0?7,

r
S’ 7
L/

BEA Weblogic
Platform"

Tour of the WebLogic
Platform Sample
Application

Release 7.0 Service Pack 1
Document Date: September 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server,
BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Tour of the BEA WebLogic Platform Sample Application

Part Number Date Software Version

N/A September 2002 7.0 Service Pack 1

Contents

1.

Introduction

WebLogic Platform ArchiteCtureccoecveevirieieniierieieeieseee e 1-2
Starting the SAMPLE.........ecvieiieriieiieieeee e 1-3
The Sample’s Introduction Pagecccoeveeviiiniiiiiiiieeeeececeee 1-5
INtegration POINES..........cccieiiriieiieiieieeceee sttt 1-10

Business-to-Consumer (B2C) Portal Tour

Outline of Initial ProCESSINGcooveirieiiiieiiniierieeec e 2-2
The My AViteK Page........cceiiiiiiiiiiiiiee e 2-4
The Products Pagecccoeiieiieiieieecce et 2-13
The Category POTtIEt......cccuiiiiieieciieeeee et 2-21
The Product Item Portletccooieviniiiiiiiieeeeeee e 2-29
The Product Evaluator Portlet and Web Service.........ccoecvevvveeeniecienieieeeneen 2-33
The Buy Now Button and Inventory Checks Via WebLogic Integration Al .. 2-40
The Search Results Portlet..........cccoviiiiiiiiiniiiiececceee e 2-43
The Save for Later BUttOnc.oouievieriieiece et 2-53
The My Shopping Cart Portlet, Stepl.jSp....cceeceeriirciienieeiierieeieeiee e 2-54
The Checkout Portlet, SteP2.JSP ..ecvierrerrieiriieeieeiierie et eeee e sree e 2-67
The Order Submission Portlet, Step3.jSP ..ocerveeveerieieiieieieeiee e 2-70
The Order Confirmation Portlet, Step4.jSp......cceeeviriieveeriieinienieeieeeee e 2-74

3. Avitek Purchasing Agents Connect with Suppliers

The Product Inventory Portletc.ccoeiereiiiniiieeeeee e 3-2

The Product Parts Inventory Portletccooevieiiinienienieieeieieeeeeee e 3-15

The Query for Price and Availability Portletcccoevveevieniienciieieeieeee 3-19

The Quotes for Price and Availability Portlet, and the QPA Business Process......
3-21

Tour of the BEA WebLogic Platform Sample Application iii

iv

The Purchase Order for Review Portlet and PO Business Process 3-26
The Purchase Order History Portlet..........ccooevveciiecienieieeeeceeeeeeeee 3-31

Web Services Tour

Starting WebLogic WOrkShopcccoouieiiiiiiiiiiiieccece e 4-2
Defining Web Services with WebLogic Workshop — An Overview............... 4-8
Defining the Product Evaluator Web Service........ccceevveevieriiieneeinieeneeeieenen, 4-15
Defining the Payment Authorization Web Serviceccceevvevveenvenceeeneennen. 4-38

Tour of the BEA WebLogic Platform Sample Application

About This Document

This document presents a tour of the BEA WebLogic Platform sample application.
This document is organized as follows:

m Chapter 1, “Introduction,” contains an overview of the sample’s features and
explains how to start the sample.

m Chapter 2, “Business-to-Consumer (B2C) Portal Tour,” describes a fictitious
portal Web site for Avitek Digital Imaging. The site demonstrates a combination
of product features, including the portal framework in WebLogic Portal, the use
of two Web services built in WebLogic Workshop, plus inventory checks and
order management provided by WebLogic Integration components.

m Chapter 3, “Avitek Purchasing Agents Connect with Suppliers,” describes a
fictitious intranet site that Avitek purchasing agents use to get quotes from
suppliers, and to submit purchase orders and get acknowledgements from
suppliers. The business processes are managed by WebLogic Integration.

m Chapter 4, “Web Services Tour,” describes how two Web services were built in
WebLogic Workshop, and the steps in the Portlet Wizard to generate Web
service interface code that can be used in a portlet.

Audience

This document is written for product evaluators, application developers, and system
administrators who are evaluating or using WebLogic Platform software. It is assumed
that readers know Web technologies and have a general understanding of Windows
and UNIX systems.

Tour of the BEA WebLogic Platform Sample Application vii

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Platform documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Platform documentation Home
page, click Download Docs, and select the document you want to print.

If you do not have Adobe Acrobat Reader, you can get it for free from the Adobe Web
site at http://www.adobe . com.

Related Information

The BEA corporate Web site provides all documentation for WebLogic Platform.
Other documents that you may find helpful when using the WebLogic Platform sample
application include:

m [ntroducing BEA WebLogic Platform
m [ntroduction to BEA WebLogic Server
m BEA WebLogic Workshop online Help

m [ntroducing BEA WebLogic Integration

viii Tour of the BEA WebLogic Platform Sample Application

m BEA WebLogic Portal Administration Guide
W BEA WebLogic Portal Development Guide

Contact Us!

Your feedback on BEA WebLogic Platform documentation is important to us. Send us
e-mail at docsupportebea . com if you have questions or comments. Your comments
will be reviewed directly by the BEA professionals who create and update the
documentation.

In your e-mail message, please indicate which release of the WebLogic Platform
documentation you are using.

If you have any questions about this version of BEA WebLogic Platform, or if you
have problems installing and running BEA WebLogic Platform, contact BEA
Customer Support through BEA WebSupport at http://www.bea.com. You can also
contact Customer Support using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:
® Your name, e-mail address, phone number, and fax number

® Your company name and company address

m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Tour of the BEA WebLogic Platform Sample Application ix

mailto:docsupport@bea.com

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention

Usage

boldface text

Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.
italics Indicates emphasis and book titles.
monospace Indicates code samples, commands and their options, Java classes, data
text types, directories, and filenames and their extensions. Monospace text also
indicates text that you enter from the keyboard.
Examples:
import java.util.Enumeration;
chmod u+w *
config/examples/applications
.java
config.xml
float
monospace Identifies significant words in code.
boldface Example:
text .
void commit ()
monospace Identifies variables in code.
italic Example:
text
String CustomerName;
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
BEA _HOME
OR

Tour of the BEA WebLogic Platform Sample Application

Convention

Usage

{1}

Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

Indicates optional items in a syntax line. The brackets themselves should
never be typed.
Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.
Example:

java weblogic.deploy [list|deploy|undeploy|updatel
password {application} {source}

Indicates one of the following in a command line:

m That an argument can be repeated several times in the command line.
m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-0 name] [-f file-list]...
[-1 file-1list]...

Indicates the omission of items from a code example or from a syntax line.

The vertical ellipsis itself should never be typed.

Tour of the BEA WebLogic Platform Sample Application

xi

xii Tour of the BEA WebLogic Platform Sample Application

CHAPTER

1

Introduction

BEA WebLogic Platform provides a standards-based, build-to-integrate approach that
enables companies to develop and deploy applications, rapidly integrate with existing
systems, automate business processes, and connect with business partners.

To support its build-to-integrate approach and enable WebLogic Platform feature
interoperation, specific integration entry points are available to facilitate process-level
communication and data flow between front-end Web applications and heterogeneous
back-end systems. An integration entry point defines a place at which interoperation
can take place.

The WebLogic Platform sample application is designed to highlight a number of these
key integration points. It is also designed to be fun!

The sample includes a business-to-consumer (B2C) portal Web site for a fictitious
company named Avitek Digital Imaging. Customers who visit the Avitek portal can
purchase cameras and accessories. This Web site includes a product catalog, the use of
two Web services, inventory checks, a full shopping cart and underlying processing,
payment authorization, and order management.

The sample also shows a business-to-business (B2B) portal site. The Avitek intranet
allows its purchasing agents to get quotes for product parts from external suppliers,
select a quote, generate a purchase order for the part, and exchange acknowledgements
with the selected supplier.

To help you understand the technology behind each page and event, the B2C and B2B
samples also provide a built-in tour guide. The dynamic documentation content that is
shown in the tour guide is based on the last event that occurred in the running Web
application. This online book version of the tour presents a static view of the
application’s pages, but contains much of the same information. Read this online book
if you prefer to read the explanations apart from the running application.

Tour of the BEA WebLogic Platform Sample Application 1-1

1

Introduction

This section presents the following topics:
m WebLogic Platform Architecture

m Starting the Sample

m The Sample’s Introduction Page

m Integration Points

WebLogic Platform Architecture

WebLogic Platform provides an integrated set of features that include the
J2EE-compliant application server, plus the development, portal, and integration
frameworks that are built on top of it. The following figure shows how WebLogic
Platform provides a single, highly integrated solution:

\
yﬂ ,f’ Security Integration
\/Appllcahon |

c., <«

&

Server

rations,
AdonEienishation.
and Management

Manage ppplicato™

m The application server provides the foundation, via BEA WebLogic Server, for
rapidly developing, deploying, and managing e-business applications.

Tour of the BEA WebLogic Platform Sample Application

Starting the Sample

m The development framework delivers an integrated development and run-time
environment, including support for enterprise-class Web services. This includes
Web services you can program with a WebLogic Server API, or Web services
you can create using BEA WebLogic Workshop.

m The portal framework delivers, via BEA WebLogic Portal, services that enable
you to efficiently build, launch, and maintain high-performance e-business sites.
This framework facilitates the creation, customization, and administration of
multiple portals. WebLogic Portal includes many related features, including
services that let you deliver personalized content, Web-based marketing
campaigns, product catalogs, and order fulfillment systems that includes
templates for a shopping cart, payment services, and tax services.

m The integration framework enables, via BEA WebLogic Integration, the
integration of enterprise information systems via standards-based integration
technology, including enterprise resource planning (ERP), supply chain
management (SCM), human resource (HR), and customer relationship
management (CRM), as well as custom and legacy applications. This framework
also enables collaboration between suppliers and partners, and the automation of
business process workflows.

For a detailed overview, see Introducing WebLogic Platform.

Starting the Sample

The easiest way to start the WebLogic Platform sample is from the QuickStart
application. QuickStart is designed to assist first-time users in evaluating, learning, and
using WebLogic Platform. In addition to providing quick access to this and other
samples, QuickStart provides pointers to useful tools for accomplishing specific
development tasks, and to the online documentation.

QuickStart runs automatically after you complete a Typical or full Custom installation
of WebLogic Platform. Because the sample includes live Web applications, you
cannot run the sample if you performed a partial installation of the WebLogic Platform
software. For more information about the installation process, see Installing WebLogic
Platform.

Tour of the BEA WebLogic Platform Sample Application 1-3

1

Introduction

The following screen shows the QuickStart options.

On the QuickStart page, select the “Take the Live Platform Tour” link. It invokes the
sample’s startup script, E2Estart .bat (Windows) or E2Estart . sh. The script file is

QuickStart

BEA WebLogic Platform Next Steps for New Users

QuickStart

M[=1E3

Welcome to BEA Weblogic Flatform QuickStart, This guide is designed to help first
fime users get started evaluating, learming, and using WeblLogic Flatform. For best
results, stop each examples server before launching a new one.

Experience BEA WebLogic Platform
Tours and Examples

® Take the Live Platform Tour

This tour launches a fully integrated Enterprise Portal that
tuns on BEA Weblogic Platformn, In the role of a custarmer
and of a partner, wou will wealk through the B2C and B2B
processes of fictitious Avitek Electronics, & special tour
partlet provides a look behind the scenes at the interfaces,

m Tour Weblogic Server

Fuor the JZEE architect, this tour deronstrates how BEA
Weblogic Server can run a fully Functional e-business
application.

® Launch the weblLogic Portal Tour

Launch the Portal Example server, Then start the Portal
Exarnple to wiew the portal of fctitious Awitek Financial,

B Weblogic Inteqgration Samples

Wieww warous examnples of supply chain auternation and
integration, using the fctitious cornpany General Control
Systerns, We suggest you Fallow the steps provided in
the tutorial,

m Al Other Samples

Copyright © 2002 BEA Systernz, Inc. All rights reserved,

Get Started Working
Tools for Development

® Configure a New Server

Thiz wizard autornates the set-up of 2 new Weblogic
dornain, using the supplied preconfigured templates,
Includes preliminary configuration of clusters,

= Weblogic Warkshop

Expetience the new Weblogic integrated developrnent
framewaork for Web Services, which empowers the
corporate develaper by praviding intuitive visual controls,
Includes more than a dozen working Web Services
erarnples,

B E-Business Control Center

For developers and e-business adrministrators - tools For
managing portal infrastructure, site presentation, and
business logic; including webfow, user profiles, and
carnpaigns.

® Integration Studio

The Integration Studio defines and moenitors business
process warkfowes, Ta launch the Integration Studio,
make sure an Integration senver is running, IF you are
unsure, use the samples server, Then launch Integration
Studio and log in with uzemame jpazsword
joe/password.,

located in the following directory under your BEA HOME location:

weblogic700/samples/platform/e2eApp/config

After installation, you can launch QuickStart as follows:

® On Window systems, choose Start—Programs—BE A WebLogic Platform
7.0—QuickStart

m On UNIX systems, perform the following steps:

a. Log in to the target UNIX system.

1-4 Tour of the BEA WebLogic Platform Sample Application

The Sample’s Introduction Page

b. Open a command-line shell.

c. Go to the /common/bin subdirectory of the WebLogic Platform installation.
For example:

cd /home/bea/weblogic700/common/bin

d. Enter the following command:

sh quickstart.sh

After the server starts, your default browser should open automatically if you used
QuickStart. If you ran the E2Estart .bat or E2Estart . sh script directly, after the
server has started and you see the “WebLogic Server started on...” confirmation
message in the command window, open a supported browser and point to:

http://<host>:<port>

For example, if you are running the server on your local machine and used the default
port number 7501, specify in the URL:

http://localhost:7501

If the server is running on a remote machine named (for example) blues and you used
the default port, specify in the URL:

http://blues:7501

For information about the browsers that are supported by WebLogic Platform, see the
Supported Platforms documentation.

The Sample’s Introduction Page

After the server has started, as explained in the previous section, the sample application
displays its Introduction page. It consists of five main sections. Each section is
summarized here.

Tour of the BEA WebLogic Platform Sample Application 1-5

1 Introduction

Section 01 Provides Introductory Text

Section 01 on the Introduction page is informational and does not contain links to the
running sample. It simply presents an annotated screen shot of the tour guide portlet
that you can use in the 02 (B2C) and 03 (B2B) Web applications. For example:

01 Welcome! Start by reading this section for some helpful hints...

e hawve provided a Tour Guide on the left side of

Your

. the page. Readitto learnwhat i being demonstrated,
Tour Gl-"de where to click ne«t, and to access technical details.

What's New:

This area will give you a
summanry of what's new on
the demo page.

“ Howv it works:

Click here to get related
technical details, wiew code,
or read el ocs.

m Next Steps:

This area will give
instructions on ho to
proceead through the tour,

As you move from one page to another in the B2C or B2B portal, the tour guide can
help you understand what’s new and the next step to follow.

1-6 Tour of the BEA WebLogic Platform Sample Application

The Sample’s Introduction Page

Each tour guide page also contains links to:
m View the code of a portlet on the portal page

m Read a technical explanation about the processing behind the current page or
most recently used portlet

m Get a list of links to related documentation on the BEA e-docs Web site

The Introduction page’s section 01 also shows samples of two buttons used in the B2C
and B2B portals. For example:

[]th er H ".Tts "]

To return to this Introduction page from any

sample page, click either of these buttons:

You can click either of these buttons to exit the B2C or B2B portal and return to the
sample’s Introduction page.

Section 02 Provides the Link to the B2C Portal

Section 02 on the Introduction page allows you to log into the B2C portal as “Rachel
Adams.” Rachel is an already registered customer of the fictitious Avitek Digital
Image Web site. This part of the sample application includes a product catalog, the use
of two Web services, inventory checks, a full shopping cart and underlying processing,
payment authorization, and order management that includes passing XML order data
to an integrated system. For example:

Tour of the BEA WebLogic Platform Sample Application 1-7

1 Introduction

02 Explore a Portal Web Site

See an example of & portal Web zite that was buitt with
WiebLogic Platform. This iz a running application, and

demonstrates commerce and portal features, back-end
integration, and the uze of Web zervices. Ready? Let's

ool

Section 03 Provides the Link to the B2B Portal

Section 03 on the Introduction page allows you to log into the B2B portal as “Jason
Tang,” an Avitek purchasing agent. Jason uses the Avitek intranet to get quotes for
product parts from external suppliers, select a quote, generate a purchase order for the
part, and exchange acknowledgements with the selected supplier.

03 Purchasing Agents Connect
with Suppliers

Thiz application uses business process managemert
and a B2B supply-chain model, enakling & purchasing
agent, "Jazon Tang," to get gquotes for parts from
available suppliers and submit purchase orders.

1-8 Tour of the BEA WebLogic Platform Sample Application

The Sample’s Introduction Page

Section 04 Provides the Link to a Web Services Tech Tour

Section 04 on the Introduction page links to a documentation-only Web services
technical tour. For example:

04 Take a Web Services Tour

See howy BEA WeblLogic Workshop was used to define
e Wieh services. Portlet Wizard then generated the
interfaces far ane of the Web services used in the
"Product Evaluator” partlet, zeen in the Avitek Digital
Imaging portal site (R02 above).

It explains how we used WebLogic Workshop to define the separate Web services for
Product Evaluator and Payment. This part of the tour also shows the steps in Portlet
Wizard to generate the Web service interfaces code for the Product Evaluator portlet
that you will see in the 02 B2C portal.

Survey Section

Finally, the Introduction page also contains a link to a brief, anonymous survey that
you can take to rate your satisfaction with installing and evaluating WebLogic
Platform. For example:

Tour of the BEA WebLogic Platform Sample Application 1-9

1 Introduction

1Y Rate Your Satisfaction

Pleaze answer a brief anonymous survey about your experience
installing and evaluating BEA WeblLogic Platform. Responses wil
help improve future releases.

Integration Points

This sample application demonstrates several areas of technology integration with the
components that comprise WebLogic Platform. The integration points include:

m Product Evaluator Web Service and Portlet
m Payment Web Service

m Orders Generated in WebLogic Portal Are Processed by WebLogic Integration
Via JMS Queue and BPM

m Real-time Inventory Checks Via WebLogic Integration Al

Product Evaluator Web Service and Portlet

The business-to-consumer (B2C) sample portal includes a “Product Evaluator” portlet
that returns a product rating for a selected product item. You will see this portlet near
the bottom of pages with the Products tab when you browse through the catalog's
categories. For example:

1-10 Tour of the BEA WebLogic Platform Sample Application

Integration Points

AVITEK 01 select the Product 02 Get the rating

Frovided by IAViPiX 1000 vl Go Delivers moderate peformance at
anominal cost.
Reliability & +
Walue

Owerall

The portlet includes code that points to a Web service, productEvalwsc, which we
created using WebLogic Workshop.

A Web service is a language-independent, platform-independent, self-describing code
module that applications can access via a network or the Internet. The application can
have the service's location hard-coded or can locate it using UDDI (Universal
Description, Discovery, and Integration). Because the service is self-describing, the
application can determine which functions are available and how to call them.

In development, we used a browser-based test form provided by WebLogic Workshop
to check whether the expected results were being returned by the Web service. For
information about the test form’s features and the portlet, see the section “The Product
Evaluator Portlet and Web Service” on page 2-33. Also see Chapter 4, “Web Services
Tour,” for information about the development steps we followed in WebLogic
Workshop and, separately, in the Portlet Wizard that comes with WebLogic Portal.

Payment Web Service

We also used WebLogic Workshop to design a Web service that performs payment
authorization, capture, and settlement. In this portal application, after you click the
Submit Order button in the shopping cart, the credit card information on the page is
authorized via the Web service. In this sample, although the predefined credit card data
and the Web service itself are stored locally, the code is a working example of the
processing required.

The Payment Web service is “conversational” — the authorize () call starts the
conversation; the capture () call continues the conversation; and the settle () call
finishes or ends the conversation.

Tour of the BEA WebLogic Platform Sample Application 1-11

1

Introduction

This Web service is called from a pipeline component named
CajunBasedPaymentPC.java. The pipeline component uses a proxy to interact with
this Web service. Error codes are returned in case there is a problem with the Payment
authorization, capture, and settle methods. For details, see the payment . jws file. The
proxy used is generated via a WebLogic Server clientgen task.

Information about the Payment Web service and the Portlet Wizard is provided in the
Web Services Technical Tour, which is available from this sample's Introduction page.
For details, see Chapter 4, “Web Services Tour.”

Orders Generated in WebLogic Portal Are Processed by
WebLogic Integration Via JMS Queue and BPM

In the b2cPortal tour, after the logged-in user clicked a Submit Order button, the order
generated in WebLogic Portal can be used in business processes. The order is
converted to an XML representation and then placed on a Java Message Service (JMS)
queue in WebLogic Integration. The business process management (BPM) component
of WebLogic Integration then processes the order. For more information, see
Chapter 2, “Business-to-Consumer (B2C) Portal Tour.”

In the b2bPortal tour, Avitek purchasing agents get quotes from external suppliers for
parts and then submit purchase orders, exchanging data with a selected supplier. This
work involves two separate business processes: the Query for Price and Availability
(QPA) business process, and the Purchase Order (PO) business process. WebLogic
Integration manages the business conversations and collaboration agreements between
business partners, and it automates the business message exchange between the buyer
and suppliers. The workflows are referenced in the collaboration agreements and
conversations. For details, see Chapter 3, “Avitek Purchasing Agents Connect with
Suppliers.”

Real-time Inventory Checks Via WebLogic Integration Al

1-12

The database for the sample application includes an inventory table. It keeps data about
the current, minimum, and maximum inventory for products and parts. The b2cPortal
includes a catalog with SKUs for product items sold on the Web site. The b2bPortal
uses SKUs for both Products and the parts that comprise them.

Tour of the BEA WebLogic Platform Sample Application

Integration Points

For both portals, b2cPortal and b2bPortal, the inventory table is accessed in read-only
mode via the Application Integration (AI) component of WebLogic Integration. When
the user tries to add an item to the shopping cart, the inventory for that item will be
checked to make sure the order can be fulfilled. For example, this check occurs when
you click the Buy Now button on several portlets in this b2cPortal's Products page. An
inventory check is also performed if the user tries to update the quantity of the item
already in the shopping cart by entering a new value on the shopping cart's stepl.jsp
portlet, and then clicking the RECALCULATE button.

Tour of the BEA WebLogic Platform Sample Application 1-13

1 Introduction

1-14 Tour of the BEA WebLogic Platform Sample Application

CHAPTER

2

Business-to-Consumer
(B2C) Portal Tour

The business-to-consumer (B2C) portal tour describes the key features that were
implemented for the Avitek Digital Imaging portal. The site demonstrates a
combination of product features, including the portal framework in WebLogic Portal,
the use of two Web services built in WebLogic Workshop, plus inventory checks and
order management provided by WebLogic Integration. All these components run on
the Web application server environment provided by WebLogic Server.

Note: The information that is presented in this online book is also available in a
context-sensitive tour guide portlet that runs as part of the application.

This business-to-consumer (B2C) portal tour contains the following sections:
m Outline of Initial Processing

m The My Avitek Page

m The Products Page

m The Category Portlet

m The Product Item Portlet

m The Product Evaluator Portlet and Web Service

m The Buy Now Button and Inventory Checks Via WebLogic Integration Al
m The Search Results Portlet

m The Save for Later Button

Tour of the BEA WebLogic Platform Sample Application 2-1

2 Business-to-Consumer (B2C) Portal Tour

m The My Shopping Cart Portlet, Step1.jsp
e The Add to Cart Button in Saved Items List

The REMOVE Button in the Saved Items List
The REMOVE Button on the Current Items List

The Save for Later Button on Current Items List

m The Checkout Portlet, Step2.jsp
m The Order Submission Portlet, Step3.jsp

m The Order Confirmation Portlet, Step4.jsp

Outline of Initial Processing

When you started the WebLogic Platform sample application, what happened that
resulted in server startup and initial display of the Introduction or “splash” page? First,
there were several ways you could have invoked the sample application, for example,
from the WebLogic Platform Quick Start Application or Windows Start menu, or
directly by running a startE2E script.

Regardless of which option you used, the startE2E.bat (Windows) or startE2E. sh
(UNIX) script was invoked. It started a WebLogic Server instance for the application,
which runs in a domain named e2eDomain. (“e2e” is an abbreviation for
“end-to-end,” meaning a sample that shows a full range of key features.) The word
“domain” has many meanings in the computing industry. BEA products use domain
to mean a collection of servers, services, interfaces, machines, and associated resource
managers, all defined by a single configuration file.

When the startE2E script runs, it reads configuration information from the enterprise
application’s config.xml file. By default this configuration file resides in the
following BEA HOME installed directory:

weblogic700/samples/platform/e2eDomain

The config.xml file includes the following definition, setting splashPage as the
default Web application in the domain.

2-2 Tour of the BEA WebLogic Platform Sample Application

Outline of Initial Processing

<WebServer

DefaultWebApp="splashPage"
LogFileName="./logs/access.log"
LoggingEnabled="true"
Name="e2eServer"

/>

With the e2eServer running, specifying a URL such as http://localhost: 7501 in
a browser results in running the splashPage Web application (or “Webapp”) in the
following directory:

weblogic700\samples\platform\e2eDomain\bealApps\e2eApp\splashPage

The splashPage webapp’s web.xml configuration file defines index.jsp in the
<welcome-file-1lists> definition. This web.xml resides in the following directory:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\splashPage\
WEB-INF

On the splash page, you clicked the Login as Rachel Adams button graphic to arrive
on this My Avitek page. This action resulted in the splash page passing in the URL for
the portal application, plus predefined login credentials.

The splash page sets up requests that allow you to automatically log into the b2cPortal
or b2bPortal. This is done to help simplify this sample application. You would not
want to embed usernames and passwords in a JSP page. We used a scriptlet to define
the login credentials, but do not recommend that you use this approach for your Web
applications.

Note: WebLogic Portal provides other samples that demonstrate login authentication
code, plus techniques to gather demographic information for Web
applications. For details, please refer to the WebLogic Portal documentation.

Once the URL was passed to the browser for the b2cPortal application, why was the
My Avitek page the first page displayed? The default page was defined in the
WebLogic Portal Administration Tools. For details on this and other characteristics of
the My Avitek page, see the next section.

Tour of the BEA WebLogic Platform Sample Application 2-3

2 Business-to-Consumer (B2C) Portal Tour

The My Avitek Page

The B2C portal tour starts on the My Avitek page, which presents content that has been
personalized for logged-in user Rachel Adams. WebLogic Portal tools were used to
organize sets of information into portlets. Personalized content on this page includes
Rachel’s current shopping cart, her order history, and listing her name next to the
Logout button.

If this is your initial tour, and no other user has logged in as Rachel Adams on a shared
server instance, the shopping cart and order history are empty. The following screen
shows a My Avitek page for a user who has already completed two orders.

My Avitek My Shopping Cart

Feature Photo Tips Current ltems
ftem Gty
“rourshopping cart is empty.

Saved ltems

ttem

AoiPro G000

Ao Pz 000

AoiCam 2000
Avitek's top 5 Mountain Shooting tips (P

01. Go high into the mountaing. Mountains and valleys provide
exeellent opportunities to frame distant scenes with drama and flair.

02. Place the subject off-center. An off-center subject can make yaur My Om Hmry

compaosition more dynamic and interesting to the eve. Date Order Mo, Status

03. Gofor contrast. At higher altitudes, snow can create a 081102 2 Submittec
monochromatic landzcape. Look for bold shapes that would make a 06 002 1 Submitted
striking picture.

04, Include foreground in scenes. Frame distant scenes with objects
in the foreground, which will give ywour pictures a three-dimensional
feeling.

05. Red haze and reflecti Enhance colar saturation by using
a polarizing filter. & polarizerwill alzo daken blue shiss.

Technical Details for the My Avitek Page

This section provides details about the processing that occurs on this page.

24 Tour of the BEA WebLogic Platform Sample Application

The My Avitek Page

Introduction

The My Avitek portal page presents a number of portlets to give the logged-in user a
personalized view of the site. The My Avitek page is one of three tabbed pages in the
b2cPortal. In the BEA_HOME directory where you installed WebLogic Platform, you
will find the files that comprise the e2eapp in the following locations:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\. ..

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp-project\. ..

The My Avitek page can include the following portlets:

The mybanner portlet, which provides the top banner and the three tabs for My
Avitek, Products, and Shopping Cart pages.

The login portlet, used when an authenticated user has been logged into the
application. It provides the Logout button and the name of the currently
logged-in user.

The search portlet, which provides a keyword-based search input box.

The myavitek portlet, which provides the Feature Photo Tips graphics and text
on the My Avitek page. (The content shown in this sample is static, but could be
personalized for different types of users using features in WebLogic Portal. For
information about personalizing application content, see the WebLogic Portal
Development Guide.)

The summarycart portlet, which provides an abbreviated list of the logged-in
user's Shopping Cart.

The orderhistory portlet, which provides an abbreviated list of the logged-in
user's order history.

The tourguide portlet, which provides the context-sensitive documentation in
the application. It has two forms: the smaller version on the left side of the
running application, and the current maximized version that includes Technical
Details, View Code, and e-docs pointers.

All of the portlets that comprise the My Avitek page are identified in the following file:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp-project
\application-sync\webapps\b2cPortal\b2cPortal.portal

Tour of the BEA WebLogic Platform Sample Application 2-5

2 Business-to-Consumer (B2C) Portal Tour

For example:

<page-name>My Avitek</page-name>

<portlet-pools>
<portlet-names>login</portlet-name>
<portlet-names>search</portlet-name>
<portlet-names>tourguide</portlet-name>
<portlet-name>subnavs</portlet-name>
<portlet-namessummarycart</portlet-names>
<portlet-name>myavitek</portlet-name>
<portlet-name>orderhistory</portlet-name>
<portlet-name>mybanner</portlet-name>
<portlet-name>anonUser</portlet-name>

</portlet-pool>

During the development cycle, these portlets were added to the My Avitek page using
the E-Business Control Center. The EBCC is a Java client-based tool suite. It provides
graphical interfaces that simplify complex tasks such as rule definitions, Webflow
editing, and portal creation and management. As users of the E-Business Control
Center work with its point-and-click interface, it generates XML files that are
synchronized with the server.

In addition to the EBCC, the browser-based Portal Administration tools were used for
administering and managing the portal at runtime. For information about that process,
see the WebLogic Portal Administration Guide.

As you run this sample application, it is important to understand that as a developer
you are interested in the portlet JSP code before it was rendered by the browser. That’s
why the code fragments in this section, and the View Code link, describe the
prerendered JSP file for a particular portlet.

You can find the b2cPortal's portlet JSP files in:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\b2cPortal
\portlets\...

For this My Avitek page, the View Code link opens the source for the
\orderhistory\content .jsp portlet file. It presents the personalized order history
for the logged-in user. This portlet’s file resides in the orderhistory subdirectory under
the path shown above.

How do we know that the Order History portlet uses the content.jsp in the
...\e2eApp\b2cPortal\portlets\orderhistory directory? This was specified
in the E-Business Control Center provided by WebLogic Platform. This information is
also defined in the following file:

2-6 Tour of the BEA WebLogic Platform Sample Application

The My Avitek Page

weblogic700\samples\platform\e2eDomain\bealpps\e2eApp-project
\application-sync\portlets\orderhistory.portlet

This XML file contains the following definition:
<portlet-name>orderhistory</portlet-names>

<content-urls>/portlets/orderhistory/content.jsp</content-urls>

Notice how the content URL is relative to the root of the b2cPortal Web application,
which by default is the following installed directory location:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\b2cPortal

Location in the Default Webflow

Before we start our discussion about the default webflow for the My Avitek page, let's
define some terms.

Webflow is a BEA technology that allows developers to control the flow of a Web site,
without hard-coding in the presentation JSP the URL of the next page. WebLogic
Portal uses Webflow to determine which pages the application should display in a
browser and which pieces of business logic it should execute. One or more Webflow
namespace files allow you to configure the Webflow for a particular Web application.

A Webflow namespace file is an XML file that configures the Webflow for a Web
application, controlling the order in which your site's Web pages are displayed and
initiating the execution of the business logic that is associated with them. You edit

Webflow namespace files using the Webflow and Pipeline Editors, available in the
BEA E-Business Control Center. These editors are graphical tools designed to help
you visually create, modify, and validate Webflows for your Web applications.

Pipelines and Input Processors are the two different types of processor nodes that come
packaged with the Webflow implementation.

A Pipeline is a BEA technology that allows developers to bind a sequence of services
into a single named service. You can build Pipelines to manage the processing of
business data. Generally, Pipelines control the flow of business logic that is executed
resulting from Webflow, and they can be transactional or nontransactional. For
example, if a visitor attempts to move to another page on your Web site but you want
to persist the visitor's information to a database first, you could use a Pipeline.
Pipelines contain business logic that may apply to multiple Web applications within a
larger enterprise application, and are therefore loaded by the Enterprise JavaBean
(EJB) container.

Tour of the BEA WebLogic Platform Sample Application 2-7

2 Business-to-Consumer (B2C) Portal Tour

Pipelines are represented as Pipeline Nodes in the Webflow and Pipeline Editors,
available in the BEA E-Business Control Center. The Webflow and Pipeline Editors
generate underlying Webflow namespace and Pipeline namespace XML files, which
you should not hand-edit.

For the b2cPortal application, the Webflow namespace files are located in the
following directory:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp-project\app
lication-sync\webapps\b2cPortal

Input Processors are predefined, specialized Java classes that carry out more complex
tasks when invoked by the Webflow mechanism. Input Processors are typically used
to validate HTML form data, or to provide conditional branching within a Web page.
For example, an Input Processor may contain code that verifies whether a date has been
entered in the correct format, as opposed to embedding that code within the same JSP
that displays the form fields. Input Processors contain logic that is specific to the Web
application, and are therefore loaded by the Web application's container.

