0?7,

r
S’ 7
L/

BEALIquid Data for
WebLogice

Client Application
Developer’s Guide

Version: 8.5
Document Date: August 2005
Revised: August 2005

Copyright

Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic
Data Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic
Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe,
BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server,
BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup
Edition, BEA WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical
Support is a service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual
property rights reserved by third parties.

All other trademarks are the property of their respective companies.

August 1, 2005 4:54 pm

Contents

1. Introducing Liquid Data for Client Applications

Simplifying Data Programmingoiitiiiiiii i e e 1-1
What is a Liquid Data Client? e iiiiee e 1-2
Deciding Which Programming Modelto Usettt 1-3
Service Data Objects (SDO). ... vttt i e 1-5
DeveloPMENt S S . . oo e 1-6
Security Considerations in Client Applications............ ... i, 1-6
Runtime Client JARFiles.oouiini 1-7
Enabling Data Source Updatesottt 1-7

2. Client Programming with Service Data Objects (SDO)

What is Service Data Objects (SDO) Programming?............c.oiviiiiiiiirinneennns 2-1
SDO and Liquid Dataooiiiiiiiii i e e 2-2
Looking at an SDO Client Applicationccoiiiiiiiiiiiiiiieen 2-4
Looking at a Data Graphttt e e 2-6
XML Schema-to-Java Type Mappingoovvetet ettt iiiiieeees 2-8
ATTay O Ty POS v vttt ettt 2-11
Static versus Dynamic Interfaces ... 2-12
Static Interface. ... 2-13

Dynamic Data Object Interface.............cooviiiiii i, 2-16
Common SDO Operations and EXamplesooiireteiiiiiiiie s 2-18
Instantiating and Populating Data Objects ..o, 2-18

Developing Liquid Data Applications iii

Static Interface Instantiationccoiiiiiiiiii 2-18

Dynamic Interface Instantiation.................. ..o, 2-19
Accessing Data Object Properties. ...t 2-19
Typed Property ACCESSouvuvet e 2-19

Untyped Property ACCeSS . ..ottt i 2-20

Setting Data Object Propertiesouuviiiiiiii i 2-21
Adding New Data ObJectS vvvvtet i e i e 2-22
Deleting Data Objects.vvuuu et e 2-23
Submitting Data Object Changes.ovuttiiiiiiiii i, 2-24
Typed Interface Submit.ttt e 2-24

Untyped Interface Submit i 2-25
Introspecting a Data Object. ..ottt i e 2-25
Working with Data Graphs i e e 2-27
XPath Support in the Untyped SDO API e 2-28
For More Informationt 2-29

3. Enabling SDO Data Source Updates

L0050 P 3-1
How Data Source Updates Work. e 3-2
DeCOmMPOSILIONo vttt 3-2
Update Processing Sequenceouueivinni i, 34
Update OVEITIAES . . .« oottt e et et e e e e 3-b
Update BEhavioro 3-6
Update Orderoonntt e e e e 3-6
Understanding Property Maps . ..ot 3-7
Multi-Level Data Services.couuiriirii i 3-7
Transaction Managementouurtinteni i 3-8
SDO Submit Inside a Containing Transactioncovviviean.. 3-8

iv Developing Liquid Data Applications

When to Customize Updatesooureimiii i 3-8

Developing an Update Override Class.cuvtiiveniiiiiiiiii e, 3-10
UpdateOverride Interfaceot e 3-10
Development STepS.o vt e 3-12
Testing Submit Results.ttt 3-14
Understanding Update Override Context...........covviiiiiiiiii e, 3-16
Physical Level Update Override Considerations..................ccoiiiiiiin... 3-17

Update Programming Patternsttt 3-19
Override Decompositionand Updatec i, 3-19
Augment Original Data Object Content............ccovviiiiiiii i 3-20
Accessing the Data Service Mediator Context.ccov i 3-20
Accessing the Decomposition Mapvvviiiiiiiiii i i 3-20
Customizing an Update Planttt 3-23
Executingan Update Plan, 3-25
Retrieving the Container of the Current Data Object. 3-25
Retrieving and Updating Data Through Other Data Services 3-26
Setting the Log Levelot e e e e e 3-26
Configuring Optimistic Lockingc i i e 3-29
Handling Foreign and Primary Keys. ..., 3-30

Returning Computed Primary Keys ..., 3-30
Managing Key Dependencies.couutiitiiiiiiiiii i, 3-30
Foreign Keys . . oot e 3-31

4. Accessing Data Services from Java Clients

Overview of the Data Service Mediator API. 4-1
What's in the Data Service Mediator API? o, 4-3
Setting the Classpath i e e 44
Creating the Mediator Client JAR File from the Command Line 4-5

Developing Liquid Data Applications

BuildanEARFile o 4-5

Build the Client JAR oo e 4-6
How to Use the Mediator API. e 4-7
Getting a WebLogic JNDI Context for Liquid Dataccooiiiiiiiinn... 4-8
Using the Static Data Service Interface ... 4-9
Using the Dynamic Data Service Interface...............oo i, 4-12
Using Navigation FUNCEionsottt i i i 4-14

5. Accessing Data Services from Workshop Applications

WebLogic Workshop and Liquid Datat 5-1
Liquid Data Control.ouin e 5-2

Use With Page Flow, Web Services, Portals, Business Processes...................... 5-2
Liquid Data Control JCXFile..........ooiuoii i e e 5-3
Design VIeW . ..t e 5-3
SOUTCE VIEW . . oot b-4
Running Ad Hoc Queries Through a Liquid Data Control............................ 5-7
Creating Liquid Data Controls.t i 5-8
Step 1: Create a Project in an Application.................... ...t 5-8

Step 2: Start WebLogic Server, If Not Already Running. 5-8

Step 3: Create a Folder ina Project., 5-8

Step 4: Create the Liquid Data Control....................... oo, 5-9

Step 5: Enter Connection Information to the WebLogic Server.................. 5-11

Step 6: Select Data Service Functions to Add to the Control.................... 5-12
Modifying Existing Liquid Data Controls 5-13
Changing a Method Used by a Controlccooviiiiiiiiiiiiieann. 5-13
Adding a New Methodtoa Controlcoviiiiiiiiii i 5-14
Updating an Existing Control if Schemas Change, 5-14
Using Liquid Data with NetUL oo e 5-15

vi Developing Liquid Data Applications

Generating a Page Flow Froma Control, 5-15

To Generate a Page Flow Froma Controlccooiiiiiiiiiinn, 5-15

Adding a Liquid Data Control to an Existing Page Flow 5-17
Adding Service Data Objects (SDO) Variables to the Page Flow..................... 5-18

To Add a VariabletoaPage Flow ...ttt 5-20

To Initialize the Variable inthe Page Flowt 5-20

Working with Data Objectscoviiiiiii i 5-21
Displaying Array Values ina Table or List, 5-22
Adding a Repeatertoa JSPFile. ... 5-22

Adding a Nested Level to an Existing Repeater 5-24

Adding Code to Handle Null Valuesccoviiiiiiiiiiiiiieeennnns 5-25

Using Liquid Data in Business Process Projects..............cooviiiiiiiiiiiienn.. 5-26
Creating a Liquid Data Control......... ...ttt 5-26
Adding a Liquid Data ControltoaJPD File..................coiiiiiiiiiaa, 5-27
Setting Up the Control in the Business Process ... 5-27
Submitting Changes from a Business Process. ..o, 5-28
Security Considerations With Liquid Data Controls................ccovviiieneen. .. 5-28
Security Credentials Used to Create Liquid Data Control.......................... 5-28
Testing Controls With the Run-As Propertyinthe JWSFile 5-29
Trusted DOomains.oovvuiin i e 5-29
Configuring Trusted Domainsttt i 5-30

6. Exposing Data Services through Web Services

Exposing Data Services as Web Services 6-1
Adding a Liquid Data Control to a Web Service Project.....................coooiiiia, 6-2
Creating a Web Service From a Liquid Data Controlcooiiiiiiat. 6-6

Developing Liquid Data Applications vii

/. Using the Liquid Data JDBC Driver

About the Liquid Data JDBC Drivert 7-2
Features of the Liquid Data JDBC Driver. ..., 7-2
Liquid Data and JDBC Driver Terminology.ccovviieiiiieiieenn.. 7-3

Installing the Liquid Data JDBC Driver with JDK 1.4x............ ...t 7-3

Using the JDBC DIIVEroutt e e e 7-5
Obtaining a CONNeCtionutiruuiteni i, 7-b
Using the preparedStatement Interface............... ... o i, 7-6
Getting Data Using JDBCo 7-6

Connecting to the JDBC Driver from a Java Applicationo... 77

Connecting to Liquid Data Client Applications Using the ODBC-JDBC Bridge from Non-Java
ADDLCALIONS . . . v ettt e 7-12
Using the EasySoft ODBC-JDBC Bridgec.cvvviiiiiii i 7-12
Using OpenLink ODBC-JDBC Bridge.ccoviiii e 7-16

Using Reporting Tools with the Liquid Data ODBC-JDBC Driver 7-23
Crystal Reports 10 -ODBCo o e 7-23
Crystal Reports 10 - JDBC.ot 7-33
Business Objects 6.1 -ODBC ..ot e e 7-36
Microsoft Access 2000 -ODBCttt 7-49

Liquid Data and SQL Type Mappingscouuuttinitemiteniieeniieeenneenns 7-54

SQL-92 SUPPOTT . . .ottt e 7-55
Supported Features.oonir e 7-bb
LImitations.o e 7-68

8. Advanced Topics

Applying Filter Data Service Results. ...ttt 8-1
USINg FIIerS . e 8-2
Specifying Filter Effects e 8-3

viii Developing Liquid Data Applications

Filter Operatorsoouuieir i e e 8-5

Ordering and Truncating Data Service Results............... ...t 8-6
Consuming Large Result Sets (Streaming APT) ...t iiinns. 8-7

Using the Streaming Interface 8-7

Writing Data Service Function ResultstoaFile................... ...t 8-11
USing Ad HOC QUETIES. . .\ vttt ettt it e e 8-11
Transaction Considerations.cooiiiiiiiiii i 8-14
Setting Up Data Source Aliases for Relational Sources Accessed by Liquid Data........... 8-16
Setting Up Handlers for Web Services Accessed by Liquid Data......................... 8-17

Developing Liquid Data Applications ix

Developing Liquid Data Applications

CHAPTERo

Introducing Liquid Data for Client
Applications

This chapter introduces you to developing BEA Liquid Data for WebLogic® client applications. It
covers the following topics:

e Simplifying Data Programming

e What is a Liquid Data Client?

e Deciding Which Programming Model to Use

e Service Data Objects (SDO)

e Development Steps

e Security Considerations in Client Applications
e Runtime Client JAR Files

e Enabling Data Source Updates

Simplifying Data Programming
BEA Liquid Data for WebLogic is a data services platform product that significantly simplifies how
client applications access and use data. In a typical organization, data comes from a variety of sources,
including distributed databases, files, applications from partners or e-commerce exchange markets.
With Liquid Data, client applications can use heterogeneous data through a unified service layer
without having to contend with the complexity of working with distributed data sources using various
connection mechanisms and data formats.

Client Application Developer’s Guide 1-1

Introducing Liquid Data for Client Applications

Liquid Data provides a uniform, consolidated interface for accessing and updating heterogeneous
back-end data. It enables a services-oriented approach to information access using data services.

From the perspective of a client application, a data service typically represents a distinct business
entity, such as a customer or order. Behind the scenes, the data service may aggregate the data that
comprises a single view of the data, for example, from multiple sources and transform it in a number
of ways. A data service may be related to other data services, and it is easy to follow these relationships
in Liquid Data. Data services insulate the client application from the details of the composition of
each business entity. The client application only has to know the public interface of the data service.

This document describes how to create Liquid Data-aware client applications. It explains the various
client access mechanisms that Liquid Data supports and its main client-side data programming
model, including Service Data Objects (SDO). It also describes how to create update-capable data
services using the Liquid Data update framework.

What is a Liquid Data Client?

A Liquid Data client is any process that consumes data services from Liquid Data. A client application
may be, for example, a Java program, non-Java programs such as .NET applications, BEA WebLogic
Workshop applications, or JDBC/ODBC clients.

As illustrated in Figure 1-1, Liquid Data supports several access mechanisms:
e Java clients can use data service functions through the Mediator API.

e Workshop applications (such as portals, business processes, and web applications) can use the
Liquid Data control.

o By generating a Web service for data services, you can make Liquid Data services available to a
wide array of WebLogic and non-WebLogic applications and integration channels.

e The Liquid Data JDBC driver provides JDBC and ODBC clients, such as reporting tools, with
SQL-based access to Liquid Data information.

Whatever the client type, Liquid Data gives developers a uniform, services-oriented mechanism for
accessing and modifying heterogeneous data from external sources. Developers can focus on the
business logic of the application rather than details of various data source connections and formats.

1-2 Client Application Developer's Guide

Deciding Which Programming Model to Use

Figure 1-1 Accessing Liquid Data Services

client
applications

Mediator Liquid Data

API Control Web service JDBC

Liquid Data Services Layer (SDO)

data sources

> O°° 5

Deciding Which Programming Model to Use

Developers can choose from several models for accessing Liquid Data services. The model chosen will
depend on the access mechanism you decide to used. The possible access methods are:

e Data Mediator API
e Liquid Data Control
o Web Services

e JDBC/ODBC

Each access method has its own advantages and use. Table 1-2 provides a description of each of these
access methods and summarizes the advantages of the various models for accessing Liquid Data
services.

Client Application Developer’s Guide 1-3

Introducing Liquid Data for Client Applications

Table 1-2 Liquid Data Access Models

Access Description Advantages/When to use...
mechanism
Data Service A Java interface for using data services. e (Can be developed with standard Java IDEs such

Mediator API Returns data as data objects, providing

full support for Service Data Objects
(SDO) programming,

For more information, see Chapter 4,
“Accessing Data Services from Java
Clients.”

as BEA WebLogic Workshop, Eclipse, Intellid,
JBuilder, and others.

e Easy-to-use approach to developing Java
programs that use external data.

® Provides several access modes, including a
dynamic (untyped) interface, a static (typed)
interface, and an ad hoc query interface.

e Seamless ability to submit data changes.

Liquid Data A WebLogic Workshop control for

e Best suited for BEA WebLogic Workshop

Control accessing Liquid Data resources. applications, including portals, business process
For more information, see Chapter 5, workflows, and pageflows.
“Accessing Data Services from Workshop ~® Leverages BEA WebLogic Workshop features for
Applications.” working with controls, such as drag-and-drop
method and variable generation.
e Provides an ad hoc query interface for a highly
dynamic approach to querying information.
e Seamless ability to submit data changes.
Web Service A data service can be wrapped as a Web e Makes standard Web service features available to

service, providing the data service with
the benefits of web service features.

For more information, see Chapter 6,
“Exposing Data Services through Web
Services.”

data services, such as WS-Security, WSDL
descriptors, and more.

e Makes data services usable from .NET
applications, or other non-Java programs.

e Ideal for XML-based SOA architectures

JDBC/ODBC Client applications can use JDBC or

ODBC to access Liquid Data services
using SQL queries. The Liquid Data JDBC
driver supports SQL-92.

For more information, see Chapter 7,
“Using the Liquid Data JDBC Driver.”

e Works with applications designed for JDBC
access, such as Cognos business intelligence
software and Crystal Reports.

e Enables users to leverage existing SQL skills and
resources.

e Limited to "flat" views of data.

1-4

Client Application Developer's Guide

Service Data Objects (SDO)

Service Data Objects (SD0)

Service Data Objects (SDO), a specification proposed jointly by BEA and IBM, is a Java-based
architecture and API for data programming. SDO unifies data programming against heterogeneous
data sources. It simplifies data access, giving data consumers a consistent, uniform approach to using
data whether it comes from a database, web service, application, or any other system.

SDO uses the concept of disconnected data graphs. Under this architecture, a client gets a copy of
externally persisted data in a data graph, which is a structure for holding data objects. The client
operates on the data remotely; that is, disconnected from the data source. If data changes need to be
saved to the data source, a connection to the source is re-acquired. Holding connections and locks the
data at the source for the minimum time possible in this way maximizes the scalability and
performance of applications.

To SDO clients, the data has a uniform appearance no matter where it came from or what its source
format is. Enabling this unified view of data in the SDO model is the Data Service Mediator. The
mediator is the intermediary between data clients and back-end systems. It allows clients to access
data services and invoke their functions to acquire data or submit data changes. Liquid Data serves as
such a SDO mediator.

On the client side, information takes the form of data objects. Data objects are the basic unit of
information prescribed by the SDO architecture. SDO has both static (or strongly typed) and dynamic
(or loosely typed) interfaces for working with data objects.

Static interfaces provide a programmer-friendly model for getting and setting properties in a data
object. Accessors are generated for each property in the data type of a data service, for example
getCustomerName () and set CustomerName () for a Customer data object. The dynamic
interface, on the other hand, is useful when a predefined static interface is unknown or undefined at
runtime. Dynamic interface calls are in the form get (“Cust omerName~) and

set ("CustomerName”, "“J. Dough”).

In keeping with the goals of a service-oriented architecture (SOA), data graphs are self-describing,
The metadata API enables applications, tools, and frameworks to inspect information on the data
contained in a data graph. The data is described by an XML schema, which describes the names of
properties, their types, and more.

For details on using SDO, see Chapter 2, “Client Programming with Service Data Objects (SDO).”

Client Application Developer's Guide 1-5

Introducing Liquid Data for Client Applications

Development Steps

There are several steps you will take to when developing your application:

1. Choose the data access approach that best suits your needs. (Table 1-2, “Liquid Data Access

Models,” on page 1-4 describes the advantages of the different access mechanisms.)

. Determine what data services you want to use in your client application by looking at the

available services using the Liquid Data Console. The Liquid Data Console acts as a sort of
service registry in the Liquid Data architecture—it shows what data services are available and
what functions they provide.

. Make sure you have the required JAR files for developing Liquid Data client applications (see

“Runtime Client JAR Files,” below). To use the typed data service and SDO interfaces, acquire
the generated mediator client JAR from the Liquid Data administrator.

. Develop the Liquid Data client application.

A prior or possibly parallel task is creation of Liquid Data services and their functions, which
are accessed by client applications. Development of these entities is described in the Data
Services Developer’s Guide.

Security Considerations in Client Applications

1-6

Liquid Data administrators can control access to deployed Liquid Data resources through role-based
security policies. Liquid Data leverages and extends the security features of the underlying WebLogic
platform. Roles can be set up in the WebLogic Administration Console. (Refer to the Liquid Data
Admianistration Guide for information about the Administration Console.)

Access policies for Liquid Data resources can be defined at any level— on all data services in a
deployment, individual data services, individual data service functions, or even on individual elements
returned by the functions of a data service.

For complete information on WebLogic security, see:

http://e-docs.bea.com/wls/docs81/security/index.html

Client Application Developer's Guide

../datasrvc/index.html
../datasrvc/index.html
../admin/index.html
http://e-docs.bea.com/wls/docs81/security/index.html

Runtime Client JAR Files

The Liquid Data API includes the packages listed in Table 1-3.

Table 1-3 Required Java Archive Files

Runtime Client JAR Files

Name Description

Location

[App]-1d-client.jar Contains the generated static interfaces for
data services and their data types. The
name of the file is prefixed by the name of
the Liquid Data application from which the
typed interface is generated.

(Supplied by your Liquid Data
administrator.)

ld-client.jar The dynamic, or untyped, data service APIs,
including generic data service interfaces
and ad hoc query interfaces.

<bea_home>\weblogic81\liquiddata\lib\

wlsdo.jar The interfaces defined in the SDO
specification, including untyped data
interfaces and data graph interfaces.

<bea_home>\weblogic81\liquiddata\lib\

weblogic.jar The common WebLogic APIs. <bea_home>\weblogic81\server\lib\
xbean.jar XMLBean classes and interfaces on which ~ <bea_home>\weblogic81\server\lib\
xqgrl.jar the Liquid Data SDO implementation relies.
wlxbean.jar Also enables XPath expressions in untyped

data accessors.

Enabling Data Source Updates

SDO gives client applications create, read, update, and delete access to external data. Changes to data
object property values can be persisted to back-end data sources. The programming details associated
with data changes are hidden from the client. The client can update data in several heterogeneous,

distributed sources with a single update call.

Liquid Data makes it easy to create data services that can apply changes to information as well as

access from back-end data sources. For relational data sources, Liquid Data propagates the updates
to the back-end source automatically. For non-relational sources, such as web services, or when you
want to customize relational updates, Liquid Data provides an update framework that you can use to

implement your own data source updates.

For details on using SDO to update data, see Chapter 3, “Enabling SDO Data Source Updates.”

Client Application Developer’s Guide 1-1

Introducing Liquid Data for Client Applications

1-8 Client Application Developer's Guide

CHAPTERa

Client Programming with Service Data
Objects (SDO)

This chapter describes the Liquid Data client-side data programming model and framework based on
Service Data Objects (SDO). It introduces SDO and describes common programming tasks undertaken
with SDO. It covers the following topics:

e What is Service Data Objects (SDO) Programming?
e SDO and Liquid Data
e Common SDO Operations and Examples

e XPath Support in the Untyped SDO API

What is Service Data Objects (SD0) Programming?

The Service Data Object (SDO) specification defines a Java-based programming architecture and API
for data access. A central goal of SDO is to provide client applications with a unified programming
model for working with data in a disconnected way, regardless of its physical source or format. SDO
thereby simplifies the way applications use data.

SDO specifies a data programming API as well as an architecture. The architecture part of the
specification describes the components for enabling data access, such as mediators which serve as the
intermediary between the client and back-end sources. In SDO terms, Liquid Data is a member.

In terms of client data programming, SDO has characteristics in common with other data access
technologies, such as JDBC and Java Data Objects (JDO). Like JDO, SDO provides a static API for
accessing data through typed accessors (for example, get CustomerName ()). Like JDBC’s RowSet
interface, SDO has a dynamic API for accessing data through untyped accessors (for example,

Client Application Developer's Guide 2-1

Client Programming with Service Data Objects (SDO)

getString ("CUSTOMER NAME")). What distinguishes SDO from other technologies, however, is
that SDO gives applications both a static and a dynamic API for accessing data, along with a
disconnected model for accessing externally persisted data.

SDO and Liquid Data

Liquid Data implements the SDO specification as its Java client programming model. In concrete
terms, this means that when a client application invokes a read function on a data service through the
Data Service Mediator API (also called the Mediator API) or Liquid Data control, it gets the
information back as a data object. A data object is the fundamental component of the SDO
programming model and represents a unit of structured information.

The role of data objects, along with other key components in the SDO framework, are summarized as
follows:

e Data Object. A data object holds values as properties, which can be either simple values (such
as the CUSTOMERID property shown in Figure 2-1) or other data objects (such as ORDERS).
Static methods are generated for reading, setting, and adding data object properties.

e Properties. Properties are the attributes of a data object. A property can be either a simple
type or a complex type. A simple type corresponds to a leaf node in an XML document tree,
usually of a primitive type such as String or int. A complex type corresponds to a branch
node in the tree, and contains another data object.

e Data Graph. A structure for holding data objects, a data graph consists of a single root object,
any number of additional objects and properties, the XML schema for the object, and a change
summary (a log of data changes). Data users exchange information with the Liquid Data server
components by passing data graphs back and forth.

e Data Service Mediator. A mediator resides between SDO clients and data sources and acts as
the intermediary between them. It receives data requests and change submissions from the
client and relays information back to the client in the form of a data graph.

According to the SDO specification, there can be many types of mediators, each intended for a
particular type of query language or back-end system. Liquid Data includes the Data Service
Mediator, a mediator specialized for acting as the intermediary between Liquid Data data
services and clients.

Note: For more on the Data Service Mediator API, see Chapter 4, “Accessing Data Services from
Java Clients.”

See also “For More Information” on page 2-29.

2-2 Client Application Developer's Guide

SDO and Liquid Data

Figure 2-1 SDO Components with Data Graph

clientApp.java
A

Data Graph

CUSTOMERDataGraph
CUSTOMERDocument
CUSTOMERID = "CUSTOMERO"

LAST_NAME = "Smith"

ORDERS*

ORDERID = 2251

ITEMS*

CHANGESUMMARY

’7 CUSTOMER

LAST_NAME

EMAIL ADDRESS

Data Service
Mediator

Liquid Data Services Layer

Data objects are passed between the mediator and client applications in a data graph. A data graph
can have only a single root object (for example, CUSTOMERDocument in Figure 2-1). For result
involving repeating objects, therefore, a single root element prefixed by "ArrayOf" is introduced to
serve as the data graph root node. For more information, see “ArrayOf Types” on page 2-11.

Liquid Data leverages XMLBeans technology to generate static interfaces from XML. As a result, many

features of the underlying XMLBeans technology are available in SDO as well. For more information
on XMLBeans, see http://xmlbeans.apache.org.

Furthermore, all SDO types inherit from XmlObject, so factory classes for creating instances and
parsing data objects are present from the inherited XmlObject interface.

Client Application Developer's Guide 2-3

http://xmlbeans.apache.org

Client Programming with Service Data Objects (SDO)

Looking at an SDO Client Application

This section presents a simple example (Listing 2-1) of an SDO client application. The example gets
information from Liquid Data through the Mediator API by instantiating a remote interface to a data
service and invoking data service functions. It extracts information for a customer, modifies it, and
submits the change to the mediator for update to the source or sources.

Listing 2-1 Sample SDO Client Application

import java.util.Hashtable;

import javax.naming.InitialContext;

import dataServices.customerDB.customer.ArrayOfCUSTOMERDocument ;
import dataservices.customerdb.CUSTOMER;

public class ClientApp {

2-4

public static void main(String[] args) throws Exception {

Hashtable h = new Hashtable() ;
h.put(Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory") ;
h.put (Context .PROVIDER URL, "t3://localhost:7001") ;
h.put(Context.SECURITY_PRINCIPAL,"weblogic");
h.put (Context .SECURITY CREDENTIALS, "weblogic") ;
Context context = new InitialContext (h);

// get the Customer data service and run dynamic invocation of data service
CUSTOMER custDS = CUSTOMER.getInstance (context, "RTLApp") ;
ArrayOfCUSTOMERDocument myCustomer =

(ArrayOf CUSTOMERDocument) custDS.invoke ("CUSTOMER", null);

// get and show customer name
String existingFName =
myCustomer .getArrayOf CUSTOMER () .get CUSTOMERArray (0) .get FIRSTNAME () ;
String existingLName =
myCustomer.getArrayOfCUSTOMER () .getCUSTOMERArray (0) .getLASTNAME () ;

System.out .println(" \n---------------- \n Before Change: \n");
System.out.println(existingFName + existingLName) ;

// change the customer name

myCustomer .getArrayOf CUSTOMER () .get CUSTOMERArray (0) .setFIRSTNAME ("J.B.") ;
myCustomer .getArrayOf CUSTOMER () .getCUSTOMERArray (0) . setLASTNAME ("Kwik") ;
custDS.submit (myCustomer, "1d:DataServices/CustomerDB/CUSTOMER") ;

// re-query and print new name

Client Application Developer's Guide

SDO and Liquid Data

myCustomer = (ArrayOfCUSTOMERDocument) custDS.invoke ("CUSTOMER",null) ;

String newFName =
myCustomer.getArrayOfCUSTOMER () .get CUSTOMERArray (0) .get FIRSTNAME () ;

String newLName =
myCustomer.getArrayOfCUSTOMER () .getCUSTOMERArray (0) .getLASTNAME () ;

String newName = newFName.concat (newLName) ;
System.out .println(" \n---------------- \n After Change: \n");
System.out .println (newFName + newLName) ; }

The example above includes the following processing steps:

1. First the application instantiates a remote interface to the Customer data service, passing a JNDI
context that identifies the WebLogic Server where Liquid Data is deployed.

2. It then calls the invoke () function of the data service, pouring the results into an
ArrayOfCUSTOMERDocument object.

3. A new value for the FIRSTNAME and LASTNAME property of the CUSTOMER is set and the
change is submitted.

4. The invoke () function is executed again, and the results are printed to output.

In the sample, an SDO is acquired through the Data Service Mediator API and modified through the
SDO static API. Keep in mind that you can acquire data objects through the Liquid Data control as
well. Therefore, it is useful to note the difference in the sample between mediator API calls and SDO
calls.

The data service interface is instantiated and invoked through mediator API calls as follows:

ArrayOfCUSTOMERDocument myCustomer =
(ArrayOfCUSTOMERDocument) ds.invoke ("CUSTOMER", null) ;

Once the data object is created, its properties are accessed using the SDO static interface (which
returns the actual type of that node):

myCustomer .getArrayOf CUSTOMER () .get CUSTOMERArray (0) .getFIRSTNAME () ;
As mentioned elsewhere, the SDO client data programming model includes both static and dynamic
interfaces. The equivalent call using the dynamic interface would be as follows:

myCustomer .getArrayOf CUSTOMER () .getCUSTOMERArray (0) .get ("FIRSTNAME") ;

(This will returns an Object instance that you will need to cast to the type ordinarily returned by the
static interface.)

Client Application Developer's Guide 2-5

Client Programming with Service Data Objects (SDO)

2-6

Finally, the change is submitted to the data service mediator for propagation to the back-end source
through the submit () function in the mediator interface.

Although code for handling exceptions is not shown in the example, a runtime error in SDO throws an
SDoException. If an exception is generated by a data source, it is wrapped in an SDOException.

Note: For more information on the Mediator API, see Chapter 4, “Accessing Data Services from Java
Clients.”

For complete documentation on the mediator and SDO APIs, refer to the SDO Update
Javadoc.

Looking at a Data Graph

Data objects and data graphs can be serialized and printed to standard output. In fact, viewing a
printed data graph when developing client applications can help you understand how data objects are
composed.

Listing 2-2 shows a data graph associated with a modified data object. The printout is produced by the
following code:

myCustomer .getArrayOf CUSTOMER () .get CUSTOMERArray (0) .setFIRSTNAME ("J.B.") ;
myCustomer .getArrayOf CUSTOMER () .get CUSTOMERArray (0) . setLASTNAME ("Nimble") ;
System.out.println (myCustomer.getDataGraph()) ;

Notice the data graph features in the following listing examples:
e Metadata, in the form of an XML schema description, applicable to the contained data.

e A change summary, which shows the former value of a changed property (the FIRSTNAME and
LASTNAME is changed from J.B. Nimble to Jack B. Quick).

e The contents of the data object itself, in this case, is a customer record.

For more information on data graphs, see “Working with Data Graphs” on page 2-27.

Client Application Developer's Guide

http://e-docs.bea.com/liquiddata/docs85/sdoUpdateJavadoc/index.html

SDO and Liquid Data

Listing 2-2 Serialized Data Graph

<com:datagraph xmlns:com="commonj.sdo">
<xsd>
<xs:schema
targetNamespace="1d:DataServices/CustomerDB/CUSTOMER"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:single="1d:DataServices/CustomerDB/CUSTOMER" >
<xs:include schemalocation="CUSTOMER.xsd"/>
<xs:element name="ArrayOfCUSTOMER" >
<xs:complexType>
<XS:sequence>
<xs:element ref="single:CUSTOMER" minOccurs="0" maxOccurs="unbounded"/>
</Xs:sequences>
</xs:complexType>
</xs:element>
</xs:schema>
</xsd>

<changeSummary>
<CUSTOMER com:ref="/ArrayOf CUSTOMER/CUSTOMER [1] ">
<FIRST NAME>J. B.</FIRST NAME>
<LAST NAME>Nimble</LAST NAME>
</CUSTOMER></changeSummary>

<ns0:ArrayOfCUSTOMER xmlns:nsO="1d:DataServices/CustomerDB/CUSTOMER" >

<ns0: CUSTOMER >
<CUSTOMER_ID>CUSTOMER1</CUSTOMER_ID>
<FIRST NAME>Jack B. </FIRST NAME><LAST NAME>Quick</LAST NAME>
<CUSTOMER_SINCE>2001—10—01</CUSTOMER_SINCE>
<EMAIL_ADDRESS>Jack@hotmail.com</EMAIL_ADDRESS>
<TELEPHONE_NUMBER>2145134119</TELEPHONE_NUMBER>
<SSN>295-13-4119</SSN>
<BIRTH_DAY>1970—01—01</BIRTH_DAY>
<DEFAULT_SHIP_METHOD>AIR</DEFAULT_SHIP_METHOD>
<EMAIL_NOTIFICATION>1</EMAIL_NOTIFICATION>
<NEWS_LETTTER>O</NEWS_LETTTER>
<ONLINE_STATEMENT>1</ONLINE_STATEMENT>
<LOGIN ID>Jack</LOGIN ID>

</ns0:CUSTOMER><ns0 : CUSTOMER >
<CUSTOMER_ID>CUSTOMER2</CUSTOMER_ID>
<FIRST NAME>Kevin</FIRST NAME>
<LAST_NAME>Smith</LAST_NAME>
<CUSTOMER_SINCE>2001—10—01</CUSTOMER_SINCE>
<EMAIL_ADDRESS>JOHN_2@yahoo.Com</EMAIL_ADDRESS>
<TELEPHONE_NUMBER>3607467964</TELEPHONE_NUMBER>
<SSN>087-46-7964</SSN>
<BIRTH_DAY>1978—O9—21</BIRTH_DAY>

Client Application Developer's Guide 2-1

Client Programming with Service Data Objects (SDO)

<DEFAULT SHIP METHOD>AIR</DEFAULT SHIP_ METHOD>
<EMAIL_NOTIFICATION>1</EMAIL_ NOTIFICATION>
<NEWS_LETTTER>0</NEWS_LETTTER>
<ONLINE_STATEMENT>1</ONLINE STATEMENT>

<LOGIN ID>Jerry</LOGIN ID></ns0:CUSTOMER>

<ns0 : CUSTOMER >

</ns0:ArrayOf CUSTOMER >
</com:datagraph>

2-8

XML Schema-to-Java Type Mapping

Liquid Data client developers can use the Liquid Data Console to view the XML schema types
associated with data services. (See Figure 2-2) The return type tab indicates, for example, whether an
element is a string, int, or complex type.

