':' @2,
4
”

Iy hea

BEA Tuxedo

Administering a BEA Tuxedo
Application at Run Time

Copyright
Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, and WebLogic Enterprise
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
Administering a BEA Tuxedo Application at Run Time

Document Edition Date Software Version

7.1 May 2000 BEA Tuxedo Release 7.1

Contents

1. Starting Up and Shutting Down an Application

The Tasks Involved in Starting Up and Shutting Down an Application........... 1-2
HOow to Set YOUr ENVIFONMENTcooiiiiiiiiiiiie ettt 1-2
How to Create the TUXCONFIG File......cccuiiiiiiiiiieeiiie e 1-4
How to Propagate the BEA Tuxedo System Software..........cccccccveveereeiioiennnen. 1-5
How to Create & TLOG DEVICEcuii ittt 1-6
How to Start thisten at All SItESceeeeiiiiiiie e 1-7
tlisten Command OPLIONS.......ccoiiiiiiiiiiiee e 1-7
How to BOOt the APPIICAtIONcc.uviiiiiiiii e 1-9
Sequence of tmboot Tasks for a 2-Machine Configuration 1-10
Sequence of tmboot Tasks for Large Applications (Over 50 Machines). 1-11
How to Shut Down Your APPlICationccueviiiiiiiiie e 1-11
RUNNING tMSNULAOWN ...t 1-12

Using the IPC Tool When an Application Fails to Shut Down Properly. 1-13

2. Monitoring Your BEA Tuxedo Application

Ways to Monitor Your AppliCation............eciiiiiiiiiee e 2-2
System and Application Data that You Can MONitor...........cccceeeviiieeiiiienenne 2-4
MONItOring SYStEM DAtaAccoovviiiiiiiiieiei e 2-4
Monitoring Dynamic and Static Administrative Data..............cccocveeeenen 2-5
Common Startup and Shutdown Problems...........cccoiiii 2-7
Common Startup Problemscoooiiiiiii e 2-7
Common Shutdown ProblemsS..........eeeeiiiiiiiii e 2-8
Selecting Appropriate Monitoring TOOIS...........oouiiieiiiiiiee e 2-8
Using the BEA Administration Console to Monitor Your Application............ 2-9
Using the Power Bar to Monitor ACHVItIES...........eveviiiie e 2-9

Administering a BEA Tuxedo Application at Run Time i

Using Command-line Utilities to Monitor Your Applicationccceeeueee. 2-10

Inspecting Your Configuration Using tmadmin...........ccccceeeiiiieneninien. 2-10
Generating Reports on Servers and Services Using tXrptcccceerene. 2-1
How a tmadmin Session WOTKS..........ccooiiiiiiiiiii e 2-1
Monitoring Your System Using tmadmin Commands..........cccccceeevienees 2-14
Using EventBroker to Monitor Your Applicationcccccevveeeiiiniiiiie e, 2-15
Using Log Files to Monitor ACHVILYcoooiieiiioniiiie e 2-16
What Is the Transaction LOg (TLOG)ueeeiiiiieieriiiiiiee ettt 2-17
What IS the USer LOg (ULOG)uouiiiiiiiiieeiiiie et 2-1
Detecting Errors USING LOGSouvveeiiiiiiiie ettt 2-1
Analyzing tlisten Messages in the ULOGccccoeiiiiiieiiiniiieie e 2-1¢€
Analyzing the Transaction LOg (TLOG)ccocuuvieeriiiiieniiieeeeiieee e 2-19
Analyzing the User LOg (ULOG)......cciiiiiiiiiiiiiie e 2-20
Estimating Service Workload Using the Application Service Log 2-21
Using the MIB to Monitor Your Applicationcccceeiiiiieiiiiieeeeniiieees 2-22
Limiting YOour MIB QUETIESceeiiiiiiiieiiiiiee ettt ettt 2-22
Querying Global and Local Data.............cccueeiiiiiieiee i 2-2:
Using tmadmcall to Access Informationcooccceeeriiiiiiniininnce e, 2-23
Querying and Updating the MIB with ud32............cooeiiiiiii e 2-24
Using the Run-time Tracing ULtyc.oooiiiiiniiiii e 2-25
Managing Errors Using the DBBL and BBLS..........ccccocveiiiiiiiii e, 2-26
Using the ATMI to Handle System and Application Errorsc.cccceeeeeneee. 2-28
Using Configurable Timeout MechaniSms..........cccccvveiriiiiiiienniiiee e, 2-2¢
Configuring Redundant Servers to Handle Failures............cccocveviieeneenn. 2-2!
Monitoring Multithreaded and Multicontexted Applications..............ccccceeeee 2-30
How to Retrieve Data About a Multithreaded/Multicontexted
Application Using the MIB ... 2-31

3. Dynamically Modifying an Application

Dynamic Modification Methods..........cc.ueiiiiiiiiiiii e 3-1
Tools for Modifying Your AppliCationcoceeeeiriiiie e 3-2

Using tmconfig to Make Permanent Changes to Your Configuration 3-4
HOW tMeconfig WOTKScooiiiiiiiiit e 3-5
How Results of a tmconfig Task Are Displayed..........ccceeeeiiiiiiiiiiiienens 3-9

iv Administering a BEA Tuxedo Application at Run Time

HOW t0 RUN tMCONTIG ..eeiiiiiiie et 3-11

How to Set Environment Variables for tmconfig.........cccoocveeiiiiieininne 3-11
How to Conduct a tmconfig Walk-through Session...........ccccccviiiieeennee. 3-12
tmconfig Input Buffer Considerations.ccceeeiiiiiieeiniiiieieen e 3-14
Making Temporary Modifications to Your Configuration with tmconfig...... 3-15
How to Add a New Machingcooiuiiiiiiiiiie e 3-16
HOW t0 A 8 SEIVET ... 3-19
How to Activate a Newly Configured Machinec.occeeeviiiiiiiiiiiice e, 3-21
HOW t0 Add 8 NEW GrOUPceiiieitiiiieer ittt et 3-24
How to Change Data-dependent Routing (DDR) for an Application 3-25
How to Change Application-wide Parameterscccooeuvveeeiiiiiie e 3-26
How to Change an Application PassWordcoocveeeiriiierie i 3-29
Limitations on Dynamic Modification Using tmconfigccccceeviiiieininnnen 3-31
Tasks that Cannot Be Performed on a Running Systemcccceeeee 3-32
Making Temporary Modifications to Your Configuration with tmadmin 3-33
How to Set Environment Variables for tmadmin.............cccoceniiiennnnnn, 3-34
HOW t0 SUSPEN SEIVICES OF SEIVEISuiiiiiiiiiiie ettt 3-34
HOW t0 RESUME SEIVICES OF SEIVEIS ..cociiiiiiiieiiiiiie ettt e 3-35
HOW to AdVErtiSE SErviCEeS OF SEIVEIS....cciiiiiiiiieiiiitie ettt 3-35
How to UnadvertiSe ServiCes OF SEIVEIScccoiuiuieiiiieieiiiiee e ee e 3-36
How to Change Service Parameterscooiuiiiiiiiiiiie e 3-36
How to Change the Timeout ValUecooiiiiiiiiiiiiie e 3-37

Managing the Network in a Distributed Application

Running a Network for a Distributed Applicationcccccevviiiiiininiiiecen 4-1
Compressing Data Over @ NetWOrK...........cocoiiiieiiiiiii e 4-2
How to Set the Compression LEVEL..........cooiiiieiiiiiiiii et 4-2
Selecting Data Compression Thresholds...........ccooccviiiiiiiiniiiee e 4-3
Balancing Network ReqUEeSt LOAUScovvvieeiiiiiiieiiiiiee et 4-4
How to Use Data-Dependent ROULINGueeeriiiiiiiiiiie e 4-5
Example of Data-dependent Routing with a Horizontally-partitioned
DALADASE ...t 4-6
Example of Data-dependent Routing with Rule-based Servers................. 4-7
How to Change Your Network Configurationccccceeviiieeiniieeeiiiiieeenee 4-8

Administering a BEA Tuxedo Application at Run Time v

Vi

5. About the EventBroker

WHhat IS @N EVENL. ..o e 5.
Differences Between Application-defined and System-defined Events............ 5-:
What IS the EVENIBIOKETuueiiiiii e 5-
How the EventBroKer WOrIKSccoooeeiiiiiii e 5-.

Event Notification Methodsuuuiiiiiiiiiici i 5-5

Severity Levels of System EVENtSccccciiiiiiiiiii e 5-
What Are the Benefits of Brokered EVENESvviiiiiiiiiiiiiiieeie e, 5-

Subscribing to Events

Process of Using the EVENBIOKETccuviiiiiiiiiie e 6-
How to Configure EVentBroker SErvers.........ccciiieeiiiieee e 6-
How to Set the Polling INtervalccooiiiiiiiiie e 6-:
Subscribing, Posting, and Unsubscribing to Events with the ATMI and the
EVENT _MIB ..ottt ettt et e ee st e e e 6-3
Identifying Event Categories Using eventexpr and filtercccoceeees 6-4
Accessing the EVENIBroKeroooiiiiiiii e 6-
How to Select a Notification Method ..o, 6-¢€
How to Cancel a Subscription to an EVENt..........ccccovieiiiiiiieniieee e 6-
How to Use the EventBroker with TransSactionsccccevvvieeeniiiieieen e 6-¢
How Transactions Work with the EventBrokercccccoovvveeenniincennnnn 6-9

Migrating Your Application

WAL IS MIGEAtiONeeieiieiie et 7-
Performing a Master Migrationccooeiieerieniiinee e 7-2
MIgrating @ SErVEr GrOUPc.coiuuuteeaririie et ee et e et e st e s sn e e 7-
Migrating MacChiNES.ccoiiiiiiiiiiiie e 7-:
Performing a Scheduled Migrationcccouveeeiiiiiie e 7-

MIGration OPLIONS.cuiiiiier ettt et e e e -

How to Switch the Master and Backup Machines............ccccooveiniicin e 7-
Examples of Switching MASTER and BACKUP Machines..................... 7-6

HOW t0 Migrate SErver GrOUPSciiuuiiiiiiieie e eiieie ettt ee e st e eeesnbee e 7-
How to Migrate a Server Group When the Alternate Machine

Is Accessible from the Primary Machineccccccooviiiniiie i, 7-8

Administering a BEA Tuxedo Application at Run Time

How to Migrate a Server Group When the Alternate Machine

Is Not Accessible from the Primary Machine...........c.ccccccoiiiieiinnnen, 7-9
Examples of Migrating @ Server GrouUpcoooiuieeeeriniieeeeenieie e 7-9
How to Migrate Server Groups from One Machine to Another...................... 7-11
How to Migrate Machines When the Alternate Machine
Is Accessible from the Primary Machine...........coocccivieiiiiiennes 7-11
How to Migrate Machines When the Alternate Machine
Is Not Accessible from the Primary Machine...........cccocccciiieiins 7-12
Examples of Migrating @ Machine...........ccccoviiiiniiiin e 7-13
How to Cancel a Migrationceoiiiiiiiiiiiieii e 7-14
Example of a Migration Cancellationc.ccceeviiiiiiii e 7-14
How to Migrate Transaction Logs to a Backup Machine...........ccccoccveeriiennn. 7-15

Tuning Your Application

Maximizing Your Application RESOUICESccooiuiiieeiiiiiieiiieee et 8-2
When t0 USE MSSQ SeIS...cuiiiiiiiieiiiiiieiir ettt ee e e e e ee e e e e e e senees 8-2
How to Enable Load BalanCing..........ccoouueiiiaiiiiiie e 8-4
How to Measure Service Performance TiMe.........cccovuiieiiiiiiiiin e 8-5
How to Assign Priorities to Interfaces or ServiCes.coovvviviiieieiiiiiinie e 8-5
Example of USINg PriOMtIeS ... 8-6
Using the PRIO Parameter to Enhance Performance..............cccooeeeeens 8-6
Bundling SEerviCes iNt0 SEIVEIScoiuiiiiiiiiit et 8-7
When to BUNAIE SEIVICESciiiiiiiieiiiiiiie ettt 8-7
Enhancing Efficiency with Application Parameters...........cccccveiiiieiiiniiieeenes 8-8
Setting the MAXACCESSERS, MAXSERVERS, MAXINTERFACES,
and MAXSERVICES Parameters........cccoocveeriiiiieineniiecen e 8-8
Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE
Parameters.... ... 8-9
Tuning with the SANITYSCAN, BLOCKTIME, BBLQUERY, and
DBBLWAIT Parameters............ccoooiiiiiiiiiiiciiieieeie e s 8-9
Recommended Values for Tuning-related Parameters............cccoccceeeenen. 8-10
Determining Your System IPC ReqQUIrEMENTScceeriirieiriiieeiniiiiee e 8-10
Measuring System TraffiCcooiuiiiiiii e 8-12
Example of Detecting a System Bottleneck...........cccccoeeviiiiiiiin 8-13
Detecting Bottlenecks on UNIX Platforms.........ccccooiiiiiiiiniee 8-13
Detecting Bottlenecks on Windows NT Platformsccccccevviiiiennnnen 8-15

Administering a BEA Tuxedo Application at Run Time vii

9. Troubleshooting a BEA Tuxedo Application

Determining TYpes Of FAIIUIESooiiiiiiiieiiieie e 9-
How to Determine the Cause of an Application Failureccccooeee. 9-2
How to Determine the Cause of a BEA Tuxedo System Failure 9-:

How to Broadcast an Unsolicited MeSSAQEcvuvveeeiiiiiieiiiiiiee e 9-

Maintaining Your SYStem FileSuuiii i 9-!
How to Print the Universal Device List (UDL).......cccueevviiiieiienniiieeenienen, 9-5
How to Print VTOC INformationcccooimiiiiiniiiic e 9-6
How to Reinitialize & DeVICE........c.ooiuiiiiiie e 9-€
How to Create a DeviCe LiSt ... 9-
How to Destroy @ DeVICE LiSt........ccouriiiiiiiiieiiiiee e 9-7

Repairing Partitioned NetwWOrksooooiiiiiiiiiiee e 9-
Detecting a Partitioned NetwWorkccceiiiiiiiiiiiiiie e 9-¢
Restoring a Network CONNECHIONeiiiiiiiiiieiiie e 9-1(

Restoring Failed Machinesccooiiiiiiiii e 9-1
How to Restore a Failed MASTER Machine...........c.cccceeeiiiiiieiiiiiineees 9-11
How to Restore a Failed Nonmaster Machine............ccccovciveeiiiiiinen e, 9-1.

How to Replace System COMPONENLSccooiiiiiiiriiiiieeriie e 9-!

How to Replace Application COMPONENTScoccuiiiiiiiiiiieiie e 9-1:

Cleaning Up and Restarting Servers Manuallyccccveeiiiiieiiniieiee e, 9-1
How to Clean Up Resources Associated with Dead Processes................ 9-1
How to Clean Up Other RESOUICEScceeiiiiiiiiiiiieie et 9-1

Aborting or Committing TranSACONS.........ccuviiieiiiiie e 9-1f
How to AbOrt @ TranSACHIONevveiiiiieie ettt 9-1¢
How to Commit @ TranSaCLONccoiiiiieeiriiie e 9-1¢

How to Recover from Failures When Transactions Are Usedccc....... 9-1

How to Use the IPC Tool When an Application Fails to Shut Down
L (0] 0= 4 VRS RR P 9-1

Troubleshooting Multithreaded/

Multicontexted APPlICALIONSc..uviiiiiiiiieeie e 9-19
Debugging Multithreaded/Multicontexted Applications..............ccccueue.... 9-19
Limitations of Protected Mode in a Multithreaded Application 9-19

viii Administering a BEA Tuxedo Application at Run Time

CHAPTER

1 starting Up and

Shutting Down an
Application

m The Tasks Involved in Starting Up and Shutting Down an Application
m How to Set Your Environment

m How to Create the TUXCONFIG File

m How to Propagate the BEA Tuxedo System Software

m How to Create a TLOG Device

m How to Start tlisten at All Sites

m How to Boot the Application

m How to Shut Down Your Application

Administering a BEA Tuxedo Application at Run Time 1-1

1 Starting Up and Shutting Down an Application

The Tasks Involved in Starting Up and
Shutting Down an Application

The following flowchart illustrates the tasks required to start up and shut down your
BEA Tuxedo application.

Click on each of the following tasks for instructions on completing that task.

Figure 1-1 Startup and Shutdown Tasks

Set environment variables

|
Create the

cuxcontig file
I

Fropagate the BEA
TUKEDO software
|

Create a TLOG device

|

Stat tlizten atall
Sites
|

Bootthe application

I
Shut down the application

How to Set Your Environment

Being able to access the BEA Tuxedo executables and data libraries is essential to t
job of managing a BEA Tuxedo application. For example, the commands needed to
start up or shut down an application are locatesfrisXDIR/bin on a UNIX host
machine, and is6TUXDIR%\bin on a Windows NT host machine.

1-2 Administering a BEA Tuxedo Application at Run Time

How to Set Your Environment

On a UNIX host machine, set and export the following environment variables to set up
your environment.

TUXCONFIGpath_name_of TUXCONFIG_file

TUXDIR=path_name_of BEA Tuxedo_system_root_directory
APPDIR=path_name_of BEA Tuxedo_application_root_directory
PATH=$APPDIR:$TUXDIR/bin:/bin:$PATH

LD _LIBRARY_PATH=$APPDIR:$TUXDIR/ib:/lib:/usr/lib:$3LD_LIBRARY PATH
export TUXCONFIG TUXDIR APPDIR PATH LD_LIBRARY_PATH

On this platform ... Make this change . . .

SunOS Addusr/5bin as the first directory in yolRATH as shown
in the following example:
PATH=/usr/5bin:$APPDIR:$TUXDIR/bin:/bin:$PATH

AIX on the RS/6000 UskIBPATH instead oLD_LIBRARY_PATH

HP-UX on the HP 9000 UseHLIB_PATH instead oLD_LIBRARY_PATH

Replace the substitutable strings (italicized) with the absolute path names appropriate
for your installation.

Note: The application administrator defines theéXCONFIG TUXDIR, andAPPDIR
environment variables in theACHINESsection of theJBBCONFIJile or the
T_MACHINEclass of th&M_MiIBfor each machine in an application. See the
UBBCONFIG(5) or TM_MIB(5) reference page for a description of these
environment variables.

On a Windows NT host machine, enter the following commands at the MS-DOS
prompt to set up your environment.

set TUXCONFIG= path_name_of TUXCONFIG _file

set TUXDIR= path_name_of BEA Tuxedo_system_root_directory
set APPDIR= path_name_of BEA Tuxedo_application_root_directory
set PATH=%APPDIR%;%TUXDIR%\bin;%PATH%

Replace the substitutable strings (italicized) with the absolute path names appropriate
for your installation.

Windows NT accesses the required dynamically loadable library files throurgprits
variable setting. Specifically, Windows NT searches for dynamically loadable library
files in the following order:

Administering a BEA Tuxedo Application at Run Time 1-3

1 Starting Up and Shutting Down an Application

The directory from which the BEA Tuxedo application was loaded
The current directory

The Windows system directory (for exam@awinnt\System32)
The Windows directory (for example;\winnt)

The directories listed in ttATHenvironment variable

agrONPE

How to Create the TUXCONFIG File

Thetmloadcf(1l) command converts the text configuration file to a binary file called
tuxconfig and writes the new file to the location given in TluXCONFIGvariable.
Run the command as follows.

$ tmloadcf [-n] [-y] [-c] [-b blocks 1{ ubbconfig_file |-}

Note: You must be logged in on theaASTERMachine and have the effective user ID
of the configuration file owner.

The options shown here perform the following functions:
m -n performs a syntax check only; reports errors.
m -y overwrites the existinQUXCONFIGhile without asking.

m -c calculates minimum interprocess communication (IPC) resources of the
configuration.

m -b limits the size of theUXCONFIGfile.

The-c and-n options do not load theEUXCONFIGile. IPC resources are platform
specific. If you use the option, check the data sheet for your platform inBE&
Tuxedo Installation Guid® judge whether you must make changes. If you do want to
change IPC resources, check the administration documentation for your platform. If
the-n option checks for syntax errors in the configuration file, correct the errors before
you proceed. (Fowbbconfig_file , Substitute the fully qualified name of your
configuration file.)

The-b option takes an argument that limits the number of blocks used to store the
TUXCONFIGfile. Use it if you are installin@UXCONFIGon a raw disk device that has
not been initialized. The option is not recommend@dKCONFIGS stored in a regular
UNIX system file.

1-4 Administering a BEA Tuxedo Application at Run Time

How to Propagate the BEA Tuxedo System Software

How to Propagate the BEA Tuxedo System
Software

TUXCONFIGs propagated automatically to all machines in your configuration by the
BEA Tuxedo system when you rtmboot(1) . There are, however, other files that

you need to propagate manually. Following is a list of the files and directories that you
need to create for a networked application. First, install the BEA Tuxedo system on the
machine.

Figure 1-2 Directories and Files to Propagate

Directory/File

Description

APPDIR

You must create the directory named in ARPDIR variable must be created on each
node. It is easier if this directory has the same path name on all nodes.

Executables

You must build one set of application servers for each platform, and manually
propagate the appropriate set to all machines running on each platform (that is, the BEA
Tuxedo system does not do this automatically). Store the executaBRBIMR, or in
a directory specified in RATHvariable inENVFILES in theMACHINESsection of
your configuration file.

Field tables
VIEWtables

If FMLor VIEWSbuffer types are used, field tables afiEW description files must be
manually propagated to the machines where they are used, and then recompiled. Use
mkfldhdr, mkfldhdr32(1) to make a header file out of a field table file; use

viewc, viewc32(1) to compile avIEW file. TheFMLfield tables an&/IEW

description files should be available through the environment varigbZEBLDIR,
FIELDTBLS, VIEWDIR, andVIEWFILES, or their 32-bit equivalents.

tlisten

Thetlisten process must be started on each machine of a networked BEA Tuxedo
application before the application is booted. Refer tdligten(1) reference page.

You must defineflUXDIR, TUXCONFIGAPPDIR, and other relevant environment
variables before startirnjsten

Administering a BEA Tuxedo Application at Run Time 1-5

1 Starting Up and Shutting Down an Application

How to Create a TLOG Device

To create distributed transaction processing, you must have create a global transacti
log (TLOQ on each participating machine. To defineL@G complete the following
steps.

1.

You must first set several parameters inMAE€HINESsection of the configuration
file: TLOGDEVICE TLOGOFFSETTLOGNAMEandTLOGSIZE.

You must also create a universal device list entry (UDL) folr i@ DEVICEON

each participating machine. (You can do this task before or after loading
tuxconfig , but you must do so before booting the system.) To create an entry in
the UDL for theTLOGdevice, invokemadmin -c on theMASTERmachine with

the application inactive. (The option invokesmadmin in configuration mode.)

Enter the command:
crdl -z config -b blocks

where-z config specifies the full path name for the device on which the UDL
should be created (that is, where h@®Gwill reside) andb blocks specifies

the number of blocks to be allocated on the device. The valeej should
match the value of thELOGDEVICEparameter in th®IACHINESsection. The
blocks must be larger than tmeOGSIZE If -z is not specified, the value of

config defaults to the value of the varialH8CONFIG(which points to the
application’s databases).

Repeat Steps 1 and 2 on each machine in your application that will use global
transactions.

If the TLOGDEVICHES mirrored between two machines, Step 4 is not required on the
paired machine. To be recoverable, Th®Gshould reside on a device that can be
mirrored. Because the.OGis too small (typically, 100 pages) to warrant the allocation
of a whole disk partition, theLOGis commonly stored on the same raw disk slice as
the BEA Tuxedo /Q database.

1-6 Administering a BEA Tuxedo Application at Run Time

How to Start tlisten at All Sites

How to Start tlisten at All Sites

For a networked application, a listener process must be running on each machine. A
networked application is an application that runs on more than one machine, as
established by theODEIMPparameter in thRESOURCESection of the application’s
UBBCONFIdile.

Note: You must definfUXDIR, TUXCONFIGAPPDIR, and other relevant
environment variables before startitigten

The port on which the process is listening must be the same as the port specified for
NLSADDRN theNETWORERection of the configuration file. On each machine, use the
tlisten(1) command, as follows.

tlisten [-d device -l nisaddr [-u{ uid-# | uid-name }][-z bits 1[-Z bits]

tlisten Command Options

m -d device —The full path name of the network device. For BEA Tuxedo
Release 6.4 or above, this option is not required. For earlier versions of the BEA
Tuxedo system (up to Release 6.3), some network providers (for example,
TCP/IP) require this information.

m - nisaddr —Network address at which the process listens for connections.
TCP/IP addresses may be specified in the following forms:

"/lhostname:port_number"

"[I#.#.# #:port_number"

In the first exampletisten finds an address fdostname using the local
name resolution facilities (usually DN$pstname must be the local machine,
and the local name resolution facilities must unambiguously resodeame

to the address of the local machine.

In the second example, thet.#.# is in dotted decimal format. In dotted
decimal format, each should be a number from 0 to 255. This dotted decimal
number represents the IP address of the local machine. In both of the above
formats,port_number is the TCP port number at which tlisten process

Administering a BEA Tuxedo Application at Run Time 1-7

1 Starting Up and Shutting Down an Application

listens for incoming requestsort_number can either be a number between 0

and 65535 or a name.gbért_number is a name, then it must be found in the
network services database on your local machine. The address can also be
specified in hexadecimal format when preceded by the charagteEsach

character after the initi@k is a number between 0 and 9 or a letter between A
and F (case insensitive). The hexadecimal format is useful for arbitrary binary
network addresses suchiag/SPX or TCP/IP . The address can also be

specified as an arbitrary string.The value should be the same as that specified fo
theNLSADDRparameter in th®ETWORKection of the configuration file.

tmloadcf(1) prints an error ifilsaddr is missing from any entry but the entry
for theMASTERMID, for which it prints a warning. However,rifsaddr is
missing from thevASTER.MID entry,tmadmin(l) cannot be runin
administrator mode on remote machines; it is limited to read-only operations.
This also means that a backup site is unable to rebodAREERsite after

failure.

m -u uid# oruid-name —Used to run thdisten process as the indicated
user. This option is required if thiesten(1) command is run by root on a
remote machine.

m -z[bits]—Specifies the minimum level of encryption required when
establishing a network link between a BEA Tuxedo system administrative
process andisten . Zero (0) means no encryption, while 56 and 128 specify
the length (in bits) of the encryption key. If this minimum level of encryption
cannot be met, link establishment fails. The default is zero.

m -Z[bits]—Specifies the maximum level of encryption allowed when
establishing a network link between a BEA Tuxedo system administrative
process andisten . Zero (0) means no encryption, while 56 and 128 specify
the length (in bits) of the encryption key. The default is 128.-fhand-z
options are available only if either the International or US and Canada BEA
Tuxedo Security license is installed.

1-8 Administering a BEA Tuxedo Application at Run Time

How to Boot the Application

How to

Boot the Application

Once all prerequisites have been completed successfully, you can bring up the
application usingmboot . Only the administrator who created theéXCONFIdile can
executetmboot(1)

The application is generally booted from the machine designatedSRERN the
RESOURCESection of the configuration file or tlB&CKUPacting as th&1ASTERThe
-b option allows some deviation from this rule. Faboot to find executables, BEA
Tuxedo system processes such as the BBL must be locaf@dXDIR/bin .
Application servers should be in the directory defined by#rDIR variable, as
specified in the configuration file.

