
BEATSAMTM

Administration Guide

Version 1.1
Document Released: September 28, 2007

BEA TSAM Administration Guide iii

Contents

1. Introduction to BEA TSAM
Overview . 1-1

BEA TSAM Features . 1-2

BEA TSAM Components . 1-3

BEA TSAM Agent. 1-3

BEA TSAM Manager . 1-3

TSAM Architecture Diagram. 1-4

BEA TSAM Concepts. 1-5

Call Path Monitoring . 1-5

Service Monitoring . 1-6

System Server Monitoring . 1-6

Transaction Monitoring . 1-6

Monitoring Policy . 1-6

Performance Metrics . 1-7

BEA TSAM Use Cases . 1-8

Understanding Your Applications . 1-8

Solving Application Performance Problems . 1-9

Improving Application Performance . 1-11

Quick Start . 1-11

2. BEA TSAM Agent
Prerequisites . 2-1

iv BEA TSAM Administration Guide

Monitoring Policy Management. 2-1

Concepts . 2-2

Configuring Monitoring Policies . 2-7

TMMONITOR Environment Variable . 2-8

changemonitor Command . 2-8

MIB Interface . 2-10

BEA TSAM Console. 2-10

tpcallinfo API . 2-11

LMS (Local Monitor Server) . 2-11

Plug-in Level Events . 2-11

Overview. 2-11

Administration Tasks . 2-12

Check Plug-in Generated Events Using the BEA TSAM Console. 2-15

Subscribing to Plug-in Generated Events . 2-15

Configuration Reference . 2-17

Plug-in Event Trigger Format . 2-20

3. BEA TSAM Manager
Overview . 3-1

BEA TSAM Data Server. 3-1

Database . 3-2

BEA TSAM Console. 3-2

Configuring BEA TSAM Manager . 3-3

 . 3-4

BEA TSAM User’s Guide 1-1

C H A P T E R 1

Introduction to BEA TSAM

This topic contains the following sections:

Overview

BEA TSAM Features

BEA TSAM Components

BEA TSAM Concepts

BEA TSAM Use Cases

Quick Start

Overview
BEA TSAM (Tuxedo System and Application Monitor), is a BEA Tuxedo add-on product.
Tuxedo is widely used by enterprises that develop and use in mission-critical applications. It acts
as the infrastructure layer in distributed computing environments. The complexity of Tuxedo and
the applications running on top of it makes performance measurement extremely complex.

BEA TSAM monitors the major performance sensitive areas of a Tuxedo-supported enterprise
computing environment. It can be used to monitor real-time performance bottlenecks and
business data fluctuations, determine service models, and provide notification when pre-defined
thresholds are violated.

I n t roduct ion to BEA TSAM

1-2 BEA TSAM User’s Guide

BEA TSAM Features
The following is a list of BEA TSAM features:

Tracking a Tuxedo system call transmissions. Each monitored call is assigned a unique ID
and is propagated along a call path tree. TSAM is able to track calls across multiple
machines and domains.

Real-time call path tree tracking of a monitored request is displayed and the performance
metrics for each step are available.

Call pattern summarization based on historical call tracking data.

Monitoring a particular Tuxedo service, checking its response time, IPC queue length and
execution status. The data can be queried using recent or historical data.

Gathers Tuxedo GWTDOMAIN and BRIDGE overall throughput, graphically displaying
the business data flow curve.

Tracking transactions with XA API specifications. Displays execution status and time used
on each XA call. TSAM helps diagnose global distributed transactions.

The BEA TSAM Manager console provides the capability to create “Alert” definitions that
generate events when predefined thresholds are reached. The events can be posted to
Tuxedo and received by Tuxedo Event Broker subscribers.

Programming APIs that retrieve meta data packaged in a monitored call. Helps developers
make application decisions dynamically.

Flexible monitoring controls. The sampling can be based on interval or ratio and the
monitoring can be turned on or off dynamically without restarting application.

Plug-in mechanism for performance metrics collection at the Tuxedo infrastructure level. It
provides great integration capability between TSAM and other third-party products.

Powerful plug-in-level event triggers without sending raw metrics data to the BEA TSAM
Manager. It supports flexible FML boolean expression to achieve advanced event trigger
conditions. Events can be posted to the Tuxedo Event Broker and/or the BEA TSAM
Manager.

Scalable Tuxedo- side server monitoring design to meet small, middle and large Tuxedo
runtime environments.

J2EE based solution. Easy to deploy, configure and use. It is a pure Web-based solution.
The TSAM Console can be accessed anywhere using a compatible Web browser.

BEA TSAM Components

BEA TSAM User’s Guide 1-3

BEA TSAM Components
BEA TSAM includes two components:

BEA TSAM Agent: Performs Tuxedo-side data collection.

BEA TSAM Manager: Performs data storage, aggregation, computing and representation.

BEA TSAM Agent
The BEA TSAM Agent handles all Tuxedo-side back-end logic. It works in conjunction with the
BEA TSAM Manager, and includes the following sub-components:

BEA TSAM Framework: A Tuxedo-side facility that defines and controls performance
metrics collection behavior. It uses the Tuxedo traditional interface and can be easily
integrated into an existing Tuxedo management suite.

BEA TSAM Plug-in: An extensible mechanism invoked by the BEA TSAM Framework.
The BEA TSAM Agent provides default plug-ins to send data to the LMS (Local Monitor
Server), and then to the BEA TSAM Manager. The default plug-in also checks event
triggers, and generates events if needed.

You can develop your own plug-ins for additional data processing. A customized plug-in
can be linked to an existing plug-in chain, or replace the default plug-in.

LMS (Local Monitor Server): The LMS is a Tuxedo system server. The BEA TSAM
default plug-in sends data to the LMS. The LMS then passes the data to the BEA TSAM
Manager in HTTP/XML message format.

For more information, see BEA TSAM Agent.

BEA TSAM Manager
The BEA TSAM Manager is built on standard J2EE technology. It includes following
components:

BEA TSAM Data Server: Data server that accepts data from the LMS and stores the data
in the database. It is a standard J2EE application.

BEA TSAM Console: The BEA TSAM presentation layer. It is a standard J2EE Web
application and can be accessed via a compatible Web browser. After logging on to the
BEA TSAM Console, you have access to full BEA TSAM functionality.

I n t roduct ion to BEA TSAM

1-4 BEA TSAM User’s Guide

Apache Derby Database: The BEA TSAM Manager ships with an Apache Derby
evaluation copy as the default database solution. Oracle is also supported using a
pre-packaged SQL script (Oracle databases are not included with the BEA TSAM
Manager).

Note: The BEA TSAM Manager ships with Apache Tomcat as the J2EE application server
used by the BEA TSAM Data Server and BEA TSAM Console.

For more information, see BEA TSAM Manager.

TSAM Architecture Diagram
Figure 1-1 TSAM Architecture

BEA TSAM Concepts

BEA TSAM User’s Guide 1-5

BEA TSAM Concepts

Call Path Monitoring
Tuxedo is typically used by a client program (not necessarily a Tuxedo client process) that calls
a service to perform a business computing logic scenario. The service implementation is
completely transparent to the caller. This type of middleware transparency provides many
benefits for development, deployment, and system administration. However, from a monitoring
perspective, it is difficult for the end user or administrator to figure out what happens “behind the
scene”. BEA TSAM call path monitoring helps to alleviate this problem.

Call Path Tree Definition
A simple Tuxedo application call triggers a set of service invocations. The involved services
constitute a tree (call path tree”). A call path tree strictly defines the following factors:

What type of services are involved to perform the initial service request.

The service invocation depth (that is, the depth of the call path tree).

