o0,
.. &

r
S’ 7
L/

BEASALT"

Reference Guide

Version 2.0
Document Revised: August 31, 2007

Contents

BEA SALT Command Reference

G VN S L 2
MWSAIgEN . o 4
WSAAMIN . o oo e 7
WSOIC . o 11
WSl0adCT . . . 13
SALT Web Service Definition File Reference
OVBIVIBW . ottt e e 1
BEA SALT WSDF FOIMat.ot 2
XML SCNEMA . .« oot 4
BEA SALT WSDF EXamples.o 4
BEA SALT WSDF Element Descriptions. oo 5
<DefiNItioN>. 5
SWSBINAING™ . . . o 6
1= A Tor=T | (00 o 7
1= T 7
S NPUE> . 8
QOUIPUE> . o 9
SRaUIE> L 9
<Msghandler>. 10
POl Y™ . o 10

BEA SALT Reference Guide iii

iv

QPO Y > . o 11

OO A P> . 12
<ACCESSINGPOINTS>. 13
SENAPOINt>. .. 13
SREAIM>. L 14

SALT Deployment File Reference

OV IV B . . oottt e e 1
BEA SALT SALTDEPLOY FOMMAL. . . .« vttt ettt ettt ee e 2
XML SChEMA . . oot e 4
BEA SALT SALTDEPLOY EXample 4
BEA SALT SALTDEPLOY Element Description., 5
<DEPIOYMENt> . . .o 5
QWS> e 5
SIMPOIE> 5
WV S G WY > . . . oottt 6
SGWINSEANCE™ . . . o 6
<INDOUND> . . . 6
SOULDOUND> . . .o 6
<BINAING> . ..o 6
SENAPOINt>. ..o 7
W S AAArESSING ™. . o ittt e 8
SENAPOINt>. ..o 8
(0] 0T =T 8
QP ORI Y > . o 8
S0)51 10 D 10
<CertifiCale™ .. oo 10
SPrivateKRY > . . . 10

BEA SALT Reference Guide

SVErfYCHENt> . oo 11

STrUStEC >, . oot e 11
<CerPath> . . 11
SPIUGIN> . o 11
<INErfaCE™ . . . 11

BEA SALT WS-ReliableMessaging Policy Assertion Reference

OVBIVIBW .« oot tee 1
WS-RM Policy Assertion Format e 2
WS-RM Assertion File Example. e 2
WS-RM Assertion Element Description 3
<WSIM:INACtiVIty TIMeOUE>.o e 3
<wsrm:Acknowledgementinterval>. 3
<wsrm:BaseRetransmissioninterval>. 3
<wsrm:ExponentialBackoff> 4
<beapoliCy: EXPIreS>. . . . 4
<beapolicy:QOS>. . . 4
SWSIMIRMASSEITION™ . .. 4

BEA SALT WS-SecurityPolicy Assertion 1.2 Reference

OVBIVIBW .« ot e 1
SALT WSSP 1.2 Policy File Example e 2
SALT WSSP 1.2 Policy Templates. e 3
SALT WSSP1.2 Assertion Description.t 4
<SP SIgNEAPANS™ . . . o 4
<SP:USErNamME T TOKEN >, L . . 5
SSP:IXE00TOKEN > L 5
<SSP:AIGOrIthMSUItE> . .. e 6

BEA SALT Reference Guide

vi

SO LAY OUL> . . 6

<sp:TransportBinding > 6
<SP:ASYMMEtricBIiNding™o 7
<SP SUPPOrtINgTOKEN>. . .. 10
SALT WS-SecurityPolicy Assertion 1.0 Reference
OV IV B . . oottt e e 1
SALT WSSP 1.0 Policy Assertion Format.t 2
SALT WSSP 1.0 Assertion File Example. 3
SALT WSSP 1.0 Policy Templates.o e 3
SALT WSSP 1.0 Assertion Element Description. 4
<CanonicalizationAlgorithm> 4
QCIAIMS > o 5
<DigestAlgorithm> ... 5
<IAENtitY >, 5
<INt EgrIY > . o 5
SMESSAgEPaITS™ 6
<SeCUNtYTOKEN> . . 6
<Signature Algorithm> 7
<SUPPOItedTOKENS> . . o o 8
STl . o 8
STraNS oM L 8
SUSEPASSWOIT™ . . o et 9
Usage of MessageParts 9

BEA SALT Reference Guide

BEA SALT Command Reference

The BEA SALT Command Reference describes, system processes and commands delivered with
the BEA SALT software.

Table 1 BEA SALT System Processes and Commands

Name Description

GWWS Web service gateway server.

tmwsdlgen WSDL document generator.

wsadmin BEA SALT administration command interpreter.

wsdlcvt WSDL document converter.

wsloadct Reads a SALT Deployment file and other referenced artifacts, and loads a

binary SALTCONFIG file.

BEA SALT Reference Guide 1

GWWS

Name
GWWS — Web service gateway server.

Synopsis
GWWS SRVGRP="identifier'" SRVID=number [other_parms]
CLOPT="-A -- —i InstancelD"

Description

The Gwws server is the Web service gateway for Tuxedo applications, the core component of BEA
SALT. The GwwS gateway server provides communication with Web service programs via SOAP
1.1/1.2 protocols. The GWWS server has bi-directional (inbound/outbound) capability. It can
accept SOAP requests from Web service applications and passes Tuxedo native calls to Tuxedo
services (inbound). It also accepts Tuxedo ATMI requests and passes SOAP calls to Web service
applications (outbound). GwWws servers are used as Tuxedo system processes and are described in
the *SERVERS section of the UBBCONFIG file.

The CLOPT option is a string of command-line options passed to the GWWS server when it is booted.
The GWWS server accepts the following CLOPT options:

-i InstancelD
Specifies the Gwws instance unique ID. It is used to distinguish multiple Gwws instances
provided in the same Tuxedo domain. This value must be unique among multiple Gwws
items within the UBBCONFIG file.

Note: The InstancelD value must be pre-defined in the <wSGateway> section of the BEA
SALT Deployment File.

Environment Variables
The environment variable SALTCONFIG must be set before GWWS server is booted.

Deprecation
The following SALT 1.1 gwws parameter is deprecated in the current release.

-c Config_file
Specifies the SALT 1.1 configuration file.

Note: Inthe SALT 2.0 release, the GWWS server loads the SALT configuration from the binary
SALTCONFIG file instead of the XML-based configuration file. The configuration file is

2 BEA SALT Reference Guide

/tuxedo/tux91/rf5/rf5j.htm#1531911

GWWS

no longer a GWWS server input parameter. The SALTCONFIG file must be generated

using wsloadcf before booting GWWS servers.

Diagnostics

For inbound call, if an error occurs during SOAP message processing, the error is logged. The
error is also translated into appropriate SOAP fault and/or HTTP error status code and returned
to the Web Service client.

For outbound call, if an error occurs during processing, the error is logged. The error is also
translated into appropriate Tuxedo system error code (tperrno) and returned to the Tuxedo

client.

Examples

Listing 1 GWWS Description in the UBBCONFIG File

*SERVERS

GWWS SRVGRP=GROUP1 SRVID=10
CLOPT="-A -- —i GW1"

GWWS SRVGRP=GROUP1 SRVID=11
CLOPT="-A -- —i GwW2"

GWWS SRVGRP=GROUP2 SRVID=20
CLOPT="-A -- —i GW3"

See Also
UBBCONFIG(5)
tmwsdlgen

SALT Deployment File Reference
SALT Web Service Definition File Reference

BEA SALT Reference Guide

/tuxedo/tux91/rf5/rf5j.htm#1531911

tmwsdigen

Name
tmwsdlgen — WSDL document generator.

Synopsis
tmwsdlgen —c wsdf_file [-y] [-o wsdl_file] [-m {pack]raw|mtom}] [-t
{wis]axis}]

Description

tmwsd Igen generates a WSDL document file from a Tuxedo native Web Service Definition File
(WSDF). The generated WSDL document is WSDL 1.1 specification compliant, and represents
both the service contracts and policies. tmwsdlgen collects Tuxedo service contract information
throughout the Tuxedo Service Metadata Repository management (TMMETADATA)process.
tmwsd lgen works as a Tuxedo native client and requires the following:

e the TUXCONFIG environment variable must be set correctly

o the relevant Tuxedo application using TMMETADATA must be booted prior to executing
tmwsdlgen.

WARNING: The given WSDF must be a Tuxedo native WSDF. Do not use a wsdlcvt
converted non-native WSDF file as input.

tmwsdlgen accepts the following parameters:

-c wsdf_file
Mandatory. Used to specify the SALT WSDF local path.

tmwsdlgen accepts the following optional parameters:

-0 wsdl_file
Used to specify the output WSDL document file path. If the option is not present, the
default file, tuxedo.wsdl, is created in the current directory. If the specified WSDL

document file already exists, then a prompt displays to confirm to overwriting the existing
file.

Overwrites the existing WSDL document file without prompting.

4 BEA SALT Reference Guide

../admin/intro.html#wp1034616

Deprecation

tmwsdlgen

Used to specify the WSDL data mapping policy for certain Tuxedo typed buffers.
Currently, it applies to the Tuxedo CARRAY buffer type. If raw mode is specified,
CARRAY is represented to the MIME attachment. If pack mode is specified,
xsd:base64Binary is used to represent CARRAY. The default value is pack mode.

Note: raw mode cannot be used for .Net clients. The .Net Framework does not support
MIME attachments.

If mtom is specified, CARRAY is mapped to the MTOM SOAP message.

This option takes effect only when the -m option is specified in raw mode. It accepts two
options, wls or axis:

e wls indicates tmwsdlgen generates the WSDL document file in compliance with
WebLogic 9.x. The default is wls.

e axis indicates the WSDL document file format can be recognized by the Apache
Axis toolkit.

The following SALT 1.1 tmwsdlgen parameters are deprecated in the current release.

-c Config_file

Note:

Note:

Mandatory. Used to specify the BEA SALT Configuration File path.

In the current SALT release, the SALT 1.1 configuration file is specified as the
tmwsdlgen input using the following optional parameters:

Used to specify the encoding style used for Web service SOAP messages. Specifies rpc
for RPC/encoded style and doc for Doc/literal encoded style. If this option is not present
or the specified value is invalid, Doc is the default style.