When booting application servetsipoot uses theCLOPT SEQUENCESRVGRP

SRVID, andMIN parameters from the configuration file. Application servers are booted
in the order specified by ttREQUENCParameter, iSEQUENCHES used. IISEQUENCE

is not specified, servers are booted in the order in which they appear in the
configuration file. The command line should look something like the following.

$ tmboot [-g grpname] [-0 sequence] [-S] [-A] [-Y]

Figure 1-3 tmboot Options

This Option Performs this Function
-g grpname Boots all TMS and application servers in groups usingghisame parameter.
-0 Ssequence Boots all servers in the order shown in 8EBQUENCPBarameter.

-S server-name

Boots an individual server.

-S Boots all servers listed in tt®ERVERSection.

-A Boots all administrative servers for machines listed irMB&HINESsection. This
option ensures that ti2BBL, BBL, andBRIDGEprocesses are started in the proper
order.

-y Provides an automatic “yes” response to the prompt that asks whether all administrative

and application servers should be booted. This prompt is displayed only if no options
that limit the scope of the command (groname , for example) are specified.

Note: For a complete list afnboot options, see thenboot(1) reference page.

Administering a BEA Tuxedo Application at Run Time 1-9

1 Starting Up and Shutting Down an Application

Sequence of tmboot Tasks for a 2-Machine Configuration

To boot the entire configuration, enter the following command.
prompt > tmboot -y

tmboot performs the following tasks.

Figure 1-4 Default Boot Sequence for a Small Application

Frocesses TUXCONFIG file an
hMASTER site.

Boots DBBL and BBEL (creating
shared memony on MASTER
machine.

|
Bootz BRIDGE on MASTER
machine (setting up listening
address).

Sete up connection with remaote
site tlisten process; propragates
TUXCOMFIE to remote site

Boots BSBRIDGE (zets up
connection to BRIDGE

process on MASTER)

|
Boots a3 BBL {cre ates local BB
and sends request to DBBEL
wia BSBRIDGE to register it a=
azemer);; DBBL reply contains
copy of MASTER BB used by
BBL to update its BB.

|
Boots a BRIDGE (setz up a
connection badkdto BRIDGE an
MASTER and tells BSBRIDGE
itisno longer needed.

|
Boots local application
zenrers and then ramaote
application semvars.

1-10 Administering a BEA Tuxedo Application at Run Time

How to Shut Down Your Application

Sequence of tmboot Tasks for Large Applications (Over
50 Machines)

For relatively large applications (that is, those consisting of over 50 machines),

tmboot boots entire machines in a single step rather than performing all the steps used
to boot two machines in the default sequence. Following is the optimized sequence of
tasks.

Figure 1-5 Boot Sequence for a Large Application

Boots entire MASTEEmachine
uszing -hd -1,

Boots entire remaote machine
using -B -1.

Note: The boot sequence is much faster than the boot sequence for large applications
because the number of system messages is far smaller. This method generally
reduces boot time by 50%. In a configuration running on a slow network, boot
time can be improved by booting machines with higher speed connections to
the MASTERmachine first.

How to Shut Down Your Application

Use themshutdown(l) command to shut down all or part of a BEA Tuxedo
application. The rules for running this command are similar to those for running
tmboot(1) ; tmshutdown is the inverse ofnboot .

When the entire application is shut downshutdown removes the interprocess
communication (IPC) resources associated with the BEA Tuxedo system. The options
used bytmboot for partial booting A, g, -1, -S, s, - , -M -B) are supported in
tmshutdown . The b option (allowingmboot to be used from a naMASTERMachine)

is not supported famshutdown ; you must enter thnshutdown command from the
MASTEROr BACKURMASTER machine.

Administering a BEA Tuxedo Application at Run Time 1-11

1 Starting Up and Shutting Down an Application

To migrate servers, use theaoption. This option shuts down the servers without
removing bulletin board entries for them. If a machine is partitionedmeiatdown

with the £ LMID option on the partitioned machine to shut down the servers on that
machine.

tmshutdown does not shut down the administrative server BBL on a machine to which
clients are attached. You can use theption to override this feature. You need this
option for occasions when you must bring down a machine immediately and you
cannot contact the clients.

You can use thenxdelay option to force a hard shutdown afteeday seconds. This
option suspends all servers immediately so that additional work cannot be queued. Tt
value ofdelay should allow time for requests already queued to be serviced. After
delay seconds, 8IGKILL signal is sent to the servers. This option enables the
administrator to shut down servers that are looping or blocked in application code.

Running tmshutdown

Only the administrator who has written theXCONFIGfile can execute

tmshutdown(1) . The application can be shut down only from the machine designated
asMASTERN the configuration file. When trBACKUPacts asMASTERIt is considered

to be theMASTERor shutdown purposes. (The only exception to this rule is a
partitioned machine. By using theeption, an administrator can run tiveshutdown
command from a partitioned machine to shut down the application at that site.)

The order in which application servers are shut down is the reverse of the order
specified by theSEQUENCparameter for them, or the reverse order in which they are
listed in the configuration file. If some servers h&&UENCBumbers and others do
not, the unnumbered servers are the first to be shut down, followed by the applicatiol
servers witltSEQUENCBumbers (in reverse order). Finally, administrative servers are
shut down.

When an application is shut down, all the IPC resources allocated by the BEA Tuxed
system are removednshutdown does not remove IPC resources allocated by the
DBMS.

1-12 Administering a BEA Tuxedo Application at Run Time

How to Shut Down Your Application

Using the IPC Tool When an Application Fails to Shut
Down Properly

IPC resources are operating system resources, such as message queues, shared
memory, and semaphores. When a BEA Tuxedo application shuts down properly with
thetmshutdown command, all IPC resources used by the BEA Tuxedo application are
removed from the system. In some cases, however, an application may fail to shut
down properly and stray IPC resources may remain on the system. When this happens,
it may not be possible to reboot the application.

One way to address this problem is to remove IPC resources with a script that invokes
the systemPCS command and scan for all IPC resources owned by a particular user
account. However, with this method, it is difficult to distinguish among different sets

of IPC resources; some may belong to a particular BEA Tuxedo application; and others
to applications unrelated to the BEA Tuxedo system. It is important to be able to
distinguish among these sets of resources; unintentional removal of IPC resources can
severely damage an application.

The BEA Tuxedo IPC tool (that is, theipcrm(1) command) enables you to remove
IPC resources allocated by the BEA Tuxedo system (that is, for core BEA Tuxedo and
Workstation components only) in an active application.

The command to remove IPC resourasdcrm(1) , resides imUXDIR/bin . This
command reads the binary configuration fifle&lXCONFIG, and attaches to the bulletin
board using the information in this filenipcrm works only on the local server
machine; it does not clean up IPC resources on remote machines in a BEA Tuxedo
configuration.

To run this command, enter it as follows on the command line.
tmipcrm [-y] [-n] [tuxconfig_file]

The IPC tool lists all IPC resources used by the BEA Tuxedo system and gives you the
option of removing them.

Note: This command will not work unless you have seflth®CONFIGenvironment
variable correctly or specified the appropriatéXCONFIGile on the
command line.

To remove /Q IPC resources, use ghedmin(1) ipcrm command.

Administering a BEA Tuxedo Application at Run Time 1-13

1 Starting Up and Shutting Down an Application

1-14 Administering a BEA Tuxedo Application at Run Time

CHAPTER

2

Monitoring Your BEA
Tuxedo Application

m Ways to Monitor Your Application

m Selecting Appropriate Monitoring Tools

m Using the BEA Administration Console to Monitor Your Application
m Using Command-line Utilities to Monitor Your Application

m Using EventBroker to Monitor Your Application

m Using Log Files to Monitor Activity

m Using the MIB to Monitor Your Application

m Using the Run-time Tracing Utility

m Managing Errors Using the DBBL and BBLs

m Using the ATMI to Handle System and Application Errors

m Monitoring Multithreaded and Multicontexted Applications

Administering a BEA Tuxedo Application at Run Time 2-1

2 Monitoring Your BEA Tuxedo Application

Ways to Monitor Your Application

As an administrator, you must ensure that once an application is up and running, it
continues to meet the performance, availability, and security requirements set by yot
company. To perform this task, you need to monitor the resources (such as shared
memory), activities (such as transactions), and potential problems (such as security
breaches) in your configuration, and take any necessary corrective actions.

To help you meet this responsibility, the BEA Tuxedo system provides several
methods for monitoring system and application events, and dynamically reconfiguring
your system to improve performance. The BEA Administration Console,
command-line utilities, log files, the ATMI, the MIB, and a run-time tracing facility
offer an excellent view of how a system is working. They help make your application
capable of responding quickly and efficiently to changing business needs or failure
conditions. You can use these tools to keep your application performing fast, well, ant
securely.

Figure 2-1 Monitoring Tools

¥

MIB AP Cnmm_an_d-Line Administration EventBraker
tilities Console

| | I | ’—l

B Events

TLOG Board

BLI*BHH LULOGE

2-2 Administering a BEA Tuxedo Application at Run Time

Ways to Monitor Your Application

See Also

The BEA Tuxedo system offers the following tools to monitor your application:

m BEA Administration Console-a Web-based graphical user interface you can use
to observe the behavior of the application, and to dynamically configure its
operation. You can display and change configuration information, determine the
state of each component of the system, and obtain statistical information about
items such as executed requests, and queued requests.

m Command-line utilities-a set of commands (for exampi@poot(1)
tmadmin(1) , andtmshutdown(1)) you can use to activate, deactivate,
configure, and manage your application.

m EventBroker—a mechanism that informs administrators of system faults and
exceptional happenings such as network failures. When an event is posted by
clients or servers, the EventBroker matches the name of the posted event to a list
of subscribers for that event, and takes appropriate action, determined by each
subscription.

m Log files—a set of files that make up a repository for error and warning
messages, debugging messages, and informational messages helpful in tracking
and resolving problems in the system.

m MIB—an interface to a set of procedures for accessing and modifying
information in the MIBs. Using the MIB, you can write programs that enable
you to monitor your run-time application.

m Run-time tracing facility—software that tracks the execution of an application,
thus providing information that is helpful in resolving system problems.

m “System and Application Data that You Can Monitor” on page 2-4
m “Selecting Appropriate Monitoring Tools” on page 2-8

m “Using the BEA Administration Console to Monitor Your Application” on page
29

m “Using the BEA Administration Console” on page 3-4ritroducing the BEA
Tuxedo System

m “Using Command-line Utilities to Monitor Your Application” on page 2-10

Administering a BEA Tuxedo Application at Run Time 2-3

2 Monitoring Your BEA Tuxedo Application

m “Using EventBroker to Monitor Your Application” on page 2-15

m “Using Log Files to Monitor Activity” on page 2-16

m “Using the ATMI to Handle System and Application Errors” on page 2-28
m “Using the MIB to Monitor Your Application” on page 2-22

m “Managing Operations Using the MIB” on page 3-10rtroducing the BEA
Tuxedo System

m “Using the Run-time Tracing Utility” on page 2-25

m tmshutdown(l) in BEA Tuxedo Command Reference

System and Application Data that You Can
Monitor

The BEA Tuxedo system enables you to monitor system and application data.

Monitoring System Data

To help you monitor a running system, your BEA Tuxedo system maintains paramete
settings and generates statistics for the following system components:

m Clients

m Conversations

m Groups

m Message queues
m Networks

m Servers

2-4 Administering a BEA Tuxedo Application at Run Time

System and Application Data that You Can Monitor

m Services
m Transactions

You can access these components using the MtBaaimin . You can set up your
system so that it can use the statistics in the bulletin board to make decisions and to
modify system components dynamically, without your intervention. With proper
configuration, your system can perform the following tasks (when bulletin board
statistics indicate that they are required):

m Turn on load balancing
m Start a new copy of a server
m Shut down servers that are not being used

By monitoring the administrative data for your system, you can prevent and resolve
problems that threaten the performance, availability, and security of your application.

Where the System Data Resides

To ensure that you have the information necessary to monitor your system, the BEA
Tuxedo system provides the following three data repositories:

m Bulletin Board—a segment of shared memory (on each machine in your
network) to which your system writes statistics about the components and
activities of your configuration

m Log files—files to which your system writes messages

m UBBCONFI&—a text file in which you define the parameters of your system and
application

Monitoring Dynamic and Static Administrative Data

You can monitor two types of administrative data that are available on every running
BEA Tuxedo systemstaticanddynamic

Administering a BEA Tuxedo Application at Run Time 2-5

2 Monitoring Your BEA Tuxedo Application

What Is Static Data

Static data about your configuration consists of configuration settings that you assigl
when you first configure your system and application. These settings are never
changed without intervention (either in real-time or through a program you have
provided). Examples include system-wide parameters (such as the number of
machines used) and the amount of interprocess communication (IPC) resources (su
as shared memory) allocated to your system on your local machine. Static data is ke
in the UBBCONFIdile and in the bulletin board.

Checking Static Data

At times you may need to check static data about your configuration. For example, yo
may want to add a large number of machines without exceeding the maximum numbe
of machines allowed in your configuration (or allowed in the machine tables of the
bulletin board). You can look up the maximum number of machines allowed by
checking the current values of the system-wide parameters for your configuration (on
of which iISMAXMACHINES

You may be able to improve the performance of your application by tuning your
system. To determine whether tuning is required, you need to check the amount of
local IPC resources currently available.

What Is Dynamic Data

Dynamic data about your configuration consists of information that changes in real
time, that is, while an application is running. For examplelahé (the number of
requests sent to a server) andstaeof various configuration components (such as
servers) change frequently. Dynamic data is kept in the bulletin board.

Checking Dynamic Data

Dynamic configuration data is useful in resolving many administrative problems, as
demonstrated by two examples.

In the first example, suppose your throughput is suffering and you want to know
whether you have enough servers running to accommodate the number of clients
currently connected. Check the number of running servers and connected clients, ar
the load on one or more servers. These numbers help you determine whether addin
more servers will improve performance.

2-6 Administering a BEA Tuxedo Application at Run Time

Common Startup and Shutdown Problems

In the second example, suppose you receive multiple complaints about slow response
from users when making particular requests of your application. By checking load
statistics, you can determine whether increasing the value BEGEKTIMEparameter

would improve response time.

Common Startup and Shutdown Problems

When evaluating whether your BEA Tuxedo system is operating normally, you might
want to consider the following list of common startup and shutdown problems, and
monitor your system periodically.

Common Startup Problems

Application server failed or dumped core during initialization
m Application server file not found or not executable
m Automatic migration of server group

m Default boot sequence may not be optimal

m Environment variable not set or not set properly

m IPCKEY is already in use

m Invalid network address

m Met upper bound limits specified in tkBBCONFIGile
m Network port is in use already

m Reached limit on system resources

m Server boot dependency

m TLOGfile is not created

Administering a BEA Tuxedo Application at Run Time 2-7

2 Monitoring Your BEA Tuxedo Application

Common Shutdown Problems

m Clients still attached
m Dead servers

m Shutdown sequence

Selecting Appropriate Monitoring Tools

To monitor a running application, you need to keep track ofiyilamicaspects of
your configuration and sometimes checkslaticdata. In other words, you need to be
able to watch the bulletin board on an ongoing basis and consuBEG®ONFIJile
when necessary. The method you choose depends on the following factors:

m Your BEA Tuxedo system administration experience: If you have a lot of
experience as an administrator, as well as shell programming expertise, you may
prefer to write programs that automate your most frequently run commands.

m Your operating system experience: If you are inexperienced, you may be more
comfortable using the BEA Administration Console.

m Which information you want to view: If you decide to monitor your application
by examining theRESOURCESection of theJBBCONFIdile through the
tmadmin command, you will have access to only the current values.

The following table describes how to use each monitoring method.

Use this Method By

BEA Administration Console Using a graphical interface

Command-line utilitiessuch Entering commands after a prompt
astxrpt andtmadmin

EventBroker Subscribing to BEA Tuxedo system events, such as servers
dying, and network failures.

2-8 Administering a BEA Tuxedo Application at Run Time

Using the BEA Administration Console to Monitor Your Application

Use this Method By

Log files(for example ULOG Viewing theULOGwith any text editor; checking théLOG

TLOQ for tlisten messages; and converting HeOG(a binary
file) to a text file by runningmadmin dumptlog ~ which
downloads &LOGto a text file.

MIB Writing programs that monitor your run-time application

Run-time tracing utility Specifying a tracing expression that contains a category, a
filtering expression, and an action, and enabling the
TMTRACEnNvironment variable. For more information, see
“Using the Run-time Tracing Utility” on page 2-25.

Using the BEA Administration Console to
Monitor Your Application

The BEA Administration Console is a graphical user interface to the MIB that enables
you to tune and modify your application. It is accessed through the World Wide Web
and used through a Web browser. Any administrator with a supported browser can
monitor a BEA Tuxedo application.

Using the Power Bar to Monitor Activities

The Power Bar appears near the top of the main BEA Administration Console window,
immediately below the Menu Bar. The Power Bar is a row of 12 buttons that allow you
to run tools for frequently performed administrative and monitoring functions. All
buttons are labeled with both icons and names. The following buttons are available for
monitoring:

m Logfile—Displays thdJLOGfile from a particular machine in the active domain.

m Event ToolHelps you monitor system events. When you click on the Event Tool
button, a pop-up window displays four optiossbscribe—to request notification of
specified system eventsnsubscribe—to reject further notification of specified system

Administering a BEA Tuxedo Application at Run Time 2-9

2 Monitoring Your BEA Tuxedo Application

events snapshet—to create a record of the data currently held by the Event Tool, and
select format—to choose parameters for the information being collected by the
Event Tool.

m Stats—to display a graphical representation of BEA Tuxedo system activity

m Search—to look for a particular object class or object in the Tree.

See Also

m “Using the BEA Administration Console” on page 3-4ritroducing the BEA
Tuxedo System

Using Command-line Utilities to Monitor
Your Application

To monitor your application through the command-line interface, usadenin(1)
ortxrpt(l) command.

Inspecting Your Configuration Using tmadmin

Thetmadmin command is an interpreter for 53 commands that enable you to view and
modify a bulletin board and its associated entities. Usingrtiidmin commands, you

can monitor statistical information in the system such as the state of services, the
number of requests executed, the number of queued requests, and so on.

Using thetmadmin commands, you can also dynamically modify your BEA Tuxedo
system. You can, for example, perform the following types of changes while your
system is running:

m Suspend and resume services

m Advertise and unadvertise services

2-10 Administering a BEA Tuxedo Application at Run Time

Using Command-line Utilities to Monitor Your Application

m Change service parameters
m Change theUTOTRANImeout value

Whenever you starttmadmin session, you can choose the following operating modes
for that session: the default operating mode, read-only mode, or configuration mode:

m |In defaultoperating modgyou can view and change bulletin board data during a
tmadmin session, if you have administrator privileges (that is, if your effective
UID and GID are those of the administrator).

m Inread-only modgyou can view the data in the bulletin board, but you cannot
make any changes. The advantage of working in read-only mode is that your
administrator process is not tied uptadmin ; thetmadmin process attaches
to the bulletin board as a client, leaving your administrator slot available for
other work.

m In configurationmode you can view the data in the bulletin board and, if you
are the BEA Tuxedo application administrator, you can make changes. You can
start atmadmin session in configuration mode on any machine, including an
inactive machine. On most inactive machines, configuration mode is required in
order to rurtmadmin . (The only inactive machine on which you can start a
tmadmin session without requesting configuration mode iSMASTER
machine.)

Note: You can also generate a report of the BEA Tuxedo version and license
numbers.

Generating Reports on Servers and Services Using txrpt

Thetxrpt command analyzes the standard error output of a BEA Tuxedo server and
provides a summary of service processing time within the server. The report shows the
number of times each service was dispatched and the average amount of time it took
for each service to process a request during the specified penod. takes its input

from the standard input or from a standard error file redirected as input. To create
standard error files, have your servers invoked withrth@ption from the

servopts(5) selection; you can name the file by specifying it with-theservopts

option. Multiple files can be concatenated into a single input streamxrgor .

Administering a BEA Tuxedo Application at Run Time 2-11

2 Monitoring Your BEA Tuxedo Application

Over time, information about service X and server Y (on which service X resides) is
accumulated in a filaxrpt processes the file and provides you with a report about
the service access and timing characteristics of the server.

See Also

= “Ways to Monitor Your Application” on page 2-2
m “How a tmadmin Session Works” on page 2-13
m “Monitoring Your System Using tmadmin Commands” on page 2-14

m “Performing Dynamic Operations Using tmadmin(1)” on page 3-26 in
Introducing the BEA Tuxedo System

m “Using Command-Line Utilities” on page 3-12lintroducing the BEA Tuxedo
System

2-12 Administering a BEA Tuxedo Application at Run Time

How a tmadmin Session Works

How a tmadmin Session Works

Thetmadmin command is an interpreter for 53 commands that enable you to view and
modify a bulletin board and its associated entities. The following illustration shows
you how a typicatmadmin session works.

Figure 2-2 Typical tmadmin Session

Adrministrator types tmadnin ata
prompt
ftmadnin
[operating mode option]
=

I

tmaduin verifies the configuration is
running. If not, this message is
displayed:
Ho bulletin board exists.
Entering boot mode
=

|

If canfiguration is running, tnadmnin
checks TUXCONFIG (path name) and
TIHXOFFSET (offzet) environment
wariables to get location ofthe
configuratian file

The BEA TUXEDD systerm checks
the operating made option
specified with tmadnin

* |fnoaption ar -c {configuration You can request configuration
mode)was entered, tnadunin muode an any machine whather
enters the bulltin board as an active ar inactive
administrative process

v |f -r {read-only mode was
entered, tmaduin entersthe
hulletin board as a client

If a persaon other than an administrator
enters -r aption, and security is turned
on, a password is regquired.

1

Wihen = is displaved, an administrator || A¥ailable twadwin commands depend on:
cah enter any tnadwin command * The mode of the current session

v current state ofthe canfiguration

v Type of machine anwhich you are warking

Administering a BEA Tuxedo Application at Run Time 2-13

2 Monitoring Your BEA Tuxedo Application

Monitoring Your System Using tmadmin Commands

Following is a list of run-time system functions that you can monitor wviskimin

commands:

m Number of servers installed in a service

m Appropriate load distribution

m If a particular service is doing any work

m Inactive clients

m If distribution of work is flowing smoothly through the system

m If a client is tying up a connection and preventing a server from doing any work

See Also

for another client
Stability of network
If you must manually commit or abort a transaction

Sufficient operating system resources (such as shared memory and semaphores
on a local machine

“Performing Dynamic Operations Using tmadmin(1)” on page 3-26 in
Introducing the BEA Tuxedo System

tmadmin(1) in BEA Tuxedo Command Reference

2-14 Administering a BEA Tuxedo Application at Run Time

Using EventBroker to Monitor Your Application

Using EventBroker to Monitor Your
Application

See Also

The BEA Tuxedo EventBroker monitors a running application for events (for example,

a state change in a MIB object, such as the transition of a client from active to inactive).
When the EventBroker detects an event, it reports or posts the event, and then notifies
relevant subscribers that the event has occurred. You can be informed automatically
when events occur in the MIB by receivirigLdata buffers representing MIB objects.

To post the event and report it to subscribers, the EventBroker uspsothec)

function. Both administrators and application processes can subscribe to events.

The EventBroker recognizes over 100 meaningful state transitions to a MIB object as
system events. A posting for a system event includes the current MIB representation
of the object on which the event occurred, and some event-specific fields that identify
the event that occurred. For example, if a machine is partitioned, an event is posted
with the following:

m The name of the affected machine, as specified im tACHINE class), with
all the attributes of that machine

m Some event attributes identifying the evenirehine partitioned

To use the EventBroker, you simply subscribe to system events.

m “Managing System Events Using EventBroker” on page 3-1dtinducing the
BEA Tuxedo System

Administering a BEA Tuxedo Application at Run Time 2-15

2 Monitoring Your BEA Tuxedo Application

Using Log Files to Monitor Activity

See Also

To help you identify error conditions quickly and accurately, the BEA Tuxedo system
provides the following log files:

Transaction log (TLOGY-A binary file that is not normally read by you (the
administrator), but that is used by the Transaction Manager Server (TMS). A
TLOGis created only on machines involved in BEA Tuxedo global transactions.

User log (ULOGY-A log of messages generated by the BEA Tuxedo system
while your application is running.

These logs are maintained and updated constantly while your application is running

“What Is the Transaction Log (TLOG)” on page 2-17

“What Is the User Log (ULOG)” on page 3-64litroducing the BEA Tuxedo
System

“Ways to Monitor Your Application” on page 2-2
“Detecting Errors Using Logs” on page 2-18

“Estimating Service Workload Using the Application Service Log” on page 2-21

2-16 Administering a BEA Tuxedo Application at Run Time

What Is the Transaction Log (TLOG)

What Is the Transaction Log (TLOG)

See Also

The transaction logr(0Q keeps track of global transactions during the commit phase.
At the end of the first phase of a 2-phase commit protocol, the participants in a global
transaction issue a reply to the question of whether to commit or roll back the
transaction. This reply is recorded in thedG

TheTLOGfile is used only by the Transaction Manager Server (TMS) that coordinates
global transactions. It is not read by the administrator. The location and size of the
TLOGare specified by four parameters that you set iMheHINESsection of the
UBBCONFIdile.

We recommend that you creat&ladbGon each machine that participates in global
transactions.

m “Detecting Errors Using Logs” on page 2-18

What Is the User Log (ULOG)

The user logyLOQ is a file to which all messages generated by the BEA Tuxedo
system—error messages, warning messages, information messages, and debugging
messages—are written. Application clients and servers can also write to the user log.
A new log is created every day and there can be a different log on each machine.
However, aJLOGcan be shared by multiple machines when a remote file system is
being used.

TheuLOGprovides an administrator with a record of system events from which the
causes of most BEA Tuxedo system and application failures can be determined. You
can view theJLOG a text file, with any text editor. Thé. OGalso contains messages
generated by théisten ~ process. Theisten process provides remote service
connections for other machines in an application. Each machine, including the master
machine, should havetisten process running on it.

Administering a BEA Tuxedo Application at Run Time 2-17

2 Monitoring Your BEA Tuxedo Application

Detecting Errors Using Logs

The BEA Tuxedo log files can help you detect failures in both your application and
your system by:

m “Analyzing tlisten Messages in the ULOG” on page 2-18
m “Analyzing the Transaction Log (TLOG)” on page 2-19

m “Analyzing the User Log (ULOG)” on page 2-20

Analyzing tlisten Messages in the ULOG

Part of theULOGrecords error messages to tiseen process. You can view
tisten messages using any text editor. Each machine, includingA8eER
machine contains a separdigen process. Though separatsten logs are
maintained in th&/LOGon each machine, they can be shared across remote file
systems.

TheuLOGrecordslisten process failuresiisten is used, during the boot process,
by tmboot and, while an application is running, toyadmin . tlisten ~ messages are
created as soon asthigen processis booted. Whenevelisten process failure
occurs, a message is recorded inuheG

Note: Application administrators are responsible for analyzingligien
messages in theLOG but programmers may also find it useful to check these
messages.

