
BEATuxedo® 
Mainframe 
Adapter for 
SNA

Reference Guide

Version 9.1
Document Revised: August 16, 2006





BEA Tuxedo Mainframe Adapter for SNA Reference Guide iii

Contents

1. ATMI to CPI-C Function Mapping

2. Application-to-Application Programming Examples
Distributed Program Link (DPL) Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

ATMI Client Request/Response to CICS/ESA DPL  . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

ATMI Client Asynchronous Request/Response to CICS/ESA DPL  . . . . . . . . . . . . . 2-3

ATMI Client Asynchronous Request/Response with No Reply to CICS/ESA DPL . 2-4

CICS/ESA DPL to ATMI Request/Response Server . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

CICS/ESA DPL to ATMI Request/Response Server, Service in Autonomous 
Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6

ATMI Client Request/Response to CICS/ESA DPL, Autonomous Transaction  . . . . 2-8

Transactional ATMI Client Multiple Requests/Responses to CICS/ESA DPL . . . . 2-10

Transactional CICS/ESA DPL to ATMI Request/Response Server . . . . . . . . . . . . . 2-12

Distributed Transaction Processing (DTP) Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13

ATMI Client Request/Response to CICS/ESA DTP  . . . . . . . . . . . . . . . . . . . . . . . . 2-14

ATMI Client Asynchronous Request/Response to CICS/ESA DTP  . . . . . . . . . . . . 2-16

ATMI Client Asynchronous Request/Response with No Reply to CICS/ESA DTP 2-18

ATMI Conversational Client to CICS/ESA DTP, Server Gets Control  . . . . . . . . . . 2-19

ATMI Conversational Client to CICS/ESA DTP, Client Sends/Receives Data . . . . 2-21

ATMI Conversational Client to CICS/ESA DTP, Client Grants Control . . . . . . . . . 2-23

CICS/ESA DTP to ATMI Conversational Server, Client Retains Control . . . . . . . . 2-25

CICS/ESA DTP to ATMI Conversational Server, Client Relinquishes Control  . . . 2-27

Transactional ATMI Client Request/Response to CICS/ESA DTP . . . . . . . . . . . . . 2-29



iv BEA Tuxedo Mainframe Adapter for SNA Reference Guide

Transactional ATMI Conversational Client to CICS/ESA DTP, Server Gets Control2-31

Transactional CICS/ESA DTP to ATMI Conversational Server, Host Client 
Relinquishes Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-33

CPI-C Programming Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34

ATMI Client Request/Response to Host CPI-C. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-35

ATMI Client Asynchronous Request/Response to Host CPI-C. . . . . . . . . . . . . . . . 2-37

ATMI Client Asynchronous Request/Response to Host CPI-C with No Reply  . . . 2-39

ATMI Conversational Client to Host CPI-C, Server Gets Control  . . . . . . . . . . . . . 2-41

ATMI Conversational Client To Host CPI-C, Client Retains Control . . . . . . . . . . . 2-43

ATMI Conversational Client to Host CPI-C, Client Grants/gets Control . . . . . . . . 2-45

Host CPI-C to ATMI Asynchronous Request/Response Server with No Reply . . . 2-47

Host CPI-C to ATMI Server Request/Response  . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-49

Host CPI-C to ATMI Conversational Service, Client Retains Control . . . . . . . . . . 2-51

Host CPI-C ATMI to Conversational Service, Client Grants Control . . . . . . . . . . . 2-53

Transactional ATMI Client Request/Response to Host CPI-C  . . . . . . . . . . . . . . . . 2-55

Transactional ATMI Conversational Client to Host CPI-C, Server Gets Control . . 2-57

Transactional Host CPI-C to ATMI Conversational Server, Client Grants Control  2-59

CICS/ESA Mirror Transaction Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-61

Implicit Attachment of TRANSID (Outbound Requests Only). . . . . . . . . . . . . . . . 2-61

Explicit Attachment of TRANSID for Outbound Requests. . . . . . . . . . . . . . . . . . . 2-62

Explicit Attachment of TRANSID for Inbound Requests . . . . . . . . . . . . . . . . . . . . 2-63

Additional Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-64

Index



BEA Tuxedo Mainframe Adapter for SNA Reference Guide 1-1

C H A P T E R 1

ATMI to CPI-C Function Mapping

The following tables list the most common ATMI function calls and show how their parameters 
map to CPI-C verbs. The mappings are listed by function call in the following order: 

tpcall() 

tpacall() with or without reply 

tpgetrply() 

tpservice() 

tpreturn() 

tpcancel() 

tpconnect() 

tpsend() 

tprecv() 

tpdiscon() 

tpforward () 

The tables show the parameters of the ATMI call, the contents or meaning of the parameters, and 
notes on usage with the CPI-C verbs.



1-2 BEA Tuxedo Mainframe Adapter for SNA Reference Guide

Table 1-1  tpcall

tpcall() Parameters Contents CPI-C Notes

svc Service Name Used in CMALLC to identify the CICS 
transaction to be invoked.

idata User data This data is sent in CMSENDs until completely 
transmitted.

len Length of User data

odata Reply data CMRCV receives the data until it has been 
completely transmitted (data_received is set to 
CM_COMPLETE_DATA_RECEIVED) and 
return code is set to CM_OK or 
CM_DEALLOCATE_NORMAL.

olen Reply data length

flags TPNOTRAN Not part of a transaction

TPNOCHANGE N/A Local

TPNOBLOCK N/A Local

TPNOTIME N/A Local

TPSIGRSTRT N/A Local

Table 1-2  tpacall

tpacall() Parameter Contents CPIC Notes

svc Service Name Used in CMALLC to identify the CICS 
transaction to be invoked.

data User data This data is sent in CMSENDs until completely 
transmitted.

len Length of user data



BEA Tuxedo Mainframe Adapter for SNA Reference Guide 1-3

flags TPNOREPLY false The last data is sent with a CMSEND with 
send_type set to 
CMSEND_AND_PREP_TO_RECEIVE. This 
changes the state of the conversation to receive 
and a CMRCV is issued to await the reply.

true Since no reply is expected, a CMDEAL 
deallocates the conversation after all data has 
been received.

TPNOTRAN Not part of a transaction

TPNOBLOCK N/A Local

TPNOTIME N/A Local

TPSIGRSTRT N/A Local

Table 1-2  tpacall

tpacall() Parameter Contents CPIC Notes

Table 1-3  tpgetrply

tpgetrply() Parameters Contents CPIC Notes

cd call descriptor The call descriptor is mapped to the 
CONVID returned by the CMINIT when 
the LU6.2 was initiated.

data User data Data received from CMRCV if 
WHAT_RECEIVED set to 
DATA_COMPLETE.

len Length of user data



1-4 BEA Tuxedo Mainframe Adapter for SNA Reference Guide

flags TPGETANY If true, data is returned from any 
conversation. If false, data is 
returned from conversation 
associated with the cd

Data available on any conversation is 
returned to the requestor.

TPNOCHANGE Local to the requestor Limited buffer types supported.

TPNOBLOCK N/A Local

TPNOTIME N/A Local

TPSIGRSTRT N/A Local

Table 1-3  tpgetrply

tpgetrply() Parameters Contents CPIC Notes

Table 1-4  tpservice

tpservice() Parameters Contents CPIC Notes

svcinfo Service information 
and data

User Data captured from a CMRCV populates the 
TPSVCINFO structure user data area. Service 
characteristics are obtained from the service 
attributes in the DMCONFIG and UBBCONFIG 
files.

name Service name The service name associated with the 8 character 
RNAME sent from CICS.

data User data Data captured from CMRCV.

len Length of user data

cd call descriptor The call descriptor associated with the CONVID 
returned by the CMINIT when the LU6.2 was 
initiated.

appkey 32-bit key (if used) For security.

cltid set by BEA Tuxedo For security.



BEA Tuxedo Mainframe Adapter for SNA Reference Guide 1-5

flags TPCONV If true, service is 
conversational.

TPTRAN N/A .

TPNOREPLY If true, requestor not 
expecting a reply.

The conversation is terminated with a CMDEAL 
normal.

TPSENDONLY N/A If set, the CPIC conversation in CICS should be in 
receive state. If not set, the CICS CPIC 
conversation state will be in send state.

TPRECVONLY N/A If set, the CPIC conversation in CICS remains in 
send state.

Table 1-4  tpservice

tpservice() Parameters Contents CPIC Notes

Table 1-5  tpreturn

tpreturn() Parameters Contents CPIC Notes

rval TPSUCCESS Set to TPSUCCESS when conversation terminates 
with a normal deallocation.

TPSVCERR Set to TPESVCERR when the conversation has 
terminated with a non-normal deallocation type or 
other error.

rcode Set by the application N/A

data User data Data is returned to the CICS transaction from a 
successful CMRCV with data received set to 
CM_DATA_COMPLETE and return code of 
CM_DEALLOCATE_NORMAL. If the service 
fails, no data is returned to the caller and the 
conversation is deallocated abnormally.

len Length of data returned 0 < data <= 32K

flags N/A N/A



1-6 BEA Tuxedo Mainframe Adapter for SNA Reference Guide

Table 1-6  tpcancel

tpcancel() Parameters Contents CPIC Notes

cd The connection 
descriptor on which a 
tpgetreply() is 
waiting.

CMDEAL abnormal is issued on the conversation 
with CONVID mapped from call descriptor.

Table 1-7  tpconnect

tpconnect() Parameters Contents CPIC Notes

svc The local service name 
representing the service 
to be invoked. in CICS

The name is used to find the RNAME. The 
RNAME should match the TPName in CICS and 
will be used by CMINIT and CMALLC to initiate 
and allocate the conversation.

data User data This data is sent in CMSENDs until completely 
transmitted.

len Length of User data

flags TPNOTRAN True

TPSENDONLY If true, the conversation 
stays in or changes to 
send state

The conversation remains in send state. This is the 
default.

TPRECVONLY If true, the conversation 
stays in or changes to 
receive state

Immediately after the allocate BEA Tuxedo sends 
a CMSEND with no data and send_type set to 
CM_SEND_AND_PREP_TO_RECEIVE.

