
BEASALT™

Administration Guide

Version 1.1
Document Revised: August 16, 2006

Copyright
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Interaction, BEA AquaLogic Interaction Analytics, BEA
AquaLogic Interaction Collaboration, BEA AquaLogic Interaction Content Services, BEA AquaLogic Interaction Data
Services, BEA AquaLogic Interaction Integration Services, BEA AquaLogic Interaction Process, BEA AquaLogic
Interaction Publisher, BEA AquaLogic Interaction Studio, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Kodo, BEA Liquid Data for
WebLogic, BEA Manager, BEA MessageQ, BEA SALT, BEA Service Architecture Leveraging Tuxedo, BEA WebLogic
Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise
Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA WebLogic Mobility Server,
BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API,
BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Real Time, BEA
WebLogic RFID Compliance Express, BEA WebLogic RFID Edge Server, BEA WebLogic RFID Enterprise Server,
BEA WebLogic Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, BEA
Workshop for WebLogic Platform, BEA Workshop JSP, BEA Workshop JSP Editor, BEA Workshop Struts, BEA
Workshop Studio, Dev2Dev, Liquid Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated
Knowledge Transfer, AKT, BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA SOA
Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

 BEA SALT Administration Guide iii

Contents

Introduction
Overview . 1-1

Preparing to Install BEA SALT . 1-1

Components for Administering BEA SALT . 1-2

SALT Configuration File . 1-2

GWWS Server . 1-2

Failover with GWWS Server. 1-3

Handling Custom Buffers . 1-3

WSDL . 1-3

Scenario for Deploying and Invoking a Tuxedo Service Using SALT 1-4

See Also . 1-5

Configuring BEA SALT
Creating a BEA SALT Configuration File . 2-1

Sample SALT Configuration File . 2-2

SALT Configuration Format. 2-3

Configuring Reliable Messaging Policy . 2-3

Defining System Parameters . 2-3

Defining the GWWS Gateway . 2-3

SALT Configuration File Element Syntax . 2-4

Accessing Service Definitions from the Tuxedo Service Metadata Repository 2-13

Defining Service-level Keywords for BEA SALT . 2-14

iv BEA SALT Administration Guide

Defining Service Parameters for BEA SALT . 2-16

Creating a Policy File . 2-18

Sample Policy File . 2-19

Specifying a Policy File in the Configuration File . 2-21

Configuring the GWWS Gateway. 2-22

Configuring the Gateway as a Tuxedo System Server. 2-22

Configuring Security . 2-23

Setting Up SSL Link-Level Security . 2-23

Setting Up HTTP Basic Authentication. 2-23

Validating the Configuration. 2-24

Dynamically Loading the Configuration. 2-25

Dynamically Reloading the SALT Configuration File . 2-25

Troubleshooting Reloading Configurations Dynamically . 2-25

Generating the WSDL Document . 2-25

Viewing the WSDL Document . 2-26

Sample WSDL Document . 2-27

See Also. 2-29

Data Mapping and Conversions
Overview . 3-1

Converting Tuxedo Buffers to/from XML . 3-1

Tuxedo STRING Typed Buffers . 3-13

Tuxedo CARRAY Typed Buffers . 3-14

Mapping Example Using base64Binary . 3-14

Mapping Example Using MIME Attachment. 3-14

Tuxedo MBSTRING Typed Buffers . 3-16

Tuxedo XML Typed Buffers . 3-17

Tuxedo VIEW/VIEW32 Typed Buffers. 3-19

 BEA SALT Administration Guide v

VIEW/VIEW32 Considerations . 3-21

Tuxedo FML/FML32 Typed Buffers . 3-22

FML Data Mapping Example . 3-22

FML32 Data Mapping Example . 3-23

FML/FML32 Considerations . 3-25

Tuxedo X_C_TYPE Typed Buffers . 3-26

Tuxedo X_COMMON Typed Buffers . 3-26

Tuxedo X_OCTET Typed Buffers . 3-27

Custom Typed Buffers . 3-27

WSDL Mapping Rules . 3-27

WS Policy Attachment Rules . 3-30

SOAP Message Exchange Pattern Mapping . 3-31

SOAP Message Encoding Support . 3-31

Document Message Style . 3-32

RPC Message Style . 3-36

See Also . 3-40

Monitoring and Tuning Web Services
Viewing the Current Configuration . 4-1

Viewing Runtime Statistics . 4-2

Tuning the GWWS Server. 4-2

Thread Pool Size Tuning . 4-3

Network Timeout Control . 4-3

Max Content Length Control . 4-3

Backlog Control . 4-3

Tuxedo BLOCKTIME . 4-4

Boost Performance Using Multiple GWWS instances. 4-4

See Also . 4-4

vi BEA SALT Administration Guide

Introduction to Using Plug-ins with BEA SALT
Overview . 5-1

Implementing a Plug-in with SALT . 5-1

Defining a Plug-in . 5-2

See Also. 5-3

Interoperability Considerations

Troubleshooting
GWWS Startup Failure . A-1

GWWS Rejects SOAP Request . A-2

BEA SALT Message Tracing . A-3

WSDL Document Generated Incorrectly or Rejected by SOAP Client Toolkit. A-6

BEA SALT Administration Guide 1-1

C H A P T E R 1

Introduction

This section contains the following topics:

Overview

Preparing to Install BEA SALT

Components for Administering BEA SALT

Scenario for Deploying and Invoking a Tuxedo Service Using SALT

Overview
BEA SALT(Service Architecture Leveraging Tuxedo) is a separately licensed product that runs
on top of Tuxedo. BEA SALT exposes existing Tuxedo services as standard Web services and
provides access points to Tuxedo services through SOAP over HTTP/S protocol.

In addition to basic Web service protocols, BEA SALT complies with most primary Web services
specifications: WS-ReliableMessaging and WS-Addressing, SOAP 1.1, SOAP 1.2, and WSDL
1.1, allowing BEA SALT to interoperate with other Web service products and development
toolkits. With BEA SALT, you can easily export existing Tuxedo services as Web services
without having to perform any programming tasks.

Preparing to Install BEA SALT
Before installing BEA SALT, ensure the following prerequisites are met.

1-2 BEA SALT Administration Guide

You have successfully installed Tuxedo 8.1 or Tuxedo 9.1 server components. For more
server component information, see Tuxedo 8.1 install sets and Tuxedo 9.1 install sets.

Notes: For Tuxedo 8.1 (Windows), rolling patch 268 or above is required.

For Tuxedo 8.1 (UNIX), rolling patch 265 or above is required.

For Tuxedo 9.1 (Windows and UNIX), rolling patch 003 or above is required.

The rolling patch can be found on the product CD. You can also contact
BEA Support for the latest rolling patch version.

Components for Administering BEA SALT
The following components are required to configure SALT and deploy and invoke Tuxedo
services using SALT.

SALT Configuration File

GWWS Server

WSDL

SALT Configuration File
BEA SALT uses configuration files in an XML format to define necessary deployment
information for exporting Tuxedo services as Web services, which includes a Tuxedo service list,
WS-ReliableMessaging Policy information, and SOAP protocol binding information. Each
configuration file can define multiple GWWS server instances to enable failover capability and
generate multiple port information in the WSDL document. The SALTconfiguration file
leverages the Tuxedo Service Metadata Repository for Tuxedo service contract information.

The SALT configuration file is a single root XML file. the root element is <Configuration>,
which has four sub-elements, <Servicelist>, <Policy>, <System> and <WSGateway>. For
more information, see “Configuring BEA SALT” on page 2-1.

GWWS Server
BEA SALT provides a Tuxedo system gateway, the GWWS server, which handles Web service
SOAP messages over HTTP/S protocol. GWWS acts as a Tuxedo gateway process and is
managed in the same manner as general Tuxedo system servers. The GWWS server is a
configuration-driven program. Each SALT configuration file defines one or more GWWS
instances. Each SALT configuration file maps to a single SOAP/WSDL Web service object in

http://edocs.bea.com/tuxedo/tux81/install/inspds.htm#1369557
http://edocs.bea.com/tuxedo/tux91/install/inspre.htm#1066435
../ref/comref.html#wp1106724

Components fo r Admin is te r ing BEA SALT

BEA SALT Administration Guide 1-3

the component model of the WSDL specification. Each GWWS process defined in the
configuration file serves as a low-level port object of the service object. Each Tuxedo application
service defined in the configuration file is treated as a WSDL service object operation. For more
information, see “Configuring BEA SALT” on page 2-1.

The GWWS server handles Web service requests in the following manner.

1. The GWWS server parses SOAP request messages and converts them into Tuxedo typed
buffers.

2. The GWWS server dispatches the Tuxedo typed buffers to corresponding Tuxedo services.

3. The Tuxedo service returns Tuxedo response typed buffers.

4. The GWWS server converts the Tuxedo response typed buffers to SOAP response messages
and sends it back to the client.

Failover with GWWS Server
One configuration file is used to represent a particular GWWS server or a group of failover
GWWS server. Configuring multiple GWWS instances within the SALT configuration file
enables you to deploy failover capability over multiple GWWS instances.

Handling Custom Buffers
SALT provides a plug-in mechanism for converting SOAP XML messages and Tuxedo custom
typed buffers. You can validate the SOAP message against your own XML Schema definition,
allocate custom typed buffers, and parse data into the buffer and other operations. For more
information see, “Introduction to Using Plug-ins with BEA SALT” on page 5-1.

WSDL
BEA SALT generates a WSDL document according to the SALT configuration file. The
generated WSDL document describes the capability of a particular GWWS process or a group of
failover GWWS processes. There are two ways to obtain the WSDL document. You can:

use the tmwsdlgen WSDL document file generating utility.

use the GWWS server HTTP download service

The WSDL generating process needs to import the following resources for WSDL document
content:

1-4 BEA SALT Administration Guide

Tuxedo Service contract information defined in the Tuxedo Service Metadata Repository
for abstract service descriptions in the WSDL document.

Note: The Tuxedo Service Metadata Repository is a prerequisite for using SALT. You must
define your Tuxedo application services in the Tuxedo Service Metadata Repository
before the service can be exported as a Web service.

WS-ReliableMessaging Policy file for WSDL document attachments.

Defines the WS-Reliable Messaging for the SALT configuration file.

SOAP binding style and end point address information.

The generated WSDL document can interoperate and integrate with the your Web services
development tools or it can be published to a UDDI server.

Scenario for Deploying and Invoking a Tuxedo Service
Using SALT

The following is a typical scenario for deploying and invoking a Tuxedo service using SALT:

1. Compose one or more SALT configuration files.

2. Define Tuxedo application services using the Tuxedo Service Metadata Repository.

3. Compose the Tuxedo UBBCONFIG file to include:

One or more SALT GWWS server gateway instances

TMMETADATA instances

Other necessary system and application servers.

4. Boot your Tuxedo application.

5. Client downloads the WSDL document from the specific GWWS URL.

6. Client generates stub-code from the WSDL document using a SOAP development toolkit.

7. Compose the client program.

8. Run the client to invoke the Web service with SOAP messages.

9. The GWWS server translates the SOAP message into Tuxedo typed buffer, dispatches the
Tuxedo service and gets the reply. The GWWS then translates the reply into a SOAP message
and sends it back to the client.

../metarepo.html
http://edocs.bea.com/tuxedo/tux91/rf5/rf5i.htm#1531911
http://edocs.bea.com/tuxedo/tux91/rf5/rf5i.htm#3133627

See A l so

BEA SALT Administration Guide 1-5

See Also
UBBCONFIG(5)

Tuxedo Service Metadata Repository

GWWS, tmwsdlgen, wsadmin

http://edocs.bea.com/tuxedo/tux91/rf5/rf5i.htm#1531911
../metarepo.html
../ref/comref.html

1-6 BEA SALT Administration Guide

BEA SALT Administration Guide 2-1

C H A P T E R 2

Configuring BEA SALT

This section contains the following topics:

Creating a BEA SALT Configuration File

Accessing Service Definitions from the Tuxedo Service Metadata Repository

Creating a Policy File

Configuring the GWWS Gateway

Configuring Security

Validating the Configuration

Dynamically Loading the Configuration

Generating the WSDL Document

See Also

Creating a BEA SALT Configuration File
The SALT configuration file uses XML format to define necessary deployment information for
exporting Tuxedo services as Web services. This deployment information includes the following
definitions: a Tuxedo service list, WS-ReliableMessaging Policy information, and SOAP
protocol binding information. The deployment information generates a corresponding WSDL
document. Multiple GWWS instances enable failover capability and generate multiple port
information in the WSDL document.

2-2 BEA SALT Administration Guide

SALT configuration leverages Tuxedo Service Metadata Repository for Tuxedo service contract
information. BEA SALT accesses the Tuxedo Service Metadata Repository system server,
TMMETADATA, provided by the local Tuxedo domain and gathers corresponding service
contract information to generate the SALT WSDL document.

Sample SALT Configuration File
In Listing 2-1, the namespace of this version configuration XML file is defined with a fixed URL
string “http://www.bea.com/Tuxedo/Salt/200606”, which is used to identify the SALT
version associated with the configuration file.

Listing 2-1 Sample SALT Configuration File

<? xml version="1.0" encoding="UTF-8"?>

<Configuration xmlns=”http://www.bea.com/Tuxedo/Salt/200606” >

<Servicelist id=”simple”>

<Service name=”toupper” />

<Service name=”tolower” />

</Servicelist>

<Policy>

<RMPolicy>RMpolicy.xml</RMPolicy>

</Policy>

<System>

<Certificate>

<PrivateKey>cert.pem</PrivateKey>

</Certificate>

</System>

<WSGateway>

<GWInstance id=”GW1”>

<HTTP address=”//my server” />

<HTTPS address=”//my server” />

</GWInstance>

</WSGateway>

</Configuration>

http://e-docs/tuxedo/tux91/rf5/rf5i.htm#3133627

Creat ing a BEA SALT Conf igu rat ion F i l e

BEA SALT Administration Guide 2-3

SALT Configuration Format
Each BEA SALT configuration file is composed of the following four XML format elements:

<Servicelist>

Defines a list of Tuxedo services to be exposed as Web services.

<Policy>

Defines a global WS-ReliableMessaging Policy that is applied to all listed Tuxedo services.

<System>

Defines system-level parameters

<WSGateway>

Defines one or more SALT GWWS processes that export the specified Tuxedo services

The syntax for each of these for elements is listed in Table 2-1.