Figure 2-2 Return Types Display in Liquid Data Console

Fle Edt View Go Bookmarks Tools Help

4a - [_[/‘; £ @ |:| @ |5 repuiocaihost:700 1dconsoles

[] customize Links [Free Hotmail [Windows Marketplace [] Windows Media || windows

a @ zonsole Access Contral
@ Administration

@ Metadata Browser Connected To © loca 0 T Lagout
2 @ idplatiorm EEE— - - l
B @8 RTLARD General [Dependencies | Where Used | Properies | BEE0TGRET TS

B £ DataSerices
D RTLEeices
2 (3 customerDB
B {E cusToMER
&1 cusTomeR
] getaDDRESS

This shows the return type of Data Service function,

2@ CUSTOMER_ORDER_LINE_ITEM

R ADDRESS
28 pemo
Dcsv
D Java
:[E CustomerProfile
Sl
I:IApparelDB
D Electronicss
S villingDB

FLINE_ID xssiring
7 ORDER_ID xs.sfring
@ PROD_ID xs:siring

@ PROD_DSC xs:sfnng

00

Done

mi]

Client Application Developer's Guide

SDO and Liquid Data

The Table 2-3 shows XML schema types correspondence to SDO Java, types.

Table 2-3 Schema to Java Data Type Mapping

XML Schema Type SDO Java Type
xs:anyType Sequence
xs:anySimpleType String

xs:anyURI String
xs:baseé64Binary byte[]

xs:boolean boolean

xs:byte byte

xs:date java.util.Calendar (Date)
xs:dateTime java.util.Calendar
xs:decimal java.math.BigDecimal
xs:double double

xs:duration String

xs:ENTITIES String

xs8:ENTITY String

xs:float float

xs:gDay java.util.Calendar
xs:gMonth java.util.Calendar
xs :gMonthDay java.util.Calendar
xs:gYear java.util.Calendar
xs:gYearMonth java.util.Calendar
xs:hexBinary byte[]

xs:ID String

xs : IDREF String

Client Application Developer's Guide

Client Programming with Service Data Objects (SDO)

Table 2-3 Schema to Java Data Type Mapping

XML Schema Type SDO Java Type

xs: IDREFS String

xs:int int

xs:integer java.math.BigInteger
xs:language String

xs:long long

xs :Name String

xs : NCName String
xs:negativelnteger java.math.BigInteger
xs : NMTOKEN String

xs : NMTOKENS String
xs:nonNegativeInteger java.math.BigInteger
xs:nonPositiveInteger java.math.BigInteger
xs:normalizedString String

xs : NOTATION String
xs:positivelnteger java.math.BigInteger
xS :QName javax.xml.namespace.QName
xs:short short

xs:string String

xs:time java.util.Calendar
xs:token String
xs:unsignedByte short

xs:unsignedInt long

xs:unsignedLong java.math.BigInteger

Client Application Developer's Guide

SDO and Liquid Data

Table 2-3 Schema to Java Data Type Mapping

XML Schema Type SDO Java Type
xs:unsignedShort Int
xs:keyref String

ArrayOf Types

As mentioned elsewhere, data graphs are used to pass data objects between clients and the data
service mediator. While a data service function can return multiple elements, a data graph can only
have a single root element.

To accommodate functions that return multiple array types, Liquid Data manufactures a root element
to serve as the single container for array types. The elements are named with the prefix "ArrayOf". For
example, for a function defined to return multiple CUSTOMER elements, the root element is
ArrayOfCUSTOMER, as shown in Listing 2-3.

Listing 2-3 Array Root Element

<ns0:ArrayOfCUSTOMER xmlns:ns0="1d:DataServices/CustomerDB/CUSTOMER" >
<ns0: CUSTOMER>
<CUSTOMER_ID>CUSTOMER1</CUSTOMER_ID>
<FIRST NAME>Jack B.</FIRST NAME>
<LAST NAME>Quick</LAST NAME>
<CUSTOMER_SINCE>2001—10—01</CUSTOMER_SINCE>
<EMAIL_ADDRESS>Jack@hotmail.com</EMAIL_ADDRESS>
<TELEPHONE_NUMBER>21455541l9</TELEPHONE_NUMBER>
<SSN>295-00-4119</SSN>
<BIRTH_DAY>1970—01—01</BIRTH_DAY>
<DEFAULT_SHIP_METHOD>AIR</DEFAULT_SHIP_METHOD>
<EMAIL_NOTIFICATION>l</EMAIL_NOTIFICATION>
<NEWS_LETTTER>O</NEWS_LETTTER>
<ONLINE_STATEMENT>1</ONLINE_STATEMENT>
<LOGIN_ ID>Jack</LOGIN_ ID>
</ns0: CUSTOMER >
</ns0:ArrayOfCUSTOMER >

Client Application Developer's Guide 2-11

Client Programming with Service Data Objects (SDO)

The array type does not appear in the return type displayed in the Liquid Data Administration console.
However, interface functions for it are generated and included in client packages. If ArrayOf types are
included in the client package for the data type you want to use, they will include the generated root
element. An array is indicated in the console with an asterisk appended to the return type of the
function. For example, CUSTOMER* indicates a CUSTOMER array.

Static versus Dynamic Interfaces

As otherwise mentioned (see “What is Service Data Objects (SDO) Programming?” on page 2-1), SDO
specifies both static (strongly typed) and dynamic interfaces for data objects:

o The strongly typed SDO interface is an XML-to-Java API binding that produces functions
corresponding to the elements of the data shape returned by the data service, such as
get CUSTOMERNAME () .

e In the dynamic interface, the element is passed as an argument to the function, such as
get ("CUSTOMER") .

Equivalent typed and dynamic interfaces are provided by the Data Service Mediator AP, allowing you
to work with data objects in either a dynamic or static model from end-to-end, that is, from data
acquisition to client-side manipulation.

Table 2-4 outlines the advantages of each approach.

Table 2-4 Typed versus Untyped Interfaces

Access Mode Advantages...

typed e EKasy-to-use interface, resulting in code that is more intuitive and easier
read and maintain.

e Compile-time type checking.
e Enables a pop-up menu in BEA Workshop Source View.

e Easier for developers to implement.

dynamic e Allows discovery

e (Code is easier to maintain— changes to the interface do not require the
library to be applied.

e Allows for a general-purpose coding style.

Note: For more information on the Mediator API, see Chapter 4, “Accessing Data Services from Java
Clients.”

2-12 Client Application Developer's Guide

SDO and Liquid Data

The following sections provide more information on the Liquid Data implementation of both kinds of
interfaces.

Static Interface

The static interface is a Java interface generated from a data service’s XML schema definition, similar
to JAXB or XMLBean static interfaces. The interface files, packaged in a JAR, are typically generated
by the Liquid Data implementor using WebLogic Workshop.

Note: For information on generating the client JAR file using WebLogic Workshop, see the Data
Services Developer’s Guide.

There is another way to generate a JAR file. See “Setting Up Data Source Aliases for Relational Sources
Accessed by Liquid Data,” in Chapter 8, “Advanced Topics.”

The generated typed interface contains static accessors for all properties of the XML datatype. If the
property is complex (such as CREDIT and ORDER in Figure 2-5), an interface class is generated for
the property in the containing package. The interface includes accessors for the properties that make
up the complex property.

When developing Data Service Mediator client applications, it is helpful to browse the contents of the
generated client package in a development tool (such as Eclipse) to get acquainted with how Liquid
Data generates interfaces from data service types. The types of functions that are generated depend
on the XML Schema definition for the type. For example, for properties that can have multiple
occurrences, as defined in their schema, getPROPERTYArray() functions are generated.

Consider the return type shown in the metadata browser illustrated in Figure 2-5.

Figure 2-5 CUSTOMER Return Type

Genera\l Dependencies | Where Used Propemesl Return Type

This shows the return type of XDS function

CUSTOMER
@ CUSTOMERID xs:int
@ CUSTOMERMAME xs:sting
© CREDIT™
@ CREDITSCORE xs:int
(@ CREDITRATING xa string
=-@ ORDER~
-0 ORDERID xstint
@ CUSTOMERID xs:int
o POITEM*
) ORDERID xs:int

KEY xs:int
) ITEMNUMBER ? xs:int
Lol QUANTITY ? xsint

Client Application Developer's Guide 2-13

Client Programming with Service Data Objects (SDO)

For each complex property—such as the global CUSTOMER element and properties CREDIT, ORDER,
and POITEM—separate interfaces are generated with accessors for their contained properties. For
each simple attribute, Liquid Data generates set and get methods. For example, the following are
generated in the CUSTOMER interface for the CUSTOMERNAME string attribute:

get CUSTOMERNAME ()
set CUSTOMERNAME (String)

For multiple occurrence properties in the return type (indicated by an asterisk in the Return Type tab
of the Liquid Data console), functions for getting the array and manipulating array items are
generated. In the XML Schema, a property may occur multiple times if it has a maxOccurs attribute
set to "unbounded" or greater than 1. Attributes cannot occur multiple times.

For example, the following functions are generated for the CREDIT element:

getCREDITArray ()
getCREDITArray (int)
addNewCREDIT ()
insertNewCREDIT (int)
removeCREDIT (int)
setCREDITArray (int, CREDIT)
setCREDITArray (CREDIT[])
sizeOfCREDITArray ()

Because CREDIT is a complex attribute, a separate CREDIT interface with these functions is
generated for it in the customer package:

getCREDITRATING ()
getCREDITSCORE ()

set CREDITRATING (String)
setCREDITSCORE (int)

Similar methods are generated for the ORDER and its POITEM interfaces.
Note that these additional methods are also generated:

e For the root CUSTOMERDocument interface, the following methods are generated:

getCUSTOMER ()
set CUSTOMER (CUSTOMER)
addNewCUSTOMER ()

2-14 Client Application Developer's Guide

SDO and Liquid Data

e The get () methods are derived from the underlying XMLBeans technology. They are methods
for getting and setting values as XML types. While get methods are not a part of the SDO
specification, they can be used if desired. They are generated for elements or attributes whose

type is a simple type.

e Factory classes are derived from the XmlObject interface that data objects extend. Factory
classes exist for creating instances and parsing XML and more. Also, because DataObjects are
derived from XMLObject, they can be cast to Strings using the tostring () method, for

example, for printing to output.

Typed Accessor Method Signatures

The following table lists the rules for the typed (or static) method generation.

Signature Format

Description

Type get [PROPERTY] ()

Returns the value of the property. Generated when PROPERTY is
an attribute or element with single occurrence.

void set [PROPERTY] (
Type newValue)

Sets the value of the property to the newValue. Generated when
PROPERTY is an attribute or an element with single occurrence.

boolean isSet [PROPERTY] ()

Determines whether the [PROPERTY] element or attribute exists
in the document. Generated for elements and attributes that are
optional. In schema, any optional element has a minOccurs
attribute set to "0"; an optional attribute has a use attribute set to
"optional".

void unSet [PROPERTY] ()

Removes the [PROPERTY] element or attribute from the
document. Generated for elements and attributes that are optional.
In schema, and optional element has an minOccurs attribute set to
"0"; an optional attribute has a use attribute set to "optional".

Type [] get [PROPERTY]Array ()

For multiple occurrence elements, returns all [PROPERTY]
elements.

void set [PROPERTY]Array (
Type [] newValue)

Sets all [PROPERTY] elements.

Type get [PROPERTY]Array (
int index)

Returns the [PROPERTY] child element at the specified index.

void set [PROPERTY]Array (
Type newValue,
int index)

Sets the [PROPERTY] child element at the specified index.

Client Application Developer's Guide 2-15

Client Programming with Service Data Objects (SDO)

Signature Format

Description

int sizeOf [PROPERTY]Array ()

Returns the current number of property child elements.

void remove [PROPERTY] (
int index)

Removes the [PROPERTY] child element at the specified index.

void insert [PROPERTY] (
int index,
[PROPERTY]Type newValue)

Inserts the specified [PROPERTY] child element at the specified
index.

void add [PROPERTY] (
[PROPERTY] Type newValue)

Adds the specified [PROPERTY] to the end of the list of
[PROPERTY] child elements.

boolean isSet [PROPERTY]Array (
int index)

Determines whether the [PROPERTY] element at the specified
index is null.

void unset [PROPERTY]Array (
int index)

Unsets the value of [PROPERTY] element at the specified index;
that is, sets it to null. Note that after you call unset and then call
set, the return value is false.

Dynamic Data Object Interface

The dynamic interface has generic property accessors (such as set () and get ()) as well as
accessors that get or set data as a specified type, such as string, Date, List, BigInteger, and
BigDecimal. These accessor methods take the following form:

® set (String propertyName,

Object propertyValue)

® set (int n, Object propertyValue)

® set (int n)

® get (commonj.sdo.Property propertyName)

® get (int n, Object propertyValue)

® get (int n)

® set [Type] (String propertyName, Object propertyValue)

® get [Type] (String propertyName)

® createDataObject (commonj.sdo.Property propertyName)

® createDataObject (commonj.sdo.Property propertyName,commonj.sdo.Property

propertyName, ...)

® createDataObject (String propertyName)

2-16 Client Application Developer's Guide

SDO and Liquid Data

® createDataObject (int n)
® createDataObject (int n, String propertyName,String propertyName)

® createDataObject (String propertyName, String propertyName,
String propertyName)

® delete()

® unset (commonj.sdo.Property propertyName)
® unset (int n)

® unset (iString propertyName)

The generic get methods return an Object type. Also, with the generic set and get methods you can
specify an nth property to get or set. Type in the above list indicates the specific data type to be set or
retrieved; for example, setBigDecimal and getBigDecimal. This includes the accessors provided
for getting and setting properties as primitive types, which include, for example, set Int (),
setDate (), getString (), and so on. For a full list, see the SDO Update Javadoc available at:

http://e-docs.bea.com/liquiddata/docs85/sdoUpdatedJavadoc/index.html

The propertyName argument indicates the property whose value you want to get or set, and
propertyValue is the new value. For example, given a data object mycustomer, the following code
sets a value by its property name, LAST NAME:

myCustomer.set ("LAST NAME", "Nimble");

XPath provides considerable flexibility in how you identify nodes in XML-based information. You can
identify properties in SDO accessor arguments by SDO extension of XPath expressions. XPath can find
nodes by position, relative position, type, and other criteria.

Client Application Developer's Guide 2-11

http://e-docs.bea.com/liquiddata/docs85/sdoUpdateJavadoc/index.html

Client Programming with Service Data Objects (SDO)

Common SDO Operations and Examples

2-18

This section describes common programming tasks involving SDOs. It covers the following:
e Instantiating and Populating Data Objects
e Accessing Data Object Properties
e Submitting Data Object Changes
e Introspecting a Data Object
e Adding New Data Objects
e Deleting Data Objects
e Working with Data Graphs

Instantiating and Populating Data Objects

The first step in using Liquid Data in a client application is to acquire a data object through a typed
or untyped interface.

When you instantiate a data object through either interface, in addition to the data object, you get a
data graph to which the object is attached and a handle to the root data object in the data graph. By
default, change tracking (logging) on the data graph is enabled, which means that any changes
performed on the object values are recorded in the change summary, enabling data source updates
and rollbacks.

Note: You can populate a new data object by calling a function in the Mediator API or using a Liquid
Data Control function. The code samples in this chapter generally use the Mediator API. For
more information on using the mediator and Liquid Data Control interfaces, see Chapter 4,
“Accessing Data Services from Java Clients,” and Chapter 5, “Accessing Data Services from
Workshop Applications.”

Static Interface Instantiation

To instantiate a data object using a typed data service, import the packages that contain the generated
data service and data type interfaces from the <app>-1d-client.jar and instantiate the data
service object using the get Instance () method. The data type interfaces are contained in a
package that has the following prefix to its package path:

org.openuri.temp.schemas

Client Application Developer's Guide

Common SDO Operations and Examples

The following shows a sample of using the typed interface to instantiate a data object:

import dataservices.rtlservices.CustomerView;

import retailer.ArrayOfCUSTOMERDocument ;

CustomerView custViewDS = CustomerView.getInstance (context, "RTLApp");
ArrayOfCUSTOMERDocument arrCustDoc =
custViewDS.getCustomerView ("CUSTOMER3") ;

Once you have the data service, you can call its public read method, get Customerview (), to get an
instance of the root schema element of the data service, ArrayOfCUSTOMERDocument.

A document type, such as ArrayOfCUSTOMERDocument, is a construct for representing a global,
top-level element in a data service schema. It lets you access the contents of the entire result returned
by a data service function.

Dynamic Interface Instantiation

To instantiate a data object through a dynamic interface, create a DataService object using the
DataServiceFactory class.

The libraries to import from the Liquid Data application client JAR provide the interfaces to the
dynamic data services, which can be used as follows:

import com.bea.ld.dsmediator.client.DataServiceFactory;

DataService custDS =
DataServiceFactory.newXmlService (
context, "RTLApp", "1ld:DataServices/CustomerDB/CUSTOMER") ;

ArrayOfCUSTOMERDocument myCustomer =
(ArrayOf CUSTOMERDocument) custDS.invoke ("CUSTOMER", null) ;

Accessing Data Object Properties

After obtaining a data object, you can access its properties. To access a data object property (similar
to instantiating data objects), you can use a typed or untyped interface functions.

Typed Property Access

Liquid Data generates typed (or static) accessors based on the XML type returned by a data service
function. As an alternative to untyped data access, you can use typed accessor functions. (Typed
functions provide greater ease-of-use than untyped functions.)

Client Application Developer's Guide 2-19

Client Programming with Service Data Objects (SDO)

2-20

For example, the following code example shows how to get the LAST_NAME property of a CUSTOMER
instance using typed accessors:

ArrayOfCUSTOMER arrCust = myCustomer.getArrayOfCUSTOMER () ;
CUSTOMER [] customer = arrCust.getCUSTOMERArray () ;
String lastName = customer [0] .getLASTNAME () ;

Untyped Property Access

You can use the untyped (dynamic) API with types that are unknown or not yet deployed at
development time. In the untyped interface, the type names are passed as parameters in the untyped
accessor call, and the returned object is cast to the type needed. However, in cases where returned
type is unbound, you will need to cast the returned object to a List and use an iterator, if necessary.
The following is the untyped implementation of the code sample shown in “Typed Property Access”
above, and gets a single CUSTOMER object:

ArrayOfCUSTOMER arrCust =
(ArrayOfCUSTOMER) myCustomer.get ("ArrayOfCUSTOMER") ;

List customerList = (List) arrCust.get ("CUSTOMERI[1]") ;
CUSTOMER customer = (CUSTOMER) customerList.get (0);
String lastName = (String) customer.get ("LAST NAME") ;

In cases where you are working with an unbounded type (such as ArrayOfCustomer in the above
example), and you want to traverse all the objects in the type, you implement an iterator, such as:

List customerList = (List) arrCust.get ("CUSTOMER") ;
Iterator iterator = customerList.iterator();
while (iterator.hasNext ()) {
if (iterator.next instanceof CUSTOMER) {
String lastName = (String) customer.get ("LAST NAME") ;

}

Note that the string specified in the get method matches the name of the element as specified in the
data service. For example, the typed get method for returning the customer’s last name is
getLASTNAME () while the untyped method is get ("LAST NaME") rather than

get ("LASTNAME") .

You can identify properties in SDO accessor arguments by element name, such as LAST NAME.
Accessor functions take property identifiers specified as XPath expressions, as follows:

customer.get ("CUSTOMER_PROFILE [1] /ADDRESS [AddressID="ADDR 10 1"]")

Client Application Developer's Guide

Common SDO Operations and Examples

The example gets the ADDRESS at the specified path with the specified addressID. If elements have
identical identifier values, all elements are returned. For example. the ADDRESS element also has a
CustomerID (a customer can have more than one address), so all addresses would be returned. (Note
that the get method returns a DataObject, so you will need to cast the returned object to the
appropriate type. For unbound objects, you will need use a List.)

SDO augments standard XPath notation in how you specify index positions in a path in order to
identify an instance in an array. The following SDO call can be used to retrieve the last name of a
customer in an array of customers:

String lastName = (String) arrCust.get ("CUSTOMER.O/LAST NAME")

SDO also supports bracketed-style index notations. The following gets the name of the same
department as in the previous example:

String lastName = (String) arrCust.get ("CUSTOMER[1]/LAST NAME")

Notice that the index for the dot-number notation is zero-based, whereas standard XPath notation is
one-based. Therefore, both notation examples retrieve the last name of the first customer in an array
of properties. Zero-based indexing is more familiar to Java language programmers and allows

zero-based counter values in loop constructs to be used in path expressions without having to add 1.

Note: A “query too complex” exception is raised if required JAR files are not in the JVM’s
CLASSPATH when an XPath path expression is executed. If you encounter this error, make
sure that the JAR files xqr1.jar and wixbean.jar are in the CLASSPATH.

You can get a data object’s containing parent data object by doing the following;
myCustomer.get ("..")

You can get the root containing data object by doing the following:
myCustomer.get ("/")

(This is similar to executing myCustomer .getDataGraph () .getRootObject ().)

Note: For more information on XPath in Liquid Data SDO, see “XPath Support in the Untyped SDO
API‘”

Setting Data Object Properties

You can modify data object property values using set () methods. Like get () methods, there are
both static and dynamic interfaces for setting properties. However, set methods differ from get
methods in that they have an additional argument: the new value of the property. For example, to set
the last name of a customer using the dynamic API, you would do the following:

Client Application Developer's Guide 2-21

Client Programming with Service Data Objects (SDO)

2-22

CUSTOMER customer = (CUSTOMER) myCustomer.get ("CUSTOMER") ;
customer.set ("LAST NAME", "Smith");

The example sets the LAST_NAME field to a new value “Smith”. By comparison, an operation that sets
a value for a typed property using the static API would be:

myCustomer .getCUSTOMER () . setLASTNAME ("Smith") ;

A very important behavioral property of the SDO model is that the back-end data source associated
with a modified object (if there is one) is not changed until a submit () method is called on the data
service bound to the object. Meanwhile, the old value is recorded in a change summary, the change
log kept in the data graph that holds the object. For more information on data graphs, see “Working
with Data Graphs” on page 2-27.

Adding New Data Objects

You can create new a data object (and have a corresponding changed applied to the data sources
associated with its data service) by using an add method and then calling submit () on the data
service bound to the data object. The lineage of the data (the back-end data sources associated with
it) is derived from the data service.

A new data object can be added to a root data object or, more commonly, as a new element in a data
object array. In addition, whole new arrays can be added to data objects as well.

The following example demonstrates how to add a data object to an array of objects.

CUSTOMERDocument . CUSTOMER newCustomer =
myCustomer .getArrayOf CUSTOMER () .addNewCUSTOMER () ;
int idNo =
myCustomer.getArrayOf CUSTOMER () .get CUSTOMERArray () . length;
newCustomer.set CUSTOMERID ("CUSTOMER" + String.valueOf (idNo)) ;
newCustomer.setFIRSTNAME ("Clark") ;
newCustomer.setLASTNAME ("Kent") ;
newCustomer.set CUSTOMERSINCE (java.util.Calendar.getInstance()) ;
newCustomer.setEMAILADDRESS ("kent@dailyplanet.com") ;
newCustomer.set TELEPHONENUMBER ("555-555-5555") ;
newCustomer.setSSN("509-00-3683") ;
newCustomer.setDEFAULTSHIPMETHOD ("Air") ;

Client Application Developer's Guide

Common SDO Operations and Examples

There are few points to note about adding data objects:

e Be sure to set any fields in the new object that are required—as specified by the XML schema
for the object—before calling submit ().

e Foreign key fields in the data object are automatically populated by Liquid Data based on the
value of the corresponding foreign key in the container object.

o In a database schema, tables sometimes have auto-generated values as their primary key. When
adding an object to such a database, the primary key is generated and returned to the client
through the submit () call. For more information on primary key computation, see “Submitting
Data Object Changes” on page 2-24.

Deleting Data Objects

Just asrecords can be added to a data source by creating new data objects and submitting the changed
data graph, you can similarly remove records by deleting data objects from an existing data graph.

A data object is deleted by removing it from the context of its containing object. When you remove an
object from a container, the reference to the item is deleted but not the values. (The values are
cleaned up later by Java garbage collection.)

To delete a data object, use the delete () method. For example, the following searches a CUSTOMER
array for a customer’s name and deletes that customer.

CUSTOMERDocument . CUSTOMER [] customers =
myCustomer.getArrayOfCUSTOMER () .get CUSTOMERArray () ;
for (int i=0; i < customers.length; i++){
if (customers[i] .getFIRSTNAME () .equals("Clark") &&
customers [i] .getLASTNAME () .equals ("Kent"))

customers[i] .delete() ;
custDS.submit (myCustomer, "1d:DataServices/CustomerDB/CUSTOMER") ;

}
}

If the deleted object contains any child elements, they are deleted as well. However, note that only the
data object on which a delete call has explicitly been performed is tracked in the change summary as
having been deleted.

Client Application Developer's Guide 2-23

Client Programming with Service Data Objects (SDO)

2-24

Submitting Data Object Changes

To submit data changes, call the submit () method on the data service bound to an object, passing
the root changed object and the fully qualified name of the data service bound to the object. Note that
the submit () method is part of the mediator API.

The untyped interface submit () method has the following signature:

abstract public void submit (DataObject do, String dataservice)

throws java.lang.Exception

The dataservice argument is the fully qualified name of the data service to which you want the data
object to be bound. The function for decomposition for that data service is used to establish the
lineage of the data object (the correlation between data object properties and back-end data sources),
for example:

custDS.submit (myCustomer, "1d:DataServices/CustomerDB/CUSTOMER") ;

In this example, the dataservice argument specifies that the CUSTOMER data service to which the
myCustomer data object is to be bound.

The typed version of the submit () function only takes the data object as an argument:

custDS.submit (myCustomer) ;

After submitting the change, if you want to continue using the object in the client application, it is
recommended that you rerun the method used to acquire the data object. This ensures that any side
effects of the update operation (at the physical data service level) are incorporated in the data object.

Note that if new objects were added that correspond to relational records in back-end data sources,
and if the records have auto-generated primary key fields, the fields are generated in the database
source and returned to the client in a property array. The properties include name-value items
corresponding to the column name and new auto-generated key value.

Typed Interface Submit

The following example shows how to modify a data object and submit the change using the typed
interface:

CUSTOMER custDS = CUSTOMER.getInstance (ctx, "RTLApp") ;
ArrayOfCUSTOMERDocument myCustomer =
(ArrayOf CUSTOMERDocument) custDS.invoke ("CUSTOMER", null) ;

myCustomer .getArrayOf CUSTOMER () .get CUSTOMERArray (0) . setLASTNAME ("Nimble") ;

custDS. submit (myCustomer) ;

Client Application Developer's Guide

Common SDO Operations and Examples

Note: For more information, see Chapter 3, “Enabling SDO Data Source Updates.”

Untyped Interface Submit

The following example shows how to modify a data object and submit the change using the untyped
interface:

CUSTOMER custDS = CUSTOMER.getInstance (ctx, "RTLApp") ;
ArrayOfCUSTOMERDocument myCustomer =
(ArrayOf CUSTOMERDocument) custDS.invoke ("CUSTOMER", null) ;

myCustomer .getArrayOf CUSTOMER () .getCUSTOMERArray (0) . setLASTNAME ("Nimble") ;

custDS.submit (myCustomer, "ld:DataServices/CustomerDB/CUSTOMER") ;

Introspecting a Data Object

When using the untyped interface, it is often necessary to check the properties of a data object once
it is acquired. The Type interface gives client applications the ability to discover information on a data
object at runtime. The information includes the type of the data object and its list of properties with
their types.

The getType () method returns the Type interface for a data object. The Type interface gives the
client application access to the data object’s properties, both elements and attributes.

The following example shows how to get the type of a data object and print a property’s value:

DataObject o = ;

Type type = o.getTypel();

if (type.getName () .equals ("CUSTOMER") {
System.out.println(o.getString ("CUSTOMERNAME")) ; }

Once you have the type of the object, you can get the list of properties defined for the type and access

their values using the get Properties () method. The following example iterates through the
property list of a data object and prints out information about each property:

public void printDataObject (DataObject dataObject, int indent)
Type type = dataObject.getType() ;
List properties = type.getProperties() ;
for (int p=0, size=properties.size(); p < size; p++) {
if (dataObject.isSet(p)) {

Property property = (Property) properties.get(p);
// For many-valued properties, process a list of values
if (property.isMany()) {

List values = dataObject.getList (p) ;
for (int v=0; count=values.size(); v < count; v++) ({
printValue (values.get (v), property, indent) ;

Client Application Developer's Guide 2-25

Client Programming with Service Data Objects (SDO)

}

else {
// For single-valued properties, print out the value
printValue (dataObject.get (p), property, indent) ;

}

The following table lists other useful methods in the Type interface.

Table 2-6 Type Interface Methods

Method Description

java.lang.Class getInstanceClass () Returns the Java class that this type represents.

java.lang.String getName () Returns the name of the type.

java.lang.List getProperties Returns the list of the properties of this type.

Property getProperty (Returns from all the properties of this type, the one with
java.lang.String propertyName) the specified name. (See Table 2-7 for a list of the

methods in the Property class.)

java.lang.String getURI () Returns the namespace URI of the type.
boolean isInstance (Returns whether the specified object is an instance of
java.lang.Object object) this type.

Table 2-7 lists the methods of the Property interface.

Table 2-7 Property Interface Methods

Method Description
Type getContainingType () Returns the containing type of this property.
java.lang.Object getDefault () Returns the default value this property will have in a data object

where the property hasn't been set

java.lang.String getName () Returns the name of the property.
Type getType () Returns the type of the property. (See Table 2-6 for a list of the
methods in the Type class.)

2-26 Client Application Developer's Guide

Common SDO Operations and Examples

Table 2-7 Property Interface Methods

Method Description

boolean isContainment () Returns whether the property is containment; that is, whether it
represents by-value composition.

boolean isMany () Returns whether the property is many-valued.

Working with Data Graphs

A data graph is the container for objects passed between the client application and the Liquid Data
mediator. The root object of the data graph is typically a data object corresponding to the root type of
the data service return type, such as a Customer object.

In addition to data objects, a data graph contains metadata on the data object and a change summary.
A change summary is a record of client-side data changes. The mediator uses the change summary to
propagate those changes to the back-end data sources.

You get a data graph automatically with the data object when you invoke a data service function. You
can also create a data graph and attach a data object to it on the client side or replace the root object
returned from a data service function invocation.

Note: For a print-out of a data graph, see “Looking at a Data Graph” on page 2-6.

There are several useful methods on the data graph interface. You can access the root data object of
a data graph using the getRootobiject () method. To add a root object to an empty data graph, use
the createRootObject () method. Note that if the data graph already has a root object, it is
overwritten. To get the data graph of an existing data object, use the following form:

CUSTOMERDocument .getDataGraph ()
The getChangesummary () method allows you to access the data change log. This is particularly
useful when creating data update overrides. These are classes for customizing how data updates are

propagated to back-end data sources. For more information on update overrides, see Chapter 3,
“Enabling SDO Data Source Updates.”

Client Application Developer's Guide 2-21

Client Programming with Service Data Objects (SDO)

XPath Support in the Untyped SDO API

2-28

XPath expressions give you a great deal of flexibility in how you locate data objects and attributes in
accessors in the untyped interface. For example, you can filter the results of a get () function
invocation based on data elements and values:

company .get ("CUSTOMER [1] /POITEMS/ORDER [ORDERID=3546353] ")
Note: For more examples of using XPath expressions with SDO, see “Accessing Data Object
Properties” on page 2-19.

