
Programming a BEA Tuxedo

B E A T u x e d o R e l e a s e 7 . 1
D o c u m e n t E d i t i o n 7 . 1

M a y 2 0 0 0

BEA Tuxedo

Application Using COBOL

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, and WebLogic Enterprise
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Programming a BEA Tuxedo Application Using COBOL

Document Edition Date Software Version

7.1 May 2000 BEA Tuxedo Release 7.1

1-1

.. 1-3

.. 1-4

.. 1-6

.. 1-6

.... 1-8

1-9

2-1

.. 2-5

.. 2-8

. 2-9

.. 3-1

.. 3-6

. 3-7

3-8

3-8

-12

3-15

-15

3-16

-17
Contents

1. Introduction to BEA Tuxedo Programming
BEA Tuxedo Distributed Application Programming ..

Communication Paradigms ...

BEA Tuxedo Clients..

BEA Tuxedo Servers...

Basic Server Operation...

Servers as Requesters ...

BEA Tuxedo API: ATMI ..

2. Programming Environment
Updating the UBBCONFIG Configuration File..

Setting Environment Variables..

Defining Equivalent Data Types ...

Starting and Stopping the Application ...

3. Managing Typed Records
Overview of Typed Records..

Defining Typed Records..

Using a VIEW Typed Record...

Setting Environment Variables for a VIEW Typed Record.......................

Creating a View Description File...

Executing the VIEW Compiler .. 3

Using an FML Typed Record..

Setting Environment Variables for an FML Typed Record..................... 3

Creating a Field Table File...

Initializing a Typed Record.. 3
Programming a BEA Tuxedo Application Using COBOL iii

3-20

3-22

.. 4-1

.. 4-4

. 4-4

4-6

... 4-7

.. 4-8

. 4-8

.. 4-9

.. 4-9

. 4-11

. 4-12

. 5-1

.... 5-3

5-3

. 5-4

. 5-8

.. 5-9

5-10

5-17

. 5-17

5-23

. 5-24

5-27

5-28

5-29

-29

5-30

. 5-32
Creating an FML Header File...

Using an XML Typed Record ...

4. Writing Clients
Joining an Application...

Using Features of the TPINFDEF-REC Record..

Client Naming ...

Unsolicited Notification Handling ...

System Access Mode...

Resource Manager Association ..

Client Authentication...

Leaving the Application ..

Building Clients ...

See Also...

Client Process Examples ..

5. Writing Servers
BEA Tuxedo System Controlling Program ..

System-supplied Server and Services..

System-supplied Server: AUTHSVR() ...

System-supplied Services: TPSVRINIT Routine......................................

System-supplied Services: TPSVRDONE Routine...................................

Guidelines for Writing Servers..

Defining a Service ...

Terminating a Service Routine ..

Sending Replies ...

Invalidating Descriptors ...

Forwarding Requests ...

Advertising and Unadvertising Services ...

Advertising Services...

Unadvertising Services...

Example: Dynamic Advertising and Unadvertising of a Service............. 5

Building Servers ..

See Also...
iv Programming a BEA Tuxedo Application Using COBOL

.. 6-1

.... 6-3

... 6-4

.. 6-6

. 6-8

.. 6-10

. 6-11

6-14

. 6-14

6-15

6-17

. 7-1

.. 7-3

... 7-4

.... 7-5

... 7-6

... 7-7

... 7-8

. 7-9

7-10

7-12

7-13

7-13

.. 8-1

.. 8-2

.. 8-2

.. 8-5

... 8-6

... 8-7

.. 8-9
6. Writing Request/Response Clients and Servers
Overview of Request/Response Communication..

Sending Synchronous Messages..

Example: Using the Same Record for Request and Reply Messages

Example: Sending a Synchronous Message with TPSIGRSTRT Set

Example: Sending a Synchronous Message with TPNOTRAN Set

Sending Asynchronous Messages ...

Sending an Asynchronous Request ...

Getting an Asynchronous Reply ..

Setting and Getting Message Priorities ..

Setting a Message Priority..

Getting a Message Priority ...

7. Writing Conversational Clients and Servers
Overview of Conversational Communication ..

Joining an Application...

Establishing a Connection ..

Sending and Receiving Messages ...

Sending Messages ...

Receiving Messages ..

Ending a Conversation ...

Example: Ending a Simple Conversation..

Example: Ending a Hierarchical Conversation ..

Executing a Disorderly Disconnect..

Building Conversational Clients and Servers..

Understanding Conversational Communication Events..................................

8. Writing Event-based Clients and Servers
Overview of Events ...

Unsolicited Events..

Brokered Events ...

Defining the Unsolicited Message Handler...

Sending Unsolicited Messages ...

Broadcasting Messages By Name ...

Broadcasting Messages by Identifier ...
Programming a BEA Tuxedo Application Using COBOL v

.. 8-9

. 8-10

. 8-12

8-15

. 8-15

... 9-1

... 9-2

9-10

9-10

9-13

-14

-15

-17

-18

. 9-18

. 9-20

0-2

0-2

0-3

0-4

0-4

0-6

-8

10-8

0-9

-10

11

10-11
Checking for Unsolicited Messages ..

Getting Unsolicited Messages ..

Subscribing to Events ...

Unsubscribing from Events ...

Posting Events ..

9. Writing Global Transactions
What Is a Global Transaction? ...

Starting the Transaction..

Terminating the Transaction..

Committing the Current Transaction..

Aborting the Current Transaction...

Example: Committing a Transaction in Conversational Mode9

Example: Testing for Participant Errors... 9

Implicitly Defining a Global Transaction.. 9

Defining Global Transactions for an XA-Compliant Server Group................9

Testing Whether a Transaction Has Started ...

See Also...

10. Programming a Multithreaded and Multicontexted
Application

Support for Programming a Multithreaded/Multicontexted Application 1

Platform-specific Considerations for Multithreaded/Multicontexted
Applications .. 1

Planning and Designing a Multithreaded/Multicontexted Application 1

What Are Multithreading and Multicontexting ... 1

What Is Multithreading...1

What Is Multicontexting... 1

Licensing a Multithreaded or Multicontexted Application 10

Advantages and Disadvantages of a Multithreaded/Multicontexted
Application ...

Advantages of a Multithreaded/Multicontexted Application................... 1

Disadvantages of a Multithreaded/Multicontexted Application............. 10

How Multithreading and Multicontexting Work in a Client 10-

Start-up Phase...
vi Programming a BEA Tuxedo Application Using COBOL

0-13

0-16

17

10-18

0-18

0-21

0-22

0-23

0-24

-24

-25

0-26

26

-26

-27

-28

0-28

-29

0-29

0-30

-31

0-32

33

-34

-34

0-35

0-38

-39

-40

0-40

-41
Work Phase .. 1

Completion Phase... 1

How Multithreading and Multicontexting Work in a Server 10-

Start-up Phase...

Work Phase .. 1

Completion Phase... 1

Design Considerations for a Multithreaded and Multicontexted
Application ... 1

Environment Requirements.. 1

Design Requirements ... 1

Is the Task of Your Application Suitable for Multithreading and/or
Multicontexting... 10

How Many Applications and Connections Do You Want 10

What Synchronization Issues Need to Be Addressed 1

Will You Need to Port Your Application... 10-

Which Threads Model Is Best for You .. 10

Interoperability Restrictions for Workstation Clients 10

Implementing a Multithreaded/ Multicontexted Application........................ 10

Preliminary Guidelines for Programming a Multithreaded/Multicontexted
Application ... 1

Prerequisites for a Multithreaded Application 10

General Multithreaded Programming Considerations............................ 1

Concurrency Considerations .. 1

Writing Code to Enable Multicontexting in a Client..................................... 10

Context Attributes .. 1

Setting Up Multicontexting at Initialization... 10-

Implementing Security for a Multicontexted Client 10

Synchronizing Threads Before a Client Termination 10

Switching Contexts .. 1

Handling Unsolicited Messages ... 1

Coding Rules for Transactions in a Multithreaded/Multicontexted
Application.. 10

Writing Code to Enable Multicontexting and Multithreading in a Server 10

Context Attributes .. 1

Coding Rules for a Multicontexted Server... 10
Programming a BEA Tuxedo Application Using COBOL vii

0-42

0-42

0-43

-45

-46

47

0-48

-50

0-51

0-53

0-55

0-56

0-57

0-59

60

-61

-61

62

3

. 11-1

11-3

11-3

11-4

1-4

1-5

. 11-5

11-6

11-6
Initializing and Terminating Servers and Server Threads...................... 1

Programming a Server to Create Threads .. 1

Sample Code for Creating an Application Thread in a Multicontexted
Server .. 1

Writing a Multithreaded Client..10

Coding Rules for a Multithreaded Client ... 10

Initializing a Client to Multiple Contexts... 10-

Context State Changes for a Client Thread .. 1

Getting Replies in a Multithreaded Environment................................... 10

Using Environment Variables in a Multithreaded and/or Multicontexted
Environment .. 1

Using Per-context Functions and Data Structures in a Multithreaded
Client ... 1

Using Per-process Functions and Data Structures in a Multithreaded
Client ... 1

Using Per-thread Functions and Data Structures in a Multithreaded
Client ... 1

Sample Code for a Multithreaded Client..1

Writing a Multithreaded Server ... 1

Compiling Code for a Multithreaded/Multicontexted Application 10-

Testing a Multithreaded/Multicontexted Application 10

Testing Recommendations for a Multithreaded/Multicontexted
Application .. 10

Troubleshooting a Multithreaded/Multicontexted Application..............10-

Error Handling for a Multithreaded/Multicontexted Application 10-6

11. Managing Errors
System Errors ...

Abort Errors ...

BEA Tuxedo System Errors ..

Communication Handle Errors ..

Limit Errors ..1

Invalid Descriptor Errors.. 1

Conversational Errors ...

Duplicate Object Error...

General Communication Call Errors ...
viii Programming a BEA Tuxedo Application Using COBOL

1-7

1-7

11-8

11-8

. 11-9

. 11-9

1-10

1-10

1-11

11-11

1-11

1-12

1-13

1-14

1-14

11-15

1-15

1-16

1-17

1-18

1-19

1-20

-20

-21

1-21

11-22

11-23

1-23

24

-25

-26

1-27

1-27

1-28

-29
TPESVCFAIL and TPESVCERR Errors... 1

TPEBLOCK and TPGOTSIG Errors ... 1

Invalid Argument Errors..

No Entry Errors ...

Operating System Errors ..

Permission Errors ...

Protocol Errors... 1

Queuing Error.. 1

Release Compatibility Error .. 1

Resource Manager Errors ..

Time-out Errors ... 1

Transaction Errors ... 1

Typed Record Errors ... 1

Application Errors ... 1

Handling Errors ... 1

Transaction Considerations ...

Communication Etiquette .. 1

Transaction Errors ... 1

Non-fatal Transaction Errors.. 1

Fatal Transaction Errors ... 1

Heuristic Decision Errors ... 1

Transaction Time-outs... 1

TPNOTRAN... 11

TPRETURN and TPFORWAR Calls .. 11

tpterm() Function.. 1

Resource Managers ...

Sample Transaction Scenarios...

Called Service in Same Transaction as Caller 1

Called Service in Different Transaction with AUTOTRAN Set............ 11-

Called Service that Starts a New Explicit Transaction 11

BEA TUXEDO System-supplied Subroutines.. 11

Central Event Log.. 1

Log Name... 1

Log Entry Format ... 1

Writing to the Event Log.. 11
Programming a BEA Tuxedo Application Using COBOL ix

12-1

2-2

2-2

12-3

2-4

2-4

2-5

-6
12. COBOL Language Bindings for the Workstation Component
UNIX Bindings..

Writing Client Programs... 1

Building Client Programs... 1

Setting Environment Variables...

Microsoft Windows Bindings.. 1

Writing Client Programs... 1

Building Client Programs... 1

Building ACCEPT/DISPLAY Clients ... 12
x Programming a BEA Tuxedo Application Using COBOL

CHAPTER

ple
sks

ules
nk on
1 Introduction to BEA
Tuxedo Programming

� BEA Tuxedo Distributed Application Programming

� Communication Paradigms

� BEA Tuxedo Clients

� BEA Tuxedo Servers

� BEA Tuxedo API: ATMI

BEA Tuxedo Distributed Application
Programming

A distributed application consists of a set of software modules that reside on multi
hardware systems, and that communicate with one another to accomplish the ta
required of the application. For example, as shown in the following figure, a
distributed application for a remote online banking system includes software mod
that run on a bank customer’s home computer, and a computer system at the ba
which all bank account records are maintained.
Programming a BEA Tuxedo Application Using COBOL 1-1

1 Introduction to BEA Tuxedo Programming

 by
tware
n

API
uted

tions

ment

Figure 1-1 Distributed Application Example - Online Banking System

The task of checking an account balance, for example, can be performed simply
logging on and selecting an option from a menu. Behind the scenes, the local sof
module communicates with the remote software module using special Applicatio
Programming Interface (API) routines.

The BEA Tuxedo distributed application programming environment provides the
routines necessary to enable secure, reliable communication between the distrib
software modules. The BEA Tuxedo API is referred to as the
Application-to-Transaction Monitor Interface (ATMI).

The ATMI enables you to:

� Send and receive messages between clients and servers, possibly across a
network of heterogeneous machines

� Establish and use client naming and security features

� Define and manage transactions in which data may be stored in several loca

� Generically open and close a resource manager such as a Database Manage
System (DBMS)

� Manage the flow of service requests and the availability of servers to process
them
1-2 Programming a BEA Tuxedo Application Using COBOL

Communication Paradigms

le to

le

g

d,

s
h

t

Communication Paradigms

The following table describes the BEA Tuxedo communication paradigms availab
application developers.

Table 1-1 Communication Paradigms

Paradigm Description

Request/Response
Communication

Request/response communication enables one software modu
to send a request to a second software module and wait for a
response. Can be synchronous (processing waits until the
requester receives the response) or asynchronous (processin
continues while the requester waits for the response).

This mode is also referred to as client/server interaction. The
first software module assumes the role of the client; the secon
of the server.

Refer to “Writing Request/Response Clients and Servers” on
page 6-1 for more information on this paradigm.

Conversational
Communication

Conversational communication is similar to request/response
communication, except that multiple requests and/or response
need to take place before the “conversation” is terminated. Wit
conversational communication, both the client and the server
maintain state information until the conversation is
disconnected. The application protocol that you are using
governs how messages are communicated between the clien
and server.

Conversational communication is commonly used to buffer
portions of a lengthy response from a server to a client.

Refer to “Writing Conversational Clients and Servers” on page
7-1 for more information on this paradigm.
Programming a BEA Tuxedo Application Using COBOL 1-3

1 Introduction to BEA Tuxedo Programming

s it
come

r

ul

a

d

1
BEA Tuxedo Clients

A BEA Tuxedo client is a software module that collects a user request and forward
to a server that offers the requested service. Almost any software module can be
a BEA Tuxedo client by calling the ATMI client initialization routine and “joining”
the BEA Tuxedo application. The client can then exchange information with the
server.

Application Queue-based
Communication

Application queue-based communication supports deferred or
time-independent communication, enabling a client and serve
to communicate using an application queue. The BEA
Tuxedo/Q facility allows messages to be queued to persistent
storage (disk) or to non-persistent storage (memory) for later
processing or retrieval.

For example, application queue-based communication is usef
for enqueuing requests when a system goes off-line for
maintenance, or for buffering communications if the client and
server systems are operating at different speeds.

Refer to Using the BEA Tuxedo /Q Component for more
information on the /Q facility.

Event-based
Communication

Event-based communication allows a client or server to notify
client when a specific situation (event) occurs.

Events are reported in one of two ways:

� Unsolicited events are unexpected situations that are
reported by clients and/or servers directly to clients.

� Brokered events are unexpected situations or predictable
occurrences with unpredictable timeframes that are reporte
by servers to clients indirectly, through an “anonymous
broker” program that receives and distributes messages.

Event-based communication is based on the BEA Tuxedo
EventBroker facility.

Refer to “Writing Event-based Clients and Servers” on page 8-
for more information on this paradigm.

Paradigm Description
1-4 Programming a BEA Tuxedo Application Using COBOL

BEA Tuxedo Clients

ntly,

shown

e
alls or,
g a
am is
The client calls the ATMI termination routine to “leave” the application and notify the
BEA Tuxedo system that it (the client) no longer needs to be tracked. Conseque
BEA Tuxedo application resources are made available for other operations.

The operation of a basic client process can be summarized by the pseudo-code
in the following listing.

Listing 1-1 Pseudo-code for a Client

START PROGRAM
enroll as a client of the BEA TUXEDO application
place initial client identification in data structure
perform until end
get user input
place user input in DATA-REC
send service request
receive reply
pass reply to the user
end perform
leave application
END PROGRAM

Most of the actions described in the above listing are implemented with ATMI calls.
Others—placing the user input in DATA-REC and passing the reply to the user—are
implemented with COBOL routines.

A client may send and receive any number of service requests before leaving th
application. The client may send these requests as a series of request/response c
if it is important to carry state information from one call to the next, by establishin
connection to a conversational server. In both cases, the logic in the client progr
similar, but different ATMI calls are required for these two approaches.

Before you can execute a client, you must run the buildclient -C command to
compile it and link it with the BEA Tuxedo ATMI and required libraries. Refer to
“Writing Clients” on page 4-1 for information on the buildclient command.
Programming a BEA Tuxedo Application Using COBOL 1-5

1 Introduction to BEA Tuxedo Programming

eive

and
and
nt to

r and
BEA Tuxedo Servers

A BEA Tuxedo server is a process that provides one or more services to a client. A
service is a specific business task that a client may need to perform. Servers rec
requests from clients and dispatch them to the appropriate service subroutines.

Basic Server Operation

To build server processes, applications combine their service subroutines with a
controlling program provided by the BEA Tuxedo system. This system-supplied
controlling program is a set of predefined routines. It performs server initialization
termination and places user input in data structures that can be used to receive
dispatch incoming requests to service routines. All of this processing is transpare
the application.

The following figure summarizes, in pseudo-code, the interaction between a serve
a service subroutine.
1-6 Programming a BEA Tuxedo Application Using COBOL

BEA Tuxedo Servers

ne

ue,
a reply
Figure 1-2 Pseudo-code for a Request/Response Server and a Service Subrouti

After initialization, waits until a request message is delivered to its message que
dequeues the request, and dispatches it to a service subroutine for processing. If
is required, the reply is considered part of request processing.

The conversational paradigm is somewhat different from request/response, as
illustrated by the pseudo-code in the following figure.
Programming a BEA Tuxedo Application Using COBOL 1-7

1 Introduction to BEA Tuxedo Programming

 to
lls are

ile and
te an

ubset
 the

ily

n this
e reply
t.
Figure 1-3 Pseudo-code for a Conversational Service Subroutine

The BEA Tuxedo system-supplied controlling program contains the code needed
enroll a process as a server, advertise services, and dequeue requests. ATMI ca
used in service subroutines that process requests. When you are ready to comp
test your service subroutines, you must link edit them with the server and genera
executable server. To do so, run the buildserver -C command.

Servers as Requesters

If a client requests several services, or several iterations of the same service, a s
of the services might be transferred to another server for execution. In this case,
server assumes the role of a client, or requester. Both clients and servers can be
requesters; a client, however, can only be a requester. This coding model is eas
accomplished using the BEA Tuxedo ATMI calls.

Note: A request/response server can also forward a request to another server. I
case, the server does not assume the role of client (requester) because th
is expected by the original client, not by the server forwarding the reques
1-8 Programming a BEA Tuxedo Application Using COBOL

BEA Tuxedo API: ATMI

ust
en

 begin
The

on

e

on

 on
BEA Tuxedo API: ATMI

In addition to the COBOL code that expresses the logic of your application, you m
use the Application-to-Transaction Monitor Interface (ATMI), the interface betwe
your application and the BEA Tuxedo system.

The ATMI is a reasonably compact set of calls used to open and close resources,
and end transactions, and support communication between clients and servers.
following table summarizes the ATMI calls. Each call is described in the BEA Tuxedo
COBOL Function Reference.

Table 1-2 Using the ATMI Calls

For a Task Related
to . . .

Use This COBOL
Function . . .

To . . . For More
Information,
Refer to . . .

Client membership TPINITIALIZE Have a client join an application “Writing Clients”
page 4-1

TPTERM Have a client leave an
application

Multiple application
context management

TPGETCTXT(3cbl) Retrieve an identifier for the
current threads context

“Programming a
Multithreaded and
Multicontexted
Application” on pag
10-1

TPSETCTXT(3cbl) Set the current thread’s context
in a multicontexted process

Service entry and return TPSVCSTART Get service information “Writing Servers”
page 5-1

TPSVRINIT Initialize a server

TPSVRDONE Terminate a server

TPRETURN End a service routine

TPFORWAR Forward a request

Dynamic advertisement TPADVERTISE Advertise a service name “Writing Servers”
page 5-1

TPUNADVERTISE Unadvertise a service name
Programming a BEA Tuxedo Application Using COBOL 1-9

1 Introduction to BEA Tuxedo Programming

”

nse

e

”

do
Message priority TPGPRIO Get the priority of the last
request

“Writing Servers” on
page 5-1

TPSPRIO Set the priority of the next
request

Request/Response
communications

TPCALL Initiate a synchronous
request/response to a service

� “Writing Servers
on page 5-1

� “Writing
Request/Respo
Clients and
Servers” on pag
6-1

TPACALL Initiate an asynchronous request
(fanout)

TPGETRPLY Receive an asynchronous
response

TPCANCEL Cancel an asynchronous request

Conversational
communications

TPCONNECT Begin a conversation with a
service

“Writing
Conversational
Clients and Servers
on page 7-1TPDISCON Abnormally terminate a

conversation

TPSEND Send a message in a
conversation

TPRECV Receive a message in a
conversation

Reliable queuing TPENQUEUE(3cbl) Enqueue a message to a message
queue

Using the BEA Tuxe
/Q Component

TPDEQUEUE(3cbl) Dequeue a message from a
message queue

For a Task Related
to . . .

Use This COBOL
Function . . .

To . . . For More
Information,
Refer to . . .
1-10 Programming a BEA Tuxedo Application Using COBOL

BEA Tuxedo API: ATMI

d
”

ge

d

A
Event-based
communications

TPNOTIFY Send an unsolicited message to a
client

“Writing Event-base
Clients and Servers
on page 8-1

TPBROADCAST Send messages to several clients

TPSETUNSOL Set unsolicited message
call-back

TPCHKUNSOL Check the arrival of unsolicited
messages

TPGETUNSOL Get an unsolicited message

TPPOST Post an event message

TPSUBSCRIBE Subscribe to event messages

TPUNSUBSCRIBE Unsubscribe to event messages

Transaction management TPBEGIN Begin a transaction “Writing Global
Transactions” on pa
9-1TPCOMMIT Commit the current transaction

TPABORT Roll back the current transaction

TPGETLEV Check whether in transaction
mode

Resource management TPOPEN(3cbl) Open a resource manager � “Programming a
Multithreaded an
Multicontexted
Application” on
page 10-1

� Setting Up a BE
Tuxedo
Application

TPCLOSE(3cbl) Close a resource manager

For a Task Related
to . . .

Use This COBOL
Function . . .

To . . . For More
Information,
Refer to . . .
Programming a BEA Tuxedo Application Using COBOL 1-11

1 Introduction to BEA Tuxedo Programming

Security TPKEYOPEN(3cbl) Open a key handle for digital
signature generation, message
encryption, or message
decryption

Using BEA Tuxedo
Security

TPKEYGETINFO(3cbl) Get information associated with
a key handle

TPKEYSETINFO(3cbl) Set optional attributes associated
with a key handle

TPKEYCLOSE(3cbl) Close a key handle previously
opened using TPKEYOPEN

For a Task Related
to . . .

Use This COBOL
Function . . .

To . . . For More
Information,
Refer to . . .
1-12 Programming a BEA Tuxedo Application Using COBOL

CHAPTER

es:

r
2 Programming
Environment

� Updating the UBBCONFIG Configuration File

� Setting Environment Variables

� Defining Equivalent Data Types

� Starting and Stopping the Application

Updating the UBBCONFIG Configuration File

The application administrator initially defines the configuration settings for an
application in the UBBCONFIG configuration file. To customize your programming
environment, you may need to create or update a configuration file.

If you need to create or update a configuration file, refer to the following guidelin

� Copy and edit a file that already exists. For example, the file ubbshm that comes
with the bankapp sample application can provide a good starting point.

� Minimize complexity. For test purposes, set up your application as a shared
memory, single-processor system. Use regular operating system files for you
data.
Programming a BEA Tuxedo Application Using COBOL 2-1

2 Programming Environment

.

ry.
� Make sure the IPCKEY parameter in the configuration file does not conflict with
any other parameters being used at your installation. Check with your BEA
Tuxedo application administrator, and refer to Setting Up a BEA Tuxedo
Application for more information.

� Set the UID and GID parameters so that you are the owner of the configuration

� Review the documentation. The configuration file is described in UBBCONFIG(5)
in the BEA Tuxedo File Formats and Data Descriptions Reference.

The following table summarizes the UBBCONFIG configuration file parameters that
affect the programming environment. Parameters are listed by functional catego

Table 2-1 Programming-related UBBCONFIG Parameters by Functional
Category

Functional
Category

Parameter Section Description

Global Resource
Limits

MAXSERVERS RESOURCES Specifies the maximum number of
servers in the configuration. When
setting this value, you need to
consider the MAX values for all
servers.

MAXSERVICES RESOURCES Specifies the maximum total number
of services in the configuration.

Data-dependent
Routing

BUFTYPE ROUTING List of types and subtypes of data
records for which the specified
routing entry is valid.

Link-level
Encryption

MINENCRYPTBITS NETWORK Sets the minimum encryption level
that a process accepts.

MAXENCRYPTBITS NETWORK Sets the maximum encryption level
that a process accepts.
2-2 Programming a BEA Tuxedo Application Using COBOL

Updating the UBBCONFIG Configuration File
Load Balancing LDBAL RESOURCES Flag for specifying whether or not
load balancing is enabled. If enabled,
the BEA Tuxedo system attempts to
balance requests across the network.

NETLOAD MACHINES Numeric value that is added to the
load factor of services that are remote
from the invoking client, providing a
bias for choosing a local server over a
remote server. Load balancing must
be enabled (that is, LDBAL must be
set to Y).

LOAD SERVICES Relative load factor associated with a
service instance. The default is 50.

Security AUTHSVC RESOURCES Specifies the name of an application
authentication service that is invoked
by the system for each client joining
the system.

SECURITY RESOURCES Specifies the type of application
security to be enforced.

Functional
Category

Parameter Section Description
Programming a BEA Tuxedo Application Using COBOL 2-3

2 Programming Environment
Conversational
Communication

MAXCONV RESOURCES Sets the maximum number of
simultaneous conversations for a
single machine. You can specify a
value between 0 and 32,767. The
default is 64 if any conversational
servers are defined in the SERVERS
section; otherwise, the default is 1.
The specified value can be overriden
for each machine in the MACHINES
section.

CONV SERVERS Specifies whether or not
conversational communication is
supported. If this parameter is set to N
or unspecified, a TPCONNECT call to
a service fails.

MIN/MAX SERVERS Specify the minimum and maximum
number of occurrences of the server
to be started by tmboot(1) . If not
specified, MIN defaults to 1 and MAX
defaults to MIN. The same parameters
are available for use with
request/response servers. However,
conversational servers are
automatically spawned as needed. So
if you set MIN=1 and MAX=10, for
example, tmboot starts one server
initially. When a TPCONNECT call is
made to a service offered by that
server, the system starts a second
copy of a server. As each copy is
called, a new one is spawned, up to a
limit of 10.

Functional
Category

Parameter Section Description
2-4 Programming a BEA Tuxedo Application Using COBOL

Setting Environment Variables

tem,

nt in
alues
The configuration file is an operating system text file. To make it usable by the sys
you must execute the tmloadcf(1) command to convert the file to a binary file.

See Also

� Setting Up a BEA Tuxedo Application

� UBBCONFIG(5) in the BEA Tuxedo File Formats and Data Descriptions
Reference

Setting Environment Variables

Initially, the application administrator sets the variables that define the environme
which your application runs. These environment variables are set by assigning v
to the ENVFILE parameter in the MACHINES section of the UBBCONFIG file. (Refer to
Setting Up a BEA Tuxedo Application for more information.)

Transaction
Management

AUTOTRAN SERVICES Controls whether a service routine is
placed in transaction mode. If you set
this parameter to Y, a transaction in
the service subroutine is
automatically started whenever a
request message is received from
another process.

Multithreaded
Servers

MAXDISPATCHTHREADS SERVERS Specifies the maximum number of
concurrently dispatched threads that
each server process may spawn.

MINDISPATCHTHREADS SERVERS Specifies the number of server
dispatch threads started on initial
server boot.

Functional
Category

Parameter Section Description
Programming a BEA Tuxedo Application Using COBOL 2-5

2 Programming Environment

ost
gory.
For the client and server routines in your application, you can update existing
environment variables or create new ones. The following table summarizes the m
commonly used environment variables. The variables are listed by functional cate

Table 2-2 Programming-related Environment Variables

Function Environment
Variable

Defines the . . . Used by . . .

Global TUXDIR Location of the BEA
Tuxedo system binary files.

BEA Tuxedo application
programs

Configuration TUXCONFIG Location of the BEA
Tuxedo configuration file.

BEA Tuxedo application
programs

Compiling ALTCC1 Command that invokes the
COBOL compiler. Default
is cobcc.

builclient() -C and
buildserver() -C
commands

ALTCFLAGS1 Link edit flags to be passed
to the COBOL compiler.
Link edit flags are optional.

builclient() -C and
buildserver() -C
commands

COBOPT Arguments that you may
want to use on the compile
command line.

builclient() -C and
buildserver() -C
commands

COBCPY Directories that contain a
set of the COBOL COPY
files to be used by the
compiler.

builclient() -C and
buildserver() -C
commands

Data Compression TMCMPPRFM Level of compression
between 1 and 9.

BEA Tuxedo application
programs that perform data
compression
2-6 Programming a BEA Tuxedo Application Using COBOL

Setting Environment Variables

t

Load Balancing TMNETLOAD Numeric value that is added
to the load value for remote
queues, making the remote
queues appear to have more
work than they actually do.
As a result, even if load
balancing is enabled, local
requests are sent to local
queues more often than to
remote queues.

BEA Tuxedo application
programs that perform load
balancing

Record Management FIELDTBLS or
FIELDTBLS32

Comma-separated list of
field table filenames for
FML and FML32 typed
records, respectively.
Required only for FML
VIEW types.

FML and FML32 record types
and FML VIEWs

FLDTBLDIR or
FLDTBLDIR32

Colon-separated list of
directories to be searched
for the field table files for
FML and FML32,
respectively. For Windows
NT, a semi-colon separated
list is used.

FML and FML32 record types
and FML VIEWs

VIEWFILES or
VIEWFILES32

Comma-separated list of
allowable f ilenames for
VIEW and VIEW32 typed
records, respectively.

VIEW and VIEW32 record types

VIEWDIR or
VIEWDIR32

Colon-separated list of
directories to be searched
for VIEW and VIEW32
files, respectively. For
Windows NT, a semi-colon
separated list is used.

VIEW and VIEW32 record types

1. On a Windows NT system, the ALTCC and ALTCFLAGS environment variables are not appli-
cable and setting them will produce unexpected results. You must compile your application firs
using a COBOL compiler and then pass the resulting object file to the buildclient or build-
server command.

Function Environment
Variable

Defines the . . . Used by . . .
Programming a BEA Tuxedo Application Using COBOL 2-7

2 Programming Environment

tem

 are

ked

ding
If operating in a UNIX environment, add $TUXDIR/bin to your environment PATH to
ensure that your application can locate the executables for the BEA Tuxedo sys
commands. For more information on setting up the environment, refer to Setting Up a
BEA Tuxedo Application.

See Also

� Setting Up a BEA Tuxedo Application

Defining Equivalent Data Types

The following table lists the C data types for which equivalent COBOL data types
available.

Table 2-3 COBOL Equivalents for C Data Types

For storage efficiency, COBOL supports packed decimals: two decimal digits pac
into each byte with the low-order half byte used to store the sign. The length of a
packed decimal may be 1 to 9 bytes with storage available for 1 to 17 digits, inclu
the sign.

C Data Type Equivalent COBOL Data Type

float COMP-1

double COMP-2

long S9(9) COMP-5 1

1. COMP-5, provided for use with MicroFocus COBOL, allows the COBOL
integer fields to match the data format of the corresponding C fields. The data
type for VS COBOL II is COMP.

short S9(4) COMP-5 1

dec_t COBOL COMP-3 packed decimal field
2-8 Programming a BEA Tuxedo Application Using COBOL

Starting and Stopping the Application

by
imal

imal

 to

 to
sion

C

that
The dec_t field is defined in a VIEW. The size is specified as two values separated
a comma. The first value indicates the total number of bytes occupied by the dec
in COBOL. The second value indicates the number of digits to the right of the dec
point in COBOL. You can use the following formula to convert the dec_t field to a
COBOL declaration.

dec_t(m, n) => S9(2* m-(n+1), n)COMP-3

For example, a size specification of 6,4 in the VIEW indicates that there are 4 digits to
the right of the decimal point and 7 digits to the left, and the last half byte is used
store the sign. A COBOL application programmer represents this as 9(7)V9(4) ,
where the V represents the decimal point between each value. Note that FML does not
support the dec_t type; if FML-dependent VIEWs are used, then each field must be
mapped to a C type in the VIEW file. For instance, a packed decimal can be mapped
an FML string field, and then the mapping functions can be used to do the conver
between formats.

Starting and Stopping the Application

To start the application, execute the tmboot(1) command. The command gets the IP
resources required by the application, and starts administrative processes and
application servers.

To stop the application, execute the tmshutdown(1) command. The command stops
the servers and releases the IPC resources used by the application, except any
might be used by the resource manager, such as a database.

See Also

� tmboot(1) and tmshutdown(1) in the BEA Tuxedo Command Reference
Programming a BEA Tuxedo Application Using COBOL 2-9

2 Programming Environment
2-10 Programming a BEA Tuxedo Application Using COBOL

CHAPTER

laces
sages
cord
tains
cord
of the

tal
edo
3 Managing Typed
Records

� Overview of Typed Records

� Defining Typed Records

� Using a VIEW Typed Record

� Using an FML Typed Record

� Using an XML Typed Record

Overview of Typed Records

In order to send data to another application program, the sending program first p
the data in a record. BEA Tuxedo System clients use typed records to send mes
to servers. The term “typed record” refers to a pair of COBOL records: a data re
and an auxiliary type record. The data record is defined in static storage and con
application data to be passed to another application program. An auxiliary type re
accompanies the data record. It specifies the interpretation and translation rules
data record to be used by the BEA Tuxedo system when passing the information
between heterogeneous systems. Typed records make up one of the fundamen
features of the distributed programming environment supported by the BEA Tux
system.
Programming a BEA Tuxedo Application Using COBOL 3-1

3 Managing Typed Records

ent
nd
 specific
mer

 and

n
t

m as
Why typed? In a distributed environment, an application may be installed on
heterogeneous systems that communicate across multiple networks using differ
protocols. Different types of records require different routines to initialize, send a
receive messages, and encode and decode data. Each record is designated as a
type so that the appropriate routines can be called automatically without program
intervention.

The following table lists the typed records supported by the BEA Tuxedo system
indicates whether or not:

� The record is self-describing; in other words, the record data type and length ca
be determined simply by (a) knowing the type and subtype, and (b) looking a
the data.

� The record requires a subtype.

� The system supports data-dependent routing for the typed record.

� The system supports encoding and decoding for the typed record.

If any routing routines are required, the application programmer must provide the
part of the application.

Table 3-1 Typed Records

Typed Record Description Self-
Describing

Subtype Data-
Dependent
Routing

Encoding/
Decoding

CARRAY Undefined array of characters, any of
which can be LOW-VALUE. This typed
record is used to handle the data opaquely,
as the BEA Tuxedo system does not
interpret the semantics of the array.
Because a CARRAY is not self-describing,
the length must always be provided during
transmission. Encoding and decoding are
not supported for messages sent between
machines because the bytes are not
interpreted by the system.

No No No No
3-2 Programming a BEA Tuxedo Application Using COBOL

Overview of Typed Records
FML (Field
Manipulation
Language)

Proprietary BEA Tuxedo System type of
self-describing record in which each data
field carries its own identifier, an
occurrence number, and possibly a length
indicator. T record offers
data-independence and greater flexibility

The FML record uses 16 bits for field
identifiers and lengths of fields.

Refer to “Using an FML Typed Record”
on page 3-15 for more information.

Yes No Yes Yes

FML32 Equivalent to FML but uses 32 bits for field
identifiers and lengths of fields, which
allows for larger and more fields and,
consequently, larger overall records.

However, the FML routines that are
available for manipulating the FML typed
record in the C programming language are
not available in COBOL.The primary use
of FML32 in COBOL is simply to work
with C programs in which VIEW32 or
FML32 typed records are used.

Refer to “Using an FML Typed Record”
on page 3-15 for more information.

Yes No Yes Yes

STRING Array of characters that terminates with a
LOW-VALUE character. The BEA
Tuxedo System can convert data
automatically when data is exchanged by
machines with different character sets.

No No No No

Typed Record Description Self-
Describing

Subtype Data-
Dependent
Routing

Encoding/
Decoding
Programming a BEA Tuxedo Application Using COBOL 3-3

3 Managing Typed Records
VIEW COBOL data structure defined by the
application. VIEW types must have
subtypes that designate individual data
structures. A view description file, in
which the fields and types that appear in
the data structure are defined, must be
available to client and server processes that
use a data structure described in a VIEW
typed record. Encoding and decoding are
performed automatically if the record is
passed between machines of different
types. Refer to “Using a VIEW Typed
Record” on page 3-7 for more information.

No Yes Yes Yes

VIEW32 Equivalent to VIEW but uses 32 bits for
length and count fields, which allows for
larger and more fields and, consequently,
larger overall records.

The primary use of VIEW32 in COBOL is
simply to work with C programs in which
VIEW32 or FML32 typed records are used.

Refer to “Using a VIEW Typed Record”
on page 3-7 for more information.

No Yes Yes Yes

X_COMMON Equivalent to VIEW, but used for
compatibility between COBOL and C
programs. Field types should be limited to
short, long, and string.

No Yes Yes Yes

Typed Record Description Self-
Describing

Subtype Data-
Dependent
Routing

Encoding/
Decoding
3-4 Programming a BEA Tuxedo Application Using COBOL

Overview of Typed Records

All record types are defined in a file called tmtypesw.c in the $TUXDIR/lib
directory. Only record types defined in tmtypesw.c are known to your client and
server programs. You can edit the tmtypesw.c file to add or remove record types. In
addition, you can use the BUFTYPE parameter (in UBBCONFIG) to restrict the types and
subtypes that can be processed by a given service.

The tmtypesw.c file is used to build a shared object or dynamic link library. This
object is dynamically loaded by both BEA Tuxedo administrative servers, and
application clients and servers.

XML An XML document that consists of:

� Text, in the form of a sequence of
encoded characters

� A description of the logical structure
of the document and information about
that structure

The routing of an XML document can be
based on element content, or on element
type and an attribute value. The XML
parser determines the character encoding
being used; if the encoding differs from the
native character sets (US-ASCII or
EBCDIC) used in the BEA Tuxedo
configuration files (UBBCONFIG(5) and
DMCONFIG(5)), the element and attribute
names are converted to US-ASCII or
EBCDIC. Refer to “Using an XML Typed
Record” on page 3-22for more
information.

No No Yes No

X_OCTET Equivalent to CARRAY. No No No No

Typed Record Description Self-
Describing

Subtype Data-
Dependent
Routing

Encoding/
Decoding
Programming a BEA Tuxedo Application Using COBOL 3-5

3 Managing Typed Records

ce

ion

nt.

d.

er
See Also

� “Using a VIEW Typed Record” on page 3-7

� “Using an FML Typed Record” on page 3-15

� “Using an XML Typed Record” on page 3-22

� tuxtypes(5) in the BEA Tuxedo File Formats and Data Descriptions Referen

� UBBCONFIG(5) in the BEA Tuxedo File Formats and Data Descriptions
Reference

Defining Typed Records

The TPTYPE-REC COBOL structure is used whenever sending or receiving applicat
data.

The following table lists the TPTYPE-REC structure fields.

Field Description

REC-TYPE Specifies which record type the application wishes to send or
receive.

SUB-TYPE Specifies the subtype of the record type, if further classification
is required (as it is, for example, in a VIEW record).

LEN When data is being sent, specifies the number of bytes to be se
After a successful transfer, LEN contains the number of bytes
transferred. When data is being received, LEN in TPTYPE-REC
specifies the number of bytes to be moved into the data recor
After a successful call, LEN contains the number of bytes moved
into the data record. If the size of the incoming message is larg
than the size specified in LEN, the data is truncated, all data after
the LEN length is reached is discarded, and TPTYPE-STATUS is
set to TPTRUNCATE.
3-6 Programming a BEA Tuxedo Application Using COBOL

Using a VIEW Typed Record

rd.

e
e
The following shows the TPTYPE data structure:

05 REC-TYPE PIC X(8).
 88 X-OCTET VALUE “X_OCTET”.
 88 X-COMMON VALUE “X_COMMON”.
05 SUB-TYPE PIC X(16).
05 LEN PIC S9(9) COMP-5.
 88 NO-LENGTH VALUE 0.
05 TPTYPE-STATUS PIC S9(9) COMP-5.
 88 TPTYPEOK VALUE 0.
 88 TPTRUNCATE VALUE 1.

Using a VIEW Typed Record

There are two kinds of VIEW typed records. The first, FML VIEW, is a COBOL record
generated from an FML record. The second is simply an independent COBOL reco

The reason for converting FML records into COBOL records and back again (and th
purpose of the FML VIEW typed records) is that FML functions are not available in th
COBOL programming environment.

For more information on the FML typed record, refer to the BEA Tuxedo FML Function
Reference.

To use VIEW typed records, you must perform the following steps:

� Set the appropriate environment variables.

� Describe each structure in view description files.

� Compile the view description files using viewc -C , the BEA Tuxedo view
compiler. By running this comand you will produce one or more COBOL COPY
files (one per view), each of which contains data description records. These
records can be used in the LINKAGE section or the WORKING STORAGE section of
the DATA DIVISION , according to the demands of the program.
Programming a BEA Tuxedo Application Using COBOL 3-7

3 Managing Typed Records

nt

ion
 the

tion
Setting Environment Variables for a VIEW Typed Record

To use a VIEW typed record in an application, you must set the following environme
variables.

Table 3-2 Environment Variables for a VIEW Typed Record

Creating a View Description File

To use a VIEW typed record, you must define the COBOL record in a view descript
file. The view description file includes, a view for each entry, a view that describes
characteristic COBOL procedure mapping and the potential FML conversion pattern.
The name of the view corresponds to the name of the copy file that is included in
COBOL program.

The following format is used for each record in the view description file.

$ /* View structure */
 VIEW viewname
 type cname fbname count flag size null

The following table describes the fields that must be specified in the view descrip
file for each COBOL record.

Environment
Variable

Description

FIELDTBLS or
FIELDTBLS32

Comma-separated list of field table file names for FML or
FML32 typed records. Required only for FML VIEW types.

FLDTBLDIR or
FLDTBLDIR32

Colon-separated list of directories to search for the field table
files for FML and FML32 typed records. For Microsoft
Windows, use a semi-colon separated list. Required only for
FML VIEW types.

VIEWFILES or
VIEWFILES32

Comma-separated list of allowable f ile names for VIEW or
VIEW32 description files.