Configuring Reliable Messaging Policy
BEA SALT supports the WS-ReliableMessaging Policy. The <RMPolicy> sub-element is used
to define the policy.

Defining System Parameters
<System> defines all system-level or global parameters related to Tuxedo and the
operating system. The <System> element supports the following sub-elements:

<Certificate> element includes private key and certificates parameters necessary for
setting up HTTPS connections.

<<Plugin> defines information for the GWWS server plug-in framework to support Tuxedo
custom typed buffers.

<LogLevel> specifies the log level for information printing during the SALT configuration
parsing process.

Defining the GWWS Gateway
The GWWS gateway must be defined in the SALT configuration file and defined as a Tuxedo
server in the UBBCONFIG file. For more information, see “Configuring Security” on page 2-23.

After defining the GWWS gateway through the SALT configuration file, boot the GWWS server
using tmadmin or tmboot. When the GWWS gateway is initiated, it loads the specified SALT

2-4 BEA SALT Administration Guide

configuration file, validates the XML configuration file, loads corresponding Tuxedo service
contract information from Tuxedo Service Metadata Repository, and loads
WS-ReliableMessaging policy definition file.

At runtime, the GWWS server reloads the configuration dynamically. You can also download the
WSDL document from the GWWS server which is based on the latest configuration file.

SALT Configuration File Element Syntax
Table 2-1 describes the syntax used in each of these four elements.

Creat ing a BEA SALT Conf igu rat ion F i l e

BEA SALT Administration Guide 2-5

2-6 BEA SALT Administration Guide

Table 2-1 SALT Configuration Elements

Element Description

<Servicelist> Lists Tuxedo services to be exported as Web services.

Attribute: id
The name of the service list. This name is used in the generated WSDL
document to compose the name of the wsdl:PortType object. The value
of this attribute must be a [1,32] length string.

Sub-element: <service>
Specifies one Tuxedo service to be exported.

Zero <Service> elements for <Servicelist> is a valid configuration which
means no Tuxedo service is exported.

<service> has the following attribute:

Attribute: name
The unique name of a service. This name is the key string inquiry for
the service information defined in the Tuxedo Service Metadata
Repository. The value of this attribute must be a [1,15] length string.
The name attribute must match the Tuxedo Service Metadata
Repository service keyword.

Note: Tuxedo Service Metadata Repository provides two system-level
keywords, service and tuxservice for Tuxedo service
references. This provides the ability to define multiple service
contract entries for actual the same Tuxedo service.

The following is an example:
<Servicelist id=”simple”>

<Service name=”toupper” />
<Service name=”tolower” />

</Servicelist>

Creat ing a BEA SALT Conf igu rat ion F i l e

BEA SALT Administration Guide 2-7

<Policy> Specifies WS Policies applied to the SALT Gateway.

Note: BEA SALT 1.1 can only define the WS-ReliableMessaging
Policy.

Attribute: NA.

Sub-element: <RMPolicy>
Specifies a WS-ReliableMessaging Policy. This element is optional.

Text enveloped with this element indicates a valid file path for a
WS-ReliableMessaging policy file on the local file system. The policy
definition file must comply with WS-Policy and WS-ReliableMessaging
specifications.

The following is an example:
<Policy>

<RMPolicy>RMpolicy.xml</RMPolicy>
</Policy>

Table 2-1 SALT Configuration Elements

Element Description

2-8 BEA SALT Administration Guide

<System> Defines system-level or global parameters related to Tuxedo and the
operating system.

Attribute: NA.

Sub-element: <Certificate>
Specifies certificate information for HTTP over SSL connections. This
element has no attribute. Sub elements are needed for necessary SSL
certificate settings.

<Certificate> has the following sub-elements:
.../<PrivateKey>
Specifies the PEM format private key file. The key file path is specified
as the text value for this element. If the <Certificate> element is
present, this element is required.

The server certificate is also in this private key file.
.../<VerifyClient>
Specifies if Web service clients are required to send a certificate
through HTTP over SSL connection. This element is optional. The text
"true" and "false" are the only valid values for this element. "false" is
the default value if not specified.
.../<TrustedCert>
Specifies the file name of the trusted PEM format certificate files. This
element is optional.
.../<CertPath>
Specifies the local directory where the trusted certificates are located.
This element is optional. If <VerifyClient> is true, or if
WS-Addressing is used with SSL, at least one valid file must be
specified for this element.

If <VerifyClient> is true, or if WS-Addressing is used with SSL,
you must set either <TrustedCert> or <CertPath>.

The following is an example:
<System>

<Certificate>
<PrivateKey>cert.pem</PrivateKey>

</Certificate>
</System>

Table 2-1 SALT Configuration Elements

Element Description

Creat ing a BEA SALT Conf igu rat ion F i l e

BEA SALT Administration Guide 2-9

Sub-element: <Plugin>
Specifies SALT plug-in interfaces. In the BEA SALT 1.1 release, plug-in
interfaces are only used to extend data conversion between SOAP messages
and Tuxedo custom typed buffers. For more information, see Using Plug-ins
with BEA SALT in Programming Web Services.

<Plugin> has the following sub-element:
.../<Interface>
Each <Interface> sub-element specifies a separate plug-in
implementation. There can be zero or more <Interface>
sub-elements for <Plugin> to indicate different plug-in
implementations.
<Interface> has the following sub-elements:
.../<ID>
Specifies the identifier of a plug-in interface. The identifier of a plug-in
interface indicates the purpose of the plug-in. It can also be understood
as the type of a plug-in. Multiple plug-in interfaces can be defined with
the same <ID> value. The value of <ID> must be predefined by SALT.
This element is required for a plug-in interface.
In the BEA SALT 1.1 release, the only valid identifier value is
P_CUSTOM_TYPE, which is used to identify the plug-in interfaces for
Tuxedo custom typed buffer data conversion.
.../<Name>
Specifies the unique name of a plug-in interface. The name must be
unique among the plug-in interfaces with the same <ID> value. The
name may have a different meaning within different plug-in <ID>
values. This element is required for a plug-in interface.
In BEA SALT 1.1, for P_CUSTOM_TYPE typed plug-in interfaces, the
name value must be the Tuxedo custom buffer type name.
.../<Library>
Specifies the shared library file that has the functions implemented for
this plug-in interface. This element is required for a plug-in interface.
.../<Params>
Specifies a string value that can be passed to the initialization function
of the plug-in interface. This element is optional for a plug-in interface.

Table 2-1 SALT Configuration Elements

Element Description

../prog/plugins.html
../prog/plugins.html

2-10 BEA SALT Administration Guide

The following is an example:

<System>

 <Plugin>

 <Interface>

 <ID>P_CUSTOM_TYPE</ID>

 <Name>MYBUFT</Name>

 <Library>Mybuft.so</Library>

</Interface>

 </Plugin>

</System>

Sub-element: <LogLevel>
Specifies the log level for information printing during configuration
parsing. The value range is [1-8]:
• 1-Minimal parsing information printed
• 2-General error messages printed
• 4-Warning message printed
• 8-All parsing information printed

Other numbers are reserved for future release.

If this element is not specified, the default setting is 2.

Table 2-1 SALT Configuration Elements

Element Description

Creat ing a BEA SALT Conf igu rat ion F i l e

BEA SALT Administration Guide 2-11

<WSGateway> Defines run time parameters for GWWS gateway instances. These
instances share the same <Servicelist>, <Policy> and
<System> configuration information.
Attribute: NA.

Sub-element: <GWInstance>
Configure runtime parameters for one GWWS gateway. This
element can be specified [1, 1024] times for <WSGateway>, in other
words, at least one GWWS process and at most 1024 GWWS
processes can be specified in one SALT configuration file.
<GWInstance> has the following attribute:

Attribute: id
The GWWS instance identifier. The ID value must be unique
within the Tuxedo domain. The value of this attribute must be
a [1,12] length string.

<GWInstance> has the following sub-elements:
...<HTTP> or <HTTPS>
Specifies the HTTP or HTTP over the GWWS listening SSL endpoint
address. At least one element, either <HTTP> or <HTTPS> must be
specified for <GWInstance>.
<HTTP>or <HTTPS> has the following attribute:
Attribute: address
The network address. The string value can be in one of the following
two formats: //<ipaddress>:<portnum> or
//<hostname>:<portnum>

Table 2-1 SALT Configuration Elements

Element Description

2-12 BEA SALT Administration Guide

...<property>

Specifies runtime properties for the GWWS process. This element is
optional. Different properties can be set by specifying multiple
<property> elements.
<property> has the following attributes:
Attribute: name
The property name.
Attribute: value
The property value.

Valid GWWS properties are:
Property: max_content_length
This property enables the GWWS server to deny the HTTP requests
when the content length is larger than this property setting. If not
specified, the GWWS server does not check for it. The string value can
be one of the following three formats:
1. Integer number in bytes, no suffix means the unit is bytes
2. Float number in kilobytes, the suffix must be K
3. Float number in megabytes, the suffix must be M
The equivalent byte size value must be in [1 byte, 1G byte] range.
Property: thread_pool_size
Defines the GWWS process thread pool size. The value must be in [1,
1024]. If not specified, default value 16 is used.
Property: timeout
Defines the network time-out value, unit: second. The value must be in
[1, 65535]. If not specified, default value 300 is used.

Table 2-1 SALT Configuration Elements

Element Description

Access ing Se rv ice Def in i t i ons f rom the Tuxedo Serv ice Me tadata Repos i to r y

BEA SALT Administration Guide 2-13

Accessing Service Definitions from the Tuxedo Service
Metadata Repository

BEA SALT leverages the Tuxedo Service Metadata Repository to define service contract
information for Web Services. Service contract information of all listed Tuxedo services is
obtained by accessing the Tuxedo Service Metadata Repository system service provided by the
local Tuxedo domain. SALT calls TMMETADATA system server under the following scenarios:

During GWWS server startup, SALT calls the Tuxedo Service Metadata Repository to
retrieve all Tuxedo service definitions according to the services listed in the SALT
configuration file.

Initiation of the configreload command used in wsadmin. In this case, the GWWS
server reloads the information from TMMETADATA.

Invoking tmwsdlgen to generate a WSDL file causes SALT to call TMMETADATA.

The following topics provide SALT-specific interpretations of the Tuxedo Service Metadata
Repository keywords and parameters:

Property: max_backlog
Specifies the backlog listen socket value. It controls the maximum
length of the queue of pending connections by operating system. The
value range for this property is [1-255]. The default value is 16.
Generally no tuning is needed for this value.

The following is an example:

<WSGateway>

 <GWInstance id="GW1">

 <HTTP address="//myhost:8001" />

 <HTTPS address="//myhost:8002" />

<property name=" thread_pool_size" value="40" />

 </GWInstance>

</WSGateway>

Table 2-1 SALT Configuration Elements

Element Description

../metarepo.html
http://e-docs/tuxedo/tux91/rf5/rf5i.htm#3133627

2-14 BEA SALT Administration Guide

Defining Service-level Keywords for BEA SALT

Defining Service Parameters for BEA SALT

Defining Service-level Keywords for BEA SALT
The following Tuxedo Service Metadata Repository service-level keywords have specific SALT
interpretations for handling Web Service processing.

Note: Service-level keywords not specified in Table 2-2 have no special semantics for BEA
SALT and are ignored when the Tuxedo Service Metadata Repository is loaded by
SALT.

Table 2-2 BEA SALT Handling of Service-level Keywords in Tuxedo Service Metadata Repository

Service-level Keyword Keyword
Abbreviation

BEA SALT Interpretation

service sv The unique key value to distinguish one service from another
in the Tuxedo Service Metadata Repository. This is the value
to reference in the SALT configuration file.

tuxservice tsv The actual Tuxedo service name. BEA SALT invokes the
Tuxedo service defined with this keyword. If no value is
specified in tuxservice, then the value will be the same
as the value in the service keyword.

servicetype st BEA SALT uses this keyword value to determine the service
message exchange pattern for the specified Tuxedo service.
BEA SALT maps the service with the Web Service message
exchange pattern (MEP).

The following values specify mapping rules between the
Tuxedo service types and Web Service MEP:
• service corresponds to request-response MEP
• oneway corresponds to oneway request MEP
• queue corresponds to request-response MEP

export ex BEA SALT ignores this value. If the service is specified in
the SALT configuration <Servicelist>, it will be
exposed regardless of the value specified in export.

Access ing Se rv ice Def in i t i ons f rom the Tuxedo Serv ice Me tadata Repos i to r y

BEA SALT Administration Guide 2-15

inbuf bt Specifies the input buffer type. SALT provides default data
representation and conversion between SOAP XML payload
and the following Tuxedo buffer types:
• STRING (case sensitive)
• CARRAY
• XML
• MBSTRING
• VIEW
• VIEW32
• FML
• FML32
• X_C_TYPE
• X_COMMON
• X_OCTET

Note: If inbuf specifies any other type other than the
previous buffer types, the buffer is treated as a
custom buffer type.

Table 2-2 BEA SALT Handling of Service-level Keywords in Tuxedo Service Metadata Repository

Service-level Keyword Keyword
Abbreviation

BEA SALT Interpretation

2-16 BEA SALT Administration Guide

Defining Service Parameters for BEA SALT
The Tuxedo Service Metadata Repository interprets parameters as sub elements encapsulated in
a Tuxedo service typed buffer. Each parameter can have its data type, occurrences in the buffer,
size restrictions, and other Tuxedo-specific restrictions.

outbuf BT Specifies the output buffer type. SALT provides default data
representation and conversion between SOAP XML payload
and the following Tuxedo buffer types:
• STRING (case sensitive)
• CARRAY
• XML
• MBSTRING
• VIEW
• VIEW32
• FML
• FML32
• X_C_TYPE
• X_COMMON
• X_OCTET

Note: If outbuf specifies any other type other than the
previous buffer types, the buffer is treated as a
custom buffer type.

inview vn Specify the view name used by the service if the service
buffer type is VIEW, VIEW32, X_C_TYPE, or
X_COMMON. BEA SALT requires that you specify the
view name rather than accept the default inview setting.

outview VN Specify the view name used by the service if the service
buffer type is VIEW, VIEW32, X_C_TYPE, or
X_COMMON. BEA SALT requires that you specify the
view name rather than accept the default outview setting.

