
BEATuxedo ®

Using the BEA Tuxedo
ATMI Workstation
Component

Version 10.0
Document Released: September 28, 2007

Using the BEA Tuxedo ATMI Workstation Component iii

Contents

1. Workstation Overview
What Is the Workstation Component? . 1-1

Limitations of Workstation Clients . 1-3

Workstation Administration . 1-3

2. Using the Workstation Component
Writing Client Programs . 2-1

Interoperability Restrictions for Workstation Clients . 2-1

Building Client Programs . 2-2

Using BEA Tuxedo System-Supplied Clients . 2-3

Using wud in a Security Application . 2-3

Running BEA Tuxedo System Clients on a Workstation . 2-3

Verifying the Directory Structure on Workstation Clients. 2-3

Setting Environment Variables . 2-4

Creating an Environment File . 2-8

Using tuxreadenv . 2-9

How a Multithreaded or Multicontexted Workstation Client Joins an Application . . . 2-10

3. Using Workstation on a Windows System
Benefits of Using Workstation on a Windows System. 3-1

Software Prerequisites. 3-2

Writing Client Programs . 3-2

Interoperability Restrictions for Workstation Clients . 3-2

iv Using the BEA Tuxedo ATMI Workstation Component

Building Client Programs . 3-2

Building GUI ATMI Clients . 3-3

Run Time . 3-3

Limitations . 3-3

How a Multithreaded or Multicontexted Workstation Client Joins an Application. . . . 3-4

4. Bringing Up bankapp on Workstations
Characteristics of a Workstation Application . 4-1

Bringing Up bankapp on a Workstation Client . 4-2

Changes on the Native Site . 4-2

Editing the Configuration File . 4-2

Loading and Booting the Configuration . 4-3

Setting the bankapp Variables . 4-4

Building the bankapp Client. 4-4

Running the bankapp Client . 4-4

Using the BEA Tuxedo ATMI Workstation Component 1-1

C H A P T E R 1

Workstation Overview

The following sections provide a brief overview of the BEA Tuxedo ATMI Workstation
component:

What Is the Workstation Component?

Workstation Administration

What Is the Workstation Component?
The Workstation component of the BEA Tuxedo system allows application clients to reside on a
machine that does not have a full server-side installation, that is, a machine that does not support
any administration or application servers. As shown in the following figure, all communication
between a Workstation client—an application client running on a Workstation component—and
the server application takes place over the network.

1-2 Using the BEA Tuxedo ATMI Workstation Component

Figure 1-1 BEA Tuxedo ATMI Workstation Component Operation

Note: A Workstation client communicates with a server application through a workstation
handler (WSH) process.

A Workstation client, whether run on a Windows or UNIX system, has access to most of the client
ATMI, although a Workstation client does not have all the access privileges available to a native
client (that is, a client running on the same machine on which the server program is running).
However, both types of clients can do the following:

Send and receive messages

Begin, end, and commit transactions

Send and receive unsolicited messages

Meet application security requirements

Communicate information about remote clients through the tmadmin() command (for
details, see tmadmin(1) in BEA Tuxedo Command Reference)

BEA Tuxedo Server Machine

Workstation Client

Server
Native
Client

Server

Bridge

Server

WSH

Network
Connection (Link)

Workstat ion Admin is t rat ion

Using the BEA Tuxedo ATMI Workstation Component 1-3

Limitations of Workstation Clients
Workstation clients do not have access to all the functionality available to native clients. For
example, unlike a native client, a Workstation client cannot join an application as tpsysadm,
which means that the client cannot subsequently subscribe to an event that issues a service call.

See Also
“BEA Tuxedo Workstation Servers” in Introducing BEA Tuxedo ATMI

“About Workstation Clients” in Setting Up a BEA Tuxedo Application

Workstation Administration
To integrate a Workstation client into a BEA Tuxedo application, you must define any required
and desired parameters for that client in the application configuration file. For details, see
“Setting Up Workstation Clients” in Setting Up a BEA Tuxedo Application.

