0?7,

r
S’ 7
L/

BEALIquid Data for
WebLogic-

XQuery Developer’s
Guide

Version 8.5
Document Date: June 2005
Revised: August 2005

Copyright

Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic
Data Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic
Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe,
BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server,
BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup
Edition, BEA WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical
Support is a service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual
property rights reserved by third parties.

All other trademarks are the property of their respective companies.

August 5, 2005 12:32 pm

Contents

1. Introducing the BEA XQuery Engine
XML and XQUeTY . v v v vttt ettt ettt ettt et e e e e -
XQuery Use in Liquid Data.ttt e -
Supported XQuery Specificationsc.oviiiiiiiiii i e -
Learning More About the XQuery Languagecooiuiiiieieeniiiiiineeeeennnns -

2. BEA XQuery Implementation

BEA XQuery Function Implementationo -
Function OVEIVIEWoouiiii e e -
Access Control FUnctions. -

fn-beazis-access-allowed.t -
fN-bea:is-USer-IN-Groupttt e -
fn-beaiis-user-in-role. -
f-beaiuseridvv v -
Duration, Date, and Time Functions.o -
fn-bea:date-from-dateTime ... -
fn-bea:date-from-string-with-format. -
fn-bea:date-to-string-with-format -
fn-bea:dateTime-from-string-with-format, 2-10
fn-bea:dateTime-to-string-with-format..................., 2-10
fn-bea:time-from-dateTime 2-11
fn-bea:time-from-string-with-format. oL 2-11

XQuery Developer’s Guide

fn-bea:time-to-string-with-format 2-12

Date and Time Patterns 2-12
Execution Control Functions 2-13
-DeAASYNC . . e e e 2-13
fnbeafence 2-15
fn-beaiif-then-else 2-15
fn-beatimeout 2-16
Numeric Functionso 2-17
fn-beaformat-number. o 2-17
fn-bea:decimal-roundo 2-18
fn-bea:decimal-truncate i 2-18
Other FUNCEIONS. . ..o oot 2-18
fn-bea:get-Propertyo e 2-19
fn-bearinlinedXML.o i 2-19
fn-bearename 2-19
QName FUNCtions i i 2-20
fn-bea:QName-from-string ...t i e 2-20
Sequence FUNCLIONSvittt e e e e 2-21
fn-beaiinterleave 2-21
SEring FUNCEIONS e 2-22
fn-bearmatch 2-22
fn-beaisql-liKe. . ..ot e e 2-25
fnbeatrim . ..o 2-26
fn-beastrim-left. 2-26
fn-beatrim-right e e 2-27
Unsupported XQuery FUnctions. 2-27
Unsupported XQuery Language Features, 2-27
BEA XQuery Language Implementation. ...ttt 2-28

iv XQuery Developer’s Guide

Generalized FLWGOR (8roup by) oot 2-28
Optional Indicator in Direct Element and Attribute Constructors................... 2-31

Implementation Specific Detailscco i 2-33

3. Understanding XML Namespaces

Introducing XML NameSpaCes.o v vvve et vttt ittt e et nieens 3-2
Exploring XML Schema Namespacesovvveiitnieniiit e, 3-3
Using XML Namespaces in Liquid Data Queries and Schemas 3-4

4. Best Practices Using XQuery

Introducing Data Service Designooiiiiii e e 4-1
Understanding Data Service Design Principles. ..., 4-3
Applying Data Service Implementation Guidelineso, 4-5

5. Understanding Liquid Data Annotations

XDS ANNOLALIONS. . .o v v ettt e b-2
General Propertieso e b-4
Standard Document Properties.coovviiiiii i b-4
User-Defined Properties. 5-4
Data Access Propertiesttt e e 5-b
Relational Data Service Annotationscooiviiiiiiiiiiiiinn.s. b-6

Web Service Data Service Annotations.ooviiiiiiiiiiiiiiiii 5-8
Java Function Data Service Annotations....................ooiiiiiiiini, 5-8
Delimited Content Data Service Annotations.....................ooooiiitt, 5-8
XML Content Data Service Annotations.coovviiiiiiiiiiiinien 5-9
User Defined View XDS Annotationsc.ooooiiiiiiiiiiiiiiiion, 5-9
Target Type Properties.t e e e 5-10
Native Type Properties.ttt e e e 5-10
Update-related Type Properties ...ttt 5-11

XQuery Developer’s Guide

Key Propertiesvveo e 5-12

Relationship Propertieso e 5-12
Update Propertiesovuuruti e 5-14
Function for Update Decomposition.............ccooiiiiiiireiineninn 5-14
JavaUpdate EXito e e 5-15
Optimistic Locking Fields.cooiiii e 5-15
Read-Only Data Servicecouiiiiiiiiiin it 5-16

SeCUItY Properties . ..\ttt e 5-16
XFLANNOLAIONS ..ot v vttt 5-17
General Propertiesot 5-17
Data Access Properties.o e 5-18
Function Annotationsvuiin it 5-19
General Propertieso 5-21

L] 50 0] 0 1<) 4 (T 5-21
Cache Propertieso 5-22
SIgnature Propertiesv vttt e e 5-23
Native Properties. v vttt e 5-24
SQL Query Propertiesoouviiiii i 5-24

SOAP Handler Properties.t eens 5-24

A. XML Schema for Annotations

vi XQuery Developer’s Guide

CHAPTERo

Introducing the BEA XQuery Engine

This chapter briefly introduces the XQuery language and describes the version of the XQuery
specification implemented in BEA Liquid Data for WebLogic. Links to more information about XQuery
are also provided.

The following topics are covered:
e XML and XQuery
e XQuery Use in Liquid Data
e Supported XQuery Specifications
e Learning More About the XQuery Language

XQuery Developer’s Guide 1-1

Introducing the BEA XQuery Engine

XML and XQuery

XML is an increasingly popular markup language that can be used to label content in a variety of data
sources including structured and semi-structured documents, relational databases, and object
repositories. XQuery is a query language that uses the structure of XML to express queries against
data, including data physically stored in XML or transformed into XML using additional software.
XQuery is therefore a language for querying XML-based information.

The relationship between XQuery and XML-based information is similar to the relationship between
SQL and relational databases. Developers who are familiar with SQL will find XQuery to be
conceptually a natural next step.

The W3C Query Working Group used a formal approach by defining a data model as the basis for
XQuery. XQuery uses a type system and supports query optimization. It is statically typed, which
supports compile-time type checking.

However, unlike SQL, which always returns two-dimensional result sets (rows and columns), XQuery
results can conform to a complex XML schema. An XML schema can represent a hierarchy of nested
elements that represent very detailed and complicated business data and information.

XQuery Use in Liquid Data

Liquid Data models the contents of various types of data sources as XML schemas. Once you have
configured Liquid Data access to the data sources you want to use, such as relational databases, Web
Services, application views, data views, and so on, you can issue queries written in XQuery to Liquid
Data. Liquid Data evaluates the query, fetches the data from the underlying data sources, and returns
the query results.

For information on developing XQueries in Liquid Data see the Data Services Developer’s Guide.

Supported XQuery Specifications

Table 1-1 lists the XQuery and XML specifications with which the BEA implementation complies.

Table 1-1 Supported XQuery and XML Standards

Topic Specification

XQuery 1.0 and XPath 2.0 The XQuery and XPath data model implementation is based on the following
Data Model specification:

http://www.w3.org/TR/2004/WD-xpath-datamodel-20040723/

1-2

XQuery Developer’s Guide

http://www.w3.org/TR/2004/WD-xpath-datamodel-20040723/
http://e-docs.bea.com/liquiddata/docs85/datasrvc/index.html

Learning More About the XQuery Language

Table 1-1 Supported XQuery and XML Standards

XQuery 1.0 Specification The BEA XQuery engine implements XQuery 1.0 based on the following specification:
http://www.w3.0rg/TR/2004/WD-xquery-20040723/

XQuery 1.0 and XPath 2.0 The BEA XQuery engine implements functions and operators based on the following

Functions and Operators specification:

http://www.w3.0rg/TR/2004/WD-xpath-functions-20040723/

For information about BEA extensions implemented in Liquid Data, see “BEA
XQuery Language Implementation” on page 2-28.

Learning More About the XQuery Language

You can learn more about XQuery and related technologies at the following locations:
e XQuery
— http://www.w3.org/XML/Query
e XML Schema
— http//www.w3.org/XML/Schema

XQuery Developer’s Guide 1-3

http://www.w3.org/TR/2004/WD-xquery-20040723/
http://www.w3.org/TR/2004/WD-xpath-functions-20040723/
http://www.w3.org/XML/Query
http://www.w3.org/XML/Schema

Introducing the BEA XQuery Engine

1-4 XQuery Developer’s Guide

BEA XQuery Implementation

The World Wide Web (W3C) specification for XQuery defines a set of language features and functions.
The BEA XQuery engine fully supports language features with one exception (modules) and also
supports a robust subset of functions and adds a number of implementation-specific functions and
language keywords.

This chapter describes the function and language implementation and extensions in the BEA XQuery
engine.

The chapter includes the following topics:
e BEA XQuery Function Implementation

e BEA XQuery Language Implementation

XQuery Developer’s Guide 2-1

BEA XQuery Implementation

BEA XQuery Function Implementation

Liquid Data supports a number of functions that are enhancements to the XQuery specification, which
you can recognize by their extended function prefix £n-bea:. For example, the full XQuery notation
for an extended function is: fn-bea;function_name.

This section describes the BEA XQuery function extensions, and contains the following topics:
e Function Overview
e Access Control Functions
e Duration, Date, and Time Functions
e Execution Control Functions
e Numeric Functions
e Other Functions
e QName Functions
e Sequence Functions
e String Functions

e Unsupported XQuery Functions

2-2 XQuery Developer’s Guide

Function Overview

Table 2-1 provides an overview of the BEA XQuery function extensions.

Table 2-1 BEA XQuery Function Extensions

BEA XQuery Function Implementation

Category

Function

Description

Access Control
Functions

fn-bea:is-access-allowed

Checks whether a user associated with the current
request context can access the specified resource.

fn-bea:is-user-in-group

Checks whether the current user is in the specified
group.

fn-bea:is-user-in-role

Checks whether the current user is in the specified
role.

fn-bea:userid

Returns the identifier of the user making the
request for the protected resource.

fn-bea:rename

Renames a sequence of elements.

Duration, Date,
and Time
Functions

fn-bea:date-from-dateTime

Returns the date part of a dateTime value.

fn-bea:date-from-string-with-format

Returns a new date value from a string source
value according to the specified pattern.

fn-bea:date-to-string-with-format

Returns a date string with the specified pattern.

fn-bea:dateTime-from-string-with-format

Returns a new dateTime value from a string
source value according to the specified pattern.

fn-bea:dateTime-to-string-with-format

Returns a date and time string with the specified
pattern.

fn-bea:time-from-dateTime

Returns the time part of a dateTime value.

fn-bea:time-from-string-with-format

Returns a new time value from a string source value
according to the specified pattern.

fn-bea:time-to-string-with-format

Returns a time string with the specified pattern.

XQuery Developer’s Guide 2-3

BEA XQuery Implementation

Table 2-1 BEA XQuery Function Extensions (Continued)

Execution fn-bea:async Evaluates an XQuery expression asynchronously,
Control depositing the result of the evaluation into a buffer.
Functions

fn-bea:fence Enables you to define optimization boundaries,

dividing queries into islands within which
optimizations should occur.

fn-bea:if-then-else Accepts the value of a Boolean parameter to select
one of two other input parameters.

fn-bea:timeout Returns either the full result of the primary
expression, or the full result of the alternate
expression in cases when the primary XQuery
expression times out.

Numeric fn-bea:decimal-round Returns a decimal value rounded to the specified
Functions precision or whole number.
fn-bea:decimal-truncate Returns a decimal value truncated to the specified

precision or whole number.

Other Functions fn-bea:get-property Enables you to write data services that can change
behavior based on external influence.

fn-bea:inlinedXML Parses textual XML and returns an instance of the
XQuery 1.0 Data Model.

fn-bea:format-number Converts a double to a string using the specified
format pattern.
QName fn-bea:QName-from-string Creates an xs : Qname and uses the value of
Functions specified argument as its local name without a
namespace.
Sequence fn-bea:interleave Interleaves items specified in the arguments.

Functions

2-4 XQuery Developer’s Guide

BEA XQuery Function Implementation

Table 2-1 BEA XQuery Function Extensions (Continued)

String Functions fn-bea:match Returns a list of integers (either an empty list with
0 integers or a list with 2 integers) specifying which
characters in the string input matches the input
regular expression.

fn-bea:sql-like Searches a string using a pattern, specified using
the syntax of the SQL LIKE clause. The function
optionally enables you to escape wildcards in the

pattern.
fn-bea:trim Removes the leading and trailing white space.
fn-bea:trim-left Removes the leading white space.
fn-bea:trim-right Removes the trailing white space.

Access Control Functions

Liquid Data uses the role-base security policies of the underlying WebLogic platform to control access
to data resources. A security policy is a condition that must be met for a secured resource to be
accessed. If the outcome of condition evaluation is false — given the policy, requested resource, and
user context — access to the resource is blocked and associated data is not returned.

Once the security policies have been configured using the Liquid Data Administration Console, you
can use the security function extensions described in this section to determine:

e Whether a user associated with the current request context can access a specified resource.
e Whether the current user is in a specified role.

e Whether the current user is in a specified group.