Used to specify the SOAP protocol version that the WSDL file supports. Specify 1.1 for
SOAP 1.1 protocol and 1.2 for SOAP 1.2 protocol. If this option is not present or the
specified value is invalid, SOAP 1.1 is used as the default.

In the current SALT release, the SOAP version and message style attribute are specified
in the BEA SALT WSDF.

BEA SALT Reference Guide 5

Diagnostics

If a syntax error is detected in the given WSDF, an “ERROR” or “FATAL” message indicating
that problem is printed to the standard error, and no WSDL file is generated and tmwsd I gen exits
with exit code 1.

A “WARN” message is printed to the console if (1) WSDF content may result in a potential
runtime risk or (2) default values are used because they are not specified in the WSDF. “WARN”
messages do not interrupt tmwsdlgen execution.

Upon successful completion, tmwsdlgen exits with exit code 0.

Examples

The following command generates a WSDL document file, Salt.wsdl, from the specified
SALT WSDF, tux.wsdf.

tmwsdlgen —c tux.wsdf —o Salt.wsdl

The following command generates a default WSDL document file with SOAP w/ Attachment
capability from the specified SALT WSDF, app_wsdf.xml.

tmwsdlgen —c app_wsdf.xml —m raw
SEE ALSO

GWWS
wsdlcvt

SALT Web Service Definition File Reference

6 BEA SALT Reference Guide

wsadmin

wsadmin

Name

wsadmin — BEA SALT administration command interpreter.

Synopsis

Descr

wsadmin [-v]

iption

wsadmin uses specific commands to monitor and administrate active GWWS processes in the
specified Tuxedo domain. The TUXCONFIG environment variable is used to determine the location

where the Tuxedo configuration file is loaded. wsadmin is used in the same manner as
tmadmin(1) or dmadmin(l1).

wsadmin accepts below optional parameter:
-V

Causes wsadmin to display the BEA SALT version number and SALT Patch Level anre-
tieense-information. wsadmin exits after print out.

wsadmin Commands

Commands may be entered using either their full name or their abbreviation (as given in
parentheses), followed by any appropriate arguments. Arguments appearing in brackets, [], are
optional; arguments in braces, {}, indicate a selection from mutually exclusive options.

Note: Command line options that are not in brackets do not need to appear in the command line
if the corresponding default has been set via the default command.

wsadmin supports the following commands:
configstats(cstat) -i gwws_instance_id

Displays the current configuration status for the specified GWWS process. The -i parameter must
be specified.

default(d) [-i gwws_instance_id]

Sets the corresponding argument to the default GWWS Instance ID. The defaults can be changed
by specifying * as an argument. If the default command is entered without arguments, the current
defaults are printed.

echo(e) [{off | on}]

BEA SALT Reference Guide 1

Echoes input command lines when set to on. If no option is given, the current setting is toggled,
and the new setting is printed. The initial setting is off.

help (h) [command]

Prints help messages. If command is specified, the abbreviation, arguments, and description for
that command are printed.

Omitting all arguments causes the syntax of all commands to be displayed.
gwstats(gws) -i gwws_instance_id [-s serviceName]

Displays global level runtime statistics information for the specified GWWS processes including
fail, success, pending number for both inbound and outbound call, average processing time,
active thread number, etc. If -s serviceName specified, the server-level information is displayed.

-i is mandatory.
-s is optional.
paginate(page) [{off | on}]

Paginates output. If no option is given, the current setting is toggled, and the new setting is
printed. The initial setting is on, unless either standard input or standard output is a non-tty
device. Pagination may be turned on only when both standard input and standard output are tty
devices.

The default paging command is indigenous to the native operating system environment. In a
UNIX operating system environment, for example, the default paging command is pg. The shell
environment variable PAGER may be used to override the default command used for paging
output

quit (q)
Terminates the session.
verbose (v) [{off | on}]

Produces output in verbose mode. If no option is given, the current setting is toggled, and the new
setting is printed. The initial setting is off.

I shellcommand
Escapes to the shell and executes shell command.
1

Repeats previous shell command.

BEA SALT Reference Guide

[text]
Specifies comments. Lines beginning with # are ignored.
<CR>

Repeats the last command.

Examples

wsadmin

1.The following command inspects runtime statistics for both inbound and outbound service on

GW2:

wsadmin
> gws -i GW2
GWWS Instance : GW2

Inboud Statistics :

Request Response Succ : 3359

Request Response Fail : 0
Oneway Succ : 0
Oneway Fail : 0
Total Succ : 3359
Total Fail : 0]

Avg. Processing Time : 192.746 (ms)

Request Response Succ : 4129

Request Response Fail : 0
Oneway Succ : 0
Oneway Fail : 0
Total Succ : 4129
Total Fail : 0

BEA SALT Reference Guide

Avg. Processing Time : 546.497 (ms)

Total request Pending : 36
Outbound request Pending : 0
Active Thread Number : 141

2.The following command inspects runtime statistics for the ToUpperWS service on GW1 and
gets output in verbose mode.

wsadmin

> > verbose

Verbose now on.

> gws -1 GW1 -s ToUpperWS
GWWS Instance : GW1

Service : ToUpperWs

Outboud Statistics :

Oneway Succ : 0
Oneway Fail : 0

Avg. Processing Time : 0.000 (ms)

See Also
GWWS

SALT Administration Guide

10 BEA SALT Reference Guide

../admin/index.html

wsdlcvt

wsdlcvt

Name
wsdlcvt — WSDL document converter.

Synopsis
wsdlcvt -1 WSDL_URL -o output_basename [-m] [-v] [-y1 [-wl

Description

wsdlcvt is used to convert an existing WSDL 1.1 document to a Metadata Input File, FML32
mapping File and BEA SALT Web Service Definition File (WSDF). It is a wrapper script for
wsdI2mif.xsl, wsd12fm132*_.xs1 and wsd12wsdf.xs1 for Xalan. Apache Xalan 2.7 libraries
are bundled with BEA SALT product.

JRE 1.5 or higher is required to run wsdlcvt.

wsdlcvt accepts the following parameters:

-i
Specifies the URL of the input WSDL document. The URL can be a local file path or a
downloadable HTTP URL link.

Specifies the output files basename. The following suffixes are appended after the
basename:

Tahle 2 wsdlcvt-Created File Suffixes

Suffix Output File

-mif Tuxedo Service Metadata Input File

.fml32 FML32 Field Table Definition File

-wsdf SALT Web Service Definition File

-xsd The WSDL Document embedded XML Schema File

BEA SALT Reference Guide "

wsdlcvt accepts the following optional parameters:

-y

Specifies that all the output destination files are overwritten without prompting if they
exist. If this parameter is not specified, a prompt message is output.

Specifies that the “xsd:string” data type is mapped to an FML32 typed buffer Tuxedo
FLD_MBSTRING data type. If this parameter is not specified, Tuxedo FLD_STRING data
type is mapped by default.

Specifies that wsdlcvt works in verbose mode. In particular, it shows context information
in the message and output context as FML32 field comments.

If the given WSDL document is published using Microsoft .NET WCF, specifies this
parameter to ensure wsdlcvt can handle it correctly.

Environment Variables

The TUXDIR and LANG environment variables must be set correctly.

The PATH environment variable must be set appropriately to execute “java”.

Diagnostics

Error, warning or information messages are output to standard output.

Examples

The following command converts the local WSDL file, sample.wsdl.

wsdlcvt -i sample.wsdl -o sample

The following command converts a WSDL document from a HTTP URL link. The
“xsd:string” data type is mapped to the Tuxedo FLD_MBSTRING field type.

wsdlcvt -1 http://api.google.com/GoogleSearch.wsdl -o GSearch -m

See Also

Creating The Tuxedo Service Metadata Repository
field_tables(5)
SALT Web Service Definition File Reference

BEA SALT Reference Guide

/tuxedo/tux91/ads/admrp.htm#1022618
/tuxedo/tux91/ads/admrp.htm#1022618
/tuxedo/tux91/rf5/rf5f.htm#1001973

wsloadcf

wsloadcf

Name

wsloadcT — Reads a SALT Deployment file and other referenced artifacts, and loads a binary
SALTCONFIG file.

Synopsis
Usage 1: wsloadcf [-n][-y1[-D loglevel] saltdeploy_file
Usage 2: wsloadcf [-n][-yl1[-D loglevel] -1 [-s rpc|doc][-Vv 1.1]1.2]
salt_1.1 config

Description

wsloadcT reads a SALT deployment file and other referenced files (WSDF files, WS-Policy
files), checks the syntax, and optionally loads a binary SALTCONFIG file. The SALTCONFIG
environment variable points to the SALTCONFIG file where the information should be stored. The
generated SALTCONFIG file is necessary to boot GWWS servers.

wsloadcT accepts the following optional parameters:

-n
Do validation only without generating the SALTCONFIG file.

-y
After checking the syntax, tmloadcT checks whether: (a) the file referenced by
SALTCONFIG exists; (b) it is a valid BEA Tuxedo system file system; and (c) it contains
SALTCONFIG tables. If these conditions are not true, wsloadcf prompts you to indicate
whether you want the command to create and initialize SALTCONFIG.
Initialize SALTCONFIG file: path [y, q]?
Prompting is suppressed if the -y option is specified on the command line.

-D

Used to specify the configuration parsing log level.

For SALT 1.1 backward compatibility, wsloadcf can also read a SALT 1.1 configuration file.
Besides generating the SALTCONFIG binary file, wsloadcf also generates one SALT Web
Service Definition File (WSDF) and one SALT Deployment file according to the given SALT
1.1 configuration file.

-1
Turns on the SALT 1.1 compatible mode. To pass the SALT 1.1 configuration file to
ws loadcT, you must specify this flag first.

BEA SALT Reference Guide 13

../admin/intro.html#wp1034616

Only takes effect when a SALT 1.1 configuration file is used. This option is used to
specify which SOAP version is applied to the generated WSDF file.

Only takes effect when a SALT 1.1 configuration file is used. This option is used to
specify which SOAP message style is applied to the generated WSDF file.

