

BEA WebLogic Mobility Server

Device Repository Guide

Version 3.6 SP1
 Oct 2007

Contents

BEA WebLogic Mobility Server Device Repository Guide - 2

Copyright
Copyright © 1995-2007 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this
software is permitted unless you have entered into a license agreement with BEA authorizing such use. This
document is protected by copyright and may not be copied photocopied, reproduced, translated, or reduced to
any electronic medium or machine readable form, in whole or in part, without prior consent, in writing, from
BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the
part of BEA Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT,
GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF
THE USE, OF THE DOCUMENT IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR
OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2007 BEA Systems, Inc. All Rights Reserved.BEA, BEA JRockit, BEA WebLogic Portal,
BEA WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End,
Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic
Data Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic
Service Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for
WebLogic, BEA Manager, BEA MessageQ, BEA WebLogic Commerce Server, BEA WebLogic
Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic
Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for
Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA WebLogic Network Gatekeeper,
BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API, BEA WebLogic Platform,
BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Server Process Edition, BEA WebLogic
SIP Server, BEA WebLogic WorkGroup Edition, Dev2Dev, Liquid Computing, and Think Liquid are
trademarks of BEA Systems, Inc. BEA Mission Critical Support, BEA Mission Critical Support Continuum,
and BEA SOA Self Assessment are service marks of BEA Systems, Inc.
All other names and marks are property of their respective owners.

Contents

BEA WebLogic Mobility Server Device Repository Guide - 3

Contents
Introduction.. 4

About this Guide.. 4
Intended Audience .. 4
Using this Guide.. 4

1—Install the Device Repository.. 5
Introduction.. 5
Perform Pre-Installation Task—Modify Database/Memory Settings... 5
The Device Repository Manager Tool .. 6
Device Repository Manager Scenario 1: Install a New Device Repository .. 8
Device Repository Manager Scenario 2: Use the Online Update Service to Update the Device Repository14
Device Repository Manager Scenario 3: Update an Existing Device Repository from a File....................... 20
Device Repository Manager Scenario 4: Backup an Existing Database to a file ... 28
Device Repository Manager Scenario 5: Update a File-Based Device Repository 31

2—Configure the mis.properties Settings .. 37
Locate the mis.properties File ... 37
Configure the mis.properties File for the Device Repository .. 37

Next steps .. 49
3—Administer the Device Repository ... 50

Introduction.. 50
Use Device Repository Manager to Configure Device Profiles .. 66

Appendixes .. 86
Appendix A—WebLogic Mobility Server and Device Repository Interaction.. 86
Appendix B—Device Attributes ... 87
Appendix C—Use the Admin Console Tool to Manage Devices and Device Attributes in the Device
Repository ... 110
Appendix D—Configure Device Repository Manager to Connect to the Update Service via a Web Proxy114
Appendix E—Fallback Recognition Logic Expression Language Details ... 115
Appendix F—Enlarge the JVM Memory Argument to Support a Full XML File .. 116

Introduction

BEA WebLogic Mobility Server Device Repository Guide - 4

Introduction

About this Guide
This guide explains how to install the Device Repository used by BEA WebLogic Mobility Server™,
describes how to update the mis.properties file to reflect the Device Repository connection details and
outlines how to set up and manage the device profiles stored in the Repository.

Intended Audience
It is recommended that your IT department, database/development team or a technical consultant perform the
tasks outlined in this document.

Begin by reading the next section, which explains how to use the guide.

Using this Guide
The manual is divided into three main chapters:

1. “Install the Device Repository”

2. “Configure the mis.properties Settings”.

3. “Administer the Device Repository”.

The “Appendixes” chapter provides information on mobile device attributes and the Admin Console tool.

Note: The directory weblogic81 is used in this document—if you have a BEA WebLogic 9.2 installation, use
weblogic92 instead; if you have a BEA WebLogic 10 installation, use wlserver_10.0 instead.

Notes

• This is the second guide that you will use in the process of installing and running the WebLogic Mobility
Server product. Ensure that you have performed the tasks outlined in the BEA WebLogic Mobility Server
Installation Guide before proceeding here.

Once you have installed the product and the Device Repository, you should proceed to the BEA
WebLogic Mobility Server Administration Guide.

Chapter 3, “Administer the Device Repository”, of this Device Repository Guide will then become useful
as a reference manual when administering the device profiles

• As outlined in the afore-mentioned guides, ensure that you have also installed the appropriate product
license before proceeding

• The term “Mobility Extension for BEA Workshop” used in the document refers to both the Mobility
Extension for BEA WebLogic Workshop 8.1 and the Mobility Plugin for BEA Workshop for WebLogic
Platform 9.2/10

• The term <WLMS_install_directory> denotes either <BEA_install_directory>\weblogic81\mobility,
<BEA_install_directory>\weblogic92\mobility or <BEA_install_directory>\wlserver_10.0\mobility
depending on your installation

1—Install the Device Repository

BEA WebLogic Mobility Server Device Repository Guide - 5

1—Install the Device Repository

Introduction
WebLogic Mobility Servers require the Device Repository to store device profile information. Follow the
instructions and sample screenshots in this chapter to install the Device Repository.

The Device Repository can be deployed as either a DeviceRepository file or a database:

• The Device Repository is deployed (as a DeviceRepository file) as part of the WebLogic Mobility Server
3.6 install

• If you wish to deploy the Device Repository into a database, you will also need to run the Device
Repository Manager tool

The Device Repository currently supports Oracle, MySQL, Postgres, PointBase, SQL Server 2000, IBM
Universal DB2 and Sybase Adaptive Server Enterprise databases. The following installation procedures
assume that a supported database/the DeviceRepository file has already been installed, and that the
administrator performing the installation is familiar with database creation.

After completing the Device Repository installation, configure the mis.properties settings as described in
chapter 2, “Configure the mis.properties Settings”.

Perform Pre-Installation Task—Modify Database/Memory Settings
Note: You ONLY need to perform the tasks outlined here if you are installing the full Device Repository into
the evaluation PointBase database included in the BEA Portal Domains.

Before you install the Device Repository, complete the steps in either the “Increase the PointBase Settings”
section.

Increase the Default Pointbase Settings
You will need to modify the default Pointbase settings if you are installing the full Device Repository into the
evaluation Pointbase database included in the BEA Portal Domains.

Open the pointbase.ini file from \bea\user_projects\domains\mydomain\ and set values for the following
parameters as shown below:

• database.pagesize=10000

• cache.size=10000

• sort.size=10000

1—Install the Device Repository

BEA WebLogic Mobility Server Device Repository Guide - 6

The Device Repository Manager Tool
Device Repository Manager is a GUI tool that has three main functions:

• As previously mentioned, the Device Repository can be deployed as either a database or a
DeviceRepository file. It is deployed as a DeviceRepository file as part of the WebLogic Mobility Server
3.6 install. Run the Device Repository Manager tool to deploy the Device Repository into a database

• The Device Repository Manager tool then performs subsequent Device Repository updates

• It is also used to perform maintenance on the DeviceRepository file-based Device Repository.

Important notes

• The DeviceRepository file can be stored and accessed as either an XML file, or in compressed format
with the extension ".madr"

Note: The large XML format device repository file may cause problems when a project is opened in BEA
WebLogic Workshop. In this scenario, please use the compressed madr-format repository to avoid these
problems. The Enable Multi-Channel function automatically adds the ".madr" version of the file to your
project.

Note: If you are using a full XML file-based Device Repository (i.e. devicerepository.xml), you must set
the size of the JVM memory large enough to support the full XML file—see section “Appendix F—
Enlarge the JVM Memory Argument to Support the Full XML File” for instructions on how to do so.

• When the Device Repository is represented as a database, you will use the Admin Console tool to add,
remove and modify devices and device attributes; for more information, see “Appendix C”

The Device Repository Manager tool itself allows customers to:

• Create a new Device Repository from a flat DeviceRepository file (provided by the Online Update
Service)

• Backup a customer’s existing database to a DeviceRepository file

• Access the Device Repository Online Update Service to download and install the latest update provided
(also provided as a flat DeviceRepository file)

• Add/remove custom devices from the DeviceRepository file. This is mainly for use with the
DeviceRepository file-based repository

• Perform limited modifications on existing device attributes in the DeviceRepository file

• Add and remove custom attributes to the DeviceRepository file

When using Device Repository Manager to install an update provided by the Online Update Service, the tool:

• Backs up the customer’s existing Device Repository to a DeviceRepository file

• Detects and stores customer modifications to their existing Device Repository

• Installs the new Device Repository provided by the Online Update Service.

• Presents the customer with a list of modifications and allows the customer to re-apply each of them or
accept the values provided in the Device Repository update

1—Install the Device Repository

BEA WebLogic Mobility Server Device Repository Guide - 7

Locate the Device Repository Manager Tool
The Device Repository Manager tool can be found under the installation directory that was selected when
installing the product:

• On a MS Windows operating system, this would be:
<WLMS_install_directory>\applications\DeviceRepositoryManager.exe

• On a UNIX operating system, this would be:
< WLMS_install_directory>/applications/DeviceRepositoryManager

Notes

• Device Repository Manager is a GUI based application that must be run on a system with a windowing
environment. You may therefore run it in a UNIX/Linux environment running X Windows, or in a MS
Windows environment

• Device Repository Manager connects directly to the database within which the Device Repository is to be
installed, so it is not necessary to run it on the same platform on which WebLogic Mobility Server was
installed

Pre-Configuration for Support of IBM Universal DB2
If using Device Repository Manager to install the Device Repository on IBM Universal DB 2, copy the
following driver files from <ibm DB2 install_directory>\SQLLIB\java, for example, C:\Program
Files\IBM\SQLLIB\java to <install_directory>\applications\lib:

• db2jcc.jar

• db2jcc_license_cu.jar

This will enable Device Repository Manager to install and/or update the Device Repository into a configured
IBM Universal DB2 database.

Pre-Configuration for Support of SQL Server 2000
If using Device Repository Manager to install the Device Repository on SQL Server 2000, download the
necessary JDBC drivers from: http://www.microsoft.com/downloads/details.aspx?FamilyID=86212d54-
8488-481d-b46b-af29bb18e1e5&displaylang=en and then copy the following files to either <
WLMS_install_directory>\applications\lib:

• msbase.jar

• mssqlserver.jar

• msutil.jar

This will enable Device Repository Manager to install and/or update the Device Repository into a configured
Microsoft SQL Server 2000 database.

1—Install the Device Repository

Device Repository Manager Scenario 1: Install a New Device Repository
Create a database for the Device Repository and note the connection details. To complete the Device
Repository installation, you will need to know the database type, the database URL, and a valid username and
password for accessing the database.

1. Run DeviceRepositoryManager.exe (Windows) or DeviceRepositoryManager (UNIX/Linux platforms).

2. The “Device Repository Options” dialog is displayed.

3. Select the Install/Update Device Repository from File option to install or update the Device Repository
using the DeviceRepository file.

BEA WebLogic Mobility Server Device Repository Guide - 8

1—Install the Device Repository

4. The “Select Latest Device Repository file” dialog is displayed.

5. Select a DeviceRepository file to install and click Open. The DeviceRepository file included with the
WebLogic Mobility Server installer will be shown as the default for a new installation.

BEA WebLogic Mobility Server Device Repository Guide - 9

1—Install the Device Repository

6. The “Device Browser” screen is displayed.

7. This screen displays the device data contained in the DeviceRepository file. The data is shown in a
hierarchical structure as a preview of the Device Repository to be installed. To display inherited values
for each device, select the Show Inherited Values check box. Click Begin Installation to proceed.

BEA WebLogic Mobility Server Device Repository Guide - 10

1—Install the Device Repository

8. The second “Device Repository Options” dialog is displayed.

9. This dialog provides two options:

• Database Installation: Install the Device Data into a relational database

• Repository File Merge: Update an existing file-based Device Repository

Select Database Installation.

BEA WebLogic Mobility Server Device Repository Guide - 11

1—Install the Device Repository

10. The “Database Connection Details” dialog is displayed.

11. Select the type of database from the Database Type drop-down menu. Values for the Database URL,
Database User Name and Database Password fields should be available from your Database
Administrator (DBA). Enter the database connection details in the format shown in the preceding graphic
and described :

• For Oracle, enter the following in the Database URL field:
jdbc:oracle:thin:@<oracle_host>:<oracle_port>:<oracle_database_name>

• For MySQL, enter the following in the Database URL field:
jdbc:mysql://<mysql-server-ip:port>/ <db-name>?user=<connect-user>&password=<connect-password>

• For Postgres, enter the following in the Database URL field:
jdbc:postgresql://<postgres_machine>:<postgres_port>/<postgres_database_name>

• For PointBase, enter the following in the Database URL field:
jdbc:pointbase:server://<ip_address>:<port>/<SID>

• For Sybase ASE, enter the following in the Database URL field:
jdbc:sybase:Tds:<ip_address>:<port>/SID

• For IBM DB2, enter the following in the Database URL field:
jdbc:db2://<ip_address>:<port>/SID

• For Microsoft SQL Server 2000, enter the following in the Database URL field:
jdbc:bea:sqlserver://<sqlserver_host>:<sqlserver_port>;databaseName=<sqlserver_database_name>

12. Click Connect. Once a successful connection is made the details are stored and will be remembered the
next time the tool is run.

BEA WebLogic Mobility Server Device Repository Guide - 12

1—Install the Device Repository

13. A progress bar shows the progress of the data installation.

14. The “Device Repository Installation Complete” message is displayed.

15. Click OK.

16. Click Exit on the “Device Repository Manager” screen to close the tool.

BEA WebLogic Mobility Server Device Repository Guide - 13

1—Install the Device Repository

Device Repository Manager Scenario 2: Use the Online Update Service
to Update the Device Repository
Follow the steps below to connect to the Online Update Service to update an existing Device Repository.

Note: You can also configure Device Repository Manager to connect to the Device Repository Online
Update Service via a web proxy to download the latest updates—see Appendix D for instructions on how to
do this.

1. Run DeviceRepositoryManager.exe (Windows) or DeviceRepositoryManager (UNIX/Linux platforms).
The “Device Repository Options” dialog is displayed.

2. Select Download and Install Latest Device Updates to connect to the Online Update Service for the
latest DeviceRepository file.

Note: If a default license file is not found, the “License File Not Found file chooser” dialog is displayed.
Here you can browse to and select a valid license file.

BEA WebLogic Mobility Server Device Repository Guide - 14

1—Install the Device Repository

3. The “Database Connection Details” dialog is displayed.

4. Select the type of database from the Database Type drop-down menu. Values for the Database URL,
User Name and Password fields should be available from your Database Administrator (DBA). Enter
the database connection details in the format shown in the preceding graphic and described :

• For Oracle, enter the following in the Database URL field:
jdbc:oracle:thin:@<oracle_host>:<oracle_port>:<oracle_database_name>

• For MySQL, enter the following in the Database URL field:
jdbc:mysql://<mysql-server-ip:port>/ <db-name>?user=<connect-user>&password=<connect-password>

• For Postgres, enter the following in the Database URL field:
jdbc:postgresql://<postgres_machine>:<postgres_port>/<postgres_database_name>

• For PointBase, enter the following in the Database URL field:
jdbc:pointbase:server://<ip_address>:<port>/<SID>

• For Sybase ASE, enter the following in the Database URL field:
jdbc:sybase:Tds:<ip_address>:<port>/SID

• For IBM DB2, enter the following in the Database URL field:
jdbc:db2://<ip_address>:<port>/SID

• For Microsoft SQL Server 2000, enter the following in the Database URL field:
jdbc:bea:sqlserver://<sqlserver_host>:<sqlserver_port>;databaseName=<sqlserver_database_name>

5. Click Connect. Once a successful connection is made the details are stored and will be remembered the
next time the tool is run.

BEA WebLogic Mobility Server Device Repository Guide - 15

1—Install the Device Repository

6. If you successfully connect and are authorized to receive the latest DeviceRepository file, it will
download now. The Device Browser screen then displays, which shows the downloaded
DeviceRepository file.

7. The data is shown in a hierarchical structure as a preview of the Device Repository to be installed. To
display inherited values for each device, select the Show Inherited Values check box. Click Begin
Installation to proceed.