The Liquid Data SDO implementation extends support of XPath 1.0 as specified by the SDO language
specification. However, there are a few points to keep in mind regarding the Liquid Data
implementation:

e Expressions with double adjacent slashes ("//") are not supported. As specified by XPath 1.0,
you can use an empty step in a path to effect a wildcard. For example:
("CUSTOMER/ /ArrayOf POITEM")

In this example, the wildcard matches all purchase order arrays below the CUSTOMER root,
which includes either of the following:

CUSTOMER/ORDERS /ArrayOfPOITEM

CUSTOMER/RETURNS /ArrayOf POITEM
Because this notation introduces type ambiguity (types can be either ORDERS or RETURNS), it
is not supported by the Liquid Data SDO implementation.

e Attribute notation ("@") cannot be used to identify elements. According to the SDO
specification, the notation for denoting an attribute "@" can be used anywhere in the path
because attributes and elements are used interchangeably as properties. However, because
Liquid Data implements SDO to XML data binding, the distinction between attributes and
elements must be preserved. Attribute notation can only be used to identify what the attributes
are in the Liquid Data data type. For example, the ID attribute of the following element:

<ORDER ID="3434">
is accessed with the following path:

ORDER/@ID

e SDO identifies an augmentation to the standard XPath notation to specify array index positions.
SDO adds the ".index_from_0" form of index notation to the standard bracketed, 1-based
notation of XPath. The SDO augmentation is 0-based.

Client Application Developer's Guide

For More Information

For example, the following paths refer to the same element, the first ORDER child node under
CUSTOMER:

o.get ("CUSTOMER/ORDER [1] ") ;
The same expression in SDO’s augmented notation:
o.get ("CUSTOMER/ORDER.O") ;

A 0-based index is more convenient for Java programmers who are accustomed to 0-based
counters, and who want to use counter values as index values without adding 1. Liquid Data
fully supports both the traditional index notation and the augmented notation. However, note
that the augmented form of expression are replaced with the traditional form by the SDO
preprocessor. This avoids conflicts with elements named with a dot-number, such as
<myAcct.12>.

For More Information

This chapter introduces SDO and covers common operations. For detailed information on SDO, use
the following references.

e For complete information on the SDO API, see the commonj.sdo Javadoc at the following
location:

http://dev2dev.bea.com/technologies/commonij/sdo/index.jsp
The SDO specification page contains introductory information on SDO:

http://dev2dev.bea.com/technologies/commonij/sdo/index.jsp

e The static type interface implementation for Liquid Data SDO is built on top of XMLBeans
technology. For more information on XMLBeans, see:

http://xmlbeans.apache.org/

e For more information on the version of XPath implemented by Liquid Data, see:

http://www.w3.org/TR/2004 /WD-xquery-20040723/

Client Application Developer's Guide 2-29

http://dev2dev.bea.com/technologies/commonj/sdo/index.jsp
http://dev2dev.bea.com/technologies/commonj/sdo/index.jsp
http://xmlbeans.apache.org
http://www.w3.org/TR/2004/WD-xquery-20040723/

Client Programming with Service Data Objects (SDO)

2-30 Client Application Developer's Guide

CHAPTERa

Enabling SDO Data Source Updates

This chapter explains how to implement data services that support data source updates. It includes
the following topics:

e Overview

e How Data Source Updates Work

e Update Behavior

e When to Customize Updates

e Developing an Update Override Class

e Update Programming Patterns

Overview

As it does for reading data, Liquid Data gives client applications an easy-to-use, unified interface for
updating data. Liquid Data allows client applications to modify, create, and delete data from
heterogeneous, distributed data sources as if it were a single entity. The complexity of propagating the
changes to the diverse data sources is hidden from the client programmer by the Liquid Data
integration layer.

From the data service implementor’s point of view, building a library of update-capable data services
is made significantly easier by the Liquid Data update framework. For relational sources, Liquid Data
propagates changes to the data source automatically. For other sources, the data service implementor

Client Application Developer's Guide 3-1

Enabling SDO Data Source Updates

can use the Liquid Data update framework artifacts and APIs to quickly implement update-capable
services.

Note: This chapter discusses data service design considerations and programming tasks for
enabling updates. For instructions on invoking updates from client applications, see
“Submitting Data Object Changes,” in Chapter 2, “Client Programming with Service Data
Objects (SDO).”

This chapter covers these areas:

e What the default Liquid Data update behavior is—how it works, its automated behavior as well
as its limitations—so that you know when to override the default update process.

e How to implement custom processing classes that extend or override Liquid Data’s default
processing behavior.

e Programming patterns used in processing updates. (See “Update Programming Patterns” on
page 3-19.)

How Data Source Updates Work

3-2

After operating on a data object (for example, by changing, adding, or deleting values), a client
application initiates the update process by calling the submit () operation on the data service. The
data graph, which contains the modified data object and a change summary (the list of old values), is
passed to the update mediator service. If the data service that is bound to a changed object is a
physical data service, the mediator simply checks for an update override class for the data service and
calls the override class if it is present. For relational data sources, the mediator simply propagates the
changes to the data source if an update override class is not present.

Decomposition

For data objects bound to logical data services, the mediator must first identify where the changed
information came from. It does so by analyzing (essentially inverting) the function designated as the
decomposition function of the data service bound to the data object. The decomposition function
enables the mediator to determine the lineage of data, that is, the physical source for each individual
element in the data object. This lineage information is expressed in the form of a decomposition map.

Note: If a function for decomposition is not explicitly specified in a data service, the mediator uses
the first read function in the data service as the decomposition function. In most cases any of
the read functions will do.

Client Application Developer's Guide

How Data Source Updates Work

If data comes from more than one source, the incoming SDO object is decomposed into its constituent
parts. The physical level data objects corresponding to the changed values in the updated data object
are instantiated.

For example, a customersDocument object that is made up of an updated customer information from
a Customer data service and three updated Order objects from an Orders data service would be
decomposed into four objects, as illustrated in Figure 3-1.

Figure 3-1 Update Plan

submit document

customersDocument

decomposition process

update plan
CustomerSDO

By analyzing the change summary and decomposition map the mediator automatically derives an
update plan. The update plan indicates what physical resources will be modified and how. (See
“Accessing the Decomposition Map” on page 3-20 for a description of decomposition maps.) The
update plan only has access to the modified objects in a submitted data graph. Unchanged objects do
not appear in the plan, and data services for unchanged objects will not be accessed during the
update.

Client Application Developer's Guide 3-3

Enabling SDO Data Source Updates

3-4

Update Processing Sequence

There are a number of steps performed in the updating of a data source. The following are the steps
in the update process:

1. The client calls submit, passing the data graph with the changed object. The data graph has a
change summary detailing the changes to the object.

2. If present, the update override class associated with the top-level data service is instantiated
and its per formChange () function is run. (See “Update Overrides” on page 3-5.) The function
can access and modify the update plan and decomposition map, or perform any other custom
processing desired. In this case, when finished, the update override class returns control to the
mediator. Alternatively, the class could have taken over the remaining processing steps.

3. The mediator determines what data sources need to be changed (the changed object’s lineage)
and how to change it.

4, Finally, the tree of "SDO objects to update" are applied to the respective data sources.

b. If any are present, update override procedures in the physical data services are called. Note that
an update override can exist at each layer of data service composition (and there can be many
such levels in the most general case.) Thus, a logical data service of several layers of services
would check for update overrides for each component part.

Figure 3-2 illustrates the steps in the update processing sequence used to update a data source. In this
example, the mediator performs the final step of the update, known as data change propagation.

Client Application Developer's Guide

How Data Source Updates Work

Figure 3-2 Update Processing Sequence

1,' Mediator
Liquid Data | /submit () > 2.
Client App o custon.1er.ds
|
3. ;
custUpd.class
ORDERS.DS
4.
@ ITEMS.DS
[]
/ »| itemUpd.class
<
¢ -

ORDERS

= | |EH

Update Overrides

An update override is a Java class associated with a data service. An update override lets you hook
custom code into the default update process and is useful for customizing the default behavior,
validating data, propagating data changes to a non-relational source, or applying any other processing
action desired.

An update plan is generated for any change submitted for a data object bound to a logical data service.
However, automatic update propagation will occur only if the data source is relational. If it is not, an
update override class must be implemented to propagate changes to the physical data sources.
(However, you will get an exception if no update override is available for an updated physical data
service that is non-relational.) The override class must implement the Updateoverride interface
and contain a performChange method, which indicates to the mediator whether or not it should
resume the normal course of processing after the update to apply any further changes. (For more
information about the update override class, see “Developing an Update Override Class” on page 3-10.)

For logical data services (such as Customers) the update override class is called before the update
plan is generated. For physical services, it is called immediately before update propagation. If
decomposition yields multiple instances of a changed data object (for example, multiple Orders for a

Client Application Developer's Guide 3-5

Enabling SDO Data Source Updates

customer), an update override for the Order data service would be called multiple times, once for each
changed object.

Update Behavior

This section provides additional information regarding the behavior of data source updates. It covers
these topics:

e Update Order. The order in which changes are applied to data objects.

e Understanding Property Maps. Property maps are where the mediator saves logical
foreign-primary key relationship information.

e Multi-Level Data Services. Logical data services can be built upon other logical data services.

e Transaction Management. Each SDO submit operates as a transaction.

Update Order

As previously described (see “How Data Source Updates Work”), the mediator produces an update tree
in the decomposition process. The tree contains a data service object for each changed data source
instance. When propagating an update, the mediator walks the update plan and submits the indicated
changes to the lower-level data service.

The order of objects in the tree and their hierarchical relationships (that is, container-containment
relationships) determines the order in which the changes are applied.

By default, the following order is observed:
e Siblings are processed in the order in which they were encountered in the data object.

e Container objects to be updated are processed before contained objects, unless the container is
being deleted. In that case, contained objects are processed first.

e If there is a property map (see the following section, “Understanding Property Maps”) specified
for an object to be updated, the values are mapped from its container before submitting the
change. (Changes made to the container SDO during its update, such as primary key
computations, are visible in the contained SDO.)

3-6 Client Application Developer's Guide

Update Behavior

Understanding Property Maps

The mediator saves logical foreign-primary key relationship information in a property map. A property
map is used to populate foreign key fields when the parent is new and does not yet have a value for its
primary key field. A property map ensures that after the primary key for a parent is generated, the
generated value is propagated to the foreign key field of the contained element. In other words, the
property map identifies a correspondence between data elements at adjacent levels of the
decomposition. Figure 3-3 illustrates the decomposition and property mapping for the decomposition
of a Customers data service.

Figure 3-3 Decomposition Map

Property Mapping
customer Data Service

_ - -o@ customerlD

Customers Data Service O customerName

@ customeriD ®
O customerName @
orderiD ®

POltem @

Order Data Service
customerlD

orderlD
POltem

Multi-Level Data Services

Logical data services can be built upon other logical data services. When functions in the top-level
data services are executed, any mid-level logical data services are “folded in” so that the function
appears to be written directly against physical data services.

The outcome of the decomposition process differs depending on whether the mid-level data service
has a update override class, as follows:

e Without an update override at the mid-level data service, the mediator decomposes the updated
object into submit() calls against the underlying physical data services.

e With an update override at the mid-level data service, the mid-level data service there is treated
as if it were a physical data service for purposes of decomposition. This means that the
mid-level object is instantiated from the top-level SDO so that the mid-level update override is
called. The submit() to the mid-level data service is then processed as usual.

Client Application Developer's Guide 3-7

Enabling SDO Data Source Updates

Note that any information not projected in the top-level data service will not be able to be resupplied
to the intermediate data service.

For example, say that a top-level data service provides a list of orders. It gets the information by calling
a function in another logical data service that returns all customer information with their orders.
When the orders-only function is called, the view is flattened so that only order information is
retrieved from the data source.

Transaction Management

Each SDO submit() operates as a transaction. The change log associated with each SDO is unchanged
whether or not the submit() succeeds. Additional changes may have occurred after the submit() call,
but those changes are kept separately—the changes are not reflected in the values or change
summary of the originally submitted SDO.

If the submit() succeeds, the SDO should be re-queried to be sure it matches the current data because
side effects of the update may have changed the result of the query. This has the side effect of clearing
the change summary as well. If the submit() fails, reinvoking submit() on the data object would cause
an attempt at performing the same updates again because the original data object and change
summary are still available. If the SDO submit() is not inside a broader containing transaction, the
transaction will be committed if the submit() succeeds and rolled back if it fails.

SDO Submit Inside a Containing Transaction

All submits perform immediate updates to data sources. If a data object submit occurs within the
context of a broader containing transaction, commits or rollbacks of the containing transaction have
no effect on the SDO or its change summary, but they will affect any data source updates that
participated in the transaction.

When to Customize Updates

3-8

You will need to create custom update classes whenever you want to support updates for
non-relational sources. For relational sources, you may also want to use custom update classes to apply
custom logic to the update process, or if an aspect of the data service design prevents automated
updates.

Client Application Developer's Guide

When to Customize Updates

Some examples of when custom updates are required include:

e Specification of your own computation of a primary key value for a data object that is being
added as a new record in a database.

e Handling circular dependencies. A circular dependency exists when multiple objects are being
modified or added that have mutual dependencies. For example, say a department is being
added and one of the department’s required fields is a manager. The manager is also being
added. However, the new manager must be added as a member of a department. The logic for
accommodating the dependency would be: 1) add department with manager set to a temporary
value, 2) add the employee manager, 3) reset the department manager to the new employee.

For relational sources, you will need to create custom updates if the XQuery design prevents Liquid
Data from being able to perform updates. Factors that might prevent Liquid Data from performing
updates include:

e The lineage of the value is ambiguous. For example, the data service decomposition function
cannot contain “if-then-else” constructs that provide alternate composition from lower level
data services.

e The lineage involves a transformation other than data () or rename. For example, the
following would not be supported by automatic updates:

<ACCOUNT> { sum(data ($C/ACCOUNT)) }; </ACCOUNT>

e Multiple lineages exist for a composed property. The following provides an example of a
property with more than one lineage, or data source, for a property:

<customerName>{ cat(data($C/FNAME), " ", data($WS/LAST NAME)) };
</customerName>

o Nesting matching logic is not expressed in a where predicate clause. Typically, nested
containment is expressed in XQuery using a where dependency clause. If the query does not use
a where clause to implement nesting, the foreign-primary key association will be
indeterminable.

For instance, if an element of a complex type has values from more than one source (that is, a
data object has fields from more than one source), the where predicate does not indicate a 1-N
cardinality between the two source because the where predicate does not involve a primary key.
For example, any M:N join like Orders with Payments is not usually a common join, and in this
case neither Orders nor Payments would be decomposed.

e The tuple identity is ambiguous. For example, distinct-values or group-by would lead to an
arbitrary tuple remaining from a set of duplicate tuples.

Client Application Developer’s Guide 3-9

Enabling SDO Data Source Updates

e If the same source value instance gets projected in the SDO (or the same physical data source
value), and if it is updated in the SDO, it will not be automatically decomposed.

e In some complex types (such as Part and Item values), the Part values may repeat and are
therefore not decomposed. For example:

— You can determined whether a primary key is projected or derivable by knowing the
cardinality between two tuples providing the values for the data object. If the predicate
between the tuples identifies a primary key on one side (tuplel) but not on the other side
(tuple2), values from tuplel may repeat. Tuplel values would not be decomposed, but tuple2
values would be decomposed. If the predicate identifies that both tuples primary keys are
equal, then values for both tuples would be decomposed.

— If two Lists of Orders occur in a data object, the predicates used to produce them may or
may not make them disjointed. No attempt is made to detect this case. Updates from each
instance will be decomposed as separate updates. Depending on the chosen optimistic
locking strategy for the data service, the second update may or may not succeed and may
overwrite changes made in the first update.

e If the query plan of the decomposition function has a “typematch” node, the decomposition will
stop at that point for the SDO.

Developing an Update Override Class

This section describes how to create an update override class. It includes the following topics:

e UpdateOverride Interface

Development Steps

Testing Submit Results

e Understanding Update Override Context

Physical Level Update Override Considerations

UpdateOverride Interface

As described in the section “Update Overrides” on page 3-5, a data service needs to specify an update
override class to customize the behavior for updates. This class must implement the
UpdateOverride public interface shown in Listing 3-1.

To implement the interface, your class must implement the performChange () method defined in
the Updateoverride interface. The method will be executed whenever a submit is issued for objects

3-10 Client Application Developer's Guide

Developing an Update Override Class

bound to the overridden data service. In cases where the submit is for an array of data service data
objects, the array is decomposed into a list of singleton DataService objects. Some of these objects may
have been added, deleted, or modified; therefore, the update override might be executed more than
once (that is, once per changed object.)

The performChange () takes an on object of type DataGraph, which will be passed to it by the
mediator. This object is the SDO on which your update override class will operate. The DataGraph
object contains the data object, the changes to the object, and other artifacts, such as metadata.

The performChange () method returns a Boolean value where:
o True signals the mediator to continue with the automated update process.

e False signals the mediator to discontinue the automated update process.

It is a good practice to verify at runtime that the root data object for the data graph being passed in is
an instance of the singleton data object bound to the data service for which the update override is
written.

Note: The Javadoc for the UpdateOverride class is available at:

http://e-docs.bea.com/liquiddata/docs85/sdoUpdatedJavadoc/index.html

Listing 3-1 UpdateOverride Interface

package com.bea.ld.dsmediator.update;

import commonj.sdo.DataGraph;

import commonj.sdo.Property;

public interface UpdateOverride

{

public boolean performChange (DataGraph sdo)

{

Client Application Developer's Guide 3-11

http://e-docs.bea.com/liquiddata/docs85/sdoUpdateJavadoc/index.html

Enabling SDO Data Source Updates

3-12

Development Steps

To create an update override class, perform the following steps:

L.

Add a Java class to the Liquid Data project. (If it is not in the project, it should be in the classpath.)
You can put the class anywhere in the application folder; however, for simple projects, it might be
most convenient to add the class to the same directory as your data services. For larger projects,
you may choose to keep the update classes in their own folder.

In the new Java file, implement the Updateoverride interface. For example, the class
signature may be:

public class OrderDetailUpdate implements UpdateOverride

Import the following packages into your class, in which you are implementing the
UpdateOverride class:

import com.bea.ld.dsmediator.update.UpdateOverride;
import commonj.sdo.DataGraph;

Add a performChange () method to the class. This public method takes a DataGraph object
(containing the modified data object) and returns a Boolean value. For example:

public boolean performChange (DataGraph graph)

In the body of the method, implement your processing logic. You can access the changed object,
instantiate other data objects and modify and submit them, or access the mediator context’s
update plan and decomposition map.

For general examples of the types of activities update overrides may implement, see “Update
Behavior” on page 3-6.

Associate the class with a data service by referring to it from the data service by placing a
javaUpdate element in the pragma statement of the data service. For example, the
OrderDetailUpdate class in step 2 could be referred to from an data service named ApplOrder by
<javaUpdateExit className="RTLServices.OrderDetailUpdate"/>.

While it will make sense in most cases to have a single update class apply for specific data services,
you can have multiple data services use a single update override class.

Listing 3-2 shows a simple update override implementation.

Client Application Developer's Guide

Developing an Update Override Class

Listing 3-2 Sample Update Override

package RTLServices;

import com.bea.ld.dsmediator.update.UpdateOverride;
import commonj.sdo.DataGraph;

import java.math.BigDecimal;

import java.math.BigInteger;

import retailer.ORDERDETAILDocument ;

import retailerType.LINEITEMTYPE;

import retailerType.ORDERDETAILTYPE;

public class OrderDetailUpdate implements UpdateOverride
{
public boolean performChange (DataGraph graph) {
ORDERDETAILDocument orderDocument =
(ORDERDETAILDocument) graph.getRootObject () ;
ORDERDETAILTYPE order =
orderDocument .getORDERDETAIL () .getORDERDETAILArray (0) ;
BigDecimal total = new BigDecimal (0) ;
LINEITEMTYPE[] items = order.getLINEITEMArray() ;
for (int y=0; y < items.length; y++)
BigDecimal quantity =
new BigDecimal (Integer.toString(items [y] .getQuantity())) ;
total = total.add(quantity.multiply (items[y] .getPrice()));
}
order.setSubTotal (total) ;
order.setSalesTax (
total .multiply (new BigDecimal (".06")) .setScale(2,BigDecimal .ROUND_UP)) ;
order.setHandlingCharge (new BigDecimal (15)) ;
order.setTotalOrderAmount (
order.getSubTotal () .add (
order.getSalesTax () .add (order.getHandlingCharge()))) ;
System.out.println(">>> OrderDetail.ds Exit completed");
return true;

In the sample class shown in Listing 3-2, a OrderDetailUpdate class implements the
UpdateOverride class, and, as required by the interface, defines a peformChange () method. The
class illustrates the some basic concepts regarding update override classes:

Client Application Developer's Guide 3-13

Enabling SDO Data Source Updates

3-14

e The performChange () method is the entry point for the class, as called by the mediator. This

method can either contain all of the custom update code itself, or it can call external modules
to implement the update override code. It can invoke data service functions to populate data
objects and submit changes on the object to the mediator. Such changes are automatically
added to the current update transaction.

The method gets the modified data graph as an argument. This is the data graph on which the
submit was called.

The following code gets the first object in the graph, casts it to ORDERDETAILDocument, and
instantiates a data object with the result:

ORDERDETAILDocument orderDocument =
(ORDERDETAILDocument) graph.getRootObject () ;

Objects in the changed object list are accessed through the appropriate get call and index
value. For example, to get the first such object:

ORDERDETAILTYPE order =
orderDocument .getORDERDETAIL () .getORDERDETAILArray (0)

Finally, notice that the method returns true. This tells the mediator that it should continue with
its normal course of update processing (with the modified update plan). The value returned
from a performChange () method in an Updateoverride class must return a Boolean value
that will indicate that action the mediator should take after the method completes. The
possibilities are:

— True. After control returns from the method, the mediator resumes its normal course of
processing. Note that a new update plan is automatically generated so that any new changes
against the passed-in SDO made in the update override plan can be accounted for. The new
plan combines the previously indicated changes with any new change.

— False. The mediator does not attempt to further apply the changes. The method would
return false, for example, if it has already propagated all the changes itself. (If you want to
handle an error that would require the update to be aborted, your method should throw an
exception.) An update override on a physical data service other than a relational one must
return false.

Testing Submit Results

In the Liquid Data development environment view, the test pane lets you try submitting a change to a
data service. Whenever you implement a submit-capable data service, you should similarly test your
update results to ensure that changes occur as expected.

Client Application Developer's Guide

Developing an Update Override Class

You can test submits using the Test View in BEA WebLogic Workshop. For information on testing
submits, refer to the Data Services Developer’s Guide.

While Test View gives you a quick way to test simple update cases in the data services you create, for
more substantial testing and troubleshooting you can use an update override class to inspect the
decomposition mapping and update plan for the update.

The override class is also the mechanism you can use to extend and override the Mediator’s default
update processing. You can use it to implement updates for data services that would otherwise not
support updates, such as non-relational sources.

See “Developing an Update Override Class” on page 3-10 for information about override classes.

Understanding Update Override Context

An update override class can programmatically access several update framework artifacts:
e Modified data object tree
e Update plan
e Decomposition map

The content of the artifacts is determined by the context from which they are accessed:

e The update override class of the top-level data service object has access to the full changed
data object tree

e In the update override class for an intermediate or physical data service instantiated as a result
of decomposition, only the objects in the change tree that are bound to it are available, along
with the contents of the immediate container object. You cannot directly access objects from
above the immediate container level in the method.

Figure 3-4 illustrates the context visibility within an update override.

Client Application Developer's Guide 3-15

Enabling SDO Data Source Updates

3-16

Figure 3-4 Context Visibility in Update Override

@ customer
O customerlD

- customerName
O Orders
— OrderID
— Items

—— ItemID
46 Parts

The performchange () method class can perform gets and sets on the changed SDO, which is passed
to the method. Any changes to the SDO values are added to the change summary, just as if the change
had occurred in the client application.

Within the performChange () method, you can gain access to the decomposition map and the
update plan. You can modify the update plan for a particular submit operation, giving you significant
control over how updates are applied to a data source. The following are the types of changes that can
be effected by modifying this method:

o Check the validity of the new values or change the values in some way.

e Propagate the data changes yourself, for example, by passing modified values to a workflow or
web service.

e Use the update plan to directly drive SQL statements.

e Perform audits (log changes).

Although you can access the default decomposition map, you should not modify it. However, you can
use access to the decomposition map to understand how decomposition will work, and this could be
used to drive your own custom decomposition.

In addition to accessing the decomposition map, you can access the update plan (that is, the tree of
changed objects) in the override class. You can modify values in the tree, remove nodes, or rearrange
them (to change the order in which they are applied). However, if you modify the update plan, you
should execute the plan within the override if you want to keep the changes. As you modify the values
in the tree, remove nodes or rearrange them, the update plan will track your changes automatically in
the change list.

Client Application Developer's Guide

Developing an Update Override Class

Physical Level Update Override Considerations

Considerations for implementing update override classes for physical level data services include the
following:

e For updated data objects bound to physical data services, further decomposition does not occur.
Therefore, requesting a decomposition map or update plan in the override class of an object
bound to such a service returns null.

e [f the data service is bound to a relational data source, returning true causes the mediator to
apply the changes currently indicated by the data object to the database. It does so using the
optimistic locking strategy specified for the data service. (Note that if the Data Service is not
bound to a relational data source, returning true will cause an exception.)

e For physical data services, the update override can calculate a primary key value or perform
other validations or calculations on the submitted data object. If an object bound to a physical
data service is being updated in the context of an update to a higher-level data service object
(that is, as a product of decomposition), changes in the physical update override (such as the
primary key calculation) will be available when the higher-level update plan is applied.
Therefore, if a primary key is calculated in the physical update override as part of a data object
insert, the key will be available in the logical update plan, so that it can be assigned as a
foreign key for the containing object.

e Keep in mind that the modified SDO that is passed to the physical level update override only
gets to see those properties of a data object that were projected in the higher level data service.
(See Figure 3-5.) To access the unprojected values as well, the update override must
re-instantiate the data object.

Client Application Developer's Guide 3-11

Enabling SDO Data Source Updates

Figure 3-5 Projected Data Objects

Changed object data tree
With new values only:

customer Not projected

) customerlID = 123
—_) FirstName = Edna

@ LastName = Smith-Owens Composite:

customer

customerlID = 123
Instantiated to access
existing values:

— FirstName = Edna
' LastName = Smith-Owens

customer
customerlD = 123

— FirstName = Edna

— LastName = Smith

Additional considerations concerning update overrides for relational data services include:

e [f performChange () returns true, the mediator applies the changes indicated in the data
object to the source database using the optimistic locking strategy specified for the data
service.

e If an object is inserted with unset property values:
— If default values for the property are indicated by the data service schema, they are used.

— If default values are not configured, NULL is used.

o If a primary key was not projected or specified, the automated update signals an error and
cancels the update request.

For physical non-relational data services, the following additional considerations apply:
e performChange () must provide the implementation for propagating the data change because
the mediator does not provide automatic updates for non-relational sources. Using the change

summary information in the data object, the method can identify the changes to make and
submit them to the data source using any interface or mechanism supported by the source.

3-18 Client Application Developer's Guide

Update Programming Patterns

e If no update override exists for a non-relational physical data service object for which an update
call is made, an error occurs indicating that the change cannot be persisted.

Update Programming Patterns

This section contains code samples that illustrate many of the concepts previously discussed.
e Override Decomposition and Update
e Augment Original Data Object Content
e Accessing the Data Service Mediator Context
e Accessing the Decomposition Map
e Customizing an Update Plan
e Executing an Update Plan
e Retrieving the Container of the Current Data Object
e Retrieving and Updating Data Through Other Data Services
o Setting the Log Level
o Configuring Optimistic Locking

e Handling Foreign and Primary Keys

Override Decomposition and Update

In this pattern, the override function takes over the entire decomposition and update processing for
the submitted data object. Typical activities include:

e Instantiating lower level data objects and submit them for update.
e (Calling a web service passing the appropriate data.

e Using JDBC to execute SQL statements.

In this case, the function would return false to indicate to the mediator not to attempt to proceed with
automated decomposition.

Client Application Developer's Guide 3-19

Enabling SDO Data Source Updates

3-20

Augment Original Data Object Content

The override function inspects or modifies the object values to be changed and returns control to the
mediator. If validating values, it can raise a DataServiceException to signal errors, and roll back the
transaction. The function returns true to have the mediator proceed with update propagation using
the objects as changed.

Accessing the Data Service Mediator Context

To get the change plan and decomposition map for an update, you first need to get the data mediator
service context.

The context enables you to view the decomposition map, produce an update plan, execute the update
plan, and access the container data service instance for the data service object currently being
processed.

The following code snippet shows how to get the context:

DataServiceMediatorContext context =

DataServiceMediatorContext () .getInstance () ;

Accessing the Decomposition Map

Once you have the context (see “Accessing the Data Service Mediator Context”), you can access the
decomposition map with the following method:

DecompostionMapDocument .DecompostionMap dm =

context.getCurrentDecompositionMap () ;

If you want the string form returned, you use the tostring () method. The returned string will
contain the XML of the decomposition map, such as the following:

<xml-fragment xmlns:upd="update.dsmediator.ld.bea.com">

<Binding>
<DSName>1d:DataServices/CUSTOMERS .ds</DSName>
<VarName>f1603</VarName>

</Binding>

<AttributelLineage>
<ViewProperty>CUSTOMERID</ViewPropertys>
<SourceProperty>CUSTOMERID</SourceProperty>
<VarName>f1603</VarName>

</AttributelLineage>

Client Application Developer's Guide

Update Programming Patterns

<AttributelLineage>
<ViewProperty>CUSTOMERNAME< /ViewProperty>
<SourceProperty>CUSTOMERNAME</SourceProperty>
<VarName>f1603</VarName>
</AttributeLineage>
<upd:DecompositionMap>
<Binding>
<DSName>1d:DataServices/getCustomerCreditRatingResponse.ds</DSName>
<VarName>getCustomerCreditRating</VarName>
</Binding>
<AttributelLineage>
<ViewProperty>CREDITSCORE</ViewProperty>
<SourceProperty>
getCustomerCreditRatingResult/TotalScore
</SourceProperty>
<VarName>getCustomerCreditRating</VarName>
</AttributelLineage>
<AttributelLineage>
<ViewProperty>CREDITRATING</ViewProperty>
<SourceProperty>
getCustomerCreditRatingResult/OverAllCreditRating
</SourceProperty>
<VarName>getCustomerCreditRating</VarName>
</AttributelLineage>
</upd:DecompositionMap>
<upd:DecompositionMap>
<Binding>
<DSName>1d:DataServices/PO_CUSTOMERS.ds</DSName>
<VarName>f1738</VarName>
</Binding>
<Predicates>
<LeftVarName>f1738</LeftVarName>
<LeftProperty>CUSTOMERID</LeftProperty>
<RightVarName>CUSTOMERID</RightVarName>
<RightProperty>CUSTOMERID</RightProperty>
</Predicate>
<AttributeLineage>

<ViewProperty>ORDERID</ViewProperty>

Client Application Developer's Guide 3-21

Enabling SDO Data Source Updates

<SourceProperty>0ORDERID</SourceProperty>
<VarName>f1738</VarName>
</AttributelLineage>
<AttributelLineage>
<ViewProperty>CUSTOMERID</ViewPropertys>
<SourceProperty>CUSTOMERID</SourceProperty>
<VarName>f1738</VarName>
</AttributelLineage>
<upd:DecompositionMap>
<Binding>
<DSName>1d:DataServices/PO_ITEMS.ds</DSName>
<VarName>f1740</VarName>
</Binding>
<Predicate>
<LeftVarName>f1740</LeftVarName>
<LeftProperty>ORDERID</LeftPropertys>
<RightVarName>ORDERID</RightVarName>
<RightProperty>ORDERID</RightProperty>
</Predicates>
<AttributelLineage>
<ViewProperty>ORDERID</ViewPropertys>
<SourceProperty>ORDERID</SourceProperty>
<VarName>f1740</VarName>
</AttributelLineage>
<AttributeLineage>
<ViewProperty>KEY</ViewProperty>
<SourceProperty>KEY</SourcePropertys>
<VarName>f1740</VarName>
</AttributelLineage>
<AttributelLineage>
<ViewProperty>ITEMNUMBER</ViewPropertys>
<SourceProperty>ITEMNUMBER</SourcePropertys>
<VarName>f1740</VarName>
</AttributelLineage>
<AttributeLineage>
<ViewProperty>QUANTITY</ViewPropertys>
<SourceProperty>QUANTITY</SourceProperty>
<VarName>f1740</VarName>

3-22 Client Application Developer's Guide

Update Programming Patterns

</AttributelLineage>
</upd:DecompositionMap>
</upd:DecompositionMap>
<ViewName>1ld:DataServices/Customer.ds</ViewName>

</xml-fragment>

Customizing an Update Plan

After possibly validating or modifying the values in the submitted data object, the function retrieves
the update plan by passing in the current data object to the following function:

DataServiceMediatorContext .getCurrentUpdatePlan ()

The update plan can be augmented in several ways, including:
e Additional value set operations could be made on the decomposed data objects.

e The tree of data object instances to be updated could be altered by removing, adding, or
rearranging items.
e The modified update plan could be processed by passing it to the function
DataServiceMediatorContext .executeUpdatePlan ()
After executing the update plan, the function should return false so that the mediator does not

attempt to apply the update plan.

