
Setting Up a BEA Tuxedo

B E A T u x e d o R e l e a s e 7 . 1
D o c u m e n t E d i t i o n 7 . 1

M a y 2 0 0 0

Application

BEA Tuxedo

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INC LUDING WITHOUT LIMITA TION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIAB ILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, and WebLogic Enterprise
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Setting Up a BEA Tuxedo Application

Document Edition Date Software Version

7.1 May 2000 BEA Tuxedo Release 7.1

Contents

1. Administrative Tasks and Tools
Tasks an Administrator Performs.. 1-1

Setup Tasks .. 1-1

Run-time Tasks .. 1-2

Planning the Design of Your Application ... 1-4

Tools to Help You Administer Your Application ... 1-6

2. About the Configuration File
What Is the Configuration File .. 2-1

Text and Binary Versions of the Configuration File.................................. 2-1

Contents of the Configuration File .. 2-2

3. Creating the Configuration File
How to Create a Configuration File .. 3-2

How to Create the Configuration File for a Single-machine Application......... 3-2

How to Create the Configuration File for a Multiple-machine (Distributed)
Application ... 3-3

How to Create the Configuration File for a Multiple-domain Application....... 3-4

How to Create the RESOURCES Section of the Configuration File................ 3-7

Sample RESOURCES Section... 3-9

Defining the Application Type.. 3-9

Characteristics of the MODEL and OPTIONS Parameters 3-10

Example Settings.. 3-10

Controlling the Number of Buffer Types and Subtypes.................................. 3-11

Characteristics of the MAXBUFTYPE and MAXBUFSTYPES
Parameters ... 3-11

Example Settings.. 3-11
Setting Up a BEA Tuxedo Application iii

Controlling the Number of Conversations... 3-12

Characteristics of the MAXCONV Parameter ... 3-12

Example Setting.. 3-12

Defining IPC Limits .. 3-12

Characteristics of MAXACCESSERS, MAXSERVERS, and
MAXSERVICES Parameters .. 3-13

Example Settings .. 3-14

Enabling Load Balancing .. 3-15

Characteristics of the LDBAL Parameter... 3-15

Example Settings .. 3-16

Identifying the Master Machine .. 3-16

Characteristics of the MASTER Parameter.. 3-16

Example Settings .. 3-17

Specifying the Maximum Number of Network Groups 3-17

Specifying the Number of Sanity Checks and Blocking Timeouts 3-17

Characteristics of the SCANUNIT, SANITYSCAN, and BLOCKTIME
Parameters ... 3-18

Timeouts for Blocking ATMI Operations.. 3-18

Example Settings .. 3-19

Establishing Operating System-level Security .. 3-19

Characteristics of the UID, GID, and PERM Parameters 3-20

Specifying the Security Level.. 3-21

Characteristics of the SECURITY and AUTHSVC Parameters 3-21

Defining the Security Attributes of a Server ... 3-22

Protecting Shared Memory .. 3-23

Characteristics of the PROTECTED, FASTPATH, and NO_OVERRIDE
Parameters ... 3-24

Example Settings .. 3-24

Setting the Address of the System Resources for an Application 3-24

Characteristics of the IPCKEY Parameter ... 3-25

Example Settings .. 3-25

Specifying How Clients Receive Unsolicited Notification 3-25

Characteristics of the NOTIFY and USIGNAL Parameters 3-26

How to Create the MACHINES Section of the Configuration File 3-27

Sample MACHINES Section ... 3-30
iv Setting Up a BEA Tuxedo Application

3-39

-39

-40

-40

-41

3-41

3-41

-42

3-42

3-43

3-43

3-43

3-44

3-45

-46

-46

. 3-47

-48
Specifying the Maximum Number of ACL Entries in the Cache 3-32

Defining an Additional Service Request Load .. 3-33

Reserving the Physical Address and Machine ID ... 3-33

Characteristics of the Address and the LMID Parameter......................... 3-34

Setting the Number of Lock Spins .. 3-34

Characteristics of the SPINCOUNT Parameter 3-34

Specifying Machines as Types .. 3-35

Characteristics of the TYPE Parameter.. 3-35

Identifying the Location of the Configuration File ... 3-36

Characteristics of the TUXCONFIG Parameter....................................... 3-36

Indicating the Size of the DTP Transaction Log ... 3-36

Defining the DTP Transaction Log Name... 3-37

Specifying Environment Variable Settings ... 3-37

Characteristics of the ENVFILE Parameter ... 3-38

Defining the BEA Tuxedo File System Containing the TLOG 3-38

Specifying a Machine’s Maximum Number of Simultaneous Global
Transactions ...

Defining the Number of Accesser Entries on a Workstation Client 3

Defining Space Limits for Messages Transmitted by the BRIDGE................ 3

Indicating the Offset for the DTP Transaction Log... 3

Defining the Offset for TUXCONFIG .. 3

Characteristics of the TUXOFFSET Parameter

Identifying the Locations of the System Software and Application Server
Software ...

Characteristics of the APPDIR and TUXDIR Parameters 3

Indicating a Threshold Message Size for Compression

Example..

Specifying the Path Name for the ULOG..

Characteristics of the ULOGPFX Parameter ...

How to Create the GROUPS Section of the Configuration File

Sample GROUPS Section ..

Specifying a Group Name, Number, and LMID ... 3

Characteristics of the Group Name, Group Number, and LMID............. 3

Indicating a Transaction Manager Server Name and Numbers per Group

Identifying the Environment File Location for Servers in a Group 3
Setting Up a BEA Tuxedo Application v

Defining Information Needed When Opening and Closing the Resource
Manager .. 3-48

How to Create the NETWORK Section of the Configuration File 3-51

Sample NETWORK Section .. 3-52

Specifying a Device Name for the BRIDGE Process...................................... 3-52

Assigning a BRIDGE Network Address ... 3-53

Assigning Encryption Levels... 3-54

Example.. 3-54

Assigning a tlisten Network Address .. 3-54

How to Create the NETGROUPS Section of the Configuration File.............. 3-56

Sample Network Groups Configuration... 3-57

Configuring a Sample UBBCONFIG File with Netgroups...................... 3-58

Assigning a Name to a Network Group... 3-59

Assigning a Network Group Number .. 3-60

Assigning a Priority to the Network Group... 3-60

How to Create the SERVERS Section of the Configuration File.................... 3-60

Sample SERVERS Section... 3-64

Specifying a Server as Conversational .. 3-66

Characteristics of the CONV Parameter... 3-66

Setting the Order in Which Servers Are Booted ... 3-66

Characteristics of the SEQUENCE, MIN, and MAX Parameters................... 3-67

Specifying Server Command-line Options.. 3-68

Characteristics of the CLOPT Parameter ... 3-69

Identifying the Location of the Server Environment File................................ 3-69

Characteristics of the Server Environment File.. 3-70

Defining Server Name, Group, and ID.. 3-70

Characteristics of the Server Name, SRVGRP, and SRVID Parameters . 3-70

Identifying Server Queue Information... 3-71

MSSQ Example .. 3-71

Characteristics of the RQADDR, RQPERM, REPLYQ, and RPPERM
Parameters ... 3-72

Defining Server Restart Information ... 3-73

Characteristics of the RESTART, RCMD, MAXGEN, and GRACE
Parameters ... 3-73

Defining Server Access to Shared Memory .. 3-74
vi Setting Up a BEA Tuxedo Application

Characteristics of the SYSTEM_ACCESS Parameter............................. 3-74

Defining the Server Dispatch Threads .. 3-75

How to Create the SERVICES Section of the Configuration File 3-75

Sample SERVICES Section ... 3-77

Specifying Automatic Starts and Timeout Intervals for Transactions 3-77

Specifying a List of Allowable Buffer Types for a Service 3-78

Examples of the BUFTYPE Parameter .. 3-78

Designating How Much Time to Process a Request 3-79

What Happens When a Timeout Occurs .. 3-79

How a Service Timeout Is Reported .. 3-80

Enabling Load Balancing .. 3-81

Characteristics of the LDBAL Parameter .. 3-81

Defining the Name of the Routing Criteria ... 3-82

Specifying Service Parameters for Different Server Groups 3-82

Controlling the Flow of Data by Service Priority ... 3-82

Characteristics of the PRIO Parameter... 3-83

Sample SERVICES Section Using Different Priorities 3-83

Indicating Service Processing Time .. 3-83

How to Create the ROUTING Section of the Configuration File 3-84

ROUTING Section Example.. 3-85

Defining the Routing Buffer Field and Field Type ... 3-85

Specifying Range Criteria ... 3-86

Defining Buffer Types... 3-87

How to Configure the BEA Tuxedo System to Take Advantage of Threads . 3-87

How to Compile a Configuration File ... 3-90

4. About Transactions
What Is a Transaction.. 4-1

What Are the ACID Properties .. 4-2

How a Transaction Succeeds or Fails .. 4-3

Benefits of Using Transactions ... 4-3

Example of a Global Transaction .. 4-4

What Is the BEA Tuxedo Transaction Manager (TM)...................................... 4-5

How the System Tracks Distributed Transaction Processing............................ 4-6

How the System Uses Global Transaction Identifiers (GTRIDs) for
Setting Up a BEA Tuxedo Application vii

4-10

. 4-12

5-1

.. 5-2

5-3

. 5-4

5-4

.. 5-5

... 5-6

.. 5-6

.. 5-7

.. 5-8

... 5-9

-10

0

11

-12

5-13

-14

5-15

-16

. 5-17

. 6-1

6-3
Tracking .. 4-7

How the System Uses a Transaction Log (TLOG) for Tracking 4-8

How the System Uses a 2-Phase Commit to Commit Transactions.................. 4-8

How the System Handles Transaction Infection .. 4-9

How the ATMI Protects a Transaction’s Integrity Before a 2-Phase
Commit..

See Also...

5. Configuring Your Application to Use Transactions
Modifying the UBBCONFIG File to Accommodate Transactions

Specifying Global Transaction Parameters in the RESOURCES Section

Creating a Transaction Log (TLOG) in the MACHINES Section

Creating the UDL ..

Defining Transaction-related Parameters in the MACHINES Section

Creating the Domains Transaction Log..

See Also...

Defining Resource Managers and the Transaction Manager Server in the
GROUPS Section ...

Sample of the GROUPS Section ..

Enabling a Service to Begin a Transaction in the SERVICES Section...........

Characteristics of the AUTOTRAN, TRANTIME, and ROUTING
Parameters ..

Modifying the Domains Configuration File to Support Transactions 5

Characteristics of the DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE,
MAXRDTRAN, and MAXTRAN Parameters5-1

Characteristics of the AUTOTRAN and TRANTIME Parameters.......... 5-

Example: A Distributed Application with Transactions.................................. 5

Sample RESOURCES Section...

Sample MACHINES Section ...5

Sample GROUPS and NETWORK Sections ...

Sample SERVERS, SERVICES, and ROUTING Sections5

See Also...

6. Distributing Applications Across a Network
What Is a Distributed Application ..

Example of a Distributed Application..
viii Setting Up a BEA Tuxedo Application

Implementing a Distributed Application.. 6-4

Why Distribute an Application Across a Network.. 6-5

Features of a Distributed Application .. 6-6

7. Creating the Configuration File for a Distributed Application
Configuration File Requirements for a Distributed Application 7-2

Creating the RESOURCES Section .. 7-3

Creating the MACHINES Section... 7-5

Creating the GROUPS Section.. 7-7

Creating the SERVICES Section... 7-8

Creating the ROUTING Section ... 7-10

Example Configuration File for a Distributed Application 7-12

Modifying the Domain Gateway Configuration File to Support Routing....... 7-13

Description of ROUTING Section Parameters in DMCONFIG.............. 7-13

8. Setting Up the Network for a Distributed Application
Configuring the Network for a Distributed Application 8-1

How Data Moves Over a Network .. 8-5

How Data Moves Over Parallel Networks .. 8-6

Example of a Network Configuration for a Simple Distributed Application.... 8-8

How Failover and Failback Work in Scheduling Network Data....................... 8-8

Example Configuration of Multiple Netgroups... 8-9

Configuration File for the Sample Network... 8-11

Assigning Priorities for Each Network Group ... 8-11

9. About Workstation Clients
What Is the Workstation Component .. 9-1

Sample Application with Four Workstation Clients ... 9-2

How the Workstation Client Connects to an Application 9-4

10. Setting Up Workstation Clients
Defining Workstation Clients.. 10-1

Specifying the Maximum Number of Workstation Clients............................. 10-3

Defining a Workstation Listener (WSL) as a Server....................................... 10-4

Passing Information to a WSL Process .. 10-4

Using Command-line Options Set with CLOPT...................................... 10-5
Setting Up a BEA Tuxedo Application ix

Detecting Network Failures ... 10-7

Using the Keep-alive Option ... 10-8

Limitations When Using the Keep-alive Option 10-9

Using the Network Timeout Option .. 10-10

How Network Timeout Works ... 10-10

Limitations When Using the Network Timeout Option 10-11

Setting the Network Timeout Option ... 10-11

Sample Configuration File that Supports Workstation Clients 10-11

Modifying the MACHINES and SERVERS Sections 10-12
x Setting Up a BEA Tuxedo Application

CHAPTER

r

1 Administrative Tasks
and Tools

n Tasks an Administrator Performs

n Planning the Design of Your Application

n Tools to Help You Administer Your Application

Tasks an Administrator Performs

An administrator’s job can be viewed as two broadly defined tasks:

n Setup tasks—all the tasks required to prepare your system before booting you
application

n Run-time administration—any tasks performed on an application that has been
booted

Setup Tasks

During the setup phase, an administrator is responsible for the planning, design,
installation, security, and configuration of the BEA Tuxedo system. The following
table describes the required and optional tasks during the setup phase.
Setting Up a BEA Tuxedo Application 1-1

1 Administrative Tasks and Tools

ble
Run-time Tasks

With your BEA Tuxedo system installed and your TUXCONFIG file loaded, you are
ready to boot your application. When your application is launched, you must start
monitoring its activities for problems—both actual and potential. The following ta
describes the required and optional tasks during the run-time phase.

Setup Task Required Optional

Collect information from designers, programmers, and
business users of the application

X

Set up the hardware and software, and install the BEA Tuxedo
system and the application (installation)

X

Set up the BEA Tuxedo system parameters that govern how the
application uses components (configuration)

X

Configure transactions for domains, machines, groups,
interfaces, services, and other required components
(configuration)

X

Select and implement security methods for protecting the
application and data

X

Set up distributed applications with routing tools X

Set up networked applications X

Configure local and remote domains X

Set up Workstation clients: add environment tables and a
Workstation Listener, and modify the machine configuration

X

Create an application queue space and modify the
configuration to support queued messages

X

Run-Time Task Required Optional

Start up and shut down an application X
1-2 Setting Up a BEA Tuxedo Application

Tasks an Administrator Performs
During run time, you may need to respond quickly to potential problems or evolving
requirements of an application. To help you perform these functions, you have a choice
of three tools: the BEA Administration Console, the command-line interface, and the
AdminAPI. The following chart describes some of the circumstances in which your
intervention may be needed.

Manage buffers X

Administer the security of your application X

Monitor the activities, problems, and performance of your
application

X

Manage transactions X

Manage networked applications X

Manage remote Workstation clients X

Subscribe to events X

Use queued messaging X

Identify and resolve problems as they occur (troubleshoot) X

Reassign primary responsibility for your application from the
MASTER machine to an alternate (BACKUP) machine
(migration) when problems occur on the MASTER (migration)

X

Change system parameters and the selection of services to meet
evolving needs (dynamic modification)

X

Refine your application to reflect additional components, such
as new machines or servers (dynamic reconfiguration)

X

To You May Want To

Maximize performance Add load balancing or set priorities for
interfaces and services

Fix problems that may develop on the
MASTER machine

Replace it with a designated BACKUP machine

Run-Time Task Required Optional
Setting Up a BEA Tuxedo Application 1-3

1 Administrative Tasks and Tools

e
k with
tion’s

f

hey

See Also

n “Planning the Design of Your Application” on page 1-4

n “Tools to Help You Administer Your Application” on page 1-6

Planning the Design of Your Application

An administrator needs to know a customer’s business requirements and how th
software will be used. Once these needs are understood, administrators can wor
their system designers and application developers to make sure that the applica
configuration can support its requirements.

Answers to the following preliminary questions may help in planning the design o
your application.

1. How many machines will be used? ____________________

2. Will client applications reside on machines that are remote from the server
applications? _______________________

3. Which services will your BEA Tuxedo application offer?

4. What resource managers (database) will the application use and where will t
be located?

Change processing and resource usage
requirements

Add machines, servers, clients, interfaces,
services, and so on

To You May Want To
1-4 Setting Up a BEA Tuxedo Application

Planning the Design of Your Application

rts

5. What “open” strings will the resource managers need?

6. What setup information will be needed for an RDBMS?

__

7. Will transactions be distributed? ________________

8. Will the application use global transactions? ________________

9. What buffer types will be used?
__

10. Will data be distributed across machines?

11. To which external domains will the application export services? From which
external domains will the application import services?

__

12. Will data-dependent routing be used? _________________

13. In what order of priority should services be available?

__

14. What are the reliability requirements? Will redundant listener and handler po
be needed? Will replicated server applications be needed?

15. Are there any conversational services?

__
Setting Up a BEA Tuxedo Application 1-5

1 Administrative Tasks and Tools

he
hical
See Also

n “Tools to Help You Administer Your Application” on page 1-6

Tools to Help You Administer Your
Application

The BEA Tuxedo system gives you a choice of several methods for performing t
same set of administrative tasks. Whether you are more comfortable using a grap
user interface or entering commands at a shell prompt, you will be able to find a
comfortable method of doing your job as the administrator of a BEA Tuxedo
application. The following figure illustrates the tools you can use to write the
configuration file and administer your BEA Tuxedo application during runtime.

Figure 1-1 Administration Tools
1-6 Setting Up a BEA Tuxedo Application

Tools to Help You Administer Your Application

,

re,
n BEA Administration Console—a Web-based tool used to monitor an application
and to dynamically configure its operation.

n BEA Tuxedo MIB Application Programming Interface—an interface to a set of
procedures for accessing and modifying information in the MIBs.

n Command-line utilities—a set of commands used to manage, activate, configu
and deactivate the application (that is, tmadmin(1), tmboot(1), tmconfig,
wtmconfig(1), tmshutdown(1), respectively). (See the BEA Tuxedo Command
Reference.)

If You Use this Tool You Must

BEA Administration Console Use a graphical user interface (GUI) to create and edit the
TUXCONFIG file. Full descriptions of the GUI are
available by accessing Help directly from the GUI.

BEA Tuxedo MIB Application
Programming Interface

Write a program that modifies the TUXCONFIG file for
you.

Command-line interface 1. Create and edit the UBBCONFIG file (a text version of
TUXCONFIG) with a text editor.

2. Run tmloadcf to convert the UBBCONFIG file into a
TUXCONFIG (binary) file.

(For specific details about the tmloadcf command
options, see tmloadcf(1) in BEA Tuxedo Command
Reference.)
Setting Up a BEA Tuxedo Application 1-7

1 Administrative Tasks and Tools
See Also

n “Using the BEA Administration Console” on page 3-4 in Introducing the BEA
Tuxedo System

n “Managing Operations Using the MIB” on page 3-10 in Introducing the BEA
Tuxedo System

n “Using Command-Line Utilities” on page 3-12 in Introducing the BEA Tuxedo
System

n “Tasks an Administrator Performs” on page 1-1

n “BEA Tuxedo System Architecture” on page 2-1 in Introducing the BEA Tuxedo
System

n ACL_MIB(5), APPQ_MIB(5), EVENT_MIB(5), MIB(5), TM_MIB(5), WS_MIB(5),
and UBBCONFIG(5) in BEA Tuxedo File Formats and Data Descriptions
Reference

n tmshutdown(1) in BEA Tuxedo Command Reference
1-8 Setting Up a BEA Tuxedo Application

CHAPTER
2 About the
Configuration File

n What Is the Configuration File

n Contents of the Configuration File

What Is the Configuration File

Configuring each BEA Tuxedo application is a central task of the administrator. By
configuring a file, you are describing your application using a set of parameters that
the software interprets to create a viable application. The configuration file is a
repository that contains all the information necessary to boot and run an application,
such as specifications for application resources, machines, machine groups, servers,
available services, and so on.

Text and Binary Versions of the Configuration File

The configuration file exists in two versions:

n The UBBCONFIG file is a text version of the configuration file, created and edited
with any text editor. Except for sample configuration files distributed with BEA
Tuxedo sample applications, no UBBCONFIG file is provided. You must create a
UBBCONFIG file for each new application. The syntax used for entries in the file
Setting Up a BEA Tuxedo Application 2-1

2 About the Configuration File

 the
is described in the UBBCONFIG(5) in BEA Tuxedo File Formats and Data
Descriptions Reference.

Note: The BEA Tuxedo software provides three sample UBBCONFIG files—
ubbshm, ubbmp, and ubbsimple—as part of the bankapp and simpapp
applications. (See Tutorials for Developing a BEA Tuxedo Application.)

n The TUXCONFIG file is a binary version of the configuration file, created from
the text version by the tmloadcf(1) command. Before tmloadcf is executed,
the environment variable TUXCONFIG must be set to the full path name of the
device or system file where TUXCONFIG is to be loaded. If necessary, many
parameters in TUXCONFIG can be changed while the application is running by
using tmconfig, wtmconfig(1) or the MIB.

Contents of the Configuration File

The following table lists the eight sections of the configuration file and describes
purpose of each section.

This Section Required
or Optional

Purpose

RESOURCES Required Defines all system parameters.

MACHINES Required Specifies all the machines in your application.

GROUPS Required Defines all groups, group names, and group IDs for your
application.

SERVERS Optional Specifies the initial conditions for servers started in the
system.

SERVICES Optional Provides information on services used by the application.

NETWORK Optional Describes the network configuration for a LAN
environment.

NETGROUPS Optional Describes the network groups available to the application
in the LAN environment.
2-2 Setting Up a BEA Tuxedo Application

Contents of the Configuration File
The file must also contain a minimum of nine parameters. There are 80 different
parameters, and all sections but the first, may contain multiple entries, each with its
own selection of parameters. In all sections other than RESOURCES, you can use a
default to specify parameters that are included in multiple entries.

You can use the command-line interface or BEA Administration Console to create the
binary version of the configuration file (TUXCONFIG). First you need to determine the
type of configuration you are defining in the file.

n A single-machine application—One or more local or remote clients
communicate with one or more servers residing on the same machine.

n A multiple-machine (distributed) application—One or more local or remote
clients communicate with one or more servers residing on several machines.

n A multiple-domain application—Two or more applications communicate with
each other through the use of the BEA Tuxedo Domains extension. Each
application included in such a configuration is called a domain.

See Also

n “How to Create a Configuration File” on page 3-2

n “What Is a Single-machine Configuration” on page 3-43 in Introducing the BEA
Tuxedo System

n “What Is a Multiple-machine (Distributed) Configuration” on page 3-45 in
Introducing the BEA Tuxedo System

n “What Is a Multiple-domain Configuration” on page 3-49 in Introducing the
BEA Tuxedo System

n “How to Create the TUXCONFIG File” on page 1-4 in Administering a BEA
Tuxedo Application at Run Time

ROUTING Optional Provides information for data-dependent routing of
service requests using FML buffers and views.

This Section Required
or Optional

Purpose
Setting Up a BEA Tuxedo Application 2-3

2 About the Configuration File
2-4 Setting Up a BEA Tuxedo Application

CHAPTER
3 Creating the
Configuration File

n How to Create a Configuration File

n How to Create the Configuration File for a Single-machine Application

n How to Create the Configuration File for a Multiple-machine (Distributed)
Application

n How to Create the Configuration File for a Multiple-domain Application

n How to Create the RESOURCES Section of the Configuration File

n How to Create the MACHINES Section of the Configuration File

n How to Create the GROUPS Section of the Configuration File

n How to Create the NETWORK Section of the Configuration File

n How to Create the NETGROUPS Section of the Configuration File

n How to Create the SERVERS Section of the Configuration File

n How to Create the SERVICES Section of the Configuration File

n How to Create the ROUTING Section of the Configuration File

n How to Configure the BEA Tuxedo System to Take Advantage of Threads

n How to Compile a Configuration File
Setting Up a BEA Tuxedo Application 3-1

3 Creating the Configuration File

the
How to Create a Configuration File

Configuration file requirements are determined by the needs of your application.
Following are instructions for several types of configurations:

n How to Create the Configuration File for a Single-machine Application

n How to Create the Configuration File for a Multiple-machine (Distributed)
Application

n How to Create the Configuration File for a Multiple-domain Application

n How to Configure the BEA Tuxedo System to Take Advantage of Threads

See Also

n “About the Configuration File” on page 2-1

n UBBCONFIG(5) in BEA Tuxedo File Formats and Data Descriptions Reference

How to Create the Configuration File for a
Single-machine Application

For a single-machine configuration, you need to create the following sections of
configuration file. Click on each task for instructions on completing that task.

1. Create the RESOURCES section of the configuration file.

2. Create the MACHINES section of the configuration file.

3. Create the GROUPS section of the configuration file.

4. Create the SERVERS section of the configuration file.
3-2 Setting Up a BEA Tuxedo Application

How to Create the Configuration File for a Multiple-machine (Distributed) Application
5. Create the SERVICES section of the configuration file.

6. Create the ROUTING section of the configuration file.

You can also click on any area of the following diagram to learn how to create the
section named in that area.

How to Create the Configuration File for a
Multiple-machine (Distributed) Application

For a distributed application, you need to create the following sections of the
configuration file. Click on each of the following tasks for instructions on completing
that task.

1. Create the RESOURCES section of the configuration file.

2. Create the MACHINES section of the configuration file.

3. Create the GROUPS section of the configuration file.

4. Create the NETWORK section of the configuration file.

5. Create the NETGROUPS section of the configuration file.
Setting Up a BEA Tuxedo Application 3-3

3 Creating the Configuration File
6. Create the SERVERS section of the configuration file.

7. Create the SERVICES section of the configuration file.

8. Create the ROUTING section of the configuration file. (optional)

You can also click on any area of the following diagram to learn how to create the
section named in that area.

How to Create the Configuration File for a
Multiple-domain Application

For a multiple-domain configuration, you need to create two configuration files for
each participating domain:

n UBBCONFIG—the application configuration file

n DMCONFIG—the domains configuration file
3-4 Setting Up a BEA Tuxedo Application

How to Create the Configuration File for a Multiple-domain Application
For an application that consists of two domains (for example, lapp and rapp for local
and remote domains, respectively), the following tasks are required.

Click on each task for instructions on completing that task.

Figure 3-1 Configuration Tasks for a Sample Multiple-domain Application

The following diagram shows which sections of the UBBCONFIG and DMCONFIG files
you need to configure for a 2-domain application. One domain represents the local
domain; the other, the remote domain.
Setting Up a BEA Tuxedo Application 3-5

3 Creating the Configuration File
Click on any area of the following diagram for instructions on creating that section of
the configuration file.

Figure 3-2 Configuring a Multiple-domain Application
3-6 Setting Up a BEA Tuxedo Application

How to Create the RESOURCES Section of the Configuration File

s
See Also

n “About Domains” on page 1-1 in Using the BEA Tuxedo Domains Component

n “Configuring a Domains Environment” on page 2-18 in Using the BEA Tuxedo
Domains Component

n DMCONFIG(5) in BEA Tuxedo File Formats and Data Descriptions Reference

How to Create the RESOURCES Section of
the Configuration File

The first section of every configuration file must be the RESOURCES section. The
parameters defined in this section control the application as a whole and serve a
system-wide defaults. The values of RESOURCES parameters can be overridden,
however, on a per-machine basis by assigning other values in the MACHINES section.

For each parameter in the RESOURCES section, the following table provides a
description and links to reference pages and additional information.

To Specify This Information in
the RESOURCES Section . . .

Set This Parameter
(Required/Optional)

For More Information,
Click the Following

Unique address of interprocess
communication (IPC) resources

IPCKEY (required) shared memory address

Security access UID, GID, and PERM (optional) security access

Maximum number of processes that
can be simultaneously connected to a
bulletin board

MAXACCESSERS (optional) IPC limits

Maximum number of server table
entries in a bulletin board

MAXSERVERS (optional) IPC limits

Maximum number of service table
entries in a bulletin board

MAXSERVICES (optional) IPC limits
Setting Up a BEA Tuxedo Application 3-7

3 Creating the Configuration File
Distinguished Bulletin Board Liaison
(DBBL) location at which booting,
shutdown, and other administrative
tasks are performed

MASTER (required) master processor

Bulletin board architecture MODEL, SHM or MP, and LAN or
MIGRATE options (required)

application type

Security level SECURITY, AUTHSVC (optional) security levels

Principal name of the process used for
identification, location of private key
of principal user, and the environment
variable containing the password

SEC_PRINCIPAL_NAME,
SEC_PRINCIPAL_LOCATION,
and SEC_PRINCIPAL_PASSVAR

security attributes

Default method for clients to detect
unsolicited messages

NOTIFY, USIGNAL (optional) unsolicited notification

Protecting shared memory SYSTEM_ACCESS (optional) shared memory protection

Whether server load balancing is
enabled

LDBAL (optional) load balancing

Maximum number of buffer types and
subtypes

MAXBUFTYPE, MAXBUFSTYPES
(optional)

buffer types/subtypes

Maximum number of conversations
allowed on a machine

MAXCONV (optional) conversation limits

Maximum number of network groups MAXNETGROUPS (optional) network groups

Sanity check frequency and amount of
time allowed for blocking calls

SCANUNIT, SANITYSCAN,
BLOCKTIME (optional)

sanity check frequency and
blocking timeouts

To Specify This Information in
the RESOURCES Section . . .