TheBEA Tuxedo System Messages CMDTUX Catedagains the following
information aboutlisten =~ messages:

m Descriptions of all messages

m Recommended actions that you (or a programmer) can take to resolve the error
conditions reported in these messages

2-18 Administering a BEA Tuxedo Application at Run Time

Detecting Errors Using Logs

tlisten Message Example
Consider the following example ofisten message in theLOG
121449.gumby!simpserv.27190.1.0: LIBTUX_CAT:262: std main starting
A ULOGmessage consists of a tag and text. The tag consists of the following:

m A 6-digit string (hhmmss) representing the time of day (in terms of hour, minute,
and second)

m The name of the machine (as returned, on UNIX systems, hydhe -n
command)

m The name and process identifier of the process that is logging the message. (This
process ID can optionally include a transaction ID.) Also included is a thread ID
(1) and a context ID (0).

Note: Placeholders are printed in tteead_ID andcontext_ID field of
entries for single-threaded applications. (Whether an application is
multithreaded is not apparent until more than one thread is used.)

The text consists of the following:
m The name of the message catalog
m The message number

m The BEA Tuxedo system message

Note: You can find this message in tBEA Tuxedo System Messages LIBTUX
Catalog

Analyzing the Transaction Log (TLOG)

TheTLOGIs a binary file that contains only messages about global transactions that are
in the process of being committed. To view TheG you must first convert it to text
format so that it is readable. The BEA Tuxedo system providesntatmin

operations to do this:

m dumptlog (dl) downloads (or dumps) theOG(a binary file) to a text file.
m loadtlog uploads (or loads) an text version of heGinto an existingLOG(a
binary file).

Administering a BEA Tuxedo Application at Run Time 2-19

2 Monitoring Your BEA Tuxedo Application

Thedumptiog andloadtiog commands are also useful when you need to move the
TLOGbetween machines as part of a server group migration or machine migration.

Detecting Transaction Errors

You can detectLOGerrors using the MIB to obtain the status of a transaction. You can
also run themadmin commandlisplay transaction to detect any errors in
transactions.

Analyzing the User Log (ULOG)

On each active machine in an application, the BEA Tuxedo system maintains a log fil
that contains BEA Tuxedo system error messages, warning messages, debugging
messages, or other helpful information. This file is called the user logo® The
uLoGsimplifies the job of finding errors returned by the BEA Tuxedo ATMI, and
provides a central repository in which the BEA Tuxedo system and applications can
store error information.

You can use the information in teOGto identify the cause of system or application
failures. Multiple messages about a given problem can be placed in the user log.

Generally, earlier messages provide more useful diagnostic information than later
messages.

ULOG Message Example
In the following example, message 358 from LLIBTUX_CAT catalog identifies the

cause of the trouble reported in subsequent messages, namely, that there are not
enough UNIX system semaphores to boot the application.

Listing 2-1 Sample ULOG Messages

151550.gumby!BBL.28041.1.0: LIBTUX_CAT:262: std main starting
151550.gumby!BBL.28041 .1.0: LIBTUX_CAT:358: reached UNIX limit on semaphore ids
151550.gumby!BBL.28041.1.0: LIBTUX_CAT:248: fatal: system init function ...
151550.gumby!BBL.28040.1.0: CMDTUX_CAT:825: Process BBL at SITEL failed ...
151550.gumby!BBL.28040.1.0: WARNING: No BBL available on site SITE1.

Will not attempt to boot server processes on that site.

2-20 Administering a BEA Tuxedo Application at Run Time

Estimating Service Workload Using the Application Service Log

Note: BEA Tuxedo System Messageatains complete descriptions of user log
messages and recommendations for any actions that should be taken to resolve
the problems indicated.

See Also

m “How to Create a TLOG Device” on page 1-6

m “What Is the User Log (ULOG)” on page 3-64lirtroducing the BEA Tuxedo
System

m “How to Start tlisten at All Sites” on page 1-7
m “Managing Transactions” on page 3-34limroducing the BEA Tuxedo System

m “Using Transactions” on page 1-18Tntorials for Developing a BEA Tuxedo
Application

Estimating Service Workload Using the
Application Service Log

A BEA Tuxedo application server can generate a log of the service requests it handles.
The log is displayed on the server’s standard outpddif). Each record contains a
service name, start time, and end time.

You can request such a log when a server is activatedxrphe facility produces a
summary of the time spent by the server, thus giving you a way to analyze the log
output. Using this data, you can estimate the relative workload generated by each
service, which will help you set workload parameters appropriately for the
corresponding services in the MIB.

Administering a BEA Tuxedo Application at Run Time 2-21

2 Monitoring Your BEA Tuxedo Application

Using the MIB to Monitor Your Application

There are essentially two operations you can perform using the MIB: ya@etan
information from the MIB (aet operation) or you campdateinformation in the MIB
(aset operation) at any time using a set of ATMI functions (for example,
tpalloc(3c) , tprealloc(3c) , tpcall(3c) , tpacall(3c) , tpgetrply(3c) ,
tpenqueue(3c) , andtpdequeue(3c)).

When you query the MIB with get , the MIB responds to your reply with a number

of matcher, and indicates how many more objects match your request. The MIB return
a handle (that is, the cursor) that you can use to get the remaining objects. The
operation you use to get the next set of objects is cgdtedxt . The third operation
occurs when queries span multiple buffers.

Limiting Your MIB Queries

When you query the MIB, which is a virtual database, you are selecting a set of recorc
from the database table. You can control the size of the database table in two ways: |
controlling the number of objects about which you want information, or by controlling
the amount of information about each object. Usiegfieldsandfilters, you can limit

the scope of your request to data that is meaningful for your needs. The more limits
you specify, the less information is requested from the application, and the faster the
data is provided to you.

Querying Global and Local Data

Data in the MIB is stored in a number of different places. Some data is replicated or
more than one machine in a distributed application. Other data is not replicated, but i
local to particular machines based on the nature of the data or the object represente

2-22 Administering a BEA Tuxedo Application at Run Time

Using the MIB to Monitor Your Application

What Is Global Data

Global data is information about application components such as servers that is
replicated on every machine in an application. Most of the data about a server, for
example, such as information about its configuration and state, is replicated globally
throughout an application, specifically in every bulletin board. A BEA Tuxedo
application can access this information from anywhere.

For example, from any machine in an application called Customer Orders, the
administrator can find out that server B6 belongs to Group 1, runs on machine
CustOrdA, and is active.

What Is Local Data

Other information is not replicated globally, but is local to an entity, such as statistics
for a server. An example of a local attribut&4s TOTREQCwhich defines the number

of times services have been processed in a specified server. This statistic is stored with
the server on its host machine. When the server accepts and processes a service
request, the counter is incremented. Because this kind of information is managed
locally, replicating it would inhibit your system’s performance.

There are also classes in the MIB that are exclusively local, such as clients. When a
clientlogs in, the BEA Tuxedo system creates an entry for it in the bulletin board, and
records all tracking information about the client in that entry. The MIB can determine
the state of the client at anytime by checking this entry.

Using tmadmcall to Access Information

The BEA Tuxedo system provides a programming interface that offers direct access to
the MIB while your application is not running. This interface,tfa@mcall function,

gives the application direct access to the data upon which the MIB is based.

tpadmcall allows you access to a subset of information that is local to your process.

Usetpadmcall when you need to query the system or make administrative changes
while your system isot running tpadmcall queries th&@UXCONFIJile on behalf of

your request. Data buffers that you put in, and data buffers that you receive (containing
your queries and the replies to them) are exactly the same.

Administering a BEA Tuxedo Application at Run Time 2-23

2 Monitoring Your BEA Tuxedo Application

See Also

m “Managing Operations Using the MIB” on page 3-10rtroducing the BEA
Tuxedo System

m MIB(5) in BEA Tuxedo File Formats and Data Descriptions Reference

m “Querying and Updating the MIB with ud32” on page 2-24

Querying and Updating the MIB with ud32

ud32 is a client program delivered with the BEA Tuxedo system that reads input
consisting of text representationfiiLbuffers. You can us&d32 for ad hoc queries
and updates to the MIB. It createsranL32 buffer, makes a service call with the
buffer, receives areply (also in BKL32 buffer) from the service call, and displays the
results on screen or in a file in text format.

ud32 builds anFML32-type buffer with theeMLfields and values that you represent in
text format, makes a service call to the identified service in the buffer, and waits for
the reply. The reply then comes backmL32 format as a report. Now, because the
MIB is FML32-basedud32 becomes the scripting tool for the MIB.

For example, suppose you write a small file that contains the following text.
service name=.tmib and ta_operation=get , TACLASSES=T_SERVER

When you type this file intad32, you receive an FML output buffer listing all the data in the
system about the servers.

2-24 Administering a BEA Tuxedo Application at Run Time

Using the Run-time Tracing Utility

Using the Run-time Tracing Utility

The BEA Tuxedo system provides a run-time tracing facility that enables you to track
the execution of distributed business applications. The system has a set of built-in trace
points that mark calls to functions in different categories, such as ATMI functions
issued by the application or XA functions issued by the BEA Tuxedo system to an
X/Open compliant resource manager.

To enable tracing, you must specify a tracing expression that contains a category, a
filtering expression, and an action. The category indicates the type of function (such as
ATMI) to be traced. The filtering expression specifies which particular functions
trigger an action. The action indicates the response to the specified functions by the
BEA Tuxedo system. The system may, for example, write a record ULt@

execute a system command, or terminate a trace process. A client process can also
propagate the tracing facility with its requests. This capability is cdlleghg the

trace dyecolorsall services that are called by the client.

There are two ways to specify a tracing expression: by settintMthRACE
environment variable, or by specifying the expression in a server environment.

m For a simple tracing expression, deflhR¢TRACE=orin the environment of the
client. This expression enables tracing of ATMI functions on the client and on
any server that performs a service on behalf of that client. The trace records are
written to theuLOGfile.

m You can also specify a tracing expression in the environment of a server. For
example, you might enter the followingMTRACE=atmi:/tpservice/ulog f
you export this setting within the environment of the server, a record will be
generated in theLOGfile each time a service is invoked on that server.

You can activate or deactivate the tracing option usingrtéi@etrace command of
tmadmin . This command enables you to overwrite the tracing expression on active
client or server processes. Administrators can enable global tracing for all clients and
servers, or for a particular machine, group, or server.

Administering a BEA Tuxedo Application at Run Time 2-25

2 Monitoring Your BEA Tuxedo Application

See Also

= “Ways to Monitor Your Application” on page 2-2

m tmtrace(5) in BEA Tuxedo File Formats and Data Descriptions Reference

Managing Errors Using the DBBL and BBLs

2-26

The BEA Tuxedo system uses the following two administrative servers to distribute
the information on the bulletin board to all active machines in the application:

m DBBI—The Distinguished Bulletin Board Liaison server propagates global
changes to the MIB and maintains the static part of the MIB. Specifically, the
DBBL:

Resides (only one DBBL per application) on tweSTERMachine and
provides periodic status requests to all BBLs

Coordinates bulletin board updates, the state of different machines, and
queries with the BBLs

Coordinates migration of servers

Can be migrated to other machines for fault resiliency

m BBL—The Bulletin Board Liaison server maintains the bulletin board on its host
machine, coordinating changes to the local MIB, and verifying the integrity of
application programs active on its machine. Specifically, the bulletin board:

Resides on each BEA Tuxedo machine in an application, carries out requests
from the DBBL, and administers timeouts for service requests, replies to
requesters, and transactions

Detects server failures, initiates user-defined recovery, and automatically
restarts servers

Detects client failures
Cleans up client and server entries, and conversations on the bulletin board

Detects and recovers DBBL failures (if it is the BBL residing onMASTER
machine)

Administering a BEA Tuxedo Application at Run Time

Managing Errors Using the DBBL and BBLs

Figure 2-3 Diagnosis and Repair Using the DBBL and BBLs

Master {DBBL queries BBLs on Site 1 (BBL finds stopped server,
all machines) removes it, and starts a new server)
DBBL BEL BBL
Client SErvers Client \SENETS
® BB o BB
A Servers o Servers
@@@.@_ﬁj Services @\p‘i‘.@_ﬁj Services
& &
Domains = T fie
R Bridge Bridge pracoTes
Network
X Site 2
Bridge BBL
Doamains
procoTsos
3 BB
Client Servers Servers
= Senvices
d:.\CI
@@@ﬁ
&

Both servers have a role in managing faults. The DBBL coordinates the state of other
active machines in the application. Each BBL communicates state changes in the MIB,
and sometimes sends a message to the DBBL indicating all is OK on its host machine.

The BEA Tuxedo run-time system records events, along with system errors, warnings,
and tracing events, in the user lag ©Q. Programmers can use theOGto debug

their applications or notify administrators of special conditions or states found (for
example, an authorization failure).

Administering a BEA Tuxedo Application at Run Time 2-27

2 Monitoring Your BEA Tuxedo Application

Using the ATMI to Handle System and
Application Errors

Using the ATMI, a programmer controls some of the more global aspects of
communications. The ATMI provides functions for handling both application and
system-related errors. When a service routine encounteygpéinationerror, such as

an invalid account number, the client knows the service performed its task but could
not fulfill its request because of an application error.

With asystenfailure, such as a server crashing while performing a request, the client
knows the service routine did not perform its task because of an underlying system
error. The BEA Tuxedo system notifies programs of system errors that occur as it
monitors the application’s behavior and its own behavior.

Using Configurable Timeout Mechanisms

At times, a service may get stuck in an infinite loop while processing a request. The
client waits, but no reply is forthcoming. To protect a client from endless waiting, the
BEA Tuxedo system has two types of configurable timeout mechanisms: blocking
timeouts and transaction timeouts.

A blocking timeouts a mechanism that ensures a blocked program waits no longer
than the specified timeout value for something to occur. Once a timeout is detected, tt
waiting program is alerted with a system error informing it that a blocking timeout has
occurred. The blocking timeout defines the duration of service requests, or how long
the application is willing to wait for a reply to a service request. The timeout value is
a global value defined in th& OCKTIMEfield of theRESOURCESection of the
TUXCONFIGile.

A transaction timeouis another type of timeout that can occur because active
transactions tend to be resource-intensive. A transaction timeout defines the duratio
of a transaction, which may involve several service requests. The timeout value is
defined when the transaction is started (witlegin(3c)). Transaction timeouts are
useful when maximizing resources. For example, if database locks are held while a

2-28 Administering a BEA Tuxedo Application at Run Time

Using the ATMI to Handle System and Application Errors

transaction progresses, an application programmer may want to limit the amount of
time that the application’s transaction resources are held up. A transaction timeout
always overrides a blocking timeout.

Configuring Redundant Servers to Handle Failures

See Also

You can handle some failure situations by configuring an application with redundant
servers and the automatic restart capability. Redundant servers provide high
availability, and can be used to handle large amounts of work, server failures, or
machine failures. The BEA Tuxedo system continually checks the status of active
servers, and when it detects the failure of a restartable server, the system automatically
creates a new instance of that server.

By configuring servers with the automatic restart property, you can handle individual
server failures.You can also specify the number of restarts that the system will provide.
This capability can prevent a recurring application error by limiting the number of
times a server is restarted.

The BEA Tuxedo system frequently checks the availability of each active machine. A
machine is marked grmrtitionedwhen it cannot be reached by the system. If this
occurs, a system event is generated. A partition can occur due to a network failure,
machine failure, or severe performance degradation.

m “Development View: What You Can Do Using the ATMI” on page 3-37 in
Introducing the BEA Tuxedo System

m “System and Application Data that You Can Monitor” on page 2-4

= “Monitoring Dynamic and Static Administrative Data” on page 2-5

Administering a BEA Tuxedo Application at Run Time 2-29

2 Monitoring Your BEA Tuxedo Application

Monitoring Multithreaded and
Multicontexted Applications

m While monitoring a multithreaded application, keep in mind that individual
threads are not visible to an administrator.

m You can get MIB statistical reports for various aspects of your multithreaded
and/or multicontexted application by running thedmin(1) command
interpreter. Here are a few examples of the information you can request for a
multithreaded application:

e Count of client contexts per client process and a separate entry for each
client context. (obtained by running ttmeadmin pclt command)

e Count of dispatched services per server process and, optionally, information
about each context (obtained by runnimgdmin /psr , optionally in verbose
mode)

m When the BBL checks clients, it verifies that a process is alive. If a process has
died, the BBL detects the process death. If an individual thread within a process
has died, however, the death of the thread is not detected by the BBL.

Therefore application programmers should keep in mind the possibility that
individual threads within a process may die. If one thread dies and a signal is
issued, the whole process to which the thread belongs usually dies, and that
death is detected by the BBL.

If a thread dies as the result of an erroneous call to a thread exit function,
however, no signal is generated. If this type of death occurs before the thread
callstpterm() , then the BBL cannot detect the death and does not deallocate
the registry table slot for the context associated with the dead thread. (It would
not be proper for the BBL to deallocate this registry table slot even if it could
detect the death of the thread because, in some application models, another
thread might subsequently choose to associate itself with that context.)

There is no solution for this limitation so it is important for programmers to keep
it in mind and design their applications accordingly.

2-30 Administering a BEA Tuxedo Application at Run Time

Monitoring Multithreaded and Multicontexted Applications

How to Retrieve Data About a
Multithreaded/Multicontexted Application Using the

MIB

Note: The information presented here applies to all multithreaded and/or

multicontexted applications, regardless of which administrative tools are
being used. The functionality is discussed from the point of view of an
administrator using MIB calls, but is the same for an administrator using an
interface to the MIB, whether that interfacensdmin(l) or the BEA
Administration Console.

You can obtain information about a multithreaded or multicontexted application by:

m Issuing calls to the MIB

m Issuing selectethadmin commands

Information is available in the following locations:

m The client section of the bulletin board registry provides an entry for each
context. (An entry is created automatically by the BEA Tuxedo system whenever
a new context is created through a caltptoit () in TPMULTICONTEXTS
mode.)

m TheT_SERVERCTXTlass of tha@M_MiIB provides multiple instances of 14 fields
if multiple server dispatch threads are active simultaneously. Specifically, the
T_SERVERCTXBection includes an instance of each of the following fields for
each active sever dispatch thread:

TA_CONTEXTID(key field)
TA_SRVGRHKkey field)
TA_SRVID (key field)
TA_CLTLMID

TA_CLTPID
TA_CLTREPLY
TA_CMTRET
TA_CURCONV

Administering a BEA Tuxedo Application at Run Time 2-31

2 Monitoring Your BEA Tuxedo Application

e TA CURREQ
e TA CURRSERVICE
e TA LASTGRP

e TA SVCTIMEOUT
e TA TIMELEFT

e TA TRANLEV

For example, if 12 server dispatch threads are active simultaneously, then the
T_SERVERCTXTlass of the MIB for this application will include 12 occurrences
of theTA_CONTEXTIDfield, 12 occurrences of the\ SRVGRHield, and so on.

When multiple instances af SERVERclass fields contain multiple values for
different contexts of a multicontexted server, a “dummy” value is specified in
theT_SERVERclass field and th& SERVERCTXTield contains an actual value
for each context.

See Also

® tmadmin(l) in BEA Tuxedo Command Reference
m TM_MIB(5) in BEA Tuxedo File Formats and Data Descriptions Reference

m “Programming a Multithreaded and Multicontexted Application” on page 10-1 in
Programming a BEA Tuxedo Application Using C

2-32 Administering a BEA Tuxedo Application at Run Time

CHAPTER

3 Dynamically Modifying
an Application

m Dynamic Modification Methods

m Using tmconfig to Make Permanent Changes to Your Configuration
m How to Run tmconfig

m Making Temporary Modifications to Your Configuration with tmconfig
m Limitations on Dynamic Modification Using tmconfig

m Making Temporary Modifications to Your Configuration with tmadmin

Dynamic Modification Methods

As an administrator, you must ensure that once an application is up and running, it
continues to meet the performance, availability, and security requirements set by your
company. The BEA Tuxedo system allows you to make changes to your configuration
without shutting it down. Without inconveniencing your users, you can do the
following:

m Modify existing entries in your configuration file, that is, make changes to
TUXCONFIG

m Add components to your application by adding entries for them to your
configuration file.

Administering a BEA Tuxedo Application at Run Time 3-1

3 Dynamically Modifying an Application

m Make temporary changes to an application by advertising, unadvertising,
suspending, or resuming services, and changing service parameters (such as
LOADandPRIORITY).

Note: To modify the configuration file for a running application, you must do one of
the following:

m Shut down your application first (and reboot it after revising the
configuration file).

m Run thetmconfig (1) command (described on timeconfig,
wtmconfig(l) reference page), which allows you to modify your
configuration file dynamically.

Thus, you can adjust your system to reflect either current or expected conditions by
making either permanent or temporary changes to an application. Temporary chang
are reflected in the bulletin board only. Permanent changes are made by modifying th
TUXCONFIGile. Becaus&UXCONFIGS a binary file, however, you cannot edit it
through a simple text editor.

Tools for Modifying Your Application

To help you dynamically modify your application, the BEA Tuxedo system provides
the following three methods: the BEA Administration Console, command-line
utilities, and the Management Information Base (MIB) API. These tools help you
respond quickly and efficiently to the need for changes in your application resulting
from changing business needs or failure conditions. Use them to keep your applicatio
performing fast, well, and securely.

3-2 Administering a BEA Tuxedo Application at Run Time

Dynamic Modification Methods

Figure 3-1 Dynamic Modification Tools

Administration Command-Line
Console Utilities

MIE AP

MIE

Buitin ULOS

TLOG Board

m BEA Administration Consolea Web-based graphical user interface (GUI) you
can use to dynamically configure your application. You can display and change
configuration information, determine the state of each component of the system,
and obtain statistical information about items such as executed requests and
gqueued requests.

m Command-line utilities- Most of the functionality needed for dynamic
modification is provided by two commandsiadmin andtmconfig . tmadmin
is a shell-level command with over 70 subcommands for performing various
administrative tasks, including dynamic system modificatianonfig is a
shell-level command that you can use to add and modify configuration entries
while your system is running.

m MIB APl—a Management Information Base API that enables you to write your
own programs to monitor your system and make dynamic changes to your
system.

You always have the choice of these three tools for any administrative task. For
dynamic modification or reconfiguration, however, we recommend the BEA
Administration Console for its ease of use. Full descriptions of all the features in the
Administration Console are available through the Help utility provided with the GUI.

Administering a BEA Tuxedo Application at Run Time 3-3

3 Dynamically Modifying an Application

If you prefer to work on the command line, however, simply runrtagmin or
tmconfig command.

Note: For lists of configuration parameters and reconfiguration restrictions, see
tmconfig, wtmconfig(1) in BEA Tuxedo Command Referercel
TM_MIB(5) in BEA Tuxedo File Formats and Data Descriptions Reference

See Also

m “Using tmconfig to Make Permanent Changes to Your Configuration” on page
3-4

m “Using the BEA Administration Console” on page 3-4ritroducing the BEA
Tuxedo System

m “Managing Operations Using the MIB” on page 3-10rtroducing the BEA
Tuxedo System

m APPQ_MIB(5) in BEA Tuxedo File Formats and Data Descriptions Reference
m DM_MIB(5) in BEA Tuxedo File Formats and Data Descriptions Reference
m MIB(5) in BEA Tuxedo File Formats and Data Descriptions Reference

m TM_MIB(5) in BEA Tuxedo File Formats and Data Descriptions Reference

Using tmconfig to Make Permanent Changes
to Your Configuration

Thetmconfig command enables you to browse and modify your configuration file
(TUXCONFIGon theMASTERmachine) and its associated entities, and to add new
components (such as machines and servers) to your application while it is running.
When you modify your configuration fil@(XCONFIGon theMASTERmachine),

tmconfig enables you to perform the following tasks:

3-4 Administering a BEA Tuxedo Application at Run Time

Using tmconfig to Make Permanent Changes to Your Configuration

m Update therTUXCONFIGile on all machines that are currently booted in the
application.

m Propagate theUXCONFIGfile automatically to new machines as they are booted.

Note: Thetmconfig command runs as a BEA Tuxedo system client.

Becausemconfig runs as a BEA Tuxedo client, it is characterized by the following
conditions:

m tmconfig fails if it cannot allocate @PINIT typed buffer.

m Theusername associated with the client is the login name of the user.
(tmconfig fails if the user’s login name cannot be determined.)

m For a secure application (that is, an application for whiclSH®URITY
parameter has been set in the configuration fileonfig prompts for the
application password. If the application password is not providednfig
fails.

m If tmconfig cannot register as a client, an error message contajwimgo is
displayed andmconfig exits. If this happens, check the user log to determine
the cause. The most likely causes for this type of failure are:

e TheTUXCONFIGenvironment variable was not set correctly.

e The system was not booted on the machine on whicbnfig is being run.
m tmconfig ignores all unsolicited messages.

m The client name for thenconfig process that is displayed in the output from
printclient (atmadmin command) ispsysadm .

How tmconfig Works

When you typemconfig on a command line, you are launching the display of a series

of menus and prompts through which you can request an operation such as the display
or modification of a configuration file reconghconfig collects your menu choices,
performs the requested operation, and prompts you (by displaying another set of menu
choices) to request another operation. It repeatedly offers to perform operations (by
repeatedly displaying the menus) until you exit the session by selettimgrom a

menu.

Administering a BEA Tuxedo Application at Run Time 3-5

3 Dynamically Modifying an Application

The following listing shows the menus and prompts that are displayed once you launc
atmconfig command session.

Note: The lines in the listing are numbered in this example for your convenience;
during an actuainconfig session, these numbers are not displayed.

Listing 3-1 Menus and Prompts Displayed in a tmconfig Session

$ tmconfig

Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL

10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:

Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
6) CLEAR BUFFER 7) QUIT [1]:

Enter editor to add/modify fields [n]?

Perform operation [y]?

As shown, you are asked to answer four questions:

m In which section of the configuration file do you want to view, add, or modify a
record?

m For the section of the configuration file you have just specified, which operation
do you want to perform?

m Do you want to enter a text editor now to add or modify fields for the record?

m Do you wantmconfig to perform the requested operation now?

How to Select a Section of the Configuration File

3-6

When you start anconfig session, the following menu is displayed Each item is a
section of TUXCONFIG the configuration file for the application.

Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:

Administering a BEA Tuxedo Application at Run Time

Using tmconfig to Make Permanent Changes to Your Configuration

Note: For details about these sections (including a list of configurable parameters for
each section), seev_MIB(5) in BEA Tuxedo File Formats and Data
Descriptions Reference@M_MiBincludes the names of fields that are
displayed during anconfig command session, the range of values for each
field, the key fields for each section, and any restrictions or updates to the
fields in each section.

m To select a section, enter the appropriate number after the menu prompt. For
example, to select theACHINESsection, enteg, as follows.
10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]: 2

m The default section is tlRESOURCESection, in which parameters that apply to
your entire application are defined. To accept the default selection (which is
displayed within square brackets), simply press the Enter key.

10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:

How to Select a tmconfig Task

A menu of tasks thatnconfig can perform is displayed after you select a section of
the configuration file.

Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
6) CLEAR BUFFER 7) QUIT [1]:

To select an operation, enter the appropriate number at the menu prompt. For example,
to select theeLEAR BUFFERsection, entes, as follows.

6) CLEAR BUFFER 7) QUIT [1]: 6

The following table defines each task.

Administering a BEA Tuxedo Application at Run Time 3-7

3 Dynamically Modifying an Application

Table 3-1 tmconfig tasks

This Menu Called
Item

Performs the Following Activities

1 FIRST

Displays the first record from the specified section. No key fields are
needed. If any are in the input buffer, they are ignored.