The update plan lets you modify the values to be updated to the source. It also lets you modify the
update order.

You can walk the update plan to view its contents. To walk the plan, you can use a call similar to the
method navigateUpdatePlan () shown in Listing 3-3 where the method is called from a
performChange method (see “UpdateOverride Interface” on page 3-10 for information about this
method) and recursively walks the plan.

Listing 3-3 Walking an Update Plan

public boolean performChange (DataGraph datagraph) {

UpdatePlan up = DataServiceMediatorContext.currentContext () .
getCurrentUpdatePlan (datagraph) ;
navigateUpdatePlan(up.getDataServicelList ());

return true;

Client Application Developer's Guide 3-23

Enabling SDO Data Source Updates

private void navigateUpdatePlan(Collection dsCollection) ({
DataServiceToUpdate ds2u = null;
for (Iterator it=dsCollection.iterator();it.hasNext();) {

ds2u = (DataServiceToUpdate)it.next () ;

// print the content of the SDO
System.out.println (ds2u.getDataGraph());

// walk through contained SDO objects
navigateUpdatePlan (ds2u.getContainedDSToUpdateList ()) ;

}

A sample update plan report would look like the following

UpdatePlan
SDOToUpdate
DSName: ... :PO_CUSTOMERS
DataGraph: ns3:PO_CUSTOMERS to be added
CUSOTMERID = 01

ORDERID = unset
PropertyMap = null

Now consider an example in which a line item is deleted along with the order that contains it. Given
the original data, the following listing illustrates an update plan in which item 1001 will be deleted
from Order 100, and then the Order is deleted.

UpdatePlan
SDOToUpdate

DataGraph: ns3:PO_CUSTOMERS to be deleted
CUSTOMERID = 01
ORDERID = 100

PropertyMap = null

3-24 Client Application Developer's Guide

Update Programming Patterns

SDOToUpdate
DSName:...:PO_ITEMS
DataGraph: ns4:PO_ITEMS to be deleted

ORDERID = 100
ITEMNUMBER = 1001
PropertyMap = null

In this case, the execution of the update plan is as follows: before deleting the PO_CUSTOMERS, its
contained SDOToUpdates are visited and processed. So the PO_ITEMS is deleted first and then the
PO_CUSTOMERS.

If the contents of the Update Plan are changed then the new update plan can be executed and the
update exit should then return false, signaling that no further automation should occur.

The plan can then be propagated to the data source, as described in “Executing an Update Plan.”

Executing an Update Plan

After modifying an update plan, you can execute it. Executing the update plan causes the data service
mediator to propagate the changes in the update plan to the indicated data sources.

Given a modified update plan named up, the following statement executes it:

context.executeUpdatePlan (up) ;

Retrieving the Container of the Current Data Object

On a Data Service that is being processed for an update plan, you can get the container of the SDO
being processed. The container must exist in the original changed object tree, as decomposed. If no
container exists, null is returned. Consider the following example:

String containerDS = context.getContainerDataServiceName () ;

DataObject container = context.getContainerSDO() ;

In this example, if in the update override class for the Orders data service the you ask to see the
container, the Customer data service object for the Order instance being processed would be
returned. If that Customer instance was in the update plan, then it would be returned. If it was not in
the update plan, then it would be decomposed from CustOrders and returned. The update plan only
shows what has been changed. In some cases, the container will not be in the update plan. When the
code asks for the container, it will be returned from the update plan if present; otherwise, it will be
decomposed from the source SDO.

Client Application Developer's Guide 3-25

Enabling SDO Data Source Updates

3-26

Retrieving and Updating Data Through Other Data Services

Other data services may be accessed and updated from an update override. The data service mediator
API can be used to access data objects, modify and submit them. Alternatively, the modified data
objects can be added to the update plan and updated when the update plan is executed. If the data
object is added to the update plan, it will be updated within the current context and its container will
be accessible inside its Data Service update override.

If the DataService Mediator API is used to perform the update, a new DataService context is
established for that submit, just as if it were being executed from the client. This submit () acts just
like a client submit— changes are not reflected in the data object. Instead, the object must be
re-fetched to see the changes made by the submit.

Setting the Log Level

Liquid Data utilizes the underlying WebLogic Server for logging. WebLogic logging is based on the JDK
1.4 logging APIs, which are available in the java.util.logging package.

In an update override, you can contribute to the log by acquiring a DataServiceMediatorContext
instance, and calling the get Logger () method on the context, as follows:

DataServiceMediatorContext context =
DataServiceMediatorContext () .getInstance() ;
Logger logger = context.getLogger ()

You can then contribute to the log by issuing the appropriate logger call with a specified level.

The log level implies the severity of the event. When WebLogic Server message catalogs and the
NonCatalogLogger generate messages, they convert the message severity to a

weblogic.logging. WLLevel object. A WLLevel object can specify any of the following values, from
lowest to highest impact:

e DEBUG. Debug information, including execution times.

e INFO. Normal events with informational value. This will allow you to see SQL that is executed
against the underlying databases.

o WARNING. Events that may cause errors.

e ERROR. Events that cause errors.

e NOTICE. Normal but significant events.

e CRITICAL, ALERT, EMERGENCY. Significant events that require immediate intervention.

Client Application Developer's Guide

Update Programming Patterns

Development_time logging is written to the following location:

<bea_home>\user projects\domains\<domain names>

Given the specified logging level, the mediator logs the following information:

e Notice or summary level. For each submit method on a data service from a client the following
information is provided:

Fully qualified data service name

Invocation time

Total execution time

Invocation by user/group

e Information or Detail level. For each submit method invocation on a data service at any level,
the following information is provided:

— For a fully qualified data service name:
Invocation time
Number of times executed
Total execution time
— For relational sources, per SQL statement type per table:
SQL script
Total execution time
Number of times executed
— For each update override invoked:

Name of Data Service being overridden, which includes: number of times called and
total execution time

Client Application Developer's Guide 3-21

Enabling SDO Data Source Updates

3-28

The following (Listing 3-4) is a sample of a log entry:

Listing 3-4 Sample Log Entry

<Nov 4, 2004 11:50:10 AM PST> <Notice> <LiquidData> <000000> <Demo - begin
client sumbitted DS: ld:DataServices/Customer.ds>

<Nov 4, 2004 11:50:10 AM PST> <Notice> <LiquidData> <000000> <Demo -
ld:DataServices/Customer.ds number of execution: 1 total execution
time:171>

<Nov 4, 2004 11:50:10 AM PST> <Info> <LiquidData> <000000> <Demo -
1d:DataServices/CUSTOMERS.ds number of execution: 1 total execution time:0>
<Nov 4, 2004 11:50:10 AM PST> <Info> <LiquidData> <000000> <Demo - EXECUTING
SQL: update WEBLOGIC.CUSTOMERS set CUSTOMERNAME=? where CUSTOMERID=? AND
CUSTOMERNAME=? number of execution: 1 total execution time:0>

<Nov 4, 2004 11:50:10 AM PST> <Info> <LiquidData> <000000> <Demo -
ld:DataServices/PO_ITEMS.ds number of execution: 3 total execution
time:121>

<Nov 4, 2004 11:50:10 AM PST> <Info> <LiquidData> <000000> <Demo - EXECUTING
SQL: update WEBLOGIC.PO ITEMS set ORDERID=? , QUANTITY=? where ITEMNUMBER=?
AND ORDERID=? AND QUANTITY=? AND KEY=? number of execution: 3 total
execution time:91>

<Nov 4, 2004 11:50:10 AM PST> <Notice> <LiquidData> <000000> <Demo - end
clientsumbitted ds: ld:DataServices/Customer.ds Overall execution time:
381>

Client Application Developer's Guide

Update Programming Patterns

Configuring Optimistic Locking

Concurrency control helps to prevent data conflicts in systems in which multiple clients access the
same data source. What if two client read the same information, a customer order total, for example,
and attempt to change its value by adding an order? Because the second update does not take into
account the first, it can result in invalid data.

Liquid Data uses optimistic locking as its concurrency control policy. With optimistic locking, a
database lock is not held for a data record that has been read. Instead, locking reoccurs only when an
update is being attempted. At that time, the value of the data when it was read is compared to its
current value. If the values differ, the update is not applied and the client is notified.

You can specify which fields are to be compared at the time of the update for each table. Note that
primary key column must match, and BLOB and floating types might not be compared. By default,
Projected is used. The following table describes the other options.

Optimistic Locking Update Policy Effect

Projected Projected is the default setting. It uses a 1-to-1 mapping of elements in the
SDO data graph to the data source to verify the “updateability” of the data
source.

This is the most complete means of verifying that an update can be
completed, however if many elements are involved updates will take longer
due to the greater number of fields needing to be verified.

Unprojected Only fields that have changed in your SDO data graph are used to verify the
changed status of the data source.

Selected Fields Selected fields are used to validate the changed status of the data source.

Note: Insome instances, Liquid Data may not be able to read data from a database table because
another application has locked the table, causing queries issued by Liquid Data to be queued
until the application releases the lock. To prevent this, you can set the transaction isolation
to read uncommitted in the JDBC connection pool on your WebLogic Server. See "Setting the
Transaction Isolation Level" in the Administration Guide for details on how to set the
transaction isolation level.

Client Application Developer's Guide 3-29

http://e-docs.bea.com/liquiddata/docs85/admin/server.html
http://e-docs.bea.com/liquiddata/docs85/admin/server.html
http://e-docs.bea.com/liquiddata/docs85/admin/index.html

Enabling SDO Data Source Updates

3-30

Handling Foreign and Primary Keys

This section describes how relational source updates that affect primary and foreign keys in some way
are managed by Liquid Data. For data inserts of autonumber primary keys, the new primary key value
is generated and returned to the client. Liquid Data also propagates the effects of changes to a primary
or foreign key, as described in the following sections.

Returning Computed Primary Keys

If top-level data objects have been added which have primary keys that are automatically generated
by the RDBMS, the values of the primary keys for the inserted tuples will be returned as an array of
Java properties (XPath name/value pairs) after a successful update submit. This only applies to the
primary keys of the top-level data object. Primary keys for nested data objects that have computed
primary keys are not returned.

Returning the top-level primary keys of inserted tuples allows the developer to refetch tuples based
on their new primary keys if desired.

For example, given an array of Customer objects with a primary key field CustID into which two
customers are inserted, the submit would return an array of two properties with the name being
CustID, relative to the Customer type, and the value being the new primary key value for each inserted
Customer.

Managing Key Dependencies

Liquid Data manages primary key dependencies when updates are performed. It identifies primary
and foreign keys using predicate statements in the decomposition function. For example, if a query
Jjoins data records using a value comparison, such as where customer/id = order/id, the
mediator performs various services given the inferred key/foreign key relationship when updating the
data source.

If a predicate dependency exists between two SDOToUpdate instances (data objects in the update
plan) and the container SDOToUpdate instance is being inserted or modified and the contained
SDOToUpdate instance is being inserted or modified, then a key pair list is identified that indicates
which values from the container SDO should be moved to the contained SDO after the container SDO
has been submitted for update. This Key Pair List is based on the set of fields in the container SDO
and the contained SDO that were required to be equal when the current SDO was constructed, and
the key pair list will only identify those primary key fields from the predicate fields. The Property Map
will only identify container primary key to container field mappings. If the full primary key of the
container is not identified by the map then no properties are specified to be mapped.

Client Application Developer's Guide

Update Programming Patterns

A Key Pair List contains one or more items, identifying the node names in the container and contained
objects that are mapped. Mapping means that the value of the property will be propagated from the
parent to the child, if the property is an autonumber primary key in the container, which is a new
record in the data source after the autonumber has been generated.

Foreign Keys

When computable by SDO submit decomposition, foreign key values will be set to match the parent
key values. Foreign keys are computed when an update plan is produced.

Client Application Developer's Guide 3-31

Enabling SDO Data Source Updates

3-32 Client Application Developer's Guide

CHAPTERa

Accessing Data Services from Java
Clients

This chapter describes how to access data services in Java client applications. It covers the following
topics:

e Overview of the Data Service Mediator API

e What’s in the Data Service Mediator API?

e How to Use the Mediator API

e Getting a WebLogic JNDI Context for Liquid Data
e Using the Static Data Service Interface

o Using the Dynamic Data Service Interface

e Using Navigation Functions

Overview of the Data Service Mediator API

The Data Service Mediator API gives Java client applications an easy-to-use programmatic interface
for accessing information from Liquid Data data services. To use the Mediator API, Java applications
simply instantiate a remote data service interface and invoke any public functions on the interface,
including read, submit, and navigate functions. When a read function or navigation function is invoked
through the Mediator API, the client application gets back information as an SDO data object, also
known as a data graph.

Client Application Developer's Guide 4-1

Accessing Data Services from Java Clients

42

As discussed in the Chapter 3, “Enabling SDO Data Source Updates,” SDO is the client-side data
programming model for Liquid Data. The SDO API consists primarily of functions for getting and
manipulating data objects and their properties.

Note: For more information on working with Data Objects, see Chapter 2, “Client Programming
with Service Data Objects (SDO).”

Like the SDO data programming interfaces, the Mediator API enables client applications to use either
a typed or untyped approach to using data services. The untyped interface lets client applications use
data services that are either unknown or not created at client development time.

A data object acquired through the untyped mediator API can be cast to a typed object, as long as its
structure is compatible with the schema of the type to which it is being cast. In fact, a development
pattern that can streamline programming when working with multiple data services is to use untyped
APIs for invoking data service functions and subsequently casting the acquired objects to their
appropriate types.

This chapter discusses the typed and untyped Mediator interfaces. The Mediator API contains several
more advanced features as well. These are discussed in Chapter 8, “Advanced Topics.” They include:

e Return value filtering, ordering, and truncating. Filter and order features in the Mediator
API give client applications flexibility for controlling how results are returned by data service
function invocation. For more information, see “Applying Filter Data Service Results,” and
“Ordering and Truncating Data Service Results,” in Chapter 8, “Advanced Topics.”

e Streaming Liquid Data information. Most of the data service interfaces return data as XML
objects. When a function is invoked, Liquid Data materializes the resulting XML in memory.
Certain queries, such as periodic, administrative-related queries used to inventory a data set,
for example, are too large for in-memory materialization to be practical. The streaming
interfaces provide for a stream-oriented accessor and file-based materialization of the result
object. For more information, see “Consuming Large Result Sets (Streaming API),” in
Chapter 8, “Advanced Topics.”

e Ad hoc query interface. The PreparedExpression interface gives Liquid Data clients the ability
to invoke ad hoc XQuery expressions against data service results. The ad hoc query interface is
similar in spirit to the prepared expression interface of JDBC. Ad hoc queries return data as
XMLObjects.

Client Application Developer's Guide

What’s in the Data Service Mediator API?

What'’s in the Data Service Mediator AP1?

The Mediator API exposes data service functionality to Liquid Data clients. It contains interfaces and
classes for instantiating remote interfaces to the data services and executing functions on the
interface. The functions defined for the data service are available in the Mediator API.

The generic, untyped Mediator API classes and interfaces are in the following JAR file:
1d-client.jar

The Data Service Mediator package is named as follows:
com.bea.ld.dsmediator.client

The API consists of the classes and interfaces listed in the following table.

Table 4-1 Liquid Data Mediator API

Interface or Class Name Description
DataService Interface for data services that returns data as Data Objects.
PreparedExpression Interface for preparing and executing ad hoc queries that return

information as XML objects. An ad hoc query is one that is defined in
the client program, not in the data service.

DataServiceFactory Factory class for creating Untyped data service interface instances.

StreamingDataService Interface for data services that returns data as a token stream.

StreamingPreparedExpression Interface for preparing and executing ad hoc query functions that
return information as a stream. An ad hoc query is one that is defined
in the client program, not in the data service.

The static mediator interface extends the generic mediator interface, and gives clients a typed
approach for instantiating and invoking data service functions. For example, the following class
definition represents a typed data service interface:

public class dataservices.Customer extends
com.bea.ld.dsmediator.client.XMLDataServiceBase { ... }

The typed data service interface is in the SDO Mediator Client JAR files generated from a Liquid Data
project.

The exception class for mediator errors is in the following package:

com.bea.ld.dsmediator.client.exception

Client Application Developer’s Guide 4-3

Accessing Data Services from Java Clients

In addition to an exception for general mediator errors (SDoMediatorException) there are
exceptions for ad hoc queries (ServerPrepareException) and streaming access

(streamingException).

Exceptions that are generated by the data source (such as sQLException) are wrapped in an SDO
Exception, and can be accessed at the label #sdoException.detail.

Setting the Classpath

To develop mediator client programs, include the preceding JARs in the system CLASSPATH of the
development computer.

For example, on Microsoft Windows operating system, the command for setting the class path would
be:

set CLASSPATH=%CLASSPATH%;Demo-ld-client.jar;
C:\bea\weblogic8l\server\lib\weblogic.jar;
C:\bea\weblogic81l\liquiddata\lib\wlsdo.jar;
C:\bea\weblogic8l\server\lib\xbean.jar;
C:\bea\weblogic81l\liquiddata\lib\ld-client.jar;

Note that this assumes that the first item, Demo-1d-client . jar, is in the current directory and
that the WebLogic home directory is ¢: \bea\weblogic8g1i. If different on your system, modify the
path to the locations where these resides on your system.

Also note that when developing your own applications, you will need to substitute the name of
Demo-1d-client.jar with the name of the JAR file generated from your Liquid Data-enabled
application.

4-4 Client Application Developer's Guide

Creating the Mediator Client JAR File from the Command Line

Creating the Mediator Client JAR File from the Command Line

Client applications can access the classes representing the typed data service interface using a JAR
(Java Archive) file generated from the Liquid Data project. The JAR file needs to be on the client
application development machine. The file is named in the form:

<AppName>-1ld-client.jar

There are two ways to generate the JAR file:
e From the Workshop UI, as described in the Data Services Developer’s Guide.

e From the command line of the data service development machine.

In most cases, the JAR file would be generated by the Liquid Data administrator and distributed to
data client programmers.

This section describes how to generate the client JAR from the command line. To perform the
procedure, first build the EAR file and then the client JAR file.

Build an EAR File

To create a mediator client JAR file, you first need to create an EAR (Enterprise Archive) file from the
Liquid Data application. An EAR file is similar to a JAR file—it contains a set of deployable
application artifacts.

To build an EAR file, perform the following steps:

1. Open the application by opening the Workshop application file in WebLogic Workshop, typically
found in a directory location such as the following;

<bea home>\user projects\applications\<WLDomain>\<AppName>.work

2. Build the application by pressing the F7 key, or select Build Application from the Build menu.
This builds the entire application. For your own applications, you will only need to build and
deploy the Liquid Data specific artifacts, such as web services, schemas, and so on.

3. Select build Ear from the Build menu. The following file is produced:
<bea_home>\user_ projects\applications\<WLDomain>\<AppName>.ear

4. Ifit is not already running, start the WebLogic Server. From the Tools menu, select WebLogic
Server — Start WebLogic Server.

For more information about building an EAR file, refer to the Data Services Developer’s Guide.

Client Application Developer's Guide 4-5

Accessing Data Services from Java Clients

4-6

Build the Client JAR

To use data service of a Liquid Data project in a client application, you need to generate a client
version of the Liquid Data project Java archive. The client version includes wrapper classes that allow
the client to call the data service functions through a dynamic API.

Generate the client JAR file from the EAR file you created earlier (see “Build an EAR File” above) by
performing the following steps:

1. At acommand prompt, navigate to the directory:
<bea_home>\weblogic8l\liquiddata\lib\sdoclientmediator

The directory contains several files, including a build script and a ANT build configuration file.
You should not have to modify these files.

2. Run the build script using the format:
1d_client_gen <LocationOfArchive> [<LocationOfDirectory>] [<LocationForTempDir>|

Where <LocationQfArchive>, <LocationQfDirectory>, and <LocationForTempDir> arguments
are defined as described in the following table.

Argument Description

<LocationQfArchive> The fully qualified name of the EAR file you generated in step 4 of
the Build an EAR File instructions.

<LocationQfDirectory> The folder where you want the generated client JAR file to be
placed. This is an optional parameter. If not specified, the current
directory is used.

<LocationForTempDir> The folder where you want the temporary, expanded EAR
directory to be placed. This is an optional parameter. If not
specified, the current directory is used.

For example:

1d_client _gen C:\bea\user projects\applications\danube\Demo\Demo.ear
C:\test

When you run 1d_client gen, the following file is produced:

C:\test\Demo-1d-client.jar

Client Application Developer's Guide

How to Use the Mediator API

When working with your own applications, "Demo" in the generated name will be replaced by a
name derived from your EAR file.

How to Use the Mediator API

To use the Data Service Mediator API to invoke data services, follow these general steps in your
application:

e Step 1: Import the com.bea.1d.dsmediator.client package.

e Step 2: Create a JNDI context for the WebLogic Server that hosts the Liquid Data application.
(For more information, see “Getting a WebLogic JNDI Context for Liquid Data.”)

For complete information, see:

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/jndi/WLInitialContex
tFactory.html

e Step 3: Instantiate remote interfaces for the data service. You can use either the typed data
service interface or untyped data service interface. The untyped data service interface is
generic—the data service name is passed as an argument. For example:

DataService ds = DataServiceFactory.newXmlService (
JndiCntxt, "RTLApp", "ld:DataServices/RTLServices/Customer") ;
Object params[] = {"CUSTOMER1"};
DataObject myCustomer =
(DataObject) ds.invoke ("getCustomerByCustID", params) ;

Here is the same operation using the typed interface:

Customer ds = Customer.getlInstance (JndiCntxt, "RTLApp") ;

e Step 4: Invoke a function on the data service. The following is the operation using the untyped
interface:

Object params[] = {"CUSTOMER1"};
ds.invoke ("getCustomerByCustID", params) ;

Here is the same operation using the typed interface:

CUSTOMERDocument myCust = ds.getCustomerByCustID ("CUSTOMER1") ;

When a read or navigate function is invoked, the function returns an SDO data object. For more
information, see Chapter 2, “Client Programming with Service Data Objects (SDO).”

Client Application Developer's Guide 4-7

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/jndi/WLInitialContextFactory.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/jndi/WLInitialContextFactory.html

Accessing Data Services from Java Clients

Getting a WebLogic JNDI Context for Liquid Data

4-8

In general, WebLogic JNDI services allow client applications to access named objects on a WebLogic
Server. For Liquid Data, you use JNDI calls to obtain references to remote data services. (Only one
JNDI call is needed because the call is created in the context and is passed to the data services
factory.) Once you have the server context, you can invoke functions and acquire information from
data services.

To get the WebLogic server context, set up the JNDI initial context by specifying the
INITIAL_CONTEXT_FACTORY and PROVIDER_URL environment properties:

o The value of INITIAL_CONTEXT_FACTORY should be set to:

weblogic.jndi.WLInitialContextFactory

e The value of PROVIDER_URL should reflect the location (URI) of the WebLogic Server hosting
Liquid Data (for example, t3://localhost:7001).

Alocal client (that is, a client that resides on the same computer as the WebLogic Server) may bypass
these steps by using the settings in the default context obtained by invoking the empty initial context
constructor; that is, by calling new InitialContext ().

At this stage, the client may also authenticate itself by passing its security context to the
corresponding JNDI environment properties SECURITY_PRINCIPAL and
SECURITY_CREDENTIALS.

The code excerpt below is an example of a remote client obtaining a JNDI initial context using a
hashtable.

Hashtable h = new Hashtable() ;

h.put (Context.INITIAL CONTEXT FACTORY,
"weblogic.jndi.WLInitialContextFactory") ;

h.put (Context.PROVIDER URL, "t3://machinename:7001") ;
h.put (Context .SECURITY PRINCIPAL, <username>) ;

h.put (Context .SECURITY_ CREDENTIALS, <password>) ;

Be sure to replace the machine name and username/password with values appropriate for your
environment.

Client Application Developer's Guide

Using the Static Data Service Interface

Using the Static Data Service Interface

Once you have obtained an initial context to the server containing Liquid Data artifacts, you can
instantiate a remote interface for a data service. If you know the data service type at development
time, you can use the static data service interface, which uses strongly typed data objects.
Alternatively, the dynamic interface lets you use data services specified at runtime. The static
interface gives you a number of advantages, including type validation and code completion when using
development tools, such as Eclipse or your favorite development tool.

To use the static data service interface, you must have the SDO Mediator Client JAR file that was
generated from the desired Liquid Data enabled application. If you do not have the JAR file, contact
your administrator to acquire it.

Add the JAR file to your client application’s build path and import the data service package into your
application. For example, to use a data service named Customer in a Liquid Data project named data
services, use the following import statement:

import dataservices.Customer;

From there, you can instantiate the desired data service interface using the get Instance ()
function. In the function call, pass the following arguments:

e The server context object

e The name of the Liquid Data application that is deployed on the server

Once you have a remote data service instance, you can invoke functions on the data service. Any public
function defined on the data service is available in the generated class. For example, consider the
public data service functions shown in Figure 4-2.

Client Application Developer's Guide 4-9

Accessing Data Services from Java Clients

Figure 4-2 Customer Data Service

_’TQE\ Customer Data Service

e QebiCUSEOMIET

Bl @ CUSTOMER_PROFILE retallerType:CUSTOMER_PROFILE_TYPE
@ CustomerlD xsd:string
@ Firsthame xsd:sting
@ LastMame xsd:string
@ CustomerSince xsd:date
@ Emailaddress xsd:string
@ TelephoneMumber 7 xsdistring
@ 35N 7 xsdiskring
@ GirthDay 7 xsdidate
@ DefaulshippmentiMethod xsdisking
@ EmailMatification xsd:short
@ OrlineStatement xsd:short
@ LoginlD xsd:sking
=@ ADDRESS * retailerType:ADDRESS_TYEE
@ AddressID xsd:string
getApplOrder @ CustomerID xsd:string
@ FirstMame xsd:string

e Qb uskorner By CustID:

e et ustormerByloginIl

e b CustomerByZip

Yy

ApplOrder

) LastMame xsdistring

@ streetpddress_1 xsdisking
getCase 0 Streetaddress_2 7 xsdistring
) City xsdiskring

@ State xsdistring

@ ZipCode xsdistring
getCreditCard @ Country xsdistring

@ DavPhone 7 xsdiskring

) EveningPhone 7 xsd:string
@ Alias 7 xsdistring
getElecorder @ Status ? xsdistring

@ IsDefault xsd:short

The list of methods that are generated for the typed data service are listed below. Notice that methods
are created for each function in the data service, such as get Customer () and getApplOorder ()

Customer (Context, String)

getInstance (Context, String)

prepareExpress (Context, String, String)

submit (DataObject)

getCustomer ()

getCustomerToFile (String)

getCustomerByCustID (String)
getCustomerByCustIDToFile (String, String)
getCustomerByZip (String)
getCustomerByZipToFile (String, String)

getCase (CUSTOMERPROFILEDocument)

getCaseToFile (CUSTOMERPROFILEDocument, String)
getCreditCard (CUSTOMERPROFILEDoCument)
getCreditCardToFile (CUSTOMERPROFILEDocument, String)
getApplOrder (CUSTOMERPROFILEDocument)

4-10 Client Application Developer's Guide

Using the Static Data Service Interface

getApplOrderToFile (CUSTOMERPROFILEDocument, String)

getElecOrder (CUSTOMERPROFILEDocument)

getElecOrderToFile (CUSTOMERPROFILEDocument, String)

getCustomerByLoginID (String)

getCustomerByLoginIDToFile (String, String)
Several additional functions are generated as well. The submit () function is used to save changes to
the data objects served by the data service. The ToFile functions, such as getCustomerToFile ()
and getAllCustomersToFile (), are also generated for each function defined in the data service.
It allows a client to write results returned from the function call to a file specified as an argument. For
more information, see “Consuming Large Result Sets (Streaming API),” in Chapter 8, “Advanced
Topics.”

Another function that is automatically provided is the prepareExpression () function. This
function is for creating ad hoc queries against the data provided by the data service.

Listing 4-1 shows a small but complete example of using the typed interface.

Listing 4-1 Mediator Client Sample Using the Static Interface to a Data Service

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

import dataservices.rtlservices.Customer;

import retailerType.ArrayOfCUSTOMERPROFILEDocument ;

public class MyTypedCust
{
public static void main(String[] args) throws Exception {
//Get access to Liquid Data
Hashtable h = new Hashtable() ;
h.put (Context.INITIAL CONTEXT FACTORY,
"weblogic.jndi.WLInitialContextFactory") ;

h.put (Context.PROVIDER URL, "t3://localhost:7001") ;
h.put (Context.SECURITY PRINCIPAL, "weblogic") ;
Context context = new InitialContext (h);

// Use the Mediator API
Customer customerDS = xds.getInstance (context, "RTLApp");
ArrayOfCUSTOMERPROFILEDocument myCust =

(ArrayOf CUSTOMERPROFILEDocument) xds .getCustomerByCustID ("CUSTOMER2") ;
System.out.println(" CUST" + myCustomer) ;

Client Application Developer's Guide 4-1

Accessing Data Services from Java Clients

Using the Dynamic Data Service Interface

The dynamic data service interface is useful for programming with data services that are unknown or
do not exist at development time. It is useful, for example, for developing tools and user interfaces that
work across data services.

In the dynamic interface, specific data service names are passed as parameters of the function calls
instead of explicitly reflected in the function call names themselves. Like the Mediator API, the SDO
APT has both static (or strongly typed) and dynamic interfaces for working with data. In most cases,
the static Mediator API would be used alongside the equivalent dynamic SDO interfaces. Both have
the same use case—working with data when the type is unknown beforehand, for example:

DataService ds =
DataServiceFactory.newDataService (
context, "RTLApp", "ld:DataServices/RTLServices/Customer");
Object params = {"CUSTOMER2"};
DataObject myCustomer =
(DataObject) ds.invoke ("getCustomerByCustomerID", params) ;

println(myCustomer.get ("Customer/LastName")) ;

A data object returned by the dynamic interface can be down cast to a typed object, as follows:

DataService ds =
DataServiceFactory.newDataService (
context, "RTLApp", "ld:DataServices/Customer") ;
Object params = {"CUSTOMER2"};
CUSTOMERDocument myCustomer =
(CUSTOMERDocument) ds.invoke ("getCustomer", params) ;
println (myCustomer.getCUSTOMER () .get CUSTOMERNAME ()) ;

For an dynamic data service, use the newbataservice () method of the DataServiceFactory class.
In the method call, pass the following arguments:

e The server context object.
e The name of the Liquid Data application that is deployed on the server.

e The Liquid Data URI pointing to the location of the data service inside the Liquid Data
application.

Listing 4-2 shows a full example.

4-12 Client Application Developer's Guide

Using the Dynamic Data Service Interface

Listing 4-2 Mediator Client Sample Using the Dynamic Interface to a Data Service

import com.bea.ld.dsmediator.client.DataService;

import com.bea.ld.dsmediator.client.DataServiceFactory;
import commonj.sdo.DataObject;

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

public class MyUntypedCust

{

public static void main(String[] args) throws Exception {

//Get access to Liquid Data

Hashtable h = new Hashtable() ;

h.put (Context. INITIAL CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory") ;

h.put (Context .PROVIDER URL, "t3://localhost:7001") ;

h.put (Context. SECURITY_ PRINCIPAL, "weblogic") ;

h.put (Context. SECURITY_ CREDENTIALS, "weblogic") ;

Context context = new InitialContext (h);

// Use the Mediator API
DataService ds =
DataServiceFactory.newXmlService (context, "RTLApp",
"ld:DataServices/RTLServices/Customer") ;
DataObject myCustomer = (DataObject) ds.invoke ("getCustomer", null) ;
System.out.println(" Customer Information: \n" + myCustomer) ;

}

Client Application Developer’s Guide 4-13

Accessing Data Services from Java Clients

Using Navigation Functions

A navigation function lets you get data from a related data service. Relationships between data
services serve to model a logical connection between them. They also streamline your client
programming because you can invoke the relationship function from an instance of the current data
service. For example, from a Customer data service you can get a credit card list for a customer
instance, as in the following:

Customer myCustomer = Customer.getInstance (ctx, "RTLApp") ;
CUSTOMERPROFILEDocument custProfileDoc =
CUSTOMERPROFILEDocument . Factory.newInstance () ;
ArrayOfCREDITCARDDocument cc = myCustomer.getCreditCard (custProfileDoc) ;
A navigation function is called with an object of the calling data service being passed as an argument,

as shown in the sample.