TPNOBLOCK N/A Local

TPNOTIME N/A Local

TPSIGRSTRT N/A Local



BEA Tuxedo Mainframe Adapter for SNA Reference Guide 1-7

Table 1-8  tpsend

tpsend() Parameters Contents CPIC Notes

cd The connection 
descriptor

This locally assigned connection descriptor 
has been mapped to the CONVID returned in 
the CMINIT and CMALLC on behalf of the 
tpconnect().

data User data ASCII/EBCDIC conversion may be required 
before sending to CICS.

len Length of User data

flags TPRECVONLY If true, the conversation 
changes to receive state.

The state of the conversation changes from 
send to receive. A CMSEND is sent with 
send_type set to 
CM_SEND_AND_PREP_TO_RECEIVE.

TPNOBLOCK N/A Local

TPNOTIME N/A Local

TPSIGRSTRT N/A Local

revent TPEV_DISCONIMM If set, the LU6.2 
conversation has been 
terminated abnormally.

If the return code from a CMRCV is 
deallocate_abnormal, the conversation is 
terminated. A disconnect event is sent to the 
sending process.

TPEV_SVCERR If set, the LU6.2 
conversation has been 
terminated abnormally.

Any return code other than CM_OK or 
CM_DEALLOCATE_NORMAL is treated 
as a TPEV_SVCERR.

TPEV_SVCFAIL If set, the LU6.2 
conversation has been 
terminated abnormally.

If the return code from CMRCV is 
CM_TP_NOT_AVAIL_NO_RETRY or 
CM_TP_RESOURCE_FAILURE_NO_RE
TRY, revent is set to TPEV_SVCFAIL.



1-8 BEA Tuxedo Mainframe Adapter for SNA Reference Guide

Table 1-9  tprecv

tprecv() Parameters Contents CPIC Notes

cd The connection 
descriptor

This locally assigned connection descriptor 
has been mapped to the CONVID returned in 
the CMINIT and CMALLC issued by the 
initiator of this conversation.

data User data Date to be received using a 
CMRCV_immediate and returned to the 
BEA Tuxedo service.

len Length of User data

flags TPNOCHANGE Local Must be a supported buffer type.

TPNOBLOCK N/A Local

TPNOTIME N/A Local

TPSIGRSTRT N/A Local

revent TPEV_DISCONIMM If set, the LU6.2 
conversation has been 
terminated abnormally.

If the return code from a CMSEND is 
deallocate_abnormal, the conversation is 
terminated. A disconnect event is sent to the 
sending process.

TPEV_SENDONLY If set, the LU6.2 
conversation changes to 
send if partner allows it.

The sending partner has sent a CMSEND 
with send_type set to 
CM_SEND_AND_PREP_TO_RECEIVE.

TPEV_SVCERR If set, the LU6.2 
conversation has been 
terminated abnormally.

Any return code other than CM_OK or 
CM_DEALLOCATE_NORMAL is treated 
as a TPEV_SVCERR.

TPEV_SVCFAIL If the return code from CMRCV is 
CM_TP_NOT_AVAIL_NO_RETRY or 
CM_TP_RESOURCE_FAILURE_NO_RE
TRY, revent is set to TPEV_SVCFAIL.

TPEV_SVCSUCC If set, the conversation 
has completed normally.

The return code from CMRCV was set to 
CM_DEALLOCATE_NORMAL. This 
indicates that the sending TP has completed 
and deallocated the conversation normally.



BEA Tuxedo Mainframe Adapter for SNA Reference Guide 1-9

Table 1-10  tpdiscon

tpdiscon() Parameters Contents CPIC Notes

cd The connection 
descriptor

This connection descriptor in mapped to the 
CONVID returned from CMINIT or CMACCP 
to the originator of the conversation.

Table 1-11  tpforward

tpforward () Parameters Contents CPIC Notes

svc Service name tpforward() is treated as if it were a 
tpacall(). A CMINIT and subsequent 
CMALLC are issued to initialize and allocate a 
session for a conversation. ClientID must be 
propagated to the CICS transaction in a 
TPSVCINFO record.

data User data Data is sent using CMSEND. The last 
CMSEND is sent with send_type of 
deallocate_normaL.

len Length of data returned

flags Refer to tpacall()



1-10 BEA Tuxedo Mainframe Adapter for SNA Reference Guide



BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-1

C H A P T E R 2

Application-to-Application 
Programming Examples

This section provides the following transaction scenarios for the programming environments 
supported by Tuxedo Mainframe Adapter for SNA:

“Distributed Program Link (DPL) Examples” 

“Distributed Transaction Processing (DTP) Examples” 

“CPI-C Programming Examples” 

“CICS/ESA Mirror Transaction Examples”

Caution: The scenarios in this section demonstrate how ATMI calls relate to CICS/ESA 
programming structures. They are not intended for use in developing application 
code, or for the replacement of existing application code. The use of any of these 
examples in actual situations may have unpredictable results.

Each example provides a graphical illustration of the scenario followed by a description of each 
step of the scenario.

Distributed Program Link (DPL) Examples
The examples in this section represent a few of the many programming scenarios available for 
using DPL and ATMI service invocations. These examples employ the most natural and efficient 
approaches.



2-2 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

ATMI Client Request/Response to CICS/ESA DPL

1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpcall for SIMPDPL, which is advertised in the 
DM_REMOTE_SERVICES section of the DMCONFIG file.

3. Host mirror transaction starts TOUPDPLS program and passes idata buffer contents for 
processing.

4. The TOUPDPLS program processes data.

5. The CICS/ESA server returns the commarea into the client’s odata buffer.

ATMI CICS

toupclt
ATMI Service

toupsrv
{ .
  .
  .
tpcall (“SIMPDPL”,
       idata
       ilen
       odata,
       olen
       0);
  .
  .
  .
}

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPDPL RNAME=TOUPDPLS FUNCTION=DPL CONV=N

HOST
Mirror

Transaction1

2

3

5

4

TOUPDPLS
PROGRAM
  .
  .
  .
...(manipulate 
commarea)...
  .
  .
  .
EXEC CICS RETURN



Dis t r ibuted  Program L ink  (DPL)  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-3

ATMI Client Asynchronous Request/Response to CICS/ESA 
DPL

1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpacall for SIMPDPL, which is advertised in the 
DM_REMOTE_SERVICES section of DMCONFIG file.

3. Host mirror transaction starts TOUPDPLS program and passes idata buffer contents for 
processing.

4. The TOUPDPLS program processes data.

DM_REMOTE_SERVICES

SIMPDPL RNAME=TOUPDPLS FUNCTION=DPL CONV=N

ATMI CICS

toupclt
ATMI Service

toupsrv
{ .
cd=tpacall 
       (“SIMPDPL”,
       idata
       ilen
       0);
  .
  .
tpgetreply (cd,
            odata,
            olen,
            0);
}

HOST
Mirror

Transaction
TOUPDPLS
PROGRAM
  .
  .
  .
...(manipulate 
commarea)...
  .
  .
  .
EXEC CICS RETURN

1

2

3

5

4

DMCONFIG File Entry



2-4 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

5. The CICS/ESA system returns the commarea into the client’s tpgetreply odata buffer.

ATMI Client Asynchronous Request/Response with No Reply 
to CICS/ESA DPL

1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpacall for SIMPDPL, which is advertised in the 
DM_REMOTE_SERVICES section of DMCONFIG file. The toupsrv service uses TPNOREPLY 
to specify that no reply is expected.

ATMI CICS

toupclt
ATMI Service

toupsrv
{ .
 cd tpacall 
      (“SIMPDPL”,
      idata
      ilen
      TPNOREPLY);
 }

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPDPL RNAME=TOUPDPLS FUNCTION=DPL CONV=N

HOST
Mirror

Transaction
TOUPDPLS
PROGRAM
  .
  .
  .
...(manipulate 
commarea)...
  .
  .
  .
EXEC CICS RETURN

1

2

3

4



Dis t r ibuted  Program L ink  (DPL)  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-5

3. Host mirror transaction starts TOUPDPLS program and passes idata buffer contents for 
processing.

4. The TOUPDPLS program processes data.

CICS/ESA DPL to ATMI Request/Response Server

1. User-entered HOPL invokes MIRRDPLC program.

2. The EXEC CICS LINK command causes the advertised service mapped to MIRRDPLS (in the 
DM_LOCAL_SERVICES section of the DMCONFIG file) to execute.

3. The MIRROR service processes the data received in the service TPSVCINFO data buffer from 
the EXEC CICS LINK.

ATMI CICS

MIRROR
ATMI Service

DMCONFIG File Entry
DM_LOCAL_SERVICES

MIRROR RNAME=MIRRDPLS CONV=N

HOPL
User Transaction

MIRRDPLC
PROGRAM
  .
  .
  .
EXEC CICS LINK
 PROGRAM (“MIRRDPLS”)
 COMMAREA (COMM-AREA)
 DATALENGTH (COMM-LEN)
 LENGTH (COMM-LEN)
 SYNCONRETURN

2

1

3

MIRROR 
(TPSVCINFO* 
tpsvcinfo)
{ .
  .
...(manipulate 
tpsvcinfo data)...
. 
tpreturn 
 (TPSUCCESS, 
 0,
 tpsvcinfo->data
 tpsvcinfo->len);
}     

4

3



2-6 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

4. The tpreturn call returns the data into the COMM-AREA buffer.

CICS/ESA DPL to ATMI Request/Response Server, Service in 
Autonomous Transaction

1. User-entered H0PL invokes MIRRDPLC program.

ATMI CICS

MIRROR
ATMI Service

MIRROR
(TPSVCINFO*
tpsvcinfo)
{
tpbegin();

...(manipulate 
tpsvcinfo data)...

tpcommit();

tpreturn(TPSUCCESS,
      0,
      tpsvcinfo->data,
      tpsvcinfo->len);
}

DMCONFIG File Entry

DM_LOCAL_SERVICES

MIRROR RNAME=MIRRDPLC CONV=N

MRRDPLC
PROGRAM
 .
 .
 .
EXEC CICS LINK
 PROGRAM("MIRRDPLS")
 COMMAREA(COMM-AREA)
 DATALENGTH(COMM-LEN)
 LENGTH(COMM-LEN)
 SYNCONRETURN

EXEC CICS RETURN

5

4

3

2

6

H0PL 
1

7



Dis t r ibuted  Program L ink  (DPL)  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-7

2. The EXEC CICS LINK command causes the advertised service mapped to MIRRDPLS (in the 
DM_LOCAL_SERVICES section of the DMCONFIG file) to execute. The SYNCONRETURN 
option indicates that the invoked service will not participate in the CICS/ESA transaction.

