
BEASALT™

Administration Guide

Version 2.0
Document Revised: October 12, 2007

 BEA SALT Administration Guide i

Contents

BEA SALT Administration Overview
Basic Concepts for Administering BEA SALT . 1-1

BEA SALT Administrative Tasks and Tools . 1-4

Setting Up a BEA SALT Application
Using Tuxedo Service Metadata Repository for BEA SALT . 2-1

Configuring Native Tuxedo Services. 2-8

Configuring External Web Services . 2-13

Creating the SALT Deployment File . 2-19

Configuring Advanced Web Service Messaging Features . 2-26

Configuring Security Features . 2-31

Compiling SALT Configuration . 2-35

Configuring the UBBCONFIG File for BEA SALT . 2-36

Configuring BEA SALT In Tuxedo MP Mode . 2-41

Migrating from BEA SALT 1.1 . 2-42

Administering BEA SALT at Run Time
Browsing to the WSDL Document from the GWWS Server . 3-1

Tuning the GWWS Server . 3-3

Tracing the GWWS Server . 3-4

Monitoring the GWWS Server . 3-7

Troubleshooting BEA SALT . 3-10

ii BEA SALT Administration Guide

BEA SALT Administration Guide 1-1

C H A P T E R 1

BEA SALT Administration Overview

The following sections provide an overview to BEA SALT administration topics:

Basic Concepts for Administering BEA SALT

BEA SALT Administrative Tasks and Tools

Basic Concepts for Administering BEA SALT
This section explains the following basic concepts for administering BEA SALT:

Tuxedo Service Metadata

BEA SALT Deployment Model

Tuxedo Service Metadata
Staring with the BEA Tuxedo 9.0 release, the Tuxedo Service Metadata Repository was
developed to facilitate saving and retrieving Tuxedo service metadata. Tuxedo service metadata
is a collection of Tuxedo service attributes that are especially useful in describing the
request/response details of a Tuxedo service. The BEA SALT gateway server (GWWS), relies on
the Tuxedo Service Metadata Repository for conversions between the Tuxedo request/response
format (buffer types) and standard SOAP message format.

When exposing Tuxedo services as Web services using BEA SALT, you must define and load
your Tuxedo service metadata in the Tuxedo Service Metadata Repository. BEA SALT can then
define the corresponding SOAP message format from the Tuxedo service metadata.

1-2 BEA SALT Administration Guide

When invoking external Web services from a Tuxedo application, BEA SALT provides a WSDL
file converter, wsdlcvt. This command utility helps you to define Tuxedo service metadata from
each Web service operation. The converted services are called SALT proxy services and can be
invoked as normal Tuxedo services. SALT proxy services also need to be loaded in the Tuxedo
Service Metadata Repository.

To retrieve the Tuxedo service metadata information, you must configure the Tuxedo Service
Metadata Repository system server (TMMETADATA), to be booted in the Tuxedo application.

Note: TMMETADATA must be booted prior to using any BEA SALT gateway GWWS server.

For more information, see “Tuxedo Service Metadata Repository” and “Using Tuxedo Service
Metadata Repository for BEA SALT” on page 2-1.

BEA SALT Deployment Model
Deploying the current BEA SALT version requires two configuration file types:

SALT Web Service Definition File (WSDF)

SALT Deployment File (SALTDEPLOY)

SALT Web Service Definition File
The SALT Web Service Definition File (WSDF) is an XML-based file used to define SALT Web
service components (Web Service Bindings, Web Service Operations, Web Service Policies, and
so on). The WSDF is a BEA SALT specific representation of the Web Service Definition Language
data model. There are two WSDF types: native and non-native.

Native WSDF

A native WSDF is created manually. You must define a set of Tuxedo services and how they
are exposed as Web services in the WSDF. It looks similar to the SALT 1.1 configuration
file. The native WSDF is the input file for the SALT WSDL generator (tmwsdlgen). For
more information, see “Configuring Native Tuxedo Services” on page 2-8.

Non-native WSDF

A non-native WSDF is generated from an external WSDL file that has been converted using
the SALT WSDL converter (wsdlcvt). Basically, you do not need to change the generated
WSDF (except to configure advanced features). For more information, see “Configuring
External Web Services” on page 2-13.

Bas ic Concepts f o r Admin is te r ing BEA SALT

BEA SALT Administration Guide 1-3

SALT Deployment File
The SALT Deployment File (SALTDEPLOY) is an XML-based file used to define BEA SALT
GWWS server deployment information on a per Tuxedo machine basis. The SALTDEPLOY file lists
all necessary WSDF files. It also specifies how many GWWS servers are deployed on a Tuxedo
machine and associates inbound and outbound Web service endpoints for each GWWS server. The
SALTDEPLOY file contains a system section where global resources are configured (including
certificates and plug-in load libraries). For more information, see “Creating the SALT
Deployment File” on page 2-19.

Figure 1-1 illustrates the BEA SALT deployment model.

Figure 1-1 SALT Deployment Model

SALTDEPLOY

GWWS
Instance1

GWWS
Instance2

GWWS
InstanceX

HTTP/S

HTTP/S

HTTP/S Non TUX native
WSDF

 Non TUX native
WSDF

 Non TUX native
WSDF

 TUX native
WSDF

 TUX native
WSDF

WSDL

WSDL

WSDL
Generator

WSDL

WSDL

WSDL

WSDL
Converter

Reference

Reference

Tuxedo Machine

1-4 BEA SALT Administration Guide

BEA SALT Administrative Tasks and Tools
BEA SALT provides a set of command utilities for managing different parts of a BEA SALT
application built on the BEA Tuxedo system. These utilities can be used for the following tasks:

Configuring Your SALT Application Using Command-Line Utilities

Administering Your SALT Application Using Command-Line Utilities

Configuring Your SALT Application Using Command-Line
Utilities
You can configure your BEA SALT application by using command-line utilities. Specifically,
you can use an XML editor to create and edit the configuration file (WSDF files and
SALTDEPLOY file) for your application, and then use the command-line utility named
wsloadcf to translate the XML files (SALTDEPLOY file and referenced WSDF files) to a
binary file (SALTCONFIG). You are then ready to boot the SALT gateway (GWWS) servers.

The following list identifies BEA SALT command-line utilities that you can use to configure
your application:

wsloadcf(1)

A command that is initiated on each Tuxedo machine. It allows you to compile your
application SALTDEPLOY file and referenced WSDF files into the binary SALTCONFIG
file. The wsloadcf command loads the binary file to the location defined by the
SALTCONFIG environment variable.

wsdlcvt(1)

A command that converts an external Web Service Description Language (WSDL) file into
Tuxedo definition files (WSDF file, Tuxedo Service Metadata definition file, FML32 field
table file and XML Schema file). The generated WSDF file is a non-native WSDF file
used for SALT outbound calls specifically.

Since BEA SALT built on the BEA Tuxedo framework, you should also use the following BEA
Tuxedo provided command-line utilities to configure BEA SALT specific items in a Tuxedo
application:

tmloadcf(1)

BEA SALT Admin is t ra t ive Tasks and Too ls

BEA SALT Administration Guide 1-5

A command that runs on the master Tuxedo machine. It is used to compile the Tuxedo
application UBBCONFIG file into the binary TUXCONFIG file. To boot BEA SALT
gateway servers, you must define GWWS servers in the UBBCONFIG file.

tmloadrepos(1)

A command that runs on the machine where Tuxedo Service Metadata Repository System
Server (TMMETADATA) is booted. It loads the Tuxedo service metadata definition text files
into the binary Tuxedo Service Metadata Repository file. You must load all Tuxedo legacy
services that are to be exposed as Web service operations in the Tuxedo Service Metadata
Repository. You must also load all wsdlcvt generated SALT proxy services in the Tuxedo
Service Metadata Repository.

Administering Your SALT Application Using Command-Line
Utilities
You can use the command-line utility wsadmin(1) to perform administrative functions for BEA
SALT gateway servers in your Tuxedo applications. Like the tmadmin, dmadmin and qmadmin
commands, wsadmin is an interactive meta-command that enables you to run sub-commands.

In a BEA Tuxedo application, you can run wsadmin(1) on any machine to monitor and manage
the SALT gateway servers defined in the Tuxedo application.

1-6 BEA SALT Administration Guide

BEA SALT Administration Guide 2-1

C H A P T E R 2

Setting Up a BEA SALT Application

This section contains the following topics:

Using Tuxedo Service Metadata Repository for BEA SALT

Configuring Native Tuxedo Services

Configuring External Web Services

Creating the SALT Deployment File

Configuring Advanced Web Service Messaging Features

Configuring Security Features

Compiling SALT Configuration

Configuring the UBBCONFIG File for BEA SALT

Configuring BEA SALT In Tuxedo MP Mode

Migrating from BEA SALT 1.1

Using Tuxedo Service Metadata Repository for BEA SALT
BEA SALT leverages the Tuxedo Service Metadata Repository to define service contract
information for both Tuxedo legacy services and SALT proxy services. Service contract
information for all listed Tuxedo services is obtained by accessing the Tuxedo Service Metadata

2-2 BEA SALT Administration Guide

Repository system service provided by the local Tuxedo domain. Typically, SALT calls the
TMMETADATA system as follows:

During GWWS server run-time.

It calls the Tuxedo Service Metadata Repository to retrieve necessary Tuxedo service
definition at the appropriate time.

When tmwsdlgen generates a WSDL file.

It calls the Tuxedo Service Metadata Repository to retrieve necessary Tuxedo service
definitions and converts them to the WSDL description.

The following topics provide SALT-specific usage of Tuxedo Service Metadata Repository
keywords and parameters:

Defining Service-Level Keywords for BEA SALT

Defining Service Parameters for BEA SALT

Defining Service-Level Keywords for BEA SALT
Table 2-1 lists the Tuxedo Service Metadata Repository service-level keywords used and
interpreted by SALT.

Note: Metadata Repository service-level keywords that are not listed have no relevance to BEA
SALT and are ignored when SALT components load the Tuxedo Service Metadata
Repository.

Us ing Tuxedo Serv ice Metadata Repos i to r y fo r BEA SALT

BEA SALT Administration Guide 2-3

Table 2-1 BEA SALT Usage of Service-Level Keywords in Tuxedo Service Metadata Repository

Service-Level Keyword BEA SALT Usage

service The unique key value of the service. This value is referenced in the SALT
WSDF file.

For native Tuxedo services, this value can be the same as the Tuxedo
advertised service name or an alias name differ from the actual Tuxedo
advertised service name.

For SALT proxy services, this value typically is the Web service
operation local name.

servicemode Determines the service mode (i.e., native Tuxedo service or SALT proxy
service.

The valid values are:
• tuxedo represents a native Tuxedo service
• webservice represents a SALT proxy service, i.e. a service

definition converted from a wsdl:operation

Do not use “webservice” to define a native Tuxedo service. This value
is always used to define services converted from external Web services.

tuxservice The actual Tuxedo advertised service name. If no value is specified, then
the value is the same as the value in the service keyword.

For native Tuxedo service, BEA SALT invokes the Tuxedo service
defined using this keyword.

For SALT proxy service, GWWS server advertises the service name
using this keyword value.

servicetype Determines the service message exchange pattern for the specified
Tuxedo service.

The following values specify mapping rules between the Tuxedo service
types and Web Service message exchange pattern (MEP):
• service corresponds to request-response MEP
• oneway corresponds to oneway request MEP
• queue corresponds to request-response MEP

2-4 BEA SALT Administration Guide

inbuf Specifies the input buffer (request buffer) type for the service.