To use a navigation function, include the interface for the related data service in the import
statements of your application, as shown in Listing 4-3.

Listing 4-3 Calling a Navigation Function Sample

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;

import dataservices.rtlservices.Customer;
import retailerType.CUSTOMERPROFILEDocument ;
import retailerType.CUSTOMERPROFILETYPE;
import retailerType.ArrayOfCREDITCARDDocument;

public class CustomerClientNavigation

{

4-14

public static void main(String[] args) throws Exception {

Hashtable h = new Hashtable() ;
h.put(Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory") ;
h.put (Context .PROVIDER URL, "t3://localhost:7001") ;
h.put(Context.SECURITY_PRINCIPAL,"weblogic");
h.put (Context .SECURITY CREDENTIALS, "weblogic") ;
Context context = new InitialContext (h);

Customer myCustomer = Customer.getInstance (context, "RTLApp");

CUSTOMERPROFILEDocument custProfileDoc =
CUSTOMERPROFILEDocument . Factory.newInstance () ;

Client Application Developer's Guide

Using Navigation Functions

CUSTOMERPROFILETYPE newCustProfile =

custProfileDoc.addNewCUSTOMERPROFILE () ;

CUSTOMERPROFILETYPE myCustPfl =

newCustProfile.
newCustProfile.
newCustProfile.
.setCustomerID (myCustPfl.getCustomerID()) ;
newCustProfile.
newCustProfile.
newCustProfile.
.setDefaulShippmentMethod (

newCustProfile

newCustProfile

newCustProfile.
newCustProfile.
custProfileDoc.

// Navigate to

ArrayOfCREDITCARDDocument cc =

myCustomer .getCustomerByCustID ("CUSTOMERO") .
getArrayOf CUSTOMERPROFILE () .
get CUSTOMERPROFILEArray (0) ;

setFirstName (myCustPfl.getFirstName()) ;
setLastName (myCustPfl.getLastName ()) ;
setADDRESSArray (myCustPfl .getADDRESSArray ()) ;

setCustomerSince (myCustPfl.getCustomerSince()) ;
setEmailAddress (myCustPfl.getEmailAddress()) ;
setEmailNotification (myCustPfl.getEmailNotification()) ;

myCustPfl.getDefaulShippmentMethod ()) ;

setOnlineStatement (myCustPfl.getOnlineStatement ()) ;
setLoginID (myCustPfl.getLoginID()) ;
set CUSTOMERPROFILE (newCustProfile) ;

CreditCard data service
myCustomer.getCreditCard (custProfileDoc) ;

System.out.println(cc) ;

Client Application Developer's Guide 4-15

Accessing Data Services from Java Clients

4-16 Client Application Developer's Guide

CHAPTERa

Accessing Data Services from
Workshop Applications

This chapter describes how you can use the Liquid Data control in WebLogic Workshop to develop
applications that consume data from data services. The following topics are included:

e WebLogic Workshop and Liquid Data
e Liquid Data Control JCX File

e (Creating Liquid Data Controls

Modifying Existing Liquid Data Controls

Using Liquid Data with NetUI

Using Liquid Data in Business Process Projects

Security Considerations With Liquid Data Controls

WebLogic Workshop and Liquid Data

The Liquid Data control gives WebLogic Workshop applications an easy way to use data services. When
you use a Liquid Data control to invoke data services, you get information back as a data object. A data
object is a unit of information as defined by the Service Data Objects (SDO) specification. For more
information on SDO, see Chapter 2, “Client Programming with Service Data Objects (SDO).”

Client Application Developer's Guide 5-1

Accessing Data Services from Workshop Applications

5-2

Note that many of the features available through the Mediator API are also available through the
Liquid Data control as well. These include:

e Function result filtering
e Ad hoc XQueries

o Result ordering, sorting, and truncating APIs

For more information on these features, see Chapter 8, “Advanced Topics.”

Liquid Data Control

The Liquid Data control is a wizard-generated Java file that exposes a data service functions to a
Workshop client application.You can add functions to a control from data services deployed on any
WebLogic server that is accessible to the client application, whether on the same WebLogic server as
the client application or on a remote WebLogic server. In either case, the Liquid Data Control wizard
retrieves all the data service functions on the server that you specify. It then lets you choose the ones
to include in your control.

If accessing data services on a remote server, metadata describing information that the service
functions return (in the form of XML schema files) is first downloaded from the remote server into the
current application. These schema files are placed in a schema project named after the remote
application. The directory structure within the project mirrors the directory structure of the remote
server. Liquid Data generates interface files for the target schemas associated with the queries and
the Liquid Data control (. jcx) file.

Use With Page Flow, Web Services, Portals, Business
Processes

Like any WebLogic Workshop control, you can use a Liquid Data control in applications such as web
services, page flows, and WebLogic integration business processes. After applying the control to a
client application, you can use the data returned from queries in the control in your application.

This chapter describes in detail how to use the control in a page flow-based web application. The steps
for using it in Portals and other WebLogic Workshop Projects are similar.

Client Application Developer's Guide

Liquid Data Control JCX File

Liquid Data Control JCX File

When you create a Liquid Data control, WebLogic Workshop generates a Java Control Extension

(. jcx) file. This file contains the methods included the control was created and a commented method
that, when uncommented, allows you to pass any XQuery statement to the server (called ad hoc
queries).

This section describes the Liquid Data control in detail and includes the following sections:
e Design View
e Source View

e Running Ad Hoc Queries Through a Liquid Data Control

Design View

The Design View tab of the Liquid Data control shows a graphical view of the data service methods
that were selected for inclusion in the control.

Figure 5-1 Design View of a Control File

RTLControl jox - §RTLSelFServiceConkrolsh,

[N <o . RTLControl

CUSTOMER,

v [

¥ CUSTOMERWIEhFilter

P executeQuEry
¥ getApparelProduct. ..

¥ getApparelProduct...

¥ getapplorderDetail.

¥ getapplorderDetail,

¥ getApplProducts

¥ getApplProduct s, ..

¥ getCaseview =]

[« | []

|| Diesign View [Source Yiew |

Client Application Developer's Guide 5-3

Accessing Data Services from Workshop Applications

Using the right-click menu, you can add or modify a control method (for example, by changing the data
service function accessed by a method). The right-click menu is context sensitive—it displays
different items if the mouse cursor is over a method or elsewhere in the control portion of the design
pane.

Source View

The Source View tab shows the source code of the Java Control Extension (. jcx) file. It includes as
comments the name of the data service function associated with each method. For update functions,
the data service bound to the update is the data service specified by the 1ocator attribute. (For
example, locator="ld:DataServices/RTLServices/ApplOrderDetailView.ds")

The signature for the method shows its return type. The return type for a read method is an SDO object
corresponding to the schema type of the data service that contains the referenced function. The SDO
classes corresponding to the data services used in the Liquid Data control reside in the Libraries
folder of the project. An interface is generated for each data service. The folder also contains a copy
of the schema files associated with the functions in the Liquid Data control (. jcx) file.

The Java Control Extension instance is a generated file. The only time you should need to edit the
source code is if you want to add a method to run an ad hoc query, as described in “Running Ad Hoc
Queries Through a Liquid Data Control” on page 5-7.

The the following example (Listing 5-1) shows a generated Liquid Data control (. jcx) file. It shows
the package declaration, import statements, and data service URI used with the queries.

Listing 5-1 Liquid Data Java Control Extension Sample

package Controls;

import weblogic.jws.control.*;

import com.bea.ld.control.LDControl;
import com.bea.ld.filter.FilterXQuery;
import com.bea.ld.QueryAttributes;

/**

*

@jc:LiquidData application="RTLApp"

urlKey="RTLApp.RTLSelfService.Controls.RTLControl"

*/

public interface RTLControl extends LDControl, com.bea.control.ControlExtension

{

/* Generated methods corresponding to stored queries. */

/**

5-4

Client Application Developer's Guide

Liquid Data Control JCX File

*

* @jc:XDS locator="ld:DataServices/RTLServices/ApplOrderDetailView.ds"
functionName="submitApplOrderDetailView"

*/

java.util.Properties[]
submitApplOrderDetailView (retailer.ORDERDETAILDocument rootDataObject)
throws Exception;

/**
*

* @jc:XDS locator="ld:DataServices/RTLServices/ProfileView.ds"
functionName="submitArrayOfProfileView"

*/

java.util.Properties[]
submitArrayOfProfileView (retailer.ArrayOfPROFILEDocument rootDataObject) throws
Exception;

/**
*

locator="1d:DataServices/RTLServices/ElecOrderDetailView.ds"
functionName="submitElecOrderDetailView"

*/

java.util.Properties[]
submitElecOrderDetailView (retailer.ORDERDETAILDocument rootDataObject) throws
Exception;

/**
*

* @jc:XDS functionURI="1ld:DataServices/CustomerDB/CUSTOMER"
functionName="CUSTOMER" schemaURI="1d:DataServices/CustomerDB/CUSTOMER"
schemaRootElement="ArrayOf CUSTOMER"

*/

dataServices.customerDB.customer.ArrayOfCUSTOMERDocument CUSTOMER () ;

/**
*

* @jc:XDS functionURI="1ld:DataServices/CustomerDB/CUSTOMER"
functionName="CUSTOMER" schemaURI="1d:DataServices/CustomerDB/CUSTOMER"
schemaRootElement="ArrayOf CUSTOMER"

*/

dataServices.customerDB.customer.ArrayOf CUSTOMERDocument
CUSTOMERWithFilter (FilterXQuery filter) ;

/**
*
* @jc:XDS functionURI="1ld:DataServices/RTLServices/ApplOrderDetailView"
functionName="getApplOrderDetailView"
*/
retailer.ORDERDETAILDocument getApplOrderDetailView(java.lang.String pO) ;

Client Application Developer's Guide 5-5

Accessing Data Services from Workshop Applications

/**

*

* @jc:XDS functionURI="1ld:DataServices/RTLServices/ProfilevView"
functionName="getProfileView" schemaURI="urn:retailer"
schemaRootElement="ArrayOf PROFILE"

*

/
retailer.ArrayOfPROFILEDocument getProfileViewWithFilter (java.lang.String
p0, FilterXQuery filter);

*

/
Default method to execute an ad hoc query.
This method can be customized to have a differnt method name (e.g.
runMyQuery), or to return an SDO generated class (e.g. Customer),
or to return the DataObject class, or to have one or both of the following
two extra parameters: com.bea.ld.ExternalVariables and
com.bea.ld.QueryAttributes
e.g. commonj.sdo.DataObject executeQuery (String xquery,
ExternalVariables params) ;
e.g. commonj.sdo.DataObject executeQuery (String xquery,
QueryAttributes attrs);
e.g. commonj.sdo.DataObject executeQuery (String xquery,
ExternalVariables params, QueryAttributes attrs);

* ok ok ok ok ok o Xk % % ok

*

*/

com.bea.xml.XmlObject executeQuery(String query) ;

5-6 Client Application Developer's Guide

Liquid Data Control JCX File

Running Ad Hoc Queries Through a Liquid Data Control

A client application can issue ad hoc queries against data service functions. You can use ad hoc
queries when you need to change the way a data service function returns data. Ad hoc queries are most
often used to process data returned by data services deployed on a WebLogic Server. Ad hoc queries
are especially useful when it is not convenient or feasible to add functions to an existing data service.

A Liquid Data control generated from Liquid Data wizard has a commented ad hoc query method that
can serve as a starting point for generating an ad hoc query. To generate the ad hoc query, follow these
steps:

L.

2.

If you do not already have a Liquid Data control (. jcx) file, generate one using the Liquid Data
Control wizard.

Add the following lines of code in the . §cx file:
com.bea.xml.XmlObject executeQuery(String query) ;

(You can replace the function name in with your own to impart meaning to the ad hoc query
function. The ad hoc query returns an XMLObject by default, but you can return a typed SDO or
typed XMLBean class that matches the return type XML for the ad hoc query. You can also
optionally supply ExternalVariables or QueryAttributes (or both) to an ad hoc query.)

When invoking this ad hoc query function from a Liquid Data control, the caller needs to pass
the query string (and the optional ExternalVariables binding and QueryAttributes if desired).
For example, a ad-hoc query signature in a Liquid Data control will look like the following:

public interface MyLDControl extends LDControl,
com.bea.control.ControlExtension

ldcProduucerDataServices.address.ArrayOfADDRESSDocument
adHocAddressQuery (String xquery) ;

}

The code to call this Liquid Data control (from a WebService .jws file for example) would be:

/** @common:control */
public ldcontrol.MyLDControl myldcontrol;

/** @common:operation */

public ldcProduucerDataServices.address.ArrayOfADDRESSDocument
adHocAddressQuery ()

{

String adhocQuery =

"declare namespace fl1 = \"ld:1ldc_produucerDataServices/ADDRESS\";\n" +
"declare namespace ns0=\"1ld:1ldc produucerDataServices/ADDRESS\";\n"+
"<ns0:ArrayOfADDRESS>\n"+"{for $i in £1:ADDRESS ()\n" +

"where $i/STATE = \"TX\"\n"+" return $i}\n" +

Client Application Developer's Guide 5-7

Accessing Data Services from Workshop Applications

"</ns0:ArrayOfADDRESS>\n";
return myldcontrol.adHocAddressQuery (adhocQuery) ;

}

Creating Liquid Data Controls

5-8

This section describes the steps for creating a Liquid Data control and using it in a web project. The
general steps to Create a Liquid Data control are:

Step 1: Create a Project in an Application

Step 2: Start WebLogic Server, If Not Already Running

Step 3: Create a Folder in a Project

Step 4: Create the Liquid Data Control

Step 5: Enter Connection Information to the WebLogic Server
Step 6: Select Data Service Functions to Add to the Control

The following sections describe each of these steps in detail.

Step 1: Create a Project in an Application

Before you can create a Liquid Data control in WebLogic Workshop, you must create an application
and a project in that application. You can create a Liquid Data control in most types of Workshop
projects. The most common projects in which you create Liquid Data controls are:

e Web Projects
e Web Service Projects
e Portal Web Projects

e Process Web Projects

Step 2: Start WebLogic Server, If Not Already Running

Make sure that the WebLogic Server that host the Liquid Data-enabled application is running,
WebLogic Server can be running locally (on the same domain as WebLogic Workshop) or remotely (on
a different domain from Workshop).

Step 3: Create a Folder in a Project

Create a folder in the project to hold the Liquid Data control by selecting a folder and right-clicking
(as shown in Figure 5-2). You can also create other controls (database controls, for example) in the

Client Application Developer's Guide

same folder as needed. Workshop controls cannot be created at the top level of a project directory
structure. Instead, they must be created in a folder. When you create the folder, enter a name that

makes sense for your application.

Figure 5-2 Create a New Folder

4 Demo
=129 crwsProject
C) CreditRatingws
(3] WEB-INF

@ TestProcess java
Lab,

{28 Danubel

CCust

2 Findin Files. .

C)Dats

Creating Liquid Data Controls

Creso
(i) WEB

Ingkall

erra
l-|_§ Test

[C] Dataser

Build Danubebeb
Clean Danubeteb

Portal

=] Portlet

I5P File

i3 weh Service

Fage Flaw

1 Madules
() Libraries

(3] Security

Impart. ..

S 2ava contral

Delete:
Remave From Application

Rename

%] Java Class
5% Process Fils
o Transformation Fils

Propetties

COther File Types...

Step 4: Create the Liquid Data Control
To create a Liquid Data control, start the Java Control Wizard by right-clicking on the new folder in
your project and choosing New — Java Control as shown in Figure 5-3. (You can also create a control
using the File —New — Java Control menu item.)

S o

Client Application Developer's Guide

5-9

Accessing Data Services from Workshop Applications

Figure 5-3 Create a New Liquid Data Control

=59 RTLSel Servic I # @c:¥D3 funct
52 Controls 2]l Find in Files... y
+ 51 T
ECAWLEE pew EE
e ;
@ s Instal » l-|§ Web Service
| Page Flow
] Build RTLSelfService ; B
ortlel
(5 Clean RTLSelFService iz
AArTLc Partal
=42 crystalrep Import... 3 1ava Cantrol
() Active Delete @ Java Class
82 i
g el Femave from Application &. Process File
: m
o . Renarmne Cgl Transformation File
[« Other File T
| Froperties R
Palette
g : !| 1 Folder...
Operations |

Next, select Liquid Data from the New Java Control dialog as shown in Figure 5-4. Enter a filename for
the control (. jcx) file and click Next.

Figure 5-4 New Java Control Dialog

New Java Control

Select a control to extend or select Custom ko create a new custom contral:

-@ Custom E
B patabass |:

Web Service

E3J Control

o WS

+2 Liquid Data

Tuxedo

24 application'iew |z|

File name: Ttirled |

{Danubewteb M CustomerPFY,

| Mext | | “reate || Cancel |

5-10 Client Application Developer's Guide

Creating Liquid Data Controls

Step 5: Enter Connection Information to the WebLogic Server

The New Java Control - Liquid Data dialog (Figure 5-5) allows you to enter connection information for
the WebLogic Server that hosts your Liquid Data application or project. If the server is local, the
Liquid Data control uses the connection information stored in the application properties. (To view
these settings, access the Tools — Application Properties menu item in Workshop.)

If the server is remote, choose the Remote option and fill in the appropriate server URL, user name,
and password.

Note: You can specify a different username and password with which to connect to a local machine
in the Liquid Data Control Wizard as well. To do this, click the Remote button and enter the
connection information (with a different username and password) for your local machine.
The security credentials specified through the Application Properties or through the Liquid
Data Control Wizard are only used for creating the Liquid Data Control (. j cx) file, not for
testing queries through the control. For more details, see “Security Considerations With
Liquid Data Controls” on page 5-28.

When the information is correct, click Create to go to the next step.

Figure 5-5 Liquid Data Control Wizard: Connection Information

New Java Control - Liquid Data

P IES

STEP 1

STEP 2
Liguid Data Application () Current (") Other

| eroue | =

|Previous || | | Create Il Cancel |

Client Application Developer's Guide 5-11

Accessing Data Services from Workshop Applications

5-12

Step 6: Select Data Service Functions to Add to the Control

In the Select Liquid Data Queries screen, select the data service functions you want to use in your
application from the left pane and click Add. When done, click Finish. At that point, the Liquid Data
Control (. 5 cx) file is generated, with a call for each selected function.

Figure 5-6 Liquid Data Control Wizard—Select Queries

&% Select Liguid Data Queries. ..

Select one or more queries to add to the control,

I_] DataServices
=) Customer.ds

% getCustarner()

@ getPaymentList()

J submitCustomer ()
1 CUSTOMERS.ds
|:| getCustorerCreditRatingResponse. ds
CITEMS.ds
] PAYMENTS.ds
() PO_CUSTOMERS. ds
) PO_ITEMS.ds

The LiquidbataControl.jar file is copied into the Libraries directory of your application when
you create the Liquid Data Control.

The control appears with the functions you chose. Also, WithFilter functions are added for each
function, such as getCustomerWithFilter (). A filter function lets you further filter the results

normally returned by a function. For more information, see “Applying Filter Data Service Results” in
Chapter 8, “Advanced Topics.”

After you have added all the queries you need in the wizard, click Finish. Workshop generates the
.jex Java Control Extension file for your Liquid Data control. Each method in the . jcx file returns
an spo type corresponding to the appropriate (or corresponding) data service schema. The spo
classes are stored in the Libraries directory of the Workshop Application.

Client Application Developer's Guide

Modifying Existing Liquid Data Controls

Modifying Existing Liquid Data Controls

This section describes the ways you can modify an existing Liquid Data control. When you edit a
control, the SDO classes that are available to the control are recompiled, which means that any
changes to data service are incorporated to the controls at that point as well.

This section contains the following procedures:
e Changing a Method Used by a Control
e Adding a New Method to a Control

e Updating an Existing Control if Schemas Change

Changing a Method Used by a Control

To change a data service function in a Liquid Data control, perform the following steps:
1. In WebLogic Workshop, open the Design View for a Liquid Data control (. jcx) file.

2. Select the method you want to change, right-click, and select Edit in source view to bring up the
source editor. (See Figure 5-7.)

Figure 5-7 Changing a Function in the Control

RTLContral.jox - {RTLSelFService i Conkrals
I | |¢c " RTLControl

¥ CUSTOMER

¥ CUSTOMERWithFilker

¥ executeQuery
— QetApparelProduct View

Edit in source view

Rename

Delete fer

3. In the source view, change the comment for the function. Change the functionName value to the
new function you want to use. If necessary, change the functionURI value as well. This should be
the path to the data service that contains the function.

4. Change the return type, parameters, and name of the function.

When you save your changes, the SDO classes based on the control are automatically recompiled.

Client Application Developer's Guide 5-13

Accessing Data Services from Workshop Applications

Adding a New Method to a Control

To add a new method to an existing Liquid Data control, perform the following steps:
1. In Workshop, open an existing control in Design View.

2. In the control Design View, move your mouse inside the box showing the control methods,
right-click, then select Add Method as shown in Figure 5-8.

Figure 5-8 Adding a Method to a Control

RTLConkrol.jox - fRTLSelFServiceH Controls)

R [zo» . RTLControl |

——— 5T OMER
ey CLISTOMER WiERFilker

o E———] T | Edit in source view |

3. Enter a name for the new method.
4, Right-click the new method, and select Edit in Source View to bring up the source editor.

5. Inthe Source View, add a comment for the function. Change the functionName value to the new
function you want to use. If necessary, change the functionURI value as well. This should be the
path to the data service that contains the function.

6. Change the return type, parameters, and name of the function.

Updating an Existing Control if Schemas Change

If any of the schemas corresponding to any methods in a Liquid Data control change, you must build
the Liquid Data data service folders to regenerate the SDO classes for the changed schemas. If the
changes result in a different return type for any of the functions, you must also modify the function in
the control.

When you edit the control, its SDO classes are automatically regenerated.

5-14 Client Application Developer's Guide

Using Liquid Data with NetUl

Using Liquid Data with NetUI

The WebLogic NetUI tag library allows you to rapidly assemble JSP-based applications that display
data returned by Liquid Data. The following sections list the basic steps for using NetUI to display
results from a Liquid Data control:

e Generating a Page Flow From a Control
e Adding a Liquid Data Control to an Existing Page Flow
e Adding Service Data Objects (SDO) Variables to the Page Flow

e Displaying Array Values in a Table or List

Generating a Page Flow From a Control

When you ask Workshop to generate a page flow, Workshop creates the page flow, a start page
(index.jsp), and a JSP file and action for each method you specify in the Page Flow wizard.

To Generate a Page Flow From a Control

Perform the following steps to generate a page flow from a Liquid Data control.

1. Select a Liquid Data control (. jcx) file from the application file browser, right-click, and select
Generate Page Flow.

2. Inthe Page Flow Wizard (see Figure 5-9), enter a name for your Page Flow and click Next.

Client Application Developer's Guide 5-15

Accessing Data Services from Workshop Applications

Figure 5-9 Enter a Name for the Page Flow

Page Flow Wizard - Page Flow Mame ; jl

Mame And Location

Page Flow Mame: | mvPageFlow |

Location; {myTestweb}/myPageFlow]

Controller Mame:; | myPageFlowController, jpf |

Page Flow Nesting

Mested page Flows are used to gather and return infarmation
to a caling page flow,

[Make this a nested page Flow

| Mk I | || Cancel |

3. On the Page Flow Wizard - Select Actions dialog, check the methods for which you want a new
page created. The wizard has a check box for each method in the control. (See Figure 5-10.)

5-16 Client Application Developer's Guide

Using Liquid Data with NetUl

Figure 5-10 Choose Liquid Data Methods for the Page Flow

Page Flow Wizard - Select Actions x|

Pakential Actions:

Return Tvpe Method Mame
retailer, OrderDetailviewDocument ApplCrderDetailview(java.lang....
[retailer, CustomerViewDocument Customerview(java.lang.String ...
[retailer, OrderDetailviewDocument ElecOrderDetailview(java.lang,...
retailer . OrderSummaryViewDoc, .. OrderSummaryWiew!java.sql. Ti...
[retailer. OrderSummaryViewDoc. .. OrderSummaryiewsiithPaginat ...
[retailer ProfileViswioooment ProfileView(java.lang. String cus. ..

| Select all | | Deselect Al |

Previaus Create Cancel

4. Click Create.

Workshop generates the . jpf Java Page Flow file, a start page (index. jsp), and a JSP file for
each method you specify in the Page Flow wizard.

5. Add and initialize variables to the . jpf file based on the SDO classes. For details, see “Adding
Service Data Objects (SDO) Variables to the Page Flow” on page 5-18.

6. Drag and drop the SDO variables to your JSPs to bind the data from Liquid Data to your page
layout. For details, see “Displaying Array Values in a Table or List” on page 5-22.

7. Build and test the application in WebLogic Workshop.

Adding a Liquid Data Control to an Existing Page Flow

You can add a Liquid Data control to an existing Page Flow . jpf file. The procedure is the same as
adding a Liquid Data control to a Web Service as described in the section “Adding a Liquid Data
Control to a Web Service Project” in Chapter 6, “Exposing Data Services through Web Services.”
However, Instead of opening the Web Service in Design View as described in that chapter, you open
the Page Flow . jpf file in Action View.

Client Application Developer's Guide 5-11

Accessing Data Services from Workshop Applications

5-18

You can also add a control to an existing page flow from the Page Flow Data Palette (available in Flow
View and Action View of a Page Flow) as shown in Figure 5-11.

Figure 5-11 Adding a Control to a Page Flow from the Data Palette

|| Data Palette b
Controls Add v
= {_E ryZonkrol [j Database
=+ getCustomer Wweb Service
=+ getPaymentList ETE Cantral
=+ submitCustomer e
Form Beans B T
[metCustomerFarm £ Timer
E TtemForrn 5
[E] submitCustomerForm = [
Tuxedo hy
D@ Integration Cantrals 3

Adding Service Data Objects (SD0) Variables to the Page Flow

To use the NetUI features to drag and drop data into a JSP, you must first create one or more variables
in the page flow . jpf file. The variables must be of the data object type corresponding to the schema
associated with the query.

Note: A data object is the fundamental component of the SDO architecture. For more information,
see Chapter 2, “Client Programming with Service Data Objects (SDO).”

Defining a variable in the page flow . i pf file of the top-level class of the SDO function return type
provides you access to all the data from the query through the NetUI repeater wizard. The top-level
class, which corresponds to the global element of the data service type, has “Document” appended to
its name, such as CUSTOMERDocument.

When you create the Liquid Data control and the SDO variables are generated, an array is created for
each element in the schema that is repeatable. You may want to add other variables corresponding to
other arrays in the classes to make it more convenient to drag and drop data onto a JSP, but it is not
required. For example. when an array of CUSTOMER objects can contain an array of ORDER objects,
you can define two variables: one for the CUSTOMER array and one for the ORDER array. You can then
drag the variables to different JSP pages.

Define each variable with a type corresponding to an SDO object. Define the variables in the source
view of the page flow controller class. The variables should be declared public. In the following
example, the bold-typed variable declarations show an example of user variable declarations:

Client Application Developer's Guide

Using Liquid Data with NetUl

public class CustomerPFController extends PageFlowController
{

/**

* This is the control used to generate this pageflow

* @common:control

*/

private DanubeCtrl myControl;

public CUSTOMERDocument var;
public POITEM currentItem;
public PAYMENTListDocument payments;

Once defined in the page flow controller, the variables appear on the Data Palette tab. From there,
you can drag-and-drop them onto JSP files. When you drag-and-drop an array onto a JSP file, the NetUI
Repeater Wizard appears and guides you through selecting the data you want to display. (See

Figure 5-12.)

Figure 5-12 Page Flow Variahles for XMLBean Objects

#

|| Property Editor "/ Document Structure

submitCustomer

Description
ubritCuskarner
|| Data Palette

Page Flow
Properties
#| currentItem
-

= 4l «

variables added

ﬂpayments
to the Page Flow

ﬂ war
ﬂ customerLink

Public Controls
Actions

applyItem
& back
£ begin

To populate the variable with data, initialize the variable in the page flow method corresponding to
the page flow action that calls the query. For details, see “To Initialize the Variable in the Page Flow”
on page 5-20.

Client Application Developer's Guide 5-19

Accessing Data Services from Workshop Applications

5-20

To Add a Variable to a Page Flow

Perform the following steps to add a variable to the page flow:

L.
2.

5.

Open your Page Flow (. jpf) file in Workshop.
Open the Source View tab.

In the variable declarations section of your Page Flow class, enter a variable with the SDO type
corresponding to the schema elements you want to display. Depending on your schema, what you
want to display, and how many queries you are using, you might need to add several variables.

To determine the SDO type for the variables, examine the method signature for each method
that corresponds to a query in the Liquid Data control. The return type is the root level of the
SDO class. Create a variable of that type. For example, if the signature for a control method is:

org.openuri.temp.schemas.customer.CUSTOMERDocument getCustomer (int pl) ;
create a variable as follows:

public org.openuri.temp.schemas.customer.CUSTOMERDocument var;

After you create the variables, initialize them as described in the following section.

To Initialize the Variable in the Page Flow

You can initialize the variable by calling a Liquid Data control function, which will populate the
variable with the returned data. Initializing the variables ensures that the data bindings to the
variables work correctly and that there are no tag exceptions when the JSP displays the results the
first time.

Perform the following steps to initialize the variables in Page Flow:

L.
2.
3.

Open your Page Flow (. jpf) file in Workshop.
Open the Source View.

In the page flow action that corresponds to the Liquid Data query for which you are going to
display the data, add the code to initialize the variable.

The following example shows how to initialize an object on the Page Flow. The code (and comments)
in bold has been added. The rest of the code was generated when the Page Flow was created from the
Liquid Data control (see “Generating a Page Flow From a Control” on page 5-15).

Client Application Developer's Guide

Using Liquid Data with NetUl

public class CustomerPFController extends PageFlowController

{
/**
* This is the control used to generate this pageflow
* @common:control
*/

private DanubeCtrl myControl;
public CUSTOMERDocument var;

/**
* Action encapsulating the control method :getCustomer
* @jpf:action
* @jpf:forward name="success" path="viewCustomer.jsp"
* @jpf:catch method="exceptionHandler" type="Exception"
*/

public Forward getCustomer (GetCustomerForm aForm)

throws Exception
var = myControl.getCustomer (aForm.pl) ;

return new Forward ("success") ;

Working with Data Objects

After creating and initializing a data objects as a public variable in the Page Flow, you can drag and
drop elements of the object onto your application pages (such as JSPs) from the Data Palette.

The elements appear in dot-delimited chain format, such as:

pageFlow.var.CUSTOMER . CUSTOMERNAME

Notice that the function that actually returns the element value is get CUSTOMERNAME () , which
returns a java.lang.String value, the name of a customer.

Asyou edit code in the source view, Workshop offers code completion for method and member names
as you type. A selection box of available elements appears in the data object variable as shown in
Figure 5-13.

Client Application Developer's Guide 5-21

Accessing Data Services from Workshop Applications

Figure 5-13 DataObject Method Name Completion

editCustomer,jsp* - {Danube'ebH CustamerPFY

<%0 taglib uri="netui-tags-htwl.tld” prefix="netui”%-
<%0 taglib uri="netui-tags-template,tld” prefix="netui-template”%»
<netui-tenplate: tenplate templatePage="/resources/jsp/tenplate.jsp™s>
<rnetui-template:sethttribute walue="subnitCustoner” name="title" />
<netui-template: section nawe="bodyZection™> <hr/ >
<netui:form action="subnitlustoner s
<table class="tablebody
<tr class="tablehead">
<td align="left” colspan="2">
Results drea <hr/>
CUSTID: <netui:label walue="{pageFlow.wvar.CUSTOMER. CUSTOMERID } "< /netui: labelk< /b

|I|><

<hr/=<h>NAME: <netui: textBox dataiource="{pageFlow, var. CTSTOMER. }"></netul: texthoxs
<hr/=CREDIT SCORE: <netui:textBox dataSource="/pageFlov.var. [container
<netui:button type="submit” walue="5Submit All Changes” action=|containmentProperty
</hx CREDITArray
<netui-data:repeater dataSource="[pageFlow.var. CU3TOMER. ORDERArray | CUSTOMERID
<netui-data:repeaterHeaders CUSTOIMERNANE
<tahle class="tablebody”™ border="1": dataGraph
<tr class="tahlehead” walign="top™= immutahle
< th>0RDERID /th nil Zl
Kl Sl ORDERArray
type =

Design Yiew | Source Yiew | T

Note: For more information on programming with Liquid Data data objects, see Chapter 2, “Client

Programming with Service Data Objects (SDO).”

