 1-9

1 introduction to BEA Tuxedo Programming

For a Task Related Use This COBOL To... For More
to... Function . .. Information,
Referto. ..
Message priority TPGPRIO Get the priority of the last “Writing Servers” on
request page 5-1
TPSPRIO Set the priority of the next
request
Request/Response TPCALL Initiate a synchronous m “Writing Servers”
communications request/response to a service on page 5-1
TPACALL Initiate an asynchronous request. writing
(fanout) Request/Response
Clients and
TPGETRPLY Receive an asynchronous Servers’ on page
response 6-1
TPCANCEL Cancel an asynchronous request
Conversational TPCONNECT Begin a conversation with a “Writing
communications service Conversational
Clients and Servers”
TPDISCON Abnormally terminate a on page 7-1
conversation
TPSEND Send a message in a
conversation
TPRECV Receive a message in a
conversation
Reliable queuing TPENQUEUE(3chl) Enqueue a message to a messagising the BEA Tuxedo
queue /Q Component
TPDEQUEUE(3chl) Dequeue a message from a

message queue

1-10 Programming a BEA Tuxedo Application Using COBOL

BEA Tuxedo API: ATMI

For a Task Related
to...

Use This COBOL
Function . ..

To... For More
Information,
Referto

Event-based
communications

Send an unsolicited message to aVriting Event-based
Clients and Servers”

on page 8-1

TPNOTIFY
client

TPBROADCAST Send messages to several clients

TPSETUNSOL Set unsolicited message
call-back

TPCHKUNSOL Check the arrival of unsolicited
messages

TPGETUNSOL Get an unsolicited message

TPPOST Post an event message

TPSUBSCRIBE

Subscribe to event messages

TPUNSUBSCRIBE

Unsubscribe to event messages

Transaction management TPBEGIN Begin a transaction “Writing Global
Transactions” on page
TPCOMMIT Commit the current transaction g-1
TPABORT Roll back the current transaction
TPGETLEV Check whether in transaction
mode
Resource management TPOPEN(3cbl) Open a resource manager m “Programming a
Multithreaded and
TPCLOSE(3chl) Close a resource manager Multicontexted

Application” on
page 10-1

m Setting Up a BEA
Tuxedo
Application

Programming a BEA Tuxedo Application Using COBOL 1-11

1

Introduction to BEA Tuxedo Programming

For a Task Related Use This COBOL To... For More
to... Function . .. Information,
Referto. ..
Security TPKEYOPEN(3chl) Open a key handle for digital Using BEA Tuxedo
signature generation, message Security
encryption, or message
decryption
TPKEYGETINFO(3chl) Get information associated with
a key handle
TPKEYSETINFO(3chl) Set optional attributes associated
with a key handle
TPKEYCLOSE(3chl) Close a key handle previously
opened usingPKEYOPEN
1-12 Programming a BEA Tuxedo Application Using COBOL

CHAPTER

2 Programming
Environment

m Updating the UBBCONFIG Configuration File
m Setting Environment Variables
m Defining Equivalent Data Types

m Starting and Stopping the Application

Updating the UBBCONFIG Configuration File

The application administrator initially defines the configuration settings for an
application in theuBBCONFIGconfiguration file. To customize your programming
environment, you may need to create or update a configuration file.

If you need to create or update a configuration file, refer to the following guidelines:

m Copy and edit a file that already exists. For example, thetfiishm that comes
with thebankapp sample application can provide a good starting point.

m Minimize complexity. For test purposes, set up your application as a shared
memory, single-processor system. Use regular operating system files for your
data.

Programming a BEA Tuxedo Application Using COBOL 2-1

2 Programming Environment

m Make sure théPCKEY parameter in the configuration file does not conflict with
any other parameters being used at your installation. Check with your BEA
Tuxedo application administrator, and refeSttting Up a BEA Tuxedo
Applicationfor more information.

m Set theuID andGID parameters so that you are the owner of the configuration.

m Review the documentation. The configuration file is describ&tBBCONFIG(5)
in theBEA Tuxedo File Formats and Data Descriptions Reference

The following table summarizes tuBBCONFIGonfiguration file parameters that
affect the programming environment. Parameters are listed by functional category.

Table 2-1 Programming-related UBBCONFIG Parameters by Functional

Category
Functional Parameter Section Description
Category
Global Resource MAXSERVERS RESOURCES Specifies the maximum number of
Limits servers in the configuration. When
setting this value, you need to
consider theviAXvalues for all
servers.
MAXSERVICES RESOURCES Specifies the maximum total number
of services in the configuration.
Data-dependent BUFTYPE ROUTING List of types and subtypes of data
Routing records for which the specified
routing entry is valid.
Link-level MINENCRYPTBITS NETWORK Sets the minimum encryption level
Encryption that a process accepts.
MAXENCRYPTBITS NETWORK Sets the maximum encryption level

that a process accepts.

2-2 Programming a BEA Tuxedo Application Using COBOL

Updating the UBBCONFIG Configuration File

Functional
Category

Parameter

Section

Description

Load Balancing

LDBAL

RESOURCES

Flag for specifying whether or not
load balancing is enabled. If enabled,
the BEA Tuxedo system attempts to
balance requests across the network.

NETLOAD

MACHINES

Numeric value that is added to the
load factor of services that are remote
from the invoking client, providing a
bias for choosing a local server over a
remote server. Load balancing must
be enabled (that iEDBAL must be

set toy).

LOAD

SERVICES

Relative load factor associated with a
service instance. The default is 50.

Security

AUTHSVC

RESOURCES

Specifies the name of an application
authentication service that is invoked
by the system for each client joining
the system.

SECURITY

RESOURCES

Specifies the type of application
security to be enforced.

Programming a BEA Tuxedo Application Using COBOL 2-3

2 Programming Environment

Functional Parameter

Category

Section

Description

Conversational MAXCONV

Communication

RESOURCES

Sets the maximum number of
simultaneous conversations for a
single machine. You can specify a
value between 0 and 32,767. The
default is 64 if any conversational
servers are defined in tIBERVERS
section; otherwise, the default is 1.
The specified value can be overriden
for each machine in thdACHINES
section.

CONV

SERVERS

Specifies whether or not
conversational communication is
supported. If this parameter is seNto
or unspecified, ZPCONNECTall to
a service fails.

MIN/MAX

SERVERS

Specify the minimum and maximum
number of occurrences of the server
to be started bymboot(1) . If not
specified MIN defaults to 1 antMAX
defaults taVIN. The same parameters
are available for use with
request/response servers. However,
conversational servers are
automatically spawned as needed. So
if you setMIN=1 andMAX=1Q for
exampletmboot starts one server
initially. When aTPCONNECTall is
made to a service offered by that
server, the system starts a second
copy of a server. As each copy is
called, a new one is spawned, up to a
limit of 10.

2-4 Programming a BEA Tuxedo Application Using COBOL

Setting Environment Variables

Functional Parameter Section Description
Category
Transaction AUTOTRAN SERVICES Controls whether a service routine is
Management placed in transaction mode. If you set
this parameter t¥, a transaction in
the service subroutine is
automatically started whenever a
request message is received from
another process.
Multithreaded MAXDISPATCHTHREADS SERVERS Specifies the maximum number of
Servers concurrently dispatched threads that
each server process may spawn.
MINDISPATCHTHREADS SERVERS Specifies the number of server
dispatch threads started on initial
server boot.
The configuration file is an operating system text file. To make it usable by the system,
you must execute thenloadcf(l) command to convert the file to a binary file.
See Also

Reference

m Setting Up a BEA Tuxedo Application

m UBBCONFIG(5) in theBEA Tuxedo File Formats and Data Descriptions

Setting Environment Variables

Initially, the application administrator sets the variables that define the environment in
which your application runs. These environment variables are set by assigning values
to theENVFILE parameter in th®IACHINESsection of theJBBCONFIdile. (Refer to

Setting Up a BEA Tuxedo Applicatifor more information.)

Programming a BEA Tuxedo Application Using COBOL 2-5

2 Programming Environment

For the client and server routines in your application, you can update existing
environment variables or create new ones. The following table summarizes the mos
commonly used environment variables. The variables are listed by functional categor

Table 2-2 Programming-related Environment Variables

Function Environment Defines the . . . Used by ...
Variable
Global TUXDIR Location of the BEA BEA Tuxedo application
Tuxedo system binary files.programs
Configuration TUXCONFIG Location of the BEA BEA Tuxedo application
Tuxedo configuration file. programs
Compiling ALTCE Command that invokes the builclient() -C and
COBOL compiler. Default buildserver() -C
is cobcc. commands
ALTCFLAGS Link edit flags to be passed builclient() -C and
to the COBOL compiler. buildserver() -C
Link edit flags are optional. commands
COBOPT Arguments that you may builclient() -C and
want to use on the compile buildserver() -C
command line. commands
COBCPY Directories that contain a builclient() -C and
set of the COBOICOPY buildserver() -C
files to be used by the commands
compiler.
Data Compression ~ TMCMPPRFM Level of compression BEA Tuxedo application
between 1 and 9. programs that perform data

compression

2-6 Programming a BEA Tuxedo Application Using COBOL

Setting Environment Variables

Function Environment Defines the . . . Used by . ..
Variable
Load Balancing TMNETLOAD Numeric value thatis addedBEA Tuxedo application

to the load value for remote programs that perform load
queues, making the remotebalancing

gueues appear to have more

work than they actually do.

As a result, even if load

balancing is enabled, local

requests are sent to local

queues more often than to

remote queues.

Record Management FIELDTBLS or Comma-separated list of FMLandFML32record types
FIELDTBLS32 field table filenames for ~ andFML VIEWS
FMLandFML32 typed

records, respectively.
Required only foFML

VIEWtypes.
FLDTBLDIR or Colon-separated list of FMLandFML32record types
FLDTBLDIR32 directories to be searched andFML VIEWs

for the field table files for

FMLandFML32,

respectively. For Windows
NT, a semi-colon separated

listis used.
VIEWFILES or Comma-separated list of VIEWandVIEW32 record types
VIEWFILES32 allowablef ilenames for

VIEW andVIEW32 typed
records, respectively.

VIEWDIR or Colon-separated list of VIEWandVIEW32 record types
VIEWDIR32 directories to be searched

for VIEWandVIEW32

files, respectively. For

Windows NT, a semi-colon

separated list is used.

1.0n a Windows NT system, thie TCCandALTCFLAGSenvironment variables are not appli-
cable and setting them will produce unexpected results. You must compile your application first
using a COBOL compiler and then pass the resulting object file taitheient or build-

server command.

Programming a BEA Tuxedo Application Using COBOL 2-7

2 Programming Environment

If operating in a UNIX environment, agdfUXDIR/bin to your environmerPATHto
ensure that your application can locate the executables for the BEA Tuxedo system
commands. For more information on setting up the environment, rettiog Up a
BEA Tuxedo Applicatian

See Also

m Setting Up a BEA Tuxedo Application

Defining Equivalent Data Types

The following table lists the C data types for which equivalent COBOL data types are
available.

Table 2-3 COBOL Equivalents for C Data Types

C Data Type Equivalent COBOL Data Type
float COMP-1

double COMP-2

long S9(9) COMP-5 1

short S9(4) COMP-5 1

dec_t COBOL COMP-3 packed decimal field

1. COMP-5 provided for use with MicroFocuSOBOL, allows the COBOL
integer fields to match the data format of the corresponding dsfieThe data
type forvSCOBOLI is COMP.

For storage efficiency, COBOL supports packed decimals: two decimal digits packec
into each byte with the low-order half byte used to store the sign. The length of a
packed decimal may be 1 to 9 bytes with storage available for 1 to 17 digits, including
the sign.

2-8 Programming a BEA Tuxedo Application Using COBOL

Starting and Stopping the Application

Thedec_t field is defined in &1EW. The size is specified as two values separated by

a comma. The first value indicates the total number of bytes occupied by the decimal
in COBOL. The second value indicates the number of digits to the right of the decimal
point in COBOL. You can use the following formula to convertdére t field to a
COBOL declaration.

dec_t(m,n)=>S9(2* m(n+l), n)COMP-3

For example, a size specification of 6,4 in Yhew indicates that there are 4 digits to
the right of the decimal point and 7 digits to the left, and the last half byte is used to
store the sign. A COBOL application programmer represents thigas(4)

where thev represents the decimal point between each value. NoteMhabes not
support thelec_t type; ifFML-dependenVIEWs are used, then each field must be
mapped to & type in theviEwfile. For instance, a packed decimal can be mapped to
anFMLstring field, and then the mapping functions can be used to do the conversion
between formats.

Starting and Stopping the Application

See Also

To start the application, execute tboot(1) command. The command gets the IPC
resources required by the application, and starts administrative processes and
application servers.

To stop the application, execute theshutdown(1) command. The command stops
the servers and releases the IPC resources used by the application, except any that
might be used by the resource manager, such as a database.

®m tmboot(l) andtmshutdown(l) intheBEA Tuxedo Command Reference

Programming a BEA Tuxedo Application Using COBOL 2-9

2 Programming Environment

2-10 Programming a BEA Tuxedo Application Using COBOL

CHAPTER

3 Managing Typed
Records

m Overview of Typed Records
m Defining Typed Records

m Using a VIEW Typed Record
m Using an FML Typed Record
m Using an XML Typed Record

Overview of Typed Records

In order to send data to another application program, the sending program first places
the data in a record. BEA Tuxedo System clients use typed records to send messages
to servers. The term “typed record” refers to a pair of COBOL records: a data record
and an auxiliary type record. The data record is defined in static storage and contains
application data to be passed to another application program. An auxiliary type record
accompanies the data record. It specifies the interpretation and translation rules of the
data record to be used by the BEA Tuxedo system when passing the information
between heterogeneous systems. Typed records make up one of the fundamental
features of the distributed programming environment supported by the BEA Tuxedo
system.

Programming a BEA Tuxedo Application Using COBOL 3-1

3 Managing Typed Records

Why typed In a distributed environment, an application may be installed on
heterogeneous systems that communicate across multiple networks using different
protocols. Different types of records require different routines to initialize, send and
receive messages, and encode and decode data. Each record is designated as a spe
type so that the appropriate routines can be called automatically without programme
intervention.

The following table lists the typed records supported by the BEA Tuxedo system anc
indicates whether or not:

m The record iself-describingin other words, the record data type and length can
be determined simply by (a) knowing the type and subtype, and (b) looking at
the data.

m The record requires a subtype.
m The system supports data-dependent routing for the typed record.
m The system supports encoding and decoding for the typed record.

If any routing routines are required, the application programmer must provide them a
part of the application.

Table 3-1 Typed Records

Typed Record Descrption Self- Subtype Data- Encoding/
Describing Dependent Decoding
Routing
CARRAY Undefined array of characters, any of No No No No

which can be LOW-VALUE. This typed
record is used to handle the data opaquely,
as the BEA Tuxedo system does not
interpret the semantics of the array.
Because £ARRAYs not self-describing,
the length must always be provided during
transmission. Encoding and decoding are
not supported for messages sent between
machines because the bytes are not
interpreted by the system.

3-2 Programming a BEA Tuxedo Application Using COBOL

Overview of Typed Records

Typed Record

Descption Self- Subtype Data-

Describing Dependent

Routing

Encoding/
Decoding

FML (Field
Manipulation
Language)

Proprietary BEA Tuxedo System type of Yes No Yes
self-describing record in which each data

field carries its own identifier, an

occurrence number, and possibly a length

indicator. T record offers

data-independence and greater flexibility

TheFMLrecord uses 16 bits for field
identifiers and lengths of fields.

Refer to “Using an FML Typed Record”
on page 3-15 for more information.

Yes

FML32

Equivalent td&-MLbut uses 32 bits for field Yes No Yes
identifiers and lengths of fields, which

allows for larger and more fields and,

consequently, larger overall records.

However, the=MLroutines that are
available for manipulating theMLtyped
record in the C programming language are
not available in COBOL.The primary use
of FML32in COBOL is simply to work

with C programs in whicNIEW32 or
FML32 typed records are used.

Refer to “Using an FML Typed Record”
on page 3-15 for more information.

Yes

STRING

Array of characters that terminates with aNo No No
LOW-VALUE character. The BEA

Tuxedo System can convert data

automatically when data is exchanged by

machines with different character sets.

No

Programming a BEA Tuxedo Application Using COBOL 3-3

3 Managing Typed Records

Typed Record Descrption Self- Subtype Data- Encoding/
Describing Dependent Decoding
Routing
VIEW COBOL data structure defined by the No Yes Yes Yes

application VIEWtypes must have
subtypes that designate individual data
structures. Aview description filgin

which the fields and types that appear in
the data structure are defined, must be
available to client and server processes that
use a data structure described MIBW
typed record. Encoding and decoding are
performed automatically if the record is
passed between machines of different
types. Refer to “Using a VIEW Typed
Record” on page 3-7 for more information.

VIEW32 Equivalent toVIEW but uses 32 bits for No Yes Yes Yes
length and count fields, which allows for
larger and more fields and, consequently,
larger overall records.

The primary use ofIEW32in COBOL is
simply to work with C programs in which
VIEW32 or FML32typed records are used.
Refer to “Using a VIEW Typed Record”
on page 3-7 for more information.

X_COMMON Equivalent tovIEW, but used for No Yes Yes Yes
compatibility between COBOL and C
programs. Field types should be limited to
short, long, and string.

3-4 Programming a BEA Tuxedo Application Using COBOL

Overview of Typed Records

Typed Record

Descption Self- Subtype Data- Encoding/
Describing Dependent Decodirg
Routing

XML

An XML document that consists of: No No Yes No

m Text, in the form of a sequence of
encoded characters

m A description of the logical structure
of the document and information about
that structure

The routing of an XML document can be
based on element content, or on element
type and an attribute value. The XML
parser determines the character encoding
being used; if the encoding differs from the
native character sets (US-ASCII or
EBCDIC) used in the BEA Tuxedo
configuration files yBBCONFIG(5) and
DMCONFIG(5)), the element and attribute
names are converted to US-ASCII or
EBCDIC. Refer to “Using an XML Typed
Record” on page 3-22for more
information.

X_OCTET

Equivalent toCARRAY No No No No

All record types are defined in a file callestypesw.c in the$TUXDIR/lib

directory. Only record types definedtintypesw.c are known to your client and
server programs. You can edit tieypesw.c file to add or remove record types. In
addition, you can use tiBJFTYPEparameter (ituBBCONFI$ to restrict the types and
subtypes that can be processed by a given service.

Thetmtypesw.c file is used to build a shared object or dynamic link library. This
object is dynamically loaded by both BEA Tuxedo administrative servers, and
application clients and servers.

Programming a BEA Tuxedo Application Using COBOL 3-5

3 Managing Typed Records

See Also

“Using a VIEW Typed Record” on page 3-7

m “Using an FML Typed Record” on page 3-15

m “Using an XML Typed Record” on page 3-22

m tuxtypes(5) in theBEA Tuxedo File Formats and Data Descriptions Reference

m UBBCONFIG(5) in theBEA Tuxedo File Formats and Data Descriptions
Reference

Defining Typed Records

3-6

TheTPTYPE-RECCOBOL structure is used whenever sending or receiving application
data.

The following table lists th&PTYPE-RECSstructure fields.

Field Description

REC-TYPE Specifies which record type the application wishes to send or
receive.

SUB-TYPE Specifies the subtype of the record type, if further classification

is required (as itis, for example, inVéEW record).

LEN When data is being sent, specifies the number of bytes to be sent.
After a successful transfdrEN contains the number of bytes
transferred. When data is being receiudel\ in TPTYPE-REC
specifies the number of bytes to be moved into the data record.
After a successful calLEN contains the number of bytes moved
into the data record. If the size of the incoming message is larger
than the size specified LEN, the data is truncated, all data after
theLENIength is reached is discarded, 8aRirYPE-STATUSs
set toTPTRUNCATE

Programming a BEA Tuxedo Application Using COBOL

Using a VIEW Typed Record

The following shows th&@PTYPEdata structure:

05 REC-TYPE PIC X(8).
88 X-OCTET VALUE “X_OCTET".
88 X-COMMON VALUE “X_COMMON?”.
05 SUB-TYPE PIC X(16).
05 LEN PIC S9(9) COMP-5.
88 NO-LENGTH VALUE 0.
05 TPTYPE-STATUS PIC S9(9) COMP-5.
88 TPTYPEOK VALUE 0.
88 TPTRUNCATE VALUE 1.

Using a VIEW Typed Record

There are two kinds ofIEwtyped records. The firsEML VIEW, is a COBOL record
generated from aBRMLrecord. The second is simply an independent COBOL record.

The reason for convertirgMLrecords into COBOL records and back again (and the
purpose of thEML VIEW typed records) is that FML functions are not available in the
COBOL programming environment.

For more information on theMLtyped record, refer to ti8EA Tuxedo FML Function
Reference

To useVIEWtyped records, you must perform the following steps:
m Set the appropriate environment variables
m Describe each structure in view description files

m Compile the view description files usingwc -C, the BEA Tuxedo view
compiler. By running this comand you will produce one or more COEQIPY
files (one per view), each of which contains data description records. These
records can be used in the&lKAGE section or th&VORKING STORAGEection of
the DATA DIVISION , according to the demands of the program.

Programming a BEA Tuxedo Application Using COBOL 3-7

3 Managing Typed Records

Setting Environment Variables for a VIEW Typed Record

To use aVIEWtyped record in an application, you must set the following environment
variables.

Table 3-2 Environment Variables for a VIEW Typed Record

Environment Description

Variable

FIELDTBLS or Comma-separated list of field table file namesHwiL or
FIELDTBLS32 FML32 typed records. Required only fBMLVIEW types.
FLDTBLDIR or Colon-separated list of directories to search for the field table
FLDTBLDIR32 files for FMLandFML32typed records. For Microsoft

Windows, use a semi-colon separated list. Required only for
FMLVIEW types.

VIEWFILES or Comma-separated list of allowalilée names foVIEW or
VIEWFILES32 VIEW32 description files.

VIEWDIR or Colon-separated list of directories to searchvi@Ww or
VIEWDIR32 VIEW32 files. For Microsoft Windows, use a semi-colon

separated list.

Creating a View Description File

To use aVIEWtyped record, you must define the COBOL record in a view description
file. The view description file includes, a view for each entry, a view that describes the
characteristic COBOL procedure mapping and the poteriiatonversion pattern.

The name of the view corresponds to the name of the copy file that is included in
COBOL program.

The following format is used for each record in the view description file.

$ /* View structure */
VIEW viewname
type cname fbname count flag size null

The following table describes the fields that must be specified in the view description
file for each COBOL record.

3-8 Programming a BEA Tuxedo Application Using COBOL

Using a VIEW Typed Record

Table 3-3 View Description File Fields

Field

Description

type

Data type of the field. Can be setstwort , long , float ,
double , char , string , orcarray

cname

Name of the field as it appears in the COBOL record.

fbname

If you will be using thé=ML-to-VIEW or VIEW-to-FML

conversion routines, this field must be included to indicate the
corresponding-MLname. This field name must also appear in
the FML field table file This field is not required for
FML-independent VIEWSs.

count

Number of times field occurs.

flag

Specifies any of the following optional flag settings:

m P - Change the interpretation of the LOW-VALUE value

S - One-way mapping from fielded record to structure

F - One-way mapping from structure to fielded record

N - Zero-way mapping

C - Generate additional field for associated count member
(ACM)

m L - Hold number of bytes transferred FRING and
CARRAY

size

For STRINGandCARRAYecord types, specifies the maximum
length of the value. This field is ignored for all other record
types.

Programming a BEA Tuxedo Application Using COBOL 3-9

3 Managing Typed Records

Field

Description

null

User-specified LOW-VALUE value, or to indicate the default
value for a field. LOW-VALUE values are usedVitEW typed
records to indicate empty COBOL record members.

The default LOW-VALUE value for all numeric types is 0 (0.0
for dec_t). For character types, the default LOW-VALUE
value is \0 '. For STRING andCARRAMypes, the default
LOW-VALUE value is “ .

Constants used, by convention, as escape characters can also be
used to specify a LOW-VALUE value. The view compiler
recognizes the following escape constawidd (whered is an

octal digit),\0 ,\n ,\t ,\v ,\r ,\f N\ V[and\” .

You may enclos8TRING, CARRAYand LOW-VALUE values
in double or single quotes. The view compiler does not accept
unescaped quotes within a user-specified LOW-VALUE value.

You can also specify the keyword NONE in the LOW-VALUE
field of a view member description, which means that there is no
LOW-VALUE value for the member. The maximum size of
default values for string and character array members is 2660
characters. For more information, refer to Bi®A Tuxedo FML
Function Reference

You can include a comment line by prefixing it with the # or $ character. Lines
prefixed by a $ sign are included in thefile.

3-10 Programming a BEA Tuxedo Application Using COBOL

Using a VIEW Typed Record

The following listing is an excerpt from an example view description file based on an
FMLrecord. In this case, thename field must be specified and match that which
appears in the correspondifigld table file Note that thecARRAY ffield includes an
occurrence count &f and sets the flag to indicate that an additional count element
should be created. In addition, thélag is set to establish a length element that
indicates the number of characters with which the application populatesm®Ray 1

field.

Listing 3-1 View Description File for FML VIEW

$ /* View structure */

VIEW MYVIEW

#type cname fbname count flag size null
float floatl FLOAT1 1 - - 0.0
double doublel DOUBLE1l 1 - - 0.0
long longl LONG1 1 - - 0
short shortl SHORT1 1 - - 0

int intl INT1 1 - - 0

dect decl DEC1 1 - 9,16 0
char charl CHAR1 1 - - \0'
string stringl STRING1 1 - 20 O
carray carrayl CARRAY1 2 CL 20 "\O
END

Programming a BEA Tuxedo Application Using COBOL 3-11

3 Managing Typed Records

The following listing illustrates the same view description file for an independent
VIEW.

Listing 3-2 View Description File for an Independent View

$ /* View data structure */

VIEW MYVIEW

#type cname fbname count flag size null
float floatl - 1 - - -
double doublel - 1 - - -
long longl - 1 - - -
short shortl - 1 - - -
int intl - 1 - - -
dec t decl - 1 - 9,16 -
char charl - 1 - - -
string stringl - 1 - 20 -
carray carrayl - 2 cL 20 -
END

Note that the format is similar to tR&ll-dependent view, except that tiveame and
null fields are not relevant and are ignored byvbec compiler. You must include
a value (for example, a dash) as a placeholder in these fields.

Executing the VIEW Compiler

To compile aviEw typed record, run théewc-C command, specifying the name of
the view description file as an argument. To specify an indepenti&nt use then
option. You can optionally specify a directory in which the resulting output file should
be written. By default, the output file is written to the current directory.

For example, for arRML-dependenVIEW, the compiler is invoked as follows.

viewc -C myview.v
Note: To compile avIEW32 typed record, run théewc32 -C command.

For an independemiEW, use then option on the command line, as follows.

viewc -C -n myview.v

3-12 Programming a BEA Tuxedo Application Using COBOL

Using a VIEW Typed Record

The output of the@iewc command includes:
m One or more COBOICOPYfiles; for exampleMYVIEW.cbl

m Header file containing a structure definition that may be used by application
programs for C routines that share the same view

m Binary version of the source description file; for exampigjiew.V

Note: On case-insensitive platforms (for example, Microsoft Windows), the
extension used for the names of such files iFor examplemyview.vv .

The following listing provides an example of the COBCQPYfile created byiewc .

Listing 3-3 COBOL COPY File Example

VIEWFILE: "myview.v"
* VIEWNAME: "MYVIEW"

05 FLOAT1 USAGE IS COMP-1.
05 DOUBLE1 USAGE IS COMP-2.
05 LONG1 PIC S9(9) USAGE IS COMP-5.
05 SHORT1 PIC S9(4) USAGE IS COMP-5.
05 FILLER PIC X(02).
05 INT1 PIC S9(9) USAGE IS COMP-5.
05 DEC1.
07 DEC-EXP PIC S9(4) USAGE IS COMP-5.
07 DEC-POS PIC S9(4) USAGE IS COMP-5.
07 DEC-NDGTS PIC S9(4) USAGE IS COMP-5.
* DEC-DGTS is the actual packed decimal value
07 DEC-DGTS PIC S9(1)V9(16) COMP-3.
07 FILLER PIC X(07).
05 CHAR1 PIC X(01).
05 STRING1 PIC X(20).
05 FILLER PIC X(01).

05 L-CARRAY1 OCCURS 2 TIMES PIC 9(4) USAGE IS COMP-5.
* LENGTH OF CARRAY1

05 C-CARRAY1 PIC S9(4) USAGE IS COMP-5.
* COUNT OF CARRAY1

05 CARRAY1 OCCURS 2 TIMES PIC X(20).

05 FILLER PIC X(02).

COBOL coPYfiles for views must be brought into client programs and service
subroutines witlCOPYstatements.

Programming a BEA Tuxedo Application Using COBOL 3-13

3 Managing Typed Records

In the previous example, the compiler inclug@s ER files so that the alignment of
fields in COBOL code matches the alignment in C code.

The format of the packed decimal valDECy, is composed of five fields. Four
fields—DEC-EXP, DEC-POS DEC-NDGTSandFILLER —are used only in C (they are
defined in thedec_t type); they are included in the COBOL record for filler. Do not
use these fields in COBOL applications.

The fifth field, DEC-DGTS is used by the system to store the actual packed decimal
value. You should use this value within the COBOL program. ATMI calls operate on
theDEC-DGTSfield to:

m Populate the field before the record is passed from a C program to a COBOL
program.

m Convert the field back to thiec_t type when passed from the COBOL
program to the C program.

The only restriction is that a COBOL program cannot directly pass a recordto a C
function outside of the ATMI interface because the decimal formats in the COBOL
program and C function do not match.

Finally, note that the sample COB@IOPYfile includes an-CARRAY1length field
that occurs twice, once for each occurrenceA®RAY1and aC-CARRAY1count field.

viewc creates a C version of the header file that you can use to mix C and COBOL
service and/or client programs.

See Also

m “Using an FML Typed Record” on page 3-15
m “Using an XML Typed Record” on page 3-22

m viewc, viewc32(1) in theBEA Tuxedo Command Reference

3-14 Programming a BEA Tuxedo Application Using COBOL

Using an FML Typed Record

Using an FML Typed Record

TheFMLinterface was designed for use with the C language. For COBOL, routines are
provided that allow you to convert a receivdl record type to a COBOL record for
processing, and then convert the record bachvtio

To useFMLtyped records, you must perform the following steps:
m Set the appropriate environment variables

m Describe the potential fields in an FML field table

m Initialize theFMLrecord usingrINIT.

m Create arFML header file and specify the header file #irelude statement C
routines that share the same view in the application.

FMLroutines are used to manipulate typed records, including those that convert fielded
records to C structures and vice versa. By using these functions, you can access and
update data values without having to know how data is structured and stored. For more
information onFMLroutines, refer to thBEA Tuxedo FML Function Reference

Setting Environment Variables for an FML Typed Record

To use arFMLtyped record in an application program, you must set the following
environment variables.

Table 3-4 FML Typed Record Environment Variables

Environment Description

Variable

FIELDTBLS or Comma-separated list of field table file namesHBiL or
FIELDTBLS32 FML32 typed records, respectively.

FLDTBLDIR or Colon-separated list of directories to search for the field table
FLDTBLDIR32 files for FMLandFML32, respectively. For Microsoft Windows,

use a semi-colon separated list.

Programming a BEA Tuxedo Application Using COBOL 3-15

3 Managing Typed Records

Creating a Field Table File

Field table files are always required whrtLrecords and/aeML-dependenVIEWs are
used. A field table file maps the logical name of a field irl@nrecord to a string that
uniquely identifies the field.

The following format is used for the description of each field inFfthefield table.
$ /* FML structure */
*base value
name number type flags comments

The following table describes the fields that must be specified iiMhé&eld table file
for eachFMLfield.

Table 3-5 Field Table File Fields

Field Description

*base value Specifies a base for offsetting subsequent field numbers,
providing an easy way to group and renumber sets of related
fields. The*base option allows field numbers to be reused. For
a 16-bit record, the base plus the relevant number must be
greater than or equal to 100 and less than 8191. This field is
optional.

Note: The BEA Tuxedo system reserves field numbers 1-100
and 6000-7000 for internal use. Field numbers
101-8191 are available for application-defined fields
with FML, field numbers 101-33, 554, and 431, for
FML32.

name Identifier for the field. The value must be a string of up to 30
characters, consisting of alphanumeric and underscore
characters only.

rel-number Relative numeric value of the field. This value is added to the
current base, if specified, to calculate the field number.

type Type of the field. This value can be any of the followicigar ,
string , short ,long , float , double , orcarray

3-16 Programming a BEA Tuxedo Application Using COBOL

Using an FML Typed Record

Field Description

flag Reserved for future use. A dash (-) should be included as a
placeholder.

comment Optional comment.

All fields are optional, and may be included more than once.

The following example illustrates a field table file that may be used with the
FML-dependenYIEW example

Listing 3-4 Field Table File for FML VIEW

name number type flags comments
FLOAT1 110 float - -

DOUBLE1 111 double - -

LONG1 112 long - -

SHORT1 113 short - -

INT1 114 long - -

DEC1 115 string - -

CHAR1 116 char - -

STRING1 117 string - -
CARRAY1 118 carray - -

Initializing a Typed Record

An FMLtyped record must be initialized using tAsIT procedure. Th&PINIT
procedure takes the specifiedLrecord (preferably aligned on a full-word boundary)
and uses the value specified in #ML-LENGTHfield in theFMLINFOrecord as the
length.

If TPNOCHANGHB set, then angMLrecord received by a program (rather than created
by the program) is initialized automatically. In this case, it is unnecessary to call
FINIT .

The following listing shows how to perform an initialization.

Programming a BEA Tuxedo Application Using COBOL 3-17

3 Managing Typed Records

Listing 3-5 FML/VIEW Conversion

WORKING-STORAGE SECTION.
*RECORD TYPE AND LENGTH
01 TPTYPE-REC.
COPY TPTYPE.
*STATUS OF CALL
01 TPSTATUS-REC.
COPY TPSTATUS.
* SERVICE CALL FLAGS/RECORD
01 TPSVCDEF-REC.
COPY TPSVCDEF.
* TPINIT FLAGS/RECORD
01 TPINFDEF-REC.
COPY TPINFDEF.
* FML CALL FLAGS/RECORD
01 FML-REC.
COPY FMLINFO.

*
*

* APPLICATION FML RECORD - ALIGNED
01 MYFML.
05 FBFR-DTA OCCURS 100 TIMES PIC S9(9) USAGE IS COMP-5.
* APPLICATION VIEW RECORD
01 MYVIEW.
COPY MYVIEW.

* INITIALIZE FML RECORD
MOVE LENGTH OF MYFML TO FML-LENGTH.
CALL "FINIT" USING MYFML FML-REC.
IF NOT FOK
MOVE "FINIT Failed" TO LOGMSG-TEXT
PERFORM DO-USERLOG
PERFORM EXIT-PROGRAM
END-IF.

* Convert VIEW to FML Record
SET FUPDATE TO TRUE.
MOVE "MYVIEW" TO VIEWNAME.
CALL "FVSTOF" USING MYFML MYVIEW FML-REC.
IF NOT FOK
MOVE "FVSTOF Failed" TO LOGMSG-TEXT
PERFORM DO-USERLOG

3-18 Programming a BEA Tuxedo Application Using COBOL

Using an FML Typed Record

PERFORM EXIT-PROGRAM
END-IF.

* CALL THE SERVICE USING THE FML RECORD
MOVE "FML" TO REC-TYPE IN TPTYPE-REC.
MOVE SPACES TO SUB-TYPE IN TPTYPE-REC.
MOVE LENGTH OF MYFML TO LEN.

CALL "TPCALL" USING TPSVCDEF-REC
TPTYPE-REC
MYFML
TPTYPE-REC
MYFML
TPSTATUS-REC.
IF NOT TPOK
MOVE "TPCALL MYFML Failed" TO LOGMSG-TEXT
PERFORM DO-USERLOG
PERFORM EXIT-PROGRAM
END-IF.
* CONVERT THE FML RECORD BACK TO MYVIEW
CALL "FVFTOS" USING MYFML MYVIEW FML-REC.
IF NOT FOK
MOVE "FVFTOS Failed" TO LOGMSG-TEXT
PERFORM DO-USERLOG
PERFORM EXIT-PROGRAM

END-IF.

In the preceding listing, thevSTOFprocedure converts @amMLrecord into a/IEW

record. The view is defined by including the copy file generated by the view compiler.
TheFML-RECrecord provides thelEWNAMENd theFML-MODEransfer mode, which

can be set tBUPDATEFOJOIN, FJOIN, or FCONCATThe actions associated with these
modes are the same as those describ&dpate, Fupdate32(3fml) , Fojain,
Fojoin32(3fml) , Fjoin, Fjoin32(3fml) , andFconcat, Fconcat32(3fml)

TheFVvFTOSprocedure converts\dewrecord into afFMLrecord. The parameters are

the same as those for EMSTOFprocedure but you do not need to Bt -MODE The

system copies the fields from the fielded record into the structure, based on the element
descriptions in the view. If there is no corresponding element in the COBOL record for
a field in the fielded record, then the system ignores the field. If there is no
corresponding field in the fielded record for an element specified in the COBOL
record, the system copies a null value into the element. The null value used can be
defined for each element in the view description.

Programming a BEA Tuxedo Application Using COBOL 3-19

3 Managing Typed Records

To store multiple occurrences of a field in the COBOL record, a record element shoulc
be defined withtboCCURSIf the number of occurrences of the field in the record is
smaller than the number of occurrences of the element, the extra element slots are
assigned null values. Alternatively, if the number of occurrences of the field in the
record is higher than the number of occurrences of the element, then the surplus
occurrences are ignored.

ForFML32andVIEW32, theFINIT32 , FVSTOF32 andrFVFTOS32procedures should be
used.

Upon successful completion, the system set&theSTATUSto FOK On error, the
system sets theML-STATUSto a non-zero value.

Creating an FML Header File

3-20

In order to use aRMLtyped record in client programs or service subroutines, you must
create arrMLheader file and specify it in the applicati¢ginclude statements.

To create arMLheader file from a field table file, use thefldhdr (1) command. For
example, to create a file callegview.fids.n , enter the following command.

mkfldhdr myview.flds

For FML32 typed records, use thekfldhdr32 command.

Programming a BEA Tuxedo Application Using COBOL

Using an FML Typed Record

The following listing shows theyview.flds.h header file that is created by the
mkfldhdr command.

Listing 3-6 myview.flds.h Header File

[* fnrame fldid */
e */

#define FLOAT1 ((FLDID)24686) /* number: 110 type: float */
#define DOUBLE1 ((FLDID)32879) /* number: 111 type: double */
#define LONG1 ((FLDID)8304) /* number: 112 type: long */
#define SHORT1 ((FLDID)113) /* number: 113 type: short */
#define INT1 ((FLDID)8306) /* number: 114 type: long */
#define DEC1 ((FLDID)41075) /* number: 115 type: string */
#define CHAR1 ((FLDID)16500) /* number: 116 type: char */
#define STRING1 ((FLDID)41077) /* number: 117 type: string */
#define CARRAY1 ((FLDID)49270) /* number: 118 type: carray */

Specify the new header file in thaclude statement of your application. Once the
header file is included, you can refer to fields by their symbolic names.

See Also

m “Using a VIEW Typed Record” on page 3-7
m “Using an XML Typed Record” on page 3-22

m mkfldhdr, mkfldhdr32(1) in theBEA Tuxedo Command Reference

Programming a BEA Tuxedo Application Using COBOL 3-21

3 Managing Typed Records

Using an XML Typed Record

XMLrecords enable BEA Tuxedo applications to use XML for exchanging data within
and between applications. BEA Tuxedo applications can send and receiveXgitnple
records, and route those records to the appropriate servers. All logic for dealing witk
XMLdocuments, including parsing, resides in the application.

An XMLdocument consists of:
m A sequence of characters that encode the text of a document

m A description of the logical structure of the document and information about that
structure

Formatting and filtering for Events processing (which are supported WlERIERG
record type is used) are not supported fordkerecord type. Therefore, the
_tmfiter ~ and _tmformat pointers in the record type switch &wiLrecords are set
to LOW-VALUE.

TheXMLparser in the BEA Tuxedo system performs the following routines:
m Autodetection of character encodings

m Character code conversion

m Detection of element content and attribute values

m Data type conversion

Data-dependent routing is supportedXdiLrecords. The routing of atMLdocument

can be based on element content, or on element type and an attribute vakiL The
parser determines the character encoding being used; if the encoding differs from tf
native character sets (US-ASCII or EBCDIC) used in the BEA Tuxedo configuration
files (UBBCONFIGandDMCONFI the element and attribute names are converted to
US-ASCII or EBCDIC.