VIEWDIR or
VIEWDIR32

Colon-separated list of directories to search for VIEW or
VIEW32 files. For Microsoft Windows, use a semi-colon
separated list.
3-8 Programming a BEA Tuxedo Application Using COBOL

Using a VIEW Typed Record

Table 3-3 View Description File Fields

Field Description

type Data type of the field. Can be set to short , long , float ,
double , char , string , or carray .

cname Name of the field as it appears in the COBOL record.

fbname If you will be using the FML-to-VIEW or VIEW-to-FML
conversion routines, this field must be included to indicate the
corresponding FML name. This field name must also appear in
the FML field table file. This field is not required for
FML-independent VIEWs.

count Number of times field occurs.

flag Specifies any of the following optional flag settings:

� P - Change the interpretation of the LOW-VALUE value

� S - One-way mapping from fielded record to structure

� F - One-way mapping from structure to fielded record

� N - Zero-way mapping

� C - Generate additional field for associated count member
(ACM)

� L - Hold number of bytes transferred for STRING and
CARRAY

size For STRING and CARRAY record types, specifies the maximum
length of the value. This field is ignored for all other record
types.
Programming a BEA Tuxedo Application Using COBOL 3-9

3 Managing Typed Records

 be

t
.

o

You can include a comment line by prefixing it with the # or $ character. Lines
prefixed by a $ sign are included in the .h file.

null User-specified LOW-VALUE value, or - to indicate the default
value for a field. LOW-VALUE values are used in VIEW typed
records to indicate empty COBOL record members.

The default LOW-VALUE value for all numeric types is 0 (0.0
for dec_t). For character types, the default LOW-VALUE
value is ‘\0 ’. For STRING and CARRAY types, the default
LOW-VALUE value is “ ”.

Constants used, by convention, as escape characters can also
used to specify a LOW-VALUE value. The view compiler
recognizes the following escape constants: \ddd (where d is an
octal digit), \0 , \n , \t , \v , \r , \f , \\ , \’ , and \” .

You may enclose STRING, CARRAY, and LOW-VALUE values
in double or single quotes. The view compiler does not accep
unescaped quotes within a user-specified LOW-VALUE value

You can also specify the keyword NONE in the LOW-VALUE
field of a view member description, which means that there is n
LOW-VALUE value for the member. The maximum size of
default values for string and character array members is 2660
characters. For more information, refer to the BEA Tuxedo FML
Function Reference.

Field Description
3-10 Programming a BEA Tuxedo Application Using COBOL

Using a VIEW Typed Record

 an

t
The following listing is an excerpt from an example view description file based on
FML record. In this case, the fbname field must be specified and match that which
appears in the corresponding field table file. Note that the CARRAY1 field includes an
occurrence count of 2 and sets the C flag to indicate that an additional count elemen
should be created. In addition, the L flag is set to establish a length element that
indicates the number of characters with which the application populates the CARRAY1
field.

Listing 3-1 View Description File for FML VIEW

$ /* View structure */
 VIEW MYVIEW
 #type cname fbname count flag size null
 float float1 FLOAT1 1 - - 0.0
 double double1 DOUBLE1 1 - - 0.0
 long long1 LONG1 1 - - 0
 short short1 SHORT1 1 - - 0
 int int1 INT1 1 - - 0
 dec_t dec1 DEC1 1 - 9,16 0
 char char1 CHAR1 1 - - '\0'
 string string1 STRING1 1 - 20 '\0'
 carray carray1 CARRAY1 2 CL 20 '\0'
 END
Programming a BEA Tuxedo Application Using COBOL 3-11

3 Managing Typed Records

uld
The following listing illustrates the same view description file for an independent
VIEW.

Listing 3-2 View Description File for an Independent View

$ /* View data structure */
 VIEW MYVIEW
 #type cname fbname count flag size null
 float float1 - 1 - - -
 double double1 - 1 - - -
 long long1 - 1 - - -
 short short1 - 1 - - -
 int int1 - 1 - - -
 dec_t dec1 - 1 - 9,16 -
 char char1 - 1 - - -
 string string1 - 1 - 20 -
 carray carray1 - 2 CL 20 -
 END

Note that the format is similar to the FML-dependent view, except that the fbname and
null fields are not relevant and are ignored by the viewc compiler. You must include
a value (for example, a dash) as a placeholder in these fields.

Executing the VIEW Compiler

To compile a VIEW typed record, run the viewc -C command, specifying the name of
the view description file as an argument. To specify an independent VIEW, use the -n
option. You can optionally specify a directory in which the resulting output file sho
be written. By default, the output file is written to the current directory.

For example, for an FML-dependent VIEW, the compiler is invoked as follows.

viewc -C myview.v

Note: To compile a VIEW32 typed record, run the viewc32 -C command.

For an independent VIEW, use the -n option on the command line, as follows.

viewc -C -n myview.v
3-12 Programming a BEA Tuxedo Application Using COBOL

Using a VIEW Typed Record
The output of the viewc command includes:

� One or more COBOL COPY files; for example, MYVIEW.cbl

� Header file containing a structure definition that may be used by application
programs for C routines that share the same view

� Binary version of the source description file; for example, myview.V

Note: On case-insensitive platforms (for example, Microsoft Windows), the
extension used for the names of such files is vv ; for example, myview.vv .

The following listing provides an example of the COBOL COPY file created by viewc .

Listing 3-3 COBOL COPY File Example

* VIEWFILE: "myview.v"
* VIEWNAME: "MYVIEW"
 05 FLOAT1 USAGE IS COMP-1.
 05 DOUBLE1 USAGE IS COMP-2.
 05 LONG1 PIC S9(9) USAGE IS COMP-5.
 05 SHORT1 PIC S9(4) USAGE IS COMP-5.
 05 FILLER PIC X(02).
 05 INT1 PIC S9(9) USAGE IS COMP-5.
 05 DEC1.
 07 DEC-EXP PIC S9(4) USAGE IS COMP-5.
 07 DEC-POS PIC S9(4) USAGE IS COMP-5.
 07 DEC-NDGTS PIC S9(4) USAGE IS COMP-5.
* DEC-DGTS is the actual packed decimal value
 07 DEC-DGTS PIC S9(1)V9(16) COMP-3.
 07 FILLER PIC X(07).
 05 CHAR1 PIC X(01).
 05 STRING1 PIC X(20).
 05 FILLER PIC X(01).
 05 L-CARRAY1 OCCURS 2 TIMES PIC 9(4) USAGE IS COMP-5.
* LENGTH OF CARRAY1
 05 C-CARRAY1 PIC S9(4) USAGE IS COMP-5.
* COUNT OF CARRAY1
 05 CARRAY1 OCCURS 2 TIMES PIC X(20).
 05 FILLER PIC X(02).

COBOL COPY files for views must be brought into client programs and service
subroutines with COPY statements.
Programming a BEA Tuxedo Application Using COBOL 3-13

3 Managing Typed Records

t

l
 on

C
L

OL
In the previous example, the compiler includes FILLER files so that the alignment of
fields in COBOL code matches the alignment in C code.

The format of the packed decimal value, DEC1, is composed of five fields. Four
fields—DEC-EXP, DEC-POS, DEC-NDGTS, and FILLER —are used only in C (they are
defined in the dec_t type); they are included in the COBOL record for filler. Do no
use these fields in COBOL applications.

The fifth field, DEC-DGTS, is used by the system to store the actual packed decima
value. You should use this value within the COBOL program. ATMI calls operate
the DEC-DGTS field to:

� Populate the field before the record is passed from a C program to a COBOL
program.

� Convert the field back to the dec_t type when passed from the COBOL
program to the C program.

The only restriction is that a COBOL program cannot directly pass a record to a
function outside of the ATMI interface because the decimal formats in the COBO
program and C function do not match.

Finally, note that the sample COBOL COPY file includes an L-CARRAY1 length field
that occurs twice, once for each occurrence of CARRAY1, and a C-CARRAY1 count field.

viewc creates a C version of the header file that you can use to mix C and COB
service and/or client programs.

See Also

� “Using an FML Typed Record” on page 3-15

� “Using an XML Typed Record” on page 3-22

� viewc, viewc32(1) in the BEA Tuxedo Command Reference
3-14 Programming a BEA Tuxedo Application Using COBOL

Using an FML Typed Record

 are

lded
s and
 more
Using an FML Typed Record

The FML interface was designed for use with the C language. For COBOL, routines
provided that allow you to convert a received FML record type to a COBOL record for
processing, and then convert the record back to FML.

To use FML typed records, you must perform the following steps:

� Set the appropriate environment variables.

� Describe the potential fields in an FML field table.

� Initialize the FML record using FINIT.

� Create an FML header file and specify the header file in a #include statement C
routines that share the same view in the application.

FML routines are used to manipulate typed records, including those that convert fie
records to C structures and vice versa. By using these functions, you can acces
update data values without having to know how data is structured and stored. For
information on FML routines, refer to the BEA Tuxedo FML Function Reference.

Setting Environment Variables for an FML Typed Record

To use an FML typed record in an application program, you must set the following
environment variables.

Table 3-4 FML Typed Record Environment Variables

Environment
Variable

Description

FIELDTBLS or
FIELDTBLS32

Comma-separated list of field table file names for FML or
FML32 typed records, respectively.

FLDTBLDIR or
FLDTBLDIR32

Colon-separated list of directories to search for the field table
files for FML and FML32, respectively. For Microsoft Windows,
use a semi-colon separated list.
Programming a BEA Tuxedo Application Using COBOL 3-15

3 Managing Typed Records

Creating a Field Table File

Field table files are always required when FML records and/or FML-dependent VIEWs are
used. A field table file maps the logical name of a field in an FML record to a string that
uniquely identifies the field.

The following format is used for the description of each field in the FML field table.

$ /* FML structure */
 *base value
 name number type flags comments

The following table describes the fields that must be specified in the FML field table file
for each FML field.

Table 3-5 Field Table File Fields

Field Description

* base value Specifies a base for offsetting subsequent field numbers,
providing an easy way to group and renumber sets of related
fields. The *base option allows field numbers to be reused. For
a 16-bit record, the base plus the relevant number must be
greater than or equal to 100 and less than 8191. This field is
optional.

Note: The BEA Tuxedo system reserves field numbers 1-100
and 6000-7000 for internal use. Field numbers
101-8191 are available for application-defined fields
with FML; field numbers 101-33, 554, and 431, for
FML32.

name Identifier for the field. The value must be a string of up to 30
characters, consisting of alphanumeric and underscore
characters only.

rel-number Relative numeric value of the field. This value is added to the
current base, if specified, to calculate the field number.

type Type of the field. This value can be any of the following: char ,
string , short , long , float , double , or carray .
3-16 Programming a BEA Tuxedo Application Using COBOL

Using an FML Typed Record

)

ed
All fields are optional, and may be included more than once.

The following example illustrates a field table file that may be used with the
FML-dependent VIEW example.

Listing 3-4 Field Table File for FML VIEW

name number type flags comments
 FLOAT1 110 float - -
 DOUBLE1 111 double - -
 LONG1 112 long - -
 SHORT1 113 short - -
 INT1 114 long - -
 DEC1 115 string - -
 CHAR1 116 char - -
 STRING1 117 string - -
 CARRAY1 118 carray - -

Initializing a Typed Record

An FML typed record must be initialized using the FINIT procedure. The TPINIT
procedure takes the specified FML record (preferably aligned on a full-word boundary
and uses the value specified in the FML-LENGTH field in the FMLINFO record as the
length.

If TPNOCHANGE is set, then any FML record received by a program (rather than creat
by the program) is initialized automatically. In this case, it is unnecessary to call
FINIT .

The following listing shows how to perform an initialization.

flag Reserved for future use. A dash (-) should be included as a
placeholder.

comment Optional comment.

Field Description
Programming a BEA Tuxedo Application Using COBOL 3-17

3 Managing Typed Records
Listing 3-5 FML/VIEW Conversion

WORKING-STORAGE SECTION.
*RECORD TYPE AND LENGTH
 01 TPTYPE-REC.
 COPY TPTYPE.
*STATUS OF CALL
 01 TPSTATUS-REC.
 COPY TPSTATUS.
* SERVICE CALL FLAGS/RECORD
 01 TPSVCDEF-REC.
 COPY TPSVCDEF.
* TPINIT FLAGS/RECORD
 01 TPINFDEF-REC.
 COPY TPINFDEF.
* FML CALL FLAGS/RECORD
 01 FML-REC.
 COPY FMLINFO.
*
*
* APPLICATION FML RECORD - ALIGNED
 01 MYFML.
 05 FBFR-DTA OCCURS 100 TIMES PIC S9(9) USAGE IS COMP-5.
* APPLICATION VIEW RECORD
 01 MYVIEW.
 COPY MYVIEW.

.....

* MOVE DATA INTO MYVIEW

.....

* INITIALIZE FML RECORD
 MOVE LENGTH OF MYFML TO FML-LENGTH.
 CALL "FINIT" USING MYFML FML-REC.
 IF NOT FOK
 MOVE "FINIT Failed" TO LOGMSG-TEXT
 PERFORM DO-USERLOG
 PERFORM EXIT-PROGRAM
 END-IF.

* Convert VIEW to FML Record
 SET FUPDATE TO TRUE.
 MOVE "MYVIEW" TO VIEWNAME.
 CALL "FVSTOF" USING MYFML MYVIEW FML-REC.
 IF NOT FOK
 MOVE "FVSTOF Failed" TO LOGMSG-TEXT
 PERFORM DO-USERLOG
3-18 Programming a BEA Tuxedo Application Using COBOL

Using an FML Typed Record

iler.

e

ment
 for

 be
 PERFORM EXIT-PROGRAM
 END-IF.
* CALL THE SERVICE USING THE FML RECORD
 MOVE "FML" TO REC-TYPE IN TPTYPE-REC.
 MOVE SPACES TO SUB-TYPE IN TPTYPE-REC.
 MOVE LENGTH OF MYFML TO LEN.
 CALL "TPCALL" USING TPSVCDEF-REC
 TPTYPE-REC
 MYFML
 TPTYPE-REC
 MYFML
 TPSTATUS-REC.
 IF NOT TPOK
 MOVE "TPCALL MYFML Failed" TO LOGMSG-TEXT
 PERFORM DO-USERLOG
 PERFORM EXIT-PROGRAM
 END-IF.
* CONVERT THE FML RECORD BACK TO MYVIEW
 CALL "FVFTOS" USING MYFML MYVIEW FML-REC.
 IF NOT FOK
 MOVE "FVFTOS Failed" TO LOGMSG-TEXT
 PERFORM DO-USERLOG
 PERFORM EXIT-PROGRAM
 END-IF.

In the preceding listing, the FVSTOF procedure converts an FML record into a VIEW
record. The view is defined by including the copy file generated by the view comp
The FML-REC record provides the VIEWNAME and the FML-MODE transfer mode, which
can be set to FUPDATE, FOJOIN, FJOIN, or FCONCAT. The actions associated with thes
modes are the same as those described in Fupdate, Fupdate32(3fml) , Fojoin,

Fojoin32(3fml) , Fjoin, Fjoin32(3fml) , and Fconcat, Fconcat32(3fml) .

The FVFTOS procedure converts a VIEW record into an FML record. The parameters are
the same as those for an FVSTOF procedure but you do not need to set FML-MODE. The
system copies the fields from the fielded record into the structure, based on the ele
descriptions in the view. If there is no corresponding element in the COBOL record
a field in the fielded record, then the system ignores the field. If there is no
corresponding field in the fielded record for an element specified in the COBOL
record, the system copies a null value into the element. The null value used can
defined for each element in the view description.
Programming a BEA Tuxedo Application Using COBOL 3-19

3 Managing Typed Records

ould

re
e

ust
To store multiple occurrences of a field in the COBOL record, a record element sh
be defined with OCCURS. If the number of occurrences of the field in the record is
smaller than the number of occurrences of the element, the extra element slots a
assigned null values. Alternatively, if the number of occurrences of the field in th
record is higher than the number of occurrences of the element, then the surplus
occurrences are ignored.

For FML32 and VIEW32, the FINIT32 , FVSTOF32, and FVFTOS32 procedures should be
used.

Upon successful completion, the system sets the FML-STATUS to FOK. On error, the
system sets the FML-STATUS to a non-zero value.

Creating an FML Header File

In order to use an FML typed record in client programs or service subroutines, you m
create an FML header file and specify it in the application #include statements.

To create an FML header file from a field table file, use the mkfldhdr (1) command. For
example, to create a file called myview.flds.h , enter the following command.

mkfldhdr myview.flds

For FML32 typed records, use the mkfldhdr32 command.
3-20 Programming a BEA Tuxedo Application Using COBOL

Using an FML Typed Record

The following listing shows the myview.flds.h header file that is created by the
mkfldhdr command.

Listing 3-6 myview.flds.h Header File

/* fname fldid */
/* ----- ----- */

#define FLOAT1 ((FLDID)24686) /* number: 110 type: float */
#define DOUBLE1 ((FLDID)32879) /* number: 111 type: double */
#define LONG1 ((FLDID)8304) /* number: 112 type: long */
#define SHORT1 ((FLDID)113) /* number: 113 type: short */
#define INT1 ((FLDID)8306) /* number: 114 type: long */
#define DEC1 ((FLDID)41075) /* number: 115 type: string */
#define CHAR1 ((FLDID)16500) /* number: 116 type: char */
#define STRING1 ((FLDID)41077) /* number: 117 type: string */
#define CARRAY1 ((FLDID)49270) /* number: 118 type: carray */

Specify the new header file in the #include statement of your application. Once the
header file is included, you can refer to fields by their symbolic names.

See Also

� “Using a VIEW Typed Record” on page 3-7

� “Using an XML Typed Record” on page 3-22

� mkfldhdr, mkfldhdr32(1) in the BEA Tuxedo Command Reference
Programming a BEA Tuxedo Application Using COBOL 3-21

3 Managing Typed Records

thin

with

hat

e
 the

ion
o
Using an XML Typed Record

XML records enable BEA Tuxedo applications to use XML for exchanging data wi
and between applications. BEA Tuxedo applications can send and receive simpleXML
records, and route those records to the appropriate servers. All logic for dealing
XML documents, including parsing, resides in the application.

An XML document consists of:

� A sequence of characters that encode the text of a document

� A description of the logical structure of the document and information about t
structure

Formatting and filtering for Events processing (which are supported when a STRING
record type is used) are not supported for the XML record type. Therefore, the
_tmfilter and _tmformat pointers in the record type switch for XML records are set
to LOW-VALUE.

The XML parser in the BEA Tuxedo system performs the following routines:

� Autodetection of character encodings

� Character code conversion

� Detection of element content and attribute values

� Data type conversion

Data-dependent routing is supported for XML records. The routing of an XML document
can be based on element content, or on element type and an attribute value. ThXML
parser determines the character encoding being used; if the encoding differs from
native character sets (US-ASCII or EBCDIC) used in the BEA Tuxedo configurat
files (UBBCONFIG and DMCONFIG), the element and attribute names are converted t
US-ASCII or EBCDIC.

Attributes configured for routing must be included in an XML document. If an attribute
is configured as a routing criteria but it is not included in the XML document, routing
processing fails.
3-22 Programming a BEA Tuxedo Application Using COBOL

Using an XML Typed Record

x and
f the
e

sing.
The content of an element and the value of an attribute must conform to the synta
semantics required for a routing field value. The user must also specify the type o
routing field value. XML supports only character data. If a range field is numeric, th
content or value of that field is converted to a numeric value during routing proces

See Also

� “Using a VIEW Typed Record” on page 3-7

� “Using an FML Typed Record” on page 3-15
Programming a BEA Tuxedo Application Using COBOL 3-23

3 Managing Typed Records
3-24 Programming a BEA Tuxedo Application Using COBOL

CHAPTER

, it
4 Writing Clients

� Joining an Application

� Using Features of the TPINFDEF-REC Record

� Leaving the Application

� Building Clients

� Client Process Examples

Joining an Application

Before a client can perform any service request, it must join the BEA Tuxedo
application, either explicitly or implicitly. Once the client has joined the application
can initiate requests and receive replies.

A client joins an application explicitly by calling TPINITIALIZE(3cbl) with the
following signature.

01 TPINFDEF-REC.
 COPY TPINFDEF.
01 USER-DATA-REC PIC X(any-length).
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPINITIALIZE" USING TPINFDEF-REC USER-DATA-REC TPSTATUS-REC.
Programming a BEA Tuxedo Application Using COBOL 4-1

4 Writing Clients

ll)

 pass

e
A client joins an application implicitly by issuing a service request (or any ATMI ca
without first calling TPINITIALIZE . In this case, TPINITIALIZE is called by the BEA
Tuxedo system on behalf of the client with the SPACES parameter.The TPINFDEF-REC
record is a special BEA Tuxedo system typed record used by a client program to
client identification and authentication information to the system when the client
attempts to join the application. It is defined in a COBOL COPY file, as follows.

05 USRNAME PIC X(30).
05 CLTNAME PIC X(30).
05 PASSWD PIC X(30).
05 GRPNAME PIC X(30).
05 NOTIFICATION-FLAG PIC S9(9) COMP-5.
 88 TPU-SIG VALUE 1.
 88 TPU-DIP VALUE 2.
 88 TPU-IGN VALUE 3.
05 ACCESS-FLAG PIC S9(9) COMP-5.
 88 TPSA-FASTPATH VALUE 1.
 88 TPSA-PROTECTED VALUE 2.
05 DATALEN PIC S9(9) COMP-5.

The following table lists the fields that are defined in a COBOL COPY file.

Table 4-1 COBOL COPY File Fields

Field Description

USRNAME Name representing the caller. You may want to specify the valu
returned by the UNIX command getuid (2) within this field.
The value of USRNAME may contain up to MAXTIDENT
characters (which is defined as 30).

CLTNAME Name of a client for which the semantics are
application-defined. The value of CLTNAME may contain up to
MAXTIDENT characters (which is defined as 30).

PASSWD Application password in unencrypted format that is used by
TPINITIALIZE for validation against the application
password stored in the TUXCONFIG file. PASSWD is a string of
up to MAXTIDENT characters.
4-2 Programming a BEA Tuxedo Application Using COBOL

Joining an Application

the

te

n

e
by

ed
The USRNAME and CLTNAME fields are associated with the client process when
TPINITIALIZE is called. Both fields are used for both broadcast notification and
retrieval of administrative statistics.

See Also

� TPINITIALIZE(3cbl) in the BEA Tuxedo COBOL Function Reference

GRPNAME Resource manager group name with which you want to associa
the client. The client can access an XA-compliant resource
manager as part of a global transaction. The GRPNAME can be a
value up to MAXTIDENT characters (which is defined as 30).
Currently, however, the GRPNAME must be passed as SPACES
specifying that the client is not associated with a resource
manager group and is in the default client group.

NOTIFICATION-FLAG Notification mechanism and system access mode to be used.
Refer to “Unsolicited Notification Handling” on page 4-6 for a
list of valid values.

ACCESS-FLAG System access mode used. Refer to “System Access Mode” o
page 4-7 for a list of values.

DATALEN Length of the application-specific data that will be sent to the
authentication service. For native clients, it is not encoded by th
system, but passed to the authentication service as provided
the client. For workstation clients, client authentication is
handled by the system, and passed over the network in encrypt
form.

Field Description
Programming a BEA Tuxedo Application Using COBOL 4-3

4 Writing Clients

nt
also

by

 user
ne
lues

tion

 the
Using Features of the TPINFDEF-REC Record

The client must explicitly invoke TPINITIALIZE in order to take advantage of the
following features of the TPINFDEF-REC record:

� Client Naming

� Unsolicited Notification Handling

� System Access Mode

� Resource Manager Association

� Client Authentication

Client Naming

When a client joins an application, the BEA Tuxedo system assigns a unique clie
identifier to it. The identifier is passed to each service called by the client. It can
be used for unsolicited notification.

You can also assign unique client and user names of up to 30 characters each,
passing them to TPINITIALIZE via the TPINFDEF-REC record. The BEA Tuxedo
system establishes a unique identifier for each process by combining the client and
names associated with it, with the logical machine identifier (LMID) of the machi
on which the process is running. You may choose a method for acquiring the va
for these fields.

Note: If a process is executing outside the administrative domain of the applica
(that is, if it is running on a workstation connected to the administrative
domain), the LMID of the machine used by the workstation client to access
application is assigned.
4-4 Programming a BEA Tuxedo Application Using COBOL

Using Features of the TPINFDEF-REC Record

ia

n

g an
Once a unique identifier for a client process is created:

� Client authentication can be implemented.

� Unsolicited messages can be sent to a specific client or to groups of clients v
TPNOTIFY and TPBROADCAST.

� Detailed statistical information can be gathered via tmadmin(1) .

Refer to “Writing Event-based Clients and Servers” on page 8-1 for information o
sending and receiving unsolicited messages, and the BEA Tuxedo C Function
Reference for more information on tmadmin(1) .

The following figure shows how names might be associated with clients accessin
application. In the example, the application uses the cltname field to indicate a job
function.

Figure 4-1 Client Naming
Programming a BEA Tuxedo Application Using COBOL 4-5

4 Writing Clients

n five

ple,
t
 each

d

ible

e

Unsolicited Notification Handling

Unsolicited notification refers to any communication with a client that is not an
expected response to a service request (or an error code). For example, an
administrator may broadcast a message to indicate that the system will go down i
minutes.

A client can be notified of an unsolicited message in a number of ways. For exam
some operating systems might send a signal to the client and interrupt its curren
processing. By default, the BEA Tuxedo system checks for unsolicited messages
time an ATMI call is invoked. This approach, referred to as dip-in, is advantageous
because it:

� Is supported on all platforms

� Does not interrupt the current processing

As some time may elapse between “dip-ins,” the application can call the TPCHKUNSOL
call to check for any waiting unsolicited messages. Refer to “Writing Event-base
Clients and Servers” on page 8-1 for more information on the TPCHKUNSOL call.

When a client joins an application using TPINITIALIZE , it can control how to handle
unsolicited notification messages by defining flags. For client notification, the poss
values for NOTIFICATION-FLAG are defined in the following table.

Table 4-2 Client Notification Flags in a TPINFDEF-REC Record

Flag Description

TPU_SIG Select unsolicited notification by signals. This flag should be
used only with single-threaded, single-context applications. Th
advantage of using this mode is immediate notification. The
disadvantages include:

� The calling process must have the same UID as the sending
process when you are running a native client. (Workstation
clients do not have this limitation.)

� TPU_SIG is not available on all platforms (specifically, it is
not available on MS-DOS workstations).

If you specify this flag but do not meet the system or
environmental requirements, the flag is set to TPU_DIP and the
event is logged.
4-6 Programming a BEA Tuxedo Application Using COBOL

Using Features of the TPINFDEF-REC Record

:
using
 the

t
he

,

ts
he
Refer to TPINITIALIZE(3cbl) in the BEA Tuxedo COBOL Function Reference for
more information on the TPINFDEF-REC flags.

System Access Mode

An application can access the BEA Tuxedo system through either of two modes
protected or fastpath. The client can request a mode when it joins an application
TPINITIALIZE . To specify a mode, a client passes one of the following values in
ACCESS-FLAG field of the TPINFDEF-REC record to TPINITIALIZE .

Table 4-3 System Access Flags in a TPINFDEF-REC Record

TPU_DIP (default) Select unsolicited notification by dip-in. In this case, the clien
can specify the name of the message handling routine using t
TPSETUNSOL call, and check for waiting unsolicited messages
using the TPCHKUNSOL call.

TPU_THREAD Select THREAD notification in a separate thread. This flag is
allowed only on platforms that support multithreading. If
TPU_THREAD is specified on a platform that does not support
multithreading, it is considered an invalid argument. As a result
an error is returned and TP-STATUS is set to TPEINVAL.

TPU_IGN Ignore unsolicited notification.

Flag Description

Mode Description

TPSA-PROTECTED Allows ATMI calls within an application to access the BEA
Tuxedo system internal tables via shared memory, but protec
shared memory against access by application code outside of t
BEA Tuxedo system libraries. Overrides the value in
UBBCONFIG, except when NO_OVERRIDE is specified. Refer to
Setting Up a BEA Tuxedo Application for more information on
UBBCONFIG.
Programming a BEA Tuxedo Application Using COBOL 4-7

4 Writing Clients

ting
rol

tion

h as

d

t
he
Resource Manager Association

An application administrator can configure groups for servers associated with a
resource manager, including servers that provide administrative processes for
coordinating transactions. Refer to Setting Up a BEA Tuxedo Application for
information on defining groups.

When joining the application, a client can join a particular group by specifying the
name of that group in the grpname field of TPINFDEF-REC.

Client Authentication

The BEA Tuxedo system provides security at incremental levels, including opera
system security, application password, user authentication, optional access cont
lists, mandatory access control lists, and link-level encryption. Refer to Setting Up a
BEA Tuxedo Application for information on setting security levels.

The application password security level requires every client to provide an applica
password when it joins the application. The administrator can set or change the
application password and must provide it to valid users.

If this level of security is used, BEA Tuxedo system-supplied client programs, suc
ud() , prompt for the application password. (Refer to Administering a BEA Tuxedo
Application at Run Time for more information on ud, wud(1) .) In turn,
application-specific client programs must include code for obtaining the passwor
from a user. The unencrypted password is placed in the TPINFDEF-REC record and
evaluated when the client calls TPINITIALIZE to join the application.

TPSA-FASTPATH
(default)

Allows ATMI calls within application code access to BEA
Tuxedo system internals via shared memory. Does not protec
shared memory against access by application code outside of t
BEA Tuxedo system libraries. Overrides the value of
UBBCONFIG except when NO_OVERRIDE is specified. Refer to
Setting Up a BEA Tuxedo Application for more information on
UBBCONFIG.

Mode Description
4-8 Programming a BEA Tuxedo Application Using COBOL

Leaving the Application

ave the

tem

ng
Note: The password should not be displayed on the screen.

You can use TPCHKAUTH(3cbl) to determine:

� Whether the application requires any authentication

� If the application requires authentication, which of the following types of
authentication is needed:

z System authentication based on an application password

z Application authentication based on an application password and
user-specific information

Typically, a client should call TPCHKAUTH before TPINITIALIZE to identify any
additional security information that must be provided during initialization.

Refer to Using BEA Tuxedo Security for more information on security programming
techniques.

Leaving the Application

Once all service requests have been issued and replies received, the client can le
application using TPTERM(3cbl) . The TPTERM call signature is as follows.

01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPTERM" USING TPSTATUS-REC.

Building Clients

To build an executable client, compile your application with the BEA Tuxedo sys
libraries and all other referenced files using the buildclient(1) command. Include
the -C option to indicate that you are compiling a COBOL program. Use the followi
syntax for the buildclient command.

buildclient -C filename. cbl -o filename -f filenames -l filenames
Programming a BEA Tuxedo Application Using COBOL 4-9

4 Writing Clients

es

ed
The following table describes the options to the buildclient command.

Table 4-4 buildclient Options

Note: The BEA Tuxedo libraries are linked in automatically; you do not need to
specify any BEA Tuxedo libraries on the command line.

The order in which you specify the library files to be link edited is significant: it
depends on the order in which functions are called in the code, and which librari
contain references to those functions.

This Option or
Argument . . .

Allows You to Specify . . .

filename. cbl The COBOL application to be compiled.

-o filename The executable output file. The default name for the output file
is a.out .

-f filenames A list of files that are to be link edited before the BEA Tuxedo
system libraries are link edited. You can specify -f more than
once on the command line, and you can include multiple
filenames for each occurrence of -f . If you specify a COBOL
program file (file .cbl), it is compiled before it is linked. You
can specify other object files (file .o) separately, or in groups
in an archive file (file .a).

-l filenames A list of files that are to be link edited after the BEA Tuxedo
system libraries are link edited. You can specify -l more than
once on the command line, and you can include multiple
filenames for each occurrence of -l . If you specify a COBOL
program file (file .cbl), it is compiled before it is linked. You
can specify other object files (file .o) separately, or in groups
in an archive file (file .a).

-r The resource manager access libraries that should be link edit
with the executable server. The application administrator is
responsible for predefining all valid resource manager
information in the $TUXDIR/updataobj/RM file using the
buildtms (1) command. Only one resource manager can be
specified. Refer to Setting Up a BEA Tuxedo Application for
more information.
4-10 Programming a BEA Tuxedo Application Using COBOL

Building Clients

st
ing
By default, the buildclient command invokes the UNIX cc command. You can set
the ALTCC and ALTCFLAGS environment variables to specify an alternative compile
command, and to set flags for the compile and link-edit phases, respectively. By
default, ALTCC is set to cobcc . For more information, refer to “Setting Environment
Variables” on page 2-5.

Note: On a Windows NT system, the ALTCC and ALTCFLAGS environment variables
are not applicable; setting them will produce unexpected results. You mu
compile your application by first using a COBOL compiler, and then pass
the resulting object file to the buildclient command. For example:

buildclient -C -o audit -f audit.o

The following example command line compiles a COBOL program called audit.cbl
and generates an executable file named audit .

buildclient -C –o audit –f audit.cbl

See Also

� “Building Servers” on page 5-30

� buildclient(1) in the BEA Tuxedo Command Reference
Programming a BEA Tuxedo Application Using COBOL 4-11

4 Writing Clients

e at
Client Process Examples

The following pseudo-code shows how a typical client process works from the tim
which it joins an application to the time at which it leaves the application.

Listing 4-1 Typical Client Process Paradigm

. . .
Check level of security
 CALL TPSETUNSOL to name your handler routine for TPU-DIP
 get USRNAME, CLTNAME
 prompt for application PASSWD
 SET TPU-DIP TO TRUE.
 CALL "TPINITIALIZE" USING TPINFDEF-REC
 USER-DATA-REC
 TPSTATUS-REC.
 IF NOT TPOK
 error processing
. . .
make service call
receive the reply
check for unsolicited messages
. . .
CALL "TPTERM" USING TPSTATUS-REC.
IF NOT TPOK
 error processing
. . .
EXIT PROGRAM.

In this example, TPINITIALIZE takes three arguments:

� TPINFDEF-REC, a structure defined in the COBOL COPY file

� User data (USER-DATA-REC)

� TPSTATUS-REC, a status structure defined in the COBOL COPY file.
4-12 Programming a BEA Tuxedo Application Using COBOL

Client Process Examples

ts

Both TPINITIALIZE and TPTERM return [TPOK] in TP-STATUS IN TPSTATUS-REC
upon success. If either command encounters an error, the command fails and se
TP-STATUS to a value that indicates the nature of the error. TPSTATUS-REC is defined
in a COBOL COPY file. Refer to “Managing Errors” on page 11-1 for possible
TP-STATUS values. Refer to “Introduction to the COBOL Application-Transaction
Monitor Interface” in the BEA Tuxedo COBOL Function Reference for a complete list
of error codes that can be returned for each of the ATMI calls.

The following example illustrates how to use the TPINITIALIZE and TPTERM routines.
This example is borrowed from, bankapp , the sample banking application that is
provided with the BEA Tuxedo system.

Listing 4-2 Joining and Leaving an Application

IDENTIFICATION DIVISION.
PROGRAM-ID. FIG1-3.
AUTHOR. TUXEDO DEVELOPMENT.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
*
WORKING-STORAGE SECTION.

* Tuxedo definitions

01 TPSTATUS-REC.
COPY TPSTATUS.
*
01 TPINFDEF-REC.
COPY TPINFDEF.

* Log messages definitions

01 LOGMSG.
 05 FILLER PIC X(10) VALUE "FIG12-3 =>".
 05 LOGMSG-TEXT PIC X(50).
01 LOGMSG-LEN PIC S9(9) COMP-5.
*
01 USER-DATA-REC PIC X(75).
**
PROCEDURE DIVISION.
START-HERE.
MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.

* Now register the client with the system.

Programming a BEA Tuxedo Application Using COBOL 4-13

4 Writing Clients

 with
tral
MOVE SPACES TO USRNAME.
MOVE SPACES TO CLTNAME.
MOVE SPACES TO PASSWD.
MOVE SPACES TO GRPNAME.
MOVE ZERO TO DATALEN.
SET TPU-DIP TO TRUE.
*
CALL "TPINITIALIZE" USING TPINFDEF-REC
 USER-DATA-REC
 TPSTATUS-REC.
IF NOT TPOK
 MOVE "TPINITIALIZE FAILED" TO LOGMSG-TEXT
 PERFORM DO-USERLOG
 PERFORM EXIT-PROGRAM.

* Application specific code

. . .

*Leave Application

CALL "TPTERM" USING TPSTATUS-REC.
IF NOT TPOK
 MOVE "TPTERM FAILED" TO LOGMSG-TEXT
 PERFORM DO-USERLOG.
EXIT-PROGRAM.
STOP RUN.

* Log messages to the userlog

DO-USERLOG.
CALL "USERLOG" USING LOGMSG
 LOGMSG-LEN
 TPSTATUS-REC.

The previous example shows the client process attempting to join the application
a call to TPINITIALIZE . If an error is encountered, a message is written to the cen
event log via a call to USERLOG.
4-14 Programming a BEA Tuxedo Application Using COBOL

CHAPTER

fined

.

 you
5 Writing Servers

� BEA Tuxedo System Controlling Program

� System-supplied Server and Services

� Guidelines for Writing Servers

� Defining a Service

� Terminating a Service Routine

� Advertising and Unadvertising Services

� Building Servers

BEA Tuxedo System Controlling Program

To facilitate the development of servers, the BEA Tuxedo system provides a prede
controlling program for server load modules. When you execute the buildserver -C
command, the controlling program is automatically included as part of the server

Note: The controlling program that the system provides is a closed abstraction;
cannot modify it.

In addition to joining and exiting from an application, the predefined controlling
program accomplishes the following tasks on behalf of the server.

� Executes the process ignoring any hangups (that is, it ignores the SIGHUP
signal).
Programming a BEA Tuxedo Application Using COBOL 5-1

5 Writing Servers

tware

are

er

t.

.

� Initiates the cleanup process on receipt of the standard operating system sof
termination signal (SIGTERM). The server is shut down and must be rebooted if
needed again.

� Attaches to shared memory for bulletin board services.

� Creates a message queue for the process.

� Advertises the initial services to be offered by the server. The initial services
either all the services link edited with the predefined controlling program, or a
subset specified by the BEA Tuxedo system administrator in the configuration
file.

� Processes command-line arguments up to the double dash (--), which indicates
the end of system-recognized arguments.

� Calls the routine TPSVRINIT to process any command-line arguments listed aft
the double dash (--) and optionally to open the resource manager. These
command-line arguments are used for application-specific initialization.

� Until ordered to halt, checks its request queue for service request messages.

� When a service request message arrives on the request queue, main() performs
the following tasks until ordered to halt:

z If the -r option is specified, records the starting time of the service reques

z Updates the bulletin board to indicate that the server is BUSY.

z dispatches the service; that is, calls the service subroutine.

� When the service returns from processing its input, main() performs the
following tasks until ordered to halt:

z If the -r option is specified, records the ending time of the service request

z Updates statistics.

z Updates the bulletin board to indicate that the server is IDLE ; that is, that the
server is ready for work.

z Checks its queue for the next service request.

� When the server is required to halt, calls TPSVRDONE to perform any required
shutdown operations.
5-2 Programming a BEA Tuxedo Application Using COBOL

System-supplied Server and Services

 of

n
r

t
As indicated above, the main() routine handles all of the details associated with
joining and exiting from an application, managing records and transactions, and
handling communication.

Note: Because the system-supplied controlling program accomplishes the work
joining and leaving the application, you should not include calls to the
TPINITIALIZE or TPTERM routine in your code. If you do, the routine
encounters an error and returns TPEPROTO in TP-STATUS. For more
information on the TPINITIALIZE or TPTERM routine, refer to “Writing
Clients” on page 4-1.

System-supplied Server and Services

The controlling program provides one system-supplied server, AUTHSVR, and two
subroutines, TPSVRINIT and TPSVRDONE. The default versions of all three, which are
described in the following sections, can be modified to suit your application.

Notes: If you want to write your own versions of TPSVRINIT and TPSVRDONE,
remember that the default versions of these two routines call tx_open() and
tx_close() , respectively. If you write a new version of TPSVRINIT that calls
tpopen() rather than tx_open() , you should also write a new version of
TPSVRDONE that calls tpclose() . In other words, both routines in an
open/close pair must belong to the same set.

System-supplied Server: AUTHSVR()

You can use the AUTHSVR(5) server to provide individual client authentication for a
application. The TPINITIALIZE routine calls this server when the level of security fo
the application is TPAPPAUTH, USER_AUTH, ACL, or MANDATORY_ACL.

The service in AUTHSVR looks in the USER-DATA-REC record for a user password (no
to be confused with the application password specified in the PASSWD field of the
TPINFDEF-REC record). By default, the system takes the string in data and searches
for a matching string in the /etc/passwd file.
Programming a BEA Tuxedo Application Using COBOL 5-3

5 Writing Servers

 to be

er,
pens
e
d file

.

sks

ne.
e,

lly.
When called by a native-site client, TPINITIALIZE forwards the USER-DATA-REC
record as it is received. This means that if the application requires the password
encrypted, the client program must be coded accordingly.

When called by a workstation client, TPINITIALIZE encrypts the data before sending
it across the network.

System-supplied Services: TPSVRINIT Routine

When a server is booted, the BEA Tuxedo system controlling program calls
TPSVRINIT(3cbl) during its initialization phase, before handling any service
requests.

If an application does not provide a custom version of this routine within the serv
the system uses the default routine provided by the controlling program, which o
the resource manager and logs an entry in the central event log indicating that th
server has successfully started. The central user log is an automatically generate
to which processes can write messages by calling the USERLOG(3cbl) routine. Refer
to “Managing Errors” on page 11-1 for more information on the central event log

You can use the TPSVRINIT routine for any initialization processes that might be
required by an application, such as the following:

� Receiving command-line options

� Opening a database

The following sections provide code samples showing how these initialization ta
are performed through calls to TPSVRINIT . Although it is not illustrated in the
following examples, message exchanges can also be performed within this routi
However, TPSVRINIT fails if it returns with asynchronous replies pending. In this cas
the replies are ignored by the BEA Tuxedo system, and the server exits gracefu

You can also use the TPSVRINIT routine to start and complete transactions, as
described in “Managing Errors” on page 11-1.
5-4 Programming a BEA Tuxedo Application Using COBOL

System-supplied Server and Services

e

Use the following signature to call the TPSVRINIT routine.

LINKAGE SECTION.
01 CMD-LINE.
 05 ARGC PIC 9(4) COMP-5.
 05 ARGV.
 10 ARGS PIC X OCCURS 0 TO 9999 DEPENDING ON ARGC .
01 TPSTATUS-REC.
 COPY TPSTATUS.
PROCEDURE DIVISION USING CMD-LINE TPSTATUS-REC.
* User code
EXIT PROGRAM.

Receiving Command-line Options

When a server is booted, its first task is to read the server options specified in th
configuration file. The options are passed through ARGC, which contains the number of
arguments, and ARGV, which contains the arguments separated by a single SPACE
character. The predefined controlling program then calls TPSVRINIT .

The following code example shows how the TPSVRINIT routine is used to receive
command-line options.

Listing 5-1 Receiving Command-line Options in TPSVRINIT

 IDENTIFICATION DIVISION.
 PROGRAM-ID. TPSVRINIT.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. USL-486.
 OBJECT-COMPUTER. USL-486.
*
 DATA DIVISION.
 WORKING-STORAGE SECTION.
*
 LINKAGE SECTION.
*
 01 CMD-LINE.
 05 ARGC PIC 9(4) COMP-5.
 05 ARGV.
 10 ARGS PIC X OCCURS 0 TO 9999 DEPENDING ON ARGC.
 01 SERVER-INIT-STATUS.
 COPY TPSTATUS.
*
 PROCEDURE DIVISION USING CMD-LINE SERVER-INIT-STATUS.
Programming a BEA Tuxedo Application Using COBOL 5-5

5 Writing Servers

e

rk by
 the

er
 the

ns
**
* ARGC indicates the number of arguments and ARGV contains the
* arguments separated by a single SPACE.
**
 A-START.
*
 . . . INSPECT the ARGV line and process arguments
 IF arguments are invalid
 SET TPEINVAL IN SERVER-INIT-STATUS TO TRUE.
 ELSE arguments are OK continue
 SET TPOK IN SERVER-INIT-STATUS TO TRUE.
*
 EXIT PROGRAM.