XQuery Developer’s Guide 2-5

BEA XQuery Implementation

if

2-6

This section describes the following Liquid Data access control function extensions to the BEA
implementation of XQuery:

e fn-bea:is-access-allowed
e fn-bea:is-user-in-group
e fn-bea:is-user-in-role

o fn-bea:userid

fn-hea:is-access-allowed

The fn-bea:is-access-allowed function checks whether a user associated with the current
request context can access the specified resource, which is denoted by a resource name and a data
service identifier.

The function has the following signature:

fn-bea:is-access-allowed($resource as xs:string, $data service as
xs:string) as xs:boolean

where $resource is the name of the resource, and $data_service is the resource identifier.

This function makes a call to the WebLogic security framework to check access for the specified
resource. An example is shown below.

(fn-bea:is-access-allowed("ssn", "ld:DataServices/CustomerProfile.ds"))

then fn:true()

fn-bea:is-user-in-group
The fn-bea:is-user-in-group function checks whether the current user is in the specified
group. This function analyzes the WebLogic authenticated subject for appropriate group membership.

This function has the following signature:
fn-bea:is-user-in-group ($group as xs:string) as xs:boolean
where $sgroup is the group to test against the current user.

Note: This operation is not automatically authenticated.

fn-bea:is-user-in-role
The fn-bea:is-user-in-role function checks whether the current user is in the specified glabal
role.This function obtains a list of roles from the WebLogic security framework.

XQuery Developer’s Guide

BEA XQuery Function Implementation

The function has the following signature:
fn-bea:is-user-in-role(Srole as xs:string) as xs:boolean

where $role is the role to test against the current user.

Note: This operation is not automatically authenticated.

fn-bhea:userid

The fn-bea:userid () function returns the identifier of the user making the request for the
protected resource.

The function has the following signature:

fn-bea:userid() as xs:string

XQuery Developer’s Guide 2-1

BEA XQuery Implementation

2-8

Duration, Date, and Time Functions

This section describes the following duration, date, and time function extensions to the BEA
implementation of XQuery:

e fn-bea:date-from-dateTime

e fn-bea:date-from-string-with-format

e fn-bea:date-to-string-with-format

e fn-bea:dateTime-from-string-with-format
e fn-bea:dateTime-to-string-with-format

e fn-bea:time-from-dateTime

e fn-bea:time-from-string-with-format

e fn-bea:time-to-string-with-format

fn-hea:date-from-dateTime

The fn-bea:date-from-dateTime function converts a dateTime to a date, and returns the date
part of the dateTime value.

The function has the following signature:
fn-bea:date-from-dateTime (SdateTime as xs:dateTime?) as xs:date?

where $dateTime is the date and time.

Examples:

® fn-bea:date-from-dateTime (fn:dateTime ("2005-07-15T21:09:44")) returns a
date value corresponding to July 15th, 2005 in the current time zone.

® fn-bea:date-from-dateTime (()) returns an empty sequence.

XQuery Developer’s Guide

BEA XQuery Function Implementation

fn-bea:date-from-string-with-format

The fn-bea:date-from-string-with-format function returns a new date value from a string
source value according to the specified pattern.

The function has the following signature:

fn-bea:date-from-string-with-format ($format as xs:string?, S$dateString
as xs:string?) as xs:date?

where $format is the pattern and $dateString is the date. For more information about specifying
patterns, see “Date and Time Patterns” on page 2-12.

Examples:

® fn-bea:date-from-string-with-format ("yyyy-MM-dd G", "2005-06-22 AD")
returns the specified date in the current time zone.

® fn-bea:date-from-string-with-format ("yyyy-MM-dd", "2002-July-22")
generates an error because the date string does not match the specified format.

® fn-bea:date-from-string-with-format ("yyyy-MMM-dd", "2005-JUL-22") returns
the specified date in the current time zone.

fn-bea:date-to-string-with-format

The fn-bea:date-to-string-with-format function returns a date string with the specified
pattern.

The function has the following signature:

fn-bea:date-to-string-with-format ($format as xs:string?, S$date as
xs:date?) as xs:string?

where $format is the pattern and $date is the date. For more information about specifying patterns,
see “Date and Time Patterns” on page 2-12.

Examples:

® fn-bea:date-to-string-with-format ("yy-dd-mm", xf:date("2005-07-15"))
returns the string “05-15-07".

® fn-bea:date-to-string-with-format ("yyyy-mm-dd", xf:date("2005-07-15"))
returns the string “2005-07-15”.

XQuery Developer’s Guide 2-9

BEA XQuery Implementation

2-10

fn-bea:dateTime-from-string-with-format

The fn-bea:dateTime-from-string-with-format function returns a new dateTime value
from a string source value according to the specified pattern.

The function has the following signature:

fn-bea:dateTime-from-string-with-format ($format as xs:string?,
SdateTimeString as xs:string?) as xs:dateTime?

where $format is the pattern and $sdateTimeString is the date and time. For more information
about specifying patterns, see “Date and Time Patterns” on page 2-12.

Examples:

® fn-bea:dateTime-from-string-with-format ("yyyy-MM-dd G", "2005-06-22
ap") returns the specified date, 12:00:00AM in the current time zone.

® fn-bea:dateTime-from-string-with-format ("yyyy-MM-dd 'at' hh:mm",
"2005-06-22 at 11:04") returns the specified date, 11:04:00AM in the current time zone.

® fn-bea:dateTime-from-string-with-format ("yyyy-MM-dd", "2005-July-22")
generates an error because the date string does not match the specified format.

® fn-bea:dateTime-from-string-with-format ("yyyy-MMM-dd", "2005-JUL-22")
returns 12:00:00AM in the current time zone.

fn-bea:dateTime-to-string-with-format

The fn-bea:dateTime-to-string-with-format function returns a date and time string with
the specified pattern.

The function has the following signature:

fn-bea:dateTime-to-string-with-format ($format as xs:string?, S$dateTime
as xs:dateTime?) as xs:string?

where $format is the pattern and sdateTime is the date and time. For more information about
specifying patterns, see “Date and Time Patterns” on page 2-12.

Examples:

® fn-bea:dateTime-to-string-with-format ("dd MMM yyyy hh:mm a G",
xf:dateTime ("2005-01-07T22:09:44")) returns the string “07 JAN 2005 10:09 PM AD”.

® fn-bea:dateTime-to-string-with-format ("MM-dd-yyyy",
xf:dateTime ("2005-01-07T22:09:44")) returns the string “01-07-2005".

XQuery Developer’s Guide

BEA XQuery Function Implementation

fn-bea:time-from-dateTime
The fn-bea:time-from-dateTime function returns the time from a dateTime value.
The function has the following signature:

fn-bea:time-from-dateTime (SdateTime as xs:dateTime?) as xs:time?

where $dateTime is the date and time.

Examples:

® fn-bea:time-from-dateTime (fn:dateTime ("2005-07-15T21:09:44")) returns a
time value corresponding to 9:09:44PM in the current time zone.

® fn-bea:time-from-dateTime (()) returns an empty sequence.

fn-bea:time-from-string-with-format

The fn-bea:time-from-string-with-format function returns a new time value from a string
source value according to the specified pattern.

The function has the following signature:

fn-bea:time-from-string-with-format ($format as xs:string?, S$timeString
as xs:string?) as xs:time?

where $format is the pattern and $t imeString is the time. For more information about specifying
patterns, see “Date and Time Patterns” on page 2-12.

Examples:

® fn-bea:time-from-string-with-format ("HH.mm.ss", "21.45.22") returns the
time 9:45:22PM in the current time zone.

® fn-bea:time-from-string-with-format ("hh:mm:ss a", "8:07:22 PM") returns
the time 8:07:22PM in the current time zone.

XQuery Developer’s Guide 2-11

BEA XQuery Implementation

fn-bea:time-to-string-with-format
The fn-bea:time-to-string-with-format function returns a time string with the specified
pattern.

The function has the following signature:

fn-bea:time-to-string-with-format ($format as xs:string?, Stime as
xs:time?) as xs:string?

where $format is the pattern and $t ime is the time. For more information about specifying patterns,
see “Date and Time Patterns” on page 2-12.

Examples:

® fn-bea:time-to-string-with-format ("hh:mm a", xf:time("22:09:44")) returns
the string “10:09 PM”.

® fn-bea:time-to-string-with-format ("HH:mm a", xf:time("22:09:44")) returns
the string “22:09 PM”.

Date and Time Patterns

You can construct date and time patterns using standard Java class symbols. Table 2-2 outlines the
pattern symbols you can use.

Tahle 2-2 Date and Time Patterns

This Symbol Represents This Data Produces This Result
G Era AD
Year 1996
M Month of year July, 07
d Day of the month 19
h Hour of the day (1-12) 10
H Hour of the day (0-23) 22
m Minute of the hour 30
S Second of the minute bb
S Millisecond 978

2-12 XQuery Developer’s Guide

BEA XQuery Function Implementation

Table 2-2 Date and Time Patterns (Continued)

E Day of the week Tuesday

D Day of the year 27

w Week in the year 27

w Week in the month 2

a am/pm marker AM, PM

k Hour of the day (1-24) 24

K Hour of the day (0-11) 0

V/ Time zone Pacific Standard Time
Pacific Daylight Time

Repeat each symbol to match the maximum number of characters required to represent the actual
value. For example, to represent 4 July 2002, the pattern is d MMMM yyyy. To represent 12:43 PM, the
pattern is hh:mm a.

Execution Control Functions

This section describes the following Liquid Data execution control function extensions to the BEA
implementation of XQuery:

e fn-bea:async
e fn-bea:fence
e fn-bea:if-then-else

e fn-bea:timeout

fn-bea:async

The £fn-bea:async function evaluates an XQuery expression asynchronously, using a buffer to
control data flow between threads of execution.

The function has the following signature:

fn-bea:async (Sexpression as item()*, S$Scap as xs:integer) as item()*

XQuery Developer’s Guide 2-13

BEA XQuery Implementation

where $expression is the XQuery expression to evaluate asynchronously and $cap is the size of the
buffer.

The fn-bea:async function enables asynchronous execution of Web services to reduce problems
caused by the latency of these services. When used in this manner, a very small buffer size such as 1

or 2 is sufficient, as the time to produce the first token can be long while the production of subsequent
tokens should be quicker.

2-14 XQuery Developer’s Guide

BEA XQuery Function Implementation

Example:

In the following example, CUSTOMER is a database table while the get CreditScore functions are
Web services offered by two credit rating agencies.

for $cust in db:CUSTOMER ()
where $cust/ID eqg Sparam

return
let S$Sscorel := fn-bea:async (exper:getCreditScore ($cust/SSN), 2),
$score2 := fn-bea:async(equi:getCreditScore ($cust/SSN), 2)
return

if (fn:abs($scorel - S$score2) < Sthreshold)
then fn:avg(($scorel, S$score2))
else fn:max(($scorel, S$score2))

fn-bhea:fence

The £n-bea: fence function enables you to define optimization boundaries, dividing queries into
islands within which optimizations should occur while preventing optimizations across boundaries.
You might consider using the fn-bea : fence function when building a query incrementally.

The function has the following signature:
fn-bea:fence ($expression as item()*) as item()*
where $expression is the input expression.
The £fn-bea: fence function is a pass-through function that does not change the input stream, but
indicates to the optimizer that global rewritings should not occur across itself. Specifically, the

fn-bea: fence function stops the following rewritings: view unfolding, loop unrolling, constant
folding, and Boolean optimizations.

fn-bea:if-then-else

The fn-bea:if-then-else function examines the value of the first parameter. If the condition is
true, Liquid Data returns the value of the second parameter (then). If the condition is false, Liquid
Data returns the value of the third parameter (else). If the returned condition is not a Boolean value,
Liquid Data generates an error.

The function has the following signature:

fn-bea:if-then-else(Scondition as xs:boolean?, $ifValue as
xdt :anyAtomicType, $elseValue as xdt:anyAtomicType)as
xdt : anyAtomicType

where $condition is the condition to test, $ifvalue is the value to return when the condition
evaluates to true, and selsevalue is the value to return when the condition evaluates to false.

XQuery Developer’s Guide 2-15

BEA XQuery Implementation

2-16

Examples:
® fn-bea:if-then-else (xf:true(), 3, "10") returns the value 3
® fn-bea:if-then-else (xf:false(), 3, "10") returns the stringvalue 10.

® fn-bea:if-then-else ("true", 3, "10") generatesa compile-time error because the
condition is a string value and not a Boolean value.

fn-bea:timeout

The fn-bea:timeout function returns either the full result of the primary expression, or the full
result of the alternate expression in cases when the primary XQuery expression times out.

The function has the following signature:

fn-bea:timeout ($Sexpression as item()*, $millisec as xs:integer, S$alt

as item()*) as item() *
where $expression is the primary XQuery expression to evaluate, smillisec is the time out value
in milliseconds, and $alt is an alternative XQuery expression to evaluate after a time out has
occurred.

You can use the fn-bea: timeout function in the following ways:

e Around a region of an XQuery result which is optional, such as when you want the rest of the
answer in any case.

e To select an available data source from among a set of possibly (very) heterogeneous sources
that can provide the information of interest.

Note that the fn-bea:timeout function immediately returns the alternative expression in cases
when accessing the data source causes an error. Also, an instance of fn-bea : t imeout that has failed
over to the alternate expression once will not re-evaluate the original expression during the same
query evaluation.