See Also
buildwsh(1) in BEA Tuxedo Command Reference

WSL(5) in BEA Tuxedo File Formats, Data Descriptions, MIBs, and System Processes
Reference

1-4 Using the BEA Tuxedo ATMI Workstation Component

Using the BEA Tuxedo ATMI Workstation Component 2-1

C H A P T E R 2

Using the Workstation Component

The following sections describe using the BEA Tuxedo ATMI Workstation component on both
Windows and UNIX systems:

Writing Client Programs

Using BEA Tuxedo System-Supplied Clients

Running BEA Tuxedo System Clients on a Workstation

How a Multithreaded or Multicontexted Workstation Client Joins an Application

Writing Client Programs
You can develop client programs targeted for workstations in the same way that you develop
client programs within the BEA Tuxedo system administrative domain (that is, native clients).
With a few exceptions, all ATMI and FML functions available to the native client are also
available to the Workstation client.

Note: tpadmcall() is an example of an ATMI function that is available to the native client but
not to the Workstation client.

Interoperability Restrictions for Workstation Clients
Interoperability between BEA Tuxedo release 7.1 or later Workstation clients and applications
based on pre-7.1 releases of the BEA Tuxedo system is supported in any of the following
situations:

2-2 Using the BEA Tuxedo ATMI Workstation Component

The client is neither multithreaded nor multicontexted.

The client is multicontexted.

The client is multithreaded and each thread is in a different context.

A BEA Tuxedo release 7.1 or later Workstation client with multiple threads in a single context
cannot interoperate with a pre-7.1 release of the BEA Tuxedo system.

Building Client Programs
You compile and link-edit Workstation client programs using the buildclient(1) command.
If you are building a Workstation client on a native node (that is, one on which the complete BEA
Tuxedo system is installed), use the -w option to indicate the client should be built using the
workstation libraries. Otherwise, on a native node, where both native and workstation libraries
are present, the default is to use the native libraries. In this case, using the -w option ensures that
the correct libraries for a Workstation client are used. On a workstation, where only the
workstation libraries are present, it is not necessary to use the -w option.

The following listing shows an example of the buildclient(1) command line on a native node.

Listing 2-1 buildclient Command Line

TUXDIR=/var/opt/tuxedo CC=ncc; export TUXDIR CC

buildclient -w -o wsclt -f wsclt.c -f “userlib1.a userlib2.a”

The -o option provides a name for your output file. Input files are specified with the -f
firstfiles option to indicate that they are link-edited before system libraries. As indicated in
the example, you must define the TUXDIR environment variable to ensure that the buildclient
command can locate system libraries. CC defaults to cc but can be set to another compiler, as
shown in the example.

See Also
“Writing Clients” in Programming a BEA Tuxedo ATMI Application Using C and
Programming a BEA Tuxedo ATMI Application Using COBOL

“COBOL Language Bindings for the Workstation Component” in Programming a BEA
Tuxedo ATMI Application Using COBOL

Us ing BEA Tuxedo Sys tem-Suppl i ed C l i ents

Using the BEA Tuxedo ATMI Workstation Component 2-3

“Writing Security Code So Client Programs Can Join the ATMI Application” in Using
Security in CORBA Applications

buildclient(1) in BEA Tuxedo Command Reference

Using BEA Tuxedo System-Supplied Clients
wud and wud32 are BEA Tuxedo system-supplied driver programs provided for workstations.
These driver programs are based on the standard BEA Tuxedo client programs, ud and ud32, that
have been built using the workstation libraries.

Use wud(1) to send FML buffers to BEA Tuxedo system servers. Use wud32 with fielded FML32
buffers of type FBFR32.

Using wud in a Security Application
If wud is run in a security application, it requires an application password to access the
application. If standard input is from a terminal, wud prompts the user for an application
password. If you are running the client program from a script, which is a common occurrence
with wud, the password is retrieved from the environment variable APP_PW. If this environment
variable is not specified and an application password is required, then wud fails.

Do not confuse the APP_PW environment variable with the similar configuration file parameter,
SECURITY, for which the value APP_PW enables the security feature.