The service invocation sequence. For example, client A calls SVC1. SVC1 calls SVC2 and
SVC3.

Call transportation. The edge (how information is sent and received) of a call path tree
represents the transportation information from caller to service provider. It could be an IPC
queue, BRIDGE connection or DOMAIN connection. The elapse time used for each
transportation is also recorded.

Monitoring Initiator
A “monitoring initiator” is a process that “initiates” tracking a call path tree. The process can
be a Tuxedo client, application server, or client proxy server (WSH/JSH). A typical scenario is
when a tpcall/tpacall is invoked by the monitoring initiator; call path monitoring begins. All
the back-end services involved in this call are displayed on the call path tree representation in the
BEA TSAM Console.

Note: Currently only tpcall/tpacall can trigger a call path monitoring. Other
communication models are not supported.

A Tuxedo application server performs two functions:

All sub-calls made in the service implementation are a part of the call path tree started by
the original monitoring initiator (if the incoming request is already monitored).

I n t roduct ion to BEA TSAM

1-6 BEA TSAM User’s Guide

It is a monitoring initiator with calls made in the service routine according to the
monitoring policy definition.

Service Monitoring
Service monitoring focuses on pure Tuxedo service execution status. It does not care about call
correlation, as call path monitoring does. Service monitoring can be used with call path
monitoring together or performed independently.

System Server Monitoring
Tuxedo has two important system servers: BRIDGE and GWTDOMAIN. BRIDGE connects
multiple Tuxedo machines in a Tuxedo domain. GWTDOMAIN connects one Tuxedo domain
with another. The system server monitoring tracks message throughput, pending sent messages,
and awaiting reply messages on each network link.

Transaction Monitoring
A critical use of Tuxedo is transaction monitoring. Tuxedo coordinates activities in a distributed
transaction with an XA compliant resource manager, such as a database. BEA TSAM transaction
monitoring tracks each XA call triggered in a transaction allowing you to clearly identify where
a global distributed transaction is bottle necked.

Monitoring Policy
Monitoring policy controls monitoring behavior.

On or Off. BEA TSAM monitoring can be dynamically turned on or off (for a specific
type or several kinds of monitoring) for a particular Tuxedo component. The Tuxedo
component can be a particular server, group, or machine.

Interval-Based Monitoring. Monitoring is initiated based on specific time intervals. For
example, call path monitoring. An interval-based monitoring policy can specify that the
call path is tracked in 60-second intervals.

Ratio-Based Monitoring. Monitoring is initiated by the number of executions. For
example, service monitoring. A ratio that is set to 5 indicates that every 5 executed services
are monitored. For call path monitoring, a ratio set to 5 indicates that every 5
tpcall/tpacall calls are monitored.

BEA TSAM Concepts

BEA TSAM User’s Guide 1-7

Flexibility to Reduce Monitoring Performance Impact. BEA TSAM monitoring control
enables you to configure the monitoring policy based on your application size, load and
network activity.

Performance Metrics
BEA TSAM performance metrics are listed as follows:

Correlation ID: A unique identifier that represents a call path tree. It is generated by the
monitoring initiator plug-in. It uses the following format:

DOMAINID:MASTERHOSTNAME:IPCKEY LMID PROCESSNAME PID TID COUNTER

Listing 1 shows an example of a Correlation ID. The monitored call is started by the program
“bankclient” with process ID 8089 and thread ID 1 on machine “SITE1” on Tuxedo domain
“TUXDOM1”. The master is “bjsol18” and IPCKEY in TUXCONFIG is “72854”.

Listing 1 Correlation ID Example

TUXDOM1:bjsol18:72854 SITE1 bankclient 8089 1 99

Service Name: The name of a Tuxedo Service.

Location: The string to identify the process who sends out the performance metrics.

IPC Queue Length: The message number in an IPC queue.

IPC Queue ID: Tuxedo identifier of an IPC queue.

Execution Time: The time used in a Tuxedo service or XA call execution, it is in
millisecond level.

Wait Time: The time used of a message in the transportation stage.

Message Size: The Tuxedo message size.

Execution Status: The tpreturn service return code. It is defined by Tuxedo ATMI
interface.

Call Flags: The flags passed to tpcall/tpacall in Tuxedo ATMI interface.

Call Type: tpcall, tpacall, or tpforward.

I n t roduct ion to BEA TSAM

1-8 BEA TSAM User’s Guide

Elapse Time: The time elapsed sine the a call is monitored.

GTRID: Tuxedo global transaction ID.

Pending Message Number: The number of messages which are delivered to Tuxedo
network layer and waiting for being sent.

Message Throughput: The total message number and volume accumulated in system
server monitoring intervals.

Waiting Reply Message Number: The number of requests in GWTDOMAIN are waiting
reply from remote domain.

XA Code: The XA call return code in transaction monitoring.

XA Name: The XA call name.

BEA TSAM Use Cases
BEA TSAM is built on top of Tuxedo and has unique service, call, and transaction tracking
capabilities. Enterprise organization usually have many widely distributed services deployed and
one client request that requires complex back-end service coordination to perform the processes.

It can be difficult for an administrator to figure out what exactly is happening during these
interactions. BEA TSAM call path monitoring helps to alleviate this problem.

The followings are FAQs will help you to better understand how BEA TSAM works with your
applications:

Understanding Your Applications

Solving Application Performance Problems

Improving Application Performance

Understanding Your Applications

What happens behind a simple call?
Enabling call path monitoring for a Tuxedo client or application server allows you to find out all
the information behind a simple tpcall/tpacall. The tracking points span multiple machines
and multiple domains. You can clearly see the following information in the call path tree:

The service invocation hierarchy that supports your call

BEA TSAM Use Cases

BEA TSAM User’s Guide 1-9

The transmission cost for each message flow step, from IPC Queue to Network

The execution status of each service involved

The call type and call flags of all the intermediate calls

The waiting time in queue and response time for each service

The end-to-end response time

What about my services?
Service monitoring enables you to measure your service response time, IPC queue length, and
execution status. Service monitoring provides the following information:

Service Execution Status Summary.

BEA TSAM tells you how many service executions succeeded or failed recently or during
a period of time. BEA TSAM also computes the average response time. These are
important factors in measuring the quality of your services.

Service Activity Trends.

BEA TSAM also displays your services activity trends. It tells you what the peek time is
and when the services requests are low.

Is my network busy?
BEA TSAM allows you to monitor the network connection attached to your local domain
gateways. You can easily find which link is busy and its data fluctuation trend. You have more
in-depth understanding of the business data flow model between departments and organizations.

Who participates in my transaction?
BEA TSAM monitors the transaction XA calls. Transaction participants are listed on the
transaction monitoring page. For a large distributed transaction, a slow branch can result in the
entire transaction being slowly completed. BEA TSAM lets you know who the transaction
participants are, and how much time is used during XA calls.

Solving Application Performance Problems

Why is the service response time is slow recently?
Turn on the call path monitoring for a particular call to investigate the following:

I n t roduct ion to BEA TSAM

1-10 BEA TSAM User’s Guide

How much network-side time is used

Which services are the most time-consuming point in the call path tree

Is the service routed to a remote machine or a domain

Is it client wait time a reply problem?

My back-end services failed, but I don’t know which one.
Turn on call path monitoring. You can find the service execution status for this call.

How many kinds of call paths are in my application?
Turn on call path monitoring using an adequate sampling policy. BEA TSAM will tell you how
many call paths (a “call pattern”) exist in your application.

Why is my global distributed transaction completed slowly?
Turn on BEA TSAM transaction monitoring. You can see the execution time used by the
transaction participants.

I want to correlate local transactions with remote transactions.
Turn on BEA TSAM transaction monitoring for all involved processes and GWTDOMAIN. The
BEA TSAM Console shows you the transaction mapping between local and remote transactions.