Environment Variables
The SALTCONFIG environment variable must be set before executing wsloadcf.

Diagnostics
If a syntax error is detected in the given configuration files, an “ERROR” or “FATAL” message
indicating that problem is printed to the console, and no information is updated in the
SALTCONFIG file. wsloadcf exits with exit code 1.

A “WARN” message is printed to the console if: (1) configuration files may result in a potential
runtime risk or (2) default values are used because they are not specified in the configuration files.
“WARN” messages do not interrupt wsloadcf execution.

Upon successful completion, ws loadcf exits with exit code 0. If the SALTCONFIG file is updated,
a userlog message is generated.

See Also
SALT Deployment File Reference

SALT Web Service Definition File Reference

14 BEA SALT Reference Guide

APPENDlxa

SALT Web Service Definition File
Reference

The following sections provide SALT Web Service Definition File (WSDF) reference
information:

o Overview
o BEA SALT WSDF Format
e XML Schema

BEA SALT WSDF Examples

BEA SALT WSDF Element Descriptions

Overview

The BEA SALT Web Service Definition File (WSDF) is an XML-based file used to define BEA
SALT Web service components (for example, Web Service Bindings, Web Service Operations,
Web Service Policies, and so on). WSDF is a SALT specific representation of the Web Service
Definition Language data model. There are two WSDF types:

o Native WSDF (Tuxedo generated)

A native WSDF is composed manually. You must define a set of Tuxedo services and how
they are exposed as Web services in a native WSDF. The native WSDF is similar to the SALT
1.1 configuration file.

Note: A native WSDF is the input file used by the SALT WSDL generator (tmwsdlgen).

BEA SALT Reference Guide A-1

e Non-native WSDF (Externally generated)

A non-native WSDF is generated from an external WSDL file via the SALT WSDL
converter (wsdlcvt). In most cases, you do not need to change the generated WSDF
except for configuring advanced features.

For more information, see tmwsdlgen and wsdlcvt in the BEA SALT Command Reference.

BEA SALT WSDF Format

Figure A-1 shows a graphical representation of the WSDF format.

A-2 BEA SALT Reference Guide

BEA SALT WSDF Format

Figure A-1 SALT Web Service Definition File Format

<Definition>

|

No annotation: Exactly one

.

<WSBinding> * |

*:.Zero or more
+. One or more

? . Zero or one

B

<Servicegroup> |

—— <Policy>* |

{ <Service> * |

—{ <Policy> * ‘
—{ <Input>? |

\—'<Msghandler> ?‘

‘ <Output> ? ‘

<Msghandler> ?‘

—' <Fault>? ‘
4}<Msghandler> ? ‘

—‘ <Property> * |

]

<SOAP> ‘

4| <AccessingPoints> ‘

<Endpoint> * |
<Realm> ?

BEA SALT Reference Guide A-3

XML Schema

An XML Schema is associated with the WSDF. The XML Schema file that describes the WSDF
format is located in the following directory: $TUXDIR/udataobj/salt/wsdf.xsd.

BEA SALT WSDF Examples

Listing A-1 and Listing A-2 show native and non-native WSDF examples.

Listing A-1 Native WSDF (Composed Manually)

<Definition name="bankapp"
xmlns=http://www.bea.com/Tuxedo/WSDF/2007 >
<WSBinding id="bankapp_binding" >
<Servicegroup id="bankapp'>
<Policy location="/home/user/rm.xml" />
<Service name="inquiry" />
<Service name="deposit" />
</Servicegroup>
<SOAP>
<AccessingPoints>
<Endpoint id="HTTP1" address="http://myhost:7001" />
<Endpoint id="HTTPS1" address="https://myhost:7002/bankapp' />
</AccessingPoints>
</SOAP>
</ WSBinding >
</Definition>

Listing A-2 Non-Native WSDF (Generated from an External WSDL Document)

<Definition name="myWebservice"
wsd INamespace=""http://www._example.org/myWebservice"
xmIns=http://www.bea.com/Tuxedo/WSDF/2007 >
<WSBinding id="A_binding">
<Servicegroup id="portType'>

A-4 BEA SALT Reference Guide

BEA SALT WSDF Element Descriptions

<Service name="operation_1" soapAction="opl" />
<Service name="operation_2" soapAction="op2" />
</Servicegroup>
<SOAP version="1.1" style="rpc" use="encoded">
<AccessingPoints>
<Endpoint id="example_http_port"
address="http://www.example._org/abc" />
<Endpoint id="example_https_port"
address=""https://www._example.org/abcssl" />
</AccessingPoints>
</SOAP>
</WSBinding>
<WSBinding id="B_binding">
<Servicegroup id="portType'>
<Service name="operation_3" soapAction="op3" />
<Service name="operation_4" soapAction="op4" />
</Servicegroup>
<SOAP version="1.2">
<AccessingPoints>
<Endpoint id="another_http_port"
address="http://www._example.org/def" />
</AccessingPoints>
</SOAP>
</WSBinding>
</Definition>

BEA SALT WSDF Element Descriptions

WSDF format elements and their attributes are listed and described in the following section.

<Definition>

The WSDF file root element.

BEA SALT Reference Guide A-5

A-6

Table A-1 <Definition> Attributes

Attribute

Description

Required

name

The WSDF name. This attribute value may contain a maximum of 30
characters (excluding the terminating NULL character).

Native WSDF: you must manually provide a distinct application
name.

Non-native WSDF: this value is the same as the WSDL converter
(wsdlcvt) command line input parameter “output_basename.

Yes

wsdINamespace

The corresponding WSDL document target namespace for the
WSDF.

Native WSDF: you can optionally specify a distinct URI string so
that the generated WSDL can use this as the target namespace. If not
specified, the default WSDL target namespace is as follows:
"urn:<wsdf_name>_wsdl". For example, if the WSDF name is
“simpapp”, then the default WSDL target namespace is
“urn:simpapp.-wsdl”.

Non-native WSDF: the value is the WSDL target namespace of the
external WSDL document.

No

<WSBinding>

Defines concrete protocol binding information. Zero or more WSBinding objects can be specified

in one WSDF file.

Native WSDF: you can set SOAP version, encoding style, several endpoints for Web Service
Client connection through sub element <SOAP> and a set of Tuxedo services to be exposed for
invocation through sub element <Servicegroup>.

Non-native WSDF: each SOAP hinding object (i.e., wsdl :binding object with soap:binding
extension) in the external WSDL document is translated into one WSBinding object.

BEA SALT Reference Guide

BEA SALT WSDF Element Descriptions

Table A-2 <WSBinding> Attributes

Attribute

Description Required

id

Identifies the WSBinding object. The value must be unique withinthe Yes
WSDF. This attribute value may contain a maximum of 78 characters
(excluding the terminating NULL character).

Native WSDF: the value is specified by customers and is used as the
wsdl :binding name in the generated WSDL document.

Non-native WSDF: the value is the wsdl : binding name defined in
the external WSDL document.

<Servicegroup>

Defines a Servicegroup object for one WSBinding object. Each WSBinding object must have
exactly one Servicegroup. The Servicegroup object is used to encapsulate a set of Tuxedo

services.

Tahle A-3 <Servicegroup> Attributes

Attribute Description Required
id Specifies the service group id. This attribute value may contain a Yes
maximum of 78 characters (excluding the terminating NULL
character).
Native WSDF: the value is specified by customers and is used as the
wsdl :portType name in the generated WSDL document.
Non-native WSDF: the value is the wsdl :portType name
defined in the external WSDL document.
<Service>

Specifies a service for the WSBinding object.

Native WSDF: each service is a Tuxedo service.

Non-native WSDF: each service represents a converted Tuxedo service from awsdl :operation
object defined in the external WSDL document.

BEA SALT Reference Guide A-7

A-8

Tahle A-4 <Service> Attributes

Attribute

Description

Required

name

Specifies the service name. This attribute value may contain a
maximum of 256 characters (excluding the terminating NULL
character).

Native WSDF: the service name value is used as the
wsdl zoperation name in the generated WSDL document.

Non-native WSDF: the service name is equal to the
wsdl zoperation name defined in the external WSDL document.

Yes

tuxedoRef

An optional attribute used to reference the service definition in the
Tuxedo Service Metadata Repository.

If not specified, attribute "name" value is used as the reference
value.

No

soapAction

Specifies the service soapAction attribute. This is a non-native
WSDF attribute. It is used to save the soapAction setting for each
wsdl zoperation defined in the external WSDL document.

Note: Do not specify this attribute for a native WSDF.

No

namespace

Specifies service namespace attribute. This is a non-native WSDF
attribute. It is used to save the namespace setting for each
wsdl zoperation defined in the external WSDL document.

Note: Do not specify this attribute for a native WSDF.

No

<Input>

Specifies Input message attributes for a particular service. This element is optional.

BEA SALT Reference Guide

BEA SALT WSDF Element Descriptions

Table A-5 <Input> Attributes

Attribute

Description Required

name

Specifies the service input message name attribute. This is a No
non-native WSDF attribute. It is used is used to save the name for the
input wsdl :message defined in the external WSDL document.

Note: Do not specify this attribute for a native WSDF.

wsaAction

Specifies the service input message wsaAction attribute. This is a No
non-native WSDF attribute. It is used is used to save the wsaAction
attribute of the input wsdl :-message defined in the external

WSDL document.

Note: Do not specify this attribute for a native WSDF.

<0utput>

Specifies Output message attributes for a particular service. This element is optional.

Tahle A-6 <Output> Attributes

Attribute

Description Required

name

Specifies the service output message name attribute. This is a No
non-native WSDF attribute. It is used to save the name for the output
wsdl :message defined in the external WSDL document.

Note: Do not specify this attribute for a native WSDF.

wsaAction

Specifies the service output message name attribute. This is a No
non-native WSDF attribute. It is used to save the wsaAction attribute

of the output wsdl :message defined in the external WSDL

document.

Note: Do not specify this attribute for a native WSDF.

<Fault>

Specifies Fault message attributes for a particular service. This element is optional.

BEA SALT Reference Guide A-9

A-10

Tahle A-7 <Fault> Attributes

Attribute Description Required

name Specifies the service fault message name attribute. This is a No
non-native WSDF attribute. It is used to save the name for the fault
wsdl :message defined in the external WSDL document.