Attributes configured for routing must be included ik document. If an attribute
is configured as a routing criteria but it is not included intiedocument, routing
processing fails.

3-22 Programming a BEA Tuxedo Application Using COBOL

Using an XML Typed Record

See Also

The content of an element and the value of an attribute must conform to the syntax and
semantics required for a routing field value. The user must also specify the type of the
routing field valuexMLsupports only character data. If a range field is numeric, the
content or value of that field is converted to a numeric value during routing processing.

m “Using a VIEW Typed Record” on page 3-7

m “Using an FML Typed Record” on page 3-15

Programming a BEA Tuxedo Application Using COBOL 3-23

3 Managing Typed Records

3-24 Programming a BEA Tuxedo Application Using COBOL

CHAPTER

4 Writing Clients

m Joining an Application

m Using Features of the TPINFDEF-REC Record
m Leaving the Application

m Building Clients

m Client Process Examples
Joining an Application

Before a client can perform any service request, it must join the BEA Tuxedo
application, either explicitly or implicitly. Once the client has joined the application, it
can initiate requests and receive replies.

A client joins an application explicitly by callinEPINITIALIZE(3cbl) with the
following signature.

01 TPINFDEF-REC
COPY TPINFDEF.
01 USER-DATA-REC PIC X(any-length).
01 TPSTATUS-REC
COPY TPSTATUS.
CALL "TPINITIALIZE" USING TPINFDEF-REC USER-DATA-REC TPSTATUS-REC

Programming a BEA Tuxedo Application Using COBOL 4-1

4 Writing Clients

A client joins an application implicitly by issuing a service request (or any ATMI call)
without first callingTPINITIALIZE . In this caseTPINITIALIZE is called by the BEA
Tuxedo system on behalf of the client with SRACESparameter. ThePINFDEF-REC
record is a special BEA Tuxedo system typed record used by a client program to pa:
client identification and authentication information to the system when the client
attempts to join the application. It is defined in a COBtmPYfile, as follows.

05 USRNAME PIC X(30).

05 CLTNAME PIC X(30).

05 PASSWD PIC X(30).

05 GRPNAME PIC X(30).

05 NOTIFICATION-FLAG PIC S9(9) COMP-5.
88 TPU-SIG VALUE 1.
88 TPU-DIP VALUE 2.
88 TPU-IGN VALUE 3.

05 ACCESS-FLAG PIC S9(9) COMP-5.
88 TPSA-FASTPATH VALUE 1.
88 TPSA-PROTECTED VALUE 2.

05 DATALEN PIC S9(9) COMP-5.

The following table lists the fields that are defined in a COBX0IPYfile.

Table 4-1 COBOL COPY File Fields

Field Description

USRNAME Name representing the caller. You may want to specify the value
returned by the UNIX commargetuid (2) within this field.
The value olUSRNAMEay contain up tMAXTIDENT
characters (which is defined as 30).

CLTNAME Name of a client for which the semantics are
application-defined. The value 6GLTNAMEMay contain up to
MAXTIDENTcharacters (which is defined as 30).

PASSWD Application password in unencrypted format that is used by
TPINITIALIZE for validation against the application
password stored in tHBUXCONFIGile. PASSWIs a string of
up toMAXTIDENTcharacters.

4-2 Programming a BEA Tuxedo Application Using COBOL

Joining an Application

Field Description

GRPNAME Resource manager group name with which you want to associate
the client. The client can access an XA-compliant resource
manager as part of a global transaction. GRENAMEan be a
value up taMAXTIDENTcharacters (which is defined as 30).
Currently, however, theRPNAMBust be passed &ACES
specifying that the client is not associated with a resource
manager group and is in the default client group.

NOTIFICATION-FLAG Notification mechanism and system access mode to be used.
Refer to “Unsolicited Notification Handling” on page 4-6 for a
list of valid values.

ACCESS-FLAG System access mode used. Refer to “System Access Mode” on
page 4-7 for a list of values.

DATALEN Length of the application-specific data that will be sent to the
authentication service. For native clients, itis not encoded by the
system, but passed to the authentication service as provided by
the client. For workstation clients, client authentication is
handled by the system, and passed over the network in encrypted
form.

The USRNAMBNACLTNAMHields are associated with the client process when
TPINITIALIZE is called. Both fields are used for both broadcast notification and the
retrieval of administrative statistics.

See Also

m TPINITIALIZE(3cbl) in theBEA Tuxedo COBOL Function Reference

Programming a BEA Tuxedo Application Using COBOL 4-3

4 Writing Clients

Using Features of the TPINFDEF-REC Record

The client must explicitly invok&@PINITIALIZE in order to take advantage of the
following features of th&PINFDEF-REC record:

m Client Naming

m Unsolicited Notification Handling
m System Access Mode

m Resource Manager Association

m Client Authentication

Client Naming

When a client joins an application, the BEA Tuxedo system assigns a unique client
identifier to it. The identifier is passed to each service called by the client. It can alsc
be used for unsolicited notification.

You can also assign unique client and user names of up to 30 characters each, by
passing them tOPINITIALIZE via theTPINFDEF-REC record. The BEA Tuxedo
system establishes a unique identifier for each process by combining the client and us
names associated with it, with the logical machine identifier (LMID) of the machine
on which the process is running. You may choose a method for acquiring the values
for these fields.

Note: If a process is executing outside the administrative domain of the application
(that is, if it is running on a workstation connected to the administrative
domain), the LMID of the machine used by the workstation client to access the
application is assigned.

4-4 Programming a BEA Tuxedo Application Using COBOL

Using Features of the TPINFDEF-REC Record

Once a unique identifier for a client process is created:
m Client authentication can be implemented.

m Unsolicited messages can be sent to a specific client or to groups of clients via
TPNOTIFY andTPBROADCAST

m Detailed statistical information can be gatheredmisimin(1)

Refer to “Writing Event-based Clients and Servers” on page 8-1 for information on
sending and receiving unsolicited messages, anBE#eTuxedo C Function
Referencdor more information ommadmin(1)

The following figure shows how names might be associated with clients accessing an
application. In the example, the application usesitheme field to indicate a job
function.

Figure 4-1 Client Naming

LMID: NODE1 — LMID: ITIODEI
usmname: john W usmame: jane
cltname: teller o diname: teller
il
£
) A
NETWORK - -
M - LMID: NODE2
3 N usrname: jane
fol clthame: manager
L D
o 2. .
s 2
physical connections
logical connections

Programming a BEA Tuxedo Application Using COBOL 4-5

4 Writing Clients

Unsolicited Notification Handling

Unsolicited natification refers to any communication with a client that is not an
expected response to a service request (or an error code). For example, an
administrator may broadcast a message to indicate that the system will go down in fiv
minutes.

A client can be notified of an unsolicited message in a number of ways. For example
some operating systems might send a signal to the client and interrupt its current
processing. By default, the BEA Tuxedo system checks for unsolicited messages ea
time an ATMI call is invoked. This approach, referred taliasin, is advantageous
because it:

m Is supported on all platforms
m Does not interrupt the current processing

As some time may elapse between “dip-ins,” the application can calP@ekKUNSOL
call to check for any waiting unsolicited messages. Refer to “Writing Event-based
Clients and Servers” on page 8-1 for more information omBgiKUNSOCall.

When a client joins an application usin@INITIALIZE , it can control how to handle
unsolicited notification messages by defining flags. For client notification, the possible
values foINOTIFICATION-FLAG are defined in the following table.

Table 4-2 Client Notification Flags in a TPINFDEF-REC Record

Flag Description

TPU_SIG Select unsolicited notification by signals. This flag should be
used only with single-threaded, single-context applications. The
advantage of using this mode is immediate notification. The
disadvantages include:

m The calling process must have the saui® as the sending
process when you are running a native client. (Workstation
clients do not have this limitation.)

m TPU_SIGis not available on all platforms (specifically, it is
not available on MS-DOS workstations).

If you specify this flag but do not meet the system or
environmental requirements, the flag is seffR®&_DIP and the
event is logged.

4-6 Programming a BEA Tuxedo Application Using COBOL

Using Features of the TPINFDEF-REC Record

Flag Description

TPU_DIP (default) Select unsolicited notification by dip-in. In this case, the client
can specify the name of the message handling routine using the
TPSETUNSOIcall, and check for waiting unsolicited messages
using theTPCHKUNSOtall.

TPU_THREAD SelectTHREADnotification in a separate thread. This flag is
allowed only on platforms that support multithreading. If
TPU_THREADLDs specified on a platform that does not support
multithreading, it is considered an invalid argument. As a result,
an error is returned anidP-STATUS is set toTPEINVAL.

TPU_IGN Ignore unsolicited notification.

Refer tOTPINITIALIZE(3cbl) in theBEA Tuxedo COBOL Function Refererice
more information on th&PINFDEF-REC flags.

System Access Mode

An application can access the BEA Tuxedo system through either of two modes:
protected or fastpath. The client can request a mode when it joins an application using
TPINITIALIZE . To specify a mode, a client passes one of the following values in the
ACCESS-FLAGfield of theTPINFDEF-REC record toTPINITIALIZE

Table 4-3 System Access Flags in a TPINFDEF-REC Record

Mode Description

TPSA-PROTECTED Allows ATMI calls within an application to access the BEA
Tuxedo system internal tables via shared memory, but protects
shared memory against access by application code outside of the
BEA Tuxedo system libraries. Overrides the value in
UBBCONFIGexceptwheNO_OVERRIDES specified. Refer to
Setting Up a BEA Tuxedo Applicatifor more information on
UBBCONFIG

Programming a BEA Tuxedo Application Using COBOL 4-7

4 Writing Clients

Mode Description
TPSA-FASTPATH Allows ATMI calls within application code access to BEA
(default) Tuxedo system internals via shared memory. Does not protect

shared memory against access by application code outside of the
BEA Tuxedo system libraries. Overrides the value of
UBBCONFIGexcept whetNO_OVERRIDEs specified. Refer to
Setting Up a BEA Tuxedo Applicatifor more information on
UBBCONFIG

Resource Manager Association

An application administrator can configure groups for servers associated with a
resource manager, including servers that provide administrative processes for
coordinating transactions. Refer$etting Up a BEA Tuxedo Applicatifor
information on defining groups.

When joining the application, a client can join a particular group by specifying the
name of that group in thggpname field of TPINFDEF-REC.

Client Authentication

The BEA Tuxedo system provides security at incremental levels, including operating
system security, application password, user authentication, optional access control
lists, mandatory access control lists, and link-level encryption. Re&=ttimg Up a

BEA Tuxedo Applicatiofor information on setting security levels.

The application password security level requires every client to provide an applicatior
password when it joins the application. The administrator can set or change the
application password and must provide it to valid users.

If this level of security is used, BEA Tuxedo system-supplied client programs, such a:
ud() , prompt for the application password. (RefeAttiministering a BEA Tuxedo
Application at Run Timér more information omd, wud(1) .) In turn,
application-specific client programs must include code for obtaining the password
from a user. The unencrypted password is placed imRN=DEF-REC record and
evaluated when the client caliBINITIALIZE to join the application.

4-8 Programming a BEA Tuxedo Application Using COBOL

Leaving the Application

Note: The password should not be displayed on the screen.

You can us@PCHKAUTH(3cbhl) to determine:
m Whether the application requires any authentication

m |f the application requires authentication, which of the following types of
authentication is needed:

e System authentication based on an application password

e Application authentication based on an application password and
user-specific information

Typically, a client should calfPCHKAUTHeforeTPINITIALIZE to identify any
additional security information that must be provided during initialization.

Refer toUsing BEA Tuxedo Securityr more information on security programming
techniques.

Leaving the Application

Once all service requests have been issued and replies received, the client can leave the
application usingPTERM(3cbl) . TheTPTERMcall signature is as follows.

01 TPSTATUS-REC

COPY TPSTATUS.
CALL "TPTERM" USING TPSTATUS-REC

Building Clients

To build an executable client, compile your application with the BEA Tuxedo system
libraries and all other referenced files using lhigclient(1) command. Include
the-C option to indicate that you are compiling a COBOL program. Use the following
syntax for thebuildclient command.

buildclient -C filename. cbl -0 filename -f filenames -| filenames

Programming a BEA Tuxedo Application Using COBOL 4-9

4 Writing Clients

The following table describes the options to ilaédclient command.

Table 4-4 buildclient Options

This Option or Allows You to Specify . . .

Argument . . .

filename. cbl The COBOL application to be compiled.

-0 filename The executable output file. The default name for the output file
isa.out .

-f filenames A list of files that are to be link edited before the BEA Tuxedo

system libraries are link edited. You can spedifymore than
once on the command line, and you can include multiple
filenames for each occurrence-bf. If you specify a COBOL
program file file .cbl), itis compiled before itis linked. You
can specify other object file§/é .o) separately, or in groups
in an archive filefle .a).

-l filenames A list of files that are to be link edited after the BEA Tuxedo
system libraries are link edited. You can spedifymore than
once on the command line, and you can include multiple
filenames for each occurrence-bf. If you specify a COBOL
program file file .cbl), itis compiled before itislinked. You
can specify other object file§/é .o) separately, or in groups
in an archive filefle .a).

-r The resource manager access libraries that should be link edited
with the executable server. The application administrator is
responsible for predefining all valid resource manager
information in the$TUXDIR/updataobj/RM file using the
buildtms (1) command. Only one resource manager can be
specified. Refer t&etting Up a BEA Tuxedo Applicatifor
more information.

Note: The BEA Tuxedo libraries are linked in automatically; you do not need to
specify any BEA Tuxedo libraries on the command line.

The order in which you specify the library files to be link edited is significant: it
depends on the order in which functions are called in the code, and which libraries
contain references to those functions.

4-10 Programming a BEA Tuxedo Application Using COBOL

Building Clients

See Also

By default, thebuildclient command invokes the UNIX command. You can set
the ALTCCandALTCFLAGSenvironment variables to specify an alternative compile
command, and to set flags for the compile and link-edit phases, respectively. By
default,ALTCCIs set tacobcc . For more information, refer to “Setting Environment
Variables” on page 2-5.

Note: On a Windows NT system, the TCCandALTCFLAGSenvironment variables
are not applicable; setting them will produce unexpected results. You must
compile your application by first using a COBOL compiler, and then passing
the resulting object file to theuildclient command. For example:

buildclient -C -o audit -f audit.o

The following example command line compiles a COBOL program caligiticbl
and generates an executable file namett .

buildclient -C —o audit —f audit.cbl

m “Building Servers” on page 5-30

® buildclient(1) in theBEA Tuxedo Command Reference

Programming a BEA Tuxedo Application Using COBOL 4-11

4 Writing Clients

Client Process Examples

The following pseudo-code shows how a typical client process works from the time a
which it joins an application to the time at which it leaves the application.

Listing 4-1 Typical Client Process Paradigm

Check level of security

CALL TPSETUNSOL to name your handler routine for TPU-DIP

get USRNAME, CLTNAME

prompt for application PASSWD

SET TPU-DIP TO TRUE.

CALL "TPINITIALIZE" USING TPINFDEF-REC
USER-DATA-REC
TPSTATUS-REC.

IF NOT TPOK

error processing

make service call
receive the reply
check for unsolicited messages

CALL "TPTERM" USING TPSTATUS-REC.
IF NOT TPOK
error processing

EXIT PROGRAM.

In this exampleTPINITIALIZE takes three arguments:
m TPINFDEF-REC, a structure defined in the COB@OPYfile
m User datalSER-DATA-REQ

m TPSTATUS-REG a status structure defined in the COBCPYfile.

4-12 Programming a BEA Tuxedo Application Using COBOL

Client Process Examples

Both TPINITIALIZE andTPTERMeturn [TPOH in TP-STATUS IN TPSTATUS-REC

upon success. If either command encounters an error, the command fails and sets
TP-STATUStO a value that indicates the nature of the em@STATUS-RECS defined

in a COBOLcCOPYfile. Refer to “Managing Errors” on page 11-1 for possible
TP-STATUS values. Refer to “Introduction to the COBOL Application-Transaction
Monitor Interface” in theBEA Tuxedo COBOL Function Referefi@ea complete list

of error codes that can be returned for each of the ATMI calls.

The following example illustrates how to use IRNITIALIZE andTPTERMoutines.
This example is borrowed frorhankapp , the sample banking application that is
provided with the BEA Tuxedo system.

Listing 4-2 Joining and Leaving an Application

IDENTIFICATION DIVISION.
PROGRAM-ID. FIG1-3.

AUTHOR. TUXEDO DEVELOPMENT.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

*

WORKING-STORAGE SECTION.

*k: *%: *%: *%: *%:

* Tuxedo definitions
01 TPSTATUS-REC.
COPY TPSTATUS.

*

01 TPINFDEF-REC.
COPY TPINFDEF.

*k: *%: *%: *k: *

* Log messages definitions

* *%: *k: *%: *%: *

01 LOGMSG.
05FILLER PIC X(10) VALUE "FIG12-3 =>".
05 LOGMSG-TEXT PIC X(50).

01 LOGMSG-LEN PIC S9(9) COMP-5.

*

01 USER-DATA-REC PIC X(75).

PROCEDURE DIVISION.
START-HERE.
MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.

* Now register the client with the system.

Programming a BEA Tuxedo Application Using COBOL 4-13

4 Writing Clients

MOVE SPACES TO USRNAME.
MOVE SPACES TO CLTNAME.
MOVE SPACES TO PASSWD.
MOVE SPACES TO GRPNAME.
MOVE ZERO TO DATALEN.
SET TPU-DIP TO TRUE.

*

CALL "TPINITIALIZE" USING TPINFDEF-REC
USER-DATA-REC
TPSTATUS-REC.

IF NOT TPOK
MOVE "TPINITIALIZE FAILED" TO LOGMSG-TEXT
PERFORM DO-USERLOG
PERFORM EXIT-PROGRAM.

* *

* Application specific code

*Leave Application

CALL "TPTERM" USING TPSTATUS-REC.

IF NOT TPOK
MOVE "TPTERM FAILED" TO LOGMSG-TEXT
PERFORM DO-USERLOG.

EXIT-PROGRAM.

STOP RUN.

* Log messages to the userlog

DO-USERLOG.

CALL "USERLOG" USING LOGMSG
LOGMSG-LEN
TPSTATUS-REC.

The previous example shows the client process attempting to join the application wit
a call toTPINITIALIZE . If an error is encountered, a message is written to the central
event log via a call tdSERLOG

4-14 Programming a BEA Tuxedo Application Using COBOL

CHAPTER

5 Writing Servers

m BEA Tuxedo System Controlling Program
m System-supplied Server and Services

m Guidelines for Writing Servers

m Defining a Service

m Terminating a Service Routine

m Advertising and Unadvertising Services

m Building Servers

BEA Tuxedo System Controlling Program

To facilitate the development of servers, the BEA Tuxedo system provides a predefined
controlling program for server load modules. When you executaitbgerver -C
command, the controlling program is automatically included as part of the server.

Note: The controlling program that the system provides is a closed abstraction; you
cannot modify it.

In addition to joining and exiting from an application, the predefined controlling
program accomplishes the following tasks on behalf of the server.

m Executes the process ignoring any hangups (that is, it ignoresakHeP
signal).

Programming a BEA Tuxedo Application Using COBOL 5-1

5 Writing Servers

m Initiates the cleanup process on receipt of the standard operating system softwal
termination signalRIGTERN). The server is shut down and must be rebooted if
needed again.

m Attaches to shared memory for bulletin board services.
m Creates a message queue for the process.

m Advertises the initial services to be offered by the server. The initial services are
either all the services link edited with the predefined controlling program, or a
subset specified by the BEA Tuxedo system administrator in the configuration
file.

m Processes command-line arguments up to the double-d3shvpich indicates
the end of system-recognized arguments.

m Calls the routin@PSVRINIT to process any command-line arguments listed after
the double dash-() and optionally to open the resource manager. These
command-line arguments are used for application-specific initialization.

m Until ordered to halt, checks its request queue for service request messages.

m When a service request message arrives on the request ga@ge, performs
the following tasks until ordered to halt:

e Ifthe-r option is specified, records the starting time of the service request.
¢ Updates the bulletin board to indicate that the sen@ugy

e dispatches the service; that is, calls the service subroutine.

m When the service returns from processing its inpaty() performs the
following tasks until ordered to halt:

e Ifthe-r option is specified, records the ending time of the service request.
e Updates statistics.

¢ Updates the bulletin board to indicate that the serv®LB; that is, that the
server is ready for work.

e Checks its queue for the next service request.

m When the server is required to halt, catkssVRDONEo perform any required
shutdown operations.

5-2 Programming a BEA Tuxedo Application Using COBOL

System-supplied Server and Services

As indicated above, theain() routine handles all of the details associated with
joining and exiting from an application, managing records and transactions, and
handling communication.

Note: Because the system-supplied controlling program accomplishes the work of
joining and leaving the application, you should not include calls to the
TPINITIALIZE or TPTERMoutine in your code. If you do, the routine
encounters an error and retufREEPROTON TP-STATUS. For more
information on th&@PINITIALIZE or TPTERMroutine, refer to “Writing
Clients” on page 4-1.

System-supplied Server and Services

The controlling program provides one system-supplied sexuatiSVRand two
subroutinesTPSVRINIT andTPSVRDONEThe default versions of all three, which are
described in the following sections, can be modified to suit your application.

Notes: If you want to write your own versions 8PSVRINIT andTPSVRDONE
remember that the default versions of these two routinesccagen() and
tx_close() , respectively. If you write a new versionT#fSVRINIT that calls
tpopen() rather thanx_open() , you should also write a new version of
TPSVRDONHEhat callspclose() . In other words, both routines in an
open/close pair must belong to the same set.

System-supplied Server: AUTHSVR()

You can use thaUTHSVR(5) server to provide individual client authentication for an
application. Th@PINITIALIZE routine calls this server when the level of security for
the application iFPAPPAUTHUSER_AUTHACL, or MANDATORY_ACL

The service imUTHSVRoOKS in theUSER-DATA-RECrecord for a user password (not
to be confused with the application password specified irAlsswield of the
TPINFDEF-REC record). By default, the system takes the stringaia and searches
for a matching string in thietc/passwd ~ file.

Programming a BEA Tuxedo Application Using COBOL 5-3

5 Writing Servers

When called by a native-site clieMRINITIALIZE forwards theJSER-DATA-REC
record as it is received. This means that if the application requires the password to k
encrypted, the client program must be coded accordingly.

When called by a workstation clieMRINITIALIZE encrypts the data before sending
it across the network.

System-supplied Services: TPSVRINIT Routine

when a server is booted, the BEA Tuxedo system controlling program calls
TPSVRINIT(3cbl) during its initialization phase, before handling any service
requests.

If an application does not provide a custom version of this routine within the server,
the system uses the default routine provided by the controlling program, which open
the resource manager and logs an entry in the central event log indicating that the
server has successfully started. The central user log is an automatically generated fi
to which processes can write messages by calling$ERLOG(3cbl) routine. Refer

to “Managing Errors” on page 11-1 for more information on the central event log.

You can use th&PSVRINIT routine for any initialization processes that might be
required by an application, such as the following:

m Receiving command-line options
m Opening a database

The following sections provide code samples showing how these initialization tasks
are performed through calls T@SVRINIT. Although it is not illustrated in the

following examples, message exchanges can also be performed within this routine.
However TPSVRINIT fails if it returns with asynchronous replies pending. In this case,
the replies are ignored by the BEA Tuxedo system, and the server exits gracefully.

You can also use tHEPSVRINIT routine to start and complete transactions, as
described in “Managing Errors” on page 11-1.

5-4 Programming a BEA Tuxedo Application Using COBOL

System-supplied Server and Services

Use the following signature to call tR@SVRINIT routine.

LINKAGE SECTION.
01 CMD-LINE.

05 ARGC PIC 9(4) COMP-5.

05 ARGV.

10 ARGS PIC X OCCURS 0 TO 9999 DEPENDING ON ARGC
01 TPSTATUS-REC
COPY TPSTATUS.

PROCEDURE DIVISION USING CMD-LINE TPSTATUS-REC
* User code
EXIT PROGRAM.

Receiving Command-line Options

When a server is booted, its first task is to read the server options specified in the
configuration file. The options are passed throsgtzCwhich contains the number of
arguments, andrRGY which contains the arguments separated by a SBRAEE
character. The predefined controlling program then T&&/RINIT.

The following code example shows how FRSVRINIT routine is used to receive
command-line options.

Listing 5-1 Receiving Command-line Options in TPSVRINIT

IDENTIFICATION DIVISION.
PROGRAM-ID. TPSVRINIT.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. USL-486.
OBJECT-COMPUTER. USL-486.
*
DATA DIVISION.
WORKING-STORAGE SECTION.

*

LINKAGE SECTION.
*
01 CMD-LINE.
05 ARGC PIC 9(4) COMP-5.
05 ARGV.
10 ARGS PIC X OCCURS 0 TO 9999 DEPENDING ON ARGC.
01 SERVER-INIT-STATUS.
COPY TPSTATUS.

*

PROCEDURE DIVISION USING CMD-LINE SERVER-INIT-STATUS.

Programming a BEA Tuxedo Application Using COBOL 5-5

5 Writing Servers

* * *kk * *kk *kkk

* ARGC indicates the number of arguments and ARGV contains the
* arguments separated by a single SPACE.

* *kk *kk *kkk

A-START.
*
... INSPECT the ARGV line and process arguments
IF arguments are invalid
SET TPEINVAL IN SERVER-INIT-STATUS TO TRUE.
ELSE arguments are OK continue
SET TPOK IN SERVER-INIT-STATUS TO TRUE.

EXIT PROGRAM.

Opening a Resource Manager

The following example illustrates another common usePsiVRINIT : opening a
resource manager. The BEA Tuxedo system provides routines to open a resource
managerTPOPEN(3chl) andTXOPEN(3cbl). It also provides the complementary
routines,TPCLOSE(3cbl) andTXCLOSE(3chl) . Applications that use these routines

to open and close their resource managers are portable in this respect. They work b
accessing the resource manager instance-specific information that is available in the
configuration file.

These routine calls are optional and can be used in place of the resource manager
specific calls that are sometimes part of the Data Manipulation Language (DML) if the
resource manager is a database. Note the use OSHRLOG(3cbl) routine to write

to the central event log.

Note: To create an initialization function that both receives command-Iline options

and opens a database, combine the following example with the previous
example.

Listing 5-2 Opening a Resource Manager in TPSVRINIT

IDENTIFICATION DIVISION.
PROGRAM-ID. TPSVRINIT.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. USL-486.
OBJECT-COMPUTER. USL-486.

5-6 Programming a BEA Tuxedo Application Using COBOL

System-supplied Server and Services

*

DATA DIVISION.
WORKING-STORAGE SECTION.
01 TPSTATUS-REC.
COPY TPSTATUS.
01 LOGMSG PIC X(50).
01 LOGMSG-LEN PIC S9(9) COMP-5.
*
LINKAGE SECTION.
01 CMD-LINE.
05 ARGC PIC 9(4) COMP-5.
05 ARGV.
10 ARGS PIC X OCCURS 0 TO 9999 DEPENDING ON ARGC.
01 SERVER-INIT-STATUS.
COPY TPSTATUS.
*
PROCEDURE DIVISION USING CMD-LINE SERVER-INIT-STATUS.
A-START.
... INSPECT the ARGV line and process arguments
IF arguments are invalid
MOVE "Invalid Arguments Passed" TO LOGMSG
PERFORM EXIT-NOW.
ELSE arguments are OK continue

CALL "TPOPEN" USING TPSTATUS-REC.
IF NOT TPOK
MOVE "TPOPEN Failed" TO LOGMSG
ELSE IF TPESYSTEM
MOVE "System /T error has occurred" TO LOGMSG
ELSE IF TPEOS
MOVE "An Operating System error has occurred" TO LOGMSG
ELSE IF TPEPROTO
MOVE "TPOPEN was called in an improper Context" TO LOGMSG
ELSE IF TPERMERR
MOVE "Resource manager Failed to Open" TO LOGMSG
PERFORM EXIT-NOW.
SET TPOK IN SERVER-INIT-STATUS TO TRUE.
EXIT PROGRAM.
EXIT-NOW.
SET TPEINVAL IN SERVER-INIT-STATUS TO TRUE
MOVE 50 LOGMSG-LEN.
CALL "USERLOG" USING LOGMSG
LOGMSG-LEN
TPSTATUS-REC.
EXIT PROGRAM.

Programming a BEA Tuxedo Application Using COBOL 5-7

5 Writing Servers

To guard against errors that may occur during initializatiesVRINIT can be coded
to allow the server to exit gracefully before starting to process service requests.

System-supplied Services: TPSVRDONE Routine

The TPSVRDONEOUtine callSTPCLOSEO close the resource manager, similarly to the
way TPSVRINIT callsSTPOPENO open it.

Use the following signature to call tieSVRDONEoutine.

01 TPSTATUS-REC
COPY TPSTATUS.
PROCEDURE DIVISION.
* User code
EXIT PROGRAM.

The following example illustrates how to use 1RSVRDONEOUtine to close a
resource manager and exit gracefully.

Listing 5-3 Closing a Resource Manager with TPSVRDONE

IDENTIFICATION DIVISION.
PROGRAM-ID. TPSVRDONE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. USL-486.
OBJECT-COMPUTER. USL-486.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 TPSTATUS-REC.
COPY TPSTATUS.
01 LOGMSG PIC X(50).
01 LOGMSG-LEN PIC S9(9) COMP-5.
01 SERVER-DONE-STATUS.
COPY TPSTATUS.
PROCEDURE DIVISION.
A-START.
CALL "TPCLOSE" USING TPSTATUS-REC.
IF NOT TPOK
MOVE "TPCLOSE Failed" TO LOGMSG
ELSE IF TPESYSTEM
MOVE "System /T error has occurred” TO LOGMSG

5-8 Programming a BEA Tuxedo Application Using COBOL

Guidelines for Writing Servers

ELSE IF TPEOS
MOVE "An Operating System error has occurred" TO LOGMSG
ELSE IF TPEPROTO
MOVE "TPCLOSE was called in an improper Context" TO LOGMSG
ELSE IF TPERMERR
MOVE "Resource manager Failed to Open" TO LOGMSG
PERFORM EXIT-NOW.
SET TPOK IN SERVER-DONE-STATUS TO TRUE.
EXIT PROGRAM.
EXIT-NOW.
SET TPEINVAL IN SERVER-DONE-STATUS TO TRUE
MOVE 50 LOGMSG-LEN.
CALL "USERLOG" USING LOGMSG
LOGMSG-LEN
TPSTATUS-REC.
EXIT PROGRAM.

Guidelines for Writing Servers

Because the communication details are handled by the BEA Tuxedo system
controlling program, you can concentrate on the application service logic rather than
communication implementation. For compatibility with the system-supplied

controlling program, however, application services must adhere to certain
conventions. These conventions are referred to, collectively, as the service template for
coding service routines. They are summarized in the following list.

m A request/response service can receive only one request at a time and can send
only one reply.

m When processing a request, a request/response service works only on that
request. It can accept another only after it has either sent a reply to the requester
or forwarded the request to another service for additional processing.

m Service routines must terminate by calling eithermPRETURNF TPFORWAR
routine.

= When communicating with another server VRACALL the initiating service
must either wait for all outstanding replies or invalidate them WAHANCEL
before callingTPRETURNTI TPFORWAR

Programming a BEA Tuxedo Application Using COBOL 5-9

5 Writing Servers

Defining a Service

When writing a service routine, you must call TRSVCSTART(3cbl) routine before
any others. This routine is used to retrieve the service’s parameters and data. Use tl
following signature to call thePSVCSTARToutine.

01 TPSVCDEF-REC
COPY TPSVCDEF.
01 TPTYPE-REC
COPY TPTYPE.
01 DATA-REC
COPY User Data.
01 TPSTATUS-REC
COPY TPSTATUS.
CALL "TPSVCSTART" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC

The service information data structure is definedtrR&v/CDEHRN the COBOLCOPY
file. It includes the following members.

05 COMM-HANDLE PIC S9(9) COMP-5.
05 TPBLOCK-FLAG PIC S9(9) COMP-5.
88 TPBLOCK VALUE 0.
88 TPNOBLOCK VALUE 1.
05 TPTRAN-FLAG PIC S9(9) COMP-5.
88 TPTRAN VALUE 0.
88 TPNOTRAN VALUE 1.
05 TPREPLY-FLAG PIC S9(9) COMP-5.
88 TPREPLY VALUE 0.
88 TPNOREPLY VALUE 1.
05 TPACK-FLAG PIC S9(9) COMP-5 REDEFINES TPREPLY-FLAG.
88 TPNOACK VALUE 0.
88 TPACK VALUE 1.
05 TPTIME-FLAG PIC S9(9) COMP-5.
88 TPTIME VALUE 0.
88 TPNOTIME VALUE 1.
05 TPSIGRSTRT-FLAG PIC S9(9) COMP-5.
88 TPNOSIGRSTRT VALUE 0.
88 TPSIGRSTRT VALUE 1.
05 TPGETANY-FLAG PIC S9(9) COMP-5.
88 TPGETHANDLE VALUE 0.
88 TPGETANY VALUE 1.
05 TPSENDRECV-FLAG PIC S9(9) COMP-5.
88 TPSENDONLY VALUE 0.
88 TPRECVONLY VALUE 1.
05 TPNOCHANGE-FLAG PIC S9(9) COMP-5.

5-10 Programming a BEA Tuxedo Application Using COBOL

Defining a Service

88 TPCHANGE

VALUE 0.

88 TPNOCHANGE VALUE 1.
05 TPSERVICETYPE-FLAG PIC S9(9) COMP-5.

88 TPREQRSP

VALUE 0.

88 TPCONV VALUE 1.

*

05 APPKEY PIC S9(9) COMP-5.
05 CLIENTID OCCURS 4 TIMES PIC S9(9) COMP-5.

05 SERVICE-NAME

PIC X(15).

The following table describes the members aP8VCDERIata structure.

Table 5-1 TPSVCDEF Data Structure

Field

Description

COMM-HANDLE

Specifies, to the service routine, the communication handle used
by the requesting process to invoke the service.

SETTINGS
(TPBLOCK-FLAG
TPTRAN-FLAG, etc.)

Miscellaneous settings that control server characteristics. For
more information on the settings, refer to BieA Tuxedo
COBOL Function Reference

APPKEY

Reserved for use by the application. If application-specific
authentication is part of your design, the application-specific
authentication server, which is called at the time a client joins
the application, should return a client authentication key, as well
as a success or failure indication. The BEA Tuxedo system holds
the APPKEYon behalf of the client and passes the information to
subsequent service requests in this field. By the time the
APPKEYis passed to the service, the client has already been
authenticated. However, tAd°PKEYfield can be used within

the service to identify the user invoking the service or some
other parameters associated with the user.

CLIENTID

Identifier of the client that originates a request.

SERVICE-NAME

Name of the service routine used by the requesting process to
invoke the service.

For a description of thePTYPE-RECdata structure, refer to “Defining Typed Records

on page 3-6.

Programming a BEA Tuxedo Application Using COBOL 5-11

5 Writing Servers

You must code the service in such a way that when it accesses the request data to |
placed inDATA-REG it expects the data to be in a record of the type defined for the
service in the configuration file. Upon successful retD&TA-RECcontains the data
received andEN contains the actual number of bytes moved.

The following sample listing shows a typical service definition.

Listing 5-4 Typical Service Definition

IDENTIFICATION DIVISION.
PROGRAM-ID. BUYSR.

AUTHOR. TUXEDO DEVELOPMENT.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. USL-486.
OBJECT-COMPUTER. USL-486.

INPUT-OUTPUT SECTION.

* *% *

* Tuxedo definitions
01 TPSVCRET-REC.
COPY TPSVCRET.

01 TPTYPE-REC.
COPY TPTYPE.

01 TPSTATUS-REC.
COPY TPSTATUS.

01 TPSVCDEF-REC.
COPY TPSVCDEF.

* Log message definitions

01 LOGMSG.
05 LOGMSG-TEXT PIC X(50).

01 LOGMSG-LEN PIC S9(9) COMP-5.

* User defined data records

01 CUST-REC.
COPY CUST.

*

5-12 Programming a BEA Tuxedo Application Using COBOL

Defining a Service

*

*

LINKAGE SECTION.

PROCEDURE DIVISION.

START-BUYSR.

MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.
OPEN files or DATABASE

*

*

*k: *%: *%: *%: *%: *

Get the data that was sent by the client

*

*k: *%: *%: *k: *%: *

MOVE "Server Started" TO LOGMSG-TEXT.
PERFORM DO-USERLOG.
MOVE LENGTH OF CUST-REC TO LEN IN TPTYPE-REC.
CALL "TPSVCSTART" USING TPSVCDEF-REC
TPTYPE-REC
CUST-REC
TPSTATUS-REC.
IF TPTRUNCATE
MOVE "Input data exceeded CUST-REC length" TO LOGMSG-TEXT
PERFORM DO-USERLOG
PERFORM A-999-EXIT.
IF NOT TPOK
MOVE "TPSVCSTART Failed" TO LOGMSG-TEXT
PERFORM DO-USERLOG
PERFORM A-999-EXIT.
IF REC-TYPE NOT = "VIEW"
MOVE "REC-TYPE in not VIEW" TO LOGMSG-TEXT
PERFORM DO-USERLOG
PERFORM A-999-EXIT.
IF SUB-TYPE NOT = "cust"
MOVE "SUB-TYPE in not cust" TO LOGMSG-TEXT
PERFORM DO-USERLOG
PERFORM A-999-EXIT.

set consistency level of the transaction

*

*

*%: *k: *%: *%: *%: *

Exit

*

*k: *k: *%: *%: *%: *

A-999-EXIT.
MOVE "Exiting" TO LOGMSG-TEXT.
PERFORM DO-USERLOG.
SET TPFAIL TO TRUE.
COPY TPRETURN REPLACING TPSVCRET-REC BY TPSVCRET-REC
TPTYPE-REC BY TPTYPE-REC
DATA-REC BY CUST-REC

*

*

TPSTATUS-REC BY TPSTATUS-REC.

*%: *%: *%: *%: *k:

Write to userlog

Programming a BEA Tuxedo Application Using COBOL 5-13

5 Writing Servers

DO-USERLOG.
CALL "USERLOG" USING LOGMSG
LOGMSG-LEN
TPSTATUS-REC.

In the preceding example, the request record on the client side was originally sent wit
REC-TYPESset tovIEW and theSUB-TYPESset tocust . TheBUYSRService is defined in

the configuration file as a service that knows abouwtag/ typed recordBUYSR
retrieves the data record by accessingdti®T-RECrecord. The consistency level of
the transaction is specified after this record is retrieved but before the first database
access is made. For more details on transaction consistency levels, refer to “Writing
Global Transactions” on page 9-1.

Note: TheTPGPRIOandTPSPRIOroutines, used for getting and setting priorities,
respectively, are described in detalil in “Setting and Getting Message
Priorities” on page 6-14.

The example code in this section shows how a service eaidt ERtests the priority

level of the request just received using TR&PRIOroutine. Then, based on the

priority level, the application routes the print job to the appropriate destination printer
RNAME

Next, the contents oRPUT-REC are sent to the printer. The application queries
TPSVCDEF-REQO0 determine whether a reply is expected. If so, it returns the name of
the destination printer to the client. For more information ormHRETURNoOUtine,

refer to “Terminating a Service Routine” on page 5-17.

Listing 5-5 Checking the Priority of a Received Request

IDENTIFICATION DIVISION.
PROGRAM-ID. PRINTSR.

AUTHOR. TUXEDO DEVELOPMENT.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. USL-486.
OBJECT-COMPUTER. USL-486.

INPUT-OUTPUT SECTION.

* *

5-14 Programming a BEA Tuxedo Application Using COBOL

Defining a Service

* Tuxedo definitions

01 TPSVCRET-REC.
COPY TPSVCRET.

01 TPTYPE-REC.
COPY TPTYPE.

01 TPSTATUS-REC.
COPY TPSTATUS.

01 TPSVCDEF-REC.
COPY TPSVCDEF.

01 TPPRIDEF-REC.
COPY TPPRIDEF.

*: *%: *%: *%:

* Log message definitions

*: *%: *%:

01 LOGMSG.
05 FILLER PIC S9(9) VALUE
"TP-STATUS=".

05 LOG-TP-STATUS PIC S9(9).
05 LOGMSG-TEXT PIC X(50).

01 LOGMSG-LEN PIC S9(9) COMP-5.

* User defined data records

01 INPUT-REC PIC X(1000).
01 PRNAME PIC X(20).

*

LINKAGE SECTION.

*

PROCEDURE DIVISION.