For details about the Webflow and Pipeline technology and its editors, see the section
Setting up Portal Navigation in the WebLogic Portal Development Guide.

That covers the key definitions for the Webflow technology. Now let's focus on the My
Avitek page. On a page that preceded the display of the My Avitek page, you
performed one of the following actions:

m Clicked the Login as Rachel Adams button graphic on the sample’s Introduction
page. The form used on the page constructed the URL value from predefined
values and login credentials. (It was implemented this way to simplify the
sample application, but is not a recommended practice.) Please see the
WebLogic Portal documentation for information about using login authentication
code, plus techniques to gather demographic information for Web applications.

m Clicked the My Avitek tab from a Products page or Shopping Cart page.

See the next section for information about events on the My Avitek page.

Events on the My Avitek Page

Every time a customer clicks a link or button on a JSP, it is considered an event. Events
trigger particular responses in the default Webflow that allow customers to continue.
While this response might be to load another JSP, it is usually the case that an Input
Processor and/or Pipeline is invoked first.

2-8 Tour of the BEA WebLogic Platform Sample Application

The My Avitek Page

When you are on a Products or Shopping Cart page and then click the My Avitek tab,
you will notice a resulting URL similar to the following (shown here on several lines
to improve readability).

http://<host>/<port>/b2cPortal/application?
origin=hnav bar.jsp&event=bea.portal.framework.internal.refresh
&pageid=My+Avitek

The refresh event causes any page to be displayed again with the latest data. All the
portlets on the My Avitek page that contain dynamic data (My Shopping Cart, My
Order History, Tour Guide) have their data refreshed.

The tabs are provided via the hnav bar.jsp file, which resides in:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\b2cPortal\f
ramework

The hnav bar.jsp file imports two JSP Tag libraries:

<%@ taglib uri="webflow.tld" prefix="wf" %>
<%@ taglib uri="portal.tld" prefix="ptl" %>

When you clicked the My Avitek tab from another page in the application, the
hnav_bar.jsp used the JSP tag in the following link for the target tab:

<a href="<ptl:createPortalPageChangeURL pageName='<%=
portalPageName %>'/>"><%=portalPageName%>

The (portal) pt1:createPortalPageChangeURL JSP tag generates a webflow URL
for a page change event.

Dynamic Data Display on My Avitek Page

On the My Avitek page, let’s look at one of the dynamic portlets, summarycart
(shown as “My Shopping Cart” on the My Avitek page).

Tour of the BEA WebLogic Platform Sample Application 2-9

2 Business-to-Consumer (B2C) Portal Tour

The webflow namespace file for the summarycart portlet is:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp-project\app
lication-sync\webapps\b2cPortal\summarycartportlet.wf

It contains:

<presentation-origin node-name="stepl" node-type="jsp">
<node-processor-info page-name="stepl.jsp"
page-relative-path="/portlets/summarycart"/>
</presentation-origins>

The step1.jsp file is located in:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\b2cPortal\p
ortlets\summarycart\stepl.jsp

The step1l.jsp file uses a combination of JSP tags, including webflow tags to get the
current shopping cart and saved shopping cart from the pipeline session:

<webflow:getProperty id="shoppingCart"
property="<%=PipelineSessionConstants.SHOPPING CART%>
"type="com.beasys.commerce.ebusiness.shoppingcart.ShoppingCart"
scope="session" namespace="portal" />

<webflow:getProperty id="savedShoppingCart"
property="<%=PipelineSessionConstants.SAVED SHOPPING CART%>"
type="com.beasys.commerce.ebusiness.shoppingcart.ShoppingCart"
scope="session" namespace="portal" />

Administration Task to Designate Default Portal Page

Most of the properties discussed in this My Avitek section were not edited by hand,
but were defined using the E-Business Control Center, and the Portal Management
area of the WebLogic Portal Administration Tools. For example, designating that the
My Avitek page was the default starting page in the b2cPortal application was
accomplished using the Portal Administration Tools. This section explains how to start
the tool and shows a sample screen for the default page setting.

1. In anew browser window, point to the following URL, which starts the WebLogic
Portal Administration Tools:

http://<host>:<port>/e2eAppTools/index.jsp

These steps assume that the server for the e2eDomain is still running. You can
run the e2eAppTools Web application and the sample application at the same

2-10 Tour of the BEA WebLogic Platform Sample Application

The My Avitek Page

time. Both Web applications are part of the same e2eApp enterprise application
and run in the same domain.

. Substitute the name of your local machine (1ocalhost) or the remote host name,
and substitute the port number on which WebLogic Server is listening. For
WebLogic Portal applications, the default port number is 7501. The
e2eAppTools portion of the URL is case sensitive.

. You are prompted for a username and password. These values may be different
for your site, but by default they are:

Username: administrator
Password: password

The login values are case sensitive. If these credentials do not work, please
check with the administrator, who may have changed the default values for the
administrator account after the sample was installed.

. On the main Administration Tools page, click the icon in the Portal Management
banner.

. On the Portal Management Home page, click “Default Portal (Everyone)” for the
b2cportal.

. On the Group Portal Management Home page, click “Manage Pages and
Portlets”.

. On the Pages and Portlets page, click “Select and Order Pages.”

The following figure shows a portion of the page:

Tour of the BEA WebLogic Platform Sample Application 2-11

2 Business-to-Consumer (B2C) Portal Tour

=] E3
» |j Fle

| Address | itp: /localhost: 7601 /e2etppT aols/application Inamespace=admin_partalboriginsmanage_portal_pag ¥ | ¢ Ga

BEA WebLogic Portal

Select and Order Pages

Tomove a page between the "Unused Pages" and "Available

Pages" lists, select the page name and click the right or 1eft arrow

Group Portal Mgmt. button. To order "Available Pages", select a page name in the

B Pages & Partiets &vallable Pages" list and click the up or down arrow button. To

O Skins change the home page, select a page in the "Available Pages® list
and click the "Set as Home" button. The hame page is marked with

fi& Group Portal Attributes an asterisk (*).

Portal Management

(Unused Pages | [Available Pages

Froducts by Avite k.
Shopping Cart —

Portal Application:
rtal

Group Portal Name: La ¥
It Portal
+ ¥
d User Group:

Default Home Page: i
I _>l_I

Note how the My Avitek page has been designated as the default Home Page.

For more information about the WebLogic Portal Administration Tools, see the
WebLogic Portal Administration Guide.

To exit the Administration Tools, close the browser window.

Next Step

To continue the tour, select the Products tab in the banner.

2-12 Tour of the BEA WebLogic Platform Sample Application

The Products Page

The Products Page

Having clicked the Products tab, this page loaded the top-level categories from the
product catalog in the center portlet, catalog. jsp. Text and images for the catalog
were organized earlier using the Catalog Management area of the WebLogic Portal
Administration Tools. For a logged-in user, the latest data for My Shopping Cart and
My Order History were refreshed.

The following screen shows the categories on the initial Products page.

Avitek Digital Imaging Products

AviPix AwFIex
Corsumer Digital Cameras 5 & Lanse
L 5}
AviPro AviPack
Professionanl Digital Cameras Bags & Cases

AviCam AviConnect

Digital Video Cameras Memary, Cables & Printers

4=
'd

Tour of the BEA WebLogic Platform Sample Application 2-13

2 Business-to-Consumer (B2C) Portal Tour

Technical Details for the Products Page

Introduction

This section provides details about the processing that occurs on this page.

The Products page includes many of the portlets you saw on the My Avitek page:

® The mybanner portlet, which provides the top banner and the three tabs for My
Avitek, Products, and Shopping Cart pages.

m The login portlet, used when an authenticated user has been logged into the
application. It provides the Logout button and the name of the currently
logged-in user.

m The search portlet, which provides a keyword-based search input box.

® The summarycart portlet, which provides an abbreviated list of the logged-in
user's Shopping Cart.

m The orderhistory portlet, which provides an abbreviated list of the logged-in
user's order history.

m The tourguide portlet, which provides the context-sensitive documentation in
the running sample.

In addition, this Products page adds the catalog. jsp portlet. Its source files reside in
the following subdirectory under your installed BEA HOME directory:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\b2cPortal\p
ortlets\catalog

The catalog.jsp portlet includes JSP code from different include files, depending on
the catalog event that just occurred, as you will see as you select different items in the
catalog on subsequent pages.

Besides the catalog. jsp portlet, an additional portlet that you will see on subsequent
Products pages is called the Product Evaluator. This portlet will appear on catalog
pages that include one or more product items in a category. The Product Evaluator
portlet uses a Web service created earlier in WebLogic Workshop to look-up consumer
ratings for the selected product item. The portlet’s source files (evaluator.jsp, and
included files stepl.jsp and step2.jsp) are located in the following subdirectory
under your installed BEA HOME directory:

2-14 Tour of the BEA WebLogic Platform Sample Application

The Products Page

weblogic700\samples\platform\e2eDomain\bealApps\e2eApp\b2cPortal\p
ortlets\evaluator

All of the portlets that comprise the Products page are identified in the following file:

weblogic700\samples\platform\e2eDomain\bealApps\e2eApp-project\app
lication-sync\webapps\b2cPortal\b2cPortal.portal

For example:

<page-name>Products</page-name

<portlet-pools>
<portlet-name>login</portlet-name>
<portlet-name>search</portlet-name>
<portlet-namesevaluator</portlet-name>
<portlet-name>summarycart</portlet-name>
<portlet-name>tourguide</portlet-name>
<portlet-name>catalog</portlet-name>
<portlet-names>subnav</portlet-name>
<portlet-name>orderhistory</portlet-names>
</portlet-pool>

Location in Default Webflow

The Webflow for this application displayed this catalog page when you selected the
Products tab.

As mentioned in the previous section, the catalog.jsp portlet includes JSP code
from different included files, depending on the catalog event that just occurred. For
example, the following webflow:getProperty tag in catalog.jsp gets the last
catalog event from the pipeline session:

<webflow:getProperty
id="event"
type="java.lang.String"
property="<%= B2CPortalConstants.LAST CATALOG EVENT ATTRIB %>"
scope="sgession"
namespace="portal" />

m If the catalog event is null, the following JSP is included into the catalog.jsp
portlet:

<jsp:include page="/portlets/catalog/catalog index.jsp"
flush="true" />

Catalog_index.jsp performs the processing to load the top-level categories
that you saw on the initial Products page.

Tour of the BEA WebLogic Platform Sample Application 2-15

2 Business-to-Consumer (B2C) Portal Tour

m If the user clicked one of the specific categories, the following JSP is included
into the catalog. jsp portlet:

<jsp:include page="/portlets/catalog/category.jsp" flush="true"
/>

Information about the category. jsp processing is provided in the Technical
Details section of a category page.

m If the user clicked one product item in a specific category (not shown from the
initial Products page), the following JSP is included into the catalog.jsp
portlet:

<jsp:include page="/portlets/catalog/item.jsp" flush="true" />

For information about the item.jsp processing, see the section “The Product Item
Portlet” on page 2-29.

m If the user entered a search keyword and clicked the Go button, the following
JSP is included into the catalog.jsp portlet:

<jsp:include page="/portlets/catalog/search results.jsp"
flush="true" />

Information about the search results.jsp processing is provided in the
section “The Search Results Portlet” on page 2-43.

Dynamic Data Display

On the initial Products page that loaded the six product categories, the catalog event
was null. Consequently the catalog_index.jsp file was included into the
catalog.jsp portlet. If you want, take a look at the code for catalog index.jsp,
which is located in the following subdirectory under your installed BEA_ HOME
directory:

weblogic700\samples\platform\e2eDomain\bealApps\e2elApp\b2cPortall\p
ortlets\catalog

The catalog index.jsp file includes a view iterator that cycles through the catalog
and retrieves properties for each category. First we use a webflow:getProperty JSP
tag to get the catalog categories view iterator from the pipeline session:

<webflow:getProperty
id="categories"
type="com.beasys.commerce.ebusiness.catalog.ViewIterator"
property="<%=PipelineSessionConstants.CATALOG CATEGORIES%>"

2-16 Tour of the BEA WebLogic Platform Sample Application

The Products Page

scope="gession"
namespace="portal" />

Then we iterate through the categories and display each one. A subset of the coding is
shown here:

<catalog:iterateViewIterator
id="category"
returnType="com.beasys.commerce.ebusiness.catalog.Category"
iterator="<%=categories%>">

<catalog:getProperty
id="categoryKey"
returnType="com.beasys.commerce.ebusiness.catalog.CategoryKey"
object="<%= category %>"
propertyName="key" />

<catalog:getProperty
id="largeImage"
returnType="com.beasys.commerce.ebusiness.catalog.ImageInfo"
object="<%= category %>"
propertyName="image"

getterArgument="<%= new Integer (Category.LARGE IMAGE INDEX) %>" />

Still in the same iterator in catalog index.jsp, each table cell displays some of the
properties on the page. A subset of the coding is shown here:

<a href="<portlet:createWebflowURL namespace="catalogportlet"
event="link.category"extraParams="<%=1linkParams +

java.net .URLEncoder.encode (categoryKey.getIdentifier())
$>"/>"><img src="<webflow:createResourceURL
resource="'<%=largeImage.getUrl () %>'/>" width="180" height="136"
alt="<%=shortDesc%>" border="0">

That processing results in the display of the categories on the initial Product page, in
the catalog. jsp portlet. You will notice in the HTML above that if the user then
clicks the category's image, it will generate an event called 1ink.category for the
transition to the next page. But what event occurred that preceded the display of this
initial Products page? See the next section for details.

Events on the Initial Products Page

When you are on a My Avitek or Shopping Cart page and then click the Products tab,
you will notice a resulting URL similar to the following (shown here on several lines
to improve readability).

Tour of the BEA WebLogic Platform Sample Application — 2-17

2 Business-to-Consumer (B2C) Portal Tour

http://<host>/<port>/b2cPortal/application?
origin=hnav_bar.jsp&event=bea.portal.framework.internal.refresh
&pageid=Products

The refresh event causes any page to be displayed again with the latest data. All the
portlets on the Products page that contain dynamic data have their data refreshed. This
particular refreshed Products page contains the initial one showing the six top-level
categories.

The tabs are provided via the hnav_bar.jsp file, which resides in:

weblogic700\samples\platform\e2eDomain\bealApps\e2eApp\b2cPortal
\ framework

The hnav_bar.jsp file imports two JSP Tag libraries:

<%@ taglib uri="webflow.tld" prefix="wf" %
<%@ taglib uri="portal.tld" prefix="ptl" %

When you clicked the Products tab from another page in the application, the
hnav_bar.jsp used the following JSP tag in the link for the target tab:

<a href="<ptl:createPortalPageChangeURL pageName='<%=
portalPageName %>'/>"><%=portalPageName%>

The (portal) pt1l:createPortalPageChangeURL JSP tag generates a webflow URL
for a page change event.

Also, as mentioned previously, on this initial Products page the catalog event was null.
This resulted in loading the catalog_index. jsp into the catalog.jsp portlet. From
the coding in the catalog. jsp portlet:

<webflow:getProperty
id="event"
type="java.lang.String"
property="<%= B2CPortalConstants.LAST CATALOG_ EVENT ATTRIB %>"
scope="session"
namespace="portal" />

N
o°

if (event == null)

{

o\°

>

<jsp:include page="/portlets/catalog/catalog index.jsp"
flush="true" />

2-18 Tour of the BEA WebLogic Platform Sample Application

The Products Page

Category Administration Tasks

The catalog in this sample application uses a simple, two-level hierarchy of categories.
The first level is the default root category, and the second level is comprised of the six
categories you saw on the initial Products page. However, the WebLogic Portal catalog
feature supports multi-level hierarchical categories, as explained in the WebLogic
Portal documentation.

The six categories in this sample application were previously defined in the Catalog
Management area of the browser-based WebLogic Portal Administration Tools. If you
want, you can follow the instructions in this section to see the existing definitions.

The following steps assume that the server for the e2eDomain is still running. You can
run the e2eAppTools Web application and the sample application at the same time.
Both Web applications are part of the same e2eApp enterprise application and run in
the same domain.

1. Inanew browser window, use the following URL format, which starts the
WebLogic Portal Administration Tools:
http://<host>:<port>/e2eAppTools/index.jsp

In the URL, substitute for the name of your local machine (1ocalhost) or the
remote host name, and substitute the port number on which WebLogic Server is
listening. For WebLogic Portal applications, the default port number is 7501.
The e2eAppTools portion of the URL is case sensitive. For example:

http://localhost:7501/e2eAppTools/index.jsp

2. You are prompted for a username and password. These values may be different
for your site, but by default they are:

Username: administrator
Password: password

The login values are case sensitive. If these credentials do not work, please
check with the administrator, who may have changed these default values for the
administrator account after the sample was installed.

3. On the main Administration Tools page, click the icon in the Catalog
Management banner.

4. On the Catalog Management page, click the underlined word Categories.

Tour of the BEA WebLogic Platform Sample Application ~ 2-19

2 Business-to-Consumer (B2C) Portal Tour

The following screen is displayed:

/J Category Search - Microzoft Internet Explorer

‘“ 3 |JLinks »JAgdreSS I@ hittp: /flocalhost 7501 fe2eAppT ools/application ?namespa 'l @ Go |J File *

“"‘2

9 s
Z, hﬂa BEA WebLogic Portal

Categories finished

Search for Categories

Click through the
hierarchy to find a
category, ar search for
the category by its
primary key shown in

parenthesis. Click the P
category title to edit it, Category Identifier:
or click X to delete the

category.

Warning: deleting a
category will also delete
its subcategories and
cannot be undone.

Category Hierarchy
Top Level Categories

AviPix (Davipix) X

AviFlex (1aviflex) X

AwiPro (Z2aviprol X

AwiPack (Zavipack) X b
AwiCam (4avicam) X

Accessories [Saviconnect) X -
1] | 0|
|@ ’_l_lf'g Local intranet i

Click one of the underlined categories. For example, click AviPix (0avipix).
(Warning: do not click the red X icon, which deletes the category from the
catalog. Keep in mind that you are using the administration pages for the sample
catalog data.)

5. On the resulting page, scroll down to see the location for an image representing
that category.

For more information about catalog administration tasks, see the WebLogic Portal
documentation.

To exit the Administration Tools, close the browser window.

2-20 Tour of the BEA WebLogic Platform Sample Application

The Category Portlet

Next Step

To continue the tour, click the AviPix Consumer Digital Cameras category.

The Category Portlet

Product items in this specific category have been loaded from the catalog and
displayed on this page. For example:

AviPix Consumer Digital Cameras
41 AviPix 1000 $290.99
Get 10% off An entry-level feature-packed
camera at an affordable price.
E[retal:]
2 Soyho
41 AviPix 3000 $399.99
Get 10% off Great features and perfarmance at
an attractive price.
E[retal:]
2 By o
41 AviPix 5000 $49999
Get 10% off An entry-level camera with
professional features and quality.
B0 -tai|
2 Soyhow

Tour of the BEA WebLogic Platform Sample Application — 2-21

2 Business-to-Consumer (B2C) Portal Tour

Category Page Technical Details

Introduction

This section provides details about the processing that occurs on this page.

Product items in this specific category have been loaded from the catalog and
displayed on this page. The top banner includes a graphic that highlights the current
category. The Product Evaluator portlet near the bottom of the page includes a menu
that allows logged-in user Rachel Adams to get ratings on product items in this
category.

Processing of the Webflow event determined that a link.category event occurred,
which resulted in loading the category . jsp file into the centered catalog.jsp
portlet.

Notice a sample URL that resulted for the current sample application's page, shown
over several lines to improve formatting:

http://localhost:7501/b2cPortal/application
?origin=catalog_index.jsp
&event=bea.portal.framework.internal.portlet.event
&pageid=Products&portletid=catalog
&wfevent=1link.category&wlcs catalog category id=0avipix

In the sample URL, the origin state is shown in the second, third, and fourth lines. The
Webflow event is shown in the last line. A link.category event occurred, which
resulted in the page you saw in the sample application. Product items are displayed for
(in this example) the oavipix category that was selected on the prior page. The
number zero is an index into the six product categories.

Location in Default Webflow

The Webflow for this application resulted in loading the data for the category selected
on a prior page. The catalog. jsp portlet includes JSP code from different included
files, depending on the catalog event that just occurred. For example, the following
webflow:getProperty tag in catalog.jsp gets the last catalog event from the
pipeline session:

<webflow:getProperty
id="event"
type="java.lang.String"

2-22 Tour of the BEA WebLogic Platform Sample Application

The Category Portlet

property="<%= B2CPortalConstants.LAST CATALOG EVENT ATTRIB %>"
scope="session"
namespace="portal" />

In the catalog.jsp portlet, the returned event attribute is checked:

A
o -

}

else if ((event.equals("link.category")) ||
(event.equals("button.category.buy")) ||
(event.equals("button.category.save")))

o°

>
<jsp:include page="/portlets/catalog/category.jsp" flush="true" />

In this case, the category.jsp file was included into the catalog.jsp portlet
because the 1ink.category event occurred.

Dynamic Data Display

Inthe category. jsp file, we get the category that was selected on the prior page from
the pipeline session:

<webflow:getProperty
id="category"
type="com.beasys.commerce.ebusiness.catalog.Category"
property="<%= PipelineSessionConstants.CATALOG CATEGORY %>"
scope="session"
namespace="portal" />

We then use a series of JSP tags to get properties about the current category. An
example:

<catalog:getProperty
id="headerImage"
returnType="com.beasys.commerce.ebusiness.catalog.ImageInfo"
object="<%= category %>"
propertyName="image"
getterArgument="<%= new Integer(CatalogItem.SMALL IMAGE INDEX

) %>" />

Tour of the BEA WebLogic Platform Sample Application ~ 2-23

2 Business-to-Consumer (B2C) Portal Tour

Next we use a view iterator to get the products items in this category from the pipeline
session:

<webflow:getProperty
id="items"
type="com.beasys.commerce.ebusiness.catalog.ViewIterator"
property="<%= PipelineSessionConstants.CATALOG ITEMS %>"
scope="session"

namespace="portal" />

We then iterate through the product items and display some properties about each one
in the catalog.jsp portlet. A subset of the coding is shown here:

<catalog:iterateViewIterator
id="item"
returnType="com.beasys.commerce.ebusiness.catalog.ProductItem"
iterator="<%= items %>">

<catalog:getProperty
id="itemImage"
returnType="com.beasys.commerce.ebusiness.catalog.ImageInfo"
object="<%= item %>"
propertyName="image"
getterArgument="<%= new Integer(CatalogItem.SMALL IMAGE_ INDEX
) $>" />

<catalog:getProperty
id="currentPrice"
returnType="com.beasys.commerce.axiom.units.Money"

object="<%= item %>"
propertyName="currentPrice" />

Because category . jsp includes a number of buttons (Details, Buy Now, and Save
for Later), additional work is done. For example, to prepare the Details link, we set up
the HTTP request parameters.

o°

<
String linkParams =

HttpRequestConstants.CATALOG CATEGORY_ID + "=" +
java.net .URLEncoder.encode (categoryKey.getIdentifier ()
) R LYV L
HttpRequestConstants.CATALOG _ITEM SKU + "=" +

itemKey.getIdentifier() ;

o\°
\%

2-24 Tour of the BEA WebLogic Platform Sample Application

The Category Portlet

Still in the same iterator in category . jsp, each table cell displays properties on the
page. A small subset of the coding is shown here. Please see the table in
category.jsp for additional coding:

<a href="<portlet:createWebflowURL namespace="catalogportlet" event="1link.item"
extraParams="<%=1linkParams%>" />"><img src="<webflow:createResourceURL
resource="<%=itemImage.getUrl () $>"/>" width="187" height="139" alt=""
border="0">

The code shown above is used if the user clicks the item's image or the Details button
graphic.

You will notice in the HTML subset above that if the user clicks the product item's
image, it will generate an event called link.item for the transition to the next page. But
what event occurred that preceded the display of this initial Products page? See the
next section for details.

Events

On a prior Products page, after the catalog index.jsp file was included into the
catalog.jsp portlet, an HTML table in the portlet included the following code:

<a href="<portlet:createWebflowURL namespace="catalogportlet™"
event="1link.category"

extraParams="<%=1linkParams + java.net.URLEncoder.encode (
categoryKey.getIdentifier())%>"

/>"><img src="<webflow:createResourceURL resource='<%=largeImage.getUrl ()%>'/>"
width="180" height="136" alt="<%=shortDesc%>" border="0">

When you clicked on a specific category, either in the banner graphic or in the
catalog.jsp (which was displaying the catalog_index.jsp file), it triggered the
link.category Webflow event. That resulted in loading the category . jsp file into
the catalog. jsp portlet, which in turn displayed the product items that comprise the
selected category.

All the catalog events are defined in the following Webflow file for the catalog.jsp
portlet:

weblogic700\samples\platform\e2eDomain\bealApps\e2eApp-project\app
lication-sync\webapps\b2cPortal\catalogportlet.wf

One of the events defined in catalogportlet .wf is:
<event event-name="link.category"s>

<destination namespace="catalogportlet"
node-name="getCategoryIP" node-type="inputprocessor"/>

Tour of the BEA WebLogic Platform Sample Application ~ 2-25

2 Business-to-Consumer (B2C) Portal Tour

</events>

<processor-origin node-name="getCategoryIP"
node-type="inputprocessor"><node-processor-info
class-name="examples.e2e.b2c.catalog.webflow.GetCategoryIP"/>
<event-lists>
<event event-name="success">
<destination namespace="catalogportlet"
node-name="getCategory" node-type="pipeline"/>
</events>
</event-list>
</processor-origins>

The 1ink.category event uses an input processor named getCategoryIP, which is
a Java program that takes a Category ID string from the HTTP request, validates the
ID String, creates a CategoryKey based on the ID String, and adds it to the
PipelineSession in the session scope. You can view the source file for this input
processor in:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\b2cPortal
\WEB-INF\src\examples\e2e\b2c\catalog\webflow\GetCategoryIP.java

Assigning Items to a Category

For the sample application, product items were assigned to categories using the
Catalog Management section of the browser-based WebLogic Portal Administration
Tools. This section outlines the basic steps. For details, see the WebLogic Portal
documentation.

Note: If you have a catalog with hundreds of categories and thousands or tens of
thousands of items, making the assignments via the Administration Tools is
obviously not practical. An alternative is to use the DBLoader tool provided
by WebLogic Portal.

The following steps assume that the server for the e2eDomain is still running. You can
run the e2eAppTools Web application and the sample application at the same time.
Both Web applications are part of the same e2eApp enterprise application and run in
the same domain.

1. Inanew browser window, use the following URL format, which starts the
WebLogic Portal Administration Tools:

http://<host>:<port>/e2eAppTools/index.jsp

2-26 Tour of the BEA WebLogic Platform Sample Application

The Category Portlet

In the URL, substitute for the name of your local machine (localhost) or the
remote host name, and substitute the port number on which WebLogic Server is
listening. For WebLogic Portal applications, the default port number is 7501.
The "e2eAppTools" portion of the URL is case sensitive. For example:

http://localhost:7501/e2eAppTools/index.jsp

You are prompted for a username and password. These values may be different
for your site, but by default they are:

Username: administrator
Password: password

The login values are case sensitive. If these credentials do not work, please
check with the administrator, who may have changed these default values for the
administrator account after the sample was installed.

On the main Administration Tools page, click the icon in the Catalog
Management banner.

On the Catalog Management page, click the underlined word categories.

In the Catalog hierarchy display, click the category or subcategory into which
you want to add or remove an item. (The categories in this sample application do
not have subcategories.)

When the category is shown in the hierarchy, click its underlined link. For
example, assume that you clicked the Avipro category. Near the top of the page,
notice the text:

Editing Category : AviPro

Enter the appropriate information then click Save.
To modify the items assigned to this category, please click here.

On the page, click the link in the text “...please click here.”

WebLogic Portal displays a screen similar to the following:

Tour of the BEA WebLogic Platform Sample Application — 2-27

2 Business-to-Consumer (B2C) Portal Tour

oft Internet Explorer

J‘Y" » |JL|nks = Address I@ http: ¢ Alocalhost 7501 /e2etppT oolz/application ?namespa 'l @Go “ File >

T

BEA WebLogic Portal

Category: AviPro

twll' Modify Items Assigned to Category

Search for the item you want to add or remove from this category. There are two search mi
addition you can guery for items that have not been assigned a category. Search results w
text box,

The righthand text box displays the items currently assigned to the category, Add or remoy
the central arrow keys. Mote that an item can be assigned to multiple categories.

You must click the Save button to commit any changes to the category before performing a

page.
Search for iterns containing Search for iterns matching
the following keywaords the following query
Keyword: @ Query:l @
Search Results: Items Assigned to Category:
{pro100d), AwviFro 1000 —
(pro3000d). AwviPra 3000
(pro5000d). AwviPro 5000
Ld
‘ - -
Kl | ;I_I
] [| |5% Localintanet 4

The Items Assigned to Category text box shows the items that are already in this
category. You can search for the item you want to add or remove via three modes:
keyword, query-based, or orphaned-items (uncategorized items). The search results
are displayed on the left-side text box. To add an item to the category, move the item
to the right-side text box by clicking on the right arrow.

For more details, see the WebLogic Portal documentation.

To exit the Administration Tools, close the browser window.

Next Step

To continue the tour, click the image of the AviPix 5000 product item in the category.

2-28 Tour of the BEA WebLogic Platform Sample Application

The Product Item Portlet

The Product Item Portlet

Details for the product item are loaded from the catalog. Earlier in the process, the
design team worked with an administrator to identify each item’s larger image in the
catalog, plus the longer description. The Catalog Management area of the WebLogic
Portal Administration Tool was used to specify the details for the item. The following
screen shows a sample resulting display in the portlet:

43 AviPix 5000

The AwiPix 2000 iz aimed at
consumers who rwant profeszional
lewel features and quality at an
affordable price. This camera offers
poweful optics; excellent low-light
shooting features; lang batteny life.

E oy tow

Technical Details for the Product Item Portlet

This section provides details about the processing that occurs on this page.

Tour of the BEA WebLogic Platform Sample Application 2-29

2 Business-to-Consumer (B2C) Portal Tour

Introduction

Processing of the Webflow event determined that a 1ink. item event occurred, which
resulted in loading the category.jsp file into the centered catalog. jsp portlet.

Notice a sample URL that resulted for the current sample application's page, shown
over several lines to improve formatting. The URL on your sample page will be
different if you selected another product item:

http://blues:7501/b2cPortal/application

?origin=category.jsp

&event=bea.portal.framework.internal .portlet.event
&pageid=Products&portletid=catalog

&wfevent=1link.item

&wlcs catalog category id=0avipixé&wlcs catalog item sku=pix5000

In the sample URL, the origin state is shown in the second, third, and fourth lines. The
Webflow event is shown in the last line. A 1ink.item event occurred, which resulted
in the page you saw in the sample application. Product items are displayed for (in this
example) the 0avipix category that was selected on the prior page. The number zero
is an index into the six product categories. And in this example, the specific item
selected was the AviPix 5000. Its Stock Keeping Unit (SKU) is pix5000.

Location in Default Webflow

The Webflow for this application resulted in loading the data for the specific product
item that was selected on a prior page. The catalog.jsp portlet includes JSP code
from different included files, depending on the catalog event that just occurred. For
example, the following webflow:getProperty tag in catalog.jsp gets the last
catalog event from the pipeline session:

<webflow:getProperty
id="event"
type="java.lang.String"
property="<%= B2CPortalConstants.LAST CATALOG EVENT ATTRIB %>"
scope="session"
namespace="portal" />

In the catalog. jsp portlet, the returned event attribute is checked:

A
o .

}

else if ((event.equals("link.item")) ||
(event.equals("button.item.buy")) ||

2-30 Tour of the BEA WebLogic Platform Sample Application

The Product Item Portlet

(event.equals("button.item.save")))

>

o°

<jsp:include page="/portlets/catalog/item.jsp" flush="true" />

In this case, the item. jsp file was included into the catalog. jsp portlet because the
link.item event occurred.

Dynamic Data Display

Inthe item.jsp file, we get the item's category from the pipeline session. We then use
a series of JSP tags to get properties about the current category and its current item.
The following example shows two of the JSP tags:

<catalog:getProperty
id="itemImage"
returnType="com.beasys.commerce.ebusiness.catalog.ImageInfo"
object="<%= item %>"
propertyName="image"
getterArgument="<%= new Integer(CatalogItem.LARGE IMAGE INDEX

$>" />

<catalog:getProperty
id="currentPrice"
returnType="com.beasys.commerce.axiom.units.Money"
object="<%= item %>"
propertyName="currentPrice" />

Because item.jsp includes a number of buttons (Buy Now, Save for Later),
additional work is done. For example, to prepare the Buy Now link, we set up the
HTTP request parameters for the graphic:

<catalog:getProperty
id="itemKey"
returnType="com.beasys.commerce.ebusiness.catalog.ProductItemKey"
object="<%= item %>"
propertyName="key" />

N
o\°

String linkParams =
HttpRequestConstants.CATALOG ITEM SKU + "=" + itemKey.getIdentifier();

o°
\

Tour of the BEA WebLogic Platform Sample Application 2-31

2 Business-to-Consumer (B2C) Portal Tour

The following code from item.jsp shows how the URL will be constructed for the user
who clicks the Buy Now button graphic.