Using theFIRST operation can reduce the amount of typing that is
needed. When adding a new record to a section, instead of typing all the
required field names and values, useRIRST operation to retrieve an
existing record for th&fBBCONFIGsection. Then, select t#D

operation and use the text editor to modify the parameter values in the
newly created record.

2 NEXT

Displays the next record from the specified section, based on the key
fields in the input buffer.

3 RETRIEVE

Displays the requested record (specified with the appropriate key fields)
from the specified section.

4 ADD

Adds the indicated record to the specified section. For any optional fields
that are not specified, the defaults specifietivh MIB(5) are used. (All
defaults and validations used tomyloadcf(1) are enforced.) The

current values for all fields are returned in the output buffer. This
operation can be done only by the BEA Tuxedo application
administrator.

5 UPDATE

Updates the record specified in the input buffer in the selected section.
Any fields not specified in the input buffer remain unchanged. (All
defaults and validations used toyloadcf(1) are enforced.) The

current values for all fields are returned in the input buffer. This operation
can be done only by the BEA Tuxedo application administrator.

6 CLEAR BUFFER

Clears the input buffer. (All fields are deleted.) After this operation,
tmconfig immediately prompts for the specified section again.

7 QUIT

Exitstmconfig gracefully: the client is terminated. You can also exit
tmconfig at any time by entering at any prompt.

3-8 Administering a BEA Tuxedo Application at Run Time

Using tmconfig to Make Permanent Changes to Your Configuration

How Results of a tmconfig Task Are Displayed

After tmconfig completes a task, the results—a return value and the contents of the
output buffer—are displayed on the screen.

m If the operation was successfolit no update was don#he following message
is displayed.

Return value TAOK
The message in thes_STATUSfield is

Operation completed successfully.

m If the operation was successfahdan update was don¢he following message
is displayed.

Return value TAUPDATED
The message in thes_STATUSfield is
Update completed successfully.
m If the operation failed an error message is displayed:

e If there is a problem with permissions or a BEA Tuxedo system
communications error (rather than with the configuration parameters), one of
the following return values is displayethEPERMTAEOS TAESYSTEMOr
TAETIME.

e If there is a problem with a configuration parameter of the running
application, the name of that parameter is displayed as the value of the
TA_BADFLDNAMEile, and the problem is indicated in the value of the
TA_STATUSfield in the output buffer. If this type of problem occurs, one of
the following return values is displayeDAERANGETAEINCONSIS
TAECONFIG TAEDUPLICATE TAENOTFOUNIOTAEREQUIREDTAESIZE,
TAEUPDATEOr TAENOSPACE

tmconfig Error Message Conditions

The following list describes the conditions indicated by both sets of error messages.

TAEPERM
The UPDATEOr ADDoperation was selected hntconfig is not being run by
the BEA Tuxedo application administrator.

Administering a BEA Tuxedo Application at Run Time 3-9

3 Dynamically Modifying an Application

TAESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
recorded in the user log. Seserlog(3c) in BEA Tuxedo C Function
Reference

TAEOS
An operating system error has occurred. The exact nature of the error is
written to the user log.

TAETIME
A blocking timeout has occurred. The output buffer is not updated so no
information is returned for retrieval operations. The status of update
operations can be checked by retrieving the record that was being updated.

TAERANGE
A field value is either out of range or invalid.

TAEINCONSIS
For example, an existingQADDRalue or one&SRVGRESERVERNAMENtry
may be specified for a differeBRVGRSERVERNAMENtry.

TAECONFIG
An error occurred while thEBUXCONFIGile was being read.

TAEDUPLICATE
The operation attempted to add a duplicate record.

TAENOTFOUND
The record specified for the operation was not found.

TAEREQUIRED
A field value is required but is not present.

TAESIZE
A value for a string field is too long.

TAEUPDATE
The operation attempted to do an update that is not allowed.

TAENOSPACE
The operation attempted to do an update but there was not enough space i
the TUXCONFIGfile and/or the bulletin board.

3-10 Administering a BEA Tuxedo Application at Run Time

How to Run tmconfig

How to Run tmconfig

To runtmconfig properly, you must set the required environmental variables. Also,
if you have not rummconfig , we recommend that you walk through a generic
tmconfig session, during which you modify entries in your configuration file.

How to Set Environment Variables for tmconfig

Before you can starttaconfig session, you must set the required environment
variables and permissions. For your convenience, you may also want to select a text
editor other than the default editor.

Complete the following procedure to set up your working environment properly before
runningtmconfig

1. Log in as the BEA Tuxedo application administrator if you want to add entries to
TUXCONFIG or modify existing entries. (You do not need to log in as the
administrator if you only want to view existing configuration file entries without
changing or adding to them.)

2. Assign values to two mandatory environment variallgXCONFIGandTUXDIR.

e The value offUXCONFIGMust be the full path name of the binary
configuration file on the machine on whithconfig is being run.

e The value offUXDIR must be the full path name of the root directory for the
BEA Tuxedo system binary filesn{config must be able to extract field
names and identifiers fro8TUXDIR/udataobj/tpadmin)

3. You may also set tHeEDITOR environment variable; this step is optional. The
value ofEDITORmMust be the name of the text editor you want to use when
changing parameter values; the defautidiga UNIX system command-line
editor).

Note: Many full-screen editors do not function properly unlessreérRMm
environment variable is also set.

Administering a BEA Tuxedo Application at Run Time 3-11

3 Dynamically Modifying an Application

How to Conduct a tmconfig Walk-through Session

The following procedure leads you through a samptenfig session.

1. Ententmconfig after a shell prompt.
$ tmconfig

Note: You can end a session at any time by entegighort for quit) after the
Section menu prompt.

A menu of sections in thBUXCONFIGile is displayed.

Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:

2. Select the section that you want to change by entering the appropriate menu
number, such as for theMACHINESsection. The default choice is the
RESOURCESection, represented by][at the end of the list of sections shown in
Step 1. If you specify a section (instead of accepting the default), that section
becomes the new default choice and remains so until you specify another sectiot

A menu of possible operations is displayed.

Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
6) CLEAR BUFFER 7) QUIT [1]:

Each operation listed here is available to be performed on one record at a time o
one section of the configuration file. The names of most operatRST and

NEXT) are self-explanatory. When you selERST, you are asking to have the

first record (in the specified section of the configuration file) displayed on the
screen. When you seleREXT you are asking to have the contents of the buffer
replaced by the second record in the specified section, and to have the new
buffer contents displayed on the screen. By repeatedly chaggkifyyou can

view all the records in a given section of the configuration file in the order in
which they are listed.

3. Select the operation that you want to have performed.

The default choice is theRST operation, represented hyj [at the end of the
list of operations shown in Step 2.

3-12 Administering a BEA Tuxedo Application at Run Time

How to Run tmconfig

A prompt is displayed, asking whether you want to enter a text editor to start
making changes to thRJXCONFIGsection you specified in Step 2.

Enter editor to add/modify fields [n]?

4. Selecty orn (for yesorno, respectively). The default choice (shown at the end of
the prompt) is.

If you selectyes(y), the specified editor is invoked and you can start adding or
changing fields. The format of each field is

field_name <tabs>field value
where the name and value of the field are separated by one or more tabs.

In most cases, the field name is the same as the correspaElingORm the
UBBCONFIdile, prefixed withTA_.

Note: For details about valid input, see “tmconfig Input Buffer Considerations”
on page 3-14. For descriptions of the field names associated with each
section of thayBBCONFIdile, seeTM_MIB(5) in BEA Tuxedo File
Formats and Data Descriptions Reference

When you finish editing the input buffemconfig reads it. If any errors are
found, a syntax error is displayed andtonfig prompts you to decide whether
to correct the problem.

Enter editor to correct?
5. Selech ory.

If you decide not to correct the problem (by enterihghe input buffer contains
no fields; otherwise, the editor is executed again.

When you finish editing the input buffer, a prompt is displayed, asking whether
you want to have the operation you specified (in Step 3) performed now.

Perform operation [y]?
6. Selech ory. The default choice (shown at the end of the prompt) is
e If you selectno, the menu of sections is displayed again. Return to Step 2.

e If you selectyes tmconfig executes the requested operation and displays
the following confirmation message.

Return value TAOK
The results of the operation are displayed on the screen.

Administering a BEA Tuxedo Application at Run Time 3-13

3 Dynamically Modifying an Application

You have completed an operation on one sectiorudXiCONFIG you may

now start another operation on the same section or on another section. To
allow you to start a new operatiamconfig displays, again, the menu of
TUXCONFIGsections displayed in Step 1.

Note: All output buffer fields are available in the input buffer unless the input
buffer is cleared.

Continue youtmconfig session by requesting more operations, or quit the
session.

e To continue requesting operations, return to Step 2.

e To end youtmconfig session, sele@UIT from the menu of operations (as
shown in Step 3).

After you end youtmconfig session, you can make a backup copy, in text
format, of your newly modifiedUXCONFIGile. In the following example, the
administrator chooses the default response to the offer of a baekypand
overrides the default name of the backup fiBECONFIG by specifying another
name backup).

Unload TUXCONFIG file into ASCII backup [y]?
Backup filename [UBBCONFIG]? backup
Configuration backed up in backup

tmconfig Input Buffer Considerations

The following considerations apply to the input buffer used witlonfig

If the value that you are typing into a field extends beyond one line, you may
continue it on the next line if you insert one or more tabs at the beginning of the
second line. (The tab characters are dropped when your input is read into
TUXCONFIG)

A line that contains only a single newline character is ignored.

If more than one line is provided for a particular field, the first occurrence is
used and other occurrences are ignored.

3-14 Administering a BEA Tuxedo Application at Run Time

Making Temporary Modifications to Your Configuration with tmconfig

m To enter an unprintable character as part of the value of a field, or to enter a tab
as the first character in a field, enter a backslash, followed by the two-character
hexadecimal representation of the desired character. (For a mapping of ASCII to
hexadecimal characters, s&&Cll (5) in a UNIX system reference manual.)

Here are a few examples:

e To insert a blank space, type
\20

e To insert a backslash, type
\\

Making Temporary Modifications to Your
Configuration with tmconfig

Many aspects of your configuration can be changed dynamically. This section
provides instructions for performing the tasks cited in the following list:

m “How to Add a New Machine” on page 3-16

m “How to Add a Server” on page 3-19

m “How to Activate a Newly Configured Machine” on page 3-21
m “How to Add a New Group” on page 3-24

m “How to Change Data-dependent Routing (DDR) for an Application” on page
3-25

m “How to Change Application-wide Parameters” on page 3-26

m “How to Change an Application Password” on page 3-29

Administering a BEA Tuxedo Application at Run Time 3-15

3 Dynamically Modifying an Application

How to Add a New Machine

9.

Enterntmconfig

To specify thevACHINESsection of the configuration file, enterafter the
prompt following the list of sections. (Refer to lines 2-4 in the following sample
listing.)

Press the Enter key to accept the default operation to be performed. The default
1) FIRST , an operation that displays the first record in the designated section. In
this case, the first record is for the first machine appearing iMAIGINES

section. (Refer to line 6.)

Press the Enter key to accept the default choices regarding whether to enter the
text editor fio) and whether to have the specified operation perforyesi @s
requested, the first record in tACHINESsection is now displayed, which is the
record for a machine namsdTE1 in the following sample listing. (Refer to lines
10-35 in the following listing.)

Select thenACHINESsection again, by pressing the Enter key after the menu of
sections. (Refer to lines 36-38.)

Select thé&DDoperation by entering after the menu of operations. (Refer to
lines 39-40.)

Enter the text editor by enteriggat the prompt. (Refer to line 41.)

Change path names as appropriate and specify new values for four key fields:
e TA TLOGSIZE (refer to lines 50-51)

e TA_PMID (refer to lines 52-53)

e TA_LMID (refer to lines 54-55)

e TA TYPE(refer to lines 56-57)

Write (that is, save) your input and quit the editor. (Refer to lines 58-60).

10. Directtmconfig to perform the operation (add the machine) by entgrizigthe

prompt. (Refer to line 61.)

3-16 Administering a BEA Tuxedo Application at Run Time

How to Add a New Machine

The following sample listing illustratestaconfig session in which a machine is
being added.

Listing 3-2 Adding a Machine

1 $ tmconfig

2 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
3 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL

4 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]: 2

5 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE

6 6) CLEAR BUFFER 7) QUIT [1]:

7 Enter editor to add/modify fields [n]?

8 Perform operation [y]?

9 Return value TAOK

10 Buffer contents:

11 TA_OPERATION 4

12 TA_SECTION 1

13 TA_OCCURS 1

14 TA_PERM 432

15 TA_MAXACCESSERS 40

16 TA_MAXGTT 20

17 TA_MAXCONV 10

18 TA_MAXWSCLIENTS 0

19 TA_TLOGSIZE 100

20 TA_UID 4196

21 TA _GID 601

22 TA_TLOGOFFSET 0

23 TA_TUXOFFSET 0

24 TA_STATUS LIBTUX_CAT:1137: Operation completed successfully
25 TA_PMID mchnl

26 TA_LMID SITE1

27 TA_TUXCONFIG /home/apps/bank/tuxconfig
28 TA_TUXDIR /home/tuxroot

29 TA_STATE ACTIVE

30 TA_APPDIR /home/apps/bank

31 TA_TYPE 3B2

32 TA_TLOGDEVICE /home/apps/bank/TLOG
33 TA_TLOGNAME TLOG

34 TA_ULOGPFX /home/apps/bank/ULOG
35 TA_ENVFILE /home/apps/bank/ENVFILE

36 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
37 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL

38 10) NETGROUPS 11) NETMAPS 12) INTERFACES [2]:

39 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE

40 6) CLEAR BUFFER 7) QUIT [1]: 4

41 Enter editor to add/modify fields [n]? y

42 491

Administering a BEA Tuxedo Application at Run Time 3-17

3 Dynamically Modifying an Application

43 g/home/s//usr/p

44 TA_TUXCONFIG lusr/apps/bank/tuxconfig
45 TA_TUXDIR Jusr/tuxroot

46 TA_APPDIR lusr/apps/bank

47 TA_TLOGDEVICE lusr/apps/bank/TLOG
48 TA_ULOGPFX lusr/apps/bank/ULOG
49 TA_ENVFILE lusr/apps/bank/ENVFILE
50 /100/s//150/p

51 TA TLOGSIZE 150

52 /mchnl/s//mchn2/p

53 TA_PMID mchn2

54 [SITE1/s/ISITE3/p

55 TA_LMID SITE3

56 /3B2/s//SPARC/p

57 TA_TYPE SPARC

58 w

59 412

60 q

61 Perform operation [y]?
62 Return value TAUPDATED
63 Buffer contents:

64 TA_OPERATION 2

65 TA_SECTION 1

66 TA_OCCURS 1

67 TA_PERM 432

68 TA_MAXACCESSERS 40

69 TA_MAXGTT 20

70 TA_MAXCONV 10

71 TA_MAXWSCLIENTS 0

72 TA_TLOGSIZE 150

73 TA_UID 4196

74 TA_GID 601

75 TA_TLOGOFFSET 0

76 TA_TUXOFFSET 0

77 TA_STATUS LIBTUX_CAT:1136: Update completed successfully
78 TA_PMID mchn2

79 TA_LMID SITE3

80 TA_TUXCONFIG lusr/apps/bank/tuxconfig
81 TA TUXDIR usr/tuxroot

82 TA_STATE NEW

83 TA_APPDIR lusr/apps/bank

84 TA TYPE SPARC

85 TA_TLOGDEVICE lusr/apps/bank/TLOG
86 TA_TLOGNAME TLOG

87 TA_ULOGPFX lusr/apps/bank/ULOG
88 TA_ENVFILE lusr/apps/bank/ENVFILE

3-18 Administering a BEA Tuxedo Application at Run Time

How to Add a Server

How to Add a Server

. Entertmconfig

. To specify th&SERVERSsection of the configuration file, enterfter the menu of

sections. (Refer to line 3 in the following sample listing.)

. Request theLEARBUFFERoperation by entering after the menu of operations.

(Refer to line 5 in the following sample listing.)

. Press the Enter key to accept the default sectieRVERS(Refer to lines 7-9 in

the following sample listing.)

. Request thaDDoperation by entering after the menu of operations. (Refer to

lines 10-11 in the listing.)

. Enter the text editor by enteriggat the prompt. (Refer to line 12.)

. Specify new values for three key fields:

e TA_SERVERNAM@efer to line 15)
e TA_SRVGRHrefer to line 16)
e TA_SRVID (refer to line 17)

. Write (that is, save) your input and quit the editor. (Refer to lines 19-21).

. Directtmconfig to perform the operation (add the server) by enteriagthe

prompt. (Refer to line 22.)

The following sample listing illustratesaconfig session in which a server is being
added.

Listing 3-3 Adding a Server

1 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
2 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL

3 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]: 4

4 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE

5 6) CLEAR BUFFER 7) QUIT [4]: 6

6 Buffer cleared

7 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS

Administering a BEA Tuxedo Application at Run Time 3-19

3 Dynamically Modifying an Application

8 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
9 10) NETGROUPS 11) NETMAPS 12) INTERFACES [4]:
10 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
11 6) CLEAR BUFFER 7) QUIT [6]: 4

12 Enter editor to add/modify fields [n]? y

131

l4c

15 TA_SERVERNAME XFER

16 TA_SRVGRP BANKB1

17 TA_SRVID 5

18.

19w

2028

21q

22 Perform operation [y]?

23 Return value TAOK

24 Buffer contents:

25 TA_OPERATION 3
26 TA_SECTION 3

27 TA_OCCURS 1

28 TA_SRVID 5

29 TA_SEQUENCE 0
30 TA_MIN 1

31 TA_MAX 1

32 TA_RQPERM 432
33 TA_RPPERM 432
34 TA_MAXGEN 5

35 TA_GRACE 86400
36 TA_STATUS LIBTUX_CAT:1137: Operation completed successfully

37 TA_SYSTEM_ACCESS FASTPATH
38 TA_ENVFILE

39 TA_SRVGRP BANKB1
40 TA_SERVERNAME XFER
41 TA_CLOPT -A

42 TA_CONV N

43 TA_RQADDR

44 TA_REPLYQ Y

45 TA_RCMD

46 TA_RESTART Y

3-20 Administering a BEA Tuxedo Application at Run Time

How to Activate a Newly Configured Machine

How to Activate a Newly Configured
Machine

1. Entertmconfig

2. To specify theMACHINESsection of the configuration file, enteafter the menu
of sections. (Refer to lines 1-3 in the following sample listing.)

3. In order to select the appropriate record inMIMEHINESsection, you need to
toggle through the list of machine records. To view the first machine record,
select theFIRST operation by pressing the Enter key after the menu of
operations. (Refer to lines 4-5 in the following sample listing.) If you do not want
the first machine record, select thREXToperation to view the next machine
record by entering after the menu of operations.

4. Press the Enter key to accept the default choices regarding whether to enter the
text editor fo) and whether to have the specified operation perforiyesgl The
requested record in th@ACHINESsection is now displayed, which is the record
for a machine name8ITE3 in the following sample listing. (Refer to lines 9-34
in the following listing.)

5. Select thavACHINESsection again, by pressing the Enter key after the menu of
sections. (Refer to lines 35-37.)

6. Select theJPDATEOperation by entering after the menu of operations. (Refer to
lines 38-39.)

7. Enter the text editor by enterigpgat the prompt. (Refer to line 40.)

8. Change the value of the_STATEfield from NEWto ACTIVE. (Refer to lines
42-45.)

9. Write (that is, save) your input and quit the editor. (Refer to lines 46-48).

10. Directtmconfig to perform the operation (activate the newly configured
machine) by entering at the prompt. (Refer to line 49.)

Administering a BEA Tuxedo Application at Run Time 3-21

3 Dynamically Modifying an Application

11.tmconfig displays the revised record for the specified machine so that you can
review your change and, if necessary, edit it.

12.If the revised entry is acceptable, sefeafter the menu of operations to end the
tmconfig ~ session.

The following sample listing illustratestraconfig session in which a server is being
activated.

Listing 3-4 Activating a New Server

1 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
2 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
3 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]: 2
4 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
5 6) CLEAR BUFFER 7) QUIT [1]:

6 Enter editor to add/modify fields [n]?

7 Perform operation [y]?

8 Return value TAOK

9 Buffer contents:

10 TA_OPERATION 4

11 TA_SECTION 1

12 TA_OCCURS 1

13 TA_PERM 432

14 TA_MAXACCESSERS 40

15 TA_MAXGTT 20

16 TA_MAXCONV 10

17 TA_MAXWSCLIENTS 0

18 TA_TLOGSIZE 150

19 TA_UID 4196

20 TA_GID 601

21 TA TLOGOFFSET 0

22 TA_TUXOFFSET 0

23 TA_STATUS LIBTUX_CAT:1175: Operation completed successfully
24 TA _PMID mchn2

25 TA_LMID SITE3

26 TA_TUXCONFIG lusr/apps/bank/tuxconfig

27 TA_TUXDIR Jusr/tuxroot

28 TA_STATE NEW

29 TA_APPDIR lusr/apps/bank

30 TA_TYPE SPARC

31 TA_TLOGDEVICE lusr/apps/bank/TLOG

32 TA_TLOGNAME TLOG

33 TA_ULOGPFX lusr/apps/bank/ULOG

34 TA_ENVFILE lusr/apps/bank/ENVFILE

35 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS

3-22 Administering a BEA Tuxedo Application at Run Time

How to Activate a Newly Configured Machine

36 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
37 10) NETGROUPS 11) NETMAPS 12) INTERFACES [2]:
38 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
39 6) CLEAR BUFFER 7) QUIT [1]: 5

40 Enter editor to add/modify fields [n]? y

41 491

42 [TA_STATE

43 TA_STATE NEW

44 sINEW/ACTIVE

45 TA_STATE ACTIVE

46 w

47 412

48 q

49 Perform operation [y]?

50 Return value TAUPDATED

51 Buffer contents:

52.

53.

54 .

Administering a BEA Tuxedo Application at Run Time 3-23

3 Dynamically Modifying an Application

How to Add a New Group

1. Ententmconfig

2. To specify thesROUPSection of the configuration file, enter 3 after the prompt
following the list of sections. (Refer to lines 1-3 in the following sample listing.)

3. Request theLEARBUFFERoperation by entering 6 after the menu of operations.
(Refer to line 5 in the following sample listing.)

4. Accept the default sectioBROUPSby pressing the Enter key. (Refer to lines 7-9
in the following sample listing.)

5. Request thaDDoperation by entering 4 after the menu of operations. (Refer to
lines 10-11 in the listing.)

6. Enter the text editor by enteripgat the prompt. (Refer to line 12.)

7. Specify new values for three key fields:
e TA_LMID (refer to line 15)
e TA_SRVGRHKrefer to line 16)
e TA_GRPNdrefer to line 17)

The following sample listing illustratestaconfig session in which a group is being
added.

Listing 3-5 Adding a Group

1 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
2 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL

3 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]: 3

4 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE

5 6) CLEAR BUFFER 7) QUIT [4]: 6

6 Buffer cleared

7 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
8 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL

9 10) NETGROUPS 11) NETMAPS 12) INTERFACES [3]:

10 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE

11 6) CLEAR BUFFER 7) QUIT [6]: 4

12 Enter editor to add/modify fields [n]? y

3-24 Administering a BEA Tuxedo Application at Run Time

How to Change Data-dependent Routing (DDR) for an Application

131

14 c

15 TA_LMID SITE3
16 TA_SRVGRP GROUP3
17 TA_GRPNO 3
18.

19w

20 42

21q

22 Perform operation [y]?

23 Return value TAUPDATED
24 Buffer contents:

25 TA_OPERATION 2

26 TA_SECTION 2

27 TA_OCCURS 1

28 TA_GRPNO 3

29 TA_TMSCOUNT 0

30 TA_STATUS LIBTUX_CAT:1136: Update completed successfully
31 TA_LMID SITE3

32 TA_SRVGRP GROUPS3

33 TA_TMSNAME
34 TA_OPENINFO
35 TA_CLOSEINFO

How to Change Data-dependent Routing
(DDR) for an Application

1. Entertmconfig

2. To specify theROUTINGsection of the configuration file, enter 7 after the prompt
following the list of sections.

3. Toggle through the list of entries for the ROUTING section by selecting the
FIRST and NEXT operations, which display the first and subsequent entries,
respectively. Select the entry for which you want to changetire

4. Select)UPDATE from the menu of operations.

Administering a BEA Tuxedo Application at Run Time 3-25

3 Dynamically Modifying an Application

5. Enter the text editor by enteripgat the prompt.
Do you want to edit(n)? y

6. Change the values of relevant fields to the values shown in the “Sample Value”
column of the following table.

Field Sample Value Meaning

TA_ROUTINGNAME account_routing Name of the routing section

TA_BUFTYPE FML Buffer type

TA_FIELD account_ID Name of the routing field

TA_RANGES 1-10:groupl,*:* The routing criteria being used. If, as shown here, the value of

account_ID is between 1 and 10 (inclusive), requests are
sent to the servers in group 1. Otherwise, requests are sent to
any other server in the configuration.

Note: For details, segnconfig, wtmconfig(1) in BEA Tuxedo Command
Reference

How to Change Application-wide
Parameters

Some run-time parameters are relevant to all the components (machines, servers, a
so on) of your configuration. These parameters are listed RE®ROURCESection of
the configuration file.

An easy way to familiarize yourself with the parameters iIrREBBOURCESection is
to display the first entry in that section. To do so, complete the following procedure.

1. Ententmconfig

2. Select th@ESOURCESection, which is the default, by pressing the Enter key
after the list of sections. (Refer to lines 1-3 in the following sample listing.)

3-26 Administering a BEA Tuxedo Application at Run Time

How to Change Application-wide Parameters

3. Request theIRST operation, which is the default, by pressing the Enter key after

the menu of operations. (Refer to lines 4-5.)

4. When asked whether you want to edit, accept the def@udy (pressing the

Enter key.

Do you want to edit(n)?

5. When asked whether you want the specified operai®s{) to be performed,

accept the defauly] by pressing the Enter key.

Perform operation [y]?

The following sample listing showsmaconfig session in which the first entry in the

RESOURCESection is displayed.