See Also
ud, wud(1) in BEA Tuxedo Command Reference

Running BEA Tuxedo System Clients on a Workstation
After the client programs have been developed and tested, they can be moved to the workstations
where they will be available to users.

Verifying the Directory Structure on Workstation Clients
The following table describes the directory structure on a Workstation client after you have
installed the Workstation component of the BEA Tuxedo system.

2-4 Using the BEA Tuxedo ATMI Workstation Component

Setting Environment Variables
Workstation clients make use of several environment variables. The following table shows the
environment variables that are checked by tpinit(3c) or TPINITIALIZE(3cbl) when the
Workstation client attempts to join the application. For details on setting these environment
variables, see “Defining Workstation Clients” in Setting Up a BEA Tuxedo Application.

Windows Directory UNIX Directory Description

%APPDIR% $APPDIR Contains the client executables. These
executables are commonly kept in the directory
from which the application is run.

%TUXDIR%\bin $TUXDIR/bin Contains BEA Tuxedo system commands and
system clients such as wud.

%TUXDIR%\cobinclude $TUXDIR/cobinclude Contains copylib entries for use in COBOL
programs.

%TUXDIR%\include $TUXDIR/include Contains BEA Tuxedo system header files such
as atmi.h.

%TUXDIR%\lib $TUXDIR/lib Contains run-time libraries.

%TUXDIR%\locale\C $TUXDIR/locale/C Contains message catalogs for the default locale
(U.S. English).

%TUXDIR%\samples $TUXDIR/samples Contains several subdirectories with sample
applications.

Runn ing BEA Tuxedo Sys tem C l i ents on a Works tat ion

Using the BEA Tuxedo ATMI Workstation Component 2-5

Environment Variable Description

TPMBENC Specifies the code-set encoding name that the workstation
machine running BEA Tuxedo 8.1 or later includes in an
allocated MBSTRING typed buffer. When a Workstation
client allocates and sends an MBSTRING buffer, the code-set
encoding name defined in TPMBENC is automatically added as
an attribute to the buffer and sent with the buffer data to the
destination server process.

When the workstation machine receives an MBSTRING
buffer, and assuming another environment variable named
TPMBACONV is set, the code-set encoding name defined in
TPMBENC is automatically compared to the code-set encoding
name in the received buffer; if the names are not the same, the
MBSTRING buffer data is automatically converted to the
encoding defined in TPMBENC before being delivered to the
Workstation client.

TPMBENC has no default value. For a Workstation client using
MBSTRING typed buffers, TPMBENC must be defined on the
workstation machine.

Note: TPMBENC is used in a similar way for
FLD_MBSTRING fields in an FML32 typed buffer.

TPMBACONV Specifies whether the workstation machine running BEA
Tuxedo 8.1 or later automatically converts the data in a
received MBSTRING buffer to the encoding defined in
TPMBENC. By default, the automatic conversion is turned off,
meaning that the data in the received MBSTRING buffer is
delivered to the Workstation client as is—no encoding
conversion. Setting TPMBACONV to any non-NULL value, say
Y (yes), turns on the automatic conversion.

Note: TPMBACONV is used in a similar way for
FLD_MBSTRING fields in an FML32 typed buffer.

2-6 Using the BEA Tuxedo ATMI Workstation Component

URLENTITYCACHING Specifies whether the workstation machine running BEA
Tuxedo 8.1 or later caches Document Type Definition (DTD),
XML schema, and entity files; specifically, whether the
Apache Xerces-C++ parser running on the Workstation client
caches the DTD and XML schema files when validation is
required, or caches external entity files called out in the DTD.
By default, the caching is turned on (Y). Setting
URLENTITYCACHING to N (no) turns off the caching.

URLENTITYCACHEDIR Applies only if URLENTITYCACHING=Y (yes) or is not set; for
details, see the description of URLENTITYCACHING in this
table.