Table 2-2 BEA SALT Handling of Service-level Keywords in Tuxedo Service Metadata Repository

Service-level Keyword Keyword
Abbreviation

BEA SALT Interpretation

Access ing Se rv ice Def in i t i ons f rom the Tuxedo Serv ice Me tadata Repos i to r y

BEA SALT Administration Guide 2-17

For VIEW, VIEW32, X_C_TYPE, or X_COMMON buffer types, each parameter of the
buffer should represent a VIEW/VIEW32 structure member.

For FML or FML32 buffer types, each parameter of the buffer should represent an
FML/FML32 field element that may be present in the buffer.

For STRING, CARRAY, XML, MBSTRING, and X_OCTET buffer types, the Tuxedo
framework treats these buffers holistically. At most, one parameter is permitted for the
buffer to define some restriction facets, such as buffer size threshold.

For any custom type buffer, parameters facilitate describing details about the buffer type.

For FML32 buffers that support embedded VIEW32 and FML32 buffers, embedded
parameters provide that support.

Note: Parameter-level keywords not specified in Table 2-3 have no special semantics for BEA
SALT and are ignored when the Tuxedo Service Metadata Repository is loaded by
SALT.

Table 2-3 BEA SALT Handling of Parameter-level Keyword in Tuxedo Service Metadata Repository

Parameter-level Keyword Abbreviation BEA SALT Interpretation

param pn Specifies the parameter name. This keyword is required.
• For VIEW, VIEW32, X_C_TYPE, or X_COMMON,

specify the view structure member name in the param
keyword.

• For FML, FML32 typed buffers, specify the
FML/FML32 field name in the param keyword.

• For STRING, CARRAY, XML, MBSTRING, or
X_OCTET, BEA SALT ignores the parameter
definitions.

type pt Specifies the data type of the parameter.

Note: BEA SALT does not support dec_t and ptr data
types.

2-18 BEA SALT Administration Guide

Creating a Policy File
To use WS-ReliableMessaging functionality, you must create a policy file and specify the policy
file in the SALT configuration file. The format of the policy file is defined by the
WS-ReliableMessaging Policy specification.

Listing 2-2 shows an RMAssertion syntax example.

subtype pst Specifies the view structure name if the parameter type is
VIEW32. For any other typed parameter, BEA SALT
ignores this value.

Note: The Tuxedo Service Metadata Repository allows
this value to be empty if the parameter type if
VIEW32. In this case the Tuxedo Service Metadata
Repository uses a fixed value <viewname> as a
default. This default value will not work for BEA
SALT. You must specify the view name for BEA
SALT to have a valid service definition.

access pa The general definition applies for this parameter.

count po The general definition applies for this parameter. For BEA
SALT, the value for the count parameter must be greater
than or equal to requiredcount.

requiredcount ro The general definition applies for this parameter. The
default is 1. For BEA SALT, the value for the count
parameter must be greater than or equal to
requiredcount.

size pl This optional keyword restricts the maximum length of the
parameter. It is only valid for parameter types: STRING,
CARRAY, XML, and MBSTRING. If this keyword is not
set, there is no maximum length restriction for this
parameter.

The value range is [0, 2147483647]

Table 2-3 BEA SALT Handling of Parameter-level Keyword in Tuxedo Service Metadata Repository

Parameter-level Keyword Abbreviation BEA SALT Interpretation

Creat ing a Po l i cy F i l e

BEA SALT Administration Guide 2-19

Listing 2-2 RMAssertion Syntax

<wsrm:RMAssertion [wsp:Optional="true"]? ... >
<wsrm:InactivityTimeout Milliseconds="xsd:unsignedLong" ... /> ?
<wsrm:BaseRetransmissionInterval Milliseconds="xsd:unsignedLong".../>?
<wsrm:ExponentialBackoff ... /> ?
<wsrm:AcknowledgementInterval Milliseconds="xsd:unsignedLong" ... /> ?
<beapolicy:Expires Expires="xsd:duration" ... /> ?
<beapolicy:QOS QOS="xsd:string" ... /> ?

...
</wsrm:RMAssertion>

Sample Policy File
Listing 2-3 is shows a sample SALT policy file.

Listing 2-3 Sample Policy File

<?xml version="1.0"?>

<wsp:Policy wsp:Name="ReliableSomeServicePolicy"

xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm"

xmlns:wsp=”http://schemas.xmlsoap.org/ws/2004/09/policy”

xmlns:beapolicy="http://www.bea.com/wsrm/policy">

<wsrm:RMAssertion>

<wsrm:InactivityTimeout Milliseconds="600000" />

<wsrm:AcknowledgementInterval Milliseconds="2000" />

<wsrm:BaseRetransmissionInterval Milliseconds="500"/>

<wsrm:ExponentialBackoff />

<beapolicy:Expires Expires="P1D" />

<beapolicy:QOS QOS=”ExactlyOnce InOrder" />

</wsrm:RMAssertion>

</wsp:Policy>

2-20 BEA SALT Administration Guide

All RM assertions are optional, and if not specified, the default value are used. The following
definitions describe the RM assertion options.

RM Assertion Option Description

<wsrm:InactivityTimeout> Specifies the number of milliseconds, specified with the
Milliseconds attribute, which defines an inactivity interval.
After time has elapsed, if the destination endpoint has not
received a message from the source endpoint, the destination
endpoint may terminate current sequence due to inactivity.
The source endpoint can also use this parameter.

Sequences never time out by default.

<wsrm:AcknowledgementInterval> Specifies the maximum interval, in milliseconds, in which the
destination endpoint must transmit a stand-alone
acknowledgement.

There is no time limit by default.

<wsrm:BaseRetransmissionInterval> Specifies the interval, in milliseconds, that the source
endpoint waits after transmitting a message and before it
retransmits the message if it receives no acknowledgment for
that message. This value will apply to the GWWS server when
it sends a response in an outbound sequence.

The default value is 20000 milliseconds.

<wsrm:ExponentialBackoff> Specifies that the retransmission interval is adjusted using the
exponential backoff algorithm. This value applies to the
GWWS server when it sends a response in an outbound
sequence.

Creat ing a Po l i cy F i l e

BEA SALT Administration Guide 2-21

Specifying a Policy File in the Configuration File
You must reference the WS-ReliableMessaging policy file at the end-point level in the SALT
configuration file. The following entry in the SALT configuration file shows how to reference the
WS-ReliableMessaging policy file.

<Policy>

<RMPolicy>RMpolicy.xml</RMPolicy>

</Policy>

Note: Reliable Messaging in BEA SALT does not support process/system failure scenarios,
which means SALT does not store the message in a persistent storage area. BEA SALT
works in a direct mode with the SOAP client. Usually, system failure recovery requires
business logic synchronization between the client and server.

<beapolicy:Expires> Specifies the amount of time after which the reliable Web
service expires and does not accept any new sequence
messages.

This element has a single attribute, Expires, whose data type
is an XML Schema duration type. For example, if you want to
set the expiration time to one day, use the following:
< beapolicy:Expires Expires="P1D" />

The default value is never expire.

<beapolicy:QOS> Specifies the delivery assurance. SALT supports the
following assurances:
• AtMostOnce - Messages are delivered at most once,

without duplication. There is possibility that some
messages may not be delivered.

• AtLeastOnce – Every message is delivered at least
once. There is possibility that some messages are
delivered more than once.

• ExactlyOnce – Each message is delivered exactly once,
without duplication.

• InOrder – Messages are delivered in the order that they
were sent. This delivery assurance can be combined with
one of the preceding three assurances.

The default value is “ExactlyOnce InOrder”.

RM Assertion Option Description

2-22 BEA SALT Administration Guide

Configuring the GWWS Gateway
The GWWS gateway provides the connection between the Tuxedo service and the Web service
client. Two critical configurations must exist for the GWWS gateway process to reliably access
the Tuxedo services.

You must configure unique GWWS instances in the SALT configuration file.

You must configure the GWWS instances as a Tuxedo server in the *SERVERS section of
the UBBCONFIG file.

These two configurations provide the gateway connection that allows SALT to access Tuxedo
services.

Configuring the Gateway as a Tuxedo System Server
Configure the GWWS gateway in the Tuxedo UBBCONFIG file to run as a Tuxedo system
server. You can define multiple GWWS server instances concurrently in a Tuxedo UBBCONFIG
file. Listing 2-4 lists part of the UBBCONFIG file showing how to define GWWS instances for
a Tuxedo application.

Listing 2-4 GWWS Gateways Defined as Tuxedo Servers in the UBBCONFIG File *SERVERS Section

......

*SERVERS

GWWS SRVGRP=GROUP1 SRVID=10

CLOPT="-A -- -c saltconf_1.xml –i GW1"

GWWS SRVGRP=GROUP1 SRVID=11

CLOPT="-A -- -c saltconf_1.xml –i GW2"

GWWS SRVGRP=GROUP2 SRVID=20

CLOPT="-A -- -c saltconf_2.xml –i GW3"

......

In the UBBCONFIG file *SERVERS sections, you must specify the SALT configuration file and
the ID of the GWWS instances defined in the SALT configuration.

For more information, see GWWS.

../ref/comref.html#wp1106724

Conf igur ing Secur i t y

BEA SALT Administration Guide 2-23

Note: Each Web service client is deemed a workstation client in Tuxedo; therefore,
MAXWSCLIENTS must be configured with a valid number in UBBCONFIG for the node
where the GWWS server is deployed.

Be sure that the TMMETADATA system server is set up in the UBBCONFIG file to start
before the GWWS server boots. Because the GWWS server calls services provided by
TMMETADATA, it must boot after TMMETADATA.

To ensure TMMETADATA is started prior to being called by the GWWS server, put
TMMETADATA before GWWS in the UBBCONFIG file or use SEQUENCE parameters in
*SERVERS definition in UBBCONFIG file.

Configuring Security
BEA SALT provides point-to-point security using SSL link-level security and uses the Tuxedo
security framework for authentication. User profiles are passed via HTTP basic authentication
specifications.

Setting Up SSL Link-Level Security
To set up link-level security using SSL, you must specify <Certificate> elements in the
<System> parameter in the SALT configuration so that the GWWS gateway can handle HTTPS
request. You can enable link-level security by specifying the HTTPS:// address in the SALT
configuration file. For information about how to define <Certificate>, refer to “SALT
Configuration Format” on page 2-3.

If the GWWS is configured to use SSL, SEC_PRINCIPAL_PASSVAR and SEC_PRINCIPAL_NAME
must be configured for GWWS in the *SERVER definition in the UBBCONFIG file.

Setting Up HTTP Basic Authentication
BEA SALT uses the Tuxedo security framework for system authentication. The GWWS server
supports Tuxedo user profile throughput from the Web service client via HTTP basic
authentication protocol.

The GWWS gateway supports Tuxedo domain security configuration for the following two
authentication patterns:

Application password (APP_PW)

User-level authentication (USER_AUTH)

2-24 BEA SALT Administration Guide

The GWWS server passes the following string from the HTTP header of the client SOAP request
for Tuxedo authentication.

Authorization: Basic <base64Binary of username:password>

The following is an example of a string from the HTTP header:

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

In this example, the client sends the Tuxedo username Aladdin and the password open sesame,
and uses this paired value for Tuxedo authentication.

Using Application Password (APP_PW)

If Tuxedo uses APP_PW, then the HTTP username value is ignored and the GWWS server
only uses the password string as the Tuxedo application password to check the
authentication.

Using User-level Authentication (USER_AUTH)

If Tuxedo uses USER_AUTH, then both the HTTP username and password value is used.
In this case, the GWWS server does not check the Tuxedo application password.

Note: ACL and MANDATORY_ACL are not supported for Web service clients, which means the
Tuxedo system ignores any ACL-related configuration specifications. BEA SALT
does not make group information available for Web service clients.

Validating the Configuration
BEA SALTcomponents validate the given SALT configuration according to the predefined XML
Schema file. A valid SALT configuration file is a prerequisite for the GWWS server to start and
for tmwsdlgen to generate the WSDL document file.

The SALT configuration schema file can be found at
$TUXDIR/udataobj/saltconfig_200606.xsd.

BEA SALT uses the schema file to validate the SALT configuration file when:

the GWWS server is booting. If the validation fails, the GWWS server shuts down and
specific error information is sent to the ULOG file.

the GWWS server is reloading the SALTconfiguration file at runtime. If the validation
fails, the GWWS server stops reloading the new or updated configuration file and the
original configuration remains effective. Specific error information is sent to the ULOG
file.

Dynamica l l y Load ing the Conf igurat ion

BEA SALT Administration Guide 2-25

tmwsdlgen is used to generate the WSDL document file. If the validation fails,
tmwsdlgen prints the error information to the console.

Dynamically Loading the Configuration
You can dynamically reload the BEA SALT configuration file by using the wsadmin command.
For more information, see the BEA SALT Reference Guide.

Dynamically Reloading the SALT Configuration File
At runtime, the GWWS server can dynamically reload the configuration file. You can also
download the WSDL document file from the GWWS server (which is based on the latest SALT
configuration file).

Use the following command with wsadmin to reload the configuration:

configreload(creload) –i InstanceID1

This sub command is used to trigger configuration runtime reloading for the specified GWWS
process. Option -i must be specified to indicate one GWWS server for reloading.

Troubleshooting Reloading Configurations Dynamically
Possible reasons for configuration reload failure are:

Maximum configuration instances used concurrently in the current system. The limitation
for normal reloading is two instances.

The current system is busy with another reload request. Only one reload request is allowed
at a time.

The reloaded configuration file contains serious grammar errors and cannot be loaded as a
valid configuration instance.

System error encountered while reloading, for example, a memory error or file IO error.

Generating the WSDL Document
A Web service is usually defined using a WSDL document and made available via SOAP.
WSDL, Web Service Descriptive Language, is an XML format used to describe network services
as a set of endpoints operating on messages containing either document-oriented or
procedure-oriented information.

../ref/comref.html#wp1107822
../ref/comref.html

2-26 BEA SALT Administration Guide

Before generating a WSDL document for the Web client to access services, be sure you complete
the following tasks:

Create a BEA SALT configuration file.

Validate the BEA SALT configuration file.

Configure the GWWS gateway as a Tuxedo server by updating the *SERVERS section of
the UBBCONFIG file.

Verify that all Tuxedo service information is available through the Tuxedo Service
Metadata Repository.