For native Tuxedo services, the value can be any Tuxedo typed buffer
type. The following values are Tuxedo reserved buffer types:
STRING, CARRAY, XML, MBSTRING, VIEW, VIEW32, FML,
FML32, X_C_TYPE, X_COMMON, X_OCTET, NULL (input buffer
is empty)

Note: The value is case sensitive, if inbuf specifies any other type
other than the previous buffer types, the buffer is treated as a
custom buffer type.

For SALT proxy services, the value is always FML32.

outbuf Specifies the output buffer (response buffer with TPSUCCESS) type for
the service.

For native Tuxedo services, the value can be any Tuxedo typed buffer
type. The following values are Tuxedo reserved buffer types:
STRING, CARRAY, XML, MBSTRING, VIEW, VIEW32, FML,
FML32, X_C_TYPE, X_COMMON, X_OCTET, NULL (input buffer
is empty)

Note: The value is case sensitive, if outbuf specifies any other type
other than the previous buffer types, the buffer is treated as a
custom buffer type.

For SALT proxy services, the value is always FML32.

errbuf Specifies the error buffer (response buffer with TPFAIL) type for the
service.

For native Tuxedo services, the value can be any Tuxedo typed buffer
type. The following values are Tuxedo reserved buffer types:
STRING, CARRAY, XML, MBSTRING, VIEW, VIEW32, FML,
FML32, X_C_TYPE, X_COMMON, X_OCTET, NULL (input buffer
is empty)

Note: The value is case sensitive, if errbuf specifies any other type
other than the previous buffer types, the buffer is treated as a
custom buffer type.

For SALT proxy services, the value is always FML32.

Table 2-1 BEA SALT Usage of Service-Level Keywords in Tuxedo Service Metadata Repository

Service-Level Keyword BEA SALT Usage

Us ing Tuxedo Serv ice Metadata Repos i to r y fo r BEA SALT

BEA SALT Administration Guide 2-5

inview Specifies the view name used by the service for the following input buffer
types:
VIEW, VIEW32, X_C_TYPE, X_COMMON

BEA SALT requires that you specify the view name rather than accept the
default inview setting.

This keyword is for native Tuxedo services only.

outview Specifies the view name used by the service for the following output
buffer types:
VIEW, VIEW32, X_C_TYPE, X_COMMON

BEA SALT requires that you specify the view name rather than accept the
default outview setting.

This keyword is for native Tuxedo services only.

errview Specifies the view name used by the service for the following error buffer
types:
VIEW, VIEW32, X_C_TYPE, X_COMMON

BEA SALT requires that you specify the view name rather than accept the
default errview setting.

This keyword is for native Tuxedo services only.

inbufschema Specifies external XML Schema element associated with the service
input buffer. If this value is specified, BEA SALT incorporates the
external schema in the generated WSDL to replace the default data type
mapping rule for the service input buffer.

This keyword is for native Tuxedo services only.

Table 2-1 BEA SALT Usage of Service-Level Keywords in Tuxedo Service Metadata Repository

Service-Level Keyword BEA SALT Usage

2-6 BEA SALT Administration Guide

Defining Service Parameters for BEA SALT
The Tuxedo Service Metadata Repository interprets parameters as sub-elements encapsulated in
a Tuxedo service typed buffer. Each parameter can have its own data type, occurrences in the
buffer, size restrictions, and other Tuxedo-specific restrictions. Please note:

VIEW, VIEW32, X_C_TYPE, or X_COMMON typed buffers

Each parameter of the buffer should represent a VIEW/VIEW32 structure member.

FML or FML32 typed buffers

Each parameter of the buffer should represent an FML/FML32 field element that may be
present in the buffer.

STRING, CARRAY, XML, MBSTRING, and X_OCTET typed buffers

Tuxedo treats these buffers holistically. At most, one parameter is permitted for the buffer
to define restriction facets (such as buffer size threshold).

Custom typed buffers

Parameters facilitate describing details about the buffer type.

FML32 typed buffers that support embedded VIEW32 and FML32 buffers

Embedded parameters provide support.

outbufschema Specifies external XML Schema element associated with the service
output buffer. If this value is specified, BEA SALT incorporates the
external schema in the generated WSDL to replace the default data type
mapping rule for the service output buffer.

This keyword is for native Tuxedo services only.

errbufschema Specifies external XML Schema element associated with the service error
buffer. If this value is specified, BEA SALT incorporates the external
schema in the generated WSDL to replace the default data type mapping
rule for the service error buffer.

This keyword is for native Tuxedo services only.

Table 2-1 BEA SALT Usage of Service-Level Keywords in Tuxedo Service Metadata Repository

Service-Level Keyword BEA SALT Usage

Us ing Tuxedo Serv ice Metadata Repos i to r y fo r BEA SALT

BEA SALT Administration Guide 2-7

Table 2-2 lists the Tuxedo Service Metadata Repository parameter-level keywords used and
interpreted by SALT.

Note: Metadata Repository parameter-level keywords that are not listed have no relevance to
BEA SALT and are ignored when SALT components load the Tuxedo Service Metadata
Repository.

Table 2-2 BEA SALT Usage of Parameter-Level Keyword in Tuxedo Service Metadata Repository

Parameter-level Keyword BEA SALT Usage

param Specifies the parameter name.
• VIEW, VIEW32, X_C_TYPE, or X_COMMON

Specifies the view structure member name in the param keyword.
• FML, FML32

Specifies the FML/FML32 field name in the param keyword.
• STRING, CARRAY, XML, MBSTRING, or X_OCTET

BEA SALT ignores the parameter definitions.

type Specifies the data type of the parameter.

Note: BEA SALT does not support dec_t and ptr data types.

subtype Specifies the view structure name if the parameter type is view32. For
any other typed parameter, BEA SALT ignores this value.

Note: BEA SALT requires this value if the parameter type is view32.

This keyword is for native Tuxedo service only.

access The general definition applies for this parameter. To support Tuxedo
TPFAIL scenario, the access attribute value has been enhanced.

Original values: in, out, inout, noaccess.

New added values: err, inerr, outerr, inouterr.

count The general definition applies for this parameter. For BEA SALT, the
value for the count parameter must be greater than or equal to
requiredcount.

requiredcount The general definition applies for this parameter. The default is 1. For
BEA SALT, the value for the count parameter must be greater than or
equal to requiredcount.

2-8 BEA SALT Administration Guide

Configuring Native Tuxedo Services
This section describes the required and optional configuration tasks for exposing native Tuxedo
services as Web Services:

Creating a Native WSDF

Using WS-Policy Files

Generating a WSDL File from a Native WSDF

Creating a Native WSDF
To expose a set of Tuxedo services as Web services through one or more HTTP/S endpoints, a
native WSDF must be defined.

Each native WSDF must be defined with a unique WSDF name. A WSDF can define one or more
<WSBinding> elements for more Web service application details (such as SOAP protocol details,
the Tuxedo service list to be exposed as web service operations, and so on).

size This optional keyword restricts the maximum byte length of the
parameter. It is only valid for the following parameter types:
STRING, CARRAY, XML, and MBSTRING

If this keyword is not set, there is no maximum byte length restriction
for this parameter.

The value range is [0, 2147483647]

paramschema Specifies the corresponding XML Schema element name of the
parameter. It is generated by SALT WSDL converter.

This keyword is for SALT proxy service only. Do not specify this
keyword for native Tuxedo services.

primetype Specifies the corresponding XML primitive data type of the parameter.
It is generated by SALT WSDL converter according to SALT
pre-defined XML-to-Tuxedo data type mapping rules.

This keyword is for SALT proxy service only. Do not specify this
keyword for native Tuxedo services.

Table 2-2 BEA SALT Usage of Parameter-Level Keyword in Tuxedo Service Metadata Repository

Parameter-level Keyword BEA SALT Usage

Conf igur ing Nat i ve Tuxedo Serv ices

BEA SALT Administration Guide 2-9

Defining WSBinding Object
Each WSBinding object is defined using the <WSBinding> element. Each WSBinding object
must be defined with a unique WSBinding id within the WSDF. The WSBinding id is a required
indicator for the SALTDEPLOY file reference used by the GWWS.

Each WSBinding object can be associated with SOAP protocol details by using the <SOAP> sub-
element. By default, SOAP 1.1, document/literal styled SOAP messages are applied to the
WSBinding object.

Listing 2-1 shows how SOAP protocol details are redefined using the <SOAP> sub-element.

Listing 2-1 Defining SOAP Protocol Details for a WSBinding

<Definition ...>

<WSBinding id="simpapp_binding">

<Servicegroup id="simpapp">

<Service name="toupper" />

<Service name="tolower" />

</Servicegroup>

<SOAP version=”1.2” style=”rpc” use=”encoded”>

<AccessingPoints>

...

</AccessingPoints>

</SOAP>

</WSBinding>

</Definition>

Within the <SOAP> element, a set of access endpoints can be specified. The URL value of these
access endpoints are used by corresponding GWWS servers to create the listen HTTP/S protocol
port. It is recommended to specify one HTTP and HTTPS endpoint (at most) for each GWWS server
for an inbound WSBinding object.

Each WSBinding object must be defined with a group of Tuxedo services using the
<Servicegroup> sub-element. Each <Service> element under <Servicegroup> represents a
Tuxedo service that can be accessed from a Web service client.

2-10 BEA SALT Administration Guide

Defining Service Object
Each service object is defined using the <Service> element. Each service must be specified with
the “name” attribute to indicate which Tuxedo service is exposed. Usually, the “name” value is
used as the key value for obtaining Tuxedo service contract information from the Tuxedo Service
Metadata Repository.

Listing 2-2 shows how a group of services are defined for WSBinding.

Listing 2-2 Defining a Group of Services for a WSBinding

<Definition ...>

<WSBinding id="simpapp_binding">

<Servicegroup id="simpapp">

<Service name="toupper" />

<Service name="tolower" />

</Servicegroup>

...

</WSBinding>

</Definition>

Configuring Message Conversion Handler
You can create your own plug-in functions to customize SOAP XML payload and Tuxedo typed
buffer conversion routine. For more information, see Using BEA SALT Plug-ins in BEA SALT
Programming Web Services and “Configuring Plug-in Libraries” on page 2-26.

Once a plug-in is created and configured, it can be referenced using the <service> element to
specify user-defined data mapping rules for that service. The <Msghandler> element can be
defined at the message level (<Input>, <Output> or <Fault>) to specify which implementation
of “P_CUSTOM_TYPE” category plug-in should be used to do the message conversion. The
<Msghandler> element content is the Plug-in name.

Listing 2-3 shows a service that uses the “MBCONV” custom plug-in to convert input and
“XMLCONV” custom plug-in to convert output.

Conf igur ing Nat i ve Tuxedo Serv ices

BEA SALT Administration Guide 2-11

Listing 2-3 Configuring Message Conversion Handler for a Service

<Definition ...>

<WSBinding id="simpapp_binding">

<Servicegroup id="simpapp">

<Service name="toupper" >

<Input>

<Msghandler>MBCONV</Msghandler>

</Input>

<Output>

<Msghandler>XMLCONV</Msghandler>

</Output>

</Service>

</Servicegroup>

...

