‘.."‘

o 7
2 bea
L/

BEATSAM

Plug-in Programming
Guide

Version 1.1
Document Released: September 28, 2007

Contents

1. BEA TSAM Agent Plug-in Programming Introduction

OVBIVIBW . . e e ettt e e e e e 1-1
2. BEATSAM Agent Data Collection Framework
OVBIVIBW . ottt et e e e 2-1
3. Creating a BEA TSAM Agent Custom Plug-in

OV BIVIBW . ot ettt e e e 3-1

Tuxedo Plug-in Framework Concepts. 3-1

Interface 3-2

Implementation. 3-2

Plug-in Register/Un-register/Modifications 3-4

Developing a BEA TSAM Agent Plug-in. o e 3-4

Create Plug-in Source Code.ot 3-4

Buildthe Plug-in e 3-8

Register the PIug-in 3-8

Enable BEA TSAM MONItOringoou it e 3-9

Run a Call and Check the Standard OQutput. 3-9

BEA TSAM Agent Plug-in Interface i 3-10

Version and Interface Identifier 3-10

Function Table 3-13

Field Map Operation Facility. e 3-14

Other Help Header Files 3-15

BEA TSAM Programming Guide iii

BEA TSAM Agent Plug-in Implementation 3-15

Define “perf_mon_1" in the “e_perf_mon.h” Function Table. 3-15
Define the Plug-in Information Variable 3-16
Write the Plug-in Entry Routine o 3-17
Writing Concrete Plug-in Implementations 3-18
Call Path Monitoring Plug-in Routine. 3-18
A Basic Implementation. i 3-18
Understanding Current Monitoring Points. 3-18
Check Commonly Used Metrics., 3-21
Change Required Fields i 3-24
Generate Call Path Correlation ID i, 3-25
Service Monitoring Plug-inRoutine 3-26
A Basic Implementation. i 3-26
Check Commonly Used Metrics. 3-27
System Server Monitoring Plug-in Routine. 3-28
A Basic Implementation. i 3-28
Check Commonly Used Metrics., 3-28
Transaction Monitoring Plug-in Routine., 3-29
A Basic Implementation. i 3-29
Check Commonly Used Metrics. 3-30
Configure the Plug-into Tuxedo 3-30
Register to TUXEAOo oot e 3-30
Un-register from Tuxedo i 3-31
BEA TSAM Agent Plug-in Development/Deployment Notes. 3-32

BEA TSAM Programming Guide

CHAPTERa

BEA TSAM Agent Plug-in Programming
Introduction

This topic contains the following sections:

o Overview

Overview

The BEA TSAM Agent includes three major layered modules:

o BEA TSAM framework

The BEA TSAM framework is responsible for Tuxedo system data collection. The
collection behavior is controlled by the monitoring types and policies. The gathered
metrics are passed to the plug-in using an open interface.

e Plug-in data receiver

The BEA TSAM Agent ships with a default plug-in. The default plug-in performs event
trigger evaluation and sends metrics to LMS

e LMS (local monitor server)
The LMS synchronizes data with the BEA TSAM Manager.

The BEA TSAM Agent and BEA TSAM Manager provide a complete solution for data
collection, aggregation, storage and presentation. To support various requirements for monitoring
data usage, the BEA TSAM Agent plug-interface is based on an open architecture so that you can
write customized plug-ins to interpret the performance metrics data. The custom plug-ins can

BEA TSAM Agent Plug-in Programming Guide 1-1

BEA TSAM Agent Plug-in Programming Introduction

work with the BEA TSAM Agent default plug-in or independently. The custom plug-ins are
typically used for:

e Integration with third party management software
e Developing in-house application monitoring suites

e Audit-based application data

1-2 BEA TSAM Agent Plug-in Programming Guide

CHAPTERa

BEA TSAM Agent Data Collection
Framework

This topic contains the following sections:

o Overview

Overview

The BEA TSAM Agent enhances Tuxedo infrastructure to collect the performance metrics when
TSAM is enabled. The instrument covers the major performance sensitive areas in Tuxedo
applications, that is call path stages, services, transactions and system servers. TSAM Agent uses
Tuxedo FML32 typed buffer to contain the metrics collected so that each metric is defined as a
built-in FML32 field. The monitoring points depend on the monitoring types and only apply to
Tuxedo ATMI applications. Listing 2-1 lists the monitoring points.

Table 2-1 Call Path Monitoring Points

Stage Supported Tuxedo Process Types

Before request Native Client, Application Server, GWTDOMAN, BRIDGE
message sent to
IPC queue

Request sentto Native Client, Application Server, WSH and JSH
IPC queue
failure

BEA TSAM Agent Data Collection Framework 2-1

BEA TSAM Agent Data Collection Framework

2-2

Table 2-1 Call Path Monitoring Points

After request
message got
from IPC queue

Application Server, GWTDOMAIN

Before reply
message sent to
IPC queue

Application Server, GWTDOMAIN, BRIDGE

After reply
message got
from IPC queue

Native Client,Application Server, GWTDOMAIN

Before request GWTDOMAIN
message sent to

network

After request GWTDOMAIN

message got
from network

Before reply
message sent to
network

GWTDOMAIN, WSH,JSH

After reply
message got
from network

GWTDOMAIN

Table 2-2 Service Monitoring Points

Stage

Supported Tuxedo Process Types

After request!
message got
from IPC queue

Application Server, GWTDOMAIN

Before reply
message sent to
IPC queue

Application Server, GWTDOMAIN

1. Only data collection point, no plug-in invocation

BEA TSAM Agent Data Collection Framework

Overview

Tahle 2-3 System Server Monitoring Points

Stage

Supported Tuxedo Process Types

Main Loop*

GWTDOMAIN, BRIDGE

1. The metrics are collected internally and this point is to pass the data to plug-in

Table 2-4 Transaction Monitoring Points

Stage

Supported Tuxedo Process Types

Before thel
transaction
routine
executed

Native Client, Application Server, TMS, GWTDOMAIN,WSH, JSH,
TMQFORWARD

After the
transaction
routine
executed

Native Client, Application Server, TMS, GWTDOMAIN,WSH, JSH,
TMQFORWARD

1. Only data collection point, no plug-in invocation

Note: The monitoring point is not necessarily added for all the message processing stages. It
depends on the process internal running model. For example, when BRIDGE or WSH
receives a message from the IPC queue, the message is forwarded to the network
immediately. In this case, there is only one monitoring point (point I).