3. The MIRROR service request tpbegin incorporates all further operations in a transaction.

4. The MIRROR service processes the data.

5. The tpcommit indicates the end of the transaction; all updates performed within the service 
transaction are to be committed.

6. The tpreturn call returns the data into the commarea buffer.

7. The EXEC CICS SYNCPOINT is an explicit commit request. All updated resources in the 
CICS/ESA transaction are committed.



2-8 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

ATMI Client Request/Response to CICS/ESA DPL, 
Autonomous Transaction

1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpbegin to start the transaction.

ATMI CICS

toupclt
ATMI Service

toupsrv
{
tpbegin(0,0)

tpcall("SIMPDPL",
       idata,
       ilen,
       odata,
       olen,
       TPNOTRAN)
tpcommit

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPDPL RNAME=TOUPDPLS FUNCTION=DPL CONV=N

Host Mirror Transaction
DPL

TOUPDPLS
Program
 .
 .
 .
..(manipulate commarea)..

EXEC CICS SYNCPOINT

EXEC CICS RETURN

 

2

1

5

6

3

4

7
8



Dis t r ibuted  Program L ink  (DPL)  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-9

3. The toupsrv service issues tpcall for SIMPDPL, which is advertised in the 
DM_REMOTE_SERVICES section of the DMCONFIG file. The TPNOTRAN parameter 
indicates the CICS/ESA application does not participate in the service transaction.

4. Host mirror transaction starts TOUPDPLS program and passes idata buffer contents for 
processing.

5. The TOUPDPLS program processes data.

6. The EXEC CICS SYNCPOINT is an explicit commit request. All updated resources in the 
CICS/ESA transaction are committed.

7. The CICS/ESA server returns the commarea into the client’s odata buffer.

8. The toupsrv service tpcommit request signals the successful completion of the transaction, 
causing a commit of its own updated resources.



2-10 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

Transactional ATMI Client Multiple Requests/Responses to 
CICS/ESA DPL

1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpbegin to start the transaction.

ATMI CICS

toupclt
ATMI Service

toupsrv
{
tpbegin(0,0);

do{.
   .
   .
  tpcall (“SIMPDPL”,
          idata,
          ilen,
          odata,
          olen,
          0);
  .
  .
  .
}while (NOTEND);

tpcommit

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPDPL RNAME=TOUPDPLS FUNCTION=DPL CONV=N

HOST
Mirror

Transaction

TOUPDPLS
PROGRAM
  .
  .
  .
...(manipulate 
commarea)...
  .
  .
  .
EXEC CICS RETURN

1

3

4

5
2

8

7

6



Dis t r ibuted  Program L ink  (DPL)  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-11

3. The toupsrv service issues tpcall for SIMPDPL, which is advertised in the 
DM_REMOTE_SERVICES section of the DMCONFIG file. The tpcall is requested multiple 
times within the same transaction.

4. Host mirror transaction starts TOUPDPLS program and passes idata buffer contents for 
processing. The host mirror transaction remains as a long-running task to service all further 
requests on the transaction.

5. The TOUPDPLS program processes data.

6. The CICS/ESA system returns the commarea into the client’s odata buffer.

7. Step 3 through Step 6 are repeated until the toupsrv service loop end conditions are met.

8. The tpcommit request indicates the successful completion of the transaction, causing a 
commit of its own resources and the resources held by the host mirror transaction.



2-12 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

Transactional CICS/ESA DPL to ATMI Request/Response 
Server

1. User-entered H2PL invokes MIRRDPLC program.

ATMI CICS

MIRROR
ATMI Service

MIRROR
(TPSVCINFO*
   tpsvcinfo)
{
...(manipulate       
tpsvcinfo data)...

tpreturn(TPSUCCESS,
      0,
      tpsvcinfo->data,
      tpsvcinfo->len);
}

DMCONFIG File Entry

DM_LOCAL_SERVICES

MIRROR RNAME=MIRRORSERV CONV=N

H2PL

MIRRDPLC
PROGRAM
 .
 .
 .
EXEC CICS LINK
  PROGRAM ("MIRRDPLS")
  COMMAREA (comm-area)
  LENGTH (comm-area)

EXEC CICS SYNCPOINT

EXEC CICS RETURN

 
1

5

2
3

4



Dis t r ibuted  T ransact i on  P rocess ing  (DTP)  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-13

2. The EXEC CICS LINK command causes the advertised service mapped to MIRRDPLS (in the 
DM_LOCAL_SERVICES section of the DMCONFIG file) to execute. The invoked service 
participates in the CICS/ESA transaction.

3. The MIRROR service processes the data.

4. The tpreturn call returns the data into the commarea buffer.

5. The EXEC CICS SYNCPOINT is an explicit commit request indicating a successful end of the 
conversation. All updated resources in the transaction are committed.

Distributed Transaction Processing (DTP) Examples
The following examples represent programming scenarios for using DTP and ATMI service 
invocations.

Although it is most suited for the DPL environment, the tpcall is usually used for the DPL 
environment, it can also be used for a request/response to a DTP server.

The examples in this section represent some of the programming scenarios available for using 
DTP and ATMI service invocations. These examples employ the most natural and efficient 
approaches.



2-14 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

ATMI Client Request/Response to CICS/ESA DTP

1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpcall for SIMPDTP, which is advertised in the 
DM_REMOTE_SERVICES section of DMCONFIG file.

3. User transaction DTPS starts TOUPDTPS program.

ATMI CICS

toupclt
ATMI Service

toupsrv
{ .
  .
  .
tpcall (“SIMPDTP”,
       idata
       ilen
       odata,
       olen
       0)
  .
  .
  .
}

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPDTP RNAME=DTPS FUNCTION=APPC CONV=N

User Transaction
DTPS

TOUPDTPS
PROGRAM
  .
  .
...(move eibtrmid to 
conv-id)...

EXEC CICS RECEIVE
    CONVID (CONV-ID)
    INTO (IN-BUFFER)
    FLENGTH (IN-LEN)
  .
  .
...(process data)...
  .
  .
EXEC CICS SEND
    FROM (OUT-BUFFER)
    FLENGTH (OUT-LENGTH)
    CONVID (CONV-ID)
    LAST WAIT

1
3

4

5

6
7

2



Dis t r ibuted  T ransact i on  P rocess ing  (DTP)  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-15

4. It is recommended you save the eibtrmid to a program variable. This value may be used to 
identify the specific conversation in your CICS/ESA APPC verbs.

5. The EXEC CICS RECEIVE command receives the idata buffer contents for processing.

6. The TOUPDTPS program processes data.

7. The EXEC CICS SEND command returns the OUT-BUFFER contents into the clients odata 
buffer. LAST indicates the conversation is finished. WAIT suspends processing until the data 
has successfully been received.



2-16 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

ATMI Client Asynchronous Request/Response to CICS/ESA 
DTP

1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpacall for SIMPDTP, which is advertised in the 
DM_REMOTE_SERVICES section of the DMCONFIG file.

ATMI CICS

toupclt
ATMI Service

toupsrv
{ .
  .
  .
cd=tpacall 
       (“SIMPDTP”,
       idata,
       ilen,
       0);
  .
  .
  .
tpgetreply (cd,
           odata,
           olen,
           0); 
}

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPDTP RNAME=DTPS FUNCTION=APPC CONV=N

User Transaction
DTPS

TOUPDTPS
PROGRAM
  .
  .
...(move EIBTRMID to 
CONV-ID)...

EXEC CICS RECEIVE
    CONVID (CONV-ID)
    INTO (IN-BUFFER)
    FLENGTH (IN-LEN)
  .
  .
...(process data)...
  .
  .
EXEC CICS SEND
    FROM (OUT-BUFFER)
    FLENGTH (OUT_LENGTH)
    CONVID (CONV-ID)
    LAST WAIT

EXEC CICS RETURN

1
3

4

5

6

2

7



Dis t r ibuted  T ransact i on  P rocess ing  (DTP)  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-17

3. User transaction DTPS starts TOUPDTPS program.

4. It is recommended you save the EIBTRMID to a program variable. This value may be used to 
identify the specific conversation in your CICS/ESA APPC verbs.

5. The EXEC CICS RECEIVE command receives the idata buffer contents for processing.

6. The TOUPDTPS program processes data.

7. The EXEC CICS SEND command returns the OUT-BUFFER contents into the clients 
tpgetreply odata buffer. LAST indicates the conversation is finished. WAIT suspends 
processing until the data has successfully been received.



2-18 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

ATMI Client Asynchronous Request/Response with No Reply 
to CICS/ESA DTP

1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpacall with a TPNOREPLY request for SIMPDTP, which is 
advertised in the DM_REMOTE_SERVICES section of DMCONFIG file.

3. User transaction DTPS starts TOUPDTPS program.

4. It is recommended you save the EIBTRMID to a program variable. This value may be used to 
identify the specific conversation on your CICS/ESA APPC verbs.

ATMI CICS

toupclt
ATMI Service

toupsrv
{ .
  .
  .
cd=tpacall 
       (“SIMPDTP”,
       idata,
       ilen,
       TPNOREPLY);
 }

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPDTP RNAME=DTPS FUNCTION=APPC CONV=N

User Transaction
DTPS

TOUPDTPS
PROGRAM
  .
  .
...(move EIBTRMID to 
CONV-ID)...