When the GWWS server is booted, it loads the specified SALT configuration file, which
includes: reading the configuration XML file, validating the XML file, loading corresponding
Tuxedo service contract information from Tuxedo Service Metadata Repository, and loading
WS-ReliableMessaging policy definition file. The GWWS server can also dynamically reload the
BEA SALT configuration file at runtime.

The GWWS process also automatically generates a WSDL document to reflect the latest
configuration information so that it can be downloaded from the GWWS server via HTTP GET
method. To generate a WSDL document file, use tmwsdlgen.

For more information, see tmwsdlgen.

For information about WSDL mapping rules for Tuxedo buffer types, see “Data Mapping and
Conversions” on page 3-1.

Viewing the WSDL Document
The GWWS gateway server, maintains the most recent auto-generated WSDL documents. The
GWWS server supports a specific HTTP GET request from any HTTP client to download WSDL
documents. The GWWS server can accept the SOAP version and encoding style indication for
different formatted WSDL documents.

You can download the latest WSDL document using the following URL:

“http(s)://<host>:<port>/ wsdl[?[SOAPversion=<1.1 | 1.2>] [&encstyle=<doc

| rpc >][&mappolicy=<pack|raw>][&toolkit=<wls|axis>]]”

SOAPversion=<1.1|1.2>
Specifies the SOAP version for the generated WSDL document. If a version is not
specified, the default is value 1.1.

../ref/comref.html#wp1106727

Generat ing the WSDL Document

BEA SALT Administration Guide 2-27

encstyle=<doc|rpc>
Specifies the encoding style for the generated WSDL document. If a style is not specified,
the default value is doc.

mappolicy=<pack|raw>
Specifies the data mapping policies for certain Tuxedo Typed buffers for the generated
WSDL document. Currently, this option impacts CARRAY typed buffers only. If the
argument is not specified, pack is used as the default value.

toolkit=<wls|axis>
Use this argument only if you have previously defined mappolicy=raw. Specify the client
toolkit used so that the proper WSDL document description for a CARRAY typed buffer
MIME attachment is generated. BEA SALT supports WebLogic Server and Axis for
SOAP with Attachments. The default value is wls.

Sample WSDL Document
Using the following sample BEA SALT configuration file, a corresponding WSDL document can
be generated.

<Configuration xmlns=”http://www.bea.com/Tuxedo/Salt/200606” >

<Servicelist id=”sample”>

<Service name=”TOUPPER” />

</Servicelist>

<Policy />

<System />

<WSGateway>

<GWInstance id=”GW1”>

<HTTP address=”//webservice.com.abc:8080” />

</GWInstance>

</WSGateway>

</Configuration>

The following WSDL document is generated when the previous SALT configuration is used.

Listing 2-5 Sample WSDL Document

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions xmlns:tuxtype="urn:pack.sample_typedef.salt11"
xmlns:tns="urn:sample.wsdl"
xmlns:soap11="http://schemas.xmlsoap.org/wsdl/soap/"

2-28 BEA SALT Administration Guide

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd" xmlns:wsrp="http://schemas.xmlsoap.org/rp/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="urn:sample.wsdl">

<wsdl:documentation>Generated from conf.xml at 05-22-2006
14:27:26:773</wsdl:documentation>

<wsdl:types>
<xsd:schema attributeFormDefault="unqualified"

elementFormDefault="qualified"
targetNamespace="urn:pack.sample_typedef.salt11">

<xsd:element name="TOUPPER">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="inbuf"

type="xsd:string"></xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="TOUPPERResponse">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="outbuf"
type="xsd:string"></xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

</wsdl:types>
<wsdl:message name="TOUPPERInput">

<wsdl:part element="tuxtype:TOUPPER"
name="parameters"></wsdl:part>

</wsdl:message>
<wsdl:message name="TOUPPEROutput">

<wsdl:part element="tuxtype:TOUPPERResponse"
name="parameters"></wsdl:part>

</wsdl:message>
<wsdl:portType name="sample_PortType">

<wsdl:operation name="TOUPPER">
<wsdl:input message="tns:TOUPPERInput"></wsdl:input>
<wsdl:output message="tns:TOUPPEROutput"></wsdl:output>

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="sample_Binding" type="tns:sample_PortType">

<soap11:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"></soap11:binding>

<wsdl:operation name="TOUPPER">

See A l so

BEA SALT Administration Guide 2-29

<soap11:operation soapAction="TOUPPER"
style="document"></soap11:operation>

<wsdl:input>
<soap11:body use="literal"></soap11:body>

</wsdl:input>
<wsdl:output>

<soap11:body use="literal"></soap11:body>
</wsdl:output>

</wsdl:operation>
</wsdl:binding>
<wsdl:service name="TuxedoWebService">

<wsdl:port binding="tns:sample_Binding"
name="sample_GW1_HTTPPort">

<soap11:address
location="http://webservice.com.abc:8080/sample"></soap11:address>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

See Also
UBBCONFIG(5)

GWWS, tmwsdlgen, wsadmin

Managing the Tuxedo Service Metadata Repository

Troubleshooting

http://edocs.bea.com/tuxedo/tux91/rf5/rf5i.htm#1531911
../ref/comref.html
../metarepo.html
../admin/app_A.html

2-30 BEA SALT Administration Guide

BEA SALT Administration Guide 3-1

C H A P T E R 3

Data Mapping and Conversions

This section contains the following topics:

Overview

Converting Tuxedo Buffers to/from XML

WSDL Mapping Rules

SOAP Message Exchange Pattern Mapping

Overview
Each Tuxedo buffer type is described using an XML Schema in the generated WSDL document.
This means that Tuxedo service request/response data is represented in regular XML format. The
XML format input data is automatically converted into Tuxedo typed buffers according to the
corresponding buffer type schema definitions.

The converted typed buffers are used as the input of the Tuxedo service. Any typed buffer
returned by the Tuxedo service is converted into XML format and returned to the Web service
client in SOAP response message.

Converting Tuxedo Buffers to/from XML
The GWWS server automatically converts SOAP message into Tuxedo buffer types and Tuxedo
buffer types into XML SOAP messages. BEA SALT provides a set of rules for describing Tuxedo
typed buffers in an XML document. These rules are exported as XML Schema definitions in

../ref/comref.html#wp1106724

3-2 BEA SALT Administration Guide

SALT WSDL documents. This simplifies buffer conversion and does not require previous
knowledge about Tuxedo buffer types.

Conver t ing Tuxedo Buf fe rs t o / f rom XML

BEA SALT Administration Guide 3-3

3-4 BEA SALT Administration Guide

Table 3-1 Tuxedo Buffer Mapping to XML Schema

Tuxedo Buffer Type Description XML Schema Mapping for SOAP Message

STRING Tuxedo STRING typed buffers are
used to store character strings that
terminate with a NULL character.
Tuxedo STRING typed buffers are
self-describing buffer.

xsd:string

In the SOAP message, the XML element
that encapsulates the actual string data,
must be defined with xsd:string directly.

Notes:
• STRING data type can be specified

with a max data length in the Tuxedo
Service Metadata Repository. If
defined in Tuxedo, the
corresponding SOAP message also
enforces this maximum. The
GWWS server validates the actual
message byte length against the
definition in Tuxedo Service
Metadata Repository. A SOAP fault
message returns if the message byte
length exceeds suported maximums.

• The GWWS gateway process
requires that the XML document is
encoded with “UTF-8”. So the string
data in the SOAP message can only
be in “UTF-8” encoding.

Conver t ing Tuxedo Buf fe rs t o / f rom XML

BEA SALT Administration Guide 3-5

CARRAY
(Mapping with
SOAP Message
plus
Attachments)

Tuxedo CARRAY typed buffers store
character arrays, any of which can be
NULL. CARRAY buffers are used to
handle data opaquely and are not
self-describing.

The CARRAY buffer raw data is
carried within a MIME
multipart/related message, which is
defined in the “SOAP Messages
with Attachments”specification.
The two data formats supported for
MIME Content-Type attachments
are:
• application/octet-stream

– Use for Apache Axis
• text/xml

– Use for BEA WebLogic
Server

The format depends on which Web
service client side toolkit is used.

Note: The SOAP with Attachment
rule is only interoperable with
BEA WebLogic Server and
Apache Axis.

For more information, see “Generating
the WSDL Document” on page 2-25.

Notes:
CARRAY data type can be specified
with a max byte length. If Tuxedo
has such a definition, the
corresponding SOAP message will
also be enforced with this limitation.
The GWWS server validates the actual
message byte length against the
definition in Tuxedo Service Metadata
Repository.

Table 3-1 Tuxedo Buffer Mapping to XML Schema

Tuxedo Buffer Type Description XML Schema Mapping for SOAP Message

3-6 BEA SALT Administration Guide

CARRAY
(Mapping with
base64Binary)

Tuxedo CARRAY typed buffers store
character arrays, any of which can be
NULL. CARRAY buffers are used to
handle data opaquely and are not
self-describing.

xsd:base64Binary

The CARRAY data bytes must be
encoded with base64Binary before it
can be embedded into a SOAP message.
Using base64Binary encoding with
this opaque data stream saves the
original data and makes the embedded
data well-formed and readable.

In the SOAP message, the XML element
that encapsulates the actual CARRAY
data, must be defined with
xsd:base64Binary directly.

For more information, see “Generating
the WSDL Document” on page 2-25.

Note: If your Tuxedo service uses
tpxmltofml, the <carray>
tag value must be a hex string.

Notes:
CARRAY data type can be specified
with a max byte length. If defined in
Tuxedo, the corresponding SOAP
message is be enforced with this
limitation. The GWWS server validates
the actual message byte length against
the definition in Tuxedo Service
Metadata Repository.

Table 3-1 Tuxedo Buffer Mapping to XML Schema

Tuxedo Buffer Type Description XML Schema Mapping for SOAP Message

http://e-docs/tuxedo/tux91/rf3c/rf3c92.htm#2011500

Conver t ing Tuxedo Buf fe rs t o / f rom XML

BEA SALT Administration Guide 3-7

MBSTRING Tuxedo MBSTRING Typed
Buffers are used for multibyte
character arrays. Tuxedo
MBSTRING buffers consist of
the following three elements:
• Code-set character encoding
• Data length
• Character array of the encoding.

xsd:string

The XML Schema built-in type,
xsd:string, represents the
corresponding type for buffer data
stored in a SOAP message.

The GWWS server only accepts
“UTF-8” encoded XML documents.
If Web service client wants to access
Tuxedo services with MBSTRING
buffer, the mbstring payload must be
represented as “UTF-8” encoding in
the SOAP request message.

Note: The GWWS server
transparently passes the
“UTF-8” character set string
into the Tuxedo service with
MBSTRING Typed buffer
format, and then the actual
Tuxedo services handles the
UTF-8 string.

For any Tuxedo response
MBSTRING Typed buffer (with any
encoding character set), The
GWWS server automatically
transforms the string into “UTF-8”
encoding and sends it back to the
Web service client.

Table 3-1 Tuxedo Buffer Mapping to XML Schema

Tuxedo Buffer Type Description XML Schema Mapping for SOAP Message

3-8 BEA SALT Administration Guide

MBSTRING
(cont.)

Limitation:

Tuxedo MBSTRING data type can be
specified with a max byte length in the
Tuxedo Service Metadata Repository. if
defined in Tuxedo, the corresponding
SOAP message should also be enforced
with this limitation.

Note: The BEA SALT WSDL
generator will not have
xsd:maxLength restrictions in
the generated WSDL document,
but the GWWS server will
validate the byte length
according to the Tuxedo Service
Metadata Repository definition.

Table 3-1 Tuxedo Buffer Mapping to XML Schema

Tuxedo Buffer Type Description XML Schema Mapping for SOAP Message

Conver t ing Tuxedo Buf fe rs t o / f rom XML

BEA SALT Administration Guide 3-9

XML Tuxedo XML typed buffers store
XML documents.

xsd:anyType

The XML Schema built-in type,
xsd:anyType, is the corresponding type
for XML documents stored in a SOAP
message which allows you to
encapsulate any well-formed XML data
within the SOAP message.

Limitation:

The GWWS server validates that the
actual XML data is well-formed, but
will not do any other enforcement
validation, such as schema validation.

Only a single root XML buffer is
allowed to be stored in the SOAP
body; the GWWS server checks for
this.
Be sure the actual XML data is encoded
using the “UTF-8” character set. Any
original XML document prolog
information cannot be carried within the
SOAP message.

XML data type can specify a max byte
data length. If defined in Tuxedo, the
corresponding SOAP message also must
enforce this limitation.

Note: The BEA SALT WSDL
generator will not have
xsd:maxLength restrictions in
the generated WSDL document,
but the GWWS server will
validate the byte length
according to the Tuxedo Service
Metadata Repository definition.

X_C_TYPE X_C_TYPE buffer types are
equivalent to VIEW buffer types.

See VIEW/VIEW32

Table 3-1 Tuxedo Buffer Mapping to XML Schema

Tuxedo Buffer Type Description XML Schema Mapping for SOAP Message

3-10 BEA SALT Administration Guide

X_COMMON X_COMMON buffer types are
equivalent to VIEW buffer type, but
are used for compatibility between
COBOL and C programs. Field types
should be limited to short, long, and
string

See VIEW/VIEW32

X_OCTET X_OCTET buffer types are
equivalent to CARRAY buffer types

See CARRAY xsd:base64Binary

Table 3-1 Tuxedo Buffer Mapping to XML Schema

Tuxedo Buffer Type Description XML Schema Mapping for SOAP Message

Conver t ing Tuxedo Buf fe rs t o / f rom XML

BEA SALT Administration Guide 3-11

VIEW/VIEW32 Tuxedo VIEW and VIEW32
typed buffers store C structures
defined by Tuxedo applications.
VIEW structures are defined by
using VIEW definition files. A
VIEW buffer type can define
multiple fields.
VIEW supports the following
field types:
• short
• int
• long
• float
• double
• char
• string
• carray

VIEW32 supports all the VIEW
field types and mbstring.

Each VIEW or VIEW32 data type is
defined as an XML Schema complex
type. Each VIEW field should be one or
more sub elements of the XML Schema
complex type. The name of the sub
element is the VIEW field name. The
occurrence of the sub element depends
on the count attribute of the VIEW field
definition. The value of the sub element
should be in the VIEW field data type
corresponding XML Schema type.

