
Using the BEA Tuxedo

B E A T u x e d o R e l e a s e 7 . 1
D o c um e n t E d i t i o n 7 . 1

M a y 2 0 00

Domains Component

BEA Tuxedo

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, and WebLogic Enterprise
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Using the BEA Tuxedo Domains Component

Document Edition Date Software Version

7.1 May 2000 BEA Tuxedo Release 7.1

. 1-1

.. 1-2

1-3

-4

.. 1-6

. 1-7

. 1-9

. 1-11

1-11

1-13

. 1-13

. 1-14

-15

1-16

1-16

-18

1-19

-19

-20

1-21

-21

22

1-23
Contents

1. About Domains

What Is the BEA Tuxedo Domains Component ..

Business Operations Interoperating with Each Other

Building a Multiple-domains Configuration ...

Tools to Set Up and Maintain a Multiple-domain Application.................. 1

Types of Domain Gateways ...

Functionality Supported by Domain Gateways ..

Example of an Application Using Domain Gateways......................................

Messaging Paradigms Supported by Domain Gateways................................

Request/Response Communication Between Local and Remote
Services ...

Conversational Communication Between Local and Remote Services ...

Queued Messaging for Data Storage...

Typed Buffers to Package Data ..

Defining Transaction and Blocking Timeouts in Domains............................. 1

Specifying How Your Domains Connect ..

Determining the Availability of Remote Services with the Dynamic
Status Feature ..

How Your Connection Policy Affects Dynamic Status 1

What Is the Domains Configuration File...

Descriptions of Sections of the DMCONFIG File 1

Domains Terminology Improvements ... 1

Converting the Domains Configuration File ...

Converting DMCONFIG to a Binary File.. 1

Converting the BDMCONFIG File to a Text File 1-

Features of BEA Tuxedo System Domains...
Using the BEA Tuxedo Domains Component iii

-2

. 2-4

2-5

2-8

.. 2-9

-9

-12

2-13

-14

2-18

-19

2-20

2-21

2-21

-22

2-22

23

-24

-25

2-26

2-27

2-27

2-28

-29

-30

-30

2-31

. 2-32

. 2-32

2-35

2-36
2. Planning and Configuring Domains

Planning to Build Domains from Multiple BEA Tuxedo Applications 2

Option 1: Reconfigure the Applications ...

Configuration File for Combining the Sample Applications

Limitations of Option 1 ..

Option 2: Redefine the Applications as Separate BEA Tuxedo Domains.......

Modifying the Application Configuration Files ... 2

Adding DMCONFIG Files ... 2

Sample Domains Application: creditapp ...

The creditapp README File ...2

Configuring a Domains Environment..

Configuring a Sample Domains Application (simpapp)2

Configuration Tasks ...

How to Set Environment Variables for lapp ...

Example..

How to Define the Domains Environment for lapp (in the ubbconfig File)....2

Server Definitions...

Example of an Application Configuration File for lapp........................... 2-

How to Define Domains Parameters for lapp (in the DMCONFIG File)........ 2

Example of a Domain Gateway Configuration File for lapp 2

How to Compile Application and Domains Gateway Configuration Files
for lapp..

How to Set Environment Variables for rapp ...

Example..

How to Define the Domains Environment for rapp (in the UBBCONFIG
File)...

Example of an Application Configuration File for rapp2

How to Define Domains Parameters for rapp (in the DMCONFIG File) 2

Example of a Domain Gateway Configuration File for rapp 2

How to Compile Application and Domain Gateway Configuration Files
for rapp ...

How to Compress Data Between Domains ..

How to Route Service Requests to Remote Domains

Setting Up Security in Domains ..

Domains Security Mechanisms ..
iv Using the BEA Tuxedo Domains Component

-38

2-38

2-39

-40

2-41

2-41

-42

2-46

-46

2-47

8

2-49

2-52

2-52

2-52

2-53

-54

54

-55

. 3-1

-4

. 3-5

3-6

3-7

... 3-8

.. 3-9

3-10

3-10

3-10
How to Create a Domains Access Control List (ACL) 2

Using Standard BEA Tuxedo Access Control Lists with Imported
Remote Services..

How to Set Up Domains Authentication ...

DM_PASSWORDS Section Table Entries .. 2

Examples of Coding Security Between Domains ...

Example 1: Setting Security to APP_PW ..

Example 2: Setting Security to NONE... 2

Configuring the Connections Between Your Domains

How to Request Connections at Boot Time (ON_STARTUP Policy)..... 2

How to Request Connections for Client Demands (ON_DEMAND
Policy) ...

How to Limit Connections to Incoming Messages Only
(INCOMING_ONLY Policy) ... 2-4

How to Configure the Connection Retry Interval for ON_STARTUP
Only...

Controlling the Connections Between Domains ...

How to Establish Connections Between Domains...................................

How to Break Connections Between Domains ..

How to Report on Connection Status...

Configuring Failover and Failback in a Domains Environment 2

How to Configure Domains to Support Link-level Failover.................... 2-

Configuring Domains-level Failover and Failback.................................. 2

3. Administering Domains

Using Domains Run-time Administrative Commands.....................................

How to Migrate DMADM and a Domain Gateway Group........................ 3

Using the Administrative Interface, dmadmin(1)...

Using the Domains Administrative Server, DMADM(5)

Using the Gateway Administrative Server, GWADM(5)

Using the Gateway Process ..

Managing Transactions in a Domains Environment

Transaction Management Capabilities ...

Using the TMS Capability Across Domains ...

How Gateways Coordinate Transactions Across Domains......................
Using the BEA Tuxedo Domains Component v

3-13

-13

3-14

3-20

-21

. 3-23
Using GTRID Mapping in Transactions ...

Defining Tightly-coupled and Loosely-coupled Relationships................3

Global Transactions Across Domains ..

Using Logging to Track Transactions ...

How Logging Works .. 3

Recovering Failed Transactions ...
vi Using the BEA Tuxedo Domains Component

CHAPTER

t of

ork
1 About Domains

� What Is the BEA Tuxedo Domains Component

� Building a Multiple-domains Configuration

� Example of an Application Using Domain Gateways

� Messaging Paradigms Supported by Domain Gateways

� Defining Transaction and Blocking Timeouts in Domains

� Specifying How Your Domains Connect

� What Is the Domains Configuration File

� Converting the Domains Configuration File

� Features of BEA Tuxedo System Domains

What Is the BEA Tuxedo Domains

Component

The BEA Tuxedo application programming framework simplifies the developmen
open online transaction processing (OLTP) distributed applications by hiding the
complexity associated with the distribution of application processing. The framew
consists of the following:

� An extended client/server model that hides the heterogeneity of different
computers and application programs, as well as the location of application
programs.
Using the BEA Tuxedo Domains Component 1-1

1 About Domains

ments
llow

.

n

, and
ct
e
 the

ility

 local
n the

mers
 or to

zens

ude
� A centralized administration system that allows application administrators to
control all cooperating machines as a single application.

As a business grows, application developers may need to organize different seg
of the business by sets of functionality that require administrative autonomy but a
sharing of services and data. It may not be appropriate to structure a group of
applications as a single distributed application because of the functionality,
geographical location, confidentiality requirements, and potential growth of each
Also, an enterprise may want to expand business by cooperating with other
organizations that provide OLTP services under the control of different transactio
processing monitors, such as BEA’s TOP END, Transarc’s Encina, IBM’s CICS,
Bull’s TDS, Bull’s TP8, ICL’s TPMS, and so forth.

Each set of functionality defines an application that spans one or more computers
is administered independently from other applications. Such a functionally distin
application is referred to as a domain; in practice, the organization often uses th
domain’s functionality as part of its name so you find applications with names like
“accounting” domain or the “order entry” domain.

Business Operations Interoperating with Each Other

The BEA Tuxedo System Domains feature provides a framework for interoperab
among the domains of a business that continues the BEA Tuxedo enhanced
client/server model. Interoperability means more than merely the capability of
communicating from one domain to another. By transparently making access to
services of a remote domain available to users of the local domain (or accepting
service requests from users of a remote domain), Domains, in effect, breaks dow
walls between the business applications of an organization. Application program
can use the ATMI interface to access the services provided by remote domains,
define services that can be executed by a remote domain.

The Domains feature also enables BEA Tuxedo applications to cooperate with do
of applications running in other administrative domains. The BEA Tuxedo system
provides a common framework for controlling very large applications that may incl
domains running other transaction processing systems.
1-2 Using the BEA Tuxedo Domains Component

Building a Multiple-domains Configuration

s:

can be
edo
Building a Multiple-domains Configuration

To build a multiple-domain configuration, you need to consider the following task

� Integrate your existing BEA Tuxedo application with other domains

� Ensure interoperability across domains

� Preserve or restrict access to services across domains

� Accept or deny service requests across domains

Domains achieves these tasks through a highly asynchronous, multitasking,
multithreaded gateway. A domain gateway (DGW) is a BEA Tuxedo-supplied server
that handles requests to remote domains and from remote domains. Any request
processed within a transaction. The following figure illustrates how one BEA Tux
domain communicates with another domain via a domain gateway.

Figure 1-1 2-way Communication through a Gateway
Using the BEA Tuxedo Domains Component 1-3

1 About Domains

ests
.

y

r
In this illustration, the gateway processes outgoing credit card authorization requ
to another domain. The gateway also handles incoming authorization responses

Domain gateways manage all the communication between domains. The gatewa
processes include a gateway administrative server (GWADM) that enables run-time
administration of the domain gateway group and a Domains administrative server
(DMADM) that enables run-time administration of the BEA Tuxedo application-wide
Domains configuration information.

Tools to Set Up and Maintain a Multiple-domain

Application

The following illustration shows the tools provided by the BEA Tuxedo system fo
setting up and maintaining a multiple-domain configuration.

Figure 1-2 Domains Administrative Tools
1-4 Using the BEA Tuxedo Domains Component

Building a Multiple-domains Configuration

o

ns

e

ny

Domains
Administrative Tool

Description

dmadmin(1) A command that allows you to configure, monitor, and tune
domain gateway groups dynamically. Use this command to
update the BDMCONFIG file while an application is running.
The command acts as a front-end process that translates
administrative commands. These commands send requests t
the DMADMIN service, a generic administrative service
advertised by the DMADM server. DMADMIN invokes functions
that validate, retrieve, or update information in the BDMCONFIG
file.

DMCONFIG(5)
BDMCONFIG

DMCONFIG is the text version of the configuration file for a
multiple-domain configuration; BDMCONFIG is the binary
version.

dmloadcf(1) and
dmunloadcf(1)

dmloadcf —Reads the DMCONFIG file, checks the syntax, and
optionally loads a binary BDMCONFIG configuration file

dmunloadcf —Translates the BDMCONFIG configuration file
from binary to text format

DMADM(5) An administrative server that enables you to manage a Domai
configuration at run time. DMADM provides a registration service
for gateway groups. This service is requested by GWADM servers
as part of their initialization procedure. The registration servic
downloads the configuration information required by the
requesting gateway group. The DMADM server maintains a list of
registered gateway groups, and propagates to these groups a
changes made to the configuration file (BDMCONFIG).

GWADM(5) An administrative server that supports run-time administration
of a specific gateway group. This server registers with the
DMADM server to obtain the configuration information used by
the corresponding gateway group. GWADM accepts requests from
DMADMIN for run-time statistics or changes in the run-time
options of the specified gateway group. Periodically, GWADM
sends an “I-am-alive” message to the DMADM server. If no reply
is received from DMADM, GWADM registers again. This process
ensures the GWADM server always has the current information
about the Domains configuration for its group.
Using the BEA Tuxedo Domains Component 1-5

1 About Domains

e
es

gh

se
ing

ts

te,

o
Types of Domain Gateways

The BEA Tuxedo system provides different types of gateways to accommodate
various network transport protocols used to communicate with remote domains.
Access to remote domains that use the same communication and transaction
commitment protocol is provided through a group of gateways that implement th
configuration defined for a particular local domain. Following are the different typ
of domain gateways:

� BEA Tuxedo Domains (TDomains) gateway (that is, the GWTDOMAIN gateway)—
provides interoperability between two or more BEA Tuxedo applications throu
a specially designed TP protocol that flows over network transport protocols
such as TCP/IP.

Note: GWTDOMAIN gateways should not be specified as members of an MSSQ set.
They should not have a reply queue (REPLYQ=N should be specified).
GWTDOMAIN gateways are recommended to be restartable.

� BEA eLink for Mainframe-OSI TP gateway—provides interoperability between
BEA Tuxedo applications and other transaction processing applications that u
the OSI TP standard. OSI TP is a protocol for distributed transaction process
defined by the International Standards Organization (ISO).

� BEA eLink for Mainframe-SNA gateway—provides interoperability between
clients and servers in a BEA Tuxedo domain, and clients and servers in an
MVS/CICS or MVS/IMS environment in a remote SNA domain. It also suppor
communication with multiple SNA networks.

� BEA eLink for Mainframe-TCP:

z For CICS gateway—makes it possible for non-transactional tasks within
BEA Tuxedo regions to access services provided by CICS application
programs and vice-versa. It enables a BEA Tuxedo domain to communica

GWTDOMAIN(5) A gateway process that receives and forwards messages from
clients and servers in all connected domains (for BEA Tuxed
Domains).

Domains
Administrative Tool

Description
1-6 Using the BEA Tuxedo Domains Component

Building a Multiple-domains Configuration

d

ay

and
:

s.

via the TCP/IP network transport protocol, with a CICS environment. (A
BEA Tuxedo domain is a single computer or network of computers
controlled by a single BEA Tuxedo configuration file.)

z For IMS gateway—provides transparent communications between client an
server transactions in an IMS system and a BEA Tuxedo domain, a CICS
system, or another IMS system.

� BEA TOP END Domain Gateway (TEDG)—provides interoperability between
TOP END systems and BEA Tuxedo domains.

Functionality Supported by Domain Gateways

Domain gateways support the following functionality:

� Administration—Gateways can be booted or shut down exactly as any other
BEA Tuxedo server. Run-time administration is provided through an
administrative server, DMADM. Using DMADM, application administrators can make
changes to a domains configuration file, and tune the performance of a gatew
group. (The DMADM administrative server should be booted before gateway
groups.)

� ATMI—Gateways can access the programming interface between a domain
the BEA Tuxedo system ensuring access to the following messaging models

z Request/Response Model—Application programs using the BEA Tuxedo
system can request services from applications running in another domain
Also, remote applications can request services from local servers. (No
changes are required to the application program to accommodate this
interdomain functionality.)

z Conversational Model—Application programs can establish conversations
with programs running in other domains. Remote domains can establish
conversations with conversational services offered by local servers. (No
changes are required to the application program to accommodate this
interdomain functionality.)

z Queuing Model—Application programs using the BEA Tuxedo system can
store data on queues. Any client or server can store messages or service
requests in a queue on a remote domain and all stored requests are sent
through the transaction protocol to ensure safe storage. (No changes are
Using the BEA Tuxedo Domains Component 1-7

1 About Domains

ns
required to the application program to accommodate this interdomain
functionality.)

� Multidomain Interaction—Gateways can communicate with multiple domains.

� Multinetwork Support—Gateways can communicate with other domains via a
variety of network protocols, such as TCP/IP , IPX/SPX , and others. However, a
gateway is limited by the capabilities of the networking library to which it is
linked. In other words, a gateway typically supports a single type of network
protocol.

� Transaction Management—Application programs can interoperate with other
domains within a transaction. The gateway coordinates the commitment or
rollback of transactions running across domains.

� Typed Buffer Support—Gateways can perform encoding and decoding operatio
for all the types of buffers defined by the application.

See Also

� “What Is a Multiple-domain Configuration” on page 3-49 in Introducing the
BEA Tuxedo System

� “Example of an Application Using Domain Gateways” on page 1-9

� “Messaging Paradigms Supported by Domain Gateways” on page 1-11
1-8 Using the BEA Tuxedo Domains Component

Example of an Application Using Domain Gateways

his

om
, and
ins.

used.
ent.
Example of an Application Using Domain

Gateways

The following figure shows a BEA Tuxedo application that requires services (in t
case, credit card authorizations) from a remote domain.

Figure 1-3 High-level View of Two Communicating Domains

The application also accepts service requests (for example, balance inquiries) fr
remote domains. The gateway process provides bidirectional transaction control
administrative tools for configuring a local domain to interoperate with other doma
BDMCONFIG, the configuration file for a multiple-domain application, identifies
exported services, imported services, addressing, any access control lists to be
The following figure shows a more detailed view of a sample Domains environm
Using the BEA Tuxedo Domains Component 1-9

1 About Domains

f the

ank
 TP

ation

card
st and
.

le, the
his
rvices
Figure 1-4 Example Domains Environment

The example shows a credit card authorization center running under the control o
BEA Tuxedo system. The authorization center has two gateway groups: bankgw1
(which uses the TCP/IP protocol) and bankgw2 (which uses the OSI TP protocol).
bankgw1 provides access to two remote BEA Tuxedo domains (Bank ABC and B
CBA); bankgw2 provides access to one remote domain (Bank XYZ) using the OSI
protocol.