*

START-PRINTSR.
MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.
OPEN files or DATABASE

* Get the data that was sent by the client

MOVE ZERO to TP-STATUS.
MOVE "Server Started" TO LOGMSG-TEXT.
PERFORM DO-USERLOG.
MOVE LENGTH OF INPUT-REC TO LEN.
CALL "TPSVCSTART" USING TPSVCDEF-REC
TPTYPE-REC
INPUT-REC

Programming a BEA Tuxedo Application Using COBOL 5-15

5 Writing Servers

TPSTATUS-REC.
IF NOT TPOK
MOVE "TPSVCSTART Failed" TO LOGMSG-TEXT
PERFORM DO-USERLOG
SET TPFAIL TO TRUE.
PERFORM A-999-EXIT.

Check other parameters
CALL "TPGPRIO" USING TPPRIDEF-REC
TPSTATUS-REC.
IF NOT TPOK
MOVE "TPGPRIO Failed" TO LOGMSG-TEXT
PERFORM DO-USERLOG
SET TPFAIL TO TRUE.
PERFORM A-999-EXIT.
IF PRIORITY < 20
MOVE "BIGJOBS" TO RNAME
ELSE IF PRIORITY < 60
MOVE "MEDJOBS" TO RNAME
ELSE
MOVE "HIGHSPEED" TO RNAME.

Print INPUT-REC on RNAME printer

IF TPNOREPLY
MOVE SPACES TO REC-TYPE
MOVE 0 TO LEN
SET TPSUCCESS TO TRUE
PERFORM A-999-EXIT

IF TPREPLY
MOVE "STRING" TO REC-TYPE
MOVE LENGTH OF PRNAME TO LEN
SET TPSUCCESS TO TRUE
PERFORM A-999-EXIT.

* *

* Exit

A-999-EXIT.

MOVE "Exiting" TO LOGMSG-TEXT.

PERFORM DO-USERLOG.

SET TPSUCCESS TO TRUE.

COPY TPRETURN REPLACING TPSVCRET-REC BY TPSVCRET-REC
TPTYPE-REC buTPTYPE-REC
DATA-REC BY PRNAME
TPSTATUS-REC BY TPSTATUS-REC.

* Write to userlog

DO-USERLOG.

5-16 Programming a BEA Tuxedo Application Using COBOL

Terminating a Service Routine

MOVE TP-STATUS TO LOG-TP-STATUS.
CALL "USERLOG" USING LOGMSG
LOGMSG-LEN
TPSTATUS-REC.

Terminating a Service Routine

TheTPRETURN(3cbl) , TPCANCEL(3chl) , andTPFORWAR(3cbl) routines specify that
a service routine has completed with one of the following actions:

m TPRETURMNsends a reply to the calling client.
m TPCANCELcancels the current request.

m TPFORWARrwards a request to another service for further processing.
Sending Replies

TheTPRETURN(3cbl) andTPFORWAR(3chl) calls are COBOL copy files that contain
EXIT statements to mark the end of a service routine and send a message to the

requester or forward the request to another service, respectively. Use the following
signature to call thePRETURNoutine.

01 TPSVCRET-REC
COPY TPSVCRET.

01 TPTYPE-REC
COPY TPTYPE.

01 DATA-REC
COPY User Data.

01 TPSTATUS-REC

COPY TPSTATUS.
COPY TPRETURN REPLACING TPSVCRET-REC BY TPSVCRET-REC
TPTYPE-REC BY TPTYPE-REC
DATA-REC BY DATA-REC
TPSTATUS-REC BY TPSTATUS-REC

Programming a BEA Tuxedo Application Using COBOL 5-17

5 Writing Servers

Note: You must use&€OPYhere instead afALL to ensure that thexIT statement is
called properly, and the COBOL service routine returns control to the BEA
Tuxedo system.

The following listing provides thePSVYCRET-REQecord signature.

05 TPRETURN-VAL PIC S9(9) COMP-5.
88 TPSUCCESS VALUE 0.
88 TPFAIL VALUE 1.
88 TPFAIL VALUE 2.

05 APPL-CODE PIC S9(9) COMP-5.

The following table describes the members 9P8VCRET-REQata structure.

Table 5-2 TPSVCRET-REC Data Structure Members

Member Description

TP-RETURN-VAL Indicates whether or not the service has completed successfully
on an application-level. The value is an integer that is
represented by a symbolic name. Valid settings include:

m TPSUCCESS The calling routine succeeded. The routine
stores the reply message in the caller’s record. If there is a
reply message, it is in the caller’s record.

m TPFAIL (default) - The service terminated unsuccessfully.
The routine reports an error message to the client process
waiting for the reply. In this case, the clienTBCALL or
TPGETRPLYoutine call fails and the system sets the
TP-STATUS variable toTPESVCFAIL to indicate an
application-defined failurdf a reply message was
expected, it is available in the caller’s record.

m TPEXIT - The service terminated unsuccessfully. The
routine reports an error message to the client process waiting
for the reply, and exits.

For a description of the effect that the value of this argument has
on global transactions, refer to “Writing Global Transactions”
on page 9-1.

APPLC-CODE Returns an application-defined return code to the caller. The
client can access the value returnediPLC-CODEy
queryingAPPL-RETURN-CODE IN TPSTATUS-REC The
routine returns this code regardless of success or failure.

5-18 Programming a BEA Tuxedo Application Using COBOL

Terminating a Service Routine

Refer to “Defining a Service” on page 5-10 for a description of HT&rPE-REC
record.

The primary function of a service routine is to process a request and return a reply to

a client process. It is not necessary, however, for a single service to do all the work
required to perform the requested function. A service can act as a requester and pass a
request call to another service the same way a clientissues the original request: through
calls toTPCALLOr TPACALL

Note: TheTPCALLandTPACALLroutines are described in detail in “Writing
Request/Response Clients and Servers” on page 6-1.

WhenTPRETURNS called, control always returns to the controlling program. If a
service has sent requests with asynchronous replies, it must receive all expected replies
or invalidate them witfPCANCELbefore returning control to the controlling program.
Otherwise, the outstanding replies are automatically dropped when they are received
by the BEA Tuxedo system controlling program, and an error is returned to the caller.

If the client invokes the service willPCALL, after a successful call toPRETURNthe
reply message is available in theDATA-RECrecord. If TPACALL is used to send the
request, andPRETURNeturns successfully, the reply message is available in the
DATA-RECrecord of TPGETRPLY

If areply is expected andPRETURNencounters errors while processing its arguments,
it sends dailed message to the calling process. The caller detects the error by
checking the value placed TP-STATUS. In the case of failed messages, the system
sets therP-STATUS to TPESVCERRThis situation takes precedence over the value of
APPL-RETURN-CODE IN TPSTATUS-REC If this type of error occurs, no reply data is
returned, and both the contents and length of the caller’s output record remain
unchanged.

If TPRETURNeturns a message in a record of an unknown type or a record that is not
allowed by the caller (that is, if the call is made WIHNOCHANQEthe system returns
TPEOTYPHEN TP-STATUS. In this case, application success or failure cannot be
determined, and the contents and length of the output record remain unchanged.

The value returned IAPPL-RETURN-CODE IN TPSTATUS-RECIs not relevant if the
TPRETURNoutine is invoked and a time-out occurs for the call waiting for the reply.
This situation takes precedence over all others in determining the value that is returned
in TP-STATUS. In this caseTP-STATUSIs set torPETIME and the reply data is not sent,
leaving the contents and length of the caller’s reply record unchanged. There are two
types of time-outs in the BEA Tuxedo system: blocking and transaction time-outs
(discussed in “Writing Global Transactions” on page 9-1).

Programming a BEA Tuxedo Application Using COBOL 5-19

5 Writing Servers

The example code in this section showsTRANSFERservice that is part of théFER
server. Basically, thERANSFERservice makes synchronous calls toWWi@HDRAWAL
andDEPOSITservices. It allocates a separate record for the reply message since it mu:
use the request record for the calls to bothwli®iDRAWA&ANd theDEPOSITservices.

If the call towITHDRAWA(ails, the service writes the messagenot withdraw ~ on

the status line of the form and s&BRETURN-VAL IN TPSVCRET-REC of the
TPRETURNouUtine toTPFAIL . If the call succeeds, the debit balance is retrieved from
the reply record.

Note: In the following example, the application moves the identifier for the
“destination account” (which is retrieved from threid variable) to the
zeroth occurrence of tieCCOUNT _Ifield in thetransf fielded record. This
move is necessary because this occurrence of the fieldFimlaecord is used
for data-dependent routing. RefeiSetting Up a BEA Tuxedo Applicatifor
more information.

A similar scenario is followed for the call BEPOSIT. On success, the service sets the
TP-RETURN-VAL IN TPSVCRET-REC to TPSUCCESSreturning the pertinent account
information to the status line.

Listing 5-6 TPRETURN Routine

IDENTIFICATION DIVISION.
PROGRAM-ID. TRANSFER.
AUTHOR. TUXEDO DEVELOPMENT.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. USL-486.
OBJECT-COMPUTER. USL-486.

INPUT-OUTPUT SECTION.

* *% *

* Tuxedo definitions
01 TPSVCRET-REC.
COPY TPSVCRET.

*

01 TPTYPE-REC.
COPY TPTYPE.

*
01 TPSTATUS-REC.
COPY TPSTATUS.

5-20 Programming a BEA Tuxedo Application Using COBOL

Terminating a Service Routine

01 TPSVCDEF-REC.
COPY TPSVCDEF.

* *%: *k: *%: *%: *%: *

* User defined data records
01 TRANS-REC.
COPY TRANS-AMOUNT.

LINKAGE SECTION.

*

PROCEDURE DIVISION.

*

START-TRANSFER.

* *%: *%: *%:

* Get the data that was sent by the client
MOVE LENGTH OF TRANS-REC TO LEN.
CALL "TPSVCSTART" USING TPSVCDEF-REC
TPTYPE-REC
TRANS-REC
TPSTATUS-REC.
IF NOT TPOK
MOVE "Transaction Encountered An Error" TO STATUS-LINE
SET TPFAIL TO TRUE.
COPY TPRETURN REPLACING TPSVCRET-REC BY TPSVCRET-REC
TPTYPE-REC BY TPTYPE-REC
DATA-REC BY TRANS-REC
TPSTATUS-REC BY TPSTATUS-REC.

ELSE
Check other parameters

* *%: *%: *%: *%: *%: *

* must have a valid debit and credit account number

* *k: *%: *k: *%: *%: *

CALL "FIND-ACCOUNT-FUNCTION" USING TRANS-DEBIT-ACCOUNT IN TRANS-REC.

IF TRANS-DEBIT-ACCOUNT is not valid
MOVE "Invalid Debit Account Number"
TO STATUS-LINE IN TRANS-REC
SET TPFAIL TO TRUE
COPY TPRETURN REPLACING
DATA-REC BY TRANS-REC.

CALL "FIND-ACCOUNT-FUNCTION" USING TRANS-CREDIT-ACCOUNT IN TRANS-REC.
IF TRANS-CREDIT-ACCOUNT is not valid
MOVE "Invalid Credit Account Number"

TO STATUS-LINE IN TRANS-REC
SET TPFAIL TO TRUE

Programming a BEA Tuxedo Application Using COBOL 5-21

5 Writing Servers

COPY TPRETURN REPLACING
DATA-REC BY TRANS- REC

* *% *% *%

* Check amount to transfer
IF TRANS-AMOUNT IN TRANS-REC <0
MOVE "Invalid Transfer Amount Requested"
TO STATUS-LINE IN TRANS-REC
SET TPFAIL TO TRUE
COPY TPRETURN REPLACING
DATA-REC BY TRANS-REC.

* *% *

* Make Withdrawal using another service
MOVE "WITHDRAWAL" TO SERVICE-NAME.
set other TPCALL parameters
CALL "TPCALL" USING .
IF NOT TPOK
MOVE "Cannot withdraw from debit account”
TO STATUS-LINE IN TRANS-REC
SET TPFAIL TO TRUE
COPY TPRETURN REPLACING
DATA-REC BY TRANS-REC.

* *% *

Make Deposit using another service
MOVE "DEPOSIT" TO SERVICE-NAME.
set other TPCALL parameters
CALL "TPCALL" USING .
IF NOT TPOK
MOVE "Cannot Deposit into credit account"
TO STATUS-LINE IN TRANS-REC
SET TPFAIL TO TRUE
COPY TPRETURN REPLACING
DATA-REC BY TRANS-REC.

MOVE "Transfer completed" TO STATUS-LINE IN TRANS-REC
. MOVE all the data into TRANS-REC needed by the client
SET TPSUCCESS TO TRUE
COPY TPRETURN REPLACING
DATA-REC BY TRANS-REC.

5-22 Programming a BEA Tuxedo Application Using COBOL

Terminating a Service Routine

Invalidating Descriptors

If a service calling’PGETRPLY(described in detail in “Writing Request/Response
Clients and Servers” on page 6-1) fails WiHETIME and decides to cancel the request,
it can invalidate the descriptor with a callM®CANCEL(3cbl) . If a reply subsequently
arrives, it is silently discarded.

TPCANCELcannot be used for transaction replies (that is, for replies to requests made
without theTPNOTRANIag set). Within a transactioNnPABORT(3cbl) does the same
job of invalidating the transaction call descriptor.

The following example shows how to invalidate a reply after timing out.

Listing 5-7 Invalidating a Reply After Timing Out

. Set up parameters to TPACALL
SET TPNOTRAN TO TRUE.
CALL "TPACALL" USING TPSVCDEF-REC
TPTYPE-REC
DEBIT-REC
TPSTATUS-REC.
IF NOT TPOK
error processing

CALL "TPGETRPLY" USING TPSVCDEF-REC
TPTYPE-REC
DEBIT-REC
TPSTATUS-REC.

IF NOT TPOK

error processing
IF TPETIME
CALL "TPCANCEL" TPSVCDEF-REC

TPSTATUS-REC.

SET TPSUCCESS TO TRUE.

COPY TPRETURN REPLACING TPSVCRET-REC BY TPSVCRET-REC
TPTYPE-REC BY TPTYPE-REC
DATA-REC BY DEBIT-REC
TPSTATUS-REC BY TPSTATUS-REC.

Programming a BEA Tuxedo Application Using COBOL 5-23

5 Writing Servers

Forwarding Requests

TheTPFORWAR(3cbl) routine allows a service to forward a request to another service
for further processing.

Use the following signature to call tieFORWAROutine.

01 TPSVCDEF-REC
COPY TPSVCDEF.
01 TPTYPE-REC
COPY TPTYPE.
01 DATA-REC
COPY User Data.
01 TPSTATUS-REC

COPY TPSTATUS.
COPY TPFORWAR REPLACING TPSVCDEF-REC BYPSVCDEF-REC
TPTYPE-REC BY TPTYPE-REC
DATA-REC BY DATA-REC
TPSTATUS-REC BY TPSTATUS-REC

For descriptions of thePSVCDEF-REGNdTPTYPE-RECrecords, refer to “Defining a
Service” on page 5-10.

The functionality offPFORWARIffers from a service call: a service that forwards a
request does not expect a reply. The responsibility for providing the reply is passed t
the service to which the request has been forwarded. The latter service sends the re|
to the process that originated the request. It becomes the responsibility of the last serv
in the forward chain to send the reply to the originating client by invOKRRETURN

The following figure shows one possible sequence of events when a request is
forwarded from one service to another. Here a client initiates a request using the
TPCALL routine and the last service in the cha@xg_Q provides a reply using the
TPRETURNoOUtine.

5-24 Programming a BEA Tuxedo Application Using COBOL

Terminating a Service Routine

Figure 5-1 Forwarding a Request

. TPCALL .TPFDRWA

TPRETUEN O TPFORWAR

Service routines can forward requests at specified priorities in the same manner that
client processes send requests, by usingpis®RIO routine.

When a process calf®FORWARhe system-supplied the controlling program regains
control, and the server process is free to do more work.

Note: If a server process is acting as a client and a reply is expected, the server is not
allowed to request services from itself. If the only available instance of the
desired service is offered by the server process making the request, the call
fails, indicating that a recursive call cannot be made. However, if a service
routine sends a request (to itself) with TTRNOREPLYommunication flag set,
or if it forwards the request, the call does not fail because the service is not
waiting for itself.

Calling TPFORWARanN be used to indicate success up to that point in processing the
request. If no application errors have been detected, you can imrRE@GRWAR
otherwise, you can caflPRETURNvith TP-RETURN-VAL IN TPSVCRET-REC set to
TPFAIL .

The following example illustrates how the service sends its data recorcddBRDSIT
service by callingPFORWART the new account is added successfully, the branch
record is updated to reflect the new account, and the data record is forwarded to the
DEPOSITservice. On failureTPRETURNS called withTP-RETURN-VAL IN
TPSVCRET-REGset toTPFAIL and the failure is reported on the status line of the form.

Programming a BEA Tuxedo Application Using COBOL 5-25

5 Writing Servers

Listing 5-8 How to Use TPFORWAR

* *% *% *% *

* Get the data that was sent by the client

* *% *% *

MOVE LENGTH OF TRANS-REC TO LEN.
CALL "TPSVCSTART" USING TPSVCDEF-REC
TPTYPE-REC
TRANS-REC
TPSTATUS-REC.
IF NOT TPOK
MOVE "Transaction Encountered An Error" TO STATUS-LINE
SET TPFAIL TO TRUE.
COPY TPRETURN REPLACING
DATA-REC BY TRANS-REC.
ELSE
Check other parameters

* *% *% *% *

* Insert new account record
CALL "ADD-NEW-ACCOUNT-FUNCTION" USING TRANS-ACCOUNT IN TRANS-REC.
IF Adding New Account Failed
MOVE "Account not added" TO STATUS-LINE IN TRANS-REC
SET TPFAIL TO TRUE
COPY TPRETURN REPLACING
DATA-REC BY TRANS-REC.

*% *%

* Forward record to the DEPOSIT service to add initial
* balance into account
MOVE "DEPOSIT" TO SERVICE-NAME.
. set other TPFORWAR parameters
COPY TPFORWAR REPLACING
DATA-REC BY TRANS-REC.

5-26 Programming a BEA Tuxedo Application Using COBOL

Advertising and Unadvertising Services

Advertising and Unadvertising Services

When a server is booted, it advertises the services it offers based on the values
specified for thecLOPTparameter in the configuration file.

Note: The services that a server may advertise are initially defined when the
buildserver ~ command is executed. Tke option allows a
comma-separated list of services to be specified. It also allows you to specify
a routine with a name that differs from that of the advertised service that is to
be called to process the service request. Refer tautidserver(1) in the
BEA Tuxedo Command Refereficemore information.

The default specification calls for the server to advertise all services with which it was
built. Refer to theJBBCONFIG(5) orservopts(5) reference page in tiREA Tuxedo
File Formats and Data Descriptions Referericemore information.

Because an advertised service uses a service table entry in the bulletin board, and can
therefore be resource-expensive, an application may boot its servers in such a way that
only a subset of the services offered are available. To limit the services available in an
application, define theLOPTparameter, within the appropriate entry in 8#RVERS

section of the configuration file, to include the desired services in a comma-separated
list following the-s option. Thes option also allows you to specify a routine with a
name other than that of the advertised service to be called to process the request. Refer
to theservopts(5) reference page in tH2EA Tuxedo File Formats and Data
Descriptions Referender more information.

A BEA Tuxedo application administrator can usedbeertise ~ andunadvertise

commands ofmadmin(1) to control the services offered by servers. The
TPADVERTISEandTPUNADVERTISEOUtines enable you to dynamically control the
advertisement of a service in a request/response or conversational server. The service
to be advertised (or unadvertised) must be available within the same server as the
service making the request.

Programming a BEA Tuxedo Application Using COBOL 5-27

5 Writing Servers

Advertising Services

5-28

Use the following signature to call tTeADVERTISE(3cbl) routine.

01 SERVICE-NAME PIC X(15).
01 PROGRAM-NAME PIC X(32).
01 TPSTATUS-REC
COPY TPSTATUS.
CALL "TPADVERTISE" USING SERVICE-NAME PROGRAM-NAME TPSTATUS-REC

The following table describes the members oPADVERTISEdata structure.

Table 5-3 TPADVERTISE Data Structure Members

Member Description

SERVICE-NAME Name of the service to be advertised. The service name must be
a character string of up to 15 characters. Names longer than 15
characters are truncated. TSlRACESstring is not a valid value.

If it is specified, an errofMPEINVAL) results.

PROGRAM-NAME BEA Tuxedo system routine that is called to perform a service.
Frequently, this name is the same as the name of the service. The
SPACESstring is not a valid value. If it is specified, an error
results.

Programming a BEA Tuxedo Application Using COBOL

Advertising and Unadvertising Services

Unadvertising Services

Example:
Service

The TPUNADVERTISE(3cbl) routine removes the name of a service from the service
table of the bulletin board so that the service is no longer advertised.

Use the following signature for tHeeUNADVERTISEOUtIne.
01 SERVICE-NAME PIC X(15).
01 TPSTATUS-REC
COPY TPSTATUS.
CALL "TPUNADVERTISE" USING SERVICE-NAME TPSTATUS-REC

The TPUNADVERTISHlata structure contains one member, which is described in the
following table.

Table 5-4 TPUNADVERTISE Data Structure Member

Member Description

SERVICE-NAME Name of the service to be advertised. The service name must be
a character string of up to 15 characters. Names longer than 15
characters are truncated. T®IlRACESstring is not a valid value.

If it is specified, an errofMPEINVAL) results.

Dynamic Advertising and Unadvertising of a

The following example shows how to use TRADVERTISEroutine. In this example,
a server calledLR is programmed to offer only the service cafi@®RINIT when
booted. After some initializatiomLRINIT advertises two services calledPOSITand
WITHDRAWBoth are performed by the RFUNCSoutine, and both are built into the
TLR server.

After advertisingDEPOSIT andWITHDRAWTLRINIT unadvertises itself.

Programming a BEA Tuxedo Application Using COBOL 5-29

5 Writing Servers

Listing 5-9 Dynamic Advertising and Unadvertising

* *% *% *% *kkkkk

* Advertise DEPOSIT service to be processed by
* routine TLRFUNCS
MOVE "DEPOSIT" TO SERVICE-NAME.
MOVE "TLRFUNCS" TO PROGRAM-NAME.
CALL "TPADVERTISE" USING SERVICE-NAME
PROGRAM-REC
TPSTATUS-REC.
IF NOT TPOK
error processing
* Advertise WITHDRAW service to be processed by
* the same routine TLRFUNCS

*% *% *% *kkkkk

MOVE "WITHDRAW" TO SERVICE-NAME.
MOVE "TLRFUNCS" TO PROGRAM-NAME.
CALL "TPADVERTISE" USING SERVICE-NAME
PROGRAM-REC
TPSTATUS-REC.
IF NOT TPOK
error processing

* *% *% *% *kkkkk

* Unadvertise TLRINIT service (yourself)
MOVE "TLRINIT" TO SERVICE-NAME.
CALL "TPUNADVERTISE" USING SERVICE-NAME
TPSTATUS-REC.
IF NOT TPOK
error processing

Building Servers

To build an executable server, compile your application service subroutines with the
BEA Tuxedo System server adaptor and all other referenced files using the
buildserver(1) command with theC option.

5-30 Programming a BEA Tuxedo Application Using COBOL

Building Servers

Note: The BEA Tuxedo server adaptor accepts messages, dispatches work, and
manages transactiofi transactions are enabled).

Use the following syntax for thauildserver ~ command.
buildserver -C -0 filename -f filenames -l filenames -s-v

The following table describes theildserver ~ command-line options.

Table 5-5 buildserver Command-Line Options

This Option . . .

Allows You to Specify the . . .

-0 filename

Name of the executable output file. The defauBERVER

-f filenames

List of files that are link edited before the BEA Tuxedo system
libraries. You can specify thé option more than once, and
multiple filenames for each occurrence-of. If you specify a
COBOL program filefile. cbl), itis compiled before itis linked.
You can specify other object fileBl¢. 0) separately, orin groups
in an archive file fle. a).

-l filenames

List of files that are link edited after the BEA Tuxedo system
libraries. You can specify thé option more than once, and
multiple filenames for each occurrence-lof. If you specify a
COBOL program file fle. cbl), it is compiled before it is
linked. You can specify other object filed. 0) separately, or
in groups in an archive fildile. a).

-r filenames

List of resource manager access libraries that are link edited with the
executable server. The application administrator is responsible for
predefining all valid resource manager information in the
$TUXDIR/updataobj/RM file using thebuildtms(1)

command. You can specify only one resource manager. Refer to
Setting Up a BEA Tuxedo Applicatifor more information.

-S [service :]rou

tine Name of service or services offered by the server and the name of
the routine that performs each service. You can specifisthe
option more than once, and multiple services for each occurrence of
-s . The server uses the specified service names to advertise its
services to clients.

Typically, you should assign the same name to both the service and
the routine that performs that service. Alternatively, you can specify
any names. To assign names, use the following syntax:

service :routine

Programming a BEA Tuxedo Application Using COBOL 5-31

5 Writing Servers

Note: The BEA Tuxedo libraries are linked in automatically. You do not need to
specify the BEA Tuxedo library names on the command line.

The order in which you specify the library files to be link edited is significant: it
depends on the order in which routines are called and which libraries contain
references to those functions.

By default, thebuildserver ~ command invokes the UNIobcc command. You can
specify an alternative compile command and set your own flags for the compile and
link-edit phases, however, by setting tieTCCandALTCFLAGSenvironment

variables, respectively. For more information, refer to “Setting Environment
Variables” on page 2-5.

Note: On a Windows NT system, tie TCCandALTCFLAGSenvironment variables
are not applicable and setting them will produce unexpected results. You mus
compile your application first using a COBOL compiler and then pass the
resulting object file to theuildserver ~ command.

The following command processes tvet.o application file and creates a server
calledACCTthat contains two serviceSEW_ACCTwhich calls thedPEN_ACCToutine,
andCLOSE_AcCTwhich calls a routine of the same name.

buildserver-C -0 ACCT —facct.o—sNEW_ACCT:OPEN_ACCT-sCLOSE_ACCT

See Also

m “Building Clients” on page 4-9

® buildclient(1) in theBEA Tuxedo Command Reference

5-32 Programming a BEA Tuxedo Application Using COBOL

CHAPTER

6 Writing
Request/Response
Clients and Servers

m Overview of Request/Response Communication
m Sending Synchronous Messages
m Sending Asynchronous Messages

m Setting and Getting Message Priorities

Overview of Request/Response
Communication

In request/response communication mode, one software module sends a request to a
second software module and waits for a response. Because the first software module
performs the role of the client, and the second, the role of the server, this mode is also
referred to as client/server interaction. Many online banking tasks are programmed in
request/response mode.

Programming a BEA Tuxedo Application Using COBOL 6-1

6 Writing Request/Response Clients and Servers

6-2

For example, a request for an account balance is executed as follows:

1. A customer (the client) sends a request for an account balance to the Account
Record Storage System (the server).

2. The Account Record Storage System (the server) sends a reply to the customer
(the client), specifying the dollar amount in the designated account.

Figure 6-1 Example of Request/Response Communication in Online Banking

Customer Fegquast Check Account Balance ._ &

4
System Sesporse: 26,76

Customer's Bank's Compuier on Which
Home Compuier Account Records Are Stored

Once a client process has joined an application, it can then send the request messa
to a service subroutine for processing and receive a reply message.

Programming a BEA Tuxedo Application Using COBOL

Sending Synchronous Messages

Sending Synchronous Messages

TheTPCALL(3chl) call sends a request to a service subroutine and synchronously
waits for a reply. Use the following signature to call TiREALL routine.

01 TPSVCDEF-REC
COPY TPSVCDEF.
01 ITPTYPE-REC.
COPY TPTYPE.
01 IDATA-REC.
COPY User Data.
01 OTPYTPE-REC
COPY TPTYPE.
01 ODATA-REC
COPY User Data.
01 TPSTATUS-REC
COPY TPSTATUS.
CALL "TPCALL"USING TPSVCDEF-REC
ITPTYPE-REC
IDATA-REC
OTPTYPE-REC
ODATA-REC
TPSTATUS-REC

For more information on thEPSVCDER]ata structure, refer to “Defining a Service” on
page 5-10. ThéDATA-REC andITPTYPE-REC structures define the request record.
The ODATA-RECandOTPTYPE-REGstructures define the reply record. The
ITPTYPE-REC andOTPTYPE-REQata structures are similar to theTYPE-RECdata
structure, as defined in “Defining a Service” on page 5-10.

TPCALL waits for the expected reply.

Note: Calling theTPCALL routine is logically the same as calling tfRACALL
routine, immediately followed byPGETRPLY as described in “Sending
Asynchronous Messages” on page 6-10.

The request carries the priority set by the system for the specified service
(SERVICE-NAMB unless a different priority has been explicitly set by a call to the
TPSPRIOroutine (described in “Setting and Getting Message Priorities” on page 6-14).

TPCALL returns an integer. On failure, the valugR{STATUS s set to a value that
reflects the type of error that occurred. For information on valid error codes, refer to
TPCALL(3chl) intheBEA Tuxedo COBOL Function Reference

Programming a BEA Tuxedo Application Using COBOL 6-3

6 Writing Request/Response Clients and Servers

Note: Communication calls may fail for a variety of reasons, many of which can be
corrected at the application level. Possible causes of failure include:
application defined error§PESVCFAIL), errors in processing return
argumentsT{PESVCERR typed record errorgPEITYPE, TPEOTYPE,
time-out errorsTPETIME), and protocol error§ PEPROTYH among others. For
a detailed discussion of errors, refer to “Managing Errors” on page 11-1. For
a complete list of possible errors, refefM@CALL(3cbl) in theBEA Tuxedo
COBOL Function Reference

The BEA Tuxedo system automatically adjusts a record used for receiving a messac
if the received message is too large for the allocated record. You should test for
whether or not the reply records have been resized.

To access the new size of the record, use the address returnea in*
OTPTYPE-REC To determine whether a reply record has changed in size, compare the
size of the reply record before the callfeCALL with the value ofEN IN
OTPTYPE-REGafter its return. ILENINOTPTYPE-REC is larger than the original size,

the record has grown. If not, the record size has not changed.

Example: Using the Same Record for Request and Reply

Messages

6-4

The following example shows how the client program makes a synchronous call usin
the same record for both the request and reply messages. In this case, using the sa
record is appropriate because fubV-RECmessage record has been set up to
accommodate both request and reply information. The following actions are taken ir
this code:

1. The service queries ti®eID field, but does not overwrite it.

2. The application initializes th@ALANCHield to zero in preparation for the values
to be returned by the service.

3. TheSERVICE-NAMErepresents the service name requested. In this example, these
variables represeatcount andteller , respectively.

Programming a BEA Tuxedo Application Using COBOL

Sending Synchronous Messages

Listing 6-1 Using the Same Record for Request and Reply Messages

WORKING-STORAGE SECTION.

*%: *k: *%: *%: *k:

* Tuxedo definitions
01 TPTYPE-REC.
COPY TPTYPE.

*
01 TPSTATUS-REC.
COPY TPSTATUS.

*
01 TPSVCDEF-REC.
COPY TPSVCDEF.

* *%: *%: *%: *%: *

* Log messages definitions

* *k: *%: *%: *

01 LOGMSG.
05 FILLER PIC X(6) VALUE "FIG =>".
05 LOGMSG-TEXT PIC X(50).

01 LOGMSG-LEN PIC S9(9) COMP-5.

*

01 USER-DATA-REC PIC X(75).

* This VIEW record (audv) will be sent to the server

01 AUDV-REC.
COPY AUDV.

*

PROCEDURE DIVISION.
START-FIG.
MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.

* Prepare the audv record

MOVE "BRANCH" TO B-ID IN AUDV-REC.
MOVE 0 TO BALANCE IN AUDV-REC.
MOVE LENGTH OF AUDV-REC TO LEN.
MOVE "VIEW" TO REC-TYPE.

MOVE "audv" TO SUB-TYPE.

MOVE "SOMESERVICE" TO SERVICE-NAME.
SET TPBLOCK TO TRUE.

SET TPNOTRAN TO TRUE.

SET TPNOTIME TO TRUE.

SET TPSIGRSTRT TO TRUE.

SET TPNOCHANGE TO TRUE.

CALL "TPCALL" USING TPSVCDEF-REC

Programming a BEA Tuxedo Application Using COBOL 6-5

6 Writing Request/Response Clients and Servers

TPTYPE-REC
AUDV-REC
TPTYPE-REC
AUDV-REC
TPSTATUS-REC.
IF NOT TPOK

MOVE "Service Failed" TO LOGMSG-TEXT

PERFORM DO-USERLOG

PERFORM EXIT-PROGRAM.

DISPLAY BRANCH and BALANCE

If the reply is larger tha®DATA-REG thenODATA-RECcontains as much of the
message as fits in the record. The remainder is discardawPaAadL setsTP-STATUS
IN TPSTATUS-REC to TPTRUNCATE

Example: Sending a Synchronous Message with
TPSIGRSTRT Set

The following example is based on thRANSFERservice, which is part of theFER

server process thnkapp . (bankapp is a sample application delivered with the BEA
Tuxedo system.) The example is based on a service that assumes the role of a clier
when it calls thevITHDRAWABNADEPOSITservices. The application sets the
communication flag tdPSIGRSTRTIn these service calls to give the transaction a
better chance of committing. TReSIGRSTRTflag specifies the action to take if there

is a signal interrupt. For more information on communication flags, refer to
TPCALL(3chl) in theBEA Tuxedo COBOL Function Reference

Listing 6-2 Sending a Synchronous Message with TPSIGRSTRT Set

WORKING-STORAGE SECTION.

* *% *% *% *kkkkkkkk

* Tuxedo definitions

01 TPTYPE-REC.
COPY TPTYPE.

*

01 TPSTATUS-REC.

6-6 Programming a BEA Tuxedo Application Using COBOL

Sending Synchronous Messages

COPY TPSTATUS.

*
01 TPSVCDEF-REC.
COPY TPSVCDEF.

* *k: *%: *%: *%: *%: *

* This VIEW record (audv) will be sent to the server

* *k: *%: *%: *%: *%: *

01 AUDV-REC.
COPY AUDV.

*

* *%: *%: *%: *%: *

PROCEDURE DIVISION.
START-FIG.

* *%: *%: *%: *k: *

* Prepare the audv record for withdrawal

* *%: *%: *%: *

MOVE "WITHDRAWAL" TO SERVICE-NAME.

SET TPSIGRSTRT TO TRUE.

PERFORM DO-TPCALL.

IF NOT TPOK
MOVE "Cannot withdraw from debit account” TO LOGMSG-TEXT
PERFORM DO-USERLOG
PERFORM EXIT-PROGRAM.

MOVE "DEPOSIT" TO SERVICE-NAME.

SET TPSIGRSTRT TO TRUE.

PERFORM DO-TPCALL.

IF NOT TPOK
MOVE "Cannot deposit into credit account" TO LOGMSG-TEXT
PERFORM DO-USERLOG
PERFORM EXIT-PROGRAM.

* Perform a TPCALL

DO-TPCALL.
MOVE LENGTH OF AUDV-REC TO LEN.
MOVE "VIEW" TO REC-TYPE.
MOVE "audv" TO SUB-TYPE.
SET TPBLOCK TO TRUE.
SET TPNOTRAN TO TRUE.
SET TPNOTIME TO TRUE.
SET TPNOCHANGE TO TRUE.
CALL "TPCALL" USING TPSVCDEF-REC
TPTYPE-REC
AUDV-REC
TPTYPE-REC
AUDV-REC

Programming a BEA Tuxedo Application Using COBOL 6-7

6 Writing Request/Response Clients and Servers

TPSTATUS-REC.

Example: Sending a Synchronous Message with
TPNOTRAN Set

The following example illustrates a communication call that suppresses transaction

mode. The call is made to a service that is not affiliated with a resource manager; it

would be an error to allow the service to participate in the transaction. The applicatior
prints an accounts receivable repatCRYgenerated from information obtained from

a database name@@C COUNTS

The service routinREPORTInterprets the specified parameters and sends the byte
stream for the completed report as a reply. The clientTBeaLLto send the byte
stream to a service call®&RINTER, which, in turn, sends the byte stream to a printer
that is conveniently close to the client. The reply is printed. FinallyPRWeTER
service notifies the client that the hard copy is ready to be picked up.

Note: The example “Sending an Asynchronous Message with TPNOTRAN or
TPNOREPLY” on page 6-12 shows a similar example using an asynchronous
message call.

Listing 6-3 Sending a Synchronous Message with TPNOTRAN Set

WORKING-STORAGE SECTION.

* *% *% *% *kkkkkkkk

* Tuxedo definitions
01 ITPTYPE-REC.
COPY TPTYPE.

01 OTPTYPE-REC.
COPY TPTYPE.

01 TPSTATUS-REC.
COPY TPSTATUS.

01 TPSVCDEF-REC.
COPY TPSVCDEF.

* *k *% *

6-8 Programming a BEA Tuxedo Application Using COBOL

Sending Synchronous Messages

01 REPORT-REQUEST PIC X(100) VALUE SPACES.
01 REPORT-OUTPUT PIC X(50000) VALUE SPACES.
PROCEDURE DIVISION.

START-FIG.

Join application
start transaction

* *%: *%: *%: *%: *%: *

* Send report request to REPORT service
* Receive results into REPORT-OUTPUT
MOVE "REPORT=accrcv DBNAME=accounts" TO REPORT-REQUEST.
MOVE "STRING" TO REC-TYPE IN ITYPE-REC.
MOVE 29 TO LEN IN ITYPE-REC.
MOVE "STRING" TO REC-TYPE IN OITYPE-REC.
MOVE 50000 TO LEN IN OTYPE-REC.
MOVE "REPORT" TO SERVICE-NAME.
SET TPTRAN TO TRUE.
SET TPBLOCK TO TRUE.
SET TPNOTIME TO TRUE.
SET TPSIGRSTRT TO TRUE.
SET TPNOCHANGE TO TRUE.
CALL "TPCALL" USING TPSVCDEF-REC
ITPTYPE-REC
REPORT-REQUEST
OTPTYPE-REC
REPORT-OUTPUT
TPSTATUS-REC.
IF NOT TPOK
error processing
IF TPETRUNCATE
The report was truncated
error processing

* *%: *%: *%: *%: *%: *

* Send REPORT-OUTPUT to PRINTER service

* *%: *%: *%: *%: *%:

MOVE "PRINTER" TO SERVICE-NAME.
SET TPNOTRAN TO TRUE.
MOVE "STRING" TO REC-TYPE IN ITTYPE-REC.
MOVE LEN IN OTYPE-REC TO LEN IN ITYPE-REC.
CALL "TPCALL" USING TPSVCDEF-REC
ITPTYPE-REC
REPORT-OUTPUT
OTPTYPE-REC
REPORT-OUTPUT
TPSTATUS-REC.
IF NOT TPOK

Programming a BEA Tuxedo Application Using COBOL 6-9

6 Writing Request/Response Clients and Servers

error processing

terminate transaction
leave application

Note: In the preceding example, the tesmor routine indicates that the
following tasks are performed: an error message is printed, the transaction i
aborted, the client leaves the application, and the program is exited.

This example also shows how thieNOCHANGEommunication setting is used to
enforce strong record type checking by indicating that the reply message must be
returned in the same type of record that was originally allocated. The strong type chec
flag, TPNOCHANGHorces the reply to be returned in a record of {ypRING.

A possible reason for this check is to guard against errors that may occuUREPRT
service subroutine, resulting in the use of a reply record of an incorrect type. Anothe
reason is to prevent changes that are not made consistently across all areas of
dependency. For example, another programmer may have changettbrRBervice

to standardize all replies in anott8aRING format without modifying the client

process to reflect the change.

Sending Asynchronous Messages

This section explains how to:
m Send an asynchronous request usingréreCALLroutine
m Get an asynchronous reply using TRSETRPLYoutine

The type of asynchronous processing discussed in this section is sometimes referred
asfan-out parallelismbecause it allows a client’s requests to be distributed (or “fanned
out”) simultaneously to several services for processing.

The other type of asynchronous processing supported by the BEA Tuxedo system is
pipeline parallelism in which thEPFORWARoutine is used to pass (or forward) a
process from one service to another. For a description aiPh@eRwARoUtine, refer

to “Writing Servers” on page 5-1.

6-10 Programming a BEA Tuxedo Application Using COBOL

Sending Asynchronous Messages

Sending an Asynchronous Request

TheTPACALL(3cbl) routine sends a request to a service and immediately returns. Use
the following signature to call tHeEPACALLroutine.