Set This Parameter
(Required/Optional)

For More Information,
Click the Following
3-8 Setting Up a BEA Tuxedo Application

Defining the Application Type

l
Sample RESOURCES Section

*RESOURCES
IPCKEY 39211
UID 0
GID 1
PERM 0660
MAXACCESSERS 75
MAXSERVERS 40
MAXSERVICES 55
MASTER SITE1, SITE2
MODEL MP
OPTIONS LAN, MIGRATE
SECURITY APP_PW
AUTHSVC "AUTHSVC"
NOTIFY DIPIN
SYSTEM_ACCESS PROTECTED, NO_OVERRIDE
LDBAL Y

See Also

n UBBCONFIG(5) in BEA Tuxedo File Formats and Data Descriptions Reference

n “How to Create the MACHINES Section of the Configuration File” on page
3-27

Defining the Application Type

Among the architectural decisions needed for a BEA Tuxedo application are the
following:

n Should this application run on a single processor or multiprocessor with globa
shared memory?

n Will the application be networked?

n Will server migration be supported?
Setting Up a BEA Tuxedo Application 3-9

3 Creating the Configuration File
Use the MODEL and OPTIONS parameters to define the application type.

The MODEL parameter specifies whether an application runs on a single processor. It is
set to SHM for uniprocessors and also for multiprocessors with global shared memory.
A MODEL value of MP is used for multiprocessors that do not have global shared
memory, as well as for networked applications. This is a required parameter.

The OPTIONS parameter is a comma-separated list of application configuration
options. Two available options are LAN (indicating a networked configuration) and
MIGRATE (indicating that application server migration is allowed).

Characteristics of the MODEL and OPTIONS Parameters

Example Settings

 *RESOURCES
 MODEL MP
 OPTIONS LAN, MIGRATE

Parameter Characteristics

MODEL It is a required parameter. A value of SHM indicates a single machine with
global shared memory. A value of MP indicates either multiple machines
without global shared memory, or a networked application.

OPTIONS It is a comma-separated list of application configuration options. A value
of LAN indicates a local area network. A value of MIGRATE enables
server migration.

In the sample RESOURCES section, MODEL is set to MP; OPTIONS is set
to LAN and MIGRATE.
3-10 Setting Up a BEA Tuxedo Application

Controlling the Number of Buffer Types and Subtypes
Controlling the Number of Buffer Types and
Subtypes

You can control the number of buffer types and subtypes allowed in the application
with the MAXBUFTYPE and MAXBUFSTYPE parameters, respectively. Unless you are
creating many user-defined buffer types, you can omit MAXBUFTYPE. If you intend to
use many different VIEW types, you may want to set MAXBUFSTYPE to a value higher
than its current default.

Characteristics of the MAXBUFTYPE and MAXBUFSTYPES
Parameters

l

Example Settings

*RESOURCES
 MAXBUFTYPE 20
 MAXBUFSTYPE 40

In this example, the maximum number of buffer types is 20; the maximum number of
subtypes is 40.

Parameter Characteristics

MAXBUFTYPE Maximum number of buffer types allowed in the system. Use
only if you create 8 or more user-defined buffer types. The
value of MAXBUFTYPE must be greater than 0 and less than
32,768. If not specified, the default is 16.

Example: MAXBUFTYPE 20

MAXBUFSTYPE Maximum number of buffer subtypes allowed in the system.
The value of MAXBUFSTYPE must be greater than 0 and less
than 32,768. If not specified, the default is 32.

Example: MAXBUFSTYPE 40
Setting Up a BEA Tuxedo Application 3-11

3 Creating the Configuration File
Controlling the Number of Conversations

You can specify the maximum number of simultaneous conversations on a machine
with the MAXCONV parameter. The value of MAXCONV must be greater than 0 and less
than 32,768.

Characteristics of the MAXCONV Parameter

The MAXCONV parameter has the following characteristics:

n It defines the maximum number of simultaneous conversations allowed on each
machine.

n The default for an application that has conversational servers listed in the
SERVERS section is 10; otherwise, the default is 1.

n You can overwrite this parameter for any machine by specifying a different
value in the MACHINES section.

Example Setting

*RESOURCES
 MAXCONV 15

In this example, the maximum number of simultaneous conversations allowed on each
machine is 15.

Defining IPC Limits

Because most interprocess communication (IPC) and shared memory bulletin board
tables are statically allocated for speedy processing, it is important to tune them
correctly. If they are sized too generously, memory and IPC resources are wasted; if
3-12 Setting Up a BEA Tuxedo Application

Defining IPC Limits
too small, processes fail when the limits are exceeded. You can use the tmloadcf -c
command to find out the maximum IPC resources required by a specific application.
(See tmloadcf(1) in BEA Tuxedo Command Reference.)

MAXACCESSERS, MAXSERVERS, and MAXSERVICES are the tunable parameters that
control IPC sizing. The amount of shared memory allocated in an application is
controlled by the MAXGTT and MAXCONV parameters.

Characteristics of MAXACCESSERS, MAXSERVERS, and
MAXSERVICES Parameters

Note: Examples of system-supplied servers are AUTHSVR, TMQUEUE, TMQFORWARD,
TMUSREVT, TMSYSEVT, TMS, TMS_QM, GWTDOMAIN, and WSL.

Parameter Characteristics

MAXACCESSERS Maximum number of overall processes that can be
simultaneously connected to the bulletin board at any particular
site in the BEA Tuxedo application. This number includes all
clients and system-supplied and application servers, but does
not include administrative processes such as the Bulletin Board
Liaison (BBL) and tmadmin(), which have reserved access
slots to the bulletin board.

The value of MAXACCESSERS must be greater than 0 and less
than 32,768. If not specified, the default is 50. You can
overwrite MAXACCESSERS, on a per-machine basis, in the
MACHINES section.

MAXSERVERS Maximum number of server processes available to the
application. This number includes all system-supplied and
application servers.

The value of MAXSERVERS must be greater than 0 and less than
8,192. If not specified, the default is 50.

MAXSERVICES Maximum number of different BEA Tuxedo services that can
be advertised in the application. The value of MAXSERVICES
must be greater than 0 and less than 32,768. If not specified, the
default is 100.
Setting Up a BEA Tuxedo Application 3-13

3 Creating the Configuration File

ixed

ntry,
f the

oard.

e.

g

 only
 for
n all

 at any
rd.
The cost incurred by increasing MAXACCESSERS is one additional semaphore per site
per client or server process (accesser—see note that follows). There is a small f
semaphore overhead for system processes in addition to that added by the
MAXACCESSERS value. The cost of increasing MAXSERVERS and MAXSERVICES is a
small amount of shared memory that is kept for each server, service, and client e
respectively. The general idea for these parameters is to allow for future growth o
application. It is more important to scrutinize MAXACCESSERS.

Note: The system allocates one semaphore for each access slot to the bulletin b
A semaphore is a latch circuit that prevents more than one process from
accessing the same shared memory in the bulletin board at the same tim

For BEA Tuxedo pre-Release 7.1 (6.5 or earlier), both the MAXACCESSERS and
MAXSERVERS parameters for an application play a part in the user license checkin
scheme. Specifically, a machine is not allowed to boot if the number of MAXACCESSERS
for that machine + the number of MAXACCESSERS for the machine (or machines)
already running in the application is greater than the number of MAXSERVERS + user
licenses for the application. Thus, the total number of MAXACCESSERS for an
application must be less than or equal to the number of MAXSERVERS + user licenses
for the application.

The user license checking scheme in BEA Tuxedo Release 7.1 or later considers
the following two factors when performing its checks: the number of user licenses
an application and the number of licenses currently in use for the application. Whe
user licenses are in use, no new clients are allowed to join the application.

Example Settings

*RESOURCES
 MAXACCESSER 75
 MAXSERVERS 40
 MAXSERVICES 55

In this example, at most 75 processes (clients and servers) can access the system
one time. There is room for 40 servers advertising 55 services in the bulletin boa
3-14 Setting Up a BEA Tuxedo Application

Enabling Load Balancing
Enabling Load Balancing

You can control whether a load balancing algorithm is used on the BEA Tuxedo
application as a whole. When load balancing is used, a load factor is applied to each
service within the system, allowing you to track the total load on every server. Every
service request is sent to the qualified server that is least loaded.

To specify whether load balancing should be used, set the LDBAL parameter to Y (Yes)
or N (No). By default, it is set to N.

You should use load balancing only if necessary; that is, whenever a service is offered
by servers that use more than one queue. Load balancing is not appropriate for services
offered by only one server, or by servers in an MSSQ (multiple-server, single-queue) set.
If you have only these types of services in your configuration, set the LDBAL parameter
to N. If LDBAL is set to N and multiple queues offer the same service, the first available
queue is selected.

Characteristics of the LDBAL Parameter

The LDBAL parameter has the following characteristics:

n If LDBAL is set to Y, then load balancing is used.

n If LDBAL is set to Y and the application is networked, you can use TMNETLOAD for
local preference.

n If LDBAL is set to N, the server assigned is the first available server.

n The default is N.

n Because LDBAL incurs overhead, use it only when necessary.

n Do not use load balancing if every BEA Tuxedo service is offered by only one
server.

n Do not use load balancing if every BEA Tuxedo service is offered by one MSSQ
server set.
Setting Up a BEA Tuxedo Application 3-15

3 Creating the Configuration File

on.

en
Example Settings

*RESOURCES
 LDBAL Y

See Also

n “What Is Load Balancing” on page 2-39 in Introducing the BEA Tuxedo System

Identifying the Master Machine

The MASTER machine controls the booting and administration of the entire applicati
You must specify a MASTER machine for every application by setting the MASTER
parameter. The value of MASTER is the Logical Machine Identifier (LMID) for the
appropriate computer. The LMID, in turn, is defined as an alphanumeric string, chos
by the administrator, that is assigned to the LMID parameter in the MACHINES section.
Therefore, for example, if the value of the LMID parameter is SITE1, then the value of
MASTER must also be SITE1.

If you want to be able to bring down the MASTER machine without shutting down the
application, you must be able to migrate the MASTER. To enable migration, you must
specify two values for LMID: the primary MASTER and the backup MASTER.

Characteristics of the MASTER Parameter

The MASTER parameter has the following characteristics:

n It is required and it controls booting and administration.

n Two LMIDs are required for migration to back up the master machine.

n In the sample RESOURCES section, the master site is SITE1; the backup site is
SITE2.
3-16 Setting Up a BEA Tuxedo Application

Specifying the Maximum Number of Network Groups
Example Settings

*RESOURCES

 MASTER SITE1, SITE2

Site1 is the MASTER machine; SITE2 is the backup machine.

Specifying the Maximum Number of
Network Groups

To specify the maximum number of configured network groups, set the
MAXNETGROUPS parameter. The value must be greater than or equal to 1 and less than
8192. The default is 8. This parameter is optional.

Specifying the Number of Sanity Checks and
Blocking Timeouts

Periodically (every 120 seconds, by default) the bulletin board liaison (BBL) checks
the sanity of the servers on its machine. You can change the frequency of these checks,
however, by setting the SCANUNIT and SANITYSCAN parameters. In addition, you can
specify the number of timeout periods for blocking messages, transactions, and other
system activities by setting the BLOCKTIME parameter. The value you assign must be a
positive multiple of 5.

Use the SANITYSCAN parameter to specify how many SCANUNITs elapse between
sanity checks of the servers. Its current default is set so that SANITYSCAN * SCANUNIT
is approximately 120 seconds.
Setting Up a BEA Tuxedo Application 3-17

3 Creating the Configuration File
Characteristics of the SCANUNIT, SANITYSCAN, and
BLOCKTIME Parameters

Timeouts for Blocking ATMI Operations

The term timeout is used to refer, collectively, to the amount of time that elapses while
a client:

n Waits to send a message into the request queue

n Waits to receive a message from the reply queue

n Is processed by the server

n Travels on the network

The term blocking timeout refers to the amount of time spent by a client request waiting
for a blocking condition to clear up. Block timeouts for asynchronous service requests
and conversations apply to individual send and receive operations. When a process

Parameter Characteristics

SCANUNIT Controls the granularity of check intervals and timeouts.
SCANUNIT must be a multiple of 5 between 0 and 60 seconds.
Example: SCANUNIT 10

The default is 10.

SANITYSCAN Specifies how many scan units elapse between sanity checks of
the servers.

SANITYSCAN may be any number up to 32767.

The default is such that SCANUNIT * SANITYSCAN is
approximately 120 seconds.

BLOCKTIME Controls how long a message can block before it times out.

SCANUNIT * BLOCKTIME must not exceed 32767.

The default is such that SCANUNIT * BLOCKTIME is
approximately 60 seconds.
3-18 Setting Up a BEA Tuxedo Application

Establishing Operating System-level Security
sends a message using tpacall (3c), tpconnect (3c), or tpsend (3c), the timeout
applies only to the period during which the request waits to get on the queue if the
queue is full. When a client process issues a tpgetrply (3c) or tprecv(3c) call to
receive a message, the timeout specifies how long the client may wait for the incoming
message if its queue is empty.

Example Settings

*RESOURCES
 SCANUNIT 10
 SANITYSCAN 3
 BLOCKTIME 1

In this example, sanity scans are performed every 30 seconds and requests block for
no more than 10 seconds. A SCANUNIT of 10 and a SANITYSCAN of 3 allow 3 blocks of
10 seconds or 30 seconds to elapse before the BBL scans.

Establishing Operating System-level
Security

You can restrict access to BEA Tuxedo administrative functions to authorized
administrators only, by setting three parameters: UID, GID, and PERM.

The defaults of UID and GID are the user ID and group ID, respectively, of the person
who runs the tmloadcf(1) command on the configuration, unless overriding values
have been specified in the MACHINES section.
Setting Up a BEA Tuxedo Application 3-19

3 Creating the Configuration File
Characteristics of the UID, GID, and PERM Parameters

Note: You can overwrite the values assigned to these parameters for remote
machines. The user and group IDs on a remote machine are not required to be
the same as the user and group IDs on the MASTER machine. You can override
the defaults by specifying different user and group IDs in the MACHINES
section of the configuration file. If not specified, values specified in the
RESOURCES section are used.

Parameter Characteristics

UID The user ID of the administrator. The value is a numeric string
corresponding to the UNIX system user ID of the person who boots and
shuts down the system.

The default is the user ID of the person who runs tmloadcf(1).

Example: UID=3002

Note: On Windows NT, this value must be set to 0.

GID The numeric group ID of the administrator.

The default is the group ID of the person who runs tmloadcf(1).

Example: GID=100

Note: On Windows NT, this value must be set to 0.

PERM The value is an octal number that specifies permissions for the IPC
resources created when the application is booted. This parameter
provides the first level of defense of the BEA Tuxedo system IPC
structures against unauthorized access. These values should be specified
for production applications.

The default is 0666, which gives read/write access to all.

Example: PERM=0660
3-20 Setting Up a BEA Tuxedo Application

Specifying the Security Level

s,

a

r

e
ice.
Specifying the Security Level

You can set the following three levels of security:

n PERM parameter—provides minimal security by restricting, through permission
the ability to write to the application queues.

n SECURITY parameter—provides greater security. When this parameter is set,
client must supply a password when joining the application. This password is
checked against the password supplied by the administrator when the
TUXCONFIG file is generated from the UBBCONFIG file.

n AUTHSVC parameter—sets the maximum level of security. When this paramete
is set, any client request to join the application is sent to an authentication
service. The authentication service may be the default service supplied by th
BEA Tuxedo system or a third-party vendor service, such as a Kerberos serv
This level of security cannot be used unless the SECURITY parameter is set.

Characteristics of the SECURITY and AUTHSVC
Parameters

Parameter Characteristics

SECURITY Security level that requires a password to join an application.
Accepted values are: NONE (default), APP_PW, USER_AUTH,
ACL, and MANDATORY_ACL.

Default is NONE.

Example: SECURITY APP_PW

AUTHSVC The name of the authentication service.

SECURITY APP_PW or higher must be specified.

Default is no authentication service.

Client authentication with Kerberos is possible.

Example: AUTHSVC “AUTHSVC’’
Setting Up a BEA Tuxedo Application 3-21

3 Creating the Configuration File

ers

e

ses,
See Also

n “Introducing Security” on page 1-1 in Using BEA Tuxedo Security

Defining the Security Attributes of a Server

You can use the SEC_PRINCIPAL_NAME, SEC_PRINCIPAL_LOCATION, and
SEC_PRINCIPAL_PASSVAR parameters to identify the security attributes of any serv
used for authentication.

n SEC_PRINCIPAL_NAME—defines the principal name used by the server for
various security operations.

n SEC_PRINCIPAL_LOCATION—specifies the location of the private key of the
principal user.

n SEC_PRINCIPAL_PASSVAR—specifies the environment variable that contains th
password used to open the private key of the principal user.

Note: These policies apply to the Workstation Handler, Domains gateway proces
and interoperating application servers.

If Specified in
This Section

This Parameter Defines And Overrides Parameter
Settings in This Section

RESOURCES All system servers booted in the
domain.

N/A

MACHINES All system servers booted on a
machine.

RESOURCES

GROUPS All system and interoperating
application servers booted within a
group.

MACHINES

SERVERS All system and interoperating
application services booted within a
server.

GROUPS
3-22 Setting Up a BEA Tuxedo Application

Protecting Shared Memory

d/or

tly
 and
.

See Also

n “Introducing Security” on page 1-1 in Using BEA Tuxedo Security

n “Administering Security” on page 2-1 in Using BEA Tuxedo Security

Protecting Shared Memory

You can shield system tables kept in shared memory from application clients an
servers using the SYSTEM_ACCESS parameter. This parameter is useful when
applications are being developed because faulty application code can inadverten
corrupt shared memory with a bad pointer. Once an application is fully debugged
tested, the value of this parameter can be changed to allow for faster responses
Following are valid values for this parameter:

n PROTECTED—BEA Tuxedo libraries compiled with application code do not
attach to shared memory while executing system code.

n FASTPATH—BEA Tuxedo libraries attach to shared memory at all times.

Once you select a value, you can specify NO_OVERRIDE, which means that the selected
option cannot be changed either by the client, in the TPINIT structure of the tpinit()
call, or by the administrator, in the SERVERS section for servers.
Setting Up a BEA Tuxedo Application 3-23

3 Creating the Configuration File
Characteristics of the PROTECTED, FASTPATH, and
NO_OVERRIDE Parameters

Example Settings

 SYSTEM_ACCESS PROTECTED, NO_OVERRIDE

Setting the Address of the System Resources
for an Application

To set the address of shared memory, set the IPCKEY parameter. This parameter is used
by the BEA Tuxedo system to allocate application IPC resources such that they may
be located easily by new processes joining the application. This key and its variations
are used internally to allocate the bulletin board, message queues, and semaphores that
must be available to new application processes. In single processor mode, this key
names the bulletin board; in multiprocessor mode, this key names the message queue
of the DBBL.

Parameter Characteristics

PROTECTED Internal structures in shared memory are not corrupted inadvertently by
application processes.

FASTPATH

(default)
Application processes join the application with access to shared
memory at all times.

NO_OVERRIDDE The specified option (either PROTECTED or FASTPATH) cannot be
changed.
3-24 Setting Up a BEA Tuxedo Application

Specifying How Clients Receive Unsolicited Notification

e a
Characteristics of the IPCKEY Parameter

The IPCKEY parameter has the following characteristics:

n It is required.

n It is used to access the bulletin board and other IPC resources.

n Its value must be an integer in the range 32,769 to 262,144.

n No other application on the system may use this specific value for its IPCKEY. Its
value must be unique among all applications.

Example Settings

*RESOURCES
 IPCKEY 39211

Specifying How Clients Receive Unsolicited
Notification

You can select the default method by which clients receive unsolicited messages by
setting the NOTIFY parameter. The client, however, can override this choice when
calling tpinit().

Following are four possible methods:

n IGNORE—Clients ignore unsolicited messages.

n DIPIN—Clients receive unsolicited messages only when they call
tpchkunsol() or when they make an ATMI call.

n SIGNAL—Clients receive unsolicited messages by having the system generat
signal that has the signal handler call the function, that is, set with
tpsetunsol().
Setting Up a BEA Tuxedo Application 3-25

3 Creating the Configuration File

y the

 ID as
Note: This method is not allowed for multithreaded or multicontexted
applications.

n THREAD—Unsolicited messages are handled by a separate thread managed b
BEA Tuxedo system for this purpose.

The USIGNAL parameter specifies the signal to be used if SIGNAL-based notification is
used. Two types of signals can be generated: SIGUSR1 and SIGUSR2. The default is
SIGUSR2. This method has the advantage of immediate notification, but is limited
when you are running a native client. In that case, you must have the same user
the sending process. Workstation clients do not have this limitation.

Note: This method is not available on all platforms.

Characteristics of the NOTIFY and USIGNAL Parameters

Parameter Characteristics

NOTIFY Value of IGNORE means clients should ignore unsolicited
messages.

Value of DIPIN means clients should receive unsolicited
messages only when they call tpchkunsol() or when they
make an ATMI call.

Value of SIGNAL means clients should receive unsolicited
messages by signals.

Default is DIPIN.

Example: NOTIFY SIGNAL

USIGNAL Value of SIGUSR1 and SIGUSR2 means notify clients with
this type of signal.

Default is SIGUSR2.

Example: USIGNAL SIGUSR1
3-26 Setting Up a BEA Tuxedo Application

How to Create the MACHINES Section of the Configuration File
How to Create the MACHINES Section of the
Configuration File

The second section of every configuration file must be the MACHINES section. The
MACHINES section defines parameters for each machine in an application. These
parameters provide the following information:

n The mapping of the machine address to a logical identifier (LMID)

n The location of the configuration file (TUXCONFIG)

n The location of the installed BEA Tuxedo software (TUXDIR)

n The location of the application servers (APPDIR)

n The location of the application log file (ULOGPFX)

n The location of the environment file (ENVFILE)

Note: For a particular machine, you can override the following system-wide
parameters: UID, GID, PERM, MAXACCESSERS, MAXCONV, and MAXGTT. Each
parameter, except MAXGTT, is described in the RESOURCES section.

For each parameter in the MACHINES section, the following table provides a description
and links to reference pages and additional information.

To Specify This Information in the
MACHINES Section . . .

Set This Parameter
(Required/Optional)

For More Information,
Click the Following

The number of entries in the cache used for ACL
entries when SECURITY is set to ACL or
MANDATORY_ACL.

MAXACLCACHE (optional) ACL entries in the cache

The additional load to be added when computing the
cost of sending a service request from this machine
to another machine.

NETLOAD (optional) additional loads
Setting Up a BEA Tuxedo Application 3-27

3 Creating the Configuration File
The address is the name of the physical processor,
which all other entries describe. The LMID
parameter specifies the logical name of the
computer.

LMID (required) Address and machine ID

The number of attempts that should be made at user
level to lock the bulletin board before blocking
processes on a UNIX semaphore.

SPINCOUNT (optional) bulletin board locking limit

A value used for grouping machines into classes. TYPE (optional) class grouping value

The absolute path name of the file or device where
the binary TUXCONFIG file is found on this
machine.

Note: The path name specified for this parameter
must match exactly (including case) the
path name specified for the TUXCONFIG
environment variable. Otherwise,
tmloadcf(1) cannot be run successfully.

TUXCONFIG (required) configuration file location

The maximum number of simultaneous
conversations in which processes on a particular
machine can be involved.

MAXCONV (optional) conversation limits

The numeric size, in pages, of the DTP transaction
log for this machine.

TLOGSIZE (optional) DTP TLOG size

The name of the DTP transaction log for this
machine.

TLOGNAME (optional) DTP transaction log name

A value that specifies that all clients and servers on
the machine are to be executed with the
environment specified in the named file.

ENVFILE (optional) environment variable
settings

The BEA Tuxedo file system that contains the DTP
transaction log (TLOG) for this machine.

TLOGDEVICE (optional) file system containing the
TLOG

The maximum number of processes that can have
access to the bulletin board on this processor at any
one time.

MAXACCESSERS
(optional)

IPC limits

To Specify This Information in the
MACHINES Section . . .

Set This Parameter
(Required/Optional)

For More Information,
Click the Following
3-28 Setting Up a BEA Tuxedo Application

How to Create the MACHINES Section of the Configuration File
The maximum number of simultaneous global
transactions in which a particular machine can be
involved.

MAXGTT (optional) limit of simultaneous global
transactions

The number of accesser entries on this processor to
be reserved for Workstation clients. The parameter
is only used when the BEA Tuxedo system
Workstation component is used.

MAXWSCLIENTS
(optional)

limit of workstation accesser
entries

A limit for the amount of space that can be allocated
for messages waiting to be transmitted by the bridge
process.

MAXPENDINGBYTES
(optional)

message space limits

The numeric offset in pages (from the beginning of
the device) to the start of the BEA Tuxedo file
system that contains the DTP transaction log for this
machine.

TLOGOFFSET (optional) numeric offset containing the
DTP TLOG

The numeric offset in pages (from the beginning of
the device) to the start of the BEA Tuxedo file
system that contains the TUXCONFIG file for this
machine.

TUXOFFSET (optional) numeric offset containing the
TUXCONFIG

The numeric group ID to be associated with the IPC
structures created for the bulletin board. The valid
range is 0-2147483647. If not specified, the default
is the value specified in the RESOURCES section.

GID (optional) security access

The numeric permissions associated with the IPC
structures that implement the bulletin board. This
parameter is used to specify the read/write
permissions for processes in the usual UNIX system
fashion (that is, with an octal number such as 0600).
The value can be between 0001 and 0777, inclusive.
If not specified, the default is the value specified in
the RESOURCES section.

PERM (optional) security access

The numeric user ID to be associated with the IPC
structures created for the bulletin board. The valid
range is 0-2147483647. If not specified, the default
is the value specified in the RESOURCES section.

UID (optional) security access

To Specify This Information in the
MACHINES Section . . .

Set This Parameter
(Required/Optional)

For More Information,
Click the Following
Setting Up a BEA Tuxedo Application 3-29

3 Creating the Configuration File
Sample MACHINES Section

Following is a sample MACHINES section of a configuration file.

*MACHINES
gumby LMID=SITE1
 TUXDIR=”/tuxdir”
 APPDIR=”/home/apps/mortgage”
 TUXCONFIG=”/home/apps/mortgage/tuxconfig”
 ENVFILE=”/home/apps/mortgage/ENVFILE”
 ULOGPFX=”/home/apps/mortgage/logs/ULOG”
 MAXACCESSERS=100
 MAXCONV=15

Principal name of the process used for
identification, location of private key of principal
user, and the environment variable containing the
password

SEC_PRINCIPAL_NAME,
SEC_PRINCIPAL_LOCA

TION,
SEC_PRINCIPAL_PASS
VAR

security attributes

The absolute path name of the application directory
(APPDIR), which is the current directory for all
application and administrative servers booted on
this machine; and the absolute path name of the
directory where the BEA Tuxedo system software is
found on this machine.

TUXDIR (required) system and application
software locations

The threshold message size for messages—bound
to remote processes (string_value1) and local
processes (string_value2), respectively—on
which automatic data compression will be
performed.

CMPLIMIT (optional) threshold message size

The full path name to be used as the prefix of the
name of the userlog(3c) message file on this
machine.

ULOGPFX (optional) ULOG path name

To Specify This Information in the
MACHINES Section . . .

Set This Parameter
(Required/Optional)

For More Information,
Click the Following
3-30 Setting Up a BEA Tuxedo Application

How to Create the MACHINES Section of the Configuration File
Sample MACHINES Parameters

In the preceding sample MACHINES section, the following parameters and values are
specified.

Parameter Meaning

gumby The machine name obtained with the command uname -n on UNIX
systems. On a Windows NT system, the value can be set using the
Computer Name value in the Network Control Panel and must be
specified in upper case.

LMID=SITE1 The logical machine identifier of the machine gumby.

TUXDIR The full path to the installed BEA Tuxedo software (shown in double
quotation marks).

APPDIR The full path to the application directory (shown in double quotation
marks).

TUXCONFIG The full path name of the configuration file (shown in double quotation
marks).

Note: The path name specified for this parameter must match
exactly (including case) the path name specified for the
TUXCONFIG environment variable. Otherwise,
tmloadcf(1) cannot be run successfully.

ENVFILE The full path name of a file containing environment information
(shown in double quotation marks).

ULOGPFX The full path name to be used as the prefix of the name of the log file
(shown in double quotation marks).

MAXACCESSERS For this machine, override the system-wide value (defined in the
RESOURCES section) with 100.

MAXCONV For this machine, override the system-wide value (defined in the
RESOURCES section) with 15.
Setting Up a BEA Tuxedo Application 3-31

3 Creating the Configuration File

e

to
How to Customize the Sample MACHINES Section

You can customize the MACHINES section by indicating the following:

n Your machine name for gumby

Note: On a Windows NT system, the machine name must be specified in upper case.

n The full path of your BEA Tuxedo software directory as the value of TUXDIR

n The full path of your application directory as the value of APPDIR

n The full path names for ENVFILE, TUXCONFIG, and ULOGPFX on your system

See Also

n UBBCONFIG(5) in BEA Tuxedo File Formats and Data Descriptions Reference

n “How to Create the GROUPS Section of the Configuration File” on page 3-44

Specifying the Maximum Number of ACL
Entries in the Cache

You can use the MAXACLCACHE parameter to specify the number of ACL entries in th
cache when SECURITY is set to ACL or MANDATORY_ACL. By setting of this parameter
to an appropriate value, you can:

n Help conserve shared memory resources

n Reduce the number of disk accesses performed in order to do ACL checking

The value must be a number greater than or equal to 10, and less than or equal
30,000. The default is 100.
3-32 Setting Up a BEA Tuxedo Application

Defining an Additional Service Request Load

he
 by

he
eric
Defining an Additional Service Request
Load

You can use the NETLOAD parameter to specify a load to be added when computing the
cost of sending a service request from one machine to another. The value must be a
number greater than or equal to 0, and less than 32,768. The default is 0.

See Also

n “What Is Load Balancing” on page 2-39 in Introducing the BEA Tuxedo System

Reserving the Physical Address and Machine
ID

You initially define the address of your MASTER machine in the address portion, which
is the basis for a MACHINES section entry. All other parameters in the entry describe t
machine specified by this address. You must set the address to the value printed
calling uname -n on UNIX systems. On Windows NT systems, see the Computer
Name value in the Network Control Panel.

The LMID parameter is mandatory. It specifies a logical name used to designate t
computer for which an address has just been provided. It may be any alphanum
value, but it must be unique among other machines in the application.
Setting Up a BEA Tuxedo Application 3-33

3 Creating the Configuration File
Characteristics of the Address and the LMID Parameter

The address and machine ID have the following characteristics:

n The address and machine ID are specified as follows.

address LMID=logical_machine_name

The address identifies the physical processor name.

n The LMID is specified as follows.