</WSBinding>

</Definition>

Using WS-Policy Files
Advanced Web service features can be enabled by configuring WS-Policy files (for example,
Reliable Messaging and Web Service Message-Level Security). You may need to create
WS-Policy files to use these features. The Web Service Policy Framework specifications
provides a general purpose model and syntax to describe and communicate the policies of a Web
Service.

To use WS-Policy files, the <Policy> element should be defined in the WSDF to incorporate
these separate WS-Policy files. Attribute location is used to specify the policy file path, both
abstract and relative file path are allowed. Attribute use is optionally used by message level
assertion policy files to specify the applied messages, request (input) message, response (output)
message, fault message, or the combination of the three.

There are two different sub-elements in the WSDF that reference WS-Policy files:

<Servicegroup>

– If a WS-Policy file consists of Web Service Endpoint level Assertions, e.g. Reliable
Messaging Assertion, the WS-Policy file applies to all endpoints that serving this
<Servicegroup>.

2-12 BEA SALT Administration Guide

– If a WS-Policy file consists of Web Service Operation level Assertions, e.g. Security
Identity Assertion, the WS-Policy file applies to all services listed in this
<Servicegroup>.

– If a WS-Policy file consists of Web Service Message level Assertions, e.g. Security
SignedParts Assertion, the WS-Policy file applies to input, output and/or fault messages
of all services listed in this <Servicegroup>.

Note: BEA SALT only supports request message level assertions for the current
release. You must only specify use=”input” for message level assertion policy
files.

<Service>

– If a WS-Policy file consists of Web Service Operation level Assertions, e.g. Security
Identity Assertion, the WS-Policy file applies to this particular service.

– If a WS-Policy file consists of Web Service Message level Assertions, e.g. Security
SignedParts Assertion, the WS-Policy file applies to input, output and/or fault messages
of this particular service.

Note: BEA SALT only supports request message level assertions for the current
release. You must only specify use=”input” for message level assertion policy
files.

BEA SALT provides some pre-packaged WS-Policy files for most frequently used cases. These
WS-Policy files are located under directory $TUXDIR/udataobj/salt/policy. These files can
be referenced using location=”salt:<policy_file_name>”.

Listing 2-4 shows a sample of using WS-Policy Files in the native WSDF file.

Listing 2-4 A Sample of Defining WS-Policy Files in the WSDF File

<Definition ...>

<WSBinding id="simpapp_binding">

<Servicegroup id="simpapp">

<Policy location=”./endpoint_policy.xml” />

<Policy location=”/usr/resc/all_input_msg_policy.xml” use=”input” />

<Service name="toupper">

<Policy location=”service_policy.xml” />

<Policy location=”/usr/resc/input_message_policy.xml”

use=”input” />

</Service>

Conf igur ing Ex te rna l Web Serv ices

BEA SALT Administration Guide 2-13

<Service name="tolower" />

</Servicegroup>

....

</WSBinding>

</Definition>

For more information, see “Specifying the Reliable Messaging Policy File in the WSDF File” and
“Using WS-SecurityPolicy Files”.

Generating a WSDL File from a Native WSDF
Once a Tuxedo native WSDF is created, the corresponding WSDL file can be generated using the
SALT WSDL generation utility, tmwsdlgen. The following example command generates a
WSDL file named “app1.wsdl” from a given WSDF named “app1.wsdf”:
tmwsdlgen -c app1.wsdf -o app1.wsdl

Note: Before executing tmwsdlgen, the TUXCONFIG environment variable must be set correctly
and the relevant Tuxedo application using TMMETADATA must be booted.

You can optionally specify the output WSDL file name using the ‘-o’ option. Otherwise,
tmwsdlgen creates a default WSDL file named “tuxedo.wsdl”.

If the native WSDF file contains Tuxedo services that use CARRAY buffers, you can specify
tmwsdlgen options to generate different styled WSDL files for CARRAY buffer mapping. By
default, CARRAY buffers are mapped as xsd:base64Binary XML data types in the SOAP
message. For more information, see Data Type Mapping and Conversions in the BEA SALT
Programming Web Services and tmwsdlgen in the BEA SALT Reference Guide.

Configuring External Web Services
To invoke an external Web Service from Tuxedo, the following configuration tasks need to be
performed:

Converting a WSDL file into Tuxedo Definitions

Post Conversion Tasks

2-14 BEA SALT Administration Guide

Converting a WSDL file into Tuxedo Definitions
BEA SALT provides a WSDL conversion command utility to convert external WSDL files into
Tuxedo definitions. The WSDL file is converted using Extensible Stylesheet Language
Transformations (XSLT) technology. Apache Xalan Java 2.7.0 is bundled in SALT installation
package and is used as the default XSLT toolkit.

BEA SALT WSDL converter is composed of two parts:

The xsl files, which process the WSDL file.

The command utility, wsdlcvt, invokes the Xalan toolkit. This wrapper script provides a
user friendly WSDL Converter interface.

The following sample command converts an external WSDL file and generates Tuxedo definition
files.
wsdlcvt -i http://api.google.com/GoogleSearch.wsdl -o GSearch

Table 2-3 lists the Tuxedo definition files generated by BEA SALT WSDL Converter.

Conf igur ing Ex te rna l Web Serv ices

BEA SALT Administration Guide 2-15

Table 2-3 Tuxedo Definition Files generated by BEA SALT WSDL Converter

Generated File Description

Tuxedo Service
Metadata Repository
input file

BEA SALT WSDL Converter converts each wsdl:operation to a
Tuxedo service metadata syntax compliant service called SALT proxy
service. SALT proxy services are advertised by GWWS servers to accept
ATMI call from Tuxedo applications.

FML32 field table
definition file

BEA SALT maps each wsdl:message to a Tuxedo FML32 typed buffer.
BEA SALT WSDL Converter decomposes XML Schema of each message
and maps each basic XML snippet as an FML32 field. The generated
FML32 fields are defined in a definition table file, and the field name
equals to the XML element local name by default.

To access a SALT proxy service, Tuxedo applications must refer to the
generated FML32 fields to handle the request and response message.
FML32 environment variables must be set accordingly so that both Tuxedo
applications and GWWS servers can map between field names and field
identifier values.

Note: You may want to re-define the generated field names due to field
name conflict or some other reason. In that case, both Tuxedo
Service Metadata Definition input file and FML32 field table
definition file must be changed accordantly. For more information,
see “Resolving Naming Conflict For the Generated SALT Proxy
Service Definitions”.

Non-native WSDF file BEA SALT WSDL Converter converts the WSDL file into a WSDF file,
which can be deployed to GWWS servers in the SALT deployment file for
outbound direction. The generated WSDF file is so-called non-native
WSDF file.

Note: Please do not deploy non-native WSDF files for inbound direction.

XML Schema files WSDL embedded XML Schema and imported XML Schema (XML
Schema content referenced with <xsd:import>) are saved locally as
.xsd files. These files are used by GWWS servers and need to be saved
under the same directory.

Note: New XML Schema environment variables XSDDIR and
XSDFILES must be set accordingly so that GWWS servers can
load these .xsd files.

2-16 BEA SALT Administration Guide

WSDL-to-Tuxedo Service Metadata Keyword Mapping
Table 2-4 lists WSDL Element-to-Tuxedo Service Metadata Definition Keyword mapping rules.

WSDL-to-WSDF Mapping
Table 2-5 lists WSDL Element-to-WSDF Element mapping rules.

Table 2-4 WSDL Element-to-Tuxedo Service Metadata Definition Mapping

WSDL Element Corresponding Tuxedo
Service Metadata Definition
Keyword

Note

/wsdl:definitions
/wsdl:portType

/wsdl:operation
@name

service SALT proxy service name.

The keyword value equals to the operation local
name.

tuxservice SALT proxy service advertised name in
Tuxedo system.

If the wsdl operation local name is less than 15
characters, keyword value equals to the
operation local name, otherwise the keyword
value is the first 15 characters of the operation
local name.

/wsdl:definitions
/wsdl:portType

/wsdl:operation
/wsdl:input

inbuf=FML32 WSDL operation messages are always mapped
as Tuxedo FML32 buffer type.

Please do not change the buffer type any way.

Note: For more information about wsdl
message and FML32 buffer mapping,
see XML-to-Tuxedo Data Type
Mapping for External Web Services in
the BEA SALT Programming Web
Services.

/wsdl:definitions
/wsdl:portType

/wsdl:operation
/wsdl:output

outbuf=FML32

/wsdl:definitions
/wsdl:portType

/wsdl:operation
/wsdl:fault

errbuf=FML32

Conf igur ing Ex te rna l Web Serv ices

BEA SALT Administration Guide 2-17

Post Conversion Tasks
The following post conversion tasks need to be performed for configuring outbound Web service
applications:

Table 2-5 WSDL Element-to-WSDF Element Mapping

WSDL Element WSDF Element Note

/wsdl:definitions
@targetNamespace

/Definition
@wsdlNamespace

Each wsdl:definition maps to a WSDF
Definition.

/wsdl:definitions
/wsdl:binding

/Definition
/WSBinding

Each wsdl:binding object maps to a WSDF
WSBinding element.

/wsdl:definitions
/wsdl:binding

@type

/Definition
/WSBinding

/Servicegroup

Each wsdl:binding referenced wsdl:portType
object maps to the Servicegroup element of the
corresponding WSBinding element.

/wsdl:definitions
/wsdl:binding

/soap:binding

/Definition
/WSBinding

/SOAP
@version

If namespace prefix “soap” refers to URI
“http://schemas.xmlsoap.org/wsdl
/soap/”, the SOAP version attribute value is
“1.1”;

If namespace prefix “soap” refers to URI
“http://schemas.xmlsoap.org/wsdl
/soap12/”, the SOAP version attribute value
is “1.2”.

/wsdl:definitions
/wsdl:binding

/soap:binding
@style

/Definition
/WSBinding

/SOAP
@style

The WSDF WSBinding SOAP message style
setting equals to the corresponding WSDL soap
binding message style setting (“rpc” or
“document”).

/wsdl:definitions
/wsdl:binding

/wsdl:operation

/Definition
/WSBinding

/Servicegroup
/Service

Each wsdl:operation object maps to a Service
element of the corresponding WSBinding
element.

/wsdl:definitions
/wsdl:port

/soap:address

/Definition
/WSBinding

/SOAP
/AccessingPoints

/Endpoint

Each soap:address endpoint defined for a
wsdl:binding object maps to a Endpoint
element of the corresponding WSBinding
element.

2-18 BEA SALT Administration Guide

Resolving Naming Conflict For the Generated SALT Proxy Service Definitions

Loading the Generated SALT Proxy Service Metadata Definitions

Setting Environment Variables for GWWS Runtime

Resolving Naming Conflict For the Generated SALT Proxy Service Definitions
When converting a WSDL file, unexpected naming conflicts may be found due to truncation or
lost context information. Before using the generated Service Metadata Definitions and FML32
field table files, the following potential naming conflicts must be eliminated first.

Eliminating the duplicated service metadata keyword “tuxservice” definitions

The keyword tuxservice in the SALT proxy service metadata definition is the truncated
value of the original Web Service operation local name if the operation name is more than
15 characters. The truncated tuxservice value may be duplicated for multiple SALT
proxy service entries. Since GWWS server uses tuxservice values as the advertised
service names, so you must manually resolve the naming conflict among multiple SALT
proxy services to avoid uncertain service request delivery. To resolve the naming conflict,
you should assign a unique and meaningful name to tuxservice.