BEA TSAM Agent Data Collection Framework 2-3

BEA TSAM Agent Data Collection Framework

2-4 BEA TSAM Agent Data Collection Framework

CHAPTERa

Creating a BEA TSAM Agent Custom
Plug-in

This topic contains the following sections:

o Overview

Developing a BEA TSAM Agent Plug-in

BEA TSAM Agent Plug-in Interface

e BEA TSAM Agent Plug-in Implementation

BEA TSAM Agent Plug-in Development/Deployment Notes

Overview

Tuxedo has a built-in plug-in framework that facilitates additional functionality. For example, the
Tuxedo security mechanism is constructed on the plug-in framework. Tuxedo defines an
interface set as a contract between a service provider and end user. The term “service” here is
used as a general term; not a Tuxedo ATMI service. BEA TSAM Agent also use the Tuxedo
plug-in framework to attach different data receivers.

Tuxedo Plug-in Framework Concepts

The following section highlights Tuxedo plug-in framework key concepts.

Build TSAM Agent Custom Plug-in 3-1

Creating a BEA TSAM Agent Custom Plug-in

3-2

Interface
An Interface is the contract format between the plug-in implementation and the plug-in caller. An
interface requires the following attributes:

e Interface ID

The interface ID is the name of the interface that is uniquely identified in the Tuxedo
plug-in framework and uses the following format:

<interface id> ::= <component name>[/<sub-component/name>]/<interface
name>

The BEA TSAM Agent plug-in uses the following format:
engine/performance/monitoring
e \ersion

An interface has two versions, the major version number and minor version number.

e Data Structure and Function Declaration

The data structure defines the concrete information conveyed between plug-in caller and
implementation.The function declaration defines the routines must be implemented by

plug-in.

Implementation

A plug-in is a dynamic library written in C code. The library implements the methods specified
by the interface. The Tuxedo plug-in framework supports multiple implementations
(interceptors) for one interface.

Tuxedo supports two types of interceptors: Fan-out interceptors and Stack interceptors. The BEA
TSAM Agent uses the Fan-out interceptors. Figure 3-1 displays the BEA TSAM Agent plug-in
architecture.

Build TSAM Agent Custom Plug-in

Figure 3-1 BEA TSAM Agent Plug-in Architecture

BEA TUXEDO

INFRASTRUCTURE

BEA TSAM AGENT

PLUG-IN A
(FAN OUT)

4

PLUG-IN 1

PLUG-IN 2

Overview

PLUG-IM

When the Tuxedo infrastructure invokes plug-in A method X, plug-in A invokes method X of the
intercepting plug-ins in the order specified by the InterceptionSeq attribute as follows:

e Plug-in method X is invoked

Plug-in 1 method X is returned

Plug-in 2 method X is invoked

Plug-in 2 method X is returned

e Plug-in n method X is invoked

e Plug-in n method X of is returned

All plug-ins involved in the interceptor implement the same interface. Multiple occurrences of

the same plug-in are not allowed in an interception sequence.

BEA TSAM Agent provides the Fan-out plug-in which allows you to write/create an interceptor

plug-in.

Build TSAM Agent Custom Plug-in 3-3

Creating a BEA TSAM Agent Custom Plug-in

Plug-in Register/Un-register/Modifications

Once the plug-in written it must be registered in the Tuxedo registry so that the functional
components will locate the plug-in and invoke the appropriate methods. Tuxedo provides three
commands specifically for plug-in use:

e epifreg: registers a plug-in
e epifunreg: un-registers a plug-in

e epifregedt: edits a plug-in

Developing a BEA TSAM Agent Plug-in

3-4

BEA TSAM Agent plug-in invocation begins at the monitoring points. The BEA TSAM Agent
collects and computes the metrics, and composes the arguments passed to the plug-in. The BEA
TSAM Agent Fan-out plug-in invokes the interceptor plug-in according to the registration
sequence.

A simple BEA TSAM custom plug-in development example is provided as a guideline. The
system environment is Solaris on Sparc. The functionality is basic and just prints out the metrics
buffers. This plug-in works together with the BEA TSAM Agent default plug-in.

1. Create Plug-in Source Code
Build the Plug-in

Register the Plug-in

Enable BEA TSAM Monitoring

o ~ w N

Run a Call and Check the Standard Output.

Create Plug-in Source Code

Listing 3-1 displays an example of the BEA TSAM plug-in customplugin.c.

Listing 3-1 BEA TSAM Agent customplugin.c Plug-in Source Code Example

#include <e_pif.h>
#include <tpadm.h>
#include <fml32_h>

Build TSAM Agent Custom Plug-in

Developing a BEA TSAM Agent Plug-in

#include <e_perf_mon.h>

static

static

static

static

static

static

static

TM321 _TMDLLENTRY print_app(
perf_mon_1 *,

FBFR32 **,

MONITORCTL *,

TM32U);

TM321 _TMDLLENTRY print_svc(
perf_mon_1 *,

FBFR32 **,

MONITORCTL *,

TM32U);

TM321 _TMDLLENTRY print_sys(
perf_mon_1 *,

FBFR32 **,

MONITORCTL *,

TM32U);

TM321 _TMDLLENTRY print_tran(
perf_mon_1 *,

FBFR32 **,

MONITORCTL *,

TM32U);

TM321 _TMDLLENTRY plugin_destroy (
_TCADEF,

const struct _e_pif_instance_handles *,
TM32U);

TM321 _TMDLLENTRY plugin_copy (_TCADEF,
void *,

const struct _e_pif_interception_data *,
struct _e pif_instance_handles *,
TM32U);

const perf_mon_1 Vtblperfapp_1 = {

Build TSAM Agent Custom Plug-in

3-5

Creating a BEA TSAM Agent Custom Plug-in

3-6

print_app,
print_svc,
print_sys,
print_tran,

¥

static const _e_pif plugin_info perf_mon_1 info = {
{1, 01}, /* interface major version */
{1, 01}, /* implementation */
"abc/tuxedo/tsam”,/* implementation id */
ED_PERF_MON_INTF_ID,/* interface id */

4, /* virtual table size */
“ABC, Inc.", /* vendor */

"Custom Plug-in for BEA TSAM", /* product name */
"1.0", /* vendor version */

EF_PIF_SINGLETON,/* m_flags */
plugin_destroy,
plugin_copy

}:

int _TMDLLENTRY
plugin_entry(_TCADEF, const char *plld,
const char *plmplid,
const struct _e pif_iversion *version,
const struct _e pif data *pData,
const struct _e_pif_interception_data *plInterceptionData,
struct _e pif_instance_handles *pl,
TM32U flags)

const char * const * regData = pData->regdata;
char *logfile = NULL;

pl->pVvtbl = (void *) &Vtblperfapp_1;
pl->pPlugininfo = (e_pif_plugin_info *) &perf_mon_1_info;
pl->pPrivData = NULL;

return (EE_SUCCESS);