LMID=logical_machine_name

The LMID is the logical machine name for a physical processor. It may be any
alphanumeric string, but it must be unique within the MACHINES section.

Setting the Number of Lock Spins

For some BEA Tuxedo system operations (such as service name lookups and
transactions), the bulletin board must be locked for exclusive access: that is, it must be
accessible by only one process. If a process or thread finds that the bulletin board is
locked by another process or thread, it retries, or spins on the lock for SPINCOUNT
number of times before giving up and going to sleep on a waiting queue. Because
sleeping is a costly operation, it is efficient to do some amount of spinning before
sleeping.

Characteristics of the SPINCOUNT Parameter

Though the value of the SPINCOUNT parameter is application- and system-dependent,
it may be helpful to keep the following basic guidelines in mind:

n A process on a uniprocessor system should not spin. If the bulletin board is
locked when a uniprocessor process tries to access it, then the process with the
lock should be allowed to run as quickly as possible. This is possible only if the
newcomer process gives up immediately.
3-34 Setting Up a BEA Tuxedo Application

Specifying Machines as Types
n A SPINCOUNT value of 1 is appropriate for uniprocessors.

n On multiprocessors, a good starting value is 5000, but some customers have
benefited from a SPINCOUNT value as high as 100000.

n Set the SPINCOUNT value and observe your application throughput. Because you
can tune the SPINCOUNT value using the TMIB, you can adjust it while the
system is running.

Specifying Machines as Types

You can use the TYPE parameter to group machines into classes. You can set TYPE to
any string that contains 15 or fewer characters.

Characteristics of the TYPE Parameter

n If two machines have the same TYPE value, data encoding/decoding is not
performed when data is sent between the machines.

n TYPE can be given any string value. It is used simply for comparisons.

n The TYPE parameter should be used when the application involves a
heterogeneous network of machines or when different compilers are used on the
machines in the network.

n If a value not specified, the default is the null string, which matches any other
entry for which a value has not been specified.
Setting Up a BEA Tuxedo Application 3-35

3 Creating the Configuration File
Identifying the Location of the
Configuration File

To identify the configuration file location and filename for an entry that identifies a
machine, set TUXCONFIG, a required parameter. The value of the TUXCONFIG parameter
is enclosed in double quotes and represents a full path name, which may contain up to
64 characters.

Note: The path name specified for this parameter must match exactly (including
case) the path name specified for the TUXCONFIG environment variable.
Otherwise, tmloadcf(1) cannot be run successfully.

Characteristics of the TUXCONFIG Parameter

The TUXCONFIG parameter has the following characteristics:

n The syntax of the TUXCONFIG parameter is
TUXCONFIG=”full_path_of_tuxconfig” .

n This parameter identifies the location and name of the configuration file.

n The value of TUXCONFIG can include up to 64 characters.

n The value of TUXCONFIG must match the value of the TUXCONFIG environment
variable.

Indicating the Size of the DTP Transaction
Log

Use the TLOGSIZE parameter to indicate the size, in pages, of the DTP transaction log
for this machine. The value must be a number greater than 0, and less than or equal to
2048, subject to the amount of space available on the operating system file system. The
default is 100 pages.
3-36 Setting Up a BEA Tuxedo Application

Defining the DTP Transaction Log Name
Defining the DTP Transaction Log Name

Use the TLOGNAME parameter to define the name of the DTP transaction log for this
machine. The default is TLOG. If more than one TLOG exists on the same TLOGDEVICE,
each must have a unique name. The value of TLOGNAME must be different from the
name of any other table in the VTOC (Volume Table of Contents) on the TLOGDEVICE
where the TLOG table is created. The value of TLOGNAME must be an alphanumeric
string containing 30 or fewer characters.

Specifying Environment Variable Settings

With the ENVFILE parameter, you can specify a file that contains environment variable
settings for all processes to be booted by the BEA Tuxedo system. The system sets
TUXDIR and APPDIR for each process, so these parameters should not be specified in
this file.

You can, however, specify settings for the following parameters because they affect an
application’s operation:

n FIELDTBLS, FLDTBLDIR

n VIEWFILES, VIEWDIR

n TMCMPLIMIT

n TMNETLOAD
Setting Up a BEA Tuxedo Application 3-37

3 Creating the Configuration File
Characteristics of the ENVFILE Parameter

ENVFILE is an optional parameter with the following characteristics:

n The syntax of the value of the ENVFILE parameter is a string enclosed in double
quotes: ENVFILE=” envfile” .

n ENVFILE is the file containing environment variable settings for all processes
booted by the BEA Tuxedo system. (The UBBCONFIG file issues warnings in a
similar way, that is, using fully qualified path names.)

n Set FIELDTBLS, FLDTBLDIR, and so on, but do not set TUXDIR and APPDIR.

n All settings must be hard coded. No evaluations such as FLDTBLDIR=$APPDIR
are allowed.

n The format for entries in the file is VARIABLE=string.

Defining the BEA Tuxedo File System
Containing the TLOG

Use the TLOGDEVICE parameter to specify the BEA Tuxedo file system that contains
the DTP transaction log (TLOG) for this machine. The TLOG is stored as a BEA Tuxedo
system VTOC table on the specified device. The value of TLOGDEVICE must be a string
containing a maximum of 64 characters.

If this parameter is not specified, then it is assumed that the machine does not have a
TLOG.
3-38 Setting Up a BEA Tuxedo Application

Specifying a Machine’s Maximum Number of Simultaneous Global Transactions
Specifying a Machine’s Maximum Number of
Simultaneous Global Transactions

Use the MAXGTT parameter to indicate the maximum number of simultaneous global
transactions in which a particular machine can be involved. The value must be a
number greater than or equal to 0, and less than 32,768. You can override the value
specified in the RESOURCES section with a value specified in the MACHINES section for
an individual machine.

Defining the Number of Accesser Entries on
a Workstation Client

Use the MAXWSCLIENTS parameter to define the number of entries on a machine to be
reserved for Workstation clients. Set the number of accesser slots reserved for
MAXWSCLIENTS cautiously, since this number takes a portion of the total accesser slots
specified with MAXACCESSERS for this machine; the accesser slots reserved for
MAXWSCLIENTS are unavailable for use by other clients and servers on this machine.
By setting this parameter to an appropriate value, you can help conserve IPC resources
because Workstation client access to the system is multiplexed through a BEA Tuxedo
system-supplied surrogate, the Workstation Handler (WSH).

The value of MAXWSCLIENTS must be greater than or equal to 0 and less than 32,768.
If not specified, the default is 0. It is an error to set this parameter to a number greater
than MAXACCESSERS.

Note: The value of MAXWSCLIENTS is constrained by the number of your licensed
users.
Setting Up a BEA Tuxedo Application 3-39

3 Creating the Configuration File
Defining Space Limits for Messages
Transmitted by the BRIDGE

Use the MAXPENDINGBYTES parameter to define a limit for the amount of space that can
be allocated for messages waiting to be transmitted by the BRIDGE process. This
number must be between 100,000 and MAXLONG.

There are two situations when MAXPENDINGBYTES is significant:

n When the BRIDGE requests an asynchronous connection

n When all circuits are busy

You can configure larger computers that have more memory and disk space, with
larger MAXPENDINGBYTES, and smaller computers with smaller MAXPENDINGBYTES.

Indicating the Offset for the DTP Transaction
Log

Every BEA Tuxedo file system has a Volume Table of Contents (VTOC): a list of the
files on the devices named in the Universal Device List (UDL). The UDL specifies the
location of the physical storage space for BEA Tuxedo system tables. In a BEA
Tuxedo system application, all system files might be stored together on the same raw
disk slice or operating system file-system file.

Use the TLOGOFFSET parameter to indicate the offset in pages (from the beginning of
the device) to the start of the BEA Tuxedo file system that contains the DTP
transaction log for this machine. The offset must be a number greater than or equal to
0, and less than the number of pages on the device. The default is 0.
3-40 Setting Up a BEA Tuxedo Application

Defining the Offset for TUXCONFIG
Defining the Offset for TUXCONFIG

Every BEA Tuxedo file system has a Volume Table of Contents (VTOC): a list of the
files on the devices named in the Universal Device List (UDL). The UDL specifies the
location of the physical storage space for BEA Tuxedo system tables. In a BEA
Tuxedo system application, all system files might be stored together on the same raw
disk slice or operating system file-system file.

Use the TUXOFFSET parameter to define the offset in pages (from the beginning of the
device) to the start of the BEA Tuxedo file system that contains the TUXCONFIG for this
machine. (For information on how this value is used in the environment, see the
ENVFILE parameter in the MACHINES section.)

Characteristics of the TUXOFFSET Parameter

n The offset must be a number greater than or equal to 0, and less than the number
of pages on the device.

n The default offset is 0.

n The value of TUXOFFSET, if non-zero, is placed in the environment of all servers
booted on a machine.

Identifying the Locations of the System
Software and Application Server Software

Each machine in an application that supports servers must have a copy of the BEA
Tuxedo system software and application software. You identify the location of system
software with the TUXDIR parameter. You identify the location of the application
software with the APPDIR parameter. Both parameters are mandatory. The APPDIR
parameter becomes the current working directory of all server processes. The BEA
Tuxedo software looks in TUXDIR/bin and APPDIR for executables.
Setting Up a BEA Tuxedo Application 3-41

3 Creating the Configuration File
Characteristics of the APPDIR and TUXDIR Parameters

Indicating a Threshold Message Size for
Compression

Use the CMPLIMIT parameter to define the threshold message sizes at which automatic
data compression is performed for messages bound to remote processes
(string_value1) and local processes (string_value2), respectively.

Both values must be either a non-negative numeric value or the string MAXLONG. If not
specified, the default is MAXLONG,MAXLONG.

Note: Set the CMPLIMIT value and observe your application throughput. Because
you can tune the CMPLIMIT value using the TMIB, you can adjust it while the
system is running.

Parameter Characteristics

APPDIR The syntax requires a full path name enclosed in double quotes:
APPDIR=“APPDIR” .

APPDIR identifies the location of application software.

APPDIR is a required parameter.

APPDIR becomes the current working directory of server processes.

TUXDIR The syntax requires a full path name enclosed in double quotes:
TUXDIR=“TUXDIR” .

TUXDIR identifies the location of the BEA Tuxedo software.

TUXDIR is a required parameter.
3-42 Setting Up a BEA Tuxedo Application

Specifying the Path Name for the ULOG
Example

CMPLIMIT=string_value1,string_value2

Specifying the Path Name for the ULOG

Set the ULOGPFX parameter to specify the full path name to be used as the prefix of the
name of the userlog(3c) message file on this machine. The value of ULOGPFX for a
given machine is used to create the userlog(3c) message file for all servers, clients,
and administrative processes executed on that machine. If this parameter is not
specified, the path specified by the APPDIR environment variable is used. mmddyy
(month, day, year) is appended to the prefix to form the full name of the log file.

Characteristics of the ULOGPFX Parameter

The ULOGPFX parameter has the following characteristics:

n The syntax of the value of the ULOGPFX parameter is a string enclosed in double
quotes: ULOGPFX=“ULOGPFX”.

n The application log contains all messages for TPESYSTEM and TPEOS errors.

n You can use the user log to log application errors.

n The ULOGPFX defaults to APPDIR/ULOG.

n For the sample filename BANKLOG.022667, the prefix of the name of the
userlog is specified as follows.
ULOGPFX=“/mnt/usr/appdir/logs/BANKLOG”
Setting Up a BEA Tuxedo Application 3-43

3 Creating the Configuration File

ater

nning
tion

only
up.

See Also

n “How to Create the GROUPS Section of the Configuration File” on page 3-44

How to Create the GROUPS Section of the
Configuration File

Use the GROUPS section to designate logically grouped sets of servers, which can l
be used to access resource managers, and facilitate server group migration. The
GROUPS section of the configuration file contains definitions of server groups. You
must define at least one server group for a machine to have application servers ru
on it. If no group is defined for a machine, the group can still be part of the applica
and you can run the administrative command tmadmin(1) from that site.

For nontransactional, nondistributed systems, groups are relatively simple. You
need to map the group name to the number and logical machine ID for each gro
Additional flexibility is available to support distributed transactional systems.

For each parameter in the GROUPS section, the following table provides a description
and links to reference pages and additional information.

To Specify This Information in the GROUPS
Section . . .

Set This Parameter
(Required/Optional)

For More Information,
Click the Following

The logical name of the group GROUPNAME (required) group name

The group number associated with this server group.
This number must be greater than 0 and less than
30000, and must be unique among all entries in the
GROUPS section.

GRPNO (required) group number

The resource manager dependent information needed
when closing the resource manager

CLOSEINFO (optional) information for closing the
resource manager

The resource manager dependent information needed
when opening the resource manager

OPENINFO (optional) information for opening the
resource manager
3-44 Setting Up a BEA Tuxedo Application

How to Create the GROUPS Section of the Configuration File

0

Sample GROUPS Section

##EVBGRP1 LMID=SITE1 GRPNO=104

DEFAULT:TMSNAME=TMS_SQL TMSCOUNT=2 LMID=SITE1
BANKB1GRPNO=1 OPENINFO="TUXEDO/SQL:APPDIR1/bankdl1:bankdb:readwrite"
BANKB2GRPNO=2 OPENINFO="TUXEDO/SQL:APPDIR1/bankdl2:bankdb:readwrite"
BANKB3GRPNO=3 OPENINFO="TUXEDO/SQL:APPDIR1/bankdl3:bankdb:readwrite"

See Also

n “How to Create the SERVERS Section of the Configuration File” on page 3-6

The number of transaction manager servers to start for
the associated group, if TMSNAME is specified

TMSCOUNT (optional) number of TMS servers in
the group

Principal name of the process used for identification,
location of private key of principal user, and the
environment variable containing the password

SEC_PRINCIPAL_NAM

E,
SEC_PRINCIPAL_LOC

ATION,
SEC_PRINCIPAL_PAS
SVAR

security attributes

A value that specifies that all servers in the group are
to be executed with the environment specified in the
named file

ENVFILE (optional) server group environment

A value that specifies that this group of servers resides
on the machine symbolically named by
string_value1 in the MACHINES section (or the
default in SHM mode)

LMID (required) server group location

The name of the transaction manager server process
associated with this group

TMSNAME (optional) transaction manager server
for group

To Specify This Information in the GROUPS
Section . . .

Set This Parameter
(Required/Optional)

For More Information,
Click the Following
Setting Up a BEA Tuxedo Application 3-45

3 Creating the Configuration File
Specifying a Group Name, Number, and
LMID

The group name, which is the basis for a GROUPS section entry, is an alphanumeric
name by which the group is identified; it specifies the logical name (string_value)
of the group. It is given a mandatory, unique group number (GRPNO). Each group must
reside wholly on one logical machine (LMID).

The LMID specifies that this group of servers resides on the machine symbolically
named by string_value1 in the MACHINES section.

Characteristics of the Group Name, Group Number, and
LMID

Parameter Characteristics

Group_name required_
parameters [optional_
parameters]

It is required.

It is an alphanumeric name by which the group is identified.

It is unique and specifies the logical name of the group.

GRPNO (Group Number) It is required and is unique.

LMID=string_value1
[,string_value2]

It is required.

Each LMID value must be an alphanumeric string
containing 30 or fewer characters.

Up to two logical machine names can be specified. If a
second logical name is given and server group migration is
enabled, the machine with which the server group is
associated can be migrated.
3-46 Setting Up a BEA Tuxedo Application

Indicating a Transaction Manager Server Name and Numbers per Group

1

y for
s

, set

 can
ve a
 with

a

ver.

ult for
 the
See Also

n UBBCONFIG(5) in BEA Tuxedo File Formats and Data Descriptions Reference

n “How to Create the NETWORK Section of the Configuration File” on page 3-5

Indicating a Transaction Manager Server
Name and Numbers per Group

The name of the transaction manager server, TMS, must be specified in the entr
any group with servers that will participate in distributed transactions (transaction
across multiple resource managers—and possibly machines). To specify a TMS
the TMSNAME parameter. This parameter specifies the file (string_value) to be
executed by tmboot(1) when booting the server group.

The value TMS is reserved to indicate use of the null XA interface. This interface
be used for server groups that do not have resource managers. If you do not ha
resource manager, you may not need a TMS. This server group may be infected
transactional messages. If a non-empty value other than TMS is specified, then
TLOGDEVICE must be specified for the machine(s) associated with the LMID value(s)
for this entry. A unique server identifier is selected automatically for each TM ser
Servers are restartable an unlimited number of times.

If TMSNAME is specified, TMSCOUNT=number must also be specified to indicate the
number of transaction manager servers to start for the associated group. The defa
TMSCOUNT is 3. If specified and the value is non-zero, the minimum value is 2 and
maximum value is 256. The servers are set up in an MSSQ set automatically.
Setting Up a BEA Tuxedo Application 3-47

3 Creating the Configuration File
Identifying the Environment File Location
for Servers in a Group

If the value of the ENVFILE environment variable (ENVFILE=string_value) is an
invalid filename, no values are added to the environment. Lines must be of the form
ident=value where ident contains only underscores or alphanumeric characters.

Within value, strings of the form ${env} are expanded when the file is processed
using variables already defined for the environment. (Forward referencing is not
supported. If a value is not set, the variable is replaced with an empty string.) You can
use a back slash (\) to escape dollar signs and other back slashes. All other shell quoting
and escape mechanisms are ignored and the expanded value is placed in the
environment.

Environment files are provided in at least two sections of the configuration file. The
BEA Tuxedo system reads them in the following order.

1. MACHINES section ENVFILE

2. GROUPS section ENVFILE

3. SERVERS section ENVFILE (optional)

Values in the SERVERS section override values in the GROUPS section. Values in the
GROUPS section override values in the MACHINES section.

Defining Information Needed When
Opening and Closing the Resource Manager

The values of both the OPENINFO and CLOSEINFO parameters must be alphanumeric
strings that contain a maximum of 256 characters, and are enclosed in double quotation
marks. These settings specify the resource manager dependent information needed
when opening and closing the resource manager for this group (that is, for this group
name).
3-48 Setting Up a BEA Tuxedo Application

Defining Information Needed When Opening and Closing the Resource Manager

,

fter

e
ing
This value is ignored if the TMSNAME parameter for this group is not set or is set to TMS.
If the TMSNAME parameter is set to a value other than TMS but the OPENINFO string is
set to the null string ("") or is not specified, a resource manager exists for the group
but does not require any information for executing an open operation. If the TMSNAME
parameter is set to a value other than TMS but the CLOSEINFO string is set to the null
string ("") or is not specified, a resource manager exists for the group but does not
require any information for executing a close operation.

The format of the OPENINFO string is dependent on the requirements of the vendor
providing the underlying resource manager. The information required by the vendor
must be prefixed with the published name of the vendor’s transaction (XA) interface
followed immediately by a colon (:).

For BEA Tuxedo /Q databases, the format of OPENINFO is as follows.

n # On UNIX #
OPENINFO = "TUXEDO/QM:qmconfig:qspace"

n # On Windows NT #
OPENINFO = "TUXEDO/QM:qmconfig;qspace"

n # In AS/400 environment #
OPENINFO = "TUXEDO/QM:qmconfig;qspace"

n # In OpenVMS environment #
OPENINFO = "TUXEDO/QM,[a.b.c]qmconfig,qspace"

In all these settings, TUXEDO/QM is the published name of the BEA Tuxedo /Q XA
interface, qmconfig is replaced with the name of the QMCONFIG (see qmadmin(1) in
BEA Tuxedo Command Reference) on which the queue space resides, and qspace is
replaced with the name of the queue space. For NT and AS/400, the separator a
qmconfig must be a semicolon (;). For OpenVMS, the separator after TUXEDO/QM and
after qmconfig must be a comma (,).

Note: The CLOSEINFO string is not used for BEA Tuxedo /Q databases.

For other vendors’ databases, the format of the OPENINFO string is specific to the
particular vendor providing the underlying resource manager. As an example, th
following OPENINFO string demonstrates the type of information needed when open
the Oracle resource manager.

OPENINFO="Oracle_XA:
Oracle_XA+Acc=P/Scott/*****+SesTm=30+LogDit=/tmp"
Setting Up a BEA Tuxedo Application 3-49

3 Creating the Configuration File
Oracle_XA is the published name of the Oracle XA interface. The series of five
asterisks (*) in the OPENINFO string pertains to the encrypting of a password, which is
described in the paragraphs that follow.

Passwords passed to a resource manager in the OPENINFO string can be stored in either
clear text or encrypted form. To encrypt a password, first enter a series of five or more
continuous asterisks in the OPENINFO string at the place where you want the password
to go. Then load the UBBCONFIG file by running tmloadcf(1). When tmloadcf()
encounters the string of asterisks, it prompts you to create a password. For example:

tmloadcf -y /usr5/apps/bankapp/myubbconfig
Password for OPENINFO (SRVGRP=BANKB3):
password

tmloadcf() stores the password in the TUXCONFIG file in encrypted form. If you then
regenerate the UBBCONFIG file from the TUXCONFIG file using tmunloadcf(1), the
password is printed in the regenerated UBBCONFIG file in encrypted form with @@ as
delimiters. For example:

OPENINFO="Oracle_XA:
Oracle_XA+Acc=P/Scott/@@A0986F7733D4@@+SesTm=30+LogDit=/tmp"

When tmloadcf() encounters an encrypted password in a UBBCONFIG file generated
by tmunloadcf(), it does not prompt the user to create a password.
3-50 Setting Up a BEA Tuxedo Application

How to Create the NETWORK Section of the Configuration File

n
How to Create the NETWORK Section of the
Configuration File

If you have more than one machine in your distributed application, you need to create
a NETWORK section in your configuration file. This section sets up communications
among your machines. You can configure network groups in both the NETGROUPS and
NETWORK sections of an application’s UBBCONFIG file.

For each parameter in the NETWORK section, the following table provides a descriptio
and links to reference pages and additional information.

To Specify This Information in the NETWORK
Section . . .

Set This Parameter
(Required/Optional)

For More
Information, Click
the Following

The device name to be used by the BRIDGE process placed
on that LMID to access the network.

BRIDGE (optional) BRIDGE device name

The complete network address to be used by the BRIDGE
process; that is, the listening address on the LMID.

NADDR (required) BRIDGE network
address

The minimum level of encryption required when a network
link to this machine is being established.

MINENCRYPTBITS
(optional)

encryption levels

The maximum level of encryption allowed when a network
link is being established.

MAXENCRYPTBITS

(optional)
encryption levels

The network group associated with this network entry. If
unspecified, then the default, DEFAULTNET, is assumed. (If
not set to DEFAULTNET, this parameter must be defined as
a group name in the NETGROUPS section.)

NETGROUP (optional) network group

The network address used by the tlisten(1) process
servicing the network on the node identified by the LMID.

NLSADDR (optional) tlisten network
address
Setting Up a BEA Tuxedo Application 3-51

3 Creating the Configuration File

Sample NETWORK Section

The following configuration file excerpt shows a NETWORK section for a 2-site
configuration.

 *NETWORK
 SITE1 NADDR="//mach1:80952"
 NLSADDR="//mach1:serve"
SITE2 NADDR="//mach386:80952"
 NLSADDR="//mach386:serve"

See Also

n UBBCONFIG(5) in BEA Tuxedo File Formats and Data Descriptions Reference

n “How to Create the NETGROUPS Section of the Configuration File” on page
3-56

Specifying a Device Name for the BRIDGE
Process

To specify the device name to be used by the BRIDGE process placed on the LMID to
access the network, set the BRIDGE parameter as follows.

BRIDGE=string_value

If you are using TCP/IP, you do not need to specify the device name for the BRIDGE.

The path name for the network transport endpoint file has the following form.

/dev/provider_name
3-52 Setting Up a BEA Tuxedo Application

Assigning a BRIDGE Network Address
Assigning a BRIDGE Network Address

To specify the complete network address to be used by the BRIDGE process placed on
the LMID as its listening address, set the NADDR parameter as follows.

NADDR = string_value

The listening address for a BRIDGE is the location at which it is contacted by other
BRIDGE processes participating in the application.

The listening address for a BRIDGE may also be specified in one of the following three
forms:

n //host.name:port_number

n //#.#.#.#:port_number

n 0xhex-digits or \\xhex-digits

In the first of these formats, host.name is resolved to the address of the TCP/IP host
address at the time the address is bound. This format is based on locally configured
name resolution facilities accessed via an operating system command. The value of
port_number can be a symbolic name or a decimal number.

In the second format, the string #.#.#.# represents four decimal numbers (each of
which is between 0 and 255), separated by periods. The value of port_number is a
decimal number in the range 0 to 65535 (the hexadecimal representations of the string
specified). The value of port_number can be a symbolic name or a decimal number.

In the third format, the string 0xhex-digits or \\xhex-digits must contain an even
number of valid hex digits. A string in either of these forms is translated internally into
a character array containing TCP/IP addresses.

Note: On some platforms lower numbers may be reserved for the system.
Setting Up a BEA Tuxedo Application 3-53

3 Creating the Configuration File

 the
Assigning Encryption Levels

To set up the minimum level of encryption required when establishing a network link
to the machine, set the MINENCRYPTBITS parameter. Valid values are 0, 56, and 128.
0 means no encryption, while 56, and 128 specify the encryption key length (in bits).
If this minimum level of encryption cannot be met, link establishment fails. The default
is 0.

To set up a maximum level of encryption when establishing a network link, set the
MAXENCRYPTBITS parameter. Valid values are 0, 56, and 128. 0 means no encryption,
while 56, and 128 specify the encryption key length (in bits). The default is 128.

Example

MAXENCRYPTBITS=128
MINENCRYPTBITS=0

See Also

n “Link-Level Encryption” on page 1-23 in Using BEA Tuxedo Security

Assigning a tlisten Network Address

To specify the network address used by the tlisten(1) process servicing the network
on the machine identified by the LMID, set the NLSADDR parameter as follows.

NLSADDR=string_value

The value of string is a network address in the same format as that specified for
NADDR parameter.
3-54 Setting Up a BEA Tuxedo Application

Assigning a tlisten Network Address
The tlisten address for NLSADDR may be specified in one of the following three
forms:

n //host.name:port_number

n //#.#.#.#:port_number

n 0xhex-digits or \\xhex-digits

In the first of these formats, host.name is resolved to the address of the TCP/IP host
address at the time the address is bound. This format is based on locally configured
name resolution facilities accessed via an operating system command. The value of
port_number can be a symbolic name or a decimal number.

In the second format, the string #.#.#.# represents four decimal numbers (each of
which is between 0 and 255), separated by periods. The value of port_number is a
decimal number in the range 0 to 65535 (the hexadecimal representations of the string
specified). The value of port_number can be a symbolic name or a decimal number.

In the third format, the string 0xhex-digits or \\xhex-digits must contain an even
number of valid hex digits. A string in either of these forms is translated internally into
a character array containing TCP/IP addresses.

tmloadcf(1) prints an error if NLSADDR is missing from an entry for any machine
besides the MASTER LMID, for which it prints a warning. If NLSADDR is missing from
the MASTER LMID, tmadmin(1) cannot run in administrator mode on remote machines;
it is limited to read-only operations. In addition, the backup site cannot reboot the
MASTER site after failure.
Setting Up a BEA Tuxedo Application 3-55

3 Creating the Configuration File
How to Create the NETGROUPS Section of
the Configuration File

The NETGROUPS section of the UBBCONFIG file describes the network groups available
to an application in a LAN environment. There is no limit to the number of network
groups to which you can assign a pair of machines. The method of communication to
be used by members of different networks in a network group is determined by the
priority mechanism (NETPRIO).

Every LMID must be a member of the default network group (DEFAULTNET). The
network group number for this group (that is, the value of NETGRPNO) must be zero.
However, you can modify the default priority of DEFAULTNET. Networks defined in the
BEA Tuxedo system prior to Release 6.4 are assigned to the DEFAULTNET network
group.

For each parameter in the NETGROUPS section, the following table provides a
description and links to reference pages and additional information.

To Specify This Information in the NETGROUPS
Section (Optional)

Set This Parameter
(Required/Optional)

For More
Information, Click
the Following

Allow more netgroups to be defined than the default (8).
This value is specified in the RESOURCES section.

MAXNETGROUPS
(optional)

maximum netgroups

The maximum size of data waiting for the network to
become available. This value is specified in the MACHINES
section.

MAXPENDINGBYTES
(optional)

message space limits

The network group associated with this network entry. NETGROUP (required) network group name

A unique network group number that you must assign to use
in failover and failback situations.

NETGRPNO (required) network group number

The priority of this network group. NETPRIO (optional) network group priority
3-56 Setting Up a BEA Tuxedo Application

How to Create the NETGROUPS Section of the Configuration File
Sample Network Groups Configuration

You can associate network addresses with a network group. The following example
illustrates how this capability may be useful.

First State Bank has a network of five machines (A-E). Each machine belongs to two
or three of four netgroups that you have defined in the following way:

n DEFAULTNET (the default network, which is the corporate WAN)

n MAGENTA_GROUP (a LAN)

n BLUE_GROUP (a LAN)

n GREEN_GROUP (a private LAN that provides high-speed, fiber, point-to-point
links between member machines)

Every machine belongs to DEFAULTNET (the corporate WAN). In addition, each
machine is associated with either the MAGENTA_GROUP or the BLUE_GROUP. Finally,
some machines in the MAGENTA_GROUP LAN also belong to the private GREEN_GROUP.
The following illustration shows machines A through E in the networks for which they
have addresses.

Figure 3-3 Example of a Network Grouping
Setting Up a BEA Tuxedo Application 3-57

3 Creating the Configuration File
The following table shows which machines have addresses for which groups.

Note: Because the local area networks are not routed among locations, machine D
(in the BLUE_GROUP LAN) may contact machine A (in the GREEN_GROUP
LAN) only by using the single address they have in common: the corporate
WAN network address.

Configuring a Sample UBBCONFIG File with Netgroups

To set up the configuration just described, the First State Bank system administrator
defines each group in the NETGROUPS section of the UBBCONFIG file, as shown in the
following configuration file sample.