In this example, Bank ABC generates service requests to the credit card authoriz
center. These requests are received by a gateway running within group bankgw1 . This
gateway issues a service request, on behalf of the remote domain, to the credit
authorization service provided by a local server. The server processes the reque
sends the reply to the gateway, and the gateway forwards the reply to Bank ABC

The credit card authorization center may also issue service requests. For examp
authorization center may send balance inquiries to Bank XYZ. Domains makes t
possible by providing a gateway that acts like as a local server that advertises se
available on other domains as if they were local services.
1-10 Using the BEA Tuxedo Domains Component

Messaging Paradigms Supported by Domain Gateways

 to
lable

ing

n

ge

tion
Domains provides the notion of a local domain that controls incoming requests and
provides a generic addressing framework for the application. Local domains help
provide partial views of an application, that is, a subset of the local services avai
to a set of remote domains. Each local domain is always represented by a single
gateway server group.

Messaging Paradigms Supported byDomain

Gateways

The functions of the BEA Tuxedo client/server model are supported by the follow
messaging paradigms in domain gateways:

� “Request/Response Communication Between Local and Remote Services” o
page 1-11

� “Conversational Communication Between Local and Remote Services” on pa
1-13

� “Queued Messaging for Data Storage” on page 1-13

Request/Response Communication Between Local and

Remote Services

Domain gateways provide support for the request/response model of communica
defined by the ATMI interface. A BEA Tuxedo application can request remote
services exactly as if they were offered locally.
Using the BEA Tuxedo Domains Component 1-11

1 About Domains

ote

ests.
ario
Support for ATMI Functions

The following BEA Tuxedo ATMI functions are logically limited to use within a
single application and are not supported across domains:

� tpinit(3c) /tpterm(3c) —BEA Tuxedo applications do not attach to the
environment of a remote domain; they use Domain gateways to access a rem
domain. Therefore, an extra tpinit() /tpterm() sequence is not needed for
remote applications.

� tpadvertise(3c) and tpunadvertise(3c) —cannot be used across domains.
Domain gateways do not support dynamic service advertisements across
domains.

� tpnotify(3c) and tpbroadcast(3c) —Domains does not support the
unsolicited communication paradigm provided by these primitives.

� Event posting (tppost(3c)) and notification of events (tpsubscribe(3c))—
Domains does not support these functions across domains.

Support for tpforward(3c) is provided to preserve application portability.
Forwarded requests are interpreted by domain gateways as simple service requ
This process is shown in the following diagram, which illustrates the simple scen
of a service using tpforward to send a request to a remote service.

Figure 1-5 Using tpforward to Send a Request to a Remote Service
1-12 Using the BEA Tuxedo Domains Component

Messaging Paradigms Supported by Domain Gateways

m.

tion

s;

isk) or
es

r later

ts to

s

ns.
Conversational Communication Between Local and

Remote Services

The ATMI is a connection-oriented interface that enables clients to establish and
maintain conversations with services programmed in the conversational paradig

BEA Tuxedo applications use tpconnect(3c) to open a conversation with a remote
service, tpsend(3c) and tprecv(3c) to communicate with this service, and
tpdiscon(3c) to end the conversation. Domain gateways maintain the conversa
with the remote service, and support the same semantics for returns (that is, tpreturn
with TPSUCCESS or TPFAIL) and disconnects that are defined for BEA Tuxedo
conversational services.

Note: The ATMI connection-oriented functions provide half-duplex conversation
tpforward(3c) is not allowed within a conversational service.

Application administrators indicate that a remote service is conversational by
specifying CONV=Y in the DM_REMOTE_SERVICES section of the DMCONFIG file.

Queued Messaging for Data Storage

The BEA Tuxedo system enables messages to be queued to persistent storage (d
to non-persistent storage (memory) for later processing or retrieval. ATMI provid
primitives that allow messages to be added (that is, tpenqueue) or read (that is,
tpdequeue) from queues. Reply messages and error messages can be queued fo
return to clients. An administrative command interpreter (that is, qmadmin) is provided
for creating, listing, and modifying queues. Server are provided to accept reques
enqueue and dequeue messages (that is, TMQUEUE server), to forward messages from
the queue for processing (that is, TMQFORWARD server), and to manage the transaction
that involve queues (that is, TMS_QM server).

Domain gateways extend support for queued messaging services across domai
Using the BEA Tuxedo Domains Component 1-13

1 About Domains

s and
 data
hich

ions,
ions.
trator

ata.
ta in
 to the

riate
r

e

ceived
See Also

� “What Is Request/Reply Communication” on page 2-14 in Introducing the BEA
Tuxedo System

� “What Is Conversational Communication” on page 2-9 in Introducing the BEA
Tuxedo System

� “What Is Queue-based Communication” on page 2-13 in Introducing the BEA
Tuxedo System

Typed Buffers to Package Data

In BEA Tuxedo applications, typed buffers are used to send data between client
servers. The typed buffer mechanism allows application programmers to transfer
without knowing which data representation scheme is used by the machines on w
the application’s clients and servers are running.

A domain gateway can receive and process service requests sent from workstat
BEA Tuxedo machines, and remote domains with different machine representat
A typed buffer switch decodes the data sent with the service request. The adminis
must define the typed buffer switch appropriate for the application.

Data-dependent routing depends upon matching specified criteria to fields within d
If data is encoded, however, there is no way to determine the contents of that da
order to route that data accurately. In addition, a domain gateway needs access
contents for the following reasons:

� The gateway may have to apply data-dependent routing to select the approp
remote domain for the service requested. (Data-dependent routing criteria fo
remote domains are defined in the Domains configuration file.)

� Different data formats may be used within different domains, depending on th
networking protocols implemented or used in each domain.

Therefore a domain gateway always tries to decode any service request that is re
encoded.
1-14 Using the BEA Tuxedo Domains Component

Defining Transaction and Blocking Timeouts in Domains

e

that

ed to

the

 The

t is,
OSI terminology provides a useful distinction between abstract syntax (that is, th
structure of the data) and transfer syntax (that is, the particular encoding used to
transfer the data). Each typed buffer implicitly defines a particular data structure (
is, its abstract syntax) and the encoding rules (or typed buffer operations) requir
map the data structure to a particular transfer syntax (for example, XDR).

The BEA Tuxedo system provides a set of predefined buffer types (STRING, CARRAY,
FML, VIEW, X_C_TYPE, X_OCTET, X_COMMON, and XML) and the encoding rules required
to map these types to the XDR transfer syntax.

Note: A programmer can supply a custom buffer type by adding an instance to
tm_typesw array in TUXDIR/lib/tmtypesw.c (see tuxtypes(5) and
typesw(5)), and supplying routines for the new type (see buffer(3c)).

See Also

� “What Are Typed Buffers” on page 2-24 in Introducing the BEA Tuxedo System

� “Customizing a Buffer” on page 3-28 in Programming a BEA Tuxedo
Application Using C

� tuxtypes(5) in BEA Tuxedo File Formats and Data Descriptions Reference

� typesw(5) in BEA Tuxedo File Formats and Data Descriptions Reference

Defining Transaction and Blocking Timeouts

in Domains

The BEA Tuxedo system provides two timeout mechanisms: a transaction timeout
mechanism and a blocking timeout mechanism. The transaction timeout is used to
define the duration of a transaction, which may involve several service requests.
timeout value is defined when the transaction is started (with tpbegin(3c)). The
blocking timeout is used to define the duration of individual service requests, tha
how long the application is willing to wait for a reply to one service request.
Using the BEA Tuxedo Domains Component 1-15

1 About Domains

ains
se

istry
the

ss
t
ds an

blish
icies:

in

orts
The BEA Tuxedo transaction timeout mechanism is used unchanged in the Dom
framework. Use of the same transaction timeout mechanism is necessary becau
domain gateways implement the TMS functionality and therefore are required to
handle the TMS_TIMEOUT messages generated by the Bulletin Board Liaison (BBL).

Domain gateways, however, cannot use the BEA Tuxedo blocking timeout
mechanism. The blocking timeout mechanism uses information stored in the reg
slot assigned to each client or server. (Information in the registry slot is used by
local BBL to detect requesters that have been blocked for a time greater than
BLOCKTIME.) Domain gateways, however, are multitasking servers that can proce
several service requests at a time, which means they cannot use the registry slo
mechanism. When a blocking timeout condition arises, the domain gateway sen
error/failure reply message to the requester, and cleans any context associated with the
service request.

Specifying How Your Domains Connect

You can specify the conditions under which a local domain gateway tries to esta
a connection to a remote domain by selecting one of the following connection pol

� Connect at boot time (ON_STARTUP)

� Connect when a client program requests a remote service (ON_DEMAND)

� Accept incoming connections but do not initiate a connection automatically
(INCOMING_ONLY)

Determining the Availability of Remote Services with

the Dynamic Status Feature

The gateway process (GWTDOMAIN) advertises those services that are imported from
one or more remote domains in the bulletin board. These services typically rema
advertised regardless of whether the remote service is reachable.

The capability of the BEA Tuxedo domain gateways known as Dynamic Status rep
the status (as determined by the BEA Tuxedo system) of remote services.
1-16 Using the BEA Tuxedo Domains Component

Specifying How Your Domains Connect

status
es are
 is
es in
tion

hich
ay,

f all
ervice

s, as

the
r

ect”
When Dynamic Status is in effect, the status of a remote service depends on the
of the network connection between the local and remote gateways. Remote servic
considered available whenever a connection to the domain on which they reside
available. When a network connection to a remote domain is not available, servic
that domain are considered unavailable. This policy is invoked when the connec
policy is ON_STARTUP (that is, when a local domain gateway tries to establish a
connection to a remote domain at boot time) or INCOMING_ONLY (that is, when a local
domain gateway does not try to establish a connection to remote domains upon
starting).

For each service, the gateway keeps track, not only of the remote domains from w
the service is imported, but also of which remote domains are available. In this w
the gateway provides intelligent load balancing of requests to remote domains. I
the remote domains from which a service is imported become unreachable, the s
is suspended in the bulletin board.

For example, suppose a service called RSVC is imported from two remote domain
specified by the following entries in the DM_REMOTE_SERVICES section of the
configuration file:

RSVC RDOM=R1
RSVC RDOM=R2

When connections to both R1 and R2 are up, the gateway load balances requests for
RSVC service. If the connection to R1 goes down, the gateway sends all requests fo
RSVC to R2. If both connections go down, the gateway suspends RSVC in the bulletin
board. Subsequent requests for RSVC are either routed to a local service or another
gateway, or fail with TPENOENT.

Note: When the connection policy is ON_DEMAND, a connection is attempted only
when either a client requests a remote service or an administrative “conn
command is run.
Using the BEA Tuxedo Domains Component 1-17

1 About Domains

ble

 a

.

te
n
How Your Connection Policy Affects Dynamic Status

Dynamic Status is not available in all Domains configurations; whether it is availa
depends on which connection policy you establish between your domains. The
following table describes how each connection policy affects Dynamic Status.

Table 1-1 Availability of Dynamic Status

Under This
Policy

Dynamic Status Is

ON_STARTUP On.

Services imported from a remote domain are advertised as long as
connection to that remote domain is active. A connection can be
established in any of the following ways:

� Automatically

� Manual through the dmadmin command

� Through an incoming connection

ON_DEMAND Off.

Services imported from remote domains are continually advertised
Ways in which a connection can be established are:

� Client request

� Manually through the dmadmin command

� Through an incoming connection

INCOMING_ONLY On.

Remote services are initially suspended. A domain gateway is
available for incoming connections from remote domains, and remo
services are advertised when the local domain gateway receives a
incoming connection or when a manual connect command is issued.
A connection can be established in the following ways:

� Manually through the dmadmin command

� Through an incoming connection
1-18 Using the BEA Tuxedo Domains Component

What Is the Domains Configuration File

roup.

 a

le
p

s

 are

local
e
What Is the Domains Configuration File

All domains configuration information is stored in a binary file called BDMCONFIG.
You can create and edit a text version of this file, DMCONFIG, with any text editor. You
can update the compiled BDMCONFIG file while the system is running by using the
dmadmin(1) command when using Domains. In a multi-domain application, a
separate BDMCONFIG file must be created for each participating domain.

System access to the BDMCONFIG file is provided through the Domains administrative
server, DMADM(5). When a gateway group is booted, the gateway administrative
server, GWADM(5), requests from the DMADM server, a copy of the configuration file
required by that group. The GWADM and DMADM servers also ensure that run-time
changes to the configuration are reflected in the corresponding domain gateway g

Descriptions of Sections of the DMCONFIG File

Section of the
DMCONFIG File

Purpose

DM_LOCAL_DOMAINS Describes the environment for a particular domain gateway group. It assigns
logical application name, LDOM, to the subset of local services available to
remote domains. You can use multiple entries in this section to define multip
gateway groups within a single BEA Tuxedo application. Each gateway grou
can provide access to domains of different types.

DM_REMOTE_DOMAINS Identifies the remote domains available to clients and servers of this Domain
application.

DM_LOCAL_SERVICES Describes the local services provided by a local domain (LDOM) in the
DM_LOCAL_DOMAINS section. Specification of services can also be used to
restrict access to local services from remote domains; only services specified
available to remote domains.

DM_REMOTE_SERVICES Describes the set of services provided by remote domains. It also names the
gateway group (through the LDOM parameter) that provides access to the remot
service.
Using the BEA Tuxedo Domains Component 1-19

1 About Domains

uses
l and
s
nd
plied

ase,

ice

ins

ins.

e
Domains Terminology Improvements

In this release, some of the domains terminology is changing. The Domains MIB
improved class and attribute terminology to describe the interaction between loca
remote domains. While this improved terminology is more accurate than previou
domains terminology, the scope of changes to domains-related documentation a
error messages is limited in this release. The improved terminology has been ap
to the DM_MIB classes, reference page, and error messages, the DMCONFIG file syntax,
and various DMCONFIG error messages.

For backwards compatibility, aliases are provided between the DMCONFIG terminology
used prior to this release and the improved Domains MIB terminology. In this rele
DMCONFIG accepts both versions of the terminology. For details, see “Domains
Terminology Improvements” in the DM_MIB(5) reference page.

DM_ROUTING Specifies criteria for data-dependent routing used by gateways to route serv
requests to specific remote domains.

DM_ACCESS_CONTROL Specifies an Access Control List that names (via RDOMs) the remote doma
permitted to request local services. The ACL parameter in the
DM_LOCAL_SERVICES section, can be used by setting ACL=name_of_list
to restrict access to a particular local service to the listed set of remote doma

DM_dmtype Defines the parameters required for a particular Domains configuration.
Currently, the value of dmtype can be OSITP, SNAX, TOPEND, or TDOMAIN.
This topic focuses only on TDOMAIN. Consult BEA eLink for Mainframe
documentation for information about OSITP and SNAX. Consult Using the BEA
Tuxedo TOP END Domain Gateway for information about TOPEND. Each
domain type must be specified in a separate section.

In a DM_TDOMAIN section, entries associated with a remote domain can be
specified more than once, with different network addresses, to implement th
mirrored gateway facility. (See DMCONFIG(5) for a description and an
example of a mirrored gateway.)

Section of the
DMCONFIG File

Purpose
1-20 Using the BEA Tuxedo Domains Component

Converting the Domains Configuration File

e
See Also

� “Configuring a Domains Environment” on page 2-18

� DMCONFIG(5) in BEA Tuxedo File Formats and Data Descriptions Reference

� “Converting the Domains Configuration File” on page 1-21

Converting the Domains Configuration File

This section provides instructions for converting a text version of a Domains
configuration file (DMCONFIG) to a binary version (BDMCONFIG), and vice versa.

Converting DMCONFIG to a Binary File

The dmloadcf(1) command parses DMCONFIG (a text file), and loads the information
about the Domains configuration into a binary file called BDMCONFIG. The command
uses the environment variable BDMCONFIG to point to the directory in which the
configuration should be stored. The BDMCONFIG file can be stored on the same devic
as the TUXCONFIG file (or the binary version of the UBBCONFIG file).

Figure 1-6 Relationships Between Configuration Commands and Files
Using the BEA Tuxedo Domains Component 1-21

1 About Domains

 a

om
The dmloadcf(1) command, through the -c option, also provides an estimate of the
IPC resources needed for each local domain specified in the configuration.

As shown in the preceding figure, the dmloadcf command uses the
$TUXDIR/udataobj/DMTYPE file. It checks the DMTYPE file to verify that the domain
types specified in the configuration file are valid. Each Domains instantiation has
domain type . The type is used as a tag in the file TUXDIR/udataobj/DMTYPE. Each
line in this file has the following format.

dmtype:access_module_lib:comm_libs:tm_typesw_lib:gw_typesw_lib

The file has the following entry for TDOMAIN:

TDOMAIN:-lgwt:-lnwi -lnws -lnwi::

Converting the BDMCONFIG File to a Text File

To unload a binary version of a Domains configuration file (that is, to convert it fr
binary to text format), run the dmunloadcf(1) command.
1-22 Using the BEA Tuxedo Domains Component

Features of BEA Tuxedo System Domains

s.

ith

on.

s

hine

 so
Features of BEA Tuxedo System Domains

� Aliasing capability—This feature allows you to define map service names
between local and remote applications, allowing for easy integration of
applications that use different naming schemes.