XQuery Developer’s Guide

BEA XQuery Function Implementation

Example:
$param is a external parameter

for $cust in db:CUSTOMER ()
where $cust/ID eqg Sparam
return
fn-bea:timeout (exper:getCreditScore ($cust/SSN), 200,
fn-bea:timeout (equi:getCreditScore ($cust/SSN), 200,
fn:error ()
)
)

Numeric Functions

This section describes the following numeric function extensions to the BEA implementation of
XQuery:

e fn-bea:format-number
e fn-bea:decimal-round

e fn-bea:decimal-truncate

fn-hea:format-number

The fn-bea: format -number function converts a double to a string using the specified format
pattern.
The function has the following signature:

fn-bea:format-number (Snumber as xs:double, S$pattern as xs:string) as
xs:string

where $number represents the double number to be converted to a string, and $pattern represents
the pattern string. The format of this pattern is specified by the JDK 1.4.2 DecimalFormat class. (For
information on DecimalFormat and other JDK 1.4.2 Java classes see: http://java.sun.com/j2se/1.4.2.)

XQuery Developer’s Guide 2-11

http://java.sun.com/j2se/1.4.2/

BEA XQuery Implementation

2-18

fn-hea:decimal-round

The fn-bea:decimal -round function returns a decimal value rounded to the specified precision
(scale) or to the nearest whole number.

The function has the following signatures:

fn-bea:decimal-round($Svalue as xs:decimal?, S$scale as xs:integer?) as
xs:decimal?

fn-bea:decimal-round (Svalue as xs:decimal?) as xs:decimal?

where $value is the decimal value to round and $scale is the precision with which to round the
decimal input. A scale value of 1 rounds the input to tenths, a scale value of 2 rounds it to hundreths,
and so on.

Examples:
® fn-bea:decimal-round(127.444, 2) returns 127.44.

® fn-bea:decimal-round(0.1234567, 6) returns(0.123457.

fn-bea:decimal-truncate

The fn-bea:decimal -truncate function returns a decimal value truncated to the specified
precision (scale) or to the nearest whole number.

The function has the following signatures:

fn-bea:decimal-truncate($value as xs:decimal?, $scale as xs:integer?)
as xs:decimal?

fn-bea:decimal-truncate (Svalue as xs:decimal?) as xs:decimal?

where $value is the decimal value to truncate and $scale is the precision with which to truncate
the decimal input. A scale value of 1 truncates the input to tenths, a scale value of 2 truncates it to
hundreths, and so on.

Examples:
e fn-bea:decimal-truncate(192.454, 2) returns 192.45.
e fn-bea:decimal-truncate(192.454) returns 192.
e fn-bea:decimal-truncate(0.1234567, 6) returns 0.123456.

Other Functions

This section describes the following function extensions to the BEA implementation of XQuery:

XQuery Developer’s Guide

BEA XQuery Function Implementation

e fn-bea:get-property
e fn-bea:inlinedXML

e fn-bea:rename

fn-bea:get-property
The fn-bea:get-property function enables you to write data services that can change behavior
based on external influence. This is an implicit way to parameterize functions.

The function first checks whether the property has been defined using the Liquid Data Administration
Console. If so, it returns this value as a string. In cases when the property is not defined, the function
returns the default value.

The function has the following signature:

fn-bea:get-property ($propertyName as xs:string, $defaultValue as
xs:string) as xs:string

where $propertyName is the name of the property, and sdefaultvalue is the default value
returned by the function.

fn-hea:inlinedXML

The fn-bea:inlinedxML function parses textual XML and returns an instance of the XQuery 1.0 Data
Model.

The function has the following signature:
fn-bea:inlinedXML ($Stext as xs:string) as node() *

where $text is the textual XML to parse.

Examples:
® fn-bea:inlinedXML ("<e>text</e>") returns element “e”.

® fn-bea:inlinedXML ("<?xml version="1.0"s><e>text</e>") returns a document with
root element “e”.

fn-hea:rename

The £n-bea: rename function renames an element or a sequence of elements.

The function has the following signature:

XQuery Developer’s Guide 2-19

BEA XQuery Implementation

2-20

fn-bea:rename (Soldelements as element ()*, Snewname as element()) as
element () *)

where $oldelements is the sequence of elements to rename, and $newname is an element from
which the new name and type are extracted.

For each element in the original sequence, the fn-bea:rename function returns a new element with
the following:

e The same name and type as $newname

e The same content as the old element
Example:

for $c in CUSTOMER ()
return
<CUSTOMER >
{ fn-bea:rename ($c/FIRST NAME, <FNAME/>) }
{ fn-bea:rename ($c/LAST NAME, <LNAME/>) }
</CUSTOMER >

In the above, if CUSTOMER () returns:

<CUST><FIRST NAME>John</FIRST NAME><LAST NAME>Jones</LAST NAME></CUST>

The output value would be:

<CUSTOMER ><FNAME >John</FNAME ><LNAME>Jones< /LNAME >< /CUSTOMER >

QName Functions

This section describes the following QName function extensions to the BEA implementation of
XQuery:

fn-bea:QName-from-string

The fn-bea:QName-from-string function creates an xs:oName and uses the value of $param
as its local name without a namespace.

The function has the following signature:
fn-bea:QName-from-string($name as xs:string) as xs:QName

where $name is the local name.

XQuery Developer’s Guide

BEA XQuery Function Implementation

Sequence Functions
This section describes the following sequence function extensions to the BEA implementation of

XQuery:

e fn-bea:interleave

fn-bea:interleave
The fn-bea:interleave function interleaves the specified arguments.
The function has the following signature:

fn-bea:interleave ($iteml as item()*, $item2 as xdt:anyAtomicType) as
item() *

where $iteml and $item2 are the items to interleave.
For example, fn-bea:interleave ((<a/>, , </c>), " ") returns the following sequence:

(<a/>, " ", , " ", </c>)

XQuery Developer’s Guide 2-21

BEA XQuery Implementation

2-22

String Functions

This section describes the following string function extensions to the BEA implementation of XQuery:
e fn-bea:match
e fn-bea:sql-like
e fn-bea:trim
e fn-bea:trim-left

e fn-bea:trim-right

fn-bea:match

The fn-bea:match function returns a list of integers (either an empty list with 0 integers or a list
with 2 integers) specifying which characters in the string input matches the input regular expression.

When the function returns a match, the first integer represents the index of (the position of) the first
character of the matching substring and the second integer represents the number of matching
characters starting at the first match.

The function has the following signature:

fn-bea:match($source as xs:string?, S$regularExp as xs:string?) as
Xs:int*

where $source is the input string and $regularExp uses the standard regular expression language.

XQuery Developer’s Guide

BEA XQuery Function Implementation

Table 2-3 presents regular expression syntax examples.

Table 2-3 Regular Expression Syntax Examples

Category Syntax Example Description
Characters unicode Matches the specified unicode character.
\ Used to escape metacharacters such as *, +, and ?.
\ Matches a single backslash (\) character.
\Onnn Matches the specified octal character.
\0xhh Matches the specified 8-bit hexidecimal character.
\\uxhhh Matches the specified 16-bit hexidecimal character.
\t Matches an ASCII tab character.
Characters \n Matches an ASCII new line character.
\r Matches an ASCII return character.
\f Matches an ASCII form feed character.
Simple Character [be] Matches the characters b or c.
Classes
[af] Matches any character between a and f.
["be] Matches any character except b and c.
Predefined Character Matches any character except the new line character.
Classes
\w Matches a word character: an alphanumeric character or the
underscore (_) character.
W Matches a non-word character.
\s Matches a white space character.
\S Matches a non-white space character.
\d Matches a digit.
\D Matches a non-digit.

XQuery Developer’s Guide 2-23

BEA XQuery Implementation

Table 2-3 Regular Expression Syntax Examples (Continued)

Greedy Closures A* Matches expression A zero or more times.
(Match as many
characters as possible) A+ Matches expression A one or more times.
A? Matches expression A zero or one times.
A(n) Matches expression A exactly n times.
A(n,) Matches expression A at least n times.
A(n, m) Matches expression A between n and m times.
Reluctant Closures A*? Matches expression A zero or more times.
(Match as few A+? Matches expression A one or more times.
characters as possible, A7 I on A -
and stops when a match ?7? Matches expression A zero or one times.
is found)
Logical Operators AB Matches expression A followed by expression B.
AIB Matches expression A or expression B.
(A) Used for grouping expressions.
Examples:

® fn-bea:match ("abcde", "bcd") evaluates to the sequence (2,3).
e fn-bea:match("abcde", ()) evaluates to the empty sequence ().
e fn-bea:match((), "bcd") evaluates to the empty sequence ().

® fn-bea:match("abc", 4) generates an error at compile time because the second
parameter is not a string.

e fn-bea:match("abcccdee", "[bc]") evaluates to the sequence (2,1).

2-24 XQuery Developer’s Guide

BEA XQuery Function Implementation

fn-bea:sql-like

The £n-bea:sql-1like function tests whether a string contains the specified pattern. Typically, you
can use this function as a condition for a query, similar to the SQL LIKE operator used in a predicate
of SQL queries. The function returns TRUE if the pattern is matched in the source expression,
otherwise the function returns FALSE.

The function has the following signatures:

fn-bea:sgl-like ($source as xs:string?, S$pattern as xs:string?, S$escape
as xs:string?) as xs:boolean?

fn-bea:sgl-like ($source as xs:string?, $pattern as xs:string?) as
xs:boolean?

where $source is the string to search, spattern is the pattern specified using the syntax of the sQL.
LIKE clause, and sescape is the character to use to escape a wildcard character in the pattern.

You can use the following wildcard characters to specify the pattern:
e Percent character (%). Represents a string of zero or more characters.

e Underscore character (_). Represents any single character.

You can include the % or _ characters in the pattern by specifying an escape character and preceding
the % or _ characters in the pattern with this escape character. The function then reads the character
literally, instead of interpreting it as a special pattern-matching character.

Examples:

e fn-bea:sqgl-like ($RTL_CUSTOMER.ADDRESS 1/FIRST_NAME, "H%","\") returns TRUE
for all FIRST NAME elements in $RTL_CUSTOMER . ADDRESS that start with the character =.

e fn-bea:sqgl-like ($RTL_CUSTOMER.ADDRESS 1/FIRST NAME," a%","\") returns
TRUE for all FIRST NAME elements in $RTL_CUSTOMER . ADDRESS that start with any
character and have a second character of the letter a.

e fn-bea:sqgl-like ($RTL CUSTOMER.ADDRESS 1/FIRST NAME, "H\%%","\") returns
TRUE for all FIRST NAME elements in SRTL CUSTOMER.ADDRESS that start with the
characters 1%.

XQuery Developer’s Guide 2-25

BEA XQuery Implementation

2-26

fn-bea:trim
The fn-bea: trim function removes the leading and trailing white space.
The function has the following signature:

fn-bea:trim($source as xs:string?) as xs:string?

where $source is the string to trim. In cases when $source is an empty sequence, the function
returns an empty sequence. Liquid Data generates an error when the parameter is not a string.

Examples:
® fn-bea:trim("abc") returns the string value "abc".
® fn-bea:trim(" abc ") returns the string value "abc".
e fn-bea:trim(()) returns the empty sequence.

e fn-bea:trim(5) generates a compile-time error because the parameter is not a string.

fn-bea:trim-left
The fn-bea:trim-left function removes the leading white space.
The function has the following signature:
fn-bea:trim-left (Sinput as xs:string?) as xs:string?

where $input is the string to trim.

Examples:
® fn-bea:trim-left (" abc ") removes leading spaces and returns the string
n abc n .
e fn-bea:trim-left (()) outputs an error. The input is the empty sequence (similar to a SQL

null) which is a sequence containing zero items.

XQuery Developer’s Guide

BEA XQuery Function Implementation

fn-bea:trim-right
The fn-bea:trim-right function removes the trailing white space.
The function has the following signature:
fn-bea:trim-right ($input as xs:string?) as xs:string?

where $input is the string to trim.

Examples:
® fn-bea:trim-right (" abc ") removes trailing spaces and returns the string
n abc n .
® fn-bea:trim-right (()) outputs an error. The input is the empty sequence (similar to a

SQL null) which is a sequence containing zero items.

Unsupported XQuery Functions

The following functions from the XQuery 1.0 specification are not supported in current BEA XQuery
engine implementation:

e fn:base-uri

e fn:normalize-unicode
o fn:id

o fn:idref

e fn:collection

Unsupported XQuery Language Features

e Modules

XQuery Developer’s Guide 2-21

BEA XQuery Implementation

BEA XQuery Language Implementation

2-28

This section describes the following BEA XQuery language implementation:

e Generalized FLWGOR (group by)

e Optional Indicator in Direct Element and Attribute Constructors

Generalized FLWGOR (group by)

BEA offers a group by clause extension to standard FLWOR expressions. The following EBNF shows
the syntax of the general FLWGDOR:

flwgdorExpression := (forClause | letClause) (forClause
| letClause
| whereClause
| groupbyClause
| orderbyClause)* returnClause
groupbyClause := "group" [variable "as" variable] "by" (expression
["as" variable]) ("," (expression ["as" variable]))=*

The remaining clauses referenced in the EBNF fragment follow the standard definition, as presented
in the XQuery specification.