Opening a Resource Manager

The following example illustrates another common use of TPSVRINIT : opening a
resource manager. The BEA Tuxedo system provides routines to open a resourc
manager, TPOPEN(3cbl) and TXOPEN(3cbl). It also provides the complementary
routines, TPCLOSE(3cbl) and TXCLOSE(3cbl) . Applications that use these routines
to open and close their resource managers are portable in this respect. They wo
accessing the resource manager instance-specific information that is available in
configuration file.

These routine calls are optional and can be used in place of the resource manag
specific calls that are sometimes part of the Data Manipulation Language (DML) if
resource manager is a database. Note the use of the USERLOG(3cbl) routine to write
to the central event log.

Note: To create an initialization function that both receives command-line optio
and opens a database, combine the following example with the previous
example.

Listing 5-2 Opening a Resource Manager in TPSVRINIT

 IDENTIFICATION DIVISION.
 PROGRAM-ID. TPSVRINIT.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. USL-486.
 OBJECT-COMPUTER. USL-486.
5-6 Programming a BEA Tuxedo Application Using COBOL

System-supplied Server and Services
*
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 TPSTATUS-REC.
 COPY TPSTATUS.
 01 LOGMSG PIC X(50).
 01 LOGMSG-LEN PIC S9(9) COMP-5.
*
 LINKAGE SECTION.
 01 CMD-LINE.
 05 ARGC PIC 9(4) COMP-5.
 05 ARGV.
 10 ARGS PIC X OCCURS 0 TO 9999 DEPENDING ON ARGC.
 01 SERVER-INIT-STATUS.
 COPY TPSTATUS.
*
 PROCEDURE DIVISION USING CMD-LINE SERVER-INIT-STATUS.
 A-START.
 . . . INSPECT the ARGV line and process arguments
 IF arguments are invalid
 MOVE "Invalid Arguments Passed" TO LOGMSG
 PERFORM EXIT-NOW.
 ELSE arguments are OK continue

 CALL "TPOPEN" USING TPSTATUS-REC.
 IF NOT TPOK
 MOVE "TPOPEN Failed" TO LOGMSG
 ELSE IF TPESYSTEM
 MOVE "System /T error has occurred" TO LOGMSG
 ELSE IF TPEOS
 MOVE "An Operating System error has occurred" TO LOGMSG
 ELSE IF TPEPROTO
 MOVE "TPOPEN was called in an improper Context" TO LOGMSG
 ELSE IF TPERMERR
 MOVE "Resource manager Failed to Open" TO LOGMSG
 PERFORM EXIT-NOW.
 SET TPOK IN SERVER-INIT-STATUS TO TRUE.
 EXIT PROGRAM.
 EXIT-NOW.
 SET TPEINVAL IN SERVER-INIT-STATUS TO TRUE
 MOVE 50 LOGMSG-LEN.
 CALL "USERLOG" USING LOGMSG
 LOGMSG-LEN
 TPSTATUS-REC.
 EXIT PROGRAM.
Programming a BEA Tuxedo Application Using COBOL 5-7

5 Writing Servers

e
To guard against errors that may occur during initialization, TPSVRINIT can be coded
to allow the server to exit gracefully before starting to process service requests.

System-supplied Services: TPSVRDONE Routine

The TPSVRDONE routine calls TPCLOSE to close the resource manager, similarly to th
way TPSVRINIT calls TPOPEN to open it.

Use the following signature to call the TPSVRDONE routine.

 01 TPSTATUS-REC.
 COPY TPSTATUS.
 PROCEDURE DIVISION.
* User code
 EXIT PROGRAM.

The following example illustrates how to use the TPSVRDONE routine to close a
resource manager and exit gracefully.

Listing 5-3 Closing a Resource Manager with TPSVRDONE

 IDENTIFICATION DIVISION.
 PROGRAM-ID. TPSVRDONE.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. USL-486.
 OBJECT-COMPUTER. USL-486.
*
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 TPSTATUS-REC.
 COPY TPSTATUS.
 01 LOGMSG PIC X(50).
 01 LOGMSG-LEN PIC S9(9) COMP-5.
 01 SERVER-DONE-STATUS.
 COPY TPSTATUS.
 PROCEDURE DIVISION.
 A-START.
 CALL "TPCLOSE" USING TPSTATUS-REC.
 IF NOT TPOK
 MOVE "TPCLOSE Failed" TO LOGMSG
 ELSE IF TPESYSTEM
 MOVE "System /T error has occurred" TO LOGMSG
5-8 Programming a BEA Tuxedo Application Using COBOL

Guidelines for Writing Servers

than

te for

end

ster
 ELSE IF TPEOS
 MOVE "An Operating System error has occurred" TO LOGMSG
 ELSE IF TPEPROTO
 MOVE "TPCLOSE was called in an improper Context" TO LOGMSG
 ELSE IF TPERMERR
 MOVE "Resource manager Failed to Open" TO LOGMSG
 PERFORM EXIT-NOW.
 SET TPOK IN SERVER-DONE-STATUS TO TRUE.
 EXIT PROGRAM.
 EXIT-NOW.
 SET TPEINVAL IN SERVER-DONE-STATUS TO TRUE
 MOVE 50 LOGMSG-LEN.
 CALL "USERLOG" USING LOGMSG
 LOGMSG-LEN
 TPSTATUS-REC.
 EXIT PROGRAM.

Guidelines for Writing Servers

Because the communication details are handled by the BEA Tuxedo system
controlling program, you can concentrate on the application service logic rather
communication implementation. For compatibility with the system-supplied
controlling program, however, application services must adhere to certain
conventions. These conventions are referred to, collectively, as the service templa
coding service routines. They are summarized in the following list.

� A request/response service can receive only one request at a time and can s
only one reply.

� When processing a request, a request/response service works only on that
request. It can accept another only after it has either sent a reply to the reque
or forwarded the request to another service for additional processing.

� Service routines must terminate by calling either the TPRETURN or TPFORWAR
routine.

� When communicating with another server via TPACALL, the initiating service
must either wait for all outstanding replies or invalidate them with TPCANCEL
before calling TPRETURN or TPFORWAR .
Programming a BEA Tuxedo Application Using COBOL 5-9

5 Writing Servers

se the
Defining a Service

When writing a service routine, you must call the TPSVCSTART(3cbl) routine before
any others. This routine is used to retrieve the service’s parameters and data. U
following signature to call the TPSVCSTART routine.

01 TPSVCDEF-REC.
 COPY TPSVCDEF.
01 TPTYPE-REC.
 COPY TPTYPE.
01 DATA-REC.
 COPY User Data.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPSVCSTART" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

The service information data structure is defined as TPSVCDEF in the COBOL COPY
file. It includes the following members.

 05 COMM-HANDLE PIC S9(9) COMP-5.
 05 TPBLOCK-FLAG PIC S9(9) COMP-5.
 88 TPBLOCK VALUE 0.
 88 TPNOBLOCK VALUE 1.
 05 TPTRAN-FLAG PIC S9(9) COMP-5.
 88 TPTRAN VALUE 0.
 88 TPNOTRAN VALUE 1.
 05 TPREPLY-FLAG PIC S9(9) COMP-5.
 88 TPREPLY VALUE 0.
 88 TPNOREPLY VALUE 1.
 05 TPACK-FLAG PIC S9(9) COMP-5 REDEFINES TPREPLY-FLAG.
 88 TPNOACK VALUE 0.
 88 TPACK VALUE 1.
 05 TPTIME-FLAG PIC S9(9) COMP-5.
 88 TPTIME VALUE 0.
 88 TPNOTIME VALUE 1.
 05 TPSIGRSTRT-FLAG PIC S9(9) COMP-5.
 88 TPNOSIGRSTRT VALUE 0.
 88 TPSIGRSTRT VALUE 1.
 05 TPGETANY-FLAG PIC S9(9) COMP-5.
 88 TPGETHANDLE VALUE 0.
 88 TPGETANY VALUE 1.
 05 TPSENDRECV-FLAG PIC S9(9) COMP-5.
 88 TPSENDONLY VALUE 0.
 88 TPRECVONLY VALUE 1.
 05 TPNOCHANGE-FLAG PIC S9(9) COMP-5.
5-10 Programming a BEA Tuxedo Application Using COBOL

Defining a Service

”

d

ll
s

 88 TPCHANGE VALUE 0.
 88 TPNOCHANGE VALUE 1.
 05 TPSERVICETYPE-FLAG PIC S9(9) COMP-5.
 88 TPREQRSP VALUE 0.
 88 TPCONV VALUE 1.
*
 05 APPKEY PIC S9(9) COMP-5.
 05 CLIENTID OCCURS 4 TIMES PIC S9(9) COMP-5.
 05 SERVICE-NAME PIC X(15).

The following table describes the members of a TPSVCDEF data structure.

Table 5-1 TPSVCDEF Data Structure

For a description of the TPTYPE-REC data structure, refer to “Defining Typed Records
on page 3-6.

Field Description

COMM-HANDLE Specifies, to the service routine, the communication handle use
by the requesting process to invoke the service.

SETTINGS
(TPBLOCK-FLAG
 TPTRAN-FLAG, etc.)

Miscellaneous settings that control server characteristics. For
more information on the settings, refer to the BEA Tuxedo
COBOL Function Reference.

APPKEY Reserved for use by the application. If application-specific
authentication is part of your design, the application-specific
authentication server, which is called at the time a client joins
the application, should return a client authentication key, as we
as a success or failure indication. The BEA Tuxedo system hold
the APPKEY on behalf of the client and passes the information to
subsequent service requests in this field. By the time the
APPKEY is passed to the service, the client has already been
authenticated. However, the APPKEY field can be used within
the service to identify the user invoking the service or some
other parameters associated with the user.

CLIENTID Identifier of the client that originates a request.

SERVICE-NAME Name of the service routine used by the requesting process to
invoke the service.
Programming a BEA Tuxedo Application Using COBOL 5-11

5 Writing Servers

 to be
e
You must code the service in such a way that when it accesses the request data
placed in DATA-REC, it expects the data to be in a record of the type defined for th
service in the configuration file. Upon successful return, DATA-REC contains the data
received and LEN contains the actual number of bytes moved.

The following sample listing shows a typical service definition.

Listing 5-4 Typical Service Definition

 IDENTIFICATION DIVISION.
 PROGRAM-ID. BUYSR.
 AUTHOR. TUXEDO DEVELOPMENT.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. USL-486.
 OBJECT-COMPUTER. USL-486.
*
 INPUT-OUTPUT SECTION.
 . . .
**
* Tuxedo definitions
**
 01 TPSVCRET-REC.
 COPY TPSVCRET.
*
 01 TPTYPE-REC.
 COPY TPTYPE.
*
 01 TPSTATUS-REC.
 COPY TPSTATUS.
*
 01 TPSVCDEF-REC.
 COPY TPSVCDEF.
**
* Log message definitions
**
 01 LOGMSG.
 05 LOGMSG-TEXT PIC X(50).
*
 01 LOGMSG-LEN PIC S9(9) COMP-5.
**
* User defined data records
**
 01 CUST-REC.
 COPY CUST.
*

5-12 Programming a BEA Tuxedo Application Using COBOL

Defining a Service
 LINKAGE SECTION.
*
 PROCEDURE DIVISION.
*
 START-BUYSR.
 MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.
 OPEN files or DATABASE
**
* Get the data that was sent by the client
**
 MOVE "Server Started" TO LOGMSG-TEXT.
 PERFORM DO-USERLOG.
 MOVE LENGTH OF CUST-REC TO LEN IN TPTYPE-REC.
 CALL "TPSVCSTART" USING TPSVCDEF-REC
 TPTYPE-REC
 CUST-REC
 TPSTATUS-REC.
 IF TPTRUNCATE
 MOVE "Input data exceeded CUST-REC length" TO LOGMSG-TEXT
 PERFORM DO-USERLOG
 PERFORM A-999-EXIT.
 IF NOT TPOK
 MOVE "TPSVCSTART Failed" TO LOGMSG-TEXT
 PERFORM DO-USERLOG
 PERFORM A-999-EXIT.
 IF REC-TYPE NOT = "VIEW"
 MOVE "REC-TYPE in not VIEW" TO LOGMSG-TEXT
 PERFORM DO-USERLOG
 PERFORM A-999-EXIT.
 IF SUB-TYPE NOT = "cust"
 MOVE "SUB-TYPE in not cust" TO LOGMSG-TEXT
 PERFORM DO-USERLOG
 PERFORM A-999-EXIT.
 . . .
 set consistency level of the transaction
 . . .
**
* Exit
**
 A-999-EXIT.
 MOVE "Exiting" TO LOGMSG-TEXT.
 PERFORM DO-USERLOG.
 SET TPFAIL TO TRUE.
 COPY TPRETURN REPLACING TPSVCRET-REC BY TPSVCRET-REC
 TPTYPE-REC BY TPTYPE-REC
 DATA-REC BY CUST-REC
 TPSTATUS-REC BY TPSTATUS-REC.
**
* Write to userlog
Programming a BEA Tuxedo Application Using COBOL 5-13

5 Writing Servers

 with

ase
iting

nter

e of
**
 DO-USERLOG.
 CALL "USERLOG" USING LOGMSG
 LOGMSG-LEN
 TPSTATUS-REC.

In the preceding example, the request record on the client side was originally sent
REC-TYPE set to VIEW and the SUB-TYPE set to cust . The BUYSR service is defined in
the configuration file as a service that knows about the VIEW typed record. BUYSR
retrieves the data record by accessing the CUST-REC record. The consistency level of
the transaction is specified after this record is retrieved but before the first datab
access is made. For more details on transaction consistency levels, refer to “Wr
Global Transactions” on page 9-1.

Note: The TPGPRIO and TPSPRIO routines, used for getting and setting priorities,
respectively, are described in detail in “Setting and Getting Message
Priorities” on page 6-14.

The example code in this section shows how a service called PRINTER tests the priority
level of the request just received using the TPGPRIO routine. Then, based on the
priority level, the application routes the print job to the appropriate destination pri
RNAME.

Next, the contents of INPUT-REC are sent to the printer. The application queries
TPSVCDEF-REC to determine whether a reply is expected. If so, it returns the nam
the destination printer to the client. For more information on the TPRETURN routine,
refer to “Terminating a Service Routine” on page 5-17.

Listing 5-5 Checking the Priority of a Received Request

 IDENTIFICATION DIVISION.
 PROGRAM-ID. PRINTSR.
 AUTHOR. TUXEDO DEVELOPMENT.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. USL-486.
 OBJECT-COMPUTER. USL-486.
*
 INPUT-OUTPUT SECTION.
 . . .
**
5-14 Programming a BEA Tuxedo Application Using COBOL

Defining a Service
* Tuxedo definitions
**
 01 TPSVCRET-REC.
 COPY TPSVCRET.
*
 01 TPTYPE-REC.
 COPY TPTYPE.
*
 01 TPSTATUS-REC.
 COPY TPSTATUS.
*
 01 TPSVCDEF-REC.
 COPY TPSVCDEF.
*
 01 TPPRIDEF-REC.
 COPY TPPRIDEF.
**
* Log message definitions
**
 01 LOGMSG.
 05 FILLER PIC S9(9) VALUE
 "TP-STATUS=".
 05 LOG-TP-STATUS PIC S9(9).
 05 LOGMSG-TEXT PIC X(50).
*
 01 LOGMSG-LEN PIC S9(9) COMP-5.
**
* User defined data records
**
 01 INPUT-REC PIC X(1000).
 01 PRNAME PIC X(20).
*
 LINKAGE SECTION.
*
 PROCEDURE DIVISION.
*
 START-PRINTSR.
 MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.
 OPEN files or DATABASE
**
* Get the data that was sent by the client
**
 MOVE ZERO to TP-STATUS.
 MOVE "Server Started" TO LOGMSG-TEXT.
 PERFORM DO-USERLOG.
 MOVE LENGTH OF INPUT-REC TO LEN.
 CALL "TPSVCSTART" USING TPSVCDEF-REC
 TPTYPE-REC
 INPUT-REC
Programming a BEA Tuxedo Application Using COBOL 5-15

5 Writing Servers
 TPSTATUS-REC.
 IF NOT TPOK
 MOVE "TPSVCSTART Failed" TO LOGMSG-TEXT
 PERFORM DO-USERLOG
 SET TPFAIL TO TRUE.
 PERFORM A-999-EXIT.
 . . .
 Check other parameters
 CALL "TPGPRIO" USING TPPRIDEF-REC
 TPSTATUS-REC.
 IF NOT TPOK
 MOVE "TPGPRIO Failed" TO LOGMSG-TEXT
 PERFORM DO-USERLOG
 SET TPFAIL TO TRUE.
 PERFORM A-999-EXIT.
 IF PRIORITY < 20
 MOVE "BIGJOBS" TO RNAME
 ELSE IF PRIORITY < 60
 MOVE "MEDJOBS" TO RNAME
 ELSE
 MOVE "HIGHSPEED" TO RNAME.
 . . .
 Print INPUT-REC on RNAME printer
 . . .
 IF TPNOREPLY
 MOVE SPACES TO REC-TYPE
 MOVE 0 TO LEN
 SET TPSUCCESS TO TRUE
 PERFORM A-999-EXIT
 IF TPREPLY
 MOVE "STRING" TO REC-TYPE
 MOVE LENGTH OF PRNAME TO LEN
 SET TPSUCCESS TO TRUE
 PERFORM A-999-EXIT.
**
* Exit
**
 A-999-EXIT.
 MOVE "Exiting" TO LOGMSG-TEXT.
 PERFORM DO-USERLOG.
 SET TPSUCCESS TO TRUE.
 COPY TPRETURN REPLACING TPSVCRET-REC BY TPSVCRET-REC
 TPTYPE-REC buTPTYPE-REC
 DATA-REC BY PRNAME
 TPSTATUS-REC BY TPSTATUS-REC.
**
* Write to userlog
**
 DO-USERLOG.
5-16 Programming a BEA Tuxedo Application Using COBOL

Terminating a Service Routine

ing
 MOVE TP-STATUS TO LOG-TP-STATUS.
 CALL "USERLOG" USING LOGMSG
 LOGMSG-LEN
 TPSTATUS-REC.

Terminating a Service Routine

The TPRETURN(3cbl) , TPCANCEL(3cbl) , and TPFORWAR(3cbl) routines specify that
a service routine has completed with one of the following actions:

� TPRETURN sends a reply to the calling client.

� TPCANCEL cancels the current request.

� TPFORWAR forwards a request to another service for further processing.

Sending Replies

The TPRETURN(3cbl) and TPFORWAR(3cbl) calls are COBOL copy files that contain
EXIT statements to mark the end of a service routine and send a message to the
requester or forward the request to another service, respectively. Use the follow
signature to call the TPRETURN routine.

 01 TPSVCRET-REC.
 COPY TPSVCRET.
 01 TPTYPE-REC.
 COPY TPTYPE.
 01 DATA-REC.
 COPY User Data.
 01 TPSTATUS-REC.
 COPY TPSTATUS.
 COPY TPRETURN REPLACING TPSVCRET-REC BY TPSVCRET-REC
 TPTYPE-REC BY TPTYPE-REC
 DATA-REC BY DATA-REC
 TPSTATUS-REC BY TPSTATUS-REC.
Programming a BEA Tuxedo Application Using COBOL 5-17

5 Writing Servers

A

lly

g

s
Note: You must use COPY here instead of CALL to ensure that the EXIT statement is
called properly, and the COBOL service routine returns control to the BE
Tuxedo system.

The following listing provides the TPSVCRET-REC record signature.

 05 TPRETURN-VAL PIC S9(9) COMP-5.
 88 TPSUCCESS VALUE 0.
 88 TPFAIL VALUE 1.
 88 TPFAIL VALUE 2.
 05 APPL-CODE PIC S9(9) COMP-5.

The following table describes the members of a TPSVCRET-REC data structure.

Table 5-2 TPSVCRET-REC Data Structure Members

Member Description

TP-RETURN-VAL Indicates whether or not the service has completed successfu
on an application-level. The value is an integer that is
represented by a symbolic name. Valid settings include:

� TPSUCCESS - The calling routine succeeded. The routine
stores the reply message in the caller’s record. If there is a
reply message, it is in the caller’s record.

� TPFAIL (default) - The service terminated unsuccessfully.
The routine reports an error message to the client process
waiting for the reply. In this case, the client’s TPCALL or
TPGETRPLY routine call fails and the system sets the
TP-STATUS variable to TPESVCFAIL to indicate an
application-defined failure. If a reply message was
expected, it is available in the caller’s record.

� TPEXIT - The service terminated unsuccessfully. The
routine reports an error message to the client process waitin
for the reply, and exits.

For a description of the effect that the value of this argument ha
on global transactions, refer to “Writing Global Transactions”
on page 9-1.

APPLC-CODE Returns an application-defined return code to the caller. The
client can access the value returned in APPLC-CODE by
querying APPL-RETURN-CODE IN TPSTATUS-REC. The
routine returns this code regardless of success or failure.
5-18 Programming a BEA Tuxedo Application Using COBOL

Terminating a Service Routine

ly to
ork
 pass a
rough

eplies
.
ived

aller.

ts,

of

 not

.

ly.
urned
,
 two

Refer to “Defining a Service” on page 5-10 for a description of the TPTYPE-REC
record.

The primary function of a service routine is to process a request and return a rep
a client process. It is not necessary, however, for a single service to do all the w
required to perform the requested function. A service can act as a requester and
request call to another service the same way a client issues the original request: th
calls to TPCALL or TPACALL.

Note: The TPCALL and TPACALL routines are described in detail in “Writing
Request/Response Clients and Servers” on page 6-1.

When TPRETURN is called, control always returns to the controlling program. If a
service has sent requests with asynchronous replies, it must receive all expected r
or invalidate them with TPCANCEL before returning control to the controlling program
Otherwise, the outstanding replies are automatically dropped when they are rece
by the BEA Tuxedo system controlling program, and an error is returned to the c

If the client invokes the service with TPCALL, after a successful call to TPRETURN, the
reply message is available in the O-DATA-REC record. If TPACALL is used to send the
request, and TPRETURN returns successfully, the reply message is available in the
DATA-REC record of TPGETRPLY.

If a reply is expected and TPRETURN encounters errors while processing its argumen
it sends a failed message to the calling process. The caller detects the error by
checking the value placed in TP-STATUS. In the case of failed messages, the system
sets the TP-STATUS to TPESVCERR. This situation takes precedence over the value
APPL-RETURN-CODE IN TPSTATUS-REC. If this type of error occurs, no reply data is
returned, and both the contents and length of the caller’s output record remain
unchanged.

If TPRETURN returns a message in a record of an unknown type or a record that is
allowed by the caller (that is, if the call is made with TPNOCHANGE), the system returns
TPEOTYPE in TP-STATUS. In this case, application success or failure cannot be
determined, and the contents and length of the output record remain unchanged

The value returned in APPL-RETURN-CODE IN TPSTATUS-REC is not relevant if the
TPRETURN routine is invoked and a time-out occurs for the call waiting for the rep
This situation takes precedence over all others in determining the value that is ret
in TP-STATUS. In this case, TP-STATUS is set to TPETIME and the reply data is not sent
leaving the contents and length of the caller’s reply record unchanged. There are
types of time-outs in the BEA Tuxedo system: blocking and transaction time-outs
(discussed in “Writing Global Transactions” on page 9-1).
Programming a BEA Tuxedo Application Using COBOL 5-19

5 Writing Servers

 must

m

e
The example code in this section shows the TRANSFER service that is part of the XFER
server. Basically, the TRANSFER service makes synchronous calls to the WITHDRAWAL
and DEPOSIT services. It allocates a separate record for the reply message since it
use the request record for the calls to both the WITHDRAWAL and the DEPOSIT services.
If the call to WITHDRAWAL fails, the service writes the message cannot withdraw on
the status line of the form and sets TP-RETURN-VAL IN TPSVCRET-REC of the
TPRETURN routine to TPFAIL . If the call succeeds, the debit balance is retrieved fro
the reply record.

Note: In the following example, the application moves the identifier for the
“destination account” (which is retrieved from the cr_id variable) to the
zeroth occurrence of the ACCOUNT_ID field in the transf fielded record. This
move is necessary because this occurrence of the field in an FML record is used
for data-dependent routing. Refer to Setting Up a BEA Tuxedo Application for
more information.

A similar scenario is followed for the call to DEPOSIT. On success, the service sets th
TP-RETURN-VAL IN TPSVCRET-REC to TPSUCCESS, returning the pertinent account
information to the status line.

Listing 5-6 TPRETURN Routine

 IDENTIFICATION DIVISION.
 PROGRAM-ID. TRANSFER.
 AUTHOR. TUXEDO DEVELOPMENT.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. USL-486.
 OBJECT-COMPUTER. USL-486.
*
 INPUT-OUTPUT SECTION.
 . . .
**
* Tuxedo definitions
**
 01 TPSVCRET-REC.
 COPY TPSVCRET.
*
 01 TPTYPE-REC.
 COPY TPTYPE.
*
 01 TPSTATUS-REC.
 COPY TPSTATUS.
5-20 Programming a BEA Tuxedo Application Using COBOL

Terminating a Service Routine
*
 01 TPSVCDEF-REC.
 COPY TPSVCDEF.
**
* User defined data records
**
 01 TRANS-REC.
 COPY TRANS-AMOUNT.
*
 LINKAGE SECTION.
*
 PROCEDURE DIVISION.
*
 START-TRANSFER.
**
* Get the data that was sent by the client
**
 MOVE LENGTH OF TRANS-REC TO LEN.
 CALL "TPSVCSTART" USING TPSVCDEF-REC
 TPTYPE-REC
 TRANS-REC
 TPSTATUS-REC.
 IF NOT TPOK
 MOVE "Transaction Encountered An Error" TO STATUS-LINE
 SET TPFAIL TO TRUE.
 COPY TPRETURN REPLACING TPSVCRET-REC BY TPSVCRET-REC
 TPTYPE-REC BY TPTYPE-REC
 DATA-REC BY TRANS-REC
 TPSTATUS-REC BY TPSTATUS-REC.
 ELSE
 . . . Check other parameters
**
* must have a valid debit and credit account number
**
 CALL "FIND-ACCOUNT-FUNCTION" USING TRANS-DEBIT-ACCOUNT IN TRANS-REC.

 IF TRANS-DEBIT-ACCOUNT is not valid
 MOVE "Invalid Debit Account Number"
 TO STATUS-LINE IN TRANS-REC
 SET TPFAIL TO TRUE
 COPY TPRETURN REPLACING
 DATA-REC BY TRANS-REC.

 CALL "FIND-ACCOUNT-FUNCTION" USING TRANS-CREDIT-ACCOUNT IN TRANS-REC.

 IF TRANS-CREDIT-ACCOUNT is not valid
 MOVE "Invalid Credit Account Number"
 TO STATUS-LINE IN TRANS-REC
 SET TPFAIL TO TRUE
Programming a BEA Tuxedo Application Using COBOL 5-21

5 Writing Servers
 COPY TPRETURN REPLACING
 DATA-REC BY TRANS-REC.
**
* Check amount to transfer
**
 IF TRANS-AMOUNT IN TRANS-REC < 0
 MOVE "Invalid Transfer Amount Requested"
 TO STATUS-LINE IN TRANS-REC
 SET TPFAIL TO TRUE
 COPY TPRETURN REPLACING
 DATA-REC BY TRANS-REC.
**
* Make Withdrawal using another service
**
 MOVE "WITHDRAWAL" TO SERVICE-NAME.
 . . . set other TPCALL parameters
 CALL "TPCALL" USING . . .
 IF NOT TPOK
 MOVE "Cannot withdraw from debit account"
 TO STATUS-LINE IN TRANS-REC
 SET TPFAIL TO TRUE
 COPY TPRETURN REPLACING
 DATA-REC BY TRANS-REC.
**
* Make Deposit using another service
**
 MOVE "DEPOSIT" TO SERVICE-NAME.
 . . . set other TPCALL parameters
 CALL "TPCALL" USING . . .
 IF NOT TPOK
 MOVE "Cannot Deposit into credit account"
 TO STATUS-LINE IN TRANS-REC
 SET TPFAIL TO TRUE
 COPY TPRETURN REPLACING
 DATA-REC BY TRANS-REC.
 . . .
 MOVE "Transfer completed" TO STATUS-LINE IN TRANS-REC
 . . . MOVE all the data into TRANS-REC needed by the client
 SET TPSUCCESS TO TRUE
 COPY TPRETURN REPLACING
 DATA-REC BY TRANS-REC.
5-22 Programming a BEA Tuxedo Application Using COBOL

Terminating a Service Routine

t,

ade
Invalidating Descriptors

If a service calling TPGETRPLY (described in detail in “Writing Request/Response
Clients and Servers” on page 6-1) fails with TPETIME and decides to cancel the reques
it can invalidate the descriptor with a call to TPCANCEL(3cbl) . If a reply subsequently
arrives, it is silently discarded.

TPCANCEL cannot be used for transaction replies (that is, for replies to requests m
without the TPNOTRAN flag set). Within a transaction, TPABORT(3cbl) does the same
job of invalidating the transaction call descriptor.

The following example shows how to invalidate a reply after timing out.

Listing 5-7 Invalidating a Reply After Timing Out

. . . Set up parameters to TPACALL
SET TPNOTRAN TO TRUE.
CALL "TPACALL" USING TPSVCDEF-REC
 TPTYPE-REC
 DEBIT-REC
 TPSTATUS-REC.
IF NOT TPOK
 error processing
. . .
CALL "TPGETRPLY" USING TPSVCDEF-REC
 TPTYPE-REC
 DEBIT-REC
 TPSTATUS-REC.
IF NOT TPOK
 error processing
IF TPETIME
 CALL "TPCANCEL" TPSVCDEF-REC
 TPSTATUS-REC.
 . . .
 SET TPSUCCESS TO TRUE.
 COPY TPRETURN REPLACING TPSVCRET-REC BY TPSVCRET-REC
 TPTYPE-REC BY TPTYPE-REC
 DATA-REC BY DEBIT-REC
 TPSTATUS-REC BY TPSTATUS-REC.
Programming a BEA Tuxedo Application Using COBOL 5-23

5 Writing Servers

ice

ed to
 reply

server

Forwarding Requests

The TPFORWAR(3cbl) routine allows a service to forward a request to another serv
for further processing.

Use the following signature to call the TPFORWAR routine.

01 TPSVCDEF-REC.
 COPY TPSVCDEF.
01 TPTYPE-REC.
 COPY TPTYPE.
01 DATA-REC.
 COPY User Data.
01 TPSTATUS-REC.
 COPY TPSTATUS.
COPY TPFORWAR REPLACING TPSVCDEF-REC BY TPSVCDEF-REC
 TPTYPE-REC BY TPTYPE-REC
 DATA-REC BY DATA-REC
 TPSTATUS-REC BY TPSTATUS-REC.

For descriptions of the TPSVCDEF-REC and TPTYPE-REC records, refer to “Defining a
Service” on page 5-10.

The functionality of TPFORWAR differs from a service call: a service that forwards a
request does not expect a reply. The responsibility for providing the reply is pass
the service to which the request has been forwarded. The latter service sends the
to the process that originated the request. It becomes the responsibility of the last
in the forward chain to send the reply to the originating client by invoking TPRETURN.

The following figure shows one possible sequence of events when a request is
forwarded from one service to another. Here a client initiates a request using the
TPCALL routine and the last service in the chain (SVC_C) provides a reply using the
TPRETURN routine.
5-24 Programming a BEA Tuxedo Application Using COBOL

Terminating a Service Routine

 that

s

 is not
e
call
e

ot

the

 the

m.
Figure 5-1 Forwarding a Request

Service routines can forward requests at specified priorities in the same manner
client processes send requests, by using the TPSPRIO routine.

When a process calls TPFORWAR, the system-supplied the controlling program regain
control, and the server process is free to do more work.

Note: If a server process is acting as a client and a reply is expected, the server
allowed to request services from itself. If the only available instance of th
desired service is offered by the server process making the request, the
fails, indicating that a recursive call cannot be made. However, if a servic
routine sends a request (to itself) with the TPNOREPLY communication flag set,
or if it forwards the request, the call does not fail because the service is n
waiting for itself.

Calling TPFORWAR can be used to indicate success up to that point in processing
request. If no application errors have been detected, you can invoke TPFORWAR,
otherwise, you can call TPRETURN with TP-RETURN-VAL IN TPSVCRET-REC set to
TPFAIL .

The following example illustrates how the service sends its data record to the DEPOSIT
service by calling TPFORWAR. If the new account is added successfully, the branch
record is updated to reflect the new account, and the data record is forwarded to
DEPOSIT service. On failure, TPRETURN is called with TP-RETURN-VAL IN

TPSVCRET-REC set to TPFAIL and the failure is reported on the status line of the for
Programming a BEA Tuxedo Application Using COBOL 5-25

5 Writing Servers
Listing 5-8 How to Use TPFORWAR

 . . .
**
* Get the data that was sent by the client
**
 MOVE LENGTH OF TRANS-REC TO LEN.
 CALL "TPSVCSTART" USING TPSVCDEF-REC
 TPTYPE-REC
 TRANS-REC
 TPSTATUS-REC.
 IF NOT TPOK
 MOVE "Transaction Encountered An Error" TO STATUS-LINE
 SET TPFAIL TO TRUE.
 COPY TPRETURN REPLACING
 DATA-REC BY TRANS-REC.
 ELSE
 . . . Check other parameters
**
* Insert new account record
**
 CALL "ADD-NEW-ACCOUNT-FUNCTION" USING TRANS-ACCOUNT IN TRANS-REC.
 IF Adding New Account Failed
 MOVE "Account not added" TO STATUS-LINE IN TRANS-REC
 SET TPFAIL TO TRUE
 COPY TPRETURN REPLACING
 DATA-REC BY TRANS-REC.
**
* Forward record to the DEPOSIT service to add initial
* balance into account
**
 MOVE "DEPOSIT" TO SERVICE-NAME.
 . . . set other TPFORWAR parameters
 COPY TPFORWAR REPLACING
 DATA-REC BY TRANS-REC.
5-26 Programming a BEA Tuxedo Application Using COBOL

Advertising and Unadvertising Services

cify
is to

was

nd can
y that
in an

rated
a
. Refer

ervice
he
Advertising and Unadvertising Services

When a server is booted, it advertises the services it offers based on the values
specified for the CLOPT parameter in the configuration file.

Note: The services that a server may advertise are initially defined when the
buildserver command is executed. The -s option allows a
comma-separated list of services to be specified. It also allows you to spe
a routine with a name that differs from that of the advertised service that
be called to process the service request. Refer to the buildserver(1) in the
BEA Tuxedo Command Reference for more information.

The default specification calls for the server to advertise all services with which it
built. Refer to the UBBCONFIG(5) or servopts(5) reference page in the BEA Tuxedo
File Formats and Data Descriptions Reference for more information.

Because an advertised service uses a service table entry in the bulletin board, a
therefore be resource-expensive, an application may boot its servers in such a wa
only a subset of the services offered are available. To limit the services available
application, define the CLOPT parameter, within the appropriate entry in the SERVERS
section of the configuration file, to include the desired services in a comma-sepa
list following the -s option. The -s option also allows you to specify a routine with
name other than that of the advertised service to be called to process the request
to the servopts(5) reference page in the BEA Tuxedo File Formats and Data
Descriptions Reference for more information.

A BEA Tuxedo application administrator can use the advertise and unadvertise
commands of tmadmin(1) to control the services offered by servers. The
TPADVERTISE and TPUNADVERTISE routines enable you to dynamically control the
advertisement of a service in a request/response or conversational server. The s
to be advertised (or unadvertised) must be available within the same server as t
service making the request.
Programming a BEA Tuxedo Application Using COBOL 5-27

5 Writing Servers

be
5

.
he
Advertising Services

Use the following signature to call the TPADVERTISE(3cbl) routine.

01 SERVICE-NAME PIC X(15).
01 PROGRAM-NAME PIC X(32).
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPADVERTISE" USING SERVICE-NAME PROGRAM-NAME TPSTATUS-REC.

The following table describes the members of a TPADVERTISE data structure.

Table 5-3 TPADVERTISE Data Structure Members

Member Description

SERVICE-NAME Name of the service to be advertised. The service name must
a character string of up to 15 characters. Names longer than 1
characters are truncated. The SPACES string is not a valid value.
If it is specified, an error (TPEINVAL) results.

PROGRAM-NAME BEA Tuxedo system routine that is called to perform a service
Frequently, this name is the same as the name of the service. T
SPACES string is not a valid value. If it is specified, an error
results.
5-28 Programming a BEA Tuxedo Application Using COBOL

Advertising and Unadvertising Services

ce

e

be
5
Unadvertising Services

The TPUNADVERTISE(3cbl) routine removes the name of a service from the servi
table of the bulletin board so that the service is no longer advertised.

Use the following signature for the TPUNADVERTISE routine.

01 SERVICE-NAME PIC X(15).
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPUNADVERTISE" USING SERVICE-NAME TPSTATUS-REC.

The TPUNADVERTISE data structure contains one member, which is described in th
following table.

Table 5-4 TPUNADVERTISE Data Structure Member

Example: Dynamic Advertising and Unadvertising of a
Service

The following example shows how to use the TPADVERTISE routine. In this example,
a server called TLR is programmed to offer only the service called TLRINIT when
booted. After some initialization, TLRINIT advertises two services called DEPOSIT and
WITHDRAW. Both are performed by the TLRFUNCS routine, and both are built into the
TLR server.

After advertising DEPOSIT and WITHDRAW, TLRINIT unadvertises itself.

Member Description

SERVICE-NAME Name of the service to be advertised. The service name must
a character string of up to 15 characters. Names longer than 1
characters are truncated. The SPACES string is not a valid value.
If it is specified, an error (TPEINVAL) results.
Programming a BEA Tuxedo Application Using COBOL 5-29

5 Writing Servers

 the
Listing 5-9 Dynamic Advertising and Unadvertising

 . . .
**
* Advertise DEPOSIT service to be processed by
* routine TLRFUNCS
**
 MOVE "DEPOSIT" TO SERVICE-NAME.
 MOVE "TLRFUNCS" TO PROGRAM-NAME.
 CALL "TPADVERTISE" USING SERVICE-NAME
 PROGRAM-REC
 TPSTATUS-REC.
 IF NOT TPOK
 error processing
**
* Advertise WITHDRAW service to be processed by
* the same routine TLRFUNCS
**
 MOVE "WITHDRAW" TO SERVICE-NAME.
 MOVE "TLRFUNCS" TO PROGRAM-NAME.
 CALL "TPADVERTISE" USING SERVICE-NAME
 PROGRAM-REC
 TPSTATUS-REC.
 IF NOT TPOK
 error processing
**
* Unadvertise TLRINIT service (yourself)
**
 MOVE "TLRINIT" TO SERVICE-NAME.
 CALL "TPUNADVERTISE" USING SERVICE-NAME
 TPSTATUS-REC.
 IF NOT TPOK
 error processing

Building Servers

To build an executable server, compile your application service subroutines with
BEA Tuxedo System server adaptor and all other referenced files using the
buildserver(1) command with the -C option.
5-30 Programming a BEA Tuxedo Application Using COBOL

Building Servers

d
Note: The BEA Tuxedo server adaptor accepts messages, dispatches work, an
manages transactions (if transactions are enabled).

Use the following syntax for the buildserver command.

buildserver -C -o filename -f filenames -l filenames -s -v

The following table describes the buildserver command-line options.

Table 5-5 buildserver Command-Line Options

This Option . . . Allows You to Specify the . . .

-o filename Name of the executable output file. The default is SERVER.

-f filenames List of files that are link edited before the BEA Tuxedo system
libraries. You can specify the -f option more than once, and
multiple filenames for each occurrence of -f . If you specify a
COBOL program file (file. cbl), it is compiled before it is linked.
You can specify other object files (file. o) separately, or in groups
in an archive file (file. a).

-l filenames List of files that are link edited after the BEA Tuxedo system
libraries. You can specify the -l option more than once, and
multiple filenames for each occurrence of -l . If you specify a
COBOL program file (file. cbl) , it is compiled before it is
linked. You can specify other object files (file. o) separately, or
in groups in an archive file (file. a).

-r filenames List of resource manager access libraries that are link edited with the
executable server. The application administrator is responsible for
predefining all valid resource manager information in the
$TUXDIR/updataobj/RM file using the buildtms(1)
command. You can specify only one resource manager. Refer to
Setting Up a BEA Tuxedo Application for more information.

-s [service :]routine Name of service or services offered by the server and the name of
the routine that performs each service. You can specify the -s
option more than once, and multiple services for each occurrence of
-s . The server uses the specified service names to advertise its
services to clients.

Typically, you should assign the same name to both the service and
the routine that performs that service. Alternatively, you can specify
any names. To assign names, use the following syntax:
service :routine .
Programming a BEA Tuxedo Application Using COBOL 5-31

5 Writing Servers

nd

ust

Note: The BEA Tuxedo libraries are linked in automatically. You do not need to
specify the BEA Tuxedo library names on the command line.

The order in which you specify the library files to be link edited is significant: it
depends on the order in which routines are called and which libraries contain
references to those functions.

By default, the buildserver command invokes the UNIX cobcc command. You can
specify an alternative compile command and set your own flags for the compile a
link-edit phases, however, by setting the ALTCC and ALTCFLAGS environment
variables, respectively. For more information, refer to “Setting Environment
Variables” on page 2-5.

Note: On a Windows NT system, the ALTCC and ALTCFLAGS environment variables
are not applicable and setting them will produce unexpected results. You m
compile your application first using a COBOL compiler and then pass the
resulting object file to the buildserver command.

The following command processes the acct.o application file and creates a server
called ACCT that contains two services: NEW_ACCT, which calls the OPEN_ACCT routine,
and CLOSE_ACCT, which calls a routine of the same name.

buildserver -C –o ACCT –f acct.o –s NEW_ACCT:OPEN_ACCT –s CLOSE_ACCT

See Also

� “Building Clients” on page 4-9

� buildclient(1) in the BEA Tuxedo Command Reference
5-32 Programming a BEA Tuxedo Application Using COBOL

CHAPTER

t to a
odule
s also
ed in
6 Writing
Request/Response
Clients and Servers

� Overview of Request/Response Communication

� Sending Synchronous Messages

� Sending Asynchronous Messages

� Setting and Getting Message Priorities

Overview of Request/Response
Communication

In request/response communication mode, one software module sends a reques
second software module and waits for a response. Because the first software m
performs the role of the client, and the second, the role of the server, this mode i
referred to as client/server interaction. Many online banking tasks are programm
request/response mode.
Programming a BEA Tuxedo Application Using COBOL 6-1

6 Writing Request/Response Clients and Servers

t

er

ssage
For example, a request for an account balance is executed as follows:

1. A customer (the client) sends a request for an account balance to the Accoun
Record Storage System (the server).

2. The Account Record Storage System (the server) sends a reply to the custom
(the client), specifying the dollar amount in the designated account.

Figure 6-1 Example of Request/Response Communication in Online Banking

Once a client process has joined an application, it can then send the request me
to a service subroutine for processing and receive a reply message.
6-2 Programming a BEA Tuxedo Application Using COBOL

Sending Synchronous Messages

ly

14).

r to
Sending Synchronous Messages

The TPCALL(3cbl) call sends a request to a service subroutine and synchronous
waits for a reply. Use the following signature to call the TPCALL routine.

01 TPSVCDEF-REC.
 COPY TPSVCDEF.
01 ITPTYPE-REC.
 COPY TPTYPE.
01 IDATA-REC.
 COPY User Data.
01 OTPYTPE-REC.
 COPY TPTYPE.
01 ODATA-REC.
 COPY User Data.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPCALL" USING TPSVCDEF-REC
 ITPTYPE-REC
 IDATA-REC
 OTPTYPE-REC
 ODATA-REC
 TPSTATUS-REC .