� Availability—You can specify alternate destinations to handle failure condition

� Scalability and modular growth—Programmers can structure their applications
for modularity, isolation of failures, and independent growth. Interoperation w
other transaction processing applications is achieved easily by adding to the
Domains configuration the description of services used by a remote applicati

� Security—An access control list (ACL) facility is provided to restrict access to
local services from a particular set of remote domains. Domains also provide
encryption and password verification.

� Transparency and independence—Application programmers need no knowledge
of how services are distributed. A service may be available on the same mac
as a client, on another machine in the local domain, or on a remote domain.
Client application programmers do not need to know the implementation
changes made to a service, the location of a service, network addresses, and
on.

� Transaction management and reliability—The Domains feature is integrated
with the BEA Tuxedo transaction management capabilities.
Using the BEA Tuxedo Domains Component 1-23

1 About Domains
1-24 Using the BEA Tuxedo Domains Component

CHAPTER
2 Planning and

Configuring Domains

� Planning to Build Domains from Multiple BEA Tuxedo Applications

� Sample Domains Application: creditapp

� Configuring a Domains Environment

� How to Compress Data Between Domains

� How to Route Service Requests to Remote Domains

� Setting Up Security in Domains

� Configuring the Connections Between Your Domains

� Configuring Failover and Failback in a Domains Environment
Using the BEA Tuxedo Domains Component 2-1

2 Planning and Configuring Domains

 bank
rds.

ion.
nt.

e

 see
Planning to Build Domains from Multiple

BEA Tuxedo Applications

Suppose a bank has developed the two BEA Tuxedo applications shown in the
following figure: bankapp and a credit card authorization center.

Figure 2-1 Two BEA Tuxedo Applications

The bankapp application connects ATMs at various bank branches to the central
office. The Credit Card Authorization Center processes applications for credit ca
Over time, the bank realizes that their customers would be better served if the bankapp
application could communicate directly with the credit card authorization applicat
In this way, they could offer instant credit cards to anyone opening a new accou

bankapp is distributed as a sample application with the BEA Tuxedo software. Th
credit card authorization application is a hypothetical extension of bankapp .

Take a look at the configuration file (represented in the following sample code) to
how to implement bankapp as a multiprocessor application:
TUXDIR/apps/bankapp/ubbmp .
2-2 Using the BEA Tuxedo Domains Component

Planning to Build Domains from Multiple BEA Tuxedo Applications
You have the following options:

� “Option 1: Reconfigure the Applications” on page 2-4

� “Option 2: Redefine the Applications as Separate BEA Tuxedo Domains” on
page 2-9
Using the BEA Tuxedo Domains Component 2-3

2 Planning and Configuring Domains

he
Option 1: Reconfigure the Applications

One solution is to combine two BEA Tuxedo applications into one, as shown in t
following figure.

Figure 2-2 Combining Two BEA Tuxedo System Applications

In the process of combining the two applications into a single configuration, the
following changes are made:

� OPTION=LAN is specified and a NETWORK section is included.

� Server migration is enabled by specifying OPTION=MIGRATE; at the same time a
backup master site is defined.

� The gateway server is redefined as three other servers: TLRA, ACCTA, and CRDT.

� Credit Authorization services are added.
2-4 Using the BEA Tuxedo Domains Component

Option 1: Reconfigure the Applications

ons.
Configuration File for Combining the Sample

Applications

The following code shows a possible configuration file for the combined applicati

Listing 2-1 Sample Configuration File for the Combined Application

*RESOURCES
IPCKEY 76666
UID 0000
GID 000
PERM 0660
MAXACCESSERS 40
MAXSERVERS 35
MAXSERVICES 75
MAXCONV 10
MASTER SITE1,SITE2
SCANUNIT 10
MODEL MP
LDBAL Y
OPTIONS LAN,MIGRATE
MAXGTT 100
MAXBUFTYPE 16
SCANUNIT 10
SANITYSCAN 5
DBBLWAIT 6
BBLQUERY 50
BLOCKTIME 2

#
*MACHINES
#
mach1 LMID=SITE1
 TUXDIR=“/home/mylogin/tuxroot”
 APPDIR=“/home/mylogin/bankapp”
 ENVFILE=“/home/mylogin/bankapp/ENVFILE”
 TLOGDEVICE=“/home/mylogin/bankapp/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=“/home/mylogin/bankapp/tuxconfig”
 ULOGPFX=“/home/mylogin/bankapp/ULOG”
 TYPE=“type1”
#
mach2 LMID=SITE2
 TUXDIR=“/home/mylogin/tuxroot”
Using the BEA Tuxedo Domains Component 2-5

2 Planning and Configuring Domains
 APPDIR=“/home/mylogin/bankapp”
 ENVFILE=“/home/mylogin/bankapp/ENVFILE”
 TLOGDEVICE=“/home/mylogin/bankapp/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=“/home/mylogin/bankapp/tuxconfig”
 ULOGPFX=“/home/mylogin/bankapp/ULOG”
 TYPE=“type2”
#
mach3 LMID=SITE3
 TUXDIR=“/home/mylogin/tuxroot”
 APPDIR=“/home/mylogin/bankapp”
 ENVFILE=“/home/mylogin/bankapp/ENVFILE”
 TLOGDEVICE=“/home/mylogin/bankapp/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=“/home/mylogin/bankapp/tuxconfig”
 ULOGPFX=“/home/mylogin/bankapp/ULOG”
 TYPE=“type2”
#
mach4 LMID=SITE4
 TUXDIR=“/home/mylogin/tuxroot”
 APPDIR=“/home/mylogin/bankapp”
 ENVFILE=“/home/mylogin/bankapp/ENVFILE”
 TLOGDEVICE=“/home/mylogin/bankapp/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=“/home/mylogin/bankapp/tuxconfig”
 ULOGPFX=“/home/mylogin/bankapp/ULOG”
 TYPE=“type1”
#
*GROUPS
#
DEFAULT: TMSNAME=TMS_SQL TMSCOUNT=2
BANKB1 LMID=SITE1 GRPNO=1
OPENINFO=“TUXEDO/SQL:/home/mylogin/bankapp/bankdl1:bankdb:readwrite”
BANKB2 LMID=SITE2 GRPNO=2
OPENINFO=“TUXEDO/SQL:/home/mylogin/bankapp/bankdl2:bankdb:readwrite”
BANKB3 LMID=SITE3 GRPNO=3
OPENINFO=“TUXEDO/SQL:/home/mylogin/bankapp/bankdl3:bankdb:readwrite”
BANKB4 LMID=SITE4 GRPNO=4
OPENINFO=“TUXEDO/SQL:/home/mylogin/bankapp/bankdl4:bankdb:readwrite”
#
#
*NETWORK
#
SITE1 NADDR=“< network address of SITE1 >”
 BRIDGE=“< device of provider1 >”
 NLSADDR=“< network listener address of SITE1 >”
SITE2 NADDR=“< network address of SITE2 >”
 BRIDGE=“< device of provider2 >”
 NLSADDR=“< network listener address of SITE2 >”
2-6 Using the BEA Tuxedo Domains Component

Option 1: Reconfigure the Applications
SITE3 NADDR=“< network address of SITE3 >”
 BRIDGE=“< device of provider3 >”
 NLSADDR=“< network listener address of SITE3 >”
SITE4 NADDR=“< network address of SITE4 >”
 BRIDGE=“< device of provider4 >”
 NLSADDR=“< network listener address of SITE4 >”
#
*SERVERS
#
DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=Y CLOPT=“-A”
Servers for the bankapp part
TLR SRVGRP=BANKB1 SRVID=2
TLR SRVGRP=BANKB2 SRVID=3 RQADDR=tlr2 CLOPT=“-A -- -T 600”
TLR SRVGRP=BANKB3 SRVID=4
XFER SRVGRP=BANKB1 SRVID=10
XFER SRVGRP=BANKB2 SRVID=6
XFER SRVGRP=BANKB3 SRVID=8
ACCT SRVGRP=BANKB1 SRVID=11
ACCT SRVGRP=BANKB2 SRVID=7
ACCT SRVGRP=BANKB3 SRVID=13
BTADD SRVGRP=BANKB1 SRVID=12
BTADD SRVGRP=BANKB2 SRVID=14
BTADD SRVGRP=BANKB3 SRVID=16
Servers for the Credit Authorization Part
TLRA SRVGRP=BANKB4 SRVID=5 CLOPT=“-A -- -T 600”
ACCTA SRVGRP=BANKB4 SRVID=9
CRDT SRVGRP=BANKB4 SRVID=15
#
#
*SERVICES
#
DEFAULT: LOAD=50 AUTOTRAN=N
Services for the bankapp part
BR_ADD PRIO=20 ROUTING=BRANCH_ID
TLR_ADD PRIO=20 ROUTING=BRANCH_ID
WITHDRAWAL PRIO=50 ROUTING=ACCOUNT_ID
DEPOSIT PRIO=50 ROUTING=ACCOUNT_ID
TRANSFER PRIO=50 ROUTING=ACCOUNT_ID
INQUIRY PRIO=50 ROUTING=ACCOUNT_ID
CLOSE_ACCT PRIO=40 ROUTING=ACCOUNT_ID
OPEN_ACCT PRIO=40 ROUTING=BRANCH_ID
Services for the Credit Authorization part
WITHDRAWALA PRIO=50
INQUIRYA PRIO=50
OPENCA PRIO=40
CLOSECA PRIO=40
DEPOSITA PRIO=50
OPEN_ACCT2 PRIO=40
OPENC PRIO=40
Using the BEA Tuxedo Domains Component 2-7

2 Planning and Configuring Domains

ired
ross
#
#
*ROUTING
#
ACCOUNT_ID FIELD=ACCOUNT_ID
 BUFTYPE=“FML”
 RANGES=“10000-39999:BANKB1,
 40000-69999:BANKB2,
 70000-109999:BANKB3,
 :”
BRANCH_ID FIELD=BRANCH_ID
 BUFTYPE=“FML”
 RANGES=“1-3:BANKB1,
 4-6:BANKB2,
 7-10:BANKB3,
 :”
#

Limitations of Option 1

� Administering a single large application can be more cumbersome than
administering two smaller ones; each smaller one has its own administrative
interface.

� Booting a networked application can be more costly because of the time requ
to boot each server and because of the need to propagate bulletin boards ac
the network. Smaller, separate applications can be booted simultaneously.
2-8 Using the BEA Tuxedo Domains Component

Option 2: Redefine the Applications as Separate BEA Tuxedo Domains

ges
Option 2: Redefine the Applications as

Separate BEA Tuxedo Domains

The following figure shows the combined application reconfigured as four BEA
Tuxedo domains (TDomains). (Three of the domains are in the left-hand box.)

Figure 2-3 Domains Configuration

Modifying the Application Configuration Files

To reconfigure the combined application as TDOMAINs, make the following chan
to the UBBCONFIG files:

� Change MODEL to SHM.

� Remove the NETWORK section.

Note: You can use MP mode and also write the NETWORK section in a muliple
domain environment depending on your specific application needs.

� Add domain-specific servers, for example DMADM, GWADM, and GWTDOMAIN, to the
SERVERS section.
Using the BEA Tuxedo Domains Component 2-9

2 Planning and Configuring Domains
The following code shows a sample converted UBBCONFIG file.

Listing 2-2 Converted UBBCONFIG File

*RESOURCES
IPCKEY 76666
UID 7901
GID 601
PERM 0660
MAXACCESSERS 40
MAXSERVERS 35
MAXSERVICES 75
MAXCONV 10
MASTER SITE1
SCANUNIT 10
MODEL SHM
LDBAL Y
MAXGTT 100
MAXBUFTYPE 16
SCANUNIT 10
SANITYSCAN 5
BBLQUERY 50
BLOCKTIME 2
#
*MACHINES
sfexpz LMID=SITE1
 TUXDIR=“/home/mylogin/tuxroot”
 APPDIR=“/home/mylogin/creditapp”
 ENVFILE=“/home/mylogin/creditapp/ENVFILE”
 TLOGDEVICE=“/home/mylogin/creditapp/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=“/home/mylogin/creditapp/tuxconfig”
 ULOGPFX=“/home/mylogin/creditapp/ULOG”
 TYPE=“type1”
#
#
#
*GROUPS
DEFAULT: LMID=SITE1
BANKB1 GRPNO=1 TMSNAME=TMS_SQL TMSCOUNT=2
OPENINFO=“TUXEDO/SQL:/home/mylogin/creditapp/crdtdl1:bankdb:readwrite”
BANKB2 GRPNO=2
BANKB3 GRPNO=3
BANKB4 GRPNO=4
DMADMGRP LMID=mach1 GRPNO=5
#
#

2-10 Using the BEA Tuxedo Domains Component

Option 2: Redefine the Applications as Separate BEA Tuxedo Domains
#
*SERVERS
#
DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=Y CLOPT=“-A”
GWADM SRVGRP=BANKB2 SRVID=30
 REPLYQ = N RESTART = Y GRACE = 0
GWTDOMAIN SRVGRP=BANKB2 SRVID=31
 REPLYQ = N RESTART = Y GRACE = 0
GWADM SRVGRP=BANKB3 SRVID=24
 REPLYQ = N RESTART = Y GRACE = 0
GWTDOMAIN SRVGRP=BANKB3 SRVID=25
 REPLYQ = N RESTART = Y GRACE = 0
GWADM SRVGRP=BANKB4 SRVID=20
 REPLYQ = N RESTART = Y GRACE = 0
GWTDOMAIN SRVGRP=BANKB4 SRVID=21
 REPLYQ = N RESTART = Y GRACE = 0
DMADM SRVGRP=“DMADMGRP” SRVID=50
 REPLYQ = N RESTART = Y GRACE = 0
TLRA SRVGRP=BANKB1 SRVID=2 CLOPT=“-A -- -T 100”
BTADD SRVGRP=BANKB1 SRVID=3
ACCTA SRVGRP=BANKB1 SRVID=4
CRDT SRVGRP=BANKB1 SRVID=5
CRDTA SRVGRP=BANKB1 SRVID=6
*SERVICES
DEFAULT: LOAD=50
INQUIRYA PRIO=50
WITHDRAWALA PRIO=50
OPEN_ACCT2 PRIO=40
OPENC PRIO=40
OPENCA PRIO=40
CLOSECA PRIO=40
BR_ADD PRIO=20
TLR_ADD PRIO=20
Using the BEA Tuxedo Domains Component 2-11

2 Planning and Configuring Domains
Adding DMCONFIG Files

You also need to create four DMCONFIG files, as shown in the following sample.

Listing 2-3 Sample DMCONFIG File

#
#
*DM_LOCAL_DOMAINS
#
#
QDOM1 GWGRP=BANKB2
 TYPE=TDOMAIN
 DOMAINID=QDOM1
 BLOCKTIME=10
 MAXDATALEN=56
 MAXRDOM=89
 DMTLOGDEV=“/home/mylogin/creditapp/DMTLOG”
 AUDITLOG=“/home/mylogin/creditapp/AUDITLOG”

QDOM2 GWGRP=BANKB3
 TYPE=TDOMAIN
 DOMAINID=QDOM2
 BLOCKTIME=10
 MAXDATALEN=56
 MAXRDOM=89
 DMTLOGDEV=“/home/mylogin/creditapp/DMTLOG”
 AUDITLOG=“/home/mylogin/creditapp/AUDITLOG”
 DMTLOGNAME=“DMTLOG_TDOM2”
QDOM3 GWGRP=BANKB4
 TYPE=TDOMAIN
 DOMAINID=QDOM3
 BLOCKTIME=10
 MAXDATALEN=56
 MAXRDOM=89
 DMTLOGDEV=“/home/mylogin/creditapp/DMTLOG”
 AUDITLOG=“/home/mylogin/creditapp/AUDITLOG”
 DMTLOGNAME=“DMTLOG_TDOM3”
#
*DM_REMOTE_DOMAINS
#
#
TDOM1 TYPE=TDOMAIN
 DOMAINID=TDOM1
2-12 Using the BEA Tuxedo Domains Component

Sample Domains Application: creditapp

 for
rlier
TDOM2 TYPE=TDOMAIN
 DOMAINID=TDOM2

TDOM3 TYPE=TDOMAIN
 DOMAINID=TDOM3
#
#
*DM_TDOMAIN
#
QDOM1 NWADDR=“0x0002DEEF93026927”
 NWDEVICE=“/dev/tcp”
QDOM2 NWADDR=“0x0002BEEF93026927”
 NWDEVICE=“/dev/tcp”
QDOM3 NWADDR=“0x0002CEEF93026927”
 NWDEVICE=“/dev/tcp”
TDOM1 NWADDR=“0x0002DEEF93026947”
 NWDEVICE=“/dev/null”
TDOM2 NWADDR=“0x0002BEEF9302691D”
 NWDEVICE=“/dev/tcp”
TDOM3 NWADDR=“0x0002CEEF9302690E”
 NWDEVICE=“/dev/tcp”
#
#
#
*DM_LOCAL_SERVICES
#
#
WITHDRAWALA
INQUIRYA
OPENCA
CLOSECA

Sample Domains Application: creditapp

A sample application, creditapp , is distributed with the BEA Tuxedo system.
creditapp is a runnable version of the hypothetical application that was the basis
separating bankapp and the credit card application into domains, as discussed ea
in this topic.