Listing 3-1 Sample NETGROUPS and NETWORK Sections

*NETGROUPS

DEFAULTNET NETGRPNO = 0 NETPRIO = 100 #default
BLUE_GROUP NETGRPNO = 9 NETPRIO = 200
MAGENTA_GROUP NETGRPNO = 125 NETPRIO = 200
GREEN_GROUP NETGRPNO = 13 NETPRIO = 300

*NETWORK

A NETGROUP=DEFAULTNET NADDR="//A_CORPORATE:5723”
A NETGROUP=MAGENTA_GROUP NADDR="//A_MAGENTA:5724"
A NETGROUP=GREEN_GROUP NADDR="//A_GREEN:5725"

This Machine Has Addresses for These Groups

A and B DEFAULTNET (the corporate WAN)

MAGENTA_GROUP (LAN)

GREEN_GROUP (LAN)

C DEFAULTNET (the corporate WAN)

MAGENTA_GROUP (LAN)

D and E DEFAULTNET (the corporate WAN)

BLUE_GROUP (LAN)
3-58 Setting Up a BEA Tuxedo Application

Assigning a Name to a Network Group

0

B NETGROUP=DEFAULTNET NADDR="//B_CORPORATE:5723"
B NETGROUP=MAGENTA_GROUP NADDR="//B_MAGENTA:5724"
B NETGROUP=GREEN_GROUP NADDR="//B_GREEN:5725"

C NETGROUP=DEFAULTNET NADDR="//C_CORPORATE:5723"
C NETGROUP=MAGENTA_GROUP NADDR="//C_MAGENTA:5724"

D NETGROUP=DEFAULTNET NADDR="//D_CORPORATE:5723"
D NETGROUP=BLUE_GROUP NADDR="//D_BLUE:5726"
E NETGROUP=DEFAULTNET NADDR="//E_CORPORATE:5723"
E NETGROUP=BLUE_GROUP NADDR="//E_BLUE:5726"

See Also

n UBBCONFIG(5) in BEA Tuxedo File Formats and Data Descriptions Reference

n “How to Create the SERVERS Section of the Configuration File” on page 3-6

n “Setting Up the Network for a Distributed Application” on page 8-1

Assigning a Name to a Network Group

To assign a name to a network group, set the NETGROUP parameter as follows.

NETGROUP required_parameters [optional_parameters]

If you set NETGROUP to DEFAULTNET, then the entry describes the default network
group. All network entries with a NETGROUP parameter of DEFAULTNET are represented
in the T_MACHINE class of the TM_MIB, while NETWORK entries associated with any
other NETGROUP are represented in the T_NETMAP class of the TM_MIB, so they can
interoperate with previous releases.
Setting Up a BEA Tuxedo Application 3-59

3 Creating the Configuration File
Assigning a Network Group Number

To accommodate circumstances in which you may need to use failover and failback,
you must set the NETGRPNO parameter as follows.

NETGRPNO=numeric_value

If this entry describes DEFAULTNET, the value of NETGRPNO must be zero.

Assigning a Priority to the Network Group

A pair of machines in multiple network groups of the same priority can communicate
simultaneously over the circuits with the highest priority. To assign network group
priorities, use the NETPRIO parameter. If all network circuits of a certain priority are
torn down by an administrator or by network conditions, the next lower priority circuit
is used. Retries of the higher priority circuits are attempted. The value of the NETPRIO
parameter must be a number greater than zero and less than 8,192. The default is 100.

How to Create the SERVERS Section of the
Configuration File

The SERVERS section of the configuration file contains information specific to a server
process. While this section is not required, an application without this section has no
application servers and little functionality. Each entry in this section represents a server
process to be booted in the application and includes the following information:

n The name, group, and numeric identifier for a server (SRVGRP, SRVID)

n Server command-line options defined by servopts (CLOPT)
3-60 Setting Up a BEA Tuxedo Application

How to Create the SERVERS Section of the Configuration File
n Parameters to determine the booting order and number of servers to boot
(SEQUENCE, MIN, MAX)

n A server-specific environment file (ENVFILE)

n Server queue-related information (RQADDR, RQPERM, REPLYQ, RPPERM)

n Restart information (RESTART, RCMD, MAXGEN, GRACE)

n Designation as a conversational server (CONV)

n Overriding of system-wide shared memory access (SYSTEM_ACCESS)

Note: Command-line options supported by the BEA Tuxedo system are described on
servopts(5) in BEA Tuxedo File Formats and Data Descriptions Reference.

For each parameter in the SERVERS section, the following table provides a description
and links to reference pages and additional information.

To Specify This Information in the
SERVERS Section (Optional)

Set This Parameter
(Required/Optional)

For More
Information, Click
the Following

Whether the server is a conversational
server. Connections can be made only to
conversational servers, and rpc requests
(via tpacall(3c) or tpcall(3c)) can be
made only to non-conversational servers.

CONV (optional run-time parameter) conversational server

Principal name of the process used for
identification, location of the principal user’s
private key, and the environment variable
containing the password

SEC_PRINCIPAL_NAME,
SEC_PRINCIPAL_LOCATION,
SEC_PRINCIPAL_PASSVAR

security attributes

When this server should be booted or shut
down relative to other servers.

SEQUENCE (optional boot
parameter)

server boot order

The minimum number of occurrences of the
server to be booted by tmboot.

MIN (optional boot parameter) server boot order

The maximum number of occurrences of the
server that can be booted.

MAX (optional boot parameter) server boot order
Setting Up a BEA Tuxedo Application 3-61

3 Creating the Configuration File
A list of servopts(5) options to be passed
to a server process at boot time. If none are
specified, the default is -A. string_value
may contain up to 256 characters.

CLOPT (optional boot parameter) server command-line
options

A request for the addition of the values in this
file to the environment of the server during
its initialization. If a server is associated with
a server group that can be migrated to a
second machine, the ENVFILE must be in
the same location on both machines.

ENVFILE (optional run-time
parameter)

server environment
file

The name of the group in which the server is
to run. string_value must be the logical
name associated with a server group in the
GROUPS section.

SRVGRP (required) server group

An integer that uniquely identifies a server
within a group. Identifiers must be between 1
and 30,000 inclusive.

SRVID (required) server ID

The symbolic name of the request queue for
the process.

RQADDR (optional run-time parameter) server queue
information

The numeric permissions on the request
queue.

RQPERM (optional run-time parameter) server queue
information

Whether a reply queue should be established
for the process.

REPLYQ (optional run-time parameter) server queue
information

The numeric permissions on the reply queue. RPPERM (optional run-time parameter) server queue
information

The command that should be executed when
the process abnormally terminates, if the
process is restartable.

RCMD (optional run-time parameter) server restart
information

The maximum number minus one time that
the process can be restarted within the period
specified by GRACE, if the process is
restartable.

MAXGEN (optional run-time parameter) server restart
information

To Specify This Information in the
SERVERS Section (Optional)

Set This Parameter
(Required/Optional)

For More
Information, Click
the Following
3-62 Setting Up a BEA Tuxedo Application

How to Create the SERVERS Section of the Configuration File
A parameter that specifies that the process
can have up to MAXGEN lives within the
specified number of seconds, if the process is
restartable.

GRACE (optional run-time parameter) server restart
information

Whether the process is restartable. Default is
N. If server migration is specified, RESTART
must be set to Y. (A server terminated with a
SIGTERM signal must be rebooted.)

RESTART (optional run-time
parameter)

server restart
information

The default mode used by BEA Tuxedo
system libraries within application processes
to gain access to BEA Tuxedo system
internal tables.

SYSTEM_ACCESS (optional run-time
parameter)

system access to
servers

The minimum number of server dispatch
threads started on initial server boot. The
separate dispatched thread that is used when
MAXDISPATCHTHREADS>1 is not counted
as part of the MAXDISPATCHTHREADS
value. It is required that
MINDISPATCHTHREADS<=
MAXDISPATCHTHREADS. The default for
this parameter is 0.

MINDISPATCHTHREADS threads

The maximum number of concurrently
dispatched threads that each server process
may spawn. If MAXDISPATCHTHREADS>1,
then a separate dispatcher thread is used and
does not count against this limit. It is
required that MINDISPATCHTHREADS<=
MAXDISPATCHTHREADS. The default for
this parameter is 1.

MAXDISPATCHTHREADS threads

The stack size in bytes for each server thread
after the initial thread. If not specified or
specified as 0, the operating system default is
used. This option has an affect on the server
only when a value greater than 1 is specified
for MAXDISPATCHTHREADS.

THREADSTACKSIZE threads

To Specify This Information in the
SERVERS Section (Optional)

Set This Parameter
(Required/Optional)

For More
Information, Click
the Following
Setting Up a BEA Tuxedo Application 3-63

3 Creating the Configuration File
Sample SERVERS Section

Following is a sample SERVERS section of a configuration file.

*SERVERS
DEFAULT: RESTART=Y MAXGEN=5 GRACE=3600
 REPLYQ=N CLOPT=”-A”
 ENVFILE=”/usr/home/envfile”
 SYSTEM_ACCESS=PROTECTED

RINGUP1 SRVGRP=GROUP1 SRVID=1 MIN=3
 RQADDR=”ring1"
RINGUP2 SRVGRP=GROUP1 SRVID=4 MIN =3
 RQADDR=”ring2"

Note: Omitted from this sample are SEQUENCE (the order of booting is 1 to 6),
REPLYQ and RPPERM (the server does not receive replies), RCMD (no special
commands are desired on restart), and CONV (servers are not conversational).
Defaults are applied to all servers unless a different setting is specified for a
specific server.

Sample SERVERS Section Parameters

In the preceding sample SERVERS section, the following parameters and values are
specified.

Parameter Meaning

RESTART=Y (default) Restart the servers.

MAXGEN=5 (default) The MAXGEN parameter specifies a number greater than 0 and less
than 256 that controls the number of times a server can be started
within the period specified by the GRACE parameter. The default is
1. If the server is to be restartable, MAXGEN must be >= 2. The
number of restarts is at most number - 1 times. RESTART must
be Y or MAXGEN is ignored.
3-64 Setting Up a BEA Tuxedo Application

How to Create the SERVERS Section of the Configuration File

5

See Also

n UBBCONFIG(5) in BEA Tuxedo File Formats and Data Descriptions Reference

n “How to Create the SERVICES Section of the Configuration File” on page 3-7

GRACE=3600 (default) If RESTART is Y, the GRACE parameter specifies the time period (in
seconds) during which this server can be restarted as MAXGEN - 1
times. The number assigned must be equal to or greater than 0. The
maximum is 2,147,483,648 seconds (or a little more than 68 years).
If GRACE is not specified, the default is 86,400 seconds (24 hours).
As soon as one GRACE period is over, the next grace period begins.
Setting the grace period to 0 removes all limitations; the server can
be restarted an unlimited number of times.

REPLYQ=N (default) There is no reply queue.

CLOPT=”-A” (default) Specify -A on the command line of each server.

ENVFILE=”/usr/home/envfile”
(default)

Read environment settings from the file ENVFILE.

SYSTEM_ACCESS=PROTECTED (default) Deny access to internal tables outside system code.

RINGUP1 Sample name of the first server to be booted.

SRVGRP=GROUP1 SRVID=1 MIN=3

RQADDR=”ring1"
Three instances of the sample server will be booted in group
GROUP1 with server IDs of 1, 2, and 3, respectively. The three
servers will form an MSSQ set and will read requests from queue
ring1.

Note: RQADDR assigns a symbolic name to the request queue of
this server. MSSQ sets are established by using the same
symbolic queue name for more than one server, as well as
same executable name for all the servers (and by
specifying a value greater than 1 for MIN).

RINGUP2 Name of the second sample server to be booted.

Parameter Meaning
Setting Up a BEA Tuxedo Application 3-65

3 Creating the Configuration File
Specifying a Server as Conversational

If a server is conversational (that is, if it establishes a 2-way connection between a
client and a dedicated server), the CONV parameter is required and must be set to Y. The
default is N, indicating that the server will not be part of a conversation.

Characteristics of the CONV Parameter

The CONV parameter has the following characteristics:

n A Y value indicates a server is conversational; an N value indicates a server is
not conversational.

n A Y value is required if the server is to receive conversational requests.

n The default is N.

Setting the Order in Which Servers Are
Booted

To specify the sequence of servers to be booted, set the SEQUENCE parameter for each
server. The value of SEQUENCE can be any number between 1 and 10,000. A server
with a smaller SEQUENCE value is booted before a server with a larger value. If the
SEQUENCE parameter is not set for any servers, the servers are booted in the order in
which they are listed in the SERVERS section. If some, but not all servers are sequenced,
the sequenced servers are booted first. The order in which servers are shut down is the
reverse of the order in which they were booted.

The SEQUENCE parameter is optional. It may be helpful in a large application in which
control over boot order is important.
3-66 Setting Up a BEA Tuxedo Application

Characteristics of the SEQUENCE, MIN, and MAX Parameters
To boot multiple servers, set the MIN parameter, which provides a shortcut to booting.
All servers share the same options. If you specify RQADDR, the servers form an MSSQ
set. The default for MIN is 1.

To specify the maximum number of servers that can be booted, set the MAX parameter.
The tmboot(1) command boots MIN servers at run time. Additional servers can be
booted up to MAX. The default is MIN.

The MIN and MAX parameters are helpful in keeping the size of the configuration files
for large applications manageable. Allowances for MAX values must be made in the IPC
resources. The MIN and MAX parameters are also used for conversational services and
automatic server spawning.

Characteristics of the SEQUENCE, MIN, and
MAX Parameters

Parameter Characteristics

SEQUENCE It is an optional parameter with a numeric range of 1 - 10,000.

Smaller values are booted before larger values.

Servers for which this parameter is not set are booted in the order in which
they are listed in the SERVERS section.

All sequenced servers are booted before any unsequenced servers.

MIN It represents the minimum number of servers to boot during run time.

If RQADDR is specified and MIN>1, an MSSQ set is created.

All instances have the same server options.

The range of values is 0 to 1000.

The default is 1.

MAX It represents the maximum number of servers to boot.

The range of values for MAX is 0 to 1000. If MAX is not specified, the
default is the value of MIN.
Setting Up a BEA Tuxedo Application 3-67

3 Creating the Configuration File
Specifying Server Command-line Options

The BEA Tuxedo system allows you to specify options that are used when a server
processes a request. These options are defined in servopts, which lists the run-time
options for server processes. The server may need to obtain information from the
command line. The CLOPT parameter allows you to specify command-line options that
can change some defaults in the server, or pass user-defined options to the
tpsvrinit() function.

The standard main() of a server parses one set of options ending with the argument --,
and passes the remaining options to tpsvrinit(). The default for CLOPT is -A, which
tells the server to advertise all the services built into it with buildserver(1). The
following table provides a partial list of the available options.

Note: You can find other standard main()options listed on servopts(5) in BEA
Tuxedo File Formats and Data Descriptions Reference.

Use This Option To

-o filename Redirect standard output to file filename.

-e filename Redirect standard error to file filename.

-s services Advertise services. For example, -s x,y,z to advertise services
x, y, and z.

-s x,y,z:funcname Advertise services x, y, and z, but process requests for those
services with function funcname. This is called aliasing a
function name.

-r Specify that the server should log the services performed.

-v Print out the list of the service name/function name to standard
output.

This option cannot be used in the CLOPT in the UBBCONFIG. It
must be used when manually invoking the server.
3-68 Setting Up a BEA Tuxedo Application

Identifying the Location of the Server Environment File
Characteristics of the CLOPT Parameter

n The syntax is CLOPT=”servopts -- application_opts” .

n This is an optional parameter with a default of -A .

n Both main() and tpsvrinit() use server command-line options.

n servopts (5) options are passed to main() .

n Application options are passed to tpsvrinit() .

In the BANKAPP sample application, command-line options are specified as follows.

CLOPT=”-A -- -T 10"

The server is given the option of advertising all services (-A) and teller ID of 10 so it
can update a specific teller record with each operation. The use of this option,
especially the options passed to tpsvrinit() , require communication between the
system administrator and the application programmer.

See Also

n servopts(5) in BEA Tuxedo File Formats and Data Descriptions Reference

Identifying the Location of the Server
Environment File

Use the ENVFILE parameter in the MACHINES section to specify environment settings.
You can also specify the same parameter for a specific server process; the semantics
are the same. If both the MACHINES section ENVFILE and the SERVERS section
ENVFILE are specified, both go into effect. For any overlapping variable defined in
both the MACHINES and SERVERS sections, the setting in the SERVERS section prevails.
Setting Up a BEA Tuxedo Application 3-69

3 Creating the Configuration File
Characteristics of the Server Environment File

ENVFILE, the parameter that defines the server environment file, has the following
characteristics:

n It is an optional parameter that contains the same semantics as the ENVFILE
parameter in the MACHINES section, but defines only one server.

n For overlapping variables, the setting in the SERVERS section ENVFILE overrides
the setting in the MACHINES and GROUPS sections ENVFILE.

Defining Server Name, Group, and ID

You initially assign a name to a server in the SERVERS section. The name you specify
must be the name of an executable file built with buildserver(1). You must also
specify a group identifier (SRVGRP) for each server. The value of SRVGRP must be the
name specified in the beginning of a GROUPS section entry. Finally, you must also
provide each server process in a given group with a unique numeric identifier (SRVID).
Every server entry must include the SRVGRP and SRVID parameters. Because the
entries describe machines to be booted and not just applications, it is possible that in
some cases the same server name will be displayed in many entries.

Characteristics of the Server Name, SRVGRP, and SRVID
Parameters

Parameter Characteristics

Server_name It identifies the executable to be booted.

It is built with buildserver(1).

It is required, but may not be unique within a server group.
3-70 Setting Up a BEA Tuxedo Application

Identifying Server Queue Information
Identifying Server Queue Information

Server queue information controls the creation and access of server message queues.
On a BEA Tuxedo system, you can create multiple-server, single-queue (MSSQ) sets by
using the RQADDR parameter. For any given server, you can set this parameter to an
alphanumeric value. By specifying the same value for RQADDR on all servers that offer
the same services, you can consolidate those services under one message queue, thus
creating an MSSQ set and establishing load balancing.

MSSQ Example

An MSSQ set is similar to a bank staff. Four tellers may be available to handle the
business requests of many customers who wait in a single line. All customers are
assured of an equitable wait in line. Understandably, a loan officer is not included in
the group of tellers handling requests from customers in that line. The loan officer
cannot handle requests for deposits and withdrawals (as the tellers can), and not all
customers want loans. Similarly, a server cannot join an MSSQ set if the services it
offers are not the same as the services offered by the servers in an MSSQ set.

The RQPERM parameter allows you to specify the permissions for server request queues,
along the lines of the UNIX system convention (for example, 0666). This setting
allows services to control access to the request queue.

SRVGRP (Server Group) It identifies the group affiliation.

The group name begins with a GROUPS section entry.

It is required.

SRVID (Server ID) It is numeric.

It is required and unique within a server group.

Parameter Characteristics
Setting Up a BEA Tuxedo Application 3-71

3 Creating the Configuration File
If the service routines within an MSSQ server perform service requests, they must
receive replies to their requests on a reply queue. You can set up such a reply queue by
specifying REPLYQ=Y. By default, REPLYQ is set to N. If REPLYQ is set to Y, you can also
assign permissions to it with the RPPERM parameter.

Characteristics of the RQADDR, RQPERM, REPLYQ, and
RPPERM Parameters

Parameter Characteristics

RQADDR It is an alphanumeric value that allows MSSQ sets to be created. The value
is the same for all members of an MSSQ set. All members of an MSSQ set
must offer the same set of services and the servers in an MSSQ set should
have the same executable name. In order to boot multiple servers, set the
value greater than 1 for Min parameter.

RQPERM Represents the permissions on a request queue. If no parameter is
specified, the permissions of the bulletin board, as specified by PERM in
the RESOURCES section, are used. If no value is specified there, the
default of 0666 is used. When the default is used, your application is
available to anyone with a login on the system.

REPLYQ Specifies whether a reply queue, separate from the request queue, is to be
set up for this server. If only one server is using the request queue, replies
can be picked up from the request queue without causing problems. On a
BEA Tuxedo system, if the server is a member of an MSSQ set and
contains services programmed to receive reply messages, REPLYQ
should be set to Y so that an individual reply queue is created for this
server. If not, the reply is sent to the request queue shared by all servers
of the MSSQ set, and there is no way of assuring that it will be picked up
by the server that is waiting for it. Multithreaded servers automatically
create REPLYQs even if this parameter is not set.

RPPERM Assigns permissions to the reply queue. This parameter is useful only
when REPLYQ=Y. If requests and replies are read from the same queue,
only RQPERM is needed; RPPERM is ignored.
3-72 Setting Up a BEA Tuxedo Application

Defining Server Restart Information
Defining Server Restart Information

A properly debugged server should not terminate on its own. By default, servers that
do terminate while the application is running are not restarted by the BEA Tuxedo
system. You can set the RESTART parameter to Y if you want the server to restart. The
RCMD, MAXGEN, and GRACE parameters are relevant to a server if RESTART=Y.

The RCMD parameter lets you specify a command to be performed in parallel with
restarting a server. For example, you may want to have mail sent to the developer of
the server or to someone who is auditing such activity.

The MAXGEN parameter represents the total number of lives to which a server is entitled
within the period specified by GRACE. The server can then be restarted MAXGEN-1 times
during GRACE seconds. If GRACE is set to zero, there is no limit on server restarts.
MAXGEN defaults to 1 and may not exceed 256. GRACE must be greater than or equal to
zero and must not exceed 2,147,483,647 (231 - 1).

Note: A fully debugged server should not need to be restarted. RESTART and
associated parameters should have two settings: one for the testing phase, and
another for production.

Characteristics of the RESTART, RCMD, MAXGEN, and
GRACE Parameters

Parameter Characteristics

RESTART A setting of Y enables a server to restart.

The default is N.

RCMD Specifies an executable file to be run at restart time.

Allows you to take an action when a server is restarted.

MAXGEN Represents the maximum number of server lives in a specific interval.

The default is 1; the maximum is 256.
Setting Up a BEA Tuxedo Application 3-73

3 Creating the Configuration File
Defining Server Access to Shared Memory
The SYSTEM_ACCESS parameter determines whether a server process may attach to
shared memory and thus have access to internal tables outside system code. During
application development, we recommend that such access be denied (PROTECTED).
When the application is fully tested, you can change the value of SYSTEM_ACCESS to
FASTPATH to yield better performance.

This parameter setting overrides the value specified in the RESOURCES section unless
the NO_OVERRIDE value has been specified. In this case, the parameter is ignored. The
NO_OVERRIDE value may not be used in this section.

Characteristics of the SYSTEM_ACCESS Parameter

The SYSTEM_ACCESS parameter has the following characteristics:

n A value of PROTECTED indicates that the server may not attach to shared
memory outside of system code.

n A value of FASTPATH indicates that the server will attach to shared memory at
all times.

n If NO_OVERRIDE is specified in the RESOURCES section, this parameter is
ignored.

n The default is the value of the SYSTEM_ACCESS parameter in the RESOURCES
section.

n The BEA Tuxedo system runs more slowly when a value of PROTECTED is set.

GRACE Represents the interval used by MAXGEN.

Zero represents unlimited restart.

It must be between 0 and 2147,483,647 (231 - 1).

The default is 24 hours.

Parameter Characteristics
3-74 Setting Up a BEA Tuxedo Application

Defining the Server Dispatch Threads
Defining the Server Dispatch Threads
MAXDISPATCHTHREADS is the maximum number of concurrently dispatched threads
that each server process may spawn. If MAXDISPATCHTHREADS>1, then a separate
dispatcher thread is used and does not count against this limit. It is required that
MINDISPATCHTHREADS<=MAXDISPATCHTHREADS. If not specified, the default for this
parameter is 1.

MINDISPATCHTHREADS is the minimum number of server dispatch threads started on
initial server boot. The separate dispatched thread that is used when
MAXDISPATCHTHREADS>1 is not counted as part of the MAXDISPATCHTHREADS value.
It is required that MINDISPATCHTHREADS<=MAXDISPATCHTHREADS. The default for
this parameter is 0.

You must specify the stack size in bytes for each server thread after the initial thread.
If not specified or specified as 0, the operating system default is used. This option has
an affect on the server only when a value greater than 1 is specified for
MAXDISPATCHTHREADS.

How to Create the SERVICES Section of the
Configuration File

Detailed information about the services in your application can be entered in the
SERVICES section of the configuration file. For nontransactional, nondistributed
applications, such information is relatively simple. The SERVICES section includes the
following types of information:

n Load balancing information (SRVGRP)

n Assignment of priorities to services

n Different service parameters for different server groups

n Buffer type checking information (BUFTYPE)

There are no required parameters for services. You need to list services only if you are
setting optional parameters.
Setting Up a BEA Tuxedo Application 3-75

3 Creating the Configuration File
For each parameter in the SERVICES section, the following table provides a description
and links to reference pages and additional information.

To Specify This Information in the
SERVICES Section . . .

Set This Parameter
(Required/Optional)

For More Information,
Click the Following

Whether a transaction should be started
automatically when a request message is
received that is not already in transaction
mode.

AUTOTRAN (for DTP
applications only)

automatic starts for
transactions

A list of types and subtypes of data buffers
accepted by this service. This parameter
may contain up to 256 characters with a
maximum of 32 type/subtype
combinations.

BUFTYPE (optional) buffer types

A load factor to be imposed on the system
by SVCNAM.

LOAD (optional) load balancing

The name of the routing criteria used for
this service when data- dependent routing is
used.

ROUTING (optional) routing criteria name

The name of the sever group from which
SVCNAM gets all group parameter settings.

SRVGRP (optional) server group parameters

The dequeuing priority of SVCNM. PRIO (optional) service priorities

The amount of time, in seconds, that is
allowed for processing of the indicated
service.

SVCTIMEOUT (optional) service processing time

The default timeout interval, in seconds, for
a transaction automatically started for the
associated service.

TRANTIME (for DTP
applications only)

timeout values for transactions
3-76 Setting Up a BEA Tuxedo Application

Specifying Automatic Starts and Timeout Intervals for Transactions

4

uest

rvice
ut

uter,
Sample SERVICES Section

Following is a sample of the SERVICES section of a configuration file.

*SERVICES
#
DEFAULT: LOAD=50 PRIO=50
RINGUP BUFTYPE=”VIEW:ringup”

In this example, the default load and priority of a service are 50; the one service
declared is a RINGUP service that accepts a RINGUP VIEW as its required buffer type.

See Also

n UBBCONFIG(5) in BEA Tuxedo File Formats and Data Descriptions Reference

n “How to Create the ROUTING Section of the Configuration File” on page 3-8

Specifying Automatic Starts and Timeout
Intervals for Transactions

You can determine whether a transaction should be started automatically if a req
message is already in transaction mode by coding the AUTOTRAN ={Y|N} parameter.
The default is N.

You can specify a timeout interval between the time at which a transaction for a se
begins and the time at which it is rolled back if not completed. To specify a timeo
interval that will be used automatically, set the TRANTIME parameter as follows.

TRANTIME=number

The default is 30 seconds. A value of 0, the maximum timeout value for the comp
means a transaction will never time out.
Setting Up a BEA Tuxedo Application 3-77

3 Creating the Configuration File
Specifying a List of Allowable Buffer Types
for a Service

With the BUFTYPE parameter, you can tune a service to check buffer types
independently of the service code. Set this parameter with a list of allowable buffer
types for a service in the following format.

type[:subtype[,subtype]]

To allow all subtypes, set the value of subtype to *.

If the value of the BUFTYPE parameter for a service is ALL, this service accepts all
buffer types. The default is ALL.

Examples of the BUFTYPE Parameter

BUFTYPE Example Meaning

BUFTYPE=”FML;VIEW:aud,aud2" FML and VIEW buffer types with subtypes aud and
aud2 are allowed.

BUFTYPE=”FML;VIEW:*” All FML and VIEW buffer types are allowed.

BUFTYPE=ALL All buffer types are allowed (the default).
3-78 Setting Up a BEA Tuxedo Application

Designating How Much Time to Process a Request
Designating How Much Time to Process a
Request

Sometimes an unexpected system error occurs, freezing a service or causing it to run
out of control while it is processing a request. Obviously, it is a good idea to remove
these processes, but it is difficult to detect them or determine how they developed
errors. The BEA Tuxedo system provides a mechanism for terminating such processes
even when you cannot identify them. To use this mechanism, set the SVCTIMEOUT
parameter.

The SVCTIMEOUT parameter allows you to designate an amount of time (in seconds) in
which a service should be able to process a request. If the interval defined by this
parameter elapses and a service has not finished processing a request, the process for
that request is killed. In essence, the service timeout mechanism acts like a scavenger
for frozen or out of control application servers. By default, the BEA Tuxedo system
does not terminate any service process; you must set the SVCTIMEOUT parameter to
activate this feature.

You can assign a value to the SVCTIMEOUT parameter in the UBBCONFIG file or by
dynamically changing the TA_SVCTIMEOUT attribute in TM_MIB. We recommend that
you set the value of SVCTIMEOUT or TA_SVCTIMEOUT to at least two to three times the
number of seconds it takes for your longest running service to process a request.
Setting the service timeout in this way guarantees that the BEA Tuxedo system
removes only frozen processes.

This section describes the causes and results of service timeout errors, and explains
how the BEA Tuxedo system reports such errors. Advice about how to handle errors
is also provided.

What Happens When a Timeout Occurs

When a timeout occurs, the BEA Tuxedo system terminates the server process running
the frozen service (but not its child processes, if any). It then returns a TPESVCERR
error, indicating that an unknown problem occurred during processing. In a
conversational service, the conversation event TPEV_SVCERR is returned.
Setting Up a BEA Tuxedo Application 3-79

3 Creating the Configuration File

to

te
How a Service Timeout Is Reported

The BEA Tuxedo system reports a service timeout through the following three
mechanisms:

n TPED_SVCTIMEOUT—timeout error detail that provides more information than
tpstrerror(3c)

n .SysServiceTimeout—a system event

n ULOG information about .SysServiceTimeout

Because the SVCTIMEOUT value is configurable, it is important for clients to be able
easily distinguish between a TPESVCERR caused by exceeding the value set for
SVCTIMEOUT, and a TPESVCERR caused by other situations. Although the ULOG
contains this information, it is difficult for client programs to extract it. To differentia
a service timeout TPESVCERR from others, a program can include a call to the
tperrordetail(3c) routine (after a TPESVCERR has been detected), which yields
TPED_SVCTIMEOUT when a service timeout occurs.