Note: Do not specify this attribute for a native WSDF.

wsaAction Specifies the service fault message wsaAction attribute. This is a No
non-native WSDF attribute. It is used to save the wsaAction attribute
of the fault wsdl :message defined in the external WSDL
document.

Note: Do not specify this attribute for a native WSDF.

<Msghandler>

Specifies a customized message conversion handler. Optional for <Input>, <Output> and/or
<Fault> elements of any service. The value of this element is the handler name, which may
contain a maximum of 30 characters (excluding the terminating NULL character).

The GWWS server looks for the message conversion handler from all known message conversion
plug-in shared libraries using the handler name.The message conversion handler allows you to
develop customized Tuxedo buffer and SOAP message payload transformation functions to
replace the default GWWS message conversions.

For more information, see “Programming Message Conversion Plug-ins“in the BEA SALT
Programming Web Services.

<Policy>
References one Web Service Policy file applied to one of the following two levels:
e <Servicegroup> level

e <Service> level

At most, 10 Web Service policies can be referenced for each object.

BEA SALT Reference Guide

../prog/plugin.html#wp1043350

BEA SALT WSDF Element Descriptions

Tahle A-8 <Policy> Attributes

Attribute

Description

Required

location

Specifies the local file path for the referenced WS-Policy file. This
attribute value may contain a maximum of 256 characters (excluding the
terminating NULL character).

Specifically, BEA SALT pre-defines WS-Policy template files for
typical WS-* scenarios. These files can be found under the
$TUXDIR/udataobj/salt/policy directory. You can reference
these template files using the string format
“salt:<template_file_name>”.

For example, if you want to reference SALT WS-SecurityPolicy 1.0
template file “wsspl.0-signbody.xml”, you should define the
following XML snippet in the WSDF file:

<Policy location="salt:wssp1.0-signbody.xml” />

Yes

use

Specifies if the WS-Policy file is applied to the input message, output
message, fault message, or the combination of the three. If multiple
messages are set, use a space as the delimiter.

For example, if you want to configure a WS-Policy file “mypolicy.xml”
to be applied to “input” and *“output” messages, you should define the
following XML snippet in the WSDF file:

<Policy location="mypolicy.xml” use="input output”/>

BEA SALT limits the applicable messages for each supported
WS-Policy assertion.

For more information, see the following sections:

e “Configuring Advanced Web Service Messaging Features” in the
BEA SALT Administration Guide

« “Configuring Message-Level Web Service Security” in the BEA
SALT Administration Guide

« BEA SALT WS-ReliableMessaging Policy Assertion Reference
¢ BEA SALT WS-SecurityPolicy Assertion 1.2 Reference
e SALT WS-SecurityPolicy Assertion 1.0 Reference

No

<Property>

Specifies SALT specific properties for each service object.

BEA SALT Reference Guide A-11

http://edocs/salt/docs20/admin/config.html#wp1055943
http://edocs/salt/docs20/admin/config.html#wp1061881

Table A-9 <Property> Attributes

Attribute Description Required

name Specifies the property name. Table A-10 lists all the GWWS Yes
server properties.

value Specifies the property value. Yes

The following table lists all properties that can be specified for each service object.

Table A-10 <Property> Name List

Property Description Values
async_timeout Outbound service: Specifies a time setting to (0-32767] (sec)
wait for SOAP response. Default: 60 secs.

Inbound service: No behavior impact.

disableWSAddressing Outboundservice: Disables explicit Web Service {True]False}
Addressing requests with this property. Default: False

Inbound service: No behavior impact.

<SO0AP>

Specifies SOAP protocol information for the WSbinding object. SOAP version, message style
accessing endpoints are specified in this element.

Tahle A-11 <SOAP> Attributes

Attribute Description Required

version Specifies SOAP version for this WSBinding object. The valid values No
are “1.1” and “1.2". If not specified, "1.1" is used.

A-12 BEA SALT Reference Guide

BEA SALT WSDF Element Descriptions

Tahle A-11 <SOAP> Attributes

Attribute Description Required
style Specifies SOAP message style for this WSBinding object. The valid No
values are “rpc” and “document”. If not specified, "document"
is used.
use Specifies SOAP message encoding style for this WSBinding object. No

The valid values are “encoded” and “literal”.

If not specified explicitly, this value is automatically selected
according to “style” value. If “style” is “rpc”, then
“encoded” is used; if “style” is “document”, then “literal”
is used.

Note: Inthe current SALT release, only “rpc/encoded” and “document/literal” are
supported.

<AccessingPoints>

Specifies the endpoint list for the WSBinding object. Each sub element <Endpoint> represents
one particular endpoint.

There is no attribute for this element.

<Endpoint>

Specifies each accessing endpoint for the WSBinding object.

Table A-12 <Endpoint> Attributes

Attribute Description Required
id Specifies a unique endpoint id value within the WSBinding object. ~ Yes
This attribute value may contain a maximum of 78 characters
(excluding the terminating NULL character).
address Specifies the endpoint address. The address value must use the Yes

following format:
"http(s)://<host>:<port>/<context_path>"

Note: Two endpoints cannot be specified with exact the same
address URL value.

BEA SALT Reference Guide A-13

A-14

<Realm>

Specifies the HTTP Realm attribute of an HTTP and/or HTTP/S endpoint. If this element is
configured for one endpoint, the GWWS tries to incorporate HTTP basic authentication
information in the request messages when issuing outbound calls through this endpoint.

For more information, see “Configuring Transport Level Security” in the BEA SALT
Administration Guide.

Note: This element only works for non-native (external) WSDF files.

BEA SALT Reference Guide

../admin/config.html#wp1054801

APPENDlxa

SALT Deployment File Reference

The following sections provide SALT Deployment File reference information:
e Overview
e BEA SALT SALTDEPLOY Format

e XML Schema

BEA SALT SALTDEPLOY Example

BEA SALT SALTDEPLOY Element Description

Overview

The BEA SALT Deployment File (SALTDEPLQY) is an XML-based file used to define BEA
SALT cwws server deployment information on a per Tuxedo machine basis. SALTDEPLOY does
the following:

o lists all necessary Web Service Definition Files (WSDF)
o specifies how many GWWS servers are deployed on a Tuxedo machine

e associates inbound and outbound Web Service access endpoints for each GWWS server.

SALTDEPLOY also provides a system section to configure global resources (for example
certificates, plug-in load libraries, and so on).

BEA SALT Reference Guide B-1

SALT Deployment File Reference

BEA SALT SALTDEPLOY Format

Figure B-1 shows a graphical representation of the BEA SALT SALTDEPLOY format.

B-2 BEA SALT Reference Guide

BEA SALT SALTDEPLOY Format

Figure B-1 SALT Deployment File Format

<Deployment> ‘

No annotation: Exactly one

4¢ <WSDF> | *: Zero or more

+. One or more

;{ <Import> * ‘ ? . Zero or one
4f <WSGateway> ‘
<GWiInstance> * |
——{ <Inbound>? |
\—' <Binding> * ‘
<Endpoint> +
_| <Outbound> ? ‘

<Binding> * ‘
4| <WSAddressing> ? ‘
\—{ <Endpoint> ‘

4| <Endpoint> * ‘
4| <Properties> ? ‘

_. <Property>* |
4' <System> ‘

4| <Certificate> ? ‘
<PrivateKey>
4| rivateKey ‘ |

|
Ti dC ?
4| <TrustedCert> ‘ |

|
4| <Plugin> ? ‘
‘_‘ <Interface> * ‘

<VerifyClient> ? |

<CertPath> ? |

BEA SALT Reference Guide B-3

SALT Deployment File Reference

XML Schema

An XML Schema is associated with a BEA SALT Deployment File. The XML Schema file that
describes the BEA SALT Deployment File format is located in the following directory:
$TUXDIR/udataobj/salt/saltdep.xsd.

BEA SALT SALTDEPLOY Example

Listing B-1 shows a sample SALT Deployment File.

Listing B-1 SALT Deployment File Example

<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007"">
<WSDF>
<Import location="/home/myapp/bankapp.wsdf" />
<Import location="/home/myapp/amazon.wsdf" />
</WSDF>
<WSGateway>
<GWInstance id=""GW1'">
<Inbound>
<Binding ref="bankapp:bankapp_binding'>
<Endpoint use="httpl"/>
<Endpoint use="httpsl" />
</Binding>
</ Inbound>
<Outbound>
<Binding ref="amazon:default_binding"/>
</Outbound>
</GWInstance>
</WSGateway>
<System>
<Certificate>
<PrivateKey>/home/user/cert._pem</PrivateKey>
</Certificate>
<Plugin>
<Interface library="/home/user/mydatahandler.so” />
</Plugin>

B-4 BEA SALT Reference Guide

BEA SALT SALTDEPLOY Element Description

</System>
</Deployment>

BEA SALT SALTDEPLOY Element Description

SALTDEPLOYF format elements and their attributes are listed and described in the following
section.

<Deployment>

The SALTDEPLOY file root element.

There is no attribute for this element.

Three sections must be defined within the <Deployment> element:
e <WSDF> elements
e <WSGateway> element

e <System> element.

There can be only one <Deployment> element defined in a SALTDEPLOY file.

<WSDF>

Top element that encapsulates all imported WSDF files.

There is no attribute for this element.

<Import>

Specifies the WSDF to be imported in the SALTDEPLOY file. Multiple WSDF can be imported at the
same time. Each WSDF file can only be imported once. Multiple WSDF with the same WSDF name
cannot be imported in the same SALTDEPLOY file.

Table B-1 <Import> Attributes

Attribute Description Required

location Specifies the WSDF local file path. Yes

BEA SALT Reference Guide B-5

SALT Deployment File Reference

B-6

<WSGateway>
Top element that encapsulates all GWWS instance definitions.

There is no attribute for this element.

<GWInstance>

Specifies a single GWWS instance.

Tahle B-2 <GWInstance> Attributes

Attribute Description Required

id Specifies the GWWS identifier. This attribute value may contain ~ Yes
a maximum of 12 characters (excluding the terminating NULL
character). The identifier value must be unique within the
SALTDEPLOY file.