Note: You may be required to re-enter the Database Connection details; if so, see steps 3—5.

BEA WebLogic Mobility Server Device Repository Guide - 16

1—Install the Device Repository

8. If an existing Device Repository is detected, the “Backup Existing Database to file” dialog is displayed.

Here, you must backup the existing Device Repository to a file before proceeding. The created backup
file will have the same structure as the DeviceRepository file.

This backup file will be used for detecting modifications later in the upgrade process.

Enter a name for the file and click Backup.

9. A progress bar monitors the progress of the backup process. This may take up to two minutes depending
on the connection.

The system will now compare the backup and DeviceRepository files to compile a list of modifications.

10. If there are no modifications, the system will replace the existing database with the selected Device
Repository file. In this case you can now proceed to the next step.

If it does detect modifications, you must review these modifications before proceeding with the
installation. In this case, continue with this step.

Once the detection process completes, a dialog box similar to the one shown will display showing the
delta between the DeviceRepository file to be installed and the existing Device Repository.

BEA WebLogic Mobility Server Device Repository Guide - 17

1—Install the Device Repository

You can re-apply any modifications that have been detected in the existing Device Repository by
selecting the appropriate Retain Custom Entry check boxes.

You can now create the database. After selecting any data that you wish to retain, click Create
Repository.

BEA WebLogic Mobility Server Device Repository Guide - 18

1—Install the Device Repository

11. A “Warning” dialog box is displayed indicating that the Device Repository data will be replaced with the
selected data set.

12. Click Yes to proceed with the installation.

13. A progress bar shows the progress of the data installation.

14. The “Device Repository Installation Complete” message is displayed.

15. Click OK and then click Exit on the “Device Repository Manager” screen to close the tool.

BEA WebLogic Mobility Server Device Repository Guide - 19

1—Install the Device Repository

Device Repository Manager Scenario 3: Update an Existing Device
Repository from a File
Follow these steps to update an existing Device Repository from a file:

1. Run DeviceRepositoryManager.exe (Windows) or DeviceRepositoryManager (UNIX/Linux platforms).
The “Device Repository Manager Usage” dialog is displayed. Click Continue.

2. The “Device Repository Options” dialog is displayed.

3. Select Install/Update Device Repository from File to update the Device Repository using a local
DeviceRepository.

BEA WebLogic Mobility Server Device Repository Guide - 20

1—Install the Device Repository

4. The “Select Latest Device Repository file” dialog is displayed.

5. Select a DeviceRepository file to install and click Open. The DeviceRepository file included with the
WebLogic Mobility Server installer will be shown as the default for a new installation.

BEA WebLogic Mobility Server Device Repository Guide - 21

1—Install the Device Repository

6. The “Device Browser” screen shows the downloaded DeviceRepository.

7. The data is shown in a hierarchical structure as a preview of the Device Repository to be installed. To
display inherited values for each device, select the Show Inherited Values check box. Click Begin
Installation to proceed.

BEA WebLogic Mobility Server Device Repository Guide - 22

1—Install the Device Repository

8. The second “Device Repository Options” dialog is displayed.

It provides two options:

• Database Installation: Install the Device Data into a relational database

• Repository File Merge: Update an existing file-based Device Repository

Select Database Installation.

BEA WebLogic Mobility Server Device Repository Guide - 23

1—Install the Device Repository

9. The “Database Connection Details” dialog is displayed.

10. Select the type of database from the Database Type drop-down menu. Values for the Database URL,
User Name and Password fields should be available from your Database Administrator (DBA). Enter
the database connection details in the format shown in the preceding graphic and described :

• For Oracle, enter the following in the Database URL field:
jdbc:oracle:thin:@<oracle_host>:<oracle_port>:<oracle_database_name>

• For MySQL, enter the following in the Database URL field:
jdbc:mysql://<mysql-server-ip:port>/ <db-name>?user=<connect-user>&password=<connect-
password>

• For Postgres, enter the following in the Database URL field:
jdbc:postgresql://<postgres_machine>:<postgres_port>/<postgres_database_name>

• For PointBase, enter the following in the Database URL field:
jdbc:pointbase:server://<ip_address>:<port>/<SID>

• For Sybase ASE, enter the following in the Database URL field:
jdbc:sybase:Tds:<ip_address>:<port>/SID

• For IBM DB2, enter the following in the Database URL field:
jdbc:db2://<ip_address>:<port>/SID

• For Microsoft SQL Server 2000, enter the following in the Database URL field:
jdbc:bea:sqlserver://<sqlserver_host>:<sqlserver_port>;databaseName=<sqlserver_database_name
>

11. Click Connect. Once a successful connection is made the details are stored and will be remembered the
next time the tool is run.

BEA WebLogic Mobility Server Device Repository Guide - 24

1—Install the Device Repository

12. If an existing Device Repository is detected, a “Backup Existing Database to file” dialog is displayed.

13. Here, you must backup the existing Device Repository to a file before proceeding. The created backup
file will have the same structure as the DeviceRepository file. This backup file will be used for detecting
modifications later in the upgrade process. Enter a name for the file and click Backup.

14. A progress bar monitors the progress of the backup process. This may take up to two minutes depending
on the connection.

The system will now compare the backup and DeviceRepository files to compile a list of modifications.

15. If there are no modifications, the system will replace the existing database with the selected
DeviceRepository file. In this case you can proceed now to the next step.

If it does detect modifications, you must review these modifications before proceeding with the
installation. In this case, continue with this step.

Once the detection process completes, a dialog box similar to the one shown will display showing the
delta between the DeviceRepository file to be installed and the existing Device Repository.

BEA WebLogic Mobility Server Device Repository Guide - 25

1—Install the Device Repository

You can now choose to re-apply any modifications that have been detected in the existing Device
Repository by selecting the appropriate Retain Custom Entry check boxes.

You can now create the database. After selecting any data that you wish to retain, click Create
Repository.

BEA WebLogic Mobility Server Device Repository Guide - 26

1—Install the Device Repository

16. A “Warning” dialog box is displayed indicating that the Device Repository data will be replaced with the
selected data set.

17. Click Yes to proceed with the installation.

18. A progress bar shows the progress of the data installation.

19. The “Database Repository Installation Complete” message is displayed.

20. Click OK here and then click Exit on the “Device Repository Manager” screen to close the tool.

BEA WebLogic Mobility Server Device Repository Guide - 27

1—Install the Device Repository

Device Repository Manager Scenario 4: Backup an Existing Database to
a file
Follow the steps outlined to backup an existing database.

1. Run DeviceRepositoryManager.exe (Windows) or DeviceRepositoryManager (UNIX/Linux
platforms).The “Device Repository Manager Usage” dialog is displayed. Click Continue.

2. The “Device Repository Options” dialog is displayed.

3. Select Backup Existing Device Repository to backup the installed database to a file.

BEA WebLogic Mobility Server Device Repository Guide - 28

1—Install the Device Repository

4. The “Database Connection Details” dialog is displayed.

5. Select the type of database from the Database Type drop-down menu. Values for the Database URL,
User Name and Password fields should be available from your Database Administrator (DBA). Enter
the database connection details in the format shown in the preceding graphic and described :

• For Oracle, enter the following in the Database URL field:
jdbc:oracle:thin:@<oracle_host>:<oracle_port>:<oracle_database_name>

• For MySQL, enter the following in the Database URL field:
jdbc:mysql://<mysql-server-ip:port>/ <db-name>?user=<connect-user>&password=<connect-
password>

• For Postgres, enter the following in the Database URL field:
jdbc:postgresql://<postgres_machine>:<postgres_port>/<postgres_database_name>

• For PointBase, enter the following in the Database URL field:
jdbc:pointbase:server://<ip_address>:<port>/<SID>

• For Sybase ASE, enter the following in the Database URL field:
jdbc:sybase:Tds:<ip_address>:<port>/SID

• For IBM DB2, enter the following in the Database URL field:
jdbc:db2://<ip_address>:<port>/SID

• For Microsoft SQL Server 2000, enter the following in the Database URL field:
jdbc:bea:sqlserver://<sqlserver_host>:<sqlserver_port>;databaseName=<sqlserver_database_name
>

6. Click Connect. Once a successful connection is made the details are stored and will be remembered the
next time the tool is run.

BEA WebLogic Mobility Server Device Repository Guide - 29

1—Install the Device Repository

7. The “Backup Existing Database to file” dialog is displayed.

8. Enter a name for the file and click Backup to backup the existing Device Repository to a file.

9. A progress bar monitors the progress of the backup process. This may take up to two minutes depending
on the connection.

10. When the backup completes, click Exit on the “Device Repository Manager” screen to close the tool.

BEA WebLogic Mobility Server Device Repository Guide - 30

1—Install the Device Repository

Device Repository Manager Scenario 5: Update a File-Based Device
Repository
If a customized file-based Device Repository already exists, you can use Device Repository Manager to
merge these customizations into the latest DeviceRepository file.

Note: It is recommended that you backup the customized DeviceRepository file before proceeding with the
update process.

Follow the steps outlined to update an existing file-based Device Repository:

1. Run DeviceRepositoryManager.exe (Windows) or DeviceRepositoryManager (UNIX/Linux platforms).
The “Device Repository Manager Usage” dialog is displayed. Click Continue.

2. The “Device Repository Options” dialog is displayed.

3. Select Install/Update Device Repository from File to update the Device Repository using a local
DeviceRepository.

BEA WebLogic Mobility Server Device Repository Guide - 31

1—Install the Device Repository

4. The “Select Device Repository file” dialog is displayed.

5. Select a DeviceRepository file to install and click Open. The DeviceRepository file included with the
WebLogic Mobility Server installer will be shown as the default for a new installation.

BEA WebLogic Mobility Server Device Repository Guide - 32

1—Install the Device Repository

6. The following “Device Browser” screen shows the downloaded DeviceRepository.

7. The data is shown in a hierarchical structure as a preview of the Device Repository to be installed. To
display inherited values for each device, select the Show Inherited Values check box. Click Begin
Installation to proceed.

BEA WebLogic Mobility Server Device Repository Guide - 33

1—Install the Device Repository

8. The second “Device Repository Options” dialog is displayed.

It provides two options:

• Database Installation: Install the Device Data into a relational database

• Repository File Merge: Update an existing file-based Device Repository

Select Repository File Merge.

9. The “Select Customized Device File” dialog is displayed.

Verify that the correct customized file is selected and click Load file.

BEA WebLogic Mobility Server Device Repository Guide - 34

1—Install the Device Repository

10. If:

• No modifications are detected the “File Merge Not Required” message is displayed

Click OK to exit the tool.

• If modifications are detected, the “Customer Modifications” screen is displayed

Select the corresponding Retain Custom Entry check boxes for any attributes/devices that you want
to keep and click Create Repository.

BEA WebLogic Mobility Server Device Repository Guide - 35

1—Install the Device Repository

11. The “Export File” dialog is displayed.

12. Select the filename for the newly merged file.

Notes

• You may use an existing file; however, it is advisable to use a new filename

• Files with ".madr" extensions contain compressed device repositories. If you specify a ".madr" file
extension, the file that you create will be a compressed version of the Device Repository

13. When the file has been written to disk, click Exit to exit the tool.

BEA WebLogic Mobility Server Device Repository Guide - 36

2—Configure the mis.properties Settings

BEA WebLogic Mobility Server Device Repository Guide - 37

2—Configure the mis.properties Settings
The mis.properties file is a configuration file containing the Device Repository connection settings used by
WebLogic Mobility Server. You must modify the file to reflect the Device Repository connection details, so
that WebLogic Mobility Server can connect to the Device Repository and retrieve device profiles.

Locate the mis.properties File
The mis.properties file is a plain text file that can be edited in any text editor. The file can be found in the
WEB-INF/classes folder of the web application.

Configure the mis.properties File for the Device Repository
The Device Repository can be deployed as either a database or a DeviceRepository file. If it is deployed as a
database, follow the instructions in the “Configure a Database Device Repository” section; if it is deployed as
a DeviceRepository file, follow the instructions in the “Configure a File-Based Device Repository” section.

Note: If you are using a full XML file-based Device Repository (i.e. devicerepository.xml), you must set the
size of the JVM memory large enough to support the full XML file—see section “Appendix F—Enlarge the
JVM Memory Argument to Support the Full XML File” for instructions on how to do so.

Configure a Database Device Repository
This section has been split into two sub-sections—follow the steps in either “Configure a Database Device
Repository within the Web Application to Support Direct Connection with WebLogic Mobility Server” or
“Configure a Database Device Repository on the Application Server to Support a JNDI Connection with
WebLogic Mobility Server”, as appropriate.

Note: Configurations for JNDI Connections with WebLogic Mobility Server are supported on BEA
WebLogic 10 platforms.

Configure a Database Device Repository within the Web Application to Support Direct
Connection with WebLogic Mobility Server
You must configure the following Device Repository properties in the mis.properties file in order for
WebLogic Mobility Server to successfully communicate with the Device Repository when using an external
database:

Device Repository properties settings

Property Description

deviceDB.driver This is the location of the JDBC driver that WebLogic Mobility Server will
use to gain access to the database.

This property also has the effect of informing WebLogic Mobility Server of
the database that it is connected to.

For Oracle, set to: oracle.jdbc.driver.OracleDriver

For MySQL, set to: org.gjt.mm.mysql.Driver

For Postgres, set to: org.postgresql.Driver

For PointBase, set to: com.pointbase.jdbc.jdbcUniversalDriver

For SQL Server (with WebLogic Mobility Server deployed on BEA
WebLogic only), set to: weblogic.jdbc.sqlserver.SQLServerDriver

For Sybase ASE set to: com.sybase.jdbc2.jdbc.SybDriver

2—Configure the mis.properties Settings

BEA WebLogic Mobility Server Device Repository Guide - 38

For IBM DB2 Universal Database set to: com.ibm.db2.jcc.DB2Driver

To configure WebLogic Mobility Server to use the BEA WebLogic database
connection pool: weblogic.jdbc.pool.Driver

Example: deviceDB.driver:oracle.jdbc.driver.OracleDriver

deviceDB.url This is the URL used to access the Device Repository.

For Oracle, set to:
jdbc:oracle:thin:@<oracle_host>:<oracle_port>:<oracle_database_name>

For MySQL, set to:
jdbc:mysql://<mysql-server-ip:port>/ <db-name>?user=<connect-
user>&password=<connect-password>

Notes

• For MySQL 3.X, set to: jdbc:mysql://<mysql-server-ip:port>/ <db-
name>?user=<connect-user>&password=<connect-password>

• For MySQL 4 or 5, set to: jdbc:mysql://<mysql-server-ip:port>/ <db-
name>

• When connecting to MySQL server versions 3.X to 5 on a WebLogic
10 platform, set to: jdbc:mysql://<mysql-server-ip:port>/ <db-name>

For Postgres, set to:
jdbc:postgresql://<postgres_machine>:<postgres_port>/<postgres_databas
e_name>

For PointBase, set to:
jdbc:pointbase:server://<pointbase_machine>:<pointbase_port>/cajun

For SQLServer, set to:
jdbc:bea:sqlserver://<sqlserver_host>:<sqlserver_port>;databaseName=<s
qlserver_database_name>

For Sybase ASE set to: jdbc:sybase:Tds:<ip_address>:<port>/SID

For IBM DB2 Universal Database set to:
jdbc:db2://<ip_address>:<port>/SID

When using WebLogic database connection pool, set to:
jdbc:weblogic:pool:<poolname>

Example: deviceDB.url: jdbc:oracle:thin:@oracle_host:1521:mySID

deviceDB.user This is the username that WebLogic Mobility Server uses to access the
database server when user and password authentication is required.

Note: For MySQL 3.X, this property is left clear, UNLESS you are deploying
on a BEA WebLogic 10 platform.

Example: deviceDB.user: user

deviceDB.password This is the password that WebLogic Mobility Server uses to access the
database server when user and password authentication is required.

Note: For MySQL 3.X, this property is left clear, UNLESS you are deploying
on a BEA WebLogic 10 platform.