Specifies the directory in which the workstation machine
running BEA Tuxedo 8.1 or later caches DTD, schema, and
entity files; specifically, where the Apache Xerces-C++ parser
running on the Workstation client caches the DTD, XML
schema, and entity files. The URLENTITYCACHEDIR variable
specifies the absolute pathname for the cached files. If
URLENTITYCACHEDIR is not specified, the default directory
becomes URLEntityCachedir, which will be created in the
current working directory of the Workstation client process
provided that the appropriate write permissions are set.

WSINTOPPRE71 Specifies whether the workstation machine running BEA
Tuxedo 7.1 or later is allowed to interoperate with pre-release
7.1 BEA Tuxedo applications. Setting the variable to Y
(WSINTOPPRE71=Y) allows interoperability.

WSBUFFERS The number of packets per application.

WSDEVICE Device name to be used to access the network. This variable is
only required when the BEA Tuxedo system is using the TLI
networking interface.

WSENVFILE Name of a file containing environment variable settings to be
set in the client’s environment.

Environment Variable Description

Runn ing BEA Tuxedo Sys tem C l i ents on a Works tat ion

Using the BEA Tuxedo ATMI Workstation Component 2-7

WSFADDR The network address used by the Workstation client when
connecting to the workstation listener or workstation handler.
This variable, along with the WSFRANGE variable, determines
the range of TCP/IP ports to which a Workstation client will
attempt to bind before making an outbound connection. This
address must be a TCP/IP address.

WSFRANGE The range of TCP/IP ports to which a Workstation client
process attempts to bind before making an outbound
connection. The WSFADDR parameter specifies the base
address of the range. The default is 1.

WSNADDR The network address of the workstation listener (WSL) process
through which clients gain access to the application. Use the
value specified in the application configuration file for the
workstation listener to be called. If the value begins with the
characters 0x, the system interprets it as a string of
hexadecimal digits; otherwise, the system interprets it as ASCII
characters.

WSRPLYMAX Maximum amount of core memory that ATMI functions use
for buffering application replies before they are dumped to
disk. Used by tpinit(3c) and TPINITIALIZE(3cbl).
Replies obtained using tpgetrply(3c),
TPGETRPLY(3cbl), and unsolicited messages are buffered
in this area. When this area is filled with one or more messages,
the overflow is written to a disk file. The system default limit
is 256,000 bytes. Whether you use WSRPLYMAX to set a lower
limit depends on the amount of available memory on your
machine. Writing replies to disk causes a substantial reduction
in performance.

WSTYPE Workstation type. Used within tpinit(3c) and
TPINITIALIZE(3cbl) when invoked by a Workstation
client to negotiate encode/decode responsibilities with the
native site. If you do not specify WSTYPE, the system performs
encoding, even if it is also unspecified on the native site.You
must explicitly specify the same WSTYPE value for both sites
to ensure that the encode/decode feature is turned off.

Environment Variable Description

2-8 Using the BEA Tuxedo ATMI Workstation Component

Other environment variables may be needed by Workstation clients on a UNIX workstation
depending on the BEA Tuxedo system features being used. Reference page compilation(5) in
BEA Tuxedo File Formats, Data Descriptions, MIBs, and System Processes Reference explains
which variables are needed under what circumstances.

Creating an Environment File
If you have created an environment file, it is read when tpinit(3c) or TPINITIALIZE(3cbl)
is called. The following listing shows a sample file that could be used for two different
applications.

Listing 2-2 Environment File

TUXDIR=/opt/tuxedo

[application1]

;this is a comment

/* this is a comment */

#this is a comment

//this is a comment

set FIELDTBLS=app1_flds

set FLDTBLDIR=/opt/app1/udataobj

[application2]

FIELDTBLS=app2_flds

FLDTBLDIR=/opt/app2/udataobj

The format of the file is as follows:

Any leading space and tab characters on each line are ignored and are not considered in the
following points.

Lines containing variables to be put into the environment are of the following form:

variable=value
or
set variable=value

Runn ing BEA Tuxedo Sys tem C l i ents on a Works tat ion

Using the BEA Tuxedo ATMI Workstation Component 2-9

where variable must begin with an alphabetic or underscore character and contain only
alphanumeric or underscore characters, and value may contain any character except
newline.