01 TPSVCDEF-REC
COPY TPSVCDEF.
01 TPTYPE-REC
COPY TPTYPE.
01 DATA-REC
COPY User Data.
01 TPSTATUS-REC
COPY TPSTATUS.
CALL"TPACALL"USING TPSVCDEF-REC TPTYPE-RECDATA-REC TPSTATUS-REC

For more information on thEPSVCDERANdTPTYPE-RECdata structures, refer to
“Defining a Service” on page 5-10.

The TPACALLroutine sends a request message to the service named in the
SERVICE-NAMEand immediately returns from the call. Upon successful completion of
the call, theTPACALLroutine returns an integer that serves as a communication handle
used to access the correct reply for the relevant request. VNEALLIs in

transaction mode (as described in “Writing Global Transactions” on page 9-1) there
may not be any outstanding replies when the transaction commits; that is, within a
given transaction, for each request for which a reply is expected, a corresponding reply
must eventually be received.

If the valueTPNOREPLYSs set, the parameter signalSTRACALLthat a reply is not
expected. When set, on succ&BaCALLreturns a value df as the reply descriptor.

If subsequently passed to theGETRPLYoutine, this value becomes invalid, this

value becomes invalid. Guidelines for using this setting correctly when a process is in
transaction mode are discussed in “Writing Global Transactions” on page 9-1.

On error, TPACALLSetsTP-STATUSto a value that reflects the nature of the error.
TPACALLreturns many of the same error codesRZALL The differences between the
error codes for these functions are based on the fact that one call is synchronous and
the other, asynchronous. These errors are discussed at length in “Managing Errors” on
page 11-1.

The following example shows hoWPACALLuses th@PNOTRANiNd TPNOREPLY
settings. This code is similar to the code in “Example: Sending a Synchronous
Message with TPNOTRAN Set” on page 6-8. In this case, however, a reply is not
expected from theRINTER service. By setting bothPNOTRANand TPNOREPLYthe

Programming a BEA Tuxedo Application Using COBOL 6-11

6 Writing Request/Response Clients and Servers

client is indicating that no reply is expected andRR&NTER service will not
participate in the current transaction. This situation is discussed more fully in
“Managing Errors” on page 11-1.

Listing 6-4 Sending an Asynchronous Message with TPNOTRAN or
TPNOREPLY

WORKING-STORAGE SECTION.

*% *% *% * *

* Tuxedo definitions

01 ITPTYPE-REC.
COPY TPTYPE.
01 OTPTYPE-REC.
COPY TPTYPE.

*
01 TPSTATUS-REC.
COPY TPSTATUS.

*
01 TPSVCDEF-REC.
COPY TPSVCDEF.

01 REPORT-REQUEST PIC X(100) VALUE SPACES.
01 REPORT-OUTPUT PIC X(50000) VALUE SPACES.

PROCEDURE DIVISION.
START-FIG.

Join application
start transaction

* *% *% *% *kkkkk

* Send report request to REPORT service
* Receive results into REPORT-OUTPUT
MOVE "REPORT=accrcv DBNAME=accounts" TO REPORT-REQUEST.
MOVE "STRING" TO REC-TYPE IN ITPTYPE-REC.
MOVE 29 TO LEN IN ITPTYPE-REC.
MOVE "STRING" TO REC-TYPE IN OITYPE-REC.
MOVE 50000 TO LEN IN OTPTYPE-REC.
MOVE "REPORT" TO SERVICE-NAME.
SET TPTRAN TO TRUE.
SET TPBLOCK TO TRUE.
SET TPNOTIME TO TRUE.
SET TPSIGRSTRT TO TRUE.
SET TPREPLY TO TRUE.

6-12 Programming a BEA Tuxedo Application Using COBOL

Sending Asynchronous Messages

SET TPNOCHANGE TO TRUE.
CALL "TPCALL" USING TPSVCDEF-REC
ITPTYPE-REC
REPORT-REQUEST
OTPTYPE-REC
REPORT-OUTPUT
TPSTATUS-REC.
IF NOT TPOK
error processing
IF TPETRUNCATE
The report was truncated
error processing

* * *kk *

* Send REPORT-OUTPUT to PRINTER service
MOVE "PRINTER" TO SERVICE-NAME.
SET TPNOTRAN TO TRUE.
SET TPNOREPLY TO TRUE.
MOVE "STRING" TO REC-TYPE IN ITPTYPE-REC.
MOVE LEN IN OTPTYPE-REC TO LEN IN ITPTYPE-REC.
CALL "TPACALL" USING TPSVCDEF-REC
ITPTYPE-REC
REPORT-OUTPUT
TPSTATUS-REC.
IF NOT TPOK
error processing

commit transaction
leave application

Programming a BEA Tuxedo Application Using COBOL 6-13

6 Writing Request/Response Clients and Servers

Getting an Asynchronous Reply

A reply to a service call can be received asynchronously by calling the
TPGETRPLY(3chl) routine. TheTPGETRPLYroutine dequeues a reply to a request
previously sent byPACALL

Use the following signature to call tTeGETRPLYroutine.

01 TPSVCDEF-REC
COPY TPSVCDEF.
01 TPTYPE-REC
COPY TPTYPE.
01 DATA-REC
COPY User Data.
01 TPSTATUS-REC
COPY TPSTATUS.
CALL "TPGETRPLY" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC

For more information on thEPSVCDERANdTPTYPE-RECdata structures, refer to
“Defining a Service” on page 5-10.

By default, the function waits for the arrival of the reply that corresponds to the value
referenced by the communication handle. During this waiting interval, a blocking
time-out may occur. A time-out occurs WhBPGETRPLYfails andTP-STATUS s set

to TPETIME (unlessTPNOTIMEIS set).

Setting and Getting Message Priorities

Two ATMI calls allow you to determine and set the priority of a message request:
TPSPRIO(3cbl) andTPGPRIO(3cbl) . The priority affects how soon the request is
dequeued by the server; servers dequeue requests with the highest priorities first.

This section describes:
m Setting a Message Priority

m Getting a Message Priority

6-14 Programming a BEA Tuxedo Application Using COBOL

Setting and Getting Message Priorities

Setting a Message Priority

TheTPSPRIO(3cbl) routine enables you to set the priority of a message request.

TheTPSPRIOroutine affects the priority level of only one request: the next request to
be sent byrPCALL or TPACALL, or to be forwarded by a service subroutine.

Use the following signature to call thi@SPRIOroutine.

01 TPPRIDEF-REC
COPY TPPRIDEF.
01 TPSTATUS-REC
COPY TPSTATUS.
CALL "TPSPRIO" USING TPPRIDEF-REC TPSTATUS-REC

Use the following signature for tHe®PRIDEF-REC data structure.
05 PRIORITY PIC S9(9) COMP-5.
05 PRIO-FLAG PIC S9(9) COMP-5.

88 TPABSOLUTE VALUE 0.

88 TPRELATIVE VALUE 1.

The following table describes the arguments toTih8PRIOroutine.

Table 6-1 TPSPRIO Routine Fields

Field Description

PRIORITY Integer indicating a new priority value. The effect of this argument is
controlled byPRIO-FLAG. If PRIO-FLAG is set to OPRIORITY
specifies a relative value and the sign accompanying the value indicates
whether the current priority is incremented or decremented. Otherwise,
the value specified indicates an absolute valuePRIORITY must be
set to a value between 0 and 100. If you do not specify a value within this
range, the system sets the value to 50.

PRIO-FLAG Indicates whether the valuePRIORITY is treated as arelative value (O,
the default) or an absolute valueEPABSOLUTIE

Programming a BEA Tuxedo Application Using COBOL 6-15

6 Writing Request/Response Clients and Servers

The following sample code is an excerpt from TRANSFERservice. In this example,
the TRANSFERservice acts as a client by sending a synchronous requespaAal,

to thewITHDRAWAKervice TRANSFERalSo invokeSPSPRIOto increase the priority

of its request messageWdTHDRAWALand to prevent the request from being queued
for thewITHDRAWAKervice (and later theEPOSIT service) after waiting on the
TRANSFERjueue.

Listing 6-5 Setting the Priority of a Request Message

WORKING-STORAGE SECTION.

*% *% *% *

* Tuxedo definitions

01 TPTYPE-REC.
COPY TPTYPE.

01 TPSTATUS-REC.
COPY TPSTATUS.

01 TPSVCDEF-REC.
COPY TPSVCDEF.

01 TPPRIDEF-REC.
COPY TPPRIDEF.

01 DATA-REC PIC X(100) VALUE SPACES.

PROCEDURE DIVISION.
START-FIG.

Join application

MOVE 30 TO PRIORITY.
SET TPRELATIVE TO TRUE.
CALL "TPSPRIO" USING TPPRIDEF-REC TPSTATUS-REC
IF NOT TPOK
error processing
MOVE "CARRAY" TO REC-TYPE.
MOVE 100 TO LEN.
MOVE "WITHDRAWAL" TO SERVICE-NAME.
SET TPTRAN TO TRUE .
SET TPBLOCK TO TRUE .
SET TPNOTIME TO TRUE .
SET TPSIGRSTRT TO TRUE .
SET TPREPLY TO TRUE .
CALL "TPACALL" USING TPSVCDEF-REC

6-16 Programming a BEA Tuxedo Application Using COBOL

Setting and Getting Message Priorities

TPTYPE-REC
DATA-REC
TPSTATUS-REC.
IF NOT TPOK
error processing

leave application

Getting a Message Priority

The TPGPRIO(3cbl) routine enables you to get the priority of a message request.
Use the following signature to call ti@GPRIOroutine.

01 TPPRIDEF-REC
COPY TPPRIDEF.
01 TPSTATUS-REC
COPY TPSTATUS.
CALL "TPGPRIO" USING TPPRIDEF-REC TPSTATUS-REC

A requester can call thePGPRIOroutine after invoking th&PCALL or TPACALL

routine to retrieve the priority of the request message. If a requester calls the function
but no request is sent, the routine fails, settiRgsTATUSto TPENOENTUpon
successTPGPRIOsetsTP-STATUS to TPOKand returns an integer value in the range of

1 to 100 (where the highest priority value is 100).

If a priority has not been explicitly set using treSPRIOroutine, the system sets the
message priority to that of the service routine that handles the request. Within an
application, the priority of the request-handling service is assigned a default value of
50 unless a system administrator overrides this value.

The following example shows how to determine the priority of a message that was sent
in an asynchronous call.

Listing 6-6 Determining the Priority of the Sent Request

WORKING-STORAGE SECTION.

* * *kk *

* Tuxedo definitions

* * *

01 TPTYPE-REC-1.

Programming a BEA Tuxedo Application Using COBOL 6-17

6 Writing Request/Response Clients and Servers

COPY TPTYPE.
01 TPTYPE-REC-2.
COPY TPTYPE.

*
01 TPSTATUS-REC.
COPY TPSTATUS.

*
01 TPSVCDEF-REC-1.
COPY TPSVCDEF.
01 TPSVCDEF-REC-2.
COPY TPSVCDEF.

*
01 TPPRIDEF-REC-1.
COPY TPPRIDEF.
01 TPPRIDEF-REC-2.
COPY TPPRIDEF.

01 DATA-REC-1 PIC X(100) VALUE SPACES.
01 DATA-REC-2 PIC X(100) VALUE SPACES.

PROCEDURE DIVISION.
START-FIG.

join application
populate DATA-REC1 and DATA-REC2 with send request

MOVE "CARRAY" TO REC-TYPE IN TYPE-REC-1.
MOVE 100 TO LEN IN TYPE-REC-1.
MOVE "SERVICE1" TO SERVICE-NAME IN TPSVCDEV-REC-1.
SET TPTRAN TO TRUE IN TPSVCDEV-REC-1.
SET TPBLOCK TO TRUE IN TPSVCDEV-REC-1.
SET TPNOTIME TO TRUE IN TPSVCDEV-REC-1.
SET TPSIGRSTRT TO TRUE IN TPSVCDEV-REC-1.
SET TPREPLY TO TRUE IN TPSVCDEV-REC-1.
CALL "TPACALL" USING TPSVCDEF-REC-1

TPTYPE-REC-1

DATA-REC-1

TPSTATUS-REC.
IF NOT TPOK

error processing
CALL "TPGPRIO" USING TPPRIDEF-REC-1 TPSTATUS-REC
IF NOT TPOK
error processing

MOVE "CARRAY" TO REC-TYPE IN TYPE-REC-2.
MOVE 100 TO LEN IN TYPE-REC-2.
MOVE "SERVICE2" TO SERVICE-NAME IN TPSVCDEV-REC-2.
SET TPTRAN TO TRUE IN TPSVCDEV-REC-2.
SET TPBLOCK TO TRUE IN TPSVCDEV-REC-2.
SET TPNOTIME TO TRUE IN TPSVCDEV-REC-2.

6-18 Programming a BEA Tuxedo Application Using COBOL

Setting and Getting Message Priorities

SET TPSIGRSTRT TO TRUE IN TPSVCDEV-REC-2.
SET TPREPLY TO TRUE IN TPSVCDEV-REC-2.
CALL "TPACALL" USING TPSVCDEF-REC-2
TPTYPE-REC-2
DATA-REC-2
TPSTATUS-REC.
IF NOT TPOK
error processing
CALL "TPGPRIO" USING TPPRIDEF-REC-2 TPSTATUS-REC
IF NOT TPOK
error processing
IF PRIORITY IN TPSVCDEF-REC-1 >= PRIORITY IN TPSVCDEF-REC-2
PERFORM DO-GETREPLY1
PERFORM DO-GETREPLY?2
ELSE
PERFORM DO-GETREPLY2
PERFORM DO-GETREPLY1
END-IF.

leave application
DO-GETRPLY1.
SET TPGETHANDLE TO TRUE IN TPSVCDEV-REC-1.
SET TPCHANGE TO TRUE IN TPSVCDEV-REC-1.
SET TPBLOCK TO TRUE IN TPSVCDEV-REC-1.
SET TPNOTIME TO TRUE IN TPSVCDEV-REC-1.
SET TPSIGRSTRT TO TRUE IN TPSVCDEV-REC-1.
CALL "TPGETRPLY" USING TPSVCDEF-REC-1
TPTYPE-REC-1
DATA-REC-1
TPSTATUS-REC.
IF NOT TPOK
error processing
DO-GETRPLY2
SET TPGETHANDLE TO TRUE IN TPSVCDEV-REC-2.
SET TPCHANGE TO TRUE IN TPSVCDEV-REC-2.
SET TPBLOCK TO TRUE IN TPSVCDEV-REC-2.
SET TPNOTIME TO TRUE IN TPSVCDEV-REC-2.
SET TPSIGRSTRT TO TRUE IN TPSVCDEV-REC-2.
CALL "TPGETRPLY" USING TPSVCDEF-REC-2
TPTYPE-REC-2
DATA-REC-2
TPSTATUS-REC.
IF NOT TPOK
error processing

Programming a BEA Tuxedo Application Using COBOL 6-19

6 Writing Request/Response Clients and Servers

6-20 Programming a BEA Tuxedo Application Using COBOL

CHAPTER

[Writing
Conversational Clients
and Servers

m Overview of Conversational Communication
m Joining an Application

m Establishing a Connection

m Sending and Receiving Messages

m Ending a Conversation

m Building Conversational Clients and Servers

m Understanding Conversational Communication Events

Overview of Conversational Communication

Conversational communication is the BEA Tuxedo system implementation of a
human-like paradigm for exchanging messages between clients and servers. In this
form of communication, a virtual connection is maintained between the client
(initiator) and server (subordinate) and each side maintains information about the state
of the conversation. The connection remains active until an event occurs to terminate
it.

Programming a BEA Tuxedo Application Using COBOL 7-1

4 Writing Conversational Clients and Servers

During conversational communicationhalf-duplexconnection is established

between the client and server. A half-duplex connection allows messages to be sent
only one direction at any given time. Control of the connection can be passed back ar
forth between the initiator and the subordinate. The process that has control can sel
messages; the process that does not have control can only receive messages.

To understand how conversational communication works in a BEA Tuxedo
application, consider the following example from an online banking application. In
this example, a bank customer requests checking account statements for the past tv
months.

Figure 7-1 Example of Conversational Communication in an Online Banking
Application

1. Customer Request Send slabemenis —'
for last 2 months =

4 2 System Resgporse: Here's the first ﬂahmt'nnlanuﬁm?h
4 Customer Requast: Yes, send more 3

- 4. Spatem Resporse: Here's the statement for the second month =

Customer Residence Account Records Storage Systemn
located at the Bank Headguarters

1. The customer requests the checking account statements for the past two month:

2. The Account Records Storage System responds by sending the first month’s
checking account statement followed byi@e prompt for accessing the
remaining month’s statement.

3. The customer requests the second month’s account statement by selecting the
More prompt.

Note: The Account Records Storage System must maintain state information so it
knows which account statement to return when the customer selekis¢he

prompt.

4. The Account Records Storage System sends the remaining month’s account
statement.

As with request/response communication, the BEA Tuxedo system passes data usit
typed records. The record types must be recognized by the application. For more
information on record types, refer to “Overview of Typed Records” on page 3-1.

7-2 Programming a BEA Tuxedo Application Using COBOL

Joining an Application

Conversational clients and servers have the following characteristics:
m The logical connection between them remains active until terminated.
m Any number of messages can be transmitted across a connection between them.

m Both clients and servers use ttRSENDandTPREC\Wroutines to send and
receive data in conversations.

Conversational communication differs from request/response communication in the
following ways:

m A conversational client initiates a request for service USFZONNECTather
thanTPCALL or TPACALL

m A conversational client sends a service request to a conversational server.

m The configuration file reserves part of the conversational server for addressing
conversational services.

m Conversational servers are prohibited from making calls GSFQRWAR
Joining an Application

A conversational client must join an application via a cafllRINITIALIZE before
attempting to establish a connection to a service. For more information, refer to
“Writing Clients” on page 4-1.

Programming a BEA Tuxedo Application Using COBOL 7-3

4 Writing Conversational Clients and Servers

Establishing a Connection

The TPCONNECT(3chl) routine sets up a conversation.
Use the following signature to call tTeCONNECToutine.

01 TPSVCDEF-REC.
COPY TPSVCDEF.

01 TPTYPE-REC.
COPY TPTYPE.

01 DATA-REC.
COPY User Data.

01 TPSTATUS-REC.
COPY TPSTATUS.

CALL "TPCONNECT" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Refer to “Defining a Service” on page 5-10 for more information on the
TPSVCDEF-REQecord, and to “Defining Typed Records” on page 3-6 for more
information on th&@PTYPE-RECrecord.

At the same time the connection is being established, data can be sent through the
DATA-RECwith the length of the data specified IlgN IN TPTYPE-REC The
REC-TYPEandSUB-TYPE of the data ilDATA-RECmust be types recognized by the
service being called. If no data is being sent, the vallREGETYPEis SPACES and
DATA-RECandLEN are ignored.

The BEA Tuxedo system returns a communication ha@ih®|M-HANDLE IN
TPSVCDEF-REGwhen a connection is established WIltCONNECDr TPSVCSTART
COMM-HANDLB used to identify subsequent message transmissions with a particula
conversation. A client or conversational service can participate in more than one
conversation simultaneously. The maximum number of simultaneous conversations i
64.

In the event of a failurdPCONNECTetsTP-STATUStO the appropriate error condition.
For a list of possible error codes, refeM®RCONNECT(3cbl) in theBEA Tuxedo
COBOL Function Reference

The following example shows how to use TRCONNECToutine.

7-4 Programming a BEA Tuxedo Application Using COBOL

Sending and Receiving Messages

Listing 7-1 Establishing a Conversational Connection

* Prepare the record to send
MOVE "HELLO" TO DATA-REC.
MOVE 5 TO LEN.

MOVE "STRING" TO REC-TYPE.

*

SET TPBLOCK TO TRUE.

SET TPNOTRAN TO TRUE.

SET TPNOTIME TO TRUE.

SET TPSIGRSTRT TO TRUE.

SET TPSENDONLY TO TRUE.

*

CALL "TPCONNECT" USING TPSVCDEF-REC
TPTYPE-REC
DATA-REC
TPSTATUS-REC.

IF NOT TPOK

error processing ...
ELSE
COMM-HANDLE /s valid

Sending and Receiving Messages

Once the BEA Tuxedo system establishes a conversational connection,
communication between the initiator and subordinate is accomplished using send and
receive calls. The process with control of the connection can send messages using the
TPSEND(3cbl) routine; the process without control can receive messages using the
TPRECV(3cbl) routine.

Note: Initially, the originator (that is, the client) decides which process has control
using theTPSENDONLYr TPRECVONLYlag value of theflPCONNECTall.
TPSENDONL$pecifies that control is being retained by the originator;
TPRECVONLYthat control is being passed to the called service.

Programming a BEA Tuxedo Application Using COBOL 7-5

4 Writing Conversational Clients and Servers

Sending Messages

To send a message, use RSEND(3cbl) routine with the following signature.

01 TPSVCDEF-REC
COPY TPSVCDEF.

01 TPTYPE-REC
COPY TPTYPE.

01 DATA-REC
COPY User Data.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPSEND" USING TPSVCDEF-REC TPTYPE-REC USER-DATA-REC TPSTATUS-REC

Refer to “Defining a Service” on page 5-10 for more information on the
TPSVCDEF-REQecord, and refer to “Defining Typed Records” on page 3-6 for more
information on th&PTYPE-RECrecord.

In the event of a failure, tHEPSENDroutine setgP-STATUSto the appropriate error
condition. For a list of possible error codes, refaiR6END(3cbl) in theBEA Tuxedo
COBOL Function Reference

You are not required to pass control each time you issuePBENDroutine. In some
applications, the process authorized to iSsR&ENDcalls can execute as many calls as
required by the current task before turning over control to the other process. In othel
applications, however, the logic of the program may require the same process to
maintain control of the connection throughout the life of the conversation.

7-6 Programming a BEA Tuxedo Application Using COBOL

Sending and Receiving Messages

The following example shows how to invoke tieRSENDroutine.

Listing 7-2 Sending Data in Conversational Mode

SET TPNOBLOCK TO TRUE.

SET TPNOTIME TO TRUE.

SET TPSIGRSTRT TO TRUE.

SET TPRECVONLY TO TRUE.
*

CALL "TPSEND" USING TPSVCDEF-REC
TPTYPE-REC
DATA-REC
TPSTATUS-REC.

IF NOT TPOK

error processing . . .

Receiving Messages

To receive data sent over an open connection, uSEPHECV(3cbl) routine with the
following signature.

01 TPSVCDEF-REC
COPY TPSVCDEF.

01 TPTYPE-REC
COPY TPTYPE.

01 DATA-REC
COPY User Data.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPRECV" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC

Refer to “Defining a Service” on page 5-10 for more information on the
TPSVCDEF-RECQecord. Refer to “Defining Typed Records” on page 3-6 for more
information on th@PTYPE-RECrecord.

The following example shows how to use TIRRECWroutine.

Programming a BEA Tuxedo Application Using COBOL 7-7

4 Writing Conversational Clients and Servers

Listing 7-3 Receiving Data in Conversation

SET TPNOCHANGE TO TRUE.
SET TPBLOCK TO TRUE.

SET TPNOTIME TO TRUE.
SET TPSIGRSTRT TO TRUE.

*

MOVE LENGTH OF DATA-REC TO LEN.
*
CALL "TPRECV" USING TPSVCDEF-REC
TPTYPE-REC
DATA-REC
TPSTATUS-REC.
IF NOT TPOK
error processing . . .

Ending a Conversation

A connection can be taken down gracefully and a conversation ended normally
through:

m A successful call tdPRETURNN a simple conversation

m A series of successful callsT@RETURNN a complex conversation based on a
hierarchy of connections

m Global transactions, as described in “Writing Global Transactions” on page 9-1

Note: TheTPRETURNoutine is described in detail in “Writing Request/Response
Clients and Servers” on page 6-1.

The following sections describe two scenarios for gracefully terminating
conversations that do not include global transactions in whichRRETURNunction
is used.

The first example shows how to terminate a simple conversation between two
components. The second example illustrates a more complex scenario, with a
hierarchical set of conversations.

7-8 Programming a BEA Tuxedo Application Using COBOL

Ending a Conversation

If you end a conversation with connections still open, the system returns an error. In
this case, eitherPCOMMITor TPRETURNalls in a disorderly manner.

Example: Ending a Simple Conversation

The following diagram shows a simple conversation between A and B that terminates
gracefully.

Figure 7-2 Simple Conversation Terminating Gracefully

A B C
Call TPBEGIN (Bis RECVONLY on AB) (Cis RECVONLY in BC)
(4 iz SENDONLY on AB)

AB | call TPSVCSTART
Call TPCONNECT Set TPSENDONLY
to TRUE
(B is SENDONLY on BC)
all TPCONNECT Call TPSVCSTART
BC
Set TFRECVONLY —=| Cal TPRECYV
to TRUE
) Set TPSENDONLY
(4is RECVONLY on BA) 10 TRUE
(Cis SENDONLY on CB)
(B is SENDONLY on AB)
CB
Call TPRECV « | Copy TFRETURHN
Cdl "TPRECV"
BA Copy TFRETURN
Call "TPCOMMIT"
EVENTS EVENTS

Programming a BEA Tuxedo Application Using COBOL 7-9

4 Writing Conversational Clients and Servers

The program flow is as follows:

1. A sets up the connection by callinlBCONNECWith TPSENDONLet, indicating
that process B is on the receiving end of the conversation.

2. Aturns control of the connection over to B by calliREENDwith TPRECVONLY
set, resulting in the generation ofREV_SENDONL¥vent.

3. The next call by B toPRECVsetsTP-STATUS to TPEEVENTand returns
TPEV_SENDONL TPEVENT indicating that control has passed to B.

4. B callsTPRETURNvith TPRETURN-VAL IN TPSVCRET set toTPSUCCESSThis
call generates aPEV_SvCsucevent for A and gracefully brings down the
connection.

5. A callsTPRECYV learns of the event, and recognizes that the conversation has
been terminated. Data can be received on this cakRECVeven if the event is
set toTPEV_SVCFAIL

Note: In this example, A can be either a client or a server, but B must be a server.

Example: Ending a Hierarchical Conversation

The following diagram shows a hierarchical conversation that terminates gracefully.

7-10 Programming a BEA Tuxedo Application Using COBOL

Ending a Conversation

Figure 7-3 Connection Hierarchy

EVENTS EVENTS
A B C
Move SVCB
to SERVICE-NAME
Call TPCONNECT 5
Call TPSVCSTART
Move SVCC
to SERVICE-NAME
Call TPCONNECT N Call TPSVCSTART
Call TPRECV
Call TPRECV Copy TPRETUR?
Call "TPRECV" Copy TPRETURN

In the preceding example, service B is a member of a conversation that has initiated a
connection to a second service called C. In other words, there are two active
connections: A-to-B and B-to-C. His in control of both connections, a call to
TPRETURNMas the following effect: the call fails,TREV_SVCERRevent is posted on

all open connections, and the connections are closed in a disorderly manner.

In order to terminate both connections normally, an application must execute the
following sequence:

1. B callsTPSENDwith theTPRECVONLYlag set on the connection to C, transferring
control of the B-to-C connection to C.

2. C callsTPRETURNvith TPRETURN-VAL IN TPSVCRET set toTPSUCCESS
TPFAIL, or TPEXIT, as appropriate.

3. B can then calfPRETURNposting an event (eith@PEV_SvVCSUCOr
TPEV_SVCFAIL) for A.

Programming a BEA Tuxedo Application Using COBOL 7-11

4 Writing Conversational Clients and Servers

Note: Itislegal for a conversational service to make request/response calls if it need
to do so to communicate with another service. Therefore, in the preceding
example, the calls from B to C may be executed UBR@ALL or TPACALL
instead offPCONNECTConversational services are not permitted to make calls
to TPFORWAR

Executing a Disorderly Disconnect

The only way in which a disorderly disconnect can be executed is through a call to thi
TPDISCON(3cbl) routine (which is equivalent to “pulling the plug” on a connection).
This routine can be called only by the initiator of a conversation (that is, the client).

Note: This is not the preferred method for bringing down a conversation. To bring
down an application gracefully, the subordinate (the server) should call the
TPRETURNoOUtine.

Use the following signature to call thieDISCONroutine.

01 TPSVCDEF-REC
COPY TPSVCDEF.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPDISCON" USING TPSVCDEF-REC TPSTATUS-REC

The COMM-HANDLErgument specifies the communication handle returned by the
TPCONNECToutine when the connection is established.

TheTPDISCONroutine generates®EV_DISCONIMMevent for the service at the other
end of the connection, rendering tbeMM-HANDLEwvalid. If a transaction is in
progress, the system aborts it and data may be lost.

If TPDISCONis called from a service that was not the originator of the connection
identified byCOMM-HANDLEhe routine fails with an error code T’REBADDESC

For a list and descriptions of all event and error codes, ref@DISCON(3cbl) in the
BEA Tuxedo COBOL Function Reference

7-12 Programming a BEA Tuxedo Application Using COBOL

Building Conversational Clients and Servers

Building Conversational Clients and Servers

Use the following commands to build conversational clients and servers:
m buildclient() as described in “Building Clients” on page 4-9

m buildserver() as described in “Building Servers” on page 5-30

For conversational and request/response services, you cannot:

m Build both in the same server

m Assign the same name to both

Understanding Conversational
Communication Events

The BEA Tuxedo system recognizes five events in conversational communication. All
five events can be posted ftlRRECY three can be posted foPSEND

The following table lists the events, the routines for which they are returned, and a
detailed description of each.

Table 7-1 Conversational Communication Events

Event Received By Description

TPEV_SENDONLY TPRECV Control of the connection has been passed; this process
can now callfPSEND

Programming a BEA Tuxedo Application Using COBOL 7-13

4 Writing Conversational Clients and Servers

Event

Received By

Description

TPEV_DISCONIMM TPSEND

TPRECY
TPRETURN

The connection has been torn down and no further
communication is possible. TH®DISCONroutine posts
this event in the originator of the connection, and sends it
to all open connections wh@®RETURN called, as long

as connections to subordinate services remain open.
Connections are closed in a disorderly fashion. If a
transaction exists, it is aborted.

TPEV_SVCERR TPSEND

Received by the originator of the connection, usually
indicating that the subordinate program issued a
TPRETURNvithout having control of the connection.

TPRECV

Received by the originator of the connection, indicating
that the subordinate program issuetP&R ETURNvith
TPSUCCESS®Tr TPFAIL and a valid data record, but an
error occurred that prevented the call from completing.

TPEV_SVCFAIL TPSEND

Received by the originator of the connection, indicating
that the subordinate program issuéiP&RETURNvithout
having control of the connection, aRBRETURNvas
called withTPFAIL or TPEXIT and no data.

TPRECV

Received by the originator of the connection, indicating
that the subordinate service finished unsuccessfully
(TPRETURNvas called withiTPFAIL or TPEXIT).

TPEV_SVCSUCC TPRECV

Received by the originator of the connection, indicating
that the subordinate service finished successfully; that is,
it calledTPRETURNvith TPSUCCESS

7-14

Programming a BEA Tuxedo Application Using COBOL

CHAPTER

8 Writing Event-based
Clients and Servers

m Overview of Events

m Defining the Unsolicited Message Handler
m Sending Unsolicited Messages

m Checking for Unsolicited Messages

m Getting Unsolicited Messages

m Subscribing to Events

m Unsubscribing from Events

m Posting Events

Overview of Events

Event-based communication provides a method for a BEA Tuxedo system process to
be notified when a specific situation (event) occurs.

The BEA Tuxedo system supports two types of event-based communication:
m Unsolicited events

m Brokered events

Programming a BEA Tuxedo Application Using COBOL 8-1

8 Writing Event-based Clients and Servers

Unsolicited Events

Unsolicited events are messages used to communicate with client programs that are r
waiting for and/or expecting a message.

Brokered Events

8-2

Brokered events enable a client and a server to communicate transparently with one
another via an “anonymous” broker that receives and distributes messages. Such
brokering is another client/server communication paradigm that is fundamental to the
BEA Tuxedo system.

The EventBroker is a BEA Tuxedo subsystem that receives and filters event posting
messages, and distributes them to subscribepesteris a BEA Tuxedo system
process that detects when a specific event has occurred and reports (posts) it to the
EventBroker. Asubscriberis a BEA Tuxedo system process with a standing request
to be notified whenever a specific event has been posted.

The BEA Tuxedo system does not impose a fixed ratio of service requesters to servic
providers; an arbitrary number of posters can post a message for an arbitrary numb
of subscribers. The posters simply post events, without knowing which processes
receive the information or how the information is handled. Subscribers are notified of
specified events, without knowing who posted the information. In this way, the
EventBroker provides complete location transparency.

Typically, EventBroker applications are designed to handle exception events. An
application designer must decide which events in the application constitute exceptiol
events and need to be monitored. In a banking application, for example, it might be
useful to post an event whenever an unusually large amount of money is withdrawn,
but it would not be particularly useful to post an event for every withdrawal
transaction. In addition, not all users would need to subscribe to that event; perhaps
only the branch manager would need to be notified.

Programming a BEA Tuxedo Application Using COBOL

Overview of Events

Notification Actions

The EventBroker may be configured such that whenever an event is posted, the
EventBroker invokes one or more notification actions for clients and/or servers that
have subscribed. The following table lists the types of notification actions that the
EventBroker can take.

Table 8-1 EventBroker Notification Actions

Notification Action Description

Unsolicited notification ~ Clients may receive event notification messages in their
message unsolicited message handling routine, just as if they were sent by
the TPNOTIFY routine.

Service call Servers may receive event notification messages as input to
service routines, just as if they were senTBACALL

Reliable queue Event notification messages may be stored in a BEA Tuxedo
system reliable queue, usif@DEQUEUE(3chl) . Event
notification records are stored until requests for contents are
issued. A BEA Tuxedo system client or server process may call
TPDEQUEUE(3chl) to retrieve these notification records, or
alternatelyTMQFORWARD(5nay be configured to
automatically dispatch a BEA Tuxedo system service routine
that retrieves a natification record.

For more information on /Q, séésing the BEA Tuxedo /Q
Component

In addition, the application administrator may creat€@BNT_MIB(5) entry (by
using the BEA Tuxedo administrative API) that performs the following notification
actions:

m Invokes a system command

m Writes a message to the system’s log file on disk

Note: Only the BEA Tuxedo application administrator is allowed to create an
EVENT_MIB(5) entry.

For information on th€VENT_MIB(5) , refer to theBEA Tuxedo File Formats and
Data Descriptions Reference

Programming a BEA Tuxedo Application Using COBOL 8-3

8 Writing Event-based Clients and Servers

EventBroker Servers

TMUSREVTs the BEA Tuxedo system-supplied server that acts as an EventBroker fol
user eventsSTMUSREVProcesses event report message records, and then filters and
distributes them. The BEA Tuxedo application administrator must boot one or more of
these servers to activate event brokering.

TMSYSEVTs the BEA Tuxedo system-supplied server that acts as an EventBroker fol
system-defined even®SYSEVIandTMUSREV&re similar, but separate servers are
provided to allow the application administrator the ability to have different replication
strategies for processing notifications of these two types of events. R8#titg Up

a BEA Tuxedo Applicatiofor additional information.

System-defined Events

8-4

The BEA Tuxedo system itself detects and posts certain predefined events related t
system warnings and failures. These tasks are performed by the EventBroker. For
example, system-defined events include configuration changes, state changes,
connection failures, and machine partitioning. For a complete list of system-defined
events detected by the EventBroker, BENTS(5) in theBEA Tuxedo File Formats

and Data Descriptions Reference

System-defined events are defined in advance by the BEA Tuxedo system code and |
not require posting. The name of a system-defined event, unlike that of an

application-defined event, always begins with a dot (“.”). Names of
application-defined events may not begin with a leading dot.

Clients and servers can subscribe to system-defined events. These events, howeve
should be used mainly by application administrators, not by every client in the
application.

When incorporating the EventBroker into your application, remember that it is not
intended to provide a mechanism for high-volume distribution to many subscribers. D¢
not attempt to post an event for every activity that occurs, and do not expect all client
and servers to subscribe. If you overload the EventBroker, system performance may
be adversely affected and notifications may be dropped. To minimize the possibility o
overload, the application administrator should carefully tune the operating system IP(
resources, as explainedlirstalling the BEA Tuxedo System

Programming a BEA Tuxedo Application Using COBOL

Defining the Unsolicited Message Handler

Programming Interface for the EventBroker

EventBroker programming interfaces are available for all BEA Tuxedo system server
and client processes, including Workstation, in both C and COBOL.

The programmer’s job is to code the following sequence:
1. Aclient or servepostsa record to an application-defined event name.

2. The posted record is transmitted to any number of processes thaubaeebed
to the event.

Subscribers may be notified in a variety of ways (as discussed in “Notification
Actions”), and events may be filtered. Notification and filtering are configured through
the programming interface, as well as through the BEA Tuxedo system administrative
API.

Defining the Unsolicited Message Handler

To define the unsolicited message handler, us@RBETUNSOL(3cbl) routine with
the following signature.

01 CURR-ROUTINE PIC S9(9) COMP-5.
01 PREV-ROUTINE PIC S9(9) COMP-5.
01 TPSTATUS-REC
COPY TPSTATUS.
CALL "TPSETUNSOL" USING CURR-ROUTINE PREV-ROUTINE TPSTATUS-REC

TPSETUNSOIlallows a client to identify the routine that should be invoked when an
unsolicited message is received by the BEA Tuxedo system libraries. Before the first
call toTPSETUNSOLany unsolicited messages received by the BEA Tuxedo system
libraries on behalf of the client are logged and ignored. The method used by the system
for notification and detection is determined by the application default, which can be
overridden on a per-client basis. For more information, refEPRai TIALIZE (3cbl)

in theBEA Tuxedo COBOL Function Reference

Programming a BEA Tuxedo Application Using COBOL 8-5

8 Writing Event-based Clients and Servers

The CURR-ROUTINBparameter identifies one of 16 predefined routines that provide
unsolicited message handling: eight C routimasdisplatchl through

_tm_dispatch8 , and eight COBOL routinesMDISPATCH2hroughTMDISPATCH16

(Alternatively, if you seCURR-ROUTINEO a value of 0, any unsolicited messages
received by the BEA Tuxedo system libraries on behalf of the client are logged and
ignored.) The C routines must conform to the parameter definition provided on
TPSETUNSOL(3cbl) . When a COBOL routine is usetRGETUNSOmust be called to
receive the data.

The following sample code shows how to set an unsolicited routine in a COBOL
program.

Listing 8-1 Setting an Unsolicited Routine

*

* Call TPSETUNSOL - Set a COBOL unsolicited message handler
* Routine TMDISPATCHO will be called
*
MOVE 9 to CURR-ROUTINE.
CALL "TPSETUNSOL" USING
CURR-ROUTINE
PREV-ROUTINE
TPSTATUS-REC.
IF NOT TPOK
Routine TMDISPATCHI will receive unsolicited messages
ELSE
Process error condition

Sending Unsolicited Messages

8-6

The BEA Tuxedo system allows unsolicited messages to be sent to client processes
without disturbing the processing of request/response calls or conversational
communications.

Programming a BEA Tuxedo Application Using COBOL

Sending Unsolicited Messages

Unsolicited messages can be sent to client processes by name, using
TPBROADCAST(3chl), or by an identifier received with a previously processed
message, usingPNOTIFY(3cbl) . Messages sent VilPBROADCASTan originate
either in a service or in another client. Messages semPWa@TIFY can originate only
in a service.

Broadcasting Messages By Name

The TPBROADCAST(3cbl) routine allows a message to be sent to registered clients of
the application. It can be called by a service or another client. Registered clients are
those that have successfully made a cafRiNITIALIZE and have not yet made a

call toTPTERM

Use the following signature to call ti@BROADCASHoutine.

01 TPBCTDEF-REC
COPY TPBCTDEF.
01 TPTYPE-REC
COPY TPTYPE.
01 DATA-REC
COPY User Data.
01 TPSTATUS-REC
COPY TPSTATUS.
CALL "TPBROADCAST" USING TPBCTDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC

The following table describes the members of tABCTDEF-REQdata structure.

Table 8-2 TPBCTDEF-REC Data Structure Membes

Member Description

LMID Pointer to the logical machine identifier for the client. A valuBRACES
acts as a wildcard, so that a message can be directed to groups of clients.

USRNAME User name of the client process, if one exists. A val8P#CESacts as
a wildcard, so that a message can be directed to groups of clients.

CLTNAME Client name of the client process, if one exists. A value of NULL acts as
a wildcard, so that a message can be directed to groups of clients.

Settings (such as Settings for th@ PBROADCASGommand. Refer to
TPBLOCK-FLAG TPBROADCAST(3cbl) in theBEA Tuxedo COBOL Function Reference
for information on available settings.