<a href="<portlet:createWebflowURL namespace="catalogportlet"
event="button.item.buy"

extraParams="<%= linkParams %>" />"><img src="<webflow:createResourceURL

resource='<%=imagesPath + "prod step2 buynow.gif"%>'/>" width="63" height="18"
alt=l| n

border="0">

Also in the item. jsp file, as we are preparing to display the item’s price, we use an
Internationalization (I18N) JSP tag to get the currency type that is defined for the
catalog:

<i118n:getMessage bundleName="/commerce/currency"
messageName="<%=currentPrice.getCurrency ()
$>"/><%=WebflowJSPHelper.priceFormat (
currentPrice.getValue ())%>

Events

On a prior Products page, when you clicked on a specific product item, it triggered the
link.item Webflow event. That resulted in loading the item. jsp file into the
catalog.jsp portlet.

All the catalog events are defined in the following Webflow file for the catalog.jsp
portlet:

weblogic700\samples\platform\e2eDomain\bealApps\e2eApp-project
\application-sync\webapps\b2cPortal\catalogportlet.wf

One of the events defined in catalogportlet .wf is:

<event event-name="link.item">
<destination namespace="catalogportlet"
node-name="getItemCategoryIP"
node-type="inputprocessor"/>
</event>

The 1ink.item event uses an input processor named get ItemCategoryIP, which is
a Java program that takes a SKU string from the HTTP request, validates the SKU
string, creates a ProductItemKey based on the SKU String, and adds it to the
PipelineSession in the session scope. You can view the source file for this input
processor in:

2-32 Tour of the BEA WebLogic Platform Sample Application

The Product Evaluator Portlet and Web Service

weblogic700\samples\platform\e2eDomain\bealApps\e2eApp\b2cPortal\
WEB- INF\src\examples\e2e\b2c\catalog\webflow\GetItemCategoryIP.ja
va

Adding or Modifying Product Item Data

In a similar fashion to the way category data is added to the catalog, specific item data
is added using the WebLogic Portal Administration Tools. If you have not read about
this administration task, please see the section “Assigning Items to a Category” on
page 2-26.

Next Step

To continue the tour, scroll down on the Products page and select the AviPix 5000 item
from the Product Evaluator portlet. Click the Go button and view the ratings returned
by the Web service and displayed in the portlet. Then read the next section.

The Product Evaluator Portlet and Web
Service

After you selected a product item in the Product Evaluator portlet and then clicked the
Go button, the portlet was refreshed with the results of a product rating Web service.
(In the sample, you may need to scroll down to see the results.)

During the application design and development cycle, we used BEA WebLogic
Workshop to create a product rating Web service. We then used the Portlet Wizard to
generate the interfaces for this Web services.

Finally, we included the interfaces code into the Product Evaluator portlet and then
completed the presentation coding based on earlier design prototype work with a
graphic artist. We also packaged the Web service as a Web application within the
e2eApp, as explained in Chapter 4, “Web Services Tour.”

Tour of the BEA WebLogic Platform Sample Application ~ 2-33

2 Business-to-Consumer (B2C) Portal Tour

Technical Details for the Product Evaluator Portlet

2-34

The Product Evaluator portlet, evaluator.jsp, appears near the bottom of Products
pages. Initially the portlet displays a discount ad via an included step1.jsp file.
When the Products page is refreshed and the Product Evaluator portlet determines that
specific product items have been loaded, it includes a step2. jsp file that allows the
logged-in user to get product ratings. This portlet is interesting because it uses a Web
service that we created earlier with WebLogic Workshop to look-up the product
ratings.

WebLogic Workshop is a visual development environment that makes it easy for
application developers and J2EE experts alike to build and deploy enterprise-class web
services. The product is comprised of two major components:

1. A design-time tool that lets developers write Java code to implement Web services.

2. A run-time framework that provides the Web services infrastructure, testing,
debugging, and deployment environment for applications.

The meeting place between the design-time tool and the run-time framework is the
Java Web Service (JWS) file and any associated control (CTRL) files. JWS files are
standard Java files with annotations (using the Javadoc syntax) to express additional
functionality. Annotations are used to display the Web service and its properties
graphically. And the annotations are used by the framework to generate the EJB and
J2EE code to execute the Web service. Control files typically include a collection of
method definitions that allow you to easily access a resource such as a database or
another Web service.

Another key file is the Web Service Description Language (WSDL) file that describes
the Web service. WSDL files describe all the methods a Web service exposes (in the
form of XML messages it can accept and send), as well as the protocols over which the
Web service is available. The WSDL file provides all the information a client
application needs to use the Web service.

In development, we used a browser-based test form provided by WebLogic Workshop
to check whether the expected results were being returned by the Web service. To set
this up, we deployed a workshop webapp as part of the e2eapp enterprise application.
The workshop webapp contains the productEvalwsc and paymentws Web services
that we created with WebLogic Workshop. Consequently you can run the WebLogic
Workshop test pages for these Web services in the server instance for the e2eDomain.
The test pages are browser-based. For example, in a new browser window, open:

Tour of the BEA WebLogic Platform Sample Application

The Product Evaluator Portlet and Web Service

http://localhost:7501/workshop/productEvalWSC/EvalProduct. jws

The URL is case sensitive. For a complete walk-through of the Product Evaluator Web
service’s test form screens, please refer to Chapter 4, “Web Services Tour.” The
following sample screen shows only one of the test forms in mid-conversation with the
Web service. On a prior test form screen, we specified pix1000 as the productId
(SKU) on which to get evaluation data. In the following screen, we just ran a test of
the getReliabilityRating method:

¢ BEA WebLogic Workshop: EvalProduct jws Web Service - Microsoft Internet Explorer

5 » |JLinks » | Address [£] E5T4 LOGENTRY=18 LOGID=1024434459465 7] @ Go |J

EvalProduct.jws Web Service

Creaks b4 BEA W ‘Wer k
http: fblues: 7501 fwarkshop produckEry alWS Cf
Overview | [Consale | [Test Form | [Test XML | [Warnings | EvalProduct. jws

Start operations
Conkinue this conversstion

Message Log Refresh Service Request
1024494459465 Subrnitted at Wed Jun 19 09:4&:55 EDT 2002

== getEvaluation
=¥ gatReliabilityRating

CONVPHASE = CONTIMUE (CONVERSATIONID = 1024494459465

Service Response
Subrnitted at Wed Jun 19 09:45:55 EDT 2002

getReliabilityRating

getReliabilityRating

=zint xnnlns="http:lwww openuri.org =2 =fint =

-
|&] Daore [[5% Localintanet 4

Notice the Web service response is the integer 2. On the Product Evaluator portlet, this
results in displaying two out of five possible stars. For example:

AVITEK 01 select the Product 02 et the mting
PomeRdEy IW M Deli\re!s moderate performance at
a nominal cost.
Reliability < «
Walue
Cwerall

After you create a Web service with WebLogic Workshop, you can use the Portlet
Wizard that comes with WebLogic Workshop, point to the WSDL file, and generate
the client interfaces. For a description of this process, see the Chapter 4, “Web Services
Tour,” which is also available from the sample application’s Introduction page.

Tour of the BEA WebLogic Platform Sample Application 2-35

2 Business-to-Consumer (B2C) Portal Tour

Determine Items to Display

The Product Evaluator portlet's JSP file is:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\b2cPortal
\portlets\evaluator\evaluator.jsp

It initially includes the step1 . jsp file, which displays a discount ad:

2 T

=0 AviPix 5 AviPix = AviPix

When an event from another portlet on the Products page allows the Product Evaluator
portlet to determine that specific product item data is present, the Product Evaluator

portlet includes the step2. jsp file that can get product ratings. The first view of the
step2.7jsp portlet contains one or more items on the pull-down menu. For example:

AVITEK 01 select the Product 02 et the rating

Pravided by IAviF‘ix 1000 v[Go Mo product has been selected

After you select an item from the portlet’s menu and click the Go button, the
step2.jsp file in the portlet is refreshed with the results returned from the Web
service. For example, if you selected the AviPix 5000 camera:

AVITEK 01 select the Praduct 02 et the rating

Provided by IW’ M Outstanding reliability but a bit
pricey.
Reliability & & o & -
Walue 1
Owerall

The first action taken by the evaluator. jsp portlet is get the last catalog event from
the pipeline session:

<webflow:getProperty
id="event"
type="java.lang.String"
property="<%= B2CPortalConstants.LAST CATALOG_ EVENT ATTRIB %>"

2-36 Tour of the BEA WebLogic Platform Sample Application

The Product Evaluator Portlet and Web Service

scope="session"
namespace="portal" />

If the catalog event is null, it displays the static discount ad:
<jsp:include page="/portlets/evaluator/stepl.jsp" flush="true" />

That jsp:include tag brings in the graphic you saw near the bottom of the initial
Products page:

If the catalog event is not null, we determine which event type occurred. If the event
was link.category, button.category.buy, Or button.category.save, we set
the evalEvent to “browse”. If the event was 1ink.item, button.item.buy, or
button.item.save, we set the evalEvent to “detail”. Finally, if the event was
button.search, button.search.buy, or button.search.save, we set
evalEvent to “search”. The value is significant to the portlet because it determines
which item or items to list on the product rating pull-down menu, and which rating data
to get from the Web service.

We use a webflow: setProperty JSP tag to pass the evalEvent value to the
pipeline:

<webflow:setProperty
property="B2CPortalConstants.PRODUCT_EVAL ATTRIB"
scope="request"
value="<%=evalEvent%>"
namespace="portal"/>

Using the Web Service

Evaluator.jsp then includes the step2 . i sp portlet. If the Product Evaluator portlet
is posting to itself, it will display the results of the productEvalIP input processor
with the select list focused on the requested product item. Otherwise, it will display an
unselected list of product items and no rating information (yet).

The step2.jsp file contains the Web services includes:

$@ page import="org.openuri.www.* "%>

%@ page import="org.openuri.www.x2002.x04.soap.conversation.* "%>
<%@ page import="java.io.IOException" %>

<%@ page import="java.rmi.RemoteException" %>

<%@ page import="productEvalWSC.EvalProduct Impl" %>

<%@ page import="productEvalWSC.EvalProductSoap" %>

<
<

We get the evalEvent value from the pipeline session:

Tour of the BEA WebLogic Platform Sample Application 2-37

2 Business-to-Consumer (B2C) Portal Tour

A
o°

if

o
>

<!l--

A
o°

2-38

<webflow:getProperty
id="evalEvent"
type="java.lang.String"
property="B2CPortalConstants.PRODUCT EVAL ATTRIB"
scope="request"
namespace="portal" />

In step2.jsp, we then use a view iterator to get the items for a category or a specific
item. If the user selects an item and clicks the Go button, we invoke the
EvalProduct.jws Web service that we defined in WebLogic Workshop. We also used
the Portlet Wizard to create the Web services interface code, which includes
referencing the Web service's WSDL.

(request.getParameter ("origin") .equals ("step2.jsp") &&
request.getParameter ("wfevent") .equals ("button.evaluator.go"))

String productEvaluation = request.getParameter ("productEvaluation") ;

Portlet Wizard generated web services interfaces code -->

EvalProduct_ Impl m_Proxy = null;
EvalProductSoap m_ProxySoap = null;
String m_conversationID = session.getId();
String comments = "";

int valueRating = 0;

int reliabilityRating = 0;

int overallRating = 0;

boolean webServiceAvail = true;

String serverNamePort = "http://" + request.getServerName() + ":"
+ request.getServerPort () + "/";

try

{

m_Proxy = new EvalProduct_Impl (serverNamePort +
"workshop/productEvalWSC/EvalProduct.jws?WSDL") ;

}

catch (IOException ex)

{

ex.printStackTrace () ;
webServiceAvail = false;

m_ProxySoap = m_Proxy.getEvalProductSoap () ;

try

{

// Set up the header objects we'll need

Tour of the BEA WebLogic Platform Sample Application

The Product Evaluator Portlet and Web Service

StartHeader startHeader =
new StartHeader(m_conversationID,
serverNamePort
+ "workshop/productEvalWSC/EvalProduct.jws") ;
ContinueHeader continueHeader =
new ContinueHeader (m_conversationID) ;
// Start the conversation
GetEvaluation getEvaluation = new GetEvaluation (productEvaluation) ;

if (m_ProxySoap.getEvaluation (getEvaluation,
startHeader) .getGetEvaluationResult () .equals ("SUCCESS"))
{

// Continue the conversation
comments = m_ProxySoap.getComments (null,
continueHeader) .getGetCommentsResult () ;

// Continue the conversation
reliabilityRating = m ProxySoap.getReliabilityRating(null,
continueHeader) .getGetReliabilityRatingResult () ;

// Continue the conversation
overallRating = m_ProxySoap.getOverallRating(null,
continueHeader) .getGetOverallRatingResult () ;

// Continue the conversation
valueRating = m ProxySoap.getValueRating(null,
continueHeader) .getGetValueRatingResult () ;

See the step2. jsp code for additional coding, including the error handling. After
receiving the product rating from the Web service, we then display the results in the
portlet as part of the step2. jsp work.

For more information about how we used WebLogic Workshop and then Portlet
Wizard during the development of the Product Evaluator portlet, see the Web Services
Technical Tour that is available from this sample's Introduction page.

Next Step

To continue the tour, click the Buy Now button that appears next to the AviPix 5000
product item.

Tour of the BEA WebLogic Platform Sample Application ~ 2-39

2 Business-to-Consumer (B2C) Portal Tour

The Buy Now Button and Inventory Checks
Via WebLogic Integration Al

The Buy Now button triggered a Webflow event that added the item to the Current
Items list in the summarycart portlet (“My Shopping Cart”) on the refreshed page. If
you click Buy Now multiple times for the same product item, the quantity column is
updated. The full Shopping Cart, with price and discount information, is not seen until
you click the Checkout button or the Shopping Cart tab. In the following sample
screen, the AviPix 5000 camera was added to a cart that already included the AviPrint
200 camera. Your cart’s Current Items and Saved Items lists in the sample application
may be different.

My Shopping Cart
Current Items
ltem Gty
AwiPrint 200 1
AwiPix 5000 1

Saved ltems
tem

AwiPro G000
AwiCam 3000
AowiPro 1000

Checkout

Technical Details for the Buy Now Button

The Buy Now button can be selected for a specific item when the user is browsing a
category page, or an item's detail page, or a search results page. The event type,
depending on the page, could be one of the following, as defined in the
catalogportlet.wf Webflow file:

B Dbutton.category.buy

B button.item.buy

2-40 Tour of the BEA WebLogic Platform Sample Application

The Buy Now Button and Inventory Checks Via WebLogic Integration Al

B Dbutton.search.buy

When the Buy Now button is selected, the sample application performs an inventory
check to make sure the order can be fulfilled before adding the item to the user's
shopping cart. The database includes an inventory table that keeps data about the
current, minimum, and maximum inventory for a product item. The inventory table is
accessed in read-only mode via the Application Integration (AI) component of
WebLogic Integration.

For example, this check occurs when you click the Buy Now button on several portlets
in this b2cPortal's Products page. An inventory check is also performed if user tries to
update the quantity of the item already in the shopping cart, by entering a new value
on the Shopping Cart's step1l.jsp portlet, and then clicking the RECALCULATE
button.

Before we discuss the inventory check's implementation, let's look at the way several
portlet pages set up the Buy Now link. For example, from the item.jsp file, which is
included into the catalog.jsp portlet:

<a href="<portlet:createWebflowURL namespace="catalogportlet"
event="button.item.buy"

extraParams="<%= linkParams $%>" />"><img src="<webflow:createResourceURL

resource='<%=imagesPath + "prod step2 buynow.gif"%>'/>" width="63" height="18"
alt:H n

border="0">

In the HTML subset above, if the user clicks the Buy Now image, it will generate an
event called button.item.buy for the transition to the next page. The 1inkParams
parameters contain the information about the specific item. This data was collected
earlier in the item. jsp processing by a series of <catalog:getProperty...> JSP
tags, followed by:

N
o°

String linkParams =
HttpRequestConstants.CATALOG_ITEM SKU + "=" + itemKey.getIdentifier();

o°
\%

Inventory Checks

The inventory check is implemented in the CheckInventoryPC pipeline component.
You can find its source file in the following location:

weblogic700\samples\platform\e2eDomain\beaApps\e2elApp\src)\
examples\e2e\b2c\shoppingcart\pipeline\CheckInventoryPC.java

Tour of the BEA WebLogic Platform Sample Application 2-41

2 Business-to-Consumer (B2C) Portal Tour

This pipeline component checks the Inventory and places an additional value. In this
sample application, it is invoked every time the shopping cart content is changed. In
your production environment, you may want to do it differently for performance
reason, based on your business logic. For example, you may want to check inventory
only when the item is placed in the shopping cart the first time, by keeping the actual
quantity in stock, and showing different messages based on the difference between
what is in stock and what is in the shopping cart.

The CheckInventoryPC pipeline component works with an InventoryProvider
SPI. Its source files are in the following location:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\src\example
s\e2e\common\inventory\spi*.java

This SPI is a stateless session bean that includes the checkInventory remote method.
This method:

m Uses Application Integration (AI) to make a call via a pre-configured Al service.
This service is used to query the inventory table.

m Calls an XML Helper to parse the response from Al

m Returns available inventory (int) based on the response.

Next Steps

To continue the tour, please browse through the product catalog and add about four or
five product items to your cart’s Current Items list and Saved Items list. Having a lot
of items in the cart will make it easier to try a number of options on the Shopping Cart

page.

As part of that exercise, use the Search portlet. For example, enter the keyword camera
and click the Go button. On the search results page, add some of the items to the
Current Items list and Saved Items list. Then read the following explanation about the
Search Results portlet.

2-42 Tour of the BEA WebLogic Platform Sample Application

The Search Results Portlet

The Search Results Portlet

The search feature provided with the product catalog is based on keywords that an
administrator assigned to product items. The Catalog Management area of the
WebLogic Portal Administration Tools was used to make the assignments. The
development team and administrator can work together to determine the best keywords
for each item. For information about the existing keywords, plus information about the
Webflow events associated with the search Go button, and other events, read this
section. The following screen shows a portion of the search results portlet’s display
after entering “camera” and clicking Go:

Avitek Product Search Results
41 AViPix 1000 $299.99
Get 10% off An entry-level feature-packed
camera at an affordable price.
EA[Cetai: |
= sy tow
41 AViPix 3000 $399.99
Get 10% off Great features and performance at
an attractive price.
EA[Cetai: |
2 oo
41 AViPix 5000 $490.99
Get 10% off An entry-level camera with
professional features and quality.
B[D=tais |
e oy o

Tour of the BEA WebLogic Platform Sample Application 2-43

2 Business-to-Consumer (B2C) Portal Tour

Technical Details for the Search Results Portlet

Introduction

This section provides details about the processing that occurs on this page.

The search_results.jsp portlet presents information about product items that
resulted from the keyword-based search. The customer can then browse through the
results. Assembling the search results was accomplished using a combination of
portlet, webflow, catalog, and i18n (internationalization) JSP tags.

For a match to occur, the customer must have entered a keyword that had already been
associated with one or more product items. The assignment of keywords for product
items was done by an administrator in the Catalog Management area of the Weblogic
Portal Administration Tools. Information about keywords and the Administration
Tools appears later in this discussion.

Note: WebLogic Portal commerce services allow you to use query-based searches,
in addition to keyword searches. To simplify the scope of this sample
application, only a keyword-based search has been implemented here. For
details about query-based searches, see the WebLogic Portal documentation.

By default, the search results.jsp portlet file resides in:

weblogic700\samples\platform\e2eDomain\bealApps\e2elApp\b2cPortall\p
ortlets\catalog

The searchform. jsp portlet, which provides the search input box, the Go button's
graphic, and processing, resides by default in:

weblogic700\samples\platform\e2eDomain\bealApps\e2elApp\b2cPortall\p
ortlets\search

As you run this sample application, it is important to understand that as a developer
you are primarily interested in the JSP code before it was rendered by the browser.
That's why the code fragments in this section, and the View Code link above, describe
and show you the pre-rendered JSP file for a particular portlet.

2-44 Tour of the BEA WebLogic Platform Sample Application

The Search Results Portlet

Location in the Default Webflow

Customers see the search results. jsp portlet on the Products page after they enter
a keyword in the searchform. jsp portlet and click the Go button. From the
search_results.jsp portlet, customers can:

View more details about a particular item shown in the results list (which loads
the items.jsp portlet, which includes content from the itemdetails.jsp portlet)

Add a product item shown in the search results list to their shopping cart by
clicking the Buy Now or Save for Later buttons.

WebLogic Platform provides the E-Business Control Center (EBCC), a graphical tool
that simplifies complex tasks such as rule definition, Webflow editing, and portal
creation and management. The EBCC Webflow Editor and Pipeline Editor are
designed to help you create, modify, and validate Webflow and Pipeline XML
configuration files. If you want, you an start the EBCC and examine the existing
Webflow and Pipeline definitions for the e2eApps.

For example, complete the following steps:

1.

On a Windows system, go to the Start menu and select Programs —=BEA WebLogic
Platform 7.0 -WebLogic Portal 7.0 —E-Business Control Center.

Click the Open Project icon on the upper left side of the screen. For example:

jisi BEA E-Business Control Center

File Tools Window Help
I ry-¥

In the Open Project dialog window, navigate to the following directory:

weblogic700\samples\platform\e2eDomain\bealpps\e2eApp-project
Select and open the e2eApp-project . eaprj project file that was installed there.

In the EBCC Explorer window, select the Site Infrastructure tab near the bottom
of the window. Then click the Webflows/Pipelines icon — you may need to scroll
down to see it. The EBCC displays a screen similar to the following:

Tour of the BEA WebLogic Platform Sample Application 2-45

2 Business-to-Consumer (B2C) Portal Tour

Retrieved list of Webflows Pipelines.

Explorer [Site Infrastructure]
P X

Marme Filter (partial narmes allowed)

| @ ol

Wehflows/Pipelines

-l Webapps

¢ H-E bZbPoral

E h2cPortal

. E-[E tools

EIH] Fipeline Mamespaces
-y b2Zc_catalog
-y h2Zo_order

log Structure

Wiebflows/Pipelines

6. Click the plus sign next to b2cPortal and then double-click the searchportlet
Webflow item. The Webflow editor displays a large graphical representation of
the searchportlet Webflow components. You can close the adjacent Explorer
window if you want more screen space to view the components. The Webflow
Editor and Pipeline Editor contain many options, not described here. However,
you can read a detailed description of the editors in the section Setting up Portal
Navigation in the WebLogic Portal Development Guide.

2-46 Tour of the BEA WebLogic Platform Sample Application

The Search Results Portlet

Events

°
<%

On a page that preceded the display of the search results, the user entered a keyword
in the search input box and then clicked the Go button. This took place in the
searchform.jsp portlet. (Another Webflow scenario is that you returned to this
Products page by clicking the Product tab from another page, and the Products page
was refreshed with the latest catalog event, which happened to be search results. In
either event, this explanation will focus on the original search-related event.) The form
defined in the portlet includes the following:

A table cell containing the search input box.

<input name="<%=HttpRequestConstants.CATALOG SEARCH STRING%>"
type="text" class="searchPortlet" size="27">

A scriptlet that defines additional Webflow parameters to display the results on the
Products page (because the search can be submitted from other portal pages) and
executes the search portlet's Webflow:

String formParams=

PortalAppflowConstants.PORTLET WEBFLOW_EVENT PARAMETER + "=" + "button.search"
+ ll&ll +

PortalAppflowConstants.PAGE_PARAMETER + "=" +

B2CPortalConstants.PRODUCTS PAGE NAME + "&" +

PortalAppflowConstants.PORTLET PARAMETER + "=" + "search"

o°

>

And the form definition itself:

<form method="POST" action="<webflow:createWebflowURL
event="bea.portal.framework.internal.portlet.event" origin="searchform.jsp"
extraParams="<%= formParams %>"/>" onsubmit="return ValidateSearchForm(this)" >

The event button. search is defined separately as using keywordSearchIP (an input
processor) in the searchportlet namespace.

This definition is in the searchportlet.wf (Webflow) file that resides in:

BEA HOME\weblogic700\samples\platform\e2eDomain\beaApps\e2eApp-pr
oject\application-sync\webapps\b2cPortal

KeywordSearchIP.java takes a keyword search String from the HTTP request,
validates the search String, creates a KeywordQuery based on the search String, adds
itto the PipelineSession in the session scope, and clears the PipelineSession of

Tour of the BEA WebLogic Platform Sample Application — 2-47

2 Business-to-Consumer (B2C) Portal Tour

any previous search results. If a keyword search string is not supplied, the
PipelineSession will be examined for previous cached search results. If previous
results exist and are valid, the results are left in the PipelineSession.

You can view the source file for this input processor in:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\b2cPortal
\WEB-INF\src\examples\e2e\b2c\catalog\webflow\KeywordSearchIP.jav
a

Once the search results are available, the search results.jsp portlet page is
displayed. See the next section for more on the dynamic data display.

Now let's look at events defined within the search_results.jsp, for subsequent
processing:

m The link.item event is triggered when the customer either clicks the product
item's image (for example, an image of an AviPix 3000 camera) or the item's
Details button image.

m The button.search.buy event is triggered when the customer clicks the Buy
Now button next to a product item in the search results.

m The button.search.save event is triggered when the customer clicks the Save
for Later button next to a product item in the search results.

The following line from search results.jsp (pre-rendering by the browser) shows
how the coding was set up for the Details button on the portlet:

<a href="<portlet:createWebflowURL namespace="catalogportlet" event="link.item"
extraParams="<%=1linkParams$%

<" />"><img src="<webflow:createResourceURL resource='<%=imagesPath +

"prod step2 details.gif"$>'/>

In the example above, the href link is constructed using a
webflow:createResourceURL JSP tag. Notice that the Webflow namespace is
catalogportlet. Let’s look at the catalogportlet.wf (Webflow) file in:

BEA HOME\weblogic700\samples\platform\e2eDomain\beaApps\e2eApp-pr
oject\application-sync\webapps\b2cPortal

In catalogportlet.wf, the event named 1link.item identifies the following input

processor: storeCatalogEventIP. This input processor is used to store the current

portlet event as a session-scoped pipeline attribute. The portlet uses this information to
decide which view of the catalog to display.

2-48 Tour of the BEA WebLogic Platform Sample Application

The Search Results Portlet

For example, if on the search results portlet you clicked the Details button next to an
AviPix 1000 camera, notice how the value for the webflow: createResourceURL
parameter results in the following. (The URL shown here spans several lines to
improve the formatting.)

http://localhost:7501/b2cPortal/application?origin=search results
.jsp

&event=bea.portal.framework.internal.portlet.event
&pageid=Productsé&portletid=catalog
&wfevent=link.item&wlcs catalog item sku=pix1000

Dynamic Data Display

In search results.jsp, the matched results (if any) will be retrieved from the
pipeline session. For example:

<webflow:getProperty
id="searchResults"
type="com.beasys.commerce.ebusiness.catalog.ViewIterator"
property="<%= PipelineSessionConstants.CATALOG SEARCH RESULTS%>"
scope="session"
namespace="portal" />

We check to see if there are search results:

if ((searchResults != null) && (searchResults.size() > 0))
%>

If there are search results, we iterate through the catalog, retrieving information about
each product item that matched the keyword. For example:

<catalog:iterateViewIterator
id="item"
returnType="com.beasys.commerce.ebusiness.catalog.ProductItem"
iterator="<%= searchResults %>">

<catalog:getProperty
id="itemImage"
returnType="com.beasys.commerce.ebusiness.catalog.ImageInfo"
object="<%= item %>"
propertyName="image"
getterArgument="<%= new Integer (CatalogItem.SMALL IMAGE INDEX
) &> />

Tour of the BEA WebLogic Platform Sample Application ~ 2-49

2 Business-to-Consumer (B2C) Portal Tour

Other data from the catalog is similarly retrieved for each product item:
currentPrice, (short) description, and productItemkey (SKU).

We then set up the HTTP request parameters for this item’s detail link.

Data for each matched product item is cycled through the view iterator until there are
no more items. We also reset the search results view iterator in case the portlet is
refreshed.

If there are no matches found for the keyword entered on searchform.jsp, we use in
search_results.jsp the 118n:getMessage JSP tag provided by WebLogic Portal. 18N
is an abbreviation for Internationalization, meaning the process of setting up
application code so that language-specific files can be added or modified, to customize
the message text for non-English customers. For example, in search _results.jsp,
we have:

<il8n:getMessage messageName="noResults" bundleName="search results" />

The search_results.properties file, which is in the same directory as
search results.jsp, contains:

noResults=No matches found.

Administration Tasks for Keyword-based Searches

The search function for this sample application uses keywords that were previously
defined in the Catalog Management area of the WebLogic Portal Administration
Tools. This section explains how to set up keywords for items.

The following steps assume that the server for the e2eDomain is still running. You can
run the e2eAppTools Web application and the sample application at the same time.
Both Web applications are part of the same e2eApp enterprise application and run in
the same domain.

1. In a new browser window, use the following URL format, which starts the
WebLogic Portal Administration Tools:
http://<host>:<port>/e2eAppTools/index.jsp

In the URL, substitute for the name of your local machine (1ocalhost) or the
remote host name, and substitute the port number on which WebLogic Server is
listening. For WebLogic Portal applications, the default port number is 7501.
The e2enrppTools portion of the URL is case sensitive. For example:

http://localhost:7501/e2eAppTools/index.jsp

2-50 Tour of the BEA WebLogic Platform Sample Application

The Search Results Portlet

2. You are prompted for a username and password. These values may be different
for your site, but by default they are:

Username: administrator
Password: password

The login values are case sensitive. If these credentials do not work, please
check with the administrator, who may have changed these default values for the
administrator account after the sample was installed.

3. On the main Administration Tools page, click the icon in the Catalog
Management banner.

4. On the Catalog Management page, click the underlined word Items.
5. In the Keywords input box, enter the following keyword: camera

6. Click one of the underlined search results. For example, click AviPix 5000.
(Warning: do not click the red X icon, which deletes the item from the catalog.
Keep in mind that you are using the administration pages for the catalog data.)

7. On the resulting page, click the Edit icon that is on the same line with "Item Core
Attributes."

Some of the values on the Edit Item Information page will be familiar if you have
browsed through the sample application's catalog. For example, notice the short
description and long descriptions values. Also notice how the small and large graphics'
location was specified (near the bottom of the page). Initially the data records were
loaded from scripts or using the DBloader program provided with WebLogic Portal.
These catalog administration pages provide a view into the values and the ability to
subsequently change values, if desired. (Most organizations will run catalog data
scripts again, instead of using the Administration Tools to modify values.)

The search keywords can be viewed or modified on this Edit Item Information page.
In the sample application, we defined a set of keywords for each product item in the
catalog. Scroll down the page to find the Keywords input box and the set of existing
keywords.

Tour of the BEA WebLogic Platform Sample Application 2-51

2 Business-to-Consumer (B2C) Portal Tour

The following graphic shows a portion of the page:

/3 E dit Item Core Attributes - Microsoft Internet Explorer
J ‘Y? é - Customize IQI Search |v || (1= Messenoer »» |J File »|
R) A ?
Back Farward Stop Refresh Horme Search
J Address I btk 4 Atriwie: 701 #eEeAppTools.fappIi-:ation?namespace=admin_catalog&origin=item_propej 6) Go
Keywords for the iem a
anvipix
> camera
Keywords: +|Eameras
{ | |consumer
“ | digital
[ix
Images for the Ttem
Dbnage Mame oz Epling Image URL
= (Number) =
?::;L |D l'imagesfavipixEDDD_discount_sm.jpg | J
Ifr?n?gee | |U b,‘images,favipiXSUUU_diSCDunt_Ig.jpg |
] | ,
&1 ’_l_lﬂ Inkernet i

Existing keywords are: avipix, camera, cameras, consumer, digital, pix.

The administrator can work with the development team to determine additional
keywords to help site visitors find product items.

For more information, see the WebLogic Portal documentation.

To exit the Administration Tools, close the browser window.

Next Steps

If your search returned “No matches found” enter one of the existing keywords such
as camera in the search input box. Again, the existing keywords are avipix, camera,
cameras, consumer, digital, pix. Then click the Go button.

To continue the tour, add several items to your cart from among the search results.

Click the Save for Later button for an item as the last event before moving on to the
next section.

2-52 Tour of the BEA WebLogic Platform Sample Application

The Save for Later Button

The Save for Later Button

The Save for Later button triggered a Webflow event that added the item to the Saved
Items list in the summarycart portlet (“My Shopping Cart”) on the refreshed page.

AviPro Professional Digital Cameras My Shopping Cart
g Current ltems
41 AviPro1000 $1,209.99
) ftem Gty
s Aoprofeszional level camera at a o
price that can't be matched. AwiPrint 200 1
BA[Detsis] Saved ltems
ftem
2 Buy Now | AviPIo 5000
PPz G000
n AoiCam 3000
41 AviPro 3000 $1499.99 _
. AwiPre 1000
ra— Superior features and
? ¥ - = % performance for professionals. Checkout

Technical Details for the Save for Later Button Event

The Save for Later button can be selected for a specific item when the user is browsing
a category page, or an item’s detail page, or a search results page. The event type,

depending on the page, could be one of the following, as defined in the
catalogportlet.wf Webflow file:

B Dbutton.category.save
B button.item.save

B button.search.save

Tour of the BEA WebLogic Platform Sample Application ~ 2-53

2 Business-to-Consumer (B2C) Portal Tour

When the Save for Later button is selected, the product item is moved into the user's
Saved Items list. Several portlet pages set up the Save for Later link in the following
way. This example is from the item. jsp file, which is included into the catalog. jsp
portlet:

<a href="<a href="<portlet:createWebflowURL namespace="catalogportlet"
event="button.item.save" extraParams="<%= linkParams $%>" />">

<img src="<webflow:createResourceURL resource='<%=imagesPath

+ "prod step2 savelater.gif"%>'/>" width="72" height="18" alt="" border="0">

In the HTML subset above, if the user clicks the Save for Later image, it will generate
an event called button.item.save for the transition to the next page. The 1inkParams
parameters contain the information about the specific item. This data was collected
earlier in the item.jsp processing by a series of <catalog:getProperty. . .> JSP
tags, followed by:

A
o°

String linkParams =
HttpRequestConstants.CATALOG ITEM SKU + "=" + itemKey.getIdentifier();

o\°
\%

Note that an inventory check is not done when you click Save for Later on a Products
page. However, an inventory check is done on a shopping cart page if you click Add
to Cart for an item that is currently in the Saved List.