Within the value, strings of the form ${env} are expanded using variables already in the
environment. Forward referencing is not supported and if a value is not set, the variable is
replaced with the empty string. Backslash (\) may be used to escape the dollar sign and
itself. All other shell quoting and escape mechanisms are ignored and the expanded value
is placed into the environment.

Lines beginning with slash (/), pound sign (#), or exclamation point (!) are treated as
comments and ignored. Lines beginning with other characters besides these comment
characters, a left square bracket, or an alphabetic or underscore character are reserved for
future use; their use is undefined.

The file is partitioned into sections by lines of the form

[label]

where label is the name of the section and follows the same rules for variable above. The
label is silently truncated if longer than 31 characters.

Variable lines between the top of the file and the first label are put into the environment for
all applications; this is the global section. A label of [] also indicates the global section.
Other variables are put into the environment only if the label matches the application label
specified for the application.

Using tuxreadenv
When you call the tuxreadenv(3c) function, it reads the environment file and adds the
environment variables to the environment for the entire process, independent of platform. These
variables are available using tuxgetenv(3c) and can be reset using tuxputenv(3c).

void tuxreadenv(char *file, char *label)

If file is NULL, then a default filename is used. The default filenames for various platforms are
as follows:

%TUXDIR%\TUXEDO.ENV (Windows)

$TUXDIR/TUXEDO.env (UNIX)

If the value of label is NULL, then only variables in the global section are put into the
environment. For other values of label, the global section variables plus any variables in a
section matching the label are put into the environment.

2-10 Using the BEA Tuxedo ATMI Workstation Component

An error message is printed to the userlog under the following conditions:

A memory failure

A non-null filename does not exist

A non-null label does not exist

Each time tpinit(3c)is called (either explicitly or implicitly by calling another ATMI
function), tuxreadenv(3c) is called automatically in Workstation clients. If WSENVFILE is set
in the environment, then it designates the environment file; otherwise, NULL is passed to
tuxreadenv() for the filename so that the default file is used. If WSAPP is set in the environment,
then it is to be used as the section label in the environment file; otherwise, NULL is passed to
tuxreadenv() for the label name. Application clients may also call tuxreadenv() explicitly.

The environment is implemented and available in different ways on different platforms. A
uniform interface to the environment is provided via the existing tuxgetenv(3c) and
tuxputenv(3c) functions. These functions provide access to the following:

All variables from the specified WSENVFILE file for the specified WSAPP label (or the
defaults if not specified)

The environment variables in the operating system environment

See Also
tpinit(3c) in BEA Tuxedo ATMI C Function Reference

tuxreadenv(3c) in BEA Tuxedo ATMI C Function Reference

How a Multithreaded or Multicontexted Workstation
Client Joins an Application

To join a BEA Tuxedo application, a multithreaded Workstation client must always call
tpinit() with the TPMULTICONTEXTS flag set, even if the client is running in single-context
mode.

See Also
tpinit(3c) in BEA Tuxedo ATMI C Function Reference

Using the BEA Tuxedo ATMI Workstation Component 3-1

C H A P T E R 3

Using Workstation on a Windows
System

The following sections describe additional information about using the BEA Tuxedo ATMI
Workstation component on a Windows XP or Windows Server 2003 system:

Benefits of Using Workstation on a Windows System

Software Prerequisites

Writing Client Programs

How a Multithreaded or Multicontexted Workstation Client Joins an Application

Benefits of Using Workstation on a Windows System
The Windows instantiation of the Workstation client offers significant benefits to application
developers:

Executable text is shared among applications, saving memory.

BEA Tuxedo Workstation upgrades are possible without relinking or modifying an
application program's executable file.

Dynamic linking permits interpretive graphical application generator tools (such as Visual
Basic, ObjectVision and SQLWindows) to call BEA Tuxedo system services.

3-2 Using the BEA Tuxedo ATMI Workstation Component

Software Prerequisites
The software prerequisites for running the Workstation component on a Windows system are as
follows:

Workstation for Windows runs under the Windows XP or Windows Server 2003 operating
system.