I want to know what is the peak time that my local domain uses resources
from the remote domain, and how busy it is.
Use BEA TSAM system server monitoring on the GWTDOMAIN. BEA TSAM records the
information for you, and shows you the throughput trends.

Can I check program request information?
Turn on call path monitoring with the proper monitoring policy and then use “tpgetcallinfo”.
The following information is provided.

The timestamp when the request leaves the caller

The timestamp when the request comes into to the server IPC queue

The client IP address (workstation client, GWWS client)

The monitoring initiator process, tpgetcallinfo(), can also tell you the total time used.

Quick S ta r t

BEA TSAM User’s Guide 1-11

Improving Application Performance

Are my services too fine grained?
In some cases, too many services supporting a request may add to performance overhead. Use
call path tree to investigate. The service number and the tree depth are key analysis factors.

Are my services deployed properly?
Some services are called more frequently than others. Use call path monitoring to gather the
information, and re-consider the service deployment. It is best to have the most used services
located on the local machine and LAN. Services across domain services should be used carefully.

Do I have too many servers configured?
BEA TSAM provides a central view of your Tuxedo applications with multiple domain support.
Using BEA TSAM Console allows you to easily see how many domains, machines, servers and
services are configured.

I want to be notified when a service execution fails or the response time
exceeds a pre-defined threshold
You have two ways to do this. One is using BEA TSAM plug-in level event trigger; the other is
to define alerts using the BEA TSAM Manager console.

BEA TSAM Plug-in Event Trigger.

It supports the FML boolean expression for what Tuxedo components you want to check
and what metric conditions you want to trigger an event. It does not require performance
metrics to be sent to the BEA TSAM Manager because the evaluation is done bythe BEA
TSAM default plug-in.

BEA TSAM Manger Console Alert Management.

The BEA TSAM Manger Console allows you to define an alert with required conditions.
When the threshold is reached, BEA TSAM generates the events. The events can also be
posted to Tuxedo Event Brokers.

Quick Start
To add BEA TSAM functionality to an existing Tuxedo application, do the following steps:

I n t roduct ion to BEA TSAM

1-12 BEA TSAM User’s Guide

1. Install BEA TSAM

Install the BEA TSAM Agent and the BEA TSAM Manager. For more information, see the
BEA TSAM Installation Guide.

2. Deploy BEA TSAM Manager

For more information, see the BEA TSAM Deployment Guide.

3. Deploy TSAM Agent

For more information, see the BEA TSAM Deployment Guide

4. Find Your Tuxedo Configuration

Login to the BEA TSAM Manager Console (for example: http://localhost:8080/tsam).

Note: The first time you login to the TSAM console you must set the admin password.

Go to BEA TSAM > Administration > Tuxedo Configuration to find your Tuxedo
configuration. For more information, see the BEA TSAM Console User Guide.

5. Configure Monitoring Policy

Monitoring policy defines what and how you want to monitor. The monitoring policy can
be configured at either TSAM Manager side or TSAM Agent side.

For more information, see Monitoring Policy Management and Configuring Monitoring
Policies in the “BEA TSAM Agent User Guide.”

For more information, see Policy Management in “BEA TSAM Console User Guide.”

• Typical Monitoring Policy

Go to BEA TSAM > Administration > Policy Management, click “Create” to enter
the “Policy Specification” page. Input “tsampolicy” in the “Name:” input field.

• Monitor call path initiated from a particular server
a. Click “New” button to show the “Policy Definition” page.
b. In the left panel “Tuxedo Component”, select the “Domain”,
“Machine”,”Group” and “Server” in the drop down lists.
c. In the right panel “Policy Management Definition” select the “Enable”
checkbox of “Call path”
d. Click “Add” button
e. Select that policy entry just created in “Monitoring Policy Set” table and click
“Enable” button.

http://edocs.bea.com/tsam/docs11/install/intro.html
http://edocs.bea.com/tsam/docs11/install/intro.html
http://edocs.bea.com/tsam/docs11/deployment/deploy.html
http://edocs.bea.com/tsam/docs11/deployment/deploy.html
http://edocs.bea.com/tsam/docs11/userguide/tsamconhelp.html
http://edocs.bea.com/tsam/docs11/admin/tsamagent.html#wp1077578
http://edocs.bea.com/tsam/docs11/admin/tsamagent.html#wp1079107
http://edocs.bea.com/tsam/docs11/admin/tsamagent.html#wp1079107
http://edocs.bea.com/tsam/docs11/userguide/tsamconhelp.html#wp1164012

Quick S ta r t

BEA TSAM User’s Guide 1-13

• Check BEA TSAM Agent results from Tuxedo
If you want to monitor a call path from a particular client process, you must use the
TSAM Agent TMMONITOR environment variable for that client.

• Monitor services of a particular server
Same steps as call path monitoring policy set, except you must select the Services
“Enable” check box.

• Monitor a Domain Gateway
Same steps as call path monitoring policy set but
- Select GWTDOMAIN you want in the “Tuxedo Component” panel
- Select System Servers “Enable” check box.

• Monitor XA calls in transaction for a particular group
Same steps as call path monitoring policy set but
- Select the GROUP you want in the “Tuxedo Component” panel
- Select the Transaction “Enable” check box

6. Start to Monitor Tuxedo

Login to TSAM Console, and start to monitor Tuxedo system and application.

Go to TSAM > Call Path to monitor call path.

Go to TSAM > Service to monitor service.

Go to TSAM > System Server to monitor system server.

Go to TSAM > Transaction to monitor transaction.

For more information, see the BEA TSAM Console User Guide.

http://edocs.bea.com/tsam/docs11/userguide/tsamconhelp.html

I n t roduct ion to BEA TSAM

1-14 BEA TSAM User’s Guide

Using TSAM Agent 2-1

C H A P T E R 2

BEA TSAM Agent

This topic contains the following sections:

Prerequisites

Monitoring Policy Management

Configuring Monitoring Policies

tpcallinfo API

LMS (Local Monitor Server)

Plug-in Level Events

Prerequisites
To effectively and correctly use the BEA TSAM Agent, please note the following prerequisites:

The system clocks for all monitored Tuxedo machines and the BEA TSAM Manager are
synchronized. A uniform time server is recommended.

Set each Tuxedo domain to a unique DOMAINID in the UBBCONFIG file.

Monitoring Policy Management
BEA TSAM provides flexible and comprehensive monitoring management functionality. It
provides the following features:

BEA TSAM Agent

2-2 Using TSAM Agent

Monitoring can be turned on or off dynamically without rebooting Tuxedo applications

Monitoring can be applied to Tuxedo components at the server, group or machine level

Multiple monitoring management interfaces:

– tmadmin command

– environment variable

– MIB

– BEA TSAM Console

Fine grained monitoring properties based on time intervals and ratios

Concepts
Before monitoring starts, you must specify what Tuxedo system components and applications
you want monitored, and how you want to monitor them by configuring respective monitoring
policies. A monitoring policy defines the monitored Tuxedo component, monitoring categories,
and monitoring properties.

Monitoring Tuxedo Components
The monitored Tuxedo component can be a machine, group and/or server. At the machine level,
all Tuxedo application processes are effected. At the group level, all the servers running in a
group are effected. For a particular server, only the server instance is effected.

Note: The later setting of a monitoring policy overwrites previous settings. For example, if a
server has enabled “service” monitoring, and the last group that the server belonged to is
set to “call path” monitoring, the “call path” attribute overwrites the existing “service”
monitoring setting.