The application is located in TUXDIR/apps/creditapp and includes the following
files.
Using the BEA Tuxedo Domains Component 2-13

2 Planning and Configuring Domains
Listing 2-4 creditapp Files

ACCT.ec ACCTA.ec AUDITC.c BAL.ec BALANCE.m
BALANCEA.m BALC.ec BTADD.ec CBALANCE.m CCLOSE.m
CDEPOSIT.m CLOSE.m COPEN.m CRDT.ec CRDTA.ec
CRMENU.m CRMENU2.m CTRANSFER.m CWITHDRAW.m DEPOSIT.m
DEPOSITA.m FILES HCBALANCE.m HCCLOSE.m HCLOSE.m
HCOPEN.m HCWITHDRAW.m HELP.m HOPEN.m OPEN.m
README RUNME RUNME.sh SETUP.sh TLR.ec
TLR1.ec TLR2.ec TLR3.ec TLRA.ec TRANSFER.m
WITHDRAW.m WITHDRAWA.m XFER.c appinit.c aud.h
aud.v audit.c auditcon.c bank.flds bank.flds.h
bank.h cleanup.sh crbank.sh crbankdb.sh crdt_app.mk
crdt_app2.mk crdt_app3.mk crdt_app4.mk crdt_flds.h crdtvar
crdtvar2 credit.flds crtlog.sh crtlog2 crtlog2.sh
domcon1 domcon2 domcon3 domcon4 driver.sh
envfile.sh gendata.c gentran.c hostmk listnr
populate.sh run.sh setenv ubbdom1 ubbdom2
ubbdom3 ubbdom4 util.c

The creditapp README File

The following README file is from the creditapp directory. The README file
documents a script that installs and runs creditapp . It has been edited to include a
few things that were not included in the original script.

Listing 2-5 README File for creditapp

SIMPLE BUILD PROCEDURE

The creditapp application is an enhancement of the
bankapp and hostapp applications.

The creditapp application is designed to be a four domain application,
so the software must be built on four machines. The RUNME.sh
script will lead you through the necessary steps.

Step 1: Copy the Software for creditapp.

Make a new directory under your $HOME directory and copy all of
the source files from <TUXDIR>/apps/creditapp into that directory.
2-14 Using the BEA Tuxedo Domains Component

Sample Domains Application: creditapp
TUXDIR is the root directory under which your BEA TUXEDO System
software is installed. We call the new directory
$HOME /creditapp. The rest of the steps in this procedure are
done in the directory $HOME/creditapp.

Step 2: On each of the remaining three machines:

Make a directory creditapp in a directory that can be used for the application.

We call this directory $HOME/creditapp.

Make a note of the full directory path for $HOME/creditapp and TUXDIR
for each machine. These will be needed by the RUNME.sh script.

Step 3: On the “master site” execute the “RUNME.sh” script.

The shell script “RUNME.sh” is an interactive program designed to
lead you through initialization, booting, shutdown and cleanup
of the four domain creditapp application. The shell is interactive
and requires no command line arguments. All you need in the directory
is the source from the TUXDIR/apps/creditapp directory that you
copied in Step 1.

You will be prompted to enter values for RSH and RCP
environment variables, or accept the defaults.

IT IS VERY IMPORTANT THAT VALUES FOR RSH AND RCP BE ENTERED AS THEY ARE
USED TO REMOTE COPY AND EXECUTE THE NECESSARY SCRIPTS.

The following environment variables are important. The script picks up
the values for TUXDIR and APPDIR from your environment and
prompts you (in OPTION 4) for BLKSIZE:

TUXDIR Root directory of the BEA TUXEDO System where you have
 installed the software.

APPDIR Directory in which the creditapp application resides.
 crdtvar.dm1 initially is set to allow this to default
 to the current working directory, which agrees with
 our intention to use $HOME/creditapp. This is the
 directory into which you copied the creditapp files in
 Step 1.

BLKSIZE Logical blocksize for the database in bytes.
 Must be an integral multiple of the physical
 page size of the computer (for example, 512 bytes or 4096 bytes).

When you invoke RUNME.sh you are shown a menu with 10 options (11 counting “quit”).
Here is the list of choices:
Using the BEA Tuxedo Domains Component 2-15

2 Planning and Configuring Domains
 1) Initialize configuration files and makefiles.
 2) Copy files to remote sites.
 3) Build crdtapp clients and servers.
 4) Create databases.
 5) Generate binary tuxconfig and bdmconfig files.
 6) Create Transaction Log file.
 7) Boot the application.
 8) Populate the database.
 9) Shutdown the application.
 10) Cleanup IPC Resources, database files and log files.
 q) Quit.

To go through the complete process of building and running the sample
application, start with choice No. 1. When the script completes a step,
the menu is displayed for your next choice.

OPTION 1. Initialize configuration files and makefiles.
 This option sets up makefiles, UBBCONFIG and DMCONFIG files that are
 necessary for the application.

 All questions must be answered.

 ENTER the system name: enter uname for machines you are using
 beginning with the current machine you are on.

 ENTER TUXDIR for each machine.

 ENTER APPDIR for each machine.

 Continue to answer all queries.

 An example of 4 hexadecimal digits may be (beef, cfff, 6774, aeef).
NOTE: EACH MACHINE MUST HAVE A UNIQUE HEX SEQUENCE.

OPTION 2. Copies the files to the other domains in the configuration.

OPTION 3. Builds clients and servers on all machines.

 NOTE: CAREFULLY CHECK THAT THE BUILDS ARE COMPLETED SUCCESSFULLY ON
 EACH SITE. IF NECESSARY YOU MAY RUN THE BUILD YOURSELF.

 ON THE SPECIFIC SITE ENTER
 nohup make -f CRDT{$MACH}.mk2
2-16 Using the BEA Tuxedo Domains Component

Sample Domains Application: creditapp
 where ${MACH} is the uname for the machine you are building on.
 For example,

 nohup make -f CRDTtux1.mk2

OPTION 4. Builds the databases on each site.

 NOTE: ON EACH SITE MAKE SURE THE BLKSIZE VALUE IN files

 crdt${MACH}.dm1 for the primary site

 or crdt${MACH}.dm2 for the remote sites

 where ${MACH} is the uname for the machine you are building on

 ARE CORRECT FOR THAT SPECIFIC MACHINE

OPTION 5. Generates the tuxconfig and bdmconfig files.

All other options are similar to bankapp.

After OPTION 8 : Populate the database

 Enter q to Quit the menu.

RUNNING CREDITAPP.

 On each machine a script run.sh exists.

 Execute run.sh.

 run
At the response :

 Is this machine the Credit Card Authorization Center(y/n)?

 If machine is the primary machine answer y .
 If machine is any other answer n.

On the primary machine a different menu will be seen than the other 3 machines.

All Credit accounts exist on primary machine and all machines can access any
account.

 ACCOUNTS 10000000 - 120000000
Using the BEA Tuxedo Domains Component 2-17

2 Planning and Configuring Domains

urity
d to
rolling
Machines 2,3,4 are the enhanced bankapp application.

 ACCOUNTS 10000 - 39999 exist on machine 2
 ACCOUNTS 40000 - 79999 exist on machine 3
 ACCOUNTS 80000 - 109999 exist on machine 4

All processing is done using the /DOMAIN software.

A tail -f of the ULOG###### will show the actual processing of the requests.

On the machine that will process the request enter :

 tail -f ULOG###### where ###### is today’s date.

Configuring a Domains Environment

To configure a Domains environment, an administrator needs to specify all the
information a BEA Tuxedo domain needs to know about other domains. This
information includes services imported from other domains, addressing and sec
parameters for contacting remote domains, access control lists, services exporte
these domains, whether data-dependent routing is used, and parameters for cont
access to exported services. This information is defined in the UBBCONFIG
configuration file and in the DMCONFIG configuration file.
2-18 Using the BEA Tuxedo Domains Component

Configuring a Domains Environment

ns:
Configuring a Sample Domains Application (simpapp)

The Domains example illustrated in the following figure consists of two applicatio
lapp , a local application, and rapp , a remote application. Both are based on the
simpapp example provided with the BEA Tuxedo system. lapp is configured to allow
its clients to access a service called TOUPPER, which is advertised in rapp .

Figure 2-4 Local and Remote Applications in simpapp
Using the BEA Tuxedo Domains Component 2-19

2 Planning and Configuring Domains
Configuration Tasks

The following tasks are required to configure the simpapp domain consisting of two
applications: lapp (the local application) and rapp (the remote application).
2-20 Using the BEA Tuxedo Domains Component

How to Set Environment Variables for lapp
How to Set Environment Variables for lapp

You need to set the following environment variables for the application to be
configured successfully:

� TUXDIR—The BEA Tuxedo system root directory (for example, /opt/tuxedo)

� TUXCONFIG—The application configuration file (for example, lapp.tux)

� BDMCONFIG—The domain gateway configuration file (for example, lapp.bdm)

� PATH—Must include TUXDIR/bin

� LD_LIBRARY_PATH—Must include TUXDIR/lib (this path name varies,

depending on your operating system)

Example

$ TUXDIR=/opt/tuxedo
$ TUXCONFIG=/home/lapp/lapp.tux
$ BDMCONFIG=/home/lapp/lapp.dom
$ PATH=$TUXDIR/bin:$PATH
$ LD_LIBRARY_PATH=$TUXDIR/lib:$LD_LIBRARY_PATH
$ export TUXDIR TUXCONFIG BDMCONFIG PATH LD_LIBRARY_PATH
Using the BEA Tuxedo Domains Component 2-21

2 Planning and Configuring Domains

he

f a

te

t is
ld
How to Define the Domains Environment
for lapp (in the ubbconfig File)

For the sample local application configuration file, lapp.ubb , only the required
parameters are defined. Default settings are used for the other parameters.

Two server groups are defined:

� The first group contains the Domains administrative server (DMADM).

� The second group contains the gateway administrative server (GWADM) and the
domain gateway (GWTDOMAIN).

Note: For a gateway type other than GWTDOMAIN, an executable other than
GWTDOMAIN must be used. Refer to the BEA eLink for Mainframe
documentation and Using the BEA Tuxedo TOP END Domain Gateway for
additional information.

Server Definitions

� DMADM—The Domains administrative server enables run-time modification of t
configuration information, required by domain gateway groups, that resides in
the binary Domains configuration file. DMADM supports a list of registered
gateway groups. There must be only one instance of DMADM per Domains
application.

� GWADM—The gateway administrative server enables run-time administration o
particular domain gateway group. This server gets Domains configuration
information from the DMADM server. It also provides administrative functionality
and transaction logging for the gateway group.

� GWTDOMAIN—The Domains gateway server enables access to and from remo
Domains, allowing interoperability of two or more BEA Tuxedo domains.
Information about the local and remote services it needs to export and impor
included in the Domains configuration file. The Domains gateway server shou
always be configured with REPLYQ=N.
2-22 Using the BEA Tuxedo Domains Component

How to Define the Domains Environment for lapp (in the ubbconfig File)
Example of an Application Configuration File for lapp

Listing 2-6 Example of an Application Configuration File (lapp.ubb)

lapp.ubb
#
*RESOURCES
IPCKEY 111111

MASTER LAPP
MODEL SHM

*MACHINES
giselle

 LMID=LAPP
 TUXDIR=”/opt/tuxedo”
 APPDIR=”/home/lapp”
 TUXCONFIG=”/home/lapp/lapp.tux”

*GROUPS

LDMGRP GRPNO=1 LMID=LAPP
LGWGRP GRPNO=2 LMID=LAPP

*SERVERS

DMADM SRVGRP=LDMGRP SRVID=1
GWADM SRVGRP=LGWGRP SRVID=1
GWTDOMAIN SRVGRP=LGWGRP SRVID=2 REPLYQ=N

*SERVICES
Using the BEA Tuxedo Domains Component 2-23

2 Planning and Configuring Domains

the

oss

and

rk

 being
How to Define Domains Parameters for lapp
(in the DMCONFIG File)

For the sample local Domain gateway configuration file, lapp.dom , only the required
parameters are defined. Default settings are used for optional parameters.

The DM_LOCAL_DOMAIN section identifies the local domains and their associated
gateway groups. This section has one entry, LAPP, and specifies the following
parameters required for the domain gateway processes in that group:

� GWGRP specifies the name of the gateway server group as specified in the
application.

� TYPE of TDOMAIN indicates that the local domain will be communicating with
another BEA Tuxedo domain. This parameter indicates the protocol used by
gateways. Other options include SNA, OSI TP, TOP END Domain gateway,
TCP for CICS, and TCP for IMS.

� DOMAINID identifies the name of the domain gateway and must be unique acr
all domains.

The DM_REMOTE_DOMAINS section identifies the known set of remote domains and
their characteristics. This section has one entry (RAPP). TYPE is used to classify the type
of domains. DOMAINSID is a unique domain identifier.

The DM_TDOMAIN section defines the addressing information required by the BEA
Tuxedo Domains component. Following are entries in the section for each local
remote domain specified in this configuration file:

� NWADDR specifies either the network address at which connections will be
accepted from other BEA Tuxedo domains (local domain entry), or the netwo
address at which connections to other BEA Tuxedo domains will be made
(remote domain entry).

The DM_LOCAL_SERVICES section provides information about the services that are
exported. This section of our sample file has no entries because no services are
exported.
2-24 Using the BEA Tuxedo Domains Component

How to Define Domains Parameters for lapp (in the DMCONFIG File)

e
 the
The DM_REMOTE_SERVICES section provides information about the services that ar
imported. The TOUPPER service is imported so that it can be accessed by clients in
local domain.

Example of a Domain Gateway Configuration File for

lapp

Listing 2-7 Example of a Domain Gateway Configuration File (lapp.dom)

#
lapp.dom
#
*DM_LOCAL_DOMAINS

LAPP GWGRP=LGWGRP
 TYPE=TDOMAIN
 DOMAINID=”111111"

*DM_REMOTE_DOMAINS

RAPP TYPE=TDOMAIN
 DOMAINID=”222222"

*DM_TDOMAIN

LAPP NWADDR=”//mach1:5000"

RAPP NWADDR=”//mach2:5000"

*DM_LOCAL_SERVICES

*DM_REMOTE_SERVICES

TOUPPER
Using the BEA Tuxedo Domains Component 2-25

2 Planning and Configuring Domains

ata

ins.

ng

ation
r.
nt
.

How to Compile Application and Domains

Gateway Configuration Files for lapp

The local application configuration file (lapp.ubb) contains the information
necessary to boot the local application. You must compile this file into a binary d
file (lapp.tux) by running tmloadcf(1) .

The local domain gateway configuration file (lapp.dom) contains the information
used by the domain gateway for one domain for communication with other doma
You must compile this file into a binary data file (lapp.bdm) by running
dmloadcf(1) .

To compile both configuration files, complete the procedure shown in the followi
sample session.

$ cd /home/lapp
$ TUXCONFIG=/home/lapp/lapp.tux; export TUXCONFIG
$ tmloadcf -y lapp.ubb
$ BDMCONFIG=/home/lapp/lapp.dom; export BDMCONFIG
$ dmloadcf -y lapp.dom

Once you create both the local and remote domains, you can then boot the applic
using tmboot(1) . The order in which the two domains are booted does not matte
Monitor the applications with dmadmin(1) . Once both applications are booted, a clie
in the local application can call the TOUPPER service residing in the remote application

$ tmboot -y
2-26 Using the BEA Tuxedo Domains Component

How to Set Environment Variables for rapp

red
How to Set Environment Variables for rapp

You must set the following environment variables for an application to be configu
successfully:

� TUXDIR—The BEA Tuxedo system root directory (for example, /opt/tuxedo)

� TUXCONFIG—The full path name of the application configuration file (for
example, rapp.tux)

� BDMCONFIG—The full path name of the domain gateway configuration file (for
example, rapp.bdm)

� PATH—Must include TUXDIR/bin

� LD_LIBRARY_PATH—Must include TUXDIR/lib (this path name varies,
depending on your operating system)

Example

$ TUXDIR=/opt/tuxedo
$ TUXCONFIG=/home/rapp/rapp.tux
$ BDMCONFIG=/home/rapp/rapp.dom
$ PATH=$TUXDIR/bin:$PATH
$ LD_LIBRARY_PATH=$TUXDIR/lib:$LD_LIBRARY_PATH
$ export TUXDIR PATH LD_LIBRARY_PATH TUXCONFIG BDMCONFIG
Using the BEA Tuxedo Domains Component 2-27

2 Planning and Configuring Domains
How to Define the Domains Environment
for rapp (in the UBBCONFIG File)

For the sample remote application configuration file, rapp.ubb , only the required
parameters are defined. Default settings are used for optional parameters.

The following three server groups are defined:

� The first server group (SRVGP=RDMGRP) contains the Domains administrative
server (DMADM).

� The second server group (SRVGP=RGWGRP) contains the gateway administrative
server, GWADM, and the domain gateway, GWTDOMAIN.

� The third server group (SRVGP=APPGRP) contains the application server
simpserv .