Listing 3-6 Displaying the First Entry in the RESOURCES Section

1 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
2 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL

3 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:

4 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
5 6) CLEAR BUFFER 7) QUIT [1]:

6 Enter editor to add/modify fields [n]?

7 Perform operation [y]?

8 Return value TAOK

9 Buffer contents:

10 TA_OPERATION 1

11 TA_SECTION 0

12 TA_STATUS Operation completed successfully
13 TA_OCCURS 1
14 TA_PERM 432

15 TA_BBLQUERY 30

16 TA_BLOCKTIME 6

17 TA_DBBLWAIT 2

18 TA_GID 10

19 TA_IPCKEY 80997

20 TA_LICMAXUSERS 1000000
21 TA_MAXACCESSERS 100
22 TA_MAXBUFSTYPE 32
23 TA_MAXBUFTYPE 16

24 TA_MAXCONV 10

25 TA_MAXDRT 0

26 TA_MAXGROUPS 100
27 TA_MAXGTT 25

28 TA_MAXMACHINES 256
29 TA_MAXQUEUES 36

Administering a BEA Tuxedo Application at Run Time 3-27

3 Dynamically Modifying an Application

30 TA_MAXRFT 0

31 TA_MAXRTDATA 8

32 TA_MAXSERVERS 36

33 TA_MAXSERVICES 100

34 TA_MIBMASK 0

35 TA_SANITYSCAN 12

36 TA_SCANUNIT 10

37 TA_UID 5469

38 TA_MAXACLGROUPS 16384
39 TA_MAXNETGROUPS 8

40 TA_MAXINTERFACES 150

41 TA_MAXOBJECTS 1000

42 TA_STATE ACTIVE

43 TA_SIGNATURE AHEAD

44 TA_AUTHSVC

45 TA_CMTRET COMPLETE
46 TA_DOMAINID

47 TA_LDBAL Y

48 TA_LICEXPIRE 1998-09-15
49 TA_LICSERIAL 1234567890
50 TA_MASTER SITE1

51 TA_MODEL SHM

52 TA_NOTIFY DIPIN

53 TA_OPTIONS

54 TA_SECURITY NONE

55 TA_SYSTEM_ACCESS FASTPATH
56 TA_USIGNAL SIGUSR2

57 TA_PREFERENCES

58 TA_COMPONENTS TRANSACTIONS,QUEUE, TDOMAINS,TXRPC,
59 EVENTS,WEBGUI,WSCOMPRESSION,TDOMCOMPRESSION
60 TA_SIGNATURE_REQUIRED

61 TA_ENCRYPTION_REQUIRED
62 TA_SEC_PRINCIPAL_NAME

63 TA_SEC_PRINCIPAL_LOCATION
64 TA_SEC_PRINCIPAL_PASSVAR

3-28 Administering a BEA Tuxedo Application at Run Time

How to Change an Application Password

How to Change an Application Password

1. Entertmconfig

2. Select th@kESOURCESection, which is the default, by pressing the Enter key
following the list of sections. (Refer to lines 2-4 in the following sample listing.)

3. Request theLEAR BUFFERoperation by entering after the menu of operations.
(Refer to line 6.)

4. Select th&RESOURCESection again, by pressing the Enter key after the menu of
sections. (Refer to lines 8-10.)

5. Select th&JPDATEOperation by entering after the menu of operations. (Refer to
lines 11-12.)

6. Enter the text editor by enterigpgat the prompt. (Refer to line 13.)

7. Enter (in the buffer):
TA_PASSWORD new_password

8. Write (that is, save) your input and quit the editor. (Refer to lines 18-20).

The following sample listing showstaconfig session in which an application
password is changed teptune .

Listing 3-7 Changing an Application Password

1 $ tmconfig

2 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
3 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL

4 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:

5 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE

6 6) CLEAR BUFFER 7) QUIT [4]: 6

7 Buffer cleared

8 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
9 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL

10 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:

11 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE

12 6) CLEAR BUFFER 7) QUIT [6]: 5

13 Enter editor to add/modify fields [n]? y

141

Administering a BEA Tuxedo Application at Run Time 3-29

3 Dynamically Modifying an Application

15¢

16 TA_ PASSWORD neptune
17 .

18w

1949

20q

21 Perform operation [y]?

22 Return value TAUPDATED
23 Buffer contents:

24 TA_OPERATION 1

25 TA SECTION 0

26 TA_STATUS Operation completed successfully
27 TA_OCCURS 1
28 TA_PERM 432

29 TA_BBLQUERY 30

30 TA_BLOCKTIME 6

31 TA_DBBLWAIT 2
32TA_GID 10

33 TA_IPCKEY 80997

34 TA_LICMAXUSERS 1000000
35 TA_MAXACCESSERS 100
36 TA_MAXBUFSTYPE 32

37 TA_MAXBUFTYPE 16

38 TA_MAXCONV 10

39 TA_MAXDRT 0

40 TA_MAXGROUPS 100

41 TA_MAXGTT 25

42 TA_ MAXMACHINES 256

43 TA_MAXQUEUES 36

44 TA_MAXRFT 0

45 TA_MAXRTDATA 8

46 TA_MAXSERVERS 36

47 TA_MAXSERVICES 100

48 TA_MIBMASK 0

49 TA_SANITYSCAN 12

50 TA_SCANUNIT 10

51 TA_UID 5469

52 TA_MAXACLGROUPS 16384
53 TA_MAXNETGROUPS 8

54 TA_MAXINTERFACES 150
55 TA_MAXOBJECTS 1000

56 TA_PASSWORD neptune
57 TA_STATE ACTIVE

58 TA_AUTHSVC

59 TA_CMTRET COMPLETE
60 TA_DOMAINID

61 TA_LDBAL Y

62 TA_LICEXPIRE 1998-09-15
63 TA_LICSERIAL 1234567890

3-30 Administering a BEA Tuxedo Application at Run Time

Limitations on Dynamic Modification Using tmconfig

64 TA_MASTER SITE1

65 TA_MODEL SHM

66 TA_NOTIFY DIPIN

67 TA_OPTIONS

68 TA_SECURITY NONE

69 TA_SYSTEM_ACCESS FASTPATH

70 TA_USIGNAL SIGUSR2

71 TA_PREFERENCES

72 TA_COMPONENTS TRANSACTIONS,QUEUE, TDOMAINS, TXRPC,EVENTS,WEBGUI,
73 WSCOMPRESSION, TDOMCOMPRESSION

Limitations on Dynamic Modification Using
tmconfig

Keep in mind the following restrictions when modifying your application dynamically
usingtmconfig . Be careful about setting parameters that cannot be changed easily.

m Associated with each section is a set of key fields that are used to identify the
record upon which operations are performed. (For detailsmsesfig,
wtmconfig(1) in BEA TuxeddCommandreferencg Key field values cannot
be changed while an application is running. Normally, it is sufficient to add a
new entry, with a new key field, and use it instead of the old entry. When this is
done, only the new entry is used; the old entry in the configuration is not booted
by the administrator.

m Generally speaking, you cannot update a parameter while the configuration
component with which it is associated is booted. For example, you cannot
change an entry in th@ACHINESsection while the machine associated with that
entry is booted. Specifically:

e If any server in a group is booted, you cannot change the entry for that
group.

e |If a server is booted, you cannot change its name, type (conversational or
not), or parameters related to its message queue. (You can change other
server parameters at any time but your changes do not take effect until the
next time the server is booted.)

Administering a BEA Tuxedo Application at Run Time 3-31

3 Dynamically Modifying an Application

e You can change SERVICESentry at any time, but your changes do not take
effect until the next time the service is advertised.

e Updates to th@ESOURCESection are restricted by the following conditions:
theUID, GID, PERMMAXACCESSERMAXGTTandMAXCONYyarameters
cannot be updated in tlRRESOURCESection but can be updated on a
per-machine basis; and ttHRCKEY, MASTERMODELOPTIONS USIGNAL,
MAXSERVERS1AXSERVICESMAXBUFTYPEandMAXBUFSTYPPparameters
cannot be changed dynamically.

m Carefully track the section of the configuration file in which you are working;
tmconfig does not warn against performing an operation in the incorrect
section. For example, if you try to update ENVFILE parameter (in the
MACHINESsection) while you are working in tliRESOURCESection, the
operation appears to succeed (thatnspnfig returnsTAOR), but the change
does not appear in your unloadeBBCONFIdile. You can be sure an update is
done only when theAUPDATEDstatus message is displayed.

In a multiple-machine configuration, always perform the following tasks:

m Specify a backup for theASTERmachine, along with th@IGRATEoption (even
if a need for application server migration is not anticipated).

m For MAXSERVER3MAXSERVICESand other parameters that define maximum
limits, assign settings that are high enough to allow for sufficient growth. If your
application is initially deployed on only one machine, but is expected to grow to
a multiple-machine configuration, use the MP model, specifyingANeption
and a network entry for the initial machine.

m Set the parameters in tMACHINESsection carefully because updating them
requires shutting down the machine (and switchingthAeTERo the backup in
the case of th®IASTERmachine).

Tasks that Cannot Be Performed on a Running System

Most elements of the BEA Tuxedo system can be changed dynamically, through eithe
manual intervention or automatic processes. For example, new servers can be
spawned, new machines can be added, timeout parameters can be changed, and so
A few parameters, however, cannot be changed while a system is operational:

3-32 Administering a BEA Tuxedo Application at Run Time

Making Temporary Modifications to Your Configuration with tmadmin

m Any parameter that affects the size of the bulletin board is not dynamic. Most of
these parameters begin with the striimgx such asMAXGTTwhich defines the
maximum number of in-flight transactions allowed within the BEA Tuxedo
system at any time.

m The name of a machine being used in a running application is not dynamic. New
machines (that is, machines with new names) can be added, but an existing
machine name cannot be changed.

m Once server executables are assigned to run on both master and backup
machines, the assignment of the master and backup cannot be changed.

Note: You can configure new copies of a server executable to run on additional
machines, but you cannot change existing servers with unique identifiers.

Making Temporary Modifications to Your
Configuration with tmadmin

When you use thinconfig command to update th@&/XCONFIGile and any bulletin
board entries associated with it, the changes you make are permanent; they persist after
the system is shut down and rebooted.

In some situations, however you may want to make temporary changes to a running
application. For example, you may want to:

m Suspend services or servers

m Resume services or servers

m Advertise services or servers

m Unadvertise services or servers
m Change service parameters

m Change the timeout value

You can perform these tasks with thedmin command, as specified in the
procedures provided in this section.

Administering a BEA Tuxedo Application at Run Time 3-33

3 Dynamically Modifying an Application

How to Set Environment Variables for tmadmin

Before you can starttamadmin session, you must set your environment variables and
any required permissions. For your convenience, you may also want to select a text
editor other than the default editor.

Complete the following procedure to set up your working environment properly before
runningtmadmin .

1. Login as the BEA Tuxedo application administrator if you want to add entries to
TUXCONFIGor to modify existing entries. This step is not required if you only want
to view existing configuration file entries without changing or adding to them.

2. Assign values to two mandatory environment variallleXCONFIGandTUXDIR.

e The value offUXCONFIGmMust be the full path name of the binary
configuration file on the machine on whiohconfig is being run.

e The value offUXDIR must be the root directory for the BEA Tuxedo system
binary files. (mconfig must be able to extract field names and identifiers
from $TUXDIR/udataobj/tpadmin)

How to Suspend Services or Servers

To suspend a server or a service, entetrthdmin andsusp (short forsuspend)
commands, as follows.

$ tmadmin
> susp

Thesuspend command marks one of the following as inactive:
m One service
m All services of a particular queue

m All services of a particular group ID or server ID combination

3-34 Administering a BEA Tuxedo Application at Run Time

How to Resume Services or Servers

After you suspend a service or a server, any requests for it that remain on the queue are
handled, but no new service requests are routed to the suspended server. If a group ID
or server ID combination is specified and it is part of an MSSQ set, all servers in that
MSSQ set become inactive for the services specified.

How to Resume Services or Servers

To have a server or a service resume, ententignin andresume (Orres)
commands, as follows.

$ tmadmin
>res

Theresume command undoes the effect of #uepend command; it marks as active
for the queue one of the following:

m One service
m All services of a particular queue
m All services of a particular group ID/server ID combination

If, in this state, the group ID or the server ID is part of an MSSQ set, all servers in that
MSSQ set become active for the services specified.

How to Advertise Services or Servers

To advertise a service or server, enter the following commands.

$ tmadmin
> adv [{[-q queue_name] | [-9 grpid] [-i srvid 1] service

Although a service must be suspended before it may be unadvertised, you do not need
to unsuspenda service before readvertising it. If you simply advertise a service that
was unadvertised earlier, and is currently suspended, the service is unsuspended.

Administering a BEA Tuxedo Application at Run Time 3-35

3 Dynamically Modifying an Application

How to Unadvertise Services or Servers

To unadvertise a service or server, you must suspend it by entering the following
commands.

$ tmadmin
> unadv [{[-q queue_name] | [-9 grpid 1[-i srvid 1}] service

Unadvertising a service has more drastic results than suspending it. When you
unadvertise a service, the service table entry for it is deallocated and the cleared spa
in the service table becomes available to other services.

How to Change Service Parameters

Thetmadmin command allows you to change, dynamically, the values of service
parameters for a specific group ID/server ID combination or for a specific queue.

The following table lists thenadmin commands available for changing service
parameters defined in this way.

To Change Enter the Following Commands

Load value (OAD $tmadmin
>chl -s service_name

Dequeueing priorityRRIO) $tmadmin
>chp -s service_name

Transaction timeout value $tmadmin
>chtt -s service_name

The-s option must be specified, either on tlladmin default command line or on
thetmadmin chl , chp, orchtt command line. Because it is possible to set¢he
option on thelefault command line, the option is considered optional on tie |
chp, andchtt command lines.

3-36 Administering a BEA Tuxedo Application at Run Time

How to Change the Timeout Value

How to Change the Timeout Value

To change the transaction timeoctRANTIMB for an interface or service with the
AUTOTRANIag set, run thehangetrantime (chtt) command, as follows.

$ tmadmin
> chtt [-m machine] {-q gaddress [-g groupname] [-i srvid]
|- groupname -i srvid }-s service newtlim

You cannot change transaction timeouts begun by application clients using
tpbegin() ortx_set_transaction_timeout()

Administering a BEA Tuxedo Application at Run Time 3-37

3 Dynamically Modifying an Application

3-38 Administering a BEA Tuxedo Application at Run Time

CHAPTER

4 Managing the Network

in a Distributed
Application

m Running a Network for a Distributed Application
m Compressing Data Over a Network

m Balancing Network Request Loads

m How to Use Data-Dependent Routing

m How to Change Your Network Configuration

Running a Network for a Distributed
Application

Most of the work associated with running the network for a distributed application is
done in the configuration or setup phase. Once you have defined the network and
booted the application, the software automatically runs the network for you.

This topic describes how the BEA Tuxedo system moves data through a network, and
explains how to set the configuration file parameters that control network operations.

Administering a BEA Tuxedo Application at Run Time 4-1

4 Managing the Network in a Distributed Application

Compressing Data Over a Network

The BEA Tuxedo system allows you to compress data being sent from one applicatio
process to another. Data compression is useful in most applications and is vital in
supporting large configurations. You can use data compression when the sender an
receiver of a message are on the same machine (local data compression), or when
sender and receiver of a message are on different machines (remote data compressic
Both forms of compression provide advantages:

m Because messages are sent over interprocess communication (IPC) queues, the
advantage ofocal data compressiois that it results in lower utilization of IPC
resources.

m Because messages are sent over a network, the advantegetd data
compressiors that it results in lower utilization of network bandwidth.

How to Set the Compression Level

If you decide to use data compression, you must seMimeIMIT parameter in the
MACHINESsection of the configuration file, as follows.

CMPLIMIT=string_valuel [, string_value2]

The strings that make up the value of this parameter specify the threshold message s
for messages bound to remote processgsy valuel) and local processes
(string_value2). Only the first string is required. The default for both strings is the
value of theuAXLON@arameter.

In addition, you have the option of setting thCMPPRFplarameter to establish an
appropriate balance between compression and CPU performance. Higher and slow:
compression results in more efficient network bandwidth; lowefasfier

compression yields less CPU utilization.

4-2 Administering a BEA Tuxedo Application at Run Time

Compressing Data Over a Network

To specify the desired level of compression, complete the following procedure.

1. Setthe compression threshold usingGM®LIMIT parameter in theBBCONFIG
configuration file.

2. (optional step) Set theMCMPPRFENVironment variable. The value of
TMCMPPRFRust be a single digit between 1 and 9; the default is 1.

A value of 1 specifies the lowest level of compression with the fastest
performance; 9 represents the highest level of compression with the slowest
performance. The lower the number, the more quickly the compression routine is
executed.

For more information on setting tiMCMPPRFMariable, refer tauxenv(5) in BEA
Tuxedo File Formats and Data Descriptions Reference

Selecting Data Compression Thresholds

You can designate@mpression threshofdr messages: any messages larger than the
threshold you specify are compressed. To designate a compression threshold, set the
CMPLIMIT parameter. For instructions, see “How to Set the Compression Level” on
page 4-2.

When choosing data compression thresholds, keep in mind the following criteria:

m Consider usingemote data compressidghyour sites are running BEA Tuxedo
Release 4.2.1 or later. Your setting depends on the speed of your network. You
may want to assign different settings, for example, to an Ethernet network
(which is a high-speed network) and an X.25 network (which is a low-speed
network).

e For ahigh-speed networlconsider setting remote data compression to the
lowest limit for file transfers generated by the BEA Tuxedo system. (See the
note about file transfers provided later in this list.) In other words, compress
only messages that are large enough to be candidates for file transfer on
either the sending site or the receiving site. Note that each machine in an
application may have a different limit. If this is the case, choose the lowest
limit possible for each machine.

e For alow-speed networlconsider setting remote data compression to zero
on all machines; that is, compress all application and system messages.

Administering a BEA Tuxedo Application at Run Time 4-3

4 Managing the Network in a Distributed Application

See Also

m Consider usindocal data compressiofor sites running BEA Tuxedo Release

4.2.1 or later, even if they are interoperating with pre-Release 4.2.1 sites. This
results in lower utilization of IPC resources. This setting also enables you to
avoid file transfers in many situations that might otherwise require a transfer
and, when file transfers cannot be avoided, this setting greatly reduces the size
of the files used. For more information, refer to “Message Queues and
Messages” on page 1-14limstalling the BEA Tuxedo System

For local data compression, you can assign a different threshold to each machin
in an application. If this is the case, always choose the lowest limit possible for
each machine.

Note: For high-traffic applications that involve a large volume of timeouts and
discarding of messages due to IPC queue blocking, you may want to lowel
the demand of the application on the IPC queuing subsystem by having
local compression done at all times.

Because compression depends on the type of data being transmitted, we strongly
recommend that you try different settings in your environment to determine which one
yields the best results.

DMCONFIG(5) in BEA Tuxedo File Formats and Data Descriptions Reference
tuxenv(5) in BEA Tuxedo File Formats and Data Descriptions Reference

“What Is Data Compression” on page 2-31ritroducing the BEA Tuxedo
System

Balancing Network Request Loads

If load balancing is turned on (that isLDBALIis set tor in theRESOURCESection of

the application configuration file), the BEA Tuxedo system attempts to balance
requests across the network. Because load information is not updated globally, eacl
site has a unique view of the load at remote sites.

4-4 Administering a BEA Tuxedo Application at Run Time

How to Use Data-Dependent Routing

Use theNETLOADparameter in th®IACHINESsection of the configuration file (or the
TMNETLOARNVironment variable) to force more requests to be sent to local queues.
The value of this parameter is a number that is added to the load for remote queues, so
the remote queues appear to have more work than they do. As a result, even if load
balancing is turned on, local requests are sent to local queues more often than to remote
queues.

As an example, assume servers A and B offer a service with load factor 50. Server A
is running on the same machine as the calling client (local), and server B is running on
a different machine (remote). METLOADIs set to 100, approximately three requests

will be sent to A for every one sent to B.

Another mechanism that affects load balancing is local idle server preference.
Requests are always sent to a server on the same machine as the client, assuming that
the server offers the desired service and is idle. This decision overrides any load
balancing considerations, because the local server is known to be available
immediately.

See Also

m “What Is Load Balancing” on page 2-39lintroducing the BEA Tuxedo System

How to Use Data-Dependent Routing

Data-dependent routing is useful when clients issue service requests to:
m Horizontally-partitioned databases
m Rule-based servers

A horizontally-partitioned database is an information repository that is divided into
segments, each of which is used to store a different category of information. This
arrangement is similar to a library in which each shelf of a bookcase holds books for a
different category (for example, biography, fiction, and so on).

Administering a BEA Tuxedo Application at Run Time 4-5

4 Managing the Network in a Distributed Application

A rule-based server is a server that determines whether service requests meet certe
application-specific criteria before forwarding them to service routines. Rule-based
servers are useful when you want to handle requests that are almost identical by taki
slightly different actions for business reasons.

Example of Data-dependent Routing with a
Horizontally-partitioned Database

Suppose two clients in a banking application issue requests for the current balance
two accounts: Account 3 and Account 17. If data-dependent routing is being used in
the application, then the BEA Tuxedo system performs the following actions:

1. Gets the account numbers for the two service requests (3 and 17).

2. Checks the routing tables on the BEA Tuxedo bulletin board that show which
servers handle which range of data. (In this example, server 1 handles all reques
for accounts 1 through 10, and server 2 handles all requests for accounts 11
through 20.)

3. Sends each request to the appropriate server. Specifically, the system forwards
the request about Account 3 to server 1, and the request about account 17 to
server 2.

The following figure illustrates this process.

4-6 Administering a BEA Tuxedo Application at Run Time

How to Use Data-Dependent Routing

Figure 4-1 Data-dependent Routing with a Horizontally-partitioned Database

Machine
Server1 1 Server 2
Databasze Databaze
scct1-10 ™ Service & 0 Service & * mcct11-20
Inteake Ireake
Acct=3 Acct=1T
Cliert ar

Server

Example of Data-dependent Routing with Rule-based
Servers

A banking application includes the following rules:
m Customers can withdraw up to $500 without entering a special password.
m Customers must enter a special password to withdraw more than $500.

Two clients issue withdrawal requests: one for $100 and one for $800. If
data-dependent routing is enabled to support the withdrawal rules, then the BEA
Tuxedo system performs the following actions:

1. Gets the amount specified for withdrawal in the two service requests ($100 and
$800).

2. Checks the routing tables on the BEA Tuxedo bulletin board that show which
servers handle requests for the amount being requested. (In this example, server 1
handles all requests to withdraw amounts up to $500; server 2 handles all
requests to withdraw amount over $500.)

Administering a BEA Tuxedo Application at Run Time 4-7

4 Managing the Network in a Distributed Application

3. Sends each request to the appropriate server. Specifically, the system forwards
the request for $100 to server 1 and the request for $800 to server 2.

The following figure illustrates this process.

Figure 4-2 Data-dependent Routing with Rule-Based Servers

Maching
Server 1 1 Server 2
Databaze Dstabaze
Accts <5500 Accts =F500
without - Service & Service A > passward-
passyword required
Withilrawe $100 Withdrawy $300
Client or

Server

See Also

m “What Is Data-dependent Routing” on page 2-3titnoducing the BEA Tuxedo

System

How to Change Your Network Configuration

To change configuration parameters while your application is running, run the
tmconfig (1) command. This command is a shell-level interface to the BEA Tuxedo

System Management Information Base (MIB).

4-8 Administering a BEA Tuxedo Application at Run Time

How to Change Your Network Configuration

See Also

Usingtmconfig , you can browse and modify tieXCONFIGile without bringing
down your system. For example, you can add new components, such as machines and
servers, while your application is running.

m “Using tmconfig to Modify Your Configuration” on page 3-21litroducing the
BEA Tuxedo System

m tmconfig, wtmconfig(1) in BEA Tuxedo Command Reference
m MIB(5) in BEA Tuxedo File Formats and Data Descriptions Reference
m TM_MIB(5) in BEA Tuxedo File Formats and Data Descriptions Reference

m “Administering Link-Level Encryption” on page 2-35 ifsing BEA Tuxedo
Security

m “Administering Public Key Security” on page 2-41lsing BEA Tuxedo
Security

Administering a BEA Tuxedo Application at Run Time 4-9

4 Managing the Network in a Distributed Application

4-10 Administering a BEA Tuxedo Application at Run Time

CHAPTER

5 About the EventBroker

m What Is an Event

m Differences Between Application-defined and System-defined Events
m What Is the EventBroker

m How the EventBroker Works

m What Are the Benefits of Brokered Events

What Is an Event

An event is a state change or other occurrence in a running application (such as a
network connection being dropped) that may require intervention by an operator, an
administrator, or the software. The BEA Tuxedo system reports two types of events:

m System-defined eventshich are situations (primarily failures) defined by the
BEA Tuxedo system, such as the exceeding of certain system capacity limits,
server terminations, security violations, and network failures.

m Application-defined eventsvhich are situations defined by a customer
application, such as the ones listed in the following table.

In an application for this An occurrence of this situation may be defined as
type of business . . . an “event” . ..

Stock brokerage A stock is traded at or above a specified price.

Administering a BEA Tuxedo Application at Run Time 5-1

5 About the EventBroker

In an application for this An occurrence of this situation may be defined as
type of business . . . an “event” . ..

Banking A withdrawal or deposit above a specified amount is made.

The cash available in an ATM machine drops below a
specified amount.

Manufacturing An item is out of stock.

Application eventare occurrences of application-defined events sgstem events
are occurrences of system-defined events. Both application and system events are
received and distributed by the BEA Tuxedo EventBroker component.

Differences Between Application-defined
and System-defined Events

Application-defined events are defined by application designers and are therefore
application specific. Any of the events defined for an application may be tracked by
the client and server processes running in the application.

System-defined events are defined by the BEA Tuxedo system code and are genera
associated with objects definedTim_MIB(5) . A complete list of system-defined

events is published on tE&/ENTS(5) reference page. Any of these events may be
tracked by users of the BEA Tuxedo system.

The BEA Tuxedo EventBroker posts both application-defined and system-defined
events, and an application can subscribe to events of both types. The two types of
events can be distinguished by their names: the names of system-defined events beg
with a dot (.); the names of application-specific events cannot begin with a dot (.).

5-2 Administering a BEA Tuxedo Application at Run Time

What Is the EventBroker

What Is the EventBroker

The BEA Tuxedo EventBroker is a tool that provides asynchronous routing of
application events among the processes running in a BEA Tuxedo application. It also
distributes system events to whichever application processes want to receive them.

The EventBroker performs the following tasks:

m Monitors events and notifies subscribers when events are posted via
tppost(3c)

m Keeps an administrator informed of changes in an application.
m Provides a system-wide summary of events.

m Provides a tool through which an event can trigger a variety of notification
activities.

m Provides a filtering capability, providing additional conditions to the posted
event’s buffer.

Note: For a sample application that you can copy and run as a demo, see “Tutorial
for bankapp, a Full C Application” on page 3-1ITiatorials for Developing a
BEA Tuxedo Applicatian

The EventBroker recognizes over 100 meaningful state transitions to a MIB object as
system events. A posting for a system event includes the current MIB representation
of the object on which the event occurred and some event-specific fields that identify
the event that occurred. For example, if a machine is partitioned, an event is posted
with the following:

m The name of the affected machine, as specified im tACHINE class , with
all the attributes of that machine

m Some event attributes that identify the evenmashine partitioned

You can use the EventBroker simply by subscribing to system events. Then, instead of
having to query for MIB records, you can be informed automatically when events
occur in the MIB by receivingMLdata buffers representing MIB objects.

Administering a BEA Tuxedo Application at Run Time 5-3

5 About the EventBroker

How the EventBroker Works

The BEA Tuxedo EventBroker is a tool through which an arbitrary number of
suppliersof event notifications can post messages for an arbitrary number of
subscribers The suppliers of such notifications may be application or system
processes operating as clients or servers. The subscribers of such notifications may
administrators or application processes operating as clients or servers.

Client and server processes using the EventBroker communicate with one another
based on a set sfibscriptionsEach process sends one or more subscription requests
to the EventBroker, identifying the event types that the process wants to receive. Th
EventBroker, in turn, acts like a newspaper delivery person who delivers newspapel
only to customers who have paid for a subscription. For these reasons, the paradigr
on which the EventBroker is based is describepuddish-and-subscribe
communication.