Monitoring Categories
BEA TSAM Agent has 4 monitoring areas:

Call Path Monitoring

Service Monitoring

System Server Monitoring

Transaction Monitoring

Moni to r ing Po l ic y Management

Using TSAM Agent 2-3

Call Path Monitoring
When call path monitoring is enabled, the BEA TSAM framework tracks a requesting calls (using
tpcall or tpacall) until a reply is received by the initiating caller. All back-end services track
and compose the call path tree nodes. The edge connecting service nodes carry the transport
information

Call path monitoring can be initiated from a client, server or WSH/JSH. When a reply is received
from the initiating caller, the monitoring activity for the call is complete.

Key Word: “app”.

If “app” is specified for a process, the process becomes the “monitoring initiator”. A call
from this process can be tracked throughout the Tuxedo system until a reply is received.
The BEA TSAM console tracks the call path tree in real time. Monitoring initiator
processes are limited to the following:

client process (ATMIs)

WSH/JSH

application server processes

Once monitoring for a particular call is started by the “initiator,” monitoring attributes are
propagated with this call along its call path. All processes handling this call recognize
monitoring characteristics and update related metrics.

An application server has two specific and important functions:

If the incoming request already indicates it is being monitored, then any call made
in the service routine is deemed as part of the original call path tree, whether “app”
is set for the server or not.

If the incoming request does not have monitoring attribute, and “app” is set for the
current process, then any service implementation call will start a new monitoring
process. The application server becxomes the “monitoring initiator”.

Note: BEA TSAM uses the “monitoring initiator” as part of the correlation ID. For a server
process, it is the process name. For a client process, you should specify the name the
same as specified using userlog(3c). If no name is given, BEA TSAM uses “client”
as the fixed name.

Service Monitoring
Unlike call path monitoring (which focuses on message correlation triggered by a particular call),
service monitoring focuses on pure service execution. It records service execution status

http://edocs/tuxedo/tux100/rf3c/rf3c.html#wp1049646

BEA TSAM Agent

2-4 Using TSAM Agent

including the request waiting time, service routine execution time, execution status and buffer
size, and so on.

Key Word: “svc”.

Enables service monitoring. It applies to normal Tuxedo application services and services
imported by GWTDOMAIN.

System Server Monitoring
The Tuxedo framework has two key servers, BRIDGE and GWTDOMAIN, that connect
machines and domains in a distributed computing environment. BEA TSAM also monitors the
activity on the these servers. System server monitoring tracks the overall data for each network
connection, and does not differentiate what service or call is passed through.

Key Word: “sys”.

Enables system server monitoring for the current process. It only applies to Tuxedo
BRIDGE and GWTDOMAIN servers. When sys is set, BEA TSAM periodically reports
the data on the connected network link .

Transaction Monitoring
A major Tuxedo function is transaction monitoring (following XA specifications). A global
transaction may have multiple resource managers involved. Because the XA interface is
implemented by the vendor, it is difficult for Tuxedo users to measure how much time is used by
the XA calls. BEA TSAM provides transaction monitoring functionality.

Besides transaction call time tracking, BEA TSAM agent also reports the return code and
transaction ID. If a transaction is sent across domains, BEA TSAM also reports mapping between
local transactions and remote transactions.

Key Word: “tran”.

Enables transaction monitoring. Each transaction call is measured and the execution status
sent to the BEA TSAM manager.

All the four monitoring types can be used together or individually. The BEA TSAM console
organizes the functionality pages based on the defined monitoring type(s).

Monitoring Properties
BEA TSAM Agent has 4 monitoring properties areas:

Call Path Monitoring Properties

Moni to r ing Po l ic y Management

Using TSAM Agent 2-5

Service Monitoring Properties

System Server Monitoring Properties

Transaction Monitoring Properties

Call Path Monitoring Properties
Call path monitoring properties use the following keywords:
appratio

Enables monitoring frequency. Its range is [0-65535]. “0” indicates that monitoring is
stopped. If not specified, the default value is 1 which specifies that every request is
monitored.

appratio only applies to the “monitoring initiator” and controls the request monitoring
frequency. For example, if a client process is set to appratio=3 and issues 10 tpcalls, then
request calls 1, 4, 7, 10 are tracked.

appinterval

Initiates the time interval (in seconds) for a monitored action. Its range is [0-65535]. If not
specified, the default value is “0” which specifies that there is no time limitation.

Similar to appratio, appinterval only applies to the “monitoring initiator.” For
example, if a client process is set to “appinterval=10” and continually issues calls for 60
seconds, then calls are tracked at the following time intervals: 0, 10, 20, 30, 40, 50, 60.

Note: “appratio” and “appinterval” are exclusive. If they are not specified, then every
call is monitored.

appnolog

For monitored call path requests, by default every process that participates on a call path
tree invokes the monitoring plug-in. In some instances, you may not want to trigger the
plug-in. Here are twoscenarios:

An application server or domain gateway administrator may want to disable the
plug-in (to increase performance) even though the pass-through message indicates
it is being monitored.

The monitoring initiator does not want trigger the plug-in invocation on its call
path tree, but the monitoring attributes are preferred in the message so a program
can use tpgetcallinfo() to retrieve information.

Using “appnolog” allows the BEA TSAM framework to track the calls in Tuxedo system,
but without initiating the plug-in invocation. “appnolog” default value is 0 which permits
the plug-in to be invoked If “appnolog” is set to 1, the plug-in is not invoked.

BEA TSAM Agent

2-6 Using TSAM Agent

Here are two appnolog usage examples:

If “appnolog” is specified by the monitoring initiator, the plug-in invocation is not
allowed on its call path tree

If “appnolog” is specified by a “pass-through” process, the plug-in invocation is
not allowed in this process.

Plug-in invocation is only allowed when “appnolog” is not set in both examples.

Note: If “appnolog” is used in part of process on the call path tree, the call path tree on
BEA TSAM Web console is not complete.

appdecode

Used only for Tuxedo BRIDGE call path monitoring. By default, messages passing
through BRIDGE are encoded. This means the BEA TSAM framework cannot extract the
monitoring attributes from the message. If BRIDGE is monitored, appdecode must be set
for BRIDGE processes. The default value is 0, which means BRIDGE will not decode the
message and will not appear in the call path tree. If “appdecode” is set to 1, BRIDGE
decodes the “monitored message” and composes the transportation information on the call
path tree.

Note: If “BRIDGE” is set with “appdecode=1”, it will not decode non-monitored
messages.

Service Monitoring Properties
svcratio

Controls service execution monitoring frequency. Similar to appratio.
svcinterval

Controls service time interval monitoring. Similar to appinterval.

Note: svcratio and svcinterval are exclusive. If both of are not specified, all services are
monitored.

System Server Monitoring Properties
sysinterval

Controls the plug-in invocation interval of the monitored BRIDGE or GWTDOMAIN. Its
range (in seconds) is [30-65535]. The default value is 300.

Transaction Monitoring Properties
tranratio

Conf igur ing Moni to r ing Po l i c i es

Using TSAM Agent 2-7

Controls the transaction call monitoring process-level frequency. Its range is [0-65535].
The default value is 1. A 0 value stops transaction monitoring.

Note: It is recommended that you use the default value since other values may cause a loss
of transaction monitoring data.

Configuring Monitoring Policies
BEA TSAM provides four policy monitoring configuration interfaces:

TMMONITOR Environment Variable

changemonitor Command

MIB Interface

BEA TSAM Console

Policy monitoring information must use the following format:
monitoring category:monitoring properties:required fields

monitoring category: defines the monitoring category

monitoring properties: defines the monitoring properties

required fields: reserved for BEA TSAM plug-in development. It should not be
configured for the BEA TSAM default plug-in.