The following four servers are defined:

� DMADM—Domains administrative server

� GWADM—Gateway administrative server

� GWTDOMAIN—Domains gateway server

� simpserv —Application server for simpapp that advertises the TOUPPER service,
which converts strings from lowercase to uppercase characters
2-28 Using the BEA Tuxedo Domains Component

How to Define the Domains Environment for rapp (in the UBBCONFIG File)
Example of an Application Configuration File for rapp

Listing 2-8 Example of an Application Configuration File (rapp.ubb)

rapp.ubb
#
*RESOURCES
IPCKEY 222222

MASTER RAPP

MODEL SHM

*MACHINES

juliet

 LMID=RAPP
 TUXDIR=”/opt/tuxedo”
 APPDIR=”/home/rapp”
 TUXCONFIG=”/home/rapp/rapp.tux”

*GROUPS

RDMGRP GRPNO=1 LMID=RAPP
RGWGRP GRPNO=2 LMID=RAPP
APPGRP GRPNO=3 LMID=RAPP

*SERVERS

DMADM SRVGRP=RDMGRP SRVID=1
GWADM SRVGRP=RGWGRP SRVID=1
GWTDOMAIN SRVGRP=RGWGRP SRVID=2 REPLYQ=N
simpserv SRVGRP=APPGRP SRVID=1

*SERVICES
TOUPPER
Using the BEA Tuxedo Domains Component 2-29

2 Planning and Configuring Domains

rs.

he

d

 in
How to Define Domains Parameters for rapp
(in the DMCONFIG File)

For the sample remote Domain gateway configuration file, rapp.dom , only the
required parameters are defined. Default settings are used for optional paramete

This configuration file is similar to the local Domains gateway configuration file. T
difference is that the two files list different services to be exported and imported.

The DM_LOCAL_SERVICES section provides information about the services exporte
by each local domain. In this example, the TOUPPER service is exported and included
in the DM_LOCAL_SERVICES section. No service is imported so there are no entries
the DM_REMOTE_SERVICES section of our sample file.

Example of a Domain Gateway Configuration File for

rapp

Listing 2-9 Example of a Domain Gateway Configuration File (rapp.dom)

rapp.dom
#

*DM_LOCAL_DOMAINS

RAPP GWGRP=RGWGRP
 TYPE=TDOMAIN
 DOMAINID=”222222"

*DM_REMOTE_DOMAINS

LAPP TYPE=TDOMAIN
 DOMAINID=”111111"

*DM_TDOMAIN

RAPP NWADDR=”//mach2:5000"

LAPP NWADDR=”//mach1:5000"
2-30 Using the BEA Tuxedo Domains Component

How to Compile Application and Domain Gateway Configuration Files for rapp

ou

ith

ation
r.
nt
.

*DM_LOCAL_SERVICES
TOUPPER
*DM_REMOTE_SERVICES

How to Compile Application and Domain

Gateway Configuration Files for rapp

The remote application configuration file (rapp.ubb) contains the information used
by the domain gateway for one domain, for communication with other domains. Y
must compile this file into a binary data file (rapp.tux).

The remote domain gateway configuration file (rapp.dom) contains the information
used by domain gateways to initialize the context required for communications w
other domains. This configuration file is similar to the local domain gateway
configuration file. The difference is that the two files list different services to be
exported and imported. You must compile this file into a binary data file (rapp.bdm).

$ cd /home/rapp
$ TUXCONFIG=/home/rapp/rapp.tux; export TUXCONFIG
$ tmloadcf -y rapp.ubb
$ BDMCONFIG=/home/rapp/rapp.dom; export BDMCONFIG
$ dmloadcf -y rapp.dom

Once you create both the local and remote domains, you can then boot the applic
using tmboot(1) . The order in which the two domains are booted does not matte
Monitor the applications with dmadmin(1) . Once both applications are booted, a clie
in the local application can call the TOUPPER service residing in the remote application

$ tmboot -y

See Also

� “What Is the Domains Configuration File” on page 1-19

� “How to Compress Data Between Domains” on page 2-32

� “How to Route Service Requests to Remote Domains” on page 2-32
Using the BEA Tuxedo Domains Component 2-31

2 Planning and Configuring Domains

figure

to
� “Converting the Domains Configuration File” on page 1-21

� DMCONFIG(5) in BEA Tuxedo File Formats and Data Descriptions Reference

� UBBCONFIG(5) in BEA Tuxedo File Formats and Data Descriptions Reference

How to Compress Data Between Domains

 Data sent between domains can be compressed for faster performance. To con
compression, set the CMPLIMIT parameter in DMCONFIG.

See Also

� DMCONFIG(5) in BEA Tuxedo File Formats and Data Descriptions Reference

� “Compressing Data Over a Network” on page 4-2 in Administering a BEA
Tuxedo Application at Run Time

How to Route Service Requests to Remote

Domains

Data-dependent routing information used by gateways to send service requests
specific remote domains is provided in the DM_ROUTING section of the DMCONFIG file.
The FML32, VIEW32, FML, VIEW, X_C_TYPE, and X_COMMON typed buffers are
supported.

To create a routing table for a domain, specify the following:

� Buffer type for which the routing entry is valid

� Name of the routing entry and field

� Ranges and associated remote domain names of the routing field.
2-32 Using the BEA Tuxedo Domains Component

How to Route Service Requests to Remote Domains
The following table describes these fields.

Routing
Table Field

Description

Buffer type A list of types and subtypes of data buffers for which this routing entry is valid.
The types may be included: FML32, VIEW32, FML, VIEW, X_C_TYPE, and
X_COMMON. No subtype can be specified for type FML; subtypes are required for
the other types. The * (or wildcard) value is not allowed. Duplicate
type /subtype pairs cannot be specified for the same routing criteria name;
one criteria name can be specified in multiple routing entries as long as the
type /subtype pairs are unique. If multiple buffer types are specified for a
single routing entry, the data types of the routing field for all buffer types must
be the same.

Valid values for type are:
[: subtype1 [, subtype2 . . .]]
[; type2 [: subtype3 [, subtype4 . . .]]] . . .

The maximum total length of 32 type /subtype combinations is 256 characters.

Valid values for subtype may not include semicolons, colons, commas, or
asterisks.

Example: FML

Domain
routing
criteria

The name (identifier) of the routing entry.

A valid value is any string of 1-15 characters, inclusive.

Example: ROUTTAB1

Routing field
name

The name of the routing field. It is assumed that the value of this field is a name
identified in an FML field table (for FML buffers) or an FML VIEW table (for VIEW,
X_C_TYPE, or X_COMMON buffers).

A valid value is an identifier string that is 1-30 characters, inclusive.

Example: FIELD1
Using the BEA Tuxedo Domains Component 2-33

2 Planning and Configuring Domains
Ranges A value comprised of a set of numbers (that must have numeric values) and an
alphanumeric string (that must have string values) associated with remote domain
names (RDOM) for the routing field. The routing field can be of any data type supported
in FML.

String range values for string , carray , and character field types must meet the
following criteria:

� Placed inside a pair of single quotes and not preceded by a sign.

� Short and long integer values are a string of digits, optionally preceded by a plus
or minus sign.

� Floating point numbers are of the form accepted by the C compiler or atof() as
follows: an optional sign, then a string of digits optionally containing a decimal
point, then an optional e or E followed by an optional sign or space, followed by
an integer.

When a field value matches a range, the associated RDOM value specifies the remote
domains to which the request should be routed. An RDOM value of * indicates that the
request can go to any remote domain known by the gateway group.

Valid values for this field are a comma-separated ordered list of range /RDOM pairs
where a range is one of two types: (a) a single value (signed numeric value or
character string in single quotes); or (b) a range of the form lower -upper (where
lower and upper are both signed numeric values or character strings in single
quotes). Note that lower must be less than or equal to upper .

Within a range /RDOM pair, the range is separated from the RDOM by a colon (:). MIN
can be used to indicate the minimum value for the data type of the associated FIELD:

� For strings and carrays , it is the null string

� For character fields, it is 0

� For numeric values, it is the minimum numeric value that can be stored in the field.

MAX can be used to indicate the maximum value for the data type of the associated
FIELD:

� For strings and carrays , it is an unlimited string of octal-255 characters

� For a character field, it is a single octal-255 character

� For numeric values, it is the maximum numeric value that can be stored in the field.

Thus, MIN - -5 is all numbers less than or equal to -5; - MAX is the set of all numbers
greater than or equal to 6. The metacharacter * (wildcard) in the range position
indicates any values not covered by other ranges previously seen in the entry; one
wildcard range is allowed per entry, which should be listed last in the field (ranges
following it are ignored).

Example: 1-100:REMDOM3

Routing
Table Field

Description
2-34 Using the BEA Tuxedo Domains Component

Setting Up Security in Domains

sted.

g

or

ose

Setting Up Security in Domains

The BEA Tuxedo system provides the following standard security mechanisms:

� Access Control Lists—restrict availability of services to authorized users whose
names are included in lists that are automatically checked services are reque

� Authentication—verifies the identity of clients, servers, and administrative
programs. The default security mechanism provided with the BEA Tuxedo
system is an application authentication scheme that uses one password per BEA
Tuxedo application. Clients are required to present this password before bein
allowed to join an application. Servers are authenticated to be running as the
user identified as the administrator.

� Encryption—security mechanisms to convert data to coded format that is
unintelligible to users.

� Security Plug-in Interface—allows installation of third-party security systems
such as custom authentication and authorization. The plug-in interface is
available to applications running BEA Tuxedo Release 7.1 or later software. F
information on setting up security in domains using the security plug-in
interface, see “Establishing a Link Between Domains” on page 2-24 in Using
BEA Tuxedo Security.

The BEA Tuxedo security mechanisms provided for individual applications and th
provided for Domains configurations are relatively independent but compatible:

� The BEA Tuxedo system provides the following security mechanisms for
Domains configurations: authentication of remote domains; access control on
exported local services for remote domains; and encryption mechanisms to
protect interdomain communication.

� If BEA Tuxedo system security is set to ACL or MANDATORY_ACL, then user IDs
flow through the system with requests, and ACL checking takes place. If system
security is set to USER_AUTH, then user IDs flow through the system, but no ACL
checking takes place.

� Even if you assign a security level of NONE to your BEA Tuxedo application,
you can still set up Domains security to enforce security restrictions between
domains. Note, however, that in order to use an application password in a
Domains configuration, you must already have a value of APP_PW set for the
security level in each participating application.
Using the BEA Tuxedo Domains Component 2-35

2 Planning and Configuring Domains

xedo
ins,

y

f

a
of

 is

.
o
Domains Security Mechanisms

Because distinct domains may exist under different ownership, the native BEA Tu
application password scheme may not, of itself, provide sufficient security. Doma
therefore, provides additional security mechanisms:

� Access Control Lists—Restrict availability of services in a local domain to a list
of selected remote domains. You configure this security level in the
DM_ACCESS_CONTROL section of DMCONFIG.

� Domains Authentication—Techniques are required to ensure the proper identit
of each remote domain. Domains provides three levels of password security:
NONE specifies no authentication; APP_DW is authentication using the application
password, which must match on the two domains; and DM_PW, which is
authentication using specific passwords per local/remote domain pair. Each o
these is selected by setting the SECURITY parameter in the DM_LOCAL_DOMAINS
section for the local domain access point involved to the required level (APP_DW,
DM_PW, NONE).

� Link-Level Encryption—You can use encryption across domains to ensure dat
privacy. In this way, a network-based eavesdropper cannot learn the content
BEA Tuxedo messages or application-generated messages flowing from one
domain gateway to another. You configure this security mechanism by setting
the MINENCRYPTBITS and MAXENCRYPTBITS parameters in the DMCONFIG file.

� Local Domains Access—Restricts local services to remote domains. If a service
is not exported to remote domains, it is simply unavailable to them. A service
exported by placing an entry in the DM_LOCAL_SERVICES section of the
DMCONFIG file for the service.

� User Identity Mapping to Mainframes—Provides a mechanism whereby user
identities within a domain can be mapped to and from external user identities
This mechanism is currently used by BEA eLink for Mainframe-SNA to map t
and from RACF (remote access control facility) user names on IBM LU6.2
mainframes. To use this mechanism, refer to the following dmadmin
configuration commands:
2-36 Using the BEA Tuxedo Domains Component

Setting Up Security in Domains

 or

 and
z addumap—Add local user mappings to remote user mappings for a
local/remote domain pair. Mappings are defined to be inbound, outbound,
both.

z addusr —Add remote user names and passwords to the remote user and
password tables of a remote domain.

z delumap —Delete local to remote user mappings for a local/remote domain
pair.

z delusr —Delete remote user names and passwords from the remote user
password tables of a remote domain.

z modusr —Change remote passwords in the password tables of a remote
domain.

See Also

� “How to Create a Domains Access Control List (ACL)” on page 2-38

� “How to Set Up Domains Authentication” on page 2-39

� “Examples of Coding Security Between Domains” on page 2-41

� dmadmin(1) in BEA Tuxedo Command Reference
Using the BEA Tuxedo Domains Component 2-37

2 Planning and Configuring Domains

st of

ithin
used

It
or

ess

d
How to Create a Domains Access Control List

(ACL)

To create a domain ACL, you must specify the name of the domain ACL and a li
the remote domains that are part of the list (the Domain Import VIEW List) in the
DM_ACCESS_CONTROL section of the DMCONFIG file. The following table describes
these two fields.

Using Standard BEA Tuxedo Access Control Lists with

Imported Remote Services

A remote service imported from a remote domain is viewed simply as a service w
a BEA Tuxedo domain. The standard BEA Tuxedo ACL mechanism then, can be
to restrict access to this service by particular groups of users.

For information on using BEA Tuxedo access control lists, refer to the following
entries in the BEA Tuxedo Command Reference: tpacladd(1) , tpaclmod(1) ,
tpacldel(1) , tpusradd(1) , tpusrmod(1) , tpusrdel(1) , tpgrpadd(1) ,
tpgrpmod(1) , and tpgrpdel(1) .

Domain ACL Field Description

Domain ACL name The name of this ACL.

A valid name consists of a string of 1-30 characters, inclusive.
must be printable and it may not include a colon, a pound sign,
a new line character.

Example: ACLGRP1

Remote Domain list The list of remote domains that are granted access in this acc
control list.

A valid value in this field is a set of one or more comma-separate
remote domain names.

Examples: REMDOM1,REMDOM2,REMDOM3
2-38 Using the BEA Tuxedo Domains Component

How to Set Up Domains Authentication

 by

ing
 a

 the

ins.

How to Set Up Domains Authentication

Domain gateways can be made to authenticate incoming connections requested
remote domains and outgoing connections requested by local domains. The
authentication mechanism is optional and compatible with the BEA Tuxedo
mechanism specified in the TUXCONFIG file.

Application administrators can define when security should be enforced for incom
connections from remote domains. You can specify the level of security used by
particular local domain by setting the SECURITY parameter in the DM_LOCAL_DOMAINS
section of the DMCONFIG file. There are three levels of password security:

� Application Password (using the APP_PW option)— Incoming connections from
remote domains are authenticated using the application password defined in
TUXCONFIG file. The BEA Tuxedo application password is administered with
tmloadcf(1) , which prompts for the password when the SECURITY option is
enabled in the TUXCONFIG file. The password is automatically propagated with
the TUXCONFIG file to the other machines in the configuration. You can update
the password dynamically using the tmadmin command.

� No Security (using the NONE option)—Incoming connections from remote
domains are not authenticated.

� Remote Domains Password (using the DM_PW option)—BEA Tuxedo Domains
uses this feature to enforce security between two or more BEA Tuxedo doma
Connections between the local and remote domains are authenticated using
passwords defined in the DM_PASSWORDS section of the BDMCONFIG file. These
passwords are added to the binary configuration file after dmloadcf has been
run, using the passwd subcommand of the dmadmin(1) command. Each entry
contains the password used by a remote domain to access a particular local
domain and the password required by the local domain, in turn, to access the
remote domain.

If the SECURITY parameter is not set in TUXCONFIG (that is, if it defaults to NONE or if
it is set explicitly to NONE), the Domains configuration can still require the Domain
gateways to enforce security at the DM_PW level. If the DM_PW option is selected, then
each remote domain must have a password defined in the DM_PASSWORDS section of
the BDMCONFIG file. In other words, incoming connections from remote domains
without a password are rejected by domain gateways.
Using the BEA Tuxedo Domains Component 2-39

2 Planning and Configuring Domains

al
DM_PASSWORDS Section Table Entries

The DM_PASSWORDS table contains the following entries for each remote domain:

� LDOM—The name of the local domain providing access to the remote domain

� RDOM—The name of the remote domain

� LPWD—The password used by a local domain to authenticate with the remote
domain

� RPWD—The password used by the remote domain to authenticate with the loc
domain

Note: Passwords are stored securely in encrypted format.

See Also

� “Examples of Coding Security Between Domains” on page 2-41

� dmadmin(1) in BEA Tuxedo Command Reference

� DMCONFIG(5) in BEA Tuxedo File Formats and Data Descriptions Reference
2-40 Using the BEA Tuxedo Domains Component

Examples of Coding Security Between Domains

ne
main.
 not

e
Examples of Coding Security Between

Domains

The SECURITY parameter in the DM_LOCAL_DOMAINS section of the DMCONFIG file
specifies the security type of a local domain. If authentication is required, it is do
every time a connection is established between the local domain and a remote do
If the security types of the two domains are incompatible, or if the passwords do
match, the connection fails.