In addition, a system event, .SysServiceTimeout, is generated when a service
timeout occurs. When a .SysServiceTimeout event occurs, it is reflected in the ULOG
in the following way.

ERROR: .SysServiceTimeout: %TA_SERVERNAME, group %TA_SRVGRP, id
%TA_SRVID server killed due to a service timeout

How to Control a Service Timeout

n Application administrators may control the service timeout by changing the
SVCTIMEOUT parameter in the SERVICES section of the UBBCONFIG file, or by
modifying the TA_SVCTIMEOUT attribute of the T_SERVER or T_SERVICE class of
the TM_MIB. They may also monitor the ULOG file for service timeout activity.

n In addition to monitoring the ULOG file for service timeout activity, application
operators can subscribe to the .SysServiceTimeout event, which alerts them
when a service timeout occurs.

n Application programmers can use the tperrordetail(3c) and
tpstrerrordetail(3c) functions, and the TPED_SVCTIMEOUT error detail
code. They may want to add one or more subscriptions to
the.SysServiceTimeout system event, which is generated when a service
timeout occurs.
3-80 Setting Up a BEA Tuxedo Application

Enabling Load Balancing

d be
 load
ng
orms
 for a
 site

e, the
Enabling Load Balancing

To activate load balancing, set the RESOURCES section parameter LDBAL to Y. A load
factor is assigned to each service performed (via the LOAD parameter) and the BEA
Tuxedo system keeps track of the total load of services that each server has performed.
Each service request is routed to the server with the smallest total load. The routing of
that request causes the server’s total to be increased by the LOAD factor of the service
requested.

Load information is stored only on the site originating the service request. It woul
inefficient for the BEA Tuxedo system to make continuous attempts to propagate
information to all sites in a distributed application. When performing load balanci
in such an environment, each site knows only about the load it originated and perf
load balancing accordingly. This means that each site has different load statistics
given server (or queue). The server perceived as being the least busy differs from
to site.

When load balancing is not activated, and multiple servers offer the same servic
first available queue receives the request.

Characteristics of the LDBAL Parameter

The LDBAL parameter has the following characteristics:

n Load balancing is used if the RESOURCES LDBAL parameter is set to Y.

n The load factor is added to a server’s total load.

n The load is relative to other services.
Setting Up a BEA Tuxedo Application 3-81

3 Creating the Configuration File
Defining the Name of the Routing Criteria
When using data-dependent routing, you need to specify the routing criteria to be used
for a service. To specify such criteria, set the ROUTING parameter as follows.

ROUTING=string_value

If this parameter is not set, the service does not perform data-dependent routing.

The maximum value of string is 15 characters. No more than one value may be
assigned to the ROUTING parameter for a given service. Even if you have multiple
entries for one service and those entries contain different SRVGRP parameters, the value
of ROUTING must be the same in all entries.

Specifying Service Parameters for Different
Server Groups

You can assign the same service to multiple groups and assign different values to the
various service-specific parameters you set for the service entries for the different
groups. To do this, create a separate entry for the service for each group, specifying a
group-specific value for the SRVGRP parameter.

Controlling the Flow of Data by Service
Priority

You can exert significant control over the flow of data in an application by assigning
service priorities using the PRIO parameter. The value of PRIO must be a number
between 0 and 100. The higher the number, the higher the priority of the service to
which it is assigned. Higher priority services are dequeued before lower priority
services, but the system dequeues every tenth request in FIFO order to prevent a
message from waiting indefinitely on the queue.
3-82 Setting Up a BEA Tuxedo Application

Indicating Service Processing Time

vice,
For instance, Server 1 offers Services A, B, and C. Services A and B have a priority of
50 and Service C has a priority of 70. A service requested for C will always be
dequeued before a request for A or B. Requests for A and B are dequeued equally with
respect to one another.

Note: A priority can also be changed dynamically with the tpsprio()call.

Characteristics of the PRIO Parameter
The PRIO parameter has the following characteristics:

n It determines the priority of a service on the server’s queue.

n The highest assigned priority gets first preference.

n Every tenth request is dequeued FIFO.

Sample SERVICES Section Using Different Priorities

The following sample from the SERVICES section of a configuration file shows how
priorities are assigned to services.

*SERVICES
A SRVGRP=GRP1 PRIO=50 LOAD=60
A SRVGRP=GRP2 PRIO=70 LOAD=30

In this example, different service-specific parameters are assigned to two server
groups. Service A is assigned a priority of 50 and a load of 60 in server group GRP1,
and a priority of 70 and a load of 30 in server group GRP2.

Indicating Service Processing Time
To indicate the maximum amount of time, in seconds, allowed for processing a ser
set the SVCTIMEOUT parameter as follows.

SVCTIMEOUT=number

The value must be greater than or equal to 0. A value of 0 indicates that the service will
be timed out: the server processing the server request will be terminated with a
SIGKILL signal. The default for this parameter is 0.
Setting Up a BEA Tuxedo Application 3-83

3 Creating the Configuration File
How to Create the ROUTING Section of the
Configuration File

The ROUTING section of UBBCONFIG allows you to provide a full definition of the
routing criteria named in the SERVICES section (for BEA Tuxedo data-dependent
routing).

For each parameter in the ROUTING section, the following table provides a description
and links to reference pages and additional information.

To Specify This Information in the ROUTING
Section (Optional)

Set This Parameter
(Required/Optional)

For More
Information, Click
the Following

Ranges and associated server groups for the routing field. RANGES (required) range criteria

Routing criteria name specified as the value of the
ROUTING parameter in the SERVICES section for
data-dependent routing. The value must be a string with a
maximum length of 15 characters.

criterion_name
(required)

Name of the routing field, which is assumed to be an FML
buffer, XML element or element attribute, view field name
identified in an FML field table (using FLDTBLDIR and
FIELDTBLS environment variables), or an FML view table
(using the VIEWDIR and VIEWFILES environment
variables), respectively. This information is used to obtain
the associated field value for data-dependent routing when
sending a message.

FIELD (required) routing buffer field
and type

A list of types and subtypes of data buffers for which this
routing entry is valid. This parameter may contain up to 256
characters with a maximum of 32 type/subtype
combinations.

BUFTYPE (required) buffer types and
subtypes
3-84 Setting Up a BEA Tuxedo Application

Defining the Routing Buffer Field and Field Type
ROUTING Section Example

BRNCH FIELD=B_FLD
RANGES="0-2:DBG1,3-5:DBG2,6-9:DBG3"
BUFTYPE="FML"

Defining the Routing Buffer Field and Field
Type

The following table describes the routing buffer field and field type.

Parameter Characteristics

FIELD The name of the buffer field on which the routing is performed. It may contain up to 30 characters.

In BEA Tuxedo data-dependent routing, the value of this parameter is one of the following: the
name of an FML field (for FML buffers); an XML element or attribute; a VIEW field name identified
in an FML field table (using the FLDTBLDIR and FIELDTBLS environment variables); or an FML
view table (using the VIEWDIR and VIEWFILES environment variables). This information is used
to obtain the associated field value for data-dependent routing during message processing. If a
field in an FML32 buffer is used for routing, it must have a field number less than or equal to 8191.

In routing XML documents, the FIELD syntax contains either a routing element type (or name) or
a routing element attribute name. You must define the FIELD parameter with the following
syntax.

root_element[/child_element][/child_element][/. .
.][/@attribute_name]

The element is assumed to be an element type (or name) or an element attribute name of an XML
document or datagram. This information is used to obtain the associated element content or
element attribute value for data-dependent routing when a document or datagram is being sent.
Because indexing is not supported, the BEA Tuxedo system recognizes only the first occurrence
of a given element type when processing an XML buffer for data-dependent routing.
Setting Up a BEA Tuxedo Application 3-85

3 Creating the Configuration File

tion

ap to
Specifying Range Criteria

The RANGES parameter allows you to map field values to a group name as follows.

RANGES=”[val1[- val2]: group1] [, val3[- val4]: group2]...[,*: groupn]”

where val1, val2, and so on, are values of a field and groupn may be either a group
name or the wildcard character (*) denoting that any group may be selected. The *
character occupying the place of val at the end is a catch-all choice, that is, it specifies
if the data does not fall into any range that has been specified then it goes to the default
group on the other hand if the data fall into the range but there is no viable server in
the group associated with the range entry, then the service request is forwarded to the
default group specified on the wildcard “*” range entry. The value of val1 may be:

n A number (when it is used in a numeric field)

n A STRING or CARRAY buffer (enclosed in single quotation marks)

n MIN or MAX, to show a machine minimum or maximum data value

There is no limit to the number of ranges that may be specified, but routing informa
incurs a cost because it is stored in shared memory.

Note: Overlapping ranges are allowed, but values that belong to both ranges m
the first group. For example, if RANGES is specified as
RANGES=”0-5:Group1,3-5:Group2" , then a range value of 4 routes to
Group1 .

FIELDTYPE This parameter is used only for routing XML buffers. It indicates the type of the routing field
specified in FIELD .The syntax is as follows.

FIELDTYPE=type

where type is one of the following: string , char , short , long , float , or double .

The default type of the routing field is string .

Parameter Characteristics
3-86 Setting Up a BEA Tuxedo Application

Defining Buffer Types
Defining Buffer Types

For BEA Tuxedo data-dependent routing, the BUFTYPE parameter determines the
buffer type allowed. This parameter is similar to its SERVICES section counterpart in
that it restricts the routing criteria to a specific set of buffer types and subtypes. Only
FML, XML and VIEW types can be used for routing. The syntax is the same as the syntax
in the SERVICES section, a semicolon-separated list of type:subtype[,subtype].
You can specify only one type for routing criteria. This restriction limits the number
of buffer types allowed in routing services.

How to Configure the BEA Tuxedo System to
Take Advantage of Threads

To configure a multicontexted application, edit your UBBCONFIG file as usual and add
those parameters, listed in the following table, that are needed for your application.
Use a text editor or the BEA Administration Console.
Setting Up a BEA Tuxedo Application 3-87

3 Creating the Configuration File
Table 3-1 Setting Parameters in the Configuration File to Use Threads

In This Section Set These Parameters With These Considerations.

RESOURCES MAXACCESSERS Optional parameter but you must
assign a value to it you want more than
50 accessers (the default number).

Each context of a multicontexted
client is counted separately for
licensing purposes.

NOTIFY Optional parameter that defines the
default method to be used for
unsolicited notification. Valid values
for multicontexted applications are:

n DIPIN

n THREAD

n IGNORE

MACHINES MAXACCESSERS Optional parameter but you must
assign a value to it you want more than
50 accessers (the default number).

Each context of a multicontexted
client is counted separately for
licensing purposes.

MAXWSCLIENTS Optional parameter

Each context of a multicontexted
Workstation client is counted
separately for licensing purposes.
Because the default is 0, this parameter
must be set if any Workstation clients
are to access the system via the
machine being defined.
3-88 Setting Up a BEA Tuxedo Application

How to Configure the BEA Tuxedo System to Take Advantage of Threads
SERVERS MINDISPATCHTHREADS Optional parameter

MAXDISPATCHTHREADS Required parameter in multithreaded
servers.

When making an existing server
multithreaded, an experienced
programmer must verify that the
source code for the server has been
written in a thread-safe manner. In
other words, it is not possible to
convert a single-threaded server,
written with static variables, to a
multithreaded server simply by
increasing the value of
MAXDISPATCHTHREADS in the
configuration file. This server must
also be built for multithreading.

THREADSTACKSIZE Optional parameter; you may need to
set it if your server dispatch threads
require an especially large stack.

The default, 0, should be sufficient for
most applications. (Keep in mind that
when 0 is passed to the operating
system, the operating system invokes
its own default.)

Table 3-1 Setting Parameters in the Configuration File to Use Threads

In This Section Set These Parameters With These Considerations.
Setting Up a BEA Tuxedo Application 3-89

3 Creating the Configuration File
How to Compile a Configuration File

Compiling a configuration file means generating a binary version of the file
(TUXCONFIG) from the text version (UBBCONFIG). To compile a configuration file, run
the tmloadcf command. tmloadcf parses a UBBCONFIG file and loads the binary file.

tmloadcf reads a file (or standard input written in UBBCONFIG syntax), checks the
syntax, and optionally loads a binary configuration file called TUXCONFIG. The
TUXCONFIG and (optionally) TUXOFFSET environment variables point to the
TUXCONFIG file and (optional) offset where the information should be stored. You can
run tmloadcf only on the machine designated as MASTER in the RESOURCES section of
the UBBCONFIG file, unless the -c or -n option is specified.

Notes: The user identifier (UID) of the person running tmloadcf must match the UID,
if specified, in the RESOURCES section of the UBBCONFIG file.

The path name specified for the TUXCONFIG environment variable must match
exactly (including case) the path name specified for TUXCONFIG parameter
within the MACHINES section of the UBBCONFIG file. Otherwise, tmloadcf(1)
cannot be run successfully.
3-90 Setting Up a BEA Tuxedo Application

CHAPTER
4 About Transactions

n What Is a Transaction

n Benefits of Using Transactions

n Example of a Global Transaction

n What Is the BEA Tuxedo Transaction Manager (TM)

n How the System Tracks Distributed Transaction Processing

n How the System Uses a 2-Phase Commit to Commit Transactions

What Is a Transaction

A transaction is a set of related actions. A global transaction is a set of related actions
that span multiple programs and resource managers. In this topic, whenever we use the
term transaction, we are referring to a global transaction.

A simple example of a transaction is a withdrawal from a bank account, which can be
described as a set of actions that changes the state of an account balance (by reducing
it). For this transaction, the system must execute a procedure that consists of three
operations.

Procedure for Any Transaction Procedure for Bank Withdrawal Example

1. Verify the activity to be performed 1. Verify that a withdrawal will be made

2. Perform the work of the transaction 2. Withdraw a specified amount from the account

3. Create a permanent record of the completed work 3. Update the record of the balance of the account
Setting Up a BEA Tuxedo Application 4-1

4 About Transactions
These steps are performed by a discrete software module created expressly for the
purpose of executing this transaction. The module must also include or use code that
launches and ends the transaction. If the code sections that launch and end the
transaction are not part of the main transaction software module, then they are usually
packaged together in a separate module.

A transaction coordinator is a software module that executes the logic to manage a
transaction among all participating resources.

What Are the ACID Properties

When a transaction such as a bank withdrawal is performed, it is imperative that all its
constituent operations either succeed or fail together. Consider the problems that can
occur if one operation in a transaction succeeds while another operation in the same
transaction fails: a bank that allows a customer to withdraw money without recording
the reduced balance in an updated account record will not stay in business for long!

A transaction that adheres to the rule that all constituent operations either succeed or
fail is characterized by atomicity. The BEA Tuxedo system requires all transactions to
be characterized by atomicity and three related attributes: consistency, isolation, and
durability. These four attributes are known collectively as the ACID properties of
transactions performed within the BEA Tuxedo system.

Table 4-1 ACID Properties of BEA Tuxedo Transactions

This Property . . . Means that . . .

Atomicity A transaction is a discrete unit of work: all constituent operations
must either succeed or fail. These operations may include
queuing messages, updating databases, and displaying the results
of a transaction on a screen.

Consistency A transaction must either (a) leave the system in a correct state or
(b) abort. If a transaction cannot achieve a stable state, it must
return to its initial state.

Isolation The behavior of a transaction is not affected by other transactions
being executed simultaneously. A transaction must serialize all
access to shared resources and guarantee that concurrent
programs do not corrupt each other’s operations.
4-2 Setting Up a BEA Tuxedo Application

Benefits of Using Transactions
How a Transaction Succeeds or Fails

Whether a transaction succeeds or fails depends on the requirements of atomicity.

Benefits of Using Transactions

The BEA Tuxedo system, including its communication APIs and protocols, is
designed to support the use of transactions. The BEA Tuxedo communication calls,
which make it easy to create transactions, are indispensable tools for writing
distributed applications.

Durability The effects of a committed transaction are permanent. Even if the
system fails, the changes resulting from a transaction are
permanent and durable.

This Property . . . Means that . . .

If . . . Then . . .

Any operation within the
transaction fails for any reason

n The transaction aborts, that is, it terminates abruptly

n The transaction rolls back, that is, it undoes its own
work and restores the state of the enterprise to its
pre-transaction state. For example, after an attempt to
withdraw money from a bank account fails and is rolled
back, the bank account contains the same amount of
money it contained before the transaction, and the
record of the account balance shows the same amount
that it showed before the transaction.

All operations within the
transaction succeed

The client commits the transaction. In other words, it
formally signals that it is ready to terminate and the effects
of the transaction should be preserved: the order database
is updated permanently and the order sent to the shipping
department is kept as a permanent record in that
department’s queue.
Setting Up a BEA Tuxedo Application 4-3

4 About Transactions

,

f

k.
’s
ueuing
By using transactions you can:

n Create distributed applications easily

n Commit the effects of your communications as a single unit

n Quickly manage potential problems that may occur in a distributed environment,
such as machine, program, or network failures

n Undo work, when errors occur, in a simple, programmatic way

Example of a Global Transaction

An e-retailer uses a service called CUST_ORDER. When a customer places an order
through the company’s Web site, the CUST_ORDER service performs two operations:

n It updates the company’s database of orders.

n It sends the new order to the shipping department, where it is put on a queue
awaiting fulfillment.

The company wants to be sure that the CUST_ORDER service adheres to the principle o
atomicity: whenever CUST_ORDER is executed, both the database update and the
enqueueing of the customer request on the shipping department queue must be
completed successfully. To make sure that the CUST_ORDER service always handles
customer orders with atomicity, the client that invokes CUST_ORDER associates its
request with a global transaction.

To associate a service with a global transaction, a client:

1. Calls tpbegin() to begin the transaction

2. Issues a service request

3. Calls tpcommit() to end the transaction

As part of a global transaction, the operation is performed as a single unit of wor
When the CUST_ORDER service is invoked, the server is propagated with the client
transaction. The two resulting operations, accessing the order database and enq
the order to the shipping queue, become part of the client’s transaction.
4-4 Setting Up a BEA Tuxedo Application

What Is the BEA Tuxedo Transaction Manager (TM)

he
. For

 RM.
er to

 the

agers
 the

tion
ple
e RM
orm
If either operation fails for any reason, whether due to a system error or an application
error, the work of the transaction is undone or rolled back. In other words, the
transaction is returned to its initial state.

If both operations succeed, however, the client commits the transaction. In other words,
it formally signals that the effects of the transaction should be made permanent: the
order database is updated permanently and the order sent to the shipping department is
kept in that department’s queue.

What Is the BEA Tuxedo Transaction
Manager (TM)

A Resource Manager (RM) is a data repository, such as a database management
system or the Application Queuing Manager, with tools for accessing the data. T
BEA Tuxedo system uses one or more RMs to maintain the state of an application
example, bank records in which account balances are maintained are kept in an
When the state of the application changes through a service that allows a custom
withdraw money from an account, the new balance in the account is recorded in
appropriate RM.

The BEA Tuxedo system helps you manage transactions involving resource man
that support the XA interface. To coordinate all the operations performed and all
modules affected by a transaction, the BEA Tuxedo system plays the role of the
Transaction Manager (TM).

The TM coordinates global transactions involving system-wide resources. Local
resource managers (RMs) are responsible for individual resources. The Transac
Manager Server (TMS) begins, commits, and aborts transactions involving multi
resources. The application code uses the normal embedded SQL interface to th
to perform reads and updates. The TMS uses the XA interface to the RM to perf
the work of a global transaction.
Setting Up a BEA Tuxedo Application 4-5

4 About Transactions
The following table summarizes the actions taken by the Transaction Manager on
behalf of each transaction.

How the System Tracks Distributed
Transaction Processing

BEA Tuxedo transactions can be used in a distributed architecture: a local machine
involved in a transaction can communicate with a remote machine which may, in turn,
communicate with another remote machine. The work of transactions executed in this
type of arrangement is referred to as distributed transaction processing.

Table 4-2 Actions Performed by the Transaction Manager

When . . . The Transaction Manager . . .

The application launches a
transaction

Assigns a global transaction identifier (GTRID) to the
transaction

Other processes communicate with
the process that launched the
transaction

Tracks those communication partners

The RM is accessed as part of the
work of the transaction

Passes the appropriate GTRID to the RM so the RM
can monitor which database records are being
accessed for the transaction.

The application signals that a
transaction is to be committed

Performs a 2-phase commit protocol. Specifically, it
(a) contacts communication partners during Phase 1,
(b) logs the successful outcome of Phase 1, and
(c) contacts partners in Phase 2.

The application indicates that the
transaction is to be aborted

Executes a rollback procedure

A failure occurs Executes a recovery procedure
4-6 Setting Up a BEA Tuxedo Application

How the System Tracks Distributed Transaction Processing
Because the system must constantly maintain enough information about a transaction
to be able to roll it back (that is, to restore it to its initial state) at any moment, tracking
distributed transaction processing (DTP) can be a complex task. To perform this task
successfully, the BEA Tuxedo system stores tracking information about all the
participants in a transaction in a dedicated file called a transaction log, or TLOG.

The following diagram shows an application in which two Transaction Managers
(TMs) are being used. Both TMs record tracking data in the same TLOG.

Figure 4-1 Transaction Management

Before committing a transaction, the TM must repeatedly answer the question of
whether to proceed. If necessary, the TM makes the decision to roll back.

How the System Uses Global Transaction Identifiers
(GTRIDs) for Tracking

The BEA Tuxedo system tracks the flow of all transactions being executed within a
distributed system, including those being executed concurrently. When it is time to
commit a transaction, the coordinator must know which RMs have participated in the
transaction and, therefore, needs to be able to distinguish among transactions. For this
reason the BEA Tuxedo system assigns a global transaction identifier, or GTRID to
each transaction.

The BEA Tuxedo system communicates with any RM accessed by an application
through the XA interface. The RMs track transactions by assigning local transaction
identifiers, and map global identifiers to local identifiers.
Setting Up a BEA Tuxedo Application 4-7

4 About Transactions

ing
the
use of
e or

e

ded

. A
f the
How the System Uses a Transaction Log (TLOG) for
Tracking

A global transaction is recorded in the transaction log (TLOG) only when it is in the
process of being committed. At the end of the first phase of a 2-phase-commit protocol,
the TLOG records the reply from the global transaction participants.

The existence of a TLOG record indicates that a global transaction should be committed;
no TLOG records are written for transactions that are to be rolled back.

In the first “pre-commit” phase, each Resource Manager must commit to perform
the transaction request. If all parties commit, transaction management performs
second phase: it commits and completes the transaction. If either task fails beca
an application or system failure, both tasks fail and the work performed is undon
“rolled back” to its initial state.

The TMS that coordinates global transactions uses the TLOG file. Each machine should
have its own TLOG.

If you are using the Domains component in your application, keep in mind that th
Domains gateway performs the functions of the TMS in Domains groups. However,
Domains uses its own transaction log containing information similar to that recor
in the TLOG, in addition to Domains-specific information.

How the System Uses a 2-Phase Commit to
Commit Transactions

A 2-phase commit is an algorithm used to ensure the integrity of a committing
transaction.

To understand how this algorithm works, consider the following sample scenario
group of six friends wants to rent a house for a one-week vacation. No member o
group can afford to pay more than one sixth of the rent; if any of the six cannot
participate, then the house cannot be rented.
4-8 Setting Up a BEA Tuxedo Application

How the System Uses a 2-Phase Commit to Commit Transactions
1. In Phase 1 of this project, the organizer of the vacation contacts each person to
verify availability and collect a sixth of the rent. If the organizer learns that even
one person cannot participate, she contacts every member of the group,
individually, to notify him or her that the house cannot be rented. If, however, each
member of the group confirms availability and pays one sixth of the rent, the Phase
1 concludes successfully.

2. In Phase 2 of the project, the organizer notifies each member of the group that the
vacation will take place as planned.

A 2-phase transaction commit works in much the same way as the vacation planning
project.

1. In Phase 1, the transaction coordinator contacts potential participants in the
transaction. The participants all agree to make the results of the transaction
permanent, but do not do so immediately. The participants log information to disk
to ensure they can complete Phase 2. If all the participants agree to commit, the
coordinator logs that agreement and the outcome is decided. The recording of this
agreement in the log ends Phase 1.

2. In Phase 2, the coordinator informs each participant of the decision, and they
permanently update their resources.

How the System Handles Transaction Infection

Any application module called by another module to participate in a transaction is said
to be transactionally infected. Once an application module is infected, the BEA
Tuxedo system tracks all participants to determine which of them should be involved
in the 2-phase commit. The following figure shows how the system tracks participants.
Setting Up a BEA Tuxedo Application 4-9

4 About Transactions
Figure 4-2 Transactional Infection

In the preceding figure, Client 1 begins the transaction and calls three services: A, B,
and C. Because they have been called into the transaction, Services A, B, and C are
transactionally infected. All work performed by servers A, B, and C is part of the
transaction begun by Client 1. All work is performed as one unit; either it is performed
together and is successful, or it fails and is rolled back by calling tpabort. If the
transaction fails, it returns to its initial state and its effects of the transaction on
resource managers are undone. (Resource managers that are not transactionally aware
and those that are accessed from outside the transaction cannot be rolled back.)

How the ATMI Protects a Transaction’s Integrity Before a
2-Phase Commit

All work performed by each resource involved in a transaction must be completed
before a 2-phase commit is begun. The ATMI ensures that all the work of the
transaction is stopped when it is time for the 2-phase commit protocol to begin.

The following step-by-step description of a transaction shows how the ATMI stops a
transaction process before a 2-phase commit.

1. Client_1 initiates (with tpbegin()) a transaction.
4-10 Setting Up a BEA Tuxedo Application

How the System Uses a 2-Phase Commit to Commit Transactions
2. Client_1 invokes (with tpcall()) Service_A, which:

a. Is infected with the transaction

b. Executes its operations

c. Calls tpreturn()

d. Completes its work for the transaction

3. Client_1 invokes (with tpcall()) Service_B, which

a. Is infected with the transaction

b. Executes its operations

c. Calls tpreturn()

d. Completes its work for the transaction

4. Client_1 invokes (with tpcall()) Service_C, which:

a. Is infected with the transaction

b. Executes its operations

c. Calls tpreturn()

d. Completes its work for the transaction

5. Client_1 initiates (with tpcommit()) the commitment process.

If, during the transaction, an invoked service is performing another service, or is
involved in an open conversation, the ATMI tracks that activity and prevents the
application from proceeding to the commitment process until the activity is complete.

The ATMI guarantees that the transaction is committed only if all invoked services
have performed their transaction work successfully. When all work has been
performed successfully, the Transaction Manager informs the resource managers that
all updates made during the transaction are permanent.
Setting Up a BEA Tuxedo Application 4-11

4 About Transactions

See Also

n “Modifying the UBBCONFIG File to Accommodate Transactions” on page 5-1

n “Modifying the Domains Configuration File to Support Transactions” on page
5-10

n “Example: A Distributed Application with Transactions” on page 5-12

n “Writing Global Transactions” on page 9-1 in Programming a BEA Tuxedo
Application Using C

n “What You Can Do Using the ATMI” on page 2-4 in Introducing the BEA
Tuxedo System
4-12 Setting Up a BEA Tuxedo Application

CHAPTER
5 Configuring Your
Application to Use
Transactions

n Modifying the UBBCONFIG File to Accommodate Transactions

n Specifying Global Transaction Parameters in the RESOURCES Section

n Creating a Transaction Log (TLOG) in the MACHINES Section

n Defining Resource Managers and the Transaction Manager Server in the
GROUPS Section

n Enabling a Service to Begin a Transaction in the SERVICES Section

n Modifying the Domains Configuration File to Support Transactions

n Example: A Distributed Application with Transactions

Modifying the UBBCONFIG File to
Accommodate Transactions

To accommodate transactions, you must modify the RESOURCES, MACHINES, GROUPS,
and SERVICES sections of the application’s UBBCONFIG file in the following ways.
Setting Up a BEA Tuxedo Application 5-1

5 Configuring Your Application to Use Transactions
Specifying Global Transaction Parameters in
the RESOURCES Section

The following table describes the transaction-related parameters in the RESOURCES
section.

In This Section . . . Specify . . .

RESOURCES The number of transactions allowed in the application, and
the value of the commit control flag

MACHINES The TLOG information for each machine

GROUPS Information about each resource manager, and about the
transaction manager server

SERVICES Enabling of the automatic transaction option

Set This
Parameter . . .

To . . .

MAXGTT Limit the total number of global transaction identifiers (GTRIDs)
allowed on one machine at one time. The maximum value allowed is
2048; the minimum, 0; and the default, 100. You can override the value
of MAXGTT on a per-machine basis in the MACHINES section.

Entries remain in the table only while a global transaction is active, so
this parameter has the effect of setting a limit on the number of
simultaneous transactions.
5-2 Setting Up a BEA Tuxedo Application

Creating a Transaction Log (TLOG) in the MACHINES Section
Creating a Transaction Log (TLOG) in the
MACHINES Section

To create a TLOG, complete the following tasks:

n Create a Universal Device List (UDL).

n Define transaction-related parameters in the MACHINES section.

n Create a Domains transaction log.

CMTRET Indicate the initial setting of the TP_COMMIT_CONTROL characteristic
as one of the following:

n LOGGED—The TP_COMMIT_CONTROL characteristic is set to
TP_CMT_LOGGED, which means that tpcommit() returns when
all the participants have successfully pre-committed.

n COMPLETE—The TP_COMMIT_CONTROL characteristic is set to
TP_CMT_COMPLETE, which means that tpcommit() does not
return until all the participants have successfully committed.

The default is COMPLETE.

To determine the appropriate setting, consult your Resource Manager
(RM) vendors. If any RM in the application uses the late commit
implementation of the XA standard, the setting should be COMPLETE. If
all RMs use the early commit implementation, the setting should be
LOGGED for performance reasons. (You can override this setting with
tpscmt().)

Set This
Parameter . . .