Next Step

To continue the tour, click the Checkout button to proceed to the My Shopping Cart
stepl.jsp portlet.

The My Shopping Cart Portlet, Step1.jsp

Having clicked the Checkout button in the summarycart portlet on a Products page,
the portal application's Webflow resulted in the display of the step1 . jsp checkout
portlet on this Shopping Cart page. A graphic, check stepl header.gif, was
loaded to help customers understand where they are in the order fulfillment process. If
there are items in the cart, price and discount information for the order are shown.
Shown are prices for the unit, a 10% unit discount (for AviPix Consumer Cameras

2-54 Tour of the BEA WebLogic Platform Sample Application

The My Shopping Cart Portlet, Step1.jsp

only), a 15% total order discount for orders over $100, and a net total. If there are no
items in the cart, the string "You do not have any item in your shopping cart" is

displayed.
My Shopping Cart 1|
Current ltems
Qty Item Unit Price Ext. Price
[awirix s000 $499.99 $499.99 Save for Later
Tof1 AviPix10% off dizcount F-50.00
7 awvirint 200 $209.99 $599 98 Save for Later
; order Subtotal 104997
wrder Discount -F157.50
Total does not include shipping or tax. Total $892.47
Saved ltems
Item Price
AviPro 3000 §1,699.939 Add to Cart
AviPro 1000 §1,299.939 Add to Cart
AviCam 3000 $2,095.93 Add to Cart
Continue Shopping Checkout

Technical Details for the Step1.jsp Portlet

Introduction

This section provides details about the processing that occurs on this page.

The shopping cart pages present a series of portlets that allow the customer to checkout
and complete their order. At any time during the checkout process, an inventory check
is done if the user’s shopping cart changes; this inventory check uses a
CheckInventoryPC pipeline component that works with a InventoryProvider SPI,
which in turn uses the Application Integration (Al) component of WebLogic
Integration to ensure that the order can be fulfilled.

Tour of the BEA WebLogic Platform Sample Application 2-55

2 Business-to-Consumer (B2C) Portal Tour

On subsequent shopping cart pages, when the order is submitted, a pipeline component
calls a Payment Web service to authorize the credit card purchase. We created the Web
service in WebLogic Workshop.

After the confirmed order is persisted to the database, another pipeline component
converts the order to an XML representation, and places it on a Java Message Service
(JMS) queue. The WebLogic Integration Business Process Management (BPM) event
processor dequeues the order and processes it.

The shopping cart or “checkout” portlets are in the following location:

weblogic700\samples\platform\e2eDomain\bealApps\e2eApp\b2cPortal
\portlets\checkout*

m stepl.jsp, the current portlet, provides the detailed My Shopping Cart data,
presenting the current and saved items. It also computes and displays 10%
line-item discounts for any AviPix Consumer Camera category items, and a 15%
total order discount for orders over $100. Information about the step1.jsp
processing is contained in this page’s Technical Details section.

B step2.jsp provides the Checkout data, presenting pre-set billing and shipping
information for logged-in user Rachel Adams. Information about the step2.jsp
processing is contained in the section “The Checkout Portlet, Step2.jsp” on page
2-67.

Note: To keep the scope of this sample application simple, we did not include
portlets that would allow the user to enter or modify their credit card or
shipping information. However, WebLogic Portal supports this type of
processing, and provides a separate sample to demonstrate it. Please refer
to the Commerce and Campaign Features Tour in the WebLogic Portal
documentation.

® step3.jsp provides the (pre-submit) Order Submission page, showing a
summary of the order about to be submitted. When the user clicks the Submit
Order, credit card authorization is performed via a Payment Web service that we
created in WebLogic Workshop. Information about the step3 . jsp processing is
contained in the section “The Order Submission Portlet, Step3.jsp” on page 2-70.

B step4.jsp provides the Order Confirmation page. The confirmed order is
converted by a pipeline component to an XML representation. The pipeline
component places this copy of the order on a Java Message Service (JMS)
queue. The WebLogic Integration BPM event processor dequeues the order and
processes it. Information about the stepa4 . jsp processing is contained in the
section “The Order Confirmation Portlet, Step4.jsp” on page 2-74.

2-56 Tour of the BEA WebLogic Platform Sample Application

The My Shopping Cart Portlet, Step1.jsp

Step1.jsp Processing, Including Inventory Checks and Discounts

The stepl.jsp My Shopping Cart portlet uses JSP tags to get the shopping cart, saved

shopping cart, and inventory counts from the pipeline session:

<webflow:getProperty id="shoppingCart"
property="<%=PipelineSessionConstants.SHOPPING CART%>"

type="com.beasys.commerce.ebusiness.shoppingcart.ShoppingCart" scope="session"

namespace="portal" />
<webflow:getProperty id="savedShoppingCart"
property="<%=PipelineSessionConstants.SAVED SHOPPING CART%>"

type="com.beasys.commerce.ebusiness.shoppingcart.ShoppingCart" scope="session"

namespace="portal" />

<webflow:getProperty id="inventoryCount"
property="<%=B2CPortalConstants.INVENTORY CHECK%>" type="int[]"
scope="session" namespace="portal" />

After iterating through all the shopping cart lines, we determine if a message is needed
about low inventory. For example:

<% 1f ((inventoryCount != null) && (inventoryCount [inventoryIndex]
<= shoppingCartLine.getQuantity())) { outOfStock = true; %><%=
shoppingCartLine.getProductItem() .getName () %> -
<i><il8n:getMessage bundleName="checkout"
messageName="over_inventory"/></i> - <% ;}

else { $><%= shoppingCartLine.getProductItem() .getName () %> <

o°

}

The inventory check is implemented in the CheckInventoryPC pipeline component.
You can find its source file in the following location:

o\°

>

weblogic700\samples\platform\e2eDomain\bealApps\e2elApp\src
\examples\e2e\b2c\shoppingcart\pipeline\CheckInventoryPC.java

This pipeline component checks the Inventory and places an additional value. In this
sample application, it is invoked every time the shopping cart content is changed. For
example, the stepl. jsp page includes a Quantity field with an associated Recalculate
button. If the user changes the quantity in this portlet, the inventory is checked again.

Note: In your production environment, you may want to do it differently for
performance reason, based on your business logic. For example, you may want
to check inventory only when the item is placed in the shopping cart the first
time, by keeping the actual quantity in stock, and showing different messages
based on the difference between what is in stock and what is in the shopping
cart.

Tour of the BEA WebLogic Platform Sample Application — 2-57

2 Business-to-Consumer (B2C) Portal Tour

The CheckInventoryPC pipeline component works with an InventoryProvider
SPI. Its source files are in the following location:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\src\example
s\e2e\common\inventory\spi*.java

This SPI is a stateless session bean that includes the checkInventory remote method.
This method:

m Uses the WebLogic Integration Application Integration (AI) component to make
a call via a pre-configured Al service. This service is used to query the inventory
table.

m Calls an XML Helper to parse the response from Al.
m Returns available inventory (int) based on the response.

In the inventory check, notice the over inventory message name. To support
internationalization (I18N) efforts, it is defined in a separate properties file,
checkout .properties, as:

If the inventory cannot fulfill the quantity requested
over_ inventory=out of stock

The stepl.jsp portlet also computes the amount of a line-item discount to offer. In
this sample, we elected to give a 10% discount to any cameras in the AviPix Consumer
Camera category. A total order discount is also computed for orders that exceed $100.

A number of events can occur on the step1l.jsp page including:

B button.updateShoppingCartQuantities, if the user changes the quantity
field and then clicks the RECALCULATE button.

B button.deleteltemFromShoppingCart, if the user clicks the DELETE button
in the Current Items list.

B button.moveItemToSavedList, if the user clicks the Save for Later button in
the Current Items list.

B button.deleteltemFromSavedList, if the user clicks the DELETE button in
the Saved Items list.

B button.moveItemToShoppingCart, if the user clicks the Add to Cart button in
the Saved Items list.

B link.next, if the user clicks the Checkout button.

2-58 Tour of the BEA WebLogic Platform Sample Application

The My Shopping Cart Portlet, Step1.jsp

Next Step

Information about those events is presented in the technical details sections for those
events after you click one of those buttons.

Note: If the user clicks the Continue Shopping button on the step1l.jsp portlet, we
use a JSP tag to take the user to the Products page:

<a href="<portal:createPortalPageChangeURL pagename="Products"
/>n>

<img src="<webflow:createResourceURL

resource='<%=imagesPath + "check_stepl continue.gif"%>'/>"
width="94" height="18" alt="" border="0">

To continue the tour, click the Add to Cart button next to an item on the Saved Items
list.

The Add to Cart Button in Saved Items List

Having clicked the Add to Cart button in the Shopping Cart step1l.jsp portlet’s
"Saved Items" list, the page was refreshed with updated data for the same portlet. The
Current Items list now contains the product item you added to the cart. Prices are
shown for the unit, a 10% unit discount for items over $100.00, a 15% total order
discount for orders over $100, and a net total. The item you selected on the prior page
is no longer in the Saved Items list.

The following sample screen may show items that are different from your cart.

Tour of the BEA WebLogic Platform Sample Application ~ 2-59

2 Business-to-Consumer (B2C) Portal Tour

My Shopping Cart 1]

Current ltems

Qty Item Unit Price Ext. Price

|1_ SviPix 5000 F499.94 F459.99 Save for Later

1of1 AviPix 10% off dizcount F-50.00

|2_ AviPrint 200 $299.94 258995 Save for Later

|1_ AviPro 000 F1,298.89 F1,295.99 Save for Later
Order Subtotal $2/348 96
order Discount -F352.44

Tatal coes not include shipging o ta. Total $1,997.47
Saved ltems

ltem Price

SyiPro 5000 $1,699.99 LU0 [Addt art |
AviCam 3000 $2,099.99 LU0 [Add e gar |

Continue Shopping Checkout

Technical Details the Add to Cart Button in the Saved Items List

The stepl.jsp My Shopping Cart page includes an event named
button.moveItemToShoppingCart. It is triggered when the user clicks the Add to
Cart button in the shopping cart's Saved Items list. On the refreshed page, the item is
moved from the Saved Items list to the Current Items list.

You can find the stepl.jsp portlet file in:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\b2cPortal
\portlets\checkout*

An example from stepl.jsp:

<a href="<portlet:createWebflowURL namespace="checkoutportlet"
event="button.moveltemToShoppingCart"
extraParams="<%= extraParams %>" />">
<img src="<webflow:createResourceURL

2-60 Tour of the BEA WebLogic Platform Sample Application

The My Shopping Cart Portlet, Step1.jsp

Ay
o°

resource='<%=imagesPath + "check stepl add.gif"%>'/>"
width="52" height="13" alt="" border="0">

The extraParams parameter contains data about the product item, collected already
in stepl.jsp:

extraParams = HttpRequestConstants.CATALOG ITEM SKU + "="

oe
\Y

Next Step

shoppingCartLine.getProductItem() .getKey () .getIdentifier() ;

The button.moveItemToShoppingCart event is defined in the
checkoutportlet .wf Webflow file, which resides in the following directory:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp-project
\application-sync\webapps\b2cPortal

The event is:

<event event-name="button.moveltemToShoppingCart"s>
<destination namespace="checkoutportlet"
node-name="shoppingcart MoveProductItemToShoppingCartIP"
node-type="inputprocessor"/>

</event>

The pipeline component is MoveProductItemToShoppingCartPC. You can view its
Java source file in:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\src
\examples\e2e\b2c\shoppingcart\pipeline

MoveProductItemToShoppingCartPC removes a ProductItem from a customer's
list of saved items and adds it to their shopping cart. The customer’s login id is
specified by the PipelineSessionConstants.USER NAME attribute in the Pipeline
Session. The SKU of the item to move is specified by the
PipelineSessionConstants.CATALOG ITEM SKU pipeline session attribute. The
PipelineSessionConstants.SAVED SHOPPING CART and
PipelineSessionConstants.SHOPPING CART pipeline session attributes, and the
WLCS SAVED ITEM LIST table are updated to reflect the change.

To continue the tour, click the REMOVE button next to an item on the Saved Items list.

Tour of the BEA WebLogic Platform Sample Application 2-61

2 Business-to-Consumer (B2C) Portal Tour

The REMOVE Button in the Saved Items List

Having clicked the REMOVE button in the shopping cart’s step1l. jsp portlet's Saved
Items list, the page was refreshed with updated data for the same portlet. The product
item you selected has been removed from the Saved Items list.

Technical Details for REMOVE Button in the Saved Items List

The stepl.jsp My Shopping Cart page includes an event named
button.deleteltemFromSavedList. It is triggered when the user clicks the
DELETE button in their shopping cart's Saved Items list. On the refreshed page, the
item no longer exists on the Saved Items list.

You can find the step1.jsp portlet file in:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\b2cPortal
\portlets\checkout*

An example from stepl.jsp:

<a href="<portlet:createWebflowURL namespace="checkoutportlet"
event="button.deleteltemFromSavedList"

extraParams="<%= extraParams %>" />">

<img src="<webflow:createResourceURL

resource='<%=imagesPath + "check stepl remove.gif"%>'/>"
width="42" height="13" alt="" border="0">

The extraParams parameter contains data about the product item, collected already
in stepl.jsp:

Ay
o°

extraParams = HttpRequestConstants.CATALOG ITEM SKU + "=" +
shoppingCartLine.getProductItem() .getKey () .getIdentifier() ;

oe
\Y

The button.deleteItemFromSavedList event is defined in the
checkoutportlet.wf Webflow file, which resides in the following directory:

weblogic700\samples\platform\e2eDomain\bealApps\e2elApp-project\app
lication-sync\webapps\b2cPortal

The event is:

2-62 Tour of the BEA WebLogic Platform Sample Application

The My Shopping Cart Portlet, Step1.jsp

Next Step

<event event-name="button.deleteltemFromSavedList">
<destination namespace="checkoutportlet"
node-name="shoppingcart DeleteProductItemFromSavedListIP"
node-type="inputprocessor"/>

</events>

The pipeline component is DeleteProductItemFromSavedListPC. You can view
its Java source file in:

weblogic700\samples\platform\e2eDomain\bealApps\e2elApp\src\example
s\e2e\b2c\shoppingcart\pipeline

DeleteProductItemFromSavedListPC removes a ProductItem from a customer's
list of saved items. The customer's login id is specified by the
PipelineSessionConstants.USER NAME attribute in the Pipeline Session. The
SKU of the item to delete is specified by the
PipelineSessionConstants.CATALOG ITEM SKU pipeline session attribute. The
PipelineSessionConstants.SAVED SHOPPING CART and
PipelineSessionConstants.SHOPPING CART pipeline session attributes, and the
WLCS_SAVED ITEM LIST table are updated to reflect the change.

To continue the tour, click the REMOVE button next to an item on the cart’s Current
Items list.

The REMOVE Button on the Current Items List

Having clicked the REMOVE button in the shopping cart step1.jsp portlet’s
Current Items list, the page was refreshed with updated data for the same portlet. The
product item and its prices have been removed from the cart.

Technical Details for REMOVE Button on the Current Items List

The step1.jsp My Shopping Cart page includes an event named
button.deleteItemFromShoppingCart. It is triggered when the user clicks the
DELETE button in their shopping cart's Current Items list. On the refreshed page, the
item no longer exists on the Current Items list.

Tour of the BEA WebLogic Platform Sample Application 2-63

2 Business-to-Consumer (B2C) Portal Tour

o°

2-64

o°

You can find the step1.jsp portlet file in:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\b2cPortal
\portlets\checkout*

An example from stepl.jsp:

<a href="<portlet:createWebflowURL namespace="checkoutportlet"
event="button.deleteltemFromShoppingCart"

extraParams="<%= extraParams %>" />">

<img src="<webflow:createResourceURL

resource='<%=imagesPath + "check stepl remove.gif"%>'/>"
width="42" height="13" alt="" border="0">

The extraParams parameter contains data about the product item, collected already
in stepl.jsp:

extraParams = HttpRequestConstants.CATALOG_ITEM SKU + "="+

shoppingCartLine.getProductItem() .getKey () .getIdentifier () ;

The button.deleteItemFromShoppingCart event is defined in the
checkoutportlet .wf Webflow file, which resides in the following directory:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp-project
\application-sync\webapps\b2cPortal

The event is:

<event event-name="button.deleteItemFromShoppingCart">
<destination namespace="checkoutportlet"
node-name="shoppingcart DeleteProductItemFromShoppingCartIP"
node-type="inputprocessor"/>

</events>

The input processor is DeleteProduct ItemFromShoppingCartIP. You can view its
Java source file in:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\b2cPortal\W
EB-INF\src\examples\e2e\b2c\shoppingcart\webflow

DeleteProductItemFromShoppingCartIP deletes a specified item from the
shopping cart. The SKU of the item to be deleted is specified as the
HttpRequestConstants.CATALOG ITEM SKU parameter in the request object. The
shopping cart is retrieved from the PipelineSessionConstants.SHOPPING CART
attribute in the pipeline session. The item is deleted and the pipeline session is updated
with the modified shopping cart.

Tour of the BEA WebLogic Platform Sample Application

The My Shopping Cart Portlet, Step1.jsp

Next Step

To continue the tour, click the Save for Later button next to an item in the cart’s
Current Items list.

The Save for Later Button on Current Items List

Having clicked the Save for Later button in the "Current Items" portion of the
stepl.jsp Shopping Cart portlet, the page was refreshed with updated data for the
same portlet. The item's status was changed and was moved to the Saved Items list on

the cart.

My Shopping Cart 1

Current tems

Qty ltem Unit Price Ext. Price
|‘1_ AP 5000 49995 F499.99 Save for Later
Tof1 AwviPix 10% off dizcount §-a0.00
| RECALCULATE | order Subtotal 44989
Crder Discount -FE7 S0
Taotal does not include shipping or tax. Total $382.49

Saved tems

ltem Price

AviCam 3000 §2,099.99 L0 [Addt Gar |
AuPrint 200 $299.89 LU0 Ak te Gart |

Continue Shopping Checkout

Technical Details

The stepl.jsp My Shopping Cart page includes an event named
button.movelItemToSavedList. It is triggered when the user clicks the Save for

Later button in the shopping cart's Current Items list. On the refreshed page, the item
is moved from the Current Items list to the Saved Items list.

Tour of the BEA WebLogic Platform Sample Application 2-65

2 Business-to-Consumer (B2C) Portal Tour

You can find the step1.jsp portlet file in:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\b2cPortal
\portlets\checkout*

An example from stepl.jsp:

<a href="<portlet:createWebflowURL namespace="checkoutportlet"
event="button.moveltemToSavedList" extraParams="<%= extraParams %>" />">
<img src="<webflow:createResourceURL

resource='<%=imagesPath + "check stepl save.gif"%>'/>"

width="61" height="13" alt="" border="0">

The extraParams parameter contains data about the product item, collected already
in stepl.jsp:

A
o°

extraParams = HttpRequestConstants.CATALOG ITEM SKU + "=" +
shoppingCartLine.getProductItem() .getKey () .getIdentifier () ;

o°
\%

The button.moveItemToSavedList event is defined in the checkoutportlet.wf
Webflow file, which resides in the following directory:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp-project\app
lication-sync\webapps\b2cPortal

The event is:

<event event-name="button.moveItemToSavedList">
<destination namespace="checkoutportlet"
node-name="shoppingcart MoveProductItemToSavedListIP"
node-type="inputprocessor"/>

</event>

The pipeline component is MoveProduct ItemToSavedListPC. You can view its Java
source file in:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\src\example
s\e2e\b2c\shoppingcart\pipeline

MoveProductItemToSavedListPC removes a ProductItem from a customer's
shopping cart and adds it to their list of saved items. The customer's login id is
specified by the PipelineSessionConstants.USER NAME attribute in the Pipeline
Session. The SKU of the item to move is specified by the
PipelineSessionConstants.CATALOG ITEM SKU pipeline session attribute. The

2-66 Tour of the BEA WebLogic Platform Sample Application

The Checkout Portlet, Step2.jsp

Next Step

PipelineSessionConstants.SAVED SHOPPING CART and
PipelineSessionConstants.SHOPPING CART pipeline session attributes, and the
WLCS_SAVED ITEM LIST table are updated to reflect the change.

To continue the tour, click the Checkout button near the bottom of the shopping cart
stepl.jsp portlet.

The Checkout Portlet, Step2.jsp

Having clicked the Checkout button on the step1.jsp Shopping Cart, the portal
application's Webflow resulted in the display of the step2. jsp checkout portlet on
this Shopping Cart page. A graphic, check step2 header.gif, was loaded to help
the customer understand where they are in the order fulfillment process. To simplify
this sample, data for the logged-in user has been provided on the page. Notice that for
Steps 2 - 4 of the checkout process, the Secure Socket Layer (SSL) protocol is being
used for security encryption of the order data (https: //. . . inthe application's URL).

The Checkout portlet is shown here in two parts for formatting purposes only:

Tour of the BEA WebLogic Platform Sample Application 2-67

2 Business-to-Consumer (B2C) Portal Tour

2-68

Checkout

1. Billing / Shipping Address
First Mame Last hame

IRacheI IAdarns

Street Address

|'123 Folsam

City State
IElouIder coO =
Zip Code

ISDSDQ

3. Shipping Method
Select & Shipping Methodd
¥ Second Dray Air
o Standard Shipping - 410 7 days

ster [1 -} 3

2. Contact Information
Daytime Phone (ext.)

IE I254-Q483 l_

Ervening Phone

IE IB1D-Q45‘1

e-Mail Adelress

Iradams@m\rpoﬂal.com

4. Credit Card Information
Redistered Cards
% MASTERCARD-4321 € WISA-1111

MOTE: Awitek industry standard SEL(Secure
Socket Lawer) encryption to protect the
canfidentiality of wour perzanal infarmation. See
our Secudty & Priuzcy help page for more
information.

Tour of the BEA WebLogic Platform Sample Application

The Checkout Portlet, Step2.jsp

Here is the lower portion of the same portlet:

5. Order Summary
>
Gty ltem Unit Price Ext. Price
2 AviPix 5000 F459.99 $995 .95
2ot2 AviPix 10% off discount $-100.00
Order Subtotal $599.55
Order Diseount -§135.00
Total does not include shipping or tax. Total $764.98
m Continue Order

Technical Details for the Checkout Portlet

The step2 . jsp Checkout portlet presents pre-set billing and shipping information for
logged-in user Rachel Adams. To keep the scope of this sample application simple, we
did not include portlets that would allow the user to enter or modify their credit card
or shipping information. However, WebLogic Portal supports this type of processing,
and provides a separate sample to demonstrate it. Please refer to the Commerce and
Campaign Features Tour in the WebLogic Portal documentation.

The step2.jsp Checkout portlet is in the following location:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\b2cPortal
\portlets\checkout*

Next Steps

To continue the tour, click the Continue Order button to proceed to the step3.jsp
Order Submission page.

Tour of the BEA WebLogic Platform Sample Application 2-69

2 Business-to-Consumer (B2C) Portal Tour

The Order Submission Portlet, Step3.jsp

Having clicked the Continue Order button in the Shopping Cart's step2.jsp
Checkout portlet, the portal application's Webflow resulted in the display of this
step3.jsp page. Summary information is presented. For example:

Order Submission 3]
Order Summary

Qty Item Unit Price Ext. Price

2 AyviPix 5000 499959 F999.95
2of2 AviPix 10% off dizcount $-100.00

Order Subtotal $E599.893

Order Discount -§133.00

Shipping §4.95

Tax F35.50

Total $808.43

Shipped to:

Rachel Adams
123 Folzom
Boulder, CO-50302

Shipping Method:
Second Day Air

Payment Method:
MASTERCARD - wooooooooooxd 321

X | submit Orider

Technical Details for the Order Submission Portlet

This section provides details about the processing that occurs on this page.

Introduction

The step3.jsp checkout portlet provides the (pre-submit) Order Submission page,
showing a summary of the order about to be submitted.

2-70 Tour of the BEA WebLogic Platform Sample Application

The Order Submission Portlet, Step3.jsp

On this page, the interesting aspect is what happens after the user clicks the Submit
Order button near the bottom of the page. The credit card authorization is performed
via a pipeline component named CajunBasedPaymentPC. It calls a Payment Web
service that we created in WebLogic Workshop.

After the order is confirmed (step 4), a pipeline component named
ConvertOrderRepPC will convert the persisted order to an XML representation, and
places it on a Java Message Server (JMS) queue. The WebLogic Integration Business
Process Management (BPM) event processor dequeues the order and processes it. For
information about that process, see the section “The Order Confirmation Portlet,
Step4.jsp” on page 2-74.

Payment Authorization with a WebLogic Workshop Web Service

The Submit Order button on the step3 . jsp portlet invokes a 1ink.next event. The
checkoutportlet .wf Webflow file includes the following:

<presentation-origin node-name="step3" node-type="jsp">
<node-processor-infopage-name="step3.jsp"page-relative-path="/portlets
/checkout" />
<event-lists>
<event event-name="link.next">
<destination namespace="checkoutportlet"
node-name="Commit" node-type="inputprocessor"/>

This Webflow file resides in:

weblogic700\samples\platform\e2eDomain\bealpps\e2eApp-project
\application-sync\webapps\b2cPortal

The b2c_order.pln pipeline file resides in:

weblogic700\samples\platform\e2eDomain\bealApps\e2eApp-project\app
lication-sync\pipelines

It includes the following:

<root-component component-name="CommitOrderPC"/>
<component-branch-items>
<source-component component-name="CommitOrderPC"/>
<branch-success destination-component="CajunBasedPaymentPC"/>
</component -branch-item>

The credit card payment authorization processing is handled by a pipeline component
named CajunBasedPaymentPC. It calls a Java proxy that lets the pipeline component
call the Payment Web service. We created the Web service in WebLogic Workshop.

Tour of the BEA WebLogic Platform Sample Application — 2-71

2 Business-to-Consumer (B2C) Portal Tour

2-72

You can view the source file for the CajunBasedPaymentPC. java file in the
following location:

weblogic700\samples\platform\e2eDomain\beaApps\e2elApp\src\example
s\e2e\b2c\payment\pipeline

The Payment Web service uses the conversational aspect of WebLogic Workshop
framework. The first call is to authorize the credit card; we pass in the credit card
number and the amount to be authorized as arguments. After the credit card
authorization is complete, a call is made to capture an amount. Eventually a request is
made to settle the amount.

The following screens show a portion of the WebLogic Workshop Integrated
Development Environment (IDE) that we used to create the Payment Web service.
This first screen is the Design View.

% Payment.jws - BEA WebLogic Workshop [15[]
File Edit ¥iew Service Dsbug Tools ‘Window Help

D EE 2 Rl o |5 a4 BI B prO@aE & mEx

Project Tree x J Design Yiew ‘ |Source View | Payment.jws x
e eyt -] —— . x
roperties - Paymen
) D eredirepart it Operation | = Payment fudd Control |~ | | et S
-2 databass Name Payment .
B[efbContrel [target-namespace
I tllntE?’DD ouEnT
T —@—@—D Authorize namespace
Qs [conversation-lifetime
)23 paymentws —& AuthorizeAndCap...
2] max-age 1 day
B (2 productEvalwsc — —@—D Capture max-idletime 0
B[proxy 2 protocol
[Cservice —®%% form-post true I+
-2 timer form-get true |-
(] butorisls . a A httpsoap e I+
- Member Variables
B[] WEB-INF = hittp-snnl false |+
(-2 xmimap Double openToBuy_ ol |
g Hellowarld jws L Double amount ToCapture_ Jms-soap e
8] indes bt - long transactioniD_ -l false I
— sospstyle document |+
P = long ERR_CODE_BAD_ARGLMENT -]

long ERR,_CODE_AMT_TO_CAPTURE_MCRE_THAN_...

|

Descri ¥

E lang ERR_CODE_AMT_TO_SETTLE_MORE_THAN_C...
| Autharize(String credibCardiur Payment Service
= AuthorizeAndCapture(String eri
S ot T moew: maserios [
=] Settle(Double amountTosettls) tothe service ta exchange
|| ERR_CODE_aMT_TO_CAPTUR messages wh a client. You can
4] ERR_CODE_aMT_T0_SETTLE L alsg add controls o invoke other
web services, connect to a
= 3
[#]err_cope_sap_arcumenT database, use a timer, utiize an
] amount ToCapture _ Enterprise JavaBean, or exchange | |
%] openTaguy_ Tasks ¥
(3] transactionIn_ "l thod
5 new metho
m’—‘ iln " | m Add a new callbark
Ready @ Server Stopped In7 Col 25 NS

In WebLogic Workshop, you can easily switch between Design View and the
following Source View.

Tour of the BEA WebLogic Platform Sample Application

The Order Submission Portlet, Step3.jsp

W Payment.jws - BEA WebLogic Workshop [0 =]
Fle Edt Wew Service Debug Tools Window Help
DEFE@ BB o|g@|ceE0FB b daddmEm
Projsct Tree x | Design View ‘ |Snurce Visw | Payment.jus X
e aey
() creibreport L] [3 Payment [~ | [&3 toefiniton) [-]
datab
() database public class Payuent &
(£ sibControl .
[interop |
Chims Double openToBuy_:
{23 paymentws Double amountToCapture_;
)| long transactionID_j]
£ productEvalisc
Cproxy public static final long ERR_CODE_BAD_RGUMENT = -1;
£ service public static finel lony EFR_CODE_AMT TO _CAPTURE MORE THAN AUTH = -Z:
£ timer public static final long ERR_CODE_AMT_TO_SETTLE_MORE_THAN_CAPTURE - -3;
(] butarials
(| WEB-INF fEE
(2 xmimap * Bjws:operation
. gHelanDr\d.iws * @jws:conversation phase="start”
[8] Indes himi - *
— public long Autherize(String creditCardivmber, Double openToBuy)
Structurs Pane x 1
X+ if {{creditCardimber == nullj || (creditCardfumber.eguals (™"} == true]
¥ futhorize(String creditCardhiu || {openToBuy == null) || [openToBuy.compareTo(new Double(0}] < 0))
. 3] ButhorizeAndCapture(String return ERR_CODE_BAD_ARGUMENT;
. 3] Capture{Double amauntToCapt openToBuy_ = openToBuy:
. 3] Settle(Double amountToSette) transactionID_ = System.currentTimeMillis();
. | ERR_CODE_AMT_To_CAPTUR return transactionID_;
- #| ERR_CODE_AMT _TO_SETTLE I ¥
]| ERR_CODE_BAD_ARGUMENT -]
-] amounkToCapture_ Pt X
-] apenToBuy_
File Line Message
#] transactionID_
Errors | | Find in Files
1 I— [|| e [[rndnes]
Ready @ server Stopped 7 ol 25 s

The codes returned by the Payment Web service to the CajunBasedPaymentPC are as
follows:

m -1 = Error (Bad argument passed)

m -2 = Error (When amount to capture is more than amount the credit is authorized
for)

m -3 = Error (When amount to settle is more than amount for which the credit card
was captured for)

m > (= Success

Note: The Payment Web service always sends payment information through without
any errors, as if it were connected to and approved by a third-party payment
service. The processing of payment via the Payment Web service is not
designed for production use. You must integrate with your third-party

Tour of the BEA WebLogic Platform Sample Application 2-73

2 Business-to-Consumer (B2C) Portal Tour

vendor’s payment service to process payment correctly. Note, however, that
the code shown in the sample pipeline component is set up to appropriately
handle error conditions.

For a complete description of the CajunBasedPayment PC pipeline component and the
Payment Web service, please see Chapter 4, “Web Services Tour.” The description is
also available from this sample's Introduction page.

A Note about the Cancel Button

If you click the Cancel button on the step2.jsp or step3 . jsp Shopping Cart portlet,
the application's Webflow will bring you back to stepl.jsp in the cart. The current
and any saved items that were in the cart still remain there. The cancellation simply
ended step 2 or 3 of the checkout process for that order.

Next Step

To continue the tour, click the Submit Order button.

The Order Confirmation Portlet, Step4.jsp

Having clicked the Submit Order button in the Shopping Cart's step3 . jsp Order
Confirmation portlet, the portal application's Webflow resulted in the display of this
step4.jsp portlet. It lists a confirmation message. The persisted order is now
submitted by a pipeline component that enables asynchronous communication
between the portlet and business process workflows, via a IMS queue. This interaction
demonstrates application integration between WebLogic Portal and WebLogic
Integration, which are running in a single WebLogic Server domain instance.

2-74 Tour of the BEA WebLogic Platform Sample Application

The Order Confirmation Portlet, Step4.jsp

Order Confirmation a
Thank you far choosing Avitek Digital Imaging P roduds.
Your order has been confirmed. _Continue Shopping |
Order Number: 3
Order Summary
Oty Item Unit Price Ext. Price
2 AvwiPix 5000 49999 F399.95
2of2 AviPix 10% off discount $-100.00
Order Discount -§135.00
Shipping 5495
Tax $35.50

Total $808.43
Shipped to:

Rachel Adams
123 Folzom
Boulder, CO-50302

Shipping Method:
Second Day Air

Payment Method:
MASTERCARD - wococoocoocod 321

_ Continue Shopping |

Technical Details for the Order Confirmation Portlet

When the commerce order is persisted to the database, an XML representation of the
same order is queued for order management. The work starts in the

ConvertOrderRepPC pipeline component. You can find its Java source file in the
following location:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\src\example
s\e2e\b2c\order\pipeline

Tour of the BEA WebLogic Platform Sample Application ~ 2-75

2 Business-to-Consumer (B2C) Portal Tour

The ConvertOrderRepPC pipeline component works with a PurchaseManager SPI.
Its source files are in the following location:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\src\example
s\e2e\common\purchase\spi*.java

This SPI is a stateless session bean that includes a queueOrder remote method.