Example 1: Setting Security to APP_PW

If the SECURITY parameter in the UBBCONFIG is set to APP_PW or higher, then
SECURITY in the DMCONFIG can be set to NONE, APP_PW, or DM_PW. Because you can
define multiple views of a domain in one DMCONFIG file (one view per local domain
definition), you can assign a different type of security mechanism to each of thos
views.

Note: If SECURITY is set to APP_PW for a local domain access point in the DMCONFIG,
then SECURITY in the UBBCONFIG must be set to APP_PW or higher.

Listing 2-10 Setting Security to APP_PW for Both Application and Domains

DOM1: SECURITY in UBBCONFIG set to APP_PW
 SECURITY in DMCONFIG set to APP_PW

DOM2: SECURITY in UBBCONFIG set to APP_PW
 SECURITY in DMCONFIG set to APP_PW

In this example, both DOM1 and DOM2 enforce APP_PW security.

On the initiator side, the pertinent attributes in UBBCONFIG and DMCONFIG are set as
follows.
Using the BEA Tuxedo Domains Component 2-41

2 Planning and Configuring Domains

on

ot

e
UBBCONFIG
 SECURITY=APP_PW

DMCONFIG
 *DM_LOCAL_DOMAINS
DOM1
 DOMAINID=DOM1
 SECURITY=APP_PW

 *DM_REMOTE_DOMAINS
DOM2 DOMAINID=“DOM2”

On the responder side, the pertinent attributes in UBBCONFIG and DMCONFIG are set as
follows.

UBBCONFIG
 SECURITY=APP_PW

DMCONFIG
 *DM_LOCAL_DOMAINS
DOM2
 DOMAINID=DOM2
 SECURITY=APP_PW

 *DM_REMOTE_DOMAINS
DOM1 DOMAINID=“DOM1”

After the TUXCONFIG and BDMCONFIG files have been created, boot the applications
DOM1 and DOM2.

Example 2: Setting Security to NONE

If SECURITY is set to NONE for a local domain, incoming connection attempts are n
authenticated. Even with SECURITY set to NONE, a local domain can still connect to
remote domains that have SECURITY set to DM_PW, but before such a connection can b
established, you must define the passwords on both sides by running dmadmin(1) or
by using DM_MIB(5) .
2-42 Using the BEA Tuxedo Domains Component

Examples of Coding Security Between Domains
Listing 2-11 Setting Security to NONE for Both Application and Domains

DOM1: SECURITY in UBBCONFIG set to NONE
 SECURITY in DMCONFIG set to NONE

DOM2: SECURITY in UBBCONFIG set to NONE
 SECURITY in DMCONFIG set to DM_PW

In this example, DOM1 is not enforcing any security but DOM2 is enforcing DM_PW
security.

On the initiator side, the pertinent attributes in UBBCONFIG and DMCONFIG are set as
follows.

UBBCONFIG
 SECURITY=NONE

DMCONFIG
 *DM_LOCAL_DOMAINS
DOM1
 DOMAINID=DOM1
 SECURITY=NONE

 *DM_REMOTE_DOMAINS
DOM2 DOMAINID=“DOM2”

On the responder side, the pertinent attributes in UBBCONFIG and DMCONFIG are set as
follows.

UBBCONFIG
 SECURITY=NONE

DMCONFIG
 *DM_LOCAL_DOMAINS
DOM2
 DOMAINID=DOM2
 SECURITY=DM_PW

 *DM_REMOTE_DOMAINS
DOM1 DOMAINID=“DOM1”

After the required attributes have been set in the TUXCONFIG and BDMCONFIG files,
boot the applications on DOM1 and DOM2.

On DOM1:
 dmadmin
Using the BEA Tuxedo Domains Component 2-43

2 Planning and Configuring Domains

blished
 passwd DOM1 DOM2
 Enter Local Domain Password:foo1
 Reenter Local Domain Password:foo1
 Enter Remote Domain Password:foo2
 Reenter Remote Domain Password:foo2

On DOM2:
 dmadmin
 passwd DOM2 DOM1
 Enter Local Domain Password:foo2
 Reenter Local Domain Password:foo2
 Enter Remote Domain Password:foo1
 Reenter Remote Domain Password:foo1

Once passwords have been created on both domains, a connection can be esta
and services can be invoked on the remote domain.

Listing 2-12 Setting Application Security to NONE and Domains Security to
DM_PW

On the initiator side, the pertinent attributes in UBBCONFIG and DMCONFIG are set as
follows.

UBBCONFIG
 SECURITY=NONE

DMCONFIG
 *DM_LOCAL_DOMAINS
 DOM1
 DOMAINID=DOM1
 SECURITY=DM_PW

 *DM_REMOTE_DOMAINS
 DOM2 DOMAINID=“DOM2”

On the responder side, the pertinent attributes in UBBCONFIG and DMCONFIG are set as
follows.

UBBCONFIG
 SECURITY=NONE

DMCONFIG
 *DM_LOCAL_DOMAINS
 DOM2
 DOMAINID=DOM2
 SECURITY=DM_PW
2-44 Using the BEA Tuxedo Domains Component

Examples of Coding Security Between Domains

blished
 *DM_REMOTE_DOMAINS
 DOM1 DOMAINID=“DOM1”

After the required attributes have been set in the TUXCONFIG and BDMCONFIG files,
boot the applications on DOM1 and DOM2.

On DOM1:
 dmadmin
 passwd DOM1 DOM2
 Enter Local Domain Password:foo1
 Reenter Local Domain Password:foo1
 Enter Remote Domain Password:foo2
 Reenter Remote Domain Password:foo2

On DOM2:
 dmadmin
 passwd DOM2 DOM1
 Enter Local Domain Password:foo2
 Reenter Local Domain Password:foo2
 Enter Remote Domain Password:foo1
 Reenter Remote Domain Password:foo1

Once passwords have been created on both domains, a connection can be esta
and services can be invoked on the remote domain.
Using the BEA Tuxedo Domains Component 2-45

2 Planning and Configuring Domains

ish
 the
ny

orts

ault,
ecify
Configuring the Connections Between Your

Domains

You can specify the conditions under which a local domain gateway tries to establ
a connection to a remote domain. To specify these conditions, assign a value to
CONNECTION_POLICY parameter in the Domains configuration file. You can select a
of the following connection policies:

� Connect at boot time (ON_STARTUP)

� Connect when a client program requests a remote service (ON_DEMAND)

� Accept incoming connections but do not initiate a connection automatically
(INCOMING_ONLY)

For connection policies of ON_STARTUP and INCOMING_ONLY, Dynamic Status is
invoked. Dynamic Status is a BEA Tuxedo Domains capability that checks and rep
the status of remote services.

How to Request Connections at Boot Time (ON_STARTUP
Policy)

A policy of ON_STARTUP means that a domain gateway attempts to establish a
connection with its remote domains when the gateway server is initialized. By def
this connection policy retries failed connections every 60 seconds, but you can sp
a different value for this interval (using the RETRY_INTERVAL parameter). This policy
invokes Dynamic Status.

CONNECTION_POLICY=ON_STARTUP
2-46 Using the BEA Tuxedo Domains Component

Configuring the Connections Between Your Domains

eway

n
d is
The following diagram shows how connections are attempted and made by a gat
for which the connection policy is ON_STARTUP.

Figure 2-5 Connections Made with an ON_STARTUP Policy

How to Request Connections for Client Demands
(ON_DEMAND Policy)

A connection policy of ON_DEMAND means that a connection is attempted only whe
either a client requests a remote service or an administrative “connect” comman
run. The default setting for CONNECTION_POLICY is ON_DEMAND. Connection retry
processing is not allowed when the connection policy is ON_DEMAND. This policy does
not invoke Dynamic Status.
Using the BEA Tuxedo Domains Component 2-47

2 Planning and Configuring Domains

eway

to
ssing
CONNECTION_POLICY=ON_DEMAND

The following diagram shows how connections are attempted and made by a gat
for which the connection policy is ON_DEMAND.

Figure 2-6 Connections Made with an ON_DEMAND Policy

How to Limit Connections to Incoming Messages Only
(INCOMING_ONLY Policy)

A connection policy of INCOMING_ONLY means that a domain gateway does not try
establish a connection to remote domains upon starting. Connection retry proce
is not allowed when the connection policy is INCOMING_ONLY. This policy invokes
Dynamic Status.

To use this policy, enter the following line in your Domains configuration file.

CONNECTION_POLICY=INCOMING_ONLY

Note: You can also establish a connection manually using the dmadmin connect
command.
2-48 Using the BEA Tuxedo Domains Component

Configuring the Connections Between Your Domains

eway

way

o do
 wait
 by
The following diagram shows how connections are attempted and made by a gat
for which the connection policy is INCOMING_ONLY.

Figure 2-7 Connections Made with an INCOMING_ONLY Policy (accept
incoming connections)

How to Configure the Connection Retry Interval for

ON_STARTUP Only

When the CONNECTION_POLICY parameter is set to ON_STARTUP, then the connection
retry capability is available. The connection retry capability enables a domain gate
to retry, automatically, a failed attempt to connect to a remote domain. As an
administrator, you can control the frequency of automatic connection attempts. T
so, specify the length (in seconds) of the interval during which the gateway should
before trying, again, to establish a connection. You can specify the retry interval
setting the RETRY_INTERVAL parameter in the DM_LOCAL_DOMAINS section of the
Domains configuration file as follows.

RETRY_INTERVAL=number_of_seconds
Using the BEA Tuxedo Domains Component 2-49

2 Planning and Configuring Domains

tions

e
Note: You can specify between 0 and 2147483647 seconds.

If the connection policy is ON_STARTUP and you do not specify a value for the
RETRY_INTERVAL parameter, a default of 60 is used.)

The RETRY_INTERVAL parameter is valid only when the connection policy is
ON_STARTUP. For the other connection policies (ON_DEMAND and INCOMING_ONLY),
retry processing is disabled.

How to Configure the Maximum Retry Number

You indicate the number of times that a domain gateway tries to establish connec
to remote domains before quitting by assigning a value to the MAXRETRY parameter: the
minimum value is 0; the default and maximum value is the value of the MAXLONG
parameter.

� If you set MAXRETRY=0, automatic connection retry processing is turned off. Th
server does not attempt to connect to the remote gateways automatically.

� If you set MAXRETRY=number , the gateway tries to establish a connection the
specified number of times before quitting.

Note: The RETRY_INTERVAL is rounded up to a multiple of SCANUNIT.

� If you set MAXRETRY=MAXLONG, retry processing is repeated indefinitely or until
a connection is established.
2-50 Using the BEA Tuxedo Domains Component

Configuring the Connections Between Your Domains

t

d.
The MAXRETRY parameter is valid only when the connection policy is ON_STARTUP. For
the other connection policies (ON_DEMAND and INCOMING_ONLY), retry processing is
disabled.

See Also

� “Controlling the Connections Between Domains” on page 2-52

� “Configuring Domains-level Failover and Failback” on page 2-55

� DMCONFIG(5) in BEA Tuxedo File Formats and Data Descriptions Reference

Table 2-1 Example of Settings of the MAXRETRY and RETRY_INTERVAL
Parameters

If You Set Then

CONNECTION_POLICY=ON_STARTUP
RETRY_INTERVAL=30
MAXRETRY=3

The gateway makes 3 attempts to establish a
connection, at 30 seconds intervals, before
quitting.

CONNECTION_POLICY=ON_STARTUP
MAXRETRY=0

The gateway attempts to establish a connection a
initialization time but does not retry if the first
attempt fails.

CONNECTION_POLICY=ON_STARTUP
RETRY_INTERVAL=30

The gateway attempts to establish a connection
every 30 seconds until a connection is establishe
Using the BEA Tuxedo Domains Component 2-51

2 Planning and Configuring Domains

blish
e

e

cified
 a

 with

ated

re that
ction
Controlling the Connections Between

Domains

As the administrator, you can control the number of connections you want to esta
between domains. You can also break the connections between local and remot
domains.

How to Establish Connections Between Domains

To establish a connection between a local gateway and a remote domain, run th
dmadmin command with the connect (co) subcommand, as follows.

dmadmin co -d local_domain_name

By default, connections are established between the local domain you have spe
and all remote domains configured for the local gateway. If you want to establish
connection to only one remote domain, specify that domain on the command line
the -R option.

dmadmin co -d local_domain_name -R remote_domain_name

If a connection attempt fails and you have configured the domain to try again, repe
attempts to connect (via automatic connection retry processing) are made.

How to Break Connections Between Domains

To break a connection between a local gateway and a remote domain (making su
the gateway does not try to reestablish the connection through automatic conne
retry processing), run the dmadmin command with the disconnect (dco)
subcommand, as follows.

dmadmin dco -d local_domain_name
2-52 Using the BEA Tuxedo Domains Component

Controlling the Connections Between Domains

. If
n the

f

 and

s to

By default, all remote domains configured for the local gateway are disconnected
you want to end the connection to only one remote domain, specify that domain o
command line with the -R option as follows.

dmadmin dco -d local_domain_name -R remote_domain_name

Automatic connection retry processing is stopped by this command, regardless o
whether there are any active connections when the command is run.

How to Report on Connection Status

Using the printdomain command, you can generate a report on connection status
the connections being retried. The connect command reports whether a connection
attempt has succeeded. The printdomain command prints information about the
specified local domain, including a list of remote domains, a list of remote domain
which it is connected, an a list of remote domains to which it is trying to establish
connections.

The following example shows a dmadmin session in which the printdomain
command is issued (in its abbreviated form, pd) for a local domain called LDOM.

$ dmadmin
dmadmin - Copyright (c) 1996 BEA Systems, Inc.
Portions * Copyright 1986-1997 RSA Data Security, Inc.
All Rights Reserved.
Distributed under license by BEA Systems, Inc.
TUXEDO is a registered trademark.

pd -d LDOM
Local domain :LDOM
 Connected domains:
 Domainid: RDOM1
 Disconnected domains being retried:
 Domainid: RDOM2

 dco -d LDOM -R RDOM1
Operation completed successfully. Use printdomain(pd) to obtain
results.

 dco -d LDOM -R RDOM2
Operation completed successfully. Use printdomain(pd) to obtain
results.
Using the BEA Tuxedo Domains Component 2-53

2 Planning and Configuring Domains

ver

mes
te

e
 co -d LDOM -R RDOM3
Operation completed successfully. Use printdomain(pd) to obtain
results.

pd -d LDOM
Local domain :LDOM
 Connected domains:
 Domainid: RDOM3

Configuring Failover and Failback in a

Domains Environment

Two types of failover can be performed in a Domains environment: link-level failo
and Domains-level failover. This section provides instructions for both:

� “How to Configure Domains to Support Link-level Failover” on page 2-54

� “Configuring Domains-level Failover and Failback” on page 2-55

If you want failover and failback functionality in your domain, you must configure
your Domains configuration file to support it.

For details about the Domains configuration file, see the DMCONFIG(5) in BEA Tuxedo
File Formats and Data Descriptions Reference.

How to Configure Domains to Support Link-level

Failover

Link-level failover is a mechanism that ensures that an alternate network link beco
active when a primary link fails. To use link-level failover, the primary and alterna
gateways must reside on different remote domains (that is, gateway mirroring must be
used). Currently, link-level failover does not support multiple alternate links to th
same gateway.
2-54 Using the BEA Tuxedo Domains Component

Configuring Failover and Failback in a Domains Environment

use

y link.

e
s

ork
ction

o not
To implement link-level failover, specify it in the DM_TDOMAINS section of the
Domains configuration file (DMCONFIG) as follows:

*DM_TDOMAINS
RDOM1 NWADDR=//addr1:0
RDOM1 NWADDR=//addr2:0

The first entry refers to the primary network link for remote domain RDOM1; the second
entry refers to the alternate link.

Link-level failback is a manual procedure. When the primary link is restored, the
administrator must bring down the alternate link manually. This operation may ca
requests that are in progress to fail, and new traffic to be resumed over the primar

Note: For more detailed information on gateway mirroring, see DMCONFIG(5) in
BEA Tuxedo File Formats and Data Descriptions Reference.

Configuring Domains-level Failover and Failback

Domains-level failover is a mechanism that transfers requests to alternate remot
domains when a failure is detected with a primary remote domain. It also provide
failback to the primary remote domain when that domain is restored.

This level of failover/failback depends on Dynamic Status. The domain must be
configured with a CONNECTION_POLICY of ON_STARTUP or INCOMING_ONLY to enable
Domains-level failover/failback.

Domains-level failover/failback defines a remote domain as available when a netw
connection to the remote domain exists, and unavailable when a network conne
to the remote domain does not exist.

Prerequisite to Using Domains-level Failover and Failback

To use Domains-level failback, you must specify ON_STARTUP or INCOMING_ONLY as
the value of the CONNECTION_POLICY parameter.

A connection policy of ON_DEMAND is unsuitable for Domains-level failback as it
operates on the assumption that the remote domain is always available. If you d
specify ON_STARTUP or INCOMING_ONLY as your connection policy, your servers
cannot fail over to the alternate remote domains that you have specified with the RDOM
parameter.
Using the BEA Tuxedo Domains Component 2-55

2 Planning and Configuring Domains

r

s.
Note: A remote domain is available if a network connection to it exists; a remote
domain is unavailable if a network connection to it does not exist.