Programming a BEA Tuxedo Application Using COBOL 8-7

8 Writing Event-based Clients and Servers

8-8

Refer to “Defining a Service” on page 5-10 for a description of HierPE-REC
record.

The following example illustrates a callTeBROADCASTor which all clients are
targeted. The message to be sent is contained TRAIG record.

Listing 8-2 Using TPBROADCAST

* *% *% *% Kk kkkk

* Prepare the record to broadcasted
MOVE "HELLO, WORLD" TO DATA-REC.
MOVE 11 TO LEN.
MOVE "STRING" TO REC-TYPE.

SET TPNOBLOCK TO TRUE.
SET TPNOTIME TO TRUE.
SET TPSIGRSTRT TO TRUE.

MOVE SPACES TO LMID.
MOVE SPACES TO USRNAME.
MOVE SPACES TO CLTNAME.
CALL "TPBROADCAST" USING TPBCTDEF-REC
TPTYPE-REC
DATA-REC
TPSTATUS-REC.
IF NOT TPOK
error processing

Programming a BEA Tuxedo Application Using COBOL

Checking for Unsolicited Messages

Broadcasting Messages by Identifier

The TPNOTIFY(3cbl) routine is used to broadcast a message using an identifier
received with a previously processed message. It can be called only from a service.

Use the following signature to call tRi@NOTIFY routine.

01 TPSVCDEF-REC
COPY TPSVCDEF.
01 TPTYPE-REC
COPY TPTYPE.
01 DATA-REC
COPY User Data.
01 TPSTATUS-REC
COPY TPSTATUS.
CALL "TPNOTIFY" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC

Refer to “Writing Global Transactions” on page 9-1 for information on the
TPSVCDEF-REGQata structure, and “Defining a Service” on page 5-10 for a description
of theTPTYPE-RECrecord.

Checking for Unsolicited Messages

To check for unsolicited messages while running the client in “dip-in” notification
mode, use th&PCHKUNSOL(3cbl) routine with the following signature.

01 MSG-NUM PIC S9(9) COMP-5.
01 TPSTATUS-REC
COPY TPSTATUS.
CALL "TPCHKUNSOL" USING MSG-NUMTPSTATUS-REC

If any messages are pending, the system invokes the unsolicited message handling
routine that was specified usif@SETUNSOLUpon completion, the routine returns
either the number of unsolicited messages that were processed ariSB3USto
[TPON.

If you issue this routine when the client is runningiBNAL-based, thread-based
notification mode, or is ignoring unsolicited messages, the routine has no impact and
returns immediately.

Programming a BEA Tuxedo Application Using COBOL 8-9

8 Writing Event-based Clients and Servers

The following example shows how to check for the arrival of an unsolicited message

Listing 8-3 Arrival of an Unsolicited Message

*

* Check for unsolicited messages
*
CALL "TPCHKUNSOL" USING MESS-NUM
TPSTATUS-REC.

IF TPOK
IF MESS-NUM IS =0
No messages were processed by the
unsolicited routine
ELSE
MESS-NUM number of messages were
processed by the unsolicited routine
END-IF
ELSE
process error
END-IF

Getting Unsolicited Messages

To get unsolicited messages, you must calTP@ETUNSOL (3cbl) routine. This
routine can be called, however, only from an unsolicited message handler. Use the
following signature to call thePGETUNSOLoutine.

01 TPTYPE-REC
COPY TPTYPE.
01 DATA-REC
COPY User data.
01 TPSTATUS-REC
COPY TPSTATUS.
CALL "TPGETUNSOL" USING TPTYPE-REC DATA-REC TPSTATUS-REC

Refer to “Defining a Service” on page 5-10 for a description of HierPE-REC
record.

The following example shows how to get an unsolicited message.

8-10 Programming a BEA Tuxedo Application Using COBOL

Getting Unsolicited Messages

Listing 8-4 Getting an Unsolicited Message

IDENTIFICATION DIVISION.
PROGRAM-ID. TMDISPATCHS.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. USL-486.
OBJECT-COMPUTER. USL-486.
*

DATA DIVISION.
WORKING-STORAGE SECTION.
*
01 TPTYPE-REC.

COPY TPTYPE.
*
01 TPSTATUS-REC.

COPY TPSTATUS.

*

01 DATA-REC PIC X(1000).

*

PROCEDURE DIVISION.

*

A-000.
*
MOVE "CARRAY" TO REC-TYPE.
MOVE 1000 TO LEN.
CALL "TPGETUNSOL" USING TPTYPE-REC
DATA-REC
TPSTATUS-REC.
IF NOT TPOK
error processing

Process message
DISPLAY "TPGETUNSOL IS TPOK".
DISPLAY "MESSAGE IS" DATA-REC.
DISPLAY "LENGTH IS" LEN.
EXIT PROGRAM.

*

Programming a BEA Tuxedo Application Using COBOL 8-11

8 Writing Event-based Clients and Servers

Subscribing to Events

The TPSUBSCRIBE(3cbl) routine enables a BEA Tuxedo system client or server to
subscribe to an event.

A subscriber can be notified through an unsolicited notification message, a service cal
a reliable queue, or other notification methods configured by the application
administrator. (For information about configuring alternative notification methods,
refer toSetting Up a BEA Tuxedo Applicatipn

Use the following signature to call th@eSUBSCRIBEroutine.

01 TPEVTDEF-REC
COPY TPEVTDEF.

01 TPQUEDEF-REC
COPY TPQUEDEF.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL “TPSUBSCRIBE” USING TPEVTDEF-REC TPQUEDEF-REC TPSTATUS-REC
The TPEVTDEF-RECdata structure signature is as follows:

05 TPBLOCK-FLAG PIC S9(9) COMP-5.
88 TPBLOCK VALUE 0.
88 TPNOBLOCK VALUE 1.
05 TPTRAN-FLAG PIC S9(9) COMP-5.
88 TPTRAN VALUE 0.
88 TPNOTRAN VALUE 1.
05 TPREPLY-FLAG PIC S9(9) COMP-5.
88 TPREPLY VALUE 0.
88 TPNOREPLY VALUE 1.
05 TPTIME-FLAG PIC S9(9) COMP-5.
88 TPTIME VALUE 0.
88 TPNOTIME VALUE 1.
05 TPSIGRSTRT-FLAG PIC S9(9) COMP-5.
88 TPNOSIGRSTRT VALUE 0.
88 TPSIGRSTRT VALUE 1.
05 TPEV-METHOD-FLAG PIC S9(9) COMP-5.
88 TPEVNOTIFY VALUEO.
88 TPEVSERVICE VALUE 1.
88 TPEVQUEUE VALUE 2.
05 TPEV-PERSIST-FLAG PIC S9(9) COMP-5.

Programming a BEA Tuxedo Application Using COBOL

Subscribing to Events

88 TPEVNOPERSIST VALUE 0.
88 TPEVPERSIST VALUE 1.
05 TPEV-TRAN-FLAG PIC S9(9) COMP-5.
88 TPEVNOTRAN VALUE 0.
88 TPEVTRAN VALUE 1.
*
05 EVENT-COUNT PIC S9(9) COMP-5.
05 SUBSCRIPTION-HANDLE PIC S9(9) COMP-5.
05 NAME-1 PIC X(31).
05 NAME-2 PIC X(31).
05 EVENT-NAME PIC X(31).
05 EVENT-EXPR PIC X(255).
05 EVENT-FILTER PIC X(255).

The following table describes the members of tREVTDEF-RECdata structure.

Member

Description

EVENT-COUNT

Event count.

SUBSCRIPTION-HANDLE Subscription handle.

NAME-1, NAME-2 Name of queued spaces. If the subscriber$8E/QUEURhen

event notifications are enqueued to the queue space named by
NAME-1and the queue named BAME-2

EVENT-NAME

Event name.

EVENT-EXPR

Set of events to which to subscribe. Consists of a null-terminated
string of up to 255 characters containing a regular expression.
Regular expressions are of the form specifiecdaomp,
rematch(3c) as described in tHerogramming a BEA Tuxedo
Application Using CFor example, ieventexpr is set to:

m M\ — the caller is subscribing to all system-defined
events.

m "\\.SysServer.*" — the caller is subscribing to all
system-defined events related to servers.

m [A-Z]* — the caller is subscribing to all user events
starting with A-Z.

m "*(ERR|err).*" — the caller is subscribing to all user

events containing either the substriegRor the substring
err (for exampleaccount_error andERROR_STATE
events would both qualify).

Programming a BEA Tuxedo Application Using COBOL 8-13

8 Writing Event-based Clients and Servers

Member Description

EVENT-FILTER String containing a boolean filter rule that must be evaluated
successfully before the Event Broker posts the event. Upon
receiving an event to be posted, the Event Broker applies the
filter rule, if one exists, to the posted event's data. If the data
passes the filter rule, the Event Broker invokes the notification
method specified; otherwise, the Event Broker ignores the
notification method. The caller can subscribe to the same event
multiple times with different filter rules.

By using the event filtering capability, subscribers can be
more discriminating about the events for which they are
notified. For example, a poster can post an event for
withdrawals greater than $10,000.00, but a subscriber
may want to specify a higher threshold for being notified,
such as $50,000.00. Or, a subscriber may want to be
notified of large withdrawals only if made by customers
with specified IDs.

Filter rules are specific to the typed records to which they are
applied. Refer to thePSUBSCRIBE(3cbl) reference page in
theBEA Tuxedo COBOL Function Refereficefurther
information on filter rules.

SETTINGS Miscellaneous settings that control the server characteristics.
(TPBLOCK-FLAG, For more information on the settings, refer to Bt&A Tuxedo
TPTRAN-FLAG, and so COBOL Function Reference

on)

Refer toUsing the BEA Tuxedo /Q Componémtmore information on the
TPQUEDEF-REQIata structure.

You can subscribe to both system- and application-defined events using the
TPSUBSCRIBEroutine.

For purposes of subscriptions (and f0B updates), service routines executed in a
BEA Tuxedo system server process are considered to be trusted code.

Refer toTPSUBSCRIBE(3cbl) in theBEA Tuxedo COBOL Function Refereifice
more information on the routine.

8-14 Programming a BEA Tuxedo Application Using COBOL

Unsubscribing from Events

Unsubscribing from Events

TheTPUNSUBSCRIBE(3cbl) routine enables a BEA Tuxedo system client or server to
unsubscribe from an event.

Use the following signature to call ti@UNSUBSCRIBEouUtine.

01 TPEVTDEF-REC
COPY TPEVTDEF.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL “TPUNSUBSCRIBE” USING TPEVTDEF-REC TPSTATUS-REC

Refer to “Subscribing to Events” on page 8-12 for a detailed description of the
TPEVTDEF-RECdata structure, and tdsing the BEA Tuxedo /Q Componémtmore
information on the’lPQUEDEF-RE@ata structure.

Posting Events

TheTPPOST(3chl) routine enables a BEA Tuxedo client or server to post an event.
Use the following signature to call th@POSTroutine.

01 TPEVTDEF-REC
COPY TPEVTDEF.

01 TPTYPE-REC
COPY TPSTATUS.

01 TPDATA-REC
COPY TPSTATUS.

01 TPSTATUS-REC
COPY TPSTATUS.

CALL “TPPST"USING TPEVTDEF-REC TPTYPE-REC TPDATA-REC TPSTATUS-REC

Programming a BEA Tuxedo Application Using COBOL 8-15

8 Writing Event-based Clients and Servers

Refer to “Subscribing to Events” on page 8-12 for a detailed description of the
TPEVTDEF-RECdata structure, and to “Defining a Service” on page 5-10 for a
description of th@PTYPE-RECrecord.

8-16 Programming a BEA Tuxedo Application Using COBOL

CHAPTER

O Writing Global
Transactions

m What Is a Global Transaction?

m Starting the Transaction

m Terminating the Transaction

m Terminating the Transaction

m Implicitly Defining a Global Transaction

m Defining Global Transactions for an XA-Compliant Server Group

m Testing Whether a Transaction Has Started

What Is a Global Transaction?

A global transaction is a mechanism that allows a set of programming tasks, potentially
using more than one resource manager and potentially executing on multiple servers,
to be treated as one logical unit.

Once a process is in transaction mode, any service requests made to servers may be
processed on behalf of the current transaction. The services that are called and join the
transaction are referred to @mansactionparticipants The value returned by a

participant may affect the outcome of the transaction.

Programming a BEA Tuxedo Application Using COBOL 9-1

9 Writing Global Transactions

A global transaction may be composed of several local transactions, each accessing t
same resource manager. The resource manager is responsible for performing

concurrency control and atomicity of updates. A given local transaction may be eithe|
successful or unsuccessful in completing its access; it cannot be partially successful

A maximum of 16 server groups can participate in a single transaction.

The BEA Tuxedo system manages a global transaction in conjunction with the
participating resource managers and treats it as a specific sequence of operations tl
is characterized by atomicity, consistency, isolation, and durability. In other words, &
global transaction is a logical unit of work in which:

m All portions either succeed or have no effect.

m Operations are performed that correctly transform resources from one consistent
state to another.

m Intermediate results are not accessible to other transactions, although some
processes in a transaction may access the data associated with another process

m Once a sequence is complete, its results cannot be altered by any kind of failure

The BEA Tuxedo system tracks the status of each global transaction and determine
whether it should be committed or rolled back.

Starting the Transaction

To start a global transaction, use TRBEGIN(3cbl) routine with the following
signature.

*

01 TPTRXDEF-REC
COPY TPTRXDEF.

*

01 TPSTATUS-REC
COPY TPSTATUS.

CALL "TPBEGIN" USING TPTRXDEF-REC TPSTATUS-REC

The following table describes tM@TRXDEF-RECstructure fields.

9-2 Programming a BEA Tuxedo Application Using COBOL

Starting the Transaction

Table 9-1 TPTRXDEF Structure Field

Field

Description

T-OUT

Specifies the amount of time, in seconds, a transaction can execute before
timing out. You can set this value to the maximum number of seconds allowed
by the system, by specifying a value of 0. In other words, you can set
timeout to the maximum value for an unsigriedg as defined by the
system.

The use of 0 or an unrealistically large value fortHeUT parameter delays
system detection and reporting of errors. The system us@sQd

parameter to ensure that responses to service requests are sent within a
reasonable time, and to terminate transactions that encounter problems such as
network failures before executing a commit.

For a transaction in which a person is waiting for a response, you should set
this parameter to a small value: if possible, less than 30 seconds.

In a production system, you should $eDUT to a value large enough to
accommodate expected delays due to system load and database contention. A
small multiple of the expected average response time is often an appropriate
choice.

Note: The value assigned to theOUT parameter should be consistent with
that of theSCANUNITparameter set by the BEA Tuxedo application
administrator in the configuration file. TI®CANUNITparameter
specifies the frequency with which the system checkscans for
timed-out transactions and blocked calls in service requests. The
value of this parameter represents the interval of time between these
periodic scans, referred to as ganning unit

You should set th&-OUT parameter to a value that is greater than the
scanning unit. If you set tlieOUT parameter to a value smaller than
the scanning unit, there will be a discrepancy between the time at
which a transaction times out and the time at which this time-out is
discovered by the system. The default valueSlBGANUNITis 10
seconds. You may need to discuss the setting G-t T parameter
with your application administrator to make sure the value you assign
to theT-OUT parameter is compatible with the values assigned to
your system parameters.

TRANID

Transaction identifier.

Programming a BEA Tuxedo Application Using COBOL 9-3

9 Writing Global Transactions

Any process may caltPBEGINunless the process is already in transaction mode. If
TPBEGINIs called in transaction mode, the call fails due to a protocol error and
TP-STATUSIs set toTPEPROTOIf the process is in transaction mode, the transaction is
unaffected by the failure.

The following example provides a high-level view of how a global transaction is
defined.

Listing 9-1 Delineating a Transaction

MOVE 0 TO T-OUT.
CALL "TPBEGIN" USING
TPTRXDEF-REC
TPSTATUS-REC.
IF NOT TPOK

error processing

program statements

CALL "TPCOMMIT" USING
TPTRXDEF-REC
TPSTATUS-REC.

IF NOT TPOK

error processing

9-4 Programming a BEA Tuxedo Application Using COBOL

Starting the Transaction

The following example shows how an outstanding reply can cause an error.

Listing 9-2 Error - Starting a Transaction with an Outstanding Reply

MOVE "BUY" TO SERVICE-NAME.
SET TPBLOCK TO TRUE.
SET TPNOTRAN TO TRUE.
SET TPREPLY TO TRUE.
SET TPNOTIME TO TRUE.
SET TPSIGRSTRT TO TRUE.
CALL "TPACALL" USING
TPSVCDEF-REC
TPTYPE-REC
BUY-REC
TPSTATUS-REC.
IF NOT TPOK
error processing

MOVE 0 TO T-OUT.

CALL "TPBEGIN" USING
TPTRXDEF-REC
TPSTATUS-REC.

IF NOT TPOK

error processing
* ERROR TP-STATUS is set to TPEPROTO

program statements

SET TPBLOCK TO TRUE.
SET TPNOTRAN TO TRUE.
SET TPCHANGE TO TRUE.
SET TPNOTIME TO TRUE.
SET TPSIGRSTRT TO TRUE.
SET TPGETANY TO TRUE.
CALL "TPGETRPLY" USING
TPSVCDEF-REC
TPTYPE-REC
WK-AREA
TPSTATUS-REC.
IF NOT TPOK
error processing

Programming a BEA Tuxedo Application Using COBOL 9-5

9 Writing Global Transactions

If a transaction times out, a calltecoOMMITcauses the transaction to be aborted. As
a result, TPCOMMITfails and sets§P-STATUS to TPEABORT

The following example shows how to test for a transaction time-out. Note that the
value ofT-OUT is set to 30 seconds.

Listing 9-3 Testing for Transaction Time-Out

MOVE 30 TO T-OUT.
CALL "TPBEGIN" USING TPTRXDEF-REC TPSTATUS-REC.
IF NOT TPOK
MOVE "Failed to BEGIN a transaction"” TO LOG-REC-TEXT.
MOVE 29 to LOG-REC-LEN
CALL "USERLOG" USING
LOG-REC-TEXT
LOG-REC-LEN
TPSTATUS-REC
CALL "TPTERM" USING
TPSTATUS-REC
PERFORM A-999-EXIT.

communication CALL statements

IF TPETIME
CALL "TPABORT" USING
TPTRXDEF-REC
TPSTATUS-REC
IF NOT TPOK
error processing
ELSE
CALL "TPCOMMIT" USING
TPTRXDEF-REC
TPSTATUS-REC
IF NOT TPOK
error processing

9-6 Programming a BEA Tuxedo Application Using COBOL

Starting the Transaction

Note: When a process is in transaction mode and makes a communication call with
TPNOTRANIt prohibits the called service from becoming a participant in the
current transaction. Whether the service request succeeds or fails has no
impact on the outcome of the transaction. The transaction can still time-out
while waiting for a reply that is due from a service, whether it is part of the
transaction or not. Refer to “Managing Errors” on page 11-1 for more
information on the effects of thePNOTRANIag.

The following example shows how to define a transaction.

Listing 9-4 Defining a Transaction

DATA DIVISION.
WORKING-STORAGE SECTION.
*

01 TPTYPE-REC.

COPY TPTYPE.

*

01 TPSTATUS-REC.
COPY TPSTATUS.
*

01 TPINFDEF-REC.
COPY TPINFDEF.

*

01 TPSVCDEF-REC.

COPY TPSVCDEF.

*

01 TPTRXDEF-REC.

COPY TPTRXDEF.

*

01 LOG-REC PIC X(30) VALUE " ".
01 LOG-REC-LEN PIC S9(9) COMP-5.

*

01 USR-DATA-REC PIC X(16).

*

01 AUDV-REC.
05 AUDV-BRANCH-ID PIC S9(9) COMP-5.
05 AUDV-BALANCE PIC S9(9) COMP-5.
05 AUDV-ERRMSG PIC X(60).

*

PROCEDURE DIVISION.
*

A-000.

* Get Command Line Options set Variables (Q-BRANCH)

Programming a BEA Tuxedo Application Using COBOL 9-7

9 Writing Global Transactions

MOVE SPACES TO USRNAME.

MOVE SPACES TO CLTNAME.

MOVE SPACES TO PASSWD.

MOVE SPACES TO GRPNAME.

CALL "TPINITIALIZE" USING TPINFDEF-REC
USR-DATA-REC
TPSTATUS-REC.

IF NOT TPOK

MOVE "Failed to join application” TO LOG-REC
MOVE 26 TO LOG-REC-LEN
CALL "USERLOG" USING LOG-REC
LOG-REC-LEN
TPSTATUS-REC
PERFORM A-999-EXIT.
* Start global transaction

MOVE 30 TO T-OUT.

CALL "TPBEGIN" USING TPTRXDEF-REC TPSTATUS-REC.

IF NOT TPOK

MOVE 29 to LOG-REC-LEN
MOVE "Failed to begin a transaction" TO LOG-REC
CALL "USERLOG" USING LOG-REC
LOG-REC-LEN
TPSTATUS-REC
PERFORM DO-TPTERM.
* Set up record

MOVE Q-BRANCH TO AUDV-BRANCH-ID.

MOVE ZEROS TO AUDV-BALANCE.

MOVE SPACES TO AUDV-ERRMSG.

* Set up TPCALL records

MOVE "GETBALANCE" TO SERVICE-NAME.

MOVE "VIEW" TO REC-TYPE.

MOVE LENGTH OF AUDV-REC TO LEN.

SET TPBLOCK TO TRUE.

SET TPTRAN IN TPSVCDEF-REC TO TRUE.

SET TPNOTIME TO TRUE.

SET TPSIGRSTRT TO TRUE.

SET TPCHANGE TO TRUE.

*
CALL "TPCALL" USING TPSVCDEF-REC
TPTYPE-REC
AUDV-REC
TPTYPE-REC
AUDV-REC
TPSTATUS-REC.
IF NOT TPOK
MOVE 19 to LOG-REC-LEN
MOVE "Service call failed" TO LOG-REC
CALL "USERLOG" USING LOG-REC
LOG-REC-LEN

9-8 Programming a BEA Tuxedo Application Using COBOL

Starting the Transaction

TPSTATUS-REC
PERFORM DO-TPABORT
PERFORM DO-TPTERM.
* Commit global transaction
CALL "TPCOMMIT" USING TPTRXDEF-REC
TPSTATUS-REC
IF NOT TPOK
MOVE 16 to LOG-REC-LEN
MOVE "Failed to commit" TO LOG-REC
CALL "USERLOG" USING LOG-REC
LOG-REC-LEN
TPSTATUS-REC
PERFORM DO-TPTERM.

* Show results only when transaction has completed successfully
DISPLAY "BRANCH=" Q-BRANCH.
DISPLAY "BALANCE=" AUDV-BALANCE.
PERFORM DO-TPTERM.

* Abort the transaction
DO-TPABORT.

CALL "TPABORT" USING TPTRXDEF-REC
TPSTATUS-REC
IF NOT TPOK
MOVE 26 to LOG-REC-LEN
MOVE "Failed to abort transaction" TO LOG-REC
CALL "USERLOG" USING LOG-REC
LOG-REC-LEN
TPSTATUS-REC.
* Leave the application
DO-TPTERM.
CALL "TPTERM" USING TPSTATUS-REC.
IF NOT TPOK
MOVE 27 to LOG-REC-LEN
MOVE "Failed to leave application" TO LOG-REC
CALL "USERLOG" USING LOG-REC
LOG-REC-LEN
TPSTATUS-REC.
EXIT PROGRAM.

*

A-999-EXIT.

*

EXIT PROGRAM.

Programming a BEA Tuxedo Application Using COBOL 9-9

9 Writing Global Transactions

Terminating the Transaction

To end a global transaction, cafCOMMIT(3cbl) to commit the current transaction,
or TPABORT(3cbl) to abort the transaction and roll back all operations.

Note: If TPCALL TPACALL or TPCONNECTs called by a process that has explicitly
setTPNOTRANthe operations performed by the called service do not become
part of the current transaction. In other words, when you caliRh8ORT
routine, the operations performed by these services are not rolled back.

Committing the Current Transaction

The TPCOMMIT(3cbl) routine commits the current transaction. WiecOMMIT
returns successfully, all changes to resources as a result of the current transaction
become permanent.

Use the following signature to call tiecomMMITroutine.

*

01 TPTRXDEF-REC
COPY TPTRXDEF.

*

01 TPSTATUS-REC
COPY TPSTATUS.

*

CALL "TPCOMMIT" USING TPTRXDEF-REC TPSTATUS-REC

Refer to “Starting the Transaction” on page 9-2 for a description 9PIRXDEF-REC
structure.

9-10 Programming a BEA Tuxedo Application Using COBOL

Terminating the Transaction

Prerequisites for a Transaction Commit

For TPCOMMITtO succeed, the following conditions must be true:

m The calling process must be the same one that initiated the transaction with a
call toTPBEGIN

m The calling process must have no transactional replies (calls made without the
TPNOTRANlag) outstanding.

m The transaction must not be in a rollback-only state and must not be timed out.

If the first condition is false, the call fails am8-STATUS is set toTPEPROTQ

indicating a protocol error. If the second or third condition is false, the call fails and
TP-STATUSIs set toTPEABORTINndicating that the transaction has been rolled back. If
TPCOMMITis called by the initiator with outstanding transaction replies, the transaction
is aborted and those reply descriptors associated with the transaction become invalid.
If a participant call§PCOMMITor TPABORTthe transaction is unaffected.

A transaction is placed in a rollback-only state if any service call retTtr®sIL or
indicates a service error. TPCOMMITis called for a rollback-only transaction, the
routine cancels the transaction, retinsand set3P-STATUSto TPEABORT The
results are the sameTiPCOMMITis called for a transaction that has already timed out:
TPCOMMITreturns-1 and set§P-STATUS to TPEABORTRefer to “Managing Errors”
on page 11-1 for more information on transaction errors.

Two-phase Commit Protocol

When theTPCOMMITroutine is called, it initiates the/o-phase commit protocdr his
protocol, as the name suggests, consists of two steps:

1. Each participating resource manager indicates a readiness to commit.

2. The initiator of the transaction gives permission to commit to each participating
resource manager.

Programming a BEA Tuxedo Application Using COBOL 9-11

9 Writing Global Transactions

The commit sequence begins when the transaction initiator cafiBti@vMIToutine.

The BEA Tuxedo TMS server process in the designated coordinator group contacts tt
TMS in each participant group that is to perform the first phase of the commit protocol.
The TMS in each group then instructs the resource manager (RM) in that group to
commit using the XA protocol that is defined for communications between the
Transaction Managers and RMs. The RM writes, to stable storage, the states of the
transaction before and after the commit sequence, and indicates success or failure t
the TMS. The TMS then passes the response back to the coordinating TMS.

When the coordinating TMS has received a success indication from all groups, it log:
a statement to the effect that a transaction is being committed and sends second-phz
commit notifications to all participant groups. The RM in each group then finalizes the
transaction updates.

If the coordinator TMS is notified of a first-phase commit failure from any group, or
if it fails to receive a reply from any group, it sends a rollback notification to each RM
and the RMs back out all transaction updatesOMMIThen fails and sef®P-STATUS
to TPEABORT

Selecting Criteria for a Successful Commit

When more than one group is involved in a transaction, you can specify which of twc
criteria must be met forPCOMMITto return successfully:

m When all participants have indicated a readiness to commit (that is, when all
participants have reported that phase 1 of the two-phase commit has been logge
as complete and the coordinating TMS has written its decision to commit to
stable storage)

m When all participants have finished phase 2 of the two-phase commit

To specify one of these prerequisites, seldi@RETparameter in thRESOURCES
section of the configuration file to one of the following values:

m LOGGED to require completion of phase 1
m COMPLETE to require completion of phase 2

By default, CMTRETis set tocCOMPLETE

9-12 Programming a BEA Tuxedo Application Using COBOL

Terminating the Transaction

Trade-offs Between Possible Commit Criteria

In most cases, when all participants in a global transaction have logged successful
completion of phase 1, they do not fail to complete phase 2. By SEMINGET0
LOGGEDyou allow a slightly faster return of callsT@OMMIT but you run the slight
risk that a participant may heuristically complete its part of the transaction in a way
that is not consistent with the commit decision.

Whether it is prudent to accept the risk depends to a large extent on the nature of your
application. If your application demands complete accuracy (for example, if you are
running a financial application), you should probably wait until all participants fully
complete the two-phase commit process before returning. If your application is more
time-sensitive, you may prefer to have the application execute faster at the expense of
accuracy.

Aborting the Current Transaction

Use theTPABORT(3chl) routine to indicate an abnormal condition and explicitly abort

a transaction. This function invalidates the call descriptors of any outstanding
transactional replies. None of the changes produced by the transaction are applied to
the resource. Use the following signature to callihbeBORTrouUtine.

*

01 TPTRXDEF-REC
COPY TPTRXDEF.

*

01 TPSTATUS-REC
COPY TPSTATUS.

*

CALL "TPABORT" USING TPTRXDEF-REC TPSTATUS-REC

Refer to “Starting the Transaction” on page 9-2 for a description PtHeRXDEF-REC
structure.

Programming a BEA Tuxedo Application Using COBOL 9-13

9 Writing Global Transactions

Example: Committing a Transaction in Conversational
Mode

The following figure illustrates a conversational connection hierarchy that includes a
global transaction.

Figure 9-1 Connection Hierarchy in Transaction Mode

A B C
Cal TPBEGIN {Bis RECVONLY on AB) (Cis RECVONLY in BCY
{4 is SENDONLY on AB)
#B | call TPEVCSTART
Cal TPCONNECT Set TPSENDONLY
to TRUE
{B is SENDONLY on BC)
Call TPCONNECT Call TPSVCSTART
BC
Set TPRECVONLY —=| Cal TPRECV
ta TRUE
_ Set TPSENDONLY
(£1s RECVONLY on BA) ta TRUE
{C1is SENDONLY on CB)
{B is SENDONLY on AB)
CE
Call TPRECW e | Copy TPFRETURHN
Cdl TPRECV
 Ba Copy TPRETURN
Cal TPCOMMIT
EVENTES EVENTS

9-14

Programming a BEA Tuxedo Application Using COBOL

Terminating the Transaction

The connection hierarchy is created through the following process:

1. Aclient (process A) initiates a connection in transaction mode by cafBEGIN
andTPCONNECT

2. The client calls subsidiary services, which are executed.

3. As each subordinate service completes, it sends a reply indicating success or
failure (TPEV_SVCSUC®©r TPEV_SVCFAIL, respectively) back up through the
hierarchy to the process that initiated the transaction. In this example the process
that initiated the transaction is the client (process A). When a subordinate service
has completed sending replies (that is, when no more replies are outstanding), it
must callTPRETURN

4. The client (process A) determines whether all subordinate services have returned
successfully.

¢ If so, the client commits the changes made by those services, by calling
TPCOMMITand completes the transaction.

e [f not, the client call§PABORT since it knows thatPCOMMITcould not be
successful.

Example: Testing for Participant Errors

In the following sample code, a client makes a synchronous call to the fictitious
REPORTservice (line 24). Then the code checks for participant failures by testing for
errors that can be returned on a communication call (lines 30-42).

Listing 9-5 Testing for Participant Success or Failure

CALL "TPINITIALIZE" USING TPINFDEF-REC
USR-DATA-REC
TPSTATUS-REC.
IF NOT TPOK
error message
EXIT PROGRAM .
MOVE 30 TO T-OUT.
CALL "TPBEGIN" USING TPTRXDEF-REC TPSTATUS-REC.
IF NOT TPOK
error message

Programming a BEA Tuxedo Application Using COBOL 9-15

9 Writing Global Transactions

12 PERFORM DO-TPTERM.

13 * Set up record

14 MOVE "REPORT=accrcv DBNAME=accounts" TP-RECORD.
15 MOVE 27 TO LEN.

16 MOVE "REPORTS" TO SERVICE-NAME.

17 MOVE "STRING" TO REC-TYPE.

18 SET TPBLOCK TO TRUE.

19 SET TPTRAN IN TPSVCDEF-REC TO TRUE.
20 SET TPNOTIME TO TRUE.

21 SET TPSIGRSTRT TO TRUE.

22 SET TPCHANGE TO TRUE.

23 *

24 CALL "TPCALL" USING TPSVCDEF-REC
25 TPTYPE-REC

26 TP-RECORD

27 TPTYPE-REC

28 TP-RECORD

29 TPSTATUS-REC.

30 IF TPOK

31 PERFORM DO-TPCOMMIT

32 PERFORM DO-TPTERM.

33 * Check return status

34 IF TPESVCERR

35 DISPLAY "REPORT service's TPRETURN encountered problems"
36 ELSE IF TPESVCFAIL

37 DISPLAY "REPORT service FAILED with return code=" APPL-RETURN-CODE
38 ELSEIF TPEOTYPE

39 DISPLAY "REPORT service's reply is not of any known REC-TYPE"
40 *

41 PERFORM DO-TPABORT

42 PERFORM DO-TPTERM.

43 * Commit global transaction

44 DO-TPCOMMIT.

45 CALL "TPCOMMIT" USING TPTRXDEF-REC

46 TPSTATUS-REC

47 IF NOT TPOK

48 error message

49 * Abort the transaction

50 DO-TPABORT.

51 CALL "TPABORT" USING TPTRXDEF-REC

52 TPSTATUS-REC

53 IF NOT TPOK

54 error message

55 * Leave the application

56 DO-TPTERM.

57 CALL "TPTERM" USING TPSTATUS-REC.

58 IF NOT TPOK

59 error message

60 EXIT PROGRAM.

9-16 Programming a BEA Tuxedo Application Using COBOL

Implicitly Defining a Global Transaction

Implicitly Defining a Global Transaction

An application can start a global transaction in either of two ways:

m Explicitly, by calling ATMI calls, as described in “Starting the Transaction” on
page 9-2

m Implicitly, from within a service routine

This section describes the second method.

You can implicitly place a service routine in transaction mode by setting the system

parameteAUTOTRANN the configuration file. If you sétUTOTRANO Y, the system
automatically starts a transaction in the service subroutine when a request is received
from another process.

When implicitly defining a transaction, observe the following rules:

m If a process requests a service from another process when the calling process is
notin transaction mode and tA@ TOTRANYStem parameter is set to start a
transaction, the system initiates a transaction.

m If a process that is already in transaction mode requests a service from another
process, the system’s first response is to determine whether or not the caller is
set toTPNOTRAN

If not set toTPNOTRANthen the system places the called process in transaction
mode through the “rule of propagation.” The system does not check the
AUTOTRANparameter.

If TPTRN-FLAG IN TPSVCDEF-REC is set toTPNOTRANthe services performed
by the called process are not included in the current transaction (that is, the
propagation rule is suppressed). The system checkgth@TRANdarameter.

e If AUTOTRANS set toN (or if it is not set), the system does not place the
called process in transaction mode.

e If AUTOTRANS set toy, the system places the called process in transaction
mode, but treats it as a new transaction.

Programming a BEA Tuxedo Application Using COBOL 9-17

9 Writing Global Transactions

Note: Because a service can be placed in transaction mode automatically, it is
possible for a service with tieeNOTRANlag set to call services that have the
AUTOTRANparameter set. If such a service requests another service, the
member of the service information structure ret@mPERANVhen queried. For
example, if the call is made wilfPNOTRAN TPNOREPLYand the service
automatically starts a transaction when called, the information structure is se
to TPTRAN| TPNOREPLY

Defining Global Transactions for an
XA-Compliant Server Group

Testing

Generally, the application programmer writes a service that is part of an XA-compliant
server group to perform some operation via the group’s resource manager. In the
normal case, the service expects to perform all operations within a transaction. If, or
the other hand, the service is called with the communication settiRNGITRANyou

may receive unexpected results when executing database operations.

In order to avoid unexpected behavior, design the application so that services in grouy
associated with XA-compliant resource managers are always called in transaction
mode or are always defined in the configuration file witifOTRAN €t toY. You

should also test the transaction level in the service code early.

Whether a Transaction Has Started

Itis important to know whether or not a process is in transaction mode in order to avoi
and interpret certain error conditions. For example, it is an error for a process alreac
in transaction mode to calPBEGIN. WhenTPBEGINis called by such a process, it fails
and setgP-STATUSto TPEPROTQo indicate that it was invoked while the caller was
already participating in a transaction. The transaction is not affected.

9-18 Programming a BEA Tuxedo Application Using COBOL

Testing Whether a Transaction Has Started

You can design a service subroutine so that it tests whether it is in transaction mode
before invokingrlPBEGIN You can test the transaction level by either of the following
methods:

m Querying the settings of the service information structure that is passed to the
service routine. The service is in transaction mode if the value is BeTRAN

m Calling theTPGETLEV(3cbl) routine.
Use the following signature to call ti@GETLEWroutine.

01 TPTRXLEV-REC
COPY TPTRXLEV.
01 TPSTATUS-REC
COPY TPSTATUS.
CALL "TPGETLEV" USING TPTRXLEV-REC TPSTATUS-REC

TPGETLEVreturnsTP-NOT-IN-TRAN if the caller is not in a transaction and
TP-IN-TRAN if the caller is.

The following code sample shows how to test for transaction level using@EILEV
routine (line 3). If the process is not already in transaction mode, the application starts
a transaction (line 5). fPBEGINfails, a message is returned to the status line (line 9)
andAPPL-CODE IN TPSVCRET-REC of TPRETURNS set to a code that can be retrieved

in APL-RETURN-CODE IN TPSTATUS-REC(lines 1 and 11).

Listing 9-6 Testing Transaction Level

... Application defined codes
001 77 BEG-FAILED PIC S9(9) VALUE 3.

002 PROCEDURE DIVISION.

003 CALL "TPGETLEV" USING TPTRCLEV-REC
TPSTATUS-REC.
004 IF NOT TPOK
error processing EXIT PROGRAM

005 IF TP-NOT-IN-TRAN

006 MOVE 30 TO T-OUT.

007 CALL "TPBEGIN" USING
TPTRXDEF-REC
TPSTATUS-REC.

008 IF NOT TPOK

009 MOVE "Attempt to TPBEGIN within service failed"
TO USER-MESSAGE.

Programming a BEA Tuxedo Application Using COBOL 9-19

9 Writing Global Transactions

010 SET TPFAIL TO TRUE.

011 MOVE BEG-FAILED TO APPL-CODE.
012 COPY TPRETURN REPLACING

013 DATA-REC BY USER-MESSAGE.

If the AUTOTRANparameter is set tq you do not need to call theBEGIN and
TPCOMMITor TPABORTtransaction routines explicitly. As a result, you can avoid the
overhead of testing for transaction level. In addition, you can seRNETIME

parameter to specify the time-out interval: the amount of time that may elapse after
transaction for a service begins, and before it is rolled back if not completed.

For example, suppose you are revisingdREN_ACCTEervice shown in the preceding
code listing. CurrentlyQPEN_ACCTTefines the transaction explicitly and then tests for
its existence. To reduce the overhead introduced by these tasks, you can eliminate the
from the code. Therefore, you need to require that whe@®EN_ACCTs called, it is
called in transaction mode. To specify this requirement, enabkutheTRANaNd
TRANTIMESystem parameters in the configuration file.

See Also

m Description of theAUTOTRANoNfiguration parameter in the section “Implicitly
Defining a Global Transaction” on page 9-17Satting Up a BEA Tuxedo
Application

m TRANTIMEconfiguration parameter iBetting Up a BEA Tuxedo Application

9-20 Programming a BEA Tuxedo Application Using COBOL

CHAPTER

1 0Programming a

Multithreaded and
Multicontexted
Application

m Support for Programming a Multithreaded/Multicontexted Application
m Planning and Designing a Multithreaded/Multicontexted Application
m Implementing a Multithreaded/ Multicontexted Application

m Testing a Multithreaded/Multicontexted Application

Programming a BEA Tuxedo Application Using COBOL 10-1

10 Programming a Multithreaded and Multicontexted Application

Support for Programming a
Multithreaded/Multicontexted Application

The BEA Tuxedo system supports only:
m Kernel-level threads packages (user-level threads packages are not supported)

m Multithreaded applications written in C (multithreaded COBOL applications are
not supported)

m Multicontexted applications written in either C or COBOL

If your operating system supports POSIX threads functions as well as other types of
threads functions, we recommend using the POSIX threads functions, which make
your code easier to port to other platforms later.

To find out whether your platform supports a kernel-level threads package, C
functions, or POSIX functions, see the data sheet for your operating system in
Appendix A, “Platform Data Sheets,” Installing the BEA Tuxedo System

Platform-specific Considerations for
Multithreaded/Multicontexted Applications

Many platforms have idiosyncratic requirements for multithreaded and multicontextec
applications. Appendix A, “Platform Data Sheets,Inistalling the BEA Tuxedo
Systemlists these platform-specific requirements. To find out what is needed on your
platform, check the appropriate data sheet.