As an example, consider the case of grouping books by year, without loosing books that do not have a
year attribute. Using standard XQuery, you would need to perform a self-join with the result of the
fn:distinct-values function, concatenating the result of the self-join with the result for books
without a year attribute.

The following illustrates the XQuery expression to accomplish this:

let $books := document ("bib.xml") /bib/book return (
for $year in fn:distinct-values ($books/@year)
return
<g>

<year>{ $year }</years>

<titles>{ S$books[eyear eg $year]/title }</titles>
</g>,
<g>

<year/>

<titles>{ $books[fn:empty (@year)]/title }
</g>

XQuery Developer’s Guide

BEA XQuery Language Implementation

Using the BEA group by extension, you could write the same query as follows:

for $book in document ("bib.xml") /bib/book
group $book as $partition by $book/@year as Syear
return
<g>
<year>{ $year }</years>
<titles>{ S$partition/title }</titles>
</g>

Table 2-4 Bindings Before Group By Clause is Applied

$hook

<book year=71994” ISBN="147...">...</book>
<book year=71994” ISBN=”198..."> ...</book>
<book year="2000” ISBN="123..."”> ...</book>

Table 2-5 Bindings After Group By Clause is Applied

$year $partition

1994 (<book year="1994” ISBN="147...">...</books>,
<book year=71994” ISBN="198..."> ...</books>)

2000 <book year="2000” ISBN="123...”> ...</book>

The FLWGOR expression conceptually builds a sequence of binding tuples, where the size of the tuple
is the number of variables in scope at that point in the FLWGOR. In the example, the tuple at the
group by clause consists of a single variable binding $book which binds to each book in the
bib.xml document, one book at a time (Table 1).

The group by creates a new sequence of binding tuples with each output tuple containing variables
defined in the group by clause. After the group by, all variables there were previously in-scope go
out of scope.

In the example, the output tuple from the group by clause is of size two with the variable bindings
being for $year and spartition (Table 2).

XQuery Developer’s Guide 2-29

BEA XQuery Implementation

The number of output tuples is equal to the number of unique group by value bindings. In the above
example, this is the number of unique book /@year values: 2. The variable introduced in the group
clause ($partition in the example above) binds to the sequence of all matching input values.

2-30 XQuery Developer’s Guide

BEA XQuery Language Implementation

Optional Indicator in Direct Element and Attribute
Constructors

This extension enables external consumers of XML generated by XQuery to have certain empty
elements and attributes omitted. You can specify this using optional indicators, instead of employing
computed constructors, conditional statements, and custom functions.

For example, consider the following query:
<a>{ () }<c foo="{()}"/>,

The extension enables the following to be returned:
<as<c/>

instead of:

<a><c foo=""/>
The extension uses the optional indicator '?' with direct element and attribute constructors. This
mean that in the following you could change the production birElemConstructor to the following:

[94] DirElemConstructor tr= "<" QName "?"? DirAttributeList
("/>" | (">" DirElemContent* "</" QName S? ">")) /* ws: explicit */

Likewise, you could change the DirAttributeList to the following:

[95] DirAttributeList] (S (QName "?"? S? "=" g§?
DirAttributevalue)?) *

When ? is present, elements with no children and attributes with the value "" are omitted. The query
in the example could then be written as:

<a><b?>{ () }<c foo?="{()}"/>

which produces the following result:

<a><c/>

XQuery Developer’s Guide 2-31

BEA XQuery Implementation

In another example, consider the case of constructing a new customer element with different tags.
One requirement is that you do not want a phone element in the resulting customer when the phone
number does not exist in the original customer. Using standard XQuery, you would have to write:

for Scust in CUSTOMER ()

return
<customers
<id>{ fn:data($cust/C_ID) }</id>
{
if (fn:exists ($cust/PHONE))
then <phone>{ fn:data ($cust/PHONE) }</phone>
else ()
1
</customers>

Using the optional element constructor, you could instead write the following:

for Scust in CUSTOMER ()
return
<customers
<id>{ fn:data($cust/C_ID) }</id>
<phone?>{ fn:data($cust/PHONE) }</phones>

</customers>

Similarly, when you want the resulting customer element to use attributes instead of elements, you
would need to employ computed attribute constructors using standard XQuery, as illustrated by the
following:

for $cust in CUSTOMER ()
return
<customer
id="{ fn:data($cust/C_ID) }"
{
if (fn:exists ($cust/PHONE))
then attribute { "phone" } { fn:data($cust/PHONE) }
else ()

/>

2-32 XQuery Developer’s Guide

Using the optional attribute constructor, the query becomes:

for $cust in CUSTOMER ()
return
<customer
id="{ fn:data($cust/C_ID) }"
phone?="{ fn:data($cust/PHONE) }"

/>

Implementation Specific Details

BEA XQuery Language Implementation

This version of the XQuery engine varies from the July, 2004 preliminary specification in the following

regards:
e Modules are not supported.

e xs:integer is represented by 64-bit values.

XQuery Developer’s Guide

2-33

BEA XQuery Implementation

2-34 XQuery Developer’s Guide

CHAPTER a
Understanding XML Namespaces

XML namespaces are a mechanism that ensures that there are no name conflicts (or ambiguity) when
combining XML documents or referencing an XML element. Liquid Data fully supports XML
namespaces and includes namespaces in the queries generated in WebLogic Workshop.

This section includes the following topics:
e Introducing XML Namespaces

e Using XML Namespaces in Liquid Data Queries and Schemas

XQuery Developer’s Guide 3-1

Understanding XML Namespaces

Introducing XML Namespaces

3-2

Namespaces provide a mechanism to uniquely distinguish names used in XML documents. XML
namespaces appear in queries as a namespace string followed by a colon. The W3C uses specific
namespace prefixes to identity W3C XQuery data types and functions. In addition, BEA has defined
the fn-bea: namespace to uniquely identify BEA-supplied functions and data types.

Table 3-1 lists the predefined XQuery namespaces used in Liquid Data queries.

Table 3-1 Predefined Namespaces in XQuery

Namespace Prefix Description Examples
fn The prefix for XQuery functions. fn:data()
fn:sum()

fn:substring()

fn-bea: The prefix for Liquid Data-specific fn-bea:rename ()
extensions to the standard set of fn-bea:is-access-allo
XQuery functions. wed ()

XS The prefix for XML schema types. xs:string

For example, the xs : integer data type uses the XML namespace xs. Actually, xs is an alias (called
aprefix) for the namespace URIL

XML namespaces ensure that names do not collide when combining data from heterogeneous XML
documents. As an example, consider a document related to automobile manufacturers that contains
the element <tiress>. A similar document related to bicycle tire manufacturers could also contain a
<tires> element. Combining these documents would be problematic under most circumstances.
XML namespaces easily avoid these types of name collisions by referring to the elements as

<automobile:tires>and <bicycle:tiress.

XQuery Developer’s Guide

Introducing XML Namespaces

Exploring XML Schema Namespaces

XML schema namespaces—including the {arget namespace—are declared in the schema tag. The

following is an example using a schema created during metadata import:
<xsd:schema
targetNamespace="http://temp.openuri.org/SampleApp/CustOrder.xsd"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

xmlns:bea="http://www.bea.com/public/schemas"
elementFormDefault="unqualified" attributeFormDefault="unqualified"s>

The second line declares the target namespace using the targetNamespace attribute. It this case,

the target namespace is bound to the namespace declared on the fourth line, meaning that all element

and attribute names declared in this document belong to:
http://www.bea.com/public/schemas

The third line of the schema contains the default namespace, which is the namespace of all the

elements that do not have an explicit prefix in the schema.

For example, if you see the following element in a schema document:

<element name="appliance" type="string"/>
the element element belongs to the default namespace, as do unprefixed types such as string.

The fifth line of the schema contains a namespace declaration (bea) which is simply an association
of a URI with a prefix. There can be any number of these declarations in a schema.

References to types declared in this schema document must be prefixed, as illustrated by the following
example:
<complexType name="AddressType">

<sequences>
<element name="street address" type="string"/>

</sequence>
</complexTypes>
<element name="address" type="bea:AddressType"/>

It is recommended that you create schemas with element Formbefault="unqualified" and
attributeFormDefault="unqualified". Thisenablesyou to rename a namespace by renaming
a single complex element, instead of having to explicitly map every element.

XQuery Developer’s Guide 3-3

Understanding XML Namespaces

Using XML Namespaces in Liquid Data Queries and Schemas

Liquid Data automatically generates the namespace declarations when generating a query. Liquid
Data employs a simple scheme using labels ns0, ns1, ns2, and so forth. Although it is easy to change
assigned namespace names, care must be taken to make sure that all uses of that particular
namespace are changed.

When a return type is created, by default it is qualified, meaning that the namespace of complex
elements appear in the schema.

Figure 3-2 Example of a schema with unqualified attributes and elements

crm:db
5[PROMOTICN*

: STATE -xs:string
PROMOTION_MAME -xs:string
= PROMOTION_PLAN*
PROMOTION_MAME -xs:string
PLAMN_MAME -xs:string
FROM_DATE -xs:date
TO_DATE -xs:date
- PRICE -xs:decimal

If you want simple elements or attributes to appear as qualified, you need to use an editor outside
WebLogic Workshop to modify the generated schema for either or both attributeFormbefault
and elementFormDefault to be set to qualified.

3-4 XQuery Developer’s Guide

Best Practices Using XQuery

This chapter offers a series of best practices for creating data services using XQuery. The chapter
introduces a data service design model, and describes a conceptual model for layering data services
to maximize management, maintainability, and reusability.

This chapter includes the following topics:
e Introducing Data Service Design
e Understanding Data Service Design Principles

e Applying Data Service Implementation Guidelines

Introducing Data Service Design

When designing data services, you should strive to maximize the ability to maintain, manage, and
reuse queries. One approach is to adopt a layered design model that partitions services into the
following levels:

e Application Services. Data services at the Application Services level are defined by client
application requirements. Functions defined in this layer can additionally be used to constraint
queries and to aggregate data, among other tasks.

e Logical Services. The Logical Services contain functions that perform general purpose logical
operations and transformations on data accessed through Canonical and Physical Services.

e Canonical Services. Data services defined at the Canonical Services level normalize data
obtained from the Physical Services level.

XQuery Developer’s Guide 4-1

Best Practices Using XQuery

e Physical Services. The Physical Services are defined by the system based on introspection of
physical data sources. The system creates data service functions that retrieve all rows in a
table, offering the greatest flexibility for data service functions defined in higher layers. The
system also defines relationships between data services, as required.

Figure 4-1 illustrates the data service design model.

Figure 4-1 Data Service Design Model

I Customer Shipping _
Application Help Center Center Get C-o by

Services — email
— name
— phone
— lastcall

Logical

Services Get O-¢ by
— orderno
— name
— city/state

Canonical

Services

Physical
Services

T
feredit() Order, Item

Using this design model, you can design and develop data services in the following manner:

1. Develop the Physical Services based on introspection of physical data sources.
2. Define the Application Services based on precise client application requirements.

3. Design the Canonical Services to normalize and create relationships between data accessed
using the Physical Services.

4. Design the Logical Services to manipulate and transform data accessed through the Canonical
and Physical Services, providing general purpose reusable services to the Application Services
layer.

5. Work through the layers from the top down, determining optimal functions for each level and
factoring our reusable queries.

4-2 XQuery Developer’s Guide

Understanding Data Service Design Principles

Understanding Data Service Design Principles

This section describes best practices for designing and developing services at each layer of the data
service design model. Table 4-2 describes the data service design principles.

Table 4-2 Data Service Design Principles

Level Design Principle Description
Application Base design on client needs Design data services and queries at the Application Services
Services level specifically tuned to client needs, using functions defined

at the Logical and Canonical Service levels.

Nest or relate information, as
required by the application

Use the XML practice of nesting related information in a single
XML structure. Alternatively, use navigation functions to relate
associated information, as required by the application.

Introduce constraints at the
highest level

Liquid Data propagates constraints down function levels when
generating queries. By keeping constraints, such as function
parameters, at the highest level, you encourage reuse of lower
level functions and permit the system to efficiently optimize the
final generated query.

Aggregate data at the highest
level

Aggregate data in functions at the highest level possible,
preferably at the Application Services level.

Logical Services

Create common functions to
serve multiple applications

Design functions that provide common services required by
applications. Base function design at the Logical Services level
on requirements already established at the Application Services
level, based on client needs.

Refactor toreduce the number
of functions

Refactor the functions, as necessary, to reduce the overall
number of functions to as few as possible. This reduces
complexity, simplifies documentation, and eases future
maintenance.

Canonical
Services

Use function defined in the
Physical Services level

Create (public) read functions can then all be expressed in
terms of the main “get all instances” function.

XQuery Developer’s Guide 4-3

Best Practices Using XQuery

Table 4-2 Data Service Design Principles (Continued)

Canonical Create navigation functions to
Services represent relationships

Use separate data services with relationships (implemented
through navigation functions) rather than nesting data. For
example, create navigation functions to relate customers and
orders or customers and addresses instead of nesting this
information.

This keeps data services and their queries small, making them
more manageable, maintainable, and reusable.

Define keys to improve
performance

Defining keys enables the system to use this information when
optimizing queries.

Establish relationships
between unique identifiers
and primary keys

Establish relationships between unique identifiers or primary
keys that refer to the same data (such as Customer ID or SSN)
but vary across multiple data sources. You can use either of the
following methods:

e (reate navigation functions to create relationships between
the data.

e (reate a new table in the database to relate the unique
identifiers and primary keys.