How to Configure Domains to Support Failover

To support failover, you must specify a list of the remote domains responsible fo
executing a particular service in your Domains configuration file. Specifically, you
must specify such a list as the value of the RDOM parameter in the
DM_REMOTE_SERVICES section. You can also specify alternate domains, as follow

RDOM=identifier_1, identifier_2, identifier_3

Example

Suppose the TOUPPER and TOUPPER2 services are available from three remote
domains: R1 (the primary remote domain), R2, and R3. Include the following entry in
your Domains configuration file.

*DM_REMOTE_SERVICES
DEFAULT: RDOM=R1, R2, R3
TOUPPER
TOUPPER2

How to Configure Domains to Support Failback

Failback occurs when a network connection to the primary remote domain is
reestablished for any of the following reasons:

� Automatic retries (ON_STARTUP only)

� Incoming connections

� Manual dmadmin connect command

Note: For automatic retries, connection retry must be turned on (that is,
MA54ETRY>0)
2-56 Using the BEA Tuxedo Domains Component

CHAPTER

dd

3 Administering

Domains

� Using Domains Run-time Administrative Commands

� Using the Administrative Interface, dmadmin(1)

� Using the Domains Administrative Server, DMADM(5)

� Using the Gateway Administrative Server, GWADM(5)

� Using the Gateway Process

� Managing Transactions in a Domains Environment

Using Domains Run-time Administrative

Commands

To integrate the Domains component with an existing BEA Tuxedo application, a
entries for domain gateway groups and gateway servers to the TUXCONFIG file. You
can use either the tmconfig(1) (see tmconfig, wtmconfig(1)) or tmadmin(1)
command to add a multiple-domain configuration to a running BEA Tuxedo
application. You can also use tmadmin to list the information available in the bulletin
board for Domain gateway groups and individual gateways.
Using the BEA Tuxedo Domains Component 3-1

3 Administering Domains

er it
 For
ss
xedo
can
d or

nd

tors

tes

ive
 as
Once your Domains environment is configured and integrated, you can administ
dynamically using a set of administrative tools provided by the Domains software.
example, you can specify and modify the list of services that are accessible acro
applications. The Domains software preserves the characteristics of the BEA Tu
programming interface (ATMI) and extends the scope of the ATMI so that clients
invoke services across domains. This functionality allows programmers to expan
partition applications without changing any application code.

The following figure shows the relationship between administrative commands a
servers in the Domains administrative subsystem.

Figure 3-1 Domains Run-time Administration

Domains offers the following administrative commands:

� dmadmin(1) command, a generic administrative service—enables administra
to configure, monitor, and tune domain gateway groups dynamically, and to
update the Domains configuration file (BDMCONFIG) while the BEA Tuxedo
application is running. The command acts as a front-end process that transla
administrative commands into service requests which it then sends to the
DMADMIN service, a generic administrative service advertised by the DMADM
server. The DMADMIN service invokes the validation, retrieval, or update of
functions provided in the DMADM server to maintain the BDMCONFIG file.

� DMADM(5), the gateway group administrative server—provides the administrat
processing required for updating the Domains configuration. This server acts
a back-end to the dmadmin command. It provides a registration service to
3-2 Using the BEA Tuxedo Domains Component

Using Domains Run-time Administrative Commands

up.

BEA
A

ed
gateway groups. This registration service is requested by GWADM servers as part
of their initialization procedure. The registration service downloads the
configuration information required by the requesting gateway group. The DMADM
server maintains a list of registered gateway groups, and propagates to these
groups any changes made to the configuration.

� GWADM(5), the gateway process—The GWADM server registers with the DMADM
server to obtain the configuration information used by the corresponding
gateway group. The GWADM accepts queries from DMADM to obtain run-time
statistics or to change the run-time options of the corresponding gateway gro
Periodically, the GWADM server sends an “I-am-alive” message to the DMADM
server. If no reply is received from the DMADM server, the GWADM server registers
again. This mechanism makes sure the GWADM server always has the latest copy
of the Domains configuration for its group.

� GWTDOMAIN(5)—The gateway process, GWTDOMAIN, which provides connectivity
to remote gateway processes, focuses on throughput of messages between
Tuxedo domains. Clients and servers send and receive messages across BE
Tuxedo domains via the GWTDOMAIN process.

Note: For a gateway type other than GWTDOMAIN, an executable other than
GWTDOMAIN must be used. Refer to the BEA eLink for Mainframe
documentation and Using the BEA Tuxedo TOP END Domain Gateway for
additional information.

� BDMCONFIG— the binary version of the Domains configuration file, which
contains all the configuration parameters that the BEA Tuxedo software
interprets to create a viable application.

Note: You can also specify gateway parameters when a gateway group is boot
using the CLOPT parameter, when the GWADM server is defined in the SERVERS
section of the TUXCONFIG file.
Using the BEA Tuxedo Domains Component 3-3

3 Administering Domains

ll

s are
f the

to
How to Migrate DMADM and a Domain Gateway Group

The migration of DMADM is possible. To migrate DMADM to a new machine, complete the
following steps.

1. Copy DMCONFIG to the new machine and run dmloadcf .

2. Shut down all domain gateway groups (GWADM and a domain gateway, for
example, GWTDOMAIN).

Note: If the domain gateway groups are not shut down, they will continue to
function, but after DMADM has been migrated, all MIB requests for them wi
fail.

3. Migrate the DMADM group to the new machine.

The migration of a domain gateway group is possible. However, when transaction
being used, the domain gateway group can be migrated only across machines o
same type. To migrate a domain gateway group, complete the following steps.

1. In the DMCONFIG file, add multiple listening addresses, in the following format,
the DM_TDOMAIN section:

*DM_TDOMAIN
LDOM NWADDR=“ //primary:port ”
LDOM NWADDR=“ //backup:port ”

Note: This step is unnecessary if third-party IP failover solutions are used.

2. If you are using transactions, you must copy the Domains transaction log
manually to the backup machine.

3. The DMCONFIG files for the remote domains should include both network
addresses as specified in Step 1.

4. Migrate the domain gateway group to the new machine.
3-4 Using the BEA Tuxedo Domains Component

Using the Administrative Interface, dmadmin(1)
Using the Administrative Interface,
dmadmin(1)

dmadmin is an administrative interface to the DMADM and GWADM servers. The
communication between the two servers is done via FML typed buffers.
Administrators can use the dmadmin command in the following ways:

� For the interactive administration of the information stored in the BDMCONFIG
file and the different gateway groups running within a particular BEA Tuxedo
application.

� To obtain statistics or other information gathered by gateway groups.

� To change gateway group parameters.

� To add (or update) information in the BDMCONFIG file.

Note: You can delete information from the BDMCONFIG file at run time only if the
deletions do not involve an active gateway group.

See Also

� dmadmin(1) in BEA Tuxedo Command Reference
Using the BEA Tuxedo Domains Component 3-5

3 Administering Domains

t

n

ue
Using the Domains Administrative Server,
DMADM(5)

The Domains administrative server, DMADM(5), is a BEA Tuxedo-supplied server tha
performs the following functions:

� Supports run-time administration of the BDMCONFIG file

� Maintains the BDMCONFIG file

� Supports a list of registered gateway groups

� Propagates run-time configuration changes to the registered gateway groups

The DMADM server advertises two services:

� DMADMIN, which is used by the DMADMIN and the GWADM servers.

� A service called DMADM_svrid , where SRVID is the appropriate server ID for the
service. Registered GWADM servers use DMADM_svrid for specific administrative
functions (for example, to refresh the gateway group configuration informatio
or to signal that a GWADM is still registered).

The DMADM server must be defined in the SERVERS section of the TUXCONFIG file as a
server running within a group (for example, DMADMGRP). There should be only one
instance of the DMADM server in this group and it must be defined with no reply que
(REPLYQ=N).

See Also

� DMADM(5) in BEA Tuxedo File Formats and Data Descriptions Reference
3-6 Using the BEA Tuxedo Domains Component

Using the Gateway Administrative Server, GWADM(5)

t
ons

on

 value

oup.

 it

Using the Gateway Administrative Server,
GWADM(5)

The gateway administrative server, GWADM(5), is a BEA Tuxedo-supplied server tha
provides administrative functions for a Domains gateway group. The main functi
of the GWADM server include the following:

� To get Domains configuration information from the DMADM server, and to accept
queries from dmadmin . The GWADM server gets the gateway group configuration
information by registering with the DMADM server. The GWADM server then makes
the configuration available to gateways by storing the information in shared
memory.

� To provide administrative functionality for a gateway group, for example, to
accept queries from dmadmin for run-time statistics or to change the run-time
parameters of the gateway group.

� To provide transaction logging functionality for a gateway group. The GWADM
server determines which transactions need to be logged by reading informati
stored in shared memory. When the GWADM server is booted; scans the log to see
whether any transactions need to be recovered; it then reconstructs the
transaction information in shared memory. The gateway server scans the
information in shared memory and performs recovery for the corresponding
transactions. The recovery procedure is performed asynchronously with new
incoming or outgoing requests received by the gateway group.

The GWADM server advertises a service name based on the local domain name (the
of the LDOM keyword in the BDMCONFIG). The dmadmin command uses this service to
retrieve information from all active gateway groups or from a specific gateway gr

The GWADM server must be defined in the SERVERS section of the TUXCONFIG file. It
should not be part of the MSSQ used by the gateways associated with the group and
must not have a reply queue, that is, REPLYQ=N must be specified. It must be the first
server booted within the gateway group; that is, either (a) it must have a SEQUENCE
number, or (b) it must be defined ahead of the gateway servers.

The GWADM server requires the existence of a DMADM server. Specifically, a DMADM
server must be booted before that GWADM is booted.
Using the BEA Tuxedo Domains Component 3-7

3 Administering Domains

 to

ss to
rted
The GWADM server must create the shared memory required by the gateway group
populate the configuration tables with information received from the DMADM server.
The GWADM server uses IPC_PRIVATE with shmget and stores the ipckey returned in
the shmid field of its registry entry in the bulletin board. Gateways can obtain the
ipckey by retrieving the GWADM registry entry and checking the shmid field.

See Also

� GWADM(5) in BEA Tuxedo File Formats and Data Descriptions Reference

Using the Gateway Process

A gateway process provides connectivity to remote gateway processes, and can
communicate with one or more remote gateways simultaneously. A gateway
advertises the services imported to a BEA Tuxedo application and controls acce
the local services exported by the application. You define your application’s expo
and imported services in the Domains configuration file (DMCONFIG). Use dmadmin to
dynamically configure, monitor, and tune domain gateway groups.

See Also

� “Types of Domain Gateways” on page 1-6
3-8 Using the BEA Tuxedo Domains Component

Managing Transactions in a Domains Environment

uted

ack)

 by the
way
ce

teway

s
s

e to
ly
ins.
l
Managing Transactions in a Domains

Environment

Application programmers can request the execution of remote services within a
transaction. Also, users of remote domains can request local services to be exec
within a transaction. Domains, therefore, coordinates the mapping of remote
transactions to local transactions, and the sane termination (commitment or rollb
of these transactions.

The BEA Tuxedo system architecture uses a separate process, the Transaction
Manager Server (TMS), to coordinate the commitment and recovery of transaction
branches accessing a particular group. In a Domains environment, however, this
architecture would require extra messages from the gateway to the TMS server to
process a commitment for an incoming transaction. To simplify the Domains
architecture and to reduce the number of messages, the TMS code is integrated with the
gateway code. Thus, domain gateways can process the transaction protocol used
BEA Tuxedo system. The BEA Tuxedo transaction protocol requires that the gate
group advertise the TMS service, which is done when the first gateway is booted. On
the TMS service is advertised, any transaction control messages directed to the ga
group are placed on the gateway’s queue.

Domains gateway groups should be defined in the TUXCONFIG file without the
TMSNAME, TMSCOUNT, OPENINFO, and CLOSEINFO parameters. These four parameter
apply only to groups that use an XA-compliant resource manager, which Domain
gateways do not use.

The commitment protocol across domains is strictly hierarchical. It is not possibl
flatten the transaction tree because the structure of the transaction tree is not ful
known by every domain; a superior knows only its immediately subordinate doma
Flattening the tree would also require the root domain to be fully connected to al
domains participating in the transaction.
Using the BEA Tuxedo Domains Component 3-9

3 Administering Domains

ions.

h

ase
l

 the
ous
t use

d
 by the
ciated
Transaction Management Capabilities

Domain gateways provide four capabilities that you can use to manage transact
These capabilities are described in the following sections:

� “Using the TMS Capability Across Domains” on page 3-10

� “Using GTRID Mapping in Transactions” on page 3-13

� “Using Logging to Track Transactions” on page 3-20

� “Recovering Failed Transactions” on page 3-23

Using the TMS Capability Across Domains

In the BEA Tuxedo system, the TMS is a special server that is implicitly associated wit
server groups that use X/Open XA-compliant resource managers. The TMS server
releases application servers from the delays associated with the distributed 2-ph
commitment protocol. TMSs coordinate the commitment of a transaction via specia
service requests to the TMS service, which is offered by all TMS servers.

In a Domains environment, GWTDOMAIN gateways are not associated with an
XA-compliant resource manager. The Transaction Processing Working Group (TPWG)
of X/Open has proposed an advanced XA interface. This interface is not used in
BEA Tuxedo system because the interface does not match the highly asynchron
and non-blocking model required by the gateway. While Domains gateways do no
a separate TMS server, they do offer the TMS capability, which allows gateways to
coordinate the 2-phase commitment of transactions executed across domains.

How Gateways Coordinate Transactions Across Domains

1. Domain gateways advertise the TMS service and perform all operations associate
with that service. Messages sent to this service are placed on the queue used
appropriate gateway group, and the gateways manage the transactions asso
with the group.
3-10 Using the BEA Tuxedo Domains Component

Using the TMS Capability Across Domains

roup

f a

e

2. A gateway can act as a subordinate of transactions coordinated by another g
within the domain. In this case, the gateway is a superior of the transaction
branches executed in other remote domains. When acting as a subordinate o
transaction coordinated by a remote domain, the gateway also acts as the
coordinator for all groups in the local domain accessed by the transaction. Th
gateway, acting as both subordinate and coordinator, is illustrated in the
following figure.

Figure 3-2 The Gateway as Subordinate/Coordinator of Another Domain Group

3. As a coordinator of transactions within the domain, the gateway manages the
commitment of a transaction for a particular client. This is illustrated in the
following figure.
Using the BEA Tuxedo Domains Component 3-11

3 Administering Domains

er

ay)
n

th

g
Figure 3-3 Client Commit Managed by a Gateway

4. Gateways manage transaction commitment for a particular client or for a serv
that uses the forwarding service with the AUTOTRAN capability. When this
combination is used, the last server in the forward chain (the Domains gatew
issues the commit and becomes the coordinator of the transaction. (A domai
gateway always acts as the last server in a forward chain.)

5. Gateways automatically start and terminate transactions for remote services
specified with the AUTOTRAN capability. This capability is required when an the
application administrator wants to enforce reliable network communication wi
remote services. Administrators can specify this capability by setting the
AUTOTRAN parameter to Y in the corresponding remote service definition. (For
more information, refer to the

6. DM_REMOTE_SERVICES Section of DMCONFIG(5) in BEA Tuxedo File Formats
and Data Descriptions Reference.

7. Gateways map the BEA Tuxedo system transaction protocol to the networkin
transaction protocol used for interoperation with remote domains. How this
mapping is done depends on which instantiation of Domains you are using:
TDomains, SNA, or OSI TP.
3-12 Using the BEA Tuxedo Domains Component

Using GTRID Mapping in Transactions

he
e
from

vers
anch

tion

gle
RMs

at is,
ame

art
n
n
llback
Using GTRID Mapping in Transactions

In the BEA Tuxedo system, a transaction tree is a 2-level tree where the root is t
gateway group coordinating a global transaction and branches are involved in th
transaction. Each group performs its part of the global transaction independently
the parts performed by other groups. Each group, therefore, implicitly defines a
transaction branch. The BEA Tuxedo system, through Transaction Manager Ser
(TMSs), coordinates the completion of the global transaction, making sure each br
is completed.

A GTRID is a Global Transaction Id entifier. GTRID mapping defines how to construct
a transaction tree that crosses domain boundaries. You specify GTRIDs using the
MAXGTT parameter in the RESOURCES section of the configuration file.

Defining Tightly-coupled and Loosely-coupled

Relationships

In the X/Open DTP Model, a Transaction Manager Server can construct transac
trees by defining either tightly-coupled or loosely-coupled relationships with a
Resource Manager (RM) by the way it interprets the transaction identifiers (XIDs) used
by the XA interface.

A tightly-coupled relationship is one in which a single transaction identifier, XID , is
used by all processes participating in a single global transaction, accessing a sin
RM. This relationship maximizes data sharing between processes; XA-compliant
expect to share locks for resources used by processes having the same XID . The BEA
Tuxedo system achieves the tightly-coupled relationship via the group concept; th
all work done by a group on behalf of a given global transaction belongs to the s
transaction branch; all the processes executed by the group are given the sameXID.