EXEC CICS RECEIVE
    CONVID (CONV-ID)
    INTO (IN-BUFFER)
    FLENGTH (IN-LEN)
  .
  .
...(process data)...
  .
  .
EXEC CICS RETURN

1
3

4

6

2

5



Dis t r ibuted  T ransact i on  P rocess ing  (DTP)  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-19

5. The EXEC CICS RECEIVE command receives the idata buffer contents for processing.

6. The TOUPDTPS program processes data.

ATMI Conversational Client to CICS/ESA DTP, Server Gets 
Control

ATMI CICS

toupclt
ATMI Service

toupsrv
{ .
  .
  .
cd=tpconnect 
       (“SIMPDTP”,
       idata,
       ilen,
       TPRECVONLY);
  .
  .
  .
tprecv (cd,
       odata,
       olen,
       0,
       revent);
}

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPDTP RNAME=DTPS FUNCTION=APPC CONV=Y

User Transaction
DTPS

TOUPDTPS
PROGRAM
  .
  .
...(move EIBTRMID to 
CONV-ID)...

EXEC CICS RECEIVE
    CONVID (CONV-ID)
    INTO (IN-BUFFER)
    FLENGTH (IN-LEN)
  .
  .
...(process data)...
  .
  .
EXEC CICS SEND
    FROM (OUT-BUFFER)
    FLENGTH (OUT-LEN)
    WAIT LAST 

EXEC CICS RETURN

1
3

4

5

6

2

  .

7



2-20 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpconnect for SIMPDTP, which is advertised in the 
DM_REMOTE_SERVICES section of DMCONFIG file. The TPRECVONLY flag indicates the 
server gets control and the first conversation verb toupsrv can issue is tprecv. Data is sent 
on the tpconnect in the idata buffer.

3. User transaction DTPS starts TOUPDTPS program.

4. It is recommended you save the EIBTRMID to a program variable. This value may be used to 
identify the specific conversation on your CICS/ESA APPC verbs.

5. The EXEC CICS RECEIVE command receives the idata buffer contents for processing.

6. The TOUPDTPS program processes data.

7. The EXEC CICS SEND command returns the OUT-BUFFER contents into the clients tprecv 
odata buffer. WAIT suspends processing in TOUPDTPS until the data has successfully been 
received. LAST indicates the conversation is finished and is communicated to the tprecv as 
TPEV_SVCSUCC. 



Dis t r ibuted  T ransact i on  P rocess ing  (DTP)  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-21

ATMI Conversational Client to CICS/ESA DTP, Client 
Sends/Receives Data

1. ATMI client invokes toupsrv service.

ATMI CICS

toupclt
ATMI Service

toupsrv
{ .
  .
  .
cd=tpconnect 
       (“SIMPDTP”,
       idata,
       ilen,
       TPSENDONLY);
  .
  .
  .
tpsend (cd,
        idata,
        ilen,
        0,
        TPRECVONLY);
tprecv (cd,
        odata,

 olen,
 o,
 revent);

tpreturn(); 
}

DMCONFIG File Entry
DM_REMOTE_SERVICES

SIMPDTP RNAME=DTPS FUNCTION=APPC CONV=Y

User Transaction

TOUPDTPS
PROGRAM
  .
  .
...(move eibtrmid to 
conv-id)...
EXEC CICS RECEIVE
  CONVID (CONV-ID)
  INTO (IN-BUFFER)
  FLENGTH (IN-LEN)
  .
  .
...(process data)...
  .
  .
EXEC CICS RECEIVE
  CONVID (CONV-ID)
  INTO (IN-BUFFER)
  FLENGTH (IN-LEN)
  .
  .
  .
...(process data)...
 
EXEC CICS SEND
  CONVID (CONV-ID) WAIT LAST
  FROM (OUT-BUFFER)
  FLENGTH (OUT-LENGTH)
EXEC CICS RETURN

1
3

5

2

 

7

8

6

4

DTPS

9



2-22 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

2. The toupsrv service issues tpconnect for SIMPDTP, which is advertised in the 
DM_REMOTE_SERVICES section of DMCONFIG file. The TPSENDONLY indicates the client 
retains control and continues to send data. Data is sent on the tpconnect in the idata buffer.

3. User transaction DTPS starts TOUPDTPS program.

4. It is recommended you save the EIBTRMID to a program variable. This value may be used to 
identify the specific conversation on your CICS/ESA APPC verbs.

5. The EXEC CICS RECEIVE command receives the tpconnect idata buffer contents for 
processing.

6. The TOUPDTPS program processes data.

7. The EXEC CICS RECEIVE command receives the tpsend idata contents into the server’s 
IN-BUFFER. 

8. The server processes the data.

9. The EXEC CICS SEND WAIT LAST returns OUT-BUFFER data in the tprecv odata buffer, 
along with notification that the conversation is over.



Dis t r ibuted  T ransact i on  P rocess ing  (DTP)  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-23

ATMI Conversational Client to CICS/ESA DTP, Client Grants 
Control

1. ATMI client invokes toupsrv service.

ATMI CICS

toupclt
ATMI Service

toupsrv
{ .
  .
cd=tpconnect 
       (“SIMPDTP”,
       NULL,
       0,
       TPRECVONLY);

tprecv (cd,
       odata
       olen
       0,
       revent)
  .
  .
tpsend (cd,
       idata,
       ilen,
       0,
       TPRECVONLY);
tprecv (cd,

dummy,
dumlen
0,
reevent);

tpreturn();
}

DMCONFIG File Entry
DM_REMOTE_SERVICES

SIMPDTP RNAME=DTPS FUNCTION=APPC CONV=Y

User Transaction
DTPS

TOUPDTPS
PROGRAM
  .
  .
...(move EIBTRMID to 
CONV-ID)...

EXEC CICS RECEIVE
    CONVID (CONV-ID)
    INTO (IN-BUFFER)
    FLENGTH (IN-LEN)
  .
  .

EXEC CICS SEND
    FROM (OUT-BUFFER)
    FLENGTH (OUT-LEN)
    INVITE

EXEC CICS RECEIVE
    CONVID (conv-id)
    INTO (IN-BUFFER)
    FLENGTH (IN-LEN)
  
EXEC CICS RETURN

1

3

5

2

 

6

4

7

8



2-24 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

2. The toupsrv service issues tpconnect for SIMPDTP, which is advertised in the 
DM_REMOTE_SERVICES section of DMCONFIG file. The TPRECVONLY indicates the server 
gets control and the first conversation verb toupsrv can issue is tprecv.

3. User transaction DTPS starts TOUPDTPS program.

4. It is recommended you save the EIBTRMID to a program variable. This value may be used to 
identify the specific conversation on your CICS/ESA APPC verbs.

5. The EXEC CICS RECEIVE command receives a send state indicator from the tpconnect 
TPRECVONLY flag. No data is received into the INBUFFER.

6. The EXEC CICS SEND command returns the OUT-BUFFER contents into the clients tprecv 
odata buffer. The EXEC CICS SEND command relinquishes control to the client by using the 
INVITE option. This is communicated to the tprecv as TPEV_SENDONLY.

7. The EXEC CICS RECEIVE command receives the tpsend idata contents into the server’s 
IN-BUFFER, along with notification that the server has relinquished control.

8. The EXEC CICS RETURN ends the conversation, communicated to the tprecv as 
TPEV_SVCSUCC.



Dis t r ibuted  T ransact i on  P rocess ing  (DTP)  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-25

CICS/ESA DTP to ATMI Conversational Server, Client Retains 
Control

1. User-entered H0TP invokes MIRRDTPC program.

2. The EXEC CICS ALLOCATE acquires a session to the remote Tuxedo domain.

ATMI CICS

MIRROR
ATMI Service

MIRROR 
     (TPSVCINFO* 
     tpsvcinfo)
{
  .
  .
  .
manipulate 
   tpsvcinfo->data
  .
  .
tprecv 
   (tpsvcinfo->cd,
   odata,
   olen,
   0,
   revent);
 
...(process data)...

tpreturn
   (TPSUCCESS,
   0,
   idata,
   ilen,
   0;
}

DMCONFIG File Entry
DM_LOCAL_SERVICES

MIRROR RNAME=MIRRORSERV CONV=Y

User Transaction
H0TP

MIRRDTPC
PROGRAM
  .
  .
EXEC CICS ALLOCATE
   SYSID (“BEA”)

...(move EIBRSRCE to 
CONV-ID)...

EXEC CICS 
 CONNECT PROCESS
   PROCNAME (“MIRRORSERV”)
   PROCLENGTH (10)
   SYNCLEVEL (0)    
EXEC CICS SEND
   FROM (OUT-BUFF)
   FLENGTH (OUT-LEN)
   CONVID (CONV-ID)
   WAIT
EXEC CICS SEND
   INVITE WAIT 
   FROM (OUT-BUFF)
   FLENGTH (OUT-LEN)
   CONVID (CONV-ID)
EXEC CICS RECV
   SET (PTR)
   FLENGTH (LENGTH)
EXEC CICS RETURN

7

1

 

2

3

6

4

8

9

5



2-26 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

3. Save the conversation ID returned in EIBRSRCE to a program variable. This value is used to 
identify the specific conversation in your CICS/ESA APPC verbs.

4. The EXEC CICS CONNECT PROCESS command initiates the advertised service mapped to 
MIRROR in the DM_LOCAL_SERVICES section of the DMCONFIG file.

5. Execute the EXEC CICS SEND command to send the contents of the OUT-BUFFER to the 
Tuxedo service in the tpsvcinfo->data buffer. The contents might be sent immediately.

6. The EXEC CICS SEND INVITE WAIT command sends out-buff contents into the tprecv 
odata buffer. The INVITE parameter relinquishes control of the conversation, seen as a 
TPEV_SENDONLY in the reevent parameter on the tprecv command. The data is sent 
immediately, along with the data from the previous SEND operation.

7. The Tuxedo service processes data.

8. The CICS/ESA server processes data.

9. The ATMI tpreturn data returns data to the EXEC CICS RECEIVE, along with notification 
that the conversation completed successfully.



Dis t r ibuted  T ransact i on  P rocess ing  (DTP)  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-27

CICS/ESA DTP to ATMI Conversational Server, Client 
Relinquishes Control

1. User-entered HOTP invokes MIRRDTPC program.

2. The EXEC CICS ALLOCATE acquires a session to the remote Tuxedo domain.

ATMI CICS

MIRROR
ATMI Service

MIRROR 
     (TPSVCINFO* 
     tpsvcinfo)
{
  .
  .
  .
tpsend 
   (tpsvcinfo->cd,
   idata,
   ilen,
   0,
   revent);
 
tpreturn();
 
}

DMCONFIG File Entry

DM_LOCAL_SERVICES

MIRROR RNAME=MIRRORSERV CONV=Y

User Transaction
HOTP

MIRRDTPC
PROGRAM
  .
  .
EXEC CICS ALLOCATE
   SYSID (“BEA”)

...(move EIBRSRCE to 
CONV-ID)...