Event suppliers (either clients or servers) notify the EventBroker of events as they
occur. We refer to this type of notification psstingan event. Once an event supplier
posts an event, the EventBroker matches the posted event with the subscribers that
have subscribed for that event type. Subscribers may be administrators or applicatic
processes. When the EventBroker finds a match, it takes the action specified for eac
subscription; subscribers are notified and any other actions specified by subscribers a
initiated.

The following diagram shows how the EventBroker handles event subscriptions and
postings.

Figure 5-1 Posting and Subscribing to an Event

Event Fvent
Subscription Posting i
Clientor Server —————»| BEvent = | Clientor Server
Broker
R I e
Event
Hotification

As the administrator for your BEA Tuxedo application, you can enter subscription
requests on behalf of client and server processes through calls to the
T_EVENT_COMMANIass of theEVENT_MIB(5) . You can also invoke the

tpsubscribe(3c) function to subscribe, programmatically, to an event by using the
EventBroker.

5-4 Administering a BEA Tuxedo Application at Run Time

How the EventBroker Works

Event Notification Methods

The EventBroker subscription specifies one of the notification methods shown in the
following diagram.

Figure 5-2 Supported Notification Methods

EventBroker

- N
tpsubscribe()

Motify &
client Wirite to
userlog

Invake a service | Engueue Execute a
to queue command

tpposti)

m Notify a client—The EventBroker keeps track of a client’s interest in particular
events and notifies the client, without being prompted, when such an event
occurs. For this reason, this method is calledolicited notification

m Invoke a service-If a subscriber wants event notifications to be passed to
service calls, the subscriber process should invokgshiescribe() function
to provide the name of the service to be called.

m Enqueue message to stable-storage quetes subscriptions with requests to
send event notifications to stable-storage queues, the EventBroker will obtain a
gqueue space, queue name, and correlation identifier. A subscriber specifies a
gueue name when subscribing to an event. The correlation identifier can be used
to differentiate among multiple subscriptions for the same event expression and
filter rule, that are destined for the same queue.

m Execute a commardWhen an event is posted, the buffer associated with it is
transformed into a system command that is then executed. For example, the
buffer may be changed to a system command that sends an email message. This
process must be executed through the MIB.

Administering a BEA Tuxedo Application at Run Time 5-5

5 About the EventBroker

m Write messages to the userediVhen events are detected and matched by the
EventBroker, the specified messages are written to the userlogpaThis
process must be executed through the MIB.

Severity Levels of System Events

The EventBroker assigns one of three levels of severity to system events such as sen
terminations or network failure.

The level of

severity is . . .

When the EventBroker is informed of . . .

ERROR

An abnormal occurrence, such as a server being terminated or a
network connection being dropped.

INFO (short for
“Information”)

A state change resulting from a process or a change in the
configuration.

WARNshort for
“Warning”)

The fact that a client has not been allowed to join the application
because it failed authentication. A configuration change that
threatens the performance of the application has occurred.

What Are the Benefits of Brokered Events

= Anonymous communicatiefil he Event Broker enables BEA Tuxedo programs
to subscribe to events in which they are interested and it keeps track of all
subscriptions. Therefore, a subscriber to one event does not need to know which
programs subscribe to the same event, and a poster of an event does not need t
know which other programs subscribe to that event. This anonymity allows
subscribers to come and go without synchronizing with posters.

m Decoupling of exception conditiorsA publish-and-subscribe communication
model allows the software detecting an exception condition to be decoupled
from the software handling the exception condition.

5-6 Administering a BEA Tuxedo Application at Run Time

What Are the Benefits of Brokered Events

m Tight integration with the BEA Tuxedo systeffihe Event broker retains
functionality such as message buffers, messaging paradigms, distributed
transactions, and ACL permission checks for event postings.

m Variety of notification methodsWhen a client or server subscribes to a system
event (such as the termination of a server) or an application event (such as an
ATM machine running out of money), it specifies an action that the EventBroker
should take when it is notified that the target event has occurred.

If the subscriber is a BEA Tuxedo client, it can do one of the following at the
time it subscribes:

¢ Request unsolicited notification
¢ Name a service routine that should be invoked

e Name an application queue in which the EventBroker should store the data
for later processing

If the subscriber is a BEA Tuxedo server, it can do one of the following at the
time it subscribes:

e Specify a service request

e Name an application queue in which the EventBroker should store the data

See Also

m “Subscribing to Events” on page 6-1

m “Subscribing to an Event” on page 3-16roducing the BEA Tuxedo System
m EVENT_MIB(5) in BEA Tuxedo File Formats and Data Descriptions Reference
m tpsubscribe(3c) in BEA Tuxedo C Function Reference

m tpunsubscribe(3c) in BEA Tuxedo C Function Reference

Administering a BEA Tuxedo Application at Run Time 5-7

5 About the EventBroker

5-8 Administering a BEA Tuxedo Application at Run Time

CHAPTER

6 Subscribing to Events

m Process of Using the EventBroker
m How to Configure EventBroker Servers
m How to Set the Polling Interval

m Subscribing, Posting, and Unsubscribing to Events with the ATMI and the
EVENT_MIB

m How to Select a Notification Method
m How to Cancel a Subscription to an Event

m How to Use the EventBroker with Transactions

Process of Using the EventBroker

Use of the EventBroker requires the completion of several preparatory steps. The
following flowchart lists these steps and indicates whether each step should be
performed by an application administrator or programmer.

Administering a BEA Tuxedo Application at Run Time 6-1

6 Subscribing to Events

Configure senvers and identify machines
on which they will run

|
Set up the polling intersal administrator task

Select a notification method and
subscribe to an event with that method

Cancel a subseription to the event prograrmer tasic

aorinistrator task

pragrarmimer task

For instructions on any of these tasks, click on the appropriate box in the flowchart.

Note: A good way to learn how the EventBroker works is by runmitapp , the
sample application delivered with the BEA Tuxedo system. To find out how
to copybankapp and run it as a demo, see “Tutorial for bankapp, a Full C
Application” on page 3-1 ifutorials for Developing a BEA Tuxedo
Application

How to Configure EventBroker Servers

6-2

A client accesses the EventBroker through either of two servers provided by the BE/
Tuxedo systemrMUSREVT(5), which handles application events, amSYSEVT(5),

which handles system events. Both servers process events and trigger the sending
notification to subscribers.

To set up the BEA Tuxedo EventBroker on your system, you must configure either ol
both of these servers in tBERVERSsection of theJBBCONFIJile, as shown in the
following example.

*SERVERS
TMSYSEVT SRVGRP=ADMIN1 SRVID=100 RESTART=Y GRACE=900 MAXGEN=5
CLOPT="-A --"
TMSYSEVT SRVGRP=ADMIN2 SRVID=100 RESTART=Y GRACE=900 MAXGEN=5
CLOPT="-A -- -S -p 90"

TMUSREVT SRVGRP=ADMIN1 SRVID=100 RESTART=Y

MAXGEN=5 GRACE=3600
CLOPT="-A --"

Administering a BEA Tuxedo Application at Run Time

How to Set the Polling Interval

TMUSREVT SRVGRP=ADMIN2 SRVID=100 RESTART=Y
MAXGEN=5 GRACE=3600
CLOPT="-A ---S -p 120"

We recommend that you assign the principal server tMASTERsite, even though
either server can reside anywhere on your network.

Note: You can reduce the network traffic caused by event postings and notifications
by assigning secondary servers to other machines in your network.

How to Set the Polling Interval

Periodically, the secondary server polls the primary server to obtain the current
subscription list, which includes filtering and notification rules. By default, polling is
done every 30 seconds. If necessary, however, you can specify a different interval.

You can configure the polling interval (represented in seconds) witlp the
command-line option ITMUSREVT(5) or TMSYSEVT(5) entries in the configuration
file.

-p poll_seconds

It may appear that event messages are lost while subscriptions are being added and
secondary servers are being updated.

Subscribing, Posting, and Unsubscribing to
Events with the ATMI and the EVENT_MIB

As the administrator for your BEA Tuxedo application, you can enter subscription
requests on behalf of a client or server process through callsTofMENT_COMMAND
class of th&eVENT_MIB(5) . You can also use invoke thgubscribe(3c) function

to subscribe, programmatically, to an event.

Administering a BEA Tuxedo Application at Run Time 6-3

6 Subscribing to Events

The following figure shows how clients and servers use the EventBroker to subscrib
to events, to post events, and to unsubscribe to events.

Figure 6-1 Subscribing to an Event

Event Event
Subscription Posting i
Client or Server —— | BEvent o = | Client or Server
Broker
.
Event
Hotification

Identifying Event Categories Using eventexpr and filter

Clients or servers can subscribe to events by capiupscribe(3c) . The

tpsubscribe() function takes one required argumententexpr . The value of
eventexpr can be a wildcard string that identifies the set of event names about whict
the user wants to be notified. Wildcard strings are described oadiep,

rematch(3c) reference page BEA Tuxedo C Function Reference

As an example, a user on a UNIX system platform who wants to be notified of all
events related to the category of networking can specify the following value of
eventexpr

\.SysNetwork.*

The backslash preceding the period (.) indicates that the period is literal. (Without the
preceding backslash, the period (.) would match any character except the end-of-lin
character.) The combination at the end of SysNetwork.* matches zero or more
occurrences of any character except the end-of-line character.

In addition, clients or servers can filter event data by specifying the optfimsral

argument when callingsubscribe() . The value ofiiter is a string containing a
boolean filter rule that must be evaluated successfully before the EventBroker posts tt
event.

As an example, a user who wants to be notifiely about system events having a
severity level oERRORcan specify the following value dfter

"TA_EVENT_SEVERITY="ERROR™

6-4 Administering a BEA Tuxedo Application at Run Time

Subscribing, Posting, and Unsubscribing to Events with the ATMI and the EVENT_MIB

When an event name is posted that evaluates successfully againstpr , the
EventBroker tests the posted data against the filter rule associatessvitdxpr . If

the data passes the filter rule or if there is no filter rule for the event, the subscriber
receives a notification along with any data posted with the event.

Accessing the EventBroker

Your application can access the EventBroker through either the ATMI or the
EVENT_MIB(5) . The following table describes both methods.

Method

Function

Purpose

ATMI

tppost(3c)

Notifies the EventBroker, or posts an event and any
accompanying data. The event is named byetleatname
argument and théata argument, if not NULL, points to the data.
The posted event and data are dispatched by the BEA Tuxedo
EventBroker to all subscribers with subscriptions that
successfully evaluate agairetentname and optional filter

rules that successfully evaluate aganta .

tpsubscribe(3c)

Subscribes to an event or a set of events namedédyytexpr
Subscriptions are maintained by the BEA Tuxedo EventBroker,
and are used to notify subscribers when events are posted via
tppost() . Each subscription specifies one of the following
notification methods: client notification, service calls, message
engueuing to stable-storage queues, executing of commands, and
writing to the userlog. Notification methods are determined by the
subscriber’s process type (that is, whether the process is a client
or a server) and the arguments passegstabscribe()

tpunsubscribe(3c)

Removes an event subscription or a set of event subscriptions
from the BEA Tuxedo EventBroker's list of active subscriptions.
subscription is an event subscription handle returned by
tpsubscribe() . Settingsubscription to the wildcard

value,-1 , directstpunsubscribe to unsubscribe to all
nonpersistent subscriptions previously made by the calling
process. Non-persistent subscriptions are those made without the
TPEVPERSISThit setting in thectl->flags parameter of
tpsubscribe() . Persistent subscriptions can be deleted only
by using the handle returned tpsubscribe()

Administering a BEA Tuxedo Application at Run Time 6-5

6 Subscribing to Events

Method Function Purpose

EVENT_MIB(5) N/A The EVENT_MIBis a management information base (MIB) that
stores subscription information and filtering rules. In your own
application, you cannot define new events for the BEA Tuxedo
EventBroker usingeVENT_MIB but you can customize the
EventBroker to track events and notify subscribers of occurrences
of special interest to the application.

You can use thEVENT_MIBto subscribe to an event, or to
modify or cancel a subscription.

Note: tppost(3c) ,tpsubscribe(3c) , andtpunsubscribe(3c) are C functions.
Equivalent routinesTPPOST(3cbl) , TPSUBSCRIBE(3cbl) , and
TPUNSUBSCRIBE(3chl)) are provided for COBOL programmers. BeA
Tuxedo C Function ReferenaeadBEA Tuxedo COBOL Function Reference
for details.

How to Select a Notification Method

The EventBroker supports a variety of methods for notifying subscribers of events, a
shown in the following diagram.

Figure 6-2 Notification Methods Supported by the EventBroker

EventBroker

- -
tpsubscribe()

MHotify a /
client Yrite to
userlog

Ihwoke a service | Engueue Execute a
o gueue cammand

Thpost()

6-6 Administering a BEA Tuxedo Application at Run Time

How to Select a Notification Method

Whichever natification method you choose, the procedure for implementing it is the
same: in your call tepsubscribe() , specify an argument that refers to a structure of
type TPEVCTL

If the value of the argumenti&LL, the EventBroker sends an unsolicited message to
the subscriber. Two of these methods, having the notification sent to a service and
having it sent to a queue in stable storage, cannot be requested directly by a client.
Instead, a client must invoke a service routine to subscribe on its behalf.

For each subscription, you can select any of the following notification methods. The
EventBroker can:

Notify the cliert—The EventBroker keeps track of events in which the client

is interested and sends unsolicited notifications to the client when they occur.
Some events are anonymously posted. A client can join an application,
regardless of whether any other clients have subscribed, and post events to
the EventBroker. The EventBroker matches these events against its database
of subscriptions and sends an unsolicited notification to the appropriate
clients. (See the definition of thie EVENT_CLIENTclass in the

EVENT_MIB(5) entry inBEA Tuxedo File Formats and Data Descriptions
Reference

Invoke a service-If a subscriber wants event notifications to be sent to
service calls, then thel parameter must point to a vali@EVCTLstructure.
(See the definition of the_EVENT_SERVICEclass in th&EVENT_MIB(5)
entry inBEA Tuxedo File Formats and Data Descriptions Refergnce

Enqueue messages to stable-storage quef®s subscriptions to

stable-storage queues, a queue space, queue name, and correlation identifier
are specified, in addition to values fMentexpr andfilter , so that

matching can be performed. The correlation identifier can be used to
differentiate among several subscriptions characterized by the same event
expression and filter rule, and destined for the same queue. (See the
definition of theT_EVENT_QUEUEIass in theeVENT_MIB(5) entry inBEA

Tuxedo File Formats and Data Descriptions Reference

Execute commandsUsing theT_EVENT_COMMANMass of theeVENT_MIB
subscribers can invoke an executable process. When a match is found, the
data is used as the name of the executable process and any required options.
(See the definition of the_ EVENT_COMMANIaSS in the&EVENT_MIB(5)

entry inBEA Tuxedo File Formats and Data Descriptions Refergnce

Write messages to the userlagt OG)}—Using theT_EVENT_USERLOGlass
of theEVENT_MIB subscribers can write systaySERLOGnessages. When

Administering a BEA Tuxedo Application at Run Time 6-7

6 Subscribing to Events

events are detected and matched, they are written tistRLOG(See the
definition of theT_EVENT_USERLOGEIass in th&eVENT_MIB(5) entry inBEA
Tuxedo File Formats and Data Descriptions Refergnce

How to Cancel a Subscription to an Event

When a client leaves an application by callistgrm(3c) , all of its subscriptions are
canceledunless the subscription is specified as persistent. (If persistent, the
subscription continues to receive postings even after a client perfoprasrg)) If

the client later rejoins the application and wants to renew those subscriptions, it mus
subscribe again.

A well-behaved client unsubscribes before caltingrm() . This is accomplished by
issuing apunsubscribe(3c) call before leaving an application.

How to Use the EventBroker with
Transactions

Special handling is needed to use the EventBroker with transactions.

m Before you can use the EventBroker with transactions, you must configure the
NULL_TMSparameter with thEMUSREVT(5) server for the server groups in
which the EventBroker is running.

m The advantage of posting an event in a transaction is that all of the work,
including work not related to the posting, is guaranteed to be complete if the
transaction is successful. If any work performed within the transaction fails, it is
guaranteed that all the work done within the transaction will be rolled back. The
disadvantage is that the poster takes a risk that something may cause the
transaction to be aborted, and the posting will be lost.

6-8 Administering a BEA Tuxedo Application at Run Time

How to Use the EventBroker with Transactions

m To specify that a subscription is part of a transaction, usePtheTRANIag
with tpsubscribe(3c) . If the subscription is made transactionally, the action
taken in response to an event will be part of the caller’s transaction.

Note: This method can be used only for subscriptions that cause a BEA Tuxedo
service to be invoked, or that cause a record to be enqueued on a permanent
queue.

How Transactions Work with the EventBroker

If both a poster and a subscriber agree to link their transactions, they create a form of
voting. The poster makes an assertion that something is true and infects the message
with this transaction. (In other words, the message that leaves the originating process
is marked as being associated with the transaction.) The transaction goes to the
EventBroker.

The EventBroker’s actions, such as calling the service or putting a message in the
queue for the subscriber, are also part of the same transaction. If a service routine that
is running encounters an error, it can fail the transaction, rolling back everything,
including all other transactional subscriptions and the poster’s original transaction,
which might have invoked other services and performed other database work. The
poster makes an assertion (“I'm about to do this”), provides data, and links the data to
its transaction.

A number of anonymous subscribers, that is, subscribers about which the poster knows
nothing, are invoked transactionally. If any subscriber fails to link its work with the
poster’s work, the whole transaction is rolled back. All transactional subscribers must
agree to link their work with the poster’'s work, or all the work is rolled back. If a poster
has not allowed the posting to participate in its transaction, the EventBroker starts a
separate transaction, and gathers all the transactional subscriptions into that
transaction. If any of these transactions fail, all the work done on behalf of the
transactional subscriptions is rolled back, but the poster’s transaction is not rolled
back. This process is controlled by tirEVTRANag.

Example of Using the EventBroker with Transactions

A stock trade is about to be completed by a brokerage application. A number of
database records have been updated by various services during the trade transaction. A
posting states that the trade is about to happen.

Administering a BEA Tuxedo Application at Run Time 6-9

6 Subscribing to Events

An application responsible for maintaining an audit trail of such trades has subscribe
to this event. Specifically, the application has requested the placement of a record in
specified queue whenever an event of this type is posted. A service routine responsib
for determining whether trades can be performed, also subscribes to this type of ever
it, too, is notified whenever such a trade is proposed.

If all goes well, the trade is completed and an audit trail is made.

If an error occurs in the qgueue and no audit trail can be made, the entire stock trade
rolled back. Similarly, if the service routine fails, the transaction is rolled back. If all
is successful, the trade is made and the transaction is committed.

See Also

m “What Is the EventBroker” on page 5-3

m “How the EventBroker Works” on page 2-10lirtroducing the BEA Tuxedo
System

= “What Is an Event” on page 3-15 introducing the BEA Tuxedo System

m “Using Event-based Communication” on page 1-17%itorials for Developing
a BEA Tuxedo Application

m recomp, rematch(3c) , tppost(3c) , tpsubscribe(3c) ,and
tpunsubscribe(3c) in BEA Tuxedo C Function Reference

m TPPOST(3chl) , TPSUBSCRIBE(3chl) , andTPUNSUBSCRIBE(3chl) in BEA
Tuxedo COBOL Function Reference

B EVENT_MIB(5) , EVENTS(5), TMSYSEVT(5), andTMUSREVT(5) in BEA Tuxedo
File Formats and Data Descriptions Reference

6-10 Administering a BEA Tuxedo Application at Run Time

CHAPTER

{ Migrating Your
Application

m What Is Migration

m Migration Options

m How to Switch the Master and Backup Machines

m How to Migrate Server Groups

m How to Migrate Server Groups from One Machine to Another
m How to Cancel a Migration

m How to Migrate Transaction Logs to a Backup Machine

What Is Migration

Under normal circumstances, an administrator performs daily administrative tasks on
the configuredMASTERmMachine. The DBBL on thdASTERmachine monitors other
machines in a configuration, handles configuration updates, and broadcasts dynamic
changes to themiB. If theMASTERmachine fails, for example, due to a machine crash,
database corruptions, BEA Tuxedo system problems, network partitioning, or
application faults, the application does not stop running. Clients can still join the
application, servers can still service requests, and naming is still available on each local
machine. However, until theASTERmachine is restored, servers cannot be activated

or deactivated, and an administrator cannot dynamically reconfigure the system.

Administering a BEA Tuxedo Application at Run Time 7-1

[Migrating Your Application

Similarly, application servers are configured to run on specific machines to service
client requests. However, if a machine fails or must be brought down to be serviced,
the servers on that machine become unavailable. In each case, you can migrate the
servers to a configureBACKUPor alternate machine.

An administrator who performs a migration in preparation for shutting down a
machine for service or upgrading, does not face the problems inherent in a machine
failure. Therefore an administrator in this situation has a relatively high degree of
control over migration activities.

Performing a Master Migration

A master migration is the process of moving the DBBL from the configursiER
machine to the configure8ACKURMachine so that servers can continue to be serviced
while the configuredMASTERMachine is down. To start a migration, an administrator
requests that the configuredCKUPassume the role of actiMASTERand the
configuredMASTERthe role of actin@ACKUP The actinguASTERhen performs all
administrative functions: it begins monitoring other machines in the configuration and
accepts any dynamic reconfiguration changes.

In the following illustration, Machine 2, the configurBdCKURmachine, assumes the
role of MASTERwhile Machine 1, the configuredASTERassumes the role of acting
BACKUPWhen the configurellASTERS available again, it can be reactivated from the
actingMASTER(that is, the configureBACKUR. The configuredASTERhen regains
control as actin/ASTER

Before Migration

Machine 1 {(MASTER) Machine 2 (BACKUP)

T

DBBL BBL BBL

After Migration
Machine 1 {Acting BACKUP) Machine 2 (Acting MASTER)

BBL .. DBBL BBL

7-2 Administering a BEA Tuxedo Application at Run Time

What Is Migration

Migrating a Server Group

For each group of servers, an administrator specifies a primary machine and an
alternate machine. The process of migrating a server group involves activating the
server group on the alternate machine.

In the following illustration, GroupA is assigned to Machine 1 (that is, Machine 1 is
configured as the primary machine); Machine 2 is configured as the alternate machine
for GroupA. After migration, GroupA is activated on Machine 2, which means that all
servers in this group and the services associated with them, are available on Machine
2 (the acting primary).

Before Migration

Machine 1 (Primary) Machine 2 (Alternate)
Server Grouph,; BBL "'Z.__ BBL
Deprsi Service
Tramfar Sanricg 1

‘iihdrawal Sardice

After Migration

Machine 1 {(Acting Alternate) Machine 2 (Acting Primary)
Server Graupd
BEL 1 BEL Depsh Sarvice -
Tramiar Sariice

Wihdraval Service

Migrating Machines

While it is sometimes useful to migrate only a single server group, it is more often
necessary to migrate an entire machine. This type of migration may be necessary, for
example, when a computer fails. Migrating a machine involves migrating each of the
server groups running on the machine. An alternate machine must be configured for
each server group.

Administering a BEA Tuxedo Application at Run Time 7-3

[Migrating Your Application

Performing a Scheduled Migration

In a controlled situation, such as when a computer needs to be off-line for a while, o
needs to be upgraded, an administrator can preserve information about the current
configuration for servers and services, and use that information when activating
servers on alternate machines. Such use of configuration information is possible
because server entries are retained on a primary machine, even after the servers ar
deactivated and become unavailable in response to a request for a migration.

You can migrate an entire server group or an entire machine. Migration of an entire
machine is possible when the same machine is configured as the alternate for all th
server groups on a primary machine. When that is not the case (that is, when differel
alternate machines are configured for different server groups on a primary machine)
then the servers must be migrated by group, rather than by machine.

In the following illustration, Machine 1 is the configuredSTERand the primary
machine for GroupB; Machine 2 is the configuBxCKUP Server GroupB is

configured with Machine 1 as its primary machine and Machine 3 as its alternate. If
Machine 1 is taken down, Machine 2 becomes the astkgrERand Server GroupB

is deactivated, migrated to its alternate (Machine 3), and reactivated.

Before Migration

Machine 1 (MASTER, Machine 2 (BACKUP) Machine 3 (alternate
primary) DBEL GroupB)

Server Groupb: "'Z_ BBL -z'- BBL

Buy Sarvica

Sall Sarvice BEL

After Migration

I'u'Ia-::_hine 1 Machine 2 Machine 3 {primary
{Acting BACKUP, (Acting MASTER) GroupB)
alternate) Server GroupB:
BBEL ‘z" DEBEL BBEL BBL | Gussonica
Sell Service

After deactivating all the servers in a group, you can migrate the group from the acting
primary to the acting alternate. You do not need to specify which servers are running
which services are currently advertised, or which, if any, dynamic configuration

7-4 Administering a BEA Tuxedo Application at Run Time

Migration Options

changes are being made. The configured alternate machine obtains this information
from the configuration information for the servers that is available on the configured
primary machine, when the servers are deactivated. If data-dependant routing is being
used and will continue to be used on the alternate machine, services are routed on the
basis of the target group name, instead of the target machine name.

Whether you need to migrate an entire application or only portions of it, be sure to
make the necessary changes with minimal service disruption. The integrity of all
machines, networks, databases, and other components of your application must remain
intact. The BEA Tuxedo system provides a way to migrate an application while
preserving the integrity of all its components.

Migration Options

The BEA Tuxedo system allows you to migrate:

m A MASTER machine to a BACKUP machine, and vice-versa

m A server group from its primary machine to its alternate machine
m All server groups on a primary machine to an alternate machine
m A transaction log

You can also cancel a migration.

By migrating a combination of the application components listed here, and using the
system utilities for recovering a partitioned network, you can migrate entire machines.

Administering a BEA Tuxedo Application at Run Time 7-5

[Migrating Your Application

How to Switch the Master and Backup
Machines

When aMASTERmachine must be shut down for maintenance, or is no longer
accessible due to an unanticipated problem (such as a partitioned network), then yo
must transfer the work of thASTERO a configureACKUPMachine.

Note: Before you can migrate theASTERboth theMASTERaNdBACKUPmMachines
must be running the same release of the BEA Tuxedo system software.

This type of switching is done by migrating the DBBL from M&STERO theBACKUP
To migrate the DBBL, enter the following command.
tmadmin master
In most cases, you need to migrate application servers to alternate sites, or restore t

MASTERmMachine. For more detail about th&dmin command, see theadmin(1)
reference page iIBEA Tuxedo File Formats and Data Descriptions Reference

Examples of Switching MASTER and BACKUP Machines

7-6

The following two samplemadmin sessions show how to swittASTERandBACKUP
machines regardless of whether keSTERmachine is accessible from tRRCKUP
machine. In the first example, tMASTERmMachine is accessible, so heBLprocess
is migrated from th&ASTERO theBACKUP

Administering a BEA Tuxedo Application at Run Time

How to Migrate Server Groups

Listing 7-1 Switching MASTER and BACKUP When MASTER Is Accessible
from BACKUP

$ tmadmin

tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL. All rights reserved.
> master

are you sure? [y,n] y

Migrating active DBBL from SITEL1 to SITE2, please wait...