<Inbound>

Specifies inbound WSBIinding objects for the GWwS server. Each inbound WSBinding object is
specified using the <Binding> sub element.

There is no attribute for this element.

<0Quthound>

Specifies outbound WSBinding objects for the Gwws server. Each outbound WSBinding object is
specified using the <Binding> sub element.

There is no attribute for this element.

<Binding>
Specifies a concrete WSBinding object as either an inbound or outbound binding, depending on
the parent element.

BEA SALT Reference Guide

BEA SALT SALTDEPLOY Element Description

Table B-3 <Binding> Attributes

Attribute Description Required

ref Specifies a concrete WSBinding object using the following Yes
Qualified Name format:

“<WSDF_name>:<WSBinding_id>"

Note: Please note the following maximum WSBinding object limitations for each GWWS
server:

e Each GWWS server may reference at most 64 inbound WSBinding objects.
e Each GWWS server may reference at most 128 outbound WSBinding objects.

<Endpoint>
Specifies a single WSBinding objects endpoint reference.

If the referenced endpoint is specified as an inbound endpoint, the GWWS server creates the
corresponding HTTP and/or HTTPS listen endpoint. At least one inbound endpoint must be
specified for one inbound WSBinding object.

If the referenced endpoint is specified as an outbound endpoint, the GWWS server creates HTTP
and/or HTTPS connections per SOAP requests for the outbound WSBinding object.

If an outbound endpoint is not specified for the outbound WSBinding object, the first 10
endpoints (at most) are auto-selected.

The referenced endpoint must already be defined in the WSDF.

Table B-4 <Endpoint> Attributes

Attribute Description Required

use The referenced endpoint id defined in the WSDF. Yes

Note: Please note the following maximum endpoints limitations for each GWWS server:

e Each GWWS server may create at most 128 inbound endpoints in all inbound
WSBInding objects to accept SOAP requests.

BEA SALT Reference Guide B-7

SALT Deployment File Reference

B-8

e Each GWWS server may create connectivity with at most 256 outbound endpoints
in all outbound WSBinding objects.

<WSAddressing>
Specifies if Web Service Addressing is enabled for the outbound WSBinding object.

If this element is present, by default all SOAP messages are sent out with a Web Service
Addressing message header. The sub element <Endpoint> must be specified for the listen
endpoint address if this element is present.

There is no attribute for this element.

<Endpoint>

Specifies the WS-Addressing listen endpoint address for the referenced outbound WSBinding
object.

Table B-5 <Endpoint> Attributes
Attribute Description Required

address Specifies the WS-Addressing listen endpoint address. Yes
The address value must be in the following format:
"http(s)://<host>:<port>/<context_path>"

The GWWS server creates listen endpoints and usage for
receiving WS-Addressing SOAP response messages.

<Properties>

Top element that encapsulates all GWWS server property settings using the <Property> sub
element.

There is no attribute for this element.

<Property>

Specify one GWWS property.

BEA SALT Reference Guide

BEA SALT SALTDEPLOY Element Description

Tahle B-6 <Property> Attributes

Attribute Description Required

name Specifies the property name. Table B-7 lists all the GWWS Yes
server properties.

value Specifies the property value. Yes

Table B-7 GWWS <Property> List

Property Description Values

max_content_length Enables the GWWS server to deny the HTTP The equivalent
requests when the content length is larger than byte size value
the property setting. If not specified, the GWWS must be in [1
server does not check for it. The string valuecan byte, 1G
be one of the following three formats: byte] range.

1. Integer number in bytes. No suffix means the
unit is bytes.

2. Float number in kilobytes. The suffix must
be ‘K’. For instance, 10.4K, 40K, etc.

3. Float number in megabytes. The suffix must
be ‘M’. For instance, 100M, 20.6M, etc.

thread_pool_size Specifies the maximum thread pool size for the ~ The valid value is
GWWS server. in [1, 1024].
Note: This value defines the maximum Default value: 16

possible threads that may be spawned in
the GWWS server. When the GWWS server
is running, the actual spawned threads
may be less than this value.

timeout Specifies the network time-out value, in seconds. The valid value is
in[1, 65535].

Default value:
300

BEA SALT Reference Guide B-9

SALT Deployment File Reference

B-10

Tahle B-7 GWWS <Property> List

Property Description Values

max_backlog Specifies the backlog listen socket value. It The valid value is
controls the maximum queue length of pending [1-255].
connections by operating system. Default value: 16
Note: Generally no tuning is needed for this

value.

enableMultiEncoding Toggles on/off multiple encoding message The valid values
support for the GWWS server. If multiple are “true”,
encoding support property is turned off, only “false”.

UTF-8 HTTP / SOAP messages can be accepted
by the GWWS server.

Default value:

false
enableSOAPValidation Toggles on/off XML Schema validation for The valid values
inbound SOAP request messages if the are “true”,

corresponding Tuxedo input buffer is associated “false”.

with a customized XML Schema. Default value:

false

<System>

Specifies global settings, including certificate information, plug-in interfaces.

<Certificate>

Specifies global certificate information using sub elements <PrivateKey>, <VerifyClient>,
<TrustedCert> and <CertPath>.

There is no attribute for this element.

<PrivateKey>

Specifies the PEM format private key file. The key file path is specified as the text value for this
element. The server certificate is also stored in this private key file. The value of this element may
contain a maximum of 256 characters (excluding the terminating NULL character).

This element is mandatory if the parent <Certificate> element is configured.

BEA SALT Reference Guide

BEA SALT SALTDEPLOY Element Description

<VerifyClient>

Specifies if Web service clients are required to send a certificate via HTTP over SSL connections.
The valid element values are "true" and "false".

This element is optional. If not specified, the default value is "false".

<TrustedCert>

Specifies the file name of the trusted PEM format certificate files. The value of this element may
contain a maximum of 256 characters (excluding the terminating NULL character).

This element is optional.

<CertPath>

Specifies the local directory where the trusted certificates are located. The value of this element
may contain a maximum of 256 characters (excluding the terminating NULL character).

This element is optional.
Note: If <VerifyClient> is set to “true”, or if WS-Addressing is used with SSL, trusted
certificates must be stored in the directory setting with this element.

<Plugin>

Specifies the global plug-in load library information. Each <Interface> sub element specifies one
plug-in library to be loaded.

There is no attribute for this element.

<Interface>

Specifies one particular plug-in interface or a plug-in library for all plug-in interfaces inside the
library.

BEA SALT Reference Guide B-11

SALT Deployment File Reference

Tahle B-8 <Interface> Attributes

Attribute Description Required

library Mandatory. Specifies a local shared library file path. This Yes
attribute value may contain a maximum of 256 characters
(excluding the terminating NULL character).

params Optional. Specifies a particular string value that is passed to the No
library when initialized by the GWWS server at boot time. This
attribute value may contain a maximum of 256 characters
(excluding the terminating NULL character).

Note: For more information about how to develop a SALT plug-in interface, see “Using BEA
SALT Plug-ins” in the BEA SALT Programming Web Services.

B-12 BEA SALT Reference Guide

../prog/plugin.html
../prog/plugin.html

APPENDIXG

BEA SALT WS-ReliableMessaging Policy
Assertion Reference

The following sections provide SALT WS-ReliableMessaging (WS-RM) Policy reference
information:

e Overview
e WS-RM Policy Assertion Format
e WS-RM Assertion File Example

e WS-RM Assertion Element Description

Overview

BEA SALT provides support for WS-ReliableMessaging (WS-ReliableMessaging 1.0, Feb.,
2005 specification), which allows two Web Service applications running on different GWWS
instances to communicate reliably in the event of software component, system, or networks
failure.

A WS-Policy file containing WS-ReliableMessaging Policy Assertion is used to configure the
reliable messaging capabilities of a GWWS server on a destination endpoint. SALT supports the
WS-ReliableMessaging Policy Assertion specification to ensure the interoperability with BEA
WebLogic 9.x / 10.

For more information about configuring a reliable GWWS server, see “Configuring Advanced
Web Service Messaging Features in the BEA SALT Administration Guide.

BEA SALT Reference Guide Cc-1

../admin/config.html#wp1055943
../admin/config.html#wp1055943

BEA SALT WS-ReliableMessaging Policy Assertion Reference

WS-RM Policy Assertion Format

Figure C-1 shows a graphical representation of the WS-ReliableMessaging Policy Assertion
format in a WS-Policy file.

Figure C-1 WS-ReliableMessaging Policy Assertion Format

‘ wsp:Policy ‘ No annotation: Exactly one
*: Zero or more

. +:
4' <wsrm:RMAssertion> ? : One or more
? . Zero or one

<wsrm:Inactivity Timeout> ? |

<wsrm:Acknowledgementinterval> ? ‘

<wsrm:BaseRetransmissionlinterval> ? |

<wsrm:ExponentialBackoff> ? |

<beapolicy:Expires> ? |

ARNNNI

<beapolicy:Q0OS> ? ‘

WS-RM Assertion File Example

Listing C-1 shows a sample WS-Policy file that contains WS-RM policy assertion.

Listing C-1 Sample WS-ReliableMessaging Policy Assertion File

<?xml version="1.0"?>
<wsp:Policy wsp:Name="ReliableSomeServicePolicy"
xmIns:wsrm=""http://schemas.xmlsoap.org/ws/2005/02/rm"
xmIns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmIns:beapolicy="http://www._bea.com/wsrm/policy">
<wsrm:RMAssertion>
<wsrm: InactivityTimeout Milliseconds="600000" />
<wsrm:BaseRetransmissionlnterval Milliseconds="500"/>

C-2 BEA SALT Reference Guide

WS-RM Assertion Element Description

<wsrm:ExponentialBackoff />
<wsrm:Acknowledgementinterval Milliseconds='2000" />
<beapolicy:Expires Expires="P1D" />
<beapolicy:Q0S QOS="ExactlyOnce InOrder" />
</wsrm:RMAssertion>
</wsp:Policy>

WS-RM Assertion Element Description

All RM assertions are optional, and if not specified, the default value are used. The following
definitions describe the RM assertion options.