Eliminating the duplicated FML32 field definitions

When converting a external WSDL file into Tuxedo definitions, each wsdl:message is
parsed and mapped as an FML32 buffer format which containing a set of FML32 fields to
represent the basic XML snippets of the wsdl:message. By default, The generated FML32
fields are named using the corresponding XML element local names.

The FML32 field definitions in the generated field table file are sorted by field name so
that duplicated names can be found easily. In order to achieve a certain SOAP/FML32
mapping, the field name conflicts must be resolved. You should modify the genenated
duplicated field name with other unique and meaningful FML32 field name values. The
corresponding Service Metadata Keyword param values in the generated SALT proxy
service definition must be modified accordingly. The generated comments of the FML32
fields and Service Metadata Keyword “param” definitions are helpful in locating the
corresponding name and param.

Loading the Generated SALT Proxy Service Metadata Definitions
After potential naming conflicts are resolved, you should load the SALT proxy service metadata
definitions into the Tuxedo Service Metadata Repository through tmloadrepos utility. For more
information about tmloadrepos, see BEA Tuxedo Service Metadata Repository
Documentation.

Creat ing the SALT Dep lo yment F i l e

BEA SALT Administration Guide 2-19

Setting Environment Variables for GWWS Runtime
Before booting GWWS servers for outbound web services, the following environment variable
settings must be performed.

Update environment variable FLDTBLDIR32 and FIELDTBLS32 to add the generated
FML32 field table files.

Place all excerpted XML Schema files into one directory, and set environment variable
XSDDIR and XSDFILES accordingly.

– Environment variable XSDDIR and XSDFILES are introduced in SALT 2.0 release. They
are used by the GWWS server to load all external XML Schema files at run time.
Multiple XML Schema file names should be delimited with comma ‘,’. For instance, if
you placed XML Schema files: a.xsd, b.xsd and c.xsd in directory
/home/user/myxsd, you must set environment variable XSDDIR and XSDFILES as
follows before booting the GWWS server:
XSDDIR=/home/user/myxsd

XSDFILES=a.xsd,b.xsd,c.xsd

Creating the SALT Deployment File
The SALT Deployment file (SALTDEPLOY) defines a SALT Web service application. The
SALTDEPLOY file is the major input for Web service application in the binary SALTCONFIG
file.

To create a SALTDEPLOY file, do the following steps:

1. Importing the WSDF Files

2. Configuring the GWWS Servers

3. Configuring System Level Resources

For more information, see SALT Deployment File Reference in the BEA SALT Reference
Guide.

Importing the WSDF Files
You should import all your required WSDF files to the SALT deployment file. Each imported
WSDF file must have a unique WSDF name which is used by the GWWS servers to make
deployment associations. Each imported WSDF file must be accessible through the location
specified in the SALTDEPLOY file.

2-20 BEA SALT Administration Guide

Listing 2-5 shows how to import WSDF files in the SALTDEPLOY file.

Listing 2-5 Importing WSDF Files in the SALTDEPLOY File

<Deployment ..>

<WSDF>

<Import location="/home/user/simpapp_wsdf.xml" />

<Import location="/home/user/rmapp_wsdf.xml" />

<Import location="/home/user/google_search.wsdf" />

</WSDF>

...

</Deployment>

Configuring the GWWS Servers
Each GWWS server can be deployed with a group of inbound WSBinding objects and a group of
outbound WSBinding objects defined in the imported WSDF files. Each WSBinding object is
referenced using attribute “ref=<wsdf_name>:<WSBinding id>”. For inbound WSBinding
objects, each GWWS server must specify at least one access endpoint as an inbound endpoint from
the endpoint list in the WSBinding object. For outbound WSBinding objects, each GWWS server
can specify zero or more access endpoints as outbound endpoints from the endpoint list in the
WSBinding object.

Listing 2-6 shows how to configure GWWS servers with both inbound and outbound endpoints.

Listing 2-6 GWWS Server Defined In the SALTDEPLOY File

<Deployment ..>

...

<WSGateway>

<GWInstance id="GWWS1">

<Inbound>

<Binding ref="app1:app1_binding">

<Endpoint use="simpapp_GWWS1_HTTPPort" />

<Endpoint use="simpapp_GWWS1_HTTPSPort" />

</Binding>

Creat ing the SALT Dep lo yment F i l e

BEA SALT Administration Guide 2-21

</Inbound>

<Outbound>

<Binding ref="app2:app2_binding">

<Endpoint use=" extServer1_HTTPPort" />

<Endpoint use=" extServer1_HTTPSPort" />

</Binding>

<Binding ref="app3:app3_binding" />

</Outbound>

</GWInstance>

</WSGateway>

...

</ Deployment>

Configuring GWWS Server Level Properties
The GWWS server can be configured with properties that switch feature on/off or set argument
to tune the server’s performance.

Properties are configured in the <GWInstance> child element <Properties>. Each individual
property is defined by using the <Property> element which contains a “name” attribute and a
“value” attribute). Different “name” attributes represent different property elements that contain
a value. Table 2-6 lists GWWS server level properties.

Table 2-6 GWWS Server Level Properties

Property Name Description Value Range Default

enableMultiEncoding Switch on/off the SOAP message
multiple encoding support

“true”|“false” “false”

max_backlog Specify socket backlog control value [1, 255] 20

max_content_length Specify the maximum allowed incoming
HTTP message content length.

[0, 1G](byte)

(Can set
suffix
‘M’,’G’, e.g.
1.5M, 0.2G)

0

(means no
limit)

thread_pool_size Specify the GWWS server thread pool
size.

[1, 1024] 16

2-22 BEA SALT Administration Guide

Note: For more information about GWWS multiple encoding support, see “Configuring
Multiple Encoding Support” on page 2-23.

For more information abouth Performance tuning properties, see “Tuning the GWWS
Server” on page 3-3.

Listing 2-7 shows an example of how GWWS properties are configured.

Listing 2-7 Configuring GWWS Server Properties

<Deployment ..>

...

<WSGateway>

<GWInstance id="GWWS1">

.......

<Properties>

<Property name="thread_pool_size" value="20"/>

<Property name="enableMultiEncoding" value="true"/>

<Property name="timeout" value="600"/>

</Properties>

</GWInstance>

</WSGateway>

...

</ Deployment>

timeout Specify the network timeout in seconds. [1, 65535]

(unit:sec)

300

wsrm_acktime Specify the Reliable Messaging
Acknowledgement message reply
policy. GWWS servers support replying
acknowledgement messages either after
receiving the SOAP request from
network immediately or after the Tuxedo
service returns the response message.

“NETRECV” |
“RPLYRECV”

“NETRECV”

Table 2-6 GWWS Server Level Properties

Property Name Description Value Range Default

Creat ing the SALT Dep lo yment F i l e

BEA SALT Administration Guide 2-23

Configuring Multiple Encoding Support
SALT supports multiple encoding SOAP messages and the encoding mappings between SOAP
message and Tuxedo buffer. SALT supports the following character encodings:

ASCII, BIG5, CP1250, CP1251, CP1252, CP1253, CP1254, CP1255, CP1256,
CP1257, CP1258, CP850, CP862, CP866, CP874, EUC-CN, EUC-JP, EUC-KR,
GB18030, GB2312, GBK, ISO-2022-JP, ISO-8859-1, ISO-8859-13,
ISO-8859-15, ISO-8859-2, ISO-8859-3, ISO-8859-4, ISO-8859-5,
ISO-8859-6, ISO-8859-7, ISO-8859-8, ISO-8859-9, JOHAB, KOI8-R,
SHIFT_JIS, TIS-620, UTF-16, UTF-16BE, UTF-16LE, UTF-32, UTF-32BE,
UTF-32LE, UTF-7, UTF-8

To enable the GWWS multiple encoding support, GWWS server level property
“enableMultiEncoding” should be set to “true”.

Note: GWWS internally converts non UTF-8 external messages into UTF-8. However,
encoding conversion hurts server performance. By default, encoding conversion is turned
off and messages that are not UTF-8 encoded are rejected.

Listing 2-8 Configuring GWWS Server Multiple Encoding Property

<Deployment ..>

...

<WSGateway>

<GWInstance id="GWWS1">

.......

<Properties>

<Property name="enableMultiEncoding" value="true"/>

</Properties>

</GWInstance>

</WSGateway>

...

</ Deployment>

Table 2-7 explains the detailed SOAP message and Tuxedo buffer encoding mapping rules if the
GWWS server level multiple encoding switch is turned on.

2-24 BEA SALT Administration Guide

Configuring System Level Resources
BEA SALT defines a set of global resources shared by all GWWS servers in the SALTDEPLOY
file. The following system level resources can be configured in the SALTDEPLOY file:

Certificates

Table 2-7 SALT Message Encoding Mapping Rules

Mapping from ... Mapping to ... Encoding Mapping Rule

SOAP/XML Tuxedo Typed Buffer string/mbstring/xml buffer or field
characters’ encoding equals to SOAP xml
encoding.

STRING Typed Buffer SOAP/XML GWWS sets the target SOAP message in UTF-8
encoding, and assumes the original STRING
buffer containing only UTF-8 encoding
characters.

Note: Tuxedo Developers must ensure the
STRING characters are in UTF-8
encoding.

MBSTRING/XML Typed
Buffer

SOAP/XML SOAP xml encoding equals to
MBSTRING/XML encoding.

FML/32, VIEW/32 Typed
Buffer that containing the
same encoding setting for
multiple FLD_MBSTRING
fields

SOAP/XML SOAP xml encoding is set to FLD_MBSTRING
encoding, the original Typed buffer field
characters are not changed in the SOAP
message.

Note: Tuxedo Developers must ensure the
FLD_STRING characters in the same
buffer are in consistent encoding.

FML/32, VIEW/32 Typed
Buffer that containing the
different encodings for
multiple FLD_MBSTRING
fields

SOAP/XML SOAP xml encoding is set to UTF-8, the
original Typed buffer FLD_MBSTRING field
characters in other encodings are converted into
UTF-8 in the SOAP message.

Note: Tuxedo Developers must ensure the
FLD_STRING characters in the same
buffer are in UTF-8 encoding.

Creat ing the SALT Dep lo yment F i l e

BEA SALT Administration Guide 2-25

Plug-in load libraries

Configuring Certificates
Certificate information must be configured in order for the GWWS server to create an SSL listen
endpoint, or to use X.509 certificates for authentication and/or message signature. All GWWS
servers defined in the same deployment file shares the same certificate settings, including the
private key file, trusted certificate directory, and so on.

The private key file is configured using the <Certificate>/<PrivateKey> sub-element. The
private key file must be in PEM file format and stored locally.

SSL clients can optionally be verified if the <Certificate>/<VerifyClient> sub-element is
set to true. By default, the GWWS server does not verify SSL clients.

If SSL clients are to be verified, and/or the X.509 certificate authentication feature is enabled, a
set of trusted certificates must be stored locally and located by the GWWS server. There are two
ways to define GWWS server trusted certificates:

1. Include all certificates in one PEM format file and define the file path using the
<<Certificate>/<TrustedCert> sub-element.

2. Saving separate certificate PEM format files in one directory and define the directory path
using the <<Certificate>/<CertPath> sub-element.

Listing 2-9 shows a SALTDEPLOY file segment configuring GWWS server certificates.

Listing 2-9 Configuring Certificates In the SALTDEPLOY File

<Deployment ..>

...