Displaying Array Values in a Table or List

Liquid Data maps to an array any data element specified to have unbounded maximum cardinality in
its XML schema definition. Unbounded cardinality means that there can be zero to many (unlimited)

occurrences of the element (indicated by an asterisk in the return type view of the Liquid Data
Console). Such elements are named with the prefix Arrayof.

When you drag and drop an array value onto a JSP File, BEA WebLogic Workshop displays the
Repeater wizard to guide you through the process of selecting the data you want to display. The
Repeater wizard provides choices for displaying the results in an HTML table or in a list.

Adding a Repeater to a JSP File

To add a NetUI repeater tag (used to display the data from a Liquid Data query) to a JSP file, perform

the following steps:

1. Open a JSP file in your Page Flow project where you want to display data. This should be the page

corresponding to the action in which the variable is initialized.

2. Inthe Data Palette — Page Flow Properties, locate the variable containing the data you want to

display.

5-22 Client Application Developer's Guide

Using Liquid Data with NetUl

3. Expand the nodes of the variable to expose the node that contains the data you want to display.
If the variable does not traverse deep enough into your schema, you will have to create another
variable to expose the part of your schema you require. For details, see “To Initialize the Variable
in the Page Flow” on page 5-20.

4. Select the node you want, then drag and drop it onto the location of the JSP file in which you
want to display the data. You can do this either in Design View or Source View. Workshop
displays the repeater wizard as shown in Figure 5-14.

Figure 5-14 Repeater Wizard

Repeater Wizard - Select Properties il

If the data source, or any of its propetties, stores a generic bype it will
appear as a link, Click the link to specify the strong bype.

Select Properties

= dataServices.schemas.paymentList.PA‘r’MENTListDocumenlE
[#] & COMMENT {iava.lang.String) i
[#] & cusTID fint} -
=] container {commonj.sdo.DataObject}
E%H container {commonj.sdo,DataObject}
= containmentProperty {commaon].sdo.Property}
=) conkainingType {commonj. sdo, Type}
&%ﬂ instanceClass {java.lang. Class}k
&éﬂ narne {java.lang. Skring}
&éﬂ properties {java.util.List} <77 = B
,@H V] URI {jawva.lang.String}

[« | []

| Mk | I Create || Cancel |

5. In the repeater wizard, navigate to the data you want to display and uncheck any fields that you
do not want to display. There might be multiple levels in the repeater tag, depending on your
schema.

6. Click Next. The Select Format screen appears as shown in Figure 5-15.

Client Application Developer's Guide 5-23

Accessing Data Services from Workshop Applications

5-24

Figure 5-15 Repeater Wizard Select Format Screen

7.
8.

Repeater Wizard - Select Format E Xl

Data Format

®] Table
O [E5] List
O [=] Text

Example:

[Field1 |[Fieldz || Field3 | Field4

Yalugl || Walusl || Waluel || Yaluel
Yalue2 || WalueZ || Walue2 || Yalus2
Yalued || Walue3 || Walue3 || Waluel

Title Field {Optional)

Title Field does not apply to the Table data format

Previous Create Cancel

Choose the display format for your data and click Create.

Right-click on the JSP page and choose Run Page to see the results.

Adding a Nested Level to an Existing Repeater

You can create repeater tags inside other repeater tags. You can display nested repeaters on the same
page (in nested tables, for example) or you can set up Page Flow actions to display the nested level on
another page (with a link, for example).

To create a nested repeater tag, perform the following steps:

L.
2.

Add a repeater tag as described in “Adding a Repeater to a JSP File” on page 5-22.
Add a column to the table where you want to add the nested level.

Drag and drop the array from your variable corresponding to your nested level into the data cell
you created in the table.

In the repeater wizard, select the items you want to display.
Click the Create button in the repeater wizard to create the repeater tags.

Right-click on the JSP page and choose Run Page to see the results.

Client Application Developer's Guide

Using Liquid Data with NetUl

Adding Code to Handle Null Values

It is a common JSP design pattern to add conditional code to handle null checks. If you do not check
for null values returned by function invocations, your page will display tag errors if it is rendered
before the functions on it are executed.

To add code to handle null values, perform the following steps:

1. Add arepeater tag as described in “Adding a Repeater to a JSP File” on page 5-22.
2. Open the JSP file in source view.

3. Find the netui-data:repeater tagin the JSP file.

4. Ifthe dataSource attribute of the netui-data:repeater tag directly accesses an array
variable from the page flow, then you can set the defaultText attribute of the
netui-data:repeater tag. For example:

<netui-data:repeater dataSource="{pageFlow.promo}" defaultText="no data">

If the datasSource attribute of the netui-data:repeater tag accesses a child of the
variable from the page flow, you must add i £/else logic in the JSP file as described below.

5. Ifthe defaultText attribute can have a null value for your netui-data:repeater tag, add
code before and after the tag to test for null values. The following is sample code. The code in
bold is added, the rest is generated by the repeater wizard. This code uses the profile variable
initialized in “To Initialize the Variable in the Page Flow” on page 5-20.

<%

PageFlowController pageFlow = PageFlowUtils.getCurrentPageFlow(request) ;

if (((pF2Controller)pageFlow) .profile == null

|
((pF2Controller)pageFlow) .profile.getPROFILEVIEW () .getCUSTOMERPROFILEArray
() == null
||
((pF2Controller)pageFlow) .profile.getPROFILEVIEW () .getCUSTOMERPROFILEArray
() .length == 0){
%>
<p>No data</p>
<% } else {%>
<netui-data:repeater dataSource=
"{pageFlow.profile.PROFILEVIEW.CUSTOMERPROFILEArTay} ">
<netui-data:repeaterHeader>

Client Application Developer's Guide 5-25

Accessing Data Services from Workshop Applications

<table cellpadding="2" border="1" class="tablebody" >
<tr>
<!- the rest of the table and NetUI code goes here -->
<td><netui:label value
:"{container.item.PROFILE.DEFAULTSHIPMETHOD}"></netui:label></td>
</tr>
</netui-data:repeaterItems
<netui-data:repeaterFooter></table></netui-data:repeaterFooters>
</netui-data:repeaters>
<% }%>

6. Test the application.

Using Liquid Data in Business Process Projects

5-26

You can use data services in WebLogic Integration (WLI) business process applications through a
Liquid Data control. Liquid Data information can be used, for example, in decision-making logic in the
business process. The procedure for adding a Liquid Data control to a business process application is
similar to adding a control to a web project.

However, an important difference exists in how data objects are unmarshalled in business processes
from web applications. As a result, you need to serialize the data graph manually when submitting
changed data objects as described in this section.

There are three basic steps to adding Liquid Data Queries to a WebLogic Integration business
processes:

e (Creating a Liquid Data Control
e Adding a Liquid Data Control to a JPD File

e Setting Up the Control in the Business Process

Note: For comprehensive information about WebLogic Integration, see the WebLogic Integration
documentation.

Creating a Liquid Data Control

Before you can run a Liquid Data query in a WLI business process, you must create a Liquid Data
Control that accesses the query or queries you want to run in your business process. For details, see
“Liquid Data Control” on page 5-2.

Client Application Developer's Guide

http://edocs.bea.com/wli/docs81/

Using Liquid Data in Business Process Projects

Adding a Liquid Data Control to a JPD File

Once you have created a Liquid Data Control, you can add it to a business process the same way you
add any other control to a business process. For example, you can drag and drop the control into the
WebLogic Integration business process in the place where you want to run your Liquid Data query or
you can add the Liquid Data Control to the Data Palette. For comprehensive information about using
WebLogic Integration, see the WebLogic Integration documentation.

Setting Up the Control in the Business Process

Once you have added the Liquid Data control to the business process, you can use its functions in the
business process.

As shown in Figure 5-16, you must select the query in the General Settings section of the Liquid Data
control portion of the business process, specify input parameters for the query in the Send Data
section, and specify the output of the query in the Receive Data section.

Figure 5-16 WebLogic Integration Business Process Accessing a Liquid Data Control

process.jpd* - {jPracWeb}\processes) 4
process
(‘—
Skavting Event
{doubla-click For options)
v.‘.f
I —\1 2
| ®k8°
e
Select a contral instance and a target method,
‘USTOMERWithFilker
b | Control: [4cantrol |- |
4 General Settings Wethod: [arrayofCUSTOMERDBEUMENE CUSTOMER()
= arrayOfCUSTOMERDocument CUSTOMERMWithFilker(Filk
-/ Receive Data
P el
Help
Yiew Code K] [
A J
v.‘.f L
Subscription
K I[P} 1oo=el ~

Client Application Developer's Guide 5-21

http://edocs.bea.com/wli/docs81/

Accessing Data Services from Workshop Applications

Submitting Changes from a Business Process

By default, a business processes (JPD) converts XML objects to an XML proxy class by implementing
an interface named ProcessXML. However, ProcessXML is not completely compatible with SDO. In
particular, it does not accommodate SDO specific features such as change summaries. As a result, the
default XML processing performed in a business process must be overridden.

You can override the business process by performing the following steps in the workflow:

1. Inthe JPD you need to turn off default ProcessXML deserialization and enable XBean serialization
on the XML object factory by calling the xm1objectvariableFactory.setXBean ().

2. Invoke the Liquid Data control.

3. Inthe JPD you need to disable the XBean serialization and turn on the default ProcessXML
deserialization on the XML object by calling xmlObjectVariableFactory.unset ().

Security Considerations With Liquid Data Controls

5-28

This section describes security considerations for applications using Liquid Data controls. The
following sections are included:

e Security Credentials Used to Create Liquid Data Control
e Testing Controls With the Run-As Property in the JWS File

e Trusted Domains

Security Credentials Used to Create Liquid Data Control

The WebLogic Workshop Application Properties (Tools — Application Properties) allow you to set
the connection information to connect to the domain in which you are running. You can either use the
connection information specified in the domain boot . properties file or override that information
with a specified username and password.

When you create a Liquid Data control (. jcx) file and are connecting to a local Liquid Data server
(Liquid Data on the same domain as Workshop), the user specified in the Application Properties is
used to connect to the Liquid Data server. When you create a Liquid Data control and are connecting
to a remote Liquid Data server (a WebLogic Server on a different domain from Workshop), you specify
the connection information in the Liquid Data Control Wizard Connection information dialog (see
Figure 5-5).

Client Application Developer's Guide

Security Considerations With Liquid Data Controls

When you create a Liquid Data control, the Control Wizard displays all queries to which the specified
user has access privileges. The access privileges are defined by security policies set on the queries,
either directly or indirectly.

Note: The security credentials specified through the Application Properties or through the Liquid
Data Control Wizard are only used for creating the Liquid Data control (. jcx) file, not for
testing queries through the control. To test a query through the control, you must get the user
credentials either through the application (from a login page, for example) or by using the
run-as property in the Web Service file.

Testing Controls With the Run-As Property in the JWS File

You can use the run-as property to test a control running as a specified user. To set the run-as property
in a Web Service, open the Web Service and enter a user for the run-as property in the WebLogic
Workshop property editor.

When a query is run from an application, the application must have a mechanism for getting the
security credential. The credential can come from a login screen, it can be hard-coded in the
application, or it can be imbedded in a J2EE component (for example, using the run-as property in a
.jws Web Service file).

Trusted Domains

If the WebLogic Server that hosts the Liquid Data project is on a different domain than WebLogic
Workshop, then both domains must be set up as trusted domains.

Domains are considered trusted domains if they share the same security credentials. With trusted
domains, a user known to one domain need not be authenticated on another domain, if the user is
already known on that domain.

Note: After configuring domains as trusted, you must restart the domains before the trusted
configuration takes effect.

Client Application Developer's Guide 5-29

Accessing Data Services from Workshop Applications

5-30

Configuring Trusted Domains

To configure domains as a trusted user, perform the following steps:

1.
2.

4.

Log into the WebLogic Administration Console as an administrator.
In the left-frame navigation tree, click the node corresponding to your domain.

At the bottom of the General tab for the domain configuration, click the link labeled View
Domain-wide Security Settings Links.

Click the Advanced tab. (See Figure 5-17.)

Figure 5-17 Setting up Trusted Domains

liguiddata> Domain Wide Security Settings

LTS - Compatibility

General || Advanced

This page allows you to define the advanced security settings for this Weblogic Server domain
& [~ Enable Generated Credential

Specifies whether a credential (usually 2 password) should be generated for this Weblogic Server domain. (This
credential is used to enable & trust relationship between two domains. For the two dormains to establish trust, they
must have the same credential.)

Credential: r““"““"‘*"““““’“’“““"‘““"‘““"

Confirm
Credential:

The credential for this WebLogic Server domain

Apply

Uncheck the Enable Generated Credential box, enter and confirm a credential (usually a
password), and click Apply.

Repeat this procedure for all of the domains you want to set up as trusted. The credential must
be the same on each domain.

For more details on WebLogic security, see:

e “Configuring Security for a WebLogic Domain” in the WebLogic Server documentation.

For information on Liquid Data security, see:

e "Securing Liquid Data Resources" in the Administration Guide.

Client Application Developer's Guide

http://e-docs.bea.com/wls/docs81/secmanage/domain.html
http://e-docs.bea.com/liquiddata/docs85/admin/security.html

Security Considerations With Liquid Data Controls

Client Application Developer's Guide 5-31

Accessing Data Services from Workshop Applications

5-32 Client Application Developer's Guide

CHAPTERa

Exposing Data Services through Web
Services

This chapter describes how to expose data services as standard web services. It covers these topics:
e Exposing Data Services as Web Services
e Adding a Liquid Data Control to a Web Service Project

e Creating a Web Service From a Liquid Data Control

Exposing Data Services as Web Services

Using WebLogic Workshop and a Liquid Data control, you can easily add a web service wrapper to a
data service. Doing so gives your data services the benefits of standard web service features, including
loose client/server coupling, UDDI capability and WS-Security. WS-Security is particularly useful
because it provides encryption-based, message-level security for your data.

Exposing data services as web services can make your data service information accessible to a wide
variety of client types including other web services, .NET, or any non-Java application. Figure 6-1
illustrates the relationship between these client types and the Liquid Data data services layer.

Client Application Developer's Guide 6-1

Exposing Data Services through Web Services

Figure 6-1 Web Service Clients

remote clients

web services ' ‘.NET
applications

Web service

Liquid Data Services Layer

To expose data services through a web service interface, add the Liquid Data control to a web service
project in WebLogic Workshop. Then add data service functions from the control to your web service.
The web service function needs only to pass through the results of the data service function, as shown
in the following sample of generated code:

public class myCustomerWS implements com.bea.jws.WebService ({

public dataServices.payments.CustomerDocument getCustomer (int p0) {

return customerDsCtrl.getPayments (getCustomer (p0)); }

}

You can then generate a WSDL from the web service by right-clicking on the WSDL (. jws file). Once
deployed, the data service function can be used from clients applications just like any other web
service deployed to the WebLogic server. Keep in mind that data is returned from Liquid Data as
standard SOAP-encased XML data, not as service data objects.

Note: This chapter focuses on how to expose data services through a standard web service interface.
For more information on consuming WebLogic web services, see “Invoking Web Services” in
Programming WebLogic Web Services in the WebLogic Platform documentation.

Adding a Liquid Data Control to a Web Service Project

6-2

To add a Liquid Data control to an existing Web Service file (. jws), perform the following steps:
1. Make sure the WebLogic Server is running.

2. In WebLogic Workshop, open the existing Web Service . jws file.

3. Click the Design View tab on the Web service.

Client Application Developer's Guide

4.

Adding a Liquid Data Control to a Web Service Project

In the graphical representation of the Web service, right-click and select Add Control — Liquid

Data as shown in Figure 6-2.

Figure 6-2 Adding a Liquid Data Control to a Web Service

5.

hellovorld, jws* - {MyWebServiceProjH,

®

_’é\ helloWorld ‘Web Service

————[— >+ hellaMethod

Member Yariables

Add Control
Add Method
Add Callback
Add Yariable

D Database
Web Service
EJB Cortrol

£ JMS

Edit in source view

@ Tirnet

Tuxedo by

[, Integration Contrals 4

LF'.'_1 Mainframe Integration

2 Blue Titan

B8 Confluent Instrumentation Contral

}: Documentum Business Objects

| RoboSuite Cantral

Custamize. ..

]

h Design Yiew |Source Yiew |

In the Insert Control Wizard, enter a variable name for the control (STEP 1 in the dialog in
Figure 6-3). The variable name can be any valid variable name that is unique in the Web Service.

In the Insert Control Wizard, either browse to an existing Liquid Data control (it must be in the
same project as the Web Service) or click the Create a New Liquid Data Control button.

If you want the control to be a factory, check the Make This a Control Factory button as shown in
Figure 6-3. If the control is a factory, it will create multiple instances at runtime. Otherwise,
requests to the control are queued and each request for a given query must complete before

another can begin.

Client Application Developer's Guide

6-3

Exposing Data Services through Web Services

6-4

Figure 6-3 Insert Control Wizard

8.

10.

Insert Control - Web Service r$__<|
STEP 1 variable name For this control: | myVar |
STEP 2 I would like to

(®1 Use a Web Service control already defined by a JCX file
1% file: myFoIder,l’oneLiquidDataControI.jcx| | | Browse.., |

() Create a new ‘Web Service control to use.

Make this & control fackory that can create multiple instances at runtime

o
[[oor.. |

If Liquid Data is deployed on a WebLogic Server that is running on a separate domain from
Workshop, click remote (in STEP 3 of the Insert Control Wizard dialog). For details about
specifying a local or remote Liquid Data server, see “Step 5: Enter Connection Information to the
WebLogic Server” on page 5-11 in Chapter 5, “Accessing Data Services from Workshop
Applications.”

Click the Create button on the Insert Control Wizard.

If you created a new control, in the Select Liquid Data Queries dialog select the data service
functions you want from the left pane and click Add as shown in Figure 6-4. When done, click
Finish. At that point, the Liquid Data Control (. jcx) file is generated, with a call for each
selected function.

The LiquidbataControl . jar file is copied into the Libraries directory of your
application when you finish creating the Liquid Data Control.

Client Application Developer's Guide

Adding a Liquid Data Control to a Web Service Project

Figure 6-4 Liquid Data Control Wizard—Select Queries

®4 Select Liquid Data Queries...

| Mew Query... || Refresh |

Select one or more queries to add ko the contral,

|:| DataServices subritCustomer

) Customer . xds getCustomer
J getCustomer() getPaymentList
J getPaymentLisk)
J gekPaymentTest()

[| submitCustamer() -
) CUSTOMERS cds
() getCustomer CreditR atingResponse . ds

CJ ITEMS. 2ds

) PAYMENTS. xds Remove Al

CPO_CUSTOMERS. xds
CPO_ITEMS xds

11. Now add functions to the callable interface of the web service. To add a data service function to
the web service, choose the function from below the control node in the Data Palette then drag
and drop the function onto the left side of the web service diagram as illustrated in Figure 6-5.

Client Application Developer's Guide 6-5

Exposing Data Services through Web Services

Figure 6-5 Adding a Function to the Web Service

indow Help

(Bi=lfe)

SlEEag| v HEEsS = ¢ lllllaala\mta

D

B RS, ———————————]

ADDRESSWithFilter

Member Variables

mavsurfalert jws® - {webDataServiceHimavsurfServicest || Document Structure kel
"Lg mavSurfalert Web Service | =] mavSurFAIert
=+ ADDRESS()
ADDRESS =[] my el

=+ ADDRESS()
=+ ADDRESSWithFilter(FilterxCQuery Filker)
ﬁ serialiersionUID

|| Data Palette *

Controls Add »
B4 myctrl

[T =+ ADDRESS

=+ ADDRESSWithFilter

K1 | [

|| Design view [Source Yiew |

12. Click the test button (or select Debug — Start from the Workshop menu) to test your web
service.

From there, you can work with the Liquid Data web service as you can any other web service in
WebLogic Workshop. You can generate a WSDL file for it, and more.

For example, to create a WSDL file, right-click the . jws file in the application tree and choose
Generate WSDL File from the menu.

For more information, see:

http://e-docs.bea.com/wls/docs8l/webservices.html

Creating a Web Service From a Liquid Data Control

6-6

Perform the following steps to generate and test a web service from a Liquid Data Control. You can

create either conversational or stateless web services with data service. The following instructions
describe how to create a conversational web service.

1. Select a Liquid Data Control (. j cx) file, right-click, and select Generate Stateless JWS File.
Workshop generates the . 5ws Java Web Service file for your Liquid Data control.

2. Select your Web Service project, right-click, and select Build Project. Workshop builds a Web
Service project.

3. When the build is complete, double-click the . jws file to open it.

Client Application Developer's Guide

http://e-docs.bea.com/wls/docs81/webservices.html

10.

Creating a Web Service From a Liquid Data Control

On the Design View of the Web Service, notice the startTestDrive and finishTestDrive
methods, as well as a method for each of the queries you specified in the Liquid Data Control
Wizard.

Click the test button (or select Debug — Start from the Workshop menu) to test the web
service.

Click the startTestDrive button to start the conversation for the Web Service.
Click the Continue this Conversation link (in the left corner of the test page).

Enter values for any query parameters (if the query has parameters) and click the button with
the name corresponding to the query you want to execute.

The Web Service executes the query and the results are returned to a test browser.

If you want to run the query again or run other queries in the Web Service, click Continue this
Conversation, enter any needed parameters and click the button with the name corresponding
to the query you want to execute.

To end the Web Service conversation, click the Continue this Conversation link and then click
the finishTestDrive button.

Once deployed, the web service can be used just like any other web service deployed on WebLogic
servers. For more information, see "Invoking Web Services" in Programming WebLogic Web Services
in the WebLogic Server documentation.

Client Application Developer's Guide 6-7

http://edocs.bea.com/wls/docs81/webserv/client.html

Exposing Data Services through Web Services

6-8 Client Application Developer's Guide

GHAPTERa

Using the Liquid Data JDBC Driver

The Liquid Data JDBC driver gives client applications a means to obtain JDBC access to the
information made available by data services. The driver implements the java.sql.* interface in JDK
1.4x to provide access to a Liquid Data server through the JDBC interface. You can use the JDBC driver
to execute SQLI2 SELECT queries, or stored procedures over Liquid Data applications. This chapter
explains how to install and use the Liquid Data JDBC driver. It covers the following topics:

e About the Liquid Data JDBC Driver

e Installing the Liquid Data JDBC Driver with JDK 1.4x
e Using the JDBC Driver

e Connecting to the JDBC Driver from a Java Application

e Connecting to Liquid Data Client Applications Using the ODBC-JDBC Bridge from Non-Java
Applications

e Using Reporting Tools with the Liquid Data ODBC-JDBC Driver
e Liquid Data and SQL Type Mappings
e SQL-92 Support

Note: For data source and configuration pool information, refer to the WebLogic Administration
Guide. Your configuration settings may affect performance.

Client Application Developer's Guide 1-1

../admin/index.html
../admin/index.html

Using the Liquid Data JDBC Driver

About the Liquid Data JDBC Driver

1-2

The JDBC driver is intended to enable SQL access to data services. The Liquid Data JDBC driver
enables JDBC and ODBC clients to access information available from data services. The JDBC driver
increases the flexibility of the Liquid Data integration layer by enabling access from database
visualization and reporting tools, such as Crystal Reports. From the point of view of the client, the
Liquid Data integration layer appears as a relational database, with each data service function
comprising a table. Internally, Liquid Data translates SQL queries into XQuery.

There are several constraints associated with the Liquid Data JDBC driver. Because SQL provides a
traditional, two-dimensional approach to data access (as opposed to the multiple level, hierarchical
approach defined by XML), the Liquid Data JDBC driver can only be used to access data through data
services that have a flat data shape; that is, the data service type cannot have nesting.

Also, SQL tables do not have parameters; therefore, the Liquid Data JDBC driver only exposes
non-parameterized flat data service functions as tables. (Parameterized flat data services are exposed
as SQL stored procedures.)

To expose non-flat data services, you can create flat views to be used from the JDBC driver.

Features of the Liquid Data JDBC Driver

The Liquid Data JDBC driver has the following features:
e Supports SQL-92 SELECT statements
e Implements JDBC 3.0 API
e Supports Liquid Data for WebLogic 8.5 with JDK 1.4

e Usable from both Java and ODBC clients
Notes:

e The Liquid Data JDBC driver contains the following third party libraries: Xerces Java -
2.6.2 : xercesImpl.jar,xmlParserAPIs.jar,and ANTLR 2.7.4 : antlr.jar.

e The driver also contains the following Liquid Data product libraries: wiclient.jar,
ld-client.jar, Schemas UNIFIED Annotation.jar, jsrl73_api.jar, and
xbean.jar.

Client Application Developer's Guide

Installing the Liquid Data JDBC Driver with JDK 1.4x

Liquid Data and JDBC Driver Terminology

Liquid Data views data retrieved from a database as comprised of data sources and functions. This
means that Liquid Data terminology and the terminology used when accessing data through the Liquid
Data JDBC driver, which provides access to a database, is different. The following table shows the
equivalent terminology between the two.

Table 7-1 Liquid Data and JDBC Driver Terminology

Liquid Data Terminology JDBC Driver Terminology

Liquid Data Application Name Database Catalog Name

Path from the Liquid Data project folder up to the = Database Schema Name
folder name of the data source separated by a ~

(tilde)
Function with parameters Stored procedure
Function without parameters Table

Function without parameters return type schema's Table's Columns
elements

Function with parameters return type schema's Stored Procedure's Columns
elements

For example, if you have an application Test with a project TestDataServices, and CUSTOMERS.ds
with a function get Customers () under a folder MyFolder, the table getCustomers can be describes
as:

Test .TestDataServices~MyFolder.getCustomer

where Test is the catalog and TestDataServices~MyFolder is the schema.

Installing the Liquid Data JDBC Driver with JDK 1.4x

The Liquid Data JDBC driver is located in an archive file named 1djdbc.jar. In a Liquid Data
installation, the archive is in the following directory:

<WebLogicHome>/liquiddata/lib/

To use the driver on a client computer, perform the following steps:

Client Application Developer's Guide 1-3

Using the Liquid Data JDBC Driver

1-4

Copy the 1djdbc. jar to the client computer.

Add 1djdbc. jar to the computer’s classpath.

Set the appropriate supporting path by adding $JavA HOME%\jre\bin to your path.
To configure the JDBC driver:

a. Set the driver class name to:

com.bea.ld.jdbc.LiquidDatadDBCDriver.

b. Set the driver URL to:
jdbc:1d@<LDServerNames>: <LDServerPortNumbers>[:<LDCatalogAliass>]

For example, jdbc: 1delocalhost: 7001 Or
jdbc:1d@localhost:7001:1dCatalogName.

If you want to enable logging for debugging use, you can append the following to the driver
URL

;debugStdOut=true;debugFile=1djdbc.log;debuglog=true;

You can also specify configuration parameters as a Properties object or as a part of the JDBC
URL. The following is an example of how to specify the parameters as part of a Properties
object:

props = new Properties() ;
props.put (LiquidDataJDBCDriver .USERNAME PROPERTY1, "weblogic") ;
props.put (LiquidDataJDBCDriver.PASSWORD PROPERTY, "weblogic") ;
props.put (LiquidDataJDBCDriver .APPLICATION NAME PROPERTY, "RTLApp") ;
props.put (
LiguidDataJDBCDriver.PROJECT NAME PROPERTY, "DataSErvices~CustomerDB") ;
props.put (LiquidDataJDBCDriver.WLS URL_ PROPERTY, "t3://localhost:7001") ;
props.put (LiquidDataJDBCDriver .DEBUG_STDOUT PROPERTY, "true") ;
props.put (LiquidDataJDBCDriver .DEBUG_LOG PROPERTY, new Boolean(true)) ;
props.put (

LigquidDataJdDBCDriver .DEBUG_LOG FILENAME PROPERTY, "ldjdbc.log") ;
Class.forName (""com.bea.ld.jdbc.LiquidDatadJDBCDriver"") ;
con = DriverManager.getConnection (

"jdbc:1ld@localhost:7001 :Demo:DemoLdProject", props) ;

Alternatively, you can specify all the parameters in the JDBC URL itself as shown in the
following example:

Class.forName ("com.bea.ld.jdbc.LiquidDatadDBCDriver") ;

con =
DriverManager.getConnection ("jdbc:1d@localhost:7001:Demo:DemoLdProject;

Client Application Developer's Guide

Using the JDBC Driver

;debugStdOut=true;debugFile=1djdbc.log;debuglog=true;username=weblogic;
password=weblogic;", new Properties());

Using the JDBC Driver

The steps for connecting an application to Liquid Data as a JDBC/SQL data source are substantially
the same as for connecting to any JDBC/SQL data source. In the database URL, simply use the Liquid
Data application name as the database identifier with "1d" as the sub-protocol, in the form:

jdbc:1ld@<WLServerAddresss:<WLServerPort>:<LDApplicationName>

For example:

jdbc:1d@localhost: 7001 : RTLApPP

The name of the Liquid Data JDBC driver class is:

com.bea.ld.jdbc.LiquidDatadDBCDriver

Note: Ifyouare using the WebLogic Administration Console to configure the JDBC connection pool,
set the initial connection capacity to 0. The Liquid Data JDBC driver does not support
connection pooling.

The following section describes how to connect using the driver class in a client application.

Obtaining a Connection

A JDBC client application can connect to a deployed Liquid Data application in the same way as it can
to any database. It loads the Liquid Data JDBC driver and then establishes a connection to Liquid
Data.

For example:

Properties props = new Properties();
props.put ("user", "weblogic") ;

props.put ("password", "weblogic") ;

// Load the driver
Class.forName ("com.bea.ld.jdbc.LiquidDatadDBCDriver") ;

//get the connection
Connection con =

DriverManager.getConnection("jdbc:1ld@localhost:7001", props) ;

Client Application Developer's Guide 1-5

Using the Liquid Data JDBC Driver

1-6

Using the preparedStatement Interface

The following method demonstrates how to use the preparedStatement interface given a connection
object (con) that is a valid connection obtained through the java.sql.Connection interface to a
WebLogic server hosting Liquid Data. (In the method, CUSTOMER refers to a CUSTOMER data
service.)

public ResultSet storedQueryWithParameters() throws java.sgl.SQLException {

PreparedStatement preStmt =
con.prepareStatement (
"SELECT * FROM CUSTOMER WHERE CUSTOMER.LAST NAME=?") ;
preStmt.setString (1, "SMITH") ;
ResultSet res = preStmt.executeQuery() ;

return res;

}

Note: You can create a preparedStatement for a non-parametrized query as well. The statement can
also be used in the same manner.

Getting Data Using JDBC

Once a connection is established to a server where Liquid Data is deployed, you can call a data service
function to obtain data by using a parameterized data service function call.

The following method demonstrates calling a stored query with a parameter (where con is a
connection to the Liquid Data server obtained through the java.sql.Connection interface). In
the snippet, a stored query named "dtaQuery" is executed where custid is the parameter name and
CUSTOMER2 is the parameter value.

public ResultSet storedQueryWithParameters (String paramName)
throws java.sql.SQLException {

//prepare a stored query to execute
CallableStatement call = con.prepareCall ("dtaQuery") ;
call.setString (1, "CUSTOMER2") ;

ResultSet resultSet = call.execute() ;

return resultSet;

Client Application Developer's Guide

Connecting to the JDBC Driver from a Java Application

Connecting to the JDBC Driver from a Java Application

You can also use the Liquid Data JDBC driver from client Java applications. This is a good way to learn
how Liquid Data exposes its artifacts through its JDBC/SQL driver.

This section describes how to connect to the driver from DBVisualizer. Figure 7-2 shows a sample
application as viewed from DbVisualizer for WebLogic Workshop.