For more information on the TPSVCDEF data structure, refer to “Defining a Service” on
page 5-10. The IDATA-REC and ITPTYPE-REC structures define the request record.
The ODATA-REC and OTPTYPE-REC structures define the reply record. The
ITPTYPE-REC and OTPTYPE-REC data structures are similar to the TPTYPE-REC data
structure, as defined in “Defining a Service” on page 5-10.

TPCALL waits for the expected reply.

Note: Calling the TPCALL routine is logically the same as calling the TPACALL
routine, immediately followed by TPGETRPLY, as described in “Sending
Asynchronous Messages” on page 6-10.

The request carries the priority set by the system for the specified service
(SERVICE-NAME) unless a different priority has been explicitly set by a call to the
TPSPRIO routine (described in “Setting and Getting Message Priorities” on page 6-

TPCALL returns an integer. On failure, the value of TP-STATUS is set to a value that
reflects the type of error that occurred. For information on valid error codes, refe
TPCALL(3cbl) in the BEA Tuxedo COBOL Function Reference.
Programming a BEA Tuxedo Application Using COBOL 6-3

6 Writing Request/Response Clients and Servers

 be

For

sage

 the

sing
 same

n in

ese
Note: Communication calls may fail for a variety of reasons, many of which can
corrected at the application level. Possible causes of failure include:
application defined errors (TPESVCFAIL), errors in processing return
arguments (TPESVCERR), typed record errors (TPEITYPE, TPEOTYPE),
time-out errors (TPETIME), and protocol errors (TPEPROTO), among others. For
a detailed discussion of errors, refer to “Managing Errors” on page 11-1.
a complete list of possible errors, refer to TPCALL(3cbl) in the BEA Tuxedo
COBOL Function Reference.

The BEA Tuxedo system automatically adjusts a record used for receiving a mes
if the received message is too large for the allocated record. You should test for
whether or not the reply records have been resized.

To access the new size of the record, use the address returned in *LEN IN

OTPTYPE-REC. To determine whether a reply record has changed in size, compare
size of the reply record before the call to TPCALL with the value of LEN IN

OTPTYPE-REC after its return. If LEN IN OTPTYPE-REC is larger than the original size,
the record has grown. If not, the record size has not changed.

Example: Using the Same Record for Request and Reply
Messages

The following example shows how the client program makes a synchronous call u
the same record for both the request and reply messages. In this case, using the
record is appropriate because the AUDV-REC message record has been set up to
accommodate both request and reply information. The following actions are take
this code:

1. The service queries the B_ID field, but does not overwrite it.

2. The application initializes the BALANCE field to zero in preparation for the values
to be returned by the service.

3. The SERVICE-NAME represents the service name requested. In this example, th
variables represent account and teller , respectively.
6-4 Programming a BEA Tuxedo Application Using COBOL

Sending Synchronous Messages
Listing 6-1 Using the Same Record for Request and Reply Messages

WORKING-STORAGE SECTION.

* Tuxedo definitions

 01 TPTYPE-REC.
 COPY TPTYPE.
*
 01 TPSTATUS-REC.
 COPY TPSTATUS.
*
 01 TPSVCDEF-REC.
 COPY TPSVCDEF.

* Log messages definitions

 01 LOGMSG.
 05 FILLER PIC X(6) VALUE "FIG =>".
 05 LOGMSG-TEXT PIC X(50).
 01 LOGMSG-LEN PIC S9(9) COMP-5.
*
 01 USER-DATA-REC PIC X(75).

* This VIEW record (audv) will be sent to the server

 01 AUDV-REC.
 COPY AUDV.
*
**
 PROCEDURE DIVISION.
 START-FIG.
 MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.

* Prepare the audv record

 MOVE "BRANCH" TO B-ID IN AUDV-REC.
 MOVE 0 TO BALANCE IN AUDV-REC.
 MOVE LENGTH OF AUDV-REC TO LEN.
 MOVE "VIEW" TO REC-TYPE.
 MOVE "audv" TO SUB-TYPE.
 MOVE "SOMESERVICE" TO SERVICE-NAME.
 SET TPBLOCK TO TRUE.
 SET TPNOTRAN TO TRUE.
 SET TPNOTIME TO TRUE.
 SET TPSIGRSTRT TO TRUE.
 SET TPNOCHANGE TO TRUE.
 CALL "TPCALL" USING TPSVCDEF-REC
Programming a BEA Tuxedo Application Using COBOL 6-5

6 Writing Request/Response Clients and Servers

lient

 TPTYPE-REC
 AUDV-REC
 TPTYPE-REC
 AUDV-REC
 TPSTATUS-REC.
 IF NOT TPOK
 MOVE "Service Failed" TO LOGMSG-TEXT
 PERFORM DO-USERLOG
 PERFORM EXIT-PROGRAM.
 DISPLAY BRANCH and BALANCE
 . . .

If the reply is larger than ODATA-REC, then ODATA-REC contains as much of the
message as fits in the record. The remainder is discarded and TPCALL sets TP-STATUS

IN TPSTATUS-REC to TPTRUNCATE.

Example: Sending a Synchronous Message with
TPSIGRSTRT Set

The following example is based on the TRANSFER service, which is part of the XFER
server process of bankapp . (bankapp is a sample application delivered with the BEA
Tuxedo system.) The example is based on a service that assumes the role of a c
when it calls the WITHDRAWAL and DEPOSIT services. The application sets the
communication flag to TPSIGRSTRT in these service calls to give the transaction a
better chance of committing. The TPSIGRSTRT flag specifies the action to take if there
is a signal interrupt. For more information on communication flags, refer to
TPCALL(3cbl) in the BEA Tuxedo COBOL Function Reference.

Listing 6-2 Sending a Synchronous Message with TPSIGRSTRT Set

 WORKING-STORAGE SECTION.

* Tuxedo definitions

 01 TPTYPE-REC.
 COPY TPTYPE.
*
 01 TPSTATUS-REC.
6-6 Programming a BEA Tuxedo Application Using COBOL

Sending Synchronous Messages
 COPY TPSTATUS.
 *
 01 TPSVCDEF-REC.
 COPY TPSVCDEF.

* This VIEW record (audv) will be sent to the server

 01 AUDV-REC.
 COPY AUDV.
*
**
 PROCEDURE DIVISION.
 START-FIG.

* Prepare the audv record for withdrawal

 . . .
 MOVE "WITHDRAWAL" TO SERVICE-NAME.
 SET TPSIGRSTRT TO TRUE.
 PERFORM DO-TPCALL.
 IF NOT TPOK
 MOVE "Cannot withdraw from debit account" TO LOGMSG-TEXT
 PERFORM DO-USERLOG
 PERFORM EXIT-PROGRAM.
 MOVE "DEPOSIT" TO SERVICE-NAME.
 SET TPSIGRSTRT TO TRUE.
 PERFORM DO-TPCALL.
 IF NOT TPOK
 MOVE "Cannot deposit into credit account" TO LOGMSG-TEXT
 PERFORM DO-USERLOG
 PERFORM EXIT-PROGRAM.
 . . .

* Perform a TPCALL

 DO-TPCALL.
 MOVE LENGTH OF AUDV-REC TO LEN.
 MOVE "VIEW" TO REC-TYPE.
 MOVE "audv" TO SUB-TYPE.
 SET TPBLOCK TO TRUE.
 SET TPNOTRAN TO TRUE.
 SET TPNOTIME TO TRUE.
 SET TPNOCHANGE TO TRUE.
 CALL "TPCALL" USING TPSVCDEF-REC
 TPTYPE-REC
 AUDV-REC
 TPTYPE-REC
 AUDV-REC
Programming a BEA Tuxedo Application Using COBOL 6-7

6 Writing Request/Response Clients and Servers

ion
r; it
tion

r

ous
 TPSTATUS-REC.
 . . .

Example: Sending a Synchronous Message with
TPNOTRAN Set

The following example illustrates a communication call that suppresses transact
mode. The call is made to a service that is not affiliated with a resource manage
would be an error to allow the service to participate in the transaction. The applica
prints an accounts receivable report, ACCRV, generated from information obtained from
a database named ACCOUNTS.

The service routine REPORT interprets the specified parameters and sends the byte
stream for the completed report as a reply. The client uses TPCALL to send the byte
stream to a service called PRINTER, which, in turn, sends the byte stream to a printe
that is conveniently close to the client. The reply is printed. Finally, the PRINTER
service notifies the client that the hard copy is ready to be picked up.

Note: The example “Sending an Asynchronous Message with TPNOTRAN or
TPNOREPLY” on page 6-12 shows a similar example using an asynchron
message call.

Listing 6-3 Sending a Synchronous Message with TPNOTRAN Set

 WORKING-STORAGE SECTION.

* Tuxedo definitions

 01 ITPTYPE-REC.
 COPY TPTYPE.
 01 OTPTYPE-REC.
 COPY TPTYPE.
*
 01 TPSTATUS-REC.
 COPY TPSTATUS.
*
 01 TPSVCDEF-REC.
 COPY TPSVCDEF.

6-8 Programming a BEA Tuxedo Application Using COBOL

Sending Synchronous Messages
 01 REPORT-REQUEST PIC X(100) VALUE SPACES.
 01 REPORT-OUTPUT PIC X(50000) VALUE SPACES.
**
 PROCEDURE DIVISION.
 START-FIG.
 . . .
 join application
 start transaction
 . . .
**
* Send report request to REPORT service
* Receive results into REPORT-OUTPUT
**
 MOVE "REPORT=accrcv DBNAME=accounts" TO REPORT-REQUEST.
 MOVE "STRING" TO REC-TYPE IN ITYPE-REC.
 MOVE 29 TO LEN IN ITYPE-REC.
 MOVE "STRING" TO REC-TYPE IN OITYPE-REC.
 MOVE 50000 TO LEN IN OTYPE-REC.
 MOVE "REPORT" TO SERVICE-NAME.
 SET TPTRAN TO TRUE.
 SET TPBLOCK TO TRUE.
 SET TPNOTIME TO TRUE.
 SET TPSIGRSTRT TO TRUE.
 SET TPNOCHANGE TO TRUE.
 CALL "TPCALL" USING TPSVCDEF-REC
 ITPTYPE-REC
 REPORT-REQUEST
 OTPTYPE-REC
 REPORT-OUTPUT
 TPSTATUS-REC.
 IF NOT TPOK
 error processing
 IF TPETRUNCATE
 The report was truncated
 error processing
**
* Send REPORT-OUTPUT to PRINTER service
**
 MOVE "PRINTER" TO SERVICE-NAME.
 SET TPNOTRAN TO TRUE.
 MOVE "STRING" TO REC-TYPE IN ITTYPE-REC.
 MOVE LEN IN OTYPE-REC TO LEN IN ITYPE-REC.
 CALL "TPCALL" USING TPSVCDEF-REC
 ITPTYPE-REC
 REPORT-OUTPUT
 OTPTYPE-REC
 REPORT-OUTPUT
 TPSTATUS-REC.
 IF NOT TPOK
Programming a BEA Tuxedo Application Using COBOL 6-9

6 Writing Request/Response Clients and Servers

n is

e
heck

ther

rred to
ed

m is
 error processing
 . . .
 terminate transaction
 leave application

Note: In the preceding example, the term error routine indicates that the
following tasks are performed: an error message is printed, the transactio
aborted, the client leaves the application, and the program is exited.

This example also shows how the TPNOCHANGE communication setting is used to
enforce strong record type checking by indicating that the reply message must b
returned in the same type of record that was originally allocated. The strong type c
flag, TPNOCHANGE, forces the reply to be returned in a record of type STRING.

A possible reason for this check is to guard against errors that may occur in the REPORT
service subroutine, resulting in the use of a reply record of an incorrect type. Ano
reason is to prevent changes that are not made consistently across all areas of
dependency. For example, another programmer may have changed the REPORT service
to standardize all replies in another STRING format without modifying the client
process to reflect the change.

Sending Asynchronous Messages

This section explains how to:

� Send an asynchronous request using the TPACALL routine

� Get an asynchronous reply using the TPGETRPLY routine

The type of asynchronous processing discussed in this section is sometimes refe
as fan-out parallelism because it allows a client’s requests to be distributed (or “fann
out”) simultaneously to several services for processing.

The other type of asynchronous processing supported by the BEA Tuxedo syste
pipeline parallelism in which the TPFORWAR routine is used to pass (or forward) a
process from one service to another. For a description of the TPFORWAR routine, refer
to “Writing Servers” on page 5-1.
6-10 Programming a BEA Tuxedo Application Using COBOL

Sending Asynchronous Messages

 Use

 of
dle

ere
 a
 reply

 is in

s and
rs” on

t
Sending an Asynchronous Request

The TPACALL(3cbl) routine sends a request to a service and immediately returns.
the following signature to call the TPACALL routine.

01 TPSVCDEF-REC.
 COPY TPSVCDEF.
01 TPTYPE-REC.
 COPY TPTYPE.
01 DATA-REC.
 COPY User Data.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPACALL" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

For more information on the TPSVCDEF and TPTYPE-REC data structures, refer to
“Defining a Service” on page 5-10.

The TPACALL routine sends a request message to the service named in the
SERVICE-NAME and immediately returns from the call. Upon successful completion
the call, the TPACALL routine returns an integer that serves as a communication han
used to access the correct reply for the relevant request. While TPACALL is in
transaction mode (as described in “Writing Global Transactions” on page 9-1) th
may not be any outstanding replies when the transaction commits; that is, within
given transaction, for each request for which a reply is expected, a corresponding
must eventually be received.

If the value TPNOREPLY is set, the parameter signals to TPACALL that a reply is not
expected. When set, on success TPACALL returns a value of 0 as the reply descriptor.
If subsequently passed to the TPGETRPLY routine, this value becomes invalid, this
value becomes invalid. Guidelines for using this setting correctly when a process
transaction mode are discussed in “Writing Global Transactions” on page 9-1.

On error, TPACALL sets TP-STATUS to a value that reflects the nature of the error.
TPACALL returns many of the same error codes as TPCALL. The differences between the
error codes for these functions are based on the fact that one call is synchronou
the other, asynchronous. These errors are discussed at length in “Managing Erro
page 11-1.

The following example shows how TPACALL uses the TPNOTRAN and TPNOREPLY
settings. This code is similar to the code in “Example: Sending a Synchronous
Message with TPNOTRAN Set” on page 6-8. In this case, however, a reply is no
expected from the PRINTER service. By setting both TPNOTRAN and TPNOREPLY, the
Programming a BEA Tuxedo Application Using COBOL 6-11

6 Writing Request/Response Clients and Servers
client is indicating that no reply is expected and the PRINTER service will not
participate in the current transaction. This situation is discussed more fully in
“Managing Errors” on page 11-1.

Listing 6-4 Sending an Asynchronous Message with TPNOTRAN or
TPNOREPLY

 WORKING-STORAGE SECTION.

* Tuxedo definitions

 01 ITPTYPE-REC.
 COPY TPTYPE.
 01 OTPTYPE-REC.
 COPY TPTYPE.
*
 01 TPSTATUS-REC.
 COPY TPSTATUS.
*
 01 TPSVCDEF-REC.
 COPY TPSVCDEF.

 01 REPORT-REQUEST PIC X(100) VALUE SPACES.
 01 REPORT-OUTPUT PIC X(50000) VALUE SPACES.
**
 PROCEDURE DIVISION.
 START-FIG.
 . . .
 join application
 start transaction
 . . .
 **
 * Send report request to REPORT service
 * Receive results into REPORT-OUTPUT
 **
 MOVE "REPORT=accrcv DBNAME=accounts" TO REPORT-REQUEST.
 MOVE "STRING" TO REC-TYPE IN ITPTYPE-REC.
 MOVE 29 TO LEN IN ITPTYPE-REC.
 MOVE "STRING" TO REC-TYPE IN OITYPE-REC.
 MOVE 50000 TO LEN IN OTPTYPE-REC.
 MOVE "REPORT" TO SERVICE-NAME.
 SET TPTRAN TO TRUE.
 SET TPBLOCK TO TRUE.
 SET TPNOTIME TO TRUE.
 SET TPSIGRSTRT TO TRUE.
 SET TPREPLY TO TRUE.
6-12 Programming a BEA Tuxedo Application Using COBOL

Sending Asynchronous Messages
 SET TPNOCHANGE TO TRUE.
 CALL "TPCALL" USING TPSVCDEF-REC
 ITPTYPE-REC
 REPORT-REQUEST
 OTPTYPE-REC
 REPORT-OUTPUT
 TPSTATUS-REC.
 IF NOT TPOK
 error processing
 IF TPETRUNCATE
 The report was truncated
 error processing
**
* Send REPORT-OUTPUT to PRINTER service
**
 MOVE "PRINTER" TO SERVICE-NAME.
 SET TPNOTRAN TO TRUE.
 SET TPNOREPLY TO TRUE.
 MOVE "STRING" TO REC-TYPE IN ITPTYPE-REC.
 MOVE LEN IN OTPTYPE-REC TO LEN IN ITPTYPE-REC.
 CALL "TPACALL" USING TPSVCDEF-REC
 ITPTYPE-REC
 REPORT-OUTPUT
 TPSTATUS-REC.
 IF NOT TPOK
 error processing
 . . .
 commit transaction
 leave application
Programming a BEA Tuxedo Application Using COBOL 6-13

6 Writing Request/Response Clients and Servers

lue

t:

t.
Getting an Asynchronous Reply

A reply to a service call can be received asynchronously by calling the
TPGETRPLY(3cbl) routine. The TPGETRPLY routine dequeues a reply to a request
previously sent by TPACALL.

Use the following signature to call the TPGETRPLY routine.

01 TPSVCDEF-REC.
 COPY TPSVCDEF.
01 TPTYPE-REC.
 COPY TPTYPE.
01 DATA-REC.
 COPY User Data.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPGETRPLY" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

For more information on the TPSVCDEF and TPTYPE-REC data structures, refer to
“Defining a Service” on page 5-10.

By default, the function waits for the arrival of the reply that corresponds to the va
referenced by the communication handle. During this waiting interval, a blocking
time-out may occur. A time-out occurs when TPGETRPLY fails and TP-STATUS is set
to TPETIME (unless TPNOTIME is set).

Setting and Getting Message Priorities

Two ATMI calls allow you to determine and set the priority of a message reques
TPSPRIO(3cbl) and TPGPRIO(3cbl) . The priority affects how soon the request is
dequeued by the server; servers dequeue requests with the highest priorities firs

This section describes:

� Setting a Message Priority

� Getting a Message Priority
6-14 Programming a BEA Tuxedo Application Using COBOL

Setting and Getting Message Priorities

t to

tes
,

is
Setting a Message Priority

The TPSPRIO(3cbl) routine enables you to set the priority of a message request.

The TPSPRIO routine affects the priority level of only one request: the next reques
be sent by TPCALL or TPACALL, or to be forwarded by a service subroutine.

Use the following signature to call the TPSPRIO routine.

01 TPPRIDEF-REC.
 COPY TPPRIDEF.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPSPRIO" USING TPPRIDEF-REC TPSTATUS-REC.

Use the following signature for the TPPRIDEF-REC data structure.

05 PRIORITY PIC S9(9) COMP-5.
05 PRIO-FLAG PIC S9(9) COMP-5.
 88 TPABSOLUTE VALUE 0.
 88 TPRELATIVE VALUE 1.

The following table describes the arguments to the TPSPRIO routine.

Table 6-1 TPSPRIO Routine Fields

Field Description

PRIORITY Integer indicating a new priority value. The effect of this argument is
controlled by PRIO-FLAG. If PRIO-FLAG is set to 0, PRIORITY
specifies a relative value and the sign accompanying the value indica
whether the current priority is incremented or decremented. Otherwise
the value specified indicates an absolute value and PRIORITY must be
set to a value between 0 and 100. If you do not specify a value within th
range, the system sets the value to 50.

PRIO-FLAG Indicates whether the value of PRIORITY is treated as a relative value (0,
the default) or an absolute value (TPABSOLUTE).
Programming a BEA Tuxedo Application Using COBOL 6-15

6 Writing Request/Response Clients and Servers

d
The following sample code is an excerpt from the TRANSFER service. In this example,
the TRANSFER service acts as a client by sending a synchronous request, via TPCALL,
to the WITHDRAWAL service. TRANSFER also invokes TPSPRIO to increase the priority
of its request message to WITHDRAWAL, and to prevent the request from being queue
for the WITHDRAWAL service (and later the DEPOSIT service) after waiting on the
TRANSFER queue.

Listing 6-5 Setting the Priority of a Request Message

 WORKING-STORAGE SECTION.

* Tuxedo definitions

 01 TPTYPE-REC.
 COPY TPTYPE.
*
 01 TPSTATUS-REC.
 COPY TPSTATUS.
*
 01 TPSVCDEF-REC.
 COPY TPSVCDEF.
*
 01 TPPRIDEF-REC.
 COPY TPPRIDEF.

 01 DATA-REC PIC X(100) VALUE SPACES.
**
 PROCEDURE DIVISION.
 START-FIG.
 . . .
 join application
 . . .
 MOVE 30 TO PRIORITY.
 SET TPRELATIVE TO TRUE.
 CALL "TPSPRIO" USING TPPRIDEF-REC TPSTATUS-REC
 IF NOT TPOK
 error processing
 MOVE "CARRAY" TO REC-TYPE.
 MOVE 100 TO LEN.
 MOVE "WITHDRAWAL" TO SERVICE-NAME.
 SET TPTRAN TO TRUE .
 SET TPBLOCK TO TRUE .
 SET TPNOTIME TO TRUE .
 SET TPSIGRSTRT TO TRUE .
 SET TPREPLY TO TRUE .
 CALL "TPACALL" USING TPSVCDEF-REC
6-16 Programming a BEA Tuxedo Application Using COBOL

Setting and Getting Message Priorities

ction

f

e of

 sent
 TPTYPE-REC
 DATA-REC
 TPSTATUS-REC.
 IF NOT TPOK
 error processing
 . . .
 leave application

Getting a Message Priority

The TPGPRIO(3cbl) routine enables you to get the priority of a message request.

Use the following signature to call the TPGPRIO routine.

01 TPPRIDEF-REC.
 COPY TPPRIDEF.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPGPRIO" USING TPPRIDEF-REC TPSTATUS-REC.

A requester can call the TPGPRIO routine after invoking the TPCALL or TPACALL
routine to retrieve the priority of the request message. If a requester calls the fun
but no request is sent, the routine fails, setting TP-STATUS to TPENOENT. Upon
success, TPGPRIO sets TP-STATUS to TPOK and returns an integer value in the range o
1 to 100 (where the highest priority value is 100).

If a priority has not been explicitly set using the TPSPRIO routine, the system sets the
message priority to that of the service routine that handles the request. Within an
application, the priority of the request-handling service is assigned a default valu
50 unless a system administrator overrides this value.

The following example shows how to determine the priority of a message that was
in an asynchronous call.

Listing 6-6 Determining the Priority of the Sent Request

 WORKING-STORAGE SECTION.

* Tuxedo definitions

 01 TPTYPE-REC-1.
Programming a BEA Tuxedo Application Using COBOL 6-17

6 Writing Request/Response Clients and Servers
 COPY TPTYPE.
 01 TPTYPE-REC-2.
 COPY TPTYPE.
*
 01 TPSTATUS-REC.
 COPY TPSTATUS.
*
 01 TPSVCDEF-REC-1.
 COPY TPSVCDEF.
 01 TPSVCDEF-REC-2.
 COPY TPSVCDEF.
*
 01 TPPRIDEF-REC-1.
 COPY TPPRIDEF.
 01 TPPRIDEF-REC-2.
 COPY TPPRIDEF.

 01 DATA-REC-1 PIC X(100) VALUE SPACES.
 01 DATA-REC-2 PIC X(100) VALUE SPACES.
**
 PROCEDURE DIVISION.
START-FIG.
 . . .
 join application
 populate DATA-REC1 and DATA-REC2 with send request
 . . .
 MOVE "CARRAY" TO REC-TYPE IN TYPE-REC-1.
 MOVE 100 TO LEN IN TYPE-REC-1.
 MOVE "SERVICE1" TO SERVICE-NAME IN TPSVCDEV-REC-1.
 SET TPTRAN TO TRUE IN TPSVCDEV-REC-1.
 SET TPBLOCK TO TRUE IN TPSVCDEV-REC-1.
 SET TPNOTIME TO TRUE IN TPSVCDEV-REC-1.
 SET TPSIGRSTRT TO TRUE IN TPSVCDEV-REC-1.
 SET TPREPLY TO TRUE IN TPSVCDEV-REC-1.
 CALL "TPACALL" USING TPSVCDEF-REC-1
 TPTYPE-REC-1
 DATA-REC-1
 TPSTATUS-REC.
 IF NOT TPOK
 error processing
 CALL "TPGPRIO" USING TPPRIDEF-REC-1 TPSTATUS-REC
 IF NOT TPOK
 error processing
 MOVE "CARRAY" TO REC-TYPE IN TYPE-REC-2.
 MOVE 100 TO LEN IN TYPE-REC-2.
 MOVE "SERVICE2" TO SERVICE-NAME IN TPSVCDEV-REC-2.
 SET TPTRAN TO TRUE IN TPSVCDEV-REC-2.
 SET TPBLOCK TO TRUE IN TPSVCDEV-REC-2.
 SET TPNOTIME TO TRUE IN TPSVCDEV-REC-2.
6-18 Programming a BEA Tuxedo Application Using COBOL

Setting and Getting Message Priorities
 SET TPSIGRSTRT TO TRUE IN TPSVCDEV-REC-2.
 SET TPREPLY TO TRUE IN TPSVCDEV-REC-2.
 CALL "TPACALL" USING TPSVCDEF-REC-2
 TPTYPE-REC-2
 DATA-REC-2
 TPSTATUS-REC.
 IF NOT TPOK
 error processing
 CALL "TPGPRIO" USING TPPRIDEF-REC-2 TPSTATUS-REC
 IF NOT TPOK
 error processing
 IF PRIORITY IN TPSVCDEF-REC-1 >= PRIORITY IN TPSVCDEF-REC-2
 PERFORM DO-GETREPLY1
 PERFORM DO-GETREPLY2
 ELSE
 PERFORM DO-GETREPLY2
 PERFORM DO-GETREPLY1
 END-IF.
 . . .
 leave application
DO-GETRPLY1.
 SET TPGETHANDLE TO TRUE IN TPSVCDEV-REC-1.
 SET TPCHANGE TO TRUE IN TPSVCDEV-REC-1.
 SET TPBLOCK TO TRUE IN TPSVCDEV-REC-1.
 SET TPNOTIME TO TRUE IN TPSVCDEV-REC-1.
 SET TPSIGRSTRT TO TRUE IN TPSVCDEV-REC-1.
 CALL "TPGETRPLY" USING TPSVCDEF-REC-1
 TPTYPE-REC-1
 DATA-REC-1
 TPSTATUS-REC.
 IF NOT TPOK
 error processing
 DO-GETRPLY2
 SET TPGETHANDLE TO TRUE IN TPSVCDEV-REC-2.
 SET TPCHANGE TO TRUE IN TPSVCDEV-REC-2.
 SET TPBLOCK TO TRUE IN TPSVCDEV-REC-2.
 SET TPNOTIME TO TRUE IN TPSVCDEV-REC-2.
 SET TPSIGRSTRT TO TRUE IN TPSVCDEV-REC-2.
 CALL "TPGETRPLY" USING TPSVCDEF-REC-2
 TPTYPE-REC-2
 DATA-REC-2
 TPSTATUS-REC.
 IF NOT TPOK
 error processing
Programming a BEA Tuxedo Application Using COBOL 6-19

6 Writing Request/Response Clients and Servers
6-20 Programming a BEA Tuxedo Application Using COBOL

CHAPTER

this

 state
inate
7 Writing
Conversational Clients
and Servers

� Overview of Conversational Communication

� Joining an Application

� Establishing a Connection

� Sending and Receiving Messages

� Ending a Conversation

� Building Conversational Clients and Servers

� Understanding Conversational Communication Events

Overview of Conversational Communication

Conversational communication is the BEA Tuxedo system implementation of a
human-like paradigm for exchanging messages between clients and servers. In
form of communication, a virtual connection is maintained between the client
(initiator) and server (subordinate) and each side maintains information about the
of the conversation. The connection remains active until an event occurs to term
it.
Programming a BEA Tuxedo Application Using COBOL 7-1

7 Writing Conversational Clients and Servers

ent in
k and
 send

n
st two

nths.

he

o it

 using
e
During conversational communication, a half-duplex connection is established
between the client and server. A half-duplex connection allows messages to be s
only one direction at any given time. Control of the connection can be passed bac
forth between the initiator and the subordinate. The process that has control can
messages; the process that does not have control can only receive messages.

To understand how conversational communication works in a BEA Tuxedo
application, consider the following example from an online banking application. I
this example, a bank customer requests checking account statements for the pa
months.

Figure 7-1 Example of Conversational Communication in an Online Banking
Application

1. The customer requests the checking account statements for the past two mo

2. The Account Records Storage System responds by sending the first month’s
checking account statement followed by a More prompt for accessing the
remaining month’s statement.

3. The customer requests the second month’s account statement by selecting t
More prompt.

Note: The Account Records Storage System must maintain state information s
knows which account statement to return when the customer selects the More
prompt.

4. The Account Records Storage System sends the remaining month’s account
statement.

As with request/response communication, the BEA Tuxedo system passes data
typed records. The record types must be recognized by the application. For mor
information on record types, refer to “Overview of Typed Records” on page 3-1.
7-2 Programming a BEA Tuxedo Application Using COBOL

Joining an Application

em.

the

g
Conversational clients and servers have the following characteristics:

� The logical connection between them remains active until terminated.

� Any number of messages can be transmitted across a connection between th

� Both clients and servers use the TPSEND and TPRECV routines to send and
receive data in conversations.

Conversational communication differs from request/response communication in
following ways:

� A conversational client initiates a request for service using TPCONNECT rather
than TPCALL or TPACALL.

� A conversational client sends a service request to a conversational server.

� The configuration file reserves part of the conversational server for addressin
conversational services.

� Conversational servers are prohibited from making calls using TPFORWAR.

Joining an Application

A conversational client must join an application via a call to TPINITIALIZE before
attempting to establish a connection to a service. For more information, refer to
“Writing Clients” on page 4-1.
Programming a BEA Tuxedo Application Using COBOL 7-3

7 Writing Conversational Clients and Servers

the

ular

ns is

Establishing a Connection

The TPCONNECT(3cbl) routine sets up a conversation.

Use the following signature to call the TPCONNECT routine.

01 TPSVCDEF-REC.
 COPY TPSVCDEF.

01 TPTYPE-REC.
 COPY TPTYPE.

01 DATA-REC.
 COPY User Data.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPCONNECT" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Refer to “Defining a Service” on page 5-10 for more information on the
TPSVCDEF-REC record, and to “Defining Typed Records” on page 3-6 for more
information on the TPTYPE-REC record.

At the same time the connection is being established, data can be sent through
DATA-REC with the length of the data specified by LEN IN TPTYPE-REC. The
REC-TYPE and SUB-TYPE of the data in DATA-REC must be types recognized by the
service being called. If no data is being sent, the value of REC-TYPE is SPACES, and
DATA-REC and LEN are ignored.

The BEA Tuxedo system returns a communication handle, COMM-HANDLE IN

TPSVCDEF-REC, when a connection is established with TPCONNECT or TPSVCSTART.
COMM-HANDLE is used to identify subsequent message transmissions with a partic
conversation. A client or conversational service can participate in more than one
conversation simultaneously. The maximum number of simultaneous conversatio
64.

In the event of a failure, TPCONNECT sets TP-STATUS to the appropriate error condition.
For a list of possible error codes, refer to TPCONNECT(3cbl) in the BEA Tuxedo
COBOL Function Reference.

The following example shows how to use the TPCONNECT routine.
7-4 Programming a BEA Tuxedo Application Using COBOL

Sending and Receiving Messages

d and
ng the
the

rol
Listing 7-1 Establishing a Conversational Connection

 . . .
* Prepare the record to send
 MOVE "HELLO" TO DATA-REC.
 MOVE 5 TO LEN.
 MOVE "STRING" TO REC-TYPE.
*
 SET TPBLOCK TO TRUE.
 SET TPNOTRAN TO TRUE.
 SET TPNOTIME TO TRUE.
 SET TPSIGRSTRT TO TRUE.
 SET TPSENDONLY TO TRUE.
*
 CALL "TPCONNECT" USING TPSVCDEF-REC
 TPTYPE-REC
 DATA-REC
 TPSTATUS-REC.
 IF NOT TPOK
 error processing ...
 ELSE
 COMM-HANDLE is valid .

Sending and Receiving Messages

Once the BEA Tuxedo system establishes a conversational connection,
communication between the initiator and subordinate is accomplished using sen
receive calls. The process with control of the connection can send messages usi
TPSEND(3cbl) routine; the process without control can receive messages using
TPRECV(3cbl) routine.

Note: Initially, the originator (that is, the client) decides which process has cont
using the TPSENDONLY or TPRECVONLY flag value of the TPCONNECT call.
TPSENDONLY specifies that control is being retained by the originator;
TPRECVONLY, that control is being passed to the called service.
Programming a BEA Tuxedo Application Using COBOL 7-5

7 Writing Conversational Clients and Servers

re

s
ther

Sending Messages

To send a message, use the TPSEND(3cbl) routine with the following signature.

01 TPSVCDEF-REC.
 COPY TPSVCDEF.

01 TPTYPE-REC.
 COPY TPTYPE.

01 DATA-REC.
 COPY User Data.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPSEND" USING TPSVCDEF-REC TPTYPE-REC USER-DATA-REC TPSTATUS-REC.

Refer to “Defining a Service” on page 5-10 for more information on the
TPSVCDEF-REC record, and refer to “Defining Typed Records” on page 3-6 for mo
information on the TPTYPE-REC record.

In the event of a failure, the TPSEND routine sets TP-STATUS to the appropriate error
condition. For a list of possible error codes, refer to TPSEND(3cbl) in the BEA Tuxedo
COBOL Function Reference.

You are not required to pass control each time you issue the TPSEND routine. In some
applications, the process authorized to issue TPSEND calls can execute as many calls a
required by the current task before turning over control to the other process. In o
applications, however, the logic of the program may require the same process to
maintain control of the connection throughout the life of the conversation.
7-6 Programming a BEA Tuxedo Application Using COBOL

Sending and Receiving Messages
The following example shows how to invoke the TPSEND routine.

Listing 7-2 Sending Data in Conversational Mode

 . . .
 SET TPNOBLOCK TO TRUE.
 SET TPNOTIME TO TRUE.
 SET TPSIGRSTRT TO TRUE.
 SET TPRECVONLY TO TRUE.
*
 CALL "TPSEND" USING TPSVCDEF-REC
 TPTYPE-REC
 DATA-REC
 TPSTATUS-REC.
 IF NOT TPOK
 error processing . . .

Receiving Messages

To receive data sent over an open connection, use the TPRECV(3cbl) routine with the
following signature.

01 TPSVCDEF-REC.
 COPY TPSVCDEF.

01 TPTYPE-REC.
 COPY TPTYPE.

01 DATA-REC.
 COPY User Data.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPRECV" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Refer to “Defining a Service” on page 5-10 for more information on the
TPSVCDEF-REC record. Refer to “Defining Typed Records” on page 3-6 for more
information on the TPTYPE-REC record.

The following example shows how to use the TPRECV routine.
Programming a BEA Tuxedo Application Using COBOL 7-7

7 Writing Conversational Clients and Servers

1

Listing 7-3 Receiving Data in Conversation

 . . .
 SET TPNOCHANGE TO TRUE.
 SET TPBLOCK TO TRUE.
 SET TPNOTIME TO TRUE.
 SET TPSIGRSTRT TO TRUE.
*
 MOVE LENGTH OF DATA-REC TO LEN.
*
 CALL "TPRECV" USING TPSVCDEF-REC
 TPTYPE-REC
 DATA-REC
 TPSTATUS-REC.
 IF NOT TPOK
 error processing . . .

Ending a Conversation

A connection can be taken down gracefully and a conversation ended normally
through:

� A successful call to TPRETURN in a simple conversation

� A series of successful calls to TPRETURN in a complex conversation based on a
hierarchy of connections

� Global transactions, as described in “Writing Global Transactions” on page 9-

Note: The TPRETURN routine is described in detail in “Writing Request/Response
Clients and Servers” on page 6-1.

The following sections describe two scenarios for gracefully terminating
conversations that do not include global transactions in which the TPRETURN function
is used.

The first example shows how to terminate a simple conversation between two
components. The second example illustrates a more complex scenario, with a
hierarchical set of conversations.
7-8 Programming a BEA Tuxedo Application Using COBOL

Ending a Conversation

r. In

ates
If you end a conversation with connections still open, the system returns an erro
this case, either TPCOMMIT or TPRETURN fails in a disorderly manner.

Example: Ending a Simple Conversation

The following diagram shows a simple conversation between A and B that termin
gracefully.

Figure 7-2 Simple Conversation Terminating Gracefully
Programming a BEA Tuxedo Application Using COBOL 7-9

7 Writing Conversational Clients and Servers

er.

lly.
The program flow is as follows:

1. A sets up the connection by calling TPCONNECT with TPSENDONLY set, indicating
that process B is on the receiving end of the conversation.

2. A turns control of the connection over to B by calling TPSEND with TPRECVONLY
set, resulting in the generation of a TPEV_SENDONLY event.

3. The next call by B to TPRECV sets TP-STATUS to TPEEVENT, and returns
TPEV_SENDONLY in TPEVENT, indicating that control has passed to B.

4. B calls TPRETURN with TPRETURN-VAL IN TPSVCRET set to TPSUCCESS. This
call generates a TPEV_SVCSUCC event for A and gracefully brings down the
connection.

5. A calls TPRECV, learns of the event, and recognizes that the conversation has
been terminated. Data can be received on this call to TPRECV even if the event is
set to TPEV_SVCFAIL.

Note: In this example, A can be either a client or a server, but B must be a serv

Example: Ending a Hierarchical Conversation

The following diagram shows a hierarchical conversation that terminates gracefu
7-10 Programming a BEA Tuxedo Application Using COBOL

Ending a Conversation

ted a

g
Figure 7-3 Connection Hierarchy

In the preceding example, service B is a member of a conversation that has initia
connection to a second service called C. In other words, there are two active
connections: A-to-B and B-to-C. If B is in control of both connections, a call to
TPRETURN has the following effect: the call fails, a TPEV_SVCERR event is posted on
all open connections, and the connections are closed in a disorderly manner.

In order to terminate both connections normally, an application must execute the
following sequence:

1. B calls TPSEND with the TPRECVONLY flag set on the connection to C, transferrin
control of the B-to-C connection to C.

2. C calls TPRETURN with TPRETURN-VAL IN TPSVCRET set to TPSUCCESS,
TPFAIL , or TPEXIT, as appropriate.

3. B can then call TPRETURN, posting an event (either TPEV_SVCSUCC or
TPEV_SVCFAIL) for A.
Programming a BEA Tuxedo Application Using COBOL 7-11

7 Writing Conversational Clients and Servers

eeds
g

lls

o the
).
t).

ng
e

r

Note: It is legal for a conversational service to make request/response calls if it n
to do so to communicate with another service. Therefore, in the precedin
example, the calls from B to C may be executed using TPCALL or TPACALL
instead of TPCONNECT. Conversational services are not permitted to make ca
to TPFORWAR.

Executing a Disorderly Disconnect

The only way in which a disorderly disconnect can be executed is through a call t
TPDISCON(3cbl) routine (which is equivalent to “pulling the plug” on a connection
This routine can be called only by the initiator of a conversation (that is, the clien

Note: This is not the preferred method for bringing down a conversation. To bri
down an application gracefully, the subordinate (the server) should call th
TPRETURN routine.

Use the following signature to call the TPDISCON routine.

01 TPSVCDEF-REC.
 COPY TPSVCDEF.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPDISCON" USING TPSVCDEF-REC TPSTATUS-REC.

The COMM-HANDLE argument specifies the communication handle returned by the
TPCONNECT routine when the connection is established.

The TPDISCON routine generates a TPEV_DISCONIMM event for the service at the othe
end of the connection, rendering the COMM-HANDLE invalid. If a transaction is in
progress, the system aborts it and data may be lost.

If TPDISCON is called from a service that was not the originator of the connection
identified by COMM-HANDLE, the routine fails with an error code of TPEBADDESC.

For a list and descriptions of all event and error codes, refer to TPDISCON(3cbl) in the
BEA Tuxedo COBOL Function Reference.
7-12 Programming a BEA Tuxedo Application Using COBOL

Building Conversational Clients and Servers

. All

 a
Building Conversational Clients and Servers

Use the following commands to build conversational clients and servers:

� buildclient() as described in “Building Clients” on page 4-9

� buildserver() as described in “Building Servers” on page 5-30

For conversational and request/response services, you cannot:

� Build both in the same server

� Assign the same name to both

Understanding Conversational
Communication Events

The BEA Tuxedo system recognizes five events in conversational communication
five events can be posted for TPRECV; three can be posted for TPSEND.

The following table lists the events, the routines for which they are returned, and
detailed description of each.

Table 7-1 Conversational Communication Events

Event Received By Description

TPEV_SENDONLY TPRECV Control of the connection has been passed; this process
can now call TPSEND.
Programming a BEA Tuxedo Application Using COBOL 7-13

7 Writing Conversational Clients and Servers
TPEV_DISCONIMM TPSEND,
TPRECV,
TPRETURN

The connection has been torn down and no further
communication is possible. The TPDISCON routine posts
this event in the originator of the connection, and sends it
to all open connections when TPRETURN is called, as long
as connections to subordinate services remain open.
Connections are closed in a disorderly fashion. If a
transaction exists, it is aborted.

TPEV_SVCERR TPSEND Received by the originator of the connection, usually
indicating that the subordinate program issued a
TPRETURN without having control of the connection.

TPRECV Received by the originator of the connection, indicating
that the subordinate program issued a TPRETURN with
TPSUCCESS or TPFAIL and a valid data record, but an
error occurred that prevented the call from completing.

TPEV_SVCFAIL TPSEND Received by the originator of the connection, indicating
that the subordinate program issued a TPRETURN without
having control of the connection, and TPRETURN was
called with TPFAIL or TPEXIT and no data.

TPRECV Received by the originator of the connection, indicating
that the subordinate service finished unsuccessfully
(TPRETURN was called with TPFAIL or TPEXIT).

TPEV_SVCSUCC TPRECV Received by the originator of the connection, indicating
that the subordinate service finished successfully; that is,
it called TPRETURN with TPSUCCESS.

Event Received By Description
7-14 Programming a BEA Tuxedo Application Using COBOL

CHAPTER

ss to
8 Writing Event-based
Clients and Servers

� Overview of Events

� Defining the Unsolicited Message Handler

� Sending Unsolicited Messages

� Checking for Unsolicited Messages

� Getting Unsolicited Messages

� Subscribing to Events

� Unsubscribing from Events

� Posting Events

Overview of Events

Event-based communication provides a method for a BEA Tuxedo system proce
be notified when a specific situation (event) occurs.

The BEA Tuxedo system supports two types of event-based communication:

� Unsolicited events

� Brokered events
Programming a BEA Tuxedo Application Using COBOL 8-1

8 Writing Event-based Clients and Servers

re not

 one
h
 the

ting

 the
st

rvice
mber
s
d of

ption
 be
wn,

aps
Unsolicited Events

Unsolicited events are messages used to communicate with client programs that a
waiting for and/or expecting a message.

Brokered Events

Brokered events enable a client and a server to communicate transparently with
another via an “anonymous” broker that receives and distributes messages. Suc
brokering is another client/server communication paradigm that is fundamental to
BEA Tuxedo system.

The EventBroker is a BEA Tuxedo subsystem that receives and filters event pos
messages, and distributes them to subscribers. A poster is a BEA Tuxedo system
process that detects when a specific event has occurred and reports (posts) it to
EventBroker. A subscriber is a BEA Tuxedo system process with a standing reque
to be notified whenever a specific event has been posted.