Table 2-1 lists the corresponding keywords

Table 2-1 BEA TSAM Monitoring String Specification Keywords

Monitoring
Category
Keywords

Monitoring Property Keywords

app appratio, appinterval, appnolog, appdecode

svc svcratio, svcinterval

sys sysinterval

tran tranratio

BEA TSAM Agent

2-8 Using TSAM Agent

TMMONITOR Environment Variable
The TMMONITOR environment variable enables monitoring for required processes. It can be
defined in ENVFILE parameter in the UBBCONFIG file *MACHINES section or in Tuxedo
application startup scripts. Usually Tuxedo client programs use environment variables to control
the behavior.

Note: BEA TSAM does not restore the original process monitoring settings if the process is
restarted unless TMMONITOR is used.

Listing 2-1 provides a TMMONITOR example with all four monitoring areas turned on. The policies
are using default values.

Listing 2-1 TMMONITOR Environment Variable: Example1

TMMONITOR=app,svc,tran,sys::

Listing 2-2 provides a TMMONITOR example with call path and service monitoring turned on.
appratio is set to 10 and svcinterval is set to 30.

Listing 2-2 TMMONITOR Environment Variable: Example2 pro

TMMONITOR=app,svc:appratio=10,svcinterval=30:

changemonitor Command
Using the tmadmin changemonitor command allows you to dynamically change monitoring
settings. Listing 2-3 provides a changemonitor usage example.

Listing 2-3 Using changemonitor

> help chmo

changemonitor (chmo)[-m machine] | [-g groupname] | [-g groupname -i srvid]

newspec

Conf igur ing Moni to r ing Po l i c i es

Using TSAM Agent 2-9

Listing 2-4 provides a changemonitor example that enables all the service monitoring for
processes running on machine SITE1.

Listing 2-4 changemonitor: Example 1

tmadmin

chmo -m SITE1 svc::

Listing 2-5 provides a changemonitor example that enables service and transaction monitoring
for all GROUP1 servers. svcinterval is set to 30 seconds.

Listing 2-5 changemonitor: Example 2

tmadmin

chmo -g GROUP1 svc,tran:svcinterval=30:

Listing 2-6 provides a changemonitor example that enables GWTDOMAIN system monitoring
with sysinterval set to 30 seconds. The GWTDOMAIN is located at group GWGRP, server
ID 10.

Listing 2-6 changemonitor: Example 3

tmadmin

chmo -g GWGRP -i 10 sys:sysinterval=30:

BEA TSAM Agent

2-10 Using TSAM Agent

MIB Interface
BEA TSAM framework also opens the Tuxedo MIB interface for developers. The
TA_TMMONITOR attribute set in the following MIB(5) classes can be used to control BEA TSAM
monitoring. TA_TMMONITOR accepts the same string format used in the command line and
environment variables.

T_CLIENT Class

T_SERVER Class

T_MACHINE Class

For more information, see MIB(5) in reference in the File Formats, Data Descriptions, MIBs, and
System Processes Reference.

Note: TA_TMMONITOR is a local MIB attribute, so when using the MIB for set operation, the
MIB_LOCAL field must be set. The MIB “get” operation is not supported in the current
release.

BEA TSAM Console
The monitoring policy can also be configured using the BEA TSAM Console policy management
page. The BEA TSAM Console policy management page allows you to:

create policy definitions

group policies in a monitoring policy set

track policy usage

Note: It is not recommended that you use Tuxedo-side control mechanisms and BEA TSAM
console-side policy management together; monitoring consistency and accuracy may be
affected.

For example, a monitoring policy is created using the BEA TSAM console and applied
to Tuxedo components, but is monitoring policy is changed later using Tuxedo-side
command line settings. The BEA TSAM is not aware of the Tuxedo-side changes and
still shows its original settings.

Cancel Monitoring
If you use the TMMONITOR, changemonitor command, or MIB, cancel monitoring is initiated
in the same way as you enable monitoring. Setting the string specification to “::” cancels

http://edocs/tuxedo/tux100/rf5/rf5.html#wp1495410

tpca l l in fo AP I

Using TSAM Agent 2-11

monitoring on the effected process. The BEA TSAM Console allows to cancel using the GUI
interface.

tpcallinfo API
User application can take advantage of the monitoring attributes by using tpgetcallinfo.
tpgetcallinfo is designed for call path monitoring. Using tpgetcallinfo, allows
applications to make dynamic decisions based on application performance metrics.

For more information, see tpgetcallinfo() in the BEA TSAM Reference Guide.

LMS (Local Monitor Server)
LMS (Local Monitor Server) is a component of BEA TSAM Agent. It performs the following
tasks:

Act as a data proxy server between BEA TSAM default plug-in and BEA TSAM Manager

Accept management request from BEA TSAM Manager and apply to Tuxedo domain

Accept Tuxedo event request from BEA TSAM Manager and post it to Tuxedo Event
Broker

Send Tuxedo domain configuration to BEA TSAM Manager

Other help functionality

For more information, see LMS in the BEA TSAM Reference Guide.

Plug-in Level Events

Overview
You can to define and generate event monitoring using BEA TSAM. Event monitoring data is
collected by the BEA TSAM Agent and sent to the BEA TSAM Manager. This process may
increase system overhead.

The BEA TSAM Event Plug-in help minimizes system overhead. It checks monitor data against
pre-defined rules at the plug-in level. If the specified rule is satisfied, the event is sent to the
Tuxedo Event Broker and/or BEA TSAM Manager (specified in the rule definition).

http://edocs.bea.com/tsam/docs11/ref/tsamref.html
http://edocs.bea.com/tsam/docs11/ref/tsamref.html

BEA TSAM Agent

2-12 Using TSAM Agent

Tuxedo Event Broker plug-in generated events are subscribed by application. The data portion of
the event is an FML32 typed buffer which contains generated event information and monitoring
data. BEA TSAM Manager generated events can be queried from the BEA TSAM Console TSAM
> Alerts > Events menu (based on the plug-in contents).

Administration Tasks
Enabling the BEA TSAM Event Plug-in requires the following administrative tasks:

1. Configuring the UBBCONFIG File

2. Composing the Plug-in Rules File

3. Activating the Rules File.

Configuring the UBBCONFIG File
To configure BEA TSAM events plug-in the UBBCONFIG file, do the following two steps:

1. Define MAXSPDATA in the *RESOURCE section to reserve bulletin board space for storing
plug-in event rules.

MAXSPDATA is needed to setup to reserve space in BB to store Plug-in event rules if the
size of rules file is bigger than 8192 bytes.

Note: More precisely, it should be the effective size instead of the size of rules file. The
effective size is approximately equal to: (the file size) - (size of
comments) + (size of ignored optional items), all in bytes.

The MAXSPDATA value should not be less than MAXQUEUES*514+32+max{8192,
<the size of rules file>}.

The MAXSPDATA minimum value can be retrieved using the ctsamverify command in
tmadmin if the rules file exists (tsamrules is the rules file name) and is formatted
properly.

> ctsamverify tsamrules

Note: The rule file <tsamrules> requires that MAXSPDATA is set to at least <41120>.

2. Add the Tuxedo Event Broker and/or LMS to the *SERVER section.

The Tuxedo Event Broker and/or LMS must be setup in the *SERVERS section to enable
the BEA TSAM events plug-in. Listing 2-7 displays an LMS setup.A snippet
UBBCONFIG is as following:

P lug- in Leve l Events

Using TSAM Agent 2-13

Listing 2-7 LMS Set in the UBBCONFIG File

*SERVERS

TMSYSEVT SRVGRP=SYSGRP SRVID=1 CLOPT="-A --"

TMUSREVT SRVGRP=SYSGRP SRVID=2 CLOPT="-A --"

LMS SRVGRP=SYSGRP SRVID=3

CLOPT="-A -- -l <tsam-hostname>:8080/tsam/dataserver -t 60"

Composing the Plug-in Rules File
The rules file is a text file which contains BEA TSAM and event plug-in. For more information,
see “Configuration Reference” on page 2-17. Listing 2-8 lists an example rules file.