10-2 Programming a BEA Tuxedo Application Using COBOL

Planning and Designing a Multithreaded/Multicontexted Application

See Also

“What Are Multithreading and Multicontexting” on page 10-4

“Advantages and Disadvantages of a Multithreaded/Multicontexted Application”
on page 10-8

“How Multithreading and Multicontexting Work in a Client” on page 10-11

“How Multithreading and Multicontexting Work in a Server” on page 10-17

Planning and Designing a
Multithreaded/Multicontexted Application

m What Are Multithreading and Multicontexting

m Advantages and Disadvantages of a Multithreaded/Multicontexted Application
m How Multithreading and Multicontexting Work in a Client

m How Multithreading and Multicontexting Work in a Server

m Design Considerations for a Multithreaded and Multicontexted Application

Programming a BEA Tuxedo Application Using COBOL 10-3

10 Programming a Multithreaded and Multicontexted Application

What Are Multithreading and
Multicontexting

The BEA Tuxedo system allows you to use a single process to perform multiple task
simultaneously. The programming techniques for implementing this sort of process
usage arenultithreadingandmulticontexting This topic provides basic information
about these techniques:

m What Is Multithreading

m What Is Multicontexting

What Is Multithreading

Multithreading is the inclusion of more than one unit of execution in a single process
In a multithreaded application, multiple simultaneous calls can be made from the sam
process. For example, an individual process is not limited to one outstanding
tpcall(3c)

In a server, multithreading requires multicontexting except when application-created
threads are used in a singled-context server. The only way to create a multithreadec
single-context application is to use application-created threads.

The BEA Tuxedo system supports multithreaded applications written in C. It does no
support multithreaded COBOL applications.

The following diagram shows how a multithreaded client can issue calls to three
servers simultaneously.

10-4 Programming a BEA Tuxedo Application Using COBOL

What Are Multithreading and Multicontexting

Figure 10-1 Sample Multithreaded Process

CLIENT PROCESS

tpcall()

SERVER C

In a multithreaded application, multiple service-dispatched threads are available
in the same server, which means that fewer servers need to be started for that

application.

The following diagram shows how a server process can dispatch multiple
threads to different clients simultaneously.

Programming a BEA Tuxedo Application Using COBOL 10-5

10 Programming a Multithreaded and Multicontexted Application

Figure 10-2 Multiple Service Threads Dispatched in One Server Process

THREAD 1

SERVER
THREAD 2 PROCESS
THREAD 3

What Is Multicontexting

A context is an association to a domain. Multicontexting is the ability of a single
process to have one of the following:

m More than one connection within a domain
m Connections to more than one domain

Multicontexting can be used in both clients and servers. When used in servers,
multicontexting implies the use of multithreading, as well.

10-6 Programming a BEA Tuxedo Application Using COBOL

What Are Multithreading and Multicontexting

For a more complete list of the characteristics of a context, see “Context Attributes” in
one of the following sections:

m “Writing Code to Enable Multicontexting in a Client” on page 10-31

m “Writing Code to Enable Multicontexting and Multithreading in a Server” on
page 10-40

The BEA Tuxedo system supports multicontexted applications written in either C or
COBOL. Multithreaded applications, however, are supported only in C.

The following diagram shows how a multicontexted client process works within a
domain. Each arrow represents an outstanding call to a server.

Figure 10-3 Multicontexted Process in Two Domains

CLIENT PROCESS
Context 3

BEA Tuxedo Application A

BEA Tuxedo Application B

Programming a BEA Tuxedo Application Using COBOL 10-7

10 Programming a Multithreaded and Multicontexted Application

Licensing a Multithreaded or Multicontexted Application

For licensing purposes, each context is counted as one user. Additional licenses are 1
required to accommodate multiple threads within one context. For example:

m If a process has two contexts associated with Application A and one with
Application B, the BEA Tuxedo system counts a total of three users (two in
Application A and one in Application B).

m If a process has multiple threads accessing one application within the same
context, the system counts only one user.

See Also

m “Advantages and Disadvantages of a Multithreaded/Multicontexted Application”
on page 10-8

m “How Multithreading and Multicontexting Work in a Client” on page 10-11

“How Multithreading and Multicontexting Work in a Server” on page 10-17

Advantages and Disadvantages of a
Multithreaded/Multicontexted Application

Multithreading and multicontexting are powerful tools for enhancing the performance
of BEA Tuxedo applications—given the appropriate circumstances. Before embarking
on a plan to use these techniques, however, it is important to understand potential
benefits and pitfalls.

10-8 Programming a BEA Tuxedo Application Using COBOL

Advantages and Disadvantages of a Multithreaded/Multicontexted Application

Advantages of a Multithreaded/Multicontexted
Application

Multithreaded and multicontexted applications offer the following advantages:

m Improved performance and concurrency

For certain applications, performance and concurrency can be improved by using
multithreading and multicontexting together. In other applications, performance
can be unaffected or even degraded by using multithreading and multicontexting
together. How performance is affected depends on your application.

m Simplified coding of remote procedure calls and conversations

In some applications it is easier to code different remote procedure calls and
conversations in separate threads than to manage them from the same thread.

m Simultaneous access to multiple applications

Your BEA Tuxedo clients can be connected to more than one application at a
time.

m Reduced number of required servers

Because one server can dispatch multiple service threads, the number of servers
to start for your application is reduced. This capability for multiple dispatched
threads is especially useful for conversational servers, which otherwise must be
dedicated to one client for the entire duration of a conversation.

For applications in which client threads are created by the Microsoft Internet
Information Server API or the Netscape Enterprise Server interface (that is, the
NSAPI), the use of multiple threads is essential if you want to obtain the full benefits
afforded by these tools. This may be true of other tools, as well.

Programming a BEA Tuxedo Application Using COBOL 10-9

10 Programming a Multithreaded and Multicontexted Application

Disadvantages of a Multithreaded/Multicontexted

Application

Multithreaded and multicontexted applications present the following disadvantages:

Difficulty of writing code

Multithreaded and multicontexted applications are not easy to write. Only
experienced programmers should undertake coding for these types of
applications.

Difficulty of debugging

It is much harder to replicate an error in a multithreaded or multicontexted
application than it is to do so in a single-threaded, single-contexted application.
As a result, it is more difficult, in the former case, to identify and verify root
causes when errors occur.

Difficulty of managing concurrency

The task of managing concurrency among threads is difficult and has the
potential to introduce new problems into an application.

Difficulty of testing

Testing a multithreaded application is more difficult than testing a
single-threaded application because defects are often timing-related and more
difficult to reproduce.

Difficulty of porting existing code

Existing code often requires significant re-architecting to take advantage of
multithreading and multicontexting. Programmers need to:

e Remove static variables
e Replace any function calls that are not thread-safe
e Replace any other code that is not thread-safe

Because the completed port must be tested and re-tested, the work required to
port a multithreaded and/or multicontexted application is substantial.

10-10 Programming a BEA Tuxedo Application Using COBOL

How Multithreading and Multicontexting Work in a Client

See Also

m “What Are Multithreading and Multicontexting” on page 10-4
m “How Multithreading and Multicontexting Work in a Client” on page 10-11
m “How Multithreading and Multicontexting Work in a Server” on page 10-17

m “Design Considerations for a Multithreaded and Multicontexted Application” on
page 10-22

How Multithreading and Multicontexting
Work in a Client

When a multithreaded and multicontexted application is active, the life cycle of a client
can be described in three phases:

m Start-up Phase
m Work Phase

m Completion Phase

Start-up Phase

In the start-up phase the following events occur:

m Some client threads join one or more BEA Tuxedo applications by calling
tpinit(3c)

m Other client threads share the contexts created by the first set of threads by
calling tpsetctxt(3c)

m Some client threads join multiple contexts.

m Some client threads switch to an existing context.

Programming a BEA Tuxedo Application Using COBOL10-11

10 Programming a Multithreaded and Multicontexted Application

Note: There may also be threads that work independently of the BEA Tuxedo
system. We do not consider such threads in this documentation.

Client Threads Join Multiple Contexts

A client in a BEA Tuxedo multicontexted application can have more than one
application association as long as the following rules are observed:

m All associations must be made to the same installation of the BEA Tuxedo
system.

m All application associations must be made from the same type of client. In other
words, one of the following must be true:

e All application associations must be made from native clients only.

¢ All application associations must be made from workstation clients only.

To join multiple contexts, clients call thgnit(3c) function with the
TPMULTICONTEXTSlag set in thelags element of th@PINFO data type.

Whentpinit() is called with therPMULTICONTEXTSlag set, a new application
association is created and is designated the current association for the thread. The B
Tuxedo domain to which the new association is made is determined by the value of th
TUXCONFIGor WSENVFILE/WSNADDRBNvironment variable.

Client Threads Switch to an Existing Context

Many ATMI functions operate on a per-context basis. (For a complete list, see “Using
Per-context Functions and Data Structures in a Multithreaded Client” on page 10-53.
In such cases, the target context must be the current context. Although clients can jo
more than one context, at any time, in any thread, only one context can be the curre
context.

As task priorities shift within an application, requiring interactions with one BEA
Tuxedo domain rather than another, itis sometimes advantageous to re-assign a thre
from one context to another.

In such situations, one client threads caldetctxt(3c) and passes the handle that
is returned (the value of which is the current context) to a second client thread. The
second thread then associates itself with the current context by calling

tpsetctxt(3c) and specifying the handle it received fropgetctxt(3c) via the

first thread.

10-12 Programming a BEA Tuxedo Application Using COBOL

How Multithreading and Multicontexting Work in a Client

Once the second thread is associated with the desired context, it is available to perform
tasks executed by ATMI functions that operate on a per-context basis. For details, see
“Using Per-context Functions and Data Structures in a Multithreaded Client” on page
10-53.

Work Phase

In this phase each thread performs a task. The following is a list of sample tasks:
m Athread issues a request for a service.

m A thread gets the reply to a service request.

m A thread initiates and/or participates in a conversation.

m A thread begins, commits, or rolls back a transaction.

Service Requests

A thread sends a request to a server by calling ejiba(3c) for a synchronous
request otpacall(3c) for an asynchronous request. If the request is sent with
tpcall) , then the reply is received without further action by any thread.

Replies to Service Requests
If an asynchronous request for a service has been senpuwalt8c) , athread in

the same context (which may or may not be the same thread that sent the request) gets
the reply by callingpgetrply(3c)

Programming a BEA Tuxedo Application Using COBOL10-13

10 Programming a Multithreaded and Multicontexted Application

Transactions

If one thread starts a transaction, then all threads that share the context of that three
also share the transaction.

Many threads in a context may work on a transaction, but only one thread may comm
or abortit. The thread that commits or aborts the transaction can be any thread workir
on the transaction; it is not necessarily the same thread that started the transaction.
Threaded applications are responsible for providing appropriate synchronization so
that the normal rules of transactions are followed. (For example, there can be no
outstanding RPC calls or conversations when a transaction is committed, and no stre
calls are allowed after a transaction has been committed or aborted.) A process may
part of at most one transaction for each of its application associations.

If one thread of an application caffgommit(3c) concurrently with an RPC or
conversational call in another thread of the application, the system acts as if the call
were issued in some serial order. An application context may temporarily suspend
work on a transaction by callingsuspend(3c) and then start another transaction
subject to the same restrictions that exist for single-threaded and single-context
programs.

Unsolicited Messages

For each context in a multithreaded or multicontexted application, you may choose on
of three methods for handling unsolicited messages.

A context may . . . By setting . . .
Ignore unsolicited messages TPU_IGN

Use dip-in notification TPU_DIP

Use dedicated thread notification TPU_THREAD

(available only for C applications)

The following caveats apply:

m SIGNAL-based notification is not allowed in multithreaded or multicontexted
processes.

10-14 Programming a BEA Tuxedo Application Using COBOL

How Multithreading and Multicontexting Work in a Client

m If your application runs on a platform that supports multicontexting but not
multithreading, then you cannot use tiR)_THREADunsolicited notification
method. As a result, you cannot receive immediate notification of events.

If receiving immediate notification of events is important to your application,
then you should carefully consider whether to use a multicontexted approach on
this platform.

m Dedicated thread notification is available only:
e For applications written in C

¢ On multithreaded platforms supported by the BEA Tuxedo system

When dedicated thread notification is chosen, the system dedicates a separate thread
to receive unsolicited messages and dispatch the unsolicited message handler. Only
one copy of the unsolicited message handler can run at any one time in a given context.

If tpinit(3c) is called on a platform for which the BEA Tuxedo system does not
support threads, with parameters indicating ttral_THREADotification is being

requested on a platform that does not support thrgawis) returns -1 and sets

tperrno to TPEINVAL. If the UBBCONFIG(5) defaultNOTIFY option is set tdHREAD

but threads are not available on a particular machine, the default behavior for that
machine is downgraded mPIN . The difference between these two behaviors allows

an administrator to specify a default for all machines in a mixed configuration—a
configuration that includes some machines that support threads and some that do not—
but it does not allow a client to explicitly request a behavior that is not available on its
machine.

If tpsetunsol(3c) is called from a thread that is not associated with a context, a
per-process default unsolicited message handler for altpieyBc) contexts

created is established. A specific context may change the unsolicited message handler
for that context by callingpsetunsol() again when the context is active. The
per-process default unsolicited message handler may be changed by again calling
tpsetunsol() in a thread not currently associated with a context.

If a process has multiple associations with the same application, then each association
is assigned a differe@LIENTID so that it is possible to send an unsolicited message

to a specific application association. If a process has multiple associations with the
same application, then amybroadcast(3c) is sent separately to each of the
application associations that meet the broadcast criteria. When performing a dip-in
check for receiving unsolicited messages, an application checks for only those
messages sent to the current application association.

Programming a BEA Tuxedo Application Using COBOL10-15

10 Programming a Multithreaded and Multicontexted Application

In addition to the ATMI functions permitted in unsolicited message handlers, it is
permissible to calipgetctxt(3c) within an unsolicited message handler. This
functionality allows an unsolicited message handler to create another thread to perfor
any more substantial ATMI work required within the same context.

Userlog Maintains Thread-specific Information

For each thread in each applicatioserlog(3c) records the following identifying
information:

process_ID . thread ID . context_ID

Placeholders are printed in thieead_ID andcontext_ID fields of entries for
non-threaded platforms and single-contexted applications.

The TM_MIB(5) supports this functionality in thBA_ THREADIDandTA_CONTEXTID
fields in theT_ULOGclass.

Completion Phase

In this phase, when the client process is about to exit, on behalf of the current conte:
and all associated threads, a thread ends its application association by calling
tpterm(3c) . Like other ATMI functionstpterm() operates on the current context.

It affects all threads for which the context is set to the terminated context, and
terminates any commonality of context among these threads.

A well-designed application normally waits for all work in a particular context to
complete before it caltpterm() . Be sure that all threads are synchronized before
your application callgpterm()

10-16 Programming a BEA Tuxedo Application Using COBOL

How Multithreading and Multicontexting Work in a Server

See Also

“What Are Multithreading and Multicontexting” on page 10-4

“Design Considerations for a Multithreaded and Multicontexted Application” on
page 10-22

“Writing Code to Enable Multicontexting in a Client” on page 10-31

“Writing a Multithreaded Client” on page 10-45

m “Synchronizing Threads Before a Client Termination” on page 10-34

How Multithreading and Multicontexting
Work in a Server

The events that occur in a server when a multithreaded and multicontexted application
is active can be described in three phases:

m Start-up Phase
m Work Phase

m Completion Phase

Programming a BEA Tuxedo Application Using COBOL10-17

10 Programming a Multithreaded and Multicontexted Application

Start-up Phase

What happens during the start-up phase depends on the value of the
MINDISPATCHTHREAD&NdMAXDISPATCHTHREADSarameters in the configuration

file.
If the value of And the value of Then. ..
MINDISPATCHTHREADS MAXDISPATCHTHREADS
is. .. is...
0 >1 1. The BEA Tuxedo system creates a thread
dispatcher.
2. The dispatcher caltpsvrinit(3c) to join
the application.
>0 >1 1. The BEA Tuxedo system creates a thread
dispatcher.
2. The dispatcher caltpsvrinit(3c) to join

the application.

3. The BEA Tuxedo system creates additional
threads for handling service requests, and a
context for each new thread.

4. Each new system-created thread calls
tpsvrthrinit(3c) to join the application.

Work Phase

In this phase, the following activities occur:

m Multiple client requests to one server are handled concurrently in multiple
contexts. The system allocates a separate thread for each request.

m If necessary, additional threads (up to the number indicated by
MAXDISPATCHTHREAD@®re created.

m The system keeps statistics on server threads.

10-18 Programming a BEA Tuxedo Application Using COBOL

How Multithreading and Multicontexting Work in a Server

Server-dispatched Threads Are Used

In response to clients’ requests for a service, the server dispatcher creates multiple
threads (up to a configurable maximum) in one server that can be assigned to various
client requests concurrently. A server cannot become a client by caihiggc)

Each dispatched thread is associated with a separate context. This feature is useful in
both conversational and RPC servers. Itis especially useful for conversational servers
which otherwise sit idle, waiting for the client side of a conversation while other
conversational connections are waiting for service.

This functionality is controlled by the following parameters inSBERVERSection of
the UBBCONFIG(5) file and theTM_MIB(5) .

UBBCONFIG Parameter MIB Parameter Default

MINDISPATCHTHREADS TA_MINDISPATCHTHREADS 0

MAXDISPATCHTHREADS TA_MAXDISPATCHTHREADS 1

THREADSTACKSIZE TA_THREADSTACKSIZE 0 (representing the
OS default)

m Each dispatched thread is created with the stack size specified by
THREADSTACKSIZEor TA_THREADSTACKSIZE If this parameter is not specified
or has a value of 0, the operating system default is used. On a few operating
systems on which the default is too small to be used by the BEA Tuxedo system,
a larger default is used.

m If the value of this parameter is not specified or is O, or if the operating system
does not support settingTREADSTACKSIZEthen the operating system default
is used.

m MINDISPATCHTHREADSor TA_MINDISPATCHTHREADSMuUSt be less than or
equal toMAXDISPATCHTHREAD®r TA_MAXDISPATCHTHREADS

m |If MAXDISPATCHTHREAD®r TA_MAXDISPATCHTHREADS 1, then the
dispatcher thread and the service function thread are the same thread.

m |If MAXDISPATCHTHREAD®r TA_MAXDISPATCHTHREADS greater than 1, any
separate thread used for dispatching other threads does not count toward the
limit of dispatched threads.

Programming a BEA Tuxedo Application Using COBOL10-19

10 Programming a Multithreaded and Multicontexted Application

m Initially, the system bootSIINDISPATCHTHREAD$Or
TA_MINDISPATCHTHREADSserver threads.

m The system never boots more thasxDISPATCHTHREAD®
TA_MAXDISPATCHTHREADServer threads.

Application-created Threads Are Used

Using your operating system functions, you may create additional threads within an
application server. Application-created threads may:

m Operate independently of the BEA Tuxedo system

m Operate in the same context as an existing server dispatch thread

m Perform work on behalf of server dispatch contexts

Some restrictions govern what you can do if you create threads in your application.
m Servers may not become clients by callipigit(3c)

m Initially, application-created server threads are not associated with any server
dispatch context. An application-created server thread magpsetiitxt(3c)
(and pass it a value returned by a previous cafigietctxt(3c) within a
server-dispatched thread) to associate itself with that server-dispatched context.

m An application-created server thread cannottpedturn(3c) or
tpforward(3c) . When an application-created server thread has finished its
work, it must calkpsetctxt(3c) with the context set tbPNULLCONTEXT
before the originally dispatched thread cgileturn()

BBL Verifies Sanity of System Processes

The BBL periodically checks servers. If a server is taking too long to execute a
particular service request, the BBL kills that server. (If specified, the BBL then restarts
the server.) If the BBL kills a multicontexted server, the other service calls that are
currently being executed are also terminated as a result of the process being killed.

The BBL also sends a message to any process or thread that has been waiting long
than its timeout value to receive a message. The blocking message receive call thel
returns an error indicating a timeout.

10-20 Programming a BEA Tuxedo Application Using COBOL

How Multithreading and Multicontexting Work in a Server

System Keeps Statistics on Server Threads

For each server, the BEA Tuxedo system maintains statistics for the following
information:

m Maximum number of server-dispatched threads allowed

m Number of server-dispatched threads currently in use
(TA_CURDISPATCHTHREADS

m High-water mark of concurrent server-dispatched threads since the server was
booted TA_HWDISPATCHTHREAPDS

m Number of server-dispatched threads historically started
(TA_NUMDISPATCHTHREADS

Userlog Maintains Thread-specific Information

For each thread in each applicatiaserlog(3c) records the following identifying
information:

process_ID . thread_ID . context ID

Placeholders are printed in thieead ID andcontext ID fields of entries for
non-threaded platforms and single-contexted applications.

TheTM_MIB(5) supports this functionality in theA_THREADIDandTA_CONTEXTID
fields in theT_ULOGclass.

Completion Phase

When the application is shut dowpsvrthrdone(3c) andtpsvrdone(3c) are
called to perform any termination processing that is necessary, such as closing a
resource managetr.

Programming a BEA Tuxedo Application Using COBOL10-21

10 Programming a Multithreaded and Multicontexted Application

See Also

“What Are Multithreading and Multicontexting” on page 10-4

“Design Considerations for a Multithreaded and Multicontexted Application” on
page 10-22

“Writing Code to Enable Multicontexting and Multithreading in a Server” on
page 10-40

“Writing a Multithreaded Server” on page 10-59

Design Considerations for a Multithreaded
and Multicontexted Application

Multithreaded and multicontexted applications are appropriate for some BEA Tuxedc
domains, but not all. To decide whether to create such applications, you should answi
several basic questions about the following:

Your development and run-time environments
Design requirements for your application
Type of threads model to use

Interoperability restrictions for Workstation clients

10-22 Programming a BEA Tuxedo Application Using COBOL

Design Considerations for a Multithreaded and Multicontexted Application

Environment Requirements

When considering the development of multithreaded and/or multicontexted
applications, examine the following aspects of your development and run-time
environments:

m Do you have an experienced team of programmers capable of writing and
debugging multithreaded and multicontexted programs that successfully manage
concurrency and synchronization?

m Are the multithreading features of the BEA Tuxedo system supported on the
platform on which you are developing your application? These features are
supported only on platforms with an OS-provided threads package, providing an
appropriate level of functionality.

m Do the resource managers (RMs) used by your servers support multithreading?
If so, consider the following issues, as well:

¢ Do you need to set any parameters required by your RM to enable
multithreaded access by your servers? For example, if you use an Oracle
database with a multithreaded application, you must setHREADS=true
parameter as part of tlEPENINFOstring passed to Oracle. By doing so, you
make it possible for individual threads to operate as separate Oracle
associations.

e Does your RM support a mixed mode of operation? A mixed-mode operation
is a form of access such that multiple threads in a process can map to one
RM association while other threads in the same process simultaneously map
to different RM associations. Within one process, for example, Threads A
and B map to RM Association X, while Thread C maps to RM Association
Y.

Not all RMs support mixed-mode operation. Some require all threads in a
given process to map to the same RM association. If you are designing an
application that will make use of transactional RM access within
application-created threads, make sure your RM supports mixed-mode
operation.

Programming a BEA Tuxedo Application Using COBOL10-23

10 Programming a Multithreaded and Multicontexted Application

Design Requirements

When designing a multithreaded and/or multicontexted application, you should
consider the following design questions:

m Is the task performed by your application suitable for multithreading and/or
multicontexting?

m Do you want to connect to more than one BEA Tuxedo application? How many
connections to each target application do you want?

m What synchronization issues need to be addressed in your application?

= Will you need to port your application to another platform after you have put
your initial application into production?

Is the Task of Your Application Suitable for
Multithreading and/or Multicontexting

The following table provides a list of questions to help you decide whether your
application would be improved if it were multithreaded and/or multicontexted. This
list is not comprehensive; your individual requirements will determine other factors
that should be considered.

For additional suggestions, we recommend that you consult a multithreaded and/or
multicontexted programming publication.

If the answer to this question . . . Is YES, then you might consider
using . ..

Does your client need to connect to more than one application Multicontexting
without using the Domains feature?

Does your client perform the role of a multiplexer within your Multicontexting
application? For example, have you designated one machine in your
application the “surrogate” for 100 other machines?

Does your client use multicontexting? Multithreading. By allocating one thread
per context, you can simplify your code.

10-24 Programming a BEA Tuxedo Application Using COBOL

Design Considerations for a Multithreaded and Multicontexted Application

If the answer to this question . . . Is YES, then you might consider
using . . .

Does your client perform two or more tasks that can be executedMultithreading
independently for a long time such that the performance gains from
concurrent execution outweigh the costs and complexities of threads
synchronization?

Do you want one server to process multiple concurrent requests? Multithreading. Assign a value greater
than 1 toMAXDISPATCHTHREADShis
value enables multiple clients, each in its
own thread, for the server.

If your client or server had multiple threads, would it be necessaryNot using multithreading
synchronize them after each thread had performed only a little work?

How Many Applications and Connections Do You Want

Decide how many applications you want to access and the number of connections you
want to make.

m If you want connections to more than one application, then we recommend one
of the following:

e A single-threaded, multicontexted application

¢ A multithreaded, multicontexted application

m If you want more than one connection to an application, then we recommend a
multithreaded, multicontexted application.

m |f you want only one connection to one application, then we recommend one of
the following:

e Multithreaded, single-contexted clients
e Single-threaded, single-contexted clients

In both cases, multithreaded, multicontexted servers may be used.

Programming a BEA Tuxedo Application Using COBOL10-25

10 Programming a Multithreaded and Multicontexted Application

What Synchronization Issues Need to Be Addressed

This issue is an important one during the design phase. Itis, however, beyond the sco
of this documentation. Please refer to a publication about multithreaded and/or
multicontexted programming.

Will You Need to Port Your Application

If you may need to port your application in the future, you should keep in mind that
different operating systems have different sets of functions. If you think you may want
to port your application after completing the initial version of it on one platform,
remember to consider the amount of staff time that will be needed to revise the code
with a different set of functions.

Which Threads Model Is Best for You

Various models for multithreaded programs are now being used, including the
following:

m Boss/worker model
m Siblings model
= Workflow model

We do not discuss threads models in this documentation. We recommend that you
research all available models and consider your design requirements carefully wher
choosing a programming model for your application.

10-26 Programming a BEA Tuxedo Application Using COBOL

Design Considerations for a Multithreaded and Multicontexted Application

Interoperability Restrictions for Workstation Clients

Interoperability between Release 7.1 Workstation clients and applications based on
pre-7.1 releases of the BEA Tuxedo system is supported in any of the following
situations:

m The client is neither multithreaded nor multicontexted.
m The client is multicontexted.
m The client is multithreaded and each thread is in a different context

A BEA Tuxedo Release 7.1 Workstation client with multiple threads in a single
context cannot interoperate with a pre-7.1 release of the BEA Tuxedo system.

See Also

m “Advantages and Disadvantages of a Multithreaded/Multicontexted Application
on page 10-8

m “Preliminary Guidelines for Programming a Multithreaded/Multicontexted
Application” on page 10-28

Programming a BEA Tuxedo Application Using COBOL10-27

10 Programming a Multithreaded and Multicontexted Application

Implementing a Multithreaded/
Multicontexted Application

“Preliminary Guidelines for Programming a Multithreaded/Multicontexted
Application” on page 10-28

“Writing Code to Enable Multicontexting in a Client” on page 10-31

“Writing Code to Enable Multicontexting and Multithreading in a Server” on
page 10-40

“Writing a Multithreaded Client” on page 10-45

“Writing a Multithreaded Server” on page 10-59

“Compiling Code for a Multithreaded/Multicontexted Application” on page
10-60

Preliminary Guidelines for Programming a
Multithreaded/Multicontexted Application

Before you start coding, make sure you have fulfilled or thought about the following:
m “Prerequisites for a Multithreaded Application” on page 10-29
m “General Multithreaded Programming Considerations” on page 10-29

m “Concurrency Considerations” on page 10-30

10-28 Programming a BEA Tuxedo Application Using COBOL

Preliminary Guidelines for Programming a Multithreaded/Multicontexted Application

Prerequisites for a Multithreaded Application

Make sure your environment meets the following prerequisites before starting your
development project.

m Your operating system must provide a suitable threads package supported by the

BEA Tuxedo system.

The BEA Tuxedo system does not supply tools for creating threads, but it
supports various threads packages provided by different operating systems. To
create and synchronize threads, you must use the functions native to your
operating system. To find out which, if any, threads packages are supported by
your operating system, see Appendix A, “Platform Data Sheet#stalling the
BEA Tuxedo System

If you are using multithreaded servers, the resource managers used by those
servers must support threads.

General Multithreaded Programming Considerations

Only experienced programmers should write multithreaded programs. In particular,
programmers should already be familiar with basic design issues specific to this task,
such as:

The need for concurrency control among multiple threads
The need to avoid the use of static variables in most instances

Potential problems that may arise from the use of signals in multithreaded
programs

These are just a few of the issues, too numerous to list here, with which we assume any
programmer undertaking the writing of a multithreaded program is already familiar.
These issues are discussed in many commercially available books on the subject of
multithreaded programming.

Programming a BEA Tuxedo Application Using COBOL10-29

10 Programming a Multithreaded and Multicontexted Application

Concurrency Considerations

Multithreading enables different threads of an application to perform concurrent
operations on the same conversation. We do not recommend this approach, but the
BEA Tuxedo system does not forbid it. If different threads perform concurrent
operations on the same conversation, the system acts as if the concurrent calls wer
issued in some arbitrary order.

When programming with multiple threads, you must manage the concurrency among
them by using mutexes or other concurrency-control functions. Here are three
examples of the need for concurrency control.

m When multithreaded threads are operating on the same context, the programmel
must ensure that functions are being executed in the required serial order. For
example, all RPC calls and conversations must be compiled before
tpcommit(3c) can be called. tcommit() is called from a thread other than
the thread from which all these RPC or conversational calls are made, some
concurrency control is probably required in the application.

m Similarly, it is permissible to calpacall(3c) in one thread and
tpgetrply(3c) in another, but the application must either:

e Ensure thatpacall() is called beforepgetrply() , or

¢ Manage the consequencespicall() is not called beforeggetrply()

m Multiple threads may operate on the same conversation but application
programmers must realize that if different threads igste®d(3c) at
approximately the same time, the system acts as thoughtphes#() calls
have been issued in an arbitrary order.

For most applications, the best strategy is to code all the operations for one
conversation in one thread. The second best strategy is to serialize these
operations using concurrency control.

10-30 Programming a BEA Tuxedo Application Using COBOL

Writing Code to Enable Multicontexting in a Client

See Also

“Design Considerations for a Multithreaded and Multicontexted Application” on
page 10-22

“Writing Code to Enable Multicontexting in a Client” on page 10-31

“Writing Code to Enable Multicontexting and Multithreading in a Server” on
page 10-40

“Writing a Multithreaded Client” on page 10-45

“Writing a Multithreaded Server” on page 10-59

Writing Code to Enable Multicontexting in a

Client

To enable multicontexting in a client, you must write code that:

Sets up multicontexting at initialization time

Implements security

If multithreading is also being used, synchronizes threads
Switches contexts

Handles unsolicited messages for each context

If your application uses transactions, you should also keep in mind the consequences
of multicontexting for transactions. For more information, see “Coding Rules for
Transactions in a Multithreaded/Multicontexted Application” on page 10-39.

Note: The instructions and sample code provided in this section refer to the C library

functions provided by the BEA Tuxedo system. Equivalent COBOL library
functions are also available; for details, seeBBA Tuxedo COBOL Function
Reference

Programming a BEA Tuxedo Application Using COBOL10-31

10 Programming a Multithreaded and Multicontexted Application

Context Attributes

When writing your code, keep in mind the following considerations about contexts:

If an application-created server thread exits without changing context before the
original dispatched thread exits, thgreturn(3c) or tpforward(3c) fails.

The execution of a thread exit does not automatically trigger a call to
tpsetctxt(3c) to change the context WPNULLCONTEXT

For all contexts in a process, the same buffer type switch must be used.

As with any other type of data structure, a multithreaded application must
properly make use of BEA Tuxedo buffers, that is, buffers should not be used
concurrently in two calls when one of the following may be true:

e Both calls may use the buffer
e Both calls may free the buffer

e One call may use the buffer and one call may free the buffer

If you call tpinit(3c) more than once, either to join multiple applications or to
make multiple connections to a single application, keep in mind that on each
tpinit() you must accommodate whatever security mechanisms have been
established.

10-32 Programming a BEA Tuxedo Application Using COBOL

Writing Code to Enable Multicontexting in a Client

Setting Up Multicontexting at Initialization

When a client is ready to join an application, spetifyit(3c) with the
TPMULTICONTEXTSlag set, as shown in the following sample code.

Listing 10-1 Sample Code for a Client Joining a Multicontexted Application

#include <stdio.h>
#include <atmi.h>

TPINIT * tpinitbuf;

main()
{
tpinitbuf = tpalloc(TPINIT, NULL, TPINITNEED(0));
tpinitbuf->flags = TPMULTICONTEXTS;
if (tpinit (tpinitbuf) == -1) {
ERROR_PROCESSING_CODE
}
}

A new application association is created and assigned to the BEA Tuxedo domain
specified in th@UXCONFIGor WSENVFILE/WSNADDBNvironment variable.

Note: In any one process, either all callagmit(3c) must include the
TPMULTICONTEXT$ag or else no call tpinit() may include this flag. The
only exception to this rule is that if all of a client’s application associations are
terminated by successful callstpgerm(3c) , then the process is restored to
a state in which the inclusion of tieMULTICONTEXT$lag in the next call to
tpinit() is optional.

Programming a BEA Tuxedo Application Using COBOL10-33

10 Programming a Multithreaded and Multicontexted Application

Implementing Security for a Multicontexted Client

Each application association in the same process requires a separate security
validation. The nature of that validation depends on the type of security mechanism:
used in your application. In a BEA Tuxedo application you might, for example, use a
system-level password or an application password.

As the programmer of a multicontexted application, you are responsible for identifying
the type of security used in your application and implementing it for each application
association in a process.

Synchronizing Threads Before a Client Termination

When you are ready to disconnect a client from an application, inpteke(3c)

Keep in mind, however, that in a multicontexted applicatpogrm() destroys the
current context. All the threads operating on that context are affected. As the
application programmer, you must carefully coordinate the use of multiple threads tc
make sure thapterm() is not called unexpectedly.

It is important to avoid callingpterm(3c) on a context while other threads are still
working on that context. If such a calltteerm() is made, the BEA Tuxedo system
places the other threads that had been associated with that context in a special inva
context state. When in the invalid context state, most ATMI functions are disallowed.

A thread may exit from the invalid context state by caltpsgtctxt(3c) or
tpterm() . Most well designed applications never have to deal with the invalid context
state.

Note: The BEA Tuxedo system does not support multithreading in COBOL
applications.

10-34 Programming a BEA Tuxedo Application Using COBOL

Writing Code to Enable Multicontexting in a Client

Switching Contexts

The following is a summary of the coding steps that might be made by a client that calls
services from two contexts.

1.
2.

Set theTUXCONFIGenvironment variable to the value requiredfibytapp

Join the first application by callinginit(3c) with the TPMULTICONTEXTSlag
set.

Obtain a handle to the current context by calijgtctxt(3c)

Switch the value of thHBUXCONFIGenvironment variable to the value required by
thesecondapp context, by callinguxputenv()

Join the second application by callipgpit(3c) with the TPMULTICONTEXTS
flag set.

Get a handle to the current context by caltpygtctxt(3c)

Beginning with théirstapp context, start toggling between contexts by calling
tpsetctxt(3c)

Callfirstapp ~ services.

Switch the client to theecondapp context (by callingpsetctxt(3c)) and call
secondapp Sservices.

10. Switch the client to thigstapp ~ context (by callingpsetctxt(3c)) and call

firstapp services.

11. Terminate thérstapp ~ context by callingpterm(3c)

12. Switch the client to theecondapp context (by callingpsetctxt(3c)) and call

secondapp Sservices.

13. Terminate theecondapp context by callingpterm(3c)

The following sample code provides an example of these steps.

Note: In order to simplify the sample, error checking code is not included.

Programming a BEA Tuxedo Application Using COBOL10-35

10 Programming a Multithreaded and Multicontexted Application

Listing 10-2 Sample Code for Switching Contexts in a Client

#include <stdio.h>
#include "atmi.h"/* BEA Tuxedo header file */

#if defined(__STDC_) || defined(__cplusplus)
main(int argc, char *argv([])

telse

main(argc, argv)

int argc;

char *argv(];

#endif

{

TPINIT * tpinitbuf;

TPCONTEXT_T firstapp_contextlD, secondapp_contextID;

/* Assume that TUXCONFIG is initially set to /homeffirstapp/ TUXCONFIG*/
/*

* Attach to the BEA Tuxedo system in multicontext mode.

*

tpinitbuf=tpalloc(TPINIT, NULL, TPINITNEED(0));

tpinitbuf->flags = TPMULTICONTEXTS;

if (tpinit((TPINIT *) tpinitbuf) == -1) {
(void) fprintf(stderr, "Tpinit failed\n");
exit(1);

/*
* Obtain a handle to the current context.
*/

tpgetctxt(&firstapp_contextID, 0);

/*

* Use tuxputenv to change the value of TUXCONFIG,

* S0 we now tpinit to another application.

*
tuxputenv("TUXCONFIG=/home/second_app/TUXCONFIG");

/*

* tpinit to secondapp.

*

if (tpinit((TPINIT *) tpinitbuf) == -1) {
(void) fprintf(stderr, "Tpinit failed\n");
exit(1);

}

/*

10-36 Programming a BEA Tuxedo Application Using COBOL

Writing Code to Enable Multicontexting in a Client

* Get a handle to the context of secondapp.
*
tpgetctxt(&secondapp_contextlD, 0);

/*

* Now you can alternate between the two contexts
* using tpsetctxt and the handles you obtained from
* tpgetctxt. You begin with firstapp.

*

tpsetctxt(firstapp_contextID, 0);

/*

*You call services offered by firstapp and then switch
* to secondapp.

*/

tpsetctxt(secondapp_contextID, 0);

/*

*You call services offered by secondapp.
* Then you switch back to firstapp.

*

tpsetctxt(firstapp_contextID, 0);

/*

*You call services offered by firstapp. When you have
* finished, you terminate the context for firstapp.

*

tpterm();

/*
* Then you switch back to secondapp.
*/

tpsetctxt(secondapp_contextID, 0);

/*

* You call services offered by secondapp. When you have
finished, you terminate the context for secondapp and
end your program.

*/

tpterm();

return(0);

Programming a BEA Tuxedo Application Using COBOL10-37

10 Programming a Multithreaded and Multicontexted Application

Handling Unsolicited Messages

For each context in which you want to handle unsolicited messages, you must set u
an unsolicited message handler or use the process handler default if you have set o

up.

If tpsetunsol(3c) is called from a thread that is not associated with a context, a
per-process default unsolicited message handler for altpi@uBc) contexts
created is established. A specific context may change the unsolicited message hand
for that context by callingpsetunsol() again when the context is active. The
per-process default unsolicited message handler may be changed by again calling
tpsetunsol() in a thread not currently associated with a context.

Set up the handler in the same way you set one up for a single-threaded or
single-contexted application. Sg®etunsol(3c) for details.

You can useépgetctxt(3c) in an unsolicited message handler if you want to identify
the context in which you are currently working.

10-38 Programming a BEA Tuxedo Application Using COBOL

Writing Code to Enable Multicontexting in a Client

Coding Rules for Transactions in a
Multithreaded/Multicontexted Application

See Also

The following consequences of using transactions should be kept in mind while you
are writing your application:

You can have only one transaction in any one context.
You can have a different transaction for each context.

All the threads associated with a given context at a given time share the same
transaction state (if any) of that context.

You must synchronize your threads so all conversations and RPC calls are
complete before you calcommit(3c)

You can caltpcommit(3c) from only one thread in any particular transaction.

“How Multithreading and Multicontexting Work in a Client” on page 10-11

“Writing a Multithreaded Client” on page 10-45

Programming a BEA Tuxedo Application Using COBOL10-39

10 Programming a Multithreaded and Multicontexted Application

Writing Code to Enable Multicontexting and
Multithreading in a Server

Coding Rules for a Multicontexted Server
Initializing and Terminating Servers and Server Threads
Programming a Server to Create Threads

Sample Code for Creating an Application Thread in a Multicontexted Server

Note: The instructions and sample code provided in this section refer to the C library

functions provided by the BEA Tuxedo system. (SeeBtEA Tuxedo C
FunctionReferencéor details.) Equivalent COBOL routines are not available
because multithreading (which is required to create a multicontexted server) i
not supported for COBOL applications.