}

Build TSAM Agent Custom Plug-in

Developing a BEA TSAM Agent Plug-in

static TM321 _TMDLLENTRY

plugin_destroy (_TCADEF, const struct _e_pif_instance_handles *plhandles,
TM32U flags)

{
return(EE_SUCCESS) ;

}

static TM321 _TMDLLENTRY
plugin_copy (_TCADEF, void *iP,
const struct _e pif_interception_data *plnterceptionData,
struct _e_pif_instance_handles *plhandles,
TM32U flags)
{
return(EE_SUCCESS);
}
static TM321 _TMDLLENTRY print_app(perf_mon_1 * ip,FBFR32 **buf, MONITORCTL
* monctl, TM32U flags)
{
Fprint32(*buf);
return(0);
}

static TM321 _TMDLLENTRY print_svc(perf_mon_1 * ip,FBFR32 **pbuf, MONITORCTL
* monctl, TM32U flags)
{
Fprint32(*buf);
return(0);
}

static TM321 _TMDLLENTRY print_sys(perf_mon_1 * ip,FBFR32 **buf, MONITORCTL
* monctl, TM32U flags)

{
Fprint32(*buf);
return(0);

}
static TM321 _TMDLLENTRY print_tran(perf_mon_1 * ip,FBFR32 **buf,

Build TSAM Agent Custom Plug-in 3-7

Creating a BEA TSAM Agent Custom Plug-in

MONITORCTL * monctl, TM32U flags)
{

Fprint32(*buf);

return(0);

Build the Plug-in

cc -c customplugin.c -1$TUXDIR/include

cc -G -KPIC -o customplugin.so -L$TUXDIR/1ib -1fml customplugin.o

Register the Plug-in

To register the plug-in, do the following steps:
1. Shutdown your tuxedo application by “tmshutdown”
2. Compose a shell script named “reg.sh”

3. Run the script
sh ./reg.sh

4. Boot your Tuxedo applications by "tmboot"
Listing 3-2 displays an example of the reg . sh shell script

Listing 3-2 reg.h Shell Script

#1/bin/sh

epifreg -r -p abc/tuxedo/tsam -i engine/performance/monitoring \
-0 SYSTEM -v 1.0 \

- $APPDIR/customplugin.so -e plugin_entry

epifregedt -s -k "SYSTEM/impl/bea/performance/monfan' \

-a InterceptionSeq=bea/performance/mongui \

-a InterceptionSeqg=abc/tuxedo/tsam \

3-8 Build TSAM Agent Custom Plug-in

Developing a BEA TSAM Agent Plug-in

Enable BEA TSAM Monitoring

Enable TSAM Monitoring using the TMMONITOR environment variable: tmadmin->chmo or
by using the BEA TSAM console

For more information, see the BEA TSAM Administration Guide.

Run a Call and Check the Standard Output.

You will find the metrics collected printed out.

Listing 3-3 displays the metrics print out.

Listing 3-3 Metrics Print Out Example

TA_MONDEPTH 1
TA_MONPROCTYPE 2
TA_MONMSGSIZE 6
TA_MONMSGQUEUED 1

TA_MONLASTTIMESEC 1189759850
TA_MONLASTTIMEUSEC 730754
TA_MONSTARTTIMESEC 1189759850
TA_MONSTARTTIMEUSEC 730754

TA_MONCORRID JOLTDOM:bjsol18:72854 SITE1 client 9597 1 1
TA_MONMSGTYPE ARQ

TA_MONSTAGE Q2ME

TA_MONLOCATION JOLTDOM:bjsol18:72854 SITE1 GROUP2 simpserv 18 9588
TA_MONSVCNAME ~ TOUPPER

TA_MONHOSTSVC TOUPPER

TA_MONSVCSEQ client-TOUPPER-18218-0

TA_MONPSVCSEQ INITIATOR

TA_MONQID 14441475-00004.00018

TA_MONDEPTH 1

TA_MONPROCTYPE 2

TA_MONMSGSIZE 6
TA_MONLASTTIMESEC 1189759850
TA_MONLASTT IMEUSEC 730754

Build TSAM Agent Custom Plug-in 3-9

http://edocs.bea.com/tsam/docs11/admin/index.html

Creating a BEA TSAM Agent Custom Plug-in

TA_MONSTARTTIMESEC 1189759850
TA_MONSTARTTIMEUSEC 730754
TA_MONERRNO 0

TA_MONURCODE 0

TA_MONCORRID JOLTDOM:bjsol18:72854 SITE1l client 9597 1 1|
TA_MONMSGTYPE ARP

TA_MONSTAGE ME2Q

TA_MONLOCATION JOLTDOM:bjsol18:72854 SITE1 GROUP2 simpserv 18 9588
TA_MONSVCNAME ~ TOUPPER

TA_MONHOSTSVC TOUPPER

TA_MONSVCSEQ client-TOUPPER-18218-0

TA_MONPSVCSEQ INITIATOR

BEA TSAM Agent Plug-in Interface

All BEA TSAM Plug-in interface interface contents are defined in the
$TUXDIR/include/e_perf_mon.h file. When you build a BEA TSAM Plug-in, this file must
be included in your plug-in source code

. The $TUXDIR/include/e_perf_mon.h file definitions are as follows:

e \ersion and Interface ldentifier
e Function Table

e Field Map Operation Facility

Version and Interface ldentifier

Listing 3-4 provides a version and indentifier example.

Listing 3-4 Version and Interface Identifier

#define ED_PERF_MON_MAJOR_VERSION 1

#define ED_PERF_MON_MINOR_VERSION 0

/* Interfaces defined in this module */

#define ED_PERF_MON_INTF_ID *"engine/performance/monitoring"
Value Definitions and Data Structure

3-10 Build TSAM Agent Custom Plug-in

BEA TSAM Agent Plug-in Interface

Listing 3-5 displays the BEA TSAM framework and plug-in core data structure.