In Windows, the native TCP/IP stack is used.

In Windows, while using TCP/IP, any Windows Sockets Compliant TCP/IP stack can be
used.

The server machine must have the BEA Tuxedo system and the native-side BEA Tuxedo
Workstation installed.

Writing Client Programs
You can develop client programs targeted for Windows workstations in the same way that you
would develop native client programs within the BEA Tuxedo system administrative domain. All
the ATMI functions are available.

Interoperability Restrictions for Workstation Clients
Interoperability between BEA Tuxedo release 7.1 and later Workstation clients and applications
based on pre-7.1 releases of the BEA Tuxedo system is supported in any of the following
situations:

The client is neither multithreaded nor multicontexted.

The client is multicontexted.

The client is multithreaded and each thread is in a different context.

A BEA Tuxedo release 7.1 or later Workstation client with multiple threads in a single context
cannot interoperate with a pre-7.1 release of the BEA Tuxedo system.

Building Client Programs
To compile client programs written in C, you can use any compiler that can read Microsoft C
import libraries. To compile COBOL source programs that call the ATMI, use the LITLINK

Wri t ing C l i ent P rograms

Using the BEA Tuxedo ATMI Workstation Component 3-3

option of the COBOL compiler. For details, see “COBOL Language Bindings for the
Workstation Component” in Programming a BEA Tuxedo ATMI Application Using COBOL.

Use buildclient(1) with the -w flag to link-edit your client programs.

You can also build BEA Tuxedo clients without using the buildclient(1) utility. If you are
using Microsoft Visual C++ projects, use the following settings:

Set the Preprocessor option to -DWIN32.

Add WTUXWS32.LIB MSVCRT.LIB to the input libraries for the linker option.

In addition, set the INCLUDE, LIB, and PATH search directories appropriately.

Building GUI ATMI Clients
The sample/atmi/ws directory contains several different windows platform .mak files for
creating GUI atmi clients. For an example of how these files may be used, see Tutorial for
bankapp, a Full C Application in Tutorials for Developing BEA Tuxedo ATMI Applications.

Run Time
When you run client programs, your PATH must includoTUXDIR%\bin.

Limitations
The BEA Tuxedo libraries (DLLs) prior to BEA Tuxedo release 7.1 are not thread-safe. For
applications written using the pre-release 7.1 DLLs, threads should not be used; otherwise,
threaded access is serialized through all BEA Tuxedo calls (such as ATMI, FML, userlog(),
and so on).

See Also
“Writing Clients” in Programming a BEA Tuxedo ATMI Application Using C or
Programming a BEA Tuxedo ATMI Application Using COBOL

“COBOL Language Bindings for the Workstation Component” in Programming a BEA
Tuxedo ATMI Application Using COBOL

“Writing Security Code So Client Programs Can Join the ATMI Application” in Using
Security in CORBA Applications

buildclient(1) in BEA Tuxedo Command Reference

3-4 Using the BEA Tuxedo ATMI Workstation Component

How a Multithreaded or Multicontexted Workstation
Client Joins an Application

To join a BEA Tuxedo application, a multithreaded Workstation client must always call
tpinit(3c) with the TPMULTICONTEXTS flag set, even if the client is running in single-context
mode.

See Also
tpinit(3c) in BEA Tuxedo ATMI C Function Reference

Using the BEA Tuxedo ATMI Workstation Component 4-1

C H A P T E R 4

Bringing Up bankapp on Workstations

The following sections describe the procedure for bringing up bankapp, the BEA Tuxedo system
sample application, on a Windows or UNIX workstation:

Characteristics of a Workstation Application

Bringing Up bankapp on a Workstation Client

Changes on the Native Site

Setting the bankapp Variables

Building the bankapp Client

Running the bankapp Client

Characteristics of a Workstation Application
In a workstation application, client processes are moved off the native site. The listener process
(WSL) runs with a well-known network address and starts surrogate workstation handlers (WSH)
as needed. Servers run on one or more machines within the BEA Tuxedo administrative domain.