The the field types and the
corresponding XML Schema type are
listed as follows:
• short maps to xsd:short
• int maps to xsd:int
• long maps to xsd:long
• float maps to xsd:float
• double maps to xsd:double
• char (defined as byte in Tuxedo

Service Metadata Repository
definition) maps to xsd:byte

• char (defined as char in Tuxedo
Service Metadata Repository
definition) maps to xsd:string
(with restrictions maxlength=1)

• string maps to xsd:string
• carray maps to

xsd:base64Binary

• mbstring maps to xsd:string

VIEW/VIEW32
(cont.)

For limitations and considerations
regarding mapping VIEW/VIEW32
buffers, refer to “VIEW/VIEW32
Considerations” on page 3-21.

Table 3-1 Tuxedo Buffer Mapping to XML Schema

Tuxedo Buffer Type Description XML Schema Mapping for SOAP Message

3-12 BEA SALT Administration Guide

FML/FML32 Tuxedo FML and FML32 typed
buffers are proprietary BEA
Tuxedo system self-describing
buffers in which each data field
carries its own identifier, an
occurrence number, and possibly
a length indicator.
FML supports the following field
types:
• FLD_CHAR
• FLD_SHORT
• FLD_LONG
• FLD_FLOAT
• FLD_DOUBLE
• FLD_STRING
• FLD_CARRAY

FML32 supports all the FML field
types and FLD_PTR,
FLD_MBSTRING,
FLD_FML32, and
FLD_VIEW32.

FML/FML32 buffers can only have
basic data-dictionary-like definitions for
each basic field data. A particular
FML/FML32 buffer definition should be
applied for each FML/FML32 buffer
with a different type name.

Each FML/FML32 field should be one
or more sub -elements within the
FML/FML32 buffer XML Schema type.
The name of the sub element is the FML
field name. The occurrence of the sub
element depends on the count and
requiredcount attribute of the
FML/FML32 field definition.

The e field types and the
corresponding XML Schema type
are listed below:
• short maps to xsd:short
• int maps to xsd:int
• long maps to xsd:long
• float maps to xsd:float
• double maps to xsd:double
• char (defined as byte in Tuxedo

Service Metadata Repository
definition) maps to xsd:byte

• char (defined as char in Tuxedo
Service Metadata Repository
definition) maps to xsd:string

• string maps to xsd:string
• carray maps to

xsd:base64Binary

• mbstring maps to xsd:string

Table 3-1 Tuxedo Buffer Mapping to XML Schema

Tuxedo Buffer Type Description XML Schema Mapping for SOAP Message

Conver t ing Tuxedo Buf fe rs t o / f rom XML

BEA SALT Administration Guide 3-13

Tuxedo STRING Typed Buffers
Tuxedo STRING typed buffer are used to store character strings that terminate with a NULL
character. Tuxedo STRING typed buffers are self-describing buffer.

The following example depicts the TOUPPER Tuxedo service, which accepts a STRING typed
buffer. The SOAP message is as follows:

<?xml … encoding=”UTF-8” ?>

……

<SOAP:body>

<m:TOUPPER xmlns:m=”urn:......”>

<inbuf>abcdefg</inbuf>

</m:TOUPPER>

</SOAP:body>

The XML Schema for <inbuf> is:

<xsd:element name=”inbuf” type=”xsd:string” />

FML/FML32

(cont.)
• view32 maps to tuxtype:view

<viewname>

• fml32 maps to tuxtype:fml32
<svcname>_p<SeqNum>

To avoid multiple embedded
FML32 buffers in an FML32 buffer,
a unique sequence number
(<SeqNum>) is used to distinguish
the embedded FML32 buffers.

Note: ptr is not supported.

For limitations and considerations
regarding mapping FML/FML32
buffers, refer to “FML/FML32
Considerations” on page 3-25.

Table 3-1 Tuxedo Buffer Mapping to XML Schema

Tuxedo Buffer Type Description XML Schema Mapping for SOAP Message

3-14 BEA SALT Administration Guide

Tuxedo CARRAY Typed Buffers
Tuxedo CARRAY typed buffers are used to store character arrays, any of which can be NULL.
They are used to handle data opaquely and are not self-describing. Tuxedo CARRAY typed
buffers can map to xsd:base64Binary or MIME attachments. The default is
xsd:base64Binary.

Mapping Example Using base64Binary
Listing 3-1 shows the SOAP message for the TOUPPER Tuxedo service, which accepts a CARRAY
typed buffer, using base64Binary mapping.

Listing 3-1 Soap Message for a CARRAY Typed Buffer Using base64Binary Mapping

<SOAP:body>

<m:TOUPPER xmlns:m=”urn:......”>

<inbuf>QWxhZGRpbjpvcGVuIHNlc2FtZQ==</inbuf>

</m:TOUPPER>

</SOAP:body>

The XML Schema for <inbuf> is:

<xsd:element name=”inbuf” type=”xsd:base64Binary” />

Mapping Example Using MIME Attachment
Listing 3-2 shows the SOAP message for the TOUPPER Tuxedo service, which accepts a CARRAY
typed buffer, as a MIME attachment.

Listing 3-2 Soap Message for a CARRAY Typed Buffer Using MIME Attachment

MIME-Version: 1.0

Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;

start="<claim061400a.xml@example.com>"

Content-Description: This is the optional message description.

--MIME_boundary

Conver t ing Tuxedo Buf fe rs t o / f rom XML

BEA SALT Administration Guide 3-15

Content-Type: text/xml; charset=UTF-8

Content-Transfer-Encoding: 8bit

Content-ID: <claim061400a.xml@ example.com>

<?xml version='1.0' ?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>

..

<m:TOUPPER xmlns:m=”urn:…”>

<inbuf href="cid:claim061400a.carray@example.com"/>

</m:TOUPPER>

..

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

--MIME_boundary

Content-Type: text/xml

Content-Transfer-Encoding: binary

Content-ID: <claim061400a. carray @example.com>

...binary carray data…

--MIME_boundary--

The WSDL for carray typed buffer will look like the following:

<wsdl:definitions …>

<wsdl:types …>

<xsd:schema …>

<xsd:element name=”inbuf” type=”xsd:base64Binary” />

</xsd:schema>

</wsdl:types>

……

<wsdl:binding …>

<wsdl:operation name=”TOUPPER”>

<soap:operation …>

<input>

<mime:multipartRelated>

3-16 BEA SALT Administration Guide

<mime:part>

<soap:body parts=”…” use=”…”/>

</mime:part>

<mime:part>

<mime:content part=”…” type=”text/xml”/>

</mime:part>

</mime:multipartRelated>

</input

……

</wsdl:operation>

</wsdl:binding>

</wsdl:definitions>

Tuxedo MBSTRING Typed Buffers
Tuxedo MBSTRING Typed Buffers are used for multibyte character arrays. Tuxedo
MBSTRING buffers consist of the following three elements: code-set character encoding, data
length, character array encoding.

Note: You cannot embed multibyte characters with non “UTF-8” code sets into the SOAP
message directly.

Figure 3-1 shows the SOAP message for the MBSERVICE Tuxedo service, which accepts an
MBSTRING typed buffer.

Figure 3-1 SOAP Message for an MBSTRING Buffer

The XML Schema for <inbuf> is:

<xsd:element name=”inbuf” type=”xsd:string” />

need to re-do th

Conver t ing Tuxedo Buf fe rs t o / f rom XML

BEA SALT Administration Guide 3-17

WARNING: BEA SALT converts the Japanese character "—" (EUC-JP 0xa1bd, Shift-JIS
0x815c) into UTF-16 0x2015.

If you use another character set conversion engine, the EUC-JP or Shift-JIS
multibyte output for this character may be different. For example, the Java il8n
character conversion engine, converts this symbol to UTF-16 0x2014. The result
is the also same when converting to UTF-8, which is the BEA SALT default

If you use another character conversion engine and Japanese "—" is included in
MBSTRING, TUXEDO server-side MBSTRING auto-conversion cannot
convert it back into Shift-JIS or EUC-JP.

Tuxedo XML Typed Buffers
Tuxedo XML typed buffers store XML documents.

Listing 3-3 shows the Stock Quote XML document.

Listing 3-4 shows the SOAP message for the STOCKINQ Tuxedo service, which accepts an XML
typed buffer.

Listing 3-3 Stock Quote XML Document

<?xml version="1.0" encoding="UTF-8"?>

<!-- "Stock Quotes". -->

<stockquotes>

<stock_quote>

<symbol>BEAS</symbol>

<when>

<date>01/27/2001</date>

<time>3:40PM</time>

</when>

<change>+2.1875</change>

<volume>7050200</volume>

</stock_quote>

</stockquotes>

Then part of the SOAP message will look like the following:

3-18 BEA SALT Administration Guide

Listing 3-4 SOAP Message for an XML Buffer

<SOAP:body>

<m: STOCKINQ xmlns:m=”urn:......”>

<inbuf>

<stockquotes>

<stock_quote>

<symbol>BEAS</symbol>

<when>

<date>01/27/2001</date>

<time>3:40PM</time>

</when>

<change>+2.1875</change>

<volume>7050200</volume>

</stock_quote>

</stockquotes>

</inbuf>

</m: STOCKINQ >

</SOAP:body>

The XML Schema for <inbuf> is:

<xsd:element name=”inbuf” type=”xsd:anyType” />

Note: If a default namespace is contained in a Tuxedo XML typed buffer and returned to the
GWWS server, the GWWS server converts the default namespace to a regular name.
Each element is then prefixed with this name.

For example, If a Tuxedo service returns a buffer having a default namespace to the
GWWS server as shown in Listing 3-5, the GWWS server converts the default
namespace to a regular name as shown in Listing 3-6.

Listing 3-5 Default Namespace Before Sending to GWWS Server

<Configuration xmlns="http://www.bea.com/Tuxedo/Salt/200606">

<Servicelist id="simpapp">

<Service name="toupper"/>

</Servicelist>

Conver t ing Tuxedo Buf fe rs t o / f rom XML

BEA SALT Administration Guide 3-19

<Policy/>

<System/>

<WSGateway>

<GWInstance id="GWWS1">

<HTTP address="//myhost:8080"/>

</GWInstance>

</WSGateway>

</Configuration>

Listing 3-6 GWWS Server Converts Default Namespace to Regular Name

<dom0:Configuration

xmlns:dom0="http://www.bea.com/Tuxedo/Salt/200606">

<dom0:Servicelist dom0:id="simpapp">

<dom0:Service dom0:name="toupper"/>

</dom0:Servicelist>

<dom0:Policy></<dom0:Policy>

<dom0:System></<dom0:System>

<dom0:WSGateway>

<dom0:GWInstance dom0:id="GWWS1">

<dom0:HTTP dom0:address="//myhost:8080"/>

</dom0:GWInstance>

</dom0:WSGateway>

</dom0:Configuration>

Tuxedo VIEW/VIEW32 Typed Buffers
Tuxedo VIEW and VIEW32 typed buffers are used to store C structures defined by Tuxedo
applications. You must define the VIEW structure with the VIEW definition files. A VIEW
buffer type can define multiple fields.

Listing 3-7 shows the MYVIEW VIEW definition file.

3-20 BEA SALT Administration Guide

Listing 3-8 shows the SOAP message for the MYVIEW Tuxedo service, which accepts a VIEW
typed buffer.

Listing 3-7 VIEW Definition File for MYVIEW Service

VIEW MYVIEW

#type cname fbname count flag size null

float float1 - 1 - - 0.0

double double1 - 1 - - 0.0

long long1 - 3 - - 0

string string1 - 2 - 20 '\0'

END

Listing 3-8 SOAP Message for a VIEW Typed Buffer

<SOAP:body>

<m: STOCKINQ xmlns:m=”http://......”>

<inbuf>

<float1>12.5633</float1>

<double1>1.3522E+5</double1>

<long1>1000</long1>

<long1>2000</long1>

<long1>3000</long1>

<string1>abcd</string1>

<string1>ubook</string1>

</inbuf>

</m: STOCKINQ >

</SOAP:body>

The XML Schema for <inbuf> is shown in Listing 3-9.

Conver t ing Tuxedo Buf fe rs t o / f rom XML

BEA SALT Administration Guide 3-21

Listing 3-9 XML Schema for a VIEW Typed Buffer

<xsd:complexType name=” view_MYVIEW”>

<xsd:sequence>

<xsd:element name=”float1” type=”xsd:float” />

<xsd:xsd:element name=”double1” type=”xsd:double” />

<xsd:element name=”long1” type=”xsd:long” minOccurs=”3” />

<xsd:element name=”string1” type=”xsd:string minOccurs=”3” />

</xsd:sequence>

</xsd: complexType >

<xsd:element name=”inbuf” type=”tuxtype:view_MYVIEW” />

VIEW/VIEW32 Considerations
The following considerations apply when converting Tuxedo VIEW/VIEW32 buffers to and
from XML.

You must create an environment for converting XML to and from VIEW/VIEW32. This
includes setting up a VIEW directory and system VIEW definition files. These definitions
are automatically loaded by the GWWS server.

The GWWS server provides strong consistency checking between the Tuxedo Service
Metadata Repository VIEW/VIEW32 parameter definition and the VIEW/VIEW32
definition file at start up.

If an inconsistency is found, the GWWS server cannot start. Inconsistency messages are
printed in the ULOG file.

tmwsdlgen also provides strong consistency checking between the Tuxedo Service
Metadata Repository VIEW/VIEW32 parameter definition and the VIEW/VIEW32
definition file at start up. If an inconsistency is found, the GWWS server will not start.
Inconsistency messages are printed in the ULOG file.

If the VIEW definition file cannot be loaded, tmwsdlgen attempts to use the Tuxedo
Service Metadata Repository definitions to compose the WSDL document.

Because dec_t is not supported, if you define VIEW fields with type dec_t, the service
cannot be exported as a Web service and an error message is generated when the BEA
SALT configuration file is loading.

3-22 BEA SALT Administration Guide

Although the Tuxedo Service Metadata Repository may define a size attribute for “string/
mbstring” typed parameters, which represents the maximum byte length that is allowed in
the Tuxedo typed buffer, BEA SALT does not expose such restriction in the generated
WSDL document.

When a VIEW32 embedded MBString buffer is requested and returned to the GWWS
server, the GWWS miscalculates the required MBString length and reports that the input
string exceeds the VIEW32 maxlength. This is because the header is included in the
transfer encoding information. You must include the header size when defining the
VIEW32 field length.