Listing 3-5 Core Data Structure

typedef struct {

unsigned char fieldsmap[MAXMAPSIZE];

char monitoring_policy[MAXPOLICYLEN]; /* monitor policy of TMMONITOR */
char corr_id[MAXCORRIDLEN]; /* plug-in supplied correlation ID */

int ulen;

void * udata;

long mon_flag;

} MONITORCTL;

Table 3-1 MONITORCTL Members

Members Description

fieldsmap Indicates which metrics field is available in the FML32 buffer passed from
TSAM framework. Once it receives information from the TSAM Framework,
is returns any changed or updated information if the plug-in makes changes to
the required fields.

monitoring_policy Internal use only

corr_id It is used to bring the corralling 1D from plug-in to TSAM framework

ulen The data length of the application buffer.

udata The application buffer. It is a typed buffer and only available for call path
monitoring and service monitoring. tptypes(5) can be used to check the type
and subtype.

mon_flag The flag set both by TSAM framework and plug-in to indicate the requirement

and changes.

Table 3-2 lists the MONITORCTL array sze definitions.

Build TSAM Agent Custom Plug-in 3-11

Creating a BEA TSAM Agent Custom Plug-in

Table 3-4 lists the mon_flag Values.

Table 3-2 MONITORCTL Array Size Definitions

Array Size Description

/* Size of #define MAXMAPSIZE 128
fieldsmap*/

/* Size of #define MAXPOLICYLEN 128
monitoring_pol

icy */

/* Size of #define MAXCORRIDLEN 256
corr_id*/

Table 3-3 mon_flag Values

Members Description

#define P1_CORRID_REQUIRED is set by TSAM framework when a call path
P1_CORRID_REQU monitoring is started. It means the plug-in must supply a correlation ID to the
IRED 0x00000001 framework by the corr_id member of MONITORCTL.

#define PI_EDITABLE_FIELDS is set by TSAM framework when the required fields
P1_EDITABLE_FI of TMMONITOR specification is editable by the plug-in.

ELDS 0x00000002

*/

#define PI_EDITABLE_POLICY internal use only.

P1_EDITABLE_PO
LICY 0x00000004

#define PI_UPDATED_FIELDS is set by the plug-in if PI_EDITABLE_FIELDS is

P1_UPDATED_FIE setby TSAM framework and the plug-in is also changed the required fields by

LDS 0x00000008 fieldsmap of MONITORCTL. TSAM framework will check this to update the
data collection engine.

3-12 Build TSAM Agent Custom Plug-in

BEA TSAM Agent Plug-in Interface

Table 3-3 mon_flag Values

Members Description

#define PI_UPDATED_POLICY is internal use only.
P1_UPDATED_POL
ICY 0x00000010

#define P1_NOCALL is internal use only
P1_NOCALL

0x00000020

Function Table

Listing 3-6 defines the plug-in implementation methods.

Listing 3-6 Function Table

typedef struct perf_mon_1 Vtbl {

TM321 (_TMDLLENTRY *_ec_perf_mon_app) _((
struct perf_mon_1 Vtbl * ip,
FBFR32 **buf,
MONITORCTL *mon_ctl,
TM32U flags

));

TM321 (_TMDLLENTRY *_ec_perf_mon_svc) _((
struct perf_mon_1 Vtbl * ip,
FBFR32 **buf,
MONITORCTL *mon_ctl,
TM32U flags

));

TM321 (_TMDLLENTRY *_ec_perf_mon_sys) _((
struct perf_mon_1 Vtbl * ip,
FBFR32 **buf,
MONITORCTL *mon_ctl,
TM32U flags

));

TM321 (_TMDLLENTRY *_ec_perf_mon_tran) _((
struct perf_mon_1 Vtbl * ip,

Build TSAM Agent Custom Plug-in

3-13

Creating a BEA TSAM Agent Custom Plug-in

3-14

FBFR32 **buf,
MONITORCTL *mon_ctl,
TM32U flags

));

} perf_mon_1, *perf_mon_1 ptr;

Each method corresponds to a monitoring type. “_ec_perf_mon_app” is for call path
monitoring, “_ec_perf_mon_svc” is for service monitoring, “_ec_perf_mon_sys” is for system
server monitoring and “_ec_perf_mon_tran” is for transaction monitoring. Each method will be
invoked at the corresponding monitoring type’s monitoring points. The method arguments are:

e struct perf_mon_1 Vtbl *ip
the virtual table pointer of this function table. Custom plug-in need not handle this.
e FBFR32 **puf
the address of the metrics buffer in FML32 type.
e MONITORCTL *mon_ctl
the control structure.
e TM32U flags
the bits flag in a 32-byte, unsigned integer.

Field Map Operation Facility

The fieldsmap contains the quick reference of which metrics are stored in the buf parameter of
the interface methods. A set of operation facilities are designed to check/set the filedsmap data.

#define BASENUM 30002401

BASENUM is the base number of TSAM FML32 metrics fields. The performance metrics are
defined as Tuxedo built-in FML32 fields which are included $TUXDIR/include/tpadm.h.

#define IS_FIELDSET(FIELDSMAP, FIELDID) (FIELDSMAP[F1dno32(FIELDID)
- BASENUM 1)
#define SET_FIELD(FIELDSMAP, FIELDID) { FIELDSMAP[FIdno32(FIELDID)

- BASENUM] = 1;}

#define UNSET_FIELD(FIELDSMAP, FIELDID) { FIELDSMAP[FIdno32(FIELDID)
- BASENUM] = 0;}

Build TSAM Agent Custom Plug-in

BEA TSAM Agent Plug-in Implementation

IS_FIELDSET is used to determine a field is set or not in a “fieldsmap”. SET_FIELD is used
to set a field to a “fieldsmap” and UNSET_FIELD is to clear a field set in a “fieldsmap”. These
operation facilities can be used in the plug-in if it needs to relay the required field changes to thee
BEA TSAM framework.

Other Help Header Files

o $TUXDIR/include/e_pif.h

It is the Tuxedo general plug-in definition file. It must be included in the plug-in source
code.

o $TUXDIR/include/tpadm.h

It is the Tuxedo built-in FML32 fields definition files. All performance metrics are defined
as FML32 fields.

o STUXDIR/Zinclude/fml32.h

The metrics collected are stored in a Tuxedo FML32 buffer. To access these items, FML32
routines must be used. So the “fml32.h” must be included.

BEA TSAM Agent Plug-in Implementation

BEA TSAM Agent plug-in implementation requires the following steps:
1. Define “perf_mon_1" in the “e_perf_mon.h” Function Table

2. Define the Plug-in Information Variable

3. Write the Plug-in Entry Routine

Define “perf_mon_1" in the “e_perf_mon.h” Function Table
Listing 3-7 shows a perf_mon_1 defined in the e_perf_mon.h function table example.