EXEC CICS CONNECT PROCESS
   PROCNAME (“MIRRORSERV”)
   PROCLENGTH (10)
   SYNCLEVEL (0)

EXEC CICS SEND 
   INVITE WAIT
   
EXEC CICS RECEIVE
   CONVID (CONV-ID)
   INTO (IN-BUFFER)
   FLENGTH (IN-LEN)

EXEC CICS RETURN

1
 

2

3

4

5

6

7



2-28 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

3. Save the conversation ID returned in EIBRSRCE to a program variable. This value is used to 
identify the specific conversation in your CICS/ESA APPC verbs.

4. The EXEC CICS CONNECT PROCESS command initiates the advertised service mapped to 
MIRROR in the DM_LOCAL_SERVICES section of the DMCONFIG file.

5. The EXEC CICS SEND command relinquishes control with the INVITE WAIT option.

6. The EXEC CICS RECEIVE command receives the tpsend idata buffer contents into the 
IN-BUFFER.

7. The tpreturn request tears down the conversation and indicates on the EXEC CICS RECEIVE 
that the conversation is over.



Dis t r ibuted  T ransact i on  P rocess ing  (DTP)  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-29

Transactional ATMI Client Request/Response to CICS/ESA 
DTP

Note: This is not the recommended method of performing a DTP transactional service. Please 
refer to the transactional DPL using request/response for the recommended method.

ATMI CICS

toupclt
ATMI Service

toupsrv
{
 tpbegin(0,0) 
 tpcall (“SIMPDTP”,
       idata
       ilen
       odata,
       olen
       0)

 tpcommit();
  .
  .
  .
}

DMCONFIG File Entry
DM_REMOTE_SERVICES

SIMPDTP RNAME=DTPS FUNCTION=APPC CONV=N

User Transaction
DTPS

TOUPDTPS
PROGRAM
  .
  .
...(move EIBTRMID to 
CONV-ID)...

EXEC CICS RECEIVE
    CONVID (CONV-ID)
    INTO (IN-BUFFER)
    FLENGTH (IN-LEN)
  .
  .
...(process data)...
  .
  .
EXEC CICS SEND
    FROM (OUT-BUFFER)
    FLENGTH (OUT_LENGTH)
    CONVID (CONV-ID)
    CONFIRM INVITE

EXEC CICS RECEIVE
    INTO (DUMMY)
    INLENGTH (DUMMY-LEN)

EXEC CICS RETURN

1
4

5
6

7
8

3
2

9



2-30 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

1. ATMI client toupclt invokes toupsrv service. (Note that each tpcall made in the 
program must be bookended with a tpbegin and a tpcommit.)

2. The service issues tpbegin to start a transaction.

3. The toupsrv service issues tpcall for SIMPDTP, which is advertised in the 
DM_REMOTE_SERVICES section of the DMCONFIG file.

4. User transaction DTPS starts TOUPDTPS program.

5. Save the EIBTRMID to a program variable. This value is used to identify the specific 
conversation on your CICS/ESA APPC verbs.

6. The EXEC CICS RECEIVE command receives the idata buffer contents for processing.

7. The TOUPDTPS program processes data.

8. The EXEC CICS SEND command returns the OUT-BUUFER contents into the clients odata 
buffer. CONFIRM indicates the conversation is finished. INVITE allows the client to respond 
with a COMMIT request.

9. The toupsrv service issues tpcommit to end the transaction. The COMMIT is received on the 
EXEC CICS RECEIVE verb and the server issues EXEC CICS RETURN to commit the resources, 
terminate the transaction, and free the outstanding conversation.



Dis t r ibuted  T ransact i on  P rocess ing  (DTP)  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-31

Transactional ATMI Conversational Client to CICS/ESA DTP, 
Server Gets Control

1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpbegin to start the transaction.

ATMI CICS

toupclt
ATMI Service

toupsrv
{
tpbegin(0,0)
  .
  .
  .
cd=tpconnect 
       (“SIMPDTP”,
       idata,
       ilen,
       TPRECVONLY);
  .
  .
  .
tprecv (cd,
       odata,
       olen,
       0,
       revent);

tpcommit
}

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPDTP RNAME=DTPS FUNCTION=APPC CONV=Y

User Transaction
DTPS

TOUPDTPS
PROGRAM
  .
  .
...(move eibtrmid to 
conv-id)...

EXEC CICS RECEIVE
    CONVID (CONV-ID)
    INTO (IN-BUFFER)
    FLENGTH (IN-LEN)
  .
  .
...(process data)...
  .
  .
EXEC CICS SEND
    FROM (OUT-BUFFER)
    FLENGTH (OUT-LEN)
    CONFIRM INVITE

EXEC CICS RECEIVE
    INTO (DUMMY)
    INLENGTH (DUMMY-LEN)

EXEC CICS RETURN

1
4

5

6

7

3

.

2

8

9



2-32 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

3. The toupsrv service issues tpconnect for SIMPDTP, which is advertised in the 
DM_REMOTE_SERVICES section of DMCONFIG file. The TPRECVONLY indicates the server 
gains control and the first conversation verb toupsrv can issue is tprecv. Data is sent on the 
tpconnect in the idata buffer.

4. User transaction DTPS starts TOUPDTPS program.

5. It is recommended you save the EIBTRMID to a program variable. This value may be used to 
identify the specific conversation on your CICS/ESA APPC verbs.

6. The EXEC CICS RECEIVE command receives the idata buffer contents for processing.

7. The TOUPDTPS program processes data.

8. The EXEC CICS SEND command returns the OUT-BUFFER contents into the clients tprecv 
odata buffer. CONFIRM indicates that the conversation is finished and is communicated to the 
tprecv as TPEV_SVCSUCC. INVITE enables the client to respond with a COMMIT request.

9. The toupsrv service issues tpcommit to end the transaction. The COMMIT is received on the 
EXEC CICS RECEIVE verb and the server issues EXEC CICS RETURN to commit the resources, 
terminate the transaction, and free the outstanding conversation.



Dis t r ibuted  T ransact i on  P rocess ing  (DTP)  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-33

Transactional CICS/ESA DTP to ATMI Conversational Server, 
Host Client Relinquishes Control

1. User-entered H2TP invokes MIRRDTPC program.

2. The EXEC CICS ALLOCATE acquires a session to the remote Tuxedo domain.

ATMI CICS

MIRROR
ATMI Service

MIRROR 
     (TPSVCINFO* 
     tpsvcinfo)
{
  .
  .
  .
tpsend 
   (tpsvcinfo->cd,
   idata,
   ilen,
   0,
   revent);
 
tpreturn();
 
}

DMCONFIG File Entry

DM_LOCAL_SERVICES

MIRROR RNAME=MIRRORSERV CONV=Y

User Transaction
H2TP

MIRRDTPC
PROGRAM
 EXEC CICS ALLOCATE
   SYSID (“BEA”)
...(move EIBRSRCE to 
CONV-ID)...
EXEC CICS CONNECT PROCESS
   PROCNAME (“MIRRORSERV”)
   PROCLENGTH (10)
   SYNCLEVEL (2)    
EXEC CICS SEND 
   INVITE WAIT
EXEC CICS RECEIVE
   CONVID (CONV-ID)
   INTO (IN-BUFFER)
   FLENGTH (IN-LEN)
EXEC CICS ISSUE CONFIRMATION
   CONVID (CONV-ID)
EXEC CICS RECEIVE 
   CONVID (CONV-ID)
EXEC CICS SYNCPOINT

EXEC CICS FREE
   CONVID (CONV-ID)
EXEC CICS RETURN

1
 

2
3

4

5
6

7

8

9



2-34 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

3. Save the conversation ID returned in EIBRSRCE to a program variable. This value is used to 
identify the specific conversation on your CICS/ESA APPC verbs.

4. The EXEC CICS CONNECT PROCESS command initiates the advertised service mapped to 
MIRRDTPS. The SYNCLEVEL(2) parameter indicates the inclusion of the ATMI service in the 
CICS/ESA transaction.

5. The EXEC CICS SEND INVITE WAIT command causes the client to immediately relinquish 
control to the Tuxedo server. This is communicated to the service in TPSVCINFO as 
TPSENDONLY. No data is sent to the server on this request.

6. The EXEC CICS RECEIVE command receives the tpsend idata buffer contents into the 
IN-BUFFER. The EXEC CICS RECEIVE command receives a confirm request indicating the 
conversation should be terminated.

7. The EXEC CICS ISSUE CONFIRMATION verb responds positively to the confirm request.

8. The EXEC CICS SYNCPOINT is an explicit commit request to end the conversation and update 
all resources in the transaction. 

9. The EXEC CICS FREE verb explicitly frees the outstanding conversation.

CPI-C Programming Examples
The examples in this section show the protocol exchanges between the local ATMI platform and 
remote host application program. The type of ATMI service request determines the nature of the 
client/server communication model. For requests initiated by the host application, the 
configuration information for the local service determines the protocol exchanges on the 
conversation.

Although it is most suited for the DPL environment, the tpcall is usually used in the DPL 
environment but can also be used for a request/response to an APPC server.

The examples in this section represent a few of the many programming scenarios available for 
using CPI-C and ATMI service invocations. These examples employ the most natural and 
efficient approaches.



CPI-C  Programming  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-35

ATMI Client Request/Response to Host CPI-C

1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpcall for SIMPCPIC, which is advertised in the 
DM_REMOTE_SERVICES section of the DMCONFIG file.

ATMI HOST

toupclt
ATMI Service

toupsrv()
{
tpcall ("SIMPCPIC",
         idata,
         ilen,
         odata,
         olen,
         0);
 }

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPCPIC RNAME=TPNCPIC FUNCTION=APPC CONV=N

Remote Service
tpname = TPNCPIC

TOUPCPIC
PROGRAM
main()
{
cmaccp(convid,rcode);
cmrcv(convid,ibuffer,..);

...(process data)...

cmsst(..);CM_SEND_AND_DEALLOCATE

cmsend(convid, obuffer);
  .
  .
  .
}

  2

5

8

1

4

6
7

3



2-36 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

3. The remote service with the tpname TPNCPIC invokes TOUPCPIC program. 

4. The server accepts the conversation with the cmaccp call. The conversation id returned on the 
request in convid is used for all other requests on this conversation. 