Physical Employ functions that get all
Services records

Using private functions that get all records at the Physical
Services level provides the system with the most flexibility to
optimize data access based on constraints specified in higher
level functions.

Do not perform data type
transformations

The system is unable to generate optimizations based on
constraints specified at higher levels when data type
transformations are performed at the Physical Services level.

Do not aggregate

Use aggregates at the highest level possible to enable the system
to optimize data access.

4-4 XQuery Developer’s Guide

Applying Data Service Implementation Guidelines

Applying Data Service Implementation Guidelines

Table 4-3 describes implementation guidelines to apply when designing and developing data services.

Table 4-3 Data Service Implementation Guidelines

Level Design Principle Description

XQuery Developer’s Guide 4-5

Best Practices Using XQuery

Table 4-3 Data Service Implementation Guidelines (Continued)

Application
Services

Use the group clause to
aggregate

When performing a simple aggregate operation (such as count,
min, max, and so forth) over data stored in a relational source,
use a group clause as illustrated by the following:

for $x in f1:CUSTOMER ()
group $x as $Sg by 1
return count ($g)

instead of:

count (£1:CUSTOMER ())

in order to enable pushdown of the aggregation operation to the
underlying relational data source.

Note that the two formulations are semantically equivalent
except for the case where the sequence returned by
f1:CUSTOMER() is the empty sequence. Of course performance
will be better for the pushed down statement.

Use element(foo) instead of
schema-element(foo)

Define function arguments and return types in data services as
element(foo) instead of schema-element(foo). Using
schema-element instead of element causes the Liquid Data to
perform validation, potentially blocking certain optimizations.

Use xs : string to cast data

Use xs : stringwhen casting datainsteadof fn: string ().
The two approaches are not equivalent when handling empty
input, and the use of xs : string enables optimizations to be
pushed to the database.

Be aware of Oracle treating
empty strings as NULL, and
how this affects XQuery
semantics

The Oracle RDBMS treats empty strings as NULL, without
providing a method of distinguishing between the two. This can
affect the semantics of certain XQuery functions and operations.

For example, the fn: lower-case () function is pushed
down to the database as LOWER, though the two have different
semantics when handling an empty string, as summarized by the
following:

e fn:lower-case () returns an empty string

e LOWER in Oracle returns NULL

When using Oracle, consider using the fn-bea: fence ()
function and performing additional computation if precise
XQuery semantics are required.

4-6

XQuery Developer’s Guide

Applying Data Service Implementation Guidelines

Table 4-3 Data Service Implementation Guidelines (Continued)

Application
Services

Return plural for functions
that contain FLWOR
expressions

When a function body contains a FLWOR expression, or
references to functions that contains FLWOR, the function
should return plural.

For example, consider the following XQuery expression:

For $c in CUSTOMER ()
Return
<CUSTOMER >
<LAST NAME>$c/LAST NAME</LAST NAME>
<FIRST_NAME>$C/FIRST_NAME
</FIRST_NAME>
<ADDRESS>{
For $a in ADDRESS ()
Where $a/CUSTOMER ID =
$c/CUSTOMER_ID
Return
Sa
}</ADDRESS>
</CUSTOMER >

Defining a one-to-one relationship between a CUSTOMER and an
ADDRESS, as in the following, can block optimizations.

<element name=CUSTOMER>
<element name=LAST NAME/>
<element name=FIRST NAME/>
<element name=ADDRESS/>
</element>

This is because Liquid Data determines that there can be
multiple addresses for one CUSTOMER. This leads the system to
insert a TypeMatch operation to ensure that there is exactly
one ADDRESS. The TypeMatch operation blocks optimizations,
thus producing a less efficient query plan.

The Query Plan Viewer shows TypeMatch operations in red
and should be avoided. Instead, the schema definition for
ADDRESS should indicate that there could be zero or more
ADDRESSes.

<element name=CUSTOMER>
<element name=LAST NAME/>
<element name=FIRST NAME/>
<element name=ADDRESS minOccurs="0"
maxOccurs="unbounded” />
</element>

XQuery Developer’s Guide 4-7

Best Practices Using XQuery

Table 4-3 Data Service Implementation Guidelines (Continued)

Application Avoid cross product

Services

situations

Avoid cross product (Cartesian Product) situations when
including conditions. For example, the following XQuery sample
results in poor performance due to a cross product situation:

define fn ($p string)
for $c in CUSTOMER ()
for $o in ORDER()
where $c/id eq $p
and so/id eq Sp

Instead, use the following form to specify the same query:

define fn ($p string)
for $c in CUSTOMER ()
for $o in ORDER()
where $c/id eq $o/id
and sc/id eq Sp

4-8

XQuery Developer’s Guide

Understanding Liquid Data
Annotations

This chapter describes the syntax and semantics of Liquid Data annotations in data service and
XQuery function library (XFL) documents. Data service and XQuery function library documents define
collections of XQuery functions. Annotations are XML fragments comprising the character content of
XQuery pragmas.

There are two types of annotations:

e Global annotations. These pertain to the entire data service or XFL document. Global
annotations are also referred to as XDS or XFL annotations respectively.

e Local annotations. These pertain to a particular function. Local annotations are also referred
to as function annotations.

This chapter includes the following topics:
e XDS Annotations
e XFL Annotations

e Function Annotations

See Appendix A, “XML Schema for Annotations,” for a listing of the XML Schema for annotations.

XQuery Developer’s Guide 5-1

Understanding Liquid Data Annotations

XDS Annotations

There is a single XDS annotation per data service document, which appears before all function
annotations. The identifier for the pragma carrying the XDS annotation is xds. The qualified name of
the top level element of the XML fragment corresponding to an XDS annotation has the local name
xds and the namespace URI urn:annotations.1ld.bea.com.

Each data service is associated with a unique target type. The prime type of the return type of every
read function must match its target type. The target type of a data service is an element type whose
qualified name is specified by the targetType attribute of the xds element. It is defined in a
schema file associated with that data service.

The contents of the top-level xds element is a sequence of the following blocks of properties:
e General Properties
e Data Access Properties
o Target Type Properties
e Key Properties
e Relationship Properties
e Update Properties

e Security Properties

The following excerpt provides an example of an XDS annotation. In this case, the target type
t : CUSTOMER associates the data service with a t : CUSTOMER type in a schema file.

(::pragma xds <x:xds xmlns:x="urn:annotations.ld.bea.com"
targetType="t :CUSTOMER" xmlns:t="1d:oracleDS/CUSTOMER">

<author>Joe Public</authors>
<relationalDB name="OracleDS"/>

<field type="xs:string" xpath="FIRST NAME">
<extension nativeFractionalDigits="0" nativeSize="64"
nativeTypeCode="12" nativeType="VARCHAR2"
nativeXpath="FIRST NAME"/>
<properties nullable="false"/>
</field>

5-2 XQuery Developer’s Guide

XDS Annotations

<field type="xs:string" xpath="LAST NAME">
<extension nativeFractionalDigits="0" nativeSize="64"
nativeTypeCode="12" nativeType="VARCHAR2"
nativeXpath="LAST NAME"/>
<properties nullable="false"/>
</fields>

<field type="xs:string" xpath="CUSTOMER_ID">
<extension nativeFractionalDigits="0" nativeSize="64"
nativeTypeCode="12" nativeType="VARCHAR2"
nativeXpath:"CUSTOMER_ID"/>
<properties nullable="false"/>
</field>

<field type="xs:dateTime" xpath="CUSTOMER SINCE">
<extension nativeFractionalDigits="0" nativeSize="7"
nativeTypeCode="93" nativeType="DATE"
nativeXpath:"CUSTOMER_SINCE"/>
<properties nullable="false"/>
</fields>

<field type="xs:string" xpath="EMAIL ADDRESS">
<extension nativeFractionalDigits="0" nativeSize="32"
nativeTypeCode="12" nativeType="VARCHAR2"
nativeXpath="EMAIL ADDRESS"/>
<properties nullable="false"/>
</fields>

<key name="CUSTOMER PK11015727676593">
<field xpath="CUSTOMER ID">
<extension nativeXpath="CUSTOMER ID"/>
</field>
</key>

<relationshipTarget roleName="CUSTOMER ORDER" roleNumber="2"
XDS="1d:oracleDS/CUSTOMER ORDER.xds" minOccurs="0"
maxOccurs="unbounded" opposite="CUSTOMER"/>

</x:xds>::)

XQuery Developer’s Guide 5-3

Understanding Liquid Data Annotations

General Properties
There are two types of general XDS properties:

e Standard Document Properties

e User-Defined Properties

Standard Document Properties

You can specify a set of standard document properties consisting of optional XML elements containing
information pertaining to the author, creation date, or version of the document. You can also use the
optional element documentation to specify related documentation. The names and types of the
elements in the standard document properties block, as well as examples of their use, are shown in
Table 5-1.

Table 5-1 Standard Document Properties

Element Name Element Type Optional Example Instance

author xs:string Yes <author>J. Public</authors

creationDate xs:date Yes <creationDate>2004-05-31</creat
ionDate>

version xs:decimal Yes <version>2.2<versions>

documentation xs:string Yes <documentation> Models an
online Customer
</documentations>

User-Defined Properties

In addition to the standard properties, you can specify custom properties pertaining to the entire data
service document using a sequence of zero (0) or more property elements. Each property
element must be named using its name attribute and may contain any string content. For example:

<property name="data-refresh-rate”>week</property>

5-4 XQuery Developer’s Guide

XDS Annotations

Data Access Properties

Each data service document defines one or more XQuery functions that act as either data providers or
data transducers. A data provider, or data source, is a function that is declared as external; its
invocation causes data from an external source to be brought into the system. A data transducer, or
data view, is defined in XQuery and it typically performs transformations on data derived from data
sources or other data views.

The block of data access properties allows each data service to define whether its read functions
include data sources or not. When data sources are included, the data access annotation describes the
type of the external source being accessed by the external functions (there may be a single external
source per data service) and its connection properties. When data sources are not included, the data
service is designated as a user-defined view, and no connection information is required.

A data service may also define another form of XQuery functions known as private functions. The
following types of data source data services are supported:

e Relational

o Web service

e Java function

e Delimited content

e XML content

The following sections describe the data access annotation for the data service types, as well as for
data services that are designated as user-defined views. You can specify only one of the annotations in
each data service. If no annotation is provided, the data service is considered a user-defined view.

XQuery Developer’s Guide 5-5

Understanding Liquid Data Annotations

5-6

Relational Data Service Annotations

The data access annotation for a relational data service consists of the empty element

relationalDB with a single required attribute, name , whose value should be set to the JNDI name

by which the external relational source has been registered with the application server. For example:
<relationalDB name="OracleDS"/>

In addition, the relationalDB element can contain the following optional parts:

e An optional element, named properties, that exposes the values of specific settings of the
Relational Database Management System (RDBMS) represented by the relational source.

e An optional attribute, named sourceBindingProviderClassName, that specifies the
transformation used to determine the relational source that should be used at system runtime
in the place of the statically defined source.

Native Relational Properties
The properties element is an empty element with required attributes, as outlined in Table 5-2.

Table 5-2 Required Attributes for the properties Element

Attribute Description

catalogSeparator Specifies the string used by the RDBMS as a separator
between a catalog and a table name.

identifierQuote Specifies the string used by the RDBMS to quote SQL
identifiers.

nullSortOrder A string specifying how null values are sorted by the RDBMS,
from among the following values: high, low, or unknown.

supportsCatalogsInDataManipulation A Boolean specifying whether the RDBMS supports catalog
names in Data Manipulation Language (DML) SQL
statements.

supportsLikeEscapeClause A Boolean specifying whether the RDBMS supports LIKE

escape clauses.

supportsSchemasInDataManipulation A Boolean specifying whether the RDBMS supports schema
names in DML SQL statements.

XQuery Developer’s Guide

XDS Annotations

Source Binding Provider

The value of the optional sourceBindingProviderClassName attribute should be bound to the
fully-qualified name of a user-defined Java class implementing the
com.bea.ld.bindings.SourceBindingProvider interface, defined by the following:

package com.bea.ld.bindings;
public interface SourceBindingProvider

{
}

The user-defined implementation should provide the transformation that, given the statically
configured relational source name (parameter genericLocator) and a Boolean flag indicating
whether the relational source is accessed in query or update mode (parameter isUpdate),
determines the name of the relational source name used by the system at runtime.

public String getBinding(String genericLocator, boolean isUpdate) ;

Note that you can use this transformation mechanism to perform credential mapping. In this case, a
single set of query or update operations to be performed in the name of two distinct users Ul and U2
against the same statically-configured relational source R0, is executed against two distinct relational
sources R1 and R2 respectively (where all sources R0, R1, R2 represent the same RDBMS and the
security policies applied to the connection credentials used for R1 and R2 correspond to the security
policies applied to the application credentials of user Ul and U2 respectively).

Note: You should set the source binding provider name uniformly across all relational data services
sharing the same relational source JNDI name. Although this restriction is not enforced, its
violation could result in unpredictable behavior at runtime.

XQuery Developer’s Guide 5-7

Understanding Liquid Data Annotations

5-8

Webh Service Data Service Annotations

The data access annotation for a data service based on a Web service consists of the empty element
webService with two required attributes, described in Table 5-3.

Table 5-3 Required Attributes for the webService Element

Attribute Description

wsdl Avalid http: or 1d: URI pointing to the location of the WSDL file containing
the definition of the external Web service source.

targetNamespace Avalid URI that is identical to the targetNamespace URI of the WSDL.