To . . .
Setting Up a BEA Tuxedo Application 5-3

5 Configuring Your Application to Use Transactions
Creating the UDL

The Universal Device List (UDL) is a map of the BEA Tuxedo file system. The UDL
gets loaded into shared memory when an application is booted. The TLOG refers to a
log in which information about transactions is kept until the transaction is completed.
To create an entry in the UDL for the TLOG device, create a UDL on each machine
using global transactions. (If the TLOGDEVICE is mirrored between two machines, it is
unnecessary to do this on the paired machine.) The Bulletin Board Liaison (BBL) then
initializes and opens the TLOG during the boot process.

To create a UDL, enter the following command before the application is booted.

tmadmin -c crdl -z config -b blocks

Note: The command fails if the device already exists.

The value of config must be the full path name of the device on which you create the
UDL. It should match the value of the TLOGDEVICE parameter in the MACHINES section
of the configuration file. The value of blocks must be the number of blocks to be
allocated on the device.

Note: If the value of blocks is less than the value of TLOGSIZE, you risk a
performance degradation. Therefore, you should specify a value for blocks
that is greater than that of TLOGSIZE. For example, if TLOGSIZE is specified
as 200 blocks, specifying -b 500 does not cause a degradation.

For more information about storing the TLOG, see Installing the BEA Tuxedo System.

Defining Transaction-related Parameters in the
MACHINES Section

To define a global transaction log (TLOG), you must set several parameters in the
MACHINES section of the UBBCONFIG file.

For one of these parameters, TLOGDEVICE, you must manually create a device list entry
for the TLOGDEVICE on each machine where a TLOG is needed. You can do this either
before or after TUXCONFIG has been loaded, but you must complete this step before the
system is booted.
5-4 Setting Up a BEA Tuxedo Application

Creating a Transaction Log (TLOG) in the MACHINES Section
The following table describes the transaction-related parameters in the MACHINES
section.

Creating the Domains Transaction Log

Before starting a Domains gateway group, you must create a Domains transaction log.
Specifically, you must create a Domains transaction log for the named local domain on
the current machine (that is, the machine on which DMADM is running). To create a log,
enter the following command.

dmadmin crdmlog crdlog -d local_domain_name

The command uses the parameters specified in the DMCONFIG file. This command fails
if the named local domain is active on the current machine or if a log already exists. If
a transaction log has not been created, the Domains gateway group creates one when
that group starts.

Set This Parameter . . . To Specify . . .

TLOGNAME The name of the DTP transaction log for the machine.

TLOGDEVICE The BEA Tuxedo file system that contains the DTP transaction
log (TLOG) for the machine. If this parameter is not specified,
it is assumed that there is no TLOG on the machine. The value
may contain a maximum of 64 characters.

TLOGSIZEE The size, in physical pages, of the TLOG file. The value must
be between 1 and 2048; the default, 100. Assign a value that
is large enough to hold the number of outstanding transactions
on the machine at a given time. One transaction is logged per
page. The default should be enough for most applications.

TLOGOFFSET The offset, in pages, from the beginning of the TLOGDEVICE
to the start of the VTOC that contains the transaction log for the
machine.The value must be greater than or equal to 0, and less
than the number of pages on the device. The default is 0.

TLOGOFFSET is rarely necessary. However, if two VTOCs
share the same device, or if a VTOC is stored on a device (such
as a file system) that is shared with another application, you
can use TLOGOFFSET to indicate a starting address relative to
the address of the device.
Setting Up a BEA Tuxedo Application 5-5

5 Configuring Your Application to Use Transactions

s
oup.

at

s

d

acle
y.
See Also

n “What Is the Transaction Log (TLOG)” on page 2-17 in Administering a BEA
Tuxedo Application at Run Time

Defining Resource Managers and the
Transaction Manager Server in the GROUPS
Section

The parameters available for GROUPS section entries allow you to define the attribute
of transaction manager servers and resource managers (RMs) for a particular gr

n For a transaction manager server, a server that performs most of the work th
controls global transactions, you can define the following parameters:

l TMSNAME contains the name of the executable for the transaction manager
server associated with the group defined in the entry. The BEA Tuxedo
system provides a null Transaction Manager Server called TMS, which is
used by groups that participate in transactions, but do not use an RM. Thi
TMS server does not communicate with any resource manager; it simply
manages transactions without communicating with an RM.

l TMSCOUNT contains the number of transaction manager servers to be boote
(minimum of 2, maximum of 10, default of 3)

n For each resource manager you can define the OPENINFO and CLOSEINFO
parameters. The value of each is a string that contains information needed to
open or close a resource manager, respectively. Appropriate values for these
parameters are supplied by RM vendors. For example, if you are using an Or
database as your RM, you might supply the value shown in the following entr

OPENINFO=”ORACLE_XA:

Oracle_XA+Acc=P/Scott/*****+SesTm=30+LogDit=/tmp”
5-6 Setting Up a BEA Tuxedo Application

Defining Resource Managers and the Transaction Manager Server in the GROUPS
Sample of the GROUPS Section

The following sample entry is from the GROUPS section in bankapp, the sample
banking application you received with the BEA Tuxedo system.

BANKB1 GRPNO=1 TMSNAME=TMS_SQL TMSCOUNT=2
OPENINFO=”TUXEDO/SQL:APPDIR/bankdl1:bankdb:readwrite”

Description of Transaction Values in the Sample GROUPS Section

The following table describes the transaction values shown in the sample GROUPS
entry.

Characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and CLOSEINFO
Parameters

The following table lists the characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and
CLOSEINFO parameters.

Transaction Value Purpose

BANKB1 GRPNO=1
TMSNAME=TMS_SQL TMSCOUNT=2

Contains the name of the transaction manager
server (TMS_SQL), and the number (2) of these
servers to be booted in the group BANKB1

TUXEDO/SQL Published name of the resource manager

APPDIR/bankdl1 Device name

bankdb Database name

readwrite Access mode

Set This
Parameter . . .

To Specify the . . .

TMSNAME Name of the transaction manager server executable.

Required parameter for applications with transactions.

TMS is a null transactional manager server.
Setting Up a BEA Tuxedo Application 5-7

5 Configuring Your Application to Use Transactions

st
rt

dy

vice

er

e

nt
Enabling a Service to Begin a Transaction in
the SERVICES Section

In certain situations, you may want to set three transaction-related parameters—
AUTOTRAN, TRANTIME, and ROUTING—in the SERVICES section.

n If you want a transaction to be started by a service instead of a client, you mu
set the AUTOTRAN flag to Y. This setting is useful if a service is not needed as pa
of any larger transaction, and if the application wants to relieve the client of
making transaction decisions. If the service is called when a transaction alrea
exists, this call becomes part of it. (The default is N.)

Note: Generally, clients are the best initiators of transactions because a ser
can participate in a larger transaction.

n If AUTOTRAN is set to Y, you must set the TRANTIME parameter, which is the
length of the time-out for transactions to be created. The value must be great

than or equal to 0, and must not exceed 2,147,483,647 (that is, 231 - 1, or about
70 years). A value of zero implies there is no time-out for the transaction. (Th
default is 30 seconds.)

n You must define the ROUTING parameter for transactions that use data-depende
routing.

TMSCOUNT Number of transaction manager servers (must be between 2 and 10).

Default is 3. This parameter is optional.

OPENINFO,
CLOSEINFO

Information needed to open or close a resource manager.

Content depends on the resource manager.

Value starts with the name of the resource manager.

Omission means the RM needs no information to open or close.

Set This
Parameter . . .

To Specify the . . .
5-8 Setting Up a BEA Tuxedo Application

Enabling a Service to Begin a Transaction in the SERVICES Section
Characteristics of the AUTOTRAN, TRANTIME, and
ROUTING Parameters

The following table lists the characteristics of the AUTOTRAN, TRANTIME, and ROUTING
parameters.

Set This
Parameter . . .

To . . .

AUTOTRAN Make a service the initiator of a transaction.

To work properly, may be dependent on personal communication
between the application designer and the application administrator. If the
administrator sets this value to Y without prior knowledge of the ICF
parameters set by the developer, the wrong application behavior, or
failure of the application might be observed.

If a transaction already exists, a new one is not started.

Default is N.

TRANTIME Specify the length of the time-out for the AUTOTRAN transactions.

Valid values are between 0 and 231 - 1, inclusive.

0 represents no time-out.

Default is 30 seconds.

ROUTING Point to an entry in the ROUTING section where data-dependent routing
is specified for transactions that request this service.
Setting Up a BEA Tuxedo Application 5-9

5 Configuring Your Application to Use Transactions
Modifying the Domains Configuration File
to Support Transactions

To enable transactions across domains, you need to set parameters in both the
DM_LOCAL_DOMAINS and the DM_REMOTE_SERVICES sections of the Domains
configuration file (DMCONFIG). Entries in the DM_LOCAL_DOMAINS section define local
domain characteristics. Entries in the DM_REMOTE_SERVICES section define services
that are imported, or available from remote domains.

Characteristics of the DMTLOGDEV, DMTLOGNAME,
DMTLOGSIZE, MAXRDTRAN, and MAXTRAN Parameters

The DM_LOCAL_DOMAINS section of the Domains configuration file identifies local
domains and the gateway groups associated with them. For each gateway group (Local
Domain), you must create an entry that specifies the parameters required for the
Domains gateway processes running in that group.

The following table describes the five transaction-related parameters in this section:
DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE, MAXRDTRAN, and MAXTRAN.

Set This
Parameter . . .

To Specify . . .

DMTLOGDEV The BEA Tuxedo file system that contains the Domains transaction log
(DMTLOG) for this machine. The DMTLOG is stored as a BEA Tuxedo
VTOC table on the TLOGDEVICE (a BEA Tuxedo file system). If this
parameter is not specified, the Domains gateway group is not allowed to
process requests in transaction mode. Local domains running on the same
machine can share the same DMTLOGDEV file system, but a separate log
(a table in the DMTLOGDEV) must be created for each local domain. The
name of each log is determined by the DMTLOGNAME parameter.
5-10 Setting Up a BEA Tuxedo Application

Modifying the Domains Configuration File to Support Transactions
Characteristics of the AUTOTRAN and TRANTIME
Parameters

The DM_REMOTE_SERVICES section of the Domains configuration file provides
information about services that are imported and thus available from remote domains.
Each remote service is associated with a particular remote domain.

You have the option of setting two parameters in the DM_REMOTE_SERVICES section
that support transactions: AUTOTRAN and TRANTIME. The following table describes
these parameters.

DMTLOGNAME The name of the Domains transaction log for this domain. If this domain
resides on the same file system as other local domains (as reflected by a
common value for DMTLOGDEV), then the value of DMTLOGNAME must
be unique for each log. The value may contain a maximum of 30
characters. The default is DMTLOG.

DMTLOGSIZE The size, in pages, of the Domains transaction log for this machine. The
value must be greater than zero and less than the amount of available
space on the BEA Tuxedo file system. The default is 100 pages.

Note: The number of domains in a transaction determines the number
of pages you must specify in the DMTLOGSIZE parameter.
There is no one-to-one mapping between transactions and log
pages.

MAXRDTRAN The maximum number of domains that can be involved in a transaction.
It must be greater than zero and less than 32,768. The default is 16.

MAXTRAN The maximum number of simultaneous global transactions allowed in
this local domain. It must be greater than or equal to zero, and less than
or equal to the MAXGTT parameter (which is defined in the configuration
file). The default is the value of MAXGTT.

Set This
Parameter . . .

To Specify . . .
Setting Up a BEA Tuxedo Application 5-11

5 Configuring Your Application to Use Transactions
Example: A Distributed Application with
Transactions

This section provides sample entries from a configuration file that defines bankapp as
an application that supports transactions and is distributed over three sites. The
application is characterized by the following:

n Data-dependent routing on ACCOUNT_ID

n Data distributed over three databases

n BRIDGE processes communicating with the system via the ATMI interface

n Application administration from one site

The file includes seven sections: RESOURCES, MACHINES, GROUPS, NETWORK, SERVERS,
SERVICES, and ROUTING.

This
Parameter . . .

Is Used . . .

AUTOTRAN By gateways to automatically start and terminate transactions for remote
services. This capability is required if you want to enforce reliable
network communication with remote services. To request this capability,
set the AUTOTRAN parameter to Y in the entry for the appropriate remote
service.

TRANTIME To specify the default time-out, in seconds, for a transaction
automatically started for the service being defined. The value must be
greater than or equal to zero, and less than 2147483648. A value of zero
implies the maximum time-out value for the machine. The default is 30
seconds.
5-12 Setting Up a BEA Tuxedo Application

Example: A Distributed Application with Transactions
Sample RESOURCES Section

The following listing shows a sample RESOURCES section.

Listing 5-1 Sample RESOURCES Section

*RESOURCES
#
IPCKEY 99999
UID 1
GID 0
PERM 0660
MAXACCESSERS 25
MAXSERVERS 25
MAXSERVICES 40
MAXGTT 20
MASTER SITE3, SITE1
SCANUNIT 10
SANITYSCAN 12
BBLQUERY 180
BLOCKTIME 30
DBBLWAIT 6
OPTIONS LAN, MIGRATE
MODEL MP
LDBAL Y

In the preceding listing, note the following:

n MAXSERVERS, MAXSERVICES, and MAXGTT are set to values that are smaller than
the defaults, which reduces the size of the bulletin board.

n The MASTER is SITE3 and the backup master is SITE1.

n It is possible to use a networked configuration with migration because MODEL is
set to MP and OPTIONS is set to LAN, MIGRATE.

n Because BBLQUERY is set to 180 and SCANUNIT is set to 10, the DBBL will check
the remote BBLs every 1800 seconds (that is, every half hour).
Setting Up a BEA Tuxedo Application 5-13

5 Configuring Your Application to Use Transactions
Sample MACHINES Section

The following listing shows a sample MACHINES section.

Listing 5-2 Sample MACHINES Section

*MACHINES
giselle LMID=SITE1
 TUXDIR=”/usr/tuxedo”
 APPDIR=”/usr/home”
 ENVFILE=”/usr/home/ENVFILE”
 TLOGDEVICE=”/usr/home/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=”/usr/home/tuxconfig”
 TYPE=”3B600”

romeo LMID=SITE2
 TUXDIR=”/usr/tuxedo”
 APPDIR=”/usr/home”
 ENVFILE=”/usr/home/ENVFILE”
 TLOGDEVICE=”/usr/home/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=”/usr/home/tuxconfig”
 TYPE=”SEQUENT”

juliet LMID=SITE3
 TUXDIR=”/usr/tuxedo”
 APPDIR=’/usr/home”
 ENVFILE=”/usr/home/ENVFILE”
 TLOGDEVICE=”/usr/home/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=”/usr/home/tuxconfig”
 TYPE=”AMDAHL”

In the preceding listing, note the following:

n TLOGDEVICE and TLOGNAME are specified, which implies that transactions will be
done.

n The TYPE parameters are all different, which indicates that all messages sent
between machines will be encoded and decoded.
5-14 Setting Up a BEA Tuxedo Application

Example: A Distributed Application with Transactions
Sample GROUPS and NETWORK Sections

The following listing shows sample GROUPS and NETWORK sections.

Listing 5-3 Sample GROUPS and NETWORK Sections

*GROUPS
DEFAULT: TMSNAME=TMS_SQL TMSCOUNT=2
BANKB1 LMID=SITE1 GRPNO=1
 OPENINFO=”TUXEDO/SQL:/usr/home/bankdl1:bankdb:readwrite”
BANKB2 LMID=SITE2 GRPNO=2
 OPENINFO=”TUXEDO/SQL:/usr/home/bankdl2:bankdb:readwrite”
BANKB3 LMID=SITE3 GRPNO=3
 OPENINFO=”TUXEDO/SQL:/usr/home/bankdl3:bankdb:readwrite”

*NETWORK
SITE1 NADDR=”0X0002ab117B2D4359”
 BRIDGE=”/dev/tcp”
 NLSADDR=”0X0002ab127B2D4359”

SITE2 NADDR=”0X0002ab117B2D4360”
 BRIDGE=”/dev/tcp”
 NLSADDR=”0X0002ab127B2D4360”

SITE3 NADDR=”0X0002ab117B2D4361”
 BRIDGE=”/dev/tcp”
 NLSADDR=”0X0002ab127B2D4361”

In the preceding listing, note the following:

n The TMSCOUNT is set to 2, which means that only two TMS_SQL transaction
manager servers will be booted per group.

n The OPENINFO string indicates that the application will perform database access.
Setting Up a BEA Tuxedo Application 5-15

5 Configuring Your Application to Use Transactions
Sample SERVERS, SERVICES, and ROUTING Sections

The following listing shows sample SERVERS, SERVICES, and ROUTING sections.

Listing 5-4 Sample SERVERS, SERVICES, and ROUTING Sections

*SERVERS
DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=N CLOPT=”-A”
TLR SRVGRP=BANKB1 SRVID=1 CLOPT=”-A -- -T 100"
TLR SRVGRP=BANKB2 SRVID=3 CLOPT=”-A -- -T 400"
TLR SRVGRP=BANKB3 SRVID=4 CLOPT=”-A -- -T 700"
XFER SRVGRP=BANKB1 SRVID=5 REPLYQ=Y
XFER SRVGRP=BANKB2 SRVID=6 REPLYQ=Y
XFER SRVGRP=BANKB3 SRVID=7 REPLYQ=Y

*SERVICES
DEFAULT: AUTOTRAN=N
WITHDRAW ROUTING=ACCOUNT_ID
DEPOSIT ROUTING=ACCOUNT_ID
TRANSFER ROUTING=ACCOUNT_ID
INQUIRY ROUTING=ACCOUNT_ID

*ROUTING
ACCOUNT_ID FIELD=ACCOUNT_ID BUFTYPE=”FML”
 RANGES=”MON - 9999:*,
 10000 - 39999:BANKB1
 40000 - 69999:BANKB2
 70000 - 100000:BANKB3
 “”

In the preceding listing, note the following:

n Calls to the tpsvrinit() function by TLR servers will include a number (100,
400, or 700) specified with the -T option.

n All service requests are routed on the ACCOUNT_ID field.

n No services are performed in AUTOTRAN mode.
5-16 Setting Up a BEA Tuxedo Application

Example: A Distributed Application with Transactions
See Also

n “What Is a Transaction” on page 4-1

n “Writing Global Transactions” on page 9-1 in Programming a BEA Tuxedo
Application Using C

n “What You Can Do Using the ATMI” on page 2-4 in Introducing the BEA
Tuxedo System
Setting Up a BEA Tuxedo Application 5-17

5 Configuring Your Application to Use Transactions
5-18 Setting Up a BEA Tuxedo Application

CHAPTER
6 Distributing
Applications Across a
Network

n What Is a Distributed Application

n Why Distribute an Application Across a Network

What Is a Distributed Application

A distributed application consists of one or more local or remote clients that
communicate with one or more servers on several machines linked through a network.
With this type of application, business operations can be conducted from any
geographical location. For example, a corporation may distribute the following types
of operations across a large region, or even across international boundaries:

n Forecasting sales

n Ordering supplies

n Manufacturing, shipping, and billing for goods

n Updating corporate databases
Setting Up a BEA Tuxedo Application 6-1

6 Distributing Applications Across a Network
State of the art telecommunications and data networks are making distributed
operations of this sort increasingly common. Applications developed to implement this
type of strategy allow businesses to reduce costs and enhance their offerings of
services to customers around the world.

The BEA Tuxedo system supports this type of architecture by simplifying the task of
managing a distributed application. Whether an application comprises only one
computer or thousands of computers working together over a network, all the elements
of that application, including clients, servers, and the networks that connect them, are
managed through a single BEA Tuxedo configuration file.
6-2 Setting Up a BEA Tuxedo Application

What Is a Distributed Application
Example of a Distributed Application

The following diagram illustrates the basic parts of an application distributed across
three machines.

Figure 6-1 Sample of a Distributed Application
Setting Up a BEA Tuxedo Application 6-3

6 Distributing Applications Across a Network
Implementing a Distributed Application

A distributed application is implemented on a network defined in the NETWORK (and
optionally NETGROUPS) section(s) of the configuration file. It frequently uses
data-dependent routing, defined in the ROUTING section of the configuration file. A
critical part of the design of a distributed application is the arrangement between server
groups, processes, transaction manager servers, and resource managers.

To set up a distributed application over a network, the application administrator must
work with the network administrator. In most instances, the application administrator
writes the configuration file for a distributed application (defining parameters in the
RESOURCES, MACHINES, GROUPS, SERVICES, and ROUTING sections), and the network
administrator or MIS representative writes or contributes to the networking sections.

See Also

n “Creating the Configuration File for a Distributed Application” on page 7-1

n “Setting Up the Network for a Distributed Application” on page 8-1

n “Managing the Network in a Distributed Application” on page 4-1 in
Administering a BEA Tuxedo Application at Run Time
6-4 Setting Up a BEA Tuxedo Application

Why Distribute an Application Across a Network
Why Distribute an Application Across a
Network

Distributed applications provide several important benefits. Early business
applications were developed to run on one large mainframe computer. Because all
computing was performed on a single machine, a failure could bring down an entire
system. With the increasing popularity of distributed applications, this threat of system
failure is declining.

Another advantage is that by distributing an application, you can group parts of an
application logically and position these logical groups in the most effective locations.
By creating groups of servers, for example, you can partition a large application into
separate, business-specific components of manageable size and optimal location.

A distributed application allows you to do the following:

n Perform data-dependent partitioning

n Manage multiple resources

n Enlarge the client and/or server model

n Obtain transparent access to BEA Tuxedo system services

n Establish multiple server groups

n Use multiple computers simultaneously to do the work of one application,
providing better throughput and response time

n Provide for replicated resources for increased availability
Setting Up a BEA Tuxedo Application 6-5

6 Distributing Applications Across a Network

he

ue

ines

s,

t
Features of a Distributed Application

n Coordination of autonomous actions—Autonomous actions are actions that
involve multiple server groups and/or multiple resource manager interfaces. T
BEA Tuxedo system enables you to coordinate autonomous actions among
separate applications as a single logical unit of work.

n Resilience—When one of many machines fails, the remaining machines contin
to operate. Similarly, when one server in a server group fails, the remaining
servers continue the work.

n Scalability—Application load or capacity can be increased by:

l Placing more servers in a group

l Adding machines to an application and redistributing groups across mach

l Replicating a server group that resides on one machine, on other machine
and using load balancing

l Segmenting a database using data-dependent routing for groups that mee
specific criteria

See Also

n “What Is a Multiple-machine (Distributed) Configuration” on page 3-45 in
Introducing the BEA Tuxedo System

n “What Is Load Balancing” on page 2-39 in Introducing the BEA Tuxedo System

n “What Is Data-dependent Routing” on page 2-32 in Introducing the BEA Tuxedo
System
6-6 Setting Up a BEA Tuxedo Application

CHAPTER
7 Creating the
Configuration File for a
Distributed
Application

n Configuration File Requirements for a Distributed Application

n Creating the RESOURCES Section

n Creating the MACHINES Section

n Creating the GROUPS Section

n Creating the SERVICES Section

n Creating the ROUTING Section

n Example Configuration File for a Distributed Application

n Modifying the Domain Gateway Configuration File to Support Routing
Setting Up a BEA Tuxedo Application 7-1

7 Creating the Configuration File for a Distributed Application
Configuration File Requirements for a
Distributed Application

A distributed application consists of one or more local or remote clients that
communicate with one or more servers residing on several machines linked through a
network, all of which are administered as a single entity in one BEA Tuxedo
configuration file. To set up a distributed configuration, you must create a
configuration file that includes the following sections:

n RESOURCES section

n MACHINES section

n GROUPS section

n NETGROUPS section (optional)

n NETWORK section

n SERVICES section

n ROUTING section (if data-dependent routing is used)

If your configuration spans multiple domains and uses data-dependent routing, you
must also modify the domain gateway configuration file (DMCONFIG) to support
routing functionality.
7-2 Setting Up a BEA Tuxedo Application

Creating the RESOURCES Section
Creating the RESOURCES Section
In the RESOURCES section you define governing parameters for system-wide resources,
such as the maximum number of servers allowed in the application. All parameter
settings in this section apply to the entire application.

Note: The parameters described in the tables in this topic are used only for
distributed applications. For a description of the basic parameters that are
available for any kind of BEATuxedo application, see UBBCONFIG(5) in BEA
Tuxedo File Formats and Data Descriptions Reference.

Table 7-1 RESOURCES Section Parameters

Parameter Description

BBLQUERY (optional) BBLQUERY sets a multiplier of the basic SCANUNIT between
status checks by the DBBL of all BBLs. The DBBL checks to
ensure that all BBLs have reported in within the BBLQUERY
cycle. If a BBL has not been heard from, the DBBL sends a
message to that BBL asking for status. If no reply is received,
the BBL is partitioned.

The value of BBLQUERY must be greater than 0. If this parameter
is not specified, the default is set so that (SCANUNIT *
BBLQUERY) is approximately 300 seconds.

BLOCKTIME (optional) BLOCKTIME sets a multiplier of the basic SCANUNIT after
which a blocking call (for example, receiving a reply) times out.

The value of BLOCKTIME must be greater than 0. If this
parameter is not specified, the default is set so that (SCANUNIT *
BLOCKTIME) is approximately 60 seconds.

DBBLWAIT (optional) DBBLWAIT sets a multiplier of the basic SCANUNIT for the
maximum amount of wall time a DBBL should wait for replies
from all its BBLs before timing out. Every time the DBBL
forwards a request to its BBLs, it waits for all of them to reply
with a positive acknowledgment before replying to the requester.
This option can be used for detecting dead or insane BBLs in a
timely manner.

The value of DBBLWAIT must be greater than 0. If this parameter
is not specified, the default is set so that (SCANUNIT *
DBBLWAIT) is the greater of SCANUNIT or 20 seconds.
Setting Up a BEA Tuxedo Application 7-3

7 Creating the Configuration File for a Distributed Application
IPCKEY (required) IPCKEY specifies the numeric key for the bulletin board. In a
single-processor environment, this key names the bulletin board.
In a multiprocessor environment, this key names the message
queue of the DBBL. This key is also used as a basis for deriving
the names of resources other than this well-known address, such
as the names for bulletin boards throughout a multiprocessor.

The value of IPCKEY must be greater than 32,768 and less than
262,143.

MASTER (required) MASTER (string_value1[,string_value2]) specifies
the LMID of the machine on which the master copy of
TUXCONFIG is located. Also, if the application is run in MP
mode, MASTER indicates the machine on which the DBBL is run.
string_value2 names an alternate LMID location used during
process relocation and booting. If the primary location is not
available, the DBBL is booted at the alternate location and the
alternate TUXCONFIG file found there is used.

The value of both string_value1 and string_value2
must be LMIDs of machines defined in the MACHINES section.
Each string may contain up to 30 characters.

MAXGROUPS (optional) MAXGROUPS specifies the maximum number of configured server
groups to be accommodated in the group table of the bulletin
board.

The value of MAXGROUPS must be greater than or equal to 100
and less than 32,768. The default is 100.

MAXSERVERS (optional) MAXSERVERS specifies the maximum number of servers to be
accommodated in the server table of the bulletin board.

The value of MAXSERVERS must be greater than 0 and less than
8192. The default is 50.

MAXSERVICES
(optional)

MAXSERVICES specifies the maximum number of services to be
accommodated in the services table of the bulletin board.

The value of MAXSERVICES must be greater than 0 and less than
32,768. The default is 100.

Table 7-1 RESOURCES Section Parameters

Parameter Description
7-4 Setting Up a BEA Tuxedo Application

Creating the MACHINES Section
Creating the MACHINES Section

In the MACHINES section you assign logical names to all the physical machines in your
configuration (including all the processing elements in multiprocessor machines) and
define other parameters for individual machines. The following table describes the
parameters available for defining machine names and other machine-specific
parameters for each machine that participates in a distributed application.

SANITYSCAN (optional) SANITYSCAN sets a multiplier of the basic SCANUNIT between
sanity checks of the system.

The value of SCANUNIT must be greater than 0. The default is set
so that (SCANUNIT * SANITYSCAN) is approximately 120
seconds.

Sanity checks are performed on servers as well as on the bulletin
board data structure itself.

SCANUNIT (optional) SCANUNIT sets the time interval (in seconds) between scans by
the bulletin board liaison for timed-out transactions and blocking
calls within service requests. This value is used as the basic unit
of scanning by the BBL. It affects the granularity with which
transaction time-out values can be specified on tpbegin(3c) and
the blocking time-out value specified with the BLOCKTIME
parameter. The SANITYSCAN, BBLQUERY, DBBLWAIT, and
BLOCKTIME parameters are multipliers of this unit for other
timed operations within the system.

The value of SCANUNIT must be a multiple of 5 greater than 0
and less than or equal to 60 seconds. The default is 10 seconds.

Table 7-1 RESOURCES Section Parameters

Parameter Description
Setting Up a BEA Tuxedo Application 7-5

7 Creating the Configuration File for a Distributed Application
Table 7-2 MACHINES Section Parameters

Parameter Description

ENVFILE (optional) ENVFILE specifies a file that defines the environment with which
all clients and servers on the machine are to be executed.

Lines must be in the form ident=value where ident contains
only underscores and/or alphanumeric characters, and begins with
an underscore or a letter of the alphabet.

If the value of ENVFILE is an invalid filename, no values are
added to the environment.

MAXACCESSERS
(optional)

MAXACCESSERS specifies the maximum number of processes
that can access the bulletin board on this processor at any one
time. When calculating the appropriate number, you are not
required to count system administration processes, such as the
BBL and tmadmin, but you must count all application servers
and clients, and TMS servers.

The value of MAXACCESSERS must be greater than 0 and less
than 32,768. The default is the value specified in the RESOURCES
section.

MAXCONV (optional) MAXCONV specifies the maximum number of simultaneous
conversations allowed for processes on a particular machine.

The value of MAXCONV must be greater than 0 and less than
32,768. The maximum number of simultaneous conversations per
server is 64. The default is the value specified in the RESOURCES
section.