<System>

<Certificates>

<PrivateKey>/home/user/gwws_cert.pem</PrivateKey>

<VerifyClient>true</VerifyClient>

<CertPath>/home/user/trusted_cert</CertPath>

</Certificates>

</System>

</Deployment

2-26 BEA SALT Administration Guide

Configuring Plug-in Libraries
A plug-in is a set of functions that are called when the GWWS server is running. BEA SALT
provides a plug-in framework as a common interface for defining and implementing plug-ins.
Plug-in implementation is carried out through a dynamic library that contains the actual function
code. The implementation library can be loaded dynamically during GWWS server start up. The
functions are registered as the implementation of the plug-in interface.

In order for the GWWS server to load the library, the library must be specified using the
<Plugin>/<Interface> element in the SALTDEPLOY file.

Listing 2-10 shows a SALTDEPLOY file segment configuring multiple customized plug-in
libraries to be loaded by the GWWS servers.

Listing 2-10 Configuring Plug-in Libraries In the SALTDEPLOY File

<Deployment ..>

...

<System>

<Plugin>

<Interface lib=”plugin_1.so” />

<Interface lib=”plugin_2.so” />

</Plugin>

</System>

</Deployment

Note: If the plug-in library is developed using the SALT 2.0 plug-in interface, the “id” and
“name”attributes for the interface do not need to be specified. These values can be
obtained through plugin interfaces.

For more information, see Using Plug-ins with BEA SALT in BEA SALT Programming
with Web Services.

Configuring Advanced Web Service Messaging Features
BEA SALT currently supports the following advanced Web Service Messaging features:

Web Service Addressing

Conf igur ing Advanced Web Se rv ice Messaging Featu res

BEA SALT Administration Guide 2-27

Supports both inbound and outbound asynchronous Web service messaging.

Web Service Reliable Messaging

Supports inbound Web Service reliable message delivery.

Web Service Addressing
BEA SALT supports Web service addressing for both inbound and outbound services. The Web
service addressing (WS-Addressing) messages used by the GWWS server must comply with the
Web Service Addressing standard (W3C Member Submission 10 August 2004).

Inbound services do not require specific Web service addressing configuration. The GWWS server
accepts and responds accordingly to both WS-Addressing request messages and non
WS-Addressing request messages.

Outbound services require Web service addressing configuration as described in the following
sections:

Configuring the Addressing Endpoint for Outbound Services

Disabling WS-Addressing

Configuring the Addressing Endpoint for Outbound Services
For outbound services, Web service addressing is configured at the Web service binding level. In
the SALTDEPLOY file, each GWWS server can specify a WS-Addressing endpoint by using the
<WSAddressing> element for any referenced outbound WSBinding object to enable
WS-Addressing.

Once the WS-Addressing endpoint is configured, the GWWS server creates a listen endpoint at start
up. All services defined in the outbound WSBinding are invoked with WS-Addressing messages.

Listing 2-11 shows a SALTDEPLOY file segment enabling WS-Addressing for a referenced
outbound Web service binding.

Listing 2-11 WS-Addressing Endpoint Defined for Outbound Web Service Binding

<Deployment ..>

...

<WSGateway>

<GWInstance id="GWWS1">

...

2-28 BEA SALT Administration Guide

<Outbound>

<Binding ref="app1:app1_binding">

<WSAddressing>

<Endpoint address=”https://GWWS_host:8801/app1_async_point”>

</WSAddressing>

<Endpoint use=" extServer1_HTTPPort" />

<Endpoint use=" extServer1_HTTPSPort" />

</Binding>

<Binding ref="app2:app2_binding">

<WSAddressing>

<Endpoint address=”https://GWWS_host:8802/app2_async_point”>

</WSAddressing>

<Endpoint use=" extServer2_HTTPPort" />

<Endpoint use=" extServer2_HTTPSPort" />

</Binding>

</Outbound>

...

</GWInstance>

</WSGateway>

...

</ Deployment>

Notes: In a GWWS server, each outbound Web Service binding can be associated with a particular
WS-Addressing endpoint address. These endpoints can be defined with the same
hostname and port number, but the context path portion of the endpoint addresses must
be different.

If the external Web service binding does not support WS-Addressing messages,
configuring Addressing endpoints may result in run time failure.

Disabling WS-Addressing
No matter you create a WS-Addressing endpoint or not in the SALTDEPLOY file, you can
explicitly disable the Addressing capability for particular outbound services in the WSDF. To
disable the Addressing capability for a particular outbound service, you should use the property
name “disableWSAddressing” with a value set to “true” in the corresponding <Service>
definition in the WSDF file. This property has no impact to any inbound services.

Conf igur ing Advanced Web Se rv ice Messaging Featu res

BEA SALT Administration Guide 2-29

Listing 2-12 shows WSDF file segment disabling Addressing capability.

Listing 2-12 Disabling Service Level WS-Addressing

<Definition ...>

<WSBinding id="simpapp_binding">

<Servicegroup id="simpapp">

<Service name="toupper">

<Property name="disableWSAddressing" value=”true” />

</Service>

<Service name="tolower" />

</Servicegroup>

....

</WSBinding>

</Definition>

Web Service Reliable Messaging
BEA SALT currently supports Reliable Messaging for inbound services only. To enable Reliable
Messaging functionality, you must create a Web Service Reliable Messaging policy file and
include the policy file in the WSDF. The policy file must comply with the
WS-ReliableMessaging Policy Assertion Specification (February 2005).

Note: A WSDF containing a Reliable Messaging policy definition should be used by the GWWS
server for inbound direction only.

Creating the Reliable Messaging Policy File
A Reliable Messaging Policy file is a general WS-Policy file containing WS-ReliableMessaging
Assertions. The WS-ReliableMessaging Assertion is an XML segment that describes features
such as the version of the supported WS-ReliableMessage specification, the source endpoint’s
retransmission interval, the destination endpoint’s acknowledge interval, and so on.

For more information about the WS-ReliableMessaging policy file format, see the BEA SALT
WS-ReliableMessaging Policy Assertion Reference in the BEA SALT Reference Guide.

Listing 2-13 shows a Reliable Messaging policy file example.

2-30 BEA SALT Administration Guide

Listing 2-13 Reliable Messaging Policy File Example

<?xml version="1.0"?>

<wsp:Policy wsp:Name="ReliableSomeServicePolicy"

xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"

xmlns:wsp=”http://schemas.xmlsoap.org/ws/2004/09/policy”

xmlns:beapolicy="http://www.bea.com/wsrm/policy">

<wsrm:RMAssertion>

<wsrm:InactivityTimeout Milliseconds="600000" />

<wsrm:AcknowledgementInterval Milliseconds="2000" />

<wsrm:BaseRetransmissionInterval Milliseconds="500"/>

<wsrm:ExponentialBackoff />

<beapolicy:Expires Expires="P1D" />

<beapolicy:QOS QOS=”ExactlyOnce InOrder" />

</wsrm:RMAssertion>

</wsp:Policy>

Specifying the Reliable Messaging Policy File in the WSDF File
You must reference the WS-ReliableMessaging policy file at the <Servicegroup> level in the
native WSDF file. The following segment of the WSDF file shows how to reference the
WS-ReliableMessaging policy file.

Listing 2-14 Reference the WS-ReliableMessaging Policy At the Endpoint Level

<Definition ...>

<WSBinding ...>

<Servicegroup ...>

<Policy location=”RMPolicy.xml” />

<Service ... />

<Service ... />

...

</Servicegroup ...>

</WSBinding>

</Definition>

Conf igur ing Secur i t y Fea tu res

BEA SALT Administration Guide 2-31

Note: Reliable Messaging in BEA SALT does not support process/system failure scenarios,
which means SALT does not store the message in a persistent storage area. BEA SALT
works in a direct mode with the SOAP client. Usually, system failure recovery requires
business logic synchronization between the client and server.

Configuring Security Features
BEA SALT provides security support at both transport level and SOAP message level. The
following topics explains how to configure security features for each level:

Configuring Transport Level Security

Configuring Message Level Web Service Security

Configuring Transport Level Security
BEA SALT provides point-to-point security using SSL link-level security and supports HTTP
basic authentication mechanism for both inbound and outbound service authentication.

Setting Up SSL Link-Level Security
To set up link-level security using SSL at inbound endpoints, you can simply specify the endpoint
address with prefix “https://”. The GWWS server who uses this inbound endpoint creates SSL
listen port and make SSL secured connections with Web Service Clients. SSL features need to
specify certificates settings. For more information about certificate settings, see “Configuring
Certificates”.

GWWS server automatically creates SSL secured connection to outbound endpoints that are
published with URLs that having prefix “https://”.

Configuring Inbound HTTP Basic Authentication
BEA SALT depends on the Tuxedo security framework for Web Service client authentication.
There is no special configuration at BEA SALT side to enable inbound HTTP Basic
Authentication. If Tuxedo system requires user credential, HTTP Basic Authentication is simply
an alternative for Web Service client program to carry the user credential.

The GWWS gateway supports Tuxedo domain security configuration for the following two
authentication patterns:

Application password (APP_PW)

User-level authentication (USER_AUTH)

2-32 BEA SALT Administration Guide

The GWWS server passes the following string from the HTTP header of the client SOAP request
for Tuxedo authentication.

Authorization: Basic <base64Binary of username:password>

The following is an example of a string from the HTTP header:

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

In this example, the client sends the Tuxedo username “Aladdin” and the password “open
sesame”, and uses this paired value for Tuxedo authentication.

Using Application Password (APP_PW)

If Tuxedo uses APP_PW, then the HTTP username value is ignored and the GWWS server
only uses the password string as the Tuxedo application password to check the
authentication.

Using User-level Authentication (USER_AUTH)

If Tuxedo uses USER_AUTH, then both the HTTP username and password value are used.
In this case, the GWWS server does not check the Tuxedo application password.

Note: ACL and MANDATORY_ACL are not supported for Web service clients, which means the
Tuxedo system ignores any ACL-related configuration specifications. BEA SALT
does not make group information available for Web service clients.

Configuring Outbound HTTP Basic Authentication
BEA SALT supports customers to develop authentication plug-in to prepare the user credential
for the outbound HTTP Basic Authentication. Outbound HTTP Basic Authentication is
configured at Endpoint level. If an outbound Endpoint requires user profile in the HTTP message,
you must specify the HTTP Realm for the HTTP endpoint in the WSDF file. The GWWS server
invokes authentication plug-in library to prepare the username and password, and send them
using HTTP Basic Authentication mechanism in the request message.

Listing 2-15 shows how to enable HTTP Basic Authentication for the outbound endpoints.

Listing 2-15 Enabling HTTP Basic Authentication For the Outbound Endpoint

<Definition ...>

<WSBinding id="simpapp_binding">

<SOAP>

<AccessingPoints>

Conf igur ing Secur i t y Fea tu res

BEA SALT Administration Guide 2-33

<Endpoint id=”...” address=”...”>

<Realm>SIMP_REALM</Realm>

</Endpoint>

</AccessingPoints>

</SOAP>

<Servicegroup id="simpapp">

....

</Servicegroup>

....

</WSBinding>

......

</Definition>

Once a service request is sending to an outbound endpoint specified with <Realm> setting, the
GWWS server passes the Tuxedo client uid and gid to the authentication plug-in function, so that
the plug-in can determine HTTP Basic Authentication username/password according to the
Tuxedo client information. To obtain Tuxedo client uid / gid for HTTP basic authentication
username/password mapping, Tuxedo security level may also need to be configured in the
UBBCONFIG file. For more information, see “Configuring Tuxedo Security Level for Outbound
HTTP Basic Authentication”.