WebLogic Integration has the following entry points available for communication with
other systems:

m Application Integration (Al)—a system can call a J2EE Connection Architecture
(J2EE CA) adapter directly using the Al entry point of WebLogic Integration.
Typically, you use this for synchronous communication.

m Business-to-business integration (B2Bi)—a system can directly invoke
business-to-business integration through a message API. This provides
developers a way to write custom applications that communicate with a full
instance of WebLogic Integration. B2Bi also provides a JavaServer Pages (JSP)
tag library for building thin-client interfaces that can communicate with a hosted
B2Bi enabler.

m WebLogic Integration process engine—a system can invoke the WebLogic
Integration process engine synchronously using calls to a native API or
asynchronously using JMS. These calls receive and send data, start processes,
execute user-assigned tasks, and pass XML data among enterprise systems.

In this sample application, we are using asynchronous communication with a JMS
queue. The following illustrates the process flow:

2-76 Tour of the BEA WebLogic Platform Sample Application

The Order Confirmation Portlet, Step4.jsp

s ~
BEA WebLogic Portal
Portal Unified User wWebFlow
Profile
S%g%g «d Pipeline
: Component
Asynchronous i
|
XML
. ———
" ¥ v, CRM
—
EuentQuelue JMS) -
f : " : Ll e P
1 Rl i b
__________‘: i r‘_"‘—
P
rocessor, :
H ERP
_ﬁ || e———
_____ PR T (e v e
: TERTTIRIERD,
BZB Business Process Application 1 s i
Integration Management Integration : st
1
BEA WeblLogic Integration !)
A Legacy
H —
3 Lo || o
BEA Webl ogic Server —_—
IR L
PRI ISR
—

Again, ConvertOrderRepPC converts the order to a JMS XML message and sends it
to a JMS queue (com.bea.wlpi.EventQueue) to which a BPM workflow is
subscribed. Then the BPM event listener retrieves the message from the JMS queue
and processes the message. The message either starts a workflow or triggers a
workflow event listened to by a running workflow instance. WebLogic Integration
retrieves the XML message from the JMS queue and forwards the data to a database,
using the sample DBMS adapter provided by WebLogic Integration for use with its
application integration component.

The XML message is used as the input document to the workflow. The workflow
responds with two actions:

It parses the XML message using XPath and passes all the input data to the application
integration service.

Tour of the BEA WebLogic Platform Sample Application — 2-77

2 Business-to-Consumer (B2C) Portal Tour

It calls an application integration service that is defined when the user deploys an
application view for the DBMS adapter. The application view service updates the
database.

Final Step for the BC2 Portal Tour

Now that the order has been placed successfully, if you wish you may continue
shopping in the online tour by clicking the Continue Shopping button or Products tab.
Or you can click the Logout button to return to the Introduction page for this sample.
Note that if you logout, the Shopping Cart data is not retained for the next session.

2-78 Tour of the BEA WebLogic Platform Sample Application

CHAPTER

3

Avitek Purchasing

Agents Connect with
Suppliers

The business-to-business (B2B) portal tour describes a fictitious intranet site that
Avitek purchasing agents use to get quotes from suppliers, and to submit purchase
orders and get acknowledgements from suppliers. The business processes are managed
by WebLogic Integration.

Note: The information that is presented in this online book is also available in a
context-sensitive tour guide portlet that runs as part of the application.

This business-to-business (B2B) portal tour contains the following sections:

m The Product Inventory Portlet

m The Product Parts Inventory Portlet

m The Query for Price and Availability Portlet

m The Quotes for Price and Availability Portlet, and the QPA Business Process
m The Purchase Order for Review Portlet and PO Business Process

m The Purchase Order History Portlet

Tour of the BEA WebLogic Platform Sample Application 3-1

3 Avitek Purchasing Agents Connect with Suppliers

The Product Inventory Portlet

The B2B portal sample application starts on the Avitek intranet’s Inventory page. A
graphic, processStepl.gif, has been loaded to help logged-in user Jason Tang
understand the sequence of steps in this process. If this is your initial visit to the page,
the Product Inventory portlet contains preloaded data for some of the products sold by
Avitek. If the inventory for any product is below its minimum level, the data is shown
in red.

FURCHASING

LU/ £ T3 S — ..

Select a partto |

Choose a product Generate & Price Accept a Price & Genfirm the R.O.
to view 2 part. request a Price & | | & Avallability Query. Avallabllity Quote to complete
to create a RO. the process.

Awallability Quote. |

1 Avitek Product Inventory

Choose a product to viewe a parts invertory.

0B/M1/02 11:48 AM EDT

Mode!

L& rix1000 10000 20000 7500 _Chieck Pans lventory |
1§ oo 15000 25000 20564 _Chuck Parts ventory |
£ pixs000 15000 40000 18511 Check Parts Invsntory

Min. Units

Max. Units

Available

Product Part Inventory

Technical Details for the Product Inventory Portlet

Introduction

3-2

This section provides details about the processing that occurs on this page.

The b2bPortal is a sample business-to-business site used by the fictitious company
Avitek Digital Imaging. Avitek purchasing agents use the site to get quotes for parts
from external suppliers, and to submit purchase orders.

The b2bPortal is part of the e2eApp enterprise application. The enterprise application’s
name includes e2e an abbreviation for “end-to-end,” meaning a sample that shows a
full range of key features in WebLogic Platform.

Tour of the BEA WebLogic Platform Sample Application

The Product Inventory Portlet

On this Inventory page, the Product Inventory portlet contains preloaded data for some
of the products sold by Avitek. If the inventory for any product is below its minimum
level, the data is shown in red. To get current inventory levels, an Inventory table in
the database has been accessed in read-only mode via the Application Integration (AI)
framework. The Al framework is provided by WebLogic Integration.

In our sample scenario, Avitek Digital Imaging wanted to reduce costs by making its
supply chain more efficient through automation, compressed cycle times, and lower
inventory levels. To track and replenish inventory levels, Avitek implemented a
business-to-businesses solution with a portal user interface for sell-side B2B
exchanges, partner collaboration, and supply chain management.

If you have used the business-to-consumer b2cPortal portal in this sample application,
you know that the Technical Details sections included explanations about the portlets
and Webflow processing. Although they are still integral parts of this b2bPortal, the
explanations in this part of the sample tour focus more on the supply-chain solution
implemented for Avitek purchasing agents. This section, however, covers some portlet
and Webflow details.

Trading Partners

This WebLogic Platform b2bPortal sample scenario involves three business partners:
a buyer (Avitek Digital Imaging) and two suppliers. For each business partner, a
trading partner is configured in the BulkLoaderData.xml file. The following trading
partners are defined for the sample: E2E_Buyer, E2E SupplierOne, and
E2E_SupplierTwo.

Because these trading partners communicate using the XOCP business protocol,
Avitek must define its WebLogic Integration system as a hub-and-spoke
configuration. To that end, the BulkLoaderData.xml file defines a fourth trading
partner: E2E_Hub. (See the topic “Getting Started with B2B Integration” in the
document Introducing B2B Integration for details about configuring B2B integration.)

The E2E_Hub trading partner acts as an intermediary. It is responsible for mediating
messages between the spoke trading partners: E2E_Buyer, E2E_SupplierOne, and
E2E_SupplierTwo. The E2E Hub trading partner is not the sender or receiver of a
business message, but it acts as the proxy buyer and proxy supplier, at different times
during the transaction.

Each of the three trading partners—E2E_Buyer, E2E_SupplierOne, and
E2E_SupplierTwo—has a collaboration agreement with the E2E_Hub trading partner.
The E2E_Hub trading partner is responsible for linking collaboration agreements. Such

Tour of the BEA WebLogic Platform Sample Application 3-3

3 Avitek Purchasing Agents Connect with Suppliers

linking is essential, for example, when a message arrives as part of one collaboration
agreement and must be routed to another trading partner as part of another
collaboration agreement. Collaboration agreements that use the same delivery
channel—the channel defined for the E2E_Hub trading partner—are linked.

Each trading partner element is characterized by various attributes and subelements,
some of which contain simple identification information, such as name, e-mail, phone,
and fax.

The following table summarizes the role of each trading partner.

Table 3-1 Trading Partner Roles

Partner Name Role

E2E Hub Routes the communication between the buyer and suppliers,
providing business-to-business integration

E2E_Buyer Coordinates business processes among suppliers and internal
functions (for example, back-end database updates), using workflow
templates.

Provides connectivity to the buyer's database system, using an
application view.

Handles data presentation and the user interface through HTML and
JSP pages.

E2E SupplierOne Responds to requests from the buyer and invokes internal programs
(for example, data transformation and persistence), using workflow
templates.

Performs data translations to facilitate the exchange of information
among applications.

E2E_SupplierTwo Same role as E2E_SupplierOne.

Using the WebLogic Integration Studio

The WebLogic Integration Studio allows you to design new workflows and monitor
running workflows using a familiar flowchart paradigm. You are not required to run
the Studio when you run this b2bPortal sample, but you may find it useful for viewing
the details of any workflow or workflow node, and for learning how nodes are defined
and configured for this sample. You can also use the Studio to monitor the workflows
as you run the sample.

3-4 Tour of the BEA WebLogic Platform Sample Application

The Product Inventory Portlet

On a Windows system, choose Start —Programs -BEA WebLogic Platform 7.0 —
WebLogic Integration 7.0 —Studio.

Log on to the Studio:

m User: admin

m Password: security

m Server: t3://localhost:7501

For example:

E Logon to WeblLogic Integration

BEA WebLogic
Integration ™

o, User Mame
2 ¢ [admin

P !
4 h g Password
A
" e ITWT'K'K'KTT

Server URL {protoc..

IES:IIIDcthDst:TSM
Ok I Cancel |

(c) Copyright 2001 BEA Systems, Inc.
All rights rezenred.

Note: Use t3, not http.

Viewing Workflow Templates in the Studio

To view a workflow template and its properties in the Studio, complete the following
steps:

1. Inthe left pane of the Studio, make sure ORG1 is selected in the Organization field.

2. In the left pane, double-click the Templates folder to display a list of workflow
templates.

Tour of the BEA WebLogic Platform Sample Application 3-5

3 Avitek Purchasing Agents Connect with Suppliers

3. Expand the Templates folder to display the list of workflow template definitions.
They are defined in the workflows.jar file that is preconfigured by this sample.
The worksflows.jar file resides in:

weblogic700\samples\integration\samples\e2e\workflows

4. Right-click a template definition, and select Open to open the workflow template
in the Studio. For example:

EWebLugic Integration Studio: t3://localhost: 7501

File ¥iew Configuration Tools Window Help

Organizatian J

|orG1 =l
E-_4 Templates

-] E2E_BuyerPOPrivate
=4 E2E_BuyerPOPublic

Ti=<1 |

£] E2E_Buyercr I
[JEZE_BuyeraP Close
Saie

Wrdo

_ Capy
CIE2E_Supplien gynog

1 EZE_Supplier
®-[| E2E_Supplier DEEE

------ # Calendars Print
H-__] Users ;
%) Roles Properties
------ # Routing Instances

""" ® Workload Report Delete Instances
------ # Statistics Report

3-6 Tour of the BEA WebLogic Platform Sample Application

The Product Inventory Portlet

This step opens a graphical view of the template in the Studio. For example:

B& Workflow Design POPublic 7/5/01 2:44 PM ™ =]

y O|lw|o|<o|D|o]|e |

b d PO to selected
e ° sElecte $5endStatus
supplier
@

L

Send FO E
fucknowledgement to rf—————— 3
PO Frivate wakflow R

4] |

Note: You can also expand a particular workflow template definition to display
folders containing the Tasks, Decisions, Events, Joins, Starts, Dones, and
Variables for that workflow template definition.

Double-click any node in the Studio to display the Properties dialog box for that node.
See Using the WebLogic Integration Studio in the WebLogic Integration
documentation for complete details about the Studio tools and functionality.

Business Process and Workflow Modeling

This section presents a brief introduction to the business process management (BPM)
functionality provided by WebLogic Integration.

Workflows that implement the roles assigned to trading partners in a conversation
definition are referred to as collaborative workflows.

A workflow template represents a workflow, and combines various workflow template
definitions (versions) of its implementation. Workflow templates are designed and
edited in the WebLogic Integration Studio. Several BPM plug-ins extend the
functionality of the Studio:

m B2B integration plug-in—supports B2B integration, that is, the design and
management of collaborative workflows. The Studio allows you to assign

Tour of the BEA WebLogic Platform Sample Application 3-7

3 Avitek Purchasing Agents Connect with Suppliers

properties to the workflows. These properties make the workflows usable in the
B2B integration environment.

m Application integration plug-in—allows you to design workflows that can
integrate back-end and legacy enterprise information systems (EIS).

m Data integration plug-in—allows you to design workflows that integrate
heterogeneous data formats, by making it possible to share data among
heterogeneous EIS applications.

In this sample scenario, trading partners implement both private and collaborative
workflows. Private workflows work in conjunction with the collaborative workflows,
and implement local processes for the trading partners. Local and private processes are
not necessarily dictated by the conversation definition. For example, when a trading
partner starts a conversation, that trading partner's private workflow can start the
collaborative workflow to initiate the conversation.

Please see the WebLogic Integration documentation for complete descriptions. In this
sample, the Technical Details sections for subsequent portal pages will describe the
two business processes implemented by this sample application: Query Price and
Availability (QPA) and Purchase Order (PO).

Inventory Page Portlets

The Inventory page is one of three tabbed pages in the b2bPortal. In the BEA HOME
directory where you installed WebLogic Platform, you will find the files that comprise
the e2enpp in the following locations:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\. ..
weblogic700\samples\platform\e2eDomain\beaApps\e2eApp-project\...
This Inventory page can include the following portlets:

m The login portlet, used when an authenticated user has been logged into the
application. It provides the Logout button and the name of the currently
logged-in user.

m The productinventory portlet, which will identify the inventory levels of the
products that the purchasing agent manages.

m The purchasingprocess portlet, which provides the appropriate graphic in the
banner to show the purchasing agent the sequence of steps in the ordering
process.

3-8 Tour of the BEA WebLogic Platform Sample Application

The Product Inventory Portlet

m The b2b-tourguide portlet, which provides the context-sensitive
documentation in the running sample. . It has two forms: the smaller version on
the left side of the running application, and the current maximized version that
includes Technical Details, View Code, and e-docs pointers.

All of the portlets that comprise the Inventory page are identified in the following file:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp-project
\application-sync\webapps\b2bPortal\b2bPortal.portal

For example:
<page-name>Inventory</page-name>

<portlet-pools>
<portlet-name>login</portlet-name>
<portlet-names>partinventory</portlet-name>
<portlet-namesproductinventory</portlet-names
<portlet-name>purchasingprocess</portlet-name>
<portlet-name>b2b-tourguide</portlet-name>
<portlet-name>debug</portlet-name>
<portlet-name>anonUser</portlet-names>

</portlet-pools>

During the development cycle, these portlets were added to the Inventory page using
the E-Business Control Center. The EBCC is a Java client-based tool suite. It provides
graphical interfaces that simplify complex tasks such as rule definitions, Webflow
editing, and portal creation and management. As users of the E-Business Control
Center work with its point-and-click interface, it generates XML files that are
synchronized with the server. In addition to the EBCC, the browser-based Portal
Administration tools were used for administering and managing the portal at runtime.

Portal developers are primarily interested in the portlet JSP code before it was rendered
by the browser. That's why the code fragments in this section, and the View Code link,
describe and show you the pre-rendered JSP file for a particular portlet.

You can find the b2bPortal's portlet JSP files in:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\b2bPortal
\portlets\...

For this Inventory page, the View Code link opens the source for the
\productinventory\content .jsp portlet file. It presents the Avitek Product
Inventory (1) portlet. This content.jsp resides in the productinventory subdirectory
under the path shown above.

Tour of the BEA WebLogic Platform Sample Application 39

3 Avitek Purchasing Agents Connect with Suppliers

Outline of Initial Portal Processing

When you started the sample application, what happened that resulted in the server
startup and then the initial display of the Introduction or “splash” page? First, there
were several ways you could have invoked the sample application, such as from the
WebLogic Platform Quick Start Application or directly by running a startE2E script.

Regardless of which option you used, the startE2E.bat (Windows) or startE2E.sh
(UNIX) script was invoked. It started a WebLogic Server instance for the application,
which runs in a domain named e2eDomain. The word “domain” has many meanings
in the computing industry. BEA products use domain to mean a collection of servers,
services, interfaces, machines, and associated resource managers, all defined by a
single configuration file.

When the startE2E script runs, it reads configuration information from the enterprise
application’s config.xml file. By default this configuration file resides in the
following BEA HOME installed directory:

weblogic700/samples/platform/e2elpp/config

The config.xml file includes the following definition, setting splashpage as the
default Web application in the domain:

<WebServer
DefaultWebApp="splashPage"
LogFileName="./logs/access.log"
LoggingEnabled="true"
Name="e2eServer"

/>

With the e2eServer running, specifying a URL such ashttp://localhost: 7501 in
a browser results in running the splashPage Web application (or “webapp”) in:

weblogic700\samples\platform\e2eDomain\bealApps\e2elpp\splashPage

The splashPage webapp’s web.xml configuration file designated index . jsp in the
<welcome-file-1ist> definition. This web.xml resides in:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\splashPage\
WEB-INF

On the splash page, you clicked the “AUTO LOGIN as purchasing agent Jason Tang”
button graphic to arrive on this Inventory page. That resulted in the splash page passing
in the URL for the portal application, plus predefined login credentials.

3-10 Tour of the BEA WebLogic Platform Sample Application

The Product Inventory Portlet

The splash page sets up requests that allow you to automatically log into the b2bPortal
or b2cPortal. This is done to help simplify this sample application. You would not want
to embed usernames and passwords in a JSP page.

The form results in opening the URL constructed as:

o°

<
String b2bUrl = "http://" +
request.getServerName () + ":" +
request.getServerPort () + "/" +
B2B_PORTAL_NAME + "/application";

For this WebLogic Platform sample application, we elected to automatically log in an
existing user, in order to focus the sample on the most important features. WebLogic
Portal provides other samples that demonstrate login authentication code, plus
techniques to gather demographic information via Web applications. For details,
please refer to the WebLogic Portal Developer Guide.

Once the URL was passed to the browser for the b2bPortal application, why was the

Inventory page the first page displayed? This property was set in the WebLogic Portal
Administration Tools. In the Portal Management section of that tool, under Pages and
Portlets, we set the b2bPortal’s default page on the Select and Order Pages screen. This
value is stored in the database, in the INDEX NUMBER column of the

PORTAL PAGE P13N table.

Page Change Webflow Events

When a customer clicks a link or button on a JSP, it is considered an event. Events
trigger particular responses in the default Webflow that allow customers to continue.
While this response can be to load another JSP, it is usually the case that an Input
Processor and/or Pipeline is invoked first.

When you are on a Purchasing or Order History page and then click the Inventory tab,
you will notice a resulting URL similar to the following (shown here on several lines
to improve readability).

http://<host>/<port>/b2bPortal/application?
origin=hnav_bar.jsp&event=bea.portal.framework.internal.refresh

&pageid=Inventory

The refresh event causes any page to be displayed again with the latest data. The
Avitek Product Inventory portlet has its data refreshed.

Tour of the BEA WebLogic Platform Sample Application 3-11

3 Avitek Purchasing Agents Connect with Suppliers

The page tabs are provided via the hnav_bar. jsp file, which resides in:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\b2bPortal
\ framework

The hnav_bar.jsp file imports two JSP Tag libraries:

<%@ taglib uri="webflow.tld" prefix="wf" %
<%@ taglib uri="portal.tld" prefix="ptl" %

When you click the Inventory tab from another page in the application, the
hnav bar.jsp uses the following JSP tag in the link for the target tab:

<a href="<ptl:createPortalPageChangeURL
pageName="'<%= portalPageName %>'/>"><%=portalPageName%>

The (portal) pt1:createPortalPageChangeURL JSP tag generates a webflow URL
for a page change event.

Dynamic Portlet Display and Inventory Checks Via WebLogic Integration Al

On the Inventory page, let's look at one of the dynamic portlets,
\productinventory\content.jsp, shown as #2, “Avitek Product Inventory” on
the Inventory page.

The webflow namespace file for this portlet is:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp-project\app
lication-sync\webapps\b2bPortal\product .wf

It contains:

<presentation-origin node-name="product" node-type="jsp">
<node-processor-info page-name="content.jsp"
page-relative-path="/portlets/productinventory"/>

</presentation-origins

The content . jsp file is located in:

weblogic700\samples\platform\e2eDomain\bealApps\e2eApp\b2bPortal
\portlets\productinventory\content.jsp

The content . jsp file includes the following import statement:

<%@ page import="examples.e2e.common.Inventory" %>

3-12 Tour of the BEA WebLogic Platform Sample Application

The Product Inventory Portlet

In a scriptlet in content . jsp, we iterate through the product data in the database to
get current inventory levels. When levels are below the defined minimum, we use a
CSS_INV_BELOW MIN setting from the CSS file, displaying the inventory problem in
red. For example:

o°

<
Iterator it = rState.getProducts().iterator() ;
Inventory prod = null;
String rowCssClass = null;

String extraParams = null;
int 1 = 0;

for (; it.hasNext(); i++) {
prod = (Inventory) it.next();

if (prod.isBelowMinimum()) {
rowCssClass = CSS_INV_BELOW_MIN;
}

else {

}

extraParams = PRODUCT PARAM EQUALS + prod.id() ;
// skip the row divider the first time through
if (1 t=0) {

rowCssClass = CSS_PRODUCT_ ROW;

o°

>

For the b2cPortal and this b2bPortal application, we created a service provider
interface (SPI) named InventoryProvider. It is implemented as a stateless session
EJB and has three methods:

checkInventory ()

m Uses the WLI Al framework to make a call via an already configured Al service.
This service queries the inventory table to select the quantity from
E2E_PRODUCT_INV where sku = value.

m Calls to an XML helper to parse the response from Al.
m Returns available inventory (int) based on response.
getProductInventory ()

m Uses Al to make a call via an already configured Al service. This service will be
to query the inventory table. For example: select sku, desc, minimum,
maximum, quantity from E2E_PRODUCT INV where parent sku = NULL.

m Call to an XML helper to parse the response from Al to create a List of
Inventory objects.

Tour of the BEA WebLogic Platform Sample Application 3-13

3 Avitek Purchasing Agents Connect with Suppliers

getProductPartInventory ()

m Uses Al to make a call via an already configured Al service. This service will be
to query the inventory table. For example: select sku, desc, minimum,
maximum, quantity from E2E_PRODUCT_INV where parent sku <>
NULL.

m Calls to an XML helper to parse the response from Al to create a List of
Inventory objects.

The InventoryProvider SPIis common between the b2bPortal and b2cPortal. Its
source files are in the following location:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\src\example
s\e2e\common\inventory\spi*.java

For the b2bPortal, the inventory check is implemented by:

B CheckInventoryAction
B GetProductInventoryAction

B GetProductPartInventoryAction
The Java source files for these programs are in the following location:

weblogic700\samples\platform\e2eDomain\bealApps\e2elpp\src\example
s\e2e\common\inventory\ref*.java

These programs use the get Product Inventory () and
getProductPartInventory () methods provided in the EJB. To simplify this
sample application, when using the get Product Inventory (List SKUs) method,
the List of SKUs will be hardcoded in the pipeline component.

In the productinventory\content . jsp portlet, we then display the data returned.
For example:

<!-- model number -->

<td width="187" class="<%= rowCssClass %>"><%= prod.id() %></td>
<!-- minimum # of units -->

<td width="75" class="<%= rowCssClass %>"><%= prod.min() %></td>
<!-- maximum # of units -->

<td width="75" class="<%= rowCssClass %>"><%= prod.max() %></td>

<!-- available # of units -->
<td width="67" class="<%= rowCssClass %>"><%= prod.available() %></td>

3-14 Tour of the BEA WebLogic Platform Sample Application

The Product Parts Inventory Portlet

Next Step

To continue the tour, click the Check Parts Inventory button for the pix1000 camera.

The Product Parts Inventory Portlet

You may need to scroll down to see all of the Product Part Inventory portlet (Step 2),
which lists the parts that comprise the Avitek product you selected in Step 1. Inventory
levels are shown for each part. Data for any individual parts that are below minimum
inventory levels are shown in red.

2 Product Part Inventory O6A 102 11:51 &4 EDT

“iewy the list beloyy to check the parts invertory for the product you selected above.

Madel Part No. Description Min. Units Max. Units Available

pix1000 pixchip1 000 Chip 10000 20000 3521 Reguest Quote

l :“ pixflas1000 Flash 15000 40000 24150 Request Guote
pixlenz1000 Lenz 15000 40000 14675 Reguest Quote
pixshut! 000 Shutter 15000 40000 FEEe2 Request Guote

Technical Details for the Product Parts Inventory Portlet

The processing for the Product Part Inventory portlet, Step 2 in our inventory process,
is similar to the Product Inventory portlet. If the inventory for any product part is below
its minimum level, the data is shown in red. To get current inventory levels, an
Inventory table in the database has been accessed in read-only mode via the
Application Integration (Al) framework. The Al framework is provided by WebLogic
Integration. In this case, the getProductPartInventory () method provided by the
InventoryProvider SPI was used.

Tour of the BEA WebLogic Platform Sample Application 3-15

3 Avitek Purchasing Agents Connect with Suppliers

Product Part Inventory Check Via WebLogic Integration Al

On the Inventory page, let's look at one of the dynamic portlets,
\partinventory\content2.jsp, shown as #2, “Avitek Product Inventory” on the
Inventory page. The content2.jsp file is active after a product was selected in the
Product Inventory portlet. (The \partinventory\content.jsp portlet is the
inactive version, used when no product has been selected yet on the Inventory page.)

The webflow namespace file for this portlet is:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp-project
\application-sync\webapps\b2bPortal\part.wf

It contains:

<presentation-origin node-name="product" node-type="jsp">
<node-processor-info page-name="content2.jsp"
page-relative-path="/portlets/productinventory"/>
</presentation-origins>

The content2.jsp file is located in:

weblogic700\samples\platform\e2eDomain\bealApps\e2eApp\b2bPortal
\portlets\partinventory\content2.jsp

The content2.jsp file includes the following import statement:
<%@ page import="examples.e2e.common.Inventory" %>

In a scriptlet in content2. jsp, we iterate through the product and part data in the
database to get current inventory levels. When levels are below the defined minimum,
we use a CSS_INV_BELOW MIN setting from the CSS file, displaying the inventory
problem in red. For example:

o°

<
String rowCssClass = null;;
String extraParams = null;

int 1 = 0;
for (; parts.hasNext(); i++) {

part = (Inventory) parts.next();

if (part.isBelowMinimum()) {
rowCssClass = CSS_INV_BELOW_MIN;

else {

3-16 Tour of the BEA WebLogic Platform Sample Application

The Product Parts Inventory Portlet

rowCssClass = CSS_PART ROW;

}

extraParams = PART_ PARAM EQUALS + part.id();

o°

>

For the b2cPortal and this b2bPortal application, we created a service provider
interface (SPI) named InventoryProvider. It is implemented as a stateless session EJB
and has three methods:

checkInventory ()

m Uses the WLI Al framework to make a call via an already configured Al service.
This service queries the inventory table to (for example) select gquantity
from E2E_PRODUCT_INV where sku = value.

m Calls to an XML helper to parse the response from Al.
m Returns available inventory (int) based on response.
getProductInventory ()

m Uses Al to make a call via an already configured Al service. This service will be
to query the inventory table. For example: select sku, desc, minimum,
maximum, quantity from E2E_PRODUCT INV where parent sku = NULL.

m Call to an XML helper to parse the response from Al to create a List of
Inventory objects.

getProductPartInventory ()

m Uses Al to make a call via an already configured Al service. This service will be
to query the inventory table. For example: select sku, desc, minimum,
maximum, quantity from E2E_PRODUCT_ INV where parent sku <>
NULL.

m Calls to an XML helper to parse the response from Al to create a List of
Inventory objects.

The InventoryProvider SPI is common between the b2bPortal and b2cPortal. Its
source files are in the following location:

weblogic700\samples\platform\e2eDomain\bealApps\e2elApp\src\example
s\e2e\common\inventory\spi*.java

Tour of the BEA WebLogic Platform Sample Application 3-17

3 Avitek Purchasing Agents Connect with Suppliers

<td

<td

<td

<td

<td

Next Step

3-18

For the b2bPortal, the inventory check is implemented by:

B CheckInventoryAction

B GetProductInventoryAction

B GetProductPartInventoryAction

The Java source files for these programs are in the following location:

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\src\example
s\e2e\common\inventory\ref*.java

These programs use the get ProductInventory () and
getProductPartInventory () methods provided in the EJB. To simplify this
sample application, when using the get Product Inventory(List SKUs) method,
the List of SKUs will be hardcoded in the pipeline component.

Inthe partinventory\content2.jsp portlet, we then display the data returned. For
example:

class="<%= rowCssClass %>" width="64"><%= part.id() %></td>
class="<%= rowCssClass %>" width="83"><%= part.description() %></td>
class="<%= rowCssClass %>" width="74"><%= part.min() %></td>
class="<%= rowCssClass %>" width="75"><%= part.max() %></td>
class="<%= rowCssClass %>" width="60"><%= part.available() %></td>

To continue the tour, in the #2 Product Part Inventory portlet, click the Request Quote
button next to a part that is shown in red.

Tour of the BEA WebLogic Platform Sample Application

The Query for Price and Availability Portlet

The Query for Price and Availability Portlet

You may need to scroll down to see the Query for Price and Availability (QPA) portlet
(Step 3). It provides a form to generate a QPA. To make it easier for the purchasing
agent to focus on data needed for the QPA request, the Product Inventory and Product
Part Inventory portlets have been replaced by an Inventory Summary portlet. Be sure
to see the Next Steps section below for information about filling in the requested input
on this form.

O&M1/02 1

o are submitting an order for the following product.

Model Part No. Description Min. Units Max. Units Available
piz1000 pixlens1000 Lens 15000 40000 14675
(&

3 Query for Price and Availability (QPA) 0B 1.1
Fill aut the form below to generate a Query far Price and Availakbility (QPA).

Query Summary

Part Mo. Description Quantity neadad Unit Price Date required to
to fulfill order receive shipmant

pizlens1000 Lens or |25 |Aug =] |2Q;I _Send 0PA Request |

Quotes for Price and Availability =

Mo guery for Price and availablity has been submitted at this time.

Purchase Order for Review

Mo guote has been selected st this time.

Tour of the BEA WebLogic Platform Sample Application 3-19

3 Avitek Purchasing Agents Connect with Suppliers

Technical Details for the Query for Price and Availability
Portlet

The Query for Price and Availability (QPA) portlet simply provides a form to generate
a QPA. The QPA business process, which starts when you click the Send QPA Request
button on this Step 3 portlet, is described in the section “The Quotes for Price and
Availability Portlet, and the QPA Business Process” on page 3-21.

On this Query for Price and Availability portlet, to make it easier for the purchasing
agent to focus on data needed for the QPA request, the Product Inventory and Product
Part Inventory portlets have been replaced by an Inventory Summary portlet.

When you return to the sample application, be sure to follow the advice in the Next
Steps section of the Tour Guide. It is worth repeating here.

On this Query for Price and Availability portlet:
m Enter the quantity needed to fulfill the order.
m Then enter a unit price for the product part; for example, enter 50.00.

m Also enter the date that is required to receive the shipment; for example, enter a
date one week from today.

Then click the Send QPA Request button.

If you see the following errors, enter the values again, and then click the Send QPA
Request button:

m “The value supplied for the quantity field is below the minimum allowed of 1”
m “A value is required for the unit price field”

m “The date chosen is prior to the current date”

3-20 Tour of the BEA WebLogic Platform Sample Application

The Quotes for Price and Availability Portlet, and the QPA Business Process

Next Steps

If you have not already done so, enter the quantity needed to fulfill the order. Then
enter a unit price for the product part; for example, enter 50. Also enter the date that is
required to receive the shipment; for example, enter a date one week from today. Then
click the Send QPA Request button to continue the tour.

The Quotes for Price and Availability Portlet,
and the QPA Business Process

Initially the Step 4 portlet, Quotes for Price and Availability, presents a message that
it may take some time to get quotes back from suppliers.

4 Quotes for Price and Availability 05411402 11:56 A EDT

Check for Quwates

After you select the Check for Quotes button one or more times, the portlet will
eventually be refreshed with quotes from suppliers. This processing demonstrates
integration between the portal framework in WebLogic Portal and the
business-to-business interaction managed by WebLogic Integration.

4 Quotes for Price and Availability D512 12:00 P EDT

Your suppliers have responded to vour GPA with the following quotes for your consideration.

Quote 1D Part No. Description Quantity Unit Price Date Avail. Supplier
E2E_Supplierone_2 pixlens1000Lens 324 F2500 Aug2902 EZE_SupplierCne
E2E_=Supplier Two_2pixlens1000Lens 325 F2500 Aug 2902 E2E_SupplierTwa

Tour of the BEA WebLogic Platform Sample Application 3-21

3 Avitek Purchasing Agents Connect with Suppliers

Technical Details for the QPA Business Process

This section focuses on the Query for Price and Availability (QPA) business process,
which was started when you clicked the Send QPA Request button on the prior Step 3

portlet.