DBBL has been migrated from SITE1 to SITE2

>q
In the second example, becauseMisTERMachine is not accessible from B®CKUP
machine, th&BBL process is created on tRaCKUPmachine.
Listing 7-2 Switching MASTER and BACKUP When MASTER Is Not
Accessible from BACKUP

$ tmadmin

tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL. All rights reserved.
TMADMIN_CATT:199: Cannotbecome administrator. Limited set of commands available.
> master

are you sure? [y,n] y

Creating new DBBL on SITE2, please wait... New DBBL created on SITE2

>q

How to Migrate Server Groups

1. Configure an alternate location in theiD parameter (for the server group being
migrated) in thesROUPSection of theJBBCONFIJile. Servers in the group must
specifyRESTART=Yand theVIGRATEoption must be specified in tIRESOURCES
section of theuBBCONFIfile.

Administering a BEA Tuxedo Application at Run Time 7-7

[Migrating Your Application

2. If you are planning to migrate a group of servers, shut down each server in the
group by issuing the following command.

tmshutdown -R -g groupname
3. Start amadmin session by entering the following command.
tmadmin
4. Atthetmadmin prompt, enter one of the following commands:
e To migrate all the servers in a single group, enter
migrategroup(migg)
This command takes the name of a single server group as an argument.

e To migrate all the server groups on a machine (as specified by an LMID),
enter

migratemach(migm)

5. If transactions are being logged for a server being migrated as part of a group,
you may need to move theOGto theBACKUPMachine, load it, and “warm start”
it.

How to Migrate a Server Group When the Alternate
Machine Is Accessible from the Primary Machine

To migrate a server group when the alternate machine is accessible from the primat
machine, complete the following procedure.

1. Shut down th&ASTERmachine by entering the following command.
tmshutdown -R -g groupname

2. On the primary machine, startnsadmin session by entering the following
command.

tmadmin

3. Migrate the appropriate group by entering the following command.

migrategroup groupname

7-8 Administering a BEA Tuxedo Application at Run Time

How to Migrate Server Groups

4. If necessary, migrate the transaction log.

5. If necessary, migrate the application data.

How to Migrate a Server Group When the Alternate
Machine Is Not Accessible from the Primary Machine

To migrate a server group when the alternate machine is not accessible from the
primary machine, switch thdASTERaNdBACKUPmMachines, if necessary.

1. On the alternate machine, statinadmin session by entering the following
command.

tmadmin

2. Request cleanup and restart of any servers on the primary machine that require
these operations by entering the following command.

pclean primary_machine

3. Transfer the appropriate server group to a configured alternate machine by
entering the following command:

migrate groupname

4. Boot the newly migrated server group by entering the following command.

boot-g groupname

Examples of Migrating a Server Group

The following two sample sessions show how you can migrate a server group,
regardless of whether the alternate machine is accessible from the primary machine. In
the first example, the alternate machine is accessible from the primary machine.

Administering a BEA Tuxedo Application at Run Time 7-9

[Migrating Your Application

Listing 7-3 Migrating a Group When the Alternate Machine Is Accessible from
the Primary Machine

$ tmshutdown -R -g GROUP1

Shutting down server processes...

Server ID =1 Group ID = GROUP1 machine = SITE1: shutdown succeeded
1 process stopped.

$ tmadmin

tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL.

> migg GROUP1

migg successfully completed

>q

In the second example, the alternate machine is not accessible from the primary
machine.

Listing 7-4 Migrating a Group When the Alternate Machine Is Not Accessible
from the Primary Machine

$ tmadmin

tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL.
> pclean SITE1

Cleaning the DBBL.

Pausing 10 seconds waiting for system to stabilize.
3 SITE1 servers removed from bulletin board

> migg GROUP1

migg successfully completed.

> boot -g GROUP1

Booting server processes ...

exec simpserv -A :

on SITE2 -> process id=22699 ... Started.

1 process started.

>q

7-10 Administering a BEA Tuxedo Application at Run Time

How to Migrate Server Groups from One Machine to Another

How to Migrate Server Groups from One
Machine to Another

1. Use the-MID parameter to name the processor on which the server group(s) have
been running. The alternate location must be the same for all server groups on the
LMID.

2. In theRESOURCESection of theJBBCONFIdile, set the following parameters:
e SetRESTART=Yfor each server on the machine indicated byLti®.
e Specify theMIGRATEOptions.

3. Shut down all server groups and mark the servers in the groups as restartable by
entering the following command.

tmshutdown -R

4. Use thamadmin(1) migratemach (migm) command to migrate all server
groups from one machine to another when the primary machine must be shut
down for maintenance or when the primary machine is no longer accessible. (The
command takes one logical machine identifier as an argument.)

How to Migrate Machines When the Alternate Machine Is
Accessible from the Primary Machine

To migrate a machine when the alternate machine is accessible from the primary
machine, complete the following procedure.

1. Shut down th&ASTERmMachine by entering the following command on that
machine.

tmshutdown -R -1 primary_machine

2. On theMASTERmachine, start amadmin session by entering the following
command.

tmadmin

Administering a BEA Tuxedo Application at Run Time 7-11

[Migrating Your Application

3. Atthetmadmin prompt, migrate the appropriate machine by entering the
following command.

migratemach primary_machine

4. If necessary, migrate the transaction log.

5. If necessary, migrate the application data.

How to Migrate Machines When the Alternate Machine Is
Not Accessible from the Primary Machine

To migrate a machine when the alternate machine is not accessible from the primar
machine, switch th®IASTERandBACKUPmMachines, if necessary.

1. On the alternate machine, stattnadmin session by entering the following
command.

tmadmin

2. Request cleanup and restart of the primary machine that require these operation
by entering the following command.

pclean primary_machine

3. Transfer the appropriate server group to a configured alternate machine by
entering the following command.

migratemach primary_machine

4. Boot the newly migrated server group by entering the following command.

boot -I alternate_machine

7-12 Administering a BEA Tuxedo Application at Run Time

How to Migrate Server Groups from One Machine to Another

Examples of Migrating a Machine

The following sample session shows how to migrate machines. In the first example,
the alternate machine is accessible from the primary machine.

Listing 7-5 Migrating a Machine When the Alternate Machine Is Accessible
from the Primary Machine

$ tmshutdown -R -l SITE1

Shutting down server processes...

Server ID =1 Group ID = GROUP1 machine = SITE1: shutdown
succeeded 1 process stopped.

$ tmadmin

tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL.

> migm SITE1

migm successfully completed

>q

In the second example, the alternate machine is not accessible from the primary
machine.

Listing 7-6 Migrating a Machine When the Alternate Machine Is Not Accessible
from the Primary Machine

$ tmadmin

tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL.
>pclean SITE1

Cleaning the DBBL.

Pausing 10 seconds waiting for system to stabilize.
3 SITE1 servers removed from bulletin board

> migm SITE1

migm successfully completed.

> boot -| SITEL

Booting server processes ...

exec simpserv -A :

on SITE2 -- process id=22782 ... Started.

1 process started.

>q

Administering a BEA Tuxedo Application at Run Time 7-13

[Migrating Your Application

How to Cancel a Migration

If you decide, after deactivating a server group or machine, that you do not want to
continue, you can cancel the migration before reactivating the server group or
machine. All the information in the name server for the deactivated servers and
services is deleted.

To cancel a migration after a shutdown but before issuingitivete command,
enter one of the following commands.

To cancel . . . Enter this command . .. As aresult. ..

Server migration tmadmin migrategroup -cancel Server entries are deleted
from the bulletin board.
You must reboot the
servers once the migration
procedure is canceled.

or
tmadmin migg -cancel

Machine tmadmin migratemach -cancel The migration is stopped.

migration or

tmadmin migm -cancel

Example of a Migration Cancellation

The following samplemadmin session shows how a server group and a machine can
be migrated between their respective primary and alternate machines.

7-14 Administering a BEA Tuxedo Application at Run Time

How to Migrate Transaction Logs to a Backup Machine

Listing 7-7 Canceling a Server Group Migration for GROUP1

$tmadmin
tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL.
> psr -g GROUP1

a.out Name Queue Name Grp Name |D RgDone Ld Done Current Service
simpserv. 00001.00001 GROUP1 1 - - (DEAD MIGRATING)

> psr -g GROUP1

TMADMIN_CAT:121: No such server

migg -cancel GROUP1

>boot -g GROUP1

Booting server processes...

exec simpserv -A:

on SITE1 ->process id_27636 ... Started. 1 process started.

> psr -g GROUP1

a.out Name Queue Name Grp Name ID RgDone Ld Done Current Service

simpserv. 00001.00001 GROUP1 1 - - (-)
>q

How to Migrate Transaction Logs to a
Backup Machine

To migrate a transaction log taCKUPmachine, complete the following procedure.

1. Start amadmin session by entering the following command.

tmadmin

2. Shut down the servers in all the groups that write to the log, to prevent them from

writing further entries.

Administering a BEA Tuxedo Application at Run Time 7-15

[Migrating Your Application

7-16

N

Dump theTLOGinto a text file by running the following command.
dumptlog [-z config 1[-0 offset 1[-n filename 11[-g groupname |

Note: TheTLOGis specified by theonfig andoffset arguments. The value of
offset defaults ta0; name defaults torLOG If the-g option is chosen,
only those records coordinated by thésfrom groupname are dumped.

Copyfilename to theBACKUPmMachine.

Read the file into the existing. OGfor the specified machine by entering the
following command.

loadtlog -m machine filename
Force a warm start of the.OGby entering the following command.

logstart machine

The system reads the information in theGand uses it to create an entry in the
transaction table in shared memory.

Migrate the servers to tlBACKURmMachine.

Administering a BEA Tuxedo Application at Run Time

CHAPTER

8 Tuning Your
Application

m Maximizing Your Application Resources

m When to Use MSSQ Sets

m How to Enable Load Balancing

m How to Measure Service Performance Time

m How to Assign Priorities to Interfaces or Services
m Bundling Services into Servers

m Enhancing Efficiency with Application Parameters
m Determining Your System IPC Requirements

m Measuring System Traffic

Administering a BEA Tuxedo Application at Run Time 8-1

8 Tuning Your Application

Maximizing Your Application Resources

Making correct decisions in response to critical issues is the first step in ensuring the
smooth performance of your BEA Tuxedo application. When making decisions abou
critical issues, consider including the following mechanisms as part of your strategy tc
improve the functioning of your system:

m Using MSSQ sets

m Enabling load balancing

m Measuring service performance time

m Assigning priorities to interfaces and/or services
m Bundling services into servers

m Setting application parameters

m Tuning operating system IPC parameters

m Eliminating bottlenecks

The rest of this section explains how to use these mechanisms and approaches to
improve your system.

When to Use MSSQ Sets

The Multiple Servers, Single Queue, or MSSQ scheme offers additional load
balancing. One queue is accommodated by several servers offering identical service
at all times. If the server queue to which a request is sent is part of an MSSQ set, th
message is dequeued to the first available server. Thus load balancing is provided ¢
the individual queue level.

8-2 Administering a BEA Tuxedo Application at Run Time

When to Use MSSQ Sets

When a server is part of an MSSQ set, it must be configured with its own reply queue.

When the server makes requests to other servers, the replies must be returned to the
original requesting server; they must not be dequeued by other servers in the MSSQ

set.

You can configure MSSQ sets to be dynamic so they automatically spawn and
eliminate servers based upon a queue load.

The following table specifies when it is beneficial to use MSSQ sets.

You ShouldUse MSSQ Sets If . . . Yo$hould NotUse MSSQ Sets If . . .
You have between 2 and 12 servers. There are many servers. (A compromise is to use many
MSSQ sets.)

Buffer sizes are not too large, that is, large enouduffer sizes are large enough to exhaust one queue.
to exhaust a queue.

All servers offer identical sets of services. Each server offers different services.

Messages are relatively small. Large messages are being passed to the services, causing the
queue to be exhausted. When a queue is exhausted, either
nonblocking sends fail or blocking sends block.

Optimization and consistency of service
turnaround time are paramount.

The following two analogies illustrate when it is beneficial to use MSSQ sets.

m A situation analogous to the appropriate use of MSSQ sets can be found in a
bank at which several tellers performing identical services handle a single line of
customers. The next available teller always takes the next person in line. In this
scenario, each teller must be able to perform all customer services. In a BEA
Tuxedo environment, all servers set up to share a single queue must offer an
identical set of services at all times. The advantage of MSSQ sets is that they
offer a second form of load balancing at the individual queue level.

m A super market at which different cashiers accept different forms of payment
(some accept credit cards, while others accept only cash) is similar to a BEA
Tuxedo application in which MSSQ sets should not be used.

Administering a BEA Tuxedo Application at Run Time 8-3

8 Tuning Your Application

How to Enable Load Balancing

To alleviate the performance degradation resulting from heavy system traffic, you may
want to implement a load balancing algorithm on your entire application. With load
balancing, a load factor is applied to each service within the system, and you can trac
the total load on every server. Every service request is sent to the qualified server th
is least loaded.

To implement system-wide load balancing, complete the following procedure.
1. Run your application for an extended period of time.
2. Note the average amount of time it takes for each service to be performed.

3. In theRESOURCESection of the configuration file:
e SetlLDBALtOY.

e Assign aLOADvalue of 50 (OAD=50 to any service that takes approximately
the average amount of time.

e [For any service taking longer than the average amount of timepAspt5Q
for any service taking less than the average amount of timeQaeksQ

Note: This algorithm, although effective, is expensive and should be used only wher
necessary, that is, only when a service is offered by servers that use more the
one queue. Services offered by only one server, or by multiple servers, all of
which belong to the same MSSQ (multiple server, single queue) set, do not
need load balancing.

8-4 Administering a BEA Tuxedo Application at Run Time

How to Measure Service Performance Time

How to Measure Service Performance Time

You can measure service performance time in either of two ways:

m Administratively—In the configuration file, you can arrange to have a log of

services that are performed to be written to standard error. BERMICES
section, specify

servopts -r
To analyze the information in the log, run thet (1) command.

For details aboutervopts(5) andtxrpt(l) , seeBEA Tuxedo File Formats
and Data Descriptions ReferenaadBEA Tuxedo Command Reference
respectively.

Programmatically—Insert a call taime() at the beginning and end of a service
routine. Services that take the longest time receive the highest load; those that
take the shortest time receive the lowest load. (For details @he(t , see the
documentation for your C language libraries.)

How to Assign Priorities to Interfaces or

Services

Assigning priorities enables you to exert significant control over the flow of data in an
application, provide faster service to the most important requests, and provide slower
service to the less important requests. You can also give priority to specific users—at
all times or in specific circumstances.

You can assign priorities to BEA Tuxedo services in either of two ways:

Administratively—In the SERVICESsection of the configuration file, specify the
PRIO parameter for each service named.

Programmatically—Add calls to thepsprio() function to the appropriate
client and server applications, to allow designated clients and servers to change a

Administering a BEA Tuxedo Application at Run Time 8-5

8 Tuning Your Application

priority dynamically. Only preferred clients should be able to increase the
service priority. In a system on which servers perform service requests, the
server can calbsprio() to increase the priority of its interface or service calls
so the user does not wait in line for every interface or service request that is
required.

Example of Using Priorities

Server 1 offers Interfaces A, B, and C. Interfaces A and B have a priority of 50;
Interface C, a priority of 70. An interface requested for C is always dequeued before
request for A or B. Requests for A and B are dequeued equally with respect to one
another. The system dequeues every tenth request in first-in, first-out (FIFO) order t
prevent a message from waiting indefinitely on the queue.

Using the PRIO Parameter to Enhance Performance

ThePRIO parameter determines the priority of an interface or a service on a server’s
gueue. It should be used cautiously. Once priorities are assigned, it may take longer f
some messages to be dequeued. Depending on the order of messages on the queue
example, A, B, and C), some (such as A and B) are dequeued only one in ten times
when there are more than 10 requests for C. This means reduced performance and
potential slow turnaround time for some services.

When you are deciding whether to use PR&O parameter, keep the following
implications in mind:

m Because higher priorities get first preference, a higher priority should usually be
assigned only to an interface or service that is not called frequently.

m A message with a lower priority does not remain enqueued indefinitely; every
tenth message is retrieved on a FIFO basis. Before you assign a low priority to
an interface or service you should be sure that response time for that interface o
service is not important.

8-6 Administering a BEA Tuxedo Application at Run Time

Bundling Services into Servers

Bundling Services into Servers

The easiest way to package services into servers is to avoid packaging them at all.
Unfortunately, if you do not package services, the number of servers, message queues,
and semaphores rises beyond an acceptable level. Thus there is a trade-off between no
bundling and too much bundling.

When to Bundle Services

We recommend that you bundle services if you have one of the situations or
requirements described in the following list.

m Functional similarity—If multiple services play a similar role in the application,
you can bundle them in the same server. The application can offer all or none of
them at a given time. In theankapp application, for example, th& I THDRAW
DEPOSIT, andINQUIRY services are all operations that can be grouped together
in a “bank teller operations” server. Administration of services is simplified
when functionally similar services are bundled.

m Similar libraries—Less disk space is required if you bundle services that use the
same libraries. For example, if you have three services that use the same 100K
library and three services that use different 100K libraries, bundling the first
three services saves 200K. Functionally equivalent services often use similar
libraries.

m Filling the queue—Bundle only as many services into a server as the queue can
handle. Each service added to an unfilled MSSQ set may add relatively little to
the size of an executable, and nothing to the number of queues in the system.
Once the queue is filled, however, system performance is degraded and you must
create more executables to compensate.

Do not put two or more services that call each other, thealisdependent services
in the same server. If you do so, the server issues a call to itself, causing a deadlock.

Administering a BEA Tuxedo Application at Run Time 8-7

8 Tuning Your Application

Enhancing Efficiency with Application
Parameters

The following application parameters enable you to enhance the efficiency of your
system:

B MAXACCESSERMAXSERVERSIAXINTERFACESandMAXSERVICES
B MAXGTTMAXBUFTYPEandMAXBUFSTYPE
m SANITYSCAN BLOCKTIME and individual transaction time-outs

® BBLQUERYaNdDBBLWAIT

Setting the MAXACCESSERS, MAXSERVERS,
MAXINTERFACES, and MAXSERVICES Parameters

The MAXACCESSERSIAXSERVERSIAXINTERFACESandMAXSERVICESarameters
increase semaphore and shared memory costs, so you should carefully weigh these
costs against the expected benefits before using these parameters, and choose the
values that best satisfy the needs of your system. You should take into account any
increased resources your system may require for a potential migration. You should als
allow for variation in the number of clients accessing the system simultaneously.
Defaults may be appropriate for a generous allocation of IPC resources; however, it
prudent to set these parameters to the lowest appropriate values for the application.

8-8 Administering a BEA Tuxedo Application at Run Time

Enhancing Efficiency with Application Parameters

Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE
Parameters

To determine whether the default is adequate for your application, multiply the number
of clients in the system times the percentage of time they are committing a transaction.
If the product of this multiplication is close to 100, you should increase the value of
the MAXGTTparameter. As a result of increasmgxGTT

m Your system may require a greater number of clients, depending on the speed of
commits.

m You should also increase OGSIZE accordingly for every machine.

m You should semAXGTTo O for applications in which distributed transactions are
not used.

To limit the number of buffer types and subtypes allowed in the application, set the
MAXBUFTYPBRNAMAXBUFSTYPPparameters, respectively. The current default for
MAXBUFTYPEs 16. If you plan to create eight or more user-defined buffer types, you
should seMAXBUFTYPEO a higher value. Otherwise, you do not need to specify this
parameter; the default value is used.

The current default foMAXBUFSTYPES 32. You may want to set this parameter to a
higher value if you intend to use many differemew subtypes.

Tuning with the SANITYSCAN, BLOCKTIME, BBLQUERY,
and DBBLWAIT Parameters

If a system is running on slow processors (for example, due to heavy usage), you can
increase the timing paramete®&NITYCAN BLOCKTIME and individual transaction
time-outs.

If networking is slow, you can increase the value ofgh@CKTIME BBLQUERYand
DBBLWAITparameters.

Administering a BEA Tuxedo Application at Run Time 8-9

8 Tuning Your Application

Recommended Values for Tuning-related Parameters

In the following table we recommend values for the parameters available for tuning a

application.
Use These Parameters . .. To...
MAXACCESSERSIAXSERVERS Set the smallest satisfactory value because of
MAXINTERFACESandMAXSERVICES IPC cost. (Allow for extra clients.)
MAXGTTMAXBUFTYPEand IncreaseMAXGTTor many clients; set
MAXBUFSTYPE MAXGTTo O for nontransactional
applications.
UseMAXBUFTYPBnNly if you create eight or
more user-defined buffer types.
Increase the value MAXBUFSTYPHE you
use many differen¥IEW subtypes.
BLOCKTIME TRANTIME and Increase the values if the system is slow.
SANITYSCAN

BLOCKTIME TRANTIME BBLQUERYand Increase the values if networking is slow.
DBBLWAIT

Determining Your System IPC Requirements

The IPC requirements for your system are determined by the values of several syste
parameters:

m MAXACCESSERS
®m REPLYQ
®m RQADDR

m MAXSERVERS

8-10 Administering a BEA Tuxedo Application at Run Time

Determining Your System IPC Requirements

m MAXSERVICES
m MAXGTT

You can use themboot -c command to display the minimum IPC requirements of
your configuration.

The following table describes these system parameters.

Table 8-1 Parameters for Tuning IPC Resources

Parameter(s) Description

MAXACCESSSERSEquals the number of semaphores.

Number of message queues is almost eqUEIAXACCESSERS
number of servers with reply queues (hnumber of servevtSiaset *
number oMSS(sets).

MAXSERVERS While MAXSERVERSIAXSERVICESMAXGTTand the overall size of
MAXSERVICES theROUTING GROUPandNETWOREKections affect the size of shared
andMAXGTT memory, an attempt to devise formulas that correlate these parameters
can become complex. Instead, simply tonboot -c ~ ortmloadcf
-c to calculate the minimum IPC resource requirements for your
application.

Administering a BEA Tuxedo Application at Run Time 8-11

8 Tuning Your Application

Table 8-1 Parameters for Tuning IPC Resources

Parameter(s) Description

Queue-related Need to be tuned to manage the flow of buffer traffic between clients

kernel parameters and servers. The maximum total size (in bytes) of a queue must be large
enough to handle the largest message in the application. A typical queue
is not more than 75 to 85 percent full. Using a smaller percentage of a
queue is wasteful; using a larger percentage causes message sends to
block too frequently.

Set the maximum size for a message to handle the largest buffer that the
application sends.

The maximum queue length (the largest number of messages that are
allowed to sit on a queue at once) must be adequate for the application’s
operations.

Simulate or run the application to measure the average fullness of a
queue or its average length. This process may require a lot of trial and
error: you may need to estimate values for your tunables before running
the application, and then adjust them after running under performance
analysis.

For a large system, analyze the effects of parameter settings on the size
of the operating system kernel. If they are unacceptable, reduce the
number of application processes or distribute the application across
more machines to reduBdAXACCESSERS

Measuring System Traffic

8-12

As on any road that supports a lot of traffic, bottlenecks can occur in your system. Ol
a highway, cars can be counted with a cable strung across the road, that causes a
counter to be incremented each time a car drives over it.

You can use a similar method to measure service traffic. For example, when a serve
is started (that is, whepsvrinit() is invoked), you can initialize a global counter
and record a starting time. Subsequently, each time a particular service is called, the
counter is incremented. When the server is shut down (througstignne()

function), the final count and the ending time are recorded. This mechanism allows yo
to determine how busy a particular service is over a specified period of time.

Administering a BEA Tuxedo Application at Run Time

Measuring System Traffic

In the BEA Tuxedo system, bottlenecks can originate from problematic data flow
patterns. The quickest way to detect bottlenecks is to measure the amount of time
required by relevant services from the client’s point of view.

Example of Detecting a System Bottleneck

Client 1 requires 4 seconds to display the results. Catiltad) determine that the
tpcall to service A is the culprit with a 3.7-second delay. Service A is monitored at
the top and bottom and takes 0.5 seconds. This finding implies that a queue may be
clogged, a situation that can be verified by runningestheommand inmadmin .

On the other hand, suppose service A takes 3.2 seconds. The individual parts of service
A can be bracketed and measured. Perhaps service A issigels a to service B,

which requires 2.8 seconds. Knowing this, you should then be able to isolate queue
time or message send blocking time. Once the relevant amount of time has been
identified, the application can be retuned to handle the traffic.

Usingtime() , you can measure the duration of the following:
m An entire client program

m A single client service request

m An entire service function

m A service function making a service request (if any)

Detecting Bottlenecks on UNIX Platforms

The UNIX systensar (1) command provides valuable performance information that
can be used to find system bottlenecks. You carsauiil) to do the following:

m Sample cumulative activity counters in the operating system at predetermined
intervals

m Extract data from a system file

Administering a BEA Tuxedo Application at Run Time 8-13

8 Tuning Your Application

The following table describes tlar (1) command options.

Use This Option To

-u Gather CPU utilization numbers, including percentages of time
during which the system: runs in user mode, runs in system mode,
remains idle with some process waiting for block 1/0, and
otherwise remains idle.

-b Report buffer activity, including number of data transfers, per
second, between system buffers and disk (or other block devices).

-C Report activity of system calls of all types, as well as specific
system calls, such dark (2) andexec (2).

-w Monitor system swapping activity, including the number of
transfers for swapins and swapouts.

-q Report average queue lengths while queues are occupied, and the
percentage of time they are occupied.

-m Report message and system semaphore activities, including the
number of primitives per second.

-p Report paging activity, including the number of address translation
page faults, page faults and protection errors, and valid pages
reclaimed for free lists.

-r Report the number of unused memory pages and disk blocks,
including the average number of pages available to user processes
and disk blocks available for process swapping.

Note: Some flavors of the UNIX system do not supportsttre(1) command, but
offer equivalent commands, instead. BSD, for example, offerisdtae (1)
command; Sun offengerfmeter (1).

8-14 Administering a BEA Tuxedo Application at Run Time

Measuring System Traffic

Detecting Bottlenecks on Windows NT Platforms

On Windows NT platforms, use the Performance Monitor to collect system
information and detect bottlenecks. Select the following options from the Start menu.

Stat —> Programs —> Administration Tools —> NT Performance Monitor

Administering a BEA Tuxedo Application at Run Time 8-15

8 Tuning Your Application

8-16 Administering a BEA Tuxedo Application at Run Time

CHAPTER

O Troubleshooting a BEA
Tuxedo Application

m Determining Types of Failures

m How to Broadcast an Unsolicited Message

m Maintaining Your System Files

m Repairing Partitioned Networks

m Restoring Failed Machines

m How to Replace System Components

m How to Replace Application Components

m Cleaning Up and Restarting Servers Manually

m Aborting or Committing Transactions

m How to Recover from Failures When Transactions Are Used
m How to Use the IPC Tool When an Application Fails to Shut Down Properly

m Troubleshooting Multithreaded/ Multicontexted Applications

Administering a BEA Tuxedo Application at Run Time 9-1

9 roubleshooting a BEA Tuxedo Application

Determining Types of Failures

The first step in troubleshooting is determining problem areas. In most applications
you must consider six possible sources of trouble:

Application

BEA Tuxedo system

Database management software
Network

Operating system

Hardware

Once you have determined the problem area, you must then work with the appropria
administrator to resolve the problem. If, for example, you determine that the trouble i
caused by a networking problem, you must work with the network administrator.

How to Determine the Cause of an Application Failure

9-2

The following steps will help you detect the source of an application failure.

1.

Check any BEA Tuxedo system warnings and error messages in the user log
(ULoQ.