Existing servers are available to run on the BEA Tuxedo system nodes in either single processor
(SHM) or multiprocessor (MP) mode.

On Workstations, the sample applications are located in the following directories:

%TUXDIR%\samples\atmi\bankapp (Windows)

$TUXDIR/samples/atmi/bankapp (UNIX)

4-2 Using the BEA Tuxedo ATMI Workstation Component

Bringing Up bankapp on a Workstation Client
The following illustration shows the steps in bringing up bankapp on a Workstation client.

Figure 4-1 Steps in Bringing Up bankapp

Changes on the Native Site
Install and build the bankapp software on the native site. The procedure for doing this is
described in “Tutorial for bankapp, a Full C Application” in Tutorials for Developing BEA
Tuxedo ATMI Applications and in the following README files on the master machine where your
BEA Tuxedo system software is installed:

%TUXDIR%\samples\atmi\bankapp\README.nt (Windows)

$TUXDIR/samples/atmi/bankapp/README (UNIX)

Editing the Configuration File
You need to edit the configuration file you plan to use (either ubbshm or ubbmp) to specify the
workstation listener (WSL) as a server in the GROUPS and SERVERS sections, and to specify

Changes on the Nat i ve S i te

Using the BEA Tuxedo ATMI Workstation Component 4-3

MAXWSCLIENTS in the MACHINES section. When you edit the GROUPS section, put the entry for
WSGRP ahead of the DEFAULT line or move the specifications for TMSNAME and TMSCOUNT to the
server groups that use them; they should not be assigned to WSGRP. The new specifications should
be in the following format.

*MACHINES
 DEFAULT: MAXWSCLIENTS=50

 #
 *GROUPS

 WSGRP GRPNO=<next available group #> LMID=SITE1
 #
 *SERVERS

 WSL SRVGRP=WSGRP SRVID=1
 CLOPT=”-A — -n //machine:port -m 1 -M 5 -x 10"

Also, remember to increase the MAXACCESSERS parameter in the RESOURCES or MACHINES
section to cover the new Workstation clients.

Loading and Booting the Configuration
Before you can start using a Workstation client, you need to run tmloadcf(1) to load the
configuration file into its binary form and tmboot(1) to start the application. These commands
do not have to be run immediately; there is work to be done in getting the bankapp clients
installed on your workstations and getting them built. However, the application must be running
on the BEA Tuxedo system native site when you attempt to join the application from a
workstation. The steps for loading and booting bankapp on the native site are part of the overall
procedure documented in “Tutorial for bankapp, a Full C Application” in Tutorials for
Developing BEA Tuxedo ATMI Applications.

See Also
tmloadcf(1) in BEA Tuxedo Command Reference

WSL(5) in BEA Tuxedo File Formats, Data Descriptions, MIBs, and System Processes
Reference

“Tutorial for bankapp, a Full C Application” in Tutorials for Developing BEA Tuxedo
ATMI Applications

4-4 Using the BEA Tuxedo ATMI Workstation Component

“Defining a Workstation Listener (WSL) as a Server” in Setting Up a BEA Tuxedo
Application

Setting the bankapp Variables
To set your environment to run bankapp, complete the following procedure on the Workstation
client.

1. Set the following environment variable:

WSNADDR=<WSL advertised address(es)>
WSTYPE=<type of Workstation machine>

2. Include %TUXDIR%\bin (Windows) or $TUXDIR/bin (UNIX) in your PATH.

3. Verify that your environment is set appropriately to run the C compiler.

Building the bankapp Client
To build a client program, enter the following commands:

mkfldhdr bankflds

buildclient -w -o bankclt -f bankclt.c

Running the bankapp Client
To run the bankapp client on the Workstation, complete the following procedure.

1. Verify that the value of WSNADDR on the Workstation client matches the value of the CLOPT
-n option for the WSL in the SERVERS section of the configuration file on the native site.

2. If bankapp has not been booted on the native site, make sure it has been booted before you
attempt to run a Workstation client.

3. Execute bankclt to run the Workstation client.