For more information about how to develop an outbound authentication plug-in, see
Programming Outbound Authentication Plug-ins in the BEA SALT Programming Web Services.

Configuring Message Level Web Service Security
BEAL SALT supports Web Service Security 1.0 and 1.1 specification for message level security.
You can use message-level security in BEA SALT to assure:

Authentication, by requiring username or X.509 tokens

Inbound request message integrity, by requiring the soap body signature

Main Use Cases of Web Service Security
BEA SALT implementation of the Web Service Security: SOAP Message Security specification
supports the following use cases:

Include a token (username, or X.509) in the SOAP message for authentication.

2-34 BEA SALT Administration Guide

Include a token (X.509) and the soap body signature in the SOAP message for integrity.

Using WS-SecurityPolicy Files
BEA SALT includes a number of WS-Security Policy 1.0 and 1.2 files you can use for message
level security use cases.

The WS-Policy files can be found at $TUXDIR/udataobj/salt/policy once you have
successfully installed BEA SALT.

The following table lists the default WS-Security Policy files bundled by BEA SALT.

The above policy files except WS-Security Policy 1.2 UserToken file can be referenced at
<Servicegroup> or <Service> level in the native WSDF file. The WSSP 1.2 UserToken file can
only be referenced at <Servicegroup> level. The sample “wsseapp” shows how to clip the WSSP
1.2 UserToken file to be used in <Service> level.

Listing 2-16 shows a combination of policy assignment making that the service “TOUPPER”
requires client send a UsernameToken (in PlainText format) and an X509v3Token in request, and
also require the SOAP:Body part of message is signed with the X.509 token.

Table 2-8 WS-Security Policy Files Provided By BEA SALT

File Name Purpose

wssp1.0-username-auth.xml WS-Security Policy 1.0. Plain Text Username Token for Service
Authentication

wssp1.0-x509v3-auth.xml WS-Security Policy 1.0. X.509 V3 Certificate Token for Service
Authentication

wssp1.0-signbody.xml WS-Security Policy 1.0. Signature on SOAP:Body for verification of
X.509 Certificate Token

wssp1.2-Wss1.0-Username
Token-plain-auth.xml

WS-Security Policy 1.2. Plain Text Username Token for Service
Authentication

wssp1.2-Wss1.1-X509V3-a
uth.xml

WS-Security Policy 1.2. X.509 V3 Certificate Token for Service
Authentication

wssp1.2-signbody.xml WS-Security Policy 1.2. Signature on SOAP:Body for verification of
X.509 Certificate Token

Compi l ing SALT Conf igurat ion

BEA SALT Administration Guide 2-35

Listing 2-16 WS-Security Policy Usage

<Definition ...>

<WSBinding id="simpapp_binding">

<Servicegroup id="simpapp">

<Policy location="salt:wssp1.2-Wss1.1-X509V3-auth.xml"/>

<Service name="TOUPPER" >

<Policy location="D:/wsseapp/wssp1.2-UsernameToken-Plain.xml"/>

<Policy location="salt:wssp1.2-signbody.xml" use="input"/>

</Service>

</Servicegroup>

....

</WSBinding>

......

</Definition>

Policy is referred with “location” attribute of the <Policy> element. A prefix “salt:” means a
SALT default bundled policy file is used. User-defined policy file can be used by directly
specifying the file path.

Notes: If a policy is referred at <Servicegroup> level, it will apply to all services in this service
group.

The “signbody” policy must be used with the attribute “use” set as “input”, which
specifies the policy applied only for input message. This is necessary because we do
not sign the SOAP:Body of output message.

Compiling SALT Configuration
Compiling a SALT configuration file means generating a binary version of the file (SALTCONFIG)
from the XML version SALTDEPLOY file. To compile a configuration file, run the wsloadcf
command. wsloadcf parses a deployment file and loads the binary file.

wsloadcf reads a deployment file and all imported WSDF files and WS-Policy files referenced
in the deployment file, checks the syntax according to the XML schema of each file format, and
optionally loads a binary configuration file called SALTCONFIG. The SALTCONFIG and

2-36 BEA SALT Administration Guide

(optionally) SALTOFFSET environment variables point to the SALTCONFIG file and (optional)
offset where the information should be stored.

wsloadcf validates the given SALT configuration files according to the predefined XML
Schema files. XML Schema files needed by BEA SALT can be found at directory:
$TUXDIR/udataobj/salt.

wsloadcf can execute for validating purpose only without generating the binary version
SALTCONFIG once option “-n” is specified.

For more information about wsloadcf, see wsloadcf reference in the BEA SALT Reference
Guide.

Configuring the UBBCONFIG File for BEA SALT
After configuring and compiling SALT configuration, Tuxedo UBBCONFIG file needs to be
updated to apply SALT components in the Tuxedo application. Table 2-9 lists the UBBCONFIG file
configuration tasks for BEA SALT.

Configuring the TMMETADATA Server in the *SERVERS
Section
BEA SALT requires at least one TMMETADATA server defined in the UBBCONFIG file. Multiple
TMMETADATA servers are also allowed to increase the throughput of accessing the Tuxedo service
definitions.

Table 2-9 UBBCONFIG File Configuration Tasks for BEA SALT

Configuration Tasks Required Optional

Configuring the TMMETADATA Server in the *SERVERS Section X

Configuring the GWWS Servers in the *SERVERS Section X

Updating System Limitations in the UBBCONFIG File X

Configuring Certificate Password Phrase For the GWWS Servers X

Configuring Tuxedo Authentication for Web Service Clients X

Configuring Tuxedo Security Level for Outbound HTTP Basic
Authentication

X

Conf igur ing the UBBCONFIG F i l e fo r BEA SALT

BEA SALT Administration Guide 2-37

Listing 2-17 lists a segment of the UBBCONFIG file that shows how to define TMMETADATA servers
in a Tuxedo application.

Listing 2-17 TMMETADATA Servers Defined In the UBBCONFIG File *SERVERS Section

......

*SERVERS

TMMETADATA SRVGRP=GROUP1 SRVID=1

CLOPT="-A -- –f domain_repository_file -r"

TMMETADATA SRVGRP=GROUP1 SRVID=2

CLOPT="-A -- –f domain_repository_file"

......

Note: Maintaining only one Service Metadata Repository file for the whole Tuxedo domain is
highly recommended. To ensure this, multiple TMMETADATA servers running in the
Tuxedo domain must point to the same repository file.

For more information, see “Managing The Tuxedo Service Metadata Repository” in the
Tuxedo 9.1 documentation.

Configuring the GWWS Servers in the *SERVERS Section
To boot GWWS instances defined in the SALTDEPLOY file, the GWWS servers must be defined in
the *SERVERS section of the UBBCONFIG file. You can define one or more GWWS server instances
concurrently in the UBBCONFIG file. Each GWWS server must be assigned with a unique instance id
with the option “-i” within the Tuxedo domain. The instance id must be present in the XML
version SALTDEPLOY file and the generated binary version SALTCONFIG file.

Listing 2-18 lists a segment of the UBBCONFIG file that shows how to define GWWS servers in a
Tuxedo application.

Listing 2-18 GWWS Servers Defined In the UBBCONFIG File *SERVERS Section

......

*SERVERS

GWWS SRVGRP=GROUP1 SRVID=10

CLOPT="-A -- –i GW1"

2-38 BEA SALT Administration Guide

GWWS SRVGRP=GROUP1 SRVID=11

CLOPT="-A -- –i GW2"

GWWS SRVGRP=GROUP2 SRVID=20

CLOPT="-A -- -c saltconf_2.xml –i GW3"

......

For more information, see “GWWS” in the BEA SALT Reference Guide.

Note: Be sure that the TMMETADATA system server is set up in the UBBCONFIG file to start before
the GWWS server boots. Because the GWWS server calls services provided by TMMETADATA,
it must boot after TMMETADATA.

To ensure TMMETADATA is started prior to being called by the GWWS server, put
TMMETADATA before GWWS in the UBBCONFIG file or use SEQUENCE parameters in
*SERVERS definition in the UBBCONFIG file.

Note: SALT configuration information is pre-compiled with wsloadcf to generated a binary
version SALTCONFIG file. GWWS server reads SALTCONFIG file at start up. Environment
variable SALTCONFIG must be set correctly with the binary version SALTCONFIG file
entity before booting GWWS servers.

Note: Option “-c” is deprecated in the current version BEA SALT. In SALT 1.1 release, option
“-c” is used to specify SALT 1.1 configuration file for the GWWS server. In SALT 2.0,
GWWS server reads SALTCONFIG file at start up. GWWS server specified with this option can
be booted with a warning message to indicate this deprecation. The specified file can be
arbitrary and is not read by the GWWS server.

Updating System Limitations in the UBBCONFIG File
When configuring the Tuxedo domain with SALT GWWS servers, you need to plan and update
Tuxedo system limitations defined in the UBBCONFIG file according to your SALT application
requirements.

Tip: Defining enough MAXSERVERS number in the *RESOURCES section

BEA SALT requires the following system servers to be started in a Tuxedo domain: TMMETADATA
and GWWS. The number of TMMETADATA and GWWS server must be accounted for in the
MAXSERVERS value.

Conf igur ing the UBBCONFIG F i l e fo r BEA SALT

BEA SALT Administration Guide 2-39

Tip: Defining enough MAXSERVICES number in the *RESOURCES section

When the GWWS server working in the outbound direction, external wsdl:operations are mapped
with Tuxedo services and advertised via the GWWS servers. The number of the advertised services
by all GWWS servers must be accounted for in the MAXSERVICES value.

Tip: Defining enough MAXACCESSERS number in the *RESOURCES section

MAXACCESSERS value is used to specify the default maximum number of clients and servers that
can be simultaneously connected to the Tuxedo bulletin board on any particular machine in this
application. The number of TMMETADATA and GWWS server, maximum concurrent Web Service
client requests must be accounted for in the MAXACCESSERS value.

Tip: Defining enough MAXWSCLIENTS number in the *MACHINES section

When the GWWS server working in the inbound direction, each Web Service client is deemed a
workstation client in Tuxedo system; therefore, MAXWSCLIENTS must be configured with a valid
number in UBBCONFIG for the machine where the GWWS server is deployed. The number shares.

Configuring Certificate Password Phrase For the GWWS
Servers
Configuring security password phrase is required when setting up certificates for BEA SALT.
Certificates setting is desired when the GWWS servers enabling SSL link-level encryption and/or
Web Service Security X.509 Token and signature features. The certificate private key file needs
to be created and encrypted with a password phrase.

When the GWWS servers are specified with certificate related features, they are required to read the
private key file and decrypt them using the password phrase. To configure password phrase for
each GWWS server, keyword SEC_PRINCIPAL_NAME and SEC_PRINCIPAL_PASSVAR must be
specified under each desired GWWS server entry in the *SERVERS section. During compiling the
UBBCONFIG file with tmloadcf, the administrator must type the password phrase, which can be
used to decrypt the private key file correctly.

Note: Only one private key file can be specified in the SALT deployment file. All the GWWS
servers defined in the SALT deployment file must be provided the same password phrase
for the private key file decryption.