Context Attributes

When writing your code, keep in mind the following considerations about contexts:

If an application-created server thread exits without changing context before the
original dispatched thread exits, thgreturn(3c) or tpforward(3c) fails.

The execution of a thread exit does not automatically trigger a call to
tpsetctxt(3c) to change the context WPNULLCONTEXT

For all contexts in a process, the same buffer type switch must be used.

As with any other type of data structure, a multithreaded application must
properly make use of BEA Tuxedo buffers, that is, buffers should not be used
concurrently in two calls when one of the following may be true:

e Both calls may use the buffer.
e Both calls may free the buffer.

e One call may use the buffer and one call may free the buffer.

10-40 Programming a BEA Tuxedo Application Using COBOL

Writing Code to Enable Multicontexting and Multithreading in a Server

Coding Rules for a Multicontexted Server

Keep in mind the following rules for coding multicontexted servers:

The BEA Tuxedo dispatcher on the server may dispatch the same service and/or
different services multiple times, creating a different dispatch context for each
service dispatched.

A server is prohibited from callinginit(3c) or otherwise acting as a client.
If a server process caliginit() , tpinit() returns -1 and setgerrno(5) to
TPEPROTOAN application-created server thread may not make ATMI calls
before callingpsetctxt(3c)

Only a server-dispatched thread may gadturn(3c) or tpforward(3c)

A server cannot executet@eturn(3c) or tpforward(3c) if any
application-created thread is still associated with any application context.
Therefore, before a server-dispatched thread ga#larn() , each
application-created thread associated with that context must call
tpsetctxt(3c) with the context set to eith@PNULLCONTEX®r another valid
context.

If this rule is violated, thetpreturn(3c) or tpforward(3c) writes a message

to the userlog, indicaté®ESVCERRO the caller, and returns control to the main
server dispatch loop. The threads that had been in the context where the invalid
tpreturn() was done are placed in an invalid context.

If there are outstanding ATMI calls, RPC calls, or conversations when
tpreturn(3c) or tpforward(3c) is called tpreturn() or tpforward()

writes a message to the userlog, indicarBSVCERRO the caller, and returns
control to the main server dispatch loop.

A server-dispatched thread may not gadktctxt(3c)

Unlike single-contexted servers, it is permissible for a multicontexted server
thread to call a service that is offered only by that same server process.

Programming a BEA Tuxedo Application Using COBOL10-41

10 Programming a Multithreaded and Multicontexted Application

Initializing and Terminating Servers and Server Threads

To initialize and terminate your servers and server threads, you can use the default
functions provided by the BEA Tuxedo system or you can use your own.

Table 10-1 Default Functions for Initialization and Termination

To... Use the default function
Initialize a server tpsvrinit(3c)

Initialize a server thread tpsvrthrinit(3c)

Terminate a server tpsvrdone(3c)

Terminate a server thread tpsvrthrdone(3c)

Programming a Server to Create Threads

You may create additional threads within an application server, although most
applications using multicontexted servers use only the dispatched server threads
created by the system. This section provides instructions for doing so.

Creating Threads

You may create additional threads within an application server by using OS threads
functions. These new threads may operate independently of the BEA Tuxedo systen
or they may operate in the same context as one of the server-dispatched threads.

Associating Threads with a Context

Initially, application-created server threads are not associated with any
server-dispatched context. If called before being initialized, however, most ATMI
functions perform an implicipinit(3c) . Such calls introduce problems because
servers are prohibited from callimgnit() . (If a server process calisinit() ,
tpinit() returns-1 and setsperrno(5) to TPEPROTQ

10-42 Programming a BEA Tuxedo Application Using COBOL

Writing Code to Enable Multicontexting and Multithreading in a Server

Therefore, an application-created server thread must associate itself with an existing
context before calling any ATMI functions. To associate an application-created server
thread with an existing context, you must write code that implements the following
procedure.

1. Server-dispatched-thread_A gets a handle to the current context by calling
tpgetctxt(3c)

2. Server-dispatched-thread_A passes the handle returnpgehyxt(3c) to
Application_thread_B.

3. Application_thread_B associates itself with the current context by calling
tpsetctxt(3c) , specifying the handle received from
Server-dispatched-thread A.

4. Application-created server threads cannottpedturn(3c) or
tpforward(3c) . Before the originally dispatched thread cglleturn() or
tpforward() , all application-created server threads that have been in that
context must switch ttPNULLCONTEXDr another valid context.

If this rule is not observed, thegforward(3c) ortpreturn(3c) fails and
indicates a service error to the caller.

Sample Code for Creating an Application Thread in a
Multicontexted Server
For those applications with a need to create an application thread in a server, the
following code sample shows a multicontexted server in which a service creates

another thread to help perform its work. Operating system (OS) threads functions
differ from one OS to another. In this sample POSIX and ATMI functions are used.

Programming a BEA Tuxedo Application Using COBOL10-43

10 Programming a Multithreaded and Multicontexted Application

Notes: In order to simplify the sample, error checking code is not included. Also, an
example of a multicontexted server using only threads dispatched by the BEA
Tuxedo system is not included because such a server is coded in exactly the
same way as a single-contexted server, as long as thread-safe programming
practices are used.

Listing 10-3 Code Sample for Creating a Thread in a Multicontexted Server

#include <pthread.h>
#include <atmi.h>

void *withdrawalthread(void *);

struct sdata {
TPCONTEXT_T ctxt;
TPSVCINFO *svcinfoptr;

kh

void
TRANSFER(TPSVCINFO *svcinfo)
{
struct sdata transferdata;
pthread_t withdrawalthreadid;

tpgetctxt(&transferdata.ctxt, 0);

transferdata.svcinfoptr = svcinfo;

pthread_create(&withdrawalthreadid, NULL, withdrawalthread, &transferdata);
tpcall("DEPOSIT", ...);

pthread_join(withdrawalthreadid, NULL);

tpreturn(TPSUCCESS, ...);

void *

withdrawalthread(void *arg)

{
tpsetctxt(arg->ctxt, 0);
tpopen();
tpcall("WITHDRAWAL", ...);
tpclose();
return(NULL);

10-44 Programming a BEA Tuxedo Application Using COBOL

Writing a Multithreaded Client

The previous example accomplishes a funds transfer by invokimgE#@sITservice

in the originally dispatched thread, awtiTHDRAWAIN an application-created thread.

This example is based on the assumption that the resource manager being used allows
a mixed model such that multiple threads of a server can be associated with a particular
database connection without all threads of the server being associated with that
instance. Most resource managers, however, do not support such a model.

A simpler way to code this example is to avoid the use of an application-created thread.
To obtain the same concurrency provided by the two caitg4ty(3c) in the

example, substitute two callstigcall(3c) and two calls topgetrply(3c) in the
server-dispatched thread.

See Also

m “How Multithreading and Multicontexting Work in a Server” on page 10-17

Writing a Multithreaded Client

m Coding Rules for a Multithreaded Client
m Initializing a Client to Multiple Contexts
m Getting Replies in a Multithreaded Environment

m Using Environment Variables in a Multithreaded and/or Multicontexted
Environment

m Using Per-context Functions and Data Structures in a Multithreaded Client
m Using Per-process Functions and Data Structures in a Multithreaded Client
m Using Per-thread Functions and Data Structures in a Multithreaded Client

m Sample Code for a Multithreaded Client

Note: The BEA Tuxedo system does not support multithreaded COBOL
applications.

Programming a BEA Tuxedo Application Using COBOL10-45

10 Programming a Multithreaded and Multicontexted Application

Coding Rules for a Multithreaded Client

Keep in mind the following rules for coding multithreaded clients:

Once a conversation has been started, any thread in the same process can work
on that conversation. Handles and call descriptors are portable within the same
context in the same process, but not between contexts or processes. Handles ar
call descriptors can be used only in the application context in which they are
originally assigned.

Any thread operating in the same context within the same process can invoke
tpgetrply(3c) to receive a response to an earlier cafpdoall(3c)
regardless of whether or not that thread originally caflechll()

A transaction can be committed or aborted by only one thread, which may or
may not be the same thread that started it.

All RPC calls and all conversations must be completed before an attempt is
made to commit the transaction. If an application apdemmit(3c) while

RPC calls or conversations are outstandipgpmmit() aborts the transaction,
returns -1, and setgerrmo(5) to TPEABORT

Functions such aspcall(3c) , tpacall(3c) , tpgetrply(3c) ,

tpconnect(3c) , tpsend(3c) , tprecv(3c) , andtpdiscon(3c) should not be
called in transaction mode unless you are sure that the transaction is not already
committing or aborting.

Two tpbegin(3c) calls cannot be made simultaneously for the same context.

tpbegin(3c) cannot be issued for a context that is already in transaction mode.

10-46 Programming a BEA Tuxedo Application Using COBOL

Writing a Multithreaded Client

m If you are using a client and you want to connect to more than one domain, you
must manually change the valueTefXCONFIGor WSNADDRefore calling
tpinit(3c) . You must synchronize the setting of the environment variable and
thetpinit() call if multiple threads may be performing such an action. All
application associations in a client must obey the following rules:

e All associations must be made to the same release of the BEA Tuxedo
system.

e Either every application association in a particular client must be made as a
native client, or every application association must be made as a workstation
client.

m To join an application, a multithreaded workstation client must always call
tpinit(3c) with theTPMULTICONTEXTSlag set, even if the client is running in
single-context mode.

Initializing a Client to Multiple Contexts

To have a client join more than one context, issue a call tpitiité3c) function
with theTPMULTICONTEXTSlag set in thelags element of th@PINIT data
structure.

In any one process, either all callsfiait(3c) mustinclude th&@PMULTICONTEXTS
flag or no call tapinit() may include this flag. The only exception to this rule is that
if all of a client’s application associations are terminated by successful calls to
tpterm(3c) , then the process is restored to a state in which the inclusion of the
TPMULTICONTEXTSIag in the next call tapinit() is optional.

Whentpinit(3c) is invoked with th@PMULTICONTEXTS$ag set, a new application
association is created and is designated the current association. The BEA Tuxedo
domain to which the new association is made is determined by the value of the
TUXCONFIGor WSENVFILE/WSNADDBNvironment variable.

When a client thread successfully execupest(3c) without the
TPMULTICONTEXTSIlag, all threads in the client are placed in the single-context state
(TPSINGLECONTEX)L

On failure,tpinit(3c) leaves the calling thread in its original context (that is, in the
context state in which it was operating before the caflitit()).

Programming a BEA Tuxedo Application Using COBOL10-47

10 Programming a Multithreaded and Multicontexted Application

Do not calltpterm(3c) from a given context if any of the threads in that context are
still working. See the table labeled “Multicontext State Transitions” on page 10-48 for
a description of the context states that result from catfitegn() under these and
other circumstances.

Context State Changes for a Client Thread

In a multicontext application, calls to various functions result in context state change:
for the calling thread and any other threads that are active in the same context as th
calling process. The following diagram illustrates the context state changes that resu
from calls topinit(3c) , tpsetctxt(3c) , andtpterm(3c) . (Thetpgetctxt(3c)

function does not produce any context state changes.)

Figure 10-4 Multicontext State Transitions

tpinit) without TPMULTICONTEXTS tpinit) with TPMULTICONTEXTS

or or
implicit tpinit() invoked by ATMI function tpsetetxt() to a valid context

/tptez()

tpterm()
or
tpsetetxt()

pterm()
or
tpsetctxt()

tpterm()
(see Note)

tpinit() without
TPMULTICONTEXTS

INVALID
CONTEXT

tpsetetxt()

10-48 Programming a BEA Tuxedo Application Using COBOL

Writing a Multithreaded Client

Note: Whentpterm(3c) is called by a thread running in the multicontext state
(TPMULTICONTEXT} the calling thread is placed in the null context state
(TPNULLCONTEXT All other threads associated with the terminated context
are switched to the invalid context stat@IN\VALIDCONTEXT.

The following table lists all possible context state changes produced by calling
tpinit(3c) , tpsetctxt(3c) , andtpterm(3c)

Table 10-2 Context State Changes for a Client Thread

When this Then a thread in this context state resultsin . . .

function is - - "

executed . . . Null Context Single Context Multicontext Invalid
Context

tpinit(3c) Single context Single context Error Error

without

TPMULTICONTEXTS

tpinit(3c) with Multicontext Error Multicontext Error

TPMULTICONTEXTS

tpsetctxt(3c) to Null Error Null Null

TPNULLCONTEXT

tpsetctxt(3c) to Error Single context Error Error

context O

tpsetctxt(3c) to Multicontext Error Multicontext Multicontext

context >0

Implicit Single context N/A N/A Error

tpinit(3c)

tpterm(3c) inthis Null Null Null Null

thread

tpterm(3c) ina N/A Null Invalid N/A

different thread of this

context

Programming a BEA Tuxedo Application Using COBOL10-49

10 Programming a Multithreaded and Multicontexted Application

Getting Replies in a Multithreaded Environment

tpgetrply(3c) receives responses only to requests madgpagall(3c)
Requests made withcall(3c) are separate and cannot be retrieved with
tpgetrply() regardless of the multithreading or multicontexting level.

tpgetrply(3c) operates in only one context, which is the context in which it is
called. Therefore, when you cglbetrply() with theTPGETANYlag, only handles
generated in the same context are considered. Similarly, a handle generated in one
context may not be used in another context, but the handle may be used in any thre:
operating within the same context.

Whentpgetrply(3c) is called in a multithreaded environment, the following
restrictions apply:

m If a thread callspgetrply(3c) for a specific handle while another thread in
the same context is already waitingppetrply() for the same handle,
tpgetrply() returns -1 and setgerrno t0 TPEPROTO

m If a thread callspgetrply(3c) for a specific handle while another thread in
the same context is already waitingppetrply() with theTPGETANYlag,
the call returns -1 and seat®rrmo(5) to TPEPROTO

The same behavior occurs if a thread calistrply(3c) with theTPGETANY
flag while another thread in the same context is already waititpgenply()

for a specific handle. These restrictions protect a thread that is waiting on a
specific handle from having its reply taken by a thread waiting on any handle.

m At any given time, only one thread in a particular context can wait in
tpgetrply(3c) with theTPGETANYlag set. If a second thread in the same
context invokespgetrply() with theTPGETANYlag while a similar call is
outstanding, this second call returns -1 andtgetsio(5) to TPEPROTO

10-50 Programming a BEA Tuxedo Application Using COBOL

Writing a Multithreaded Client

Using Environment Variables in a Multithreaded and/or
Multicontexted Environment

When a BEA Tuxedo application is run in an environment that is multicontexted
and/or multithreaded, the following considerations apply to the use of environment
variables:

m A process initially inherits its environment from the operating system
environment. On platforms that support environment variables, such variables
make up a per-process entity. Therefore, applications that depend on per-context
environment settings should use thetenv(3c) function instead of an OS
function.

Note: The environment is initially empty for those operating systems that do not
recognize an operating system environment.

m Many environment variables are read by the BEA Tuxedo system only once per
process or once per context and then cached within the BEA Tuxedo system.
Changes to such variables once cached in the process have no effect.

Cachingisdoneona... Forenvironment variables such as . ..

Per-context basis TUXCONFIG

FIELDTBLS andFIELDTBLS32

FLDTBLDIR andFLDTBLDIR32

ULOGPFX

VIEWDIR andVIEWDIR32

VIEWFILES andVIEWFILES32

WSNADDR

WSDEVICE

WSENV

Programming a BEA Tuxedo Application Using COBOL10-51

10 Programming a Multithreaded and Multicontexted Application

Cachingisdoneona... For environment variables such as . . .
Per-process basis TMTRACE

TUXDIR

ULOGDEBUG

m Thetuxputenv(3c) function affects the environment for the entire process.

m When you call theuxreadenv(3c) function, it reads a file containing
environment variables and adds them to the environment for the entire process.

m Thetuxgetenv(3c) function returns the current value of the requested
environment variable in the current context. Initially, all contexts have the same
environment, but the use of environment files specific to a particular context can
cause different contexts to have different environment settings.

m If a client intends to initialize to more than one domain, the client must change
the value of th@UXCONFIG WSNADDRor WSENVFILEenvironment variable to
the proper value before each caltgmit(3c) . If such an application is
multithreaded, a mutex or other application-defined concurrency control will
probably be needed to ensure that:

e The appropriate environment variable is reset.

e The call totpinit(3c) is made without the environment variable being
re-set by any other thread.

m When a client initializes to the system, théENVFILEand/or machine
environment file is read and affects the environment in that context only. The
previous environment for the process as a whole remains for that context to the
extent that it is not overridden within the environment file(s).

10-52 Programming a BEA Tuxedo Application Using COBOL

Writing a Multithreaded Client

Using Per-context Functions and Data Structures in a
Multithreaded Client

The following ATMI functions affect only the application contexts in which they are
called:

m tpabort(3c)

m tpacall(3c)

m tpadmcall(3c)
m tpbegin(3c)

m tpbroadcast(3c)
m tpcall(3c)

m tpcancel(3c)

m tpchkauth(3c)
m tpchkunsol(3c)
m tpclose(3c)

m tpcommit(3c)
® tpconnect(3c)
m tpdequeue(3c)
m tpdiscon(3c)

m tpenqueue(3c)
m tpforward(3c)
m tpgetlev(3c)

m tpgetrply(3c)

| tpinit(3c)

m tpnotify(3c)

m tpopen(3c)

m tppost(3c)

m tprecv(3c)

m tpresume(3c)

Programming a BEA Tuxedo Application Using COBOL10-53

10 Programming a Multithreaded and Multicontexted Application

m tpreturn(3c)

m tpscmt(3c)

m tpsend(3c)

m tpservice(3c)

m tpsetunsol(3c)

m tpsubscribe(3c)

m tpsuspend(3c)

m tpterm(3c)

m tpsubscribe(3c)

m tx_begin(3c)

m tx_close(3c)

® tx_commit(3c)

m tx_info(3c)

m tx_open(3c)

m tx_rollback(3c)

B tx_set_commit_return(3c)

B tx_set_transaction_control(3c)

B tx_set_transaction_timeout(3c)

m userlog(3c)

Note: For tpbroadcast(3c) , the broadcast message is identified as having come
from a particular application association. Fmrotify(3c) , the natification
is identified as having come from a particular application association. See

“Using Per-process Functions and Data Structures in a Multithreaded Client”
for notes aboupinit(3c)

If tpsetunsol(3c) is called from a thread that is not associated with a
context, a per-process default unsolicited message handler for all new
tpinit(3c) contexts created is established. A specific context may change
the unsolicited message handler for that context by cab#egunsol()

again when the context is active. The per-process default unsolicited messag
handler may be changed by again calligggtunsol() in a thread not
currently associated with a context.

10-54 Programming a BEA Tuxedo Application Using COBOL

Writing a Multithreaded Client

m TheCLIENTID, client name, user name, transaction ID, and the contents of the

TPSVCINFOdata structure may differ from context to context within the same
process.

Asynchronous call handles and connection descriptors are valid in the contexts
in which they are created. The unsolicited notification type is specific
per-context. Although signal-based notification may not be used with multiple
contexts, each context may choose one of three options:

e Ignoring unsolicited messages
e Using dip-in notification

e Using dedicated thread notification

Using Per-process Functions and Data Structures in a
Multithreaded Client

The following BEA Tuxedo functions affect the entire process in which they are
called.

tpadvertise(3c)

tpalloc(3c)

tpconvert(3c) —The requested structure is converted, although it is probably relevant
to only a subset of the process.

tpfree(3c)

tpinit(3c) —to the extent that the per-procd$aMULTICONTEXT$node or
single-context mode is established. See also “Using Per-context Functions and Data
Structures in a Multithreaded Client” on page 10-53.

tprealloc(3c)
tpsvrdone(3c)
tpsvrinit(3c)
tptypes(3c)
tpunadvertise(3c)

tuxgetenv(3c) —if the OS environment is per-process

Programming a BEA Tuxedo Application Using COBOL10-55

10 Programming a Multithreaded and Multicontexted Application

m tuxputenv(3c) —if the OS environment is per-process
m tuxreadenv(3c) —if the OS environment is per-process
m Usignal(3c)

The determination of single-context mode, multicontext mode, or uninitialized mode
affects an entire process. The buffer type switch, the view cache, and environment
variable values are also per-process functions.

Using Per-thread Functions and Data Structures in a
Multithreaded Client

Only the calling thread is affected by the following:
m CATCH

m tperrordetail(3c)

B tpgetctxt(3c)

m tpgprio(3c)

m tpsetctxt(3c)

m tpsprio(3c)

| tpstrerror(3c)

m tpstrerrordetail(3c)

®m TRY(3c)

® Uunix_err(3c)

TheFerror, Ferror32(5) ,tperrno(5) , tpurcode(5) , andUunix_err variables
are specific to each thread.

The identity of the current context is specific to each thread.

10-56 Programming a BEA Tuxedo Application Using COBOL

Writing a Multithreaded Client

Sample Code for a Multithreaded Client

The following example shows a multithreaded client using ATMI calls. Threads
functions differ from one operating system to another. In this example, POSIX
functions are used.

Note: In order to simplify this example, error checking code has not been included.

Listing 10-4 Sample Code for a Multithreaded Client

#include <stdio.h>
#include <pthread.h>
#include <atmi.h>

TPINIT * tpinitbuf;

int timeout=60;

pthread_t withdrawalthreadid, stockthreadid;
TPCONTEXT_T ctxt;

void * stackthread(void *);

void * withdrawalthread(void *);

main()

{

tpinitbuf = tpalloc(TPINIT, NULL, TPINITNEED(0));

/*

* This code will perform a transfer, using separate threads for the

* withdrawal and deposit. It will also get the current

* price of BEA stock from a separate application, and calculate how
* many shares the transferred amount can buy.

*/

tpinitbuf->flags = TPMULTICONTEXTS;

* Fill in the rest of tpinitbuf. */
tpinit(tpinitbuf);

tpgetctxt(&ctxt, 0);

tpbegin(timeout, 0);

pthread_create(&withdrawalthreadid, NULL, withdrawalthread, NULL);
tpcall("DEPOSIT", ...);

/* Wait for the withdrawal thread to complete. */
pthread_join(withdrawalthreadid, NULL);

Programming a BEA Tuxedo Application Using COBOL10-57

10 Programming a Multithreaded and Multicontexted Application

tpcommit(0);
tpterm();

/* Wait for the stock thread to complete. */
pthread_join(stockthreadid, NULL);

[* Print the results. */
printf("$%09.2f has been transferred \
from your savings account to your checking account.\n", ...);

printf("At the current BEA stock price of $%8.3f, \
you could purchase %d shares.\n", ...);

exit(0);

void *
stockthread(void *arg)

{

[* The other threads have now called tpinit(), so resetting TUXCONFIG can
* no longer adversely affect them.
*/

tuxputenv("TUXCONFIG=/home/users/xyz/stockconf");
tpinitbuf->flags = TPMULTICONTEXTS;
/* Fill in the rest of tpinitbuf. */
tpinit(tpinitbuf);
tpcall("GETSTOCKPRICE", ...);
/* Save the stock price in a variable that can also be accessed in main(). */
tpterm();
return(NULL);
}

void *
withdrawalthread(void *arg)

[* Create a separate thread to get stock prices from a different

* application.
*/

pthread_create(&stockthreadid, NULL, stockthread, NULL);
tpsetctxt(ctxt, 0);

10-58 Programming a BEA Tuxedo Application Using COBOL

Writing a Multithreaded Server

tpcall("WITHDRAWAL", ...);
return(NULL);

See Also

m “How Multithreading and Multicontexting Work in a Client” on page 10-11

m “Preliminary Guidelines for Programming a Multithreaded/Multicontexted
Application” on page 10-28

m “Writing Code to Enable Multicontexting in a Client” on page 10-31

Writing a Multithreaded Server

Multithreaded servers are almost always multicontexted, as well. For information
about writing a multithreaded server, see “Writing Code to Enable Multicontexting
and Multithreading in a Server” on page 10-40.

Programming a BEA Tuxedo Application Using COBOL10-59

10 Programming a Multithreaded and Multicontexted Application

Compiling Code for a
Multithreaded/Multicontexted Application

The programs provided by the BEA Tuxedo system for compiling or building
executables, such asildserver(1) andbuildclient(1) , automatically include

any required compiler flags. If you use these tools, then you do not need to set any flag
at compile time.

If, however, you compile yout files into.o files before doing a final compilation,
you may need to set platform-specific compiler flags. Such flags must be set
consistently for all code linked into a single process.

If you are creating a multithreaded server, you must rumtidserver(1)

command with thet option. This option is mandatory for multithreaded servers; if
you do not specify it at build time and later try to boot the new server with a
configuration file in which the value ®AXDISPATCHTHREADIS greater than 1, a
warning message is recorded in the userlog and the server reverts to single-threade
operation.

To identify any operating system-specific compiler parameters that are required whel
you compilec files into.o files in a multithreaded environment, run
buildclient(1) or buildserver(1) with the-v option set on a test file.

10-60 Programming a BEA Tuxedo Application Using COBOL

Testing a Multithreaded/Multicontexted Application

See Also

m “Writing Code to Enable Multicontexting in a Client” on page 10-31

m “Writing Code to Enable Multicontexting and Multithreading in a Server” on
page 10-40

= “Writing a Multithreaded Client” on page 10-45

Testing a Multithreaded/Multicontexted
Application

m Testing Recommendations for a Multithreaded/Multicontexted Application
m Troubleshooting a Multithreaded/Multicontexted Application

m Error Handling for a Multithreaded/Multicontexted Application

Testing Recommendations for a
Multithreaded/Multicontexted Application

We recommend following these recommendations during testing of your
multithreaded and/or multicontexted code:

m Use a multi-processor.
m Use a multithreaded debugger (if your operating system vendor offers one).

m Run stress tests to introduce a variety of timing conditions.

Programming a BEA Tuxedo Application Using COBOL10-61

10 Programming a Multithreaded and Multicontexted Application

Troubleshooting a Multithreaded/Multicontexted
Application

When you need to investigate possible causes of errors, we recommend that you st:
by checking whether and how tmMEMULTICONTEXTSlag has been set. Errors are
frequently introduced by failures to set this flag or to set it properly.

Improper Use of the TPMULTICONTEXTS Flag to tpinit()

If a process includes thiPMULTICONTEXTSlag in a state for which this flag is not
allowed (or omitsSTPMULTICONTEXTSn a state that requires it), theinit(3c)
returns -1 and setgerrno to TPEPROTO

Calls to tpinit() Without TPMULTICONTEXTS

Whentpinit(3c) is invoked withouT PMULTICONTEXTSt behaves as it does when
called in a single-contexted application. W lygnit() has been invoked once,
subsequenpinit() calls without therlPMULTICONTEXTSlag succeed without
further action. This is true even if the value of TkkX CONFIGor WSNADDBNvironment
variable in the application has been changed. Catiniy) without the
TPMULTICONTEXTSlag set is not allowed in multicontext mode.

If a client has not joined an application apidit(3c) is called implicitly (as a result
of a call to another function that caiignit()), then the BEA Tuxedo system
interprets the action as a calltpinit() without theTPMULTICONTEXTSlag for
purposes of determining which flags may be used in subsequent apité)o

For most ATMI functions, if a function is invoked by a thread that is not associated
with a context in a process already operating in multicontext mode, the ATMI function
fails with tperrno(5)=TPEPROTO .

10-62 Programming a BEA Tuxedo Application Using COBOL

Testing a Multithreaded/Multicontexted Application

Insufficient Thread Stack Size

On certain operating systems, the operating system default thread stack size is
insufficient for use with the BEA Tuxedo system. Compaq Tru64 UNIX and

UnixWare are two operating systems for which this is known to be the case. If the
default thread stack size parameter is used, applications on these platforms dump core
when a function with substantial stack usage requirements is called by any thread other
than the main thread. Often the core file that is created does not give any obvious clues
to the fact that an insufficient stack size is the cause of the problem.

When the BEA Tuxedo system is creating threads on its own, such as
server-dispatched threads or a client unsolicited message thread, it can adjust the
default stack size parameter on these platforms to a sufficient value. However, when
an application is creating threads on its own, the application must specify a sufficient
stack size. At a minimum, a value of 128K should be used for any thread that will
access the BEA Tuxedo system.

On Compag Tru64 UNIX and other systems on which Posix threads are used, a thread

stack size is specified by invokimghread_attr_setstacksize() before calling
pthread_create() . On UnixWare, the thread stack size is specified as an argument
to thr_create() . Consult your operating system documentation for further

information on this subject.

Error Handling for a Multithreaded/Multicontexted
Application

Errors are reported in the user log. For each error, whether in single-context mode or
multicontext mode, the following information is recorded:

process_ID.thread_ID.context ID

Programming a BEA Tuxedo Application Using COBOL10-63

10 Programming a Multithreaded and Multicontexted Application

See Also

m “How Multithreading and Multicontexting Work in a Client” on page 10-11
m “How Multithreading and Multicontexting Work in a Server” on page 10-17

m “Preliminary Guidelines for Programming a Multithreaded/Multicontexted
Application” on page 10-28

10-64 Programming a BEA Tuxedo Application Using COBOL

CHAPTER

11

System

Managing Errors

m System Errors

m Application Errors

m Handling Errors

m Transaction Considerations

m Central Event Log

Errors

The BEA Tuxedo system USEB-STATUS IN TPSTATUS-REC to supply information

to a process when a routine fails. All ATMI calls $BtSTATUS to a value that

describes the nature of the error. When a call does not return to its caller, as in the case
of TPRETURNI TPFORWARvhich are used to terminate a service routine, the only way
the system can communicate success or failure is throRdTATUS in the requester.

APPL-RETURN-CODEs used to communicate user-defined conditions only. The system
sets the value ofPPL-RETURN-CODEO the value 0APPL-CODE IN TPSVCRET-REC
during TPRETURNThe system se#sPPL-RETURN-CODEregardless of the value of
APPL-RETURN-CODE IN TPSTATUS-RECduring TPRETURNuUnNIless an error is
encountered byPRETURNDI a transaction time-out occurs.

The codes returned TP-STATUSrepresent categories of errors, which are listed in the
following table.

Programming a BEA Tuxedo Application Using COBOL 11-1

11 managing Errors

Table 11-1 TP-STATUS Error Categories

Error Category

TP-STATUS Values

Abort

TPEABORT

BEA Tuxedo systeth

TPESYSTEM

Communication handle

TPELIMIT andTPEBADDESC

Conversational

TPEVENT

Duplicate operation

TPEMATCH

General communication

TPESVCFAIL, TPESVCERR
TPEBLOCKandTPGOTSIG

Heuristic decision

TPEHAZARBandTPEHEURISTIC?

Invalid argument TPEINVAL

MIB TPEMIB

No entry TPENOENT
Operating system TPEOS
Permission TPEPERM
Protocot TPEPROTO
Queueing TPEDIAGNOSTIC
Release compatibility TPERELEASE
Resource manager TPERMERR
Time-out TPETIME
Transaction TPETRAN

Typed record mismatch TPEITYPE andTPEOTYPE

1. Applicable to all ATMI calls for which failure is reported by the val-

ue returned iMP-STATUS.

11-2 Programming a BEA Tuxedo Application Using COBOL

Abort Errors

2. Refer to “Fatal Transaction Errors” on page 11-18 for more
information on this error category.

As footnote 1 shows, four categories of errors are reportd@{s$rATUS are
applicable to all ATMI calls. The remaining categories are used only for specific
ATMI calls.The following sections describe some error categories in detail.

Abort Errors

For information on the errors that lead to abort, refer to “Fatal Transaction Errors” on
page 11-18.

BEA Tuxedo System Errors

BEA Tuxedo system errors indicate problems attfsem levekather than at the
application level. When BEA Tuxedo system errors occur, the system writes messages
explaining the exact nature of the errors to the central event log, and returns
TPESYSTENIN TP-STATUS. For more information, refer to the “Central Event Log” on
page 11-27. Because these errors occur in the system, rather than in the application,
you may need to consult the system administrator to correct them.

Programming a BEA Tuxedo Application Using COBOL 11-3

11 managing Errors

Communication Handle Errors

Communication handle errors occur as a result of exceeding the maximum limit of
communication handles or referencing an invalid value. Asynchronous and
conversational calls retuPELIMIT when the maximum number of outstanding
communication handles has been exceetleHBADDESGs returned when an invalid
communication handle value is specified for an operation.

Communication handle errors occur only during asynchronous calls or conversationg
calls. (Call descriptors are not used for synchronous calls.) Asynchronous calls deper
on communication handles to associate replies with the corresponding requests.
Conversational send and receive routines depend on communication handles to
identify the connection; the call that initiates the connection depends on the availability
of a communication handle.

Communication handle errors can be can be done by checking for specific errors at tt
application level.

Limit Errors

11-4

The system allows up to 50 outstanding communication handles (replies) per conte>
(or BEA Tuxedo application association). This limit is enforced by the system; it
cannot be redefined by your application.

The limit for communication handles for simultaneous conversational connections is
more flexible than the limit for replies. The application administrator defines the limit
in the configuration file. When the application is not running, the administrator can
modify theMAXCONparameter in thRESOURCESection of the configuration file.

When the application is running, the administrator can modifyuh@HINESsection
dynamically. Refer tamconfig, wtmconfig(1) in theBEA Tuxedo Command
Referencdor more information.

Programming a BEA Tuxedo Application Using COBOL

Conversational Errors

Invalid Descriptor Errors

A communication handle can become invalid and, if referenced, cause an error to be
returned torP-STATUS in either of two situations:

m A communication handle is used to retrieve a message, which may be a failed
messageTPEBADDESE

m An attempt is made to reuse a stale communication hareiEBADDESET

A communication handle might become stale, for example, in the following
circumstances:

m When the application call®PABORTor TPCOMMITand transaction replies (sent
without TPNOTRANremain to be retrieved.

m A transaction times out. When the time-out is reported by a calG&ETRPLY
no message is retrieved using the specified handle and the handle becomes stale.

Conversational Errors

When an unknown handle is specified for conversational serviceER SE\D
TPRECYVY andTPDISCONroutines returlTPEBADDESC

WhenTPSENDandTPRECMail with a TPEEVENTerror after a conversational
connection is established, an event has occurred. Data may or may not be sent by
TPSEND depending on the event. The system retlREEVENTIN the TPEVENT

member offPSTATUS-RECand the course of action is dictated by the particular event.

For a complete description of conversational events, refer to “Understanding
Conversational Communication Events” on page 7-13.

Programming a BEA Tuxedo Application Using COBOL 11-5

11 managing Errors

Duplicate Object Error

The TPEMATCHerror code is returned iFP-STATUS when an attempt is made to
perform an operation that results in a duplicate object. The following table lists the
routines that may return tH@EMATCHerror code and the associated cause.

Routine Cause

TPADVERTISE The svcname specified is already advertised for the server but
with a function other thafunc . Although the function fails,
svcname remains advertised with its current function (that is,
func does not replace the current function name).

TPRESUME Thetranid points to a transaction identifier that another
process has already resumed. In this case, the caller’s state with
respect to the transaction is not changed.

TPSUBSCRIBE The specified subscription information has already been listed
with the EventBroker.

For more information on these routines, refer toBE& Tuxedo COBOL Function
Reference

General Communication Call Errors

General communication call errors can occur during any communication calls,
regardless of whether those calls are synchronous or asynchronous. Any of the
following errors may be returned TP-STATUS. TPESVCFAIL, TPESVCERR
TPEBLOCKOr TPGOTSIG.

11-6 Programming a BEA Tuxedo Application Using COBOL

General Communication Call Errors

TPESVCFAIL and TPESVCERR Errors

If the reply portion of a communication fails as a result of a calPt@ALL or
TPGETRPLYthe system returnePESVCERRIr TPSEVCFAIL to TP-STATUS. The
system determines the error by the arguments that are pagstETOURNNd the
processing that is performed by this call.

If TPRETURNencounters an error in processing or handling arguments, the system
returns an error to the original requester and Be{STATUSto TPESVCERRThe
receiver determines that an error has occurred by checking the valReoATUS.

The system does not send the data fronTEHRETURNall, and if the failure occurred
onTPGETRPLYIt renders the call handle invalid.

If TPRETURNIO€eS not encounter ti@ESVCERRerror, then the value returned in
TP-RETURN-VAL determines the success or failure of the call. If the application
specifiesTPFAIL in theTP-RETURN-VAL the system returnBPESVCFAIL in
TP-STATUS and sends the data message to the calleP-KETURN-VALIis set to
TPSUCCESghe system returns successfully to the calleiSTATUSIs not set, and the
caller receives the data.

TPEBLOCK and TPGOTSIG Errors

The TPEBLOCKandTPGOTSIGerror codes may be returned at the request or the reply
end of a message and, as a result, can be returned for all communication calls.

The system returnBPEBLOCKwhen a blocking condition exists and the process
sending a request (synchronously or asynchronously) indicates, by setting
TPPNOBLOCHKhat it does not want to wait on a blocking condition. A blocking

condition can exist when a request is being sent if, for example, all the system queues
are full.

WhenTPCALLindicates a no blocking condition, only the sending part of the
communication is affected. If a call successfully sends a request, the system does not
returnTPEBLOCK regardless of any blocking situation that may exist while the call
waits for the reply.

The system returnBPEBLOCKor TPGETRPLYwhen a call is madePNOBLOCKNd a
blocking condition is encountered whifeGETRPLYis awaiting the reply. This may
occur, for example, if a message is not currently available.

Programming a BEA Tuxedo Application Using COBOL 11-7

11 managing Errors

TheTPGOTSIGerror indicates an interruption of a system call by a signal; this situation
is not actually an error condition. TPSIGRSTRTis set, the calls do not fail and the
system does not return tieGOTSIGerror code imP-STATUS.

Invalid Argument Errors

Invalid argument errors indicate that an invalid argument was passed to a routine. An
ATMI call that takes arguments can fail if you pass it arguments that are invalid. In the
case of a call that returns to the caller, the call fails and caRsgBATUStO be set to
TPEINVAL. In the case of PRETURNr TPFORWARhe system sefP-STATUS to
TPESVCERROor either theTPCALL or TPGETRPLYcall that initiated the request and is
waiting for results to be returned.

You can correct an invalid argument error atdpplication leveby ensuring that you
pass only valid arguments to routines.

No Entry Errors

11-8

No entry errors result from a lack of entries in the system tables or the data structur:
used to identify record types. The meaning of the no entry type EPENOENT

depends on the call that is returning it. The following table lists the calls that return this
error and describes various causes of error.

Table 11-2 No Entry Errors

Call Cause

TPINITIALIZE The calling process cannot join the application because there is no
space left in the bulletin board to make an entry for it. Check with
the system administrator.

Programming a BEA Tuxedo Application Using COBOL

Operating System Errors

Call Cause
TPCALL The calling process references a service c8ERVICE-NAMEIN
TPACALL TPSVCDEF-REGhat is not known to the system since there is no

entry for it in the bulletin board. On an application level, ensure that
you have referenced the service correctly; otherwise, check with the
system administrator.

TPCONNECT The system cannot connect to the specified name because the service
named does not exist or it is not a conversational service.

TPGPRIO The calling process seeks a request priority when no request has
been made. This is an application-level error.

TPUNADVERTISE The system cannot unadvertBERVICE-NAME IN
TPSVCDEF-REMecause the name is not currently advertised by
the calling process.

Operating System Errors

Operating system errors indicate that an operating system call has failed. The system
returnsTPEOSIN TP-STATUS. On UNIX systems, the system returns a numeric value
identifying the failed system call in the global variableixerr . To resolve

operating system errors, you may need to consult your system administrator.

Permission Errors

If a calling process does not have the correct permissions to join the application, the
TPINITIALIZE call fails, returningflPEPERMN TP-STATUS. Permissions are set in the
configuration file, outside of the application. If you encounter this error, check with the
application administrator to make sure the necessary permissions are set in the
configuration file.

Programming a BEA Tuxedo Application Using COBOL 11-9

11 managing Errors

Protocol Errors

Protocol errors occur when an ATMI call is invoked, either in the wrong order or using
an incorrect process. For example, a client may try to begin communicating with a
server before joining the application. ThcOMMITmay be called by a transaction
participant instead of the initiator.

You can correct a protocol error at #gplication leveby enforcing the rules of order
and proper usage of ATMI calls.

To determine the cause of a protocol error, answer the following questions:
m Is the call being made in the correct order?

m Is the call being made by the correct process?

Protocol errors return thEPEPROT(value inTP-STATUS.

Refer to “Introduction to the COBOL Application-Transaction Monitor Interface” in
the BEA Tuxedo COBOL Function Referericemore information.