MAXWSCLIENTS
(optional)

MAXWSCLIENTS specifies the number of accesser entries on this
processor to be reserved for Workstation clients only. This
parameter is used only when the BEA Tuxedo System
Workstation component is used. This number takes a portion of
the total accesser slots specified with MAXACCESSERS. The
appropriate setting of this parameter helps conserve IPC resources
because Workstation client access to the system is multiplexed
through a BEA Tuxedo system-supplied surrogate, the
Workstation Handler.

The value of MAXWSCLIENTS must be greater than or equal to 0,
and less than 32,768; it may not be greater than the value of
MAXACCESSERS. (Assigning a value to MAXWSCLIENTS that is
higher than the value of MAXACCESSERS is an error.) The default
is 0.
7-6 Setting Up a BEA Tuxedo Application

Creating the GROUPS Section
Creating the GROUPS Section

In the GROUPS section you identify each server group in your application so that the
BEA Tuxedo system can route requests to the member servers of specific groups.

The GROUPS section is populated with the number of server groups required for the
application. Server groups can all reside on the same site (SHM mode) or, in a
distributed application, they can reside on different sites (MP mode).

Parameters in the GROUPS section implement two important aspects of distributed
transaction processing:

n They associate a group of servers with a particular LMID and a particular
instance of a resource manager.

n By allowing a second LMID to be associated with the server group, they name an
alternate machine to which a group of servers can be migrated if the MIGRATE
option is specified.

The following table describes the parameters in the GROUPS section.

Table 7-3 GROUPS Section Parameters

Parameter Description

ENVFILE ENVFILE specifies a file that defines the environment with which
all servers in the group are executed.

Lines must be in the form ident=value where ident contains
only underscores and/or alphanumeric characters.

If the value of ENVFILE is an invalid filename, no values are
added to the environment.

GRPNO (required) GRPNO associates a number with a particular server group.

The number must be greater than 0 and less than 30000. It must
be unique among entries in the GROUPS section.
Setting Up a BEA Tuxedo Application 7-7

7 Creating the Configuration File for a Distributed Application
Creating the SERVICES Section

The SERVICES section contains parameters that determine how application services
are handled. Every line of every entry in this section is associated with a service by its
identifier name.

You must identify the service provided by each server group in the SERVICES section.
Because the same service can be link edited with more than one server, the SRVGRP
parameter is provided to tie the parameters for an instance of a service to a particular
group of servers.

The following table describes the parameters in the SERVICES section that are
available for defining distributed applications.

LMID (required) LMID identifies the machine on which the server group being
defined runs. A second LMID value can be specified (separated
from the first by a comma) for an alternate machine to which this
server group can be migrated if the MIGRATE option has been
specified. Servers in the group can be migrated if RESTART=Y to
migrate is specified in the GROUPS section.

The values of LMID must be the values assigned to the LMID
parameter in the MACHINES section.

Table 7-3 GROUPS Section Parameters

Parameter Description

Table 7-4 SERVICES Section Parameters

Parameter Description

LOAD (optional) LOAD specifies the size of the load imposed by SVCNM on the
system.

The value of LOAD must be a number between 1 and 32767,
inclusive. A higher number indicates a greater load. The default is
50.
7-8 Setting Up a BEA Tuxedo Application

Creating the SERVICES Section
If your application includes transaction processing, you may also want to set three
other parameters in the SERVICES section: AUTOTRAN, ROUTING, and TRANTIME. These
parameters are described in “Configuring Your Application to Use Transactions” on
page 5-1.

PRIO (optional) PRIO specifies the dequeuing priority of SVCNM.

The value of PRIO must be greater than 0 and less than or equal
to 100, with 100 being the highest priority. The default is 50.

ROUTING (optional) ROUTING specifies the name of the routing criteria used for this
service when data-dependent routing is being performed. If this
parameter is not specified, data-dependent routing is not
performed for this service.

The value of ROUTING may contain up to 15 characters. If
multiple entries exist for the same service name but with different
SRVGRP parameters, the ROUTING parameter must be the same
for all entries.

SRVGRP (optional) SRVGRP specifies the host server group for the service that is
specified by SVCNM and controlled by the parameters set in this
section.

By setting SRVGRP, you can assign different parameter settings to
the same service when it is offered by different server groups. For
example, suppose your application provides two server groups,
GROUP1 and GROUP2, that offer a service called WITHDRAW. By
setting SRVGRP you can assign different load factors to each copy
of the service, as follows.

WITHDRAW ROUTING=123 LOAD=60 SRVGRP=GROUP1
WITHDRAW ROUTING=123 LOAD=60 SRVGRP=GROUP2

The value of SRVGRP may contain up to 30 characters.

SVCTIMEOUT (optional) SVCTIMEOUT specifies the amount of time, in seconds, that is
allowed for processing of the indicated service. A timed-out
service causes the server processing the service request to be
terminated with a SIGKILL signal.

The value of SVCTIMEOUT must be greater than or equal to 0. A
value of 0 indicates that the service will not be timed out. The
default is 0.

Table 7-4 SERVICES Section Parameters

Parameter Description
Setting Up a BEA Tuxedo Application 7-9

7 Creating the Configuration File for a Distributed Application
The following listing shows a sample of the SERVICES section.

*SERVICES

WITHDRAW ROUTING=ACCOUNT_ID
DEPOSIT ROUTING=ACCOUNT_ID
OPEN_ACCT ROUTING=BRANCH_ID

Creating the ROUTING Section

In the ROUTING section you specify the criteria to be used when data-dependent routing
is performed. If a service is listed in multiple entries, each with a different SRVGRP
parameter, the ROUTING section must be set with the same value in all entries.
Otherwise, routing cannot be done consistently for that service. Because a service can
be routed on one field only, the value of that field must be the same in all entries for
the same service.

You can add a ROUTING section to the configuration file to show mappings between
data ranges and groups. The information in this section enables the system to send a
request to a server in a specific group. Each ROUTING section item contains an
identifier that is used in the SERVICES section.

Lines within the ROUTING section have the following form.

CRITERION_NAME required_parameters

where CRITERION_NAME is the name of the routing entry specified in the SERVICES
section for data-dependent routing. The value of CRITERION_NAME must be a string
with a maximum of 15 characters.
7-10 Setting Up a BEA Tuxedo Application

Creating the ROUTING Section
The following table describes the parameters in the ROUTING section.

See Also

n “What Is a Multiple-machine (Distributed) Configuration” on page 3-45 in
Introducing the BEA Tuxedo System

n “How to Create the Configuration File for a Multiple-machine (Distributed)
Application” on page 3-3

n UBBCONFIG(5) in BEA Tuxedo File Formats and Data Descriptions Reference

Table 7-5 ROUTING Section Parameters

Parameter Description

RANGES Ranges and associated server groups for the routing field.

FIELD Name of the routing field, which is assumed to be one of the
following: an FML buffer, an XML element or element attribute, a
view field name identified in an FML field table (using the
FLDTBLDIR and FIELDTBLS environment variables), or an FML
view table (using the VIEWDIR and VIEWFILES environment
variables). This information is used to obtain the associated field
value for data-dependent routing when sending a message.

BUFTYPE A list of types and subtypes of data buffers for which this routing
entry is valid.

The value of this parameter may contain up to 256 characters with
a maximum of 32 type/subtype combinations.
Setting Up a BEA Tuxedo Application 7-11

7 Creating the Configuration File for a Distributed Application
Example Configuration File for a Distributed
Application

The following excerpt from a sample UBBCONFIG file shows the GROUPS, SERVICES,
and ROUTING sections, which support data-dependent routing in a BEA Tuxedo
application.

*GROUPS
BANKB1 GRPNO=1
BANKB2 GRPNO=2
BANKB3 GRPNO=3
#
*SERVICES
WITHDRAW ROUTING=BY_ACCOUNT_ID
DEPOSIT ROUTING=BY_ACCOUNT_ID
INQUIRY ROUTING=BY_ACCOUNT_ID
OPEN_ACCT ROUTING=BY_BRANCH_ID
CLOSE_ACCT ROUTING=BY_BRANCH_ID
#
*ROUTING
BY_ACCOUNT_ID FIELD=ACCOUNT_ID BUFTYPE=”FML”
 RANGES=”MIN - 9999:*,
 10000-49999:BANKB1,
 50000-79999:BANKB2,
 80000-109999:BANKB3,
 :”
BY_BRANCH_ID FIELD=BRANCH_ID BUFTYPE=”FML”
 RANGES=”MIN - 0:*,
 1-4:BANKB1,
 5-7:BANKB2,
 8-10:BANKB3,
 :”
7-12 Setting Up a BEA Tuxedo Application

Modifying the Domain Gateway Configuration File to Support Routing
Modifying the Domain Gateway
Configuration File to Support Routing

All domain gateway configuration information is stored in a binary file called
BDMCONFIG. This file is created by first writing a text configuration file called
DMCONFIG and then compiling it into a binary version called BDMCONFIG. The
compiled BDMCONFIG file can be updated while the system is running by using the
dmadmin(1) command. Although the BEA Tuxedo documentation refers to these
configuration files as DMCONFIG and BDMCONFIG, you can give these files any names.

You must have one BDMCONFIG file for each BEA Tuxedo application to which you
want to add Domains functionality. System access to the BDMCONFIG file is provided
through the Domains administrative server, DMADM(5). When a gateway group is
booted, the gateway administrative server, GWADM(5), requests from the DMADM server
a copy of the configuration required by that group. The GWADM server and the DMADM
server also ensure that run-time changes to the configuration are reflected in the
corresponding domain gateway groups.

Note: For more information about the DMCONFIG file, refer to DMCONFIG(5) in BEA
Tuxedo File Formats and Data Descriptions Reference.

Description of ROUTING Section Parameters in
DMCONFIG

The DM_ROUTING section provides information for data-dependent routing of service
requests using FML, XML, VIEW, X_C_TYPE, and X_COMMON typed buffers. Lines within
the DM_ROUTING section have the following form.

CRITERION_NAME required_parameters

where CRITERION_NAME is the name of the routing entry specified in the SERVICES
section. The value of CRITERION_NAME must be a string with a maximum of 15
characters.
Setting Up a BEA Tuxedo Application 7-13

7 Creating the Configuration File for a Distributed Application
The following table describes the parameters in the DM_ROUTING section.

Parameter Description

FIELD (optional) Specifies the name of the routing field, which is assumed to be
one of the following: an FML buffer, an XML element or element
attribute, a view field name identified in an FML field table
(using the FLDTBLDIR and FIELDTBLS environment
variables), or an FML view table (using the VIEWDIR and
VIEWFILES environment variables). This information is used to
obtain the associated field value for data-dependent routing
when sending a message.

If a field in an FML32 buffer is used for routing, it must have a
field number less than or equal to 8191.
7-14 Setting Up a BEA Tuxedo Application

Modifying the Domain Gateway Configuration File to Support Routing

:

t

en
it
RANGES (optional) Specifies the ranges and associated remote domain names
(RDOM) for the routing field. The value of RANGES must be a
string enclosed in double quotes. The enclosed string, in turn,
must consist of a comma-separated ordered list of range/RDOM
pairs.

The value of range may be either a single value (a signed
numeric value or a character string enclosed in single quotes), or
a range of the form lower - upper (where lower and upper
are both signed numeric values or character strings in single
quotes).

The value of lower must be less than or equal to upper. A
single quote embedded in a character string value, as in
“O’Brien,” for example, must be preceded by two back slashes
“O\\’Brien”.

Use MIN to indicate the minimum value for the data type of the
associated FIELD. For strings and carrays, it is the null string;
for character fields, it is 0; for numeric values, it is the minimum
numeric value that can be stored in the field.

Use MAX to indicate the maximum value for the data type of the
associated FIELD. For strings and carrays, it is effectively an
unlimited string of octal-255 characters; for a character field, i
is a single octal-255 character; for numeric values, it is the
maximum numeric value that can be stored in the field. Thus,
MIN - -5 is all numbers less than or equal to -5, and 6 - MAX
is all numbers greater than or equal to 6.

The metacharacter * (wildcard) in the position of a range
indicates any values not covered by other ranges previously se
in the entry. Only one wildcard range is allowed per entry and
should be listed last (ranges following it are ignored).

Parameter Description
Setting Up a BEA Tuxedo Application 7-15

7 Creating the Configuration File for a Distributed Application
Routing Field Description

The value in the routing field can be any data type supported in FML or VIEW; it may be
a numeric range or a string range. The following rules apply to string range values for
string, carray, and character field types:

n They must be enclosed by single quotation marks and cannot be preceded by a
plus or minus sign.

n A short or long integer value must be a string of digits, optionally preceded by a
plus or minus sign.

n Floating point numbers must be written in the form required by the C compiler
or atof(): a plus or minus sign, followed by a string of digits (optionally
containing a decimal point), then an optional e or E followed by an optional sign
or space, followed by an integer.

n When a field value matches a range, the associated RDOM value specifies the
remote domain to which the request should be routed. An RDOM value of *
indicates that the request may be sent to any remote domain known by the
gateway group. Within a range/RDOM pair, the range must be separated from
the RDOM by a: (colon).

BUFTYPE (optional) BUFTYPE provides a list of types and subtypes of data buffers
for which this routing entry is valid. Valid types are FML, VIEW,
X_C_TYPE, and X_COMMON. No subtype can be specified for
type FML, and subtypes are required for the other types (* is not
allowed). Duplicate type/subtype pairs cannot be specified for
the same routing criteria name; more than one routing entry can
have the same criteria name as long as the type/subtype pairs are
unique.

If multiple buffer types are specified for a single routing entry,
the data types of the routing field for each buffer type must be
the same. If the field value is not set (for FML buffers), or does
not match any specific range, and a wildcard range has not been
specified, an error is returned to the application process that
requested the execution of the remote service.

Parameter Description
7-16 Setting Up a BEA Tuxedo Application

Modifying the Domain Gateway Configuration File to Support Routing
Example of a 5-Site Domain Configuration Using Routing

The following sample configuration file defines a two-domain application distributed
across five sites. The five sites include a Central Bank Office and four bank branches.
Three of the branches belong to a BEA Tuxedo domain. The fourth branch belongs to
another TP domain, and OSI-TP is used to communicate with that domain.

The example shows the BEA Tuxedo system domain gateway configuration file from
the Central Bank point of view. In the DM_TDOMAIN section, this example shows a
mirrored gateway for b01.

Listing 7-1 Domains Configuration File for Five Sites

TUXEDO DOMAIN CONFIGURATION FILE FOR THE CENTRAL BANK
#
#
*DM_LOCAL_DOMAINS
local_domain_name Gateway_Group_name domain_type domain_ID log_device
[audit log] [blocktime]
[log name] [log offset] [log size]
[maxrdom] [maxrdtran] [maxtran]
[maxdatalen] [security]
[tuxconfig] [tuxoffset]

#
#
DEFAULT: SECURITY = NONE
c01 GWGRP = bankg1
 TYPE = TDOMAIN
 DOMAINID = "BA.CENTRAL01"
 DMTLOGDEV = "/usr/apps/bank/DMTLOG"
 DMTLOGNAME = "DMTLG_C01"
c02 GWGRP = bankg2
 TYPE = OSITP
 DOMAINID = "BA.CENTRAL01"
 DMTLOGDEV = "/usr/apps/bank/DMTLOG"
 DMTLOGNAME = "DMTLG_C02"
 NWDEVICE = "OSITP"
 URCH = "ABCD"
#
*DM_REMOTE_DOMAINS
#remote_domain_name domain_type domain_ID
#
b01 TYPE = TDOMAIN
 DOMAINID = "BA.BANK01"
Setting Up a BEA Tuxedo Application 7-17

7 Creating the Configuration File for a Distributed Application
b02 TYPE = TDOMAIN
 DOMAINID = "BA.BANK02"
b03 TYPE = TDOMAIN
 DOMAINID = "BA.BANK03"
b04 TYPE = OSITP
 DOMAINID = "BA.BANK04"
 URCH = "ABCD"
#
*DM_TDOMAIN
#
local_or_remote_domain_name network_address [nwdevice]
#
Local network addresses
c01 NWADDR = "//newyork.acme.com:65432" NWDEVICE ="/dev/tcp"
c02 NWADDR = "//192.76.7.47:65433" NWDEVICE ="/dev/tcp"
Remote network addresses: second b01 specifies a mirrored gateway
b01 NWADDR = "//192.11.109.5:1025" NWDEVICE = "/dev/tcp"
b01 NWADDR = "//194.12.110.5:1025" NWDEVICE = "/dev/tcp"
b02 NWADDR = "//dallas.acme.com:65432" NWDEVICE = "/dev/tcp"
b03 NWADDR = "//192.11.109.156:4244" NWDEVICE = "/dev/tcp"
#
*DM_OSITP
#
#local_or_remote_domain_name apt aeq
[aet] [acn] [apid] [aeid]
[profile]
#
c02 APT = "BA.CENTRAL01"
 AEQ = "TUXEDO.R.4.2.1"
 AET = "{1.3.15.0.3},{1}"
 ACN = "XATMI"
b04 APT = "BA.BANK04"
 AEQ = "TUXEDO.R.4.2.1"
 AET = "{1.3.15.0.4},{1}"
 ACN = "XATMI"
*DM_LOCAL_SERVICES
#service_name [Local_Domain_name] [access_control] [exported_svcname]
[inbuftype] [outbuftype]
#
open_act ACL = branch
close_act ACL = branch
credit
debit
balance
loan LDOM = c02 ACL = loans
*DM_REMOTE_SERVICES
#service_name [Remote_domain_name] [local_domain_name]
[remote_svcname] [routing] [conv]
[trantime] [inbuftype] [outbuftype]
7-18 Setting Up a BEA Tuxedo Application

Modifying the Domain Gateway Configuration File to Support Routing
#
tlr_add LDOM = c01 ROUTING = ACCOUNT
tlr_bal LDOM = c01 ROUTING = ACCOUNT
tlr_add RDOM = b04 LDOM = c02 RNAME ="TPSU002"
tlr_bal RDOM = b04 LDOM = c02 RNAME ="TPSU003"
*DM_ROUTING
routing_criteria field typed_buffer ranges
#
ACCOUNT FIELD = branchid BUFTYPE ="VIEW:account"
 RANGES ="MIN - 1000:b01, 1001-3000:b02, *:b03"
*DM_ACCESS_CONTROL
#acl_name Remote_domain_list
#
branch ACLIST = b01, b02, b03
loans ACLIST = b04

See Also

n “What Is the Domains Configuration File” on page 1-19 in Using the BEA
Tuxedo Domains Component

n “Configuring a Domains Environment” on page 2-18 in Using the BEA Tuxedo
Domains Component
Setting Up a BEA Tuxedo Application 7-19

7 Creating the Configuration File for a Distributed Application
7-20 Setting Up a BEA Tuxedo Application

CHAPTER
8 Setting Up the Network
for a Distributed
Application

n Configuring the Network for a Distributed Application

n How Data Moves Over a Network

n How Data Moves Over Parallel Networks

n Example of a Network Configuration for a Simple Distributed Application

n How Failover and Failback Work in Scheduling Network Data

n Example Configuration of Multiple Netgroups

Configuring the Network for a Distributed
Application

A distributed application is an application that runs on multiple computers, each of
which supports an installation of the BEA Tuxedo system. These computers are
connected and can communicate with each other through a network that includes
hardware, software, access methods, and communication protocols. The BEA Tuxedo
system encodes, routes, and decodes messages, and uses the network to ship those
messages between machines. The system performs these tasks automatically.
Setting Up a BEA Tuxedo Application 8-1

8 Setting Up the Network for a Distributed Application
To configure the networking functionality required to support a distributed
application, include the following entries in the configuration file.

In This
Section . . .

Set This
Parameter . . .

To . . .

RESOURCES MODEL (required) MP. This parameter enables all other networking parameters. It is
used only for networked machines. SHM is used for a single-
machine configuration, even if the machine is a multiprocessor.

OPTIONS (required) LAN (Local Area Network) to indicate that communication will
take place between separate machines, rather than between
separate processes on the same machine.

MAXNETGROUPS
(optional)

Designate a limit on the number of NETGROUPS that can be
defined. The default is 8; the upper limit, 8192.
8-2 Setting Up a BEA Tuxedo Application

Configuring the Network for a Distributed Application
MACHINES TYPE=string
(optional)

Determine whether encoding is required when messages are
exchanged by two machines. The TYPE parameter specifies the
data representation being used on each machine being defined. If
a message is being sent from a machine on which one type of
data representation is being used to a machine on which a
different type of data representation is being used, the message
to be sent must be encoded before transmission and decoded
upon arrival.

If the machines in question both use the same type of data
representation, however, the system skips the encoding/
decoding process.

Example 1

LMID_1 TYPE = “abc”
LMID_2 TYPE = “abc”

Encoding is not used in this case.

Example 2

LMID_1 TYPE = “HP”
LMID_2 TYPE = “SUN”

Encoding is used in this case.

You do not need to set this parameter if the same type of data
representation is used on all machines that will exchange
messages. The parameter must be set only for a machine on
which a different type is used. For example, if you have nine
SPARC machines and one HP machine, you must specify
TYPE=string only for the HP. For the SPARC machines, the
default null string identifies them as the same type.

In This
Section . . .

Set This
Parameter . . .

To . . .
Setting Up a BEA Tuxedo Application 8-3

8 Setting Up the Network for a Distributed Application
CMPLIMIT=remote
[, local] (optional)

Specify the compression threshold, that is, the minimum byte
size for a message to be compressed before being sent to a
remote and/or local destination. The value of both remote and
local is a number between 0 and MAXLONG. If CMPLIMIT is
set to only one value, it is assumed that the specified value is the
remote argument and that messages sent to local destinations
are never compressed.

For example, if you set CMPLIMIT=1024, than any message
greater than 1024 bytes bound for a remote location is
compressed.

Compression thresholds can also be specified with the variable
TMCMPLIMIT. See the discussion, in tuxenv(5), about the
variable TMCMPPRFM, which sets the degree of compression in a
range of 1 to 9.

NETLOAD=number
(optional)

Add an application-specific number to the value of LOAD for a
remote service. The result is used by the system to evaluate
whether a request should be processed locally or sent to a remote
machine. A higher NETLOAD results in less traffic being sent to
a remote machine.

NETGROUPS
(optional)

NETGROUP
(required)

Specify the name assigned by the application to a particular
group of machines. The name may contain up to 30 characters.
One group, consisting of all the machines on the network, must
be named DEFAULTNET.

NETGRPNO=number
(required)

Specify a number by which the system can identify a group of
machines. The value can be any number between 1 and 8192. For
DEFAULTNET, the value of NETGRPNO must be 0.

NETPRIO=number
(optional)

Assign a priority to a NETGROUP. This parameter helps the
system determine which network connection to use. The number
must be between 0 and 8192. Assign a higher priority to your
faster circuits; give your lowest priority to DEFAULTNET.

In This
Section . . .

Set This
Parameter . . .

To . . .
8-4 Setting Up a BEA Tuxedo Application

How Data Moves Over a Network
How Data Moves Over a Network

In a distributed application, data is sent across the network as follows:

n At the sending end: The BRIDGE sends a message to destination_machine by
writing the message to a virtual circuit and delegating, to the operating system,
responsibility for sending it. The operating system retains a copy of every
pending message. If a network error occurs, however, pending messages are lost.

n At the receiving end: The BRIDGE process listens on a particular network address
for incoming messages.

NETWORK
(optional)

LMID (required) Map the specified machine to one of the entries in the
MACHINES section.

NADDR=string
(required)

Specify the listening address for the BRIDGE process on this
LMID. There are four valid formats for specifying this network
address. See the NETWORK section of UBBCONFIG(5) for details.

NLSADDR=string
(required)

Specify the network address for the tlisten process on this
LMID. Valid formats are the same as the valid formats for
NADDR.

NETGROUP=string
(optional)

Specify a NETWORK group name. The value of string must be
a group name specified in the NETGROUPS section. The default
is DEFAULTNET.

In This
Section . . .

Set This
Parameter . . .

To . . .
Setting Up a BEA Tuxedo Application 8-5

8 Setting Up the Network for a Distributed Application
How Data Moves Over Parallel Networks

In a distributed application there are several advantages to using parallel data circuits
for sending data across the network:

n By listening at more than one address, the BRIDGE achieves higher availability.

n By sending data simultaneously on parallel data circuits, the BRIDGE can achieve
a higher throughput, if the network was the limiting factor before.

n When you configure parallel data circuits, the software does not necessarily fail
to deliver a message if the original destination circuit is busy. The system
attempts to schedule traffic over the circuit with the highest network group
number (NETGRPNO). If this circuit is busy, the traffic is automatically scheduled
over the circuit with the next (that is, the second highest) network group number.
When all circuits are busy, data is queued until a circuit is available.

Before making a decision to use parallel data circuits, however, you should determine
whether it will be important, in your application, for messages to be kept in sequence.
The system guarantees that conversational messages are kept in the correct sequence
by binding the conversation connection to one particular data circuit.

If your application will require all messages to be kept in sequence, you must program
the application to keep track of the sequence for nonconversational messages. If you
are using this approach, you may not want to configure parallel data circuits.

The following figure describes how data flows when one machine tries to contact
another. The figure is based on a sample scenario involving two machines: machine A
and machine B. First, the BRIDGE identifies the network groups that are common to
both machines: the MAGENTA_GROUP, the GREEN_GROUP, and the DEFAULTNET.

Data flows in parallel on network groups with the same priority (that is, groups for
which the same value is assigned to the NETPRIO parameter). Network groups with
different priorities are used for failover.
8-6 Setting Up a BEA Tuxedo Application

How Data Moves Over Parallel Networks
Figure 8-1 Flow of Data over the BRIDGE
Setting Up a BEA Tuxedo Application 8-7

8 Setting Up the Network for a Distributed Application
Example of a Network Configuration for a
Simple Distributed Application

The following example shows how to configure a simple network.

The following configuration file excerpt shows a NETWORK
section for a 2-site configuration.

*NETWORK
 SITE1 NADDR="//mach1:80952”
 NLSADDR="//mach1:serve"
#
 SITE2 NADDR="//mach386:80952"
 NLSADDR="//mach386:serve"

How Failover and Failback Work in
Scheduling Network Data

Data flows over the highest available priority circuit. If all network groups have the
same priority, data travels over all networks simultaneously. If all circuits at the current
priority fail, data is sent over the next lower priority circuit. This process is called
failover. When failover occurs, the failed connections are retried periodically.

When higher priority network connections are reestablished, failback occurs and no
further data is scheduled for the lower priority connection. The lower priority
connection is disconnected in an orderly fashion.

If attempts to connect to all network addresses have been made and have failed, new
attempts to connect are made the next time application or system data needs to be sent
between machines.
8-8 Setting Up a BEA Tuxedo Application

Example Configuration of Multiple Netgroups
Example Configuration of Multiple
Netgroups

The hypothetical First State Bank has a network of five machines (A-E). These
machines are configured in four network groups and each machine is used in two or
three groups.

Note: The hardware and system software prerequisites for configuring multiple
network groups (NETGROUPS) are beyond the scope of this document. For
example, machines are frequently required to belong to more than one physical
network. Each TCP/IP symbolic address must be identified in the /etc/hosts
file or in the DNS (Domain Name Services).
In the following example, it is assumed that in addresses written in the form
//A_CORPORATE:5345, the string A_CORPORATE is specified in the
/etc/hosts file or in DNS.

The four groups in the First State Bank network include:

n DEFAULTNET (the default network, which is the corporate WAN)

n MAGENTA_GROUP (a LAN)

n BLUE_GROUP (a LAN)

n GREEN_GROUP (a private LAN that provides high-speed, fiber, point-to-point
links between member machines)

All machines belong to DEFAULTNET (the corporate WAN). In addition, each machine
is associated with either the MAGENTA_GROUP or the BLUE_GROUP. Finally, some
machines in the MAGENTA_GROUP also belong to the GREEN_GROUP. The following
diagram illustrates group assignments for the network.
Setting Up a BEA Tuxedo Application 8-9

8 Setting Up the Network for a Distributed Application
Figure 8-2 Example Network Groups

In this example, machines A and B have addresses for the following:

n DEFAULTNET (the corporate WAN)

n MAGENTA_GROUP (LAN)

n GREEN_GROUP (LAN)

Machine C has addresses for the following:

n DEFAULTNET (the corporate WAN)

n MAGENTA_GROUP (LAN)

Machines D and E have addresses for the following:

n DEFAULTNET (the corporate WAN)

n BLUE_GROUP (LAN)

Because the local area networks are not routed to all locations, machine D (in the
BLUE_GROUP LAN) may contact machine A (in the GREEN_GROUP LAN) only by using
the single address they have in common: the corporate WAN network address.
8-10 Setting Up a BEA Tuxedo Application

Example Configuration of Multiple Netgroups
Configuration File for the Sample Network

To set up the configuration described in the preceding section, the First State Bank
administrator defines each group in the NETGROUPS and NETWORK sections of the
UBBCONFIG file as follows:

*NETGROUPS

DEFAULTNET NETGRPNO = 0 NETPRIO = 100 #default
BLUE_GROUP NETGRPNO = 9 NETPRIO = 200
MAGENTA_GROUP NETGRPNO = 125 NETPRIO = 200
GREEN_GROUP NETGRPNO = 13 NETPRIO = 300

*NETWORK

A NETGROUP=DEFAULTNET NADDR="//A_CORPORATE:5723”
A NETGROUP=MAGENTA_GROUP NADDR="//A_MAGENTA:5724"
A NETGROUP=GREEN_GROUP NADDR="//A_GREEN:5725"

B NETGROUP=DEFAULTNET NADDR="//B_CORPORATE:5723"
B NETGROUP=MAGENTA_GROUP NADDR="//B_MAGENTA:5724"
B NETGROUP=GREEN_GROUP NADDR="//B_GREEN:5725"

C NETGROUP=DEFAULTNET NADDR="//C_CORPORATE:5723"
C NETGROUP=MAGENTA_GROUP NADDR="//C_MAGENTA:5724"

D NETGROUP=DEFAULTNET NADDR="//D_CORPORATE:5723"
D NETGROUP=BLUE_GROUP NADDR="//D_BLUE:5726"

E NETGROUP=DEFAULTNET NADDR="//E_CORPORATE:5723"
E NETGROUP=BLUE_GROUP NADDR="//E_BLUE:5726"

Assigning Priorities for Each Network Group

Assigning priorities appropriately for each NETGROUP enables you to maximize the
capability of network BRIDGE processes. When determining NETGROUP priorities,
keep in mind the following considerations:

n Data flows over only the highest available priority circuit.

n If all network groups have the same priority, data travels over all circuits
simultaneously.
Setting Up a BEA Tuxedo Application 8-11

8 Setting Up the Network for a Distributed Application
n If all circuits at the current priority fail, data is sent over the next lower priority
circuit.

n When a higher priority circuit becomes available, data flows over it.

n All unavailable higher priority circuits are retried periodically.

n After connections to all network addresses have been tried and have failed,
connections are tried again the next time data needs to be sent between
machines.

n The default value of NETPRIO is 100.