Listing 2-8 Event Plug-in Rules File Example (tsamrules)

*GENERAL_RULES

SVCCHECKALL=N

CALLCHECKALL=Y

*SVC_TRIGGER

SVCTRIGGER=TA_SVCRNAM[?]=='TOLOWER':TA_MONERRNO!=0:event(name=TSAM_svcerr,

severity=Warn,destination=tsammanager+eventbroker)

*CALL_TRIGGER

CALLTRIGGER=TA_SERVERNAME=='simpserv':TA_MONELAPSETIME>=5000:event(name=TS

AM_longcall,severity=Warn,destination=eventbroker+tsammanager)

*BBL_TRIGGER

BBLTRIGGER=TA_SVCRNAM[?]=='TESTCALL':TA_MONEXECTIME>=30000:event(name=TSAM

_hang,severity=Warn,destination=tsammanager+eventbroker)

*REPORT_POLICY

BEA TSAM Agent

2-14 Using TSAM Agent

SVCSENDTOLMS=Y

CALLSENDTOLMS=Y

Activating the Rules File
The plug-in rules file is loaded at startup if the name of the file is specified using the
TSAMPLUGINRULES (Listing 2-9) environment variable in MASTER node. The loaded rules are
saved to the Bulletin Board and automatically sent to all machines in MP mode.

The plug-in rules file can be loaded or reloaded later at runtime using tmadmin from MASTER
node (Listing 2-10). Two tmadmin commands (configtsam and ctsamverify) support
the event plug-in rules file operation at runtime. For more in formation, see tmadmin(1) in the
BEA Tuxedo Command Reference.

Note: Please note that all previous setting will be lost after reloading rules file.

The BBL (or DBBL in MP mode) logs the messages LIBTUX_CAT:6775 or LIBTUX_CAT:6776
in ULOG if the rules file does not load successfully. New rules will not take effect if the
LIBTUX_CAT:6775 message is logged since the rules file was not loaded successfully.

LIBTUX_CAT:6775:ERROR: Failed to load TSAM Event Trigger rules from file

<%s>. Reason:<%s>

LIBTUX_CT:6776:INFO: Load TSAM Event Trigger rules from file <%s>. Rules

size <%d>

Listing 2-9 Load Rules File at Startup Example

TSAMPLUGINRULES=$APPDIR/tsamrules; export TSAMPLUGINRULES

tmboot -y\

Listing 2-10 Load Rules File at Runtime Example

tmadmin - Copyright (c) 1996-1999 BEA Systems, Inc.

Portions * Copyright 1986-1997 RSA Data Security, Inc.

All Rights Reserved.

Distributed under license by BEA Systems, Inc.

http://edocs.bea.com/tuxedo/tux100/rfcm/rfcmd.html#wp1242017

P lug- in Leve l Events

Using TSAM Agent 2-15

Tuxedo is a registered trademark.

> configtsam load tsamrules

INFO: TSAM Event Trigger successfully loaded.

Check Plug-in Generated Events Using the BEA TSAM
Console
BEA TSAM Manager plug-in generated events can be queried from the BEA TSAM console
TSAM > Alerts > Events page. These events belong to a separate event catalog named,
Plugin, that distinguishes it from events generated by the BEA TSAM Manager alert definition
(which belongs to another catalog named Alert).

Subscribing to Plug-in Generated Events
Tuxedo Event Broker plug-in generated events are subscribed by application. The data portion of
the event is an FML32 typed buffer which contains information of the generated event and
monitor data.

Three trigger types are defined in the rules file:

SVC_TRIGGER

CALL_TRIGGER

BBL_TRIGGER.

Table 2-2 lists the common FML 32 data fields for all events. Table 2-3, Table 2-4 and Table 2-5
show other available data fields.

Table 2-2 Common FML32 Fields for Plug-in Events

Name Description

TA_MONEVENTNAME Event name specified in event action.

TA_MONSEVERITY Event severity specified in event action.

TA_GRPNO Group number.

TA_SRVGRP Group name.

BEA TSAM Agent

2-16 Using TSAM Agent

TA_SRVID Server ID.

TA_MONLOCATION Location where the monitor data is collected, in the format of:

<DOMAINID>:<master machine name>:<IPCKEY> <Logical Machine
ID> <Group Name> <Process Name> <SRVID if process is a server>
<Process ID>.

TA_MONLOGTIMESEC The second when the event is posted.

TA_MONLOGTIMEUSEC The microsecond when the event is posted.

Table 2-2 Common FML32 Fields for Plug-in Events

Name Description

Table 2-3 SVC_TRIGGER FML32 fields

Name Description

TA_MONSVCNAME Service name

TA_MONMSGQUEUED Number of messages queued on the IPC queue of the server which
providing this service

TA_MONERRNO Return code of the service

TA_MONURCODE User return code of the service

TA_MONEXECTIME Response time of the service

Table 2-4 CALL_TRIGGER FML32 fields

Name Description

TA_MONSVCNAME The service name

TA_MONELAPSETIME The elapse time in milliseconds since the call started from the monitoring
initiator

TA_MONDEPTH The call path tree depth, counting from 0 (initiator).

TA_MONCORRID The correlation id of the monitored call

P lug- in Leve l Events

Using TSAM Agent 2-17

Configuration Reference
A BEA TSAM rules file is made up of several possible specification sections. Lines beginning
with an asterisk (*) indicate the beginning of a specification section. Each line contains the name
of the section immediately following the *. Allowable section names are:

GENERAL_RULES

SVC_TRIGGER

CALL_TRIGGER

BBL_TRIGGER

REPORT_POLICY

Parameters are generally specified using the following format: KEYWORD = value. A space
(space or tab character) is allowed on either side of the equal sign (=). This format sets a value to
KEYWORD. Valid keywords are described within each section.

The rules file may contain comments that start with a ‘#’ (pound sign). A “newline” ends a
comment. Blank lines and comments are ignored.

These sections can be divided into three independent groups:

Plug-in Event rules (the first three sections)

TA_MONERRNO Return code of the service

TA_MONURCODE User return code of the service

Table 2-4 CALL_TRIGGER FML32 fields

Name Description

Table 2-5 BBL_TRIGGER FML32 fields

Name Description

TA_MONSVCNAME Service name

TA_MONEXECTIME The elapsed time in milliseconds since the service started execution.

BEA TSAM Agent

2-18 Using TSAM Agent

BBL service execution time trigger (BBL_TRIGGER)

BEA TSAM Manager data reporting policy (REPORT_POLICY).

GENERAL_RULES
This section provides global event plug-in settings. Lines in the GENERAL_RULES section use
the following format: KEYWORD=value; where KEYWORD is the name of the parameter, and the
value is its associated value. Valid KEYWORDs are as follows:

SVCCHECKALL={ Y | N }
Specifies whether or not all triggers defined in SVC_TRIGGER section should be
evaluated. If SVCCHECKALL is not specified, the default is Y.

If SVCCHECKALL is set to N, evaluation stops when a rule is evaluated as true. This means
that, at most, one event is generated in this case. The rules are evaluated in the same order
as they appear in the rules file.

CALLCHECKALL={ Y | N }
Specifies whether or not all triggers defined in CALL_TRIGGER section should be
evaluated. If CALLCHECKALL is not specified, the default is Y.