5. The cmrcv request receives the idata buffer contents for processing

6. The TOUPCPIC program processes data.

7. The cmsst request prepares the next send request by setting the send type to 
CM_SEND_AND_DEALLOCATE.

8. The cmsend request returns the obuffer contents into the client odata buffer. The buffer is 
flushed, and the conversation ended.   



CPI-C  Programming  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-37

ATMI Client Asynchronous Request/Response to Host CPI-C

1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpacall for SIMPCPIC, which is advertised in the 
DM_REMOTE_SERVICES section of the DMCONFIG file.

3. The remote service with tpname TPNCPIC invokes TOUPCPIC program. 

ATMI HOST

toupclt
ATMI Service

toupsrv()
{
cd=tpacall ("SIMPCPIC",
           idata,
           ilen,
           0);

tpgetreply(cd,
          odata,
          olen,
          0);
 }

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPCPIC RNAME=TPNCPIC FUNCTION=APPC CONV=N

Remote Service
tpname = TPNCPIC

TOUPCPIC
PROGRAM
main()
{
cmaccp(convid,rcode);
cmrcv(convid,ibuffer,..);

...(process data)...

cmsend(convid, 
       obuffer,...); 

cmdeal(convid, rcode);
  .
  .
  .
}
  

  2

5

3

8

1

4

6
7



2-38 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

4. The server accepts the conversation with the cmaccp call. The conversation id returned on the 
request in convid is used for all other requests on this conversation.

5. The cmrcv request receives the idata buffer contents for processing.

6. The TOUPCPIC program processes data.

7. The cmsend command returns the obuffer contents into the client tpgetreply odata 
buffer. The data may not be immediately sent to the tpgetreply odata buffer on this 
request.

8. The cmdeal flushes the data to the client, and indicates the conversation is finished. 



CPI-C  Programming  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-39

ATMI Client Asynchronous Request/Response to Host CPI-C 
with No Reply

1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpacall with a TPNOREPLY request for SIMPCPIC, which is 
advertised in the DM_REMOTE_SERVICES section of the DMCONFIG file. 

ATMI HOST

toupsrv
ATMI Service

toupsrv()
{
tpacall ("SIMPCPIC",
        idata,
        ilen,
        TPNOREPLY);

 .
 .
 .
}

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPCPIC RNAME=TPNCPIC FUNCTION=APPC CONV=N

Remote Service
tpname = TPNCPIC

TOUPCPIC
PROGRAM
main()
{
cmaccp(convid,rcode);
cmrcv(convid,ibuffer,..);

...(process data)...
 
}
  

 1

3

6

4

2

5



2-40 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

3. The remote service with tpname TPNCPIC invokes TOUPCPIC program.

4. The server accepts the conversation with the cmaccp call. The conversation id returned on the 
request in convid is used for all other requests on this conversation.

5. The cmrcv request receives the idata buffer contents for processing, and notification that 
the conversation has ended with the return code value of CM_DEALLOCATED_NORMAL.

6. The TOUPCPIC program processes data. 



CPI-C  Programming  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-41

ATMI Conversational Client to Host CPI-C, Server Gets 
Control 

1. ATMI client invokes toupsrv service.

ATMI HOST

toupclt
ATMI Service

toupsrv()
{
cd=tpconnect 
         ("SIMPCPIC",
         idata,
         ilen,
         TPRECVONLY);

tprecv(cd,
      odata,
      olen,
      0
      revent);
 }

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPCPIC RNAME=TPNCPIC FUNCTION=APPC CONV=Y

Remote Service
tpname = TPNCPIC

TOUPCPIC
PROGRAM
main()
{
cmaccp(convid,rcode);

cmrcv(convid,ibuffer,..);

...(process data)...

cmsst(.);CM_SEND_AND_FLUSH

cmsend(convid, obuffer);
cmdeal(convid, rcode);
  .
  .
  .
}
  

 1

9

7

6

4

2

5

8

3



2-42 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

2. The toupsrv service issues tpconnect for SIMPCPIC, which is advertised in the 
DM_REMOTE_SERVICES section of the DMCONFIG file. The TPRECVONLY indicates the 
server gains control and the first conversation verb the toupsrv can issue is tprecv. Data is 
sent on the tpconnect in the idata buffer.

3. The remote service with tpname TPNCPIC invokes TOUPCPIC program.

4. The server accepts the conversation with the cmaccp call. The conversation ID returned on 
the request in convid is used for all other requests on this conversation.

5. The cmrcv request receives the idata buffer contents for processing.

6. The TOUPCPIC program processes data.

7. The cmsst request prepares the next send request by setting the send type to 
CM_SEND_AND_FLUSH.

8. The cmsend command returns the obuffer contents into the client tprecv odata buffer. 
The data is immediately flushed on the send request.

9. The cmdeal request ends the conversation. 



CPI-C  Programming  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-43

ATMI Conversational Client To Host CPI-C, Client Retains 
Control

1. ATMI client invokes toupsrv service. 

ATMI HOST

toupclt
ATMI Service

toupsrv()
{
cd=tpconnect 
       ("SIMPCPIC",
       0,
       0,
       TPSENDONLY);

tpsend(cd,
      odata,
      olen,
      0
      TPRECVONLY);

tprecv (cd,
      idata,
      iler
      0,
      revent);
   .
   .
   .
}

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPCPIC RNAME=TPNCPIC FUNCTION=APPC CONV=Y

Remote Service
tpname = TPNCPIC

TOUPCPIC
PROGRAM
main()
{
cmaccp(convid,rcode);

cmrcv(convid,ibuffer,..);

...(process data)...
  .
  .
  .
cmsend (convid,
       obuffer...)
cmdeal  (convid, 
       rcode);
}
  

 1

6

4

32

5

7



2-44 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

2. The toupsrv service issues tpconnect for SIMPCPIC, which is advertised in the 
DM_REMOTE_SERVICES section of the DMCONFIG file. The TPSENDONLY indicates 
the client retains control and continues to send data. No data is sent with the tpconnect.

3. The remote service with tpname TPNCPIC invokes TOUPCPIC program.

4. The server accepts the conversation with the cmaccp call. The conversation id returned on the 
request in convid is used for all other requests on this conversation.

5. The cmrcv request receives the tpsend idata buffer contents for processing. The 
conversation is relinquished with the TPRECVONLY flag. 

6. The TOUPCPIC program processes data. 

7. The cmsend returns a response in the tprecv idata buffer, along with notification from the 
cmdeal command that the conversation is over. The cmdeal flushes the data buffer and the 
tprecv reevent parameter is set to TPEV_SUCCESS. 



CPI-C  Programming  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-45

ATMI Conversational Client to Host CPI-C, Client 
Grants/gets Control

1. ATMI client invokes toupsrv service.

ATMI HOST

toupclt
ATMI Service

toupsrv()
{
cd=tpconnect 
      ("SIMPCPIC",
      0,
      0,
      TPRECVONLY);
tprecv(cd,
      odata,
      olen,
      0
      revent);
tprecv(cd,
      odata,
      olen,
      0
      revent);
tpsend(cd,
      idata,
      ilen,
      0
      TPRECVONLY);
tprecv(cd,

dumptr,
dumplen,
0,
revent);

}

DMCONFIG File Entry
DM_REMOTE_SERVICES

SIMPCPIC RNAME=TPNCPIC FUNCTION=APPC CONV=Y

Remote Service
tpname = TPNCPIC

TOUPCPIC
PROGRAM
main()
{
cmaccp (convid,rcode);
cmrcv(convid,ibuffer,..);

cmsend(convid,
   obuffer,...);

cmsend(convid,
   obuffer,...);

cmptr(convid,rcode);

cmrcv(convid, ibuffer, 
...);
  .
  .
  .
cmdeal (convid,

rcode);
}

 1

8

4

3
2

5
6

7

9

10



2-46 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

2. The toupsrv service issues tpconnect for SIMPCPIC, which is advertised in the 
DM_REMOTE_SERVICES section of the DMCONFIG file. The TPRECVONLY indicates 
the server gains control and the first conversation verb the toupsrv can issue is tprecv. 

3. The remote service with tpname TPNCPIC invokes TOUPCPIC program.

4. The server accepts the conversation with the cmaccp request. The conversation id returned on 
the request in convid is used for all other requests on this conversation.

5. The cmrcv requests receives the indicator that control has been granted to the server. 

6. The cmsend request returns its obuffer contents into the first client tprecv odata buffer. 
The data may not immediately be sent.

7. The cmsend request returns its obuffer contents into the second client tprecv odata 
buffer. The data may not immediately be sent.

8. The cmptr request flushes the data to the client, and grants control to the client.

9. The cmrcv request receives the tpsend idata buffer contents for processing. The 
TPRECVONLY is passed to the tprecv, relinquishing control of the conversation.

10. The cmdeal indicates a successful completion of the conversation to the tprecv; no data is 
passed.



CPI-C  Programming  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-47

Host CPI-C to ATMI Asynchronous Request/Response Server 
with No Reply

1. The CPI-C application program MIRRCPIC is invoked using environment start-up 
specifications.

ATMI HOST

MIRROR
ATMI Service

MIRROR()
 (TPSVCINFO* tpsvcinfo)
{
tpsvcinfo->flags ==
 TPNOREPLY

manipulate
 tpsvcinfo->data

tpreturn(TPSUCCESS, 0, 
 NULL, 0, 0);
}

DMCONFIG File Entry

DM_LOCAL_SERVICES

MIRROR RNAME=MIRRORSERV CONV=N

Environment

MIRRCPIC
PROGRAM
main()
{
cminit(convid,"MIRRSIDE",
      rcode);

cmallc(convid,rcode);

cmsend(convid, obufer,
   ...);
cmdeal(convid, rcode);
  .
  .
  .
}
  

 

6
3

2

1

4
5



2-48 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

2. The MIRRCPIC client requests cminit to establish conversation attributes and receive a 
conversation ID that will be used on all other requests on this conversation. The remote server 
and service are named in the CPI-C side information entry MIRRSIDE.