<wsrm:InactivityTimeout>

Specifies the number of milliseconds, specified with the Milliseconds attribute, which defines an
inactivity interval. After time has elapsed, if the destination endpoint has not received a message
from the source endpoint, the destination endpoint may terminate current sequence due to
inactivity. The source endpoint can also use this parameter.

Sequences never time out by default.

<wsrm:Acknowledgementinterval>

Specifies the maximum interval, in milliseconds, in which the destination endpoint must transmit
a stand-alone acknowledgement.

This element is optional. If this element is not specified, There is no time limit by default.

<wsrm:BaseRetransmissioninterval>

Specifies the interval, in milliseconds, that the source endpoint waits after transmitting a message
and before it retransmits the message if it receives no acknowledgment for that message. This
value will apply to the GWWS server when it sends a response in an outbound sequence.

The default value is 20000 milliseconds.

BEA SALT Reference Guide C-3

BEA SALT WS-ReliableMessaging Policy Assertion Reference

c-4

<wsrm:ExponentialBackoff>

Specifies that the retransmission interval is adjusted using the exponential back off algorithm.
This value applies to the GWWS server when it sends a response in an outbound sequence.

<beapolicy:Expires>

Specifies the amount of time after which the reliable Web service expires and does not accept any
new sequence messages.

This element has a single attribute, Expires, whose data type is an XML Schema duration type.
For example, if you want to set the expiration time to one day, use the following:

< beapolicy:Expires Expires="P1D" />

The default value is never expire.

<beapolicy:00S>

Specifies the delivery assurance. SALT supports the following assurances:

e AtMostOnce - Messages are delivered at most once, without duplication. There is
possibility that some messages may not be delivered.

e AtlLeastOnce - Every message is delivered at least once. There is possibility that some
messages are delivered more than once.

e ExactlyOnce - Each message is delivered exactly once, without duplication.

e InOrder - Messages are delivered in the order that they were sent. This delivery assurance
can be combined with one of the preceding three assurances.

The default value is "ExactlyOnce InOrder".

<wsrm:RMAssertion>
Main WS-RM assertion that groups all the other assertions under a single element.

The presence of this assertion in a WS-Policy file indicates that the corresponding Web Service
application must be invoked reliably.

BEA SALT Reference Guide

APPENDlxa

BEA SALT WS-SecurityPolicy Assertion
1.2 Reference

The following sections provide SALT WSSP1.2 reference information:
e Overview
e SALT WSSP 1.2 Policy File Example
e SALT WSSP 1.2 Policy Templates
e SALT WSSP1.2 Assertion Description

Overview

BEA SALT implements part of WS-Security protocol version 1.1 for inbound services.
Authentication with UsernameToken and X509v3Token are supported. To describe how the
authentication is carried out, WS-SecurityPolicy is used in WSDL definition.

In order to communicate with BEA WebLogic Release 10 via WS-Security 1.1, SALT
implements the counterparts of WS-SecurityPolicy (WSSP) 1.2 supported by WebLogic 10. But
the supported WSSP 1.2 assertions are limited as follows:

e Protection Assertions
— Integrity Assertion
» <sp:SignedParts> Assertion (Limited support)
e Token Assertions:

— <sp:UsernameToken> Assertion (Limited support)

BEA SALT Reference Guide D-1

BEA SALT WS-SecurityPolicy Assertion 1.2 Reference

— <sp:X509Token> Assertion (Limited support)

e Security Binding Assertions:
— AsysmmetricBinding Assertion (Limited support)

— <sp:TransportBinding > Assertion (Limited support)

e Supporting Tokens Assertions:
— SupportingTokens Assertion (Limited support)

For more details about limitations of WS-SecurityPolicy 1.2 assertions, please refer to SALT
WSSP1.2 Assertion Description.

For more information about WSSP 1.2 assertions supported by WebLogic 10, please refer to
“Using WS-SecurityPolicy 1.2 Policy Files in the BEA WebLogic Web Services Documentation.

In this document, XML namespace prefix “sp” stands for namespace URI
“http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512”.

SALT WSSP 1.2 Policy File Example

Listing D-1 demonstrates how to apply Username token authentication with WSSP 1.2
assertions.

Listing D-1 WSSP 1.2 Policy File Sample

<I-Binding Policy -->
<wsp:Policy
xmIns:wsp=""http://schemas.xmlsoap.org/ws/2004/09/policy"
xmIns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512">
<sp:TransportBinding>
<wsp:Policy>
<sp:TransportToken>
<wsp:Policy>
<sp:HttpToken/>
</wsp:Policy>
</sp:TransportToken>
<sp:AlgorithmSuite>
<wsp:Policy>
<sp:Basic256/>

D-2 BEA SALT Reference Guide

http://edocs.bea.com/wls/docs100/webserv_sec/message.html#wp243698

SALT WSSP 1.2 Policy Templates

</wsp:Policy>
</sp:AlgorithmSuite>
<sp:Layout>
<wsp:Policy>
<sp:Lax/>
</wsp:Policy>
</sp:Layout>
<sp:IncludeTimestamp/>
</wsp:Policy>
</sp:TransportBinding>
<sp:SupportingTokens>
<wsp:Policy>
<sp:UsernameToken
sp: IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypol
icy/200512/IncludeToken/AlwaysToRecipient'>
<wsp:Policy>
<sp:WssUsernameTokenl10/>
</wsp:Policy>
</sp:UsernameToken>
</wsp:Policy>
</sp:SupportingTokens>
</wsp:Policy>

SALT WSSP 1.2 Policy Templates

BEA SALT provides a number of WS-SecurityPolicy 1.2 template files you can use for most
typical Web Service applications. These policy files are located in directory
TUXDIR/udataobj/salt/policy.

BEA SALT Reference Guide D-3

BEA SALT WS-SecurityPolicy Assertion 1.2 Reference

Table D-1 SALT WSSP 1.2 Policy Template Files

Policy File Description

wsspl.2-UsernameToken-pla Username token with plain text password is sent in the request
in-auth.xml for authentication.

wsspl.2-x509v3-auth.xml X509 V3 binary token (certificate) is sent in the request for

authentication. The request is optionally signed with some
message parts in the requests.

wsspl.2-signbody.xml The entire SOAP body is signed.

These template files can be referenced directly in the WSDF files with location value format:
salt:<template_file_name>

For example, if you want to configure signbody, you can specify the followings in your WSDF
file:

<Policy location="salt:wsspl.2-signbody.xml” />

SALT WSSP1.2 Assertion Description

Below are all BEA SALT supported WSSP 1.2 assertions and limitations for each one. Customers
should obey the limitation when writing their own customized WSSP 1.2 policy files. BEA SALT
does not check any customized WSSP 1.2 policy file against the limitation rules. If something
claimed in the customized WSSP 1.2 policy file cannot be supported by BEA SALT, web service
client program may result runtime errors.

WS-SecurityPolicy 1.2 assertions not listed below are definitely not supported by BEA SALT.

<sp:SignedParts>

Specifies the parts of a SOAP message to be digitally signed. BEA SALT only supports the entire
SOAP body to be signed.

Limitations
e Child element <sp:Body> is supported for configuring the entire SOAP body to be signed.

e Child element <sp:Header> is not yet supported.

D-4 BEA SALT Reference Guide

SALT WSSP1.2 Assertion Description

e No nesting WSSP 1.2 assertion for this assertion.

<sp:UsernameToken>

Specifies username token to be included in the SOAP message. BEA SALT only supports
username token with clear text password defined in WS-Security Username Token Profile 1.0.
<UsernameToken> assertion must be used as a nested assertion of Security Binding Assertions
and Supporting Token Assertions.

Limitations

e Supported Nesting Assertions
— <sp:WssUsernameToken10>

o Not yet supported Nesting Assertions
— <sp:WssUsernameToken11>
— <sp:NoPassword>

— <sp:HashPassword>

<sp:Xa09Token>

Specifies a binary security token carrying an X509 token to be included in the SOAP message.
<X509Token> assertion must be used as a nested assertion of Security Binding Assertions and
Supporting Token Assertions.

Limitations
e Supported Nesting Assertions
— <sp:WssX509V3Token10>
— <sp:WssX509V3Token1l>
e Non-Supported Nesting Assertions
— <sp:WssX509Pkcs7Token10>
— <sp:WssX509Pkcs7Tokenl1l>
— <sp:WssX509PkiPathV1Token10>
— <sp:WssX509PkiPathV1Token11>

BEA SALT Reference Guide D-5

BEA SALT WS-SecurityPolicy Assertion 1.2 Reference

D-6

— <sp:WssX509V1Token10>
— <sp:WssX509V1Tokenll>

<sp:AlgorithmSuite>

Specifies the algorithm suite to be used for performing cryptographic operations with security
tokens. <AlgorithmSuite> Assertion must be used as a nested assertion of Security Binding
Assertions.

Limitations
e Supported Nesting Algorithm Suite
— <sp:Basic256>
e Non-Supported Nesting Algorithm Suites
— All the other Algorithm Suite listed in the WS-Security Policy 1.2 specification.

<sp:Layout>

Specifies the layout rules when adding items to the security header. <Layout> Assertion must be
used as a nested assertion of Security Binding Assertions.

Limitations

e Supported Nesting Layout rules
— <sp:Lax>

e Non-Supported Nesting Layout rules
— <sp:Strict>
— <sp:LaxTimestampFirst>

— <sp:LaxTimestampLast>

<sp:TransportBinding >

Specifies the message protection and security correlation is provided using the means of the
transport. The <TransportBinding> token is used mainly for carrying isolated Username Token
in the SOAP message.

BEA SALT Reference Guide

Limitations

e Supported Nesting Assertions
— <sp:TransportToken>
— <sp:AlgorithmSuite>
— <sp:Layout>

— <sp:IncludeTimestamp>

SALT WSSP1.2 Assertion Description

o Nesting Assertion <sp:TransportToken> only supports <sp:HttpToken>

Listing D-2 shows a BEA SALT supported TransportToken Assertion example.