Example Assignment of Priorities to Network Groups

The following diagram shows how the First State Bank administrator assigns priorities
to the available network groups.

Figure 8-3 Assigning Priorities to Network Groups

The following priorities are assigned:

n BLUE_GROUP=200

n DEFAULTNET=100

n GREEN_GROUP=300

n MAGENTA_GROUP=200
8-12 Setting Up a BEA Tuxedo Application

Example Configuration of Multiple Netgroups
Example NETGROUP and NETWORK Sections

The lowest priority among network groups is reserved for the default network group,
that is, the group that is not used unless all others are unavailable. Therefore, if you
want to limit the use of a particular network, such as a satellite link for which
per-minute fees are incurred, designate that network as the default network group.

You can assign a network priority to the default network group by setting the NETPRIO
parameter for DEFAULTNET just as you do for any other group. If you do not specify a
priority for DEFAULTNET, a default of 100 is used, as shown in the following example.

*NETGROUP
DEFAULTNET NETGRPNO = 0 NETPRIO = 100

For DEFAULTNET, the value of the network group number (NETGRPNO) must be zero;
any other number is invalid. The value of NETGRPNO must be unique for each entry.

On the other hand, the same value of NETPRIO may be assigned to multiple network
groups. For example, in the First State Bank configuration file, the same network
priority (NETPRIO=200) is assigned to both the MAGENTA_GROUP and the
GREEN_GROUP.

Each network address (NETWORK) is associated by default with the DEFAULTNET
network group. This parameter may be specified explicitly for either of two reasons:
to maintain uniformity among entries, or to associate the network address being
defined with a second network group.

*NETWORK
D NETGROUP=BLUE_GROUP NADDR="//D_BLUE:5726"
Setting Up a BEA Tuxedo Application 8-13

8 Setting Up the Network for a Distributed Application
8-14 Setting Up a BEA Tuxedo Application

CHAPTER
9 About Workstation
Clients

n What Is the Workstation Component

n Sample Application with Four Workstation Clients

n How the Workstation Client Connects to an Application

What Is the Workstation Component

The Workstation component of the BEA Tuxedo system allows application clients to
reside on a machine that does not have a full server-side installation, that is, a machine
that does not support any administration or application servers. All communication
between the client and the application servers takes place over the network.

A Workstation client process can run on a Windows 95, Windows 98, Windows NT,
or UNIX platform. The client has access to the ATMI. The networking behind requests
is transparent to the user. The Workstation client registers with the system through a
Workstation Handler (WSH) and has access to the same capabilities as a native client.

All communication between a Workstation client and application server is done
through a Workstation Handler (WSH) process.

Workstation clients can perform almost all the same functions that can be performed
by network clients. They can, for example:

n Send and receive messages
Setting Up a BEA Tuxedo Application 9-1

9 About Workstation Clients
n Begin, end, or commit transactions

n Send and receive unsolicited messages

n Take full advantage of any security mechanism offered to BEA Tuxedo clients

Sample Application with Four Workstation
Clients

The following figure shows an example of an application with four Workstation
clients.

Figure 9-1 Bank Application with Four Workstation Clients

Two workstation clients are running on a UNIX system; another two Workstation
clients, on Windows NT. All workstation clients initially joined the application
through the Workstation Listener (WSL), which delegates subsequent communication
9-2 Setting Up a BEA Tuxedo Application

Sample Application with Four Workstation Clients
to a Workstation Handler. This process differs from the process that occurs when
native clients join an application: in the latter case, the native clients attach directly to
the bulletin board upon joining.

Administrative servers and application servers are located on SITE1 and SITE2. Any
service request by a Workstation client to the application is sent over the network to
the WSH. This process forwards the request to the appropriate server, gets a reply from
the server, and sends the reply to the Workstation client.

Note: The term resource manager refers to an implementation of the XA standard
interfaces that provides transaction capabilities and permanence of actions for
a BEA Tuxedo application. The most common example of a resource manager
is a database. A resource manager is accessed and controlled within a global
transaction.

Because the application is distributed across two machines in this example, it is
running in MP mode. The Workstation client sends a request to one Workstation
Handler, the Workstation Handler forwards the request to a BRIDGE process, and the
BRIDGE process, in turn, forwards the request to the correct machine.
Setting Up a BEA Tuxedo Application 9-3

9 About Workstation Clients
How the Workstation Client Connects to an
Application

The following flowchart shows how a workstation client connects to an application.

The client connects to the WSL process using a known network address. The process
for establishing this connection is initiated when the client calls tpchkauth() or
tpinit(). The WSL returns the address of a WSH to the client, and then notifies the
Workstation Handler process of the connection request. The WSC connects to the
WSH. All further communication between the WSC and the application takes place
through the WSH.
9-4 Setting Up a BEA Tuxedo Application

CHAPTER
10 Setting Up Workstation
Clients

n Defining Workstation Clients

n Specifying the Maximum Number of Workstation Clients

n Defining a Workstation Listener (WSL) as a Server

n Detecting Network Failures

n Sample Configuration File that Supports Workstation Clients

Defining Workstation Clients

Before a Workstation client can join a BEA Tuxedo application, the application
environment must be prepared to accommodate it. The BEA Tuxedo system provides
the variables described in the following table for setting up your environment. Two
(TUXDIR and WSNADDR) are required; the rest are optional. Defaults are available for all
parameters except WSENVFILE.

To specify . . . Set This Environment
Variable . . .

The application password. (Useful only for applications in
which security is implemented through password usage.)
Clients that run from scripts can get the application password
from this variable.

APP_PW (optional)
Setting Up a BEA Tuxedo Application 10-1

10 Setting Up Workstation Clients
The maximum number of significant bits of the encryption key
for link-level encryption. Value can be 0 (if no encryption is
used), or 40, 56, or 128 (if the number specified is the number
of significant bits in the encryption key).

TMMAXENCRYPTBITS
(optional)

The minimum number of significant bits of the encryption key
for link-level encryption. Value can be 0 (if no encryption is
used), or 40, 56, or 128 (if the number specified is the number
of significant bits in the encryption key).

TMMINENCRYPTBITS
(optional)

The directory in which replies are stored when the WSRPLYMAX
limit has been reached. The default is the working directory.

TMPDIR (optional)

The location of the BEA Tuxedo system software on this
workstation. The client cannot connect unless this environment
variable is set.

TUXDIR (required)

The network device to be used. The default is an empty string. WSDEVICE (optional)

The name of the file in which all environment variables may be
set. There is no default for this variable.

WSENVFILE (optional)

The network address used by the workstation client when
connecting to the workstation listener or workstation handler.
This variable, along with the WSFRANGE variable, determines
the range of TCP/IP ports to which a workstation client
attempts to bind before making an outbound connection. This
address must be a TCP/IP address

WSFADDR (optional)

The range of TCP/IP ports to which a workstation client
process attempts to bind before making an outbound
connection. The WSFADDR parameter specifies the base address
of the range.

WSFRANGE (optional)

A list of one or more network addresses of the WSL that the
client wants to contact. This address must match the address of
a WSL process in the application configuration file.

WSNADDR (required)

The amount of core memory to be used for buffering
application replies. The default is 256,000 bytes.

WSRPLYMAX (optional)

To specify . . . Set This Environment
Variable . . .
10-2 Setting Up a BEA Tuxedo Application

Specifying the Maximum Number of Workstation Clients
Specifying the Maximum Number of
Workstation Clients

To enable Workstation clients to join an application, you must specify the
MAXWSCLIENTS parameter in the MACHINES section of the UBBCONFIG file.

MAXWSCLIENTS is the only parameter that has special significance for the Workstation
feature. MAXWSCLIENTS tells the BEA Tuxedo system at boot time how many accesser
slots to reserve exclusively for Workstation clients. For native clients, each accesser
slot requires one semaphore. However, the Workstation handler process (executing on
the native platform on behalf of Workstation clients) multiplexes Workstation client
accesses through a single accesser slot and, therefore, requires only one semaphore.
This capability is an additional benefit of the Workstation component. By putting more
clients on workstations instead of on the native platform, an application reduces its IPC
resource requirements.

MAXWSCLIENTS takes its specified number of accesser slots from the total set in
MAXACCESSERS. This is important to remember when specifying MAXWSCLIENTS;
enough slots must be left to accommodate native clients as well as servers. If you
specify a value for MAXWSCLIENTS greater than that of MAXACCESSERS, native clients
and servers fail at tpinit() time. The following table describes the MAXWSCLIENTS
parameter.

The machine type. If the value of WSTYPE matches the value of
TYPE in the configuration file for the WSL machine, no
encoding/decoding is performed. The default is the empty
string.

WSTYPE (optional)

To specify . . . Set This Environment
Variable . . .
Setting Up a BEA Tuxedo Application 10-3

10 Setting Up Workstation Clients
Defining a Workstation Listener (WSL) as a
Server

Workstation clients access your application through a WSL process and one or more
WSH processes. The WSL can support multiple workstation clients. It acts as the
single point of contact for all the workstation clients connected to your application at
the network address specified on the WSL command line. The listener schedules work
for one or more workstation handler processes.

A WSH process acts as a surrogate within the administrative domain of your
application for clients on remote workstations. The WSH uses a multiplexing scheme
to support multiple Workstation clients concurrently.

To join Workstation clients to an application, you must specify the Workstation
Listener (WSL) processes in the SERVERS section of the UBBCONFIG file. Use the same
syntax you use to specify a server.

Passing Information to a WSL Process

To pass information to a WSL process, you can use the command-line option string,
CLOPT. The format of the CLOPT parameter is as follows.

CLOPT="[-A] [servopts_options] -- -n netaddr [-d device]
 [-w WSHname][-t timeout_factor][-T Client_timeout]
 [-m minh][-M maxh][-x mpx_factor]

Parameter Description

MAXWSCLIENTS Specifies the maximum number of WSCs that may connect to a
machine.

The syntax is MAXWSCLIENTS=number. The default is 0.

If MAXWSCLIENTS is not specified, WSCs may not connect to the
machine being described.
10-4 Setting Up a BEA Tuxedo Application

Defining a Workstation Listener (WSL) as a Server
 [-p minwshport][-P maxwshport]
 [-I init_timeout][-c compression_threshold]
 [-k compression_threshold]
 [-z bits][-Z bits][-H external_netaddr]
 [-N network_timeout][-K{client|handler|both|none}]"

The -A option requests that the WSL offer all its services when it is booted. This option
is included by default, but it is shown here to emphasize the distinction between
system-supplied servers and application servers. When application servers are booted,
they sometimes offer only a subset of their available services.

The double-dash (--) marks the beginning of a list of parameters that is passed to the
WSL after it has been booted.

Using Command-line Options Set with CLOPT

You can specify any of the following command-line options in the CLOPT string after
the double-dash string (--).

Note: For a complete list of the CLOPT command-line options, see servopts(5) in
BEA Tuxedo File Formats and Data Descriptions Reference.

Use This Command-line
Option . . .

To specify . . .

-n netaddr

(required)

The network address used by WSCs to contact the listener.
The WSC must set the appropriate environment variable
(WSNADDR) to the value specified after -n.

[-d device]

(required for some transport
interfaces)

Specify the network device name.

This is an optional parameter because only some transport
interfaces require it. Sockets, for example, does not require
this parameter.
Setting Up a BEA Tuxedo Application 10-5

10 Setting Up Workstation Clients
[-t timeout] The amount of time to allow for a client to connect to the
WSH.

To calculate the total amount of time to allow for this
purpose, the system multiplies the value of timeout by the
value of the SCANUNIT parameter.

The default is 3 in a nonsecure application, and 6 in a secure
application. In this context we refer to an application as
secure if one of the following parameters is set:

n USER_AUTH

n ACL

n MANDATORY_ACL

n APP_PW

[-w name] The name of the WSH process that should be booted for this
listener. The default is WSH, which is the name of the handler
provided. If another handler process is built with the
buildwsh(1) command, that name is specified here.

[-m number] The minimum number of handlers that should be booted and
always available. The default is 0.

[-M number] The maximum number of handlers that can be booted. The
default is the value of MAXWSCLIENTS for the machine
being configured, divided by the multiplexing value
(specified with -x).

[-x number] The maximum number of clients that a WSH can multiplex
at one time. The value must be greater than 0. The default is
10.

[-T client_timeout] The amount of time (in minutes) that a client can remain idle
without being disconnected. If a client does not make any
requests within this time period, the WSH disconnects the
client. If this argument is not given or is set to 0, the time-out
is infinite.

[-p minwshport] and [-P
maxwshport]

The range for port numbers available for use by WSHs
associated with this listener server. Port numbers must fall in
the range between 0 and 65535. The default is 2048 for
minwshport and 65535 for maxwshport.

Use This Command-line
Option . . .

To specify . . .
10-6 Setting Up a BEA Tuxedo Application

Detecting Network Failures
See Also

n servopts(5) in BEA Tuxedo File Formats and Data Descriptions Reference

Detecting Network Failures

The Workstation component provides two administrative options to WSL that enable
you to avoid hanging indefinitely when a network connection is lost. Specifically,
these options allow you to:

n Check client connections periodically (keep-alive option)

n Limit the amount of time that a client waits for a response from a WSH before
dropping the connection to that WSH (network timeout option)

[-z] and [-Z] The range of bits that can be used, on the WSL side, for
link-level encryption: use -z to specify the minimum
number of bits, and -Z to specify the maximum number of
bits.

[-N network_timeout] The minimum amount of time (in seconds) that a
workstation client is allowed to wait to receive a response
from the WSL/WSH. A value of 0 indicates no network
time-out.

[-K {client | handler |
both | none}]

The viability of a network connection between the
workstation handler and a workstation client if no traffic has
occurred over that connection within a specified period of
time.

Use This Command-line
Option . . .

To specify . . .
Setting Up a BEA Tuxedo Application 10-7

10 Setting Up Workstation Clients
Using the Keep-alive Option

Keep-alive is a networking operation that periodically checks the viability of a network
connection between the Workstation handler and a Workstation client if no traffic has
occurred over that connection within a specified period of time.

You can request the keep-alive option by adding the -K option to the WSL CLOPT entry
in the SERVERS section of the UBBCONFIG file. The -K option accepts the following
arguments: client, handler, both, or none.

Your entry in the UBBCONFIG file should look like the following.

WSL SRVGRP="WSLGRP" SRVID=1000 RESTART=Y GRACE=0
CLOPT="-A -- -n //ws.beasys.com:5120 -d /dev/tcp -K both"

In the example, -K turns on keep-alive checking on both the Workstation client and the
server.

Use this option To

-K client Generate keep-alive messages from the client machines. If the
keep-alive message is not acknowledged, the client machine
considers the network down. Subsequent ATMI calls fail with a
tperrno of TPESYSTEM.

-K handler Generate keep-alive messages from the handler machine. If the
keep-alive message is not acknowledged, the handler machine
considers the network down. The handler then cleans up the
entry associated with the client that does not respond. This
reduces the possibility that the handler will exhaust the number
of clients that a workstation can multiplex at one time (as
specified by -x) with stale clients.

-K both Generate keep-alive message from both the client and handler
machines. The availability and timeout thresholds for this
component are determined by tunable parameters in the
operating system.

-K none Turn off the keep-alive option. Using this setting has the same
effect as not specifying -K at all.
10-8 Setting Up a BEA Tuxedo Application

Using the Keep-alive Option
For details about the format of a WSL entry in UBBCONFIG, see WSL(5) in BEA Tuxedo
File Formats and Data Descriptions Reference.

Note: Any timeout period that you specify applies to the entire system. If you specify
a timeout with one application in mind, and you later change the amount of
time specified, all applications that use keep-alive are also affected.

Limitations When Using the Keep-alive Option

The keep-alive option is supported only on platforms for which the BEA Tuxedo
system uses sockets:

n AIX

n Tru64 UNIX

n HP UX

n Windows

You cannot use this option on any other platform. The BEA Tuxedo system lets you
specify the -K option for any server machine, but it will not execute it properly on any
platform other than those previously listed. If you try to perform a keep-alive operation
on any other platform, your attempt fails and a message is written to the userlog (once
per process for the WSH). Processing continues normally.

Note: The keep-alive operation works only for TCP/IP communications.
Setting Up a BEA Tuxedo Application 10-9

10 Setting Up Workstation Clients
Using the Network Timeout Option

Network timeout is an option that lets you decide how long you are willing to wait for
an operation in a Workstation client before your request for that operation is canceled
(timed out) on a network.

You can request the network timeout function through an administrative option to the
WSL: -N. The -N option uses a network timeout to receive data in the Workstation
client.

How Network Timeout Works

The network timeout option establishes a waiting period (in seconds) for any BEA
Tuxedo operation in the Workstation client that receives data from the network. If the
period is exceeded, the operation fails and the client is disconnected from the
application. A value of 0 (the default) indicates no timeout.

Note: Setting this value too low may cause too many disconnects.

Each ATMI function returns an error whenever a timeout occurs. When a link times
out, the application is notified. An existing error code is used. (Additional error detail
on the specific error can be retrieved by a call to tperrordetail(3c).) Once a network
timeout occurs, the status of outstanding operations is in doubt: transactions cannot be
completed; incoming replies can be lost, and so on. The only safe action is to terminate
the connection to the application by doing the equivalent of a tpterm(3c) without
communicating with the WSH.

By the time the operation returns, the client is no longer part of the BEA Tuxedo
application. The client can rejoin the application in either of two ways:

n By calling tpinit(3c)

n By using an implicit connection (if security is not configured)
10-10 Setting Up a BEA Tuxedo Application

Sample Configuration File that Supports Workstation Clients
Limitations When Using the Network Timeout Option

n Network timeout does not handle network send operations.

n If the value of the network timeout is less than the value of the transaction
timeout or the block time, then the client may be disconnected before the
processing of the request is complete.

n Network timeout disconnects the Workstation client after timeout even though
the connection may still be viable.

Setting the Network Timeout Option

To use the network timeout option in your BEA Tuxedo application, add the -N option
to the WSL CLOPT argument.

Sample Configuration File that Supports
Workstation Clients

The following excerpt from a sample configuration file shows how you can add the
Workstation component to the bankapp application. It contains modifications to the
MACHINES and SERVERS sections.

Listing 10-1 Sample UBBCONFIG File Supporting Workstation Clients

*MACHINES
SITE1
 ...
 MAXWSCLIENTS=150

 ...
SITE2
Setting Up a BEA Tuxedo Application 10-11

10 Setting Up Workstation Clients
 ...
 MAXWSCLIENTS=0
 ...

*SERVERS
 ...
WSL SRVGRP=”BANKB1" SRVID=500 RESTART=Y

CLOPT=”-A -- -n //ws.beasys.com:5120 -m 5 -M 30 -x 5"

...

Modifying the MACHINES and SERVERS Sections

The following changes are shown in the MACHINES and SERVERS sections:

n In the MACHINES section, the default for MAXWSCLIENTS is overridden in the
entries for two sites. For SITE1 , the default is raised to 150, while it is lowered
to 0 for SITE2 , because no Workstation clients will be connected to that site.

n In the SERVERS section, a WSL process is specified for group BANKB1. The WSL
has a server ID of 500 and it is marked as restartable.

n The command-line options show the following:

l The WSL will advertise all of its services (-A).

l The WSL will listen at network address //ws.beasys.com:5120 (-n).

l A minimum of 5 WSHs will be booted (-m).

l A maximum of 30 WSHs will be booted (-M).

l Each handler will be allowed a maximum of 5 clients connected at any one
time (-x).
10-12 Setting Up a BEA Tuxedo Application

	Copyright
	Contents
	1 Administrative Tasks and Tools
	Tasks an Administrator Performs
	Setup Tasks
	Run-time Tasks

	Planning the Design of Your Application
	Tools to Help You Administer Your Application

	2 About the Configuration File
	What Is the Configuration File
	Text and Binary Versions of the Configuration File

	Contents of the Configuration File

	3 Creating the Configuration File
	How to Create a Configuration File
	How to Create the Configuration File for a Single-machine Application
	How to Create the Configuration File for a Multiple-machine (Distributed) Application
	How to Create the Configuration File for a Multiple-domain Application
	How to Create the RESOURCES Section of the Configuration File
	Sample RESOURCES Section

	Defining the Application Type
	Characteristics of the MODEL and OPTIONS Parameters
	Example Settings

	Controlling the Number of Buffer Types and Subtypes
	Characteristics of the MAXBUFTYPE and MAXBUFSTYPES Parameters
	Example Settings

	Controlling the Number of Conversations
	Characteristics of the MAXCONV Parameter
	Example Setting

	Defining IPC Limits
	Characteristics of MAXACCESSERS, MAXSERVERS, and MAXSERVICES Parameters
	Example Settings

	Enabling Load Balancing
	Characteristics of the LDBAL Parameter
	Example Settings

	Identifying the Master Machine
	Characteristics of the MASTER Parameter
	Example Settings

	Specifying the Maximum Number of Network Groups
	Specifying the Number of Sanity Checks and Blocking Timeouts
	Characteristics of the SCANUNIT, SANITYSCAN, and BLOCKTIME Parameters
	Timeouts for Blocking ATMI Operations
	Example Settings

	Establishing Operating System-level Security
	Characteristics of the UID, GID, and PERM Parameters

	Specifying the Security Level
	Characteristics of the SECURITY and AUTHSVC Parameters

	Defining the Security Attributes of a Server
	Protecting Shared Memory
	Characteristics of the PROTECTED, FASTPATH, and NO_OVERRIDE Parameters
	Example Settings

	Setting the Address of the System Resources for an Application
	Characteristics of the IPCKEY Parameter
	Example Settings

	Specifying How Clients Receive Unsolicited Notification
	Characteristics of the NOTIFY and USIGNAL Parameters

	How to Create the MACHINES Section of the Configuration File
	Sample MACHINES Section
	Sample MACHINES Parameters
	How to Customize the Sample MACHINES Section

	Specifying the Maximum Number of ACL Entries in the Cache
	Defining an Additional Service Request Load
	Reserving the Physical Address and Machine ID
	Characteristics of the Address and the LMID Parameter

	Setting the Number of Lock Spins
	Characteristics of the SPINCOUNT Parameter

	Specifying Machines as Types
	Characteristics of the TYPE Parameter

	Identifying the Location of the Configuration File
	Characteristics of the TUXCONFIG Parameter

	Indicating the Size of the DTP Transaction Log
	Defining the DTP Transaction Log Name
	Specifying Environment Variable Settings
	Characteristics of the ENVFILE Parameter

	Defining the BEA Tuxedo File System Containing the TLOG
	Specifying a Machine’s Maximum Number of Simultaneous Global Transactions
	Defining the Number of Accesser Entries on a Workstation Client
	Defining Space Limits for Messages Transmitted by the BRIDGE
	Indicating the Offset for the DTP Transaction Log
	Defining the Offset for TUXCONFIG
	Characteristics of the TUXOFFSET Parameter

	Identifying the Locations of the System Software and Application Server Software
	Characteristics of the APPDIR and TUXDIR Parameters

	Indicating a Threshold Message Size for Compression
	Example

	Specifying the Path Name for the ULOG
	Characteristics of the ULOGPFX Parameter

	How to Create the GROUPS Section of the Configuration File
	Sample GROUPS Section

	Specifying a Group Name, Number, and LMID
	Characteristics of the Group Name, Group Number, and LMID

	Indicating a Transaction Manager Server Name and Numbers per Group
	Identifying the Environment File Location for Servers in a Group
	Defining Information Needed When Opening and Closing the Resource Manager
	How to Create the NETWORK Section of the Configuration File
	Sample NETWORK Section

	Specifying a Device Name for the BRIDGE Process
	Assigning a BRIDGE Network Address
	Assigning Encryption Levels
	Example

	Assigning a tlisten Network Address
	How to Create the NETGROUPS Section of the Configuration File
	Sample Network Groups Configuration
	Configuring a Sample UBBCONFIG File with Netgroups

	Assigning a Name to a Network Group
	Assigning a Network Group Number
	Assigning a Priority to the Network Group
	How to Create the SERVERS Section of the Configuration File
	Sample SERVERS Section
	Sample SERVERS Section Parameters

	Specifying a Server as Conversational
	Characteristics of the CONV Parameter

	Setting the Order in Which Servers Are Booted
	Characteristics of the SEQUENCE, MIN, and MAX Parameters
	Specifying Server Command-line Options
	Characteristics of the CLOPT Parameter

	Identifying the Location of the Server Environment File
	Characteristics of the Server Environment File

	Defining Server Name, Group, and ID
	Characteristics of the Server Name, SRVGRP, and SRVID Parameters

	Identifying Server Queue Information
	MSSQ Example
	Characteristics of the RQADDR, RQPERM, REPLYQ, and RPPERM Parameters

	Defining Server Restart Information
	Characteristics of the RESTART, RCMD, MAXGEN, and GRACE Parameters

	Defining Server Access to Shared Memory
	Characteristics of the SYSTEM_ACCESS Parameter

	Defining the Server Dispatch Threads
	How to Create the SERVICES Section of the Configuration File
	Sample SERVICES Section

	Specifying Automatic Starts and Timeout Intervals for Transactions
	Specifying a List of Allowable Buffer Types for a Service
	Examples of the BUFTYPE Parameter

	Designating How Much Time to Process a Request
	What Happens When a Timeout Occurs
	How a Service Timeout Is Reported
	How to Control a Service Timeout

	Enabling Load Balancing
	Characteristics of the LDBAL Parameter

	Defining the Name of the Routing Criteria
	Specifying Service Parameters for Different Server Groups
	Controlling the Flow of Data by Service Priority
	Characteristics of the PRIO Parameter
	Sample SERVICES Section Using Different Priorities

	Indicating Service Processing Time
	How to Create the ROUTING Section of the Configuration File
	ROUTING Section Example

	Defining the Routing Buffer Field and Field Type
	Specifying Range Criteria
	Defining Buffer Types
	How to Configure the BEA Tuxedo System to Take Advantage of Threads
	How to Compile a Configuration File

	4 About Transactions
	What Is a Transaction
	What Are the ACID Properties
	How a Transaction Succeeds or Fails

	Benefits of Using Transactions
	Example of a Global Transaction
	What Is the BEA Tuxedo Transaction Manager (TM)
	How the System Tracks Distributed Transaction Processing
	How the System Uses Global Transaction Identifiers (GTRIDs) for Tracking
	How the System Uses a Transaction Log (TLOG) for Tracking

	How the System Uses a 2-Phase Commit to Commit Transactions
	How the System Handles Transaction Infection
	How the ATMI Protects a Transaction’s Integrity Before a 2-Phase Commit
	See Also

	5 Configuring Your Application to Use Transactions
	Modifying the UBBCONFIG File to Accommodate Transactions
	Specifying Global Transaction Parameters in the RESOURCES Section
	Creating a Transaction Log (TLOG) in the MACHINES Section
	Creating the UDL
	Defining Transaction-related Parameters in the MACHINES Section
	Creating the Domains Transaction Log
	See Also

	Defining Resource Managers and the Transaction Manager Server in the GROUPS Section
	Sample of the GROUPS Section
	Description of Transaction Values in the Sample GROUPS Section
	Characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and CLOSEINFO Parameters

	Enabling a Service to Begin a Transaction in the SERVICES Section
	Characteristics of the AUTOTRAN, TRANTIME, and ROUTING Parameters

	Modifying the Domains Configuration File to Support Transactions
	Characteristics of the DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE, MAXRDTRAN, and MAXTRAN Parameters
	Characteristics of the AUTOTRAN and TRANTIME Parameters

	Example: A Distributed Application with Transactions
	Sample RESOURCES Section
	Sample MACHINES Section
	Sample GROUPS and NETWORK Sections
	Sample SERVERS, SERVICES, and ROUTING Sections
	See Also

	6 Distributing Applications Across a Network
	What Is a Distributed Application
	Example of a Distributed Application
	Implementing a Distributed Application

	Why Distribute an Application Across a Network
	Features of a Distributed Application

	7 Creating the Configuration File for a Distributed Application
	Configuration File Requirements for a Distributed Application
	Creating the RESOURCES Section
	Creating the MACHINES Section
	Creating the GROUPS Section
	Creating the SERVICES Section
	Creating the ROUTING Section
	Example Configuration File for a Distributed Application
	Modifying the Domain Gateway Configuration File to Support Routing
	Description of ROUTING Section Parameters in DMCONFIG
	Routing Field Description
	Example of a 5-Site Domain Configuration Using Routing

	8 Setting Up the Network for a Distributed Application
	Configuring the Network for a Distributed Application
	How Data Moves Over a Network
	How Data Moves Over Parallel Networks
	Example of a Network Configuration for a Simple Distributed Application
	How Failover and Failback Work in Scheduling Network Data
	Example Configuration of Multiple Netgroups
	Configuration File for the Sample Network
	Assigning Priorities for Each Network Group
	Example Assignment of Priorities to Network Groups
	Example NETGROUP and NETWORK Sections

	9 About Workstation Clients
	What Is the Workstation Component
	Sample Application with Four Workstation Clients
	How the Workstation Client Connects to an Application

	10 Setting Up Workstation Clients
	Defining Workstation Clients
	Specifying the Maximum Number of Workstation Clients
	Defining a Workstation Listener (WSL) as a Server
	Passing Information to a WSL Process
	Using Command-line Options Set with CLOPT

	Detecting Network Failures
	Using the Keep-alive Option
	Limitations When Using the Keep-alive Option

	Using the Network Timeout Option
	How Network Timeout Works
	Limitations When Using the Network Timeout Option
	Setting the Network Timeout Option

	Sample Configuration File that Supports Workstation Clients
	Modifying the MACHINES and SERVERS Sections