Listing 3-7 Define a "perf_mon_1" defined in "e_perf_mon.h" Function Table

static const perf_mon_1 Vtblperfapp_1 = {
print_app,
print_svc,
print_sys,

Build TSAM Agent Custom Plug-in 3-15

Creating a BEA TSAM Agent Custom Plug-in

3-16

print_tran,

Define the Plug-in Information Variable
Listing 3-8 shows how to define the plug-in information variable.

Listing 3-8 Define the Plug-in Information Variable

static const _e_pif plugin_info perf_mon_1 info = {
{1, 0}, /* interface version */
{1, 0}, /7* implementation version */
"abc/tuxedo/tsam”, /* implementation id */
ED_PERF_MON_INTF_ID, /* interface id */
4, /* virtual table size */
"“ABC, Inc.", /* vendor */
"Custom Plug-in for BEA TSAM", /* product name */
"1.0", /* vendor version */
EF_PIF_SINGLETON, /* m_flags */
plugin_destroy,
plugin_copy

The changeable members are “implementation version”, “implementation id”, “vendor”,
“product name”, “vendor version”. Other items must be kept with same with the sample.

plugin_destroy and plugin_copy are the general Tuxedo plug-in routines for destroy and
copy. For a BEA TSAM Plug-in, you can write two empty functions as shown in Listing 3-9.

Listing 3-9 plugin_destroy and plugin_copy

static TM321 _TMDLLENTRY
plugin_destroy (_TCADEF, const struct _e_pif_instance_handles *plhandles,
TM32U flags)

{

Build TSAM Agent Custom Plug-in

BEA TSAM Agent Plug-in Implementation

return(EE_SUCCESS) ;

}

static TM321 _TMDLLENTRY

plugin_copy (_TCADEF, void *iP,
const struct _e pif_interception_data *plnterceptionData,
struct _e pif_instance_handles *plhandles, TM32U flags)

return(EE_SUCCESS) ;

Write the Plug-in Entry Routine

Each plug-in must have an “entry” routine and specified in plug-in registration process. In this
routine, the virtual function table and plug-in information structure must be supplied to the
plug-in instance handler.

Listing 3-10 displays a plug-in routine example.

Listing 3-10 Plug-in Entry Routine

int _TMDLLENTRY
plugin_entry(_TCADEF, const char *plld,
const char *plmplid,
const struct _e_pif_iversion *version,
const struct _e pif data *pData,
const struct _e_pif_interception_data *plInterceptionData,
struct _e_ pif_instance_handles *pl,
TM32U flags)

{

const char * const * regData = pData->regdata;
char *logfile = NULL;
pl->pVtbl = (void *) &Vtblperfapp_1;
pl->pPlugininfo = (e _pif_plugin_info *) &perf _mon_1_info;
pl->pPrivData = NULL;
return (EE_SUCCESS);

Build TSAM Agent Custom Plug-in 3-17

Creating a BEA TSAM Agent Custom Plug-in

3-18

Note: It is recommends that you t to use the fixed process shown in the sample. The “entry”
routine is called only once to instantiate the plug-in.

Writing Concrete Plug-in Implementations

The implementation function table is registered to Tuxedo in the “entry” routine. Then following
chapters will focus on how to write TSAM plug-in based on the corresponding monitoring types.

WARNING: Do not make Tuxedo ATMI calls (except for FML32 operations,
tpalloc/tprealloc/tpfree and tptypes) in the plug-in. It may result
un-expected behavior as Tuxedo context may be compromised.

Call Path Monitoring Plug-in Routine

The call path monitoring plug-in routine are invoked at the monitoring points. For more
information, see “BEA TSAM Agent Data Collection Framework” on page 2-1

A Basic Implementation
In this example, the routine prints out the passed FML32 buffer:

static TM321 _TMDLLENTRY print_app(perf_mon_1 * ip,FBFR32 **buf, MONITORCTL
* monctl, TM32U flags)

{
Fprint32(*buf);
return(0);

}

Understanding Current Monitoring Points

Call path monitoring is the most comprehensive Tuxedo application interceptor. It provides a
variety of metrics for recording and analysis.

e Determine the monitoring stage

The monitoring stage itself is a metric with the FML32 field name TA_MONSTAGE.
Table 3-4 lists TA_ MONSTAGE values.

Build TSAM Agent Custom Plug-in

BEA TSAM Agent Plug-in Implementation

Table 3-4 TA_MONSTAGE Values

Value Description

STMO A new call path monitoring is initiated. This is the first record for the
current monitored call path.

ME2Q Before a message is sent to the IPC. It could be a request message or
reply message.

For the monitoring “initiator”, “STMO” replaces “ME2Q” stage since
they are at the same point.

ME2QFAIL The request message sends a fail to IPC queue. This happens if the
“call” fails immediately (there are no service entries, invalid
arguments etc.).

Q2ME Before a message is received from the IPC. It could be a request or
reply message

ME2NET Before a message sent to the network. It only applies to
GWTDOMAIN. It could be a request message or reply message.

NET2ME After a message is received from the network. It only applies to

GWTDOMAIN. It could be a request message or reply message.

Listing 3-11 displays a judge monitoring stage example.

Listing 3-11 Judge Monitoring Stage

{

char *stage;

FLDLEN32 len;

stage = FFind32(*obuf, TA MONSTAGE,O,&len);
if (stage = NULL) {

if (strcemp(stage,”STMO™) == 0) {

/* ../
Yelse if (strcmp(stage,”Q2ME” == 0) {
/* ../

}

/* other processment */

Build TSAM Agent Custom Plug-in 3-19

Creating a BEA TSAM Agent Custom Plug-in

For “STRING” field type, we recommend to use “Ffind32” routine to get a more fast process.

e Determine the message type

For an application message transmitted in Tuxedo system, it has two choice, request
message or reply message. The field TA_MONMSGTYPE indicates the message type.

Table 3-5 TA_MONMSGTYPE Values

Value Description
ARQ Request Message
ARP Reply Message

e Determine current process location

The monitoring points always are located in processes of Tuxedo applications. So
understand current process is important. TSAM framework uses the field
TA_MONLOCATION to tell the plug-in the process location of current monitoring point.
The format of TA_MONLOCATION is different for Tuxedo client process and server
process. The major goal is to provide enough information to locate the process uniquely in
this Tuxedo domain.