Listing D-2 Supported TransportToken Assertions

<sp:TransportBinding>
<wsp:Policy>
<sp:TransportToken>
<wsp:Policy>
<sp:HttpToken />
</wsp:Policy>
</sp:TransportToken>
<sp:Algorithm>
<wsp:Policy>
<sp:Basic256>
</wsp:Policy>
</sp:Algorithm>
</wsp:Policy>
</sp:TransportBinding>

<sp:AsymmetricBinding>

Specifies the message protection is provided by means defined in WS-Security SOAP Message
Security, and the request and response message can use distinct keys for encryption and signature,
because of their different lifecycles. The <AsymmetricBinding> Assertion is used mainly for
carrying X.509 binary security token in the SOAP request messages for inbound calls.

BEA SALT Reference Guide D-7

BEA SALT WS-SecurityPolicy Assertion 1.2 Reference

D-8

Limitations

e Supported Nesting Assertions
— <sp:InitiatorToken>
— <sp:RecipientToken>
— <sp:AlgorithmSuite>
— <sp:Layout>
— <sp:IncludeTimestamp>
— <sp:ProtectTokens>

— <sp:OnlySignEntireHeadersAndBody>

e Non-supported Nesting Assertions

<sp:InitiatorSignatureToken>

<sp:InitiatorEncryptToken>

<sp:RecipientSignatureToken>

<sp:RecipientEncryptToken>

<sp:EncryptBeforeSigning>

<sp:EncryptSignature>

e <sp:InitiatorToken> must be associated with <sp:X509Token> and the Token inclusion
type must be “AlwaysToRecipient*

e <sp:RecipientToken> must be associated with <sp:X509Token> and the Token inclusion
type must be “Never”

Listing D-3 shows a BEA SALT supported AsymmetricBinding assertion example. This
assertion indicates the X.509 V3 binary token that defined in WS-Security X.509 Token Profile
1.1 specification is used for digital signature for the SOAP request messages and the X.509 token
is always included in the SOAP message security header:

Listing D-3 Supported AsymmetricBinding Assertion

<sp:AsymmetricBinding>
<wsp:Policy>
<sp:InitiatorToken>

BEA SALT Reference Guide

SALT WSSP1.2 Assertion Description

<wsp:Policy>
<sp:X509Token
sp: IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securit
ypolicy/200512/ IncludeToken/AlwaysToRecipient”>
<wsp:Policy>
<sp:WssX509v3Tokenll />
</wsp:Policy>
</sp:X509Token>
</wsp:Policy>
</sp:InitiatorToken>
<sp:RecipientToken>
<wsp:Policy>
<sp:X509Token
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securit
ypolicy/200512/1ncludeToken/Never”>
<wsp:Policy>
<sp:WssX509v3Tokenll />
</wsp:Policy>
</sp:X509Token>
</wsp:Policy>
</sp:RecipientToken>
<sp:Algorithm>
<wsp:Policy>
<sp:Basic256>
</wsp:Policy>
</sp:Algorithm>
<sp:Layout>
<wsp:Policy>
<sp:Lax>
</wsp:Policy>
</sp:Layout>
<sp:IncludeTimestamp />
</wsp:Policy>
</sp:AsymmetricBinding>

BEA SALT Reference Guide D-9

BEA SALT WS-SecurityPolicy Assertion 1.2 Reference

D-10

<sp:SupportingToken>

Specifies security tokens that are included in the security header and may optionally include
additional message parts to sign and/or encrypt. For BEA SALT, <SupportingToken> Assertion
is used mainly to include Username Token in the security header when <sp:AsymmetricBinding>
Assertion is used.

Limitations

e Supported Nesting Assertions
— <sp:UsernameToken>

— <sp:X509Token>

o Not-non Supported Nesting Assertions

<sp:SignedParts>

<sp:SignedElements

<sp:EncryptedParts>

<sp:EncryptedElements>

e All supported token assertions must be defined with Token inclusion type
“AlwaysToRecipient”.

Listing D-4 shows a BEA SALT supported SupportingToken assertion example. This assertion
indicates the Username token is always included in SOAP request messages:

Listing D-4 Supported SupportingToken Assertion

<sp:SupportingTokens>
<wsp:Policy>
<sp:UsernameToken
sp: IncludeToken=""http://docs.oasis-open.org/ws-sx/ws-securitypol
icy/200512/1IncludeToken/AlwaysToRecipient'>
<wsp:Policy>
<sp:WssUsernameTokenl1l0/>
</wsp:Policy>
</sp:UsernameToken>

BEA SALT Reference Guide

SALT WSSP1.2 Assertion Description

</wsp:Policy>
</sp:SupportingTokens>

BEA SALT Reference Guide D-11

BEA SALT WS-SecurityPolicy Assertion 1.2 Reference

D-12 BEA SALT Reference Guide

APPENDlxa

SALT WS-SecurityPolicy Assertion 1.0
Reference

The following sections provide SALT WS-SecurityPolicy (WSSP) 1.0 assertion reference
information:

o Overview

SALT WSSP 1.0 Policy Assertion Format

SALT WSSP 1.0 Assertion File Example

e SALT WSSP 1.0 Policy Templates
e SALT WSSP 1.0 Assertion Element Description

Overview

BEA SALT implements part of WS-Security protocol version 1.0 for inbound services.
Authentication with UsernameToken and X509v3Token are supported. WS-SecurityPolicy 1.0
assertions are used in WSDL definition to describe how the authentication is carried out. The
WS-SecuirtyPolicy1.0 specification (2002) is supported in order to ensure the interoperability
with BEA WebLogic 9.x.

Below are all BEA SALT supported WS-SecurityPolicy 1.0 assertions:

e SecurityToken Assertions:

— UsernameToken Assertion and X509Token Assertion

o Integrity Assertion

BEA SALT Reference Guide E-1

SALT WS-SecurityPolicy Assertion 1.0 Reference

e |dentity Assertion

There are some extension assertions used in WebLogic 9.x, SALT only implements a subset of
them. Integrity Assertion is only used when using X509v3 token for authentication. And the only
message part can be specified for signature is the whole SOAP Body.

SALT WSSP 1.0 Policy Assertion Format

Figure E-1 shows a graphical representation of the BEA SALT supported WS-SecurityPolicy 1.0
Assertion format in a WS-Policy file.

Figure E-1 SALT Supported WS-SecurityPolicy 1.0 Assertion Format

‘ <wsp:Policy> ‘

_ No annotation: Exactly one
4| <ldentity> ? ‘ *: Zero or more
_’ <SupportedTokens> ? | +: One or more
? . Zero or one

L{ <SecurityToken> + ‘

| i <Claims> ? ‘

\—{ <UsePassword> ? ‘
4{ <Integrity> ? |

—{ <SignatureAlgorithm> ‘
4’ <CanonicalizationAlgorithm> ‘

4| <SupportedTokens> ? ‘

\—{ <SecurityToken> + ‘
Y _4 <Target> + |

4{ <DigestAlgorithm> ‘
4{ <Transform> * ‘
4{ <MessageParts> ‘

E-2 BEA SALT Reference Guide

SALT WSSP 1.0 Assertion File Example

SALT WSSP 1.0 Assertion File Example

Listing E-1 demonstrates how to apply Username token authentication with WSSP 1.0
Assertions.

Listing E-1 WSSP 1.0 Policy File Sample

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmIns:wssp="http://www._.bea.com/WLS/security/policy"
xmIns:wsu=""http://docs.oasis-open.org/wss/2004/01/o0asis-200401-wss-wssec
urity-utility-1.0.xsd">
<wssp: ldentity>
<wssp: SupportedTokens>
<wssp:SecurityToken
TokenType="http://docs.oasis-open.org/wss/2004/01/o0asis-200401
-wss-username-token-profile-1.0#UsernameToken' >
<wssp:Claims>
<wssp:UsePassword>http://docs.oasis-open.org/wss/2004/01/o0asis-2
00401-wss-username-token-profile-1.0#PasswordText</wssp:UsePassword>
</wssp:Claims>
</wssp:SecurityToken>
</wssp:SupportedTokens>
</wssp: ldentity>
</wsp:Policy>

SALT WSSP 1.0 Policy Templates

BEA SALT provides a number of WS-SecurityPolicy 1.0 template files you can use for most
typical Web Service applications. These policy files are located in directory
TUXDIR/udataobj/salt/policy.

BEA SALT Reference Guide E-3

SALT WS-SecurityPolicy Assertion 1.0 Reference

Table E-1 SALT WSSP 1.0 Policy Template Files

Policy File Description

wsspl.0-UsernameToken-plain-auth. Username token with plain text password is sent in the request
xml for authentication.

wsspl.0-x509v3-auth.xml X509 V3 binary token (certificate) is sent in the request for

authentication. The request is optionally signed with some
message parts in the requests.

wsspl.0-signbody.xml The whole SOAP body is signed.

These template files can be referenced directly in the WSDF files with location value format:
salt:<template_file_name>

For instance, if you want to configure signbody, you can specify the followings in your WSDF
file:

<Policy location="salt:wsspl.0-signbody.xml” />

SALT WSSP 1.0 Assertion Element Description

E-4

BEA SALT implements part of WebLogic 9.x / 10 WS-SecurityPolicy 1.0 assertions. For a
complete list of WSSP 1.0 assertions supported by WebLogic, see
http://edocs.bea.com/wls/docs100/webserv_ref/sec_assert.html

<CanonicalizationAlgorithm>

Specifies the algorithm used to canonicalize the SOAP message elements that are digitally
signed.

Table E-2 <CanonicalizationAlgorithm> Attribute

Attribute Description Required?
URI The algorithm used to canonicalize the SOAP message being Yes
signed.

SALT supports only the following canonicalization algorithm:
http://www._.w3.0rg/2001/10/xml-exc-cl4n#

BEA SALT Reference Guide

http://www.w3.org/2001/10/xml-exc-cl4n#
http://edocs.bea.com/wls/docs100/webserv_ref/sec_assert.html

SALT WSSP 1.0 Assertion Element Description

<Claims>
Specifies additional metadata information that is associated with a particular type of security

token. Depending on the type of security token, you must specify the following child elements:

e For username tokens, you must specify a <UsePassword> child element to specify what
kind of the password will be used for in username authentication.

This element does not have any attributes.

<DigestAlgorithm>

Specifies the digest algorithm that is used when digitally signing the specified parts of a SOAP
message. Use the <MessageParts> sibling element to specify the parts of the SOAP message you
want to digitally sign.