For example:

<webService targetNamespace="urn:GoogleSearch"
wsdl="1d:google/GoogleSearch.wsdl"/>

Java Function Data Service Annotations

The data access annotation for a Java function data service consists of the empty element
javaFunction with a single required attribute named c1as s, whose value should be set to the fully
qualified name of the Java class serving as the external source. For example:

<javaFunction class="com.example.Test"/>

Delimited Content Data Service Annotations

The data access annotation for a delimited content data service is the empty element
delimitedFile, accepting the optional attributes described in Table 5-4.

Table 5-4 Optional Attributes for the delimitedFile Element

Attribute Description
file A valid URI pointing to the location of the delimited file.
schema A valid URI pointing to the location of the XML schema file defining the type

(structure) of the delimited contents. If absent, the schema is derived based on
the contents.

inferredSchema Specifies whether the schema was inferred or provided by the user. The default
value is false.

XQuery Developer’s Guide

XDS Annotations

Table 5-4 Optional Attributes for the delimitedFile Element (Continued)

Attribute Description

delimiter The string used as the delimiter. If absent, the £ixedLength attribute
should be present.

fixedLength The fixed length of the tokens contained in fixed length content. If absent, the
delimiter attribute should be present.

hasHeader A Boolean flag indicating whether the first line of the content should be
interpreted as a header. The default value is false.

For example:

<delimitedFile schema="1ld:df/schemas/ALL TYPES.xsd" hasHeader="true"
delimiter="," file="1d:df/ALL TYPES.csv"/>

XML Content Data Service Annotations

The data access annotation for an XML content data service is the empty element xm1File accepting
the attributes described in Table 5-5.

Table 5-5 Attributes for the xmlIFile Element

Attribute Description
file (Optional) A valid URI pointing to the location of the XML file.
schema A valid URI pointing to the location of the XML schema file defining the type

(structure) of the XML contents.

For example:

<xmlFile schema="1d:xml/somewhere/CUSTOMER.xsd"
file="1d: Xml/CUSTOMER_NESTED xml"/>

User Defined View XDS Annotations

The data access annotation for a user-defined view data service is also known as a logical data service.
It consists of the single empty element userDef inedview. For example:

<userDefinedView/>

XQuery Developer’s Guide 5-9

Understanding Liquid Data Annotations

5-10

Target Type Properties

The optional block of target type properties enables you to annotate simple valued fields in the target
type of the data service with native type information pertaining to the following:

e The type of the corresponding field in the underlying external source (applicable only to data
source data services)

e Information about the field’s properties with respect to its update behavior. Each annotated
field is represented by the element fie1d with two required attributes, described in Table 5-6.

Table 5-6 Required Attributes for the field Element

Attribute Description
xpath An XPath value pointing to the field
type The qualified name of the field’s simple XML schema or XQuery type.

The following excerpt provides an example of a field element definition:

<field type="xs:string" xpath="FIRST NAME">
<extension nativeSize="64" nativeTypeCode="12" nativeType="VARCHAR2"
nativeXpath="FIRST NAME"/>
<properties nullable="false"/>
</field>

Native Type Properties

Each field element can contain an optional extension element that accepts the optional
attributes described in Table 5-7.

Table 5-7 Optional Attributes for the extension Element

Attribute Description

nativeXpath A native XPath value pointing to the corresponding native field in the
external source.

nativeType The native name of the native type of the corresponding native field, as it
is known to the external source.

XQuery Developer’s Guide

XDS Annotations

Table 5-7 Optional Attributes for the extension Element (Continued)

Attribute Description

nativeTypeCode The native type code of the native type of the corresponding native field,
as it is known to the external source. In the case of relational sources, this
is the type code as reported by JDBC.

nativeSize The native size of the native type of the corresponding native field, as it is
known to the external source. In the case of relational sources, this is the
size as reported by JDBC.

nativeFractionalDigits The native scale of the native type of the corresponding native field, as it

is known to the external source. In the case of relational sources, this is
the scale as reported by JDBC.

Update-related Type Properties

Each field element can also contain an optional properties element that accepts the optional
attributes described in Table 5-8.

Table 5-8 properties element Optional Attributes

Attribute Description

immutable A Boolean value specifying whether the field is immutable (read-only) or not.
The default value is false.

nullable A Boolean value specifying whether the field accepts null values or not. The
default value is false.

XQuery Developer’s Guide 5-11

Understanding Liquid Data Annotations

5-12

Key Properties

The optional block of key properties enables you to specify a set of identity constraints (keys) on the
data service target type. Each key is represented by the element key that accepts an optional
attribute, named name, whose value should serve as an identifier for the key.

Each key element contains a sequence of one or more field elements that collectively specify the
simple-valued target type fields that the key comprises. Keys may be simple (having one field) or
compound (having multiple fields). Each fie1d element is identified by the value of its required
xpath attribute (behaving similarly to the xpath attribute described in “Target Type Properties” on
page 5-10).

Furthermore, each £ield element may optionally contain an extension element carrying a
nativeXpath attribute that behaves similarly to the nat ivexpath attribute described in “Native
Properties” on page 5-24.

The following excerpt provides an example of a key element definition:

<key name="CUSTOMER PK11015727676593">
<field xpath="CUSTOMER ID">
<extension nativeXpath="CUSTOMER_ ID"/>
</field>
</key>

Relationship Properties

The optional block of relationship properties enables you to specify a set of relationship targets. A
relationship target of a data service is a data service with which first service maintains a
unidirectional or bidirectional relationship. Unidirectional relationships are realized through one or
more navigate functions in the first data service that returns one or more instances of objects of the
second service target type. Bidirectional relationships require that reciprocal functions are present
in the second data service as well.

A relationship target is represented by the element relationshipTarget that accepts the
attributes described in Table 5-9.

XQuery Developer’s Guide

XDS Annotations

Table 5-9 Attributes for the relationshipTarget Element

Attribute Description

roleName A string that uniquely identifies the relationship target inside the data service.

roleNumber (Optional) Either 1 or 2 (default is 1). The roleNumber specifies the index of
the relationship target within the relationship.

XDS The Liquid Data URI of the data service serving as the relationship target.

minOccurs (Optional) The minimum cardinality of relationship target instances

participating in this relationship. Possible values are all non-negative integers
and the empty string. The default value is the empty string.

maxOccurs (Optional) The maximum cardinality of relationship target instances
participating in this relationship. Possible values are all positive integers, the
string unbounded, and the empty string. The default is the empty string.

opposite (Optional) String attribute that indicates the reciprocal relationship target in
the case of bidirectional relationships. The value of this attribute is the
identifier used to identify this data service as a relationship target in the data
service identified by the value of the XDS attribute.

Additionally, the relationshipTarget element can itself contain the element relationship
which in turn contains the nested element description that contains a human readable description
about the relationship.

The following excerpt provides an example of a relationshipTarget element definition:

<relationshipTarget roleName="CUSTOMER ORDER" roleNumber="2"
XDS="1d: oracleDS/CUSTOMER_ORDER .xds" minOccurs="0"
maxOccurs="unbounded" opposite="CUSTOMER"/>

XQuery Developer’s Guide 5-13

Understanding Liquid Data Annotations

5-14

Update Properties

The optional block of update properties enables you to specify a set of properties that establish certain
policies about updating a data service’s underlying sources. In particular, you can specify the following

policies:

e The data service function that should be analyzed in order to build the plan for update
decomposition.

e The external Java function to use as an update exit.
e The fields to use for optimistic locking purposes.

e Whether the data service is updateable or not.

Function for Update Decomposition

You can expose data obtained through data service read functions as SDO objects that can later be
updated. In order for the changes to be persisted in the original data sources, the data service should
specify which read function are to be used to perform data lineage analysis. The result of this analysis
is a plan that allows the update to be decomposed into subplans that can be applied on each of the
underlying sources. This feature is primarily used by logical data services.

The function for update decomposition is represented by the element
functionForDecomposition that accepts the required attributes described in Table 5-10.

Table 5-10 Required Attributes for the functionForDecomposition Element

Attribute Description

name The qualified name of the read function to be used for update
decomposition.

parity The number of parameters of the read function specified in the name
attribute.

When the functionForDecomposition element is not present, the first read function in the data
service document is designated as the function for the update decomposition.

The following excerpt provides an example of a functionForDecomposition element definition:

<functionForDecomposition xmlns:f="1d:view/myView"
name="f:firstNameFilter" arity="0"/>

XQuery Developer’s Guide

XDS Annotations

Java Update Exit

A data source data service that is not automatically updateable (all non-relational XDS), or a data view
XDS may specify an external mechanism to use for update. Supported external mechanisms include
Java classes that implement a particular interface specified in the SDO update specification.

The Java class to use as update exit is represented by the empty element javaupdateExit that
accepts the attributes described in Table 5-11.

Table 5-11 Attributes for the javaUpdateExit Element

Attribute Description
className The fully qualified name of the Java class.
classFile (Optional) The LD URI to the Java file for the class.

The following excerpt provides an example of a functionForDecomposition element
definition:

<javaUpdateExit className="com.example.Exit"/>

Optimistic Locking Fields
SDO update assumes optimistic locking transactional semantics. The data service being updated can

specify the fields that should be checked for updates during the interim using the empty element
optimisticLockingFields that accepts one of the following as its content:

e An empty element, named updated, to specify only updated fields.
e An empty element, named projected, to specify all projected fields.

e One or more elements, named field, that accept a required string-valued attribute named
name to specify user-specified fields.

The following excerpt provides an example of a functionForDecomposition element definition:

<optimisticLockingFieldss>
<updated/>
</optimisticLockingFields>

XQuery Developer’s Guide 5-15

Understanding Liquid Data Annotations

5-16

Read-0nly Data Service

You can designate a data service as read-only, in which case no updates will be allowed against the
results obtained from the read functions of the service. You can use the empty element readonly to
designate a data service as read-only. For example:

<readOnly/>

Security Properties

You can use a data service to define one or more user-defined, logical protected resources. The
element secureResources, containing one or more string-valued elements named
secureResource, can be used for this purpose.

For example:

<secureResources>
<secureResources>MyResource</secureResource/ >
<secureResource>MyOtherResource</secureResource/ >
</secureResourcess>
You can link a logical resource defined using this syntax to a user-provided security policy using the
Liquid Data Administration Console. Query content can inquire about a user’s ability to access a

logical resource using the built-in function isAccessallowed ().

XQuery Developer’s Guide

XFL Annotations

XFL Annotations

There is a single XFL annotation per XFL document, which appears before any function annotation in
the document. The identifier for the pragma carrying the XFL annotation is x£1. The qualified name
of the top level element of the XML fragment corresponding to an XFL annotation has the local name
xf£1 and the namespace URI urn:annotations.1ld.bea.com.

The contents of the top-level x£1 element is a sequence of the following blocks of properties.
e General Properties

e Data Access Properties

The following sections provide detailed descriptions of each block of properties, while the following
excerpt provides an example of a XFL annotation, which may serve as a reference.

(::pragma xfl <x:xfl xmlns:x="urn:annotations.ld.bea.com">

<creationDate>2005-03-09T17:48:58</creationDate>

<webService targetNamespace="urn:GoogleSearch"
wsdl="1d:google/GoogleSearch.wsdl"/>

</x:xfl>::)

General Properties

The general properties applicable to an XFL document are identical to the general properties for a
data service document, as described in “General Properties” on page 5-4.

XQuery Developer’s Guide 5-11

Understanding Liquid Data Annotations

5-18

Data Access Properties

Each XFL document defines one or more XQuery functions that serve as library functions that can be
used either inside data service documents to define read navigate or private functions, or inside other
XFL documents to specify other library functions.

Since XFL documents do not have a target type, the return types of the library functions found inside
these document may differ from each other. In particular, a function inside an XFL document may
return a value having a simple type (or any other type). XFL functions can be external data source
functions or user-defined.

The following types of XFL documents are supported:
e Relational (logical)
e Web service (logical)
e Java function (logical)

e User-defined view (logical)

You can specify only one of the annotations in each XFL. If no annotation is provided, the XFL is
considered a user-defined view.

The data access properties for Relational, Web service, Java function, and user-defined view XFL
documents are the same as the corresponding properties for data service documents, as described
above.

XQuery Developer’s Guide

Function Annotations

Function Annotations

There is a single function annotation per data service or XFL function, which appears before the
function declaration in the document. The identifier for the pragma carrying the function annotation
is function. The qualified name of the top level element of the XML fragment corresponding to an
XDS or XFL annotation has the local name function and the namespace URI

urn:annotations.ld.bea.com.

Each data service function is classified using one of the following categories:
e Read function
o Navigate function

e Private function

The classification of an data service function is determined by the value of a required attribute k ind
in the function element, which accepts the values read, navigate, or private to denote the
corresponding categories. Each XFL function is considered to be a library function.

The prime type of the return type of a read function must match the target type of the data service. In
addition, the funct ion element for a navigate function must carry a string-valued attribute returns
whose value must match the role name of a relationship target defined in the data service. Moreover,
the prime type of the return type of a navigate function must match the target type of the data service
serving as the relationship target.

Finally, the namespace URIs of the qualified names of all the functions in a data service or XFL must
specify the location of the data service or XFL document in the LD repository. For example:

1d: {directory path to data service folder}/{data service file name
without extension}

or

lib: {directory path to XFL folder}/{XFL file name without extension}

XQuery Developer’s Guide 5-19

Understanding Liquid Data Annotations

5-20

The function element accepts the additional optional attributes described in Table 5-12.