Figure 7-2 DbVisualizer View of Liquid Data

E. Dbvisualizer Free 4.0.2 for WebLogic Workshop - C¥Documents and Settings¥sujeet_banerjee¥dbyis.x = II:IIiI
File Edit View Database Bookmarks Window Help

oy) 1 E I R £] -
dp VJEHR +RE S5 BF I <> PO 3
‘ IE. Database Objects [b’ SGL Commander Manitor

< @0

IEW: ADDRESSHADDRESS

@ F:_onnections Application Name i@ Indexes [4 Frivileges } » Rowld l [Versioned } == References
o ?R ik P [colurnns 7 Data | & # Rows “» Primary Key
| pp (defaul
L aServices-EloctronicsWs TABLE CAT | TABLE_SCHEM | TABLE MAME | COLUMN_MAME | DATA TYPE |
. a DataSenices-SericeD B RTLApp DataServices-CustomerDB ADDRESS#ADDRESS ADDR_ID | 12
L. & Datagenices~RTL Services RTLApp DataServices~CustomerDB |ADDRESS#ADDRESS |CUSTOMER_ID | 12
5 dcDataSenices-CustomerDE RTLApp DataServices~CustomerDE ADDRESS#ADDRESS |FIRST_MAME 12
@—@V\EW 73 RTLApp DataServices-CustomerDB ADDRESS#ADDRESS |LAST_WAME | 12
F7-ADDRESSAADDRESS | RTLApp DataServices~CustomerDE ADDRESS#ADDRESS |STREET_ADDRESST | 12
¥ CUSTOMERECUSTOMER, 4| RTLARR DataServices~CustomerDE ADDRESS#ADDRESS | STREET_ADDRESS2 12
>~ & DataServices-Demo~CSY DataServices~CustomerDB ADDRESS#ADDRESS | CITY | 12
L. 2 Dataenices-Demo-xL DataServices~CustomerDB | ADDRESS#ADDRESS |STATE | 12
b & DataSenvices~Demo DataServices~CustomerDE ADDRESS#ADDRESS | ZIPCODE 12
>~ & DataSenvices-ApparelDE DataServices-CustomerDB ADDRESS#ADDRESS | COUNTRY | 12
L. 2 DataSenices-BillingDa DataServices~CustomerDE ADDRESS#ADDRESS | DAY_PHONE | 12
5 & DataSenices-Demo~Java DataServices~CustomerDE ADDRESS#ADDRESS | EWE_PHONE 12
L@V\EW(D) DataServices-CustomerDB ADDRESS#ADDRESS ALIAS | 12
| @ Database Connection DataServices~CustomerDB |ADDRESS#ADDRESS |STATUS | 12
= DataServices~CustomerDE ADDRESS#ADDRESS |1S_DEFAULT &
= @ orcl
L i@ com.pointhase jdbe jdhcUniversalDriver . .
Schema Name. The location of the DS being
"DataServices/CustomerDB" inside the
application-folder "RT LApp".
Table Name, "ADDRESS" is the function that takes no
argument in the DS "ADDRESS. ds"
4] i] 3
[Show Table Row Count 0125 sec/0.000 sec [15.18 |1-15 |

To use DBVisualizer, perform the following steps:
1. Configure DBVisualizer.

a. Ensure that 1djdbc. jar exists in your CLASSPATH. Start DBVisualiser from the Database
menu select Driver Manager.

Client Application Developer's Guide 1-1

Using the Liquid Data JDBC Driver

1-8

@, Datahase Ohid

&, pbvisualizer Free 4.0.2 for WebLogic Workshop - C:i\Documents and Settings'sujeet_banerjeedbyis.<ml

=101 %]

File Edit View D‘:ﬁase Bookmarks Window Help

m R |1 Driver !

wf Connect All
& @ @ & Disconnect All

@c i € R

P Execute
& commit
¥ Rollback

[Build Select Script... CHl-M

ek BF W <> PO 89

Userid URL Driver.

Ctrl-Enter

-

1
]
il
k]
4
4
4

[Show Table Row Count a

Symbol Description

EEHEIN S Y

Datahase Connection will be established when "Connect All" is executed

Datahase Connection uses a JDBC Driver

Database Connection uses a JNDI Lookup Data Source
Datahase Connection have overridden tool properties
Database Connection have filters defined

Datahase Connection is established

Database Connection could not be established
Database Connection is about to be established

b. Select Add CLASSPATH from the File menu of the driver manager dialog. You should see the

1djdbc.jar listed.

¢. Select 1djdbc.jar from the list shown then select Find Drivers from the Edit menu of the
driver manager. You should see the com.bea.1d.jdbc.LiquidDataJdDBCDriver. This
means the JDBC driver has been located.

Client Application Developer's Guide

Connecting to the JDBC Driver from a Java Application

I®. pb¥isualizer Free 4.0.2 for Weblogic Workshop - CiDocuments and Setti‘ngs"-‘,sujeetfhar_le"r] . i) il

File Edit View D ks Help

| X 3 W i.l +BE &5 IR XEW <> PO g8

|d Database Objects | [SQL commander | 9 Monitor

Y R =
< @ @ l * Root: Connections Overview
'@ Connections i DD N4 5] Alas Userid URL | Driver

[E, pbvisualizer Free - Driver Manager 3 il

A @

_ AUICLASSPATH |

@ stop | Add lncations in the CLASSPATH to the list

Close Cl-0 B the Driver Manager will
automatically Tocate and =t &l valid classes that are found
Mon-existent paths are displayed with red color.

ata Source

peries

i)

43 EE Datahase Connection could not be established
5 : :

@; Datahase Connection is aboutto be established
[] Show Table Row Count 5) [Database Connection will be established when "Connect All" is executed

d. Close the driver manager.
2. Add connection parameters by performing the following steps:

a. Onthe right pane select the JDBC Driver as com.bea.1d.jdbc.LiquidDatadDBCDriver,
dropping down the list.

b. Forthe Database URL, enter jdbc:ld@<machine_name>:<port>:<app_name>. For example
"jdbc:1ld@localhost: 7001 :RTLApp"

c. Provide the username and password for connecting to the Liquid Data application.

3. Click connect. On completion of a successful connection, you should see the following:

Client Application Developer's Guide 1-9

Using the Liquid Data JDBC Driver

File Edit \iew Database

s

Bookmarks

%, pbvisualizer Free 4.0.2 for WebLogic Workshop - C:¥Documents and Settings¥sujeet_banerjee¥dbyis.xml
Window Help

vEE 26

S O TE <> PO

=10 x]
LR

|E, Database Objects | B SGL Commander | 3 Monitor

< @ |

C. Connections

>~ i RTLApp |

- (3 RTLApp (defaulty

oo 3 DataServices-ElectronicsWSs

o~ & DataSenices-SeniceDE

>~ 3 DataSenices~-RTLSemices

>~ & DataServices~CustomerDB

& [§] VIEW (2)

ADDRESS#ADDRESS
¥ CUSTOMER#CUSTOMER

oo 3 DataServices-Demo~CSY

>~ 3 DataSerices~Dema~xML

> & DataServices~Demo

oo 3 DataSerices~ApparelDB

o~ @ DataSenices~BillingDB

> & DataServices~Demo~Jara

— ﬂ Database Connection

i@ L

— i@ orel

= ﬂ com.pointhase jdbe jdbcUniversalDriver

W R Database Connection: RTLApp

Connection | DatabageInfo | DataTypes | Table Types | Tables | References |

[Show Table Row Count

Connection Data

Connect Wethod: | B8 JOBC Drver | | @ JD! Lookup |

Connection Alias: [RTLAD

JDBC Driver: [com beald jdbe LiguidDataDBCDHver

Database URL ‘Idbc ldiglocalhost700T:RTLApD

Userid: ‘wehlngic

Passwaord ‘*‘*“*‘"‘**

Reconnect] | Disconnect

Important note ahaut the URL

The URL box cortains some common URL templates: Heplace;
| everything betyvesn "< =" with appropriste values
|and then make sure the "=" and "=" characters are removed

Connection Message-

Liguid Data

8.2

com.bea.ldjdbe. LiguidData DECDriver
1.1

Connection Time: 01:00:34

Connection lmj

4. On the right pane of the window (see figure in step 3), you can see various tabs. The Tables tab
helps you view the information about the tables, including their metadata. The References tab
lets you view the field information and primary key of each table.

5. Execute ad hoc queries by activating the SQL Commander tab as shown in the following figure.
Type in your SQL query and click the execute button.

1-10

Client Application Developer's Guide

I . pb¥isualizer Free 4.0.2 for WebLogic Workshop -

File Edit View Database

Bookmarks

e CEE

Connecting to the JDBC Driver from a Java Application

\Documents and Settings'sujeet_banerjeedbvisxml

Window Help

rRE S BF JE ()

[0, Database Objects

SQL Commander [& Monitor |

Sticky: T

~Liguid Data Application

‘ “Database Connection -

| 4 Database Connection

A
= Gl

CT *FROM CUSTOMERS

2. Type your query here

ek

1. This tab let's you type in
your Ad hoc SQL query

3. Execute SQL

4. You see the result of
execution here

124 | g | e [
Autn Clear Log: [
Ao s e S e
-Output Wie

B 1: SELECT= FRom,CysﬁMEHS |

CUSTOMERS CUBTOMERNAME

CUSTOMERS.CU/E\W’OMEHID

027654 Acme Widget Stores
{ 987655 Superrnart
| 887656 Ajax Distributars
X 987657 | Zenith Parts and Senice
5\ 087658/ Bit and Pieces
"\, 9B87658|Joe and Wanda's Junk

i

|3.078 secin.000 sec |62 |1-6

WView:

[%

———

indows | Macchars: [1 | outputview: <

hax Rows: 500

Client Application Developer's Guide 1-11

Using the Liquid Data JDBC Driver

Connecting to Liquid Data Client Applications Using the
0DBC-JDBC Bridge from Non-Java Applications

1-12

You can use an ODBC-JDBC bridge to connect to Liquid Data JDBC driver from non-Java applications.
This section describes how to configure the OpenLink and EasySoft ODBC-JDBC bridges to connect
non-Java applications to the Liquid Data JDBC driver.

Using the EasySoft ODBC-JDBC Bridge

Applications can also communicate with the Liquid Data JDBC Driver using EasySoft's ODBC-JDBC
Gateway. The installation and use of the EasySoft Bridge is similar to the OpenLink bridge discussed
in the previous section.

To use the EasySoft bridge, perform the following steps:
1. Install the EasySoft ODBC-JDBC bridge. Go to the EasySoft site for information about installation:
http://www.easysoft.com

2. Creating a system DSN and configuring it with respect to Liquid Data by performing the
following steps:

Client Application Developer's Guide

http://www.easysoft.com

Connecting to Liquid Data Client Applications Using the ODBC-JDBC Bridge from Non-Java Applications

a. Open Administrative tools — Data Sources (ODBC).

£"10DBC Data Source Administrator e |
User DSM Shstem DEN | File DSNI Driversl Tlacingl Connection F'Dolingl About I

System Data Sources:

| Driver Add... |
Microzaft Access Driver [*.mdb)
efazhion icrozoft Acceszs Diiver [7.mdb] Remoye
LocalServer SOL Server

ODBC_JDBC_LITE OpenLink JOBC Lite for JOK. 1.4 [Earfigure... |

#treme Sample Databaze 10 Microzoft Access Driver [%.mdb]

4| | H

An ODEC Systern data source stores information about how ta connect to
the indicated data provider, A& System data zource iz visible to all uzers
an thiz maching, including MT services.

0k I Cancel Applu Help

b. Go to the System DSN tab and click Add.

Client Application Developer's Guide 1-13

Using the Liquid Data JDBC Driver

c. Select EasySoft ODBC-JDBC Gateway as shown in the figure below and click Finish.

Create New Data Source

Hame | \;I
Drriver do Microzoft dB aze [*.dbf)

Drriver do Microzoft Excell* uls) [
Drriver do Microzoft Paradox [#.db] [

Drriver para o Microzoft Visual FosPro
\ft DDBC-JDBLC Gatewa

3
Microzoft Access Driver [*.mdb]
icrozoft Acceszs-Treiber [* mdb)
ticrozoft dB aze Diiver [*.dbf]

£

1

i

i

i
ticrozoft dB aze WP Driver [7.dbf] Ew
4 | | » |

< Back I Firizh I Cahicel

d. On the next screen, fill in the fields as follows:

¢ For Class Path, enter the absolute path to the 1djdbc.jar
¢ For URL, enter:

jdbc:lde<machine name>:<ports:<app name>

® For Driver class, enter:

com.bea.ld.jdbc.LiquidDatadDBCDriver

1-14 Client Application Developer's Guide

Connecting to Liquid Data Client Applications Using the ODBC-JDBC Bridge from Non-Java Applications

B Easysoft 0DBC-IDBC Gateway DSh Setup 2| x|
DEN: |EasyDemo
Dezcription: I
Uszer Mame: IWEblngic
B Ixxxxxxxx
Diiver Class: |c:u:nm.bea.ld.idbc.LiquidDataJDBEDriver
Clazs Path: p-corekldidbc\lddbc‘l.4'\bui|d\dist'\|didbc.iar Add |
LIRL: |JgSthut=true;debugFiIe=Ididbc.Iog;debugLog=true
Strip Quate: i Single Statement: i
With Schema: v tdodify Metadata: o
Reuse CL Object ¥ Stip Escape: |
Bigint Drefault; r
Test | Ok | LCancel | Help |

e. Click Test. The following screen will display, indicating the connection has completed
successfully.

B 0DBC-IDBC Gateway Test x|

& Conneckion to Liquid Data, com.bea.ld. jdbc. LiquidDataDECDriver (5.2) - QK

f. Click OK to complete the set-up sequence.

Client Application Developer's Guide 1-15

Using the Liquid Data JDBC Driver

1-16

Using OpenLink ODBC-JDBC Bridge

The Openlink ODBC-JDBC driver can be used to interface with the Liquid Data JDBC driver to query
Liquid Data applications with client applications, such as Crystal Reports 10, Business Objects 6.1,
and MS Access 2000.

To use the OpenLink bridge, you will need to install the bridge and create a system DSN using the
bridge. The following are the steps for these two tasks:

1. Install the OpenLink ODBC-JDBC bridge (called ODBC-JDBC-Lite). For information on the
installation of OpenLink ODBC-JDBC-Lite, see:

http://www.openlinksw.com/info/docs/uda51/lite/installation.html

Warning: For Windows platforms, be sure that you preserve your CLASSPATH before installation.
The installer might overwrite it.

2. Create a system DSN and configure it for your Liquid Data application by performing the
following steps:

a. Ensure that the CLASSPATH contains the following jars required by ODBC-JDBC-Lite, as well
as the 1djdbc. jar. A typical CLASSPATH might look like:

D:\1lddriver\ldjdbc.jar; D:\odbc-odbc\openlink\jdkl.4\opljdbe3.jar;
D:\odbc-jdbc\openlink\jdkl.4\megathin3.jar;

b. Update your system path to point to the jvm.d11, which should be under your
$javaroot%/jre/bin/server directory.

c. Open Administrative tools Data Sources (ODBC). You should see the following:

Client Application Developer's Guide

http://www.openlinksw.com/info/docs/uda51/lite/installation.html

Connecting to Liquid Data Client Applications Using the ODBC-JDBC Bridge from Non-Java Applications

: 21 x

Lser DSK Spstem DSN |File DEN I Dliversl Tracingl Connection F'l:n:ulingl About I

#10DBC Data Source Administrator

Syztem Data Sources:

Marme | Driver Add... |
iclub Microsoft Access Driver [*.mdb)

efashion Microgoft decess Driver [mdb) Femove |
LocalServer SOL Server

QDEBEC_JDBC_LITE OpenLink JOBC Lite for JOK. 1.4 | [Eorfigure, .. |

heme Sample Databaze 100 Microsoft Aecess Driver (% mdb)

l | =

An ODBC System data source stores infarmation about how to connect to
the indicated data provider. & Spstem data source iz vizible to all users
an this machine, including MT services.

(] I Cancel e] Help

d. Go to the System DSN tab and click Add.

Client Application Developer's Guide 111

Using the Liquid Data JDBC Driver

e. Select "JDBC Lite for JDK 1.4 (32 bit)" and click Finish.

Create New Data Source |

Select a driver for vahich pou want to et up a data zource.

Hame I V:I

ticrosoft Wisual FoxPra Driver g
ticrozoft Wisual FoxPro-Treiber

OpenLink JOBC Lite for JOK. 1.2 [32 Bit)

OpenLink JOBC Lite for JOK 1.2 [32 Bit] [Unicode)
OpenLink JOBC Lite for JOK. 1.3 [32 Bit)

OpenLink JOBC Lite for JOK. 1.3 [32 Bit] [Unicode)
UpenLink JUSL Lite bar JUE, |4 |32 Bit)

OpenLink JOBC Lite for JOK, 1.4 [32 Bit) [Unicode)
SOL Server

LR iseenmnnny

[N O N N on o o)

-

< Hack I Firizh I Cahicel |

f. Write a name for the DSN. For example, ODBC_JDBC_LITE, as shown in the figure below.

OpenLink Single Tier DSM Configuration ' |

Thiz wizard will help you create an ODBC data source that you can uze to
conhect to a remate Openlink Request Broker.

YWhat name do pou want bo uze to refer to the data source?

Mame: |ODBC_JDEC_LITE

Howa do pou want to dezcribe the data source?

Description; |ODBC_JDBC_LITE

ﬂ; OPENLINK’

SOFTWARE

< Back I Meut » I Cancel

1-18 Client Application Developer's Guide

Connecting to Liquid Data Client Applications Using the 0ODBC-JDBC Bridge from Non-Java Applications

g. Click Next. Then on the next screen, enter the following in the JDBC driver field:
com.bea.ld.jdbc.LiquidDatadDBCDriver.
Enter the following in the URL string field:

jdbc:lde<machine names>:<ports>:<app_name>

DpenLink Single Tier DSN Configuration x|
“which sarser do wou waet b conpact o7
JDBC diiver |combea d be LinudDatalDECDiiver |
URL sting: [idbc:ld@lecahoet 7001 =]

F¥ Connact now to venly that al salfings are conect.

Logn 1D [eyetenm

(@ OPENLINK' Pasmont [~

SEETWARE

<Back [Mea> | concal |

h. Check the Connect now to verify that all settings are correct checkbox. Provide the login and
password to connect to the Liquid Data WebLogic server.

Client Application Developer's Guide 1-19

Using the Liquid Data JDBC Driver

1-20

i. Click Next. The screen shown below will display.

OpenLink 5ingle Tier DSN Configuration

Additional JDBC zpecilic parameters:

[Drop Catalog name from Databasetetallata calls

[Drop Schema name from DatabaseMetallata calls
[Retun an emply ResultSet for SOLStatistics

[~ Dizable support of quoted identifier

[Dizable support of search pattemn escape

[Enable logging of JOBC calls to the log file

Patch rull size of SULChar on: IU ﬂ

< Back I Mest > I

Cancel

Client Application Developer's Guide

Connecting to Liquid Data Client Applications Using the 0ODBC-JDBC Bridge from Non-Java Applications

j. Click Next. The following screen will display.

OpenLink Single Tier DSM Configuration : ﬂ

Additional connect parameters:

I”' Read-only cornectior:

[Defer fetching of longdata

[Disable interactive login

ize: |60 (=]
Fow buffer zize: =
bdas rowes override: |0 j
Initial SQL:I
Dunamic cursor sensitivity: ILDW j

[" Enable Microsot Jet engine optiots
[Disable Autocommit

[Disable rowset size limit

[" Enable laggingta the log file: I

< Back I Mewut » I Cancel

Client Application Developer's Guide

1-21

Using the Liquid Data JDBC Driver

k. Click Test Data Source. This screen will verify the setup is successful.

A new ODBC D atazource will be created with the
fallowing canfiguration:

File: C:\Program Fileshopenfinkite324nt5iT 4z.dll
Running connectivit tests..

Attempting connection

Connection established

erifying option settings

Actual database iz LiquidD ata [LiquidD ata]
Dizconnecting from server

TESTS COMPLETED SUCCESSFULLY!

OpenLink Lite far JOBC 1.3 [32 Bit] Yerzion: 5101121 ;I

< Back Finizh Cancel

1. Click Finish.

1-22 Client Application Developer's Guide

Using Reporting Tools with the Liquid Data ODBC-JDBC Driver

Using Reporting Tools with the Liquid Data 0DBC-JDBC Driver

Once you have configured your ODBC-JDBC Bridge, you can use your application to access the data
source presented by Liquid Data. The usual reason for doing so is to connect Liquid Data to your
favorite reporting tool. This section describes how to configure the following reporting tools to use the
Liquid Data ODBC-JDBC driver:

e Crystal Reports 10 - ODBC

e Crystal Reports 10 - JDBC

e Business Objects 6.1 - ODBC
e Microsoft Access 2000 - ODBC

Note: Some reporting tools issue multiple SQL statement executions to emulate a "scrollable
cursor" if the ODBC-JDBC bridge does not implement one. Some drivers do not implement a
scrollable cursor, so the reporting tool issues multiple SQL statements. This can affect
performance.

Crystal Reports 10 - ODBC

This section describes how to connect Crystal Reports to the Liquid Data ODBC-JDBC driver. To
connect Crystal Reports to the driver, perform the following steps:

1. In Crystal Reports 10, you need to create a new Connection on ODBC RDO. You can do this by
clicking on the New Report wizard button, which will prompt you immediately for a data source.
Select the ODBC (RDO) option in the left-hand window as shown in the Figure 7-3.

Client Application Developer's Guide 1-23

Using the Liquid Data JDBC Driver

Figure 7-3 Data Source Selection

T Standand Report Creation Wizond

& L

[| HWL

You can select the DSN you have created earlier (see the procedure in section “Using OpenLink

ODBC-JDBC Bridge” or “Using the EasySoft ODBC-JDBC Bridge”). In this example, it is
ODBC_JDBC_LITE.

Selecting ODBC_JDBC_LITE, prompts the following dialog:

1-24 Client Application Developer's Guide

Using Reporting Tools with the Liquid Data ODBC-JDBC Driver

x

Connection Information
Frovide neceszary information to log on to the chosen data source

Server: IDDEC_JDBC_LITE

Uszer ID: I

Pazsword: I

< Back | et > | Finish I Cancel | Help |

2. Enter the domain login and password. Note that because the URL contains the Liquid Data
RTLApp application, you should use the domain login and password that the domain of the
RTLApp application uses. (These will most likely be "weblogic".)

Once authenticated, Crystal Reports will show you a view of the Liquid Data application on the
server as shown in Figure 7-4.

Client Application Developer's Guide 1-25

Using the Liquid Data JDBC Driver

Figure 7-4 Availahle Data Sources

il = standard Report Creation Wizard

Data =

Choose the data you wart ta report on.

Available Data Sources: Selected Tables:

(] Current Connections
- [(AFavoiites
1 (D History
[(] Create New Connection
& ([Access/Excel [DAT]
B (] Database Files
(] DB 2 Unicode
& (C1JDBC UNDI
& (J0DBE (RD0)

4 Make New Connection
B HES Suz

el I

DataServices RTLSenvices
DataServices ServiceDB
B (10lap

(] OLE DE (4D0)

ML

- [IMore Data Sources

B ([Repositany

cgack [mats | Frish | Concel | Help

3. Generate a report using the Add command or by dragging the metadata to the right. In this
example we will be using both options. You can choose the tables you want to use in the report
as shown in Figure 7-5.

Figure 7-5 Selecting the Table View

@ Standard Report Creation Wizard

Data
Chaose the data you wank ko report on.

Available Data Sources: Selected Tables

=~ ODBC_JDBC_LITE

CUSTOMERS [ld DataServices/schemas/CUSTOMERS xsd
*[B PAYMENTS [ld:DataServices/schemas /PAYMENT S.xsd~140.

1 Create New Connection

& ((Access/Excel DAD]

-] Database Files
=-J0DBC (RDO)

“3 Make New Connection

ol

ese buttons help you choose the tables

R

ey EN TList wsd ™Ik D ataServc

- [E fooB arCustomer [fooBariCustomer Id DataS ervices/ Customer]
* - [E] getCustomer [gel Customer "I DalaServices/Customei]
& B 4 DataSenvices CUS TOMERS uds
CUSTOMERS [l4DataServices/schemas/CLIS TOMERS usd
DataServices™ TEMS wils
ITEMS [idD TEMS nsc~1d D,
& B ldDataServices PAYMENTS "uds
EHE] Views
& PAYMENTS [ld:DataServices/schemas/PAYMENTS ksdd
EHED Stored Procedures
- [E fooBar [fooBar kD ataServices PAYMENT S POINTEA
1d DataServices"PO_CUSTOMERS "sds
PO_CUSTOMERS [ldDataServices/schemas/PO_C!

ld D ataS ervices;

TEMS POINTBE —
Select the Table (View) you want In your report, fror

/

/I D ataServices Py

EAWEBLOGIC]

STOMERS xsd™~ldDataSel

EERO_ITEMS [i4D. S ssct 1. 0_ITE
E-300sp

+[C10LE DB [4D0)
[#-C] More Data Sources

(ARepository =

1-26 Client Application Developer's Guide

Using Reporting Tools with the Liquid Data ODBC-JDBC Driver

Alternatively, you can choose the Add Command option to type an SQL query directly, which
will show you a window like one in the Figure 7-6.

Figure 7-6 Add Command

K Add Command To Report x|
Enter SAL query in the box below. P ot List

SELECT *FROM CUSTOMER LEFT OUTER JOIM ADDRESS ON - Create...
CUSTOMER.CUSTOMER_ID = ADDRESS CUSTOMER_ID| _I —I
Iodify... |

Femove

()8 | Cancel |

4

4. Click the Ok Button to see the Command added to the Right hand side of the window.

Clicking Next in the wizard shows you all the available views for this Report generation, as
shown in Figure 7-7.

Client Application Developer's Guide 1-21

Using the Liquid Data JDBC Driver

Figure 7-7 Link Screen

Link

Link. tagether the tables you added to the report,

I standard Report Creation Wizard

4 e

ADDRE
ADDR_ID
CUSTOMER._ID
FIRST_MAME
LAST_MAME
STREET_ADDRESS1

: £

STAECT Ammncccs

CUSTOMER_ID
FIRST_MAME
LAST_MAME
CUSTOMER_SINCE

cranT

hd
CUSTOMER, CUSTOMER._ID
CUSTOMER. FIRST_MAME
CUSTOMER. LAST_MAME
CUSTOMER., CUSTOMER,_SINCE
CUSTOMER.EMAIL_ADDRESS
CUSTOMER., TELEPHOME_MUMBER.
CUSTOMER. 55N
CUSTOMER . BIRTH_DéY
CUSTOMER., DEFALLT_SHIP_METHOD
CUSTOMER EMAIL_MOTIFICATION
CUSTOMER MEWS_LETTTER.

|»

Auto-Arange

Auto-Link
& By MName
" ByKey

Link |

Order Links...

Clear Links

Delete Link

Lirk Options...

Index Legend...

< Back I Mext > I

Finizh

Cancel Help

1-28 Client Application Developer's Guide

Using Reporting Tools with the Liquid Data ODBC-JDBC Driver

Clicking Next again will take you to the Column chooser window, which allows you to select
which Columns you want to see in the final Report, which appears as shown in Figure 7-8.

Figure 7-8 Column Chooser

|l @ standard Report Creation Wizard _ |
Fields
Chooze the information to dizplay on the report,
Available Fields: Fields to Display: o v
=] ADDRESS_ADDRESS = = ADDRESS_4ADDRESS.CITY

-m= ADDR_ID = ADDRESS_ADDRESS.COUNTRY

2= CUSTOMER_ID = CUSTOMER_CUSTOMER.FIRST_MNAME

-m= FIRST_MAME 3> | |= CUSTOMER_CUSTOMER.LAST_MNAME

m= LAST_MAME = CUSTOMER_CUSTOMER.TELEPHOME_MUMBER

--m= STREET_ADDRESST
@2 STREET_ADDRESS2
.= [

-m=3 5TATE a
.c= Z|PCODE
== COLUNTRY
== DaY_PHOME

== EYE_PHOME

= ALIAS

3 STATUS

e |5_DEFALLT i
=B CUSTOMER_CUSTOMER

-m= CUSTOMER_ID

HlelEE

=] 5T |
.m= CUSTOMER_SINCE
m= EMAIL_ADDRESS |

= TCI COUMAKIE RIIWDCD

Browse Data, Find Field...

< Back I Mext » I Finizh | Cancel | Help

Note: This example chooses columns from the user-generated Command and the view
CUSTOMER.

Client Application Developer's Guide 1-29

Using the Liquid Data JDBC Driver

1-30

Figure 7-9 Group-by Screen

I standard Report Creation Wizard

Grouping

[Optional] Group the information on the report.

Clicking on Next again takes us to the Group by screen (as shown in Figure 7-9), which allows
you to choose a column to group by. (This is grouping is performed by Crystal Reports. The
Group-by information is not passed on to the JDBC driver.)

-
-

Available Fields:

=42 Report Fields

=[] ADDRESS_ADDRESS
== ADDR_ID

--m= CUSTOMER_ID

m= FIRST_NAME

= LAST_MNAME

--m= STREET_ADDRESST
--m= STREET_ADDRESS2
2= ZIPCODE

2= COUNTRY

== DaY_PHOME

== EYE_PHOME

= STATUS

= |5_DEFAULT

1 WS SIS TAMED CHCTORED

Browse Data..

Find Figld...

= EUSTDME_EUSTDMEH.FIHST_NAME
= CUSTOMER_CUSTOMER.LAST_MAME
== CUSTOMER_CUSTOMER. TELEPHOME_MWUMBER

Group By:

X

<4

Al

E ADDRESS_ADDRESS.COUNTRY - A
& ADDRESS_ADDRESS.CITY -4

Iin azcending order.

< Back I et > I

Finizh

Cancel |

Client Application Developer's Guide

Using Reporting Tools with the Liquid Data ODBC-JDBC Driver

5. Skip the next few screens for now, clicking Next till you reach the Template Chooser Screen

Figure 7-10. Choose any appropriate Template. In this example, the user has chosen the Block
(Blue) Template.

Figure 7-10 Template Chooser Screen

2 Standard Report Creation Wizard

; : x|
Template ﬂ
(Optionall Select a template for the report

Avalable Terplates Preview

ate - Page Sections Dnly
Confidsntial Undsrlay

Corporate [Bluz]

Corporate [Green)

Dovbls Sided Page Headers Footers
Executive Summary or Tille Page
Form [Maroar]

Giay Soale

High Conrast

Contrast Index

Table Grid Template
Wave

Bignse.

<Back | Fiish | Cencel Help

Client Application Developer's Guide 1-31

Using the Liquid Data JDBC Driver

6. Click Finish. A Report similar to that shown in Figure 7-11 is generated.

Figure 7-11 Generated Report

E‘-Erystal Reports - [Report3] _|EI il
File Edit View Insert Format Database Report Window Help _|E' 5[
DS -BEL&7|(s BT 0. @b o A e
= S =i tlezu|= e
Jah{E}:ﬂIEﬂ&,ﬂﬂQ|
|wgragnver|ses|
Design Preview | ZAF X M 4 1af1 b HE
= Report3 B i T T B RN - IR SRR |
E-USA = _I
A -
] inacortes PHa - powered by tal e
ustin @
Dallas 24 Crys a L
Phoenix 3
Reno E Report Description:
San Francisc 2
: SanJose E:?a
- Sealtls USA
t Tucson
GHih £OUNTRY £ITY FIRST_NAME LAST _NAME TELEFHONE_NUMBER
GH? o Anacortes
[uss Anacaries Jeny Greenneig JEDTA6 764
GHZ 4 Austin i
n = usa Auslin pan Jannzan 5128317204
o - usi Austin Kzvin Smiln 4DEE1202E1
GH? . Dallas
|) ush [a llax Jace Elack 2145174119
GH2 B Phoenix
n i uss Promnix HiLin Gupld ED2EAEITET
GH? - Reno
JE - usa Rana Slave Ling EEBDL1524%6
GH? g San Francisco
e B ush San Francizca Michael Snaw 41504 BDB1T =
i - Can Tnra
HlE————| | | LlJ
For Help, press F1 |48, 1.8 15x%0.1 [Records: 10 | 100% 4

1-32 Client Application Developer's Guide

Using Reporting Tools with the Liquid Data ODBC-JDBC Driver

Crystal Reports 10 - JDBC

Crystal Reports 10.0 comes with a direct JDBC interface that can be used to interact directly with the
Liquid Data JDBC driver. The only difference between the ODBC and JDBC approach is that in JDBC,
a new type of connection is used, as shown in Figure 7-12.

Figure 7-12 Connection Dialog Box

Connection
Please enter connection infarmation ..

JDEC Connection: o
Connection URL: Iidbc:ld@shanor:?ﬂm ‘RTLApp
[atabase Clazsname: Icom.bea.ld.idbc.LiquidDataJDBEDlivel

JMDI Cornection Name I
[Dptionall:

JMDI Cornection: o

JHDN Pravider AL |

JHEI U sermanme: Iweblogic
MBI Fassward: I
Iritial Context: Ia’

< Back I Mext » I Finish Cancel | Help |

Figure 7-13 shows screen that requests the connection parameters for the JDBC Interface of Crystal
Reports.

Client Application Developer's Guide 1-33

Using the Liquid Data JDBC Driver

Figure 7-13 Connection Information Dialog Box

JDBC {INDI)

Note: The Database drop down box is populated with the available catalogs (Liquid Data
applications) once you have specified the correct parameters for User ID and, Password, as
shown in Figure 7-13.