Queuing Error

The TPENQUEUE(3chl) or TPDEQUEUE(3cbl) routine return§PEDIAGNOSTICIN
TP-STATUS if the enqueuing or dequeuing on a specified queue fails. The reason for
failure can be determined by the diagnostic returned viattheecord. For a list of

valid ctl flags, refer tadtPENQUEUE(3chl) or TPDEQUEUE(3cbl) in theBEA Tuxedo
COBOL Function Reference

11-10 Programming a BEA Tuxedo Application Using COBOL

Release Compatibility Error

Release Compatibility Error

The BEA Tuxedo system returM®ERELEASHN TP-STATUS if a compatibility issue
exists between multiple releases of a BEA Tuxedo system participating in an
application domain.

For example, th&PERELEASEerror may be returned if thePACKflag is set when
issuing theTPNOTIFY(3cbl) routine (indicating that the caller blocks until an
acknowledgment message is received from the target client), but the target client is
using an earlier release of the BEA Tuxedo system that does not supperatie
acknowledgement protocol.

Resource Manager Errors

Resource manager errors can occur with calf®@PEN(3cbl) andTPCLOSE(3chl)

in which case the system returns the valuEP&ERMERR TP-STATUS. This error code

is returned fomPOPENwhen the resource manager fails to open correctly. Similarly,
this error code is returned fOPCLOSEwhen the resource manager fails to close
correctly. To maintain portability, the BEA Tuxedo system does not return a more
detailed explanation of this type of failure. To determine the exact nature of a resource
manager error, you must interrogate the resource manager.

Time-out Errors

The BEA Tuxedo system supports time-out errors to establish a limit on the amount of
time that the application waits for a service request or transaction. The BEA Tuxedo
system supports two types of configurable time-out mechanisms: blocking and
transaction.

Programming a BEA Tuxedo Application Using COBOL11-11

11 managing Errors

A blocking time-ouspecifies the maximum amount of time that an application waits
for a reply to a service request. The application administrator defines the blocking
time-out for the system in the configuration file.

A transaction time-oudlefines the duration of a transaction, which may involve several
service requests. To define the transaction time-out for an application, passue
argument tarPBEGIN.

The system may return time-out errors on communication calls for either blocking or
transaction time-outs, and @rCOMMITfor transaction time-outs only. In each case, if

a process is in transaction mode and the system retBETSME on a failed call, a
transaction time-out has occurred.

By default, if a process is not in transaction mode, the system performs blocking
time-outs.

If a process is not in transaction mode and a blocking time-out occurs on an
asynchronous call, the communication call that blocked fails, but the call descriptor is
still valid and may be used on a re-issued call. Other communication is not affected.

When a transaction time-out occurs, the communication handle to an asynchronous
transaction reply (specified witholPNOTRANbecomes stale and may no longer be
referenced.

TPETIME indicates a blocking time-out on a communication call if the call was not
made in transaction mode ofTiPNOBLOCHKvas not set.

Note: If you setTPNOBLOCKa blocking time-out cannot occur because the call
returns immediately if a blocking condition exists.

For additional information on handling time-out errors, refer to “Transaction
Considerations” on page 11-15.

Transaction Errors

For information on transactions and the non-fatal and fatal errors that can occur, refe
to “Transaction Considerations” on page 11-15.

11-12 Programming a BEA Tuxedo Application Using COBOL

Typed Record Errors

Typed Record Errors

Typed record errors are returned when requests or replies to processes are sent in
records of an unknown type. TmeCALLandTPACALLcalls returmTPEITYPE when a
request data record is sent to a service that does not recognize the type of the record.

Processes recognize record types that are identified in both the configuration file and
the BEA Tuxedo system libraries that are linked into the process. These libraries define
and initialize a data structure that identifies the typed records that the process
recognizes. You can tailor the library to each process, or an application can supply its
own copy of a file that defines the record types. An application can set up the record
type data structure (referred to as a record type switch) on a process-specific basis. For
more information, sextypes(5) andtypesw(5) intheBEA Tuxedo File Formats

and Data Descriptions Reference

TheTPCALLandTPGETRPLYcalls returnTPEOTYPENhen a reply message is sentin a
record that is not recognized or not allowed by the caller. In the latter case, the record
type is included in the type switch, but the type returned does not match the record that
was allocated to receive the reply and a change in record type is not allowed by the
caller. The caller indicates this preference by seft?gOCHANGHnN this case, strong

type checking is enforced; the system retPBOTYPRvhen itis violated. By default,

weak type checking is used. In this case, a record type other than the type originally
allocated may be returned, as long as that type is recognized by the caller. The rules
for sending replies are that the reply record must be recognized by the caller and, if
strong type checking has been indicated, you must observe it.

Programming a BEA Tuxedo Application Using COBOL11-13

11 managing Errors

Application Errors

Within an application, you can pass information about user-defined errors to calling
programs using thecode argument offPRETURNAISO, the system sets the value of
APPL-RETURN-CODEO the value oAPPL-CODE IN TPSVCRET-REC during
TPRETURNFor more information abo@PRETURN(3chl) , refer to theBEA Tuxedo
COBOL Function Reference

Handling Errors

Your application logic should test for error conditions for the calls that have return
values, and take appropriate action when an error occurs.

The following example shows a typical method of handling errors. The term
ATMICALL(3) is used in this example to represent a generic ATMI call.

Listing 11-1 Handling Errors

CALL "TPINITIALIZE" USING TPINFDEF-REC
USR-DATA-REC
TPSTATUS-REC.

IF NOT TPOK

error message , EXIT PROGRAM
CALL "TPBEGIN" USING TPTRXDEF-REC
TPSTATUS-REC.
IF NOT TPOK
error message , EXIT PROGRAM

Make atmi calls
Check return values

IF TPEINVAL
DISPLAY "Invalid arguments were given."
IF TPEPROTO
DISPLAY "A call was made in an improper context."

11-14 Programming a BEA Tuxedo Application Using COBOL

Transaction Considerations

Include all error cases described in the ATMICALL(3)
reference page. Other return codes are not possible,
so there is no need to test them.

continue

The values of P-STATUSprovide details about the nature of each problem and suggest
the level at which it can be corrected. If your application defines a list of error
conditions specific to your processing, the same can be said for the values of
APPL-RETURN-CODE IN TPSTATUS-REC

Transaction Considerations

The following sections describe how various programming features work when used
in transaction mode. The first section provides rules of basic communication etiquette
that should be observed in code written for transaction mode.

Communication Etiquette

When writing code to be run in transaction mode, you must observe the following rules
of basic communication etiquette:

m Processes that are participants in the same transaction must require replies for all
requests. To include a request that requires no replyPS€ALL to TPNOTRAN
or TPNOREPLY

m A service must retrieve all asynchronous transaction replies before calling
TPRETURNOr TPFORWARThis rule must be observed regardless of whether the
code is running in transaction mode.

m The initiator must retrieve all asynchronous transaction replies (made without
TPNOTRANbefore callingTlPCOMMIT

Programming a BEA Tuxedo Application Using COBOL11-15

11 managing Errors

m Replies must be retrieved for asynchronous calls that expect replies from
non-participants of the transaction, that is, replies to requests made with
TPACALLIn which the transaction, but not the reply, is suppressed.

m |f a transaction has not timed-out but is marked “abort-only,” any further
communication should be performed withANOTRANet so that the results of the
communication are preserved after the transaction is rolled back.

m [f a transaction has timed out:

¢ The handle for the timed-out call becomes stale and any further reference to
it returnsTPEBADDESC

e Further calls taPGETRPLYor TPRECVfor any outstanding handles return a
global state of transaction time-out; the system BetSTATUS to TPETIME.

e Asynchronous calls can be made WithACALLSset toTPNOREPLY
TPNOBLOCKOr TPNOTRAN

m Once atransaction has been marked “abort-only” for reasons other than
time-out, a call torPGETRPLYeturns whatever value represents the local state of
the call; that is, it returns either success or an error code that reflects the local
condition.

m Once a handle is used WilIRGETRPLYoO retrieve a reply, or witlPSENDor
TPRECMoO report an error condition, it becomes invalid and any further reference
to it returnsTPEBADDESCThis rule is always observed, regardless of whether
the code is running in transaction mode.

m Once atransaction is aborted, all outstanding transaction call handles (made
without TPNOTRANbecome stale, and any further references to them return
TPEBADDESC

Transaction Errors

The following sections describe transaction-related errors.

11-16 Programming a BEA Tuxedo Application Using COBOL

Transaction Errors

Non-fatal Transaction Errors

When transaction errors occur, the system retftPEFRANN TP-STATUS. The precise
meaning of such an error, however, depends on the call that is returning it. The
following table lists the calls that return transaction errors and describes possible

causes of them.

Table 11-3 Transaction Errors

Call

Cause

TPBEGIN

Usually caused by a transient system error that occur during an
attempt to start the transaction. The problem may clear up with a
repeated call.

TPCANCEL

ReturnsTPETRANwhen called from a transaction.

TPRESUME

The BEA Tuxedo system is unable to resume a global transaction
because the caller is currently participating in work outside the
global transaction with one or more resource managers. All such
work must be completed before the global transaction can be
resumed. The caller’s state with respect to the local transaction is
unchanged.

TPCONNECT
TPCALL and
TPACALL

A call was made in transaction mode to a service that does not
support transactions. Some services belong to server groups that
access a database management system (DBMS) that, in turn, support
transactions. Other services, however, do not belong to such groups.
In addition, some services that support transactions may require
interoperation with software that does not. For example, a service
that prints a form may work with a printer that does not support
transactions. Services that do not support transactions may not
function as participants in a transaction.

The grouping of services into servers and server groups is an
administrative task. In order to determine which services support
transactions, check with your application administrator.

You can correct transaction-level errors at the application level by
enabling the settinfPSVCDEF-REFor by accessing the service
for which an error was returned outside of the transaction.

Programming a BEA Tuxedo Application Using COBOL11-17

11 managing Errors

Fatal Transaction Errors

When a fatal transaction error occurs, the application should explicitly abort the
transaction by having the initiator calPABORT Therefore, it is important to

understand the errors that are fatal to transactions. Three conditions cause a transact
to fail:

m The initiator or a participant in the transaction causes it to be marked
“abort-only” for one of the following reasons:

e TPRETURNencounters an error while processing its argumeRtSTATUS is
set toTPESVCERR

e TheTP-RETURN-VALto TPRETURNvas set taPFAIL ; TP-STATUS s set to
TPESVCFAIL

e The type of the reply record is not known or not allowed by the caller and, as
a result, success or failure cannot be determire&TATUS is set to
TPEOTYPE

m The transaction times oUutP-STATUS s set toTPETIME.

m TPCOMMITis called by a participant rather than by the originator of a transaction;
TP-STATUS is set toTPEPROTO

The only protocol error that is fatal to transactions is calfirgOMMITTrom the wrong
participant in a transaction. This error can be corrected in the application during the
development phase.

If TPCOMMITS called after an initiator/participant failure or transaction time-out, the
resultis an implicit abort error. Then, because the commit failed, the transaction shoul
be aborted.

If the system returnSPESVCERRTPESVCFAIL, TPEOTYPEOr TPETIME for any
communication call, the transaction should be aborted explicitly with a call to
TPABORTYou need not wait for outstanding communication handles before explicitly
aborting the transaction. However, because these communication handles are
considered stale after the call is aborted, any attempt to access them after the
transaction is terminated returnBEBADDESC

11-18 Programming a BEA Tuxedo Application Using COBOL

Transaction Errors

In the case OfPESVCERRTPESVCFAIL, andTPEOTYPEcommunication calls continue

to be allowed as long as the transaction has not timed out. When these errors are
returned, the transaction is marked abort-only. To preserve the results of any further
work, you should call any communication functions WIHNOTRANBY setting this

flag, you ensure that the work performed for the transaction marked “abort-only” will
not be rolled back when the transaction is aborted.

When a transaction time-out occurs, communication can continue, but communication
requests cannot:

m Require replies
m Block
m Be performed on behalf of the caller’s transaction

Therefore, to make asynchronous calls, you mustPEeOREPLYTPNOBLOCKoOr
TPNOTRAN

Heuristic Decision Errors

TheTPCOMMITcall may returmfPEHAZARDDr TPEHEURISTIC, depending on how
TP-COMMIT-CONTROILS set.

If you setTP-COMMIT-CONTROIt0 TP-CMT-LOGGEDthe application obtains control
before the second phase of a two-phase commit is performed. In this case, the
application may not be aware of a heuristic decision that occurs during the second
phase.

TPEHAZARDDr TPEHEURISTIC can be returned in a one-phase commit, however, if a
single resource manager is involved in the transaction and it returns a heuristic decision
or a hazard indication during a one-phase commit.

If you setTP_COMMIT_CONTRAD TP_CMT_COMPLETEhen the system returns
TPEHEURISTIC if any resource manager reports a heuristic decisionTRBHAZARD

if any resource manager reports a hazePEHAZARDspecifies that a participant failed
during the second phase of commit (or during a one-phase commit) and that it is not
known whether a transaction completed successfully.

Programming a BEA Tuxedo Application Using COBOL11-19

11 managing Errors

Transaction Time-outs

As described in “Transaction Errors” on page 11-16, two types of time-outs can occu
in a BEA Tuxedo application: blocking and transaction. The following sections
describe how various programming features are affected by transaction time-outs.
Refer to “Transaction Errors” on page 11-16 for more information on time-outs.

TPCOMMIT Call

What is the state of a transaction if a time-out occurs after a ca#ldoMMIP If the
transaction timed out and the system knows that it was aborted, the system reports
these events by setting-STATUS to TPEABORTIf the status of the transaction is
unknown, the system sets the error codeRBTIME.

When the state of a transaction is in doubt, you must query the resource manager. Fir
verify whether or not any of the changes that were part of the transaction were applie
Then you can determine whether the transaction was committed or aborted.

TPNOTRAN

When a process is in transaction mode and makes a communication call with
TPNOTRANIt prohibits the called service from becoming a participant in the current
transaction. Whether the service request succeeds or fails has no impact on the
outcome of the transaction. The transaction can still time-out while waiting for a reply
that is due from a service, whether it is part of the transaction or not.

For additional information on usimtPNOTRANrefer to “TPRETURN and
TPFORWAR Calls” on page 11-21.

11-20 Programming a BEA Tuxedo Application Using COBOL

tpterm() Function

TPRETURN and TPFORWAR C(alls

If you call a process while running in transaction ma@@&RETURNANATPFORWAR

place the service portion of the transaction in a state that allows it to be either
committed or aborted when the transaction completes. You can call a service several
times on behalf of the same transaction. The system does not fully commit or abort the
transaction until the initiator of the transaction calkcOMMITor TPABORT

NeitherTPRETURNoOr TPFORWABhould be called until all outstanding handles for the
communication calls made within the service have been retrieved. If you call
TPRETURNvith outstanding handles for whiatP-RETURN-VALIs set toTPSUCCESS

the system encounters a protocol error and reltPESVCERRO the process waiting
ONTPGETRPLY If the process is in transaction mode, the system marks the caller as
“abort-only.” Even if the initiator of the transaction cafgComMMITthe system
implicitly aborts the transaction. If you calPRETURNvith outstanding handles for
which TP-RETURN-VAL is set tOTPFAIL , the system returnePESVCFAIL to the

process waiting oMPGETRPLY The effect on the transaction is the same.

When you callfPRETURNvhile running in transaction mode, this function can affect
the result of the transaction by the processing errors that it encounters or that are
retrieved from the value placed TP-RETURN-VAL by the application.

You can us@PFORWARR indicate that success has been achieved up to a particular
point in the processing of a request. If no application errors have been detected, the
system invokeSPFORWARdtherwise, the system invokeBRETURNvith TPFAIL . If

you callTPFORWARnproperly, the system considers the call a processing error and
returns a failed message to the requester.

tpterm() Function

Use theTPTERMcall to remove a client context from an application.

If the client context is in transaction mode, the call fails WitBPROTOeturned in
TP-STATUS, and the client context remains part of the application and in transaction
mode.

Programming a BEA Tuxedo Application Using COBOL11-21

11 managing Errors

When the call is successful, the client context is allowed no further communication ol
participation in transactions because the current thread of execution is no longer pa
of the application.

Resource Managers

When you use an ATMI call to define transactions, the BEA Tuxedo system execute:
an internal call to pass any global transaction information to each resource managel
participating in the transaction. When you g&EoMMITor TPABORTfor example, the
system makes internal calls to direct each resource manager to commit or abort the
work it did on behalf of the caller’s global transaction.

When a global transaction has been initiated, either explicitly or implicitly, you should
not make explicit calls to the resource manager’s transaction calls in your applicatior
code. Failure to follow this transaction rule causes indeterminate results. You can us
the TPGETLEVcall to determine whether a process is already in a global transaction
before calling the resource manager’s transaction call.

Some resource managers allow programmers to configure certain parameters (such
the transaction consistency level) by specifying options available in the interface to th
resource managers themselves. Such options are made available in two forms:

m Resource manager-specific function calls that can be used by programmers of
distributed applications to configure options.

m Hard-coded options incorporated in the transaction interface supplied by the
provider of the resource manager.

Consult the documentation for your resource managers for additional information.

The method of setting options varies for each resource manager. In the BEA Tuxed
System SQL resource manager, for examplesdheansaction statement is used

to negotiate specific options (consistency level and access mode) for a transaction th
has already been started by the BEA Tuxedo system.

11-22 Programming a BEA Tuxedo Application Using COBOL

Sample Transaction Scenarios

Sample Transaction Scenarios

The following sections provide some considerations for the following transaction
scenarios:

m Called Service in Same Transaction as Caller
m Called Service in Different Transaction with AUTOTRAN Set

m Called Service that Starts a New Explicit Transaction

Called Service in Same Transaction as Caller

When a caller in transaction mode calls another service to participate in the current
transaction, the following facts apply:

m TPRETURNMNATPFORWARNhen called by the participating service, place that
service’s portion of the transaction in a state from which it can be either aborted
or committed by the initiator.

m The success or failure of the called process affects the current transaction. If any
fatal transaction errors are encountered by the participant, the current transaction
is marked “abort-only.”

m Whether or not the tasks performed by a successful participant are applied
depends on the fate of the transaction. In other words, if the transaction is
aborted, the work of all participants is reversed.

m TPNOREPLXannot be used when calling another service to participate in the
current transaction.

Programming a BEA Tuxedo Application Using COBOL11-23

11 managing Errors

Called Service in Different Transaction with AUTOTRAN
Set

If you issue a communication call witlPNOTRANet and the called service is
configured such that a transaction automatically starts when the service is called, th
system places both the calling and called processes in transaction mode, but the tw
constitute different transactions. In this situation, the following facts apply:

m TPRETURNplays the initiator’s transaction role: it terminates the transaction in
the service in which the transaction was automatically started. Alternatively, if
the transaction is automatically started in a service that terminates with
TPFORWARheTPRETURNall issued in the last service in the forward chain
plays the initiator’s transaction role: it terminates the transaction. (For an
example, refer to the figure called “Transaction Roles of TPFORWAR and
TPRETURN with AUTOTRAN" on page 11-25.)

m Because it is in transaction mod®RETURNS vulnerable to the failure of any
participant in the transaction, as well as to transaction time-outs. In this scenario
the system is more likely to return a failed message.

m The state of the caller’s transaction is not affected by any failed messages or
application failures returned to the caller.

m The caller's own transaction may timeout as the caller waits for a reply.

m If no reply is expected, the caller’s transaction cannot be affected in any way by
the communication call.

11-24 Programming a BEA Tuxedo Application Using COBOL

Sample Transaction Scenarios

Figure 11-1 Transaction Roles of TPFORWAR and TPRETURN with

AUTOTRAN
Transaction & Transaction B
tpcall () tprorwardi)
CLIENT : : 2VC B
with TPMOTEAN -
AUTOTEAM
Begins B
tpreturni) L tprorwardi)

Tertinates B

Called Service that Starts a New Explicit Transaction

If a communication call is made witlPNOTRANand the called service is not
automatically placed in transaction mode by a configuration option, the service can
define multiple transactions using explicit call§RBEGIN, TPCOMMITandTPABORT

As a result, the transaction can be completed before a call is iSSTRRIFOURN

In this situation, the following facts apply:

m TPRETURNlays no transaction role; that is, the rol@PRETURNS always the
same, regardless of whether transactions are explicitly defined in the service
routine.

m TPRETURNan return any value ifP-RETURN-VAL, regardless of the outcome
of the transaction.

m Typically, the system returns processing errors, record type errors, or application
failure, and follows the normal rules foPESVCFAIL, TPEITYPE/TPEOTYPEand
TPESVCERR

m The state of the caller’s transaction is not affected by any failed messages or
application failures returned to the caller.

Programming a BEA Tuxedo Application Using COBOL11-25

11 managing Errors

m The caller is vulnerable to the possibility that its own transaction may time out
as it waits for its reply.

m If no reply is expected, the caller’s transaction cannot be affected in any way by
the communication call.

BEA TUXEDO System-supplied Subroutines

The BEA Tuxedo system-supplied subroutinB=sVRINIT andTPSVRDONENMuUSt
follow certain rules when used in transactions.

The BEA Tuxedo system server callBSVRINIT during initialization. Specifically,
TPSVRINIT is called after the calling process becomes a server but before it starts
handling service requestsTIPSVRINIT performs any asynchronous communication,
all replies must be retrieved before the function returns; otherwise, the system ignore
all pending replies and the server exitSTREVRINIT defines any transactions, they
must be completed with all asynchronous replies retrieved before the function returns
otherwise, the system aborts the transaction and ignores all outstanding replies. In th
case, the server exits gracefully.

The BEA Tuxedo system server abstraction celSVRDONRfter it finishes

processing service requests but before it exits. At this point, the server’s services ar
no longer advertised, but the server has not yet left the applicattPSVRDONE
initiates communication, it must retrieve all outstanding replies before it returns;
otherwise, pending replies are ignored by the system and the server exits. If a
transaction is started withifPSVRDONEt must be completed with all replies

retrieved; otherwise, the system aborts the transaction and ignores the replies. In th
case, too, the server exits.

11-26 Programming a BEA Tuxedo Application Using COBOL

Central Event Log

Central Event Log

The central event log is a record of significant events in your BEA Tuxedo application.
Messages about these events are sent to the log by your application clients and services
via theUSERLOG(3chl) routine.

Any analysis of the central event log must be provided by the application. You should
establish strict guidelines for the events that are to be recordedigER& OG(3chl) .
Application debugging can be simplified by eliminating trivial messages.

For information on configuring the central event log on the Windows NT platform,
refer toUsing the BEA Tuxedo System on Windows NT

Log Name

The application administrator defines (in the configuration file) the absolute path name
that is used as the prefix of the name of the error message file on each machine. The
USERLOG(3chl) routine creates a date—in the fommddyy, representing the month,

day, and year—and adds this date to the path name prefix, forming the full filename of
the central event log. A new file is created daily. Thus, if a process sends messages to
the central event log on succeeding days, the messages are written into different files.

Programming a BEA Tuxedo Application Using COBOL11-27

11 managing Errors

Log Entry Format

Entries in the log consist of the following components:

m Tag consisting of:
e Time of day fhmms9

¢ Machine name (for example, the name returned byrthee(1) command
on a UNIX system)

¢ Name, process ID, and thread ID (which is 0 on platforms that do not
support threads) of the thread callin§ERLOG(3cbl)

e Context ID of the thread callingSERLOG(3cbl)

m Message text

The text of each message is preceded by the catalog name and number of that
message.

For example, suppose that a security program executes the following call at
4:22:14pm on a UNIX machine calleghachl (as returned by thename command):

01 LOG-RECPIC X(15) VALUE "UNKNOWN USER ".
01 LOGREC-LENPIC S9(9) VALUES IS 13.
CALL "USERLOG" USING LOG-REC LOGREC-LEN TPSTATUS-REC

The resulting log entry appears as follows:
162214.mach1!security.23451: UNKNOWN USER

In this example, the process ID for securitp3gs1 .

If the preceding message was generated by the BEA Tuxedo system (rather than by t
application), it might appear as follows:

162214.machl!security.23451: COBAPI_CAT: 999: UNKNOWN USER

In this case, the message catalog nara@®API_CAT and the message numbed$s .

11-28 Programming a BEA Tuxedo Application Using COBOL

Central Event Log

If the message is sent to the central event log while the process is in transaction mode,
other components are added to the tag in the user log entry. These components consist
of the literal stringgtrid ~ followed by three long hexadecimal integers. The integers
uniquely identify the global transaction and make up what is referred to as the global
transaction identifier, that is, thyerid . This identifier is used mainly for

administrative purposes, but it also appears in the tag that prefixes the messages in the
central event log. If the system writes the message to the central event log in
transaction mode, the resulting log entry appears as follows:

162214.machl!security.23451: gtrid x2 x24e1b803 x239:
UNKNOWN USER

Writing to the Event Log

To write a message to the event log, you must perform the following steps:

m Assign the error message you wish to write to the log to a record and use the
record name as the argument to the call.

m Specify the literal text of the message within double quotes, as the argument to
the USERLOG(3cbl) call, as shown in the following example.

01 TPSTATUS-REC.
COPY TPSTATUS.
01 LOGMSG PIC X(50).
01 LOGMSG-LEN PIC S9(9) COMP-5.

CALL "TPOPEN" USING TPSTSTUS-REC.
IF NOT TPOK
MOVE "TPSVRINIT: Cannot Open Data Base" TO LOGMSG
MOVE 43 LOGMSG-LEN
CALL "USERLOG" USING LOGMSG
LOGMSG-LEN
TPSTATUS-REC.

In this example, the message is sent to the central eventTP@PEN(3cbl) returns
-1.

Programming a BEA Tuxedo Application Using COBOL11-29

11 managing Errors

11-30 Programming a BEA Tuxedo Application Using COBOL

CHAPTER

12COBOL Language

Bindings for the
Workstation
Component

m UNIX Bindings
m Microsoft Windows Bindings

Refer toUsing the BEA Tuxedo Workstation Comporfientmore information on the
Workstation platform.

UNIX Bindings

The following sections describe how to write and build client programs, and set
appropriate environment variables when developing, in COBOL, a BEA Tuxedo
application on a UNIX platform.

Programming a BEA Tuxedo Application Using COBOL 12-1

12 cosoL Language Bindings for the Workstation Component

Writing Client Programs

You can develop COBOL client programs for a UNIX platform in the same way that
you develop COBOL clients in the BEA Tuxedo administrative domain. All ATMI
calls are available.

Building Client Programs

To compile and link-edit Workstation client programs, usebtligclient(1)
command. If you are building a UNIX Workstation client on the native node, use the
-w option to have the client built using the workstation libraries.

If you are building a client on a native node, and both native and workstation libraries
are present, the native libraries are used by default. In this case, specifying the
option ensures that the correct libraries for a workstation client are used.

On a workstation, where only the workstation libraries are present, it is not necessar
to specify-w.

The following example shows how to use Huédclient command on a native
node.

Listing 12-1 Example of Running buildclient on a UNIX Platform

ALTCC=cobcc ALTCFLAGS="-1 /APPDIR/include"

COBCPY=$TUXDIR/cobinclude

COBOPT="-C ANS85 -C ALIGN=8 -C NOIBMCOMP -C TRUNC=ANSI -C OSEXT=cbl"
export COBOPT COBCPY ALTCC ALTCFLAGS

buildclient -C -w -0 empclient -f name.cbl -f "userlibl.a userlib2.a"

The-o option enables you to specify a name for your output file. Input files specified
with the-f option are link-edited before system libraries.

As illustrated, th@UXDIR environment variable must be used to ensure that the
buildclient command can locate system libraries. Be sure that you have defined
TUXDIR. TheCCenvironment variable defaultsdo, but can be set to another compiler
throughALTCC

12-2 Programming a BEA Tuxedo Application Using COBOL

UNIX Bindings

Setting Environment Variables

Workstation clients make use of several environment variables.

The following table lists the environment variables that are checkeriRyTIALIZE
when a workstation client attempts to join an application.

Table 12-1 Environment Variables Checked by TPINITIALIZE on UNIX

Platform

Environment
Variable

Description

WSENVFILE

Name of a file containing environment variable settings to be
used in the client’'s environment.

WSNADDR

Network address of the workstation listener process through
which the client gains access to the application. Use the value
specified in the application configuration file for the workstation
listener to be called. If the value begins with the charabters
the system interprets it as a string of hexadecimal digits;
otherwise, the system interprets it as ASCII characters.

WSDEVICE

Name of the device to be used to access the network. Not
required by all transport layer interfaces.

WSTYPE

Workstation type. Used bYPINITIALIZE when that call is
invoked by a workstation client to negotiate encode/decode
responsibilities with the native site. If you do not specify
WSTYPEthe system performs encoding, eveWBTYPEs not
specified on the native site, either. You must explicitly specify
the samaVSTYPRalue for both the native and workstation

client sites to ensure that the encode/decode feature is turned off.

WSRPLYMAX

Maximum amount of core memory that the ATMI uses for
buffering application replies before dumping them to disk. Used
by TPINITIALIZE . The default system limit is 256,000 bytes.
Whether you should us&¥SRPLYMAX set a lower limit
depends on the amount of memory available on your machine.
Writing replies to disk causes a substantial reduction in
performance.

Programming a BEA Tuxedo Application Using COBOL 12-3

12 cosoL Language Bindings for the Workstation Component

Environment Description
Variable
WSFADDR The network address used by the workstation client when

connecting to the workstation listener or workstation handler.
This variable, along with the&/SFRANGfariable, determines
the range of TCP/IP ports to which a workstation client will
attempt to bind before making an outbound connection. This
address must be a TCP/IP address.

WSFRANGE The range of TCP/IP ports to which a workstation client process
attempts to bind before making an outbound connection. The
WSFADDRarameter specifies the base address of the range. The
default is 1.

Other environment variables may be needed by Workstation COBOL clients on a
UNIX workstation, depending on which components of the BEA Tuxedo system are
being used.

Note: MicroFocus deliver&IBNSL.a as a shared object, which is required by
buildclient when linking a workstation client. Because MicroFocus
COBOL does not support shared objects on UNIX 3.2, Workstation for UNIX
3.2 is not supported.

Microsoft Windows Bindings

The following sections describe how to write and build client programs, build
ACCEPT/DISPLAY clients, block network behavior, and restore the network
environment when developing, in COBOL, a BEA Tuxedo application for the
Microsoft Windows platform.

Writing Client Programs

All program-specific ATMI calls are available.

12-4 Programming a BEA Tuxedo Application Using COBOL

Microsoft Windows Bindings

Building Client Programs

To compile the COBOL source files that call the ATMI, you must use the COBOL
compiler with theLITLINK option. To link-edit the Workstation client object files, use
thebuildclient(1) command. While the syntax of the command is straightforward,
the usage varies according to the compilation system used.

The following example shows how to use Houédclient command.

Listing 12-2 Example of Running buildclient on a Windows Platform

COBCPY=C:\TUXEDO\COBINC

COBDIR=C:\COBOL\LBR;C:\COBOL\EXEDLL

PATH=C:\COBOL\EXEDLL,;...

TUXDIR=C:\tuxedo
LIB=C:\NET\TOOLKIT\LIB;C:\MSVC\LIB;C:\TUXEDOL\LIB;C:\COBOL\LIB
buildclient -C -o EMP.EXE -f EMP -f "/NOD/NOI/NOE/CO/SE:300" -| WLIBSOCK

For Windows NT:

buildclient -C -o EMP.EXE -f empobj

The following table describes theaildclient command options used in the
preceding example.

Table 12-2 buildclient Command Options for Windows Platform

Option Description

-0 name Name of the executable file being created. The default is
client.exe

- firstfiles One or more object files to be included before the BEA Tuxedo

libraries. You can use th& option to pass options to the
compiler or linker. To specify more than one filename, enter a
list of files after-f , using white space to separate filenames and
double quotation marks around the list. You can also specify
multiple filenames using multiple occurrences of fheoption

on the command line.

Programming a BEA Tuxedo Application Using COBOL 12-5

12 cosoL Language Bindings for the Workstation Component

Option Description

-| libfiles Libraries to be included after the BEA Tuxedo libraries. To
specify more than one filename, you must separate the names by
white space and enclose the list in quotation marks. You can also
specify multiple filenames using multiple occurrences oflthe
option on the command line.

Building ACCEPT/DISPLAY (lients

The following example shows how to build an executable client for an
ACCEPT/DISPLAY application, such aSSIMPAPPR

Listing 12-3 Building ACCEPT/DISPLAY clients

a) compile the COBOL module and create a file.obj
cobol file.cbl omf(obj) litlink;

b) use the following link statement
link FILE+cblwinaf,,,\
wcobatmi+cobws+wtuxws+ \
Icobol+Icoboldw+cobw+cobfp87w+ \
wlibsock,FILE.def /nod/noe;

For Windows NT the link statement is:
cbllink -oEMP.exe EMP.obj \
cobws.lib ncobatmi.lib wtuxws32.lib \
libcmt.lib user32.lib

12-6 Programming a BEA Tuxedo Application Using COBOL

	Copyright
	1 Introduction to BEA Tuxedo Programming
	BEA Tuxedo Distributed Application Programming
	Communication Paradigms
	BEA Tuxedo Clients
	BEA Tuxedo Servers
	Basic Server Operation
	Servers as Requesters

	BEA Tuxedo API: ATMI

	2 Programming Environment
	Updating the UBBCONFIG Configuration File
	Setting Environment Variables
	Defining Equivalent Data Types
	Starting and Stopping the Application

	3 Managing Typed Records
	Overview of Typed Records
	Defining Typed Records
	Using a VIEW Typed Record
	Setting Environment Variables for a VIEW Typed Record
	Creating a View Description File
	Executing the VIEW Compiler

	Using an FML Typed Record
	Setting Environment Variables for an FML Typed Record
	Creating a Field Table File
	Initializing a Typed Record
	Creating an FML Header File

	Using an XML Typed Record

	4 Writing Clients
	Joining an Application
	Using Features of the TPINFDEF-REC Record
	Client Naming
	Unsolicited Notification Handling
	System Access Mode
	Resource Manager Association
	Client Authentication

	Leaving the Application
	Building Clients
	See Also

	Client Process Examples

	5 Writing Servers
	BEA Tuxedo System Controlling Program
	System-supplied Server and Services
	System-supplied Server: AUTHSVR()
	System-supplied Services: TPSVRINIT Routine
	System-supplied Services: TPSVRDONE Routine

	Guidelines for Writing Servers
	Defining a Service
	Terminating a Service Routine
	Sending Replies
	Invalidating Descriptors
	Forwarding Requests

	Advertising and Unadvertising Services
	Advertising Services
	Unadvertising Services
	Example: Dynamic Advertising and Unadvertising of a Service

	Building Servers
	See Also

	6 Writing Request/Response Clients and Servers
	Overview of Request/Response Communication
	Sending Synchronous Messages
	Example: Using the Same Record for Request and Reply Messages
	Example: Sending a Synchronous Message with TPSIGRSTRT Set
	Example: Sending a Synchronous Message with TPNOTRAN Set

	Sending Asynchronous Messages
	Sending an Asynchronous Request
	Getting an Asynchronous Reply

	Setting and Getting Message Priorities
	Setting a Message Priority
	Getting a Message Priority

	7 Writing Conversational Clients and Servers
	Overview of Conversational Communication
	Joining an Application
	Establishing a Connection
	Sending and Receiving Messages
	Sending Messages
	Receiving Messages

	Ending a Conversation
	Example: Ending a Simple Conversation
	Example: Ending a Hierarchical Conversation
	Executing a Disorderly Disconnect

	Building Conversational Clients and Servers
	Understanding Conversational Communication Events

	8 Writing Event-based Clients and Servers
	Overview of Events
	Unsolicited Events
	Brokered Events

	Defining the Unsolicited Message Handler
	Sending Unsolicited Messages
	Broadcasting Messages By Name
	Broadcasting Messages by Identifier

	Checking for Unsolicited Messages
	Getting Unsolicited Messages
	Subscribing to Events
	Unsubscribing from Events
	Posting Events

	9 Writing Global Transactions
	What Is a Global Transaction?
	Starting the Transaction
	Terminating the Transaction
	Committing the Current Transaction
	Aborting the Current Transaction
	Example: Committing a Transaction in Conversational Mode
	Example: Testing for Participant Errors

	Implicitly Defining a Global Transaction
	Defining Global Transactions for an XA-Compliant Server Group
	Testing Whether a Transaction Has Started
	See Also

	10 Programming a Multithreaded and Multicontexted Application
	Support for Programming a Multithreaded/Multicontexted Application
	Platform-specific Considerations for Multithreaded/Multicontexted Applications

	Planning and Designing a Multithreaded/Multicontexted Application
	What Are Multithreading and Multicontexting
	What Is Multithreading
	What Is Multicontexting
	Licensing a Multithreaded or Multicontexted Application

	Advantages and Disadvantages of a Multithreaded/Multicontexted Application
	Advantages of a Multithreaded/Multicontexted Application
	Disadvantages of a Multithreaded/Multicontexted Application

	How Multithreading and Multicontexting Work in a Client
	Start-up Phase
	Work Phase
	Completion Phase

	How Multithreading and Multicontexting Work in a Server
	Start-up Phase
	Work Phase
	Completion Phase

	Design Considerations for a Multithreaded and Multicontexted Application
	Environment Requirements
	Design Requirements
	Is the Task of Your Application Suitable for Multithreading and/or Multicontexting
	How Many Applications and Connections Do You Want
	What Synchronization Issues Need to Be Addressed
	Will You Need to Port Your Application
	Which Threads Model Is Best for You
	Interoperability Restrictions for Workstation Clients

	Implementing a Multithreaded/ Multicontexted Application
	Preliminary Guidelines for Programming a Multithreaded/Multicontexted Application
	Prerequisites for a Multithreaded Application
	General Multithreaded Programming Considerations
	Concurrency Considerations

	Writing Code to Enable Multicontexting in a Client
	Context Attributes
	Setting Up Multicontexting at Initialization
	Implementing Security for a Multicontexted Client
	Synchronizing Threads Before a Client Termination
	Switching Contexts
	Handling Unsolicited Messages
	Coding Rules for Transactions in a Multithreaded/Multicontexted Application

	Writing Code to Enable Multicontexting and Multithreading in a Server
	Context Attributes
	Coding Rules for a Multicontexted Server
	Initializing and Terminating Servers and Server Threads
	Programming a Server to Create Threads
	Sample Code for Creating an Application Thread in a Multicontexted Server

	Writing a Multithreaded Client
	Coding Rules for a Multithreaded Client
	Initializing a Client to Multiple Contexts
	Context State Changes for a Client Thread
	Getting Replies in a Multithreaded Environment
	Using Environment Variables in a Multithreaded and/or Multicontexted Environment
	Using Per-context Functions and Data Structures in a Multithreaded Client
	Using Per-process Functions and Data Structures in a Multithreaded Client
	Using Per-thread Functions and Data Structures in a Multithreaded Client
	Sample Code for a Multithreaded Client

	Writing a Multithreaded Server
	Compiling Code for a Multithreaded/Multicontexted Application
	Testing a Multithreaded/Multicontexted Application
	Testing Recommendations for a Multithreaded/Multicontexted Application
	Troubleshooting a Multithreaded/Multicontexted Application
	Error Handling for a Multithreaded/Multicontexted Application

	11 Managing Errors
	System Errors
	Abort Errors
	BEA Tuxedo System Errors
	Communication Handle Errors
	Limit Errors
	Invalid Descriptor Errors

	Conversational Errors
	Duplicate Object Error
	General Communication Call Errors
	TPESVCFAIL and TPESVCERR Errors
	TPEBLOCK and TPGOTSIG Errors

	Invalid Argument Errors
	No Entry Errors
	Operating System Errors
	Permission Errors
	Protocol Errors
	Queuing Error
	Release Compatibility Error
	Resource Manager Errors
	Time-out Errors
	Transaction Errors
	Typed Record Errors
	Application Errors
	Handling Errors
	Transaction Considerations
	Communication Etiquette
	Transaction Errors
	Non-fatal Transaction Errors
	Fatal Transaction Errors
	Heuristic Decision Errors

	Transaction Time-outs
	TPNOTRAN
	TPRETURN and TPFORWAR Calls

	tpterm() Function
	Resource Managers
	Sample Transaction Scenarios
	Called Service in Same Transaction as Caller
	Called Service in Different Transaction with AUTOTRAN Set
	Called Service that Starts a New Explicit Transaction

	BEA TUXEDO System-supplied Subroutines
	Central Event Log
	Log Name
	Log Entry Format
	Writing to the Event Log

	12 COBOL Language Bindings for the Workstation Component
	UNIX Bindings
	Writing Client Programs
	Building Client Programs
	Setting Environment Variables

	Microsoft Windows Bindings
	Writing Client Programs
	Building Client Programs
	Building ACCEPT/DISPLAY Clients