Due to the shortage of the pixlens1000 part for the pix1000 camera, the Avitek
purchasing agent sent a QPA message for this part to selected suppliers. The following
diagram illustrates the flow of events for the QPA business process:

Process Flow in the QPA Business Process

Supplier Process

Buyer Process

Start from private
warkflow: . GRA is
pazzed to the

warkflow:

Supplier's collaborative
wearkflowy started when
ohject variahle received

; Extract Query
FQPA iz aszocisted Generate OPA N Parameters
with object variake XML Document | from QPA Doc.

s +
v/

Collabarative send i Query

sworkflowe sends QPA, oue enPrice ¢ Inventory 4 Send FOPAto

request to suppliers | . i Control System private work o

Receive reply
framm private workflo

‘Wait for response
from supplier-side
warkflow

.
W
Extract the Extract K ('i‘ompose Generate QP& reply
XML varisble Message " essage —— baszed on invertary
~ information
' ¢
¥ K Send Collaborative

Collaborative
wrarkflowe sends Aggregate Rephy T==== workflow sends
QPA reply to buyer

Done evert to caller Responses:
1 Return XML
Document to
Browser
- Wait Wiait for conversation to end

3-22 Tour of the BEA WebLogic Platform Sample Application

The Quotes for Price and Availability Portlet, and the QPA Business Process

The following sequence summarizes the events illustrated in the preceding figure:
1. The buyer trading partner creates a QPA.

2. The QPA is sent to suppliers.

3. The suppliers process the QPA and generate responses.

4. The buyer trading partner collects and aggregates responses from the suppliers.

Note: The preceding figure shows a high-level view of the QPA business process.
Each side of the process is implemented by a public (collaborative) and a
private workflow.

The workflow templates listed in the following table are used in this sample's QPA
process.

Table 3-2 QPA Process Workflow Templates

Role Public/Private Workflow Name

Buyer Private E2E_BuyerQPAPrivate
Buyer Public E2E BuyerPOPublic
Supplier Public E2E_SupplierPOPublic

Note: Both suppliers in the
scenario use the same public

workflow.
Supplier Private E2E_SupplierOnePOPrivate
Supplier Private E2E_SupplierTwoPOPrivate

WebLogic Integration manages the business conversations and collaboration
agreements between business partners, and it automates the business message
exchange between the buyer and suppliers. The workflows are referenced in the
collaboration agreements and conversations.

This sample uses JSPs and JSP tag libraries to initiate the QPA process and display
QPA request and response data. The following figure illustrates the data flow among
the trading partners involved in the QPA business transaction.

Tour of the BEA WebLogic Platform Sample Application 3-23

3 Avitek Purchasing Agents Connect with Suppliers

Data Flow in the QPA Business Process

3-24

EIS
Al Fvential Services
Buyer — 2 Buyer
QPA Private XML QPA Public
Workflow 4—8 —— | Workflow
1 E2E_Buyer
9

—3—»
X0CP
e [—

-
N N

E2E_Hub

Supplier
QPA Public
Workflow

XML

- 6—

Supplierone
QPA Private
Workflow

E2E_SupplierOne

XML Message
l {via JM3 Queue)

JSP Tag Library

"

Jsp

Supplier
GQPA Public
Workflow

—5—m
XML
+6—

SupplierTwo
QPA Private
Workflow

E2E_SupplierTwo

The following sequence of events summarizes the data flow among trading partners

and workflows:

1. The portlet containing the QPA form sends the QPA request to a JMS queue and

triggers the E2E_BuyerQPAPrivate workflow.

2. The E2E_BuyerQPAPrivate workflow invokes the E2E_BuyerQPAPublic

workflow, passing it the QPA request XML document. It then initiates the QPA

conversation.

3. Based on the collaboration agreement between the E2E_Buyer and the E2E_Hub

trading partners, the E2E_BuyerQPAPublic workflow packs the QPA request
XML into an XOCP message and sends it to the E2E_Hub trading partner.

Note:

When the E2E_Hub trading partner receives a message, it is acting as the
proxy supplier in the collaboration agreement.

4. The E2E_Hub trading partner routes the message to the destination trading
partners, E2E_SupplierOne and E2E_SupplierTwo, based on registered

collaboration agreements between itself and each supplier.

Note:

In this step, the E2E_Hub trading partner changes roles and becomes the
proxy buyer in the collaboration agreements between itself and the

suppliers.

Tour of the BEA WebLogic Platform Sample Application

The Quotes for Price and Availability Portlet, and the QPA Business Process

Each supplier's public workflow is triggered by receiving the XOCP message. In
this scenario, E2E_SupplierOne and E2E_SupplierTwo share the public
workflow (E2E_SupplierQPAPublic). The public workflow extracts the QPA
request XML document from the message.

5. The E2E SupplierQPAPublic workflow invokes a private workflow for each
supplier and passes the QPA request XML document to the private workflows.

6. Each supplier's private workflow creates its own QPA response (an XML
document), and attaches it to the return variable of the public workflow.

7. The E2E_SupplierQPAPublic workflow extracts the QPA response XML
document, packs it into an XOCP message, and sends it to the buyer.

Note that the E2E_Hub trading partner acts as a routing proxy for E2E_Buyer.
When the supplier trading partners send response messages to E2E_Hub (based
on collaboration agreements between E2E_Hub and each supplier trading
partner), E2E_Hub acts as the proxy buyer.

E2E_Hub then changes roles to that of proxy supplier, and routes the response
messages to the buyer (E2E_Buyer), based on the collaboration agreement
between E2E Hub and E2E_Buyer.

8. The buyer's public workflow (E2E_BuyerQPAPublic):

e Extracts the QPA response XML document from the XOCP message it
receives.

e Aggregates both supplier response documents into a single XML document
and posts it, via a JMS queue, to the buyer's private workflow
(E2E BuyerQPAPrivate).

e Terminates the QPA conversation and notifies the supplier public workflow
(E2E_SupplierQPAPublic).

9. The buyer's private workflow (E2E_BuyerQPAPrivate) receives the aggregated
QPA response XML document and writes it to an XML file. A JSP parses the
XML and displays the aggregated QPA response in the Web browser.

This step marks the end of the QPA business process.

For more detailed information about this process, see the WebLogic Integration
documentation.

Tour of the BEA WebLogic Platform Sample Application 3-25

3 Avitek Purchasing Agents Connect with Suppliers

Next Steps

On the Quotes for Price and Availability portlet, if you have not received quotes back
from the suppliers yet, click the Check for Quotes button again. When quotes have
been returned, accept one of the quotes and then click the Create Purchase Order button
to continue the tour.

The Purchase Order for Review Portlet and
PO Business Process

You may need to scroll down to see the Purchase Order for Review portlet (Step 5). It
lists an order summary and purchase summary.

065102 12:03 P EDT

Review the following Purchase Order

Order Summary
F.O. No. GCreated Supplier Delivery Date
R Jun 11, 2002 E2E_Supplier Twea Aug 29, 2002 - Thursdsay

Purchase Summary

Quote 1D Part No. Description ‘Quantity Unit Price Ext. Price
EZE_Suppliet Twao_Zpixlens1000 Lens 325 $25.00 $5,125.00
Total $8,125.00

Submit Purchase Order

Technical Details for the PO Business Process

This section focuses on the Purchase Order business process, which will start once you
(acting as an Avitek purchasing agent) click the Submit Purchase Order button on the
Purchase Order for Review portlet. It lists an order summary and purchase summary.

3-26 Tour of the BEA WebLogic Platform Sample Application

The Purchase Order for Review Portlet and PO Business Process

Process Flow in the Purchase Order Business Process

Buyer-Side Process

EIS posts evert
to trigger buyver
PO private
e arkfloe

1. PO private v
searkflow triggers
PO public seorkflow. Send XOCP
2. PO public Message
wearkflow sends] (XML PO
HKOCP message | Document)
wig WYWLIS_Hub
to selected supplier.
ait for
0 Ac]
Business operation Update PO
writes POACK data to with POAck
file. Information

l
=)

Supplier-Side Process

Convert PO:

!

Supplier public workflow
started on receipt of XOCP
PO message.

XML to Binary [—

1. PO public swarkfliosw:
triggers PO private wworkflow.
2. Incoming XML translated
to binary data.

Submit PO to 1. Buziness operation

Back-End wirites hinary data to file
System & aystam.
Receive POACk 2. PO&CK generated by
private workflow,
Convert POACKk:
Binaryto ML
Public workflowe wraps
Send POAck
o Buyer | the POk XML inan
HOGCP husiness message.

v

The following sequence summarizes the events illustrated in the preceding figure:

1.
2.

The buyer composes a purchase order (PO) document.

The buyer sends the PO document to the selected supplier.

The supplier receives the PO and converts the XML-based PO document into a
binary data file. (In this sample we assume the supplier's order management
system expects to receive a binary file to process the order).

The supplier generates an XML-based PO acknowledgment document, based on
another binary data file.

The supplier sends the PO acknowledgment document to the buyer.

Tour of the BEA WebLogic Platform Sample Application 3-27

3 Avitek Purchasing Agents Connect with Suppliers

6. The buyer updates the PO information, based on the PO acknowledgment.

Note: The preceding figure shows a high-level view of the PO business process.
Each side of the process is implemented by a public and a private workflow.

The workflow templates listed in the following table are used in this sample's QPA
process.

Table 3-3 QPA Process Workflow Templates

Role Public/Private Workflow Name

Buyer Private E2E_BuyerQPAPrivate
Buyer Private E2E_BuyerPOPrivate
Buyer Public E2E_BuyerPOPublic
Supplier Public E2E SupplierPOPublic

Note: Both suppliers in the
scenario use the same public

workflow.
Supplier Private E2E SupplierOnePOPrivate
Supplier Private E2E SupplierTwoPOPrivate

The PO implementation for this sample requires WebLogic Integration support for
application integration, data integration, and management of business processes. This
section describes the PO workflows, including their integration with back-end
applications and heterogeneous data formats.

The following figure illustrates the data flow among the trading partners involved in
the PO business process.

3-28 Tour of the BEA WebLogic Platform Sample Application

The Purchase Order for Review Portlet and PO Business Process

Data Flow in the PO Business Process

X E2E_Buyer
5,
Al Services/Al Events
| N\
11 Buyer
| 3 |@PA Private
| i Workflow E2E_SupplierTwo
Buyer — 4 —> Buyer |— 9" 3 }’ Supplier [b — SupplierTwo
PO Private | XML PO Public | E2E_Hub PO Public XML PO Public
Workflow [«— 19 —| Workflow [« 9— 99— workflow |=— 8 —| Workflow
L—] | | $
12 XML Message 7
l(‘"a JMS Queue) Data Integration l
. [sp]
JSP Tag Library [% Eal Binary File

L_| JSP
]

The following sequence of events summarizes the data flow among trading partners,
workflows, and back-end systems:

1.

The PO business process will start when you, as the buyer in this scenario, click the
Submit Purchase Order back on the Purchase Order for Review portlet.

This PO, in the form of an XML message, is posted to the BPM JMS queue.

The buyer's private workflow (E2E_BuyerQPAPrivate) that subscribes to the
XML event is invoked by the event posting.

The E2E BuyerQPAPrivate workflow invokes the insertPO service on the
E2EAppView.sav application view to insert the PO information into the
Enterprise Information System (EIS). The EIS is simulated by an RDBMS in
this sample. (The E2EAppView. sav application view, together with its services
and events, is configured and deployed in WebLogic Integration when you set up
the sample.)

The EIS sends an event containing the PO information to the WebLogic
Integration process engine.

The application view event triggers the start of the buyer's private workflow for
the PO process (E2E_BuyerPOPrivate).

Tour of the BEA WebLogic Platform Sample Application ~ 3-29

3 Avitek Purchasing Agents Connect with Suppliers

10.

I1.

The E2E_BuyerPOPrivate workflow starts the buyer's public workflow
(E2E_BuyerPOPublic).

E2E_BuyerPOPublic sends an XOCP message to the suppliers' public workflow
(E2E SupplierPOpPublic). This step initiates the PO conversation.

The E2E_Hub trading partner routes the message to the destination trading
partner, E2E_Buyer, based on a registered collaboration agreement between
itself and E2E_Buyer.

Note: In this step, the E2E_Hub trading partner changes roles and becomes the
proxy supplier in the collaboration agreement between itself and the buyer.

On the supplier side, an instance of the suppliers' public workflow
(E2E_SupplierPOPublic) is started when the supplier receives the XOCP
message.

The E2E_SupplierPOPublic workflow starts the selected supplier's private
workflow (E2E_SupplierOnePOPrivate Or E2E_SupplierTwoPOPrivate).

The selected supplier's private workflow:

e Translates the XML PO data it receives to binary data, using the data
integration functionality of WebLogic Integration.

e Generates a PO acknowledgment in binary format.

e Translates the PO acknowledgment from binary format to XML.

The supplier's private workflow returns the PO acknowledgment XML data to the
E2E_SupplierPOPublic workflow.

The E2E_SupplierPOPublic workflow wraps the PO acknowledgment
information in an XOCP message and sends it to the buyer's public workflow
(E2E_BuyerPOPublic).

The E2E_BuyerPOPublic workflow receives the XOCP message, extracts the
XML content, and sends an XML event to the buyer's private workflow
(E2E BuyerPOPrivate).

This step marks the end of the PO conversation.

The E2E_BuyerpPOPrivate workflow uses the application integration framework
provided by WebLogic Integration to update the PO information in the EIS, based
on the data provided in the PO acknowledgment. The workflow also writes PO
acknowledgment information to the POAcknowledgement .xml file.

3-30 Tour of the BEA WebLogic Platform Sample Application

The Purchase Order History Portlet

12. WebLogic Portal can then read the POAcknowledgement .xml file and displays
the contents in the appropriate portlets, such as the Order History portlet.

This step marks the end of the PO business process.

For more detailed information about this process, see the WebLogic Integration
documentation.

Next Step

To continue the tour, click the Submit Purchase Order button to send the purchase
order to the supplier.

The Purchase Order History Portlet

The Order History page initially presents a summary view of the Purchase Order
History portlet. The sample application's data includes a few existing purchase orders.
A more detailed view of the same portlet is available by clicking the View Detail Order

History button.
Purchase Order History O 2:24 P EDT
P.O. No. Created Part No. Description Quantity Order Price Supplier Delivery Date Status
PO_20020611121500 Jun 11 02 pizlens1000 Lens 325 $5,125.00 E2E_SupplistTwao Aug 2902 Acknovledged
PO_1 May 1202 camsens3000 Imaging Sensor 2000 §1200000 E2E_SupplierFive Jun 2202 Acknowledged
PO_2 Mar 1202 prolenz5000 Lenz 5000 $2000000 EZE_SupplierTwo Apt 3002 Shipped
Back to Order History Summary
MOTE: | may take time to get an acknowledgement of & Purchase Order from Check P.0. Acknowledgement
& supplier. To check onthe status of a PO, click on the bottam to the right.

You can click the Check P.O. Acknowledgement button to check for
acknowledgements back from suppliers on the purchase order. Initially your screen
might look similar to the following:

Tour of the BEA WebLogic Platform Sample Application 3-31

3 Avitek Purchasing Agents Connect with Suppliers

Purchase Order I-istory 0611102 1214 PM EDT

FO. No. Created Part Mo. Description Quantity Delivery Date Status
P May 1202 camzens3000 Imaging Sensor 2000 Jum 2202 Acknowledged
Po_2 Mar 1202 prolenss000 Lens 5000 Apra002 Shipped

View Detail Order History |

MOTE: It may take time to get an acknowledgement of a Purchase Order from Check P.0. Acknowledgement |
a supplier. To check on the status of a P.O. click on the bottom to the right.

After clicking the Check P.O. Acknowledgement button a few minutes later, the
following screen shows an updated view with our purchase order and its delivery date

of August 29, 2002.
Purchase Order History 061110
RO. No. Created Fart Mo Description Quantity Delivery Date Status
PO _20020611121500 Jun 11 02 pixlens1000 Lens 325 Aug 2902 Acknowwlediged
PO May 1202 camsens3000 Imaging Sensor 2000 Jun2202 Acknowveledged
PO _2 Mar 1202 prolenss000 Lenz s000 Apr3002 Shipped

View Detail Order History |

MOTE: { may take time to get an acknowledgement of a Purchase Order from Check P.0. Acknowledgement |
a supplier. To check on the status of a PO, click on the baottom to the right.

Technical Details for the Purchase Order History Portlet

The Purchase Order History portlet on this Order History page displays the
Acknowledged, Shipped, or Received status and related information for each purchase
order (P.O.). A P.O. that you just submitted might not be shown in this portlet until the
acknowledgement has been received back from the supplier and you clicked the Check
P.O. Acknowledgement button.

If you just submitted a purchase order and it is not yet listed in the Purchase Order
History portlet (its status is pending), click the Check P.O. Acknowledgement button.

3-32 Tour of the BEA WebLogic Platform Sample Application

The Purchase Order History Portlet

Receiving the acknowledgement back from the supplier is, at a high level, the next to
last step in the Purchase Order business process. The final step is for the buyer (Avitek)
to update the P.O. information based on the P.O. acknowledgement. This Purchase
Order business process is illustrated and described in the Technical Details section for
the Purchase Order Review portlet.

On this Order History page, you can also click the View Detail Order History button
to see more details about purchase orders and their status. On the detailed view of the
portlet, you can click the Check P.O. Acknowledgement button to check the status. If
it is still pending, the portlet returns the message: “No acknowledgement has been
received for your purchase order.”

On the detailed Purchase Order History portlet, click the Back to Order History
Summary button to return to this view of the portlet.

Final Step for the B2B Portal Tour

This concludes the B2B tour. In the online tour, you can click the Logout button to
return to the sample's Introduction page. Note that when you log out, any purchase
orders you placed in this session are not stored in the database. That is, the inventory
levels are reset to their original values when you log back in as Jason Tang.

Tour of the BEA WebLogic Platform Sample Application ~ 3-33

3 Avitek Purchasing Agents Connect with Suppliers

3-34 Tour of the BEA WebLogic Platform Sample Application

CHAPTER

4

Web Services Tour

The sample application includes two Web services that we created in WebLogic
Workshop. If you took the tour through the business-to-consumer (B2C) sample portal
for Avitek Digital Imaging — section 02 from the sample’s Introduction page — you
probably saw the results returned by the Web services. One performs the product rating
look-up that is displayed in the site's Product Evaluator portlet. The other Web service
performs the credit card payment authorization.

This portion of the WebLogic Platform sample takes you behind the scenes to learn
how BEA WebLogic Workshop was used during the development cycle to create the
Web services. In addition, we show you how the Portlet Wizard can be used to
reference the product rating Web service’s WSDL and generate code for a portlet.

Note: The information that is presented in this section is also available by clicking
the “BEGIN Web Services Tech Tour” button on the sample application’s
Introduction page.

This Web services tour contains the following sections:

m Starting WebLogic Workshop

m Defining Web Services with WebLogic Workshop — An Overview
m Defining the Product Evaluator Web Service

m Defining the Payment Authorization Web Service

Tour of the BEA WebLogic Platform Sample Application 4-1

4 Web Services Tour

Starting WebLogic Workshop

The first step is to start the WebLogic Workshop visual development environment.
This section explains how to do that on supported Microsoft Windows and UNIX
platforms.

For supported platforms information, please refer to the Supported Platforms page on
the BEA e-docs Web site.

To start WebLogic Workshop from the Microsoft Windows Start menu, choose:

Programs —BEA WebLogic Platform 7.0 -WebLogic Workshop —-WebLogic
Workshop

To start WebLogic Workshop on UNIX, follow these steps:

1. Open a file system browser or shell.

2. Locate the Workshop.sh file in the BEA HOME directory structure. For example:
$HOME /bea/weblogic700/workshop/Workshop.sh

3. CD to the directory and type the following command:

sh Workshop.sh

4. Or, from a file system browser, double-click Workshop.sh.

About the Project Locations

For this tour, we are going to look at two Web services that were defined in WebLogic
Workshop for the WebLogic Platform Sample Application. The project files that
comprise these Web services were installed into the following locations under your
BEA HOME directory:

weblogic700\samples\platform\e2eDomain\bealApps\e2eWebServicesAp
p\workshop\productEvalWsC

weblogic700\samples\platform\e2eDomain\beaApps\e2eWebServicesAp
p\workshop\paymentWs

4-2 Tour of the BEA WebLogic Platform Sample Application

Starting WebLogic Workshop

The easiest way to view and test these Web services is to copy these two folders, shown
above in bold, to the following folder:

weblogic700\samples\workshop\applications\samples

After the copy operation, the folder hierarchy is as follows:

5‘ Exploring - D:\bead\weblogic700A\samples\work shophapplications\samples\payment'w5 [|O] x|

File Edit “iew Toolz Help

Iapa}lment\:\u’s j =1k é{:llﬂg il _Xll ||I
All Folders Contents of 'D:\bead weblogic 7004z ample:
ED weblogic700 ;I Mame | Size [Type
-3 comman Tat] Payrment s IKE WS File
[
D integration
D portal
EID zamples
D integration
D platform
+ - portal
B0 server
ED workshop
EID applications
: 1 winotdelete
{0 appiew
D Defaultw/ebdpp
E|C:| zamples
®- apps
(1 appiew
{23 async
(1 controlFactory
(1 creditrepaort
] databaze
1 eipContral
-] interop
D ims
3

[productEvahs'SC
-0 prosy

[service

(0 timer

-2 tutorials

-] Webinf

{1 wmlmap LI ‘I I _’I
4

|1 abiectlz) |2.24KEB [Disk free space: 652MB]

Then in WebLogic Workshop, use the Open Project menu option to navigate to the
JWS file for each Web service. When you start WebLogic Workshop for the first time
after installation, it prompts you to create a new project, or open a new one. We suggest
that you:

1. Click File =Open Project from the top-level menu.

2. Select the samples project, as shown in the following figure.

Tour of the BEA WebLogic Platform Sample Application 4-3

4 Web Services Tour

3. Click the Open button.

Projects on your development server:

appview
Defaultwebapp
samples

Refresh | | Choose a directary

G

Because you copied the productEvalwWsc and paymentwWs folders into the WebLogic
Workshop samples project’s folder, you will see them in the project tree, as shown in
the following figure.

T BEA WebLogic Workshop [_[O[x

File Edit View Service Debug Tools ‘Window Help
DEE@ s 2B~ |E@@E|E
Project Tree x
-3 Project ‘samples’
-] apps
-] appview
-] async
-] controlFactory
-] creditreport
-] database
-] ejbontrol
-] interop
-] jms
-] paymentws
]tl
-] proxy
-] service
-] timer
-] tutarials
F- | WEB-INF
-] xmimap
----- g Helloborld, jws
----- @index.html

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

Note: Each WebLogic Workshop project corresponds to a J2EE Web application, as
evidenced by the weB - INF folder in the samples folder.

4-4 Tour of the BEA WebLogic Platform Sample Application

Starting WebLogic Workshop

For example, you can expand the productEvalwsc folder in the project tree and then
double-click the EvalpProduct . jws file. The WebLogic Workshop visual
development environment displays a screen that is similar to the following:

%EvaIPmducLiws - BEA WebLogic Workshop

£

£

£

(-] credirepart
-] database
[#-_] eibContral
(-] interop

B jms

-] paymentws
-2 productEvalsC
; build-clientgen=ml

)

_ getEvaluation
—_F @—} getComments
—_—r getwveralRating
—(F getRelisbiityR. ..

g ProductEvalDBConkrol.cbrl ——
-2 prosy —(c getvalusRating
gg :i::lce —& = endEvaluation
B0 bkl B
Structure Pane X
= ‘i Member Yariables

- ==| createProductEvaluator Tablel)

- == | dropProductEvaluator Table)
=+ endEvaluation()

- ==| getComments()

... == | getEvaluationString productld)

- == getOverallRating()

- == getReliabilityRating)

- | getyalueR atingl)

[+ E conkexk

-) productEvalDB

o fo] FilTable()

ﬂ evaluation

Fie Edit Yiew Service Debug Tools ‘Window Help
DEd B o 549 EEIF B)@ adEamsx
Project Tree X J Design View ‘ |Snurce Wiew | EvalProduct.jws
=29 Project 'samples’ [o]
-2 apps | || Add Operation |v EvalProduct Add Control |v
) appview
Beee productEv...
-] async cuenr
-] controlFactory . createProduct .. createfr...

dropProductEy. .. dropProd. ..

ProductEvalDEControl. Evaluation evaluation

0

OATREAZE
findratin. ..

insertEv...

il

[

|]

Ready

@ Server Stoppe

Notice that a WebLogic Server instance is not running. See the next section for

information about server startup options.

Tour of the BEA WebLogic Platform Sample Application

4-5

4 Web Services Tour

Server Startup Options

If you are interested in simply viewing the definitions of the Web services, you will
not need to start a WebLogic Server instance in the WebLogic Workshop visual
development environment. However, if you want to run and test the Web services as
part of this tour, follow these steps. Although a server instance is already running for
the e2eDomain, in this tour we will start a separate server instance to run and test the
Web services located under:

weblogic700\samples\workshop\applications\samples

This assumes that you have already copied the paymentws and productEvalWsC
folders from the Platform samples area to the Workshop samples area, as described in
the previous section, “About the Project Locations” on page 4-2.

To run and test the Web services, follow these steps:

1. From the WebLogic Workshop visual development environment’s top-level menu,
click Tools —Preferences.

2. Click the Paths tab.

3. In the information about the server instance to be started, the default information
should be correct. Confirm that the domain is “Workshop”.

4. Check that the browser path is correct. If it is not correct, browse to the correct
location for your browser's executable.

The following screen shows sample values.

4-6 Tour of the BEA WebLogic Platform Sample Application

Starting WebLogic Workshop

Preferences E

|Display | | Editor | | Colors | | Paths |

Fweblogic development server

Mame: | locathost |

Example: localhost

Port: [7001 |

Example: 7001

Domain: | workshop |v

Config directory:

| [:\beadiweblogic 700 samples | | Browse. ..

Example: c:\bealweblogic700samples

rBrowser path

C:\Program FilesiPlus!iMicrosoft Internet) IEXPLORE EXE | | Browse. ..

Example: c:\Program FilesiInternet Explorer\IExplore.exe or fusrfbin/mozilla’ on Linux

5. On the Preferences screen, click OK.
6. From the top-level menu, click Tools —Start WebLogic Server.

When the server startup has completed, WebLogic Workshop displays a Server
Running status near the bottom of the screen.

Note: You can test already deployed Web services that were created in WebLogic
Workshop in a domain other than cgbomain. For example, the e2eDomain is
installed with the paymentws and productEvalwsc Web services deployed
under:

weblogic700\samples\platform\e2eDomain\beaApps\e2eWebServicesAp
p\workshop\ *

Tour of the BEA WebLogic Platform Sample Application 4-7

4 Web Services Tour

With the server instance for the e2eDomain running, you could test these Web
services, without having to open the WebLogic Workshop visual development
environment, by pointing your browser to:

http://localhost:7501/workshop/productEvalWSC/EvalProduct.jws
http://localhost:7501/workshop/paymentWS/Payment . jws

Whether you invoke the test pages from within WebLogic Workshop or not,
the product provides these very useful pages to test your Web services.

The next section presents an overview of WebLogic Workshop features and outlines
the process for defining a Web service.

Defining Web Services with WebLogic
Workshop — An Overview

Before we examine the Product Evaluator and Payment Web services that were created
for the WebLogic Platform sample application, let’s look at the basic steps for defining
Web services in WebLogic Workshop. We will cover some introductory topics for this
exciting new product, and also provide links to its online documentation for more
details.

WebLogic Workshop is a new visual development environment that makes it easy for
application developers and J2EE experts alike to build and deploy enterprise-class
Web services. The product is comprised of two major components:

m A design-time tool that lets developers write Java code to implement Web
services.

® A run-time framework that provides the Web services infrastructure, testing,
debugging, and deployment environment for applications.

4-8 Tour of the BEA WebLogic Platform Sample Application

Defining Web Services with WebLogic Workshop — An Overview

The WebLogic Workshop Visual Development
Environment

The WebLogic Workshop visual development environment provides a complete
environment for developing a Web service application. Standard features such as
project management, syntax highlighting, code completion, and integrated debugging
are all included. Also, WebLogic Workshop provides a useful visual approach to Web
services. For example, the following shows a sample Design View screen.

¥ Payment.jws - BEA WebLogic Workshop [_TO]x]
File Edb Wew Servics Debug Tools Window Help
DEEd SRR 53| DY B prOEEEEE XN
Project Tree x J Design View ‘ |SUurcE View ‘ Payment.jws *
Praperties - Payment x
1) creditreport fud Copseation |+ Payment ot Control | | | e o S
[(0] database Name Payment B
B ejbCantral B target-namespace
ouenr
s Qv = Lol s
= 0im Bl conversation-lifetime
12 payment W —(E) AuthorizeAndCap. ..
al % ALONEEANSEaR. .. max-age 1day
-] productEvalisc - HE b capture maxide-tine | 0
&0 proxy = protocol
-] service —@l% Settle Farmmepost true I~
B tmer formget true I~
E (] butorials - — hitp-saap true |-
[WEB-TNF Mermber Variables A o e .
-] =mimap Double openToBuy_
jmssoap false |~
0] Helloworld juus L Double amountToCapture_
[&] indls. el = long transactionID_ jms-zanl fase I~
— soap-style document |
Eo—. = long ERR_CODE_BAD_ARGUMENT]
long ERR_CODE_AMT_T0)_CAPTURE_MORE_THAMN_... e %
=g long ERR_CODE_AMT_T0_SETTLE_MORE_THAN_C... e ——
4] uthorize{String creditCardhiu Payment S
] uthorizeAindCapture(String cr
5| CaptureiCouble amountToCept Thisis the web service that you [+
are creating. Yau can add methads
.] Settle{Double smountToSettle) 1o the servie te exchange
.] ERR_CODE_AMT_TO_CAPTURY messages with a client, You can
. %] ERR_CODE_AMT_To_SETTLE | also add contrals ta invoke ather
.] ERR_CODE_BAD_PRGUMENT web services, cannect toa
database, use a timer, utiize an
.] mount ToCapture_ Enterprise Javabiean, or exchange [~ |
kd
%] apenTaBuy_ Tasks
#] transactionio_
K L | [
Ready @ Server Stopped In? colzs s

The Payment Web service under development appears at the center of the screen. The
design view lets users graphically create new methods, set properties on controls, and
specify the overall structure of a Web service and its relationship to the outside world.
The goal is to enable developers to focus on writing business logic — the code that is
executed in response to each incoming method — not the machinery of typical Java

programming. WebLogic Workshop supports two-way editing so any changes made

through the graphical environment are reflected immediately in code, and vice versa.

Tour of the BEA WebLogic Platform Sample Application 4-9

4 Web Services Tour

The WebLogic Workshop Source View screen provides all the standard Java IDE
editing features and exposes the Java Web Service (JWS) annotations. For example:

W Payment jws - BEA WebLogic Warkshop M= E
File Edit View Service Debug Tools Window Help
DEEP BB o|lgdd@|lsEq (D phsomEdE®mBm
Project Tree x ‘ Design View ‘ |Suun:e View | Payment.jws *
ik pass e
(2] creditreport [&3 Payment [~ [& tefiition) -]
datab.
£ database public class Payment =]
() eibContral :
Cinterop |
Caims Double openToBuy_;
(23 paymentWs Double amountToCapture_;
""") long transactionID :
(£ productExalWsC
S prosey public static final long EFR_CODE_BAD ARGUNENT = -1:
[service public static final long EFR_CODE_AMT TO CAPTURE MORE THAN AUTH = -2:
() timer public static final long ERR_CODE_AMT TO_SETTLE_MORE_THAN_CAPTURE
() tutorials
) WEB-INF fEE
(£ xmimap * Biws:operation
--JE] Hellowworid. jws " Biws:conversation phases="start”
[3) indest i - *
— public long Authorize(String creditCardMumber, Double openToBug)
Structure Pane x {
=gl if ((credicCardbumber == mull) || [credicCardNumber.edquals("™") == truej
o Authorize(String crediCardhiur 11 (openToBuy == null] || {openToBuy.compareTo(new Double{0)) < 0])
¥ AuthorizeAndCapturs(String cri return ERR_CODE_BAD_ARGUMENT;
- =+ Capture(Double amountToCapt openToBuy_ = openToBuy;
| Settle(Double amountTosettle) transactionID_ = System.currentTimeMillis():
i ﬂERR_CODE_AMT_TO_CAPTUR return transactionID_;
- %| ERR_CODE_AMT_TO_SETTLE | ’
- | ERR_CODE_BAD_ARGUMENT [-]
o | amounkToC apture_ Output x
o] openToBuy_
- . File Line Message
ﬂ transactionID_
| v Ervors | | Findin Flles
Ready @ Server Stopped ln? Calzs NS

WebLogic Workshop Controls

WebLogic Workshop controls are a key innovation that ease the use of enterprise
resources and J2EE APIs. WebLogic Workshop simplifies the complexity of these

APIs and reduces the amount of object-oriented programming needed to access

external resources. For example, WebLogic Workshop has a database control that
simplifies the JDBC API. Database administrators can create a reusable database
control that links SQL statements with Java methods in a simple declarative fashion.
Developers can then use these components to access database resources with a simple

function call.

4-10 Tour of the BEA WebLogic Platform Sample Application

Defining Web Services with WebLogic Workshop — An Overview

For example, for the productEvalwsc Web service, we used WebLogic Workshop to
define a database control named ProductEvalDBControl. One of the four methods
in the database control is findRatingData:

/**

* @jws:sgl statement="SELECT RELIABILITY RATING,
VALUE_RATING, OVERALL_RATING,
COMMENTS FROM E2E_PRODUCT_ EVAL
WHERE SKU = {productId}"

*/

public Evaluation findRatingData (String productId)
throws SQLException, ControlException;

Notice how a special WebLogic Workshop Javadoc annotation associates an SQL
statement with a Java method. Once a method is on a control this way, users of the
control can simply call the function to execute the SQL command.