Table E-3 <DigestAlgorithm> Attributes

Attribute Description Required?

URI The digest algorithm that is used when digitally signing the Yes
specified parts of a SOAP message.

SALT supports only the following digest algorithm:
http://www.w3.0rg/2000/09/xmldsig#shal

<ldentity>
Specifies the type of security tokens (username or X.509) that are supported for authentication.

This element has no attributes.

<Integrity>

Specifies that part or all of the SOAP message must be digitally signed, as well as the algorithms
and keys that are used to sign the SOAP message.

For example, a Web Service may require that the entire body of the SOAP message must be
digitally signed and only algorithms using SHA1 and an RSA key are accepted.

BEA SALT Reference Guide E-5

SALT WS-SecurityPolicy Assertion 1.0 Reference

Table E-4 <Integrity> Attributes

Attribute Description Required?

SignToken Specifies whether the security token, specified using the No
<SecurityToken> child element of <Integrity>, should also
be digitally signed, in addition to the specified parts of the SOAP
message.

The valid values for this attribute are true and false. The default
values is true.

<MessageParts>

Specifies the parts of the SOAP message that should be signed. SALT only supports certain
pre-defined message part function, wsp:Body(), i.e. the entire SOAP body to be digitally signed.

The MessageParts assertion is always a child of a <Target> assertion. The <Target> assertion can
be a child of an Integrity assertion (to specify how the SOAP message is digitally signed).

See “Usage of MessageParts” for more information about how to specify the parts of the SOAP
message that should be signed.

Tahle E-5 <MessageParts> Attributes

Attribute Description Required?

Dialect Identifies the dialect used to identity the parts of the SOAP message Yes
that should be signed.
SALT only supports the following value:
e http://schemas.xmlsoap.org/2002/12/wsse#part

Convenience dialect used to specify parts of SOAP message that
should be signed.

<SecurityToken>

Specifies the security token that is supported for authentication or digital signatures, depending
on the parent element.

If this element is defined in the <ldentity> parent element, then is specifies that a client
application, when invoking the Web Service, must attach a security token to the SOAP request.

E-6 BEA SALT Reference Guide

SALT WSSP 1.0 Assertion Element Description

For example, a Web Service might require that the client application present a Username token
for the Web Service to be able to access Tuxedo service. If this element is part of <Integrity>,
then it specifies the token used for digital signature.

The specific type of the security token is determined by the value of its TokenType attribute, as
well as its parent element.

Table E-6 <SecurityToken> Attributes

Attribute

Description Required?

IncludelnMessage

Specifies whether to include the token in the SOAP message. No
Valid values are true or false.

The default value of this attribute is true when used in the
<Integrity> assertion.

The value of this attribute is always true when used in the
<ldentity> assertion, even if you explicitly set it to false.

TokenType

Specifies the type of security token. Valid values are: Yes

¢ http://docs.oasis-open.org/wss/2004/01/o0asis-
200401-wss-x509-token-profile-1.0#X509v3 (To
specify a binary X.509 v3 token)

¢ http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-username-token-profile-1.0#Usern
ameToken (To specify a username token)

<SignatureAlgorithm>

Specifies the cryptographic algorithm used to compute the digital signature.

BEA SALT Reference Guide E-7

SALT WS-SecurityPolicy Assertion 1.0 Reference

E-8

Table E-7 <SignatureAlgorithm> Attributes

Attribute Description Required?
URI Specifies the cryptographic algorithm used to compute the Yes
signature.

Note: Be sure that you specify an algorithm that is compatible
with the certificates you are using in your enterprise.

Valid values are:
e http://www.w3.0rg/2000/09/xmldsig#rsa-shal
e http://www.w3.0rg/2000/09/xmldsig#dsa-shal

<SupportedTokens>

Specifies the list of supported security tokens that can be used for authentication, or digital
signatures, depending on the parent element.

This element has no attributes.

<Target>

Encapsulates information about which targets of a SOAP message are to be signed. When used
in <Integrity>, you can specify the <DigestAlgorithm>, <Transform>, and <MessageParts> child
elements.

Ideally, you can have one or more targets. But at most one target is enough for SALT, since SALT
only supports the entire SOAP body to be configured for digital signature.

This element has no attributes.

<Transform>

Specifies the URI of a transformation algorithm that is applied to the parts of the SOAP message
that are signed. Only can exist in a child element of the <Integrity> element.

You can specify zero or more transforms, which are executed in the order they appear in the
<Target> parent element.

BEA SALT Reference Guide

SALT WSSP 1.0 Assertion Element Description

Tahle E-8 <Transform> Attributes

Attribute

Description Required?

URI

Specifies the URI of the transformation algorithm. Yes

SALT only supports the following transformation algorithm:
e http://www.w3.0rg/2000/09/xmldsig#base64
(Base64 decoding transforms)

For detailed information about these transform algorithms, see
XML-Signature Syntax and Processing.

<UsePassword>

Specifies that whether the plaintext or the digest of the password appear in the SOAP messages. This
element is used only with username tokens. In SALT, it must be specified as plaintext.

Table E-9 <UsePassword> Attributes

Attribute

Description Required?

Type

Specifies the type of password. SALT only supports cleartext Yes

passwords, the value URI is:

e http://docs.oasis-open.org/wss/2004/01/0asi
s-200401-wss-username-token-profile-1.0#P
asswordText
Specifies that cleartext passwords should be used in the
SOAP messages.

Note: For backward compatibility reasons, the preceding URI
can also be specified with an initial "www." For
example:

— http://www.docs.oasis-open.org/wss/2004/

01/0asis-200401-wss-username-token-pro
file-1.0#PasswordText

Usage of MessageParts

When you use the <Integrity> assertion in your WS-Policy file, you are required to also use the
Target child assertion to specify the targets of the SOAP message to digitally sign. The <Target>
assertion in turn requires that you use the <MessageParts> child assertion to specify the actual

BEA SALT Reference Guide E-9

http://www.w3.org/TR/xmldsig-core/#sec-TransformAlg

SALT WS-SecurityPolicy Assertion 1.0 Reference

E-10

parts of the SOAP message that should be digitally signed. You can use the Dialect attribute of
<MessageParts> to specify the dialect used to identify the SOAP message parts. BEA SALT Web
Services security module supports only the following dialect:

e Pre-Defined Message Part Selection Function

Be sure that you specify a message part that actually exists in the SOAP messages that result from
a client invoke of a message-secured Web Service. If the Web Services security module
encounters an inbound SOAP message that does not include a part that the WS-Policy file
indicates should be signed or encrypted, then the Web Services security module returns an error
and the invoke fails.

Pre-Defined Message Part Selection Function

This section shows SALT supported functions that are used with the
"http://schemas.xmlsoap.org/2002/12/wsse#part" dialect for selecting parts of a
message:

Table E-10 SALT Supported Message Part Selection Function

Function Description

wsp:Body() Specifies the entire SOAP message body to be selected as one part

You can only specify the entire SOAP body to be signed. It is recommended that you use the
dialect that pre-defines the wsp:Body () function for this purpose.

Listing E-2 shows a wsp:Body () function example

Listing E-2 wsp:Body() Function

<wssp:MessageParts
Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part'>
wsp:Body ()
</wssp:MessageParts>

BEA SALT Reference Guide

	BEA SALT Command Reference
	GWWS
	tmwsdlgen
	wsadmin
	wsdlcvt
	wsloadcf

	SALT Web Service Definition File Reference
	Overview
	BEA SALT WSDF Format
	XML Schema
	BEA SALT WSDF Examples
	BEA SALT WSDF Element Descriptions
	<Definition>
	<WSBinding>
	<Servicegroup>
	<Service>
	<Input>
	<Output>
	<Fault>
	<Msghandler>
	<Policy>
	<Property>
	<SOAP>
	<AccessingPoints>
	<Endpoint>
	<Realm>

	SALT Deployment File Reference
	Overview
	BEA SALT SALTDEPLOY Format
	XML Schema
	BEA SALT SALTDEPLOY Example
	BEA SALT SALTDEPLOY Element Description
	<Deployment>
	<WSDF>
	<Import>
	<WSGateway>
	<GWInstance>
	<Inbound>
	<Outbound>
	<Binding>
	<Endpoint>
	<WSAddressing>
	<Endpoint>
	<Properties>
	<Property>
	<System>
	<Certificate>
	<PrivateKey>
	<VerifyClient>
	<TrustedCert>
	<CertPath>
	<Plugin>
	<Interface>

	BEA SALT WS-ReliableMessaging Policy Assertion Reference
	Overview
	WS-RM Policy Assertion Format
	WS-RM Assertion File Example
	WS-RM Assertion Element Description
	<wsrm:InactivityTimeout>
	<wsrm:AcknowledgementInterval>
	<wsrm:BaseRetransmissionInterval>
	<wsrm:ExponentialBackoff>
	<beapolicy:Expires>
	<beapolicy:QOS>
	<wsrm:RMAssertion>

	BEA SALT WS-SecurityPolicy Assertion 1.2 Reference
	Overview
	SALT WSSP 1.2 Policy File Example
	SALT WSSP 1.2 Policy Templates
	SALT WSSP1.2 Assertion Description
	<sp:SignedParts>
	Limitations

	<sp:UsernameToken>
	Limitations

	<sp:X509Token>
	Limitations

	<sp:AlgorithmSuite>
	Limitations

	<sp:Layout>
	Limitations

	<sp:TransportBinding >
	Limitations

	<sp:AsymmetricBinding>
	Limitations

	<sp:SupportingToken>
	Limitations

	SALT WS-SecurityPolicy Assertion 1.0 Reference
	Overview
	SALT WSSP 1.0 Policy Assertion Format
	SALT WSSP 1.0 Assertion File Example
	SALT WSSP 1.0 Policy Templates
	SALT WSSP 1.0 Assertion Element Description
	<CanonicalizationAlgorithm>
	<Claims>
	<DigestAlgorithm>
	<Identity>
	<Integrity>
	<MessageParts>
	<SecurityToken>
	<SignatureAlgorithm>
	<SupportedTokens>
	<Target>
	<Transform>
	<UsePassword>
	Usage of MessageParts
	Pre-Defined Message Part Selection Function