The BEA Tuxedo system does not impose a fixed ratio of service requesters to se
providers; an arbitrary number of posters can post a message for an arbitrary nu
of subscribers. The posters simply post events, without knowing which processe
receive the information or how the information is handled. Subscribers are notifie
specified events, without knowing who posted the information. In this way, the
EventBroker provides complete location transparency.

Typically, EventBroker applications are designed to handle exception events. An
application designer must decide which events in the application constitute exce
events and need to be monitored. In a banking application, for example, it might
useful to post an event whenever an unusually large amount of money is withdra
but it would not be particularly useful to post an event for every withdrawal
transaction. In addition, not all users would need to subscribe to that event; perh
only the branch manager would need to be notified.
8-2 Programming a BEA Tuxedo Application Using COBOL

Overview of Events

at

e

y

ll
Notification Actions

The EventBroker may be configured such that whenever an event is posted, the
EventBroker invokes one or more notification actions for clients and/or servers th
have subscribed. The following table lists the types of notification actions that th
EventBroker can take.

Table 8-1 EventBroker Notification Actions

In addition, the application administrator may create an EVENT_MIB(5) entry (by
using the BEA Tuxedo administrative API) that performs the following notification
actions:

� Invokes a system command

� Writes a message to the system’s log file on disk

Note: Only the BEA Tuxedo application administrator is allowed to create an
EVENT_MIB(5) entry.

For information on the EVENT_MIB(5) , refer to the BEA Tuxedo File Formats and
Data Descriptions Reference.

Notification Action Description

Unsolicited notification
message

Clients may receive event notification messages in their
unsolicited message handling routine, just as if they were sent b
the TPNOTIFY routine.

Service call Servers may receive event notification messages as input to
service routines, just as if they were sent by TPACALL.

Reliable queue Event notification messages may be stored in a BEA Tuxedo
system reliable queue, using TPDEQUEUE(3cbl) . Event
notification records are stored until requests for contents are
issued. A BEA Tuxedo system client or server process may ca
TPDEQUEUE(3cbl) to retrieve these notification records, or
alternately TMQFORWARD(5) may be configured to
automatically dispatch a BEA Tuxedo system service routine
that retrieves a notification record.

For more information on /Q, see Using the BEA Tuxedo /Q
Component.
Programming a BEA Tuxedo Application Using COBOL 8-3

8 Writing Event-based Clients and Servers

r for
nd
e of

r for
e
ion

ed to
or

ed

nd do

ever,

t
. Do
ients
may
ty of
 IPC
EventBroker Servers

TMUSREVT is the BEA Tuxedo system-supplied server that acts as an EventBroke
user events. TMUSREVT processes event report message records, and then filters a
distributes them. The BEA Tuxedo application administrator must boot one or mor
these servers to activate event brokering.

TMSYSEVT is the BEA Tuxedo system-supplied server that acts as an EventBroke
system-defined events. TMSYSEVT and TMUSREVT are similar, but separate servers ar
provided to allow the application administrator the ability to have different replicat
strategies for processing notifications of these two types of events. Refer to Setting Up
a BEA Tuxedo Application for additional information.

System-defined Events

The BEA Tuxedo system itself detects and posts certain predefined events relat
system warnings and failures. These tasks are performed by the EventBroker. F
example, system-defined events include configuration changes, state changes,
connection failures, and machine partitioning. For a complete list of system-defin
events detected by the EventBroker, see EVENTS(5) in the BEA Tuxedo File Formats
and Data Descriptions Reference.

System-defined events are defined in advance by the BEA Tuxedo system code a
not require posting. The name of a system-defined event, unlike that of an
application-defined event, always begins with a dot (“.”). Names of
application-defined events may not begin with a leading dot.

Clients and servers can subscribe to system-defined events. These events, how
should be used mainly by application administrators, not by every client in the
application.

When incorporating the EventBroker into your application, remember that it is no
intended to provide a mechanism for high-volume distribution to many subscribers
not attempt to post an event for every activity that occurs, and do not expect all cl
and servers to subscribe. If you overload the EventBroker, system performance
be adversely affected and notifications may be dropped. To minimize the possibili
overload, the application administrator should carefully tune the operating system
resources, as explained in Installing the BEA Tuxedo System.
8-4 Programming a BEA Tuxedo Application Using COBOL

Defining the Unsolicited Message Handler

rver

gh
ative

 first
m
stem
be
Programming Interface for the EventBroker

EventBroker programming interfaces are available for all BEA Tuxedo system se
and client processes, including Workstation, in both C and COBOL.

The programmer’s job is to code the following sequence:

1. A client or server posts a record to an application-defined event name.

2. The posted record is transmitted to any number of processes that have subscribed
to the event.

Subscribers may be notified in a variety of ways (as discussed in “Notification
Actions”), and events may be filtered. Notification and filtering are configured throu
the programming interface, as well as through the BEA Tuxedo system administr
API.

Defining the Unsolicited Message Handler

To define the unsolicited message handler, use the TPSETUNSOL(3cbl) routine with
the following signature.

01 CURR-ROUTINE PIC S9(9) COMP-5.
01 PREV-ROUTINE PIC S9(9) COMP-5.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPSETUNSOL" USING CURR-ROUTINE PREV-ROUTINE TPSTATUS-REC.

TPSETUNSOL allows a client to identify the routine that should be invoked when an
unsolicited message is received by the BEA Tuxedo system libraries. Before the
call to TPSETUNSOL, any unsolicited messages received by the BEA Tuxedo syste
libraries on behalf of the client are logged and ignored. The method used by the sy
for notification and detection is determined by the application default, which can
overridden on a per-client basis. For more information, refer to TPINITIALIZE(3cbl)
in the BEA Tuxedo COBOL Function Reference.
Programming a BEA Tuxedo Application Using COBOL 8-5

8 Writing Event-based Clients and Servers

e

nd

ses
The CURR-ROUTINE parameter identifies one of 16 predefined routines that provid
unsolicited message handling: eight C routines, tm_displatch1 through
_tm_dispatch8 , and eight COBOL routines, TMDISPATCH9 through TMDISPATCH16.
(Alternatively, if you set CURR-ROUTINE to a value of 0, any unsolicited messages
received by the BEA Tuxedo system libraries on behalf of the client are logged a
ignored.) The C routines must conform to the parameter definition provided on
TPSETUNSOL(3cbl) . When a COBOL routine is used, TPGETUNSOL must be called to
receive the data.

The following sample code shows how to set an unsolicited routine in a COBOL
program.

Listing 8-1 Setting an Unsolicited Routine

*
* Call TPSETUNSOL - Set a COBOL unsolicited message handler
* Routine TMDISPATCH9 will be called
*
 MOVE 9 to CURR-ROUTINE.
 CALL "TPSETUNSOL" USING
 CURR-ROUTINE
 PREV-ROUTINE
 TPSTATUS-REC.
 IF NOT TPOK
 Routine TMDISPATCH9 will receive unsolicited messages
 ELSE
 Process error condition

Sending Unsolicited Messages

The BEA Tuxedo system allows unsolicited messages to be sent to client proces
without disturbing the processing of request/response calls or conversational
communications.
8-6 Programming a BEA Tuxedo Application Using COBOL

Sending Unsolicited Messages

 of
 are
Unsolicited messages can be sent to client processes by name, using
TPBROADCAST(3cbl) , or by an identifier received with a previously processed
message, using TPNOTIFY(3cbl) . Messages sent via TPBROADCAST can originate
either in a service or in another client. Messages sent via TPNOTIFY can originate only
in a service.

Broadcasting Messages By Name

The TPBROADCAST(3cbl) routine allows a message to be sent to registered clients
the application. It can be called by a service or another client. Registered clients
those that have successfully made a call to TPINITIALIZE and have not yet made a
call to TPTERM.

Use the following signature to call the TPBROADCAST routine.

01 TPBCTDEF-REC.
 COPY TPBCTDEF.
01 TPTYPE-REC.
 COPY TPTYPE.
01 DATA-REC.
 COPY User Data.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPBROADCAST" USING TPBCTDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

The following table describes the members of the TPBCTDEF-REC data structure.

Table 8-2 TPBCTDEF-REC Data Structure Members

Member Description

LMID Pointer to the logical machine identifier for the client. A value of SPACES
acts as a wildcard, so that a message can be directed to groups of clients.

USRNAME User name of the client process, if one exists. A value of SPACES acts as
a wildcard, so that a message can be directed to groups of clients.

CLTNAME Client name of the client process, if one exists. A value of NULL acts as
a wildcard, so that a message can be directed to groups of clients.

Settings (such as
TPBLOCK-FLAG)

Settings for the TPBROADCAST command. Refer to
TPBROADCAST(3cbl) in the BEA Tuxedo COBOL Function Reference
for information on available settings.
Programming a BEA Tuxedo Application Using COBOL 8-7

8 Writing Event-based Clients and Servers
Refer to “Defining a Service” on page 5-10 for a description of the TPTYPE-REC
record.

The following example illustrates a call to TPBROADCAST for which all clients are
targeted. The message to be sent is contained in a STRING record.

Listing 8-2 Using TPBROADCAST

 . . .
**
* Prepare the record to broadcasted
**
 MOVE "HELLO, WORLD" TO DATA-REC.
 MOVE 11 TO LEN.
 MOVE "STRING" TO REC-TYPE.
*
 SET TPNOBLOCK TO TRUE.
 SET TPNOTIME TO TRUE.
 SET TPSIGRSTRT TO TRUE.
*
 MOVE SPACES TO LMID.
 MOVE SPACES TO USRNAME.
 MOVE SPACES TO CLTNAME.
 CALL "TPBROADCAST" USING TPBCTDEF-REC
 TPTYPE-REC
 DATA-REC
 TPSTATUS-REC.
 IF NOT TPOK
 error processing
8-8 Programming a BEA Tuxedo Application Using COBOL

Checking for Unsolicited Messages

ice.

ion

ling

t and
Broadcasting Messages by Identifier

The TPNOTIFY(3cbl) routine is used to broadcast a message using an identifier
received with a previously processed message. It can be called only from a serv

Use the following signature to call the TPNOTIFY routine.

01 TPSVCDEF-REC.
 COPY TPSVCDEF.
01 TPTYPE-REC.
 COPY TPTYPE.
01 DATA-REC.
 COPY User Data.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPNOTIFY" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Refer to “Writing Global Transactions” on page 9-1 for information on the
TPSVCDEF-REC data structure, and “Defining a Service” on page 5-10 for a descript
of the TPTYPE-REC record.

Checking for Unsolicited Messages

To check for unsolicited messages while running the client in “dip-in” notification
mode, use the TPCHKUNSOL(3cbl) routine with the following signature.

01 MSG-NUM PIC S9(9) COMP-5.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPCHKUNSOL" USING MSG-NUM TPSTATUS-REC.

If any messages are pending, the system invokes the unsolicited message hand
routine that was specified using TPSETUNSOL. Upon completion, the routine returns
either the number of unsolicited messages that were processed and sets TP-STATUS to
[TPOK].

If you issue this routine when the client is running in SIGNAL-based, thread-based
notification mode, or is ignoring unsolicited messages, the routine has no impac
returns immediately.
Programming a BEA Tuxedo Application Using COBOL 8-9

8 Writing Event-based Clients and Servers

age.

the
The following example shows how to check for the arrival of an unsolicited mess

Listing 8-3 Arrival of an Unsolicited Message

*
* Check for unsolicited messages
*
 CALL "TPCHKUNSOL" USING MESS-NUM
 TPSTATUS-REC.
*
 IF TPOK
 IF MESS-NUM IS = 0
 No messages were processed by the
 unsolicited routine
 ELSE
 MESS-NUM number of messages were
 processed by the unsolicited routine
 END-IF
 ELSE
 process error
 END-IF

Getting Unsolicited Messages

To get unsolicited messages, you must call the TPGETUNSOL(3cbl) routine. This
routine can be called, however, only from an unsolicited message handler. Use
following signature to call the TPGETUNSOL routine.

01 TPTYPE-REC.
 COPY TPTYPE.
01 DATA-REC.
 COPY User data.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPGETUNSOL" USING TPTYPE-REC DATA-REC TPSTATUS-REC.

Refer to “Defining a Service” on page 5-10 for a description of the TPTYPE-REC
record.

The following example shows how to get an unsolicited message.
8-10 Programming a BEA Tuxedo Application Using COBOL

Getting Unsolicited Messages
Listing 8-4 Getting an Unsolicited Message

 IDENTIFICATION DIVISION.
 PROGRAM-ID. TMDISPATCH9.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. USL-486.
 OBJECT-COMPUTER. USL-486.
*
 DATA DIVISION.
 WORKING-STORAGE SECTION.
*
 01 TPTYPE-REC.
 COPY TPTYPE.
*
 01 TPSTATUS-REC.
 COPY TPSTATUS.
*
 01 DATA-REC PIC X(1000).
*
 PROCEDURE DIVISION.
*
 A-000.
*
 MOVE "CARRAY" TO REC-TYPE.
 MOVE 1000 TO LEN.
 CALL "TPGETUNSOL" USING TPTYPE-REC
 DATA-REC
 TPSTATUS-REC.
 IF NOT TPOK
 error processing
*
 Process message
 DISPLAY "TPGETUNSOL IS TPOK".
 DISPLAY "MESSAGE IS" DATA-REC.
 DISPLAY "LENGTH IS" LEN.
 EXIT PROGRAM.
*

Programming a BEA Tuxedo Application Using COBOL 8-11

8 Writing Event-based Clients and Servers

o

 call,

,
Subscribing to Events

The TPSUBSCRIBE(3cbl) routine enables a BEA Tuxedo system client or server t
subscribe to an event.

A subscriber can be notified through an unsolicited notification message, a service
a reliable queue, or other notification methods configured by the application
administrator. (For information about configuring alternative notification methods
refer to Setting Up a BEA Tuxedo Application.)

Use the following signature to call the TPSUBSCRIBE routine.

01 TPEVTDEF-REC.
 COPY TPEVTDEF.

01 TPQUEDEF-REC.
 COPY TPQUEDEF.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL “TPSUBSCRIBE” USING TPEVTDEF-REC TPQUEDEF-REC TPSTATUS-REC

The TPEVTDEF-REC data structure signature is as follows:

05 TPBLOCK-FLAG PIC S9(9) COMP-5.
 88 TPBLOCK VALUE 0.
 88 TPNOBLOCK VALUE 1.
05 TPTRAN-FLAG PIC S9(9) COMP-5.
 88 TPTRAN VALUE 0.
 88 TPNOTRAN VALUE 1.
05 TPREPLY-FLAG PIC S9(9) COMP-5.
 88 TPREPLY VALUE 0.
 88 TPNOREPLY VALUE 1.
05 TPTIME-FLAG PIC S9(9) COMP-5.
 88 TPTIME VALUE 0.
 88 TPNOTIME VALUE 1.
05 TPSIGRSTRT-FLAG PIC S9(9) COMP-5.
 88 TPNOSIGRSTRT VALUE 0.
 88 TPSIGRSTRT VALUE 1.
05 TPEV-METHOD-FLAG PIC S9(9) COMP-5.
 88 TPEVNOTIFY VALUE 0.
 88 TPEVSERVICE VALUE 1.
 88 TPEVQUEUE VALUE 2.
05 TPEV-PERSIST-FLAG PIC S9(9) COMP-5.
8-12 Programming a BEA Tuxedo Application Using COBOL

Subscribing to Events
 88 TPEVNOPERSIST VALUE 0.
 88 TPEVPERSIST VALUE 1.
05 TPEV-TRAN-FLAG PIC S9(9) COMP-5.
 88 TPEVNOTRAN VALUE 0.
 88 TPEVTRAN VALUE 1.
*
05 EVENT-COUNT PIC S9(9) COMP-5.
05 SUBSCRIPTION-HANDLE PIC S9(9) COMP-5.
05 NAME-1 PIC X(31).
05 NAME-2 PIC X(31).
05 EVENT-NAME PIC X(31).
05 EVENT-EXPR PIC X(255).
05 EVENT-FILTER PIC X(255).

The following table describes the members of the TPEVTDEF-REC data structure.

Member Description

EVENT-COUNT Event count.

SUBSCRIPTION-HANDLE Subscription handle.

NAME-1, NAME-2 Name of queued spaces. If the subscriber sets TPEVQUEUE, then
event notifications are enqueued to the queue space named by
NAME-1 and the queue named by NAME-2.

EVENT-NAME Event name.

EVENT-EXPR Set of events to which to subscribe. Consists of a null-terminated
string of up to 255 characters containing a regular expression.
Regular expressions are of the form specified in recomp,
rematch(3c) as described in the Programming a BEA Tuxedo
Application Using C. For example, if eventexpr is set to:

� "\\..*" — the caller is subscribing to all system-defined
events.

� "\\.SysServer.*" — the caller is subscribing to all
system-defined events related to servers.

� "[A-Z].*" — the caller is subscribing to all user events
starting with A-Z.

� ".*(ERR|err).*" — the caller is subscribing to all user
events containing either the substring ERR or the substring
err (for example, account_error and ERROR_STATE
events would both qualify).
Programming a BEA Tuxedo Application Using COBOL 8-13

8 Writing Event-based Clients and Servers
Refer to Using the BEA Tuxedo /Q Component for more information on the
TPQUEDEF-REC data structure.

You can subscribe to both system- and application-defined events using the
TPSUBSCRIBE routine.

For purposes of subscriptions (and for MIB updates), service routines executed in a
BEA Tuxedo system server process are considered to be trusted code.

Refer to TPSUBSCRIBE(3cbl) in the BEA Tuxedo COBOL Function Reference for
more information on the routine.

EVENT-FILTER String containing a boolean filter rule that must be evaluated
successfully before the Event Broker posts the event. Upon
receiving an event to be posted, the Event Broker applies the
filter rule, if one exists, to the posted event’s data. If the data
passes the filter rule, the Event Broker invokes the notification
method specified; otherwise, the Event Broker ignores the
notification method. The caller can subscribe to the same event
multiple times with different filter rules.

By using the event filtering capability, subscribers can be
more discriminating about the events for which they are
notified. For example, a poster can post an event for
withdrawals greater than $10,000.00, but a subscriber
may want to specify a higher threshold for being notified,
such as $50,000.00. Or, a subscriber may want to be
notified of large withdrawals only if made by customers
with specified IDs.

Filter rules are specific to the typed records to which they are
applied. Refer to the TPSUBSCRIBE(3cbl) reference page in
the BEA Tuxedo COBOL Function Reference for further
information on filter rules.

SETTINGS
(TPBLOCK-FLAG,
 TPTRAN-FLAG, and so
on)

Miscellaneous settings that control the server characteristics.
For more information on the settings, refer to the BEA Tuxedo
COBOL Function Reference

Member Description
8-14 Programming a BEA Tuxedo Application Using COBOL

Unsubscribing from Events

 to

nt.
Unsubscribing from Events

The TPUNSUBSCRIBE(3cbl) routine enables a BEA Tuxedo system client or server
unsubscribe from an event.

Use the following signature to call the TPUNSUBSCRIBE routine.

01 TPEVTDEF-REC.
 COPY TPEVTDEF.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL “TPUNSUBSCRIBE” USING TPEVTDEF-REC TPSTATUS-REC

Refer to “Subscribing to Events” on page 8-12 for a detailed description of the
TPEVTDEF-REC data structure, and to Using the BEA Tuxedo /Q Component for more
information on the TPQUEDEF-REC data structure.

Posting Events

The TPPOST(3cbl) routine enables a BEA Tuxedo client or server to post an eve

Use the following signature to call the TPPOST routine.

01 TPEVTDEF-REC.
 COPY TPEVTDEF.

01 TPTYPE-REC.
 COPY TPSTATUS.

01 TPDATA-REC.
 COPY TPSTATUS.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL “TPPST” USING TPEVTDEF-REC TPTYPE-REC TPDATA-REC TPSTATUS-REC
Programming a BEA Tuxedo Application Using COBOL 8-15

8 Writing Event-based Clients and Servers
Refer to “Subscribing to Events” on page 8-12 for a detailed description of the
TPEVTDEF-REC data structure, and to “Defining a Service” on page 5-10 for a
description of the TPTYPE-REC record.
8-16 Programming a BEA Tuxedo Application Using COBOL

CHAPTER

tially
rvers,

ay be
in the
9 Writing Global
Transactions

� What Is a Global Transaction?

� Starting the Transaction

� Terminating the Transaction

� Terminating the Transaction

� Implicitly Defining a Global Transaction

� Defining Global Transactions for an XA-Compliant Server Group

� Testing Whether a Transaction Has Started

What Is a Global Transaction?

A global transaction is a mechanism that allows a set of programming tasks, poten
using more than one resource manager and potentially executing on multiple se
to be treated as one logical unit.

Once a process is in transaction mode, any service requests made to servers m
processed on behalf of the current transaction. The services that are called and jo
transaction are referred to as transaction participants. The value returned by a
participant may affect the outcome of the transaction.
Programming a BEA Tuxedo Application Using COBOL 9-1

9 Writing Global Transactions

ing the

ither
sful.

s that
s, a

tent

ess.

lure.

ines
A global transaction may be composed of several local transactions, each access
same resource manager. The resource manager is responsible for performing
concurrency control and atomicity of updates. A given local transaction may be e
successful or unsuccessful in completing its access; it cannot be partially succes

A maximum of 16 server groups can participate in a single transaction.

The BEA Tuxedo system manages a global transaction in conjunction with the
participating resource managers and treats it as a specific sequence of operation
is characterized by atomicity, consistency, isolation, and durability. In other word
global transaction is a logical unit of work in which:

� All portions either succeed or have no effect.

� Operations are performed that correctly transform resources from one consis
state to another.

� Intermediate results are not accessible to other transactions, although some
processes in a transaction may access the data associated with another proc

� Once a sequence is complete, its results cannot be altered by any kind of fai

The BEA Tuxedo system tracks the status of each global transaction and determ
whether it should be committed or rolled back.

Starting the Transaction

To start a global transaction, use the TPBEGIN(3cbl) routine with the following
signature.

*
 01 TPTRXDEF-REC.
 COPY TPTRXDEF.
*
 01 TPSTATUS-REC.
 COPY TPSTATUS.
*
 CALL "TPBEGIN" USING TPTRXDEF-REC TPSTATUS-REC.

The following table describes the TPTRXDEF-REC structure fields.
9-2 Programming a BEA Tuxedo Application Using COBOL

Starting the Transaction
Table 9-1 TPTRXDEF Structure Field

Field Description

T-OUT Specifies the amount of time, in seconds, a transaction can execute before
timing out. You can set this value to the maximum number of seconds allowed
by the system, by specifying a value of 0. In other words, you can set
timeout to the maximum value for an unsigned long as defined by the
system.

The use of 0 or an unrealistically large value for the T-OUT parameter delays
system detection and reporting of errors. The system uses the T-OUT
parameter to ensure that responses to service requests are sent within a
reasonable time, and to terminate transactions that encounter problems such as
network failures before executing a commit.

For a transaction in which a person is waiting for a response, you should set
this parameter to a small value: if possible, less than 30 seconds.

In a production system, you should set T-OUT to a value large enough to
accommodate expected delays due to system load and database contention. A
small multiple of the expected average response time is often an appropriate
choice.

Note: The value assigned to the T-OUT parameter should be consistent with
that of the SCANUNIT parameter set by the BEA Tuxedo application
administrator in the configuration file. The SCANUNIT parameter
specifies the frequency with which the system checks, or scans, for
timed-out transactions and blocked calls in service requests. The
value of this parameter represents the interval of time between these
periodic scans, referred to as the scanning unit.

You should set the T-OUT parameter to a value that is greater than the
scanning unit. If you set the T-OUT parameter to a value smaller than
the scanning unit, there will be a discrepancy between the time at
which a transaction times out and the time at which this time-out is
discovered by the system. The default value for SCANUNIT is 10
seconds. You may need to discuss the setting of the T-OUT parameter
with your application administrator to make sure the value you assign
to the T-OUT parameter is compatible with the values assigned to
your system parameters.

TRANID Transaction identifier.
Programming a BEA Tuxedo Application Using COBOL 9-3

9 Writing Global Transactions

If

 is
Any process may call TPBEGIN unless the process is already in transaction mode.
TPBEGIN is called in transaction mode, the call fails due to a protocol error and
TP-STATUS is set to TPEPROTO. If the process is in transaction mode, the transaction
unaffected by the failure.

The following example provides a high-level view of how a global transaction is
defined.

Listing 9-1 Delineating a Transaction

. . .
MOVE 0 TO T-OUT.
CALL "TPBEGIN" USING
TPTRXDEF-REC
TPSTATUS-REC.
IF NOT TPOK
 error processing
. . .
 program statements
. . .
CALL "TPCOMMIT" USING
 TPTRXDEF-REC
 TPSTATUS-REC.
IF NOT TPOK
 error processing
9-4 Programming a BEA Tuxedo Application Using COBOL

Starting the Transaction
The following example shows how an outstanding reply can cause an error.

Listing 9-2 Error - Starting a Transaction with an Outstanding Reply

 . . .
 MOVE "BUY" TO SERVICE-NAME.
 SET TPBLOCK TO TRUE.
 SET TPNOTRAN TO TRUE.
 SET TPREPLY TO TRUE.
 SET TPNOTIME TO TRUE.
 SET TPSIGRSTRT TO TRUE.
 CALL "TPACALL" USING
 TPSVCDEF-REC
 TPTYPE-REC
 BUY-REC
 TPSTATUS-REC.
 IF NOT TPOK
 error processing
 . . .
 MOVE 0 TO T-OUT.
 CALL "TPBEGIN" USING
 TPTRXDEF-REC
 TPSTATUS-REC.
 IF NOT TPOK
 error processing
* ERROR TP-STATUS is set to TPEPROTO
 . . .
 program statements
 . . .
 SET TPBLOCK TO TRUE.
 SET TPNOTRAN TO TRUE.
 SET TPCHANGE TO TRUE.
 SET TPNOTIME TO TRUE.
 SET TPSIGRSTRT TO TRUE.
 SET TPGETANY TO TRUE.
 CALL "TPGETRPLY" USING
 TPSVCDEF-REC
 TPTYPE-REC
 WK-AREA
 TPSTATUS-REC.
 IF NOT TPOK
 error processing
Programming a BEA Tuxedo Application Using COBOL 9-5

9 Writing Global Transactions

s

e
If a transaction times out, a call to TPCOMMIT causes the transaction to be aborted. A
a result, TPCOMMIT fails and sets TP-STATUS to TPEABORT.

The following example shows how to test for a transaction time-out. Note that th
value of T-OUT is set to 30 seconds.

Listing 9-3 Testing for Transaction Time-Out

. . .
MOVE 30 TO T-OUT.
CALL "TPBEGIN" USING TPTRXDEF-REC TPSTATUS-REC.
IF NOT TPOK
 MOVE "Failed to BEGIN a transaction" TO LOG-REC-TEXT.
 MOVE 29 to LOG-REC-LEN
 CALL "USERLOG" USING
 LOG-REC-TEXT
 LOG-REC-LEN
 TPSTATUS-REC
 CALL "TPTERM" USING
 TPSTATUS-REC
 PERFORM A-999-EXIT.
. . .
 communication CALL statements
. . .
IF TPETIME
 CALL "TPABORT" USING
 TPTRXDEF-REC
 TPSTATUS-REC
IF NOT TPOK
 error processing
ELSE
 CALL "TPCOMMIT" USING
 TPTRXDEF-REC
 TPSTATUS-REC
 IF NOT TPOK
 error processing
9-6 Programming a BEA Tuxedo Application Using COBOL

Starting the Transaction

 with
e

ut
e
Note: When a process is in transaction mode and makes a communication call
TPNOTRAN, it prohibits the called service from becoming a participant in th
current transaction. Whether the service request succeeds or fails has no
impact on the outcome of the transaction. The transaction can still time-o
while waiting for a reply that is due from a service, whether it is part of th
transaction or not. Refer to “Managing Errors” on page 11-1 for more
information on the effects of the TPNOTRAN flag.

The following example shows how to define a transaction.

Listing 9-4 Defining a Transaction

 DATA DIVISION.
 WORKING-STORAGE SECTION.
*
 01 TPTYPE-REC.
 COPY TPTYPE.
*
 01 TPSTATUS-REC.
 COPY TPSTATUS.
*
 01 TPINFDEF-REC.
 COPY TPINFDEF.
*
 01 TPSVCDEF-REC.
 COPY TPSVCDEF.
*
 01 TPTRXDEF-REC.
 COPY TPTRXDEF.
*
 01 LOG-REC PIC X(30) VALUE " ".
 01 LOG-REC-LEN PIC S9(9) COMP-5.
*
 01 USR-DATA-REC PIC X(16).
*
 01 AUDV-REC.
 05 AUDV-BRANCH-ID PIC S9(9) COMP-5.
 05 AUDV-BALANCE PIC S9(9) COMP-5.
 05 AUDV-ERRMSG PIC X(60).
*
 PROCEDURE DIVISION.
*
 A-000.
 . . .
* Get Command Line Options set Variables (Q-BRANCH)
Programming a BEA Tuxedo Application Using COBOL 9-7

9 Writing Global Transactions
 MOVE SPACES TO USRNAME.
 MOVE SPACES TO CLTNAME.
 MOVE SPACES TO PASSWD.
 MOVE SPACES TO GRPNAME.
 CALL "TPINITIALIZE" USING TPINFDEF-REC
 USR-DATA-REC
 TPSTATUS-REC.
 IF NOT TPOK
 MOVE "Failed to join application" TO LOG-REC
 MOVE 26 TO LOG-REC-LEN
 CALL "USERLOG" USING LOG-REC
 LOG-REC-LEN
 TPSTATUS-REC
 PERFORM A-999-EXIT.
* Start global transaction
 MOVE 30 TO T-OUT.
 CALL "TPBEGIN" USING TPTRXDEF-REC TPSTATUS-REC.
 IF NOT TPOK
 MOVE 29 to LOG-REC-LEN
 MOVE "Failed to begin a transaction" TO LOG-REC
 CALL "USERLOG" USING LOG-REC
 LOG-REC-LEN
 TPSTATUS-REC
 PERFORM DO-TPTERM.
* Set up record
 MOVE Q-BRANCH TO AUDV-BRANCH-ID.
 MOVE ZEROS TO AUDV-BALANCE.
 MOVE SPACES TO AUDV-ERRMSG.
* Set up TPCALL records
 MOVE "GETBALANCE" TO SERVICE-NAME.
 MOVE "VIEW" TO REC-TYPE.
 MOVE LENGTH OF AUDV-REC TO LEN.
 SET TPBLOCK TO TRUE.
 SET TPTRAN IN TPSVCDEF-REC TO TRUE.
 SET TPNOTIME TO TRUE.
 SET TPSIGRSTRT TO TRUE.
 SET TPCHANGE TO TRUE.
*
 CALL "TPCALL" USING TPSVCDEF-REC
 TPTYPE-REC
 AUDV-REC
 TPTYPE-REC
 AUDV-REC
 TPSTATUS-REC.
 IF NOT TPOK
 MOVE 19 to LOG-REC-LEN
 MOVE "Service call failed" TO LOG-REC
 CALL "USERLOG" USING LOG-REC
 LOG-REC-LEN
9-8 Programming a BEA Tuxedo Application Using COBOL

Starting the Transaction
 TPSTATUS-REC
 PERFORM DO-TPABORT
 PERFORM DO-TPTERM.
* Commit global transaction
 CALL "TPCOMMIT" USING TPTRXDEF-REC
 TPSTATUS-REC
 IF NOT TPOK
 MOVE 16 to LOG-REC-LEN
 MOVE "Failed to commit" TO LOG-REC
 CALL "USERLOG" USING LOG-REC
 LOG-REC-LEN
 TPSTATUS-REC
 PERFORM DO-TPTERM.
* Show results only when transaction has completed successfully
 DISPLAY "BRANCH=" Q-BRANCH.
 DISPLAY "BALANCE=" AUDV-BALANCE.
 PERFORM DO-TPTERM.
* Abort the transaction
 DO-TPABORT.
 CALL "TPABORT" USING TPTRXDEF-REC
 TPSTATUS-REC
 IF NOT TPOK
 MOVE 26 to LOG-REC-LEN
 MOVE "Failed to abort transaction" TO LOG-REC
 CALL "USERLOG" USING LOG-REC
 LOG-REC-LEN
 TPSTATUS-REC.
* Leave the application
 DO-TPTERM.
 CALL "TPTERM" USING TPSTATUS-REC.
 IF NOT TPOK
 MOVE 27 to LOG-REC-LEN
 MOVE "Failed to leave application" TO LOG-REC
 CALL "USERLOG" USING LOG-REC
 LOG-REC-LEN
 TPSTATUS-REC.
 EXIT PROGRAM.
*
 A-999-EXIT.
*
 EXIT PROGRAM.
Programming a BEA Tuxedo Application Using COBOL 9-9

9 Writing Global Transactions

me

on
Terminating the Transaction

To end a global transaction, call TPCOMMIT(3cbl) to commit the current transaction,
or TPABORT(3cbl) to abort the transaction and roll back all operations.

Note: If TPCALL, TPACALL, or TPCONNECT is called by a process that has explicitly
set TPNOTRAN, the operations performed by the called service do not beco
part of the current transaction. In other words, when you call the TPABORT
routine, the operations performed by these services are not rolled back.

Committing the Current Transaction

The TPCOMMIT(3cbl) routine commits the current transaction. When TPCOMMIT
returns successfully, all changes to resources as a result of the current transacti
become permanent.

Use the following signature to call the TPCOMMIT routine.

*
 01 TPTRXDEF-REC.
 COPY TPTRXDEF.
*
 01 TPSTATUS-REC.
 COPY TPSTATUS.
*
 CALL "TPCOMMIT" USING TPTRXDEF-REC TPSTATUS-REC.

Refer to “Starting the Transaction” on page 9-2 for a description of the TPTRXDEF-REC
structure.
9-10 Programming a BEA Tuxedo Application Using COBOL

Terminating the Transaction

e

t.

nd
 If
tion
valid.

t:

g
Prerequisites for a Transaction Commit

For TPCOMMIT to succeed, the following conditions must be true:

� The calling process must be the same one that initiated the transaction with a
call to TPBEGIN.

� The calling process must have no transactional replies (calls made without th
TPNOTRAN flag) outstanding.

� The transaction must not be in a rollback-only state and must not be timed ou

If the first condition is false, the call fails and TP-STATUS is set to TPEPROTO,
indicating a protocol error. If the second or third condition is false, the call fails a
TP-STATUS is set to TPEABORT, indicating that the transaction has been rolled back.
TPCOMMIT is called by the initiator with outstanding transaction replies, the transac
is aborted and those reply descriptors associated with the transaction become in
If a participant calls TPCOMMIT or TPABORT, the transaction is unaffected.

A transaction is placed in a rollback-only state if any service call returns TPFAIL or
indicates a service error. If TPCOMMIT is called for a rollback-only transaction, the
routine cancels the transaction, returns -1 , and sets TP-STATUS to TPEABORT. The
results are the same if TPCOMMIT is called for a transaction that has already timed ou
TPCOMMIT returns -1 and sets TP-STATUS to TPEABORT. Refer to “Managing Errors”
on page 11-1 for more information on transaction errors.

Two-phase Commit Protocol

When the TPCOMMIT routine is called, it initiates the two-phase commit protocol. This
protocol, as the name suggests, consists of two steps:

1. Each participating resource manager indicates a readiness to commit.

2. The initiator of the transaction gives permission to commit to each participatin
resource manager.
Programming a BEA Tuxedo Application Using COBOL 9-11

9 Writing Global Transactions

ts the
col.
to

 the
re to

 logs
-phase
 the

or
M

 two

gged
The commit sequence begins when the transaction initiator calls the TPCOMMIT routine.
The BEA Tuxedo TMS server process in the designated coordinator group contac
TMS in each participant group that is to perform the first phase of the commit proto
The TMS in each group then instructs the resource manager (RM) in that group
commit using the XA protocol that is defined for communications between the
Transaction Managers and RMs. The RM writes, to stable storage, the states of
transaction before and after the commit sequence, and indicates success or failu
the TMS. The TMS then passes the response back to the coordinating TMS.

When the coordinating TMS has received a success indication from all groups, it
a statement to the effect that a transaction is being committed and sends second
commit notifications to all participant groups. The RM in each group then finalizes
transaction updates.

If the coordinator TMS is notified of a first-phase commit failure from any group,
if it fails to receive a reply from any group, it sends a rollback notification to each R
and the RMs back out all transaction updates. TPCOMMIT then fails and sets TP-STATUS
to TPEABORT.

Selecting Criteria for a Successful Commit

When more than one group is involved in a transaction, you can specify which of
criteria must be met for TPCOMMIT to return successfully:

� When all participants have indicated a readiness to commit (that is, when all
participants have reported that phase 1 of the two-phase commit has been lo
as complete and the coordinating TMS has written its decision to commit to
stable storage)

� When all participants have finished phase 2 of the two-phase commit

To specify one of these prerequisites, set the CMTRET parameter in the RESOURCES
section of the configuration file to one of the following values:

� LOGGED - to require completion of phase 1

� COMPLETE - to require completion of phase 2

By default, CMTRET is set to COMPLETE.
9-12 Programming a BEA Tuxedo Application Using COBOL

Terminating the Transaction

ful

ay

f your
are
ly

ore
se of

rt

ied to
Trade-offs Between Possible Commit Criteria

In most cases, when all participants in a global transaction have logged success
completion of phase 1, they do not fail to complete phase 2. By setting CMTRET to
LOGGED, you allow a slightly faster return of calls to TCOMMIT, but you run the slight
risk that a participant may heuristically complete its part of the transaction in a w
that is not consistent with the commit decision.

Whether it is prudent to accept the risk depends to a large extent on the nature o
application. If your application demands complete accuracy (for example, if you
running a financial application), you should probably wait until all participants ful
complete the two-phase commit process before returning. If your application is m
time-sensitive, you may prefer to have the application execute faster at the expen
accuracy.

Aborting the Current Transaction

Use the TPABORT(3cbl) routine to indicate an abnormal condition and explicitly abo
a transaction. This function invalidates the call descriptors of any outstanding
transactional replies. None of the changes produced by the transaction are appl
the resource. Use the following signature to call the TPABORT routine.

*
 01 TPTRXDEF-REC.
 COPY TPTRXDEF.
*
 01 TPSTATUS-REC.
 COPY TPSTATUS.
*
 CALL "TPABORT" USING TPTRXDEF-REC TPSTATUS-REC.

Refer to “Starting the Transaction” on page 9-2 for a description of the TPTRXDEF-REC
structure.
Programming a BEA Tuxedo Application Using COBOL 9-13

9 Writing Global Transactions

s a
Example: Committing a Transaction in Conversational
Mode

The following figure illustrates a conversational connection hierarchy that include
global transaction.

Figure 9-1 Connection Hierarchy in Transaction Mode
9-14 Programming a BEA Tuxedo Application Using COBOL

Terminating the Transaction

r

cess
rvice
), it

rned

 for
The connection hierarchy is created through the following process:

1. A client (process A) initiates a connection in transaction mode by calling TPBEGIN
and TPCONNECT.

2. The client calls subsidiary services, which are executed.

3. As each subordinate service completes, it sends a reply indicating success o
failure (TPEV_SVCSUCC or TPEV_SVCFAIL, respectively) back up through the
hierarchy to the process that initiated the transaction. In this example the pro
that initiated the transaction is the client (process A). When a subordinate se
has completed sending replies (that is, when no more replies are outstanding
must call TPRETURN.

4. The client (process A) determines whether all subordinate services have retu
successfully.

z If so, the client commits the changes made by those services, by calling
TPCOMMIT, and completes the transaction.

z If not, the client calls TPABORT, since it knows that TPCOMMIT could not be
successful.

Example: Testing for Participant Errors

In the following sample code, a client makes a synchronous call to the fictitious
REPORT service (line 24). Then the code checks for participant failures by testing
errors that can be returned on a communication call (lines 30-42).

Listing 9-5 Testing for Participant Success or Failure

01 . . .
02 CALL "TPINITIALIZE" USING TPINFDEF-REC
03 USR-DATA-REC
04 TPSTATUS-REC.
05 IF NOT TPOK
06 error message ,
07 EXIT PROGRAM .
08 MOVE 30 TO T-OUT.
09 CALL "TPBEGIN" USING TPTRXDEF-REC TPSTATUS-REC.
10 IF NOT TPOK
11 error message ,
Programming a BEA Tuxedo Application Using COBOL 9-15

9 Writing Global Transactions
12 PERFORM DO-TPTERM.
13 * Set up record
14 MOVE "REPORT=accrcv DBNAME=accounts" TP-RECORD.
15 MOVE 27 TO LEN.
16 MOVE "REPORTS" TO SERVICE-NAME.
17 MOVE "STRING" TO REC-TYPE.
18 SET TPBLOCK TO TRUE.
19 SET TPTRAN IN TPSVCDEF-REC TO TRUE.
20 SET TPNOTIME TO TRUE.
21 SET TPSIGRSTRT TO TRUE.
22 SET TPCHANGE TO TRUE.
23 *
24 CALL "TPCALL" USING TPSVCDEF-REC
25 TPTYPE-REC
26 TP-RECORD
27 TPTYPE-REC
28 TP-RECORD
29 TPSTATUS-REC.
30 IF TPOK
31 PERFORM DO-TPCOMMIT
32 PERFORM DO-TPTERM.
33 * Check return status
34 IF TPESVCERR
35 DISPLAY "REPORT service's TPRETURN encountered problems"
36 ELSE IF TPESVCFAIL
37 DISPLAY "REPORT service FAILED with return code=" APPL-RETURN-CODE
38 ELSE IF TPEOTYPE
39 DISPLAY "REPORT service's reply is not of any known REC-TYPE"
40 *
41 PERFORM DO-TPABORT
42 PERFORM DO-TPTERM.
43 * Commit global transaction
44 DO-TPCOMMIT.
45 CALL "TPCOMMIT" USING TPTRXDEF-REC
46 TPSTATUS-REC
47 IF NOT TPOK
48 error message
49 * Abort the transaction
50 DO-TPABORT.
51 CALL "TPABORT" USING TPTRXDEF-REC
52 TPSTATUS-REC
53 IF NOT TPOK
54 error message
55 * Leave the application
56 DO-TPTERM.
57 CALL "TPTERM" USING TPSTATUS-REC.
58 IF NOT TPOK
59 error message
60 EXIT PROGRAM.
9-16 Programming a BEA Tuxedo Application Using COBOL

Implicitly Defining a Global Transaction

em

eived

s is

er
is

n
Implicitly Defining a Global Transaction

An application can start a global transaction in either of two ways:

� Explicitly, by calling ATMI calls, as described in “Starting the Transaction” on
page 9-2

� Implicitly, from within a service routine

This section describes the second method.

You can implicitly place a service routine in transaction mode by setting the syst

parameter AUTOTRAN in the configuration file. If you set AUTOTRAN to Y, the system
automatically starts a transaction in the service subroutine when a request is rec
from another process.

When implicitly defining a transaction, observe the following rules:

� If a process requests a service from another process when the calling proces
not in transaction mode and the AUTOTRAN system parameter is set to start a
transaction, the system initiates a transaction.

� If a process that is already in transaction mode requests a service from anoth
process, the system’s first response is to determine whether or not the caller
set to TPNOTRAN.

If not set to TPNOTRAN, then the system places the called process in transactio
mode through the “rule of propagation.” The system does not check the
AUTOTRAN parameter.

If TPTRN-FLAG IN TPSVCDEF-REC is set to TPNOTRAN, the services performed
by the called process are not included in the current transaction (that is, the
propagation rule is suppressed). The system checks the AUTOTRAN parameter.

z If AUTOTRAN is set to N (or if it is not set), the system does not place the
called process in transaction mode.

z If AUTOTRAN is set to Y, the system places the called process in transaction
mode, but treats it as a new transaction.
Programming a BEA Tuxedo Application Using COBOL 9-17

9 Writing Global Transactions

 set

liant
e
f, on

roups
n

void
eady

s
Note: Because a service can be placed in transaction mode automatically, it is
possible for a service with the TPNOTRAN flag set to call services that have the
AUTOTRAN parameter set. If such a service requests another service, the
member of the service information structure returns TPTRAN when queried. For
example, if the call is made with TPNOTRAN | TPNOREPLY, and the service
automatically starts a transaction when called, the information structure is
to TPTRAN | TPNOREPLY.