Example: deviceDB.password: password

deviceDB.maxDBConnectio This is a numeric value indicating the number of concurrent database

2—Configure the mis.properties Settings

BEA WebLogic Mobility Server Device Repository Guide - 39

ns connections in the database pool. This is used to control the number of
concurrent database connections and licenses required by WebLogic
Mobility Server. The default is “10”. For more information, see the section
“About Connection Pools”.

Example: deviceDB.maxDBConnections: 10

deviceDB.waitTime This is a numeric value indicating (in milliseconds) the waiting time for a
connection from the database pool. Defaults to 5000.

Example: deviceDB.waitTime: 5000

deviceDB.increment This is a numeric value indicating the number of connections to add to the
pool if there are no connections currently available. If the maximum number
of connections in the pool has been reached then no new connections will
be added to the pool. The default is “1”.

Example: deviceDB.increment: 1

Configure a Database Device Repository on the Application Server to Support a JNDI
Connection with WebLogic Mobility Server
To configure a Database Device Repository on the application server to support a JNDI Connection with
WebLogic Mobility Server, see the steps outlined below.

Note: Configurations for JNDI Connections with WebLogic Mobility Server are supported on BEA
WebLogic 10 platforms.

Note: The section below mainly features an example whereby we are adding JNDI support to the sample
News application shipped with WebLogic Mobility Server 3.6, on a BEA WebLogic 10.0 platform. To
successfully add JNDI support to the (sample News) application you will need to:

• Be running WebLogic Mobility Server 3.6 on BEA WebLogic Server v10.0

• Have exploded the (News web) application

• Have set up a server domain, e.g. a “Mobility” domain (BEA Workshop for WebLogic support is
optional)

1. You must configure the following Device Repository property in the mis.properties file in order for
WebLogic Mobility Server to successfully communicate with the Device Repository when using an
external database:

Property Description

deviceDB.jndiName This is a string value indicating the name of the data-source resource
mapped on the application server.

Example: deviceDB.jndiName: jdbc/mobility

The following properties can also be optionally configured, if required:

Property Description

deviceDB.maxDBConn
ections

This is a numeric value indicating the number of concurrent database
connections in the database pool. This is used to control the number of

2—Configure the mis.properties Settings

BEA WebLogic Mobility Server Device Repository Guide - 40

concurrent database connections and licenses required by WebLogic
Mobility Server. The default is “10”. For more information, see the section
“About Connection Pools”.

Example: deviceDB.maxDBConnections: 10

deviceDB.waitTime This is a numeric value indicating (in milliseconds) the waiting time for a
connection from the database pool. Defaults to 5000.

Example: deviceDB.waitTime: 5000

deviceDB.increment This is a numeric value indicating the number of connections to add to the
pool if there are no connections currently available. If the maximum number
of connections in the pool has been reached then no new connections will
be added to the pool. The default is “1”.

Example: deviceDB.increment: 1

2. Copy the mm.mysql-2.0.8-bin.jar file from the <WLMS_install_directory>\lib directory (for example,
“C:\bea10\wlserver_10.0\mobility\lib”) into the <domain_directory>\lib directory (for example, for the
“Mobility” domain this could be “C:\bea10\user_projects\domains\Mobility\lib”.

Note: This step is unnecessary if you are using your own MySQL driver as installed by BEA WebLogic.

Note: To learn how to create the “Mobility” domain, see the BEA WebLogic Mobility Server Installation
Guide.

3. Start your WebLogic Server from the <domain_directory> directory (for example, for the “Mobility”
domain this could be “C:\bea10\user_projects\domains\Mobility”).

4. Access the BEA WebLogic Server Administration Console in your Internet Browser via the following
URL: http://localhost:7001/console/console.portal

5. In the Administration Console, perform the following actions:

• On the left-hand navigation pane, expand the Services node, then expand JDBC and select Data
Sources (illustrated below).

http://localhost:7001/console/console.portal

2—Configure the mis.properties Settings

• Click the Lock and Edit button (towards the top-left corner of the pane); then click the New button.

• The “Create a New JDBC Data Source” wizard displays the “JDBC Data Source Properties” dialog.

• Fill in the following details as illustrated in the image below:

Property Value

Name: mobility-mysql

JNDI Name: jdbc/mobility-mysql

Database Type: MySQL

Database Driver: ……org.gjt.mm.mysql.Driver

BEA WebLogic Mobility Server Device Repository Guide - 41

2—Configure the mis.properties Settings

• Click Next.

• The “Transaction Options” dialog will be displayed. Accept the default values and click Next.

BEA WebLogic Mobility Server Device Repository Guide - 42

2—Configure the mis.properties Settings

• The “Connection Properties” dialog is displayed.

• Enter values for your database name, host, port, and credentials (example above) and click Next.

• Click the Test Configuration button to test the connection to the database.

BEA WebLogic Mobility Server Device Repository Guide - 43

2—Configure the mis.properties Settings

• You will receive a message telling you if you were successful or not.

• Click Next.

• The “Select Targets” dialog is displayed.

• Check the target server:

• Click Finish.

BEA WebLogic Mobility Server Device Repository Guide - 44

2—Configure the mis.properties Settings

• The “Summary of JDBC Data Sources” dialog is displayed

• Click the green Activate Changes button (in the left hand navigation pane).

• The following message is displayed:

BEA WebLogic Mobility Server Device Repository Guide - 45

2—Configure the mis.properties Settings

BEA WebLogic Mobility Server Device Repository Guide - 46

6. Now, in the application (e.g. the News app), edit the following lines in the mis.properties file as below:
deviceRepositoryType: db
deviceDB.jndiName: jdbc/mobility

7. Open (or if necessary, create) a weblogic.xml file in the application’s WEB-INF directory and add the
following lines to the file just before the final closing tag:

 <wls:resource-description>
 <wls:res-ref-name>jdbc/mobility</wls:res-ref-name>
 <wls:jndi-name>jdbc/mobility-mysql</wls:jndi-name>
 <wls:/resource-description>
 </wls:weblogic-web-app>

8. You must also add the following to the web.xml file within the application’s WEB-INF directory:
<resource-ref>
 <res-ref-name>jdbc/mobility</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

9. Deploy the exploded web application (e.g. the News webapp) via the administration console.

About Connection Pools

A dynamic web site often generates HTML pages from information stored in a database. Each request for a
page results in a database access. Connecting to a database is time consuming since the database must
allocate communication and memory resources as well as authenticates the user and set up the corresponding
security context. Setting up the individual connections can become a bottleneck.

Establishing the connection once and using the same connection for subsequent requests can therefore
dramatically improve the performance of a database driven web application. Connection pooling is a
technique used to avoid the overhead of making a new database connection every time an application or
server object requires access to a database. Rather than making and breaking connections as required, a
"pool" of database connections is maintained by the system on the server. When WebLogic Mobility Server
needs a database connection, it simply requests an available one from the pool. If none is available, a new one
is created and added to the pool.

The connection pool not only grows to specified limits, but also contracts as required, closing connections
that have not been used for a specified time. This avoids taking up system resources by simply holding
connections that are not currently required. This also handles databases which "time-out" their connections,
and prevents handing a "stale" connection to an application object.

Configure a File-Based Device Repository
To configure WebLogic Mobility Server to use a file-based Device Repository (i.e. "DeviceRepository.xml"
or "DeviceRepository.madr") instead of connecting to an external database (for example, Oracle, MySQL)
where the Device Repository has been installed, you must properly define the database settings in the
mis.properties file associated with the web applications.

You may deploy the DeviceRepository file in one of two ways:

2—Configure the mis.properties Settings

BEA WebLogic Mobility Server Device Repository Guide - 47

• In an absolute location

• On the CLASSPATH

See the relevant section below for instructions on how to deploy the DeviceRepository file.

Note: If the Repository is not configured correctly, you will receive a console exception warning as follows:

*[MIS.Warning] Problem while checking the Device Repository timestamp. Unable to locate the Device
Repository. The XML Device Repository file, C:\database\version3
\DeviceRepository1089Dynamic.xml, could not be found. Please ensure this is a valid file and has been
specified correctly as the deviceXML.location property in the
MIS properties file. [1100032]

Deploy the DeviceRepository file in an Absolute Location

1. Locate the mis.properties file for your web application (for example, for WebLogic Mobility Server look
in the WEB-INF/classes folder of the web application). Open it in a text editor.

2. Look for the Device Repository Type setting in the mis.properties file, similar to :

Device Repository Type

This setting indicates whether the Device Repository is
deployed as a file or installed into a JDBC database.
Possible values are: xml and db

If not specified, db is assumed.

Note: "xml" is used for both ".xml" and ".madr" Device Repository files

deviceRepositoryType: db

Change the last line so that it now reads:
deviceRepositoryType: xml

3. Look for the Device Repository File Location setting in the mis.properties file, similar to :

Device Repository File Location

This setting indicates the location of the Device Repository file

Example:
#C:/WebLogic Mobility Server/database/DeviceRepository.madr

#deviceXML.location: <install_directory>/database/DeviceRepository.madr

Uncomment the “deviceXML.location:” line and change the indicated location to the actual location of
the DeviceRepository file. The DeviceRepository file included with the product is located at:
<WLMS_install_directory>\database\ (WebLogic Mobility Server).

For example: C/:/bea/weblogic81/mobility/database/DeviceRepository.madr

4. Save the mis.properties file.

5. In a production environment, you must now re-deploy or re-start your web applications.

2—Configure the mis.properties Settings

BEA WebLogic Mobility Server Device Repository Guide - 48

Deploy the DeviceRepository File on the CLASSPATH

1. Either add the directory containing the DeviceRepository file to the CLASSPATH, or deploy the
DeviceRepository file onto either the system or application CLASSPATH.

2. Locate the mis.properties file for your web application and open it in a text editor, for example, for a
sample News application, it may be located at: <WLMS_install_directory>\samples\news\WEB-
INF\classes\.

3. Look for the Device Repository Type setting in the mis.properties file, similar to :

Device Repository Type

This setting indicates whether the Device Repository is
deployed as a file or installed into a JDBC database.
Possible values are: xml and db

If not specified, db is assumed.

Note: "xml" is used for both ".xml" and ".madr" Device Repository files

deviceRepositoryType: db

4. Change the last line so that it now reads:
deviceRepositoryType: xml

5. Look for the Device Repository File ResourceName setting in the mis.properties file; see example:

Device Repository File ResourceName

This setting indicates the name of the Device Repository file
when it is deployed as a resource on the classpath.

Example:
/DeviceRepository.madr

#deviceXML.resourceName: /DeviceRepository.madr

6. Uncomment the “deviceXML.resourceName:” line and change the filename if necessary.

Note: It is important that you do not remove the “/” from the beginning of the line.

7. Save the mis.properties file.

8. In a production environment, you must now re-deploy or re-start your web applications.

Next steps

Next steps
Proceed to the BEA WebLogic Mobility Server Administration Guide and follow the instructions there to
configure and manage WebLogic Mobility Server.

When administering the Device Repository at a later stage, you may find it useful to see the next chapter of
this guide, which describes how to set up and manage the device profiles stored in the database.

BEA WebLogic Mobility Server Device Repository Guide - 49

3—Administer the Device Repository

3—Administer the Device Repository

Introduction
Mobile devices have a range of different input and presentation capabilities, network connectivity and levels
of scripting language support.

WebLogic Mobility Server accommodates these differences by maintaining a Device Repository, which
contains profiles describing the properties and capabilities for a range of devices on the market.

These device profiles enable WebLogic Mobility Server to tailor the presentation and delivery of content to
each device. This ensures that clients receive content that they can display and store, and which doesn’t take
too long to convey over the network.

Note: For more information on how WebLogic Mobility Server uses the Device Repository, see “Appendix
A”

This chapter explains how to set up and manage the device profiles stored in the Device Repository. To do
this you will use the Device Repository Manager tool, which enables you to conveniently set up, retrieve and
modify the various attributes associated with each profile.

Important note: When the Device Repository is represented as a database, you will use the Admin Console
tool to add, remove and modify devices and device attributes; for more information, see “Appendix C”.

More About Device Profiles
Each device profiled in the Device Repository has an associated set of properties (attribute-value pairs) that
enable WebLogic Mobility Server to identify the requesting device in order to deliver and present the content
appropriately. In the event that WebLogic Mobility Server does not find an exact match within its profiles, it
uses the attributes to determine the closest match.

Composite Capabilities/Preferences Profile (CC/PP) is a standard developed by the W3C that is used to
describe device capabilities and user preferences (i.e. the delivery context). This information can be used to
develop device independent web content or applications. Based on this standard, the Open Mobile Alliance,
the group that establishes open global standards for the mobile community has defined their own standard
known as User Agent Profile (UAProf).

This standard has been adopted for the Device Repository. Currently, the Repository is CC/PP compliant,
containing both the UAProf attribute set and a more comprehensive set of WebLogic Mobility Server
proprietary device properties.

Each device is described by a set of attributes that make up a unique profile for that device. Both types of
attributes are described here.

BEA WebLogic Mobility Server Device Repository Guide - 50

3—Administer the Device Repository

CC/PP Attributes
Following the standard, the CC/PP compliant attributes fall into one of seven categories. Each attribute
begins with a prefix that indicates into which category it falls. The following table lists these categories and
gives examples of the types of attributes that they encompass.

CC/PP attribute category prefixes and example attributes

Category prefix Example attributes

UAProf.BrowserUA BrowserName

FramesCapable

HtmlVersion

TablesCapable

UAProf.HardwarePlatform ScreenSize

ColorCapable

ImageCapable

Vendor

UAProf.MmsCharacteristics MmsCcppAccept

MmsMaxImage

UAProf.NetworkCharacteristics SupportedBluetoothVersion

SecuritySupport

UAProf.PushCharacteristics Push-Accept-Charset

Push-Accept-Language

UAProf.SoftwarePlatform OSName

OSVendor

VideoinputEncode

UAProf.WapCharacteristics WmlScriptLibraries

WapVersion

WmlDeckSize

BEA WebLogic Mobility Server Device Repository Guide - 51

3—Administer the Device Repository

Proprietary Attributes
The proprietary attributes describe device characteristics that are not yet included in the standard, but
describe a number of extra characteristics that can be used when tailoring content to particular devices.

Sample Proprietary Attributes

Attribute name

AccessKeySupported

FlashSupported

RingtoneDownloadSupported

IsMenuDriven

BEA WebLogic Mobility Server Device Repository Guide - 52

3—Administer the Device Repository

More About the Device Repository

The Organization of the Device Profiles
The Device Repository represents devices as a hierarchical arrangement, thus enabling devices to inherit
attributes from a parent device.

The Device Repository has three parent device classes: WML, XHTMLMP and HTML devices. When
adding a new device, you can place it within one of these hierarchies or create your own parent device class.

The tree is branched on the markup language used by the device, with HTML, WML and XHTMLMP
providing the main branches off the default “root”. The main branches, devices are categorized according to
browser or model type, as illustrated in the device hierarchy.

The hierarchy stores device attributes for the named devices detailing markup languages, screen sizes, and so
on.

BEA WebLogic Mobility Server Device Repository Guide - 53

3—Administer the Device Repository

A node in the device tree inherits any device attributes (markup language, screen size, and so on.) from its
parent. If the child node specifies values for any of these attributes, the child’s values override those of its
parents.

BEA WebLogic Mobility Server Device Repository Guide - 54

3—Administer the Device Repository

Device Recognition

Compare Incoming Requests to Device Attributes
When WebLogic Mobility Server receives an end-user device request, it identifies the device using a
combination of incoming request header information (which indicates the markup language of the device and
often provides device model information) and stored device attributes.

WebLogic Mobility Server achieves this by examining the details of the request and matching this request
against device attributes contained in the Device Repository.

The pattern matcher will firstly attempt to match on the RecognitionUAPattern stored device attribute; if
there is no match here it will subsequently attempt to match on the HTTPMetadataKey attribute—both
mechanisms are described in more detail below.

1. RecognitionUAPattern Match Mechanism

The pattern matcher will firstly attempt to match values in the User-Agent header information from the
incoming request with the RecognitionUAPattern attribute in the Device Repository. This attribute defines
the regular expression or string to be matched against the User-Agent header.