2-40 BEA SALT Administration Guide

Listing 2-19 lists a segment of the UBBCONFIG file that shows how to define security password
phrase for the GWWS servers.

Listing 2-19 Security Password Phrase Defined in the UBBCONFIG File For the GWWS Servers

......

*SERVERS

GWWS SRVGRP=GROUP1 SRVID=10

SEC_PRINCIPAL_NAME="gwws_certkey"

SEC_PRINCIPAL_VAR="gwws_certkey"

CLOPT="-A -- –i GW1"

GWWS SRVGRP=GROUP1 SRVID=11

SEC_PRINCIPAL_NAME="gwws_certkey"

SEC_PRINCIPAL_PASSVAR="gwws_certkey"

CLOPT="-A -- –i GW2"

......

For more information, see “UBBCONFIG(5)“in the Tuxedo 9.1 documentation.

Configuring Tuxedo Authentication for Web Service Clients
BEA SALT GWWS servers rely on Tuxedo authentication framework to check the validity of the
Web Service clients. If your legacy Tuxedo application is already applied with, Web Service
clients must send user credential using one of the following approaches:

HTTP Basic Authentication in the HTTP message header

Web Service Security Username Token in the SOAP message header

Contrarily, if you want to authenticate Web Service clients for BEA SALT, you must configure
Tuxedo authentications in the Tuxedo domain.

For more information about Tuxedo authentication, see “Administering Authentication” in the
BEA Tuxedo 9.1 Documentation.

Conf igur ing BEA SALT In Tuxedo MP Mode

BEA SALT Administration Guide 2-41

Configuring Tuxedo Security Level for Outbound HTTP Basic
Authentication
To obtain Tuxedo client uid / gid for outbound HTTP Basic Authentication username
/password mapping, you need to configure Tuxedo Security level as USER_AUTH, ACL or
MANDATORY_ACL in the UBBCONFIG file.

Listing 2-20 lists a segment of the UBBCONFIG file that shows how to define security level ACL
in the UBBCONFIG file.

Listing 2-20 Security Level ACL Defined in the UBBCONFIG File For Outbound HTTP Basic Authentication

*RESOURCES

IPCKEY ...

......

SECURITY ACL

......

Configuring BEA SALT In Tuxedo MP Mode
To set up GWWS servers running on multiple machines within a MP mode Tuxedo domain, each
Tuxedo machine must be defined with a separate SALTDEPLOY file and a set of separate other
components.

You must propagate the following global resources across different machines:

Certificates. Private key file and the trusted certificate files must be accessible from each
machine according to the settings defined in the SALTDEPLOY file.

Plug-in load libraries. Plug-in shared libraries must be compiled on each machine and must
be accessible according to the settings defined in the SALTDEPLOY file.

You may define two GWWS servers running on different machine with the same functionality by
associating the same WSDF files. But it requires manual propagation of the following artifacts:

The WSDF files

The WS-Policy files

2-42 BEA SALT Administration Guide

FML32 field table definition files if Tuxedo Services consume FML32 typed buffers

XML Schema files excerpted by wsdlcvt.

Migrating from BEA SALT 1.1
This section describes the following two possible migrating approaches for SALT 1.1 customers
who plan to upgrade to SALT 2.0 release:

Running GWWS servers with SALT 1.1 Configuration File

Adopting SALT 2.0 Configuration Style by Converting SALT 1.1 Configuration File

Running GWWS servers with SALT 1.1 Configuration File
After upgrading from SALT 1.1 to SALT 2.0 release, you may still want to run your existing
SALT applications with the original SALT 1.1 configuration file. SALT 2.0 definitely supports
that.

SALT configuration compiler utility, wsloadcf, supports to load the binary version SALTCONFIG
from one SALT 1.1 format configuration file.

To run SALT 2.0 GWWS servers with SALT 1.1 Configuration file, you need to perform the
following steps:

1. Load the binary version SALTCONFIG from the SALT 1.1 format configuration file via
wsloadcf.

2. Set environment variable SALTCONFIG before booting the GWWS servers.

3. Boot the GWWS servers associated with this SALT 1.1 configuration file.

Note: If customers have more than one SALT 1.1 configuration files defined in a Tuxedo
domain, customers need to follow step 1 to 3 to generate more binary version
SALTCONFIG files and boot corresponding GWWS servers.

Adopting SALT 2.0 Configuration Style by Converting SALT
1.1 Configuration File
When wsloadcf loads a binary version SALTCONFIG from a SALT 1.1 configuration file, it also
convert this SALT 1.1 configuration file into one WSDF file and one SALTDEPLOY file.

Migrat ing f rom BEA SALT 1 .1

BEA SALT Administration Guide 2-43

It’s highly recommended to start using the SALT 2.0 styled configuration once you get the
converted files from SALT 1.1 configuration.

Note: If customers want to incorporate more than one SALT 1.1 configuration files into one
SALT 2.0 deployment, customers need to manually edit the SATLDEPLOY file for
importing the other WSDF files.

The following sample lists the converted SALTDEPLOY file and WSDF file from a given SALT 1.1
configuration file.

Listing 2-21 A Sample of SALT 1.1 Configuration File (simpapp.xml)

<Configuration xmlns=" http://www.bea.com/Tuxedo/Salt/200606">

<Servicelist id="simpapp">

<Service name="toupper" />

<Service name="tolower" />

</Servicelist>

<Policy />

<System />

<WSGateway>

<GWInstance id="GWWS1">

<HTTP address="//127.0.0.1:7805" />

<HTTPS address="127.0.0.1:7806" />

<Property name="timeout" value="300" />

</GWInstance>

</WSGateway>

</Configuration>

The converted SALT 2.0 WSDF file and deployment file are listed below.

Listing 2-22 Converted WSDF File for SALT 1.1 Configuration File (simpapp.xml.wsdf)

<Definition name="simpapp" wsdlNamespace="urn:simpapp.wsdl"

xmlns=" http://www.bea.com/Tuxedo/WSDF/2007">

<WSBinding id="simpapp_binding">

<Servicegroup id="simpapp">

2-44 BEA SALT Administration Guide

<Service name="toupper" />

<Service name="tolower" />

</Servicegroup>

<SOAP>

<AccessingPoints>

<Endpoint id="simpapp_GWWS1_HTTPPort"

address=http://127.0.0.1:7805/simpapp />

<Endpoint id=" simpapp_GWWS1_HTTPSPort"

address=https://127.0.0.1:7806/simpapp />

</AccessingPoints>

</SOAP>

</WSBinding>

</Definition>

Listing 2-23 Converted SALTDEPLOY File for SALT 1.1 Configuration File (simpapp.xml.dep)

<Deployment xmlns=" http://www.bea.com/Tuxedo/SALTDEPLOY/2007">

<WSDF>

<Import location="/home/myapp/simpapp.wsdf" />

</ WSDF>

<WSGateway>

<GWInstance id="GWWS1">

<Inbound>

<Binding ref="simpapp:simpapp_binding">

<Endpoint use=" simpapp_GWWS1_HTTPPort" />

<Endpoint use=" simpapp_GWWS1_HTTPSPort" />

</Binding>

</Inbound>

<Properties>

<Property name="timeout" value="300" />

</Properties>

</GWInstance>

</WSGateway>

</ Deployment>

Migrat ing f rom BEA SALT 1 .1

BEA SALT Administration Guide 2-45

2-46 BEA SALT Administration Guide

BEA SALT Administration Guide 3-1

C H A P T E R 3

Administering BEA SALT at Run Time

This section contains the following topics:

Browsing to the WSDL Document from the GWWS Server

Tuning the GWWS Server

Tracing the GWWS Server

Monitoring the GWWS Server

Troubleshooting BEA SALT

Browsing to the WSDL Document from the GWWS Server
Each GWWS server automatically generates a WSDL document for each deployed inbound native
WSDF. The WSDL document can be downloaded from any of the HTTP/S listening endpoints
via HTTP GET.

Use the following URL to browse the WSDL document:

“http(s)://<host>:<port>/wsdl[? [id=<wsdf_name>]

[&mappolicy=<pack|raw|mtom>] [&toolkit=<wls|axis>]]”

Table 3-1 lists all WSDL document download options.

3-2 BEA SALT Administration Guide

Note: The WSDL download URL supported by BEA SALT 2.0 is different from BEA SALT
1.1. In BEA SALT 1.1 release, one GWWS server adaptively supports both RPC/encoded
and document/literal message style, both SOAP 1.1 and SOAP 1.2 version, from a
given configuration file. In BEA SALT 2.0 release, each WSDF file associated with the
GWWS server must be pre-combined with a certain SOAP version and a certain SOAP
message style. So the following WSDL download options for SALT 1.1 GWWS server are
deprecated in this release.

Table 3-1 WSDL Download Options

Option Value Description

id Specifies the native WSDF name for the WSDL document. The specified
native WSDF must be imported via inbound direction by the GWWS server.
If the option is not specified, the first inbound native WSDF is used.

mappolicy { pack | raw | mtom }

Specifies the data mapping policies for certain Tuxedo Typed
buffers for the generated WSDL document. Currently, this option
impacts CARRAY typed buffers only. If the option is not specified,
pack is used as the default value.

toolkit { wls | axis }

Use this option only if you have previously defined
mappolicy=raw. Specify the client toolkit used so that the proper
WSDL document description for a CARRAY typed buffer MIME
attachment is generated. BEA SALT supports WebLogic Server and
Axis for SOAP with Attachments. The default value is wls.

Table 3-2 Deprecated WSDL Download Options

Option Value Description

SOAPversion This deprecated option is used to specify the expected SOAP version
defined in the generated WSDL document. Now this option is set in the
WSDF file.

encstyle This deprecated option is used to specify the expected SOAP message style
defined in the generated WSDL document. Now this option is set in the
WSDF file.

Tun ing the GWWS Serve r

BEA SALT Administration Guide 3-3

Tuning the GWWS Server
The GWWS server is a high performance gateway used between external Web Service
application and the Tuxedo application. It uses a thread-pool working model to improve
performance in a multi-processor server environment. The GWWS server also provides options
to control runtime behavior by setting the <WSGateway> element property values in the BEA SALT
configuration file. The following topics list deployment considerations based on different
scenarios. For more information, see “Configuring the GWWS Servers” on page 2-20.

Thread Pool Size Tuning
Property: thread_pool_size

The default thread pool size is 16, but in some cases this may not be enough to handle high
volume loads. It is recommended to conduct a typical usage analysis in order to better estimate
the proper size requirement. Usually, if the concurrent client number is large (for example, more
than 500), it is suggested that you deploy the GWWS gateway on a server with at least a 4-way
processor and set the thread pool size to 64.

Network Timeout Control
Property: timeout

BEA SALT provides a network timeout tuning parameter in the configuration file. The default
timeout value is 300 seconds.The value can be adjusted to reduce timeout errors.

Max Content Length Control
Property: max_content_length

BEA SALT administrators may want to limit the buffer size sent from a client. SALT supports
this by using a property value that can be set for particular GWWS instances. By default there is
no limit.

Backlog Control
Property: max_backlog

The default backlog socket listen value is 20. On some systems, such as Windows, 20 may not
meet heavy load requirements. The client connection is rejected during TCP handshake.

3-4 BEA SALT Administration Guide

The recommended value for Windows is based on the max concurrent TCP connections you may
encounter. For example, if 80 is the peak point, you may configure the max_backlog property
value to 60 in the SALT configuration file.