Defining Global Transactions for an
XA-Compliant Server Group

Generally, the application programmer writes a service that is part of an XA-comp
server group to perform some operation via the group’s resource manager. In th
normal case, the service expects to perform all operations within a transaction. I
the other hand, the service is called with the communication setting of TPNOTRAN, you
may receive unexpected results when executing database operations.

In order to avoid unexpected behavior, design the application so that services in g
associated with XA-compliant resource managers are always called in transactio
mode or are always defined in the configuration file with AUTOTRAN set to Y. You
should also test the transaction level in the service code early.

Testing Whether a Transaction Has Started

It is important to know whether or not a process is in transaction mode in order to a
and interpret certain error conditions. For example, it is an error for a process alr
in transaction mode to call TPBEGIN. When TPBEGIN is called by such a process, it fails
and sets TP-STATUS to TPEPROTO to indicate that it was invoked while the caller wa
already participating in a transaction. The transaction is not affected.
9-18 Programming a BEA Tuxedo Application Using COBOL

Testing Whether a Transaction Has Started

ode
g

e

tarts
 9)
d
You can design a service subroutine so that it tests whether it is in transaction m
before invoking TPBEGIN. You can test the transaction level by either of the followin
methods:

� Querying the settings of the service information structure that is passed to th
service routine. The service is in transaction mode if the value is set to TPTRAN.

� Calling the TPGETLEV(3cbl) routine.

Use the following signature to call the TPGETLEV routine.

01 TPTRXLEV-REC.
 COPY TPTRXLEV.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPGETLEV" USING TPTRXLEV-REC TPSTATUS-REC.

TPGETLEV returns TP-NOT-IN-TRAN if the caller is not in a transaction and
TP-IN-TRAN if the caller is.

The following code sample shows how to test for transaction level using the TPGETLEV
routine (line 3). If the process is not already in transaction mode, the application s
a transaction (line 5). If TPBEGIN fails, a message is returned to the status line (line
and APPL-CODE IN TPSVCRET-REC of TPRETURN is set to a code that can be retrieve
in APL-RETURN-CODE IN TPSTATUS-REC (lines 1 and 11).

Listing 9-6 Testing Transaction Level

 . . . Application defined codes
001 77 BEG-FAILED PIC S9(9) VALUE 3.
 . . .
002 PROCEDURE DIVISION.
 . . .
003 CALL "TPGETLEV" USING TPTRCLEV-REC
 TPSTATUS-REC.
004 IF NOT TPOK
 error processing EXIT PROGRAM
005 IF TP-NOT-IN-TRAN
006 MOVE 30 TO T-OUT.
007 CALL "TPBEGIN" USING
 TPTRXDEF-REC
 TPSTATUS-REC.
008 IF NOT TPOK
009 MOVE "Attempt to TPBEGIN within service failed"
 TO USER-MESSAGE.
Programming a BEA Tuxedo Application Using COBOL 9-19

9 Writing Global Transactions

e

ter a

r

e them
010 SET TPFAIL TO TRUE.
011 MOVE BEG-FAILED TO APPL-CODE.
012 COPY TPRETURN REPLACING
013 DATA-REC BY USER-MESSAGE.
 . . .

If the AUTOTRAN parameter is set to Y, you do not need to call the TPBEGIN, and
TPCOMMIT or TPABORT transaction routines explicitly. As a result, you can avoid th
overhead of testing for transaction level. In addition, you can set the TRANTIME
parameter to specify the time-out interval: the amount of time that may elapse af
transaction for a service begins, and before it is rolled back if not completed.

For example, suppose you are revising the OPEN_ACCT service shown in the preceding
code listing. Currently, OPEN_ACCT defines the transaction explicitly and then tests fo
its existence. To reduce the overhead introduced by these tasks, you can eliminat
from the code. Therefore, you need to require that whenever OPEN_ACCT is called, it is
called in transaction mode. To specify this requirement, enable the AUTOTRAN and
TRANTIME system parameters in the configuration file.

See Also

� Description of the AUTOTRAN configuration parameter in the section “Implicitly
Defining a Global Transaction” on page 9-17 of Setting Up a BEA Tuxedo
Application.

� TRANTIME configuration parameter in Setting Up a BEA Tuxedo Application.
9-20 Programming a BEA Tuxedo Application Using COBOL

CHAPTER
10Programming a
Multithreaded and
Multicontexted
Application

� Support for Programming a Multithreaded/Multicontexted Application

� Planning and Designing a Multithreaded/Multicontexted Application

� Implementing a Multithreaded/ Multicontexted Application

� Testing a Multithreaded/Multicontexted Application
Programming a BEA Tuxedo Application Using COBOL 10-1

10 Programming a Multithreaded and Multicontexted Application

d)

re

s of
ke

xted

our
Support for Programming a
Multithreaded/Multicontexted Application

The BEA Tuxedo system supports only:

� Kernel-level threads packages (user-level threads packages are not supporte

� Multithreaded applications written in C (multithreaded COBOL applications a
not supported)

� Multicontexted applications written in either C or COBOL

If your operating system supports POSIX threads functions as well as other type
threads functions, we recommend using the POSIX threads functions, which ma
your code easier to port to other platforms later.

To find out whether your platform supports a kernel-level threads package, C
functions, or POSIX functions, see the data sheet for your operating system in
Appendix A, “Platform Data Sheets,” in Installing the BEA Tuxedo System.

Platform-specific Considerations for
Multithreaded/Multicontexted Applications

Many platforms have idiosyncratic requirements for multithreaded and multiconte
applications. Appendix A, “Platform Data Sheets,” in Installing the BEA Tuxedo
System, lists these platform-specific requirements. To find out what is needed on y
platform, check the appropriate data sheet.
10-2 Programming a BEA Tuxedo Application Using COBOL

Planning and Designing a Multithreaded/Multicontexted Application

n”

n

See Also

� “What Are Multithreading and Multicontexting” on page 10-4

� “Advantages and Disadvantages of a Multithreaded/Multicontexted Applicatio
on page 10-8

� “How Multithreading and Multicontexting Work in a Client” on page 10-11

� “How Multithreading and Multicontexting Work in a Server” on page 10-17

Planning and Designing a
Multithreaded/Multicontexted Application

� What Are Multithreading and Multicontexting

� Advantages and Disadvantages of a Multithreaded/Multicontexted Applicatio

� How Multithreading and Multicontexting Work in a Client

� How Multithreading and Multicontexting Work in a Server

� Design Considerations for a Multithreaded and Multicontexted Application
Programming a BEA Tuxedo Application Using COBOL 10-3

10 Programming a Multithreaded and Multicontexted Application

asks
ss

ess.
ame

ted
ded,

 not

What Are Multithreading and
Multicontexting

The BEA Tuxedo system allows you to use a single process to perform multiple t
simultaneously. The programming techniques for implementing this sort of proce
usage are multithreading and multicontexting. This topic provides basic information
about these techniques:

� What Is Multithreading

� What Is Multicontexting

What Is Multithreading

Multithreading is the inclusion of more than one unit of execution in a single proc
In a multithreaded application, multiple simultaneous calls can be made from the s
process. For example, an individual process is not limited to one outstanding
tpcall(3c) .

In a server, multithreading requires multicontexting except when application-crea
threads are used in a singled-context server. The only way to create a multithrea
single-context application is to use application-created threads.

The BEA Tuxedo system supports multithreaded applications written in C. It does
support multithreaded COBOL applications.

The following diagram shows how a multithreaded client can issue calls to three
servers simultaneously.
10-4 Programming a BEA Tuxedo Application Using COBOL

What Are Multithreading and Multicontexting

ble
t
Figure 10-1 Sample Multithreaded Process

In a multithreaded application, multiple service-dispatched threads are availa
in the same server, which means that fewer servers need to be started for tha
application.

The following diagram shows how a server process can dispatch multiple
threads to different clients simultaneously.

SERVER A SERVER B

S E RV ER C

CLIENT PROCESS

THREAD 1 THREAD 2

THREAD 3

tpcall() tpcall()

tpcall()
Programming a BEA Tuxedo Application Using COBOL 10-5

10 Programming a Multithreaded and Multicontexted Application

1

Figure 10-2 Multiple Service Threads Dispatched in One Server Process

What Is Multicontexting

A context is an association to a domain. Multicontexting is the ability of a single
process to have one of the following:

� More than one connection within a domain

� Connections to more than one domain

Multicontexting can be used in both clients and servers. When used in servers,
multicontexting implies the use of multithreading, as well.

CLIENT A

CLIEN T C

THR EA D 1

THR EA D 2

THR EA D 3

SERVER

CLIENT B

PROCESS
0-6 Programming a BEA Tuxedo Application Using COBOL

What Are Multithreading and Multicontexting

s” in

 or

For a more complete list of the characteristics of a context, see “Context Attribute
one of the following sections:

� “Writing Code to Enable Multicontexting in a Client” on page 10-31

� “Writing Code to Enable Multicontexting and Multithreading in a Server” on
page 10-40

The BEA Tuxedo system supports multicontexted applications written in either C
COBOL. Multithreaded applications, however, are supported only in C.

The following diagram shows how a multicontexted client process works within a
domain. Each arrow represents an outstanding call to a server.

Figure 10-3 Multicontexted Process in Two Domains

CLIENT PROCESS

S e rv e r 2

BEA Tuxedo Application A BEA Tuxedo Application B

S erv er 1

S e rv e r 3

S erv er 2

S e rv e r 1

Context 1

Context 2

Context 3
Programming a BEA Tuxedo Application Using COBOL 10-7

10 Programming a Multithreaded and Multicontexted Application

re not

n”

nce
king
ial
Licensing a Multithreaded or Multicontexted Application

For licensing purposes, each context is counted as one user. Additional licenses a
required to accommodate multiple threads within one context. For example:

� If a process has two contexts associated with Application A and one with
Application B, the BEA Tuxedo system counts a total of three users (two in
Application A and one in Application B).

� If a process has multiple threads accessing one application within the same
context, the system counts only one user.

See Also

� “Advantages and Disadvantages of a Multithreaded/Multicontexted Applicatio
on page 10-8

� “How Multithreading and Multicontexting Work in a Client” on page 10-11

� “How Multithreading and Multicontexting Work in a Server” on page 10-17

Advantages and Disadvantages of a
Multithreaded/Multicontexted Application

Multithreading and multicontexting are powerful tools for enhancing the performa
of BEA Tuxedo applications—given the appropriate circumstances. Before embar
on a plan to use these techniques, however, it is important to understand potent
benefits and pitfalls.
10-8 Programming a BEA Tuxedo Application Using COBOL

Advantages and Disadvantages of a Multithreaded/Multicontexted Application

sing
e

ting

d.

vers

 be

fits
Advantages of a Multithreaded/Multicontexted
Application

Multithreaded and multicontexted applications offer the following advantages:

� Improved performance and concurrency

For certain applications, performance and concurrency can be improved by u
multithreading and multicontexting together. In other applications, performanc
can be unaffected or even degraded by using multithreading and multicontex
together. How performance is affected depends on your application.

� Simplified coding of remote procedure calls and conversations

In some applications it is easier to code different remote procedure calls and
conversations in separate threads than to manage them from the same threa

� Simultaneous access to multiple applications

Your BEA Tuxedo clients can be connected to more than one application at a
time.

� Reduced number of required servers

Because one server can dispatch multiple service threads, the number of ser
to start for your application is reduced. This capability for multiple dispatched
threads is especially useful for conversational servers, which otherwise must
dedicated to one client for the entire duration of a conversation.

For applications in which client threads are created by the Microsoft Internet
Information Server API or the Netscape Enterprise Server interface (that is, the
NSAPI), the use of multiple threads is essential if you want to obtain the full bene
afforded by these tools. This may be true of other tools, as well.
Programming a BEA Tuxedo Application Using COBOL 10-9

10 Programming a Multithreaded and Multicontexted Application

es:

n.

e

 to
Disadvantages of a Multithreaded/Multicontexted
Application

Multithreaded and multicontexted applications present the following disadvantag

� Difficulty of writing code

Multithreaded and multicontexted applications are not easy to write. Only
experienced programmers should undertake coding for these types of
applications.

� Difficulty of debugging

It is much harder to replicate an error in a multithreaded or multicontexted
application than it is to do so in a single-threaded, single-contexted applicatio
As a result, it is more difficult, in the former case, to identify and verify root
causes when errors occur.

� Difficulty of managing concurrency

The task of managing concurrency among threads is difficult and has the
potential to introduce new problems into an application.

� Difficulty of testing

Testing a multithreaded application is more difficult than testing a
single-threaded application because defects are often timing-related and mor
difficult to reproduce.

� Difficulty of porting existing code

Existing code often requires significant re-architecting to take advantage of
multithreading and multicontexting. Programmers need to:

z Remove static variables

z Replace any function calls that are not thread-safe

z Replace any other code that is not thread-safe

Because the completed port must be tested and re-tested, the work required
port a multithreaded and/or multicontexted application is substantial.
10-10 Programming a BEA Tuxedo Application Using COBOL

How Multithreading and Multicontexting Work in a Client

n

lient
See Also

� “What Are Multithreading and Multicontexting” on page 10-4

� “How Multithreading and Multicontexting Work in a Client” on page 10-11

� “How Multithreading and Multicontexting Work in a Server” on page 10-17

� “Design Considerations for a Multithreaded and Multicontexted Application” o
page 10-22

How Multithreading and Multicontexting
Work in a Client

When a multithreaded and multicontexted application is active, the life cycle of a c
can be described in three phases:

� Start-up Phase

� Work Phase

� Completion Phase

Start-up Phase

In the start-up phase the following events occur:

� Some client threads join one or more BEA Tuxedo applications by calling
tpinit(3c) .

� Other client threads share the contexts created by the first set of threads by
calling tpsetctxt(3c) .

� Some client threads join multiple contexts.

� Some client threads switch to an existing context.
Programming a BEA Tuxedo Application Using COBOL10-11

10 Programming a Multithreaded and Multicontexted Application

er

e BEA
f the

sing
-53.)
n join
rrent

 thread

t
he
Note: There may also be threads that work independently of the BEA Tuxedo
system. We do not consider such threads in this documentation.

Client Threads Join Multiple Contexts

A client in a BEA Tuxedo multicontexted application can have more than one
application association as long as the following rules are observed:

� All associations must be made to the same installation of the BEA Tuxedo
system.

� All application associations must be made from the same type of client. In oth
words, one of the following must be true:

z All application associations must be made from native clients only.

z All application associations must be made from workstation clients only.

To join multiple contexts, clients call the tpinit(3c) function with the
TPMULTICONTEXTS flag set in the flags element of the TPINFO data type.

When tpinit() is called with the TPMULTICONTEXTS flag set, a new application
association is created and is designated the current association for the thread. Th
Tuxedo domain to which the new association is made is determined by the value o
TUXCONFIG or WSENVFILE/WSNADDR environment variable.

Client Threads Switch to an Existing Context

Many ATMI functions operate on a per-context basis. (For a complete list, see “U
Per-context Functions and Data Structures in a Multithreaded Client” on page 10
In such cases, the target context must be the current context. Although clients ca
more than one context, at any time, in any thread, only one context can be the cu
context.

As task priorities shift within an application, requiring interactions with one BEA
Tuxedo domain rather than another, it is sometimes advantageous to re-assign a
from one context to another.

In such situations, one client threads calls tpgetctxt(3c) and passes the handle tha
is returned (the value of which is the current context) to a second client thread. T
second thread then associates itself with the current context by calling
tpsetctxt(3c) and specifying the handle it received from tpgetctxt(3c) via the
first thread.
10-12 Programming a BEA Tuxedo Application Using COBOL

How Multithreading and Multicontexting Work in a Client

rform
, see
age

:

t) gets
Once the second thread is associated with the desired context, it is available to pe
tasks executed by ATMI functions that operate on a per-context basis. For details
“Using Per-context Functions and Data Structures in a Multithreaded Client” on p
10-53.

Work Phase

In this phase each thread performs a task. The following is a list of sample tasks

� A thread issues a request for a service.

� A thread gets the reply to a service request.

� A thread initiates and/or participates in a conversation.

� A thread begins, commits, or rolls back a transaction.

Service Requests

A thread sends a request to a server by calling either tpcall(3c) for a synchronous
request or tpacall(3c) for an asynchronous request. If the request is sent with
tpcall() , then the reply is received without further action by any thread.

Replies to Service Requests

If an asynchronous request for a service has been sent with tpcall(3c) , a thread in
the same context (which may or may not be the same thread that sent the reques
the reply by calling tpgetrply(3c) .
Programming a BEA Tuxedo Application Using COBOL10-13

10 Programming a Multithreaded and Multicontexted Application

hread

mmit
rking

ion.
 so

 stray
ay be

 calls
d

 one
Transactions

If one thread starts a transaction, then all threads that share the context of that t
also share the transaction.

Many threads in a context may work on a transaction, but only one thread may co
or abort it. The thread that commits or aborts the transaction can be any thread wo
on the transaction; it is not necessarily the same thread that started the transact
Threaded applications are responsible for providing appropriate synchronization
that the normal rules of transactions are followed. (For example, there can be no
outstanding RPC calls or conversations when a transaction is committed, and no
calls are allowed after a transaction has been committed or aborted.) A process m
part of at most one transaction for each of its application associations.

If one thread of an application calls tpcommit(3c) concurrently with an RPC or
conversational call in another thread of the application, the system acts as if the
were issued in some serial order. An application context may temporarily suspen
work on a transaction by calling tpsuspend(3c) and then start another transaction
subject to the same restrictions that exist for single-threaded and single-context
programs.

Unsolicited Messages

For each context in a multithreaded or multicontexted application, you may choose
of three methods for handling unsolicited messages.

The following caveats apply:

� SIGNAL-based notification is not allowed in multithreaded or multicontexted
processes.

A context may . . . By setting . . .

Ignore unsolicited messages TPU_IGN

Use dip-in notification TPU_DIP

Use dedicated thread notification.
(available only for C applications)

TPU_THREAD
10-14 Programming a BEA Tuxedo Application Using COBOL

How Multithreading and Multicontexting Work in a Client

 on

hread
Only
ntext.

t

at
s

 not—
n its

andler

ng

iation
ge
he

-in
� If your application runs on a platform that supports multicontexting but not
multithreading, then you cannot use the TPU_THREAD unsolicited notification
method. As a result, you cannot receive immediate notification of events.

If receiving immediate notification of events is important to your application,
then you should carefully consider whether to use a multicontexted approach
this platform.

� Dedicated thread notification is available only:

z For applications written in C

z On multithreaded platforms supported by the BEA Tuxedo system

When dedicated thread notification is chosen, the system dedicates a separate t
to receive unsolicited messages and dispatch the unsolicited message handler.
one copy of the unsolicited message handler can run at any one time in a given co

If tpinit(3c) is called on a platform for which the BEA Tuxedo system does no
support threads, with parameters indicating that TPU_THREAD notification is being
requested on a platform that does not support threads, tpinit() returns -1 and sets
tperrno to TPEINVAL. If the UBBCONFIG(5) default NOTIFY option is set to THREAD
but threads are not available on a particular machine, the default behavior for th
machine is downgraded to DIPIN . The difference between these two behaviors allow
an administrator to specify a default for all machines in a mixed configuration—a
configuration that includes some machines that support threads and some that do
but it does not allow a client to explicitly request a behavior that is not available o
machine.

If tpsetunsol(3c) is called from a thread that is not associated with a context, a
per-process default unsolicited message handler for all new tpinit(3c) contexts
created is established. A specific context may change the unsolicited message h
for that context by calling tpsetunsol() again when the context is active. The
per-process default unsolicited message handler may be changed by again calli
tpsetunsol() in a thread not currently associated with a context.

If a process has multiple associations with the same application, then each assoc
is assigned a different CLIENTID so that it is possible to send an unsolicited messa
to a specific application association. If a process has multiple associations with t
same application, then any tpbroadcast(3c) is sent separately to each of the
application associations that meet the broadcast criteria. When performing a dip
check for receiving unsolicited messages, an application checks for only those
messages sent to the current application association.
Programming a BEA Tuxedo Application Using COBOL10-15

10 Programming a Multithreaded and Multicontexted Application

rform

ntext

.

In addition to the ATMI functions permitted in unsolicited message handlers, it is
permissible to call tpgetctxt(3c) within an unsolicited message handler. This
functionality allows an unsolicited message handler to create another thread to pe
any more substantial ATMI work required within the same context.

Userlog Maintains Thread-specific Information

For each thread in each application, userlog(3c) records the following identifying
information:

process_ID . thread_ID . context_ID

Placeholders are printed in the thread_ID and context_ID fields of entries for
non-threaded platforms and single-contexted applications.

The TM_MIB(5) supports this functionality in the TA_THREADID and TA_CONTEXTID
fields in the T_ULOG class.

Completion Phase

In this phase, when the client process is about to exit, on behalf of the current co
and all associated threads, a thread ends its application association by calling
tpterm(3c) . Like other ATMI functions, tpterm() operates on the current context
It affects all threads for which the context is set to the terminated context, and
terminates any commonality of context among these threads.

A well-designed application normally waits for all work in a particular context to
complete before it calls tpterm() . Be sure that all threads are synchronized before
your application calls tpterm() .
10-16 Programming a BEA Tuxedo Application Using COBOL

How Multithreading and Multicontexting Work in a Server

n

ation
See Also

� “What Are Multithreading and Multicontexting” on page 10-4

� “Design Considerations for a Multithreaded and Multicontexted Application” o
page 10-22

� “Writing Code to Enable Multicontexting in a Client” on page 10-31

� “Writing a Multithreaded Client” on page 10-45

� “Synchronizing Threads Before a Client Termination” on page 10-34

How Multithreading and Multicontexting
Work in a Server

The events that occur in a server when a multithreaded and multicontexted applic
is active can be described in three phases:

� Start-up Phase

� Work Phase

� Completion Phase
Programming a BEA Tuxedo Application Using COBOL10-17

10 Programming a Multithreaded and Multicontexted Application
Start-up Phase

What happens during the start-up phase depends on the value of the
MINDISPATCHTHREADS and MAXDISPATCHTHREADS parameters in the configuration
file.

Work Phase

In this phase, the following activities occur:

� Multiple client requests to one server are handled concurrently in multiple
contexts. The system allocates a separate thread for each request.

� If necessary, additional threads (up to the number indicated by
MAXDISPATCHTHREADS) are created.

� The system keeps statistics on server threads.

If the value of
MINDISPATCHTHREADS
is . . .

And the value of
MAXDISPATCHTHREADS

is . . .

Then . . .

0 > 1 1. The BEA Tuxedo system creates a thread
dispatcher.

2. The dispatcher calls tpsvrinit(3c) to join
the application.

> 0 > 1 1. The BEA Tuxedo system creates a thread
dispatcher.

2. The dispatcher calls tpsvrinit(3c) to join
the application.

3. The BEA Tuxedo system creates additional
threads for handling service requests, and a
context for each new thread.

4. Each new system-created thread calls
tpsvrthrinit(3c) to join the application.
10-18 Programming a BEA Tuxedo Application Using COBOL

How Multithreading and Multicontexting Work in a Server

ple
rious

eful in
rvers

em,

Server-dispatched Threads Are Used

In response to clients’ requests for a service, the server dispatcher creates multi
threads (up to a configurable maximum) in one server that can be assigned to va
client requests concurrently. A server cannot become a client by calling tpinit(3c) .

Each dispatched thread is associated with a separate context. This feature is us
both conversational and RPC servers. It is especially useful for conversational se
which otherwise sit idle, waiting for the client side of a conversation while other
conversational connections are waiting for service.

This functionality is controlled by the following parameters in the SERVERS section of
the UBBCONFIG(5) file and the TM_MIB(5) .

� Each dispatched thread is created with the stack size specified by
THREADSTACKSIZE (or TA_THREADSTACKSIZE). If this parameter is not specified
or has a value of 0, the operating system default is used. On a few operating
systems on which the default is too small to be used by the BEA Tuxedo syst
a larger default is used.

� If the value of this parameter is not specified or is 0, or if the operating system
does not support setting a THREADSTACKSIZE, then the operating system default
is used.

� MINDISPATCHTHREADS (or TA_MINDISPATCHTHREADS) must be less than or
equal to MAXDISPATCHTHREADS (or TA_MAXDISPATCHTHREADS).

� If MAXDISPATCHTHREADS (or TA_MAXDISPATCHTHREADS) is 1, then the
dispatcher thread and the service function thread are the same thread.

� If MAXDISPATCHTHREADS (or TA_MAXDISPATCHTHREADS) is greater than 1, any
separate thread used for dispatching other threads does not count toward the
limit of dispatched threads.

UBBCONFIG Parameter MIB Parameter Default

MINDISPATCHTHREADS TA_MINDISPATCHTHREADS 0

MAXDISPATCHTHREADS TA_MAXDISPATCHTHREADS 1

THREADSTACKSIZE TA_THREADSTACKSIZE 0 (representing the
OS default)
Programming a BEA Tuxedo Application Using COBOL10-19

10 Programming a Multithreaded and Multicontexted Application

 an

n.

r

xt.

tarts
re
ed.

longer
then
� Initially, the system boots MINDISPATCHTHREADS (or
TA_MINDISPATCHTHREADS) server threads.

� The system never boots more than MAXDISPATCHTHREADS (or
TA_MAXDISPATCHTHREADS) server threads.

Application-created Threads Are Used

Using your operating system functions, you may create additional threads within
application server. Application-created threads may:

� Operate independently of the BEA Tuxedo system

� Operate in the same context as an existing server dispatch thread

� Perform work on behalf of server dispatch contexts

Some restrictions govern what you can do if you create threads in your applicatio

� Servers may not become clients by calling tpinit(3c) .

� Initially, application-created server threads are not associated with any serve
dispatch context. An application-created server thread may call tpsetctxt(3c)
(and pass it a value returned by a previous call to tpgetctxt(3c) within a
server-dispatched thread) to associate itself with that server-dispatched conte

� An application-created server thread cannot call tpreturn(3c) or
tpforward(3c) . When an application-created server thread has finished its
work, it must call tpsetctxt(3c) with the context set to TPNULLCONTEXT
before the originally dispatched thread calls tpreturn() .

BBL Verifies Sanity of System Processes

The BBL periodically checks servers. If a server is taking too long to execute a
particular service request, the BBL kills that server. (If specified, the BBL then res
the server.) If the BBL kills a multicontexted server, the other service calls that a
currently being executed are also terminated as a result of the process being kill

The BBL also sends a message to any process or thread that has been waiting
than its timeout value to receive a message. The blocking message receive call
returns an error indicating a timeout.
10-20 Programming a BEA Tuxedo Application Using COBOL

How Multithreading and Multicontexting Work in a Server

s

System Keeps Statistics on Server Threads

For each server, the BEA Tuxedo system maintains statistics for the following
information:

� Maximum number of server-dispatched threads allowed

� Number of server-dispatched threads currently in use
(TA_CURDISPATCHTHREADS)

� High-water mark of concurrent server-dispatched threads since the server wa
booted (TA_HWDISPATCHTHREADS)

� Number of server-dispatched threads historically started
(TA_NUMDISPATCHTHREADS)

Userlog Maintains Thread-specific Information

For each thread in each application, userlog(3c) records the following identifying
information:

process_ID . thread_ID . context_ID

Placeholders are printed in the thread_ID and context_ID fields of entries for
non-threaded platforms and single-contexted applications.

The TM_MIB(5) supports this functionality in the TA_THREADID and TA_CONTEXTID
fields in the T_ULOG class.

Completion Phase

When the application is shut down, tpsvrthrdone(3c) and tpsvrdone(3c) are
called to perform any termination processing that is necessary, such as closing a
resource manager.
Programming a BEA Tuxedo Application Using COBOL10-21

10 Programming a Multithreaded and Multicontexted Application

n

edo
swer
See Also

� “What Are Multithreading and Multicontexting” on page 10-4

� “Design Considerations for a Multithreaded and Multicontexted Application” o
page 10-22

� “Writing Code to Enable Multicontexting and Multithreading in a Server” on
page 10-40

� “Writing a Multithreaded Server” on page 10-59

Design Considerations for a Multithreaded
and Multicontexted Application

Multithreaded and multicontexted applications are appropriate for some BEA Tux
domains, but not all. To decide whether to create such applications, you should an
several basic questions about the following:

� Your development and run-time environments

� Design requirements for your application

� Type of threads model to use

� Interoperability restrictions for Workstation clients
10-22 Programming a BEA Tuxedo Application Using COBOL

Design Considerations for a Multithreaded and Multicontexted Application

age

 an

g?

ion

ap

Environment Requirements

When considering the development of multithreaded and/or multicontexted
applications, examine the following aspects of your development and run-time
environments:

� Do you have an experienced team of programmers capable of writing and
debugging multithreaded and multicontexted programs that successfully man
concurrency and synchronization?

� Are the multithreading features of the BEA Tuxedo system supported on the
platform on which you are developing your application? These features are
supported only on platforms with an OS-provided threads package, providing
appropriate level of functionality.

� Do the resource managers (RMs) used by your servers support multithreadin
If so, consider the following issues, as well:

z Do you need to set any parameters required by your RM to enable
multithreaded access by your servers? For example, if you use an Oracle
database with a multithreaded application, you must set the THREADS=true
parameter as part of the OPENINFO string passed to Oracle. By doing so, you
make it possible for individual threads to operate as separate Oracle
associations.

z Does your RM support a mixed mode of operation? A mixed-mode operat
is a form of access such that multiple threads in a process can map to one
RM association while other threads in the same process simultaneously m
to different RM associations. Within one process, for example, Threads A
and B map to RM Association X, while Thread C maps to RM Association
Y.

Not all RMs support mixed-mode operation. Some require all threads in a
given process to map to the same RM association. If you are designing an
application that will make use of transactional RM access within
application-created threads, make sure your RM supports mixed-mode
operation.
Programming a BEA Tuxedo Application Using COBOL10-23

10 Programming a Multithreaded and Multicontexted Application

y

is
rs

/or

d
Design Requirements

When designing a multithreaded and/or multicontexted application, you should
consider the following design questions:

� Is the task performed by your application suitable for multithreading and/or
multicontexting?

� Do you want to connect to more than one BEA Tuxedo application? How man
connections to each target application do you want?

� What synchronization issues need to be addressed in your application?

� Will you need to port your application to another platform after you have put
your initial application into production?

Is the Task of Your Application Suitable for
Multithreading and/or Multicontexting

The following table provides a list of questions to help you decide whether your
application would be improved if it were multithreaded and/or multicontexted. Th
list is not comprehensive; your individual requirements will determine other facto
that should be considered.

For additional suggestions, we recommend that you consult a multithreaded and
multicontexted programming publication.

If the answer to this question . . . Is YES, then you might consider
using . . .

Does your client need to connect to more than one application
without using the Domains feature?

Multicontexting

Does your client perform the role of a multiplexer within your
application? For example, have you designated one machine in your
application the “surrogate” for 100 other machines?

Multicontexting

Does your client use multicontexting? Multithreading. By allocating one threa
per context, you can simplify your code.
10-24 Programming a BEA Tuxedo Application Using COBOL

Design Considerations for a Multithreaded and Multicontexted Application

s you

ne

 a

of

ter
How Many Applications and Connections Do You Want

Decide how many applications you want to access and the number of connection
want to make.

� If you want connections to more than one application, then we recommend o
of the following:

z A single-threaded, multicontexted application

z A multithreaded, multicontexted application

� If you want more than one connection to an application, then we recommend
multithreaded, multicontexted application.

� If you want only one connection to one application, then we recommend one
the following:

z Multithreaded, single-contexted clients

z Single-threaded, single-contexted clients

In both cases, multithreaded, multicontexted servers may be used.

Does your client perform two or more tasks that can be executed
independently for a long time such that the performance gains from
concurrent execution outweigh the costs and complexities of threads
synchronization?

Multithreading

Do you want one server to process multiple concurrent requests? Multithreading. Assign a value grea
than 1 to MAXDISPATCHTHREADS. This
value enables multiple clients, each in its
own thread, for the server.

If your client or server had multiple threads, would it be necessary to
synchronize them after each thread had performed only a little work?

Not using multithreading

If the answer to this question . . . Is YES, then you might consider
using . . .
Programming a BEA Tuxedo Application Using COBOL10-25

10 Programming a Multithreaded and Multicontexted Application

 scope

at
ant

ode

ou
hen
What Synchronization Issues Need to Be Addressed

This issue is an important one during the design phase. It is, however, beyond the
of this documentation. Please refer to a publication about multithreaded and/or
multicontexted programming.

Will You Need to Port Your Application

If you may need to port your application in the future, you should keep in mind th
different operating systems have different sets of functions. If you think you may w
to port your application after completing the initial version of it on one platform,
remember to consider the amount of staff time that will be needed to revise the c
with a different set of functions.

Which Threads Model Is Best for You

Various models for multithreaded programs are now being used, including the
following:

� Boss/worker model

� Siblings model

� Workflow model

We do not discuss threads models in this documentation. We recommend that y
research all available models and consider your design requirements carefully w
choosing a programming model for your application.
10-26 Programming a BEA Tuxedo Application Using COBOL

Design Considerations for a Multithreaded and Multicontexted Application

 on

n”
Interoperability Restrictions for Workstation Clients

Interoperability between Release 7.1 Workstation clients and applications based
pre-7.1 releases of the BEA Tuxedo system is supported in any of the following
situations:

� The client is neither multithreaded nor multicontexted.

� The client is multicontexted.

� The client is multithreaded and each thread is in a different context

A BEA Tuxedo Release 7.1 Workstation client with multiple threads in a single
context cannot interoperate with a pre-7.1 release of the BEA Tuxedo system.

See Also

� “Advantages and Disadvantages of a Multithreaded/Multicontexted Applicatio
on page 10-8

� “Preliminary Guidelines for Programming a Multithreaded/Multicontexted
Application” on page 10-28
Programming a BEA Tuxedo Application Using COBOL10-27

10 Programming a Multithreaded and Multicontexted Application

ing:
Implementing a Multithreaded/
Multicontexted Application

� “Preliminary Guidelines for Programming a Multithreaded/Multicontexted
Application” on page 10-28

� “Writing Code to Enable Multicontexting in a Client” on page 10-31

� “Writing Code to Enable Multicontexting and Multithreading in a Server” on
page 10-40

� “Writing a Multithreaded Client” on page 10-45

� “Writing a Multithreaded Server” on page 10-59

� “Compiling Code for a Multithreaded/Multicontexted Application” on page
10-60

Preliminary Guidelines for Programming a
Multithreaded/Multicontexted Application

Before you start coding, make sure you have fulfilled or thought about the follow

� “Prerequisites for a Multithreaded Application” on page 10-29

� “General Multithreaded Programming Considerations” on page 10-29

� “Concurrency Considerations” on page 10-30
10-28 Programming a BEA Tuxedo Application Using COBOL

Preliminary Guidelines for Programming a Multithreaded/Multicontexted Application

ur

 the

To

by

ar,
task,

e any
ar.
t of
Prerequisites for a Multithreaded Application

Make sure your environment meets the following prerequisites before starting yo
development project.

� Your operating system must provide a suitable threads package supported by
BEA Tuxedo system.

The BEA Tuxedo system does not supply tools for creating threads, but it
supports various threads packages provided by different operating systems.
create and synchronize threads, you must use the functions native to your
operating system. To find out which, if any, threads packages are supported
your operating system, see Appendix A, “Platform Data Sheets,” in Installing the
BEA Tuxedo System.

� If you are using multithreaded servers, the resource managers used by those
servers must support threads.

General Multithreaded Programming Considerations

Only experienced programmers should write multithreaded programs. In particul
programmers should already be familiar with basic design issues specific to this
such as:

� The need for concurrency control among multiple threads

� The need to avoid the use of static variables in most instances

� Potential problems that may arise from the use of signals in multithreaded
programs

These are just a few of the issues, too numerous to list here, with which we assum
programmer undertaking the writing of a multithreaded program is already famili
These issues are discussed in many commercially available books on the subjec
multithreaded programming.
Programming a BEA Tuxedo Application Using COBOL10-29

10 Programming a Multithreaded and Multicontexted Application

 the

were

ong

mer
r
Concurrency Considerations

Multithreading enables different threads of an application to perform concurrent
operations on the same conversation. We do not recommend this approach, but
BEA Tuxedo system does not forbid it. If different threads perform concurrent
operations on the same conversation, the system acts as if the concurrent calls
issued in some arbitrary order.

When programming with multiple threads, you must manage the concurrency am
them by using mutexes or other concurrency-control functions. Here are three
examples of the need for concurrency control.

� When multithreaded threads are operating on the same context, the program
must ensure that functions are being executed in the required serial order. Fo
example, all RPC calls and conversations must be compiled before
tpcommit(3c) can be called. If tpcommit() is called from a thread other than
the thread from which all these RPC or conversational calls are made, some
concurrency control is probably required in the application.

� Similarly, it is permissible to call tpacall(3c) in one thread and
tpgetrply(3c) in another, but the application must either:

z Ensure that tpacall() is called before tpgetrply() , or

z Manage the consequences if tpacall() is not called before tpgetrply()

� Multiple threads may operate on the same conversation but application
programmers must realize that if different threads issue tpsend(3c) at
approximately the same time, the system acts as though these tpsend() calls
have been issued in an arbitrary order.

For most applications, the best strategy is to code all the operations for one
conversation in one thread. The second best strategy is to serialize these
operations using concurrency control.
10-30 Programming a BEA Tuxedo Application Using COBOL

Writing Code to Enable Multicontexting in a Client

n

nces

rary
y

See Also

� “Design Considerations for a Multithreaded and Multicontexted Application” o
page 10-22

� “Writing Code to Enable Multicontexting in a Client” on page 10-31

� “Writing Code to Enable Multicontexting and Multithreading in a Server” on
page 10-40

� “Writing a Multithreaded Client” on page 10-45

� “Writing a Multithreaded Server” on page 10-59

Writing Code to Enable Multicontexting in a
Client

To enable multicontexting in a client, you must write code that:

� Sets up multicontexting at initialization time

� Implements security

� If multithreading is also being used, synchronizes threads

� Switches contexts

� Handles unsolicited messages for each context

If your application uses transactions, you should also keep in mind the conseque
of multicontexting for transactions. For more information, see “Coding Rules for
Transactions in a Multithreaded/Multicontexted Application” on page 10-39.

Note: The instructions and sample code provided in this section refer to the C lib
functions provided by the BEA Tuxedo system. Equivalent COBOL librar
functions are also available; for details, see the BEA Tuxedo COBOL Function
Reference.
Programming a BEA Tuxedo Application Using COBOL10-31

10 Programming a Multithreaded and Multicontexted Application

ts:

the

o

Context Attributes

When writing your code, keep in mind the following considerations about contex

� If an application-created server thread exits without changing context before
original dispatched thread exits, then tpreturn(3c) or tpforward(3c) fails.
The execution of a thread exit does not automatically trigger a call to
tpsetctxt(3c) to change the context to TPNULLCONTEXT.

� For all contexts in a process, the same buffer type switch must be used.

� As with any other type of data structure, a multithreaded application must
properly make use of BEA Tuxedo buffers, that is, buffers should not be used
concurrently in two calls when one of the following may be true:

z Both calls may use the buffer

z Both calls may free the buffer

z One call may use the buffer and one call may free the buffer

� If you call tpinit(3c) more than once, either to join multiple applications or t
make multiple connections to a single application, keep in mind that on each
tpinit() you must accommodate whatever security mechanisms have been
established.
10-32 Programming a BEA Tuxedo Application Using COBOL

Writing Code to Enable Multicontexting in a Client

in

are

Setting Up Multicontexting at Initialization

When a client is ready to join an application, specify tpinit(3c) with the
TPMULTICONTEXTS flag set, as shown in the following sample code.

Listing 10-1 Sample Code for a Client Joining a Multicontexted Application

#include <stdio.h>
#include <atmi.h>

TPINIT * tpinitbuf;

main()
{

tpinitbuf = tpalloc(TPINIT, NULL, TPINITNEED(0));

tpinitbuf->flags = TPMULTICONTEXTS;
 .
 .
 .

if (tpinit (tpinitbuf) == -1) {

 ERROR_PROCESSING_CODE
}

 .
 .
 .

}

A new application association is created and assigned to the BEA Tuxedo doma
specified in the TUXCONFIG or WSENVFILE/WSNADDR environment variable.

Note: In any one process, either all calls to tpinit(3c) must include the
TPMULTICONTEXTS flag or else no call to tpinit() may include this flag. The
only exception to this rule is that if all of a client’s application associations
terminated by successful calls to tpterm(3c) , then the process is restored to
a state in which the inclusion of the TPMULTICONTEXTS flag in the next call to
tpinit() is optional.
Programming a BEA Tuxedo Application Using COBOL10-33

10 Programming a Multithreaded and Multicontexted Application

isms
e a

ying
tion

s to

l

nvalid
ed.

text
Implementing Security for a Multicontexted Client

Each application association in the same process requires a separate security
validation. The nature of that validation depends on the type of security mechan
used in your application. In a BEA Tuxedo application you might, for example, us
system-level password or an application password.

As the programmer of a multicontexted application, you are responsible for identif
the type of security used in your application and implementing it for each applica
association in a process.

Synchronizing Threads Before a Client Termination

When you are ready to disconnect a client from an application, invoke tpterm(3c) .
Keep in mind, however, that in a multicontexted application tpterm() destroys the
current context. All the threads operating on that context are affected. As the
application programmer, you must carefully coordinate the use of multiple thread
make sure that tpterm() is not called unexpectedly.

It is important to avoid calling tpterm(3c) on a context while other threads are stil
working on that context. If such a call to tpterm() is made, the BEA Tuxedo system
places the other threads that had been associated with that context in a special i
context state. When in the invalid context state, most ATMI functions are disallow
A thread may exit from the invalid context state by calling tpsetctxt(3c) or
tpterm() . Most well designed applications never have to deal with the invalid con
state.

Note: The BEA Tuxedo system does not support multithreading in COBOL
applications.
10-34 Programming a BEA Tuxedo Application Using COBOL

Writing Code to Enable Multicontexting in a Client

 calls

y

g
Switching Contexts

The following is a summary of the coding steps that might be made by a client that
services from two contexts.

1. Set the TUXCONFIG environment variable to the value required by firstapp .

2. Join the first application by calling tpinit(3c) with the TPMULTICONTEXTS flag
set.

3. Obtain a handle to the current context by calling tpgetctxt(3c) .

4. Switch the value of the TUXCONFIG environment variable to the value required b
the secondapp context, by calling tuxputenv() .

5. Join the second application by calling tpinit(3c) with the TPMULTICONTEXTS
flag set.

6. Get a handle to the current context by calling tpgetctxt(3c) .

7. Beginning with the firstapp context, start toggling between contexts by callin
tpsetctxt(3c) .

8. Call firstapp services.

9. Switch the client to the secondapp context (by calling tpsetctxt(3c)) and call
secondapp services.

10. Switch the client to the firstapp context (by calling tpsetctxt(3c)) and call
firstapp services.

11. Terminate the firstapp context by calling tpterm(3c) .

12. Switch the client to the secondapp context (by calling tpsetctxt(3c)) and call
secondapp services.

13. Terminate the secondapp context by calling tpterm(3c) .

The following sample code provides an example of these steps.