Table 5-12 Optional Attributes for the function Element

Attribute

Description

nativeName

Applicable to data source functions, nat iveName is the name of the
function as it is known to the external source. In the case of relational
sources, for example, it corresponds to the table name.

nativeLevel1Container

Applicable to data source functions that represent external sources
employing hierarchical containment schemes;
nativeLevellContainer isthe name of the top-level native
container, as it is known to the external source.

In the case of relational sources, for example, it corresponds to the catalog
name, whereas, in the case of Web service sources, it corresponds to the
service name.

nativeLevel2Container

Applicable to data source functions that represent external sources
employing hierarchical containment schemes;
nativeLevel2Container is the name of the second-level native
container, as it is known to the external source. In the case of relational
sources, for example, it corresponds to the schema name. In the case of
Web service sources, it corresponds to the port name.

nativeLevel3Container

Applicable to data source functions that represent external sources
employing hierarchical containment schemes;
nativeLevel3Container isthe name of the top-level native
container, as it is known to the external source. In the case of relational
sources, for example, it corresponds to the stored procedure package
name.

style

Applicable to data source functions, sty le is a native qualifier by which
the function is known to the external source (e.g. table, view,
storedProcedure, or sqlQuery for relational sources; rpc or document for
Web services).

roleName

Applicable to navigate functions, roleName should match the value of
the roleName attribute of the relationshipTarget implemented by the
function.

XQuery Developer’s Guide

Function Annotations

The content of the top-level funct ion element is a sequence of the following blocks of properties:
e General Properties
e Ul Properties
e (Cache Properties
e Signature Properties

e Native Properties
The following excerpt provides an example of a function annotation:

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
kind="datasource" nativeName="CUSTOMER" nativeLevel2Container="RTL"
style="table">
<cacheable>

<useCache TTL="600"/>
</cacheable>
</f:function>::)

General Properties

All standard document properties and user-defined properties defined in “Standard Document
Properties” on page 5-4 and “User-Defined Properties” on page 5-4 are applicable to function
annotations.

Ul Properties

A set of user interface properties may be introduced by the XQuery Editor to persist location
information about the graphical components representing the expression in the function body. UI
properties are represented by the element ui Properties which accepts a sequence of one or more
elements, named component, as its content. Each component element accepts the attributes
described in Table 5-13

Table 5-13 Attributes for the component Element

Attribute Description

identifier An identifier for the UI component.

minimized A Boolean flag indicating whether the UI component has been minimized or
not.

XQuery Developer’s Guide 5-21

Understanding Liquid Data Annotations

5-22

Table 5-13 Attributes for the component Element (Continued)

Attribute Description

X The x-coordinate for the Ul component.

y The y-coordinate for the UI component.

\4 The width of the UI component.

h The height of the UI component.

viewPosX The x-coordinate of the scrollbar position of the component.
viewPosY The y-coordinate of the scrollbar position of the component.

In addition, each component element may optionally contain one or more treeInfo elements
containing information about the tree representation of the types pertaining to the component. In the

absence of the above property, the query editor uses the default layout.

Cache Properties

You can use the optional bl

volatile as non-cached. On

This property of a function is represented by the empty element noncacheable. In the absence of
the noncacheable element, a function is considered to be potentially cacheable. The following

ock of cache properties to specify whether a function can be cached or not.
You should specify a function whose results for the same set of arguments are intrinsically highly
the other hand, you should specify a function whose results for the same
set of arguments are either fixed or remain unchanged for a period of time as cacheable.

excerpt provides an example:

<nonCacheable/>

XQuery Developer’s Guide

Function Annotations

Signature Properties

You can use the optional block of signature properties to annotate the parameters of a data service or
XFL function with additional information to that provided by the function signature. These properties
are applicable to data source (data service or XFL) functions.

The signature properties block is represented by the element params which accepts a sequence of
one or more elements, named param, as its content. Each param element is an empty element that
accepts the optional attributes described in Table 5-14.

Table 5-14 param element Optional Attributes

Attribute Description

name The name of the parameter, as it is known to the external source.

nativeType The native type of the parameter, as it is known to the external source.
nativeTypeCode The native type code of the parameter, as it is known to the external source.
xqueryType The qualified name of the XML Schema or XQuery type used for the parameter.
kind One of the following values: unknown, in, inout, out, return or result (applicable

to stored procedures).

The following excerpt provides an example of a params element definition:

<params>
<param nativeType="java.lang.String"/>
<param nativeType="java.lang.int"/>
</params>

XQuery Developer’s Guide 5-23

Understanding Liquid Data Annotations

5-24

Native Properties

You can use native properties to further annotate a data source function based on the type of the
external source that it represents. There are two types of native properties pertaining to relational and
Web service sources respectively:

e SQL query properties

e SOAP handler properties

SQL Query Properties

The function annotation element of a function that represents a user-defined SQL query has its
style attribute set to sqlQuery and accepts a nested element, named sq1. The sq1 element accepts
string content that corresponds to the statement of the (possibly parameterized) SQL query that the
function represents.

If required, the statement can be escaped inside a CDATA section to account for reserved XML
characters (e.g. <, >, &). The sq1 element also accepts the optional attribute issubgquery whose
boolean value indicates whether the SQL statement may be used as a nested SQL sub-query. If the
attribute is absent, its value defaults to true.

The following excerpt provides an example of a sq1Query element definition:

<sgl isSubquery="true"s>
SELECT t.FIRST NAME FROM RTLALL.dbo.CUSTOMER t</sqgl>

SOAP Handler Properties

The function annotation element of a function that represents a Web service call accepts a nested
element, named interceptorConfiguration. The interceptorConfiguration element
accepts two required attributes, as described in Table 5-15.

Table 5-15 Required Attributes for the interceptorConfiguration Element

Attribute Description

fileName The location of the file containing the configuration of the SOAP handler chains
that are applicable to the Web service.

aliasName The alias name by which the SOAP handler chain has been configured.

XQuery Developer’s Guide

APPENDIX”

XML Schema for Annotations

This chapter lists the XML Schema for annotations. For more information about the syntax and
semantics of Liquid Data annotations in data service and XQuery function library (XFL) documents,
see Chapter 5, “Understanding Liquid Data Annotations.”

Listing A-1 XML Schema for Annotations

<?xml version="1.0"?>

<xs:schema targetNamespace="urn:annotations.ld.bea.com"
xmlns:tns="urn:annotations.ld.bea.com"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="unqualified"
attributeFormDefault="unqualified">

<l --—==================-->
<!-- XDS annotation -->
<l --==================-->

<xs:element name="xds">
<xs:complexType>
<XS:sequence>
<!-- document properties -->
<xs:element name="author" type="xs:string" minOccurs="0"/>
<xs:element name="comment" type="xs:string" minOccurs="0"/>
<xs:element name="creationDate" type="xs:dateTime" minOccurs="0"/>
<xs:element name="documentation" type="xs:string" minOccurs="0"/>
<xs:element name="version" type="xs:decimal" minOccurs="0"/>
<!-- user defined properties -->
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="property"s>
<xs:complexType>
<xs:simpleContent>

XQuery Developer’s Guide A-1

XML Schema for Annotations

<xs:extension base="xs:string">
<xs:attribute name="name" type="xs:string"/>
</xs:extension>
</xs:simpleContent>
</xs:complexTypes>
</xs:element>
</xXs:sequence>
<!-- security -->
<xs:element name="security" minOccurs="0">
<xs:complexType>
<xs:attribute name="rolesAllowed" type="xs:string"/>
<xs:attribute name="runAs" type="xs:string"/>
<xs:attribute name="runAsPrincipal" type="xs:string"/>
</xs:complexTypes>
</xs:element>
<xs:choice>
<!-- choice 1: java functions -->
<xs:element name="javaFunction">
<xs:complexType>
<xs:attribute name="class" type="xs:string" use="required"/>
</xs:complexTypes>
</xs:element>
<!-- choice 2: web services -->
<xs:element name="webService"s>
<xs:complexType>
<xs:attribute name="wsdl" type="xs:anyURI" use="required"/>
<xs:attribute name="targetNamespace" type="xs:anyURI"
use="required"/>
</xs:complexTypes>
</xs:element>
<!-- choice 3: relational sources -->
<xs:element name="relationalDB">
<xs:complexType>
<Xs:sequence>
<xs:element name="properties" minOccurs="0">
<xs:complexType>
<xs:attribute name="catalogSeparator" type="xs:string"
use="required"/>
<xs:attribute name="identifierQuote" type="xs:string"
use="required"/>
<xs:attribute name="nullSortOrder" type="tns:nullSortOrderType"
use="required"/>
<xs:attribute name="supportsCatalogsInDataManipulation"
type="xs:boolean" use="required"/>
<xs:attribute name="supportsLikeEscapeClause" type="xs:boolean"
use="required"/>
<xs:attribute name="supportsSchemasInDataManipulation"
type="xs:boolean" use="required"/>
</xs:complexType>

A-2 XQuery Developer’s Guide

</xs:element>
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="dbType" type="xs:string"/>
<xs:attribute name="dbVersion" type="xs:string"/>
<xs:attribute name="driver" type="xs:string"/>
<xs:attribute name="uri" type="xs:string"/>
<xs:attribute name="username" type="xs:string"/>
<xs:attribute name="password" type="xs:string"/>
<xs:attribute name="SID" type="xs:string"/>
<xs:attribute name="sourceBindingProviderClassName"
type="xs:string"/>
</xs:complexType>
</xs:element>
<!-- choice 4: delimited files -->
<xs:element name="delimitedFile">
<xs:complexType>
<xs:attribute name="file" type="xs:anyURI"/>
<xs:attribute name="schema" type="xs:anyURI"/>
<xs:attribute name="inferredSchema" type="xs:boolean"
default="false"/>
<xs:attribute name="delimiter" type="xs:string"/>
<xs:attribute name="fixedLength" type="xs:positiveInteger"/>
<xs:attribute name="hasHeader" type="xs:boolean" default="false"/>
</xs:complexType>
</xs:element>
<!-- choice 5: XML files -->
<xs:element name="xmlFile">
<xs:complexType>
<xs:attribute name="file" type="xs:anyURI"/>
<xs:attribute name="schema" type="xs:anyURI" use="required"/>
</xs:complexTypes>
</xs:element>

<!-- choice 6: user defined view -->
<xs:element name="userDefinedView" minOccurs="0"/>
<!-- choice 7: nothing, defaults to userDefinedvView -->

<Xs:sequence/ >
</xs:choice>
<!-- field annotations -->
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="field"s>
<xs:complexType>
<XS:sequences
<xs:element name="extension" minOccurs="0">
<xs:complexType>
<Xs:sequence minOccurs="0">
<xs:element name="autoNumber"s>
<xs:complexType>
<xs:attribute name="type" type="tns:autoNumberType"

XQuery Developer’s Guide A-3

XML Schema for Annotations

use="required"/>
<xs:attribute name="sequenceObjectName" type="xs:string"/>
</xXs:complexTypes>
</xs:element>
</Xs:sequence>
<xs:attribute name="nativeXpath" type="xs:string"/>
<xs:attribute name="nativeType" type="xs:string"/>
<xs:attribute name="nativeTypeCode" type="xs:int"/>
<xs:attribute name="nativeSize" type="xs:int"/>
<xs:attribute name="nativeFractionalDigits"
type="tns:scaleType"/>
<!-- relational: autoNumber -->
<!-- relational: native column names and types -->
</xs:complexType>
</xs:element>
<xs:element name="properties"s
<xs:complexType>
<xs:attribute name="immutable" type="xs:boolean"
default="false"/>
<xs:attribute name="nullable" type="xs:boolean"
default="false"/>
<xs:attribute name="transient" type="xs:boolean"
default="false"/>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="xpath" type="xs:string" use="required"/>
<xXs:attribute name="type" type="xs:string" use="required"/>
</xs:complexTypes>
</xs:element>
</xs:sequences>
<!-- keys -->
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="key">
<xs:complexType>
<XS:sequence>
<xs:element name="field" maxOccurs="unbounded">
<xs:complexType>
<xS:sequences>
<xs:element name="extension" minOccurs="0">
<xs:complexType>
<xs:attribute name="nativeXpath" type="xs:string"
use="required"/>
</xXs:complexTypes>
</xs:element>
</xs:sequences>
<xs:attribute name="xpath" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>

A-4 XQuery Developer’s Guide

</xXs:sequence>
<xs:attribute name="name" type="xs:string"/>
</xs:complexTypes>
</xs:element>
</xs:sequence>
<!-- relationships -->
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="relationshipTarget">
<xs:complexType>
<XS:sequence>
<xs:element name="relationship" minOccurs="0">
<xs:complexType>
<XS:sequence>
<xs:element name="description" type="xs:string"
minOccurs="0"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
</Xs:sequence>
<xg:attribute name="roleName" type="xs:string" use="required"/>
<xs:attribute name="roleNumber" type="tns:roleType" default="1"/>
<xs:attribute name="XDS" type="xs:string" use="required"/>
<xs:attribute name="minOccurs" type="tns:allNNI" default="1"/>
<xs:attribute name="maxOccurs" type="tns:allNNI" default="1"/>
<xs:attribute name="opposite" type="xs:string"/>
</xs:complexTypes>
</xs:element>
</xs:sequences>
<!-- SDO elements -->
<xs:element name="functionForDecomposition" minOccurs="0">
<xs:complexType>
<xs:attribute name="name" type="xs:QName" use="required"/>
<xs:attribute name="arity" type="xs:int" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="javaUpdateExit" minOccurs="0">
<xs:complexType>
<xs:attribute name="className" type="xs:string" use="required"/>
<xs:attribute name="classFile" type="xs:string"/>
</xs:complexType>
</xs:element>
<xs:element name="optimisticLockingFields" minOccurs="0">
<xs:complexType>
<xs:choice>
<xs:element name="updated">
<xs:complexType/>
</xs:element>
<xs:element name="projected"s>
<xs:complexType/>