Java Web Service Files and Control Files

The meeting place between the design-time tool and the run-time framework is the
Java Web Service (JWS) file and associated control (CTRL) files.

JWS files are standard Java files with annotations (using the Javadoc syntax) to express
additional functionality. Annotations are used to display the Web service and its
properties graphically. And the annotations are used by the framework to generate the
EJB and J2EE code to execute the Web service. By moving code generation out of the
tool and into the framework, developers never have to manage and maintain code that
they didn't write.

Files with the extension CTRL are WebLogic Workshop controls. They typically
include a collection of method definitions that allow you to easily access a resource
such as a database or another Web service. CTRL files can represent the following
types of controls:

m Service Control: used to communicate with another Web service from your
service.

m Database Control: used to access a database from your Web service.

m EJB Control: used to access an existing Enterprise Java Bean (EJB) from your
Web service.

Tour of the BEA WebLogic Platform Sample Application 4-11

4 Web Services Tour

m JMS Control: used to access an existing Java Message Service (JMS) queue or
topic from your Web service.

The WebLogic Workshop Framework

Once a JWS file containing all the business logic for a Web service has been created,
the WebLogic Workshop framework is responsible for generating the standard EJB
code needed to implement it. The framework exposes, through annotations,
functionality specifically designed to support building enterprise-class Web services.
The WebLogic Workshop framework does the following:

® Managing asynchronous communication with a conversational metaphor

The WebLogic Workshop framework automatically manages asynchronous
message correlation and state management across messages in a conversation.
What does that mean? Users can simply mark methods as starting, finishing, or
continuing a conversation, and the framework takes care of the details. A unique
ID is automatically generated to identify the conversation, and any state (class
member variables) defined in the Web service is managed persistently with
entity Java beans.

m Enabling loose coupling with XML maps and XML scripts

The WebLogic Workshop framework uses simple, declarative XML maps to map
between internal Java code and XML messages that are exchanged between Web
services. Users indicate the structure of the desired method and associate XML
fields with Java variables.

m Enabling availability with JMS queues

To ensure availability under high load, Web services take advantage of message
buffers. Users mark a method as requiring a buffer, and the WebLogic Workshop
framework handles creating a queue and wiring it to the Web service. This
feature enables one-click access to sophisticated J2EE functionality.

m Supporting the control architecture

The WebLogic Workshop framework instantiates the implementation of any
control used by the JWS. The framework also hooks up any asynchronous
callbacks using a simple naming convention.

4-12 Tour of the BEA WebLogic Platform Sample Application

Defining Web Services with WebLogic Workshop — An Overview

Outline of the Web Service Development Process

This section of the tour outlines the basic steps to building a Web service. You can find
more information about each of these steps in the WebLogic Workshop online
documentation. A good starting point is the tutorial. It is available within the visual
development environment by clicking from the top-level menu: Help —Tutorial. Or
you can read the tutorial by starting on the BEA e-docs Web site's pages for WebLogic
Workshop. Look for the topic titled: “Tutorial: Your First Web Service.”

1. Start WebLogic Workshop and begin defining the methods, events, controls...
then test what you have created so far.

Start WebLogic Workshop.

For your first Web server, open the Samples project that comes with
WebLogic Workshop.

In this project, create a subdirectory for the Web service. In the dialog box
window, indicate that you are creating a Web service, and name it.

Start a WebLogic Server instance.

In the graphical Design View, add one or more methods and events for your
Web service. You can add controls to represent resources such as other
services, databases, and Enterprise Java Beans. You can also specify support
for powerful features of the underlying server by setting properties for items
in your design.

Select the Source View tab to see the results of your work done in Design
View. You can add business logic. If you add a member variable to source
code in Source View, your new variable will appear in Design View, and vice
versa.

In Design View, add one or more parameters and return values for methods.
Add code for returning a value.

Build, test, and deploy your Web service. Use the WebLogic Workshop Test
View, a browser-based tool through which you can call the Web service's
methods. (Sample screens are shown in the modules for the paymentws and
productEvalwsc Web services in this tour.)

2. Add support for asynchronous communication, if needed by the application.

In asynchronous communication, the client communicates with the Web service
in such a way that it is not forced to halt its processes while the Web service

Tour of the BEA WebLogic Platform Sample Application 4-13

4 Web Services Tour

produces a response. You also add a callback to be informed, for example, when
a stock price reaches a particular value.

3. Add a database control.

In this step you add a database control to your Web service. The database control
provides your Web service access to a database. Controls act as interfaces
between your Web service and other data resources, such as databases, other
Web services, Java Message Services, and so on.

4. Add a service control, if needed by the application.

You can add a service control to your Web service that enables it to invoke
another external Web service.

5. Add other controls, such as JMS and EJB controls, as needed.

You can access components that are available via the Java Message Service
(JMS) using the gMSControl. Through this control, you can send and receive
messages of various types, including XML. You also can access Enterprise Java
Beans (EJBs) through the EJBControl. The EJBControl simplifies your use of
an EJB by providing a single component representing the EJB’s interface in your
Web service design.

6. Add a script file for mapping, as needed.

When you need to handle or control the specific shape of XML messages your
Web service exchanges with other components, you can use XML maps. XML
maps customize the WebLogic Server translation of XML to Java, and vice
versa.

7. Add Support for Cancellation and Exception Handling.

With the TimerControl, you can add timer functionality to your Web service.
In this way, you can limit the time-specific operations that are allowed to
execute, or force something to happen at regular intervals. You also can use the
onException callback to handle exceptions thrown from your Web service's
operations. When prompted by this callback, your code can perform any
necessary clean-up and send a message to the client.

8. Modify the Web Service to Support a Polling Interface, if needed.

As you build your Web service, WebLogic Workshop generates classes that can
be used by client software. Through these proxy classes, a client can invoke your
service's methods. You can download the proxy classes from Test View.

4-14 Tour of the BEA WebLogic Platform Sample Application

Defining the Product Evaluator Web Service

9. Configure security settings and deploy the Web services as part of a
Webapp.

You can make your Web service more secure by ensuring that it is exposed via
the HTTPS protocol rather than HTTP. To do this, you edit the configuration file
associated with your Web service's project. Using the JwsCompile command,
you can then package your Web service for deployment to a production server.

This covers the basic steps. The next section will discuss the productEvalwsc Web
service that we created in WebLogic Workshop for the WebLogic Platform sample
application.

Defining the Product Evaluator Web Service

In the business-to-consumer (B2C) portal Web site for the fictitious company, Avitek
Digital Imaging, we provided a Product Evaluator portlet for users who are browsing

the product catalog:
AVITEK 01 select the Product 02 et the rating
Frovided by IAViPiX1DDD vl Go Celivers moderate performance at
a nominal cost.
Reliability & +
Walue
Owerall

This portlet used a Web service that we created in WebLogic Workshop to return
product rating information about the selected catalog item. This section of the tour
describes that Web service, productEvalwsc. This section also describes the steps
taken in the Portlet Wizard to create the Product Evaluator portlet.

Viewing the Existing productEvalWSC Web Service

In the WebLogic Workshop project tree window, double-click on the
productEvalwsc folder that you copied to:

weblogic700\samples\workshop\applications\samples\productEvalWsC

Tour of the BEA WebLogic Platform Sample Application 4-15

4 Web Services Tour

If you skipped this step in a prior tour page, see the section “About the Project
Locations” on page 4-2. Then return to this page.

In the expanded project folder for productEvalwsc, double-click on the Java Web
Service file named EvalpProduct . jws. The following screen shows the Design View
display for this Web service.

J Diesign view | | Source View | EvalProduct.jws

Add Operation | - EvalProduct Add Control | -

productEy...

I createProductEvalu... createProduct. ..
ﬂ—b dropProductEvaluat... dropPraductE. .. a
r" DATAEASE
—+D etEvaluation findRatingData _-_DE’
—_— . getComments insertEvaluat. . _-_’
T + getOverallRating
—CE + getRelisbilityRating

— get¥alueR.ating
—@ endEvaluation

CLIENT

>

Member Varisbles
ProductEvalDEControl.Evaluation evaluation

We used WebLogic Workshop to define the ProductEvalDBControl and its
methods:

B createProductEvalTable

B dropProductEvalTable

B findRatingData

B insertEvaluationRecord

We then used WebLogic Workshop to define the following methods for the JWS:
B getEvaluation

B getComments

4-16 Tour of the BEA WebLogic Platform Sample Application

Defining the Product Evaluator Web Service

B getOverallRating

B getReliabilityRating
B getValueRating

B endEvaluation

In the Design View display, notice the small (s), (c), and (f) notations for the JWS
methods. These notations indicate which method starts the Web service's conversation
(getEvaluation), which method(s) continue the conversation (get Comments
through getvalueRating), and which method finishes the conversation

(endEvaluation).

Note: For a production Web service, we would not make separate calls to return the
product evaluation’s comments, overall rating, reliability rating, and value
rating. Instead, we would create a complex object in the Web service and get
all the ratings in a single call. Using a complex object and avoiding the
separate calls should provide better performance.

Defining a database control and its methods in the WebLogic Workshop visual
development environment is easy. This tour does not show the steps taken to create the
control and methods. These steps are documented in the WebLogic Workshop
documentation, which is available from within the visual development environment,
or on the BEA e-docs Web site’s pages for WebLogic Workshop.

However, here is a brief explanation about the purpose of the
ProductEvalDBControl database control and its methods. During development,
before the application’s database schema is finalized for the enterprise application
being placed into production, it is helpful to define database control methods that
create or drop (as needed) the metadata, for testing purposes. As a convenience to our
development process, we started by defining the createProductEvaluatorTable
and dropProductEvaluatorTable methods. In WebLogic Workshop, you can
double-click on the arrow for each method to see the SQL statements that we provided.
For example, createProductEvaluatorTable defines:

Tour of the BEA WebLogic Platform Sample Application 4-17

4 Web Services Tour

%Edil SOL and Interface

This is where you write wour S0L. Use expressions like {foo} to substitute the value of
argument foo into the query,

SQL: tREATE TAELE EZE_PRODUCT EVAL

SE VARCHAR(40) HOT HULL,
RELIAEILITY RATING NUMERIC NOT HULL,
WALUE_RATING NUMERIC HOT HULL,
OVERALL RATING NUMERIC HOT HULL,
COMMENTS VARCHAR [254)

‘public: wold createProductEvalTable () ‘

We then defined the insertEvaluationRecord and findRatingData methods
(please see the SQL statements in the WebLogic Workshop visual development
environment).

With those database control methods available, we defined the JWS methods that use
the database control methods. For example, the getEvaluation method starts the
Web service conversation and uses the findRatingData method from the database
control. In WebLogic Workshop, you can view the code for the JWS by either
selecting the Source View tab, or by clicking the getEvaluation method’s
underlined link, which brings up the Source View near the line that starts the selected
method. For example:

* @jws:operation
* @jws:conversation phase="start"

*/

public String getEvaluation (String productId)

{

try

{

evaluation = productEvalDB.findRatingData (productId) ;

}

catch (java.sgl.SQLException e)

{
}
if (evaluation != null)

{
}

// will be interpreted as productId not found

return "SUCCESS";

4-18 Tour of the BEA WebLogic Platform Sample Application

Defining the Product Evaluator Web Service

else

return ("NOT FOUND") ;

}

You can read the code in WebLogic Workshop for the methods that we defined for
EvalProduct.jws, the JWS for productEvalwsc. If you need more information
about defining methods in the visual development environment, please see the
WebLogic Workshop documentation. It is available from within the visual
development environment, or on the BEA e-docs Web site's pages for WebLogic
Workshop.

Building and Testing the productEvalWSC Web Service

If the WebLogic Server instance for the cgDomain is not already running, start it. If
you skipped this step in a prior tour page, see the section “Server Startup Options™ on
page 4-6. Then return to this section.

When the server is running, you will notice the following status icon near the bottom
of the WebLogic Workshop visual development environment:

@ Server Running

With the server running, click Debug —Build. When the build completes for this
already defined Web service, WebLogic Workshop will have placed compiled JWS
classes in the following location:

weblogic700\samples\workshop\cgServer\.jwscompile\ jwsdir samples
\classes\productEvalWSC*.class

With the server running, click Debug —Start

The test pages are browser-based. The initial tabbed page is the Test Form. For now,
select the Overview tab. The following screen shows the Overview page with the
server running on a remote machine named blues.

Tour of the BEA WebLogic Platform Sample Application 4-19

4 Web Services Tour

J Address I@ http://blues: 7001 fsamples ApraductE waha'SC

| 97 » |[liks >

EvalProduct.jws Web Service resten oy sk
http:fiblues: 7001 samples/productEyvalWwSc]
| [Creerview | [Consale | [Test Farm | [Test ¥ML | [Warnings | EvalProduct . jws
Public Information See other services in this project
about EvalProduct. jws Web Service
Web Service Description Language files
Complete WSDL This W3DL file describes the complete public contract of EvalProduct. jws,

including both operations and callbacks.

Web Service Clients

Workshop Control Source code for a Service Control that can be used by a Weblogic Workshop b
wieb service bo communicate with this service,

Java Proxy A JAR file containing Java classes vou can use to access this web service as
though it were a local Java class. To build a client Proxy Support JAR is also
required.

Proxy Support Jar A JAR file containing support classes that are needed by all Weblogic web

service Java Proxies,
Service Description

This web service implements the fFollowing operations:
getEvaluation Use a database control method to retrieve an evaluation record,

createProductEvaluatorTable |se a database control method to create the table 'EZE_PRODUCT_EYAL', If this
method is called when the table already exists, the return will be the error
message, ;l

|@ ’_ l_ E":: Local intranet v

Select the Test Form tab. You can test the productEvalwsc Web service by entering
sample data. Because you are testing the Web service in the cgDomain (the default
server used with WebLogic Workshop), you must first run the
CreateProductEvaluatorTable method on the following initial Test Form page,
before trying the getEvaluation method. (We use the
CreateProductEvaluatorTable method to conveniently create the database table
and populate it, for testing purposes only while using the visual development
environment. In production, the Web service will use a production database.)

4-20 Tour of the BEA WebLogic Platform Sample Application

Defining the Product Evaluator Web Service

|| Links || Address [B1 1£valwSC/E valProduct s EXPLORE=TES T] @B ||

EvalProduct.jws Web Service
http: fblues: 7001 {samples/produckEvalwSc)
Overview | [Console | [Test Form | [Test ®ML | [Warnings | EvalProduck.jws

Stark operations

Message Log Refresh
=+ dropProductEvaluaterTable
Clear Log

getEvaluation
ze a database control method to retriewve an
evaluation record.

stting productId: |

getEvaluation | starts & conversation

createProductEvaluatorTable

se a database control method to create the table
'EZE_FRODUCT EVAL'. If this method iz called when the
tahle already exists, the return will be the error
message.

createProductE valuatorT able | J

|&] Dore [| 5% Localintraret y

The Web service method should return a created message. For example:

BEA Weblogic Workshop: EvalProduct. jws Web Service - Microzoft Internet Explorer =]

5 |J Links >

| diress [£] 1oduct jns?. EXPLORE = TES & LOGENTRY=1 7] @ Bo |j Fie >

EvalProduct.jws Web Service atn by S5 e
btk fblues: 7001 fsamplesfproductEvalwsCf
Overview | [Console | [Test Form | [Test #ML | [Warnings | EvalProduct. jws
Stark aperations
Message Log Refresh Service Request
=+ drapProductEvaluatorTable Subriitted at Tue Jun 04 12:50015 EDT 2002
==+ createProductEvaluatorTable createProductEvaluatorTable
Clear Log

Serrvice Response
Subrmitted at Tue Jun 04 13:50:16 EDT 2002

createProductEvaluatorTable

=string srnlns="http:ifwww openud orgl =Created = string =

|@ [one ’_l_ = Local intranet i

Tour of the BEA WebLogic Platform Sample Application 4-21

4 Web Services Tour

Next, click the Start operations link on the Test Form. On the refreshed page, start the
test of the Web service's getEvaluation method. For example, enter pix1000 in the
product1d field, as shown below. Then click the getEvaluation button.

BEA wWeblogic Workshop: EvalProduct. jws Web Service - Microsoft Internet Explorer

|7 » ||tk

| tdiress [€7 vatwSC/E valProduct jus?. EXPLORE= TEST | @ Gio |J File 2

EvalProduct.jws Web Service et by e e
http: fiblues: 7001 fsamplesproductE valWSCf
Overview | [Console | [Test Form | [Test ML | [Warnings | EvalProduct. jws

Start operations

= dropProductEv aluatorTable
== craateProductEvaluatorTable
Clear Log

getEvaluation
se a database control method to retriewe an
evaluation record.

stting productId: |pix1 DDE‘

getEvaluation | stans a conversation

createProductEvaluatorTable
se a databaze control method to create the table
'EZE_FPRODUCT _EVAL'. If this method is called when the
table already exists, the return will be the error
message.

createProductE valuatorT able | _I

= [[[®localitaret

The Web service conversation is invoked, and the WebLogic Workshop run-time
engine returns a SUCCESS status, as shown in the following screen.

4-22 Tour of the BEA WebLogic Platform Sample Application

Defining the Product Evaluator Web Service

BEA Weblogic Workshop: EvalProduct. jws Web Service - Microszoft Internet Explorer =]

|2 » ||tk

JAeressI@ 574 LOGENTAY=04L0GID-102321 3160461 |7 @ Ge |J iz

ws web se rvlce Creabe by BER At
htkp:fiblues: 7001 fsamples/product EvalwSCy
Overview | [Consale | [Test Form | [Test %ML | [Warnings | EvalProduct. jws
Skart operations
Continue this conversation
Message Log Refresh Service Request

— e Subrnitted at Tue Jun 04 13:52:40 EDT 2002

= createProductEvaluatorTable getEvaluation

1023213160461

=¥ getEvaluation productld = pix1000 COMWPHASE = START COMVERSATIONID =

1023213 160461
Service Response
Subrnitted at Tue Jun 04 13:52:40 EDT 2002

getEvaluation

=string xmins="http /s openuri org =S UCCESS =/sting=

-
|@ Done ’_’_ = Local intranet i

To continue the test, click the Continue this conversation link on the page.
WebLogic Workshop returns a list of subsequent methods defined for the
productEvalwsc Web service as shown in the following screen.

Tour of the BEA WebLogic Platform Sample Application 4-23

4 Web Services Tour

3 BEA WeblLogic Workshop: EvalProduct.jws Web Service - Microsoft Internet Explorer M=l
»» || Links || Address [@] 7.ExPLORE=TESTe.LOGID-1023213160461 =] PGio || Eik >

EvalProduct.jws Web Service

http:f{blues: 7001 fsamples/productEvalwsc/
Overview | [Consale | | Test Form | [Test %ML | ['Warnings | EvalProduck. jws

Start operations
Continue this conversation

=+ dropProductEvaluatorTable
== createProductEv aluatorT able
Rl 1023213160461
=+ getEvaluation

getComments

getEomments continues a conversation

getOverallRating

getlverallRating | continues a conversation

getReliabilityRating

getReliabilityR ating continues a conversation

get¥alueRating

gefalueRating | continues a conversation

endEvaluation
sed to tell EvalProduct.jwzs that the current
conversation is no longer needed. —

finishes a conversation _I
-
& [5% Local intianet 7

4-24 Tour of the BEA WebLogic Platform Sample Application

Defining the Product Evaluator Web Service

Click one of the methods to see the Web service return a product rating for this pix1000
camera. For example, when we clicked the getReliabilityRating method test,
WebLogic Workshop returned:

3 BEA 'Weblogic Workshop: EvalProduct jws Web S Microsoft Internet Expl

| S77 » |JLinks »| | Address [@] 574 LOGENTRY=15 LOGID=1023213160461 =] ¢ Gio |J

Creabea by BES WhbiLog|c Aor

hitkp: fiblues: 7001 samplesfproduct Ewaly SCf
Overview | [Console | [Test Form | [Test #ML | [Warnings | EvalProduct. jms

Start operations
Continue this corversation

Message Log Refresh Service Request
—b dropProductEwslustorTable Submitted at Tue Jun 04 13:E5:02 EDT 2002

=¥ createProductEvaluatorT able getReliabilityRating

1023213160461
_'getE\ra|uati0n COMYPHASE = (CONTIMUE (COMVERSATIONID = 1023213160461
== getReliabilityRating Service Response
Subritted at Tua Jun 04 13:55:02 EDT 2002
getReliabilityRating
=int xralns="http i openutiorgl =2 <jint=

=l
|@] Dore % Local intranet Y

Notice the Web service response is the integer 2. On the Product Evaluator portlet, this
results in displaying two out of five possible stars. For example:

AVITEK 01 select the Product 02 et the rating

Praiiod by IAViPix 1000 'I Go Delivers moderate performance at
anominal cost.
Reliability &
Yalue

Overall

On the Test Form, you can try other methods in the conversation. As noted earlier, for
a production Web service we would not make separate calls to return the product

evaluation's comments, overall rating, reliability rating, and value rating. Instead, we
would create a complex object in the Web service and get all the ratings in a single call.

After we used WebLogic Workshop to create and test a Java Web Service (JWS) file
for productEvalwsc, we used the Portlet Wizard to generate a draft version of the
portlet (minus final presentation coding, graphics, Webflow, and packaging changes).
The Portlet Wizard tool is part of the E-Business Control Center, a graphical tool

Tour of the BEA WebLogic Platform Sample Application 4-25

4 Web Services Tour

provided by WebLogic Portal. Portlet Wizard was used to generate the Web services
interfaces code for the portlet. We also used WebLogic Server to generate the client

proxy.

Note that when you first accessed the Web service, WebLogic Workshop
automatically generated for you all the EJBs, with no action or work required by the
developer. In our example, the first access resulted in the
productEvalWSC.EvalProductEJB.jar file creation in:

weblogic700\samples\workshop\cgServer)\.jwscompile\ jwsdir samples
\EJB

The Web service class files were created in:

weblogic700\samples\workshop\cgServer)\.jwscompile\ jwsdir samples
\classes\productEvalWSC*.class

Save the Web Service’s WSDL

4-26

At any time in the development process, the Web Service Description Language
(WSDL) file describing your Web service is available from WebLogic Server. WSDL
is a standard XML document type controlled by the World Wide Web Consortium
(W3C, see http://www.w3.org for more information).

WSDL files describe all the methods a Web service exposes (in the form of XML
messages it can accept and send), as well as the protocols over which the Web service
is available. The WSDL file provides all the information a client application needs to
use the Web service.

There are several ways to obtain the WSDL file corresponding to a JWS file:

m In the visual development environment’s Project tree, browse to the JWS file for
which you would like to generate a WSDL file. In our example, browse to
EvalProduct .jws. Right-click on the JWS file in the Project tree and select
Generate WSDL from JWS. A file with the name EvalProductContract.wsdl
will be created in the same directory. By default, the WSDL file is linked to the
JWS file from which it was generated, meaning it will be regenerated whenever
the JWS file is changed. For this reason, this is the recommended method of
generating the WSDL.

Tour of the BEA WebLogic Platform Sample Application

Defining the Product Evaluator Web Service

m In a browser, browse to the URL of the Web service with ?wspL appended. For
example, if the Web service is running on the default server on a machine named
blues:

http://blues:7001/samples/productEvalWsSC/EvalProduct . jws?WSDL

Use your browser's File —Save As function to save the WSDL file to your local
machine. Note that some browsers will include HTML tags at the top and
bottom of the saved file. You must remove these tags to produce a valid WSDL
file. Be sure to designate the .wsd1 file type; we recommend that you follow the
naming convention of <WebServiceNames>Contract .wsdl. For example, name
it EvalProductContract .wsdl.

m In the WebLogic Workshop visual development environment, you can view the
WSDL by clicking the Complete WSDL link on the Overview page while
testing your Web service. You can then use the browser's Save As function to
write the Web service’s file into the same directory as the JWS file. (Again,
follow the naming convention shown above, and remember that some browsers
will include HTML tags that you must remove from the top and bottom of the
saved file.)

Use Portlet Wizard to Generate Initial Code for the
Product Evaluator Portlet

The E-Business Control Center (EBCC) is a Java client-based tool suite. It provides
graphical interfaces that simplify complex tasks such as rule definitions, Webflow
editing, and portal creation and management. As users of the E-Business Control
Center work with its point-and-click interface, it generates XML files that are
synchronized with the server.

One of the features in the EBCC is the Portlet Wizard. You can use it to reference
WSDL for a Web service, and generate the code needed by a portlet. The following list
outlines the general steps in the Portlet Wizard. When you work with the Portlet
Wizard, be careful that you do not overwrite the existing evaluator portlet's files.

Note: The packaging and the variables used in the installed evaluator.jsp portlet
are different from the content.jsp file created by Portlet Wizard in the
following steps. The purpose of this section is to explain what could be created
initially by Portlet Wizard.

Tour of the BEA WebLogic Platform Sample Application 4-27

4 Web Services Tour

To start the EBCC, for example on a Windows system, click the following in the Start
menu:

1. Programs —BEA WebLogic Platform 7.0 -WebLOgic Portal 7.0 —E-Business
Control Center.

2. From the EBCC top-level menu, click File -Open Project. Navigate to the
following folder under your BEA HOME:

weblogic700\samples\platform\e2eDomain\bealApps\e2eApp-project

3. Select the e2erpp-project.eaprj file in that folder, and click the Open button.
4. Then from the EBCC top-level menu, click File -New —Presentation —Portlet.

5. On the initial New Portlet screen, with the following option set, click the OK
button:

il Mew Portlet E

I IJse the Paortlet Wizard to create a new portlet
from scratch.

Ilse the Partlet Editor to create a new partlet
with existing resources (e.q. JSP's, Gif's).

(0] 4 | Cancel

6. On the Portlet Name screen, give a unique name to the portlet, such as
evaluatortest. In the Portal pull-down menu, select b2cPortal. Then click the
Next button.

4-28 Tour of the BEA WebLogic Platform Sample Application

Defining the Product Evaluator Web Service

fiui Portlet Wizard [UnnamedPortlet] ll
Steps:
Portlet Name
1. Portlet Name
2 Porttal Pages Enter a unigue name forthe portlet, and selecta portal to which the
3. Partlet Companents {ahonlljgt srloulfihbte assto.mateq. Tr;e ponlettnzmer;nlwltlrble used ta name
4. Content Types e directary that contains wizard-generated porlet files.
5. Resource Files Location Fortlet Mame:
B. Summary |eva|uat0nest
T Mext Steps
Fortlet Category:
|p0rt|ets E”'l
Fortal:
[b2crartal =l

Fortlet Description {optional):

My wersion of the Product Evaluator pm:t,letl

Mext = I Cancel |

7. On the Portlet Pages screen, select the Products page from the list of available
pages in the b2cPortal. Then click the Next button.

i<l Portlet Wizard [evaluatortest] x|

Steps :

Portal Pages

1. Portlet Mame
2. Portal Pages The portal b2cPortal has the portal pages listed below. Please
indicate which portal pages {if any) you would like this portlet to appear
on.

3. Paortlet Companents
4. Content Types
f. Resource Files Location Fortlet Pages:

B. Summary I My Awitek
7. Mext Steps

[Shopping Cart

= Back | Mext = I Cancel

Tour of the BEA WebLogic Platform Sample Application — 4-29

4 Web Services Tour

8. On the Portlet Components screen, select any components you want in your
portlet, or leave these options unchecked. Then click the Next button.

ﬁh"l Portlet Wizard [evaluatortest] : 1[
Steps:
Portlet Components

1. Partlet Mame

2 Portal Pages Indicate which components ta include in the portlet.

3' Portlet Components (Titlebar and Content are required components)

4. Content Types « Portlet Titlebar tHelo) [E3 !

5. Resource Files Location -

&, Summary Portlet Banner [Banner

7. Mext Steps Portlet Header [Header

Portlet Content Portlet Content
Portlet Content Portlet Content
Portlet Content Portlet Content

Portlet Focter [Footer

= Back | Mext = I Cancel |

9. On the Content Types screen, select the Web service(s) option. Then click the

Next button.
ﬁn"l Portlet Wizard [evaluatortest] 5[
Steps:
Content Types
1. Portlet Mame
2 Portal Pages Choose a content type for the portlet.
3. Portlet Components Basic (no Wabflow)
4. Content Types
5. Resource Files Location Multiple Pages (with Wehflow)
6. Summary & ifieb senicersy
7. Mext Steps

Mote: In order to create a Yeb services portlet you must have
filesystem access to WeblLogic Server 7.0.

< Back | Mext = I Cancel

4-30 Tour of the BEA WebLogic Platform Sample Application

Defining the Product Evaluator Web Service

10. On the Server Location screen, indicate where WebLogic Server is installed.
Then click the Next button.

n'h"l Portlet Wizard [evaluatortest] []
1. Portlet Mame -

5. Portal Pages Server Location

3. Partlet Companents

4. Content Types To proceed with creating Web servicels) content you must pravide the
5. Server Location fallowing filesystern paths for a running YehlLogic Serer

6. Generated Code Types
T.Weh Serviceis)

8. Code Preview

9. Resource Files Location
10. Summary

11. Mest Steps

Server Location: {filesystem path)

DabeaweblogicTOOserver

= Back | Mext = Cancel |

11. On the Generated Code Types screen, select Web services(s) Interfaces from the
Output Options pull-down menu. The Product Evaluator portlet is conversational
and requires the Web services(s) Interfaces options. The Form and Call
Generation options are intended for simpler portlets. After making your selection,
click the Next button.

Tour of the BEA WebLogic Platform Sample Application 4-31

4 Web Services Tour

ﬁh"l Portlet Wizard [evaluatortest] ll

Steps :

Generated Code Types
1. Portlet Mame

2. Portal Pages

3. Portlet Components
4. Content Types Output Options:

4. Server Location Weh service(s) Interfaces
6. Generated Code Types
T.WWeh Service(s)

8. Code Preview

9. Resource Files Location
10, Summary

Select the output option that best matches how you would like to
invake the Weh service(s).

Description:

This option allows you to select multiple Web service{s) and have the
interfaces documented for use within a portlet. This option is an
alternative choice when parameters or return values invalve complex

data types.
11. Mext Steps
Example:
<5@ include file="HelloWorld include.inc™ %> ﬂ
<%[@ taglib uri="portlet.tld” prefix="portlet” %>

<%[@ taglib uri="ilfn.tld” prefix="ilan" %>

<%0 page

import="com.bea.portal.appflow. PortalippflowConstant
i ~

= Back | Mext = I Cancel |

12. On the Web Service(s) screen, if you are using Portlet Wizard for the first time

and there are no Web services in the current list, click the Add Web Services...
button. If Web services are listed, but not the EvalpProduct one created by
WebLogic Workshop, click the Edit List button. Portlet Wizard displays the Web
services(s) List screen. Enter the WSDL URL, such as:

http://localhost:7501/workshop/productEvalWsSC/EvalProduct.jws?W
SDL

Note that the URL is case sensitive. In the following example, we used the
WSDL URL for the e2eDomain application (note: localhost:7501). After
entering the WSDL URL in the input box, click the Add URL button. Portlet
Wizard checks the URL and, if valid, adds it to the Web service(s) list. Then
click the Close button on the Web service(s) List screen.

Tour of the BEA WebLogic Platform Sample Application

Defining the Product Evaluator Web Service

fiul Web service(s) List

Add Web services to the list by entering the W3DL URL and clicking on the Add buttan.
Use the Open File button to specify local WSDL files.

WEDL URL:

hitp:ilocalhost 7 301 warkshopfproductEvalWS CiEvalProduct jws MWSDL

Web service(s):
EvalProduct (hitpiflacalhost 7501 markshopiproductEvalhys

Add File(s)...
Delete

Uy ate

L

Close |

Back on the Web Service(s) screen, click the EvalProduct Web service in the
list. Portlet Wizard connects with the WSDL URL and retrieves the operations
we defined for the self-describing Web service. A progress screen is displayed

during this step. After you see the Operations retrieved status message on the
screen, click the Next button.

ﬁh"l Portlet Wizard [evaluatortest]

Steps :

Web Service(s)
1. Portlet Mame

2 Portal Pages Choose aone ar mare Wehb service(s) to include in the portlet.

3. Portlet Components

4. Cantent Types

5. Server Location

6. Generated Code Types
7. Web Service(s)

8. Code Preview

9. Resource Files Location
10, Summary

11. Mext Steps

Wieb Service{s):

Operations:

13

createRrodustEvaliatarhatle
drapRroductEvaluatoriatble
drapRroductEvaluatoriatble
endEvaluation

ACualimtiom

createFroductEvaluatormable &

Edit List...

Operations retrieved.

Details...

= Back | Mext = Cancel

Tour of the BEA WebLogic Platform Sample Application

4-33

4 Web Services Tour

13. The Code Preview screen shows you what the Portlet Wizard will generate. You
can, optionally, edit the code in the Portlet Wizard (which includes your changes,
but does not validate them), or copy it to the clipboard for later pasting into your
favorite editor. In either event, after previewing the Web service interfaces code
that will be created for you, click the Next button.

fiul Portlet Wizard [evaluatortest]
1. Portlet Mame B

3. Portal Pages Code Preview

3. Portlet Components

4. Contant Types This is the code that will he weritten to the content jsp file. You must

5 Server Location adaptthe code to your specific use priot to testing the porlet

6. Generated Code Types :

7.Web Senice(s) Output Code:

8. Code Preview =%@ include file="evaluatortest include.inc” %> =
4. Resource Files Lacation <%d taglib uri="portlet.tld"” prefix="portlet” %>

10, Summary =@ taglib uri="ilén.tld"” prefix="ilsn" %>

11. Mext Steps <%@ page iluport="cow.bea.portal.appflow. Fortalippfl o

%@ include file="/framework resourcelRL.inc™ %>

<
5DL_wsdl EvalProduct.EvalProduct Impl p_5DL_wsdl
3DL_wsdl_EvalProduct.EvalProductioap p_SDL_wsdl | _
Al I _’|_I

Copy to Clipboard

< Back | Mext = | cancel |

14. On the Resource Files Location screen, Portlet Wizard indicates that it will create
a directory using the name of your portlet under the portlets directory of the
associated Web application, as shown in the following example.