Note: In order to simplify the sample, error checking code is not included.
Programming a BEA Tuxedo Application Using COBOL10-35

10 Programming a Multithreaded and Multicontexted Application
Listing 10-2 Sample Code for Switching Contexts in a Client

#include <stdio.h>
#include "atmi.h"/* BEA Tuxedo header file */

#if defined(__STDC__) || defined(__cplusplus)
main(int argc, char *argv[])
#else
main(argc, argv)
int argc;
char *argv[];
#endif
{

 TPINIT * tpinitbuf;
 TPCONTEXT_T firstapp_contextID, secondapp_contextID;
 /* Assume that TUXCONFIG is initially set to /home/firstapp/TUXCONFIG*/
 /*
 * Attach to the BEA Tuxedo system in multicontext mode.
 */
 tpinitbuf=tpalloc(TPINIT, NULL, TPINITNEED(0));
 tpinitbuf->flags = TPMULTICONTEXTS;

 if (tpinit((TPINIT *) tpinitbuf) == -1) {
 (void) fprintf(stderr, "Tpinit failed\n");
 exit(1);
}

 /*
 * Obtain a handle to the current context.
 */
 tpgetctxt(&firstapp_contextID, 0);

 /*
 * Use tuxputenv to change the value of TUXCONFIG,
 * so we now tpinit to another application.
 */
 tuxputenv("TUXCONFIG=/home/second_app/TUXCONFIG");

 /*
 * tpinit to secondapp.
 */
 if (tpinit((TPINIT *) tpinitbuf) == -1) {
 (void) fprintf(stderr, "Tpinit failed\n");
 exit(1);
 }

 /*
10-36 Programming a BEA Tuxedo Application Using COBOL

Writing Code to Enable Multicontexting in a Client
 * Get a handle to the context of secondapp.
 */
 tpgetctxt(&secondapp_contextID, 0);

 /*
 * Now you can alternate between the two contexts
 * using tpsetctxt and the handles you obtained from
 * tpgetctxt. You begin with firstapp.
 */

 tpsetctxt(firstapp_contextID, 0);

 /*
 * You call services offered by firstapp and then switch
 * to secondapp.
 */

 tpsetctxt(secondapp_contextID, 0);

 /*
 * You call services offered by secondapp.
 * Then you switch back to firstapp.
 */

 tpsetctxt(firstapp_contextID, 0);

 /*
 * You call services offered by firstapp. When you have
 * finished, you terminate the context for firstapp.
 */

 tpterm();

 /*
 * Then you switch back to secondapp.
 */

 tpsetctxt(secondapp_contextID, 0);
 /*
 * You call services offered by secondapp. When you have
 finished, you terminate the context for secondapp and
 end your program.
 */

 tpterm();

 return(0);
}

Programming a BEA Tuxedo Application Using COBOL10-37

10 Programming a Multithreaded and Multicontexted Application

et up
et one

andler

ng

fy
Handling Unsolicited Messages

For each context in which you want to handle unsolicited messages, you must s
an unsolicited message handler or use the process handler default if you have s
up.

If tpsetunsol(3c) is called from a thread that is not associated with a context, a
per-process default unsolicited message handler for all new tpinit(3c) contexts
created is established. A specific context may change the unsolicited message h
for that context by calling tpsetunsol() again when the context is active. The
per-process default unsolicited message handler may be changed by again calli
tpsetunsol() in a thread not currently associated with a context.

Set up the handler in the same way you set one up for a single-threaded or
single-contexted application. See tpsetunsol(3c) for details.

You can use tpgetctxt(3c) in an unsolicited message handler if you want to identi
the context in which you are currently working.
10-38 Programming a BEA Tuxedo Application Using COBOL

Writing Code to Enable Multicontexting in a Client

you

e
Coding Rules for Transactions in a
Multithreaded/Multicontexted Application

The following consequences of using transactions should be kept in mind while
are writing your application:

� You can have only one transaction in any one context.

� You can have a different transaction for each context.

� All the threads associated with a given context at a given time share the sam
transaction state (if any) of that context.

� You must synchronize your threads so all conversations and RPC calls are
complete before you call tpcommit(3c) .

� You can call tpcommit(3c) from only one thread in any particular transaction.

See Also

� “How Multithreading and Multicontexting Work in a Client” on page 10-11

� “Writing a Multithreaded Client” on page 10-45
Programming a BEA Tuxedo Application Using COBOL10-39

10 Programming a Multithreaded and Multicontexted Application

rary

le
r) is

ts:

the

Writing Code to Enable Multicontexting and
Multithreading in a Server

� Coding Rules for a Multicontexted Server

� Initializing and Terminating Servers and Server Threads

� Programming a Server to Create Threads

� Sample Code for Creating an Application Thread in a Multicontexted Server

Note: The instructions and sample code provided in this section refer to the C lib
functions provided by the BEA Tuxedo system. (See the BEA Tuxedo C
Function Reference for details.) Equivalent COBOL routines are not availab
because multithreading (which is required to create a multicontexted serve
not supported for COBOL applications.

Context Attributes

When writing your code, keep in mind the following considerations about contex

� If an application-created server thread exits without changing context before
original dispatched thread exits, then tpreturn(3c) or tpforward(3c) fails.
The execution of a thread exit does not automatically trigger a call to
tpsetctxt(3c) to change the context to TPNULLCONTEXT.

� For all contexts in a process, the same buffer type switch must be used.

� As with any other type of data structure, a multithreaded application must
properly make use of BEA Tuxedo buffers, that is, buffers should not be used
concurrently in two calls when one of the following may be true:

z Both calls may use the buffer.

z Both calls may free the buffer.

z One call may use the buffer and one call may free the buffer.
10-40 Programming a BEA Tuxedo Application Using COBOL

Writing Code to Enable Multicontexting and Multithreading in a Server

d/or

lid
Coding Rules for a Multicontexted Server

Keep in mind the following rules for coding multicontexted servers:

� The BEA Tuxedo dispatcher on the server may dispatch the same service an
different services multiple times, creating a different dispatch context for each
service dispatched.

� A server is prohibited from calling tpinit(3c) or otherwise acting as a client.
If a server process calls tpinit() , tpinit() returns -1 and sets tperrno(5) to
TPEPROTO. An application-created server thread may not make ATMI calls
before calling tpsetctxt(3c) .

� Only a server-dispatched thread may call tpreturn(3c) or tpforward(3c) .

� A server cannot execute a tpreturn(3c) or tpforward(3c) if any
application-created thread is still associated with any application context.
Therefore, before a server-dispatched thread calls tpreturn() , each
application-created thread associated with that context must call
tpsetctxt(3c) with the context set to either TPNULLCONTEXT or another valid
context.

If this rule is violated, then tpreturn(3c) or tpforward(3c) writes a message
to the userlog, indicates TPESVCERR to the caller, and returns control to the main
server dispatch loop. The threads that had been in the context where the inva
tpreturn() was done are placed in an invalid context.

� If there are outstanding ATMI calls, RPC calls, or conversations when
tpreturn(3c) or tpforward(3c) is called, tpreturn() or tpforward()
writes a message to the userlog, indicates TPESVCERR to the caller, and returns
control to the main server dispatch loop.

� A server-dispatched thread may not call tpsetctxt(3c) .

� Unlike single-contexted servers, it is permissible for a multicontexted server
thread to call a service that is offered only by that same server process.
Programming a BEA Tuxedo Application Using COBOL10-41

10 Programming a Multithreaded and Multicontexted Application

ult

s

ads
stem,
s.

Initializing and Terminating Servers and Server Threads

To initialize and terminate your servers and server threads, you can use the defa
functions provided by the BEA Tuxedo system or you can use your own.

Table 10-1 Default Functions for Initialization and Termination

Programming a Server to Create Threads

You may create additional threads within an application server, although most
applications using multicontexted servers use only the dispatched server thread
created by the system. This section provides instructions for doing so.

Creating Threads

You may create additional threads within an application server by using OS thre
functions. These new threads may operate independently of the BEA Tuxedo sy
or they may operate in the same context as one of the server-dispatched thread

Associating Threads with a Context

Initially, application-created server threads are not associated with any
server-dispatched context. If called before being initialized, however, most ATMI
functions perform an implicit tpinit(3c) . Such calls introduce problems because
servers are prohibited from calling tpinit() . (If a server process calls tpinit() ,
tpinit() returns -1 and sets tperrno(5) to TPEPROTO.)

To . . . Use the default function

Initialize a server tpsvrinit(3c)

Initialize a server thread tpsvrthrinit(3c)

Terminate a server tpsvrdone(3c)

Terminate a server thread tpsvrthrdone(3c)
10-42 Programming a BEA Tuxedo Application Using COBOL

Writing Code to Enable Multicontexting and Multithreading in a Server

sting
rver
g

e

s
d.
Therefore, an application-created server thread must associate itself with an exi
context before calling any ATMI functions. To associate an application-created se
thread with an existing context, you must write code that implements the followin
procedure.

1. Server-dispatched-thread_A gets a handle to the current context by calling
tpgetctxt(3c) .

2. Server-dispatched-thread_A passes the handle returned by tpgetctxt(3c) to
Application_thread_B.

3. Application_thread_B associates itself with the current context by calling
tpsetctxt(3c) , specifying the handle received from
Server-dispatched-thread_A.

4. Application-created server threads cannot call tpreturn(3c) or
tpforward(3c) . Before the originally dispatched thread calls tpreturn() or
tpforward() , all application-created server threads that have been in that
context must switch to TPNULLCONTEXT or another valid context.

If this rule is not observed, then tpforward(3c) or tpreturn(3c) fails and
indicates a service error to the caller.

Sample Code for Creating an Application Thread in a
Multicontexted Server

For those applications with a need to create an application thread in a server, th
following code sample shows a multicontexted server in which a service creates
another thread to help perform its work. Operating system (OS) threads function
differ from one OS to another. In this sample POSIX and ATMI functions are use
Programming a BEA Tuxedo Application Using COBOL10-43

10 Programming a Multithreaded and Multicontexted Application

 an
EA

 the
ing
Notes: In order to simplify the sample, error checking code is not included. Also,
example of a multicontexted server using only threads dispatched by the B
Tuxedo system is not included because such a server is coded in exactly
same way as a single-contexted server, as long as thread-safe programm
practices are used.

Listing 10-3 Code Sample for Creating a Thread in a Multicontexted Server

#include <pthread.h>
#include <atmi.h>

void *withdrawalthread(void *);

struct sdata {
 TPCONTEXT_T ctxt;
 TPSVCINFO *svcinfoptr;
};

void
TRANSFER(TPSVCINFO *svcinfo)
{
 struct sdata transferdata;
 pthread_t withdrawalthreadid;

 tpgetctxt(&transferdata.ctxt, 0);
 transferdata.svcinfoptr = svcinfo;
 pthread_create(&withdrawalthreadid, NULL, withdrawalthread, &transferdata);
 tpcall("DEPOSIT", ...);
 pthread_join(withdrawalthreadid, NULL);
 tpreturn(TPSUCCESS, ...);
}

void *
withdrawalthread(void *arg)
{
 tpsetctxt(arg->ctxt, 0);
 tpopen();
 tpcall("WITHDRAWAL", ...);
 tpclose();
 return(NULL);
}

10-44 Programming a BEA Tuxedo Application Using COBOL

Writing a Multithreaded Client

.
 allows
icular

read.
The previous example accomplishes a funds transfer by invoking the DEPOSIT service
in the originally dispatched thread, and WITHDRAWAL in an application-created thread
This example is based on the assumption that the resource manager being used
a mixed model such that multiple threads of a server can be associated with a part
database connection without all threads of the server being associated with that
instance. Most resource managers, however, do not support such a model.

A simpler way to code this example is to avoid the use of an application-created th
To obtain the same concurrency provided by the two calls to tpcall(3c) in the
example, substitute two calls to tpacall(3c) and two calls to tpgetrply(3c) in the
server-dispatched thread.

See Also

� “How Multithreading and Multicontexting Work in a Server” on page 10-17

Writing a Multithreaded Client

� Coding Rules for a Multithreaded Client

� Initializing a Client to Multiple Contexts

� Getting Replies in a Multithreaded Environment

� Using Environment Variables in a Multithreaded and/or Multicontexted
Environment

� Using Per-context Functions and Data Structures in a Multithreaded Client

� Using Per-process Functions and Data Structures in a Multithreaded Client

� Using Per-thread Functions and Data Structures in a Multithreaded Client

� Sample Code for a Multithreaded Client

Note: The BEA Tuxedo system does not support multithreaded COBOL
applications.
Programming a BEA Tuxedo Application Using COBOL10-45

10 Programming a Multithreaded and Multicontexted Application

ork
e

s and

e

ady

e.
Coding Rules for a Multithreaded Client

Keep in mind the following rules for coding multithreaded clients:

� Once a conversation has been started, any thread in the same process can w
on that conversation. Handles and call descriptors are portable within the sam
context in the same process, but not between contexts or processes. Handle
call descriptors can be used only in the application context in which they are
originally assigned.

� Any thread operating in the same context within the same process can invok
tpgetrply(3c) to receive a response to an earlier call to tpacall(3c) ,
regardless of whether or not that thread originally called tpacall() .

� A transaction can be committed or aborted by only one thread, which may or
may not be the same thread that started it.

� All RPC calls and all conversations must be completed before an attempt is
made to commit the transaction. If an application calls tpcommit(3c) while
RPC calls or conversations are outstanding, tpcommit() aborts the transaction,
returns -1, and sets tperrno(5) to TPEABORT.

� Functions such as tpcall(3c) , tpacall(3c) , tpgetrply(3c) ,
tpconnect(3c) , tpsend(3c) , tprecv(3c) , and tpdiscon(3c) should not be
called in transaction mode unless you are sure that the transaction is not alre
committing or aborting.

� Two tpbegin(3c) calls cannot be made simultaneously for the same context.

� tpbegin(3c) cannot be issued for a context that is already in transaction mod
10-46 Programming a BEA Tuxedo Application Using COBOL

Writing a Multithreaded Client

ou

d

 a
tion

at

o

ate

e
� If you are using a client and you want to connect to more than one domain, y
must manually change the value of TUXCONFIG or WSNADDR before calling
tpinit(3c) . You must synchronize the setting of the environment variable an
the tpinit() call if multiple threads may be performing such an action. All
application associations in a client must obey the following rules:

z All associations must be made to the same release of the BEA Tuxedo
system.

z Either every application association in a particular client must be made as
native client, or every application association must be made as a worksta
client.

� To join an application, a multithreaded workstation client must always call
tpinit(3c) with the TPMULTICONTEXTS flag set, even if the client is running in
single-context mode.

Initializing a Client to Multiple Contexts

To have a client join more than one context, issue a call to the tpinit(3c) function
with the TPMULTICONTEXTS flag set in the flags element of the TPINIT data
structure.

In any one process, either all calls to tpinit(3c) must include the TPMULTICONTEXTS
flag or no call to tpinit() may include this flag. The only exception to this rule is th
if all of a client’s application associations are terminated by successful calls to
tpterm(3c) , then the process is restored to a state in which the inclusion of the
TPMULTICONTEXTS flag in the next call to tpinit() is optional.

When tpinit(3c) is invoked with the TPMULTICONTEXTS flag set, a new application
association is created and is designated the current association. The BEA Tuxed
domain to which the new association is made is determined by the value of the
TUXCONFIG or WSENVFILE/WSNADDR environment variable.

When a client thread successfully executes tpinit(3c) without the
TPMULTICONTEXTS flag, all threads in the client are placed in the single-context st
(TPSINGLECONTEXT).

On failure, tpinit(3c) leaves the calling thread in its original context (that is, in th
context state in which it was operating before the call to tpinit()).
Programming a BEA Tuxedo Application Using COBOL10-47

10 Programming a Multithreaded and Multicontexted Application

re
 for

ges
s the
esult
Do not call tpterm(3c) from a given context if any of the threads in that context a
still working. See the table labeled “Multicontext State Transitions” on page 10-48
a description of the context states that result from calling tpterm() under these and
other circumstances.

Context State Changes for a Client Thread

In a multicontext application, calls to various functions result in context state chan
for the calling thread and any other threads that are active in the same context a
calling process. The following diagram illustrates the context state changes that r
from calls to tpinit(3c) , tpsetctxt(3c) , and tpterm(3c) . (The tpgetctxt(3c)
function does not produce any context state changes.)

Figure 10-4 Multicontext State Transitions

NULL

tpinit() without TPMULTICONTEXTS

 or
implicit tpinit() invoked by ATMI function

CONTEXT

INVALID
CONTEXT

MULTI-
CONTEXT

SINGLE
CONTEXT

tpinit() with TPMULTICONTEXTS

or
tpsetctxt() to a valid context

tpterm() tpterm()
or

tpsetctxt()

tpterm()
or

tpsetctxt()

tpsetctxt()

tpterm()

tpinit() without
TPMULTICONTEXTS

(see Note)
10-48 Programming a BEA Tuxedo Application Using COBOL

Writing a Multithreaded Client

t
Note: When tpterm(3c) is called by a thread running in the multicontext state
(TPMULTICONTEXTS), the calling thread is placed in the null context state
(TPNULLCONTEXT). All other threads associated with the terminated contex
are switched to the invalid context state (TPINVALIDCONTEXT).

The following table lists all possible context state changes produced by calling
tpinit(3c) , tpsetctxt(3c) , and tpterm(3c) .

Table 10-2 Context State Changes for a Client Thread

When this
function is
executed . . .

Then a thread in this context state results in . . .

Null Context Single Context Multicontext Invalid
Context

tpinit(3c)
without
TPMULTICONTEXTS

Single context Single context Error Error

tpinit(3c) with
TPMULTICONTEXTS

Multicontext Error Multicontext Error

tpsetctxt(3c) to
TPNULLCONTEXT

Null Error Null Null

tpsetctxt(3c) to
context 0

Error Single context Error Error

tpsetctxt(3c) to
context > 0

Multicontext Error Multicontext Multicontext

Implicit
tpinit(3c)

Single context N/A N/A Error

tpterm(3c) in this
thread

Null Null Null Null

tpterm(3c) in a
different thread of this
context

N/A Null Invalid N/A
Programming a BEA Tuxedo Application Using COBOL10-49

10 Programming a Multithreaded and Multicontexted Application

ne
hread

.

Getting Replies in a Multithreaded Environment

tpgetrply(3c) receives responses only to requests made via tpacall(3c) .
Requests made with tpcall(3c) are separate and cannot be retrieved with
tpgetrply() regardless of the multithreading or multicontexting level.

tpgetrply(3c) operates in only one context, which is the context in which it is
called. Therefore, when you call tpgetrply() with the TPGETANY flag, only handles
generated in the same context are considered. Similarly, a handle generated in o
context may not be used in another context, but the handle may be used in any t
operating within the same context.

When tpgetrply(3c) is called in a multithreaded environment, the following
restrictions apply:

� If a thread calls tpgetrply(3c) for a specific handle while another thread in
the same context is already waiting in tpgetrply() for the same handle,
tpgetrply() returns -1 and sets tperrno to TPEPROTO.

� If a thread calls tpgetrply(3c) for a specific handle while another thread in
the same context is already waiting in tpgetrply() with the TPGETANY flag,
the call returns -1 and sets tperrno(5) to TPEPROTO.

The same behavior occurs if a thread calls tpgetrply(3c) with the TPGETANY
flag while another thread in the same context is already waiting in tpgetrply()
for a specific handle. These restrictions protect a thread that is waiting on a
specific handle from having its reply taken by a thread waiting on any handle

� At any given time, only one thread in a particular context can wait in
tpgetrply(3c) with the TPGETANY flag set. If a second thread in the same
context invokes tpgetrply() with the TPGETANY flag while a similar call is
outstanding, this second call returns -1 and sets tperrno(5) to TPEPROTO.
10-50 Programming a BEA Tuxedo Application Using COBOL

Writing a Multithreaded Client

nt

s
text

not

er
.
Using Environment Variables in a Multithreaded and/or
Multicontexted Environment

When a BEA Tuxedo application is run in an environment that is multicontexted
and/or multithreaded, the following considerations apply to the use of environme
variables:

� A process initially inherits its environment from the operating system
environment. On platforms that support environment variables, such variable
make up a per-process entity. Therefore, applications that depend on per-con
environment settings should use the tuxgetenv(3c) function instead of an OS
function.

Note: The environment is initially empty for those operating systems that do
recognize an operating system environment.

� Many environment variables are read by the BEA Tuxedo system only once p
process or once per context and then cached within the BEA Tuxedo system
Changes to such variables once cached in the process have no effect.

Caching is done on a . . . For environment variables such as . . .

Per-context basis TUXCONFIG

FIELDTBLS and FIELDTBLS32

FLDTBLDIR and FLDTBLDIR32

ULOGPFX

VIEWDIR and VIEWDIR32

VIEWFILES and VIEWFILES32

WSNADDR

WSDEVICE

WSENV
Programming a BEA Tuxedo Application Using COBOL10-51

10 Programming a Multithreaded and Multicontexted Application

ss.

e
an

e

he
� The tuxputenv(3c) function affects the environment for the entire process.

� When you call the tuxreadenv(3c) function, it reads a file containing
environment variables and adds them to the environment for the entire proce

� The tuxgetenv(3c) function returns the current value of the requested
environment variable in the current context. Initially, all contexts have the sam
environment, but the use of environment files specific to a particular context c
cause different contexts to have different environment settings.

� If a client intends to initialize to more than one domain, the client must chang
the value of the TUXCONFIG, WSNADDR, or WSENVFILE environment variable to
the proper value before each call to tpinit(3c) . If such an application is
multithreaded, a mutex or other application-defined concurrency control will
probably be needed to ensure that:

z The appropriate environment variable is reset.

z The call to tpinit(3c) is made without the environment variable being
re-set by any other thread.

� When a client initializes to the system, the WSENVFILE and/or machine
environment file is read and affects the environment in that context only. The
previous environment for the process as a whole remains for that context to t
extent that it is not overridden within the environment file(s).

Per-process basis TMTRACE

TUXDIR

ULOGDEBUG

Caching is done on a . . . For environment variables such as . . .
10-52 Programming a BEA Tuxedo Application Using COBOL

Writing a Multithreaded Client

re
Using Per-context Functions and Data Structures in a
Multithreaded Client

The following ATMI functions affect only the application contexts in which they a
called:

� tpabort(3c)

� tpacall(3c)

� tpadmcall(3c)

� tpbegin(3c)

� tpbroadcast(3c)

� tpcall(3c)

� tpcancel(3c)

� tpchkauth(3c)

� tpchkunsol(3c)

� tpclose(3c)

� tpcommit(3c)

� tpconnect(3c)

� tpdequeue(3c)

� tpdiscon(3c)

� tpenqueue(3c)

� tpforward(3c)

� tpgetlev(3c)

� tpgetrply(3c)

� tpinit(3c)

� tpnotify(3c)

� tpopen(3c)

� tppost(3c)

� tprecv(3c)

� tpresume(3c)
Programming a BEA Tuxedo Application Using COBOL10-53

10 Programming a Multithreaded and Multicontexted Application

e

nt”

ge

sage
� tpreturn(3c)

� tpscmt(3c)

� tpsend(3c)

� tpservice(3c)

� tpsetunsol(3c)

� tpsubscribe(3c)

� tpsuspend(3c)

� tpterm(3c)

� tpsubscribe(3c)

� tx_begin(3c)

� tx_close(3c)

� tx_commit(3c)

� tx_info(3c)

� tx_open(3c)

� tx_rollback(3c)

� tx_set_commit_return(3c)

� tx_set_transaction_control(3c)

� tx_set_transaction_timeout(3c)

� userlog(3c)

Note: For tpbroadcast(3c) , the broadcast message is identified as having com
from a particular application association. For tpnotify(3c) , the notification
is identified as having come from a particular application association. See
“Using Per-process Functions and Data Structures in a Multithreaded Clie
for notes about tpinit(3c) .

If tpsetunsol(3c) is called from a thread that is not associated with a
context, a per-process default unsolicited message handler for all new
tpinit(3c) contexts created is established. A specific context may chan
the unsolicited message handler for that context by calling tpsetunsol()
again when the context is active. The per-process default unsolicited mes
handler may be changed by again calling tpsetunsol() in a thread not
currently associated with a context.
10-54 Programming a BEA Tuxedo Application Using COBOL

Writing a Multithreaded Client

e

ts

ant
� The CLIENTID , client name, user name, transaction ID, and the contents of th
TPSVCINFO data structure may differ from context to context within the same
process.

� Asynchronous call handles and connection descriptors are valid in the contex
in which they are created. The unsolicited notification type is specific
per-context. Although signal-based notification may not be used with multiple
contexts, each context may choose one of three options:

z Ignoring unsolicited messages

z Using dip-in notification

z Using dedicated thread notification

Using Per-process Functions and Data Structures in a
Multithreaded Client

The following BEA Tuxedo functions affect the entire process in which they are
called.

� tpadvertise(3c)

� tpalloc(3c)

� tpconvert(3c) —The requested structure is converted, although it is probably relev
to only a subset of the process.

� tpfree(3c)

� tpinit(3c) —to the extent that the per-process TPMULTICONTEXTS mode or
single-context mode is established. See also “Using Per-context Functions and Data
Structures in a Multithreaded Client” on page 10-53.

� tprealloc(3c)

� tpsvrdone(3c)

� tpsvrinit(3c)

� tptypes(3c)

� tpunadvertise(3c)

� tuxgetenv(3c) —if the OS environment is per-process
Programming a BEA Tuxedo Application Using COBOL10-55

10 Programming a Multithreaded and Multicontexted Application

de
nt
� tuxputenv(3c) —if the OS environment is per-process

� tuxreadenv(3c) —if the OS environment is per-process

� Usignal(3c)

The determination of single-context mode, multicontext mode, or uninitialized mo
affects an entire process. The buffer type switch, the view cache, and environme
variable values are also per-process functions.

Using Per-thread Functions and Data Structures in a
Multithreaded Client

Only the calling thread is affected by the following:

� CATCH

� tperrordetail(3c)

� tpgetctxt(3c)

� tpgprio(3c)

� tpsetctxt(3c)

� tpsprio(3c)

� tpstrerror(3c)

� tpstrerrordetail(3c)

� TRY(3c)

� Uunix_err(3c)

The Ferror, Ferror32(5) , tperrno(5) , tpurcode(5) , and Uunix_err variables
are specific to each thread.

The identity of the current context is specific to each thread.
10-56 Programming a BEA Tuxedo Application Using COBOL

Writing a Multithreaded Client

ed.
Sample Code for a Multithreaded Client

The following example shows a multithreaded client using ATMI calls. Threads
functions differ from one operating system to another. In this example, POSIX
functions are used.

Note: In order to simplify this example, error checking code has not been includ

Listing 10-4 Sample Code for a Multithreaded Client

#include <stdio.h>
#include <pthread.h>
#include <atmi.h>

TPINIT * tpinitbuf;
int timeout=60;
pthread_t withdrawalthreadid, stockthreadid;
TPCONTEXT_T ctxt;
void * stackthread(void *);
void * withdrawalthread(void *);

main()
{
tpinitbuf = tpalloc(TPINIT, NULL, TPINITNEED(0));
/*
 * This code will perform a transfer, using separate threads for the
 * withdrawal and deposit. It will also get the current
 * price of BEA stock from a separate application, and calculate how
 * many shares the transferred amount can buy.
 */

tpinitbuf->flags = TPMULTICONTEXTS;

/* Fill in the rest of tpinitbuf. */
tpinit(tpinitbuf);

tpgetctxt(&ctxt, 0);
tpbegin(timeout, 0);
pthread_create(&withdrawalthreadid, NULL, withdrawalthread, NULL);
tpcall("DEPOSIT", ...);

/* Wait for the withdrawal thread to complete. */
pthread_join(withdrawalthreadid, NULL);
Programming a BEA Tuxedo Application Using COBOL10-57

10 Programming a Multithreaded and Multicontexted Application
tpcommit(0);
tpterm();

/* Wait for the stock thread to complete. */
pthread_join(stockthreadid, NULL);

/* Print the results. */
printf("$%9.2f has been transferred \
from your savings account to your checking account.\n", ...);

printf("At the current BEA stock price of $%8.3f, \
you could purchase %d shares.\n", ...);

exit(0);
}

void *
stockthread(void *arg)
{

 /* The other threads have now called tpinit(), so resetting TUXCONFIG can
 * no longer adversely affect them.
 */

 tuxputenv("TUXCONFIG=/home/users/xyz/stockconf");
 tpinitbuf->flags = TPMULTICONTEXTS;
 /* Fill in the rest of tpinitbuf. */
 tpinit(tpinitbuf);
 tpcall("GETSTOCKPRICE", ...);
 /* Save the stock price in a variable that can also be accessed in main(). */
 tpterm();
 return(NULL);
}

void *
withdrawalthread(void *arg)
{
/* Create a separate thread to get stock prices from a different
 * application.
*/

 pthread_create(&stockthreadid, NULL, stockthread, NULL);
 tpsetctxt(ctxt, 0);
10-58 Programming a BEA Tuxedo Application Using COBOL

Writing a Multithreaded Server

g
 tpcall("WITHDRAWAL", ...);
 return(NULL);
}

See Also

� “How Multithreading and Multicontexting Work in a Client” on page 10-11

� “Preliminary Guidelines for Programming a Multithreaded/Multicontexted
Application” on page 10-28

� “Writing Code to Enable Multicontexting in a Client” on page 10-31

Writing a Multithreaded Server

Multithreaded servers are almost always multicontexted, as well. For information
about writing a multithreaded server, see “Writing Code to Enable Multicontextin
and Multithreading in a Server” on page 10-40.
Programming a BEA Tuxedo Application Using COBOL10-59

10 Programming a Multithreaded and Multicontexted Application

 flags

f

aded

hen
Compiling Code for a
Multithreaded/Multicontexted Application

The programs provided by the BEA Tuxedo system for compiling or building
executables, such as buildserver(1) and buildclient(1) , automatically include
any required compiler flags. If you use these tools, then you do not need to set any
at compile time.

If, however, you compile your .c files into .o files before doing a final compilation,
you may need to set platform-specific compiler flags. Such flags must be set
consistently for all code linked into a single process.

If you are creating a multithreaded server, you must run the buildserver(1)
command with the -t option. This option is mandatory for multithreaded servers; i
you do not specify it at build time and later try to boot the new server with a
configuration file in which the value of MAXDISPATCHTHREADS is greater than 1, a
warning message is recorded in the userlog and the server reverts to single-thre
operation.

To identify any operating system-specific compiler parameters that are required w
you compile .c files into .o files in a multithreaded environment, run
buildclient(1) or buildserver(1) with the -v option set on a test file.
10-60 Programming a BEA Tuxedo Application Using COBOL

Testing a Multithreaded/Multicontexted Application
See Also

� “Writing Code to Enable Multicontexting in a Client” on page 10-31

� “Writing Code to Enable Multicontexting and Multithreading in a Server” on
page 10-40

� “Writing a Multithreaded Client” on page 10-45

Testing a Multithreaded/Multicontexted
Application

� Testing Recommendations for a Multithreaded/Multicontexted Application

� Troubleshooting a Multithreaded/Multicontexted Application

� Error Handling for a Multithreaded/Multicontexted Application

Testing Recommendations for a
Multithreaded/Multicontexted Application

We recommend following these recommendations during testing of your
multithreaded and/or multicontexted code:

� Use a multi-processor.

� Use a multithreaded debugger (if your operating system vendor offers one).

� Run stress tests to introduce a variety of timing conditions.
Programming a BEA Tuxedo Application Using COBOL10-61

10 Programming a Multithreaded and Multicontexted Application

u start

d
tion
Troubleshooting a Multithreaded/Multicontexted
Application

When you need to investigate possible causes of errors, we recommend that yo
by checking whether and how the TPMULTICONTEXTS flag has been set. Errors are
frequently introduced by failures to set this flag or to set it properly.

Improper Use of the TPMULTICONTEXTS Flag to tpinit()

If a process includes the TPMULTICONTEXTS flag in a state for which this flag is not
allowed (or omits TPMULTICONTEXTS in a state that requires it), then tpinit(3c)
returns -1 and sets tperrno to TPEPROTO.

Calls to tpinit() Without TPMULTICONTEXTS

When tpinit(3c) is invoked without TPMULTICONTEXTS, it behaves as it does when
called in a single-contexted application. When tpinit() has been invoked once,
subsequent tpinit() calls without the TPMULTICONTEXTS flag succeed without
further action. This is true even if the value of the TUXCONFIG or WSNADDR environment
variable in the application has been changed. Calling tpinit() without the
TPMULTICONTEXTS flag set is not allowed in multicontext mode.

If a client has not joined an application and tpinit(3c) is called implicitly (as a result
of a call to another function that calls tpinit()), then the BEA Tuxedo system
interprets the action as a call to tpinit() without the TPMULTICONTEXTS flag for
purposes of determining which flags may be used in subsequent calls to tpinit() .

For most ATMI functions, if a function is invoked by a thread that is not associate
with a context in a process already operating in multicontext mode, the ATMI func
fails with tperrno(5)=TPEPROTO .
10-62 Programming a BEA Tuxedo Application Using COBOL

Testing a Multithreaded/Multicontexted Application

e
p core
 other
 clues

e
hen
ient

ll

hread

ent

de or
Insufficient Thread Stack Size

On certain operating systems, the operating system default thread stack size is
insufficient for use with the BEA Tuxedo system. Compaq Tru64 UNIX and
UnixWare are two operating systems for which this is known to be the case. If th
default thread stack size parameter is used, applications on these platforms dum
when a function with substantial stack usage requirements is called by any thread
than the main thread. Often the core file that is created does not give any obvious
to the fact that an insufficient stack size is the cause of the problem.

When the BEA Tuxedo system is creating threads on its own, such as
server-dispatched threads or a client unsolicited message thread, it can adjust th
default stack size parameter on these platforms to a sufficient value. However, w
an application is creating threads on its own, the application must specify a suffic
stack size. At a minimum, a value of 128K should be used for any thread that wi
access the BEA Tuxedo system.

On Compaq Tru64 UNIX and other systems on which Posix threads are used, a t
stack size is specified by invoking pthread_attr_setstacksize() before calling
pthread_create() . On UnixWare, the thread stack size is specified as an argum
to thr_create() . Consult your operating system documentation for further
information on this subject.

Error Handling for a Multithreaded/Multicontexted
Application

Errors are reported in the user log. For each error, whether in single-context mo
multicontext mode, the following information is recorded:

process_ID.thread_ID.context_ID
Programming a BEA Tuxedo Application Using COBOL10-63

10 Programming a Multithreaded and Multicontexted Application
See Also

� “How Multithreading and Multicontexting Work in a Client” on page 10-11

� “How Multithreading and Multicontexting Work in a Server” on page 10-17

� “Preliminary Guidelines for Programming a Multithreaded/Multicontexted
Application” on page 10-28
10-64 Programming a BEA Tuxedo Application Using COBOL

CHAPTER

e case
ay

tem

he
11Managing Errors

� System Errors

� Application Errors

� Handling Errors

� Transaction Considerations

� Central Event Log

System Errors

The BEA Tuxedo system uses TP-STATUS IN TPSTATUS-REC to supply information
to a process when a routine fails. All ATMI calls set TP-STATUS to a value that
describes the nature of the error. When a call does not return to its caller, as in th
of TPRETURN or TPFORWAR, which are used to terminate a service routine, the only w
the system can communicate success or failure is through TP-STATUS in the requester.

APPL-RETURN-CODE is used to communicate user-defined conditions only. The sys
sets the value of APPL-RETURN-CODE to the value of APPL-CODE IN TPSVCRET-REC
during TPRETURN. The system sets APPL-RETURN-CODE, regardless of the value of
APPL-RETURN-CODE IN TPSTATUS-REC during TPRETURN, unless an error is
encountered by TPRETURN or a transaction time-out occurs.

The codes returned in TP-STATUS represent categories of errors, which are listed in t
following table.
Programming a BEA Tuxedo Application Using COBOL 11-1

11 Managing Errors
Table 11-1 TP-STATUS Error Categories

Error Category TP-STATUS Values

Abort TPEABORT2

BEA Tuxedo system1 TPESYSTEM

Communication handle TPELIMIT and TPEBADDESC

Conversational TPEVENT

Duplicate operation TPEMATCH

General communication TPESVCFAIL, TPESVCERR,
TPEBLOCK, and TPGOTSIG

Heuristic decision TPEHAZARD2 and TPEHEURISTIC2

Invalid argument1 TPEINVAL

MIB TPEMIB

No entry TPENOENT

Operating system1 TPEOS

Permission TPEPERM

Protocol1

1. Applicable to all ATMI calls for which failure is reported by the val-
ue returned in TP-STATUS.

TPEPROTO

Queueing TPEDIAGNOSTIC

Release compatibility TPERELEASE

Resource manager TPERMERR

Time-out TPETIME

Transaction TPETRAN2

Typed record mismatch TPEITYPE and TPEOTYPE
11-2 Programming a BEA Tuxedo Application Using COBOL

Abort Errors

” on

ages

n
tion,
As footnote 1 shows, four categories of errors are reported by TP-STATUS are
applicable to all ATMI calls. The remaining categories are used only for specific
ATMI calls.The following sections describe some error categories in detail.

Abort Errors

For information on the errors that lead to abort, refer to “Fatal Transaction Errors
page 11-18.

BEA Tuxedo System Errors

BEA Tuxedo system errors indicate problems at the system level, rather than at the
application level. When BEA Tuxedo system errors occur, the system writes mess
explaining the exact nature of the errors to the central event log, and returns
TPESYSTEM in TP-STATUS. For more information, refer to the “Central Event Log” o
page 11-27. Because these errors occur in the system, rather than in the applica
you may need to consult the system administrator to correct them.

2. Refer to “Fatal Transaction Errors” on page 11-18 for more
information on this error category.
Programming a BEA Tuxedo Application Using COBOL 11-3

11 Managing Errors

of

ional
pend

bility

at the

ntext

s is
mit
n
Communication Handle Errors

Communication handle errors occur as a result of exceeding the maximum limit
communication handles or referencing an invalid value. Asynchronous and
conversational calls return TPELIMIT when the maximum number of outstanding
communication handles has been exceeded. TPEBADDESC is returned when an invalid
communication handle value is specified for an operation.

Communication handle errors occur only during asynchronous calls or conversat
calls. (Call descriptors are not used for synchronous calls.) Asynchronous calls de
on communication handles to associate replies with the corresponding requests.
Conversational send and receive routines depend on communication handles to
identify the connection; the call that initiates the connection depends on the availa
of a communication handle.

Communication handle errors can be can be done by checking for specific errors
application level.

Limit Errors

The system allows up to 50 outstanding communication handles (replies) per co
(or BEA Tuxedo application association). This limit is enforced by the system; it
cannot be redefined by your application.

The limit for communication handles for simultaneous conversational connection
more flexible than the limit for replies. The application administrator defines the li
in the configuration file. When the application is not running, the administrator ca
modify the MAXCONV parameter in the RESOURCES section of the configuration file.
When the application is running, the administrator can modify the MACHINES section
dynamically. Refer to tmconfig, wtmconfig(1) in the BEA Tuxedo Command
Reference for more information.
11-4 Programming a BEA Tuxedo Application Using COBOL

Conversational Errors

o be

d

stale.

by

nt.
Invalid Descriptor Errors

A communication handle can become invalid and, if referenced, cause an error t
returned to TP-STATUS in either of two situations:

� A communication handle is used to retrieve a message, which may be a faile
message (TPEBADDESC).

� An attempt is made to reuse a stale communication handle (TPEBADDESC).

A communication handle might become stale, for example, in the following
circumstances:

� When the application calls TPABORT or TPCOMMIT and transaction replies (sent
without TPNOTRAN) remain to be retrieved.

� A transaction times out. When the time-out is reported by a call to TPGETRPLY,
no message is retrieved using the specified handle and the handle becomes

Conversational Errors

When an unknown handle is specified for conversational services, the TPSEND,
TPRECV, and TPDISCON routines return TPEBADDESC.

When TPSEND and TPRECV fail with a TPEEVENT error after a conversational
connection is established, an event has occurred. Data may or may not be sent
TPSEND, depending on the event. The system returns TPEEVENT in the TPEVENT
member of TPSTATUS-REC and the course of action is dictated by the particular eve

For a complete description of conversational events, refer to “Understanding
Conversational Communication Events” on page 7-13.
Programming a BEA Tuxedo Application Using COBOL 11-5

11 Managing Errors

e

ith

Duplicate Object Error

The TPEMATCH error code is returned in TP-STATUS when an attempt is made to
perform an operation that results in a duplicate object. The following table lists th
routines that may return the TPEMATCH error code and the associated cause.

For more information on these routines, refer to the BEA Tuxedo COBOL Function
Reference.

General Communication Call Errors

General communication call errors can occur during any communication calls,
regardless of whether those calls are synchronous or asynchronous. Any of the
following errors may be returned in TP-STATUS: TPESVCFAIL, TPESVCERR,
TPEBLOCK, or TPGOTSIG.

Routine Cause

TPADVERTISE The svcname specified is already advertised for the server but
with a function other than func . Although the function fails,
svcname remains advertised with its current function (that is,
func does not replace the current function name).

TPRESUME The tranid points to a transaction identifier that another
process has already resumed. In this case, the caller’s state w
respect to the transaction is not changed.

TPSUBSCRIBE The specified subscription information has already been listed
with the EventBroker.
11-6 Programming a BEA Tuxedo Application Using COBOL

General Communication Call Errors

ply

eues

s not
l
TPESVCFAIL and TPESVCERR Errors

If the reply portion of a communication fails as a result of a call to TPCALL or
TPGETRPLY, the system returns TPESVCERR or TPSEVCFAIL to TP-STATUS. The
system determines the error by the arguments that are passed to TPRETURN and the
processing that is performed by this call.

If TPRETURN encounters an error in processing or handling arguments, the system
returns an error to the original requester and sets TP-STATUS to TPESVCERR. The
receiver determines that an error has occurred by checking the value of TP-STATUS.
The system does not send the data from the TPRETURN call, and if the failure occurred
on TPGETRPLY, it renders the call handle invalid.

If TPRETURN does not encounter the TPESVCERR error, then the value returned in
TP-RETURN-VAL determines the success or failure of the call. If the application
specifies TPFAIL in the TP-RETURN-VAL, the system returns TPESVCFAIL in
TP-STATUS and sends the data message to the caller. If TP-RETURN-VAL is set to
TPSUCCESS, the system returns successfully to the caller, TP-STATUS is not set, and the
caller receives the data.

TPEBLOCK and TPGOTSIG Errors

The TPEBLOCK and TPGOTSIG error codes may be returned at the request or the re
end of a message and, as a result, can be returned for all communication calls.

The system returns TPEBLOCK when a blocking condition exists and the process
sending a request (synchronously or asynchronously) indicates, by setting
TPPNOBLOCK that it does not want to wait on a blocking condition. A blocking
condition can exist when a request is being sent if, for example, all the system qu
are full.

When TPCALL indicates a no blocking condition, only the sending part of the
communication is affected. If a call successfully sends a request, the system doe
return TPEBLOCK, regardless of any blocking situation that may exist while the cal
waits for the reply.

The system returns TPEBLOCK for TPGETRPLY when a call is made TPNOBLOCK and a
blocking condition is encountered while TPGETRPLY is awaiting the reply. This may
occur, for example, if a message is not currently available.
Programming a BEA Tuxedo Application Using COBOL 11-7

11 Managing Errors

ion

. Any
 the

ture

 this

o

The TPGOTSIG error indicates an interruption of a system call by a signal; this situat
is not actually an error condition. If TPSIGRSTRT is set, the calls do not fail and the
system does not return the TPGOTSIG error code in TP-STATUS.

Invalid Argument Errors

Invalid argument errors indicate that an invalid argument was passed to a routine
ATMI call that takes arguments can fail if you pass it arguments that are invalid. In
case of a call that returns to the caller, the call fails and causes TP-STATUS to be set to
TPEINVAL. In the case of TPRETURN or TPFORWAR, the system sets TP-STATUS to
TPESVCERR for either the TPCALL or TPGETRPLY call that initiated the request and is
waiting for results to be returned.

You can correct an invalid argument error at the application level by ensuring that you
pass only valid arguments to routines.

No Entry Errors

No entry errors result from a lack of entries in the system tables or the data struc
used to identify record types. The meaning of the no entry type error, TPENOENT,
depends on the call that is returning it. The following table lists the calls that return
error and describes various causes of error.