If CALLCHECKALL is set to N, evaluation stops when a rule is evaluated astrue. This means
that, at most, one event is generated in this case. The rules are evaluated in the same order
as they appear in the rules file.

SVC_TRIGGER
This section provides service event plug-in trigger rules based on service monitor data. The check
is done upon the completion of service execution.

Lines in the SVC_TRIGGER section use the following format: KEYWORD=value; where KEYWORD
is the name of the parameter, and value is its associated value. Valid KEYWORDs are as follows:

SVCTRIGGER=components filter:metrics filter:actions
Specifies for which Tuxedo server (components filter, optional), under what condition
(metrics filter) Plug-in should execute the actions. For the syntax for filter and
action, refer to Plug-in Event Trigger Format.

There can be multiple SVCTRIGGERs defined in this section, each occupied one line.

CALL_TRIGGER
This section provides call path trigger rules for Plug-in event based on call path monitor data. The
check is done in all steps of call path.

P lug- in Leve l Events

Using TSAM Agent 2-19

Lines in the CALL_TRIGGER section are of the form: KEYWORD=value where KEYWORD is
the name of the parameter, and value its associated value. Valid KEYWORDs are as follows:

CALLTRIGGER=components filter:metrics filter:actions
Specifies for which Tuxedo server (components filter, optional), under what condition
(metrics filter) Plug-in should execute the actions. For the syntax for filter and
action, refer to Plug-in Event Trigger Format.

There can be multiple CALLTRIGGER definitions in this section, each occupying one line.

BBL_TRIGGER
This section provides trigger rules used by BBL to post events when a service execution time is
longer than pre-defined value. BBL will check executing services in every SCANUNIT. Events
only be posted once for a hang service.

This enable Tuxedo to detect potential service “hang” problem but bring no impact to the server
which executing the service. On the contrary, the server will be terminated with the service
time-out feature.

Lines in the BBL_TRIGGER section are of the form: KEYWORD=value where KEYWORD is
the name of the parameter, and value its associated value. Valid KEYWORDs are as follows:

BBLTRIGGER=components filter:metrics filter:actions
Specifies for which Tuxedo server (components filter, optional), under what condition
(metrics filter) BBL should execute the actions. For the syntax for filter and action,
refer to Plug-in Event Trigger Format.

There can be multiple BBLTRIGGER defined in this section, each occupied one line.

REPORT_POLICY
This section specifies whether or not collected service and call path monitor data should report to
BEA TSAM Manager when default Plug-in is used. Lines in the REPORT_POLICY section are
of the form: KEYWORD=value where KEYWORD is the name of the parameter, and value its
associated value. Valid KEYWORDs are as follows:
SVCSENDTOLMS={ Y | N }

Specifies whether or not service monitor data should report to BEA TSAM Manager by
default Plug-in. The default value is Y.

CALLSENDTOLMS={ Y | N }
Specifies whether or not call path monitor data should report to BEA TSAM Manager by
default Plug-in. The default value is Y.

BEA TSAM Agent

2-20 Using TSAM Agent

Plug-in Event Trigger Format
The Plug-in Event trigger contains three fragments separated by a ‘:’ (colon): components
filter, metrics filter, and actions.

The filter fragment is a boolean expression based on FML32 fields provided by Tuxedo
infrastructure. For more information, see Boolean Expressions of Fielded Buffers in the
Programming a BEA Tuxedo ATMI Application Using FML, Field Manipulations chapter.

The events plug-in first evaluates components filter with the location information of the
process where the monitor data is collected. If the evaluation output is false, this rule is ignored.
Otherwise metrics filter will be evaluated and if the result is true, Plug-in will execute the
actions.

The available FML32 fields for components filter is listed in Table 2-6. The available
FML32 fields for metrics filter is listed in Table 2-7, Table 2-8 and Table 2-9, for
SVC_TRIGGER, CALL_TRIGGER and BBL_TRIGGER respectively.

Each action is defined in the following format:
name(key1=value1,key2=value2+value3,...). name specifies the action type.
Configurable parameters for the action are specified in () following the name using the following
format: KEYWORD=values, separated by a ‘,’(comma). Separating each value with a ‘+’(plus)
if a parameter can contain multiple values. Separating actions with ‘,’(comma) if there are more
than one actions are defined.

Only the event action is supported, and can only be defined once. It is used to post event to
Tuxedo Event Broker and/or BEA TSAM Manager, when components filter and metrics
filter are all evaluated as true. The parameters for event is listed in Table 2-10 lists event
parameters.

Table 2-6 Components Filter FML32 Fields

Name Description

TA_LMID Logical machine ID.

Note: Not available for BBL_TRIGGER.

TA_SERVERNAME Server name.

Note: Not available for BBL_TRIGGER.

TA_SRVGRP Group name

http://e-docs.bea.com/tuxedo/tux100/fml/fml05.html#wp1057852

P lug- in Leve l Events

Using TSAM Agent 2-21

TA_GRPNO Group number

TA_SRVID Server ID

TA_SVCRNAM For SVC_TRIGGER and CALL_TRIGGER, it’s the service name(s)
provided by the server.

It will have multiple occurrences if the server provides multiple services.
Since the order of service is undefined, please use TA_SVCRNAM[?] if you
want to check for service name in the filter.

For BBL_TRIGGER, it’s the service name under checking.

Table 2-6 Components Filter FML32 Fields

Name Description

Table 2-7 SVC_TRIGGER Metrics Filter FML32 fields

Name Description

TA_MONSVCNAME Service name

TA_MONMSGQUEUED Number of messages queued on the IPC queue of the server which
providing this service

TA_MONERRNO Return code of the service

TA_MONURCODE User return code of the service

TA_MONEXECTIME Response time of the service

Table 2-8 CALL_TRIGGER Metrics Filter FML32 fields

Name Description

TA_MONSVCNAME The service name

TA_MONELAPSETIME The elapse time in milliseconds since the call started from the monitoring
initiator

TA_MONDEPTH The call path tree depth, counting from 0 (initiator).

TA_MONCORRID The correlation id of the monitored call

BEA TSAM Agent

2-22 Using TSAM Agent

TA_MONERRNO Return code of current service. It only applies to reply stage

TA_MONURCODE User return code of current service. It only applies to reply stage

Table 2-8 CALL_TRIGGER Metrics Filter FML32 fields

Name Description

Table 2-9 BBL_TRIGGER Metrics Filter FML32 Fields

Name Description

TA_MONSVCNAME The service name.

TA_MONEXECTIME The elapsed time in milliseconds since the service started executing.

Table 2-10 Event Parameters

Name Description

name Event name, a string of at most 31 characters. Valid characters are ‘0’..’9’,
‘a’..’z’, ‘A’..’Z’ and ‘_’.

severity Message severity level. Can be one value of Information, Warn,
Critical, and Fatal. The default value is Information.

destination There are two supported destinations: eventbroker (Tuxedo Event
Broker) and tsammanager (BEA TSAM Manager). This parameter can
contains multiple values (separated by ‘+’).

The default value is tsammanager.

Using TSAM Manager 3-1

C H A P T E R 3

BEA TSAM Manager

This topic contains the following sections:

Overview

Configuring BEA TSAM Manager

Overview
The BEA TSAM Manager is the data manipulation and representation component of BEA
TSAM. It is a J2EE application. The BEA TSAM Manager provides the following functionality:

Communicates with the BEA TSAM Agent for performance metrics, configuration
information and other utility messages.

Maintains persistent data storage

Provides a Web console for BEA TSAM administration, monitored data presentation and
alerts management.

The BEA TSAM Manager ships with Apache Tomcat as the Java application server. “tsam” is
the Web application name. The BEA TSAM Manager requires JRE 1.5 or above.