The Tuxedo primary data type “long” is indefinite between 32-bit and 64-bit scope,
depending on the platform. However, the corresponding xsd:long schema type is used to
describe 64-bit numeric values.

If the GWWS server runs in 32-bit mode, and the Web service client sends xsd:long
typed data that exceeds the 32-bit value range, you may get a SOAP fault.

Tuxedo FML/FML32 Typed Buffers
Tuxedo FML and FML32 typed buffer are proprietary BEA Tuxedo system self-describing
buffers in which each data field carries its own identifier, an occurrence number, and possibly a
length indicator.

FML Data Mapping Example
Listing 3-10 shows the SOAP message for the TRANSFER Tuxedo service, which accepts an FML
typed buffer.

The request fields for service LOGIN are:

ACCOUNT_ID 1 long /* 2 occurrences, The withdrawal

account is 1st, and the deposit account is 2nd */

AMOUNT 2 float /* The amount to transfer */

Part of the SOAP message is as follows:

Listing 3-10 SOAP Message for an FML Typed Buffer

<SOAP:body>

<m:TRANSFER xmlns:m=”urn:......”>

<inbuf>

Conver t ing Tuxedo Buf fe rs t o / f rom XML

BEA SALT Administration Guide 3-23

<ACCOUNT_ID>40069901</ACCOUNT_ID>

<ACCOUNT_ID>40069901</ACCOUNT_ID>

<AMOUNT>200.15</AMOUNT>

</inbuf>

</m:TRANSFER >

</SOAP:body>

The XML Schema for <inbuf> is shown in Listing 3-11.

Listing 3-11 XML Schema for an FML Typed Buffer

<xsd:complexType name=” fml_TRANSFER_In”>

<xsd:sequence>

<xsd:element name=”ACCOUNT_ID” type=”xsd:long” minOccurs=”2”/>

<xsd:element name=” AMOUNT” type=”xsd:float” />

</xsd:sequence>

</xsd: complexType >

<xsd:element name=”inbuf” type=”tuxtype: fml_TRANSFER_In” />

FML32 Data Mapping Example
Listing 3-12 shows the SOAP message for the TRANSFER Tuxedo service, which accepts an
FML32 typed buffer.

The request fields for service LOGIN are:

CUST_INFO 1 fml32 /* 2 occurrences, The withdrawal

customer is 1st, and the deposit customer is 2nd */

ACCOUNT_INFO 2 fml32 /* 2 occurrences, The withdrawal

account is 1st, and the deposit account is 2nd */

AMOUNT 3 float /* The amount to transfer */

Each embedded CUST_INFO includes the following fields:

CUST_NAME 10 string

CUST_ADDRESS 11 carray

CUST_PHONE 12 long

3-24 BEA SALT Administration Guide

Each embedded ACCOUNT_INFO includes the following fields:

ACCOUNT_ID 20 long

ACCOUNT_PW 21 carray

Part of the SOAP message will look as follows:

Listing 3-12 SOAP Message for Service with FML32 Buffer

<SOAP:body>

<m:STOCKINQ xmlns:m=”urn:......”>

<inbuf>

<CUST_INFO>

<CUST_NAME>John</CUST_NAME>

<CUST_ADDRESS>Building 15</CUST_ADDRESS>

<CUST_PHONE>1321</CUST_PHONE>

</CUST_INFO>

<CUST_INFO>

<CUST_NAME>Tom</CUST_NAME>

<CUST_ADDRESS>Building 11</CUST_ADDRESS>

<CUST_PHONE>1521</CUST_PHONE>

</CUST_INFO>

<ACCOUNT_INFO>

<ACCOUNT_ID>40069901</ACCOUNT_ID>

<ACCOUNT_PW>abc</ACCOUNT_PW>

</ACCOUNT_INFO>

<ACCOUNT_INFO>

<ACCOUNT_ID>40069901</ACCOUNT_ID>

<ACCOUNT_PW>zyx</ACCOUNT_PW>

</ACCOUNT_INFO>

<AMOUNT>200.15</AMOUNT>

</inbuf>

</m: STOCKINQ >

</SOAP:body>

The XML Schema for <inbuf> is shown in Listing 3-13.

Conver t ing Tuxedo Buf fe rs t o / f rom XML

BEA SALT Administration Guide 3-25

Listing 3-13 XML Schema for an FML32 Buffer

<xsd:complexType name=”fml32_TRANSFER_In”>

<xsd:sequence>

<xsd:element name=”CUST_INFO” type=”tuxtype:fml32_TRANSFER_p1”

minOccurs=”2”/>

<xsd:element name=”ACCOUNT_INFO” type=”tuxtype:fml32_TRANSFER_p2”

minOccurs=”2”/>

<xsd:element name=”AMOUNT” type=”xsd:float” />

/xsd:sequence>

</xsd:complexType >

<xsd:complexType name=”fml32_TRANSFER_p1”>

<xsd:element name=”CUST_NAME” type=”xsd:string” />

<xsd:element name=”CUST_ADDRESS” type=”xsd:base64Binary” />

<xsd:element name=”CUST_PHONE” type=”xsd:long” />

</xsd:complexType>

<xsd:complexType name=”fml32_TRANSFER_p2”>

<xsd:element name=”ACCOUNT_ID” type=”xsd:long” />

<xsd:element name=”ACCOUNT_PW” type=”xsd:base64Binary” />

</xsd:complexType>

<xsd:element name=”inbuf” type=”tuxtype: fml32_TRANSFER_In” />

FML/FML32 Considerations
The following considerations apply to converting Tuxedo FML/FML32 buffers to and from
XML.

You must have an environment for converting XML to and from FML/FML32. This
includes an FML field table file directory and system FML field definition files. These
definitions are automatically loaded by GWWS. FML typed buffer can be handled only if
user sets up the environment correctly.

FML32 Field type FLD_PTR is not supported.

3-26 BEA SALT Administration Guide

The GWWS server provides strong consistency checking between the Tuxedo Service
Metadata Repository FML/FML32 parameter definition and FML/FML32 definition file
during start up.

If any FML/32 field cannot be found according to the environment setting, or the field data
type definition in the field table is different from the parameter data type definition in the
Tuxedo Service Metadata Repository, the GWWS cannot start. Inconsistency messages are
printed in the ULOG file.

the tmwsdlgen command checks for consistency between the Tuxedo Service Metadata
Repository FML/FML32 parameter definition and FML/FML32 definition file, but will
issue a warning and allow inconsistencies.

If any FML/32 field cannot be found according to the environment setting, or the field data
type definition in the field table is different from the parameter data type definition in
Tuxedo Service Metadata Repository, tmwsdlgen attempts to use Tuxedo Service
Metadata Repository definitions to compose the WSDL document.

Although the Tuxedo Service Metadata Repository may define a size attribute for “string/
mbstring” typed parameters, which represents the maximum byte length that is allowed in
the Tuxedo typed buffer, BEA SALT does not expose such restriction in the generated
WSDL document.

Tuxedo primary data type “long” is indefinite between 32-bit and 64-bit scope according to
different platforms. But the corresponding xsd:long schema type is used to describe
64-bit numeric value. You should get a SOAP fault in the following case: The GWWS runs
with the 32-bit mode, and Web service client sends a xsd:long typed data which exceeds
the 32-bit value range.

Tuxedo X_C_TYPE Typed Buffers
Tuxedo X_C_TYPE typed buffers are equivalent, and have similar WSDL format to Tuxedo
VIEW typed buffers.They are transparent for SOAP clients. However, even though usage is
similar to the Tuxedo VIEW buffer type, SALT administrators must configure the Tuxedo
Service Metadata Repository for any particular Tuxedo service which uses this buffer type.

Note: All View related considerations also take effect for X_C_TYPE typed buffer.

Tuxedo X_COMMON Typed Buffers
Tuxedo X_COMMON typed buffers are equivalent to Tuxedo VIEW typed buffers. However,
they are used for compatibility between COBOL and C programs. Field types should be limited
to short, long, and string.

WSDL Mapping Rules

BEA SALT Administration Guide 3-27

Tuxedo X_OCTET Typed Buffers
Tuxedo X_OCTET typed buffers are equivalent to CARRAY.

Note: Tuxedo X_OCTET typed buffers can only map to xsd:base64Binary type. SALT 1.1
does not support MIME attachment binding for Tuxedo X_OCTET typed buffers.

Custom Typed Buffers
BEA SALT provides a plug-in mechanism to support custom typed buffers. You can validate the
SOAP message against your own XML Schema definition, allocate custom typed buffers, and
parse data into the buffers and other operations.

XML Schema built-in type xsd:anyType is the corresponding type for XML documents stored
in a SOAP message. While using custom typed buffers, you should define and represent the
actual data into an XML format and transfer between Web service client and Tuxedo Web service
stack. Similar to the XML typed buffers, only a single root XML buffer is allowed to be stored
in the SOAP body. The GWWS checks this for consistency.

For more plug-in information, see “Introduction to Using Plug-ins with BEA SALT” on page 5-1.

WSDL Mapping Rules
In order to export Tuxedo services and Web services, Tuxedo service contract information is
needed so that it can be converted into a WDSL document. SALT leverages the Tuxedo Service
Metadata Repository to access Tuxedo service information.

3-28 BEA SALT Administration Guide

Figure 3-2 WSDL Component Model

Converting configuration information into WSDL specification compliant information requires
mapping rules. Table 3-2 provides the mapping rules for a generated WSDL document.

Table 3-2 Basic WSDL Mapping Rules

WSDL Definition Description

/wsdl:definitions/wsdl:types Uses XML Schema as type system

/wsdl:definitions/wsdl:message Each instance maps to a specific Tuxedo service
input buffer or output buffer

WSDL Mapping Rules

BEA SALT Administration Guide 3-29

/wsdl:definitions/wsdl:portType Only one instance in the generated WSDL document.
All Tuxedo services defined in the certain
configuration instance are grouped in one WSDL
portType object.

Use <wsdl:portType> to define a set of abstract
operations. To associate a Tuxedo service with a
<wsdl:portType> definition, use the following
rules:
• /wsdl:portType/@name

The name attribute value uses the following
syntax:
<Servicelist_id>_PortType

• /wsdl:portType/wsdl:operation/@name

The string value of attribute name should match
the associated service name defined in the SALT
configuration file and Tuxedo Service Metadata
Repository.

/wsdl:definitions/wsdl:portType/wsdl:
operation

Each instance maps to a specific Tuxedo service

/wsdl:definitions/wsdl:binding Only one instance in the generated WSDL
document. It indicates that, only one concrete
SOAP protocol, either SOAP 1.1 binding
extension or SOAP 1.2 binding extension, is
provided for the WSDL binding in the generated
WSDL document.

/wsdl:definitions/wsdl:service Only one instance in the generated WSDL.

Table 3-2 Basic WSDL Mapping Rules

WSDL Definition Description

3-30 BEA SALT Administration Guide

WS Policy Attachment Rules
The following rules apply for attaching WS Policy files to WSDL documents.

Each WS policy file content must be excerpted completely and attached as child elements
of <wsdl:definitions> with the top element as <wsp:Policy>.

/wsdl:definitions/wsdl:port One or more instances in the generated WSDL
document. It depends on the GWWS instance
number used for failover.

WSDL target Namespace The target Namespace of the generated WSDL
document is composed using the following
syntax:
urn:<Servicelist_ID>.wsdl

The first GWWS instance network parameters
are used. Use the following Namespace
conventions for each prefix:
• xsd uses

http://www.w3.org/2001/XMLSchema

• wsdl uses
http://schemas.xmlsoap.org/wsdl

• soap11 uses
http://schemas.xmlsoap.org/wsdl/so
ap

• soap12 uses
http://schemas.xmlsoap.org/wsdl/so
ap12

• wsp uses
http://schemas.xmlsoap.org/ws/2004
/09/policy

• wsrm uses
http://schemas.xmlsoap.org/ws/2005
/02/rm

• beapolicy uses
http://www.bea.com/wsrm/policy

Table 3-2 Basic WSDL Mapping Rules

WSDL Definition Description

SOAP Message Exchange Pat te rn Mapp ing

BEA SALT Administration Guide 3-31

Each policy expression defines the wsu:id attribute with a unique ID name.

The <wsp:UsingPolicy> element is mandatory and must be a child element of
<wsdl:definitions>. The format of <wsp:UsingPolicy> must be a fixed format as
follows:

<wsp:UsingPolicy wsdl:required=”true” />

The WS Policy is defined in the SALT configuration file and attached as an element in the
WSDL document.

SOAP Message Exchange Pattern Mapping
BEA SALT supports the following mapping rules for each Tuxedo service type and SOAP
Message Exchange Pattern (MEP).

Note: BEA SALT does not support the Tuxedo queue service type, even though it is supported
in the Tuxedo Service Metadata Repository.

SOAP Message Encoding Support
BEA SALT supports two traditional message encoding styles for SOAP messages:

Document style

RPC style.

Policy Definition in SALT Configuration Attached as Child Element

/Configuration/Policy/RMPolicy /wsdl:binding

Table 3-3 Tuxedo Service to SOAP Message Exchange Pattern Mapping

Tuxedo Service Type
(defined in Tuxedo Service
Metadata Repository)

SOAP Message Exchange
Pattern (MEP) Required Elements for <wsdl:operation>

service/queue Request-Response <input>
<output>

oneway One-way <input>

3-32 BEA SALT Administration Guide

Document Message Style
The generated WSDL document supports the abstract message definition in document message
style. Because the document style can represent SOAP messages in various XML document
structures, there are many ways to define this document structure.

The following rules apply to SALT-generated WSDL documents to create a fixed-structure
message description.

/wsdl:message/@name
The message name string syntax is as follows:

<Tuxedo service name + “Input | Output”>

Use the Input suffix when describing an input typed buffer. Use the Output suffix when
describing an output typed buffer

/wsdl:message/wsdl:part
The following format rules apply for <wsdl:part>:

Only one <wsdl:part> instance is associated with each Tuxedo typed buffer.

The value of name attribute of <wsdl:part> is hard-coded as parameters.

The element attribute of <wsdl:part> is specified.

If the message indicates a Tuxedo service input buffer, the value is the same as the
associated Tuxedo service name.

If the message indicates a Tuxedo service output buffer, the value is constructed with the
associated Tuxedo service name, plus a suffix string response.