Table 11-2 No Entry Errors

Call Cause

TPINITIALIZE The calling process cannot join the application because there is n
space left in the bulletin board to make an entry for it. Check with
the system administrator.
11-8 Programming a BEA Tuxedo Application Using COBOL

Operating System Errors

stem
e

 the

 the

t

he

vice

Operating System Errors

Operating system errors indicate that an operating system call has failed. The sy
returns TPEOS in TP-STATUS. On UNIX systems, the system returns a numeric valu
identifying the failed system call in the global variable Uunixerr . To resolve
operating system errors, you may need to consult your system administrator.

Permission Errors

If a calling process does not have the correct permissions to join the application,
TPINITIALIZE call fails, returning TPEPERM in TP-STATUS. Permissions are set in the
configuration file, outside of the application. If you encounter this error, check with
application administrator to make sure the necessary permissions are set in the
configuration file.

 TPCALL
TPACALL

The calling process references a service called SERVICE-NAME IN
TPSVCDEF-REC that is not known to the system since there is no
entry for it in the bulletin board. On an application level, ensure tha
you have referenced the service correctly; otherwise, check with t
system administrator.

TPCONNECT The system cannot connect to the specified name because the ser
named does not exist or it is not a conversational service.

TPGPRIO The calling process seeks a request priority when no request has
been made. This is an application-level error.

TPUNADVERTISE The system cannot unadvertise SERVICE-NAME IN
TPSVCDEF-REC because the name is not currently advertised by
the calling process.

Call Cause
Programming a BEA Tuxedo Application Using COBOL 11-9

11 Managing Errors

ing
 a

n

 for
Protocol Errors

Protocol errors occur when an ATMI call is invoked, either in the wrong order or us
an incorrect process. For example, a client may try to begin communicating with
server before joining the application. Or TPCOMMIT may be called by a transaction
participant instead of the initiator.

You can correct a protocol error at the application level by enforcing the rules of order
and proper usage of ATMI calls.

To determine the cause of a protocol error, answer the following questions:

� Is the call being made in the correct order?

� Is the call being made by the correct process?

Protocol errors return the TPEPROTO value in TP-STATUS.

Refer to “Introduction to the COBOL Application-Transaction Monitor Interface” i
the BEA Tuxedo COBOL Function Reference for more information.

Queuing Error

The TPENQUEUE(3cbl) or TPDEQUEUE(3cbl) routine returns TPEDIAGNOSTIC in
TP-STATUS if the enqueuing or dequeuing on a specified queue fails. The reason
failure can be determined by the diagnostic returned via the ctl record. For a list of
valid ctl flags, refer to TPENQUEUE(3cbl) or TPDEQUEUE(3cbl) in the BEA Tuxedo
COBOL Function Reference.
11-10 Programming a BEA Tuxedo Application Using COBOL

Release Compatibility Error

t is

y,

e
urce

nt of
edo
Release Compatibility Error

The BEA Tuxedo system returns TPERELEASE in TP-STATUS if a compatibility issue
exists between multiple releases of a BEA Tuxedo system participating in an
application domain.

For example, the TPERELEASE error may be returned if the TPACK flag is set when
issuing the TPNOTIFY(3cbl) routine (indicating that the caller blocks until an
acknowledgment message is received from the target client), but the target clien
using an earlier release of the BEA Tuxedo system that does not support the TPACK
acknowledgement protocol.

Resource Manager Errors

Resource manager errors can occur with calls to TPOPEN(3cbl) and TPCLOSE(3cbl) ,
in which case the system returns the value of TPERMERR in TP-STATUS. This error code
is returned for TPOPEN when the resource manager fails to open correctly. Similarl
this error code is returned for TPCLOSE when the resource manager fails to close
correctly. To maintain portability, the BEA Tuxedo system does not return a mor
detailed explanation of this type of failure. To determine the exact nature of a reso
manager error, you must interrogate the resource manager.

Time-out Errors

The BEA Tuxedo system supports time-out errors to establish a limit on the amou
time that the application waits for a service request or transaction. The BEA Tux
system supports two types of configurable time-out mechanisms: blocking and
transaction.
Programming a BEA Tuxedo Application Using COBOL11-11

11 Managing Errors

its
g

ral

g or
if

or is
ted.

ous

t

 refer
A blocking time-out specifies the maximum amount of time that an application wa
for a reply to a service request. The application administrator defines the blockin
time-out for the system in the configuration file.

A transaction time-out defines the duration of a transaction, which may involve seve
service requests. To define the transaction time-out for an application, pass the T-OUT
argument to TPBEGIN.

The system may return time-out errors on communication calls for either blockin
transaction time-outs, and on TPCOMMIT for transaction time-outs only. In each case,
a process is in transaction mode and the system returns TPETIME on a failed call, a
transaction time-out has occurred.

By default, if a process is not in transaction mode, the system performs blocking
time-outs.

If a process is not in transaction mode and a blocking time-out occurs on an
asynchronous call, the communication call that blocked fails, but the call descript
still valid and may be used on a re-issued call. Other communication is not affec

When a transaction time-out occurs, the communication handle to an asynchron
transaction reply (specified without TPNOTRAN) becomes stale and may no longer be
referenced.

TPETIME indicates a blocking time-out on a communication call if the call was no
made in transaction mode or if TPNOBLOCK was not set.

Note: If you set TPNOBLOCK, a blocking time-out cannot occur because the call
returns immediately if a blocking condition exists.

For additional information on handling time-out errors, refer to “Transaction
Considerations” on page 11-15.

Transaction Errors

For information on transactions and the non-fatal and fatal errors that can occur,
to “Transaction Considerations” on page 11-15.
11-12 Programming a BEA Tuxedo Application Using COBOL

Typed Record Errors

t in

cord.

 and
efine

ly its
cord
is. For

a
cord

d that
the

ally
rules
, if
Typed Record Errors

Typed record errors are returned when requests or replies to processes are sen
records of an unknown type. The TPCALL and TPACALL calls return TPEITYPE when a
request data record is sent to a service that does not recognize the type of the re

Processes recognize record types that are identified in both the configuration file
the BEA Tuxedo system libraries that are linked into the process. These libraries d
and initialize a data structure that identifies the typed records that the process
recognizes. You can tailor the library to each process, or an application can supp
own copy of a file that defines the record types. An application can set up the re
type data structure (referred to as a record type switch) on a process-specific bas
more information, see tuxtypes(5) and typesw(5) in the BEA Tuxedo File Formats
and Data Descriptions Reference.

The TPCALL and TPGETRPLY calls return TPEOTYPE when a reply message is sent in
record that is not recognized or not allowed by the caller. In the latter case, the re
type is included in the type switch, but the type returned does not match the recor
was allocated to receive the reply and a change in record type is not allowed by
caller. The caller indicates this preference by setting TPNOCHANGE. In this case, strong
type checking is enforced; the system returns TPEOTYPE when it is violated. By default,
weak type checking is used. In this case, a record type other than the type origin
allocated may be returned, as long as that type is recognized by the caller. The
for sending replies are that the reply record must be recognized by the caller and
strong type checking has been indicated, you must observe it.
Programming a BEA Tuxedo Application Using COBOL11-13

11 Managing Errors

ing
f

n
Application Errors

Within an application, you can pass information about user-defined errors to call
programs using the rcode argument of TPRETURN. Also, the system sets the value o
APPL-RETURN-CODE to the value of APPL-CODE IN TPSVCRET-REC during
TPRETURN. For more information about TPRETURN(3cbl) , refer to the BEA Tuxedo
COBOL Function Reference.

Handling Errors

Your application logic should test for error conditions for the calls that have retur
values, and take appropriate action when an error occurs.

The following example shows a typical method of handling errors. The term
ATMICALL(3) is used in this example to represent a generic ATMI call.

Listing 11-1 Handling Errors

. . .
CALL "TPINITIALIZE" USING TPINFDEF-REC
 USR-DATA-REC
 TPSTATUS-REC.
IF NOT TPOK
 error message , EXIT PROGRAM
CALL "TPBEGIN" USING TPTRXDEF-REC
 TPSTATUS-REC.
IF NOT TPOK
 error message , EXIT PROGRAM

 Make atmi calls
 Check return values

IF TPEINVAL
 DISPLAY "Invalid arguments were given."
IF TPEPROTO
 DISPLAY "A call was made in an improper context."
. . .
11-14 Programming a BEA Tuxedo Application Using COBOL

Transaction Considerations

est

sed
ette

ules

or all

t
 Include all error cases described in the ATMICALL(3)
 reference page. Other return codes are not possible,
 so there is no need to test them.
. . .
 continue

The values of TP-STATUS provide details about the nature of each problem and sugg
the level at which it can be corrected. If your application defines a list of error
conditions specific to your processing, the same can be said for the values of
APPL-RETURN-CODE IN TPSTATUS-REC.

Transaction Considerations

The following sections describe how various programming features work when u
in transaction mode. The first section provides rules of basic communication etiqu
that should be observed in code written for transaction mode.

Communication Etiquette

When writing code to be run in transaction mode, you must observe the following r
of basic communication etiquette:

� Processes that are participants in the same transaction must require replies f
requests. To include a request that requires no reply, set TPACALL to TPNOTRAN
or TPNOREPLY.

� A service must retrieve all asynchronous transaction replies before calling
TPRETURN or TPFORWAR. This rule must be observed regardless of whether the
code is running in transaction mode.

� The initiator must retrieve all asynchronous transaction replies (made withou
TPNOTRAN) before calling TPCOMMIT.
Programming a BEA Tuxedo Application Using COBOL11-15

11 Managing Errors

 to

 of
l

ce

� Replies must be retrieved for asynchronous calls that expect replies from
non-participants of the transaction, that is, replies to requests made with
TPACALL in which the transaction, but not the reply, is suppressed.

� If a transaction has not timed-out but is marked “abort-only,” any further
communication should be performed with TPNOTRAN set so that the results of the
communication are preserved after the transaction is rolled back.

� If a transaction has timed out:

z The handle for the timed-out call becomes stale and any further reference
it returns TPEBADDESC.

z Further calls to TPGETRPLY or TPRECV for any outstanding handles return a
global state of transaction time-out; the system sets TP-STATUS to TPETIME.

z Asynchronous calls can be made with TPACALL set to TPNOREPLY,
TPNOBLOCK, or TPNOTRAN.

� Once a transaction has been marked “abort-only” for reasons other than
time-out, a call to TPGETRPLY returns whatever value represents the local state
the call; that is, it returns either success or an error code that reflects the loca
condition.

� Once a handle is used with TPGETRPLY to retrieve a reply, or with TPSEND or
TPRECV to report an error condition, it becomes invalid and any further referen
to it returns TPEBADDESC. This rule is always observed, regardless of whether
the code is running in transaction mode.

� Once a transaction is aborted, all outstanding transaction call handles (made
without TPNOTRAN) become stale, and any further references to them return
TPEBADDESC.

Transaction Errors

The following sections describe transaction-related errors.
11-16 Programming a BEA Tuxedo Application Using COBOL

Transaction Errors

n

t
port
ps.

y
Non-fatal Transaction Errors

When transaction errors occur, the system returns TPETRAN in TP-STATUS. The precise
meaning of such an error, however, depends on the call that is returning it. The
following table lists the calls that return transaction errors and describes possible
causes of them.

Table 11-3 Transaction Errors

Call Cause

TPBEGIN Usually caused by a transient system error that occur during an
attempt to start the transaction. The problem may clear up with a
repeated call.

TPCANCEL Returns TPETRAN when called from a transaction.

TPRESUME The BEA Tuxedo system is unable to resume a global transactio
because the caller is currently participating in work outside the
global transaction with one or more resource managers. All such
work must be completed before the global transaction can be
resumed. The caller’s state with respect to the local transaction is
unchanged.

TPCONNECT,
TPCALL, and
TPACALL

A call was made in transaction mode to a service that does not
support transactions. Some services belong to server groups tha
access a database management system (DBMS) that, in turn, sup
transactions. Other services, however, do not belong to such grou
In addition, some services that support transactions may require
interoperation with software that does not. For example, a service
that prints a form may work with a printer that does not support
transactions. Services that do not support transactions may not
function as participants in a transaction.

The grouping of services into servers and server groups is an
administrative task. In order to determine which services support
transactions, check with your application administrator.

You can correct transaction-level errors at the application level b
enabling the setting TPSVCDEF-REF or by accessing the service
for which an error was returned outside of the transaction.
Programming a BEA Tuxedo Application Using COBOL11-17

11 Managing Errors

action

 as

n;

the

e
ould

itly
Fatal Transaction Errors

When a fatal transaction error occurs, the application should explicitly abort the
transaction by having the initiator call TPABORT. Therefore, it is important to
understand the errors that are fatal to transactions. Three conditions cause a trans
to fail:

� The initiator or a participant in the transaction causes it to be marked
“abort-only” for one of the following reasons:

z TPRETURN encounters an error while processing its arguments; TP-STATUS is
set to TPESVCERR.

z The TP-RETURN-VAL to TPRETURN was set to TPFAIL ; TP-STATUS is set to
TPESVCFAIL.

z The type of the reply record is not known or not allowed by the caller and,
a result, success or failure cannot be determined; TP-STATUS is set to
TPEOTYPE.

� The transaction times out; TP-STATUS is set to TPETIME.

� TPCOMMIT is called by a participant rather than by the originator of a transactio
TP-STATUS is set to TPEPROTO.

The only protocol error that is fatal to transactions is calling TPCOMMIT from the wrong
participant in a transaction. This error can be corrected in the application during
development phase.

If TPCOMMIT is called after an initiator/participant failure or transaction time-out, th
result is an implicit abort error. Then, because the commit failed, the transaction sh
be aborted.

If the system returns TPESVCERR, TPESVCFAIL, TPEOTYPE, or TPETIME for any
communication call, the transaction should be aborted explicitly with a call to
TPABORT. You need not wait for outstanding communication handles before explic
aborting the transaction. However, because these communication handles are
considered stale after the call is aborted, any attempt to access them after the
transaction is terminated returns TPEBADDESC.
11-18 Programming a BEA Tuxedo Application Using COBOL

Transaction Errors

e
ther

will

tion

nd

 a
ision

 not
In the case of TPESVCERR, TPESVCFAIL, and TPEOTYPE, communication calls continue
to be allowed as long as the transaction has not timed out. When these errors ar
returned, the transaction is marked abort-only. To preserve the results of any fur
work, you should call any communication functions with TPNOTRAN. By setting this
flag, you ensure that the work performed for the transaction marked “abort-only”
not be rolled back when the transaction is aborted.

When a transaction time-out occurs, communication can continue, but communica
requests cannot:

� Require replies

� Block

� Be performed on behalf of the caller’s transaction

Therefore, to make asynchronous calls, you must set TPNOREPLY, TPNOBLOCK, or
TPNOTRAN.

Heuristic Decision Errors

The TPCOMMIT call may return TPEHAZARD or TPEHEURISTIC, depending on how
TP-COMMIT-CONTROL is set.

If you set TP-COMMIT-CONTROL to TP-CMT-LOGGED, the application obtains control
before the second phase of a two-phase commit is performed. In this case, the
application may not be aware of a heuristic decision that occurs during the seco
phase.

TPEHAZARD or TPEHEURISTIC can be returned in a one-phase commit, however, if
single resource manager is involved in the transaction and it returns a heuristic dec
or a hazard indication during a one-phase commit.

If you set TP_COMMIT_CONTROL to TP_CMT_COMPLETE, then the system returns
TPEHEURISTIC if any resource manager reports a heuristic decision, and TPEHAZARD
if any resource manager reports a hazard. TPEHAZARD specifies that a participant failed
during the second phase of commit (or during a one-phase commit) and that it is
known whether a transaction completed successfully.
Programming a BEA Tuxedo Application Using COBOL11-19

11 Managing Errors

ccur

s.

rts

. First,
plied.

nt

ply
Transaction Time-outs

As described in “Transaction Errors” on page 11-16, two types of time-outs can o
in a BEA Tuxedo application: blocking and transaction. The following sections
describe how various programming features are affected by transaction time-out
Refer to “Transaction Errors” on page 11-16 for more information on time-outs.

TPCOMMIT Call

What is the state of a transaction if a time-out occurs after a call to TPCOMMIT? If the
transaction timed out and the system knows that it was aborted, the system repo
these events by setting TP-STATUS to TPEABORT. If the status of the transaction is
unknown, the system sets the error code to TPETIME.

When the state of a transaction is in doubt, you must query the resource manager
verify whether or not any of the changes that were part of the transaction were ap
Then you can determine whether the transaction was committed or aborted.

TPNOTRAN

When a process is in transaction mode and makes a communication call with
TPNOTRAN, it prohibits the called service from becoming a participant in the curre
transaction. Whether the service request succeeds or fails has no impact on the
outcome of the transaction. The transaction can still time-out while waiting for a re
that is due from a service, whether it is part of the transaction or not.

For additional information on using TPNOTRAN, refer to “TPRETURN and
TPFORWAR Calls” on page 11-21.
11-20 Programming a BEA Tuxedo Application Using COBOL

tpterm() Function

veral
rt the

e

 as

t
e

lar
 the

d

on
TPRETURN and TPFORWAR Calls

If you call a process while running in transaction mode, TPRETURN and TPFORWAR
place the service portion of the transaction in a state that allows it to be either
committed or aborted when the transaction completes. You can call a service se
times on behalf of the same transaction. The system does not fully commit or abo
transaction until the initiator of the transaction calls TPCOMMIT or TPABORT.

Neither TPRETURN nor TPFORWAR should be called until all outstanding handles for th
communication calls made within the service have been retrieved. If you call
TPRETURN with outstanding handles for which TP-RETURN-VAL is set to TPSUCCESS,
the system encounters a protocol error and returns TPESVCERR to the process waiting
on TPGETRPLY. If the process is in transaction mode, the system marks the caller
“abort-only.” Even if the initiator of the transaction calls TPCOMMIT, the system
implicitly aborts the transaction. If you call TPRETURN with outstanding handles for
which TP-RETURN-VAL is set to TPFAIL , the system returns TPESVCFAIL to the
process waiting on TPGETRPLY. The effect on the transaction is the same.

When you call TPRETURN while running in transaction mode, this function can affec
the result of the transaction by the processing errors that it encounters or that ar
retrieved from the value placed in TP-RETURN-VAL by the application.

You can use TPFORWAR to indicate that success has been achieved up to a particu
point in the processing of a request. If no application errors have been detected,
system invokes TPFORWAR; otherwise, the system invokes TPRETURN with TPFAIL . If
you call TPFORWAR improperly, the system considers the call a processing error an
returns a failed message to the requester.

tpterm() Function

Use the TPTERM call to remove a client context from an application.

If the client context is in transaction mode, the call fails with TPEPROTO returned in
TP-STATUS, and the client context remains part of the application and in transacti
mode.
Programming a BEA Tuxedo Application Using COBOL11-21

11 Managing Errors

n or
 part

utes
ger

 the

uld
tion

n use
n

uch as
o the

of

n.

xedo

n that
When the call is successful, the client context is allowed no further communicatio
participation in transactions because the current thread of execution is no longer
of the application.

Resource Managers

When you use an ATMI call to define transactions, the BEA Tuxedo system exec
an internal call to pass any global transaction information to each resource mana
participating in the transaction. When you call TPCOMMIT or TPABORT, for example, the
system makes internal calls to direct each resource manager to commit or abort
work it did on behalf of the caller’s global transaction.

When a global transaction has been initiated, either explicitly or implicitly, you sho
not make explicit calls to the resource manager’s transaction calls in your applica
code. Failure to follow this transaction rule causes indeterminate results. You ca
the TPGETLEV call to determine whether a process is already in a global transactio
before calling the resource manager’s transaction call.

Some resource managers allow programmers to configure certain parameters (s
the transaction consistency level) by specifying options available in the interface t
resource managers themselves. Such options are made available in two forms:

� Resource manager-specific function calls that can be used by programmers
distributed applications to configure options.

� Hard-coded options incorporated in the transaction interface supplied by the
provider of the resource manager.

Consult the documentation for your resource managers for additional informatio

The method of setting options varies for each resource manager. In the BEA Tu
System SQL resource manager, for example, the set transaction statement is used
to negotiate specific options (consistency level and access mode) for a transactio
has already been started by the BEA Tuxedo system.
11-22 Programming a BEA Tuxedo Application Using COBOL

Sample Transaction Scenarios

ent

ed

 any
ction
Sample Transaction Scenarios

The following sections provide some considerations for the following transaction
scenarios:

� Called Service in Same Transaction as Caller

� Called Service in Different Transaction with AUTOTRAN Set

� Called Service that Starts a New Explicit Transaction

Called Service in Same Transaction as Caller

When a caller in transaction mode calls another service to participate in the curr
transaction, the following facts apply:

� TPRETURN and TPFORWAR, when called by the participating service, place that
service’s portion of the transaction in a state from which it can be either abort
or committed by the initiator.

� The success or failure of the called process affects the current transaction. If
fatal transaction errors are encountered by the participant, the current transa
is marked “abort-only.”

� Whether or not the tasks performed by a successful participant are applied
depends on the fate of the transaction. In other words, if the transaction is
aborted, the work of all participants is reversed.

� TPNOREPLY cannot be used when calling another service to participate in the
current transaction.
Programming a BEA Tuxedo Application Using COBOL11-23

11 Managing Errors

, the
 two

f

ario,

by
Called Service in Different Transaction with AUTOTRAN
Set

If you issue a communication call with TPNOTRAN set and the called service is
configured such that a transaction automatically starts when the service is called
system places both the calling and called processes in transaction mode, but the
constitute different transactions. In this situation, the following facts apply:

� TPRETURN plays the initiator’s transaction role: it terminates the transaction in
the service in which the transaction was automatically started. Alternatively, i
the transaction is automatically started in a service that terminates with
TPFORWAR, the TPRETURN call issued in the last service in the forward chain
plays the initiator’s transaction role: it terminates the transaction. (For an
example, refer to the figure called “Transaction Roles of TPFORWAR and
TPRETURN with AUTOTRAN” on page 11-25.)

� Because it is in transaction mode, TPRETURN is vulnerable to the failure of any
participant in the transaction, as well as to transaction time-outs. In this scen
the system is more likely to return a failed message.

� The state of the caller’s transaction is not affected by any failed messages or
application failures returned to the caller.

� The caller’s own transaction may timeout as the caller waits for a reply.

� If no reply is expected, the caller’s transaction cannot be affected in any way
the communication call.
11-24 Programming a BEA Tuxedo Application Using COBOL

Sample Transaction Scenarios

an

tion

Figure 11-1 Transaction Roles of TPFORWAR and TPRETURN with
AUTOTRAN

Called Service that Starts a New Explicit Transaction

If a communication call is made with TPNOTRAN, and the called service is not
automatically placed in transaction mode by a configuration option, the service c
define multiple transactions using explicit calls to TPBEGIN, TPCOMMIT, and TPABORT.
As a result, the transaction can be completed before a call is issued to TPRETURN.

In this situation, the following facts apply:

� TPRETURN plays no transaction role; that is, the role of TPRETURN is always the
same, regardless of whether transactions are explicitly defined in the service
routine.

� TPRETURN can return any value in TP-RETURN-VAL, regardless of the outcome
of the transaction.

� Typically, the system returns processing errors, record type errors, or applica
failure, and follows the normal rules for TPESVCFAIL, TPEITYPE/TPEOTYPE, and
TPESVCERR.

� The state of the caller’s transaction is not affected by any failed messages or
application failures returned to the caller.
Programming a BEA Tuxedo Application Using COBOL11-25

11 Managing Errors

t

by

s
,

nores

rns;
n this

s are

n this
� The caller is vulnerable to the possibility that its own transaction may time ou
as it waits for its reply.

� If no reply is expected, the caller’s transaction cannot be affected in any way
the communication call.

BEA TUXEDO System-supplied Subroutines

The BEA Tuxedo system-supplied subroutines, TPSVRINIT and TPSVRDONE, must
follow certain rules when used in transactions.

The BEA Tuxedo system server calls TPSVRINIT during initialization. Specifically,
TPSVRINIT is called after the calling process becomes a server but before it start
handling service requests. If TPSVRINIT performs any asynchronous communication
all replies must be retrieved before the function returns; otherwise, the system ig
all pending replies and the server exits. If TPSVRINIT defines any transactions, they
must be completed with all asynchronous replies retrieved before the function retu
otherwise, the system aborts the transaction and ignores all outstanding replies. I
case, the server exits gracefully.

The BEA Tuxedo system server abstraction calls TPSVRDONE after it finishes
processing service requests but before it exits. At this point, the server’s service
no longer advertised, but the server has not yet left the application. If TPSVRDONE
initiates communication, it must retrieve all outstanding replies before it returns;
otherwise, pending replies are ignored by the system and the server exits. If a
transaction is started within TPSVRDONE, it must be completed with all replies
retrieved; otherwise, the system aborts the transaction and ignores the replies. I
case, too, the server exits.
11-26 Programming a BEA Tuxedo Application Using COBOL

Central Event Log

ion.
rvices

ould

,

ame
. The

e of

ges to
t files.
Central Event Log

The central event log is a record of significant events in your BEA Tuxedo applicat
Messages about these events are sent to the log by your application clients and se
via the USERLOG(3cbl) routine.

Any analysis of the central event log must be provided by the application. You sh
establish strict guidelines for the events that are to be recorded in the USERLOG(3cbl) .
Application debugging can be simplified by eliminating trivial messages.

For information on configuring the central event log on the Windows NT platform
refer to Using the BEA Tuxedo System on Windows NT.

Log Name

The application administrator defines (in the configuration file) the absolute path n
that is used as the prefix of the name of the error message file on each machine
USERLOG(3cbl) routine creates a date—in the form mmddyy, representing the month,
day, and year—and adds this date to the path name prefix, forming the full filenam
the central event log. A new file is created daily. Thus, if a process sends messa
the central event log on succeeding days, the messages are written into differen
Programming a BEA Tuxedo Application Using COBOL11-27

11 Managing Errors

at

 by the
Log Entry Format

Entries in the log consist of the following components:

� Tag consisting of:

z Time of day (hhmmss)

z Machine name (for example, the name returned by the uname(1) command
on a UNIX system)

z Name, process ID, and thread ID (which is 0 on platforms that do not
support threads) of the thread calling USERLOG(3cbl)

z Context ID of the thread calling USERLOG(3cbl)

� Message text

The text of each message is preceded by the catalog name and number of th
message.

For example, suppose that a security program executes the following call at
4:22:14pm on a UNIX machine called mach1 (as returned by the uname command):

01 LOG-REC PIC X(15) VALUE "UNKNOWN USER ".
01 LOGREC-LEN PIC S9(9) VALUES IS 13.
CALL "USERLOG" USING LOG-REC LOGREC-LEN TPSTATUS-REC.

The resulting log entry appears as follows:

162214.mach1!security.23451: UNKNOWN USER

In this example, the process ID for security is 23451 .

If the preceding message was generated by the BEA Tuxedo system (rather than
application), it might appear as follows:

162214.mach1!security.23451: COBAPI_CAT: 999: UNKNOWN USER

In this case, the message catalog name is COBAPI_CAT and the message number is 999 .
11-28 Programming a BEA Tuxedo Application Using COBOL

Central Event Log

mode,
consist
rs
obal

 in the

 to
If the message is sent to the central event log while the process is in transaction
other components are added to the tag in the user log entry. These components
of the literal string gtrid followed by three long hexadecimal integers. The intege
uniquely identify the global transaction and make up what is referred to as the gl
transaction identifier, that is, the gtrid . This identifier is used mainly for
administrative purposes, but it also appears in the tag that prefixes the messages
central event log. If the system writes the message to the central event log in
transaction mode, the resulting log entry appears as follows:

162214.mach1!security.23451: gtrid x2 x24e1b803 x239:
 UNKNOWN USER

Writing to the Event Log

To write a message to the event log, you must perform the following steps:

� Assign the error message you wish to write to the log to a record and use the
record name as the argument to the call.

� Specify the literal text of the message within double quotes, as the argument
the USERLOG(3cbl) call, as shown in the following example.

01 TPSTATUS-REC.
 COPY TPSTATUS.
01 LOGMSG PIC X(50).
01 LOGMSG-LEN PIC S9(9) COMP-5.
. . .
CALL "TPOPEN" USING TPSTSTUS-REC.
IF NOT TPOK
 MOVE "TPSVRINIT: Cannot Open Data Base" TO LOGMSG
 MOVE 43 LOGMSG-LEN
 CALL "USERLOG" USING LOGMSG
 LOGMSG-LEN
 TPSTATUS-REC.
. . .

In this example, the message is sent to the central event log if TPOPEN(3cbl) returns
-1.

Programming a BEA Tuxedo Application Using COBOL11-29

11 Managing Errors
11-30 Programming a BEA Tuxedo Application Using COBOL

CHAPTER

12COBOL Language
Bindings for the
Workstation
Component

� UNIX Bindings

� Microsoft Windows Bindings

Refer to Using the BEA Tuxedo Workstation Component for more information on the
Workstation platform.

UNIX Bindings

The following sections describe how to write and build client programs, and set
appropriate environment variables when developing, in COBOL, a BEA Tuxedo
application on a UNIX platform.
Programming a BEA Tuxedo Application Using COBOL 12-1

12 COBOL Language Bindings for the Workstation Component

hat

 the

ries

sary

ied

d
r
Writing Client Programs

You can develop COBOL client programs for a UNIX platform in the same way t
you develop COBOL clients in the BEA Tuxedo administrative domain. All ATMI
calls are available.

Building Client Programs

To compile and link-edit Workstation client programs, use the buildclient(1)
command. If you are building a UNIX Workstation client on the native node, use
-w option to have the client built using the workstation libraries.

If you are building a client on a native node, and both native and workstation libra
are present, the native libraries are used by default. In this case, specifying the -w
option ensures that the correct libraries for a workstation client are used.

On a workstation, where only the workstation libraries are present, it is not neces
to specify -w .

The following example shows how to use the buildclient command on a native
node.

Listing 12-1 Example of Running buildclient on a UNIX Platform

ALTCC=cobcc ALTCFLAGS="-I /APPDIR/include"
COBCPY=$TUXDIR/cobinclude
COBOPT="-C ANS85 -C ALIGN=8 -C NOIBMCOMP -C TRUNC=ANSI -C OSEXT=cbl"
export COBOPT COBCPY ALTCC ALTCFLAGS
buildclient -C -w -o empclient -f name.cbl -f "userlib1.a userlib2.a"

The -o option enables you to specify a name for your output file. Input files specif
with the -f option are link-edited before system libraries.

As illustrated, the TUXDIR environment variable must be used to ensure that the
buildclient command can locate system libraries. Be sure that you have define
TUXDIR. The CC environment variable defaults to cc , but can be set to another compile
through ALTCC.
12-2 Programming a BEA Tuxedo Application Using COBOL

UNIX Bindings

off.

.
Setting Environment Variables

Workstation clients make use of several environment variables.

The following table lists the environment variables that are checked by TPINITIALIZE
when a workstation client attempts to join an application.

Table 12-1 Environment Variables Checked by TPINITIALIZE on UNIX
Platform

Environment
Variable

Description

WSENVFILE Name of a file containing environment variable settings to be
used in the client’s environment.

WSNADDR Network address of the workstation listener process through
which the client gains access to the application. Use the value
specified in the application configuration file for the workstation
listener to be called. If the value begins with the characters 0x ,
the system interprets it as a string of hexadecimal digits;
otherwise, the system interprets it as ASCII characters.

WSDEVICE Name of the device to be used to access the network. Not
required by all transport layer interfaces.

WSTYPE Workstation type. Used by TPINITIALIZE when that call is
invoked by a workstation client to negotiate encode/decode
responsibilities with the native site. If you do not specify
WSTYPE, the system performs encoding, even if WSTYPE is not
specified on the native site, either. You must explicitly specify
the same WSTYPE value for both the native and workstation
client sites to ensure that the encode/decode feature is turned

WSRPLYMAX Maximum amount of core memory that the ATMI uses for
buffering application replies before dumping them to disk. Used
by TPINITIALIZE . The default system limit is 256,000 bytes.
Whether you should use WSRPLYMAX to set a lower limit
depends on the amount of memory available on your machine
Writing replies to disk causes a substantial reduction in
performance.
Programming a BEA Tuxedo Application Using COBOL 12-3

12 COBOL Language Bindings for the Workstation Component

are

IX

s

he
Other environment variables may be needed by Workstation COBOL clients on a
UNIX workstation, depending on which components of the BEA Tuxedo system
being used.

Note: MicroFocus delivers LIBNSL.a as a shared object, which is required by
buildclient when linking a workstation client. Because MicroFocus
COBOL does not support shared objects on UNIX 3.2, Workstation for UN
3.2 is not supported.

Microsoft Windows Bindings

The following sections describe how to write and build client programs, build
ACCEPT/DISPLAY clients, block network behavior, and restore the network
environment when developing, in COBOL, a BEA Tuxedo application for the
Microsoft Windows platform.

Writing Client Programs

All program-specific ATMI calls are available.

WSFADDR The network address used by the workstation client when
connecting to the workstation listener or workstation handler.
This variable, along with the WSFRANGE variable, determines
the range of TCP/IP ports to which a workstation client will
attempt to bind before making an outbound connection. This
address must be a TCP/IP address.

WSFRANGE The range of TCP/IP ports to which a workstation client proces
attempts to bind before making an outbound connection. The
WSFADDR parameter specifies the base address of the range. T
default is 1.

Environment
Variable

Description
12-4 Programming a BEA Tuxedo Application Using COBOL

Microsoft Windows Bindings

e
rd,

Building Client Programs

To compile the COBOL source files that call the ATMI, you must use the COBOL
compiler with the LITLINK option. To link-edit the Workstation client object files, us
the buildclient(1) command. While the syntax of the command is straightforwa
the usage varies according to the compilation system used.

The following example shows how to use the buildclient command.

Listing 12-2 Example of Running buildclient on a Windows Platform

COBCPY=C:\TUXEDO\COBINC
COBDIR=C:\COBOL\LBR;C:\COBOL\EXEDLL
PATH=C:\COBOL\EXEDLL;...
TUXDIR=C:\tuxedo
LIB=C:\NET\TOOLKIT\LIB;C:\MSVC\LIB;C:\TUXEDO\LIB;C:\COBOL\LIB
buildclient -C -o EMP.EXE -f EMP -f "/NOD/NOI/NOE/CO/SE:300" -l WLIBSOCK

For Windows NT:

buildclient -C -o EMP.EXE -f empobj

The following table describes the buildclient command options used in the
preceding example.

Table 12-2 buildclient Command Options for Windows Platform

Option Description

-o name Name of the executable file being created. The default is
client.exe .

-f firstfiles One or more object files to be included before the BEA Tuxedo
libraries. You can use the -f option to pass options to the
compiler or linker. To specify more than one filename, enter a
list of files after -f , using white space to separate filenames and
double quotation marks around the list. You can also specify
multiple filenames using multiple occurrences of the -f option
on the command line.
Programming a BEA Tuxedo Application Using COBOL 12-5

12 COBOL Language Bindings for the Workstation Component

 by
so
Building ACCEPT/DISPLAY Clients

The following example shows how to build an executable client for an
ACCEPT/DISPLAY application, such as CSIMPAPP.

Listing 12-3 Building ACCEPT/DISPLAY clients

a) compile the COBOL module and create a file.obj
 cobol file.cbl omf(obj) litlink;
b) use the following link statement
 link FILE+cblwinaf,,,\
 wcobatmi+cobws+wtuxws+ \
 lcobol+lcoboldw+cobw+cobfp87w+ \
 wlibsock,FILE.def /nod/noe;
 For Windows NT the link statement is:
 cbllink -oEMP.exe EMP.obj \
 cobws.lib ncobatmi.lib wtuxws32.lib \
 libcmt.lib user32.lib

-l libfiles Libraries to be included after the BEA Tuxedo libraries. To
specify more than one filename, you must separate the names
white space and enclose the list in quotation marks. You can al
specify multiple filenames using multiple occurrences of the -l
option on the command line.

Option Description
12-6 Programming a BEA Tuxedo Application Using COBOL

	Copyright
	1 Introduction to BEA Tuxedo Programming
	BEA Tuxedo Distributed Application Programming
	Communication Paradigms
	BEA Tuxedo Clients
	BEA Tuxedo Servers
	Basic Server Operation
	Servers as Requesters

	BEA Tuxedo API: ATMI

	2 Programming Environment
	Updating the UBBCONFIG Configuration File
	Setting Environment Variables
	Defining Equivalent Data Types
	Starting and Stopping the Application

	3 Managing Typed Records
	Overview of Typed Records
	Defining Typed Records
	Using a VIEW Typed Record
	Setting Environment Variables for a VIEW Typed Record
	Creating a View Description File
	Executing the VIEW Compiler

	Using an FML Typed Record
	Setting Environment Variables for an FML Typed Record
	Creating a Field Table File
	Initializing a Typed Record
	Creating an FML Header File

	Using an XML Typed Record

	4 Writing Clients
	Joining an Application
	Using Features of the TPINFDEF-REC Record
	Client Naming
	Unsolicited Notification Handling
	System Access Mode
	Resource Manager Association
	Client Authentication

	Leaving the Application
	Building Clients
	See Also

	Client Process Examples

	5 Writing Servers
	BEA Tuxedo System Controlling Program
	System-supplied Server and Services
	System-supplied Server: AUTHSVR()
	System-supplied Services: TPSVRINIT Routine
	System-supplied Services: TPSVRDONE Routine

	Guidelines for Writing Servers
	Defining a Service
	Terminating a Service Routine
	Sending Replies
	Invalidating Descriptors
	Forwarding Requests

	Advertising and Unadvertising Services
	Advertising Services
	Unadvertising Services
	Example: Dynamic Advertising and Unadvertising of a Service

	Building Servers
	See Also

	6 Writing Request/Response Clients and Servers
	Overview of Request/Response Communication
	Sending Synchronous Messages
	Example: Using the Same Record for Request and Reply Messages
	Example: Sending a Synchronous Message with TPSIGRSTRT Set
	Example: Sending a Synchronous Message with TPNOTRAN Set

	Sending Asynchronous Messages
	Sending an Asynchronous Request
	Getting an Asynchronous Reply

	Setting and Getting Message Priorities
	Setting a Message Priority
	Getting a Message Priority

	7 Writing Conversational Clients and Servers
	Overview of Conversational Communication
	Joining an Application
	Establishing a Connection
	Sending and Receiving Messages
	Sending Messages
	Receiving Messages

	Ending a Conversation
	Example: Ending a Simple Conversation
	Example: Ending a Hierarchical Conversation
	Executing a Disorderly Disconnect

	Building Conversational Clients and Servers
	Understanding Conversational Communication Events

	8 Writing Event-based Clients and Servers
	Overview of Events
	Unsolicited Events
	Brokered Events

	Defining the Unsolicited Message Handler
	Sending Unsolicited Messages
	Broadcasting Messages By Name
	Broadcasting Messages by Identifier

	Checking for Unsolicited Messages
	Getting Unsolicited Messages
	Subscribing to Events
	Unsubscribing from Events
	Posting Events

	9 Writing Global Transactions
	What Is a Global Transaction?
	Starting the Transaction
	Terminating the Transaction
	Committing the Current Transaction
	Aborting the Current Transaction
	Example: Committing a Transaction in Conversational Mode
	Example: Testing for Participant Errors

	Implicitly Defining a Global Transaction
	Defining Global Transactions for an XA-Compliant Server Group
	Testing Whether a Transaction Has Started
	See Also

	10 Programming a Multithreaded and Multicontexted Application
	Support for Programming a Multithreaded/Multicontexted Application
	Platform-specific Considerations for Multithreaded/Multicontexted Applications

	Planning and Designing a Multithreaded/Multicontexted Application
	What Are Multithreading and Multicontexting
	What Is Multithreading
	What Is Multicontexting
	Licensing a Multithreaded or Multicontexted Application

	Advantages and Disadvantages of a Multithreaded/Multicontexted Application
	Advantages of a Multithreaded/Multicontexted Application
	Disadvantages of a Multithreaded/Multicontexted Application

	How Multithreading and Multicontexting Work in a Client
	Start-up Phase
	Work Phase
	Completion Phase

	How Multithreading and Multicontexting Work in a Server
	Start-up Phase
	Work Phase
	Completion Phase

	Design Considerations for a Multithreaded and Multicontexted Application
	Environment Requirements
	Design Requirements
	Is the Task of Your Application Suitable for Multithreading and/or Multicontexting
	How Many Applications and Connections Do You Want
	What Synchronization Issues Need to Be Addressed
	Will You Need to Port Your Application
	Which Threads Model Is Best for You
	Interoperability Restrictions for Workstation Clients

	Implementing a Multithreaded/ Multicontexted Application
	Preliminary Guidelines for Programming a Multithreaded/Multicontexted Application
	Prerequisites for a Multithreaded Application
	General Multithreaded Programming Considerations
	Concurrency Considerations

	Writing Code to Enable Multicontexting in a Client
	Context Attributes
	Setting Up Multicontexting at Initialization
	Implementing Security for a Multicontexted Client
	Synchronizing Threads Before a Client Termination
	Switching Contexts
	Handling Unsolicited Messages
	Coding Rules for Transactions in a Multithreaded/Multicontexted Application

	Writing Code to Enable Multicontexting and Multithreading in a Server
	Context Attributes
	Coding Rules for a Multicontexted Server
	Initializing and Terminating Servers and Server Threads
	Programming a Server to Create Threads
	Sample Code for Creating an Application Thread in a Multicontexted Server

	Writing a Multithreaded Client
	Coding Rules for a Multithreaded Client
	Initializing a Client to Multiple Contexts
	Context State Changes for a Client Thread
	Getting Replies in a Multithreaded Environment
	Using Environment Variables in a Multithreaded and/or Multicontexted Environment
	Using Per-context Functions and Data Structures in a Multithreaded Client
	Using Per-process Functions and Data Structures in a Multithreaded Client
	Using Per-thread Functions and Data Structures in a Multithreaded Client
	Sample Code for a Multithreaded Client

	Writing a Multithreaded Server
	Compiling Code for a Multithreaded/Multicontexted Application
	Testing a Multithreaded/Multicontexted Application
	Testing Recommendations for a Multithreaded/Multicontexted Application
	Troubleshooting a Multithreaded/Multicontexted Application
	Error Handling for a Multithreaded/Multicontexted Application

	11 Managing Errors
	System Errors
	Abort Errors
	BEA Tuxedo System Errors
	Communication Handle Errors
	Limit Errors
	Invalid Descriptor Errors

	Conversational Errors
	Duplicate Object Error
	General Communication Call Errors
	TPESVCFAIL and TPESVCERR Errors
	TPEBLOCK and TPGOTSIG Errors

	Invalid Argument Errors
	No Entry Errors
	Operating System Errors
	Permission Errors
	Protocol Errors
	Queuing Error
	Release Compatibility Error
	Resource Manager Errors
	Time-out Errors
	Transaction Errors
	Typed Record Errors
	Application Errors
	Handling Errors
	Transaction Considerations
	Communication Etiquette
	Transaction Errors
	Non-fatal Transaction Errors
	Fatal Transaction Errors
	Heuristic Decision Errors

	Transaction Time-outs
	TPNOTRAN
	TPRETURN and TPFORWAR Calls

	tpterm() Function
	Resource Managers
	Sample Transaction Scenarios
	Called Service in Same Transaction as Caller
	Called Service in Different Transaction with AUTOTRAN Set
	Called Service that Starts a New Explicit Transaction

	BEA TUXEDO System-supplied Subroutines
	Central Event Log
	Log Name
	Log Entry Format
	Writing to the Event Log

	12 COBOL Language Bindings for the Workstation Component
	UNIX Bindings
	Writing Client Programs
	Building Client Programs
	Setting Environment Variables

	Microsoft Windows Bindings
	Writing Client Programs
	Building Client Programs
	Building ACCEPT/DISPLAY Clients