XQuery Developer’s Guide A-5

XML Schema for Annotations

</xs:element>
<xs:element name="field" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:attribute name="name" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
</xs:choice>
</xs:complexTypes>
</xs:element>
<!-- security -->
<xs:element name="secureResources" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="secureResource" type="xs:string" minOccurs="0"
maxOccurs="unbounded" />
</xs:sequence>
</xs:complexTypes>
</xs:element>
<xs:element name="readOnly" minOccurs="0">
<xs:complexType/>
</xs:element>
</xs:sequence>
<xs:attribute name="targetType" type="xs:QName" use="required"/>
</xs:complexType>
</xs:element>

<l--==z===============-->
<!-- XFL annotation -->
<l--==================-->

<xs:element name="xfl">
<xs:complexType>
<XS:sequences>
<!-- document properties -->
<xs:element name="author" type="xs:string" minOccurs="0"/>
<xs:element name="comment" type="xs:string" minOccurs="0"/>
<xs:element name="creationDate" type="xs:dateTime" minOccurs="0"/>
<xs:element name="documentation" type="xs:string" minOccurs="0"/>
<xs:element name="version" type="xs:decimal" minOccurs="0"/>
<!-- user defined properties -->
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="property"s>
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="name" type="xs:string"/>
</xs:extension>
</xs:simpleContent>
</xs:complexTypes>
</xs:element>
</xs:sequence>

A-6 XQuery Developer’s Guide

<xs:choice>
<!-- choice 1: java functions -->
<xs:element name="javaFunction">
<xs:complexType>
<xs:attribute name="class" type="xs:string" use="required"/>
</xs:complexTypes>
</xs:element>
<!-- choice 2: web services -->
<xs:element name="webService">
<xs:complexType>
<xs:attribute name="wsdl" type="xs:anyURI" use="required"/>
<xs:attribute name="targetNamespace" type="xs:anyURI"
use="required"/>
</xs:complexTypes>
</xs:element>
<!-- choice 3: relational sources -->
<xs:element name="relationalDB">
<xs:complexType>
<XS:sequence>
<xs:element name="properties" minOccurs="0">
<xs:complexType>
<xs:attribute name="catalogSeparator" type="xs:string"
use="required"/>
<xs:attribute name="identifierQuote" type="xs:string"
use="required"/>
<xs:attribute name="nullSortOrder" type="tns:nullSortOrderType"
use="required"/>
<xs:attribute name="supportsCatalogsInDataManipulation"
type="xs:boolean" use="required"/>
<xs:attribute name="supportsLikeEscapeClause" type="xs:boolean"
use="required"/>
<xs:attribute name="supportsSchemasInDataManipulation"
type="xs:boolean" use="required"/>
</xs:complexType>
</xs:element>
</xs:sequence>
<xXs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="dbType" type="xs:string"/>
<xs:attribute name="dbVersion" type="xs:string"/>
<xs:attribute name="driver" type="xs:string"/>
<xsg:attribute name="uri" type="xs:string"/>
<xs:attribute name="username" type="xs:string"/>
<xs:attribute name="password" type="xs:string"/>
<xs:attribute name="SID" type="xs:string"/>
<xs:attribute name="sourceBindingProviderClassName"
type="xs:string"/>
</xs:complexTypes>
</xs:element>
<!-- choice 6: user defined view -->

XQuery Developer’s Guide A-7

XML Schema for Annotations

<xs:element name="userDefinedView" minOccurs="0"/>
<!-- choice 7: nothing, defaults to userDefinedvView -->
<xXs:sequence/>
</xs:choice>
</xs:sequence>
</xs:complexType>
</xs:element>

<l --=======================-->
<!-- function annotation -->
<l -—=======================-->

<xs:element name="function">
<xs:complexType>
<XS:sequences>
<!-- standard properties -->
<xs:element name="author" type="xs:string" minOccurs="0"/>
<xs:element name="comment" type="xs:string" minOccurs="0"/>
<xsg:element name="version" type="xs:decimal" minOccurs="0"/>
<xs:element name="documentation" type="xs:string" minOccurs="0"/>
<!-- user defined properties -->
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="property"s>
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="name" type="xs:string"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:sequence>
<!-- UI properties -->
<xs:element name="uiProperties" minOccurs="0">
<xs:complexType>
<xs:sequence maxOccurs="unbounded">
<xs:element name="component"s>
<xs:complexType>
<XS:sequence>
<xs:element name="treeInfo" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<Xs:sequence>
<xs:element name="collapsedNodes" minOccurs="0">
<xs:complexType>
<Xs:sequence>
<xs:element name="collapsedNode" type="xs:string"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequences>
</xs:complexType>
</xs:element>
</xs:sequence>

A-8 XQuery Developer’s Guide

<xs:attribute name="id" type="xs:string"/>
</xs:complexTypes>
</xs:element>
</xs:sequence>
<xs:attribute name="identifier" type="xs:string"/>
<xs:attribute name="minimized" type="xs:boolean"
default="false"/>
<xs:attribute name="x" type="xs:int"/>
<xs:attribute name="y" type="xs:int"/>
<xs:attribute name="w" type="xs:int"/>
<xs:attribute name="h" type="xs:int"/>
<xs:attribute name="viewPosX" type="xs:int"/>
<xs:attribute name="viewPosY" type="xs:int"/>
</xs:complexType>
</xs:element>
</xs:sequences>
</xs:complexTypes>
</xs:element>
<!-- sqgl statement -->
<xs:element name="sgl" minOccurs="0">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string"s>
<xs:attribute name="isSubquery" type="xs:boolean" default="true"/>
</xs:extension>
</xs:simpleContent>
</xs:complexTypes>
</xs:element>
<!-- cache -->
<xs:element name="nonCacheable" minOccurs="0">
<xs:complexType/>
</xs:element>
<!-- signature: used by java functions and stored procedures -->
<xs:element name="params" minOccurs="0">
<xs:complexType>
<xs:sequence maxOccurs="unbounded">
<xs:element name="param">
<xs:complexType>
<xs:attribute name="name" type="xs:string"/>
<xs:attribute name="nativeType" type="xs:string"/>
<xs:attribute name="nativeTypeCode" type="xs:int"/>
<xs:attribute name="xqueryType" type="xs:QName"/>
<xs:attribute name="kind" type="tns:paramKindType"/>
</xs:complexType>
</xs:element>
</xs:sequences>
</xs:complexTypes>
</xs:element>
<!-- interceptor configuration: used by webservice SOAP interceptors -->

XQuery Developer’s Guide A-9

XML Schema for Annotations

<xs:element name="interceptorConfiguration" minOccurs="0">
<xs:complexType>
<xs:attribute name="aliasName" type="xs:string" use="required"/>
<xs:attribute name="fileName" type="xs:string" use="required"/>
</xs:complexTypes>
</xs:element>
</xs:sequence>
<xs:attribute name="kind" type="tns:functionKindType"/>
<xs:attribute name="roleName" type="xs:string"/>
<xs:attribute name="nativeName" type="xs:string"/>
<xs:attribute name="nativeLevellContainer" type="xs:string"/>
<xs:attribute name="nativeLevel2Container" type="xs:string"/>
<xs:attribute name="nativelLevel3Container" type="xs:string"/>
<xs:attribute name="style" type="tns:functionStyleType"/>
</xs:complexType>
</xs:element>

<l--================-->
<!-- common types -=>
<l -—================-->

<xs:simpleType name="functionKindType">
<xs:restriction base="xs:string">
<xXs:enumeration value="read"/>
<xs:enumeration value="navigate"/>
<xs:enumeration value="private"/>
<xs:enumeration value="library"/>
</xs:restriction>
</xXs:simpleType>
<xs:simpleType name="functionStyleType">
<xs:restriction base="xs:string">
<xs:enumeration value="table"/>
<xXs:enumeration value="view"/>
<xs:enumeration value="storedProcedure"/>
<xs:enumeration value="sglQuery"/>
<xXs:enumeration value="document"/>
<xs:enumeration value="rpc"/>
</xs:restriction>
</xs:simpleType>
<!-- used by stored procedures -->
<xs:simpleType name="paramKindType">
<xs:restriction base="xs:string">
<xs:enumeration value="unknown"/>
<xs:enumeration value="in"/>
<Xs:enumeration value="inout"/>
<xs:enumeration value="out"/>
<xs:enumeration value="return"/>
<Xs:enumeration value="result"/>
</xs:restriction>
</xXs:simpleType>
<!-- used by maxOccurs in relationship -->

A-10 XQuery Developer’s Guide

<xs:simpleType name="allNNI">
<xs:union memberTypes="xs:nonNegativeInteger">
<xs:simpleType>
<xs:restriction base="xs:string"s>
<xs:enumeration value="unbounded"/>
<xs:enumeration value=""/>
</xs:restriction>
</xs:simpleType>
</xs:union>
</xs:simpleType>
<!-- used by relationships -->
<xs:simpleType name="roleType">
<xs:restriction base="xs:nonNegativeInteger">
<xs:enumeration value="1"/>
<xs:enumeration value="2"/>
</xs:restriction>
</xXs:simpleType>
<xs:simpleType name="autoNumberType">
<xs:restriction base="xs:string">
<xs:enumeration value="identity"/>
<xs:enumeration value="sequence"/>
<xs:enumeration value="userComputed"/>
</xs:restriction>
</xXs:simpleType>
<xs:simpleType name="nullSortOrderType">
<xs:restriction base="xs:string"s>
<xs:enumeration value="high"/>
<Xs:enumeration value="low"/>
<xs:enumeration value="unknown"/>
</xs:restrictions>
</xs:simpleType>
<xs:simpleType name="scaleType">
<xs:union memberTypes="xs:int">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="null"/>
</xs:restriction>
</xs:simpleType>
</xs:union>
</xs:simpleType>
</xs:schema>

XQuery Developer’s Guide A-11

XML Schema for Annotations

A-12 XQuery Developer’s Guide

	Introducing the BEA XQuery Engine
	XML and XQuery
	XQuery Use in Liquid Data
	Supported XQuery Specifications
	Learning More About the XQuery Language

	BEA XQuery Implementation
	Function Overview
	Access Control Functions
	fn-bea:is-access-allowed
	fn-bea:is-user-in-group
	fn-bea:is-user-in-role
	fn-bea:userid

	Duration, Date, and Time Functions
	fn-bea:date-from-dateTime
	fn-bea:date-from-string-with-format
	fn-bea:date-to-string-with-format
	fn-bea:dateTime-from-string-with-format
	fn-bea:dateTime-to-string-with-format
	fn-bea:time-from-dateTime
	fn-bea:time-from-string-with-format
	fn-bea:time-to-string-with-format
	Date and Time Patterns

	Execution Control Functions
	fn-bea:async
	fn-bea:fence
	fn-bea:if-then-else
	fn-bea:timeout

	Numeric Functions
	fn-bea:format-number
	fn-bea:decimal-round
	fn-bea:decimal-truncate

	Other Functions
	fn-bea:get-property
	fn-bea:inlinedXML
	fn-bea:rename

	QName Functions
	fn-bea:QName-from-string

	Sequence Functions
	fn-bea:interleave

	String Functions
	fn-bea:match
	fn-bea:sql-like
	fn-bea:trim
	fn-bea:trim-left
	fn-bea:trim-right

	Unsupported XQuery Functions
	Unsupported XQuery Language Features
	BEA XQuery Language Implementation
	Generalized FLWGOR (group by)
	Optional Indicator in Direct Element and Attribute Constructors
	Implementation Specific Details

	Understanding XML Namespaces
	Introducing XML Namespaces
	Exploring XML Schema Namespaces

	Using XML Namespaces in Liquid Data Queries and Schemas

	Best Practices Using XQuery
	Introducing Data Service Design
	Understanding Data Service Design Principles
	Applying Data Service Implementation Guidelines

	Understanding Liquid Data Annotations
	XDS Annotations
	General Properties
	Standard Document Properties
	User-Defined Properties

	Data Access Properties
	Relational Data Service Annotations
	Web Service Data Service Annotations
	Java Function Data Service Annotations
	Delimited Content Data Service Annotations
	XML Content Data Service Annotations
	User Defined View XDS Annotations

	Target Type Properties
	Native Type Properties
	Update-related Type Properties

	Key Properties
	Relationship Properties
	Update Properties
	Function for Update Decomposition
	Java Update Exit
	Optimistic Locking Fields
	Read-Only Data Service

	Security Properties

	XFL Annotations
	General Properties
	Data Access Properties

	Function Annotations
	General Properties
	UI Properties
	Cache Properties
	Signature Properties
	Native Properties
	SQL Query Properties
	SOAP Handler Properties

	XML Schema for Annotations