Table 3-6 TA_MONLOCATION Format

Format Description

Client Format DOMAINID:master hostname:IPCKEY LMID processname
processid
Example:

JOLTDOM:bjsol18:72854 SITE1 client 15391

3-20 Build TSAM Agent Custom Plug-in

BEA TSAM Agent Plug-in Implementation

Tahle 3-6 TA_MONLOCATION Format

Server Format DOMAINID:master hostname:IPCKEY LMID group processname
serverid processid

Example:
JOLTDOM:hjsol18:72854 SITE1 GROUP2 simpserv 18 9704

WSH/JSH! DOMAINID:master hostname:IPCKEY LMID group processname
processid

Example:
JOLTDOM:bjsol18:72854 SITEL JOLTGRP JSH 9904

1. The group of WSH/JSH is the group of its listeners, that is WSL/JSL

Check Commonly Used Metrics

After get the necessary information on the monitoring stage, message type and process location,
the next step is to check the common used metrics also carried in the FML32 buffer. The metrics

will be available depending on the conditions mentioned above.

Table 3-7 TA_MONLOCATION Format Metrics

Field Name Type Description Stage
TA_MONCORRID string The correlation ID of this monitored call path All
TA_MONMSGSIZE long The message size of current message AllL
TA_MONMSGQUEUED long How many message queued on the server request Request
IPC queue Message
Q2ME
TA_MONSTARTTIMESEC long The second part of timestamp when this call path ~ All
monitoring is initiated. It is the number of seconds
since epoch.
TA_MONSTARTTIMEUSEC long The microsecond part of the startup timestamp. It~ All

is always with TA_MONSTARTUTIMESEC to
provide a more fine-grained time measurement.

Build TSAM Agent Custom Plug-in 3-21

Creating a BEA TSAM Agent Custom Plug-in

Table 3-7 TA_MONLOCATION Format Metrics

TA_MONLASTTIMESEC long The second part of timestamp when the monitored ~ All
message entering/leaving a transport. It is the
number of seconds since epoch. A transport is the
way carrying message, such as IPC queue and
network. A typical usage is,
* When arequest is fetched from IPC queue,
the TA_LASTTIMESEC indicates the
timestamp when the request message was put
into queue.
e When arequest is fetched from network, the
TA_LASTTIMESEC indicates the timestamp
when the peer process sent the message to
network.
TA_MONLASTTIMEUSEC long The microsecond part of the last time timestamp. Al
It is always with TA_MONLASTTIMESEC to
provide a more fin-grained time measurement.
TA_MONLGTRID string The GTRID of current monitoring points if the Monitorin
call path involved in transaction. g points
involved
transactio
n
TA_MONCLTADDR string The remote client address. If the monitoring is All
started from Tuxedo workstation client, WSH,
JSH or GWWS, TSAM framework will attach the
client ip address and port number to call path
information propagation. The format is //ip
address:port.
TA_MONDEPTH short The call path depth. A hop from one service to All
another is deemed the depth increased one. The
start value at the initiator is 0.The detail can be
referred at TSAM User Guide.
TA_MONERRNO long The error number set by Tuxedo infrastructure. Reply
Message
TA_MONURCODE long The urcode of tpreturn. Reply
Message

3-22 Build TSAM Agent Custom Plug-in

Table 3-7 TA_MONLOCATION Format Metrics

BEA TSAM Agent Plug-in Implementation

TA_MONSVCNAME string The service name of current monitoring points All
involved. For request message, it is the target
service name and for reply message, it is the
service which returns the reply.

TA_MONHOSTSVC string The service name of current service routine Monitorin

g points in
a
applicatio
n server.
TA_MONCALLFLAG long The call flags set in tpcall/tpacall Request
Message
ME2Q
STMO
TA_MONCALLMODE short The call type, 1 - tpacall, 2 - tpcall, 3 - tpforward ~ Request
Message
ME2Q
STMO

TA_MONQID string The request queue id of server which provides Request
current service. Its format is “physical queue key Message
- Tuxedo logic queue name”. For example, Q2ME
14444547-00004.00018

TA_MONLDOM string The local domain configuration. Its format is ME2NET
Idom:domainid. For example DOML:FINANCE. \eT2ME
The detail information of the “LDOM” and
“DOMAINID” can be referred Tuxedo Manual of
DMCONFIG.

TA_MONRDOM string The remote domain configuration. Its format is ME2NET
same with TA_MONLDOM but the values are for NET2ME
remote domain.

TA_MONWSENDPOINT string The web service end point URL of GWWS. Reply

Message
ME2Q

1. For some self-describe buffer types, such as STRING, the size might be zero.

Build TSAM Agent Custom Plug-in 3-23

Creating a BEA TSAM Agent Custom Plug-in

3-24

Change Required Fields

BEA TSAM Agent allows to reduce the metrics collected by specifying the required fields of
TMMONITOR specification. TMMONITOR syntax consists of t hree parts: monitoring type,
monitoring policy and required fields. They are separated by a colon. The usage of monitoring
type and policy can be referred at TSAM User Guide. The required fields supported by call path
monitoring and service monitoring.

e Call Path Monitoring
appfields=fieldl,field2,field3...

e Service Monitoring
svcfields=fieldl,field2,field3...

Note: The required fields option is only for custom plug-ins. It cannot apply to the BEA TSAM
default plug-in. If required fields are used, the BEA TSAM default plug-in will not
function normally, which means the BEA TSAM Manager cannot function normally. It
also means you cannot use the BEA TSAM default plug-in together with custom
plug-ins.

Normally, using required fields is not recommended.
The default behavior is all the available metrics are collected by the BEA TSAM framework.

If required fields are specified, only the specified and basic information is available in the metrics
buffer.

To enable the TMMONITOR required fields, set TMMONITOR specifications in the
environment variable or tmadmin. For example:

export
TMMONITOR=app: :appfields=TA_MONSVCNAME,TA_MONSTAGE,TA_MONLOCATION

To change the required fields, the plug-in must see whether the mon_flag of MONITORCTL
allows to change it.

if (monctl->monflag & PI1_EDITABLE_FIELDS) {
UNSET_FIELD(monctl->Fieldsmap,TA_MONLOCATION);
SET_FIELD(monctl->Fieldsmap, TA_MONMSGSIZE);
SET_FIELD(monctl->fieldsmap,TA_MONLDOM) ;
monctl->monflag |= PI_UPDATED_FIELDS;

Build TSAM Agent Custom Plug-in

BEA TSAM Agent Plug-in Implementation

The MONITORCTL monflag must be set to PI_UPDATED_FIELDS to tell the BEA TSAM
framework to update the required fields. This change impacts all the monitoring points on the call
path.