If there is a match here, the pattern matcher will move on to determine whether the RecognitionHeaders
attribute has been set or not for specific headers in the incoming request—see below.

No Match

If a match is not found, the pattern matcher will subsequently attempt to match on the HTTPMetadataKey
attribute—see the “HTTPMetadataKey Match Mechanism” section.

Note: Regular Expressions

If you intend for WebLogic Mobility Server to interpret the RecognitionUAPattern attribute and the pattern
component of the RecognitionHeaders attribute as regular expressions, then you must set the
“RecognitionRequiresRegex” attribute to “true”.

Examples of Regular Expressions

Regular Expression Description

.*exampleText.* This regex will match anything containing the string “exampleText”.

.*exampleText$ This regex will match anything ending with the string “exampleText”.

^exampleText.* This regex will match anything beginning with the string “exampleText”.

RecognitionHeaders Attribute Match

Not all information required for device recognition may be contained with the User-Agent header therefore
the RecognitionHeaders attribute can contain a list of additional headers that can be checked to achieve as
accurate a match as possible.

BEA WebLogic Mobility Server Device Repository Guide - 55

3—Administer the Device Repository

If the RecognitionHeaders attribute has not been set for specific headers in the incoming request, then an
initial match is achieved at this point.

If it has been set, the pattern matcher will attempt to search and match on the additional headers listed in the
RecognitionHeaders attribute. Once all headers are matched, an initial match is achieved here.

Once an initial match has been achieved at this point, the pattern matcher will move on to check whether the
initially-matched device is associated with other devices that have the RecognitionCheckMeBefore attribute
set.

RecognitionCheckMeBefore Attribute Match

A device may match more than one pattern. For example, the User-Agent “Ericsson t68i” would match the
pattern “t68i”, but it would also erroneously match the pattern “t68”. The User-Agent “Ericsson t68” would
only match the pattern “t68”. Therefore, the pattern “t68i” must be checked first and if this fails to match,
then the other pattern may be checked. The RecognitionCheckMeBefore attribute specifies a list of devices
that a given device should take precedence over in the recognition process.

If the initially-matched device is associated with other devices that have the RecognitionCheckMeBefore
attribute set, the pattern matcher will check these devices for a closer match. If there is no closer match then a
full match is reached at this stage. If there is a closer match, then this new match will take precedence and be
selected as the full match. This thorough verification ensures that an accurate in-depth match is achieved.

2. HTTPMetadataKey Match Mechanism

If a match is not achieved against the RecognitionUAPattern attribute, the pattern matcher will subsequently
attempt to match on the HTTPMetadataKey attribute.

In matching a user request against a device, each level of the tree is traversed. The pattern matcher starts at
the root node and attempts to traverse the tree to as deep a level (hence as specific a device match) as
possible.

Each node in the tree specifies a single header and associated values that are used to differentiate it from its
parent node.

The HTTPMetadataKey attribute tells the matcher to match on either Accept header or User-Agent string.

The pattern matcher will determine from the Accept header whether it is to traverse the WML branch, the
XHTMLMP branch, or the HTML branch of the device hierarchy. This is defined in the
HTTPMetaDataString.

Note: The ordering of child nodes is important, as the pattern matcher will take the first match found and
ignore all others.

Multiple Header Strings

If more than one string must be present in the header, pattern matching is achieved either by using more than
one level of the hierarchy with one of the strings specified in each or by combining the strings in a single
node with an ampersand (“&”) character. For example, a menu-driven device could require that two strings
be matched: “text/vnd.wap.wml&image/vnd.wap.wbmp”. Similarly, an “OR comparison” may be performed
using the bar (“|”) character.

BEA WebLogic Mobility Server Device Repository Guide - 56

3—Administer the Device Repository

No Match

If an absolute match is not found, a more general match is found at a higher level so that WebLogic Mobility
Server can deliver content in some format understandable by the given device.

If an unknown device sends a request, WebLogic Mobility Server will find the closest match possible in the
existing hierarchy (for example, an unknown UP 6.x browser-based phone will still match as far as UP 6.x).
As such, WebLogic Mobility Server does not need to have an exhaustive list of all devices on the market at
present.

Fallback Recognition Logic Feature

To enable the pattern matcher to consider more than one header during device recognition at any given node,
you can set the FallbackRecognitionLogic attribute.

Any existing values here will override the HTTPMetaDataKey and HTTPMetaDataString attributes to allow
a more advanced mechanism for determining whether or not a node should be matched during device
recognition. The attribute allows multiple headers to be considered during the recognition process.

The fallback recognition logic feature is particularly useful at the top-level WML and XHTMLMP nodes as
the Accept header alone may not give enough information to decide which of these nodes (if either) is the
correct one to choose. If the device making the request is not known in the database (which is most likely the
case at this point as otherwise the device would probably have been matched by the new UAPattern
algorithm), choosing which of these nodes/sub-trees to use is the most important decision in the recognition
process as it will determine whether WML or XHTMLMP markup is sent to the device.

Please see “Appendix E—Fallback Recognition Logic Expression Language Details” for more information
on the FallbackRecognitionLogic attribute’s associated expression language.

Important note: Like any other attribute, the FallbackRecognitionLogic expression will be inherited by child
nodes, which is unlikely to be the intended behaviour. Therefore if child nodes do not have their own
recognition logic expression, they should be given the special value of “none” for this attribute. In particular,
all direct children of the WML and XHTMLMP nodes should initially be given a FallbackRecognitionLogic
value of “none”.

Device Recognition Examples

RecognitionUAPattern Match Example

The Device Repository is organized in a hierarchical (tree) structure. WebLogic Mobility Server traverses the
tree to find the device that matches the received headers. WebLogic Mobility Server will linearly compare
each device until a match is found.

In the example below we’ll look at a simple scenario whereby the Openwave SDK 6.2.2 Emulator device
sends an incoming request.

Example—Device: Openwave SDK 6.2.2 Emulator

User-Agent:

OPWV-SDK/62 UP.Browser/6.2.2.1.208 (GUI) MMP/2.0

BEA WebLogic Mobility Server Device Repository Guide - 57

3—Administer the Device Repository

Example of Unsuccessful Match

Note: For simplicity’s sake, assume that the RecognitionRequiresRegex attribute is “false” for all devices.

Let’s take a sample scenario whereby the pattern matcher attempts to match the incoming request against a
device named "Nokia7250", which has a RecognitionUAPattern of "Nokia7250".

The requesting device (the Openwave emulator) sends a User Agent of: OPWV-SDK/62
UP.Browser/6.2.2.1.208 (GUI) MMP/2.0

WebLogic Mobility Server will search the User Agent header from the incoming request for an instance of
the RecognitionUAPattern of the device it is currently checking against (i.e. the "Nokia7250").

Since "Nokia7250" does not appear in "OPWV-SDK/62 UP.Browser/6.2.2.1.208 (GUI) MMP/2.0", this
device does not match and WebLogic Mobility Server will move on to the next device.

Example of Successful Match

Let’s take a sample scenario whereby the pattern matcher attempts to match the incoming request against a
device named "UPMobileBrowser6.2", which has a RecognitionUAPattern of "OPWV-SDK/62".

The requesting device (the Openwave emulator) sends a User Agent of: OPWV-SDK/62
UP.Browser/6.2.2.1.208 (GUI) MMP/2.0

WebLogic Mobility Server searches the User Agent header from the incoming request for an instance of the
RecognitionUApattern of the device it is currently checking against (i.e. the "UPMobileBrowser6.2").

Accept:

User-Agent:OPWV-SDK/62 UP.Browser/6.2.2.1.208 (GUI) MMP/2.0

 OPWV-SDK/62

As can be seen above, "OPWV-SDK/62" does appear in "OPWV-SDK/62 UP.Browser/6.2.2.1.208 (GUI)
MMP/2.0" therefore an initial match is achieved with this device.

As explained in section “RecognitionHeaders Attribute Match” WebLogic Mobility Server will now move on
to examine the Recognition Headers—if present.

If RecognitionHeaders match, WebLogic Mobility Server will proceed to check devices that specify
"UPMobileBrowser6.2" in their respective RecognitionCheckMeBefore fields—see section
“RecognitionCheckMeBefore Attribute Match” for a further explanation of this process.

HTTPMetaDataKey Match Example

The Device Repository is organized in a hierarchical (tree) structure. WebLogic Mobility Server traverses the
tree to find the device that matches the received headers. At each level in the hierarchy a different sub-string
of the HTTPMetaDataString must be matched. When no more sub-strings can be matched the selected
device is returned.

Example

User-Agent:

SHARP-TQ-GX10/0.0 Profile/MIDP-1.0 Configuration/CLDC-1.0 UP.Browser/6.1.0.3.107 (GUI) MMP/1.0

BEA WebLogic Mobility Server Device Repository Guide - 58

3—Administer the Device Repository

Accept:
application/vnd.wap.wmlc,application/vnd.wap.wmlscriptc,application/vnd.wap.multipart.related,application/
vnd.wap.multipart.mixed,application/vnd.phonecom.mmc-wbxml,application/octet-
stream,application/vnd.openwave.pp,text/plain,text/css,image/bmp,image/gif,image/jpeg,image/png,image/vn
d.wap.wbmp,image/x-up-
png,application/vnd.wap.sic,application/vnd.wap.slc,application/vnd.wap.coc,application/vnd.wap.xhtml+xm
l,application/xhtml+xml;profile=“http://www.wapforum.org/xhtml”,text/html,text/vnd.sun.j2me.app-
descriptor,application/java,application/java-archive,application/smil,application/vnd.wap.mms-
message,audio/x-wav,application/x-neva1,application/x-eva,application/x-smaf,application/vnd.smaf,text/x-
imelody,audio/x-imy,audio/imelody,audio/midi,audio/x-
midi,audio/mid,audio/wav,application/vnd.uplanet.bearer-choice-wbxml,application/x-smaf,application/x-
imy,audio/midi,text/vnd.wap.wml,text/vnd.wap.wmlscript,*/*;q=0.001

Level 1

WebLogic Mobility Server needs to decide on which branch of the device tree to look for this phone. The
Accept header is used to determine this.

This Accept header contains wml & xhtml+xml so WebLogic Mobility Server will match to the XHTMLMP
branch.

WebLogic Mobility Server will now try to move further down the tree.

Level 2

WebLogic Mobility Server will now use the User-Agent string to identify the device. The User-Agent
contains UP.Browser/6, which WebLogic Mobility Server will match to the UP/6 branch.

Level 3

WebLogic Mobility Server now moves into the UP/6 branch to attempt to further identify the device. The
User-Agent contains SHARP, which WebLogic Mobility Server will match to SharpUP/6.

BEA WebLogic Mobility Server Device Repository Guide - 59

3—Administer the Device Repository

Level 4

WebLogic Mobility Server now moves into the SharpUP/6 branch to attempt to further identify the device.
The User-Agent contains GX10, which WebLogic Mobility Server will match to SharpGX10

The search is now over and WebLogic Mobility Server has identified the device as Sharp GX10. Note that
WebLogic Mobility Server will never look at other devices at the same level once a match has been made.

Calculated Attributes
Many of the attributes in the Device Repository are calculated from other attributes and/or incoming request
headers. As these attributes use formulae they are known as formulae attributes.

Examples of the Acceptheader and ViewableWidth attributes using formulae:

Acceptheader uses toCSV(UAProf.SoftwarePlatform.CcppAccept)

ViewableWidth uses extractdimension("N",UAProf.HardwarePlatform.ScreenSize)

WebLogic Mobility Server will re-calculate the values of certain attributes for each incoming request
received—these are known as dynamic attributes. Dynamic attributes use the “dynamic” formula-function
(see table) and will be re-evaluated each time a request is received (—see note). This function must form the
outermost element of the formula.

This ensures an accurate representation of the capabilities of devices such as the BlackBerry, which give
users the ability to turn on/off table support and CSS support and are capable of modifying their browsing
behaviour.

Note: If WebLogic Mobility Server needs to split a large page into smaller pages to accommodate the
capabilities of the device requesting it, WebLogic Mobility Server will store the additional pages in a
temporary cache specifically for pagination. WebLogic Mobility Server builds these cached pages using the
status of the device requesting the first page of the paginated set. If the user changes an option on their
device, e.g. tables supported, before requesting another page in the paginated set, WebLogic Mobility Server
will not detect this change because the page is served from the cache. To refresh the content of the cache,
the user should request a page refresh. Be aware that the requesting device may also maintain a browser
cache and therefore the user may need to explicitly reload the page.

Note: Formulae attributes cannot be created or edited via the Device Repository Manager tool. If formulae
attributes are required, please contact Customer Support.

BEA WebLogic Mobility Server Device Repository Guide - 60

3—Administer the Device Repository

Formulae Functions

Formula expressions can use the following functions:

Function Description

colortype(color, bits) Determines colortype from a true(1) or false(0) color value and
number of bitsperpixel. It returns "colour", "black/white" or
"greyscale".

find(substring, string) Finds a substring in a string. It returns "true" or "false".

endswith(substring, string) Checks if a string ends with a specified substring. It returns
"true" or "false".

extractdimension(d, value) Extracts width or height from a dimension value, i.e. “N” or “M”
from “NxM”.

extractformat(keyLength, key, testList) Extracts a comma-delimited string from a list.

extractwtls(value) Gets the WTLSSupported value from the UAProf attribute
UAProf.NetworkCharacteristics.SecuritySupport

dynamic(expression) The term “expression” denotes the dynamic formulae that
WebLogic Mobility Server will calculate.

getHeader(variable) Gets the value of a request header. For example,
getHeader(“Accept”).

getHeaderWithDefault(variable, default) Gets the value of a request header. Uses a default value if that
header is not present in the request.

Example: getHeaderWithDefault(“Accept-charset”,”utf-8”). In
this case WebLogic Mobility Server will use the value of the
“Accept-charset” header (if present) when evaluating device
capabilities. Otherwise it will use the default value (in this case
”utf-8”).

listContains(list,key) Checks if a key is contained in a list. It returns "true" or "false".

select(condition, truevariable,
falsevariable)

This formula calculates the boolean expression specified. If
the “condition” expression evaluates to “true” WebLogic
Mobility Server will calculate the “truevariable”; if it evaluates
to “false”, WebLogic Mobility Server will calculate the
“falsevariable”.

startswith(substring, string) Checks if a string starts with a specified substring. It returns
"true" or "false".

toCSV(list) Converts a list to a comma-delimited list.

BEA WebLogic Mobility Server Device Repository Guide - 61

3—Administer the Device Repository

External Device Recognition API
The Device Recognition API allows you to create your own Device Recognition Classes to be invoked by the
WebLogic Mobility Server external device recognition process.

Using the External Device Recognition API to Create Device Recognition Classes

1. Firstly, create the new Device Recognition Class and give it a name. Place this Class in the application’s
CLASSPATH. The simplest way to do this is to copy it into the application’s WEB-INF/classes folder.

2. Then, ensure that the new Class implements the ExternalDeviceRecognizer public interface.

3. As part of this interface you will need to implement the RecognizeDevice method.
This is the method that WebLogic Mobility Server will subsequently invoke to perform the external
device recognition.

In order for your class to compile, include the ../lib/mcpfilter.jar and servlet.jar in your CLASSPATH.
The servlet.jar can usually be found within your webapp server.

Note: If WebLogic Mobility Server finds that the device has not been identified correctly, i.e. if the
setDeviceID(String id) method is invoked as “setDeviceID(null)” or with an invalid device
identifier/string during implementation of the RecognizeDevice method, then WebLogic Mobility Server
will attempt its own device recognition procedure.
Note: A warning message and diagnostic message are generated in the WebLogic Mobility Server server console
and in the Diagnostics console when the setDeviceID(String id) method is invoked with an invalid device identifier.

Example: *[MIS.Warning] External Device Recognition returned invalid device identifier. [invalid
string identifier]

To see diagnostics message you will need to subscribe to the following diagnostics topic:

• "diagnostics.startup.subscriptions.startupReq.topic:MIS.Device"

However, if your Class identifies the request as coming from a device that it is not intended to undergo
external device recognition, it will tell WebLogic Mobility Server that no external device recognition was
performed on the request and that normal WebLogic Mobility Server device recognition should proceed.
When this occurs the setDeviceID(String id) method will not be invoked when implementing the
RecognizeDevice method. A diagnostics message will be logged in this scenario.