Note: The default backlog value is adequate for most systems. You do not need to tune it unless
you experience client connection problems during heavy loads.

WARNING: A large backlog value may increase syn-blood attack risk.

Tuxedo BLOCKTIME
A network receive timeout property is provided in the SALT configuration file. Web service
applications are also impacted by the Tuxedo BLOCKTIME parameter. Blocktime accounting
begins when a message is transformed from XML to a typed buffer and delivered to the Tuxedo
framework.

If no reply is received for a particular Web service client within the BLOCKTIME time frame,
the GWWS server sends a SOAP fault message to the client and terminates the connection. If the
GWWS server receives a delayed reply, it drops this message because the client has been
disconnected.

BLOCKTIME is defined in the UBBCONFIG file *RESOURCE section.

Boost Performance Using Multiple GWWS instances
If one GWWS instance is bottlenecked due to network congestion, low CPU resources and so on,
multiple GWWS instances can be deployed with the same Web Service binding on distributed
Tuxedo nodes.

Note: Even though multiple GWWS instances can provide the same logic functionality, from a
client perspective, they are different Web service endpoints with different HTTP/S listen
ports and addresses.

Tracing the GWWS Server
The GWWS server supports Tuxedo TMTRACE functionality (used to dynamically trace
messages). All trace points are logged in the ULOG file. Checking the ULOG file trace
information helps to evaluate GWWS server SOAP message problems. GWWS server message
tracing behavior is set using the TMTRACE environment variable, or by using the tmadmin chtr
sub-command command.

Trac ing the GWWS Serve r

BEA SALT Administration Guide 3-5

The reserved trace category, msg, is used to trace BEA SALT messages. It can be used together
with other general trace categories. For example, if trace category “atmi+msg” is specified, both
BEA SALT and Tuxedo ATMI trace messages are logged.

Notes: Message tracing is recommended for diagnostic treatment only.

The following trigger specifications are not recommended for GWWS servers:

abort, system, sleep

In any of these trigger specifications are used, GWWS servers may be unexpectedly
terminated.

For more tmtrace and trace specification information, see tmtrace(5) in the File Formats, Data
Descriptions, MIBs, and System Processes Reference.

TMTRACE specification examples for BEA SALT message tracing are shown below:

To trace SALT messages only
export TMTRACE=msg:ulog:

To trace both BEA SALT and Tuxedo ATMI messages
export TMTRACE=atmi+msg:ulog:

Listing 3-1 shows a ULOG file example containing BEA SALT tracing messages.

Listing 3-1 TMTRACE Messages Logged By the GWWS Server

183632.BOX1!GWWS.4612.4540.0: TRACE:ms:A HTTP message is received, SCO

index=1023

183632. BOX1!GWWS.4612.4540.0: TRACE:ms:A SOAP message is received, SCO

index=1023

183632. BOX1!GWWS.4612.4540.0: TRACE:ms:Begin data transformation of

request message, buffer type = STRING, SCO index=1023

183632. BOX1!GWWS.4612.4540.0: TRACE:ms:End of data transformation of

request message, buffer type = STRING, SCO index=1023

183632. BOX1!GWWS.4612.840.0: TRACE:ms:Delivering a message to Tuxedo,

service name =TOUPPER, SCO index=1023

3-6 BEA SALT Administration Guide

183632. BOX1!GWWS.4612.840.0: TRACE:ms:Got a message from Tuxedo, SCO

index=1023

183632. BOX1!GWWS.4612.4540.0: TRACE:ms:Begin data transformation of reply

message, buffer type = STRING, SCO index=1023

183632. BOX1!GWWS.4612.4540.0: TRACE:ms:End of data transformation of reply

message, buffer type = STRING, SCO index=1023

183632. BOX1!GWWS.4612.4540.0: TRACE:ms:Send a http message to net, SCO

index=1023

A more complex log is generated by TMTRACE=msg:ulog, used in WS-ReliableMessaging
communication. All the application and infrastructure messages are sent to ULOG. Listing 3-2
shows a ULOG file example containing WS-ReliableMessaging TMTRACE messages.

Listing 3-2 WS-ReliableMessaging TMTRACE Messages

184706.BOX1!GWWS.3640.4772.0: TRACE:ms:A HTTP message is received, SCO

index=1023

184706.BOX1!GWWS.3640.4772.0: TRACE:ms:A HTTP Get request is received, SCO

index=1023

184706.BOX1!GWWS.3640.4772.0: TRACE:ms:Send a http message to net, SCO

index=1023

184710.BOX1!GWWS.3640.4772.0: TRACE:ms:A HTTP message is received, SCO

index=1022

184710.BOX1!GWWS.3640.4772.0: TRACE:ms:A SOAP message is received, SCO

index=1022

184710.BOX1!GWWS.3640.4772.0: TRACE:ms:Create a new inbound sequence,

ID=uuid:4F1FEE40-72CB-118C-FFFFFFC0FFFFFFA8FFFFFFEB010000-1811

Moni to r ing the GWWS Serve r

BEA SALT Administration Guide 3-7

184710.BOX1!GWWS.3640.4772.0: TRACE:ms:Create a new outbound sequence,

ID=uuid:f7f76200-f612-11da-990d-9f37c3d14ba7

184710.BOX1!GWWS.3640.4772.0: TRACE:ms:Send CreateSequenceResponse message

for sequence uuid:4F1FEE40-72CB-118C-FFFFFFC0FFFFFFA8FFFFFFEB010000-1811

184710.BOX1!GWWS.3640.4772.0: TRACE:ms:Send a http message to net, SCO

index=1022

184712.BOX1!GWWS.3640.3260.0: TRACE:ms:A HTTP message is received, SCO

index=1022

184712.BOX1!GWWS.3640.3260.0: TRACE:ms:A SOAP message is received, SCO

index=1022

184712.BOX1!GWWS.3640.3260.0: TRACE:ms:Begin data transformation of request

message, buffer type = STRING, SCO index=1022

184712.BOX1!GWWS.3640.3260.0: TRACE:ms:End of data transformation of

request message, buffer type = STRING, SCO index=1022

184712.BOX1!GWWS.3640.3260.0: TRACE:ms:Received a request message in

sequence uuid:4F1FEE40-72CB-118C-FFFFFFC0FFFFFFA8FFFFFFEB010000-1811

Checking the ULOG tracing information helps to evaluate GWWS server SOAP message
problem status.

Monitoring the GWWS Server
The GWWS server can be monitored with wsadmin utility, which is a command line tool. This
tool can show the running status of GWWS.

An example is shown in Listing 3-3.

3-8 BEA SALT Administration Guide

Listing 3-3 Use wsadmin to monitor GWWS

$wsadmin

wsadmin - Copyright (c) 2005-2006 BEA Systems, Inc.

Portions * Copyright 1986-1997 RSA Data Security, Inc.

All Rights Reserved.

Distributed under license by BEA Systems, Inc.

SALT is a registered trademark.

> gwstats -i abcd

GWWS Instance : abcd

Inbound Statistics :

Request Response Succ : 74

Request Response Fail : 32

Oneway Succ : 0

Oneway Fail : 0

Total Succ : 74

Total Fail : 32

Avg. Processing Time : 210.726 (ms)

Outbound Statistics :

Request Response Succ : 0

Request Response Fail : 0

Oneway Succ : 0

Oneway Fail : 0

Total Succ : 0

Total Fail : 0

Avg. Processing Time : 0.000 (ms)

Total request Pending : 0

Outbound request Pending : 0

Active Thread Number : 2

Moni to r ing the GWWS Serve r

BEA SALT Administration Guide 3-9

> gws -i out -s getTemp

GWWS Instance : out

Service : getTemp

Outboud Statistics :

Request Response Succ : 333

Request Response Fail : 139

Avg. Processing Time : 143.064 (ms)

>

Command gwstats (abbreviated as gws) can display the statistics data of GWWS server with
specific instance ID or of certain service of the GWWS server. The data include the amount of
successful and failed request, etc.

Before wsadmin is executed, both TUXCONFIG and SALTCONFIG environment variable must be
set. wsadmin supports both active mode and in-active mode, which means wsadmin is able to
launch with/without booting the Tuxedo domain.

The following table lists wsadmin sub-commands.

Table 3-3 wsadmin sub-commands

Sub-Command Description

gwstats(gws) Show statistics information of GWWS server

configstats(cstat) Show configuration information

default(d) Specify the default -i option

echo(e) Switch on/off echo of input

paginate(page) Switch on/off paging the output

3-10 BEA SALT Administration Guide

Troubleshooting BEA SALT
The following sections explain how to troubleshoot a BEA SALT run-time failure:

GWWS Start Up Failure

GWWS Rejects SOAP Request

WSDL Document Generated Incorrectly or Rejected by SOAP Client Toolkit

GWWS Start Up Failure
If the GWWS server fails to start, check the following:

Tuxedo service contract configuration

Check the Tuxedo service contract definition is correct in the Tuxedo Service Metadata
Repository and the Tuxedo Service Metadata Repository Server - TMMETADATA - is booted
successfully.

GWWS server license

The GWWS server requires an extra license from BEA to enable the functionality. Check
to make sure it has been installed properly.

GWWS server HTTP listen port configuration.

Check the GWWS server listen / WS-Addressing endpoints defined in the SALT
configuration files. Avoid port conflicts with other applications.

GWWS instance ID.

Check the GWWS instance ID to make sure the two names defined in UBBCONFIG and
SALTDEPLOY file are consistent.

UBBCONFIG file MAXWSCLIENTS definition.

Make sure that MAXWSCLIENTS is defined in the *MACHINE section of UBBCONFIG file on
the computer where GWWS server is deployed.

verbose(v) Switch on/off verbose output

quit(q) Quit wsadmin

Table 3-3 wsadmin sub-commands

Troub leshoot ing BEA SALT

BEA SALT Administration Guide 3-11

RESTART=Y and REPLYQ=Y parameters.

If the GWWS server is set to RESTART=Y in the UBBCONFIG file, REPLYQ=Y also must be
defined.

SALTCONFIG file.

Make sure the binary version SALTCONFIG file is compiled successfully and the
environment variable SALTCONFIG is set correctly for the GWWS server.

GWWS Rejects SOAP Request
In some cases, the GWWS server may reject SOAP requests. The most common causes are:

The WSDL document is outdated

The WSDL document used by SOAP clients is out of date and some services may not be
available.

The GWWS server environment variables are not set correctly

When exporting a Tuxedo service with FML/VIEW buffers to a Web service, make sure
the related GWWS environment variables are set with valid values. The GWWS server
needs this information for the data mapping conversion.

Violated Tuxedo Service Metadata Repository restrictions

Check the SOAP client data and make sure Tuxedo Service Metadata Repository
restrictions are not violated.

Unavailable Tuxedo service

Make sure the Tuxedo service you want exported as a Web service is available.

WSDL Document Generated Incorrectly or Rejected by
SOAP Client Toolkit
If the WSDL document is rejected by the Web Service client toolkit, do the following:

Try to use the document/literal message style and SOAP 1.1 to define native Tuxedo
WSDF file. This is also the default behavior.

Use tmwsdlgen to generate the WSDL document manually and compare with the one
downloaded by the GWWS server. If the TMMETADATA server is not started when the GWWS
server booted, the GWWS server cannot obtain the correct service contract information.
Therefore, the downloaded WSDL document does not contain the correct type definitions.

3-12 BEA SALT Administration Guide