Generate Call Path Correlation ID
The correlation ID must be given by the plug-in at the monitoring initiating stage, which is the
TA_MONSTAGE value is “STMO”. The BEA TSAM framework sets P1_CORRID_REQUIRED in the
MONITORCTL mon_fFlag. If no correlation ID is given, an error is reported. The BEA TSAM
default plug-in provides the correlation ID also. Two scenarios need to consider,

e Working with the BEA TSAM default plug-in.

The custom plug-in can skip the correlation ID generation. If the custom plug-in wants to
overwrite the correlation ID generated by the BEA TSAM default plug-in, the interceptor
sequence of custom plug-in must come after the BEA TSAM default plug-in.

e Working without The BEA TSAM default plug-in

If the BEA TSAM default plug-in is removed fromthe Tuxedo plug-in framework, the
custom plug-in must supply the correlation ID i. For example:

if (monctl->mon_flag & PI_CORRID_REQUIRED) {
strcpy(monctl->corr_id, mygetid());
}

“mygetid()” is an assumed ID generation routine. The length of the new ID must not exceed the
size of corr_id of MONITORCTL.

To help ID generation, the custom plug-in can use a BEA TSAM framework service to get a
correlation ID. Listing 3-12 displays an ID generation example.

Listing 3-12 1D Generation Example

extern int _TMDLLENTRY tmmon_getcorrid(char *obuf, int len);

if (monctl->mon_flag & PI1_CORRID_REQUIRED) {
char new_corrid[MAXCORRIDLEN];
if (tmmon_getcorrid(new_corrid, sizeof(new_corrid)) == 0) {
strpcy(monctl->corr_id,new_corrid);

}

Build TSAM Agent Custom Plug-in 3-25

Creating a BEA TSAM Agent Custom Plug-in

3-26

Note: When using the correlation ID generation routine of TSAM framework, libtux must be
linked with the plug-in.

Service Monitoring Plug-in Routine

Service monitoring is a straightforward procedure. The data collection points are before and after
the service routine invocation. The plug-in is invoked only when service execution is completed.

A Basic Implementation
In this example, the routine prints out the passed FML32 buffer:

static TM321 _TMDLLENTRY print_svc(perf_mon_1 * ip,FBFR32 **buf, MONITORCTL
* monctl, TM32U flags)

{
Fprint32(*buf);

return(0);

Build TSAM Agent Custom Plug-in

BEA TSAM Agent Plug-in Implementation

Check Commonly Used Metrics

Table 3-8 Service Monitoring Plug-in Routine Metrics

Field Name

Type

Description

TA_MONMSGWAITTIME

long

The request message waiting time in server’s request IPC queue
before execution.

The unit is millisecond. The waiting time is computed in two
scenarios,

e Call Path Monitoring is enabled for this message.

The waiting time is computed by considering the last time
stamp of transport to this service. The waiting time is
exact.

< No Call Path Monitoring is enabled.

The waiting time is computed based on average queue
length and last service execution time and the dispatching
thread number. This is an approximate value. It only
applies to a server which provides similar services and the
execution time is steady.

TA_MONMSGSIZE

long

The message size of reply message.

TA_MONMSGQUEUED

long

The number of messages queued on the server request IPC queue
currently.

TA_MONLASTTIMESEC

long

The number of seconds since epoch when the service begin to execute

TA_MONLASTTIMEUSEC

long

The microsecond seconds since time seconds since epoch. It is used
with TA_MONLASTTIMESEC

TA_MONERRNO

long

Tuxedo return error code, that is tperrno

TA_MONURCODE

long

The urcode of tpreturn.

TA_MONEXECTIME

long

The response time in millisecond of current service execution. It is
computed by the BEA TSAM framework. Plug-in can also get the
current time and the last time timestamp.

TA_MONSVCNAME

string

The service name.

TA_MONLOCATION

string

The process location of current process. It has same meaning in call
path monitoring.

Build TSAM Agent Custom Plug-in 3-27

Creating a BEA TSAM Agent Custom Plug-in

System Server Monitoring Plug-in Routine

BEA TSAM supports two Tuxedo built-in servers monitoring, GWTDOMAIN and BRIDGE.
The monitoring focus on the throughput, outstanding request number and message number
queued on network. The plug-in is invoked periodically by the BEA TSAM framework. The
interval is specified by “sysinterval” policy of TMMONITOR specification. Data collection
occurs on the on-going server operations.

A Basic Implementation
In this example, the routine prints out the passed FML32 buffer:

static TM321 _TMDLLENTRY print_sys(perf_mon_1 * ip,FBFR32 **pbuf, MONITORCTL
* monctl, TM32U flags)

{
Fprint32(*buf);
return(0);

}
Check Commonly Used Metrics

Table 3-9 System Server Monitoring Plug-in Routine Metrics

Field Name Type Description

TA_MONLOCATION string The process location of current process. It has same meaning in call
path monitoring.

TA_MONLINKNUM short The number of network link connected to current server. If the value
is more than 1, then the following statistics data on network link are in
FML occurrences style. For example, TA_MONLINKADDR[0] is
belong to the first network link, TA_MONLINKADDR[1] is belong
to the second network link etc.

TA_MONLINKSTATUS short The status of the network link, three possible values, 1 - initialize
stage. 0 - connected and is ok. -1 connection lost.

3-28 Build TSAM Agent Custom Plug-in

BEA TSAM Agent Plug-in Implementation

Tahle 3-9 System Server Monitoring Plug-in Routine Metrics

TA_MONNUMPEND long The number of messages queued on network buffer for this network
link. The buffer is for Tuxedo network layer instead of system network
stack.

This is a snapshot value reflecting the number situation when plug-in
is invoked.

TA_MONBYTESPEND long The number of messages bytes queued on network buffer. It is related
with TA_MONNUMPEND but computing the data volume

TA_MONNUMWAITRPLY long The outstanding request number on this network link. That means how
many request message are waiting for reply. It only applies to
GWTDOMAIN. BRIDGE does not support this metric.

This is a snapshot value.

TA_MONACCNUM long The accumulated message number for this network link between
current plug-in invocation and last plug-in invocation which
controlled by the “sysinterval” policy.

This is a throughput value reflecting the accumulated information
between an interval.

TA_MONACCBYTES long Theaccumulated message bytes. It is related TA_MONACCNUM but
computing the data volume.