The schema definition for /wsdl:message/wsdl:part/@element is:

– element is <xsd:complexType>. The type name for this complex type is not defined;
rather it is described by the type structure. The type name is not defined because the
type indicating a particular service buffer is not likely to be reused for other elements,
so there is no need to define a type name for reference.

– <xsd:complexType> includes only one element with a Tuxedo buffer type name, for
example, STRING or XML.

– The type name of the buffer type element complies with the rules described Table 3-1.

– For VIEW/VIEW32 or FML/FML32 or a custom type buffers described parameters, the
#bufmappingtype definition includes parameter-specifying elements.

SOAP Message Exchange Pat te rn Mapp ing

BEA SALT Administration Guide 3-33

– Elements representing buffer parameters use a parameter name as an element name, and
the type for the element complies with the rules described Table 3-1.

The following code listing shows the non-normative grammar:

<xsd:schema …>
<xsd:element name=”#svcname” > *
<xsd:complexType>
<xsd:sequence>

<xsd:element name=”#buffertype” type=”#bufmappingtype” />
</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:complexType name=”#bufmappingtype”> *

<xsd:sequence>

<xsd:element name=”#parametername” type=”#parammappingtype” /> *
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name=” #parammappingtype”> *
……

</xsd:complexType>

</xsd:schema>

Document Message Style Example
This example in this section depicts the transfer service definitions in the SALT configuration
file, the corresponding transfer service contract information from the Tuxedo Service
Metadata Repository, the generated WSDL document, and the associated request and response
messages for the transfer service.

Listing 3-14 shows an example of a section of the BEA SALT configuration file definition for
the service.

Listing 3-14 Document Message Transfer Service Servicelist Section of the SALT Configuration File

<Configuration>

<Servicelist id=”bank”>

<Service name=”transfer” />

</Servicelist>

…….

</Configuration>

3-34 BEA SALT Administration Guide

The corresponding Tuxedo Service Metadata Repository transfer service contract information is
shown in Listing 3-15.

Listing 3-15 Tuxedo Service Metadata Repository Transfer Service Contract Information

Service=transfer

inbuf=FML

outbuf=STRING

param=ACCOUNT_ID

type=long

access=in

count=2

requiredcount=2

param=SAMOUNT

type=string

access=in

param=result

type=STRING

access=out

BEA SALT generates a WSDL document. Listing 3-16 shows the part of the WSDL document
that relates to the transfer service definition.

Listing 3-16 Transfer Service Definition in a WSDL Document

<wsdl:definition

xmlns:tuxtype=”urn:bank_typedef”

xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

……>

<wsdl:types>

<xsd:schema targetNamespace=”urn:bank_typedef” …… >

SOAP Message Exchange Pat te rn Mapp ing

BEA SALT Administration Guide 3-35

<xsd:element name=”transfer”>

<xsd:complexType>

<xsd:sequence>

<xsd:element name=”FML” type=”tuxtype:fml_transfer_In” />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name=”fml_transfer_In”>

<xsd:sequence>

<xsd:element name=”ACCOUNT_ID” type=”xsd:long” minOccurs=”2”

maxOccurs=”2” />

<xsd:element name=”SAMOUNT” type=”xsd:string” />

</xsd:sequence>

</xsd:complexType>

<xsd:element name=”transferResponse”>

<xsd:complexType>

<xsd:sequence>

<xsd:element name=”STRING” type=”xsd:string” />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

…….

</xsd:schema>

</wsdl:types>

<wsdl:message name=”transferInput”>

<wsdl:part name=”parameters” element=”tuxtype:transfer” />

</wsdl:message>

<wsdl:message name=”transferOutput”>

<wsdl:part name=”parameters” element=”tuxtype:transferResponse” />

</wsdl:message>

……

</wsdl:definition>

3-36 BEA SALT Administration Guide

Listing 3-17 shows the SOAP request message for the transfer service.

Listing 3-17 Sample SOAP1.1 Transfer Service Request Message

<soap:envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/” >

<soap:body>

<transfer xmlns=” urn:bank_typedef”>

<FML>

< ACCOUNT_ID >111222</ACCOUNT_ID >

< ACCOUNT_ID >333444</ACCOUNT_ID >

< SAMOUNT > 100.00 </ SAMOUNT >

</FML>

</transfer>

</soap:body>

</soap:envelope>

Listing 3-18 shows the SOAP response message for the transfer service.

Listing 3-18 Sample SOAP1.1 Transfer Service Response Message

<soap:envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/” >

<soap:body>

<transferResponse xmlns=”urn:bank_typedef”>

<STRING>30010.50</STRING>

</transferResponse>

</soap:body>

</soap:envelope>

RPC Message Style
The generated WSDL document supports abstract message definitions in RPC message style. The
following rules apply to SALT-generated WSDL documents for creating RPC style message
definitions.

SOAP Message Exchange Pat te rn Mapp ing

BEA SALT Administration Guide 3-37

/wsdl:message/@name
The string of message name is constructed with the following format:

<Tuxedo service name + “Input | Output”>

Use the Input suffix when describing an input typed buffer. Use the Output suffix when
describing an output typed buffer

/wsdl:message/wsdl:part
The following format rules apply for <wsdl:part>:

Only one <wsdl:part> instance is associated with each Tuxedo input message. The value
of the name attribute of <wsdl:part> is hard-coded as inbuf.

Only one <wsdl:part> instance is associated with each Tuxedo output message. The
value of the name attribute of <wsdl:part> is hard-coded as outbuf.

The type name of the buffer type element complies with the rules described Table 3-1.

For VIEW/VIEW32 or FML/FML32 or custom type buffers described parameters, the
#bufmappingtype definition includes parameter-specifying elements.

Elements representing buffer parameters use the parameter name as an element name.The
type for the element complies with the rules described Table 3-1.

The following code listing shows the non-normative grammar:

<xsd:schema …>
<xsd:complexType name=”bufmappingtype”> *

<xsd:sequence>
<xsd:element name=”#parametername” type=”#parammappingtype” /> *

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name=” #parammappingtype”> *
……
</xsd:complexType>

</xsd:schema>

RPC Message Style Example
This example in this section depicts the transfer service definitions in the SALT configuration
file, the corresponding transfer service contract information from the Tuxedo Service
Metadata Repository, the generated WSDL document, and the associated request and response
messages for the transfer service.

3-38 BEA SALT Administration Guide

Listing 3-19 shows an example of a section of the BEA SALT configuration file definition for
the service.

Listing 3-19 RPC Message Transfer Service Servicelist Section of the SALT Configuration File

<Configuration>

<Servicelist id=”bank”>

<Service name=”transfer” />

</Servicelist>

……

</Configuration>

Listing 3-20 shows the corresponding transfer service contract information retrieved from
Tuxedo Service Metadata Repository.

Listing 3-20 Tuxedo Service Metadata Repository Transfer Service Contract Information

Service=transfer

inbuf=FML

outbuf=STRING

param=ACCOUNT_ID

type=long

access=in

count=2

requiredcount=2

param=SAMOUNT

type=string

access=in

param=result

type=STRING

access=out

SOAP Message Exchange Pat te rn Mapp ing

BEA SALT Administration Guide 3-39

BEA SALT generates a WSDL document. Listing 3-21 shows the part of the WSDL document
that relates to the transfer service definition.

Listing 3-21 RPC Message Transfer Service Definition in the WSDL Document

<wsdl:definition

xmlns:tuxtype=”urn:bank_typedef”

xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

……>

<wsdl:types>

<xsd:schema targetNamespace=”urn:bank_typedef” …… >

<xsd:complexType name=”fml_transfer_In”>

<xsd:sequence>

<xsd:element name=”ACCOUNT_ID” type=”xsd:long” minOccurs=”2”

maxOccurs=”2” />

<xsd:element name=”SAMOUNT” type=”xsd:string” />

</xsd:sequence>

</xsd:complexType>

……

</xsd:schema>

<wsdl:types>

<wsdl:message name=”transferInput”>

<wsdl:part name=”inbuf” type=”tuxtype: fml_transfer_In” />

</wsdl:message>

<wsdl:message name=”transferOutput”>

<wsdl:part name=”outbuf” type=”xsd:string” />

</wsdl:message>

……

</wsdl:definition>

Listing 3-22 shows the SOAP request message for the transfer service.

3-40 BEA SALT Administration Guide

Listing 3-22 Sample SOAP1.1 Transfer Service Request RPC Message

<soap:envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/” >

<soap:body>

<transfer xmlns:ns=”urn:bank_typedef” >

<inbuf xsi:type=”ns:fml_transfer_In” >

<ACCOUNT_ID xsi:type=”xsd:long”>111222</ACCOUNT_ID >

<ACCOUNT_ID xsi:type=”xsd:long”>333444</ACCOUNT_ID >

<SAMOUNT xsi:type=”xsd:float”> 100.00 </SAMOUNT >

</inbuf>

</transfer>

</soap:body>

</soap:envelope>

See Also
Managing Typed Buffers

http://edocs.bea.com/tuxedo/tux91/pgc/pgbuf.htm

BEA Salt Administration Guide 4-1

C H A P T E R 4

Monitoring and Tuning Web Services

This section contains the following topics:

Viewing the Current Configuration

Viewing Runtime Statistics

Tuning the GWWS Server

Viewing the Current Configuration
To view the current SALT configuration, use the following wsadmin command argument:

configstats(cstat) -i InstanceID

This argument displays the current status of the SALT configuration file for the given GWWS
process. It outputs the following:

The number of current configuration instances used for the GWWS process

Each configuration instance displays the following information:

– Elapsed time: (xx) days (xx) hours (xx) minutes, (xx) seconds the duration since a
configuration instance is loaded / reloaded.

– Number of clients (SOAP requests) that are currently using this configuration instance.

– Longest time of attachment for this instance: (xx) days (xx) hours (xx) minutes (xx)
seconds.

4-2 BEA Salt Administration Guide

Viewing Runtime Statistics
To view GWWS process runtime statistics, use the following wsadmin command argument:

gwstats(gws) -i InstanceID

The gwstats argument displays runtime statistical information for GWWS processes. Option –
i is required.

Note: The runtime statistics do not apply to work for messages in a sequence for
WS-ReliableMessaging specification.

Table 4-1 shows the resulting displayed information.

Tuning the GWWS Server
The GWWS server is a high performance gateway used between SOAP clients and the Tuxedo
framework. It uses a thread-pool working model to improve performance in a multi-processor

Table 4-1 Statistics Displayed in Terce Mode

Statistic Description

Request Response Done Number of successfully completed requests in request-response
message pattern. A completed request in request-response message
pattern means a SOAP response is returned from the GWWS server to
the Web Service Client.

Request Response Fail Number of failed requests in request-response message pattern. A failed
request in request-response message pattern means a SOAP Fault
message is returned from the GWWS server to the Web Service
Client.Possible failure reasons:
• Invalid SOAP request
• Tuxedo internal error
• SOAP request rejected

Oneway Done Number of successfully completed requests. A completed request
means a SOAP request is successfully delivered to a Tuxedo service
regardless of whether the service process is successful or not.

Oneway Fail Number of failed requests in oneway message pattern. A failed request
in oneway message pattern means a SOAP oneway request is not
delivered to the Tuxedo service.

Tun ing the GWWS Serve r

BEA Salt Administration Guide 4-3

server environment. The GWWS server also provides options to control runtime behavior by
setting <WSGateway> element property values in the BEA SALT configuration file. The following
topics list deployment considerations based on different scenarios. For more information, see
Configuring BEA SALT in the BEA SALT Administration Guide.

Thread Pool Size Tuning
Property: thread_pool_size

The default thread pool size is 16, but in some cases this may not be enough to handle high
volume loads. It is recommended to conduct a typical usage analysis in order to better estimate
the proper size requirement. Usually, if the concurrent client number is large (for example, more
than 500), it is suggested that you deploy the GWWS gateway on a server with at least a 4-way
processor and set the thread pool size to 64.

Network Timeout Control
Property: timeout

BEA SALT provides a network timeout tuning parameter in the configuration file. The default
timeout value is 300 seconds.The value can be adjusted to reduce timeout errors.

Max Content Length Control
Property: max_content_length

BEA SALT administrators may want to limit the buffer size sent from a client. SALT supports
this by using a property value that can be set for particular GWWS instances. By default there is
no limit.

Backlog Control
Property: max_backlog

BEA SALT defines the default backlog socket listen value to 20. On some systems, such as
Windows, 20 may not meet the heavy load requirements. The client connection is rejected during
TCP handshake.

The recommended value for Windows is based on the max concurrent TCP connections you may
encounter. For example, if 80 is the peak point, you may configure the max_backlog property
value to 60 in the SALT configuration file.

../admin/config.html
../admin/config.html

4-4 BEA Salt Administration Guide

Note: The default backlog value is adequate for most systems. You do not need tune it unless
you experience client connection problems during heavy loads.

WARNING: A large backlog value may increase syn-blood attack risk.

Tuxedo BLOCKTIME
A network receive timeout property is provided in the SALT configuration file. Web service
applications are also impacted by the Tuxedo BLOCKTIME parameter. Blocktime accounting
begins when a message is transformed from XML to a typed buffer and delivered to the Tuxedo
framework.

If no reply is received for a particular Web service client within the BLOCKTIME time frame,
the GWWS server sends a SOAP fault message to the client and terminates the connection. If the
GWWS server receives a delayed reply, it drops this message because the client has been
disconnected.

BLOCKTIME is defined in the UBBCONFIG file *RESOURCE section.

Boost Performance Using Multiple GWWS instances
If one GWWS instance is bottlenecked due to network congestion, low CPU resources and so on,
multiple GWWS instances can be deployed within the same SALT configuration file on
distributed Tuxedo nodes.

Note: Even though multiple GWWS instances can provide the same logic functionality, from a
client perspective, they are different Web service end points with specific TCP ports and
addresses.

See Also
GWWS

http://edocs.bea.com/tuxedo/tux91/rf5/rf5i.htm#1531911
../ref/comref.html#wp1106724

BEA Salt Administration Guide 5-1

C H A P T E R 5

Introduction to Using Plug-ins with BEA
SALT

This section contains the following topics:

Overview

Implementing a Plug-in with SALT

Defining a Plug-in

Overview
A plug-in is a set of functions that are called when the GWWS server is running. BEA SALT
provides a plug-in framework as a common interface for defining and implementing a plug-in.
Plug-in implementation is carried out through a dynamic library that contains the actual function
code and exports it. The implementation library can be loaded dynamically during GWWS server
startup. The functions are registered as the implementation of the plug-in interface.