Example: [MIS.Request.ExternalDeviceRecognition.Ignored] External Device Recognition opted not to
set device identifier

Note: To see diagnostics message you will need to subscribe to the following diagnostics topics:

• diagnostics.startup.subscriptions.startupReq.topic:MIS.Device

• diagnostics.startup.subscriptions.startupReq.level:normal

BEA WebLogic Mobility Server Device Repository Guide - 62

3—Administer the Device Repository

4. As a parameter to the RecognizeDevice method, you will receive the ExternalDRContext object.

Example:
public class ExternalDeviceRecognizerImplTestReqParam implements
ExternalDeviceRecognizer {
 public void recognizeDevice(ExternalDeviceRecognizerContext context) {
//Implementation code here
}
}

5. Your implementation of the RecognizeDevice method will invoke methods of the ExternalDRContext
interface via the ExternalDRContext parameter. These methods are listed in the “Public interface
ExternalDRContext Methods” table below.

Public Interface ExternalDRContext Methods

Method Description

public String getRequestHeader(String header) Gets the value of a request header. For example,
getRequestHeader(“Accept”).

public String getRequestParameter(String name) Gets the value of a request parameter. For
example, getRequestParameter(“Surname”).

public Object getSessionAttribute(String name) Gets the value of a session attribute. For example,
getSessionAttribute(“User ID”).

public Cookie getRequestCookies(String name)

Gets the value of a request cookie. For example,
getRequestCookies(“User Login ID”).

public void setDeviceID(String id) throws
DeviceNotFoundException

Provides WebLogic Mobility Server with the name
of the device once it has been identified. The
device name must exist in the device repository

Important note: An "EntityNotFound" exception is
thrown if the name of the device is not found in the
Device Repository.

If the device could not be identified, a warning
message is thrown: "*[MIS.Warning] External
Device Recognition returned invalid device
identifier [nokia66000].", and WebLogic Mobility
Server device recognition will occur.

However, if you have determined that external
device recognition should not be performed for this
request (i.e. that normal WebLogic Mobility Server
device recognition should take place) then this
method should not be invoked; this will generate
an information message
"[MIS.Request.ExternalDeviceRecognition.Ignored]
External Device Recognition opted not to set
device identifier”.

6. Finally, you will need to configure the mis.properties file. Add the external.devicerecognition.Class

attribute to the end of this file as depicted in the sample extract below:

BEA WebLogic Mobility Server Device Repository Guide - 63

3—Administer the Device Repository

external.devicerecognition.Class: <Path and name of device recognition class>

Example:
external.devicerecognition.Class:
com.acme.devicerecognition.ExternalDeviceRecognizerImplTestReqParam

Note: The term “<path and name of device recognition class>” denotes the path to and name of the class
that you created, as outlined in step 1 above.

7. Now, when deploying WebLogic Mobility Server to the application server, ensure that the class you
created exists in the application’s WEB-INF/classes folder.

Note: You will need to also ensure that your code is thread-safe.

Basic Implementation Example

/**

 * External Device Recognition Sample

 */

import com.mobileaware.devicerecognition.ExternalDeviceRecognizerContext;

import com.mobileaware.devicerecognition.ExternalDeviceRecognizer;

import com.mobileaware.Everix.Device.EntityNotFoundException;

public class EDRSampleCode implements ExternalDeviceRecognizer {

public void recognizeDevice(ExternalDeviceRecognizerContext context) {

 // retrieve info from request (e.g. header)

 String phoneId = context.getRequestHeader("MSISDN");

 if (phoneId == null) {

 // in this example, having no MSISDN header present is considered an error

 // so we flag a recognition problem

 context.setDeviceId(null);

 } else {

 // perform logic e.g. lookup database for phone details based on number

 String deviceId = getDeviceIdByMSISDN(phoneId);

 if (deviceId != null) {

 try {

BEA WebLogic Mobility Server Device Repository Guide - 64

3—Administer the Device Repository

 context.setDeviceId(deviceId);

 } catch (EntityNotFoundException e) {

 // Device identifier wasn't in the Device Repository.

 logError("Invalid device "+deviceId+" for MSISDN "+phoneId);

 // Default Device Recognition will continue

 }

 } else {

 // No device id was found for this MSISDN (perhaps it's a new subscriber).

 // By not calling setDeviceId(), we allow default Device Recognition to continue.

 }

 }

 }

 private String getDeviceIdByMSISDN(String msisdn) { … }

 private void logError(String error) { … }

}

BEA WebLogic Mobility Server Device Repository Guide - 65

3—Administer the Device Repository

Use Device Repository Manager to Configure Device Profiles
Device Repository Manager allows you to create device profiles and, if necessary, modify existing profiles
and attributes to capture more device-specific information.

Important note: Even though it is possible to do so, you should not run more than one instance of the
Device Repository Manager simultaneously on a given machine. The results of doing so are undefined and
may lead to data corruption and/or data loss. You should always terminate one instance before starting
another.

The Device Repository File

Overview
The DeviceRepository file contains all of the information required to create and install the Device Repository.
The file is broken into four sections

• Profile Descriptions

• Component Descriptions

• AttributeSpecs

• Devices

Sections 1 and 2 are concerned with mappings to User Agent Profile (UAProf) attributes. The AttributeSpecs
section defines the attributes that can be used by each device. The devices section defines all of the known
devices and their attributes.

Editing the DeviceRepository File
As it is not recommended that you edit the DeviceRepository file manually, you will use Device Repository
Manager to add devices, remove devices and modify attribute values.

BEA WebLogic Mobility Server Device Repository Guide - 66

3—Administer the Device Repository

Run Device Repository Manager
Device Repository Manager can be run in Editing Mode to allow you to edit the file.

1. If you have a Windows platform, run DeviceRepositoryManager.exe or choose Start → Programs →
BEA WebLogic Mobility Server 3.6 → Applications → Device Repository Manager to launch the
tool.

If you have a UNIX/Linux platform, navigate to the applications\ folder and run the Device Repository
Manager application directly from there.

2. The “Device Repository options” dialog is displayed.

3. Select Edit Device File to load the file for editing. When the file is loaded into the tool, an in-memory
model of the file is created. Edits are not committed until the file is exported from the tool.

Using the Device Repository Manager Edit Device File Mode

Load the File for Editing

1. When the tool launches, you will be asked to select the file. Once you select a file, the following progress
bar displays until the file loads.

BEA WebLogic Mobility Server Device Repository Guide - 67

3—Administer the Device Repository

Browse the DeviceRepository file

1. The “Device Browser” is displayed with the root node selected.

Note: The Add Device and Remove Device buttons are disabled at this stage. You cannot add or remove
devices directly under the root node.

If you expand the tree and select the XHTMLMP node you will notice that the Add Device button
becomes enabled. This indicates that devices may be added under this node.

Note: The Remove Device button is still disabled. Removal of non-leaf nodes is not permitted.

BEA WebLogic Mobility Server Device Repository Guide - 68

3—Administer the Device Repository

Browsing to a customer-added device enables the Remove Device button, indicating that the user can
remove the selected node.

Note: You may only remove customer-added devices.

BEA WebLogic Mobility Server Device Repository Guide - 69

3—Administer the Device Repository

The hierarchical structure of the Device Repository allows values to be inherited from parent devices.

BEA WebLogic Mobility Server Device Repository Guide - 70

3—Administer the Device Repository

If you select Show Inherited Values, you will be able to view all of the values that are inherited from
the parent devices.

BEA WebLogic Mobility Server Device Repository Guide - 71

3—Administer the Device Repository

Add and Remove Custom Attributes to the DeviceRepository File

Add Attribute to the DeviceRepository File
There are three steps involved in adding a custom attribute to the DeviceRepository file:

• Define a name and type for the new attribute

• Set a value for the attribute

• Export the file to disk

To demonstrate this, we will use the example of adding an attribute called “SupportedImageWidth”.

1. Select the root node in the Device Browser.

2. There are three ways to launch the “Add New Attribute” dialog:

• Right-click on the root node and choose Add Attribute from the menu that displays, as
demonstrated in the following graphic

BEA WebLogic Mobility Server Device Repository Guide - 72

3—Administer the Device Repository

OR

• Choose Edit → Add Custom Attribute from the toolbar menu, as demonstrated in the following
graphic

OR

• Click Add Attribute from lower right-hand-side of the browser, as illustrated.

3. The “Add New Attribute” dialog will be displayed.

4. Enter a name for the new attribute in the Attribute Name field, for example, “SupportedImageWidth”.

5. Specify the attribute type from the drop-down list in the Attribute Type field. For example, an attribute
such as “SupportedImageWidth” would require a value in numeric format; therefore you would specify
an attribute type of “Integer” here. Drop-down list options:

• Integer

• Boolean

• Text
BEA WebLogic Mobility Server Device Repository Guide - 73

3—Administer the Device Repository

Click Enter.

6. The following warning will be displayed.

7. Click Yes.

8. The following message will be displayed.

9. Click OK.

10. You must now set a value for the attribute.

11. Locate the attribute in the Attribute Name column in the Device Browser window. Enter the value, for
example, “250”, in its corresponding field in the Attribute Value column and press the Enter key.

The “Value updated” message illustrated in the preceding graphic will be displayed. Click OK.

BEA WebLogic Mobility Server Device Repository Guide - 74

3—Administer the Device Repository

12. The following graphic demonstrates how to set a different value for a specific device.

13. Navigate to the device in question in the hierarchy on the left-hand-side of the browser. Locate the
attribute in the Attribute Name column in the Device Browser window. Enter the appropriate value in
its corresponding field in the Attribute Value column and press the Enter key.

The “Value updated” message illustrated in the preceding graphic will be displayed. Click OK.

14. To successfully add the attribute to the Device Repository it is essential that you now export the file to
disk.

15. Click Export File (from the lower right-hand-side of the browser).

BEA WebLogic Mobility Server Device Repository Guide - 75

3—Administer the Device Repository

16. The “Export File” dialog is displayed.

17. Specify a filename for the exported file and click Export File.

Note: Files with ".madr" extensions contain compressed device repositories. If you specify a ".madr" file
extension, the file that you create will be a compressed version of the Device Repository.

18. If you selected an existing file, the following message will be displayed.

19. Click Yes.

20. The file will be written to disk.

BEA WebLogic Mobility Server Device Repository Guide - 76

3—Administer the Device Repository

21. The following message will be displayed.

22. Click OK.

BEA WebLogic Mobility Server Device Repository Guide - 77

3—Administer the Device Repository

Remove a Custom Attribute from the File
Follow the instructions in this section to remove an attribute from the DeviceRepository file.

Note: It is only possible to remove custom attributes from the DeviceRepository file in this manner.

1. Select the root node in the Device Browser.

BEA WebLogic Mobility Server Device Repository Guide - 78

3—Administer the Device Repository

BEA WebLogic Mobility Server Device Repository Guide - 79

2. Select the custom attribute that you want to remove.

3. Click Remove Attribute from the lower right-hand-side of the browser.

Note: This control is only enabled if a custom attribute is selected.

4. The “Attribute Deletion” warning message will be displayed. Click Yes to proceed.

5. The following message will be displayed.

6. Click OK.

3—Administer the Device Repository

BEA WebLogic Mobility Server Device Repository Guide - 80

Add a New Device Profile
There are three steps involved in adding a new device profile:

• Complete the “Basic Details” for the device.

• Configure the standard attribute values for the device.

• Create new attributes if required.

To demonstrate this, we will use the example adding a device called Nokia9999.

Select Parent Node
You can add new devices as children of an existing device node. The parent node depends on the User-Agent
string for the device and on the markup language that the phone supports.

1. The user agent for this device is “Nokia9999” and it delivers XHTML, therefore you will need to add it
under the Nokia(xhtml) node.

2. Select the Nokia(xhtml) node.

3—Administer the Device Repository

BEA WebLogic Mobility Server Device Repository Guide - 81

Create the New Device Node

1. Click Add New Device.

2. The “New Device Details” dialog is displayed.

3. Enter a name and description for the device (that is, in this example, “Nokia9999”) in the Device Name
and Description fields, respectively.

Note: You can specify the same values for both.

4. From the drop-down list in the Type field, select “device”.

5. Click OK to create the new node.

Select the New Node

1. The attributes for the new device will display.

Note: Only the calculated attribute values are shown. Click Show Inherited Attributes to display all of
the attributes that are inherited from the parent devices.

3—Administer the Device Repository

BEA WebLogic Mobility Server Device Repository Guide - 82

Set the RecognitionUAPattern and HTTPMetaDataString Attributes
This is the most important step, where you will match the device uniquely.

1. Set the RecognitionUAPattern attribute and related attributes:

• As the pattern matcher will firstly attempt to match values in the User-Agent header
information from the incoming request with the RecognitionUAPattern attribute in the
Device Repository, you will need to set this attribute first, as illustrated below. This attribute
defines the regular expression or sub-string to be matched against the User-Agent header.
Note: If the RecognitionUAPattern attribute contains a regex, then you must also set the
“RecognitionRequiresRegex” attribute to true.

• If there is a match here, the pattern matcher will move on to determine whether the
RecognitionHeaders attribute has been set or not for specific headers in the incoming
request. Therefore you will need to set the RecognitionHeaders attribute accordingly:

(Note: If a match is NOT found, the pattern matcher will subsequently attempt to match on the
HTTPMetadataKey attribute so you will need to set this—see the setting the HTTPMetadataKey
attribute step below).

• It may also be necessary to set the RecognitionCheckMeBefore attribute, to resolve potential
scenarios in which a device may match more than one pattern. For example, the User-Agent
“Ericsson t68i” would match the pattern “t68i”, but it would also erroneously match the
pattern “t68”. The User-Agent “Ericsson t68” would only match the pattern “t68”. Therefore,
the pattern “t68i” must be checked first and if this fails to match, then the other pattern may
be checked. The RecognitionCheckMeBefore attribute specifies a list of devices that a given
device should take precedence over in the recognition process.

3—Administer the Device Repository

BEA WebLogic Mobility Server Device Repository Guide - 83

2. Set the HTTPMetaDataString attribute:

The HTTPMetaDataString is a substring of the request header (typically the User-Agent header) that the
phone will send that should be used for device matching.

You must match a different substring of the User-Agent at each level in the hierarchy.

Note: These examples assume that the commonly employed User Agent header is used here.

Replace the text “Insert correct user-agent string” with the user-agent for this device. In this case,
“Nokia9999” will be enough to identify the device.

Press the Enter key to confirm the change.

Manual Update
If the correct parent node is chosen, the inherited values may be sufficient for many of the attributes. You
should verify these against the device vendor’s specifications and reliable third-party information websites.

It is important to populate the UAProf values first, as many of the other attributes are based on these (see
“Appendix A—Device attributes”).

The most important UAProf Attributes are

• UAProf.SoftwarePlatform.CcppAccept

• UAProf.HardwarePlatform.ScreenSize

• UNDEFINED

UAProf String attributes have a default value of "UNDEFINED" on the root of the Device
Repository. A value of "UNDEFINED" is inherited for an attribute in any device node if no value is
defined in the manufacturers UAProf file for this device.

3—Administer the Device Repository

BEA WebLogic Mobility Server Device Repository Guide - 84

Setting Proprietary Device Attributes
Proprietary device attributes are either calculated or inherited from parent devices.

Note: Do not alter any attribute that is defined with isFormula=”T” in the AttributeSpec.

It is recommended that you verify the following attributes:

• MaxWapDeckSize

This attribute indicates the specific deck size, which controls the pagination of content sent to mobile
devices. Typically you can set this to the same value as that of the
UAProf.WapCharacteristics.WmlDeckSize attribute. However, this value may be too high for certain
devices—if the UAProf value is greater than “50000”, set the MaxWapDeckSize attribute to “20000”.

• ImgGIFSupported

Set this attribute to “true” if the device supports GIF files.

Note: A device supports GIF images if “image/gif” appears in its CcppAccept attribute.