In a loosely-coupled relationship, the TMS generates a transaction branch for each p
of the work in support of the global transaction. The RM handles each transactio
branch separately; there is no sharing of data or of locks between the transactio
branches. Deadlocks between transaction branches can occur and result in the ro
Using the BEA Tuxedo Domains Component 3-13

3 Administering Domains

ion

do
 the
ere

n

cted

Even

ce of
 The
 A to
on

pends

xedo
ch
ce
e can
his
e
I TP
e can
of a global transaction. In the BEA Tuxedo application, when different groups
participate in a single global transaction, each group defines a separate transact
branch, which results in a loosely-coupled relationship.

Global Transactions Across Domains

There are several differences between global transactions in a single BEA Tuxe
application and global transactions across domains. The first difference is that in
Domains framework, the transaction tree cannot be flattened to a 2-level tree. Th
are two reasons for this:

� The transaction may involve more domains than can be known from the root
domain (where the transaction is controlled), so the structure of the transactio
tree cannot be fully known.

� If a transaction tree is flattened to two levels, the root domain must be conne
directly to all domains in the transaction.

This means that the commitment protocol across domains must be hierarchical.
a loop-back service request defines a new branch in the transaction tree.

Note: A loop-back request goes to another domain and then comes back to be
processed in the original domain. For example, domain A requests a servi
domain B. The service in domain B requests another service in domain A.
transaction tree has two branches at the network level: a branch b1 from
B and a branch b2 from B to A. Domain A cannot commit the work done
branch b2 before receiving commit instructions from B.

The structure of a transaction tree for global transactions across domains also de
on the distributed transaction processing protocol used by a relevant Domains
instantiation. For example, in the OSI TP protocol each dialogue (the OSI TP word for
a service request) is associated with a different transaction branch. In the BEA Tu
system, the OSI TP instantiation uses a dialogue for each service request, so ea
service request is mapped to a separate transaction branch. The XAP-TP interfa
hides this mapping and provides a mechanism by which an entire OSI TP subtre
be referenced by a user-defined identifier. (In the BEA Tuxedo implementation, t
identifier is the GTRID.) The GTRID is used to instruct XAP-TP how a transaction tre
must be constructed, that is, which dialogues must be included within a given OS
transaction. Therefore, from the BEA Tuxedo perspective, a whole OSI TP subtre
be managed as a single transaction branch.
3-14 Using the BEA Tuxedo Domains Component

Using GTRID Mapping in Transactions

e
d to

BEA

alf
ch.

nd

n

s there
e

y
This property, however, applies only to outgoing service requests (that is, servic
requests sent from the root domain to subordinate domains). It cannot be applie
incoming service requests. The OSI TP instantiation consequently implements a
loosely-coupled relationship; each incoming service request is mapped to a new
Tuxedo global transaction.

The TDOMAIN instantiation tries to optimize GTRID mapping by implementing a
tightly-coupled relationship. In TDOMAIN, multiple service requests issued on beh
of the same global transaction are mapped to the same network transaction bran
Therefore, incoming service requests can be mapped to a single BEA Tuxedo
transaction. However, the hierarchical structure of interdomain communication a
the interdomain transaction tree must still be maintained.

The optimization that TDOMAIN introduces applies only to a single domain. Whe
two or more domains are involved in a transaction, the network transaction tree
contains at least one branch per domain interaction. Hence, across domains, the
network transaction tree remains loosely-coupled. There are as many branches a
are domains involved in the transaction (even if all the branches access the sam
resource manager instance).

Domains gateway groups implement a loosely-coupled relationship because the
generate different transaction branches for interdomain transactions.
Using the BEA Tuxedo Domains Component 3-15

3 Administering Domains

three
Example of a Service Request Graph Generating Local and Remote Requests

The following figure shows the service request graph for a client that generates
service requests: one local request (r0) and two remote requests (r2 and r3). Request
r0 goes to a local service (Svc0), which generates another remote service request (r1).
Request r1 goes to remote service Rsvc1 , which issues a loop-back service request r4
to local service Svc4 . Svc0 and Svc4 are executed in different groups (G0 and G4). The
domain gateway is executed within another group (GW), and the remote services Rscv1 ,
Rsvc2 , and Rsvc3 are executed in another domain (domain B).

Figure 3-4 Service Request Graph
3-16 Using the BEA Tuxedo Domains Component

Using GTRID Mapping in Transactions

d, in

col.
ting

P
tire

rs
at
uests

ed to

e

GW

se

e,
p
Transaction Trees for BEA eLink for Mainframe-OSI TP and BEA Tuxedo

Domains

The following two figures show the transaction tree for BEA eLink for
Mainframe-OSI TP and the transaction tree for BA Tuxedo Domains. It is assume
these figures, that both domains A and B are BEA Tuxedo system applications.

BEA eLink for Mainframe-OSI TP is loosely-coupled because of the OSI TP proto
The transaction tree for this instantiation shows group G0 in Domain A coordina
the global transaction started by the client. Group G0 coordinates group GW. Requests
r1 , r2 , and r4 are mapped each to an OSI TP dialogue and therefore to an OSI T
transaction branch. However, OSI TP uses the XAP-TP feature that allows an en
OSI TP transaction to be referred by a unique identifier (T1) and uses this identifier for
requests r1 , r2 , and r3 . It is up to XAP-TP to generate OSI TP transaction identifie
and to construct the corresponding OSI TP transaction tree. The only function th
must be performed by the generic Domains software is the mapping of service req
r1, r2, and r3 to the T1 identifier.

In Domain B, OSI TP uses the rule that new transaction branches must be mapp
a new BEA Tuxedo transaction. Therefore, OSI TP transaction branches r1 , r2 , and
r3 get mapped to three different BEA Tuxedo transactions (the corresponding
mapping is represented by identifiers T2, T3, and T4). The graph shows the gateway
group GW in Domain B coordinating three BEA Tuxedo transactions on group G1.

Finally, there is the loop-back service request r4 that generates another branch in th
transaction tree. OSI TP maps this request to identifier T2, but XAP-TP generates a
new branch in its transaction tree (r4 : B to A'). This is a new transaction branch on
Domain A, and therefore, the gateway generates a new mapping T5 to a new BEA
Tuxedo transaction. Therefore, the transaction graph shows that gateway group
on Domain A coordinates group G4.

Notice that the hierarchical nature of the OSI TP protocol is fully enforced by the
mappings. However, because these mappings introduce a loosely-coupled
relationship, the probability of intratransaction deadlock is increased (for exampl
there are three BEA Tuxedo transactions accessing the RM represented by grouG1).
Using the BEA Tuxedo Domains Component 3-17

3 Administering Domains
Figure 3-5 Transaction Tree for BEA eLink for Mainframe-OSI TP
Environment
3-18 Using the BEA Tuxedo Domains Component

Using GTRID Mapping in Transactions

s
 the
n in

tem

 that
The TDOMAIN instantiation provides a tightly-coupled integration that solves thi
deadlock problem by minimizing the number of transaction branches required in
interoperation between two domains. The corresponding transaction tree is show
the following figure.

Figure 3-6 Transaction Tree for TDOMAIN Environment

Notice that the gateway still must perform mappings between a BEA Tuxedo sys
transaction and a network transaction, and that the hierarchical nature of the
communication between domains must be strictly enforced. The diagram shows
requests r1 , r2 , and r3 are mapped to a single TDOMAIN transaction branch.
Therefore, on domain B only one BEA Tuxedo system transaction needs to be
generated; T2 represents this mapping and the graph shows gateway group GW on
Using the BEA Tuxedo Domains Component 3-19

3 Administering Domains

ping,
up
n

m

he

erent
ote
s the

domain B coordinating group G1. Request r4 is mapped to identifier T2 on Domain B,
but TDOMAIN will generate a new branch in its transaction tree (r4 : B to A'). Because
this is a new transaction branch on Domain A, the gateway generates a new map
T3, to a new BEA Tuxedo system transaction. The graph shows that gateway groGW
on Domain A also coordinates group G4. Hence, the hierarchical nature of interdomai
communication is fully enforced with this mapping: group G4 cannot commit before
group G1.

Summary of Domains Transaction Management

Domains transaction management can be summarized as follows:

� Gateways generate mappings from a BEA Tuxedo system transaction to a
network transaction. A new mapping is generated for each BEA Tuxedo syste
transaction and each incoming network transaction branch.

� Each instantiation of Domains (TDomains, SNA, or OSI TP) handles its own
representation of the network transaction tree. All instantiations observe the
hierarchical nature of the interdomain communication.

Using Logging to Track Transactions

Logging is used to keep track of the progress of a 2-phase commit protocol. The
information stored in the log is used to make sure a transaction is completed in t
event of a network failure or machine crash.

To ensure completion of transactions across domains, domain gateways log the
mapping between local and remote identifiers. Along with this information, the
Domains transaction management facility records the decisions made during diff
phases of the commitment protocol, and any information available about the rem
domains involved in the transaction. In the OSI TP case, the XAP-TP interface log
information required for the recovery of the OSI TP protocol machine. The
information is referred to as a blob (binary large object) and is kept in the same log
record as the commit information to make recovery easier.
3-20 Using the BEA Tuxedo Domains Component

Using Logging to Track Transactions

BEA
e.
the

e

he

eway

r the
Domains log records have a different structure from the log records stored in the
Tuxedo system TLOG. TLOG records are fixed in size and are stored in a single pag
Domains log records vary in size; more than one page may be required to store
record. The Domains logging mechanism, DMTLOG, has the capability of storing
variable-size log records.

When a TMS is the superior of a domain gateway group, the BEA Tuxedo TLOG is still
required to coordinate the commitment.

How Logging Works

Logging is performed by the GWADM administrative server. The request for a log writ
is made by the GWTDOMAIN process, but the actual log write is performed by the GWADM
process.

You must create a log called DMTLOG for each domain gateway group. The DMTLOG files
are defined in the DM_LOCAL_DOMAINS section of the DMCONFIG file. To create a
DMTLOG file, add an entry for the DMTLOGDEV parameter:

DMTLOGDEV=string

where string is the name of the log file. In addition, you cam set one or both of t
two optional parameters:

� DMTLOGNAME=identifier

� DMTLOGSIZE=numeric

For more information, refer to DMCONFIG(5) in BEA Tuxedo File Formats and Data
Descriptions Reference.

Administrators also have the option of using the run-time administration utility
(DMADMIN) to create a DMTLOG. For more information, refer to dmadmin(1) in BEA
Tuxedo Command Reference.

If a DMTLOG has not been created when a domain gateway group is booted, the gat
server automatically creates the log, based on information in the BDMCONFIG file.

Until a logging device is specified in the BDMCONFIG file, a Domain gateway group
cannot process requests in transaction mode and the gateway group cannot offe
TMS service.
Using the BEA Tuxedo Domains Component 3-21

3 Administering Domains

log

r

y
e

 a

action

ed:

e
.

or

r.
ter a
To coordinate the commit protocol, Domains gateways require the following two
records:

� Ready record—A ready record is a file created by a gateway acting as a leaf o
intermediate machine in a transaction tree. It records information about the
superior and subordinate remote domains involved in the transaction. A read
record indicates that all subordinates of the domain gateway group logging th
record have been prepared.

� Commit record—A commit record documents that a transaction has been
committed. A domain gateway creates a commit record as the coordinator of
particular transaction tree.

When a transaction has been committed on all machines, these logs for the trans
are removed.

When the OSI TP protocol is being used, two types of heuristic records are logg

� Log Heuristic record—This record holds the details of a heuristic decision in th
domain until the outcome of the relevant transaction is known by the superior

� Log Damage record—This record is created to indicate one of two conditions f
a transaction branch: (run with tmadmin(1)) a heuristic hazard (when the
outcome of the transaction branch for a subordinate is unknown) or a heuristic
mix (when the transaction subtree has a mixed outcome).

Heuristic log records persist until they are explicitly removed by the administrato
This persistence is required to provide the correct information during recovery af
crash, and to provide diagnostic information for administrators.

The administrator uses the forgettran command (run with tmadmin(1)) to remove
heuristic records when they are no longer needed.
3-22 Using the BEA Tuxedo Domains Component

Recovering Failed Transactions

atic

aken

e
d to

 local

d

ot

 of
Recovering Failed Transactions

When a domain gateway group is booted, the gateway server performs an autom
warm-start of the DMTLOG. The warm-start includes scanning the log to see if any
transactions were not completed. If incomplete transactions are found, action is t
to complete them.

In OSI TP, any blobs stored in the DMTLOG with a transaction record are passed to th
network access module, which uses the blobs to reconstruct its internal state an
recover any failed connections

In the case of heuristic decisions, if a domain gateway group is a subordinate of a
TMS and a heuristic decision has been indicated, the TMS generates a TMS_STATUS
message to learn the final decision:

� If a gateway fails, then it cleans up after itself when it is restarted (this is calle
a hot-start). The gateway rolls back all undecided transactions in which it was
involved.

� If a communication line failure occurs and the first phase of the commit has n
been completed, the gateway rolls back the transactions associated with that
connection.

� If OSI TP Domains is being used and a transaction fails in the second phase
the commit, recovery is managed by XAP-TP.
Using the BEA Tuxedo Domains Component 3-23

3 Administering Domains
3-24 Using the BEA Tuxedo Domains Component

	Copyright
	Contents
	1 About Domains
	What Is the BEA Tuxedo Domains Component
	Business Operations Interoperating with Each Other

	Building a Multiple-domains Configuration
	Tools to Set Up and Maintain a Multiple-domain Application
	Types of Domain Gateways
	Functionality Supported by Domain Gateways

	Example of an Application Using Domain Gateways
	Messaging Paradigms Supported by Domain Gateways
	Request/Response Communication Between Local and Remote Services
	Conversational Communication Between Local and Remote Services
	Queued Messaging for Data Storage

	Typed Buffers to Package Data
	Defining Transaction and Blocking Timeouts in Domains
	Specifying How Your Domains Connect
	Determining the Availability of Remote Services with the Dynamic Status Feature
	How Your Connection Policy Affects Dynamic Status

	What Is the Domains Configuration File
	Descriptions of Sections of the DMCONFIG File
	Domains Terminology Improvements

	Converting the Domains Configuration File
	Converting DMCONFIG to a Binary File
	Converting the BDMCONFIG File to a Text File

	Features of BEA Tuxedo System Domains

	2 Planning and Configuring Domains
	Planning to Build Domains from Multiple BEA Tuxedo Applications
	Option 1: Reconfigure the Applications
	Configuration File for Combining the Sample Applications
	Limitations of Option 1

	Option 2: Redefine the Applications as Separate BEA Tuxedo Domains
	Modifying the Application Configuration Files
	Adding DMCONFIG Files

	Sample Domains Application: creditapp
	The creditapp README File

	Configuring a Domains Environment
	Configuring a Sample Domains Application (simpapp)
	Configuration Tasks

	How to Set Environment Variables for lapp
	Example

	How to Define the Domains Environment for lapp (in the ubbconfig File)
	Server Definitions
	Example of an Application Configuration File for lapp

	How to Define Domains Parameters for lapp (in the DMCONFIG File)
	Example of a Domain Gateway Configuration File for lapp

	How to Compile Application and Domains Gateway Configuration Files for lapp
	How to Set Environment Variables for rapp
	Example

	How to Define the Domains Environment for rapp (in the UBBCONFIG File)
	Example of an Application Configuration File for rapp

	How to Define Domains Parameters for rapp (in the DMCONFIG File)
	Example of a Domain Gateway Configuration File for rapp

	How to Compile Application and Domain Gateway Configuration Files for rapp
	How to Compress Data Between Domains
	How to Route Service Requests to Remote Domains
	Setting Up Security in Domains
	Domains Security Mechanisms

	How to Create a Domains Access Control List (ACL)
	Using Standard BEA Tuxedo Access Control Lists with Imported Remote Services

	How to Set Up Domains Authentication
	DM_PASSWORDS Section Table Entries

	Examples of Coding Security Between Domains
	Example 1: Setting Security to APP_PW
	Example 2: Setting Security to NONE

	Configuring the Connections Between Your Domains
	How to Request Connections at Boot Time (ON_STARTUP Policy)
	How to Request Connections for Client Demands (ON_DEMAND Policy)
	How to Limit Connections to Incoming Messages Only (INCOMING_ONLY Policy)
	How to Configure the Connection Retry Interval for ON_STARTUP Only

	Controlling the Connections Between Domains
	How to Establish Connections Between Domains
	How to Break Connections Between Domains
	How to Report on Connection Status

	Configuring Failover and Failback in a Domains Environment
	How to Configure Domains to Support Link-level Failover
	Configuring Domains-level Failover and Failback

	3 Administering Domains
	Using Domains Run-time Administrative Commands
	How to Migrate DMADM and a Domain Gateway Group

	Using the Administrative Interface, dmadmin(1)
	Using the Domains Administrative Server, DMADM(5)
	Using the Gateway Administrative Server, GWADM(5)
	Using the Gateway Process
	Managing Transactions in a Domains Environment
	Transaction Management Capabilities

	Using the TMS Capability Across Domains
	How Gateways Coordinate Transactions Across Domains

	Using GTRID Mapping in Transactions
	Defining Tightly-coupled and Loosely-coupled Relationships
	Global Transactions Across Domains

	Using Logging to Track Transactions
	How Logging Works

	Recovering Failed Transactions