4-34 Tour of the BEA WebLogic Platform Sample Application

Defining the Product Evaluator Web Service

15.

il Portlet Wizard [evaluatortest]
1. Portlet Mame . .

3 Portal Pages Resource Files Location

3 Porlet Components

4. Content Types

& Server Location A directory named [evaluatortest] will be created in the location you

6. Generated Code Types specify. This directory will contain the partlet resource files (15Ps,

7 Web Servicels) GlIFs, ett). The location is typically the "portlets” directary of the

8 Code Preview associated Web application.

9. Resource Files Location

Forlet Resource Files Location:

|f0rm182eDUmainibeaApps‘teQEApp‘thCPUHaIIdeIetS Browse

(e.g., Chheaweblogic? 00portahmhiiebAppipotietst

< Back ‘ et = | Cancel ‘

After indicating the location for the portlet JSP file that will be created, click the
Next button.

On the Summary screen, Portlet Wizard lists the files that will be created or
modified, as shown in the following screen.

Tour of the BEA WebLogic Platform Sample Application 4-35

4 Web Services Tour

fiul Portlet Wizard [evaluatortest]

Portlet Mame
Faortal Pages Summary
Paortlet Components
Content Types

Server Location
Generated Code Types
Web Service(s)

Code Preview
Resource Files Location
10, Summary

11. Mext Steps

The fallowing files will be createdimodified.

File List:
cthapplication-synchiportletsievaluatortest.portlet
cthyapplication-synchwebappsibacportalibZcportal.portal
rtalyportlets)evaluatortest content. 15p
rtalyportletshevaluatortestievaluatortest include.inc
rtalhportletsievaluatortesthinages\pt image. gif
rtaltweb-infYlibYsdl_wsdl_ewalproduct.jar

e sl

w

Al | »

Copyto Cliphoard |

< Back | Create | cancel

In this example, the following files will be created under
weblogic700\samples\platform\e2eDomain\beaApps:

® \e2eApp-projectl\application-sync\evaluatortest.portlet
e \e2eApp\b2cPortal\portlets\evaluatortest\content.jsp

® \e2eApp\b2cPortal\portlets\evaluatortest\evaluatortest include
-Jsp

® \el2eApp\b2cPortal\portlets\evaluatortest\images\pt image.gif

® \e2eApp\b2cPortal \WEB-INF\lib\sdl wsdl evalproduct.jar

In addition, Portlet Wizard will update the following XML file that lists the

available portlets (but not yet enabled on a Products page) for the b2cPortal Web
application:

® \e2eApp-project\application-sync\webapps\b2cPortal\b2cPortal.p
ortal

If you want to proceed, click the Create button. Or click the Cancel button if you
simply wanted to see the process in the Portlet Wizard.

Behind the scenes, Portlet Wizard executes the following build command to
generate the Web service interfaces for you:

4-36 Tour of the BEA WebLogic Platform Sample Application

Defining the Product Evaluator Web Service

weblogic700\server\bin\ant .bat -f buildfile client-gen.xml

This command creates a JAR file containing .class, .WSDL, and other files that
comprise the Web service's interfaces that can be used by the portlet. Also
included in the JAR are the .java source files.

On the final Next Steps screen, you can uncheck the edit options and click the Close
button if you are satisfied with the settings for the initial portlet. Note that you would
need to make important enhancements to the portlet's JSP code and associated files
before using the EBCC to synchronize the project (placing the portal definitions on the
server) and before making the draft portlet visible and available on the Product page.
The next section highlights the packaging differences. For information about EBCC
server synchronization and making portlets available and visible to a portal page, see
the WebLogic Portal Administration Guide.

Next Step

Now that you understand the general process of using the Portlet Wizard screens to
generate the initial portlet's JSP and the interfaces (including .class, .wsdl, .java
files in a JAR), we should note again: the packaging and the variables used in the
installed Product Evaluator portlet and the Evalprod Web service are different from
what you may have just created using Portlet Wizard. When we created the JAR file,
we extracted the Java sources, significantly modified the portlet JSP (and added two
include JSP files), and deployed the resulting files as follows. Note: the Java sources
did not require any modifications; we extracted them simply to provide them with the
installed sample directories.

Product Evaluator Portlet JSP files

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\b2cPortal
\portlets\evaluator*.jsp

In the main evaluator. jsp portlet file and the included stepl.jsp and step2.jsp
files, we enhanced the presentation graphics that comprised the portlet, and added
scriptlets to work with the Webflow for the portlet and the b2cPortal.

Web service client interfaces, CLASS files, used by WebLogic Workshop runtime

weblogic700\samples\platform\e2eDomain\bealpps\e2eApp\b2cPortal\W
EB-INF\classes\productEvalWSC*.class

Tour of the BEA WebLogic Platform Sample Application 4-37

4 Web Services Tour

Web service client interfaces, JAVA files

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\b2cPortal\W
EB-INF\src\productEvalWSC*.java

Server-side implementation

weblogic700\samples\platform\e2eDomain\beaApps\e2eWebServicesApp\
workshop\productEvalWSC\ *

These files include the deployed EvalProduct .jws and
ProductEvalDBControl.ctrl copied from the WebLogic Workshop area and
deployed as part of the workshop Web application, which was deployed as part of the
e2eWebServicesApp enterprise application. Of course, the workshop Web
application has a WEB- INF subdirectory that contains the configuration settings in

* . xm1 files.

SOAP Conversation, JAVA files, generated by the client-gen task

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp\b2cPortal\W
EB-INF\src\org\openuri\www\x2002\x04\soap\conversation

For information about the Payment Web service that is used in the b2cPortal, refer to
the next section.

Defining the Payment Authorization Web
Service

The B2C portal for Avitek Digital Imaging includes an Order Submission page as part
of the checkout process.

4-38 Tour of the BEA WebLogic Platform Sample Application

Defining the Payment Authorization Web Service

Order Submission B
Order Summary
Qfy Item Unit Price Ext. Price
2 LvviPix 5000 F499.99 F999.95
2of 2 AwiPix 10% off dizcourt F-100.00
Order Subtotal $399.93
Order Diseount -$135.00
Shipping 495
Tax F35.50

Total $808.43

Shipped to:
Rachel Adams
123 Falsom
Boulder, CO-50302

Shipping Method:
Second Day Air

Payment Method:
MASTERCARD - moaooonasood 321

T s

When the user clicks the Submit Order button, the credit card payment authorization
processing is handled by a pipeline component named CajunBasedPayment PC, which
calls a Java proxy that lets the pipeline component call the Payment Web service. We
created the Web service in WebLogic Workshop.

The Payment Web service uses the conversational aspect of WebLogic Workshop
framework. The first call is to authorize the credit card; we pass in the credit card
number and the amount to be authorized as arguments. After the credit card
authorization is complete, a call is made to capture an amount. Eventually a request is
made to settle the amount.

The codes returned by the Payment Web service to the CajunBasedPaymentPC are as
follows:

m -1 = Error (Bad argument passed)

m -2 = Error (When amount to capture is more than the amount the credit is
authorized for)

Tour of the BEA WebLogic Platform Sample Application ~ 4-39

4 Web Services Tour

m -3 = Error (When amount to settle is more than the amount for which the credit
card was captured for)

m > (0= Success

Note: The Payment Web service always sends payment information through without
any errors, as if it were connected to and approved by a third-party payment
service. The processing of payment via the Payment is not designed for
production use. You must integrate with your third-party vendor's payment
service to process payment correctly. Note, however, that the code shown in
the sample pipeline component is set up to appropriately handle error
conditions.

The Role of the CajunBasedPaymentPC Pipeline
Component

Before we look at the definition of the Payment Web service in WebLogic Workshop,
let's examine portions of the CajunBasedPaymentPC. java pipeline component. You
can find the source file in the following directory under your BEA HOME:

weblogic700\samples\platform\e2eDomain\bealApps\e2elpp\src\example
s\e2e\b2c\payment\pipeline

The sample pipeline component contains many import statements, including:

import paymentWS.Payment Impl;
import paymentWS.PaymentSoap;
import examples.e2e.b2c.util.B2CPortalConstants;

import com.bea.pl3n.util.debug.Debug;
import org.openuri.www.*;
import org.openuri.www.x2002.x04.soap.conversation.*;

import com.beasys.commerce.axiom.units.Money;
import com.beasys.commerce.ebusiness.shoppingcart.ShoppingCart;

These statements import packages for the Payment proxy, the generated SOAP
interfaces, and a set of sample constant values (such as the payment type) to simplify
the application. Also imported is a ShoppingCart EJB that processes shopping cart
data for commerce applications.

Part of the CajunBasedPaymentPC pipeline component's work in the b2cPortal
application is to get the current shopping cart data from the pipeline session.

4-40 Tour of the BEA WebLogic Platform Sample Application

Defining the Payment Authorization Web Service

CreditCard cc = (CreditCard)

getSessionAttribute (PipelineSessionConstants.PAYMENT CREDIT CAR
D, namespace, pipelineSession) ;

ShoppingCart sc = (ShoppingCart)

getSessionAttribute (PipelineSessionConstants.SHOPPING CART,
namespace, pipelineSession) ;

Money amt = (Money) sc.getTotal() ;

We instantiate the proxy for the Web service:

try {
proxy = new Payment Impl (connectString +

" /workshop/paymentWS/Payment . jws?WSDL") ;
if (DEBUG.ON) {
DEBUG.out ("proxy instantiated") ;
}

After setting up header objects in preparation for the conversation with the Web
service, we start the conversation by first getting the credit card number and value
(amount of the purchase) from the pipeline session. Then we pass authorize data to the
Payment Web service, which returns a result. This entry point simply reserves credit
on the supplied card for the amount specified.

Authorize auth = new Authorize (cc.getNumber (), amt.getValue()) ;
long result = proxySoap.authorize (auth, startHeader) .getAuthorizeResult() ;

If no errors are returned in the authorization method, we continue with capture data. In
payment transactions, the word “capture” refers to the amount of the credit card
holder's remaining available credit. The total amount to settle must be less than the
capture amount.

Capture capture = new Capture (amt.getValue()) ;
result = proxySoap.capture (capture, continueHeader) .getCaptureResult () ;

After getting the capture result from the Web service, we finish the conversation with
the settlement data.

Settle settle = new Settle(amt.getValue()) ;
result = proxySoap.settle(settle, continueHeader) .getSettleResult () ;

See the CajunBasedPaymentPC. java source file for a closer look at the error
handling. Again, the file is provided in:

weblogic700\samples\platform\e2eDomain\beaApps\e2elpp\src
\examples\e2e\b2c\payment\pipeline

Tour of the BEA WebLogic Platform Sample Application 4-41

4 Web Services Tour

Viewing the Existing paymentWS Web Service

In the WebLogic Workshop project tree window, double-click on the paymentws
folder that you copied to:

weblogic700\samples\workshop\applications\samples\paymentWs

If you skipped this step in a prior tour page, see the section titled “About the Project
Locations.” Then return to this section.

In the expanded project folder for paymentws, double-click on Java Web Service file
named Payment . jws. The following screen shows the Design View display for this
Web service:

J Design Yiew | | Source View | Payment.jws

add Operation | - Payment add Control | -

CLIEHT

—(Z) *r';n'.? Authorize

A AutharizeAindCapture
—(r *r';n:,‘ Capture

—(5) A Settle

Mermber Yariables

»

Double openToBuy_

Double amountToCapkure_

long transactionID_

lang ERR_CODE_BAD_ARGUMENT

long ERR_CODE_AMT _TO_CAPTURE_MORE_THAM_AUTH
long ERR_CODE_AMT_TO_SETTLE_MORE_THAM_CAPTURE

We used the WebLogic Workshop to define the following methods for the Web
service:

B Authorize

B AuthorizeAndCapture
B Capture

B Settle

4-42 Tour of the BEA WebLogic Platform Sample Application

Defining the Payment Authorization Web Service

In the Design View display, notice the small (s), (c), and (f) notations for the JWS
methods. These notations indicate which methods can start the Web service's
conversation (Authorize or AuthorizeAndCapture), which method(s) continue the
conversation (Capture), and which method finishes the conversation (Settle).

If successful, the Web service methods return a unique transactionID, calculated in
this sample as the time that the transaction occurred, in milliseconds. Returning an ID
this way is typical for credit card authorization applications.

Defining methods in the WebLogic Workshop is simple. This tour does not show the
steps taken to create the control and methods. These steps are documented in the
WebLogic Workshop documentation, which is available from within the visual
development environment, or on the BEA e-docs Web site's pages for WebLogic
Workshop.

In the workshop, you can switch to Source View to see the definitions for the Web
service's methods. After we added these four methods, and of course before we added
the business logic you see in the visual development environment, we added member
variables that we would need in the Web service. To do this, we right-clicked the
Payment heading in the visual development environment and selected Add Member
Variable from the pull-down menu:

J Design Yiew | | Source Yiew | Payment.jws

Add Operation |' Pa mﬂ-r;li'd —
Add Metho

Add Callback

CLIENT A = authorize Add Control]
+“,—., Authorize

Go To Code in j
— AuthorizeAndCapture © U3 I o7

Add Member Yariable
— ‘E:? Caphure

—© AL Settle

The members variables defined for the Payment.jws are as follows. The underscore
suffix is used to indicate instance variables.

B openToBuy
B amountToCapture_
B transactionID

B ERR _CODE_BAD ARGUMENT

Tour of the BEA WebLogic Platform Sample Application 4-43

4 Web Services Tour

B ERR CODE_AMT TO CAPTURE_MORE_THAN AUTH

B ERR CODE_AMT TO SETTLE MORE THAN CAPTURE

Payment Models and the Methods Defined

In credit card transactions, there are two types of payment models: terminal-based and
host-based. The difference between these payment models is where the transaction
batch is stored. For a host-based model, the transaction batch is stored on the host
network rather than on the local system at the merchant's site. Settlement typically
occurs sometime at the end of the day, and the merchant is not required to do anything
to initiate the settlement process.

For a terminal-based model, the transaction batch is stored as data files on the local
system at the merchant's site. Merchants must initiate the settlement process at the end
of each day in order for the funds to be transferred to the merchant's bank account.

The following list describes each of the terminal-based payment models that may be
assigned by the financial institution.

B AUTO MARK AUTO SETTLE

This payment model is used for soft goods. Settlement occurs as soon as
authorization is complete, because it is assumed that soft goods are shipped at
the time of purchase.

B AUTO MARK MANUAL SETTLE

This payment model is used in cases where goods have been shipped at
authorization but the merchant requests that funds should be transferred at a later
date.

B MANUAL MARK AUTO SETTLE

This payment model allows merchants to indicate that the goods have been
shipped, at which point settlement is done automatically.

H MANUAL MARK MANUAL SETTLE

This is the most flexible payment model in that it allows merchants to specify
when goods are shipped and when funds should be transferred. The mark
process allows the merchant to specify that the goods have been shipped. The
settlement process allows the merchant to indicate that funds may be transferred.

4-44 Tour of the BEA WebLogic Platform Sample Application

Defining the Payment Authorization Web Service

This next list describes each of the host-based payment models that may be assigned:

B HOST AUTH CAPTURE

This payment model is used for services, sale of digital goods, or physical goods
shipped within 24 hours of when the order is placed. In this case, the merchant
only needs to get an authorization for the purchase amount. The capture of the
authorization into the batch and the settlement of the transaction are done for the
merchant by the processor at the time of authorization.

B HOST POST AUTH CAPTURE

When the merchant fulfills orders more than one day after receiving them, the
merchant must authorize and capture transactions separately. In this payment
model, authorization is performed at the time the consumer wants to make the
purchase. Capture is performed when the merchant ships the order. The
processor handles settlement of the batched transactions at certain times of the
day.

Again, the Authorize method is used for terminal-based payment models. This entry
point validates the credit card number and reserves credit on the supplied card for the
amount specified. When validated, it creates a new entry in a database table that
records the incident and sets the state based on the payment model. The amount of the
transaction is deducted from the openToBuy field in the customer's credit balance.
However, the funds are not transferred to the merchant until settling.

Note: Merchants who are using a terminal-based processor must perform a capture
and settlement procedure before the funds from the sale are transferred to their
account. This is accomplished by a subsequent call to Capture and/or Settle,
depending on the “Auto Mark/Auto Settle” processor configuration.

The AuthorizeAndCapture method is used for host-based payment models. This
entry point validates the credit card number and reserves credit on the supplied card
for the amount specified. When validated, it creates a new entry in a database table that
records the incident and sets the state based on the payment model. The amount of the
transaction is deducted from the openToBuy field in the customer's credit balance.
However, the funds are not transferred to the merchant until settling.

Note: Merchants who are using a host-based post-authorization capture
processor must perform a capture and settlement procedure before the funds
from the sale are transferred to their account.

Tour of the BEA WebLogic Platform Sample Application 4-45

4 Web Services Tour

The capture method in the Payment Web service determines the amount of the credit
card holder’s remaining available credit. The total amount to settle must be less than
the capture amount, as checked in the Settle method:

* @jws:operation

* @jws:conversation phase="finish"

*/

public long Settle (Double amountToSettle)

{

if ((amountToSettle == null) ||
(amountToSettle.compareTo (new Double(0)) < 0))
return ERR CODE_BAD ARGUMENT;

if (amountToSettle.compareTo (amountToCapture) > 0)
return ERR_CODE_AMT TO SETTLE_MORE THAN CAPTURE;

return transactionID ;

If you need more information about defining methods in the visual development
environment, please see the WebLogic Workshop documentation. It is available from
within the visual development environment, or on the BEA e-docs Web site's pages for
WebLogic Workshop.

Building and Testing the Payment Web Service

If the WebLogic Server instance for the cgDomain is not already running, start it. If
you skipped this step in a prior tour page, see the section “Server Startup Options” on
page 4-6. Then return to this section.

With the server running, click Debug —Build. Notice the Build Started message in the
lower left corner of the visual development environment’s screen. When the build
completes for this already defined Web service, WebLogic Workshop will have placed
compiled JWS classes in the following location:

weblogic700\samples\workshop\cgServer
\.jwscompile\ jwsdir samples\classes\paymentWS*.class

With the server running, click Debug —Start

The test pages are browser-based. The initial tabbed page is the Test Form. For now,
select the Overview tab. The following screen shows the Overview page with the
server running on a remote machine named blues.

4-46 Tour of the BEA WebLogic Platform Sample Application

Defining the Payment Authorization Web Service

<} BEA WebLogic Workshop: Papment.jws Web Service - Microsoft Internet Explorer
J ‘Y" o0 H Links JAerESS I@ http: /blues: 7001 Asamples./paymentw'S /P ayme j (‘J\}Go H File >

ent.jws Web Service e y e o

| [Cwerview | [Console | [Test Form | [Test #ML | [Warnings | http:/fblues: 7001 fsamples/payment'S Payment. jws

Public Information See other services in this project
about Payment. jws Web Service

Web Service Description Language files

Complete WSDL This Ww3DL file describes the complete public contract of Payment, jws, including both
operations and callbacks.

Web Service Clients

Workshop Control Saource code For a Service Control that can be used by a WeblLogic Workshop web service
ta communicate with this service,

Java Proxy £ JAR file conkaining Java classes you can use bo access this web service as though it
were alocal Java class, To build a cliert Prosxy Support JAR is also required.

Proxy Support Jar & JAR file conkaining suppart classes that are needed by all Weblogic web service Java
Praoxies.

Service Description

This web service implements the following operations:
Authorize

Capture
Settle

AuthorizeAndCapture

[
|@ ’_ l_ E'g Local intratet Y

Select the Test Form tab. You can test the Payment Web service by entering sample
data. For example, you can enter any set of numbers for the credit card, such as
0099-8877-6655-4433 (with or without hyphens) and an openToBuy authorization
amount such as 10000. For this test, we used the Authorize method:

Tour of the BEA WebLogic Platform Sample Application 4-47

4 Web Services Tour

4-48

ic Workshop: Payment. jws Web Service - Microzoft Internet Explorer

>

‘Y" ¥ “ Lirks > J.t‘-‘qgldress I@ s;"paymentWSHPa}lment.iws?.EXF‘LUHE:.TESTj & Go “ File >

Createn by BEA Wb

Start operations

Message Log Refresh Authorize

Overview | [Console | | Test Form | [Test ®ML] [Warnings | httpesfblues: 7001 fsamples/payment''S Payment. jws

= futhorizepndCapture stting creditCardNumber: |1099-2877-6655-4433
decnsl openToBuy: 10000 |

aMs 3 conversation

AuthorizeAndCapture

string creditCardNumber:

decimal amount:

AuthorizedndCapture starts @ conversation

|@ Diohe l_ l_ E‘g Lacal intratet

[
/4

To start the conversation, click the Authorize button. This Web service method, if

successful, returns a unique transactionID, computed as the time the transaction

occurred in milliseconds, as shown in this example.

Tour of the BEA WebLogic Platform Sample Application

Defining the Payment Authorization Web Service

ozoft Internet Explorer

Links * JAgdress |@ EST# LOGEMTRY=04.LOGID=1023307567792 v[P Gn |J Fie *

Start operations

Overview | [Consale | [Test Form | [Test %ML | [Warnings |

Conkinue this conversation

Message Log Refresh Service Request

1023307567792 Submitted at Wed Jun 05 16:06:07 EDT 2002
=+ Authorize Authorize

openToBuy = 10000 craditCardMumber = 0099-8977-6655-4433 (COMVPHASE
= START (COMVERSATICNID = 1023307567792

Service Response
Submitted at Wed Jun 05 16:06:08 EDT 2002
Authorize

=long xmlns="http:{fwwa openuri org/ = 102330736 TBE2 <long =

bbb blues: 7001/ samples/paymenty's Payvment. jws

|

|@ Done

[| |5 Localintranet

4

To continue the test, click the Continue this conversation link on the page. WebLogic
Workshop returns a list of subsequent methods defined for the Payment Web service.
In the amountToCapture variable for the Capture method, enter 1000. Then click the
Capture button. If the amount to capture is less than the authorize amount (success),

the Web service returns a unique transactionID:

Start operations

Overview | [Consale | [Test Form | [Test %ML | [Warnings |

Conkinue this conversation

Message Log Refresh Service Request

1023307567792 Subritted at Wed Jun 05 16:10:58 EDT 2002
=¥ futhotize
Capture
— Capture
amountToCapture = 1000 ,COMVPHASE = (CONTINUE (COMVERSATIONID =
1023307567792

Service Response
Submitted at Wed Jun 05 16:10:58 EDT 2002

Capture

=long xmlns="http:{fwwa openuri org/ = 102330736 TBE2 <long =

bbb blues: 7001/ samples/paymenty's Payvment. jws

|@ Done

[| |5 Localintranet

a B

Tour of the BEA WebLogic Platform Sample Application

4-49

4 Web Services Tour

Next, click the Continue this conversation link again. In the amount ToSett1e variable
for the Settle method, enter a value such as 999.95. Then click the Settle button. If the
amount to settle is less than the capture amount (success), the Web service returns a
unique transactionID:

=3 BEA WeblLogic Workshop: Payment.jws Web Service - Microsoft Internet Explorer
2 o ||k
ws web service Created by BEA Webilog| C 'Workahop !

Overview | [Console | | Test Form | [Test ®ML] [Warnings | httpesfblues: 7001 fsamples/payment''S Payment. jws
Start operations

>

| Address [@] EST8LOGENTRY=26LOGID=1023307567732 ¥ | @ G “ File >

Message Log Refresh Service Request

1023307567792 Submitted at Wed Jun 05 16:16:50 ED'T 2002

=¥ Authorize
Settle

- Zaphure

=+ gettle amountToSettle = 999,98 ,COMVPHASE = FIMISH (COMVERSATIONID =

Conuwersation 1023307567792
1023307567792 is fnished. Service Response
Subrritted at Wed Jun 05 16:16:50 EDT 2002

Settle

<long xrlns="htep e openut.org = 102330736 7862 </long =

-
|@ Diohe l_ l_ E‘g Lacal intratet i
On the Test Form, you can try other values in the conversation to confirm the error
handling.

Note that when you built the Web service in WebLogic Workshop, it automatically
generated for you all the EJBs, with no action or work required by the developer. In
our example, the first access resulted in the paymentWs . PaymentEJB. jar file
creation in:

weblogic700\samples\workshop\cgServer
\.jwscompile\ jwsdir samples\EJB

The Web service class file was created in:

weblogic700\samples\workshop\cgServer
\.jwscompile\ jwsdir samples\classes\paymentWS\Payment.class

4-50 Tour of the BEA WebLogic Platform Sample Application

Defining the Payment Authorization Web Service

Save the Web Service’s WSDL

At any time in the development process, the Web Service Description Language
(WSDL) file describing your Web service is available from WebLogic Server. WSDL
is a standard XML document type controlled by the World Wide Web Consortium
(W3C, see http://www.w3 .org for more information).

WSDL files describe all the methods a Web service exposes (in the form of XML
messages it can accept and send), as well as the protocols over which the Web service
is available. The WSDL file provides all the information a client application needs to
use the web service.

There are several ways to obtain the WSDL file corresponding to a JWS file:

m In the WebLogic Workshop’s Project tree, browse to the JWS file for which you
would like to generate a WSDL file. In our example, browse to Payment . jws.
Right-click on the JWS file in the Project tree and select Generate WSDL from
JWS. A file with the name PaymentContract.wsdl will be created in the same
directory. By default, the WSDL file is linked to the JWS file from which it was
generated, meaning it will be regenerated whenever the JWS file is changed. For
this reason, this is the recommended method of generating the WSDL.

m In a browser, browse to the URL of the Web service with ?wsDL appended. For
example, if the Web service is running on the default server on a machine named
blues:

http://blues:7001/samples/paymentWS/Payment . jws?WSDL

Use your browser's File —Save As function to save the WSDL file to your local
machine. Note that some browsers will include HTML tags at the top and
bottom of the saved file. You must remove these tags to produce a valid WSDL
file. Be sure to designate the .wsdl file type; we recommend that you follow the
naming convention of <WebServiceName>Contract .wsdl. For example, name
it PaymentContract .wsdl.

m In the WebLogic Workshop, you can view the WSDL by clicking the Complete
WSDL link on the Overview page while testing your Web service. You can then
use the browser's Save As function to write the Web service's file into the same
directory as the JWS file. (Again, follow the naming convention shown above,
and remember that some browsers will include HTML tags that you must
remove from the top and bottom of the saved file.)

Tour of the BEA WebLogic Platform Sample Application 4-51

4 Web Services Tour

Packaging of PaymentWS Web Service for Use in
e2eDomain

We packaged the files that comprise the Payment Web service for the installed
e2eDomain as follows:

Web service client interfaces, CLASS files, used by WebLogic Workshop runtime

weblogic700\samples\platform\e2eDomain\bealApps\e2elApp
\b2cPortal \WEB-INF\classes\paymentWS*.class

Web service client interfaces, JAVA files

weblogic700\samples\platform\e2eDomain\beaApps\e2eApp
\src\paymentWs*.java

Server-side implementation

weblogic700\samples\platform\e2eDomain\bealApps
\e2eWebServicesApp\workshop\paymentWS\Payment . jws

This is the Payment . jws file copied from the WebLogic Workshop area and deployed
as part of the workshop Web application, which was deployed as part of the
e2eWebServicesApp enterprise application. Of course, the workshop Web
application has a WEB- INF subdirectory that contains the configuration settings in

* . xm1 files.

JAR file of the EJBs used by the paymentWS Web service

weblogic700\samples\platform\e2eDomain\e2eServer
\.jwscompile\ jwsdir workshop\EJB\paymentWsS.PaymentEJB.jar

Webflow Input Processors, CLASS files, for Payment processing

weblogic700\samples\platform\e2eDomain\bealApps
\e2eApp\b2cPortal \WEB-INF\classes\examples\e2e
\b2c\payment\webflow*IP.class

Final Step for the Web Services Tour

This concludes the Web Services Tour. In the online tour, please click the Back to
Introduction button to return to the sample’s Introduction page.

4-52 Tour of the BEA WebLogic Platform Sample Application

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction
	WebLogic Platform Architecture
	Starting the Sample
	The Sample’s Introduction Page
	Section 01 Provides Introductory Text
	Section 02 Provides the Link to the B2C Portal
	Section 03 Provides the Link to the B2B Portal
	Section 04 Provides the Link to a Web Services Tech Tour
	Survey Section

	Integration Points
	Product Evaluator Web Service and Portlet
	Payment Web Service
	Orders Generated in WebLogic Portal Are Processed by WebLogic Integration Via JMS Queue and BPM
	Real-time Inventory Checks Via WebLogic Integration AI

	2 Business-to-Consumer (B2C) Portal Tour
	Outline of Initial Processing
	The My Avitek Page
	Technical Details for the My Avitek Page
	Introduction
	Location in the Default Webflow
	Events on the My Avitek Page
	Dynamic Data Display on My Avitek Page
	Administration Task to Designate Default Portal Page

	Next Step

	The Products Page
	Technical Details for the Products Page
	Introduction
	Location in Default Webflow
	Dynamic Data Display
	Events on the Initial Products Page
	Category Administration Tasks

	Next Step

	The Category Portlet
	Category Page Technical Details
	Introduction
	Location in Default Webflow
	Dynamic Data Display
	Events
	Assigning Items to a Category

	Next Step

	The Product Item Portlet
	Technical Details for the Product Item Portlet
	Introduction
	Location in Default Webflow
	Dynamic Data Display
	Events
	Adding or Modifying Product Item Data

	Next Step

	The Product Evaluator Portlet and Web Service
	Technical Details for the Product Evaluator Portlet
	Determine Items to Display
	Using the Web Service

	Next Step

	The Buy Now Button and Inventory Checks Via WebLogic Integration AI
	Technical Details for the Buy Now Button
	Inventory Checks

	Next Steps

	The Search Results Portlet
	Technical Details for the Search Results Portlet
	Introduction
	Location in the Default Webflow
	Events
	Dynamic Data Display
	Administration Tasks for Keyword-based Searches

	Next Steps

	The Save for Later Button
	Technical Details for the Save for Later Button Event
	Next Step

	The My Shopping Cart Portlet, Step1.jsp
	Technical Details for the Step1.jsp Portlet
	Introduction
	Step1.jsp Processing, Including Inventory Checks and Discounts
	Next Step
	The Add to Cart Button in Saved Items List
	Technical Details the Add to Cart Button in the Saved Items List
	Next Step
	The REMOVE Button in the Saved Items List
	Technical Details for REMOVE Button in the Saved Items List
	Next Step
	The REMOVE Button on the Current Items List
	Technical Details for REMOVE Button on the Current Items List
	Next Step
	The Save for Later Button on Current Items List
	Technical Details
	Next Step

	The Checkout Portlet, Step2.jsp
	Technical Details for the Checkout Portlet
	Next Steps

	The Order Submission Portlet, Step3.jsp
	Technical Details for the Order Submission Portlet
	Introduction
	Payment Authorization with a WebLogic Workshop Web Service
	A Note about the Cancel Button

	Next Step

	The Order Confirmation Portlet, Step4.jsp
	Technical Details for the Order Confirmation Portlet
	Final Step for the BC2 Portal Tour

	3 Avitek Purchasing Agents Connect with Suppliers
	The Product Inventory Portlet
	Technical Details for the Product Inventory Portlet
	Introduction
	Trading Partners
	Using the WebLogic Integration Studio
	Viewing Workflow Templates in the Studio
	Business Process and Workflow Modeling
	Inventory Page Portlets
	Outline of Initial Portal Processing
	Page Change Webflow Events
	Dynamic Portlet Display and Inventory Checks Via WebLogic Integration AI

	Next Step

	The Product Parts Inventory Portlet
	Technical Details for the Product Parts Inventory Portlet
	Product Part Inventory Check Via WebLogic Integration AI

	Next Step

	The Query for Price and Availability Portlet
	Technical Details for the Query for Price and Availability Portlet
	Next Steps

	The Quotes for Price and Availability Portlet, and the QPA Business Process
	Technical Details for the QPA Business Process
	Process Flow in the QPA Business Process
	Data Flow in the QPA Business Process

	Next Steps

	The Purchase Order for Review Portlet and PO Business Process
	Technical Details for the PO Business Process
	Process Flow in the Purchase Order Business Process
	Data Flow in the PO Business Process

	Next Step

	The Purchase Order History Portlet
	Technical Details for the Purchase Order History Portlet
	Final Step for the B2B Portal Tour

	4 Web Services Tour
	Starting WebLogic Workshop
	About the Project Locations
	Server Startup Options

	Defining Web Services with WebLogic Workshop — An Overview
	The WebLogic Workshop Visual Development Environment
	WebLogic Workshop Controls
	Java Web Service Files and Control Files
	The WebLogic Workshop Framework
	Outline of the Web Service Development Process

	Defining the Product Evaluator Web Service
	Viewing the Existing productEvalWSC Web Service
	Building and Testing the productEvalWSC Web Service
	Save the Web Service’s WSDL
	Use Portlet Wizard to Generate Initial Code for the Product Evaluator Portlet
	Next Step

	Defining the Payment Authorization Web Service
	The Role of the CajunBasedPaymentPC Pipeline Component
	Viewing the Existing paymentWS Web Service
	Payment Models and the Methods Defined
	Building and Testing the Payment Web Service
	Save the Web Service’s WSDL
	Packaging of PaymentWS Web Service for Use in e2eDomain
	Final Step for the Web Services Tour