• ImgJpgBaselineSupported

Set this attribute to “true” if the device supports JPG and JPEG files.

Note: A device supports JPG and JPEG images if “image/jpg” or “image/jpeg” appears in its CcppAccept
attribute.

• ImgPNGSupported

Set this attribute to “true” if the device supports PNG files.

Note: A device supports PNG images if “image/png” appears in its CcppAccept attribute.

• ImgWBMPSupported

Set this attribute to “true” if the device supports WBMP files.

Note: A device supports WBMP images if “image/wbmp” appears in its CcppAccept attribute.

• DTM

This is the Device Transformation Map attribute, which enables the transformation engine to generate the
correct markup for the requesting device. See the following table for details of supported DTM settings.

Supported DTM settings

Setting Description

wml/v1_1/map Used for WML 1.1 devices that do not support tables.

wml/v1_1/TablesSupported/map.xml Used for WML 1.1 devices that support tables.

wml/v1_1/EricssonR380/map.xml Used for the Ericsson R380.

wml/v1_1/UP4/SiemensSL45/map.xml Used for the Siemens SL45.

wml/v1_1/UP4/Timeport/map.xml Used for the Motorola Timeport.

wml/v1_2/map Used for WML 1.2 devices.

wml/v1_3/map Used for WML 1.3 devices.

3—Administer the Device Repository

BEA WebLogic Mobility Server Device Repository Guide - 85

xhtml/mobile/v1_0/map Used for most XHTML-MP devices.

xhtml/mobile/v1_0/oma/map Used for XHTML-MP devices that specifically require the Open
Mobile Alliance defined XHTML-MP mime type settings (such
as the Nokia 6600).

html/hybrid/map Used for pseudo-PDAs such as the Blazer browser used in the
Handspring Treo.

html/compact/map.xml Used for imode devices.

html/v3_2/map.xml Used for PDA devices that require HTML 3.2.

html/v3_2/Mozilla2/map.xml Used for PDA Devices using the Mozilla 2 browser.

html/v3_2/IPAQ/map.xml Used for the majority of Pocket PC based PDAs including
Compaq IPAQ, HP Jornado, and so on.

html/v4_x/Mozilla4/map Used for PC browsers.

• DeliveryType

Ensure that this attribute is set to the same value as that of the DTM attribute. HTML4 = 1, HTML3.2 =
2, WML = 3, XHTMLMP = 4.

Appendixes

BEA WebLogic Mobility Server Device Repository Guide - 86

Appendixes

Appendix A—WebLogic Mobility Server and Device Repository
Interaction

Transforming Content
Once WebLogic Mobility Server has identified a device and matched it against one in its Device Repository,
it seamlessly transforms the presentation of the content to the requesting device.

This transformation is managed through the use of Device Transformation Maps (DTMs). The DTM specifies
how content marked up with the WebLogic Mobility Server mobility tags is transformed to tailor the
delivered page to the capabilities of the requesting device.

DTMs make it possible to accommodate new devices or upgraded versions of existing models as soon as they
come on the market; transformation rules can be built quickly to take into account the new capabilities.

Each device DTM forms part of the device’s profile in the Device Repository. The DTM attribute specifies
the location of the transformation map to be applied to the original marked up content before it is delivered to
the requesting device. The transformation map specifies how the mark-up is transformed by associating each
mmXHTML/HTML tag with a Java class file that is responsible for the transformation of that tag, or by
directly specifying more rudimentary transformations, such as remove or replace element.

Tailoring Content
Device profiles enable the presentation and delivery of content to be tailored to accommodate the capabilities
of the requesting device.

Within WebLogic Mobility Server, tailoring of content takes place on three levels:

• When WebLogic Mobility Server identifies the requesting device, it can automatically reconfigure the
presentation of content to accommodate the device’s capabilities, such as splitting up a large page across
a number of decks on a WAP browser.

• The content author, using the conditional mobility tags, <mm-include> and <mm-exclude>, specifies
how content should be altered when being delivered to different devices. For example, the length of a
product description could be tailored to accommodate different-sized screens.

• The content author creates specific layouts to target different devices or device classes. Depending on the
complexity of the content, the author may choose a static layout, where the dimensions (such as the
number of columns and rows in a table) are fixed. Alternatively, they may choose dynamic layouts, using
the delivery context API to identify the device and using JSP methods to generate the appropriate layout
“on-the-fly”. For example, the author can use the API to determine the width and height of a screen, and
resize the table accordingly.

Appendixes

Page 87 of 116

Appendix B—Device Attributes
This appendix lists the current attributes in the Device Repository.

The listing is broken down into three major sections:

• CC/PP-compliant device attributes

• Proprietary device attributes

• A list of deprecated device attributes which are still supported, although their function has been replaced
by a CC/PP attribute. This list will indicate which attribute should be used instead.

CC/PP-Compliant Device Attributes
The seven categories of CC/PP compliant attributes listed enable developers to create device-independent
content and applications. They are listed in the Device Repository with one of the following prefixes:

1. UAProf.BrowserUA

For more information see:
http://wapforum.org/profiles/UAPROF/ccppschema-20020710#BrowserUA

2. UAProf.HardwarePlatform

For more information see:
http://wapforum.org/profiles/UAPROF/ccppschema-20020710#HardwarePlatform

3. UAProf.MmsCharacteristics

For more information see:
http://wapforum.org/profiles/UAPROF/ccppschema-20020710#MmsCharacteristics

4. UAProf.NetworkCharacteristics

For more information see:
http://wapforum.org/profiles/UAPROF/ccppschema-20020710#NetworkCharacteristics

5. UAProf PushCharacteristics

For more information see:
http://wapforum.org/profiles/UAPROF/ccppschema-20020710#PushCharacteristics

6. UAProf.SoftwarePlatform

For more information, see:
http://wapforum.org/profiles/UAPROF/ccppschema-20020710#SoftwarePlatform

7. UAProf.WapCharacteristics

For more information:
http://wapforum.org/profiles/UAPROF/ccppschema-20020710#WapCharacteristics

http://wapforum.org/profiles/UAPROF/ccppschema-20020710#BrowserUA
http://wapforum.org/profiles/UAPROF/ccppschema-20020710#HardwarePlatform

Appendixes

Page 88 of 116

CC/PP Device Attributes – UAProf.BrowserUA Prefix

Attribute Data Type Example Description

BrowserName Literal "Mozilla", "MSIE",
"WAP42"

Name of the browser user agent
associated with the current request.

BrowserVersion Literal “1.0” Version of the browser.

DownloadableBrowserApps Literal (bag) "application/x-java-
vm/java-applet”

List of executable content types which
the browser supports and which it is to
accept from the network. The property
value is a list of MIME types, where
each item in the list is a content type
descriptor as specified by RFC 2045.

FramesCapable Boolean true | false Set to “true” if the device browser is
capable of displaying frames.

HtmlVersion Literal "2.0", "3.2", "4.0" Version of HyperText Markup
Language (HTML) supported by the
browser.

JavaAppletEnabled Boolean true | false Set to “true” if the device browser
supports Java applets.

JavaScriptEnabled Boolean true | false Set to “true” if the device browser
supports JavaScript.

JavaScriptVersion Literal "1.4" Version of the JavaScript language
supported by the browser.

PreferenceForFrames Boolean true | false Set to “true” if the user‘s preference is
to receive HTML content that contains
frames.

TablesCapable Boolean true | false Set to “true” if the device browser is
capable of displaying tables.

XhtmlVersion Literal "1.0" Version of XHTML supported by the
browser.

XhtmlModules Literal (bag) "XHTML1-struct",
"XHTML1-
blkstruct",
"XHTML1-frames"

List of XHTML modules supported by
the browser. Property value is a list of
module names, where each item in the
list is the name of an XHTML module
as defined by the W3C document
"Modularization of XHTML", Section 4.
List items are separated by white
space. Note that the referenced
document is a work in progress. Any
subsequent changes to the module
naming conventions should be reflected
in the values of this property.

Appendixes

Page 89 of 116

CC/PP Device Attributes – UAProf.HardwarePlatform Prefix

Attribute Data Type Example Description

BluetoothProfile Literal (bag) "dialup",
"lanAccess"

Supported Bluetooth profiles as defined
in the Bluetooth specification [BLT].

BitsPerPixel Number
(integer)

"2", "8" The number of bits of color or grayscale
information per pixel, related to the
number of colors or shades of gray the
device can display.

ColorCapable Boolean true | false Set to “true” if the device‘s display
supports color. "true" means color is
supported. "false" means the display
supports only grayscale or black and
white. Type: Boolean Resolution.

CPU Literal (string) "Pentium III",
"PowerPC 750"

Name and model number of the device
CPU.

ImageCapable Boolean true | false Set to “true” if the device supports the
display of images. If the value is "true",
the property CcppAccept may list the
types of images supported.

InputCharSet Literal (bag) "US-ASCII", "ISO-
8859-1",
"Shift_JIS”

List of character sets supported by the
device for text entry. Property‘s value is
a list of character sets, where each item
in the list is a character set name, as
registered with IANA.

Keyboard Literal (string) "Disambiguating",
"Qwerty",
"PhoneKeypad"

Type of keyboard supported by the
device, as an indicator of ease of text
entry.

Model Literal (string) "K800i", "Q30" Model number assigned to the device
by the vendor or manufacturer

NumberOfSoftKeys Number
(integer)

"3", "2" Number of soft keys available on the
device.

OutputCharSet Literal (bag) "US-ASCII", "ISO-
8859-1",
"Shift_JIS"

List of character sets supported by the
device for output to the display.
Property value is a list of character sets,
where each item in the list is a
character set name, as registered with
IANA.

PixelAspectRatio Dimension
(pair of
numbers)

"1x2" Ratio of pixel width to pixel height.

Appendixes

Page 90 of 116

PointingResolution Literal (string) "Character", "Line",
"Pixel"

Type of resolution of the pointing
accessory supported by the device.

ScreenSize Dimension
(pair of
numbers)

"160x160",
"640x480"

The size of the device‘s screen in units
of pixels, composed of the screen width
and the screen height.

ScreenSizeChar Dimension "12x4", "16x8" Size of the device‘s screen in units of
characters, composed of the screen
width and screen height. The device‘s
standard font should be used to
determine this property‘s value.
(Number of characters per
row)x(Number of rows). In calculating
this attribute use the largest character
in the device‘s default font.

StandardFontProportional Boolean true | false Set to “true” if the device‘s standard font
is proportional.

SoundOutputCapable Boolean true | false Set to “true” if the device supports
sound output through an external
speaker, headphone jack, or other
sound output mechanism.

TextinputCapable Boolean true | false Set to “true” if the device supports
alpha-numeric text entry. “true” means
the device supports entry of both letters
and digits. “false” means the device
supports only entry of digits.

Vendor Literal "Nokia" Name of the vendor manufacturing the
device.

VoiceinputCapable Boolean true | false Set to “true” if the device supports any
form of voice input, including speech
recognition. This includes voice-
enabled browsers.

CC/PP Device Attributes – UAProf.MmsCharacteristics Prefix

Attribute Data Type Example Description

MmsCcppAccept Bag "text/html" List of content types the device supports,
which can be carried inside an MMS
message.

MmsCcppAcceptCharSet Bag "US-ASCII" The accepted character set.

MmsMaxImageResolution String “120x160” The maximum image resolution
supported by the device for MMS
messages.

Appendixes

Page 91 of 116

MmsMaxMessageSize Integer “1397” The maximum size of an MMS message
supported by the device.

MmsVersion Bag “1.0” The version of MMS supported by the
device.

CC/PP Device Attributes – UAProf.NetworkCharacteristics Prefix

Attribute Data Type Example Description

SupportedBluetoothVersion Literal "1.0" Supported Bluetooth version.

CurrentBearerService Literal "OneWaySMS",
"GUTS",
"TwoWayPacket"

The bearer on which the current
session was opened.

SecuritySupport Literal (bag) "WTLS-1", WTLS-
2", "WTLS-3",
"signText", "PPTP"

List of types of security or encryption
mechanisms supported by the device.

SupportedBearers Literal (bag) "GPRS", "GUTS",
"SMS", CSD",
"USSD"

List of bearers supported by the device.

CC/PP Device Attributes – UAProf.PushCharacteristics Prefix

Attribute Data Type Example Description

Push-Accept Literal (bag) "text/html",
"text/plain",
"image/gif"

List of content types the device supports
that can be carried inside the
message/http entity body when OTA-
HTTP is used. Property value is a list of
MIME types, where each item in the list
is a content type descriptor as specified
by RFC 2045.

Push-Accept-Charset Literal (bag) "US-ASCII", "ISO-
8859-1", "Shift_JIS"

List of character sets the device
supports. Property value is a list of
character sets, where each item in the
list is a character set name registered
with IANA.

Push-Accept-Encoding Literal (bag) "base64", "quoted-
printable"

List of transfer encodings the device
supports. Property value is a list of
transfer encodings, where each item in
the list is a transfer encoding name as
specified by RFC 2045 and registered
with IANA.

Push-Accept-Language Literal
(sequence)

“zh-CN", "en", "fr” List of preferred document languages. If
a resource is available in more than one
natural language, the server can use this

Appendixes

Page 92 of 116

property to determine which version of
the resource to send to the device. The
first item in the list should be considered
the user‘s first choice, the second the
second choice, and so on. Property
value is a list of natural languages,
where each item in the list is the name
of a language as defined by RFC 3066.

Push-Accept-AppID Literal (bag) "x-wap-
application:wml.ua",
"*"

List of applications the device supports,
where each item in the list is an
application-id on absoluteURI format as
specified in [PushMsg]. A wildcard ("*")
may be used to indicate support for any
application.

Push-MsgSize Number "1024", "1400" Maximum size of a push message that
the device can handle. Value is number
of bytes.

Push-MaxPushReq Number "1", "5" Maximum number of outstanding push
requests that the device can handle.

CC/PP Device Attributes – UAProf.SoftwarePlatform Prefix

Attribute Data Type Example Description

AcceptDownloadableSoft
ware

Boolean true | false Set to “true” if the user‘s preference is to
accept downloadable software.

AudioinputEncoder Literal (bag) "G.711" List of audio input encoders supported
by the device

CcppAccept Literal (bag) "text/html",
"text/plain",
"text/html",
"image/gif"

List of content types the device supports.
Property value is a list of MIME types,
where each item in the list is a content
type descriptor as specified by RFC
2045.

CcppAccept-Charset Literal (bag) "US-ASCII", "ISO-
8859-1", "Shift_JIS"

List of character sets the device
supports. Property value is a list of
character sets, where each item in the
list is a character set name registered
with IANA.

CcppAccept-Encoding Literal (bag) "base64", "quoted-
printable"

List of transfer encodings the device
supports.

Property value is a list of transfer
encodings, where each item in the list is
a transfer encoding name as specified
by RFC 2045 and registered with IANA.

CcppAccept-Language Literal "zh-CN", "en", "fr" List of preferred document languages. If

Appendixes

Page 93 of 116

(sequence) a resource is available in more than one
natural language, the server can use this
property to determine which version of
the resource to send to the device. The
first item in the list should be considered
the user‘s first choice, the second the
second choice, and so on. Property
value is a list of natural languages,
where each item in the list is the name of
a language as defined by RFC
3066[RFC3066].

DownloadableSoftwareSu
pport

Literal (bag) "application/x-
msdos-exe"

List of executable content types which
the device supports and which it is
willing to accept from the network. The
property value is a list of MIME types,
where each item in the list is a content
type descriptor as specified by RFC
2045.

JavaEnabled Boolean true | false Set to “true” if the device supports a
Java virtual machine.

JavaPlatform Literal (bag) "Pjava/1.1.3-
compatible",
"MIDP/1.0-
compatible",
"J2SE/1.0-
compatible"

The list of Java platforms and profiles
installed in the device. Each item in the
list is a name token describing
compatibility with the name and version
of the java platform specification or the
name and version of the profile
specification name (if profile is included
in the device).

JVMVersion Literal (bag) "SunJRE/1.2",
"MSJVM/1.0"

List of the Java virtual machines installed
on the device. Each item in the list is a
name token describing the vendor and
version of the VM.