For more information see, Using Plug-ins with BEA SALT in BEA SALT Programming Web
Services.

Implementing a Plug-in with SALT
To use a plug-in with BEA SALT, you must do the following:

1. Create the plug-in dynamic library that contains the function code. Follow the guidelines in
this section for creating that plug-in.

2. Specify the plug-in using the <Plug-in> system parameter in the SALT configuration file.

../prog/plugin.html

5-2 BEA Salt Administration Guide

For more information about specifying a plug-in, see “Configuring BEA SALT” on
page 2-1.

3. Initiate the GWWS server to dynamically load the plug-in. After loading a plug-in
implementation, the plug-in function call is directed to the library.

Defining a Plug-in
There are basic requirements for a plug-in. These requirements include:

Plug-in ID

The plug-in ID is an arbitrary string that is unique to the plug-in so that it differentiates it
from another plug-in. BEA SALT 1.1 only support the P_CUSTOM_TYPE plug-in ID.

Plug-in name

The plug-in name differentiates an implementation from other implementations of the same
plug-in. The plug-in name must match the custom type buffer name defined in the Tuxedo
Service Metadata Repository.

Initiating function

An initializing function called _ws_pi_init_ID_Name(), in which ID and Name are the
ID of plug-in interface and the name of the plug-in implementation.

The function is called when being registered. The initializing uses the following syntax:

int _ws_pi_init_ID_Name(char * params, void **priv_ptr);

The function should allocate all necessary resources and setup the vtable for the plug-in.
When the register function initializes, the vtable interface can be setup if necessary.

The first parameter is a string that is passed to the dynamic library for initialization. The
second parameter stores private data that the implementation may need.

Exiting function

The exiting function uses the following syntax:

int _ws_pi_exit_ID_Name(void * priv);

The exiting function is called when the implementation is unregistered and a function to
setup the vtable interface is called:

int _ws_pi_set_vtbl_ID_Name(void *vtbl);

See A l so

BEA Salt Administration Guide 5-3

See Also
Using Plug-ins with BEA SALT in BEA SALT Programming Web Services

../prog/plugin.html

5-4 BEA Salt Administration Guide

BEA Salt Administration Guide 6-1

C H A P T E R 6

Interoperability Considerations

The generated WSDL document allows other Web service toolkits to develop Web service clients
that can access Tuxedo service using the GWWS server. The generated WSDL document must
be able to publish to a UUDI server.

Table 6-1 lists BEA SALT supported toolkit interoperability.

Table 6-1 Interoperability Support

WebLogic Server Axis for Java
1.3

WebLogic
Workshop 8.1

.Net 2.0 with
WSE 3.0

.Net 1.1

9.1 8.1 9.2

SOAP 1.1/DOC Yes Yes Yes Yes Yes Yes Yes

SOAP 1.1/RPC Yes Yes Yes Yes Yes N/A N/A

SOAP 1.2/DOC N/A N/A N/A Yes N/A Yes N/A

SOAP 1.2/RPC N/A N/A N/A Yes N/A N/A N/A

WS-ReliableMes
saging

Yes N/A N/A N/A N/A N/A N/A

WS-Addressing Yes N/A N/A N/A N/A N/A N/A

6-2 BEA Salt Administration Guide

BEA SALT Administration Guide A-1

A P P E N D I X A

Troubleshooting

This section contains the following topics:

GWWS Startup Failure

GWWS Rejects SOAP Request

BEA SALT Message Tracing

WSDL Document Generated Incorrectly or Rejected by SOAP Client Toolkit

GWWS Startup Failure
If the GWWS server fails to start, check the following:

Tuxedo service contract configuration

Check the Tuxedo service contract configuration in the Tuxedo Service Metadata
Repository.

GWWS server license

The GWWS server requires an extra license from BEA to enable the functionality. Check
to make sure it has been installed properly.

GWWS server port configuration.

Check the GWWS server port defined in the SALT configuration file. Avoid port conflicts
with other applications.

../ref/comref.html#wp1106724

Troub leshoot ing

A-2 BEA SALT Administration Guide

GWWS instance ID.

Check the GWWS instance ID to make sure the two names are consistent in UBBCONFIG
and SALT configuration files.

UBBCONFIG file MAXWSCLIENTS definition.

Make sure that MAXWSCLIENTS is defined in the *MACHINE section of UBBCONFIG file on
the computer where GWWS server is deployed.

RESTART=Y and REPLYQ=Y parameters.

If the GWWS server is set to RESTART=Y in the UBBCONFIG file, REPLYQ=Y also must
be defined.

SALT configuration file.

Make sure the SALT configuration file is accessible and set correctly for the GWWS
server.

GWWS Rejects SOAP Request
In some cases, the GWWS server may reject SOAP requests. The most common causes are:

WSDL document is outdated

The WSDL document used by SOAP clients is out of date and some services may not be
available.

GWWS server environment variables are not set correctly

When exporting a Tuxedo service with FML/VIEW buffers to a Web service, make sure
the related GWWS environment variables are set with valid values. The GWWS server
needs this information for the data mapping conversion.

Violated Tuxedo Service Metadata Repository restrictions

Check the SOAP client data and make sure Tuxedo Service Metadata Repository
restrictions are not violated.

Unavailable Tuxedo service

Make sure the Tuxedo service you want exported as a Web service is available.

BEA SALT Message T rac ing

BEA SALT Administration Guide A-3

BEA SALT Message Tracing
The GWWS server supports Tuxedo TMTRACE functionality (used to dynamically trace
messages). All trace points are logged in the ULOG file. Checking the ULOG file trace
information helps to evaluate GWWS server SOAP message problems. GWWS server message
tracing behavior is set using the TMTRACE environment variable, or by using the tmadmin chtr
sub-command command.

The reserved trace category, msg, is used to trace BEA SALT messages. It can be used together
with other general trace categories. For example, if trace category “atmi+msg” is specified, both
BEA SALT and Tuxedo ATMI trace messages are logged.

Notes: Message tracing is recommended for diagnostic treatment only.

The following trigger specifications are not recommended for GWWS servers:

abort, system, sleep

In any of these trigger specifications are used, GWWS servers may be unexpectedly
terminated.

For more tmtrace and trace specification information, see tmtrace(5) in the File Formats, Data
Descriptions, MIBs, and System Processes Reference.

TMTRACE specification examples for BEA SALT message tracing are shown below:

To trace SALT messages only
export TMTRACE=msg:ulog:

To trace both BEA SALT and Tuxedo ATMI messages
export TMTRACE=atmi+msg:ulog:

Listing A-1 shows a ULOG file example containing BEA SALT tracing messages.

Listing A-1 Standard TMTRACE Messages

183632.BOX1!GWWS.4612.4540.0: TRACE:ms:A HTTP message is received, SCO

index=1023

183632. BOX1!GWWS.4612.4540.0: TRACE:ms:A SOAP message is received, SCO

index=1023

183632. BOX1!GWWS.4612.4540.0: TRACE:ms:Begin data transformation of

http://e-docs.bea.com/tuxedo/tux91/rf5/rf5j.htm#1529614

Troub leshoot ing

A-4 BEA SALT Administration Guide

request message, buffer type = STRING, SCO index=1023

183632. BOX1!GWWS.4612.4540.0: TRACE:ms:End of data transformation of

request message, buffer type = STRING, SCO index=1023

183632. BOX1!GWWS.4612.840.0: TRACE:ms:Delivering a message to Tuxedo,

service name =TOUPPER, SCO index=1023

183632. BOX1!GWWS.4612.840.0: TRACE:ms:Got a message from Tuxedo, SCO

index=1023

183632. BOX1!GWWS.4612.4540.0: TRACE:ms:Begin data transformation of reply

message, buffer type = STRING, SCO index=1023

183632. BOX1!GWWS.4612.4540.0: TRACE:ms:End of data transformation of reply

message, buffer type = STRING, SCO index=1023

183632. BOX1!GWWS.4612.4540.0: TRACE:ms:Send a http message to net, SCO

index=1023

A more complex log is generated by TMTRACE=msg:ulog, used in WS-ReliableMessaging
communication. All the application and infrastructure messages are sent to the ULOG file.
Listing A-2 shows a ULOG file example containing WS-ReliableMessaging TMTRACE
messages.

Listing A-2 WS-ReliableMessaging TMTRACE Messages

184706.BOX1!GWWS.3640.4772.0: TRACE:ms:A HTTP message is received, SCO

index=1023

184706.BOX1!GWWS.3640.4772.0: TRACE:ms:A HTTP Get request is received, SCO

index=1023

184706.BOX1!GWWS.3640.4772.0: TRACE:ms:Send a http message to net, SCO

index=1023

BEA SALT Message T rac ing

BEA SALT Administration Guide A-5

184710.BOX1!GWWS.3640.4772.0: TRACE:ms:A HTTP message is received, SCO

index=1022

184710.BOX1!GWWS.3640.4772.0: TRACE:ms:A SOAP message is received, SCO

index=1022

184710.BOX1!GWWS.3640.4772.0: TRACE:ms:Create a new inbound sequence,

ID=uuid:4F1FEE40-72CB-118C-FFFFFFC0FFFFFFA8FFFFFFEB010000-1811

184710.BOX1!GWWS.3640.4772.0: TRACE:ms:Create a new outbound sequence,

ID=uuid:f7f76200-f612-11da-990d-9f37c3d14ba7

184710.BOX1!GWWS.3640.4772.0: TRACE:ms:Send CreateSequenceResponse message

for sequence uuid:4F1FEE40-72CB-118C-FFFFFFC0FFFFFFA8FFFFFFEB010000-1811

184710.BOX1!GWWS.3640.4772.0: TRACE:ms:Send a http message to net, SCO

index=1022

184712.BOX1!GWWS.3640.3260.0: TRACE:ms:A HTTP message is received, SCO

index=1022

184712.BOX1!GWWS.3640.3260.0: TRACE:ms:A SOAP message is received, SCO

index=1022

184712.BOX1!GWWS.3640.3260.0: TRACE:ms:Begin data transformation of request

message, buffer type = STRING, SCO index=1022

184712.BOX1!GWWS.3640.3260.0: TRACE:ms:End of data transformation of

request message, buffer type = STRING, SCO index=1022

184712.BOX1!GWWS.3640.3260.0: TRACE:ms:Received a request message in

sequence uuid:4F1FEE40-72CB-118C-FFFFFFC0FFFFFFA8FFFFFFEB010000-1811

Troub leshoot ing

A-6 BEA SALT Administration Guide

WSDL Document Generated Incorrectly or Rejected by SOAP
Client Toolkit

If the WSDL document does not generate correctly, or is rejected by the SOAP client toolkit, do
the following:

Try using the Doc/literal encoded style and SOAP 1.1 SALT WSDL document generation
options. This is also the default behavior.

Use tmwsdlgen to generate the WSDL document manually and compare with the one
provided by GWWS online downloading. If the TMETADATA server is not started when
the GWWS server booted, the GWWS server cannot obtain the correct service contract
information. Therefore, the downloaded WSDL document does not contain the correct type
definitions. You can use wsadmin->creload to dynamically reload the configuration file.

../admin/config.html#wp1041459
http://edocs.bea.com/tuxedo/tux91/rf5/rf5i.htm#3133627
../ref/comref.html#wp1107822

	Introduction
	Overview
	Preparing to Install BEA SALT
	Components for Administering BEA SALT
	SALT Configuration File
	GWWS Server
	Failover with GWWS Server
	Handling Custom Buffers

	WSDL

	Scenario for Deploying and Invoking a Tuxedo Service Using SALT
	See Also

	Configuring BEA SALT
	Creating a BEA SALT Configuration File
	Sample SALT Configuration File
	SALT Configuration Format
	Configuring Reliable Messaging Policy
	Defining System Parameters
	Defining the GWWS Gateway

	SALT Configuration File Element Syntax

	Accessing Service Definitions from the Tuxedo Service Metadata Repository
	Defining Service-level Keywords for BEA SALT
	Defining Service Parameters for BEA SALT

	Creating a Policy File
	Sample Policy File
	Specifying a Policy File in the Configuration File

	Configuring the GWWS Gateway
	Configuring the Gateway as a Tuxedo System Server

	Configuring Security
	Setting Up SSL Link-Level Security
	Setting Up HTTP Basic Authentication

	Validating the Configuration
	Dynamically Loading the Configuration
	Dynamically Reloading the SALT Configuration File
	Troubleshooting Reloading Configurations Dynamically

	Generating the WSDL Document
	Viewing the WSDL Document
	Sample WSDL Document

	See Also

	Data Mapping and Conversions
	Overview
	Converting Tuxedo Buffers to/from XML
	Tuxedo STRING Typed Buffers
	Tuxedo CARRAY Typed Buffers
	Mapping Example Using base64Binary
	Mapping Example Using MIME Attachment

	Tuxedo MBSTRING Typed Buffers
	Tuxedo XML Typed Buffers
	Tuxedo VIEW/VIEW32 Typed Buffers
	VIEW/VIEW32 Considerations

	Tuxedo FML/FML32 Typed Buffers
	FML Data Mapping Example
	FML32 Data Mapping Example
	FML/FML32 Considerations

	Tuxedo X_C_TYPE Typed Buffers
	Tuxedo X_COMMON Typed Buffers
	Tuxedo X_OCTET Typed Buffers
	Custom Typed Buffers

	WSDL Mapping Rules
	WS Policy Attachment Rules

	SOAP Message Exchange Pattern Mapping
	SOAP Message Encoding Support
	Document Message Style
	RPC Message Style

	See Also

	Monitoring and Tuning Web Services
	Viewing the Current Configuration
	Viewing Runtime Statistics
	Tuning the GWWS Server
	Thread Pool Size Tuning
	Network Timeout Control
	Max Content Length Control
	Backlog Control
	Tuxedo BLOCKTIME
	Boost Performance Using Multiple GWWS instances

	See Also

	Introduction to Using Plug-ins with BEA SALT
	Overview
	Implementing a Plug-in with SALT
	Defining a Plug-in
	See Also

	Interoperability Considerations
	Troubleshooting
	GWWS Startup Failure
	GWWS Rejects SOAP Request
	BEA SALT Message Tracing
	WSDL Document Generated Incorrectly or Rejected by SOAP Client Toolkit