This is a throughput value.

TA_MONLINKADDR string The link address, for GWTDOMAIN, it is the RDOM defined in
UBBCONFIG. For BRIDGE, it is the remote host name.

Transaction Monitoring Plug-in Routine

BEA TSAM also traces critical routines invocation in XA transaction. The scope includes
tpbegin,tpcommit, tpabort,xa xxx calls and GWTDOMAINS transaction routines.

A Basic Implementation
In this example, the routine prints out the passed FML32 buffer:

static TM321 _TMDLLENTRY print_tran(perf_mon_1 * ip,FBFR32 **buf,
MONITORCTL * monctl, TM32U flags)

{
Fprint32(*buf);

Build TSAM Agent Custom Plug-in 3-29

Creating a BEA TSAM Agent Custom Plug-in

return(0);

}

Check Commonly Used Metrics
Listing 3-10 lists the commonly used transaction monitoring plug-in routine metrics.

Table 3-10 Transaction Monitoring Plug-in Routine Metrics

Field Name Type Description

TA_MONXANAME string The routine name of a XA transaction, such as “tpbegin”, “xa_commit” etc.

TA_MONXACODE long The routine return code

TA_MONEXECTIME long The routine execution time in millisecond.

TA_MONRMID long The resource manager instance ID. It only applies to xa_xxx calls

TA_MONLGTRID string The global transaction ID of current transaction

TA_MONRGTRID string The parent transaction’s GTRID. It only applies to GWTDOMAIN when it
is a network subordinator.

TA_MONLOCATION string The process location of current process. It has same meaning in call path
monitoring.

3-30

Configure the Plug-in to Tuxedo
Note: The plug-in will run in Tuxedo infrastructure. It must be well tested before configure to
Tuxedo production environment.

Register to Tuxedo

Tuxedo uses the epifreg command to register the plug-ins to the Tuxedo registry so that the
infrastructure can invoke the plug-in at run time. BEA TSAM uses the BEA TSAM framework
to invoke the plug-in.

Listing 3-13 shows how the epifreg command is used to invoke a plug-in.

Listing 3-13 Using epifreg to Invoke a Plug-in

epifreg -r -p abc/tuxedo/tsam -i engine/performance/monitoring \

Build TSAM Agent Custom Plug-in

BEA TSAM Agent Plug-in Implementation

-0 SYSTEM -v 1.0 -f /test/abc/customplugin.so -e plugin_entry
epifregedt -s -k "SYSTEM/impl/bea/performance/monfan’™ \
-a InterceptionSeqg=bea/performance/mongui \

-a InterceptionSeg=abc/tuxedo/tsam

In this, there are two steps required to register the custom plug-in in Tuxedo.
1. Using “epifreg” to register the custom implementation to Tuxedo.

a. “-p” option specifies the implementation id and it must be consistent the value specified
in source code.

b. “-v” indicates the version number.
c. “-f” specifies the dynamic library path.
d. “-e” specifies the “entry” routine described in the “General Steps” section.

2. Using “epifregedt” to change the fan-out plug-in “InterceptionSeq” attribute.

BEA TSAM supports a Fan-out plug-in mechanism which means multiple plug-ins can
work together. BEA TSAM Agent provides the Fan-out plug-in and a default interceptor
plug-in. The custom plug-in is an additional interceptor plug-in.

The “-a InterceptionSeq=xxx" option tells the Fan-out plug-in invokes the interceptor
plug-in using the specified order. “xxx” is the implementation id. In this example, the
Tuxedo default interceptor plug-in implementation 1D, “bea/performance/mongui”, is
invoked before the custom plug-in implementation ID “abc/tuxedo/tsam”.

3. If you have multiple custom plug-in developed, you need to register them first with “epifreg”,
then modify the invocation sequence with “epifregedt” withthe proper
“InterceptionSeq” sequence.

Un-register from Tuxedo
“epifunreg” can be used to un-register a specified plug-in, for example,

epifunreg -p abc/tuxedo/tsam

After unregistering the custom plug-in, you must use “epifregedt” to modify the Fan-out
plug-in invocation again based on current available plug-ins. For example:

epifregedt -s -k "SYSTEM/impl/bea/performance/monfan' \

Build TSAM Agent Custom Plug-in 3-31

Creating a BEA TSAM Agent Custom Plug-in

-a InterceptionSeq=bea/performance/mongui

Note: Itis strongly recommended to register/unregister/modify the plug-in after shutting down

a Tuxedo application.

BEA TSAM Agent Plug-in Development/Deployment Notes

3-32

Do not use use Tuxedo ATMI calls in the plug-in except for the FML32 operations

tpal loc/tprealloc/tpfree and tptypes. The monitoring points are embedded in the
Tuxedo communication framework. Embedded ATMI calls may compromise current
Tuxedo context.

You do not need to free FML32 buffers; the BEA TSAM framework will free them. You
can add fields as needed. If there is no memory space in the buffer, tpreal 1oc must be
used to extend the buffer space.

Note: Changed buffer s are passed to the plug-in invocation sequence that is after the
current one.

If there is any information returned to the TSAM framework, such as new correlation ID
and changed required fields, the latest plug-in changesl take effect.

When using the BEA TSAM default plug-in, do not set required fields using
TMMONITOR and the change them in the plug-in.

Do not change the MONITORCTL udata. It is a read only interception of application
messages. Any modification will result un-expected behavior.

Build TSAM Agent Custom Plug-in

	Overview
	Overview
	Overview
	Tuxedo Plug-in Framework Concepts
	Interface
	Implementation
	Plug-in Register/Un-register/Modifications

	Developing a BEA TSAM Agent Plug-in
	Create Plug-in Source Code
	Build the Plug-in
	Register the Plug-in
	Enable BEA TSAM Monitoring
	Run a Call and Check the Standard Output.

	BEA TSAM Agent Plug-in Interface
	Version and Interface Identifier
	Function Table
	Field Map Operation Facility
	Other Help Header Files

	BEA TSAM Agent Plug-in Implementation
	Define “perf_mon_1” in the “e_perf_mon.h” Function Table
	Define the Plug-in Information Variable
	Write the Plug-in Entry Routine
	Writing Concrete Plug-in Implementations
	Call Path Monitoring Plug-in Routine
	Service Monitoring Plug-in Routine
	System Server Monitoring Plug-in Routine
	Transaction Monitoring Plug-in Routine
	Configure the Plug-in to Tuxedo

	BEA TSAM Agent Plug-in Development/Deployment Notes