MexeClassmarks Literal (bag) "1", "3” List of MExE classmarks supported by
the device. Value "1" means the MExE
device supports WAP. Value "2" means
MExE device supports Personal Java,
value "3" means that MExE device
supports MIDP applications and value
"4" means the device supports the CLI
Platform. All other values should be
considered reserved for use by MexE.

MexeSpec Literal "7.02" Class mark specialization. Refers to the
first two digits of the version of the MExE
Stage 2 spec.

MexeSecureDomains Boolean true | false Set to “true” if the device supports MExE
security domains. "true”, means that
security domains are supported in
accordance with MExE specifications

Appendixes

Page 94 of 116

identified by the MexeSpec attribute.
"false" means that security domains are
not supported and that the device does
not have a trusted domain (area).

OSName Literal "Mac OS",
"Windows NT"

Name of the device‘s operating system.

OSVendor Literal "Apple", "Microsoft" Vendor of the device‘s operating system

OSVersion Literal "6.0", "4.5" Version of the device‘s operating
system.

RecipientAppAgent Literal "BrowserMail" User agent associated with the current
request. Value should match the name
of one of the components in the profile.
A component name is specified by the ID
attribute on the prf:Component element
containing the properties of that
component..

SoftwareNumber Literal “2” Version of the device-specific software
(firmware) to which the device‘s low-level
software conforms.

VideoinputEncoder Literal (bag) "MPEG-1", "MPEG-
2", "H.261"

List of video input encoders supported
by the device.

Email-URI-Schemes Literal (bag) "pop", "imap",
"http", "https"

List of URI schemes the device supports
for accessing e-mail. Property value is a
list of URI schemes, where each item in
the list is a URI scheme as defined in
RFC 2396.

JavaPackage Literal (bag) "com.acme.regexp/
1.1",
"com.acme.helper/
3.0"

(From J2EE Client Provisioning) Details
about optional packages installed on the
device over and above those that are
part of the Java profile, and the versions
of these additional packages.

JavaProtocol Literal (bag) "SMS/1.0",
"FILE/1.0"

(from J2EE Client Provisioning) Details
about protocols supported by the device
over and above those that are part of the
standard Java profile indicated and the
versions of these additional protocols.

CLIPlatform Literal (bag) "Standard CLI
2002/Compact",
"Standard CLI
2002/Kernel"

The list of standard Common Language
Infrastructure platforms and profiles
installed in the device. Each item in the
list is a name token describing the name
and edition of the CLI platform
specification including the name of the
profile specification.

Appendixes

Page 95 of 116

CC/PP Device Attributes – UAProf.WapCharacteristics prefix

Attribute Data Type Example Description

SupportedPictogramSet Literal (bag) "core",
"core/operation",
"human"

Pictogram classes supported by the
device as defined in "WAP Pictogram
specification".

WapDeviceClass Literal "A" Classification of the device based on
capabilities as identified in the WAP 1.1
specifications. Current values are "A",
"B" and "C".

WapVersion Literal "1.1", "1.2.1", "2.0" Version of WAP supported.

WmlDeckSize Number "4096" Maximum size of a WML deck that can
be downloaded to the device. This may
be an estimate of the maximum size if
the true maximum size is not known.
Value is number of bytes.

WmlScriptLibraries Literal (bag) "LANG", "FLOAT",
"STRING", "URL",
"WMLBROWSER",
"DIALOGS",
"PSTOR"

List of mandatory and optional libraries
supported in the device‘s WMLScript
VM.

WmlScriptVersion Literal (bag) "1.1", "1.2" List of WMLScript versions supported by
the device. Property value is a list of
version numbers, where each item in the
list is a version string conforming to
Version.

WmlVersion Literal (bag) "1.1", "2.0" List of WML language versions
supported by the device. Property value
is a list of version numbers, where each
item in the list is a version string
conforming to Version.

WtaiLibraries Literal (bag) "WTAVoiceCall",
"WTANetText",
"WTAPhoneBook",
"WTACallLog",
"WTAMisc",
"WTAGSM",
"WTAIS136",
"WTAPDC"

List of WTAI network common and
network specific libraries supported by
the device. Property value is a list of
WTA library names, where each item in
the list is a library name as specified by
"WAP WTAI" and its addendums. Any
future addendums to "WAP WTAI"
should be reflected in the values of this
property.

WtaVersion Literal "1.1" Version of WTA user agent.

DrmClass Literal (bag) "ForwardLock",
"CombinedDelivery
",

DRM Conformance Class as defined in
OMA-Download-DRM-v1_0.

Appendixes

Page 96 of 116

"SeparateDelivery"

DrmConstraints Literal (bag) "datetime",
"interval"

DRM permission constraints as defined
in OMA-Download-DRMREL-v1_0. The
datetime and interval constraints depend
on having a secure clock in the terminal.

OmaDownload Boolean true | false Set to “true” if the device supports OMA
Download as defined in OMA-Download-
OTA-v1_0.

Proprietary Device Attributes
These attributes are a more robust set of device characteristics describing device characteristics that are not
currently covered by the CC/PP standards. They can be used to further fine-tune web content and
applications.

Proprietary Device Attributes

Proprietary Attribute Data
Type

Example Values Description

AccessKeyDisplayed Boolean true | false Set to “true” if the browser
displays the number assigned
to access key beside the
relevant link.

AccessKeySupported Boolean true | false Set to “true” if the browser
supports access keys.

AlternateLineService Boolean True | false Set to “true” if a device can
make a voice call while
keeping a data call online.

BluetoothSupported Boolean true | flse Set to “true” if the device is
Bluetooth enabled.

Brand String Nokia Name of the device
manufacturer.

BrowserType String Openwave Name of the browser.

ColorGamma Integer 1 The color gamma of the
device.

ContractContiguousWhitespaces Boolean true | false Set to “true” if the device does
not contract insignificant white
space when rendering
markup.

DTM String Path to the DTM Indicates the relevant
transformation map for a
device.

Appendixes

Page 97 of 116

DeliveringHTML Boolean true | false Set to “true” if the product will
deliver HTML to a given
device. Can be used to target
content at HTML devices.

DeliveringIHTML Boolean true | false Set to “true” if the product will
deliver IHTML to a given
device. Can be used to target
content and imode devices.

DeliveringWML Boolean true | false Set to “true” if the product will
deliver WML to a given
device. Can be used to target
content at WML devices.

DeliveringXHTMLMP Boolean true | false Set to “true” if the product will
deliver XHTML MP to a given
device. Can be used to target
content at XHTML-MP
devices.

DeliverTableborder Boolean true | false If set to “true”, this device
supports the border attribute
on the table element. Where
present in the source, this
attribute should be sent to the
device.

DeliverTableCellpadding Boolean true | false If set to “true”, this device
supports the cellpadding
attribute on the table element.
Where present in the source,
this attribute should be sent to
the device.

DeliverTableCellspacing Boolean true | false If set to “true”, this device
supports the cellspacing
attribute on the table element.
Where present in the source,
this attribute should be sent to
the device.

DeliveryType Integer 1 or 2 or 3 or 4
where:
1 = HTML
2 = WindowsCE
3 = WML
4 = XHTML MP

Specifies the type of content
that can be sent to the device.

DeviceUsability String DeviceUsability_MED
IUM

Describes the usability of the
devices user interface.

DisplayImgTextlinkSupported Boolean True | false Set to “true” if images, text,
and links can be rendered on

Appendixes

Page 98 of 116

the same line on the browser.

DisplayImgTextSupported Boolean true | false Set to “true” if images and
text can be rendered on the
same line on the browser.

DisplaysImgTextlinkAsSingleObject Boolean true | false Set to “true” if the device
renders a <a href…> as
a single object.

DisplaysMultipleImagesOnSameLine Boolean true | false Set to “true” if the device
supports multiple images on
the same line.

DisplaysWMLSelectAsNumberedList Boolean true | false Set to “true” if the device
renders a WML Select List as
a numbered list.

DownloadFunSupported Boolean True | False Set to “true” if Openwave
Download Fun objects can be
sent to the device.

EMSSupported Boolean True | false Set to “true” if the device
supports EMS.

TransformCSS Boolean True | False Set to “true” if the product will
apply CSS on the server-side
for this device.

FallbackRecognitionLogic String E.G: Accept:"wml" |
x-wap-profile-diff:"") &
!(User-
Agent:"mozilla" |
User-Agent:"Mozilla"

“None”—When
FallbackRecognitionL
ogic is not set, a
value of "None"
should be used.

Any existing values here will
override the
HTTPMetaDataKey and
HTTPMetaDataString
attributes to allow a more
advanced mechanism for
determining whether or not a
node should be matched
during device recognition.
The attribute allows multiple
headers to be considered
during the recognition
process.

IMPORTANT NOTE: Like any
other attribute, the
FallbackRecognitionLogic
expression will be inherited by
child nodes, which is unlikely
to be the intended behaviour.
Therefore if child nodes do
not have their own recognition
logic expression, they should
be given the special value of
“none” for this attribute. In

Appendixes

Page 99 of 116

particular, all direct children of
the WML and XHTMLMP
nodes should initially be given
a FallbackRecognitionLogic
value of “None”.

For more information, see the
“Appendix E—Fallback
Recognition Logic Expression
Language Details" section.

FlashSupported Boolean true | false Set to “true” if the device
supports Flash.

FormSelectRenderedAsDropDown Boolean true | false Set to “true” if the form
<select> element is rendered
as a drop down list.

FormSelectRenderedAslink Boolean true | false Set to “true” if the form
<select> element is rendered
as a link to another card
where the user makes the
selection.

FormSelectRenderedAsList Boolean true | false Set to “true” if the form
<select> element is rendered
as a list, with all options
displayed.

ForwardLockContentTypeList String application/vnd.oma.
drm.message

Indicates the content types
supported for DRM Forward
Lock.

HTTPMetaDataExceptions String Opera, Mozilla/5, and
so on.

Indicates
HTTPMetaDataStrings that
should NOT be considered a
match during device
matching. Some User Agent
strings contain generic values
that can could potential cause
a false match to occur. Filling
in this field will allow device
matching to progress further
down the device hierarchy.

HTTPMetaDataKey String User-Agent

Accept

UA-OS

Indicates which part of the
device’s header contains the
device’s unique signature.

HTTPMetaDataString String Nokia6210 Device’s unique header
string.

Appendixes

Page 100 of 116

HTTPPostSupported Boolean true | false Set to “true” if the device
supports the HTTP post
method.

HorizontalScrollBar Boolean true | false Set to “true” if device supports
a horizontal scroll bar.

IRDASupported Boolean true | false Set to “true” if the device
supports Infrared Data
Association standards for
wireless transfer of data from
one device to another.

ImagesPlacedOnNewline Boolean true | False Set to “true” if the device
places images on a new line.

ImgAslinkSupported Boolean true | false Set to “true” if the browser
can render an image in <a
href> tags as a hyperlink.

ImgGIFSupported Boolean True | False Set to “true” if the browser
supports GIF images.

ImgGifAnimatedSupported Boolean True | False Set to “true” if the browser
can render animated GIFs as
animations.

ImgJpgBaselineSupported Boolean true | false Set to “true” if the browser
supports baseline JPGs.

ImgJpgProgressiveSupported Boolean true | false Set to “true” if the browser
supports progressive JPGs.

ImgLocalsrcSupported Boolean true | false Set to “true” if the device has
a locally stored image library
and can access these images
using the wml localsrc
attribute of the img tag.

ImgPNGSupported Boolean true | False Set to “true” if the browser
supports PNG format images.

ImgSVGSupported Boolean true | False Set to “true” if the browser
supports SVG format images.

ImgTypePref String .gif

.wbmp

A comma delimited list (no
spaces) of preferred image
types for the browser, for
example .gif, .wbmp.

ImgWBMPSupported Boolean true | false Set to “true” if the browser
supports WBMP format
images.

Appendixes

Page 101 of 116

ImgZeroBorderDefeatsNavigation Integer "true" =Navigation
border is invisible on
this device if img link
border is set to "0"

"false" =Navigation
border is not affected
by img link border
setting

On certain devices, setting
border="0" results in the
image link navigation border
being invisible. For these
devices, border must be set
to "1".

IsDeviceRoot Boolean true | false Set to “true” if the device
profile represents the initial
version of a real-world device
and not an emulator class of
devices.

IsFullBrowser Boolean true | false Set to “true” if large browser.

IsLandscapePDA Boolean true | false Set to “true” if a page
designed with a landscape
orientation is more suitable
for the device.

IsMenuDriven Boolean true | false Set to “true” if a menu-driven
design is most suitable for the
device.

IsPDA Boolean true | false Set to “true” if the device is a
PDA browser.

IsPortraitPDA Boolean true | false Set to “true” if a page
designed with a portrait
orientation is more suitable
for the device.

Is3GCapable Boolean true | false Set to “true” if the device
supports 3G connectivity.

J2MEDownloadLimit Integer 64000 Max size in bytes of the J2ME
JAR that can be downloaded
by the device.

J2MESupported Boolean true | false Set to “true” if the device
supports J2ME.

MLVersion String WML1.3

xHTML

MP

Comma delimited list (no
spaces) that specifies the
markup languages the device
supports.

MMSReceiveSupported Boolean true | false Set to “true” if the device can
receive MMS messages.

MMSSendSupported Boolean true | false Set to “true” if the device can

Appendixes

Page 102 of 116

send MMS messages.

MMSSupported Boolean true | false Set to “true” if the device is
MMS capable.

MP3Supported Boolean true | false Set to “true” if the device can
handle MP3 format.

MaxImageHeightPixels Integer 21 Maximum height in pixels.

MaxImageSize Integer 2600 Maximum size of an image in
bytes that can be received.

MaxImageWidthPixels Integer 50 Maximum image width in
pixels.

MaxObjectsInMessage Integer 3 Maximum objects in a
message.

MaxTextSize Integer 102400 Maximum Text Size.

MaxWapDeckSize Integer 2800 Maximum deck size, in bytes,
that a device can receive.

MexeSupported Boolean true | false Set to “true” if the device
supports MexE.

MultipartPreferred Boolean true | false Set to “true” if the device
prefers multipart content.

NetworksSupported String GSM1900

GSM1800

GPRS

Comma delimited list (no
spaces) of network
technologies supported by the
device.

PDFSupported Boolean true | false Set to “true” if the device
supports PDFs.

PreferTablesForNavList Boolean true | false Set to “true” if the device is
able to properly support the
tables created in navigational
menu styling.

PreferredCharsets Sting UTF-8;Q=0.8,ISO-
8859-1

Indicates the preferred
character sets for the device.

ProtectWrappingContentTypeList String application/
vnd.oma.drm.messag
e

Indicates the content types
the device supports Protect
Wrapping for.

RecognitionCheckMeBefore String SiemansS55,
MotorolaV60

Specifies a list of devices that
a given device should take
precedence over in the device
recognition process.

Appendixes

Page 103 of 116

RecognitionHeaders String /
regex
(regex
applies to
the
pattern
only)

Accept-charset:utf-8

or

Accept-charset:.*iso.*

Specifies a list of headers
(additional to the User-Agent
header) that need to be
checked during device
recognition. This list will also
contain the pattern, which
may be a substring or regular
expression, to search those
headers for.

RecognitionUAPattern String /
regex

Nokia3650

or

^Nokia3650.*

Specifies a list of regular
expressions or strings to
match against the User-Agent
header.

NOTE: If it contains a regex,
then the
“RecognitionRequiresRegex”
attribute (below) must also be
set to true.

RecognitionRequiresRegex Boolean true | false Set to “true” if the
RecognitionUAPattern and
RecognitionHeaders
(patterns) attributes should be
interpreted as a
regex pattern (Regular
Expression).

RingtoneDownloadSupported Boolean true | false Set to “true” if the device can
download ringtones.

RingtoneFormatSupported String midi, i-Melody Indicates the ringtone formats
supported by the device.

RingtoneMonophonicSupported Boolean true | false Set to “true” if the device can
download monophonic
ringtones.

RingtonePolyphonicSupported Boolean true | false Set to “true” if the device can
download polyphonic
ringtones.