BEA TSAM Data Server
The BEA TSAM Data Server is the communication interface to BEA TSAM Agent. It includes
two key servlets:

dataserver

BEA TSAM Manager

3-2 Using TSAM Manager

Receives all messages from the BEA TSAM Agent. It extracts business data from the
HTTP/XML body, collects the data, and stores it in the database.

requestserver

actively delivers requests from the BEA TSAM Manager to the BEA TSAM Agent. The
dataserver servlet URL must be set properly in order to work with the LMS (local
monitor server). AfterBEA TSAM Manager is installed the dataserver URL is:
host:port/tsam/dataserver.

“host” is the full domain name or IP address where BEA TSAM Manager installed.
“port” is the Tomcat listening port. “tsam/dataserver” is the data server fixed service
endpoint. The LMS distinguishes the “requestserver” URL based on the “dataserver” URL.

For more information, see the BEA TSAM Deployment Guide.

Note: From an HTTP perspective, the BEA TSAM Agent LMS is the HTTP client, and the
BEA TSAM Manager is the HTTP server. If a firewall is deployed between the BEA
TSAM Manager and Tuxedo applications, the firewall must allow the LMS to issue
HTTP requests to the BEA TSAM Manager.

Database
BEA TSAM uses a relational database to store the following information:

Performance metrics collected by the BEA TSAM Agent

Tuxedo component information from the BEA TSAM Agent

User account information

Alerts and events

The BEA TSAM Manager includes Apache Derby as the default database (for evaluation
purposes). Oracle database are also supported by using pre-built SQL script (An Oracle database
is not included with BEA TSAM Manager). For more information, see the TSAM Manager
Deployment Guide.

BEA TSAM Console
TSAM Console is the Web application which provides a GUI interface for administration and
data presentation. For more information, see the BEA TSAM Console User Guide.

http://edocs.bea.com/tsam/docs11/deployment/deploy.html
http://edocs.bea.com/tsam/docs11/deployment/deploy.html
http://edocs.bea.com/tsam/docs11/deployment/deploy.html
http://edocs.bea.com/tsam/docs11/userguide/tsamconhelp.html

Conf igur ing BEA TSAM Manager

Using TSAM Manager 3-3

Configuring BEA TSAM Manager
All configuration parameters for the BEA TSAM Manager are located in the

web.xml file(short for
<TSAMDIR>/apache-tomcat-5.5.17/webapps/tsam/WEB-INF/web.xml) and
faces-config.xml file (short for
<TSAMDIR>/apache-tomcat-5.5.17/webapps/tsam/WEB-INF/config/faces-config.xm

l).

Table 3-1 and Table 3-2 provide detailed web.xml and faces-config.xml configuration
information.

The BEA TSAM Manager runtime log is based on Jarkata commons logging with Apache log4j
as the logging implementation. The log setting file is located at:
apache-tomcat-5.5.17/webapps/tsam/WEB-INF/classes named log4j.properties.

For more information, see the Apache log4j Web site.

Table 3-1 web.xml Configuration

Name Description

BIRT_IMAGE_LIVET
IME

Specifies how long TSAM Manager temporary image files
remain in the file system (in minutes).

tsam.jdbc.url JDBC connection string for TSAM Manager database.

Derby Example:
jdbc:derby://localhost:1527/tmonitordb

Oracle Example:
jdbc:oracle:thin:@localhost:1521:orcl.

tsam.jdbc.userna
me

TSAM Manager database connection user name.

tsam.jdbc.passwo
rd

TSAM Manager database connection password.

tsam.config.wind
owhs

Active interval (in seconds) for TSAM Manager house keeping
thread.

tsam.config.maxa
ppactive

Specifies how long active monitored application data are cached
(in seconds). The default value is 600 seconds, or 10 minutes.

http://logging.apache.org/log4j/1.2/index.html

BEA TSAM Manager

3-4 Using TSAM Manager

Notes: When you want to customize the BEA TSAM Manager use web.xml and
faces-config.xml as templates. Remember to backup these file before changing their
configurations

There are other configuration settings in web.xml and faces-config.xml that are not
included in this document. It is strongly advised that you do not alter these settings. If
these settings altered, BEA TSAM Manager may function incorrectly or not function at
all.

tsam.config.maxa
ppdone

Specifies how long finished monitored application data are
cached (in seconds). The default value is 1800 seconds, or 30
minutes.

tsam.config.maxa
ppsize

Specifies the size of the cache which holds active and finished
monitored application data. The default value is 1000.

tsam.config.time
outwithtuxedo

Specifies the time-out value (in seconds) for communication
originated from TSAM Manager to Tuxedo. The default value is
30 seconds.

Table 3-2 faces-config.xml Configuration

Name Description

Time Zone Specifies the TSAM Manager time zone date/time fields.
Attribute: “timeZoneID” for “util” bean.

If not set, the default time zone (where TSAM Manager is
located) is used.

Table 3-1 web.xml Configuration

Name Description

	Introduction to BEA TSAM
	Overview
	BEA TSAM Features
	BEA TSAM Components
	BEA TSAM Agent
	BEA TSAM Manager
	TSAM Architecture Diagram

	BEA TSAM Concepts
	Call Path Monitoring
	Call Path Tree Definition
	Monitoring Initiator

	Service Monitoring
	System Server Monitoring
	Transaction Monitoring
	Monitoring Policy
	Performance Metrics

	BEA TSAM Use Cases
	Understanding Your Applications
	What happens behind a simple call?
	What about my services?
	Is my network busy?
	Who participates in my transaction?

	Solving Application Performance Problems
	Why is the service response time is slow recently?
	My back-end services failed, but I don’t know which one.
	How many kinds of call paths are in my application?
	Why is my global distributed transaction completed slowly?
	I want to correlate local transactions with remote transactions.
	I want to know what is the peak time that my local domain uses resources from the remote domain, and how busy it is.
	Can I check program request information?

	Improving Application Performance
	Are my services too fine grained?
	Are my services deployed properly?
	Do I have too many servers configured?
	I want to be notified when a service execution fails or the response time exceeds a pre-defined threshold

	Quick Start
	1. Install BEA TSAM
	2. Deploy BEA TSAM Manager
	3. Deploy TSAM Agent
	4. Find Your Tuxedo Configuration
	5. Configure Monitoring Policy
	6. Start to Monitor Tuxedo

	BEA TSAM Agent
	Prerequisites
	Monitoring Policy Management
	Concepts
	Monitoring Tuxedo Components
	Monitoring Categories
	Monitoring Properties

	Configuring Monitoring Policies
	TMMONITOR Environment Variable
	changemonitor Command
	MIB Interface
	BEA TSAM Console
	Cancel Monitoring

	tpcallinfo API
	LMS (Local Monitor Server)
	Plug-in Level Events
	Overview
	Administration Tasks

	1. Configuring the UBBCONFIG File
	2. Composing the Plug-in Rules File
	3. Activating the Rules File.
	Configuring the UBBCONFIG File

	1. Define MAXSPDATA in the *RESOURCE section to reserve bulletin board space for storing plug-in event rules.
	2. Add the Tuxedo Event Broker and/or LMS to the *SERVER section.
	Composing the Plug-in Rules File
	Activating the Rules File
	Check Plug-in Generated Events Using the BEA TSAM Console
	Subscribing to Plug-in Generated Events
	Configuration Reference
	GENERAL_RULES
	SVC_TRIGGER
	CALL_TRIGGER
	BBL_TRIGGER
	REPORT_POLICY

	Plug-in Event Trigger Format

	BEA TSAM Manager
	Overview
	BEA TSAM Data Server
	Database
	BEA TSAM Console

	Configuring BEA TSAM Manager