3. The cmallc request initiates the advertised service mapped to MIRRORSERV in the 
DM_LOCAL_SERVICES section of the DMCONFIG file.

4. The cmsend request sends the contents of obuffer to the ATMI service in the 
tpsvcinfo->data buffer. 

5. The cmdeal request flushes the data, and indicates the conversation is finished with the 
TPNOREPLY in the tpsvcinfo->flag field. 

6. The service completes with the tpreturn. 



CPI-C  Programming  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-49

Host CPI-C to ATMI Server Request/Response

1. The CPI-C application program MIRRCPIC is invoked using environment start-up 
specifications.

ATMI HOST

MIRROR
ATMI Service

MIRROR()
 (TPSVCINFO* tpsvcinfo)
{
manipulate
 tpsvcinfo->data

tpreturn(TPSUCCESS, 0, 
 odata, 
 olen, 
 0);
}

DMCONFIG File Entry

DM_LOCAL_SERVICES

MIRROR RNAME=MIRRORSERV CONV=N

Environment

MIRRCPIC
PROGRAM
main()
{
cminit(convid,"MIRRSIDE",
  rcode);

cmallc(convid,rcode);

cmsst(...)CM_SEND_PREP_TO_RECEIVE

cmsend(convid, obufer,
   ...);
cmrcv(convid, ibuffer...);
  }
  

 
1

4

3

2

5

6



2-50 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

2. The MIRRCPIC client requests cminit to establish conversation attributes and receive a 
conversation id that will be used on all other requests on this conversation. The remote server 
and service are named in the CPI-C side information entry MIRRSIDE.

3. The cmallc request initiates the advertised service mapped to MIRRORSERV in the 
DM_LOCAL_SERVICES section of the DMCONFIG file.

4. The cmsst request prepares the next send request by setting the send type to 
CM_SEND_AND_PREP_TO_RECEIVE. 

5. The cmsend request immediately sends the contents of obuffer to the ATMI service in the 
tpsvcinfo->data buffer and relinquishes control to the mirrorserv service. 

6. The cmrcv request receives the contents of the odata returned on the ATMI tpreturn 
service, and notification that the conversation has ended with the return code value of 
CM_DEALLOCATED_NORMAL. 



CPI-C  Programming  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-51

Host CPI-C to ATMI Conversational Service, Client Retains 
Control

1. The CPI-C application program MIRRCPIC is invoked using environment start-up 
specifications.

ATMI HOST

MIRROR
ATMI Service

MIRROR()
 (TPSVCINFO* tpsvcinfo)
{
tpsvcinfo->flags ==
 TPCONV+TPNOREPLY+ 
 TPRECVONLY

manipulate
 tpsvcinfo->data

tpreturn(TPSUCCESS, 0, 
 NULL, 0, 0);

}

DMCONFIG File Entry

DM_LOCAL_SERVICES

MIRROR RNAME=MIRRORSERV CONV=N

Environment

MIRRCPIC
PROGRAM
main()
{
cminit(convid,"MIRRSIDE",
  rcode);

cmallc(convid,rcode);

cmsend(convid, obuffer,
   ...);
cmdeal(convid, rcode);

}
  

 
1

5

3

2

4



2-52 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

2. The MIRRCPIC client requests cminit to establish conversation attributes and receive a 
conversation id that will be used on all other requests on this conversation. The remote server 
and service are named in the CPI-C side information entry MIRRSIDE.

3. The cmallc request initiates the advertised service mapped to MIRRORSERV in the 
DM_LOCAL_SERVICES section of the DMCONFIG file.

4. The cmsend request sends the contents of obuffer to the ATMI service in the 
tpsvcinfo->data buffer. 

5. The cmdeal request flushes the data and ends the conversation, as indicated by TPNOREPLY 
in the tpsvcinfo->flag field. 



CPI-C  Programming  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-53

Host CPI-C ATMI to Conversational Service, Client Grants 
Control

1. The CPI-C application program MIRRCPIC is invoked using environment start-up 
specifications.

ATMI HOST

MIRROR
ATMI Service

MIRROR()
 (TPSVCINFO* tpsvcinfo)
{
tpsvcinfo->flags ==
   TPCONV+TPSENDONLY

...manipulate
   tpsvcinfo->data...

tpsend (tpsvcinfo->cd,
       odata,
       olen,
       0,
       revent);

tpreturn(TPSUCCESS, 0, 
        NULL, 0, 0);

}

DMCONFIG File Entry

DM_LOCAL_SERVICES

MIRROR RNAME=MIRRORSERV CONV=Y

Environment

MIRRCPIC
PROGRAM
main()
{
cminit(convid,"MIRRSIDE",
  rcode);

cmallc(convid,rcode);

cmptr(convid,rcode);

cmrcv(convid, ibuffer,..);
 .
 .
 .
}
  

 

3

2

4

5

1



2-54 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

2. The MIRRCPIC client requests cminit to establish conversation attributes and receive a 
conversation ID that will be used on all other requests on this conversation. The remote server 
and service are named in the CPI-C side information entry MIRRSIDE.

3. The cmallc request initiates the advertised service mapped to MIRROR in the 
DM_LOCAL_SERVICES section of the DMCONFIG file.

4. The cmptr relinquishes control of the conversation to the ATMI service indicated as 
TPSENDONLY in the tpsvcinfo->flag field. No data is passed in the tpsvcinfo->data 
field.

5. The cmrcv receives the contents of the tpsend odata into the ibuffer. The end of the 
conversation is passed from the tpreturn service as return code value 
CM_DEALLOCATED_NORMAL.



CPI-C  Programming  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-55

Transactional ATMI Client Request/Response to Host CPI-C

1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpbegin to start the transaction.

ATMI HOST

toupclt
ATMI Service

toupsrv
{
tpbegin(0,0);

tpcall("SIMPCPIC",
       idata,
       ilen,
       odata,
       olen,
       0);
tpcommit;
}

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPCPIC RNAME=TPNCPIC FUNCTION=APPC CONV=N

Remote Service
tpname = TPNCPIC

TOUPCPIC
Program
main()
{
cmaccp(convid,rcode)

cmrcv(convid,ibuffer...)

cmsst(convid,
 CM_SEND_AND_PREP_TO_RECEIVE,..)
cmsptr(convid,
 CM_PREP_TO_RECEIVE_CONFIRM,...)

cmsend(convid,obuffer...)

cmrcv(convid,...)
srrcmit(rrcode);

1

8

7

5

2
3 4

6

9



2-56 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

3. The toupsrv service issues tpcall for SIMPCPIC, which is advertised in the 
DM_REMOTE_SERVICES section of the DMCONFIG file. Data is sent from the idata 
buffer on the tpconnect.

4. The remote service with tpname TPNCPIC invokes TOUPCPIC program.

5. The server accepts the conversation with the cmaccp call. The conversation ID returned on 
the request in convid is used for all other requests during this conversation.

6. The cmrcv request receives the idata buffer contents for processing.

7. The cmsst and cmsptr prepare the next send request by setting the send type to 
CM_SEND_AND_PREP_TO_RECEIVE and by setting the prepare-to-receive type to 
CM_PREP_TO_RECEIVE_CONFIRM.

8. The cmsend request immediately returns the obuffer contents into the client’s odata buffer. 
The server relinquishes control to the server and indicates the end of the conversation with the 
CONFIRM request.

9. The toupsrv issues the tpcommit to successfully complete the transaction and commit all 
updated resources. The cmrcv request receives the commit request, and responds explicitly to 
the request with the SAA Resource/Recovery commit call srrcmit. The conversation is 
ended after the successful commit exchange.



CPI-C  Programming  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-57

Transactional ATMI Conversational Client to Host CPI-C, 
Server Gets Control

1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpbegin to start the transaction.

ATMI HOST

toupclt
ATMI Service

toupsrv
{
tpbegin(0,0);

cd=tpconnect("SIMPCPIC",
             idata,
             ilen,
             TPRECVONLY);
tprecv(cd,
       odata
       olen,
       0,
       reevent);
tpcommit();

}

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPCPIC RNAME=TPNCPIC FUNCTION=APPC CONV=Y

Remote Service
tpname = TPNCPIC

TOUPCPIC
Program
main()
{
cmaccp (convid,rcode);
cmrecv(convid, ibuffer...)

...(process data)...

cmsend(convid, obuffer...)
cmsptr(convid,
 CM_PREP_TO_RECEIVE_CONFIRM);

cmptr(convid,...);

cmrcv(convid, ...)
scrrcmit(rrcode);
}

  1

9

7

5
2

3 4

6

8

10



2-58 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

3. The toupsrv service issues a tpconnect service request for SIMPCPIC, which is advertised 
in the DM_REMOTE_SERVICES section of the DMCONFIG file. Data is sent in the idata 
buffer on the tpconnect.

4. The remote service with tpname TPNCPIC invokes TOUPCPIC program.

5. The server accepts the conversation with the cmaccp call. The conversation ID returned on 
the request in convid is used for all other requests during this conversation.

6. The cmrcv request receives the idata buffer contents sent on the tpconnect for processing.

7. The TOUPCPIC program processes the data.

8. The cmsend returns the obuffer contents into the client’s tprecv odata buffer. The buffer 
contents may not be sent immediately.

9. The cmsptr prepares the prepare-to-receive request with CM_PREP_TO_RECEIVE_CONFIRM. 
The cmptr request with CONFIRM indicates that the conversation is finished and is 
communicated to the tprecv as TPEV_SVCSUCC. 

10. The toupsrv issues the tpcommit to successfully complete the transaction and commit all 
updated resources. The cmrcv request receives the commit request and responds explicitly to 
the request with the SAA Resource/Recovery commit call srrcmit. The conversation is 
ended after the successful commit exchange.