RingtonePref String rng,midi, amr An ordered list of preferred
ringtone formats.

SMSLongMessagesSupported Boolean true | false Set to “true” if the devicecan
support SMS messages
longer than 160 characters.

ScreenOrientation String Portrait

Landscape

Specifies whether the device
has a portrait (most devices)
or landscape
(communicators) orientation.

Appendixes

Page 104 of 116

ScreenSaverSupported Boolean true | false Set to “true” if the device can
support screensavers.

SmartMessagingSupported Boolean true | false Set to “true” if the device
supports Smart Messaging.

StreamingAudioCodecsSupported String AMR,AWB,AAC Comma delimited list (no
spaces) of streaming audio
codecs supported by the
device.

StreamingVideoCodecsSupported String MPG4,WMV,H263,R
V

Comma delimited list (no
spaces) of streaming video
codecs supported by device.

SupportsAbsoluteWidth Boolean true | false Set to “true” if the device
supports absolute widths on
images.

SupportsCSS Boolean true | false Set to “true” if the device
supports Cascading style
Sheets.

SupportsRelativeWidth Boolean true | false Set to “true” if the device
supports relative widths on
images.

SyncMLSupported Boolean true | false Set to “true” if the device has
support for SyncML.

TableRowsFunctionAslink Boolean true | false Set to “true” if the device
browser renders table rows
as links automatically.

TextBrowser Boolean true | false Set to “true” if the device
browser can only render text
and not images.

TextColumns Integer 15 Maximum number of text
columns that the screen can
accommodate.

TextFormatBigSupported Boolean true | false Set to “true” if plain text
wrapped in <big> tags is
rendered in big font.

TextFormatBoldSupported Boolean true | false Set to “true” if plain text
wrapped in bold tags is
rendered in bold font.

TextFormatEmphasisSupported Boolean true | false Set to “true” if plain text
wrapped in <emphasis> tags
is entered in an emphasized
font.

Appendixes

Page 105 of 116

TextFormatItalicSupported Boolean true | false Set to “true” if plain text
wrapped in italics <i> tags is
rendered in italic font.

TextFormatSmallSupported Boolean true | false Set to “true” if plain text
wrapped in <small> tags is
rendered in small font.

TextFormatStrongSupported Boolean true | false Set to “true” if plain text
wrapped in tags is
rendered in a strong font.

TextFormatUnderlineSupported Boolean true | false Set to “true” if plain text
wrapped in underline
tags is rendered with an
underline.

TextRows Integer 3 Number of rows that the
device-screen can
accommodate using the
device system font.

TitleRow Boolean true | false Specifies whether the device
has a title row.

TouchScreenSupported Boolean true | false Set to “true” if the device
supports touch-screen input.

URLRequestLength Integer 256 Max length of URL request.

USSDSupported Boolean true | false Set to “true” if the device
supports USSD technology.

UsableHeightPixels Integer 570 Screen height excluding items
like scroll bars.

UsableWidthPixels Integer 770 Screen width excluding items
like scroll bars.

UseTablesForNavList Boolean true | false Set to “true” if tables should
be used for navigation list
styling.

UseUAProf Boolean true | false Set to “true” if a manufacturer
UAProf file is available for the
device.

VideoSupported String mpeg Comma delimited list (no
spaces) of the video formats
that the device supports.

VideoTypePref String mpeg,mp4 Ordered list of preferred video
formats.

Appendixes

Page 106 of 116

ViewableHeight Integer 30 Screen height in pixels.

ViewableWidth Integer 80 Screen width in pixels.

WAPPushSISupported Boolean true | false Set to “true” if the device
supports WAP Push Service
Indication.

WAPPushSLSupported Boolean true | false Set to “true” if the device
supports WAP Push service
loading.

WAPPushSupported Boolean true | false Set to “true” if the device
supports WAP Push.

WAPVersion String 1.2.1 Specifies version of WAP
supported by the device.

WMLScriptSupported Boolean true | false Set to “true” if the device
supports WML Script.

WMLVersion String 1.3 Specifies which version of
WML the device supports.

WTAIInternationalPrefix String +00 Indicates the international
prefix that should be used
when specifying telephone
numbers.

WTAIMakePhoneCallSupported Boolean true | false Set to “true” if the device has
phone dialing capabilities.

WTLSSupported String WTLS_Class1 Indicates the WTLS class
supported by the device.

WavEncodingsSupported String PCM8 Indicates the supported Wav
file encodings.

Appendixes

Page 107 of 116

Deprecated Device Attributes
This is a list of the deprecated items in the Device Repository. These attributes are still functional for the
purpose of backward compatibility although it is recommended that you use the alternative if available.

The attribute that should be used as a replacement is listed each deprecated attribute name. Each of these new
attributes should be prefixed with “UAProf.” to form the complete name.

Deprecated device attributes

Deprecated attribute name Data
type

Example
values

Description

Acceptheader String text

vnd.wap.wm
l

image

vnd.wap.wb
mp

Comma delimited list (no spaces) used to
specify the media types that are acceptable
for the response (that is, what can be sent to
the browsing device). Replaced by:
SoftwarePlatform.CcppAccept

AudioFormatSupported String mid

au

wav

mp3

Comma delimited list (no spaces) of audio
formats the device is capable of supporting.

Replaced by: SoftwarePlatform.CcppAccept

CDC1xSupported Boolean true | false J2ME Connected Device Configuration.

Replaced by:
SoftwarePlatform.JavaPlatform

CLDC1xSupported Boolean true | false J2ME Limited Device Configuration.
Replaced by:
SoftwarePlatform.JavaPlatform

CharsetSupported String utf8

ascii

ISO8859-1

Comma delimited list (no spaces) of
character sets supported. Replaced by:
SoftwarePlatform.CcppAccept-Charset

ColorDepth Int 12 Indicates the number of bits per pixel
supported. Replaced by:
HardwarePlatform.BitsPerPixel

ColorType String Colour Specifies whether the screen is black &
white, color or grayscale. Replaced by:
HardwarePlatform.ColorCapable

DeviceClass String PDA
FULLBROW
SER
WMLBROW
SER

Describes the category of device. Replaced
by:
IsPDA, IsPortraitPDA, IsLandscapePDA
IsFullBrowser
IsMenuDriven

Appendixes

Page 108 of 116

EmailClient String POP3

SMTP

Comma delimited list (no spaces) that
indicates the e-mail protocols that the device
supports. Replaced by:
SoftwarePlatform.Email-URI-Schemes

FoundationProfile1xSupported Boolean true | false Java (CDC) profile. Replaced by
SoftwarePlatform.JavaPlatform

ImageFormatSupported String wbmp

bmp

gif

animgif

png

jpeg

Comma delimited list (no spaces) of all of the
image formats supported by the device, for
example, gif, wbmp and png. Replaced by:
SoftwarePlatform.CcppAccept

ImgMapTransformEnabled Boolean true | false Set to “true” if image maps are to be
transformed into links. No replacement.

ImgMapTransformShowImage Boolean true | false Set to “true” if images are also delivered with
an image map. No replacement.

JavaPhone1xSupported Boolean true | false Used by some devices with Personal Java.
Replaced by:
SoftwarePlatform.JavaPlatform

JavaScriptSupported Boolean true | false Set to “true” if the device supports
JavaScript. Replaced by:
BrowserUA.JavaScriptEnabled

MIDP1xSupported Boolean true | false Set to “true” if the device supports J2ME
(CLDC) MIDP Profile Version 1. Replaced
by:
SoftwarePlatform.JavaPlatform

MIDP2xSupported Boolean true | false Set to “true” if the device supports J2ME
(CLDC) MIDP Profile Version 2. Replaced
by:
SoftwarePlatform.JavaPlatform

MXImageMapShowImage Boolean true | false Allows you to display links in an image map
on a PDA. No replacement.

Appendixes

Page 109 of 116

MXImageTypePref String .gif

.wbmp

A comma delimited list (no spaces) of
preferred image types for the browser. No
replacement.

MXListBoxHeight Int Any Integer Default is 6. No replacement.

MultipartSupported Boolean true | false Set to “true” if the device supports accepts
multipart content. Replaced by:
SoftwarePlatform.CcppAccept

OSVersion String 4.22, 5.0,
and so on.

Indicates the version of the Operation
System on the device, where applicable.

Replaced by:
SoftwarePlatform.OSVersion

OSType String AMX,
PALM, and
so on.

Indicates the Operating System on the
device, where applicable. Replaced by:
SoftwarePlatform.OSName

PersonalJava1xSupported Boolean true | false Personal Java Specification. Replaced by:
SoftwarePlatform.JavaPlatform

ScreenAspectRatioPixels String 1X1, 1X2,
and so on.

Pixels on most devices are higher than wide
which explains why sometimes images can
look distorted on browsers. The pixel aspect
ratio specifies the width to height pixel ratio
on a devices display. Replaced by:
HardwarePlatform.PixelAspectRatio

SoundHandling Boolean true | false Set to “true” if the device has audio
capability. Replaced by:
SoftwarePlatform.CcppAccept

TableSupported Boolean true | false Set to “true” if the device supports tables.
Replaced by:
BrowserUA.TablesCapable

WTAIAddPhoneBookEntrySupp
orted

Boolean true | false This is part of WTAI support and allows a
selected number to be saved to the devices
phone book. Replaced by:
WapCharacteristics.WtaiLibraries

Appendixes

Page 110 of 116

Appendix C—Use the Admin Console Tool to Manage Devices and
Device Attributes in the Device Repository
When the Device Repository is represented as a database, you will use the Administration Console tool to
add, remove and modify devices and device attributes. The Administration Console is a Java-based GUI that
provides a convenient way of setting up, retrieving and modifying the attributes associated with each profile.

Quick Start
The following table introduces the basic steps in using the Administration Console.

Administration Console Quick Start Guide

To… Choose

Launch the console In BEA WebLogic Workshop, from the Tools Launcher Icon or launch directly
from
<BEA_install_directory>/weblogic81/mobility/applications/AdminConsole.ex
e or AdminConsole

Login Apps → Login

Logout of the console Apps → Logout

Close all windows Apps → Close All

Refresh the Device
Repository

Apps → Refresh Database

Exit the console Apps → Exit

Log In
The “Administration Console Login” window opens when you launch the application.

Enter the correct WebLogic Mobility Server IP address and web application address in the Server field, for
example localhost:8080/<application>/.

Note: The Server field recalls the last four servers that the Administrator successfully connected to.

If required, select the Password Protected check box to enable the Username and Password fields.

If required, enter your username and password in the respective fields. As you type your password the
characters appear as asterisks.

Click Login to display the “Administration Console” window.

Use the System Monitor
The System Monitor displays the Free Memory available and refreshes the console.

• Choose Apps → System Monitor.

Appendixes

Refreshing the Console Automatically
• Set the Refresh interval (in seconds) for the Administration Console using the refresh period indicator

Refreshing the Console Manually
• Click Refresh to refresh the Administration Console display

Use the Administration Console Toolbar
The Administration toolbar provides a convenient method for accessing the administrative functions within
WebLogic Mobility Server. The following illustrates the tasks associated with each image on the toolbar.

Page 111 of 116

Appendixes

Page 112 of 116

Create and Modify Device Profiles
Device profiles are configured from within the Administration Console. The existing profiles and attributes
can be modified, or new ones can be created. This can be useful for capturing more device-specific
information to finely tune your content delivery for a specific purpose.

Create Device Profiles
Three steps are required when adding a new device profile to WebLogic Mobility Server:

• Complete the “Basic Details” for the device

• Configure the standard attribute values for the device

• Create new attributes if required

Add a Device
To add a device:

1. Choose Device → Add Device. Select the parent device class to which this device will belong

2. Complete the details on the Basic Device Details tab:

Basic Device Details

Field Description

Device Name* Type in a unique name to identify this device or device class

Display Name* Type in the label you want displayed for this device

Description Optionally, type in a description of this device

Note: * Indicates a required field

3. Click Next to proceed to the next tab.

4. When adding a device to the database, there is a standard set of attributes that need to be configured for
the new device.

Appendixes

Page 113 of 116

Adding a Device Attribute
To add a new Device Attribute:

1. Click Add on the Attributes tab.

2. Select the Device attribute option.

3. In the Name field, enter a name for the new attribute.

4. From the “Type List”, select a data type for the new attribute. If you’ve chosen the String data type, and
want to restrict its values to a predefined list, enter a comma-separated list of values in the Permitted
Values field.

Note: The Modifiable By option should be ignored. This is a legacy option and has been deprecated.

Configuring an Attribute

1. Select the device that you wish to configure.

2. Click Next until you reach the Attribute Values tab.

3. Select the attribute you want to configure and double-click in the corresponding Value field.

Modifying a Device Profile

1. You can add and delete attributes or change attribute values. Inherited attributes cannot be deleted: the
Delete button will be unavailable if you select an inherited attribute.

2. Choose Device → Find and “Modify Device”. When the “Device” panel appears, select the device you
want to modify. Click Next to move between tabs.

3. Click Finish when you are satisfied with your changes.

Viewing an Attribute

1. Select the attribute from the Attributes list and then click View.

Deleting Devices
You can only delete devices that you have added to the device hierarchy; you cannot delete pre-installed
devices.

1. Choose Device → Delete Device, select the device that you want to delete and click Delete.

Appendixes

Appendix D—Configure Device Repository Manager to Connect to the
Update Service via a Web Proxy
You can also configure Device Repository Manager to connect to the Device Repository Online Update
Service via a web proxy to download the latest updates. To achieve this, open the Device Repository
Manager and select File → Proxy Settings. In the Proxy Details dialog box that is displayed, set the
appropriate proxy settings as illustrated:

Page 114 of 116

Appendixes

Page 115 of 116

Appendix E—Fallback Recognition Logic Expression Language Details
To allow more than one header to be considered during recognition at any given node we use the
FallbackRecognitionLogic attribute and its associated expression language. More information on the
expression language is provided below.

FallbackRecognitionLogic Associated Expression Language
Expressions are made up of terms and operators. Terms are of the form HeaderName:"Substring", including
the quotes. A term evaluates to true if the named header contains the specified substring.

If the substring needs to contain a double-quotes character, it is escaped with a backslash. For a literal
backslash, two backslashes are used. For example, to check if the MyHeader header contains the string:

 substring containing " and \ characters

…you would use …
 MyHeader:"substring containing \" and \\ characters"

To combine terms into complex expressions, FallbackRecognitionLogic supports the logical operators and,
or, and not, represented by “&” (ampersand), “|“ (vertical line) and “!“ (exclamation mark) respectively.
Parentheses (round brackets) are supported for grouping terms and specifying precedence. For example:
 (Accept:"wml" | x-wap-profile-diff:"") & !(User-Agent:"mozilla" | User-
Agent:"Mozilla")

Note that in this example the empty substring "" is used. This term evaluates to true if the named header
exists, no matter what its value, and evaluates to false if the header is absent. Therefore the expression above
will evaluate to true if the Accept header contains the string wml or if any x-wap-profile-diff header is
present, but in either case only if the User-Agent header does not contain the strings mozilla or Mozilla.

Header names are case-insensitive while substring values are case-sensitive.

Appendixes

Appendix F—Enlarge the JVM Memory Argument to Support a Full XML
File
If you are using a full XML file-based Device Repository (i.e. devicerepository.xml), you must set the size of
the JVM memory large enough to support the full XML file. Otherwise, if you point the server to the full
XML device repository without first increasing the memory limits, the server will fail on start-up.

To avoid this, follow the steps described in one of the section below.

Enlarge the JVM Memory Argument When Manually Starting Your BEA
WebLogic Server

1. Ensure the BEA WebLogic server is stopped. Navigate to the
<bea_install_directory>\<domain_name>\bin\ directory
(e.g. C:\bea10\user_projects\domains\MobilityPortal\bin) and open the setDomainEnv.cmd file in your
preferred editor:

2. Locate the instance of:
MEM_ARGS=-Xms256m -Xmx768m
Ensure that the “Xms” argument is set to a minimum value of “256”, as illustrated above.

3. Start your WebLogic sever via a command line.

Page 116 of 116