Select the messages you think most likely reflect the current problem. Note the
catalog name and the number of each of message, so you can look up the
message IBEA Tuxedo System MessagBse manual entry provides:

e Details about the error condition indicated by the message

¢ Recommendations for recovery actions

Check any application warnings and error messages nLthe

Administering a BEA Tuxedo Application at Run Time

Determining Types of Failures

4. Check any warnings and errors generated by application servers and clients. Such
messages are usually sent to the standard output and standard error files (named,
by defaultstdout andstderr , respectively).

e Thestdout andstderr files are located in the directory defined by the
APPDIR variable.

e Thestdout andstderr files for your clients and servers may have been
renamed. (You can rename thdout andstderr files by specifyinge
and-o in the appropriate client and server definitions in your configuration
file. For details, seservopts(5) in BEA Tuxedo File Formats and Data
Descriptions Reference

5. Look for any core dumps in the directory defined byAireDIR variable. Use a
debugger such athx to get a stack trace. If you find core dumps, notify your
application developer.

6. Check your system activity reports (for example, by runningah€l)
command) to determine why your system is not functioning properly. Consider
the following reasons:

e The system may be running out of memory.

e The kernel might not be tuned correctly.

How to Determine the Cause of a BEA Tuxedo System
Failure

The following steps will help you detect the source of a system failure.

1. Check any BEA Tuxedo system warnings and error messages in the user log
(uLoa:

e TPEOSMmMessages indicate errors in the operating system.

e TPESYSTEMnessages indicate errors in the BEA Tuxedo system.

2. Select the messages you think most likely reflect the current problem. Note the
catalog name and number of each of message, so you can look up the message in
BEA Tuxedo System MessagHse manual entry provides:

Administering a BEA Tuxedo Application at Run Time 9-3

9 roubleshooting a BEA Tuxedo Application

e Details about the error condition flagged by the message

¢ Recommendations for recovery actions

3. Prepare for debugging in the following ways:
e Shut down theuspend service.

e Usetmboot -n -s(server) -d1 . (This will not boot the server, but prints
the command line used to boot the server by the BEA Tuxedo system.) Use
that command line with a debugger suchiias.

How to Broadcast an Unsolicited Message

The EventBroker enhances troubleshooting by providing a system-wide summary of
events and a mechanism whereby an event triggers notification. The EventBroker
provides details about BEA Tuxedo system events, such as servers dying and networ
failing, or application events, such as an ATM machine running out of money. A BEA
Tuxedo client that receives unsolicited notification of an event, can name a service
routine to be invoked, or name an application queue in which data should be stored fc
later processing. A BEA Tuxedo server that receives unsolicited notification can
specify a service request or name an application queue to store data.

1. To send an unsolicited message, enter the following command.
broadcast (bcst) [-m machine] [-u usrname] [-C cltname [text]
Note: By default, the message is sent to all clients.

2. You can limit distribution to one of the following recipients:

e One machine-tn machine)
e One client group-¢ client_group)
e Oneuser-(user)

The text may not include more than 80 characters. The system sends the message i
STRING type buffer, which means the client’s unsolicited message handling function
(specified bytpsetunsol(0)) must be able to handle this type of message. The
tptypes() function may be useful in this case.

9-4 Administering a BEA Tuxedo Application at Run Time

Maintaining Your System Files

See Also

m “What Is Unsolicited Communication” on page 2-17niroducing the BEA
Tuxedo System

m “Managing System Events Using EventBroker” on page 3-1dtinducing the
BEA Tuxedo System

Maintaining Your System Files

Periodically, you may need to perform the following tasks to maintain your file
system:

m Print the Universal Device List
m Print VTOC information

m Reinitialize a device

m Create a device list

m Destroy a device list

Note: This file format is used forUXCONFIG TLOG and /Q.

How to Print the Universal Device List (UDL)

To print a UDL, complete the following procedure.
1. Runtmadmin -c

2. Enter the following command.
lidl

Administering a BEA Tuxedo Application at Run Time 9-5

9 roubleshooting a BEA Tuxedo Application

3. To specify the device from which you want to obtain the UDL, you have a choice
of two methods:

e Specify the device on thel command line.
-z device_name [devindx]

e Set the environment variabfSCONFIGto the name of the desired device.

How to Print VTOC Information

To print VTOC information, complete the following procedure.

1. Runtmadmin -c

2. To get information about all VTOC table entries, enter the following command.
livtoc

3. To specify the device from which you want to obtain the VTOC, you have a
choice of two methods:

e Specify the following on thédl command line.
-z device name [devindx]

e Set the environment variabfSCONFIGto the name of the desired device.

How to Reinitialize a Device

To reinitialize a device that is included on a device list, complete the following
procedure.

1. Runtmadmin -c

2. Enter the following command.
initdl [-z devicename] [-yes] devindx

Note: The value ofdevindx is the index to the file to be destroyed.

9-6 Administering a BEA Tuxedo Application at Run Time

Maintaining Your System Files

3. You can specify the device by:
e Entering its name after the option (as shown here), or

e Setting the environment varialfSCONFIGto the device name

4. If you include theyes option on the command line, you are not prompted to
confirm your intention to destroy the file before the file is actually destroyed.

How to Create a Device List

To create a device list, complete the following procedure.
1. Runtmadmin -c

2. Enter the following command.
crdl [-z devicename] [-b blocks]

e The value ofdevicename [devindx] is the desired device name. (Another
way to assign a name to a new device is by settingSBONFIG
environment variable to the desired device name.)

e The value ofblocks is the number of blocks needed. The default is 1000
blocks.

Note: Because 35 blocks are needed for the administrative overhead associated
with a TLOG, be sure to assign a value higher than 35 when you create a
TLOG.

How to Destroy a Device List

To destroy a device list with indegevindx , complete the following procedure.
1. Runtmadmin -c

2. Enter the following command.
dsdl [-z devicename] [yes] [devindx]

Note: The value ofdevindx is the index to the file to be destroyed.

Administering a BEA Tuxedo Application at Run Time 9-7

9 roubleshooting a BEA Tuxedo Application

3. You can specify the device by:
e Entering its name after the option (as shown here), or

e Setting the environment variali & CONFIGto the device name

4. If you include theres option on the command line, you are not prompted to
confirm your intention to destroy the file before the file is actually destroyed.

Repairing Partitioned Networks

This topic provides instructions for troubleshooting a partition, identifying its cause,
and taking action to recover from it. A network partition exists if one or more machines
cannot access theASTERmMachine. As the application administrator, you are
responsible for detecting partitions and recovering from them.

A network partition may be caused by any the following failures:

m A network failure—either a transient failure, which corrects itself in minutes, or
a severe failure, which requires you to take the partitioned machine out of the
network

® A machine failure on either th@ASTERNachine or the nonmaster machine
m A BRIDGEfailure

The procedure you follow to recover from a partitioned network depends on the caus
of the patrtition.

Detecting a Partitioned Network

You can detect a network partition in one of the following ways:

m Check the user log (ULOG) for messages that may shed light on the origin of
the problem.

m Gather information about the network, server, and service, by running the
tmadmin commands provided for this purpose.

9-8 Administering a BEA Tuxedo Application at Run Time

Repairing Partitioned Networks

How to Check the ULOG

When problems occur with the network, BEA Tuxedo system administrative servers
start sending messages to th@aG If the ULOGIs set up over a remote file system, all
messages are written to the same log. In this scenario, you can taih tii)

command on one file and check the failure messages displayed on the screen.

If, however, the remote file system is using the network in which the problem has
occurred, the remote file system may no longer be available.

Listing 9-1 Example of a ULOG Error Message

151804.gumby!DBBL.28446: ... : ERROR: BBL partitioned, machine=SITE2

How to Gather Information About the Network, Server, and Service

The following is an example oftmadmin session in which information is being

collected about a partitioned network, a server, and a service on that network. Three
tmadmin commands are run:

m pnw (theprintnetwork ~ command)
m psr (theprintserver command)

m psc (theprintservice command)

Administering a BEA Tuxedo Application at Run Time 9-9

9 roubleshooting a BEA Tuxedo Application

Listing 9-2 Example tmadmin Session

$ tmadmin
> pnw SITE2
Could not retrieve status from SITE2

> psr-m SITE1

a.out Name Queue Name Grp Name ID Rqg Done Load Done Current Service
BBL 30002.00000 SITE1 o - - -

DBBL 123456 SITE1 0 121 6050 MASTERBB

simpserv 00001.00001 GROUP1 1 - - (-)
BRIDGE 16900672 SITE1 0o - - (DEAD)
>psc -m SITE1

Service Name Routine Name a.out Grp Name ID Machine # Done Status

ADJUNCTADMIN ADJUNCTADMIN BBL SITE1 0 SITE1 -PART
ADJUNCTBB ADJUNCTBB BBL SITE1l 0 SITEl -PART
TOUPPER TOUPPER simpserv GROUP1 1 SITE1 -PART
BRIDGESVCNM BRIDGESVCNM BRIDGE SITE1 1 SITE1l -PART

Restoring a Network Connection

This topic provides instructions for recovering from transient and severe network
failures.

How to Recover from Transient Network Failures

Because th8RIDGEtries, automatically, to recover from any transient network
failures and reconnect, transient network failures are usually not noticed. If, however
you need to perform a manual recovery from a transient network failure, complete the
following procedure.

1. On theMASTERMachine, start anadmin(1) session.

2. Run theeconnect commandrco), specifying the names of nonpartitioned and
partitioned machines.

rco non-partioned_nodel partioned_node2

9-10 Administering a BEA Tuxedo Application at Run Time

Restoring Failed Machines

How to Recover from Severe Network Failures

To recover from severe network failure, complete the following procedure.

1. On theMASTERmachine, start anadmin session.

2. Run thepclean command, specifying the name of the partitioned machine.
pcl partioned_machine

3. Migrate the application servers or, once the problem has been corrected, reboot
the machine.

Restoring Failed Machines

The procedure you follow to restore a failed machine depends on whether that machine
was theMASTERmachine.

How to Restore a Failed MASTER Machine

To restore a faileASTERmachine, complete the following procedure.
1. Make sure that all IPC resources for the BEA Tuxedo processes that are removed.
2. Start amadmin session on thaCTING MASTER(SITE2).

tmadmin

3. Boot the BBL on th®IASTERSITEL) by entering the following command.
boot -B SITE1
(The BBL does not boot if you have not execuyieldan onSITE1.)

4. Still intmadmin , start a DBBL running again on tMASTERSite 6ITE1) by
entering the following.

MASTER

5. If you have migrated application servers and data off the failed machine, boot
them or migrate them back.

Administering a BEA Tuxedo Application at Run Time 9-11

9 roubleshooting a BEA Tuxedo Application

How to Restore a Failed Nonmaster Machine

To restore a failed nonmaster machine, complete the following procedure.

1.

2
3.
4

On theMASTERmMachine, start enadmin session.
Runpclean , specifying the partitioned machine on the command line.
Fix the machine problem.

Restore the failed machine by booting the Bulletin Board Liaison (BBL) for the
machine from th&1ASTERmachine.

If you have migrated application servers and data from the failed machine, boot
them or migrate them back.

In the following list,SITE2 , a nonmaster machine, is restored.

Listing 9-3 Example of Restoring a Failed Nonmaster Machine

$ tmadmin

tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL. All rights reserved

> pclean SITE2
Cleaning the DBBL.

Pausing 10 seconds waiting for system to stabilize.
3 SITE2 servers removed from bulletin board

> boot -B SITE2

Booting admin processes ...

Exec BBL -A:

on SITE2 -> process id=22923 ... Started.

1 process started.
>q

9-12 Administering a BEA Tuxedo Application at Run Time

How to Replace System Components

How to Replace System Components

To replace BEA Tuxedo system components, complete the following procedure.
1. Install the BEA Tuxedo system software that is being replaced.

2. Shut down those parts of the application that will be affected by the changes:

e The BEA Tuxedo system servers may need to be shut down if libraries are
being updated.

e Application clients and servers must be shut down and rebuilt if relevant
BEA Tuxedo system header files or static libraries are being replaced.
(Application clients and servers do not need to be rebuilt if the BEA Tuxedo
system message catalogs, system commands, administrative servers, or
shared objects are being replaced.)

3. Ifrelevant BEA Tuxedo system header files and static libraries have been
replaced, rebuild your application clients and servers.

4. Reboot the parts of the application that you shut down.

How to Replace Application Components

To replace components of your application, complete the following procedure.

1. Install the application software. This software may consist of application clients,
application servers, and various administrative files, such as the FML field tables.

2. Shut down the application servers being replaced.
3. If necessary, build the new application servers.

4. Boot the new application servers.

Administering a BEA Tuxedo Application at Run Time 9-13

9 roubleshooting a BEA Tuxedo Application

Cleaning Up and Restarting Servers
Manually

By default, the BEA Tuxedo system cleans up resources associated with dead
processes (such as queues) and restarts restartable dead servers from the Bulletin
Board (BB) at regular intervals during BBL scans. You may, however, request
cleaning at other times.

How to Clean Up Resources Associated with Dead
Processes

To request an immediate cleanup of resources associated with dead processes,
complete the following procedure.

1. Start amadmin session.
2. Enterbbclean machine .

Thebbclean command takes one optional argument: the name of the machine to be

cleaned.
If You Specify Then
No machine The resources on the default machine are cleaned.
A machine The resources on the specified machine are cleaned.
DBBL The resources on the Distinguished Bulletin Board Liaison

(DBBL) and the Bulletin Boards at all sites are cleaned.

9-14 Administering a BEA Tuxedo Application at Run Time

Aborting or Committing Transactions

How to Clean Up Other Resources

To clean up other resources, complete the following procedure.
1. Start amadmin session.
2. Enterpclean machine .

Note: You must specify a value fonachine ; it is a required argument.

If the Specified Machine Is Then
Not partitioned pclean will invoke bbclean .
Partitioned pclean will remove all entries for servers and

services from all nonpartitioned Bulletin Boards.

This command is useful for restoring order to a system after partitioning has occurred
unexpectedly.

Aborting or Committing Transactions

This topic provides instructions for aborting and committing transactions.

How to Abort a Transaction

To abort a transaction, complete the following procedure.
1. Enter the following command.
aborttrans (abort) [-yes] [-g groupname | tranindex

2. To determine the value ofinindex , run theprinttrans command (a
tmadmin command).

Administering a BEA Tuxedo Application at Run Time 9-15

9 roubleshooting a BEA Tuxedo Application

3. If groupname is specified, a message is sent to the TMS of that group to mark as
“aborted” the transaction for that group. If a group is not specified, a message is
sent, instead, to the coordinating TMS, requesting an abort of the transaction.
You must send abort messages to all groups in the transaction to control the abo

This command is useful when the coordinating site is partitioned or when the client
terminates before calling a commit or an abort. If the time-out is large, the transactiol
remains in the transaction table unless it is aborted.

How to Commit a Transaction

To commit a transaction, complete the following procedure.

1. Enter the following command.
committrans (commit) [-yes] [-g groupname] tranindex

Note: Both groupname andtranindex are required arguments.

The operation fails if the transaction is not precommitted or has been marked abortec
This message should be sent to all groups to fully commit the transaction.

Cautions About Using the committrans Command

Be careful about using themmitirans command. The only time you need to run it
is when both of the following conditions apply:

m The coordinating TMS has gone down before all groups got the commit
message.

m The coordinating TMS will not be able to recover the transaction for some time.

Also, a client may be blocked gstommit() , which will be timed out. If you are
going to perform an administrative commit, be sure to inform this client.

9-16 Administering a BEA Tuxedo Application at Run Time

How to Recover from Failures When Transactions Are Used

How to Recover from Failures When
Transactions Are Used

When the application you are administering includes database transactions, you may
need to apply an after-image journal (AlJ) to a restored database following a disk
corruption failure. Or you may need to coordinate the timing of this recovery activity
with your site’s database administrator (DBA). Typically, the database management
software automatically performs transaction rollback when an error occurs. When the
disk containing database files has become corrupted permanently, however, you or the
DBA may need to step in and perform the rollforward operation.

Assume that a disk containing portions of a database is corrupted at 3:00 P.M. on a
Wednesday. For this example, assume that a shadow volume (that is, you have disk
mirroring) does not exist.

1. Shut down the BEA Tuxedo application. (For instructions, see “Starting Up and
Shutting Down an Application” on page 1-1Setting Up a BEA Tuxedo
Application)

2. Obtain the last full backup of the database and restore the file. For example,
restore the full backup version of the database from last Sunday at 12:01 A.M.

3. Apply the incremental backup files, such as the incrementals from Monday and
Tuesday. For example, assume that this step restores the database up until 11:00
P.M. on Tuesday.

4. Apply the AlJ, or transaction journal file, that contains the transactions from
11:15 P.M. on Tuesday up to 2:50 P.M. on Wednesday.

5. Open the database again.
6. Restart the BEA Tuxedo application.

Refer to the documentation for the resource manager (database product) for specific
instructions on the database rollforward process.

Administering a BEA Tuxedo Application at Run Time 9-17

9 roubleshooting a BEA Tuxedo Application

How to Use the IPC Tool When an
Application Fails to Shut Down Properly

Inter-process communication (IPC) resources are operating system resources, such
message queues, shared memory, and semaphores. When a BEA Tuxedo applicati
shuts down properly with thenshutdown command, all IPC resources are removed
from the system. In some cases, however, an application may fail to shut down
properly and stray IPC resources may remain on the system. When this happens, it m
not be possible to reboot the application.

One way to address this problem is to remove IPC resources with a script that invoke
the systemPCS command and scan for all IPC resources owned by a particular user
account. However, with this method, it is difficult to distinguish among different sets
of IPC resources; some may belong to the BEA Tuxedo system; some to a particula
BEA Tuxedo application; and others to applications unrelated to the BEA Tuxedo
system. It is important to be able to distinguish among these sets of resources;
unintentional removal of IPC resources can severely damage an application.

The BEA Tuxedo IPC tool (that is, theipcrm command) enables you to remove IPC
resources allocated by the BEA Tuxedo system (that is, for core BEA Tuxedo and
Workstation components only) in an active application.

The command to remove IPC resourtescrm |, resides imrUXDIR/bin . This
command reads the binary configuration fifleXCONFIG, and attaches to the bulletin
board using the information in this filenipcrm works only on the local server
machine; it does not clean up IPC resources on remote machines in a BEA Tuxedo
configuration.

To run this command, enter it as follows on the command line.
tmiperm [-y] [-n] [tuxconfig_file]

The IPC tool lists all IPC resources used by the BEA Tuxedo system and gives you th
option of removing them.

Note: This command will not work unless you have seflheCONFIGnvironment
variable correctly or specified the appropriatéXCONFIGile on the
command line.

9-18 Administering a BEA Tuxedo Application at Run Time

Troubleshooting Multithreaded/ Multicontexted Applications

Troubleshooting Multithreaded/
Multicontexted Applications

Debugging Multithreaded/Multicontexted Applications

Multithreaded applications can be much more difficult to debug than single-threaded
applications. As the administrator, you may want to establish a policy governing
whether such multithreaded applications should be created.

Limitations of Protected Mode in a Multithreaded
Application

When running in protected mode, an application attaches to shared memory only when
an ATMI call is being executed. Protected mode is used to guard against problems that
arise when BEA Tuxedo shared memory is accidentally overwritten by stray
application pointers.

If your multithreaded application is running in protected mode, some threads may be
executing application code while others are attached to the BEA Tuxedo Bulletin
Board’s shared memory within a BEA Tuxedo function call. Therefore, as long as at
least one thread is attached to the bulletin board in an ATMI call, the use of protected
mode cannot guard against stray application pointers in threads executing application
code, which may overwrite the BEA Tuxedo shared memory. As a result, the
usefulness of protected mode is relatively limited in multithreaded applications.

There is no solution to this limitation. We simply want to warn you that when running
a multithreaded application you cannot rely on protected mode as much as you do
when running a single-threaded application.

Administering a BEA Tuxedo Application at Run Time 9-19

9 roubleshooting a BEA Tuxedo Application

9-20 Administering a BEA Tuxedo Application at Run Time

	Copyright
	Contents
	1 Starting Up and Shutting Down an Application
	The Tasks Involved in Starting Up and Shutting Down an Application
	How to Set Your Environment
	How to Create the TUXCONFIG File
	How to Propagate the BEA Tuxedo System Software
	How to Create a TLOG Device
	How to Start tlisten at All Sites
	tlisten Command Options

	How to Boot the Application
	Sequence of tmboot Tasks for a 2-Machine Configuration
	Sequence of tmboot Tasks for Large Applications (Over 50 Machines)

	How to Shut Down Your Application
	Running tmshutdown
	Using the IPC Tool When an Application Fails to Shut Down Properly

	2 Monitoring Your BEA Tuxedo Application
	Ways to Monitor Your Application
	System and Application Data that You Can Monitor
	Monitoring System Data
	Monitoring Dynamic and Static Administrative Data

	Common Startup and Shutdown Problems
	Common Startup Problems
	Common Shutdown Problems

	Selecting Appropriate Monitoring Tools
	Using the BEA Administration Console to Monitor Your Application
	Using the Power Bar to Monitor Activities

	Using Command-line Utilities to Monitor Your Application
	Inspecting Your Configuration Using tmadmin
	Generating Reports on Servers and Services Using txrpt

	How a tmadmin Session Works
	Monitoring Your System Using tmadmin Commands

	Using EventBroker to Monitor Your Application
	Using Log Files to Monitor Activity
	What Is the Transaction Log (TLOG)
	What Is the User Log (ULOG)
	Detecting Errors Using Logs
	Analyzing tlisten Messages in the ULOG
	Analyzing the Transaction Log (TLOG)
	Analyzing the User Log (ULOG)

	Estimating Service Workload Using the Application Service Log
	Using the MIB to Monitor Your Application
	Limiting Your MIB Queries
	Querying Global and Local Data
	Using tmadmcall to Access Information

	Querying and Updating the MIB with ud32
	Using the Run-time Tracing Utility
	Managing Errors Using the DBBL and BBLs
	Using the ATMI to Handle System and Application Errors
	Using Configurable Timeout Mechanisms
	Configuring Redundant Servers to Handle Failures

	Monitoring Multithreaded and Multicontexted Applications
	How to Retrieve Data About a Multithreaded/Multicontexted Application Using the MIB

	3 Dynamically Modifying an Application
	Dynamic Modification Methods
	Tools for Modifying Your Application

	Using tmconfig to Make Permanent Changes to Your Configuration
	How tmconfig Works
	How Results of a tmconfig Task Are Displayed

	How to Run tmconfig
	How to Set Environment Variables for tmconfig
	How to Conduct a tmconfig Walk-through Session
	tmconfig Input Buffer Considerations

	Making Temporary Modifications to Your Configuration with tmconfig
	How to Add a New Machine
	How to Add a Server
	How to Activate a Newly Configured Machine
	How to Add a New Group
	How to Change Data-dependent Routing (DDR) for an Application
	How to Change Application-wide Parameters
	How to Change an Application Password
	Limitations on Dynamic Modification Using tmconfig
	Tasks that Cannot Be Performed on a Running System

	Making Temporary Modifications to Your Configuration with tmadmin
	How to Set Environment Variables for tmadmin

	How to Suspend Services or Servers
	How to Resume Services or Servers
	How to Advertise Services or Servers
	How to Unadvertise Services or Servers
	How to Change Service Parameters
	How to Change the Timeout Value

	4 Managing the Network in a Distributed Application
	Running a Network for a Distributed Application
	Compressing Data Over a Network
	How to Set the Compression Level
	Selecting Data Compression Thresholds

	Balancing Network Request Loads
	How to Use Data-Dependent Routing
	Example of Data-dependent Routing with a Horizontally-partitioned Database
	Example of Data-dependent Routing with Rule-based Servers

	How to Change Your Network Configuration

	5 About the EventBroker
	What Is an Event
	Differences Between Application-defined and System-defined Events
	What Is the EventBroker
	How the EventBroker Works
	Event Notification Methods
	Severity Levels of System Events

	What Are the Benefits of Brokered Events

	6 Subscribing to Events
	Process of Using the EventBroker
	How to Configure EventBroker Servers
	How to Set the Polling Interval
	Subscribing, Posting, and Unsubscribing to Events with the ATMI and the EVENT_MIB
	Identifying Event Categories Using eventexpr and filter
	Accessing the EventBroker

	How to Select a Notification Method
	How to Cancel a Subscription to an Event
	How to Use the EventBroker with Transactions
	How Transactions Work with the EventBroker

	7 Migrating Your Application
	What Is Migration
	Performing a Master Migration
	Migrating a Server Group
	Migrating Machines
	Performing a Scheduled Migration

	Migration Options
	How to Switch the Master and Backup Machines
	Examples of Switching MASTER and BACKUP Machines

	How to Migrate Server Groups
	How to Migrate a Server Group When the Alternate Machine Is Accessible from the Primary Machine
	How to Migrate a Server Group When the Alternate Machine Is Not Accessible from the Primary Machine
	Examples of Migrating a Server Group

	How to Migrate Server Groups from One Machine to Another
	How to Migrate Machines When the Alternate Machine Is Accessible from the Primary Machine
	How to Migrate Machines When the Alternate Machine Is Not Accessible from the Primary Machine
	Examples of Migrating a Machine

	How to Cancel a Migration
	Example of a Migration Cancellation

	How to Migrate Transaction Logs to a Backup Machine

	8 Tuning Your Application
	Maximizing Your Application Resources
	When to Use MSSQ Sets
	How to Enable Load Balancing
	How to Measure Service Performance Time
	How to Assign Priorities to Interfaces or Services
	Example of Using Priorities
	Using the PRIO Parameter to Enhance Performance

	Bundling Services into Servers
	When to Bundle Services

	Enhancing Efficiency with Application Parameters
	Setting the MAXACCESSERS, MAXSERVERS, MAXINTERFACES, and MAXSERVICES Parameters
	Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE Parameters
	Tuning with the SANITYSCAN, BLOCKTIME, BBLQUERY, and DBBLWAIT Parameters
	Recommended Values for Tuning-related Parameters

	Determining Your System IPC Requirements
	Measuring System Traffic
	Example of Detecting a System Bottleneck
	Detecting Bottlenecks on UNIX Platforms
	Detecting Bottlenecks on Windows NT Platforms

	9 Troubleshooting a BEA Tuxedo Application
	Determining Types of Failures
	How to Determine the Cause of an Application Failure
	How to Determine the Cause of a BEA Tuxedo System Failure

	How to Broadcast an Unsolicited Message
	Maintaining Your System Files
	How to Print the Universal Device List (UDL)
	How to Print VTOC Information
	How to Reinitialize a Device
	How to Create a Device List
	How to Destroy a Device List

	Repairing Partitioned Networks
	Detecting a Partitioned Network
	Restoring a Network Connection

	Restoring Failed Machines
	How to Restore a Failed MASTER Machine
	How to Restore a Failed Nonmaster Machine

	How to Replace System Components
	How to Replace Application Components
	Cleaning Up and Restarting Servers Manually
	How to Clean Up Resources Associated with Dead Processes
	How to Clean Up Other Resources

	Aborting or Committing Transactions
	How to Abort a Transaction
	How to Commit a Transaction

	How to Recover from Failures When Transactions Are Used
	How to Use the IPC Tool When an Application Fails to Shut Down Properly
	Troubleshooting Multithreaded/ Multicontexted Applications
	Debugging Multithreaded/Multicontexted Applications
	Limitations of Protected Mode in a Multithreaded Application