CPI-C  Programming  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-59

Transactional Host CPI-C to ATMI Conversational Server, 
Client Grants Control

1. The CPI-C application program MIRRCPIC is invoked using environment start-up 
specifications.

ATMI HOST

MIRROR
ATMI Service

MIRROR 
 (TPSVCINFO* tpsvcinfo);
{
tpsend(tpsvcinfo->cd,
       odata,
       olen,
       0,
       reevent);
tpreturn (TPSUCCESS,
         (chart)NULL,
          0,
          0);
}

DMCONFIG File Entry

DM_LOCAL_SERVICES

MIRROR RNAME=MIRRORSERV CONV=Y

Environment

MIRRCPIC
Program
main()
{
cminit(convid,
       "MIRRSIDE",
       rcode);
cmssl(convid,
 CM_SYNCPOINT,..);
cmallc(convid,rcode)

cmsptr(convid,
 CM_PREP_TO_RECEIVE_FLUSH,..);
cmptr(convid,rcode);
cmrcv(convid,
      ibuffer...);
cmcfmd(confid,rcode)

cmdeal(convid,rcode)

srrcmit(rrcode);
}

 

8

5

4

3

2

1

6

7



2-60 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

2. The MIRRCPIC client requests cminit to establish conversation attributes and receive a 
conversation ID that will be used on all other requests on this conversation. The remote server 
and service are named in the CPI-C side information entry MIRRSIDE.

3. The cmssl sets the conversation attributes to sync-level 2 with CM_SYNCPOINT. This allows 
the ATMI service to participate in the transaction.

4. The cmallc request initiates the advertised service mapped to MIRRORSERV in the 
DM_LOCAL_SERVICES section of the DMCONFIG file.

5. The MIRRCPIC causes the client to relinquish control to the ATMI server with a 
prepare-to-receive request. The cmsptr sets the prepare-to-receive type to 
CM_RECEIVE_AND_FLUSH. The cmptr request immediately relinquishes control.

6. The MIRROR service sends the data contents of the odata buffer to the cmrcv ibuffer. The 
cmrcv receives a confirm request from the server indicating the conversation should be 
terminated. 

7. The client replies positively to the confirm request with cmcfmd.

8. The MIRRCPIC client prepares to free the conversation with the cmdeal request. The 
conversation in CM_DEALLOCATE_SYNC_LEVEL commits all updated resources in the 
transaction and waits for the SAA resource recovery verb, srrcmit. After the commit 
sequence has completed, the conversation terminates.



CICS/ESA  Mi r ro r  T ransact ion  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-61

CICS/ESA Mirror Transaction Examples

Implicit Attachment of TRANSID (Outbound Requests Only)
Figure 2-1  Implicit Attachment of TRANSID (Outbound Requests Only)

The following list describes the process for implicit attachment as illustrated in Figure 2-1:

1. The ATMI service makes a request to the service TRN1DATA, which is advertised as a remote 
service in the DMCONFIG file. It is a DPL request to a program named SVC1 in the CICS/ESA 
region.

2. The first four characters of the remote service tag name (TRN1) are extracted and passed to the 
CICS/ESA region as the invoking TRANSID. No CICS/ESA resource definition for the 
TRANSID is required in the region.

CICS/ESA
Region

CSMI

TRN1

SVC1

DFHMIRS
EXEC CICS LINK
PROG(SVC1)...

RNAME=SVC1
FUNCTION=DPL

ATMI Platform
Local Domain

tpcall(“TRN1DATA”,...)

TRN1DATA

DMCONFIG
File 

DM_REMOTE_SERVICES:

Tuxedo
Mainframe

Adapter



2-62 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

3. The mirror transaction CSMI is attached in the CICS/ESA region, starting the mirror program 
DFHMIRS. The program performs the DTP requests for the service.

4. The mirror program now attaches the invoking TRANSID (TRN1) and then invokes the 
application service program SVC1.The program can interrogate the EIBTRNID field to find this 
value. 

Explicit Attachment of TRANSID for Outbound Requests
Figure 2-2  Explicit Attachment of TRANSID for Outbound Requests

The following list describes the process for explicit attachment as illustrated in Figure 2-2:

1. The ATMI program makes a service request for SERVICE1, which is advertised as a remote 
service in the DMCONFIG file. The FUNCTION option indicates the remote service is invoked as 
a DPL.

CICS/ESA
Region

TRN1

SVC1

DFHMIRS
EXEC CICS LINK
PROG(SVC1)...

RNAME=TRN1:SERVICE1
FUNCTION=DPL

ATMI Platform
Local Domain

tpcall(“SERVICE1”,...)

SERVICE1

DMCONFIG
File 

DM_REMOTE_SERVICES:

EIBTRNID=TRN1

Tuxedo
Mainframe

Adapter



CICS/ESA  Mi r ro r  T ransact ion  Examples

BEA Tuxedo Mainframe Adapter for SNA Reference Guide 2-63

2. The request extracts TRN1 as an alternate mirror transaction ID for the remote region, along 
with the remote program name SERVICE1.

3. The TRN1 ID is attached instead of the default mirror transaction, CSMI or CVMI. The TRN1 ID 
must be defined as a transaction resource in the remote region and must point to the mirror 
transaction program DFHMIRS.

4. The mirror program DFMMIRS calls the server application program, passing the TRN1 ID in the 
EIBTRNID field.

Explicit Attachment of TRANSID for Inbound Requests
Figure 2-3  Explicit Attachment of TRANSID for Inbound Requests

The following list describes the process for implicit attachment as illustrated in Figure 2-3:

CICS/ESA
Region

EXEC CICS LINK

RNAME=TRN1:INSVC1

ATMI Platform
Local Domain

SERVICE1(tpsvcinfo...)

SERVICE1

DMCONFIG
File 

DM_LOCAL_SERVICES:

PROGRAM(“INSVC1”)
SYSID(“AIX1”)

TRANSID(“TRN1”)

Tuxedo
Mainframe

Adapter



2-64 BEA Tuxedo Mainframe Adapter for SNA Reference Guide 

1. The CICS/ESA program makes a request to INSVC1, which is a local ATMI service. The 
SYSID and PROGRAM values in the request identify the local system and the name of the local 
service. The TRANSID option indicates the mirror transaction to be initiated.

2. The PROGRAM and mirror TRANSID are extracted from the DPL request and are used to find an 
exact RNAME match in the DM_LOCAL_SERVICES section of the DMCONFIG file.

3. The service SERVICE1, which is advertised locally in the ATMI platform application, is 
initiated.

Additional Information
Additional information about CICS/ESA Intersystem Communications may be found in the 
following IBM publications:

CICS/ESA Intercommunication Guide, IBM publication No. SC33-0657

CICS/ESA Distributed Transaction Programming Guide, IBM publication No. 
SC33-00783

CICS/ESA Recovery and Restart Guide, IBM publication No. SC33-0658



BEA Tuxedo Mainframe Adapter for SNA Reference Guide Index-1

Index

A
ATMI Function Calls 1-1

C
CICS/ESA Intersystem Communications

additional information 2-64
CICS/ESA Mirror Transaction Examples 2-61
CPI-C

function mapping 1-1
CPI-C Programming Examples 2-34
CPI-C Verbs

parameter mapping 1-1

D
Distributed Program Link

programming example 2-1
Distributed Transaction Processing (DTP) 
Examples 2-13

E
EIBTRNID field 2-62

F
Function Calls

ATMI 1-1

P
Programming Example

ATMI Client Asynchronous 
Request/Response to CICS/ESA 
DPL 2-3

ATMI Client Asynchronous 
Request/Response to CICS/ESA 
DTP 2-16

ATMI Client Asynchronous 
Request/Response to Host CPI-C 
2-37

ATMI Client Asynchronous 
Request/Response to Host CPI-C 
with No Reply 2-39

ATMI Client Asynchronous 
Request/Response with No Reply 
to CICS/ESA DPL 2-4

ATMI Client Asynchronous 
Request/Response with No Reply 
to CICS/ESA DTP 2-18

ATMI Client Request/Response to 
CICS/ESA DPL 2-2

ATMI Client Request/Response to 
CICS/ESA DTP 2-14

ATMI Client Request/Response to Host 
CPI-C 2-35

ATMI Conversational Client to CICS/ESA 
DTP, Client Grants Control 2-23

ATMI Conversational Client to CICS/ESA 
DTP, Client Sends/Receives Data 
2-21

ATMI Conversational Client to CICS/ESA 
DTP, Server Gets Control 2-19

ATMI Conversational Client to Host CPI-C, 
Client Grants/gets Control 2-45



Index-2 BEA Tuxedo Mainframe Adapter for SNA Reference Guide

ATMI Conversational Client To Host 
CPI-C, Client Retains Control 2-43

ATMI Conversational Client to Host CPI-C, 
Server Gets Control 2-41

CICS/ESA DPL to ATMI Request/Response 
Server 2-5

CICS/ESA DTP to ATMI Conversational 
Server, Client Relinquishes Control 
2-27

CICS/ESA DTP to ATMI Conversational 
Server, Client Retains Control 2-25

CICS/ESA Mirror Transaction 2-61
CPI-C 2-34
Distributed Program Link 2-1
Distributed Transaction Processing 2-13
Host CPI-C ATMI to Conversational 

Service, Client Grants Control 2-53
Host CPI-C to ATMI Asynchronous 

Request/Response Server with No 
Reply 2-47

Host CPI-C to ATMI Conversational 
Service, Client Retains Control 
2-51

Host CPI-C to ATMI Server 
Request/Response 2-49

Transactional ATMI Client Multiple 
Requests/Responses to CICS/ESA 
DPL 2-10

Transactional ATMI Client 
Request/Response to CICS/ESA 
DTP 2-29

Transactional ATMI Client 
Request/Response to Host CPI-C 
2-55

Transactional ATMI Conversational Client 
to CICS/ESA DTP, Server Gets 
Control 2-31

Transactional ATMI Conversational Client 
to Host CPI-C, Server Gets Control 
2-57

Transactional CICS/ESA DPL to ATMI 
Request/Response Server 2-12

Transactional CICS/ESA DTP to ATMI 
Conversational Server, Host Client 
Relinquishes Control 2-33

T
tpacall 1-2
tpcall 1-2
tpcancel 1-6
tpconnect 1-6
tpdiscon 1-9
tpforward 1-9
tpgetrply 1-3
tprecv 1-8
tpreturn 1-5
tpsend 1-7
tpservice 1-4