1-34 Client Application Developer's Guide

Using Reporting Tools with the Liquid Data ODBC-JDBC Driver

Clicking the Finish button on the previous screen. This takes you the metadata browser shown in

Figure 7-14. The rest of the process is similar to the procedure described in the section “Crystal
Reports 10 - ODBC.”

Figure 7-14 Metadata Browser Window

I standard Report Creation Wizard

Data ml
Chooze the data you want ta report on.

Available Data Sources: Selected T ables:
ED Create Mew Connection ;I =B jdbe:ld@shanor 7001:RTLARD
E]--DACCESS.-"EHCEl [Da0) ADDRESSH#ADDRESS

E]--DDatabase Files CUSTOMERHCUSTOMER
- CADB2 Uricads

= (Z3JDBC (INDI) =2 |
[2
< |

Make Mew Connection

@; jdbc:ld@shanor 7007:RTLApp
-] Add Command

EHE RTLApp

+ DataServices~ApparelD B

D ataServicesBilinaDB

D ataServices~Demo~C5Y
DataServices™RTLServices
B[] DataServices~SenviceDB
#-(J0DEC (RDO]

- (3 0lap

=-(J0LE DE (4D0) |

< Back | Mext » Finizh Cancel Help

Client Application Developer's Guide 1-35

Using the Liquid Data JDBC Driver

Business Objects 6.1 - ODBC

Business Objects 6.1 allows you to create a Universe and also allows you to generate reports based on
the specified Universe. In addition, you can execute pass-through SQL queries against Business
Objects that do not need the creation of a Universe.

To generate a report, perform the following steps:
1. Creating a Universe by doing the following:
a. Run the Business Objects 6.1 Designer application and click New to create a new universe.

b. Fill in a name for your Universe and select the appropriate DSN connection from the
drop-down list, as shown in Figure 7-15.

Figure 7-15 Selecting the DSN Connection

Universe Parameters :, ll

Diefirition | Summaryl Strategiesl Eontrolsl 500 I Links I Parameter

The following information identifies the universe. & universe is
defined by itz name and database connection:

¥
Description: This universe iz created to demonstrate how to use ;I

Businezz0bjects 6.1 with LiquidD ata JDBEC driver using
EasySoft-0DBD-JDEC-Gateway.

Connection: & New Connection

Cancel | Help |

1-36 Client Application Developer's Guide

Using Reporting Tools with the Liquid Data ODBC-JDBC Driver

c. Ifthe DSNyou wish doesn't appear in the list (this happens if you are using the application for

the first time), use New to create a new connection. Select ODBC Drivers, as shown in
Figure 7-16, and click OK.

Figure 7-16 Selecting the 0DBC Drivers

¥ Designer

=10l x|
File Edit Wew Insert Tools ‘Window Help

NEH| SR 2RAL o BB %S| FEE = |
Meve | s gy |
X o 5|

Universe Parameters

Definition | Summaryl Shategies I Eontrolsl S0L | . 5
' - Select the network layer you want to uze,

The fallawing information identifies t Click OK. and then define parameters for the connection.

defined by itz name and database c
Metwork Layer:

It DEZ Client
IBM iSeries Access
Informix ODBC Criver

M ame: IEustomerU hiverse

Description: Thiz universe iz created to demansl
BusinessObjects 6.1 with LiquidDat | Oracle Client
EasySoft-0DBD-JDBC-Gateway. Svbase Open Client

Teradata ODBC Driver

Connection; I ® Mew Connection =
Description

Tew... Allowes pou to access various databases

oK I Cancel |

Lancel

Client Application Developer's Guide 1-31

Using the Liquid Data JDBC Driver

d. Now select the database engine as a Generic ODBC data source, as shown in Figure 7-17. Use
the ODBC Admin button to check if the DSN you wish is already created. For any help creating
a DSN using OpenLink or EasySoft please refer to the section ODBC-JDBC bridge of this
document.

Figure 7-17 Selecting the Database Engine

=lolx|

File Edit View Insert Tools ‘Window Helo

0O Universe Parameters

Add a connection il

& Oy e o e (e
ODBC Drivers x|
X : ection.

Lagin |Advanced| Eustoml

Mame: [atabaze engine:
Name IDemoEon IMS Access 2000
Desci — Login P, Generic DDBC datazource

kS Access 2000

Uszer name:

Coritu
Password: I

[Data source name: I ;I Test |

Type: I Perzonal ;I

o |

1-38 Client Application Developer's Guide

Using Reporting Tools with the Liquid Data ODBC-JDBC Driver

e. Now select the data source name as shown in Figure 7-18. This would be the name of DSN you
wish to connect to. Refer to the picture below. Click OK to get back to the Universe creation

window.

Figure 7-18 Selecting the Data Source Name

¥ Designer

O & B Definifon |
e v

XV B

I ame:

Diescriptio

Connectio

(5[0 = (8 Liniverse Parameters

Lagin | Advanced I Custom I

=1ofx|

Meb Name: Diatabase engine:

"EN IEustomerUniverseEonnection Generic ODBC datasource j

:EE r— Login P.

E ™ Use BusinessObjects user name and password

15

Sut > -

Tl Uszer name: Iwebloglc ODBC Admin |
Pazsword: I ********

Des

el ['ata source name: IEasySth_DDBE_JDBE_Gateway j Test I
Type: I Perzonal j

0k, | Cancel | Help |
1 e [1 1

4

Client Application Developer's Guide

1-39

Using the Liquid Data JDBC Driver

f. Fill in the other details and click Test to see if the connection is successful. Click OK. You
should see a new blank panel, as shown in Figure 7-19.

Figure 7-19 Designer Ul Screen

%% Designer - CustomerUniverse : e ;Iglll
g Ele Edt View | nsert Tools Window Help == x|
De || 5[rE =N e
My o] B (Y|

oy i

XV 5B I 5:‘5' (Zomtexk., |

[af{ Class... a
Subclass, ..
& Obiject..

o Copdition..
Candidate Objects, .,

User Objects...

Universe, .,

@ cv M g _’|;I
Displays the table brawser - 0,0] il

1-40 Client Application Developer's Guide

Using Reporting Tools with the Liquid Data ODBC-JDBC Driver

g. From the Insert menu select Table, as shown in Figure 7-19. Once the list of tables is shown in
the Table Browser, double click on the tables you wish to put in the Universe you are creating.
You should see a screen similar to that shown in Figure 7-20.

Figure 7-20 Table Browser

%9 Designer - CustomerUniverse

J'E File Edit Wiew Insert Tools Window Help

=101 x|

=12]x

DGR {meAas - | R EAY (WM -

e e e |

X o A

=442y Rtlapp Dataservices™customerdb AddressHaddress
B AddrId
Customer Id
First Mame
Last Mame
Street Address1
Sheet Addiess2
City
State
Zipcode
Country
Day Phone
Eve Phone
o8 plias
- @ Status

& |3 Default
ERSSEritapn D
@ Customer |d
-~ @ First Mame
@ Last Name
- @ Customer Since

TLlgTELETEE

=
i

e cy M

RTLApp.DataServicesCustomerDE. ADDRESS#ADDRESS

[A00F_ID
CUSTOMER_ID
FIFST_MAME
LasT ManME

CITY
STATE
ZIFCODE

STF\EET_ADDF!ESSI
STREET_ADDRESS2

USTOMER_ID

h. Save the Universe and exit.

Client Application Developer's Guide

-4

Using the Liquid Data JDBC Driver

2. Creating a report using the New Report wizard. To create a new report, follow these steps:

a. Run the Business Objects application. Click New to open the New Report Wizard. Choose
Specify to access data and click Begin. You should see the dialog-box shown in Figure 7-21.

Figure 7-21 Available Universe Dialog Box

fiNew Report Wizard

f Select a Universe

To access universe data, select a universe.

Available Universes:

2[SE
Marketing

Island Reso

SU1

UMY _CUST_TEST

UniProc

Univers1 [Univers1.uny |

Univers1 [Mylniver uny |

UnivversOL LI

™ Set as My Default Uriverse

Help on the selected universe:

< Back | Finizh I Cancel

1-42 Client Application Developer's Guide

Using Reporting Tools with the Liquid Data ODBC-JDBC Driver

b. Choose a Universe. Click Next. On the left pane, you should see the tables and their fields
(columns) on expansion, as shown in Figure 7-22.

Figure 7-22 Query Panel

<n Query Panel - CustomerUniverse Universe

=10l x|

E Qfl T |%l| IScope of Analysiz: Mone

Classes and Objects

Resulk Ohjects

-] el R T e

=

2P

= a8

Addr Id

First Marne

Rtlapp Dataservices~clﬂ

Last Mame
Street Address1
Street Addressz
ity

State

Zipcode

Counkry

Day Phone

Eve Phone

Alias

Status

Is Default

Rtlapp Dataservices~o
@ Customer Id

Lol Hl

Optiong... |

Conditions

To insert an object in the query, open a class folder then double-click the object.

To apply a condition, drag an object to this pane.

Save and Cloze B, | Fun Cancel

Client Application Developer's Guide

1-43

Using the Liquid Data JDBC Driver

c. Select the Universe of your choice and click Finish. Double-click a column (table-field) in the
left pane to select it in the result, as shown in Figure 7-23.

Figure 7-23 Selecting the Object.

<n Query Panel - CustomerUniverse Universe

WQ{’I ?l%ll IScope of Analysis: None j @l%‘llﬂlﬁﬂl@l gl

Classes and Objects Result Objects

Customer Id ;‘ -
First Mame @ Customer Id | & City | B Country

Last Name & First Name | & Last Mame | |
Street Address1
Street Addressz \{

City -
State BT
Zipcode
Counkry
Day Phone
Eve Phone Conditions
Alias To apply a condition, drag an object to this pane.
Status

- @ Is Default
El-@ Rtlapp Dataserviceseo
- @ Customer Id
@ First Name

=10] x|

Double-Click to select the fields to be
displayed in the result.

@8 O Hl
Optiong... | Save and Cloze Wiew... | Bun Cancel

1-44 Client Application Developer's Guide

Using Reporting Tools with the Liquid Data ODBC-JDBC Driver

d. Click Run to execute the query. The result is seen as shown in Figure 7-24.

Figure 7-24 Business Objects Panel.

B BusinessObjects - Document2 e EI|1|
@ File Edit Yiew Insert Format Tools Data Analysis Window Help ===
shzlan]
he@gR|seexXa (s - - (BEREa a5
22]% % B |
: ﬂ
& Data | & Map | Report Title
£ Wariables
: Eg’m” Customer Id City Country First Name Last Name
@ Custur:alld CLUSTOMERD lAustin UsSa Britt Pierce
L@ First Name CUSTOMERD lustin USA Daon Johnson
o8 LastName CUSTOMERD |Austin usa Hommer Simpson
(Bl Fomlas CUSTOMERD _ |Austin USA Jack Black
CUSTOMERD LA stin US4 Jerry Greenberg
CUSTOMERD |Austin LSA Kevin Smith
CUSTOMERD Austin USA Michael Snawy
| CUSTOMERD |Austin USA Hitin Gupta
i CUSTOMERD |Austin LSA Steve Ling
CUSTOMERD Bustin LISA Tim Floyd
CUSTOMERD San Jose USA Brritt Pierce
CUSTOMERD San Jose USA Don [Johnson
‘ CHSTOAFDO LT T [N~ Havarnnr Civancan _';I
<« »
6‘5 (-E Z] Reportl I
[| Last Exec: 6/10/2005 11:43 AM hUM 4

3. You can execute the pass-through queries as follows:

a. In the Business Object application, click New to create a new report.

b. Inthe New Report Wizard choose Others instead of Universe as shown in Figure 7-25.

Figure 7-25 Data Access Dialog Box.
¢. Choose Free-hand SQL and click Finish.

Client Application Developer's Guide

1-45

Using the Liquid Data JDBC Driver

d. Select the connection you made using Designer 6.1, as shown in Figure 7-26.

Figure 7-26 Free Hand SQL Menu

& BusinessObjects - Document4 gl =l
Ll = Free-hand SQL _l&lx]
Ir the free-hand SAL editor, you create or open a SOL seript, and run it on the
zelected databaze connection. | | 100%
Diata jA
& A MyMNewConn

M Mew Connection LI

" o

[T Build Hisrarchies and Start in Drill Mods

WiEw., I Frum Cancel | Help | _'ILI

e

mom T 4

1-46 Client Application Developer's Guide

Using Reporting Tools with the Liquid Data ODBC-JDBC Driver

e. Type in your SQL query and click Run to generate the report, as shown in Figure 7-27.
Figure 7-27 Specifying the SQL Query

b BusinessObjects - Document+ : =10l =]

@ 54 Free-hand SOQL == x|

Ir the free-hand SAL editor, you create or open a SOL script, and run it on the
zelected databaze connection. | | 100%

f EIEI S&L Eorhection: I | EustomerUniverseEonneclj &I&IEI

SELECT * FROM CUSTOMER NATURALJOIN ADDRESS ;I

¥ il

™ Build Hisrarchies and Start in Drill Mods

i Wiew... | Fiun Cancel | Help | _'ILI
o i

a4 .

| [HUM A

Client Application Developer's Guide 1-41

Using the Liquid Data JDBC Driver

1-48

f. Click Run. You should see the report shown in Figure 7-28.

Figure 7-28 Business Objects Report

BusinessObjects - Document4

=10f x|

@ File Edit W¥iew Insert Format Tools Data Analysis Window Help

=181x]

szl |

Ledgk =B XE a4 o~ RARES |=EQ|f 5|

wl X | W v BN

il ﬂ
& 0ata | Man | Report Title
-4 Variables -
----- @ ADDRESS.ADDR_ID
_____ PO E PG CUSTOMER_ID FIRT_NAME LAT_NAME CUSTOMER.CUS UTOMER.
_____ & ADDRESS.CITY CUSTOMERD Kewin Sith 114172001 Kevin@aol.co
----- @ ADDRESS.COUNTRY CUSTOMERD Kewin Sith 114172001 Kevini@aol.co
""" @ ADDRESS.DAY_PHD CUSTOMER1 Jack Black 114172001 Jacki@hotrnai
----- @ ADDRESS.EVE_PHO
_____ @ ADDRESS STATE CUSTOMER2 Je.rry G.reenherg 114172001 JOHM_2Eyat
_____ & ADDRESS.STATUS CUSTOMERS Britt Pierce 114172001 JOHM_3idhatt.
----- & ADDRESSSTREET | CUSTOMER4 Steve Ling 114272001 JOHM_4iGhatt.
""" @ ADDRESSSTREET. CUSTOMERS Michael Show 114172001 JOHM_SiGaol
----- @ ADDRESS.ZIPCODE
_____ @ CUSTOMER BIRTH I CUSTOMERE D.on Johnson 114172001 JOHM_Bighat
_____ & CUSTOMER.CUSTOR CUSTOMER? Tirn Flayd 114172001 JOHM_7ig@yat
----- & CUSTOMER.DEFALUL CUSTOMERS Nitin Gupta 114172001 JOHM_Bidhatt.
----- @ CUSTOMER.EMaIL_¢
----- @ CUSTOMER.LOGIM_|
----- & CUSTOMER.SSN
..... & CSTAMFR TFI Fﬂﬂ =
“48 T [£] Report1 I

[| Last Exec: 6/10f2005 12:38 PM

T

Client Application Developer's Guide

Using Reporting Tools with the Liquid Data ODBC-JDBC Driver

Microsoft Access 2000 - ODBC

This section describes the procedure for connecting Microsoft Access 2000 to the Liquid Data through
an ODJB-JDBC bridge.

Note: If you are using Microsoft Access 2000 you should use OpenLink’s ODBC- JDBC bridge. The
EasySoft bridge does not support Microsoft Access 2000.

To connect Access 2000 to the bridge, perform the following steps.

1. Run MS Access, click File Open, then select the "ODBC Databases" as the file type as shown in the
Figure 7-29.

Figure 7-29 Selecting the 0DBC Database in Access

J EEg Loak in: ID Iy Documents ;I - | @ b ﬁ ~ Tools -
|0 & | = [& | Histary 120081 3.mdb

My Business Objects Documents ODBCH.mdb
(_ 1My BZFlag Files 18] 0DBC15.mdb
My eBooks 18 0DBC16.mdb
LMy Games 18 0DBC17.mdb
2 My Music 18] 0DBC18.mdb
(Z5]My Pictures 1] opECz.mdb
(23 5ecurity 18] 0DBC3.mdb
(3 sujeet_iitd 18] oDBC4.mdb
[Z1 0DBC mdb 1 oDBCS. mdb
(2 00BC1 . mdb 18] oDBCE mdb
[#1]0DEC10.mdb 18 0DBC7 mdb
(2] 0DEC11.mdb 1 opECa.mdb
[#21]0DEC12.mdb 1] 0DBCa.mdb

File: name: I ;I G open |t |

Files of type: IData Files (*.mdb;* . adp;* mdw;* mda;*.mde; *.ade;*.n:‘ZI
Microsoft Excel (*,xls)

Cancel |

Ready N o o

Client Application Developer's Guide 1-49

Using the Liquid Data JDBC Driver

2. Once the dialog Select Data Source pops up, click Cancel to close it. You should see the window
shown in Figure 7-30.

Figure 7-30 0BDC23: Database Screen
=

. L i

Create query by using wizard

)

Groups

E3 Favorites

1-50 Client Application Developer's Guide

Using Reporting Tools with the Liquid Data ODBC-JDBC Driver

3. Click Queries, then Design as indicated in Figure 7-30. You should see a screen shown similar to
that shown in Figure 7-31.

Figure 7-31 Select Query and Show Table Screens

F2 Microsoft Access - _|O il

JEl\e Edit View Insett Query Tools ‘Window Help |

[DeEems|fEe |- h- & k=S80,

1=F Queryl - seleck Query

Show Table

Tables IQuer\es | Both |

Figld:
Table:
Sort:
Show:
Criteria:
or:

[ready JA S/ Y 7

4. Close the Show Table dialog box. You should now be able to see the Select Query dialog.

Client Application Developer's Guide 1-51

Using the Liquid Data JDBC Driver

5. Right click in the upper pane and select SQL Specific — Pass-Through as indicated in
Figure 7-32. This will open an editor.

Figure 7-32 Selecting SQL Specific and Pass Through

K2 Microsoft Access =l —|O il

JEI|E Edit Wiew Insert Query Tools ‘Window Help ‘

u-@eky|i=as| & |szla mANEa 0.

$OL SQL View
Dabashest View

c’@ Show Table..,
El'.i] Parameters. ..

Field: =
Table: Relationships...
Sark: :% o 5 [T Data Definition
Show: Froperties... []
Criteria: | e —
or:

Ready 5

1-52 Client Application Developer's Guide

Using Reporting Tools with the Liquid Data ODBC-JDBC Driver

6. Type in your SQL query and click Run, as shown in the Figure 7-33.

Figure 7-33 Running the SQL Query

';" Microsoft Access 4

JEi\e Edit Wiew Insert Query Tools ‘Window Help

|BE- R ERy|s =R

@ %] @ @A

£ ODBC26 : Database

:p? (ezziy i T 20 Pass Through Query

ELECT * FROM CUSTOMERS

2. Click to run the query

1. Type your query here

Ready ksl L

.

Client Application Developer's Guide

1-53

Using the Liquid Data JDBC Driver

7. Inthe dialog that pops up (as shown in Figure 7-34), move to the tab Machine Data Source and
select the appropriate DSN for the database connectivity.

Figure 7-34 Selecting the DSN for the Datahase

P2 Microsoft Access o = ID Iil

JEl\e Edit Wiew Insert Tools Window Help ‘

0w UG v s

r File Data Source “Fachine Data Source
gEE ODBC19 : Database

= oy D Py D ata Source N ame Wpe | Description
‘DEH g g ﬁ’e" club System

#T] dBASE Files

Elles - Wfoud

Evcel Files “\— Select the DSN
FoPro Files -Word

e
MOIS User SOL Server -
4 | B

Mew. |

& Machine Data Source is specific to this machine, and cannot be shared,
"User" data sources are specific ta a user on this machine, "System" data
Groups souices can be used by all users on this maching, or by 3 spstem-wide service:

OK I Cancel | Help I

[verifying system objects] o

Liquid Data and SQL Type Mappings

1-54

When data service information is accessed from a JDBC client, the data is mapped from its XML
Schema format to SQL types. The mapping between the types is shown in Table 7-35.

The XML types are defined by xmlIns:xs="http://www.w3.org/2001/XMLSchema". The Java types are
defined by java.sql.Types.

Table 7-35 XML to SQL Type Mapping

XML Type SQL Types
xs:Boolean Types.BOOLEAN.
xs:byte Types. TINYINT
xs:dateTime Types. TIMESTAMP
xs:date Types.DATE

Client Application Developer's Guide

Table 7-35 XML to SQL Type Mapping

SQL-92 Support

XML Type SQL Types
xs:decimal Types.DECIMAL
xs:double Types.DOUBLE
xs:duration Types. TIMESTAMP
xs:float Types.FLOAT
xs:int Types.INTEGER
xs.integer Types.NUMERIC
xs:long Types.BIGINT
xs:short Types.SMALLINT
xs:string Types.VARCHAR
xs:time Types.TIME

SQL-92 Support

This section outlines the SQL-92 support in the Liquid Data JDBC driver.

Supported Features

The Liquid Data JDBC driver supports many standard SQL-92 features. In particular, supported

features include:

e Only SELECT construct is supported. Inserts, updates, and deletes are not supported.

e SELECT clause with:
— DISTINCT and ALL

— Scalar expressions and functions, CASE statements, CAST, string and date literals, column

wildcards.

e Projections (sub-queries) within the select clause are not supported.

o FROM clause with:

Client Application Developer's Guide 1-55

Using the Liquid Data JDBC Driver

1-56

Basic table names
Sub-queries
Joins

Set operations

e GROUP BY clause

e HAVING clause

o WHERE clause with:

Predicate expressions (arithmetic operators, functions, CASE statements)
Predicates involving non-correlated and correlated sub-queries

EXISTS

BETWEEN

LIKE

NULLIF

COALESCE

UNIQUE

IS NULL, IS NOT NULL, IS TRUE, IS FALSE

— ALL, SOME, ANDY

e Joins of the following type:

e (ross joins, inner joins, and union joins

o Natural joins and joins with ON and USING

o Left, right, and full outer joins

e Set operations:

UNION
INTERSECT
MINUS

e Parameterized queries (with standard SQL-92 notation)

Client Application Developer's Guide

e ORDER by clause

e Functions:

STR

CONCAT
CURRENT_TIME
CURRENT_DATE
CURRENT_TIMESTAMP
ROUND

FLOOR

LOWER

UPPER
SUBSTRING
CASTTODATE
CASTTOTIME
COUNT

AVG

SUM

MIN

MAX

EXTRACT

TRIM

The Liquid Data JDBC driver implements the following interfaces from java
in JDK 1.4x:

® java.sgl.Connection

java.sqgl.CallableStatement

java.sqgl.DatabaseMetaData

java.sql.ParameterMetaData

java.sqgl.PreparedStatement

SQL-92 Support

.sq1 package specified

Client Application Developer's Guide 1-51

Using the Liquid Data JDBC Driver

® java.sgl.ResultSet

® java.sqgl.ResultSetMetaData

® java.sgl.Statement

Limitations

The following limitations are known to exist in the Liquid Data JDBC driver:

e Each connection points to only one Liquid Data application.

e An XML Schema name can contain special characters that are illegal for database schema
names (such as "/" and "."). The Liquid Data JDBC driver translates the characters to legal
characters ("~" and """, respectively).

The following table notes additional limitations that apply to SQL language features.

Unsupported Feature

Comments

Example

OVERLAPS

Intervals not supported

WHERE (,,) OVERLAPS (, ,)

range-variable-
comma-list

The table_name can have an alias,
but you cannot specify the
colmn_name_alias_list
within it.

SELECT ID, NM, CT
FROM STAFF AS (ID, NM, GD, CT);

Assignment in select

Not supported.

SELECT MYCOL = 2
FROM VTABLE
WHERE COL4 IS NULL

The CORRESPONDING
BY construct with the
set-Operations(UNION,
INTERSECT and
EXCEPT)

The SQL-92 specified default column
ordering in the set operations is
supported.

Both the table-expressions (the
operands of the set-operator) must
conform to the same relational
schema.

(SELECT NAME, CITY FROM CUSTOMER1)
UNION CORRESPONDING BY (CITY, NAME)
(SELECT CITY, NAME FROM CUSTOMER2)

The supported query is:

(SELECT NAME, CITY FROM CUSTOMER1)
UNION (SELECT NAME, CITY FROM
CUSTOMER2)

1-58 Client Application Developer's Guide

SQL-92 Support

Unsupported Feature Comments

Example

"...tablel UNION table2..." Not supported. Also not supported are
set operations between tables in a
FROM clause, except through a
sub-query.

The TABLE keyword is not supported.

SELECT * FROM TABLE CUSTOMER1 UNION
TABLE CUSTOMER2

Where TABLE is a keyword not supported by
the LDJDBC SQL interface.

The supported version is:

SELECT * FROM (SELECT * FROM
CUSTOMER1 UNION SELECT * FROM
CUSTOMER2) T1

Other supported UNION constructs:

SELECT *FROM CUSTOMER1 UNION SELECT
* FROM CUSTOMER2

SELECT * FROM CUSTOMER1 UNION
(SELECT * FROM CUSTOMER2 UNION
SELECT * FROM CUSTOMERS3)

SELECT-query within the ~ Not supported.
SELECT clause

SELECT A, (SELECT B FROM C) FROM...
WHERE...

Client Application Developer's Guide 1-59

Using the Liquid Data JDBC Driver

1-60 Client Application Developer's Guide

Advanced Topics

This chapter provides information on miscellaneous topics related to client programming. It covers
the following topics:

e Applying Filter Data Service Results

e Ordering and Truncating Data Service Results

e Consuming Large Result Sets (Streaming API)

e Using Ad Hoc Queries

e Transaction Considerations

e Setting Up Data Source Aliases for Relational Sources Accessed by Liquid Data

e Setting Up Data Source Aliases for Relational Sources Accessed by Liquid Data

Applying Filter Data Service Results

The Filter API enables client applications to apply filtering conditions to the information returned by
data service functions. In a sense, filtering allows client applications to extend a data service interface
by allowing them to specify more about how data objects are to be instantiated and returned by
functions.

The Filter API alleviates data service designers from having to anticipate every possible data view that
their clients may require and to implement a data service function for each view. Instead, the designer
may choose to specify a broader, more generic interface for accessing a business entity and allow
client applications to control views as desired through filters.

Client Application Developer's Guide 8-1

Advanced Topics

8-2

Objects in the function return set that do not meet the condition are blocked from the results. (The
evaluation occurs at the server, so objects that are filtered are not passed over the network. Often they
are not even retrieved from the underlying sources.) A filter is similar to a WHERE clause in an XQuery
or SQL statement—it applies conditions to a possible result set. You can have multiple filter
conditions using AND and OR operators.

Note: The Javadoc that describes the Filter API is available at:

http://e-docs.bea.com/liquiddata/docs85/1dapidavadoc/index.html

Using Filters

Filtering capabilities are available to mediator and Liquid Data control client applications. You use
filter conditions to specify what data you want returned, sort the data, or limit the number of records
returned. To use filters in a mediator client application, import the appropriate package and use the
supplied interfaces for creating and applying filter conditions. Liquid Data Control clients get the
interface automatically. When a function is added to a control, a corresponding WithFilter function is
added as well.

The filter package is named as follows:

com.bea.ld.filter.FilterXQuery;

To use a filter, perform the following steps:

1. Create an FilterXQuery object, such as:

FilterXQuery myFilter = new FilterXQuery () ;

2. Add a filter condition to the object using the addrilter () method. With this function you can
specify what node your filter condition will apply to and specify the number of records to be
returned based on a limit; for example, you can specify the filter will apply to customer orders
where only orders with an amount over a specified value will be returned.

The addFilter () method has the following signature:

public void addFilter(java.lang.String appliesTo,
java.lang.String field,
java.lang.String operator,
java.lang.String value,
java.lang.Boolean everyChild)

The method takes the following arguments:

— appliesTo indicates the node that filtering affects. That is, if a node specified by the field
argument does not meet the condition, appliesTo nodes are filtered out.

Client Application Developer's Guide

http://e-docs.bea.com/liquiddata/docs85/ldapiJavadoc/index.html

Applying Filter Data Service Results

— fieldisthe node against which the filtering condition is tested.

— operator and value together compose the condition statement. The operator
parameter specifies the type of comparison to be made against the specified value. The
section Filter Operators describes the available operators.

— everyChild is an optional parameter. It is set to false by default. Specifying true for this
parameter indicates that only those child elements that meet the filter criteria will be
returned. For example, by specifying an operator of GREATER_THAN (or ">") and a value of
1000, only records for customers where all orders are over 1000 will be returned. A
customer that has an order amount less than 1000 will not be returned, although other
order amounts might be greater than 1000.

The following is an example of an add filter method where those orders with an order
amount greater than 1000 will be returned (note that everychild is not specified, so
order amounts below 1000 will be returned):

myFilter.addFilter ("CUSTOMERS/CUSTOMER/ORDER",
"CUSTOMERS /CUSTOMER /ORDER/ORDER_AMOUNT",
">l|,
"1000") ;

. Use the Mediator API call setFilterCondition () to add the filter to a data service, passing

the FilterXQuery instance as an argument. For example,

CUSTOMER custDS = CUSTOMER.getInstance (ctx, "RTLApp") ;
custDS.setFilterCondition (myFilter) ;

Invoke the data service function. (For more information on invoking data service functions, see
Chapter 4, “Accessing Data Services from Java Clients.”)

Specifying Filter Effects

If a filter condition applied to a specified element value resolves to false, an element is not included
in the result set. The element that is filtered out is specified as the first argument to the
addFilter () function.

The effects of a filter can vary, depending on the desired results. For example, consider the
CUSTOMERS data object shown in Figure 8-1. It contains several complex elements (CUSTOMER and
ORDERS) and several simple elements, including ORDER_AMOUNT. You can apply a filter to any
elements in this hierarchy.

Client Application Developer's Guide 8-3

Advanced Topics

Figure 8-1 Nested Value Filtering

CUSTOMER *
ORDERS *
ORDER_AMOUNT

In general, with nested XML data, a condition such as “CUSTOMER/ORDER/ORDER_AMOUNT >
1000” can affect what objects are returned in several ways. For example, it can cause all CUSTOMER
objects to be returned, but filter ORDERS that have an amount less than 1000.

Alternatively, it can cause only CUSTOMER objects to be returned that have at least one large order,
and all ORDER objects are returned for every CUSTOMER. Further, it can cause only CUSTOMER
objects to be returned for which every ORDER is greater than 1000. For example,

XQueryFilter myFilter = new XQueryFilter() ;

myFilter.addFilter("CUSTOMERS/CUSTOMER",
"CUSTOMERS/CUSTOMER/ORDER/ORDER_AMOUNT",
FilterXQuery.GREATER THAN, "1000", true) ;

Note that in the optional fourth parameter everychild = true,which is false by default. By setting
this parameter to true, only those CUSTOMER objects for which every ORDER is greater than 1000
will be returned.

The following examples show how filters can be applied in several different ways:

e Returns all CUSTOMER objects but only their large ORDER objects:

XQueryFilter myFilter = new XQueryFilter() ;

Filter f1 = myFilter.createFilter(
"CUSTOMERS/CUSTOMER/ORDER/ORDER_AMOUNT",
FilterXQuery.GREATER THAN, "1000") ;

myFilter.addFilter ("CUSTOMERS/CUSTOMER/ORDER", f1);

e Returns only CUSTOMER objects that have at least one large order but view all ORDER objects
for such CUSTOMER:

XQueryFilter myFilter = new XQueryFilter() ;

myFilter.addFilter ("CUSTOMERS/CUSTOMER",
"CUSTOMERS/CUSTOMER/ORDER/ORDER_AMOUNT",
FilterXQuery.GREATER_THAN,"1000");

8-4 Client Application Developer's Guide

Applying Filter Data Service Results

e Returns only CUSTOMER objects that have at least one large order and return only large
ORDER objects:

XQueryFilter myFilter = new XQueryFilter() ;

myFilter.addFilter ("CUSTOMERS/CUSTOMER",
"CUSTOMERS/CUSTOMER/ORDER/ORDER_AMOUNT",
FilterXQuery.GREATER THAN, "1000") ;

myFilter.addFilter ("CUSTOMERS/CUSTOMER/ORDER",
"CUSTOMERS/CUSTOMER/ORDER/ORDER_AMOUNT",
FilterXQuery.GREATER THAN, "1000") ;

The last example is a compound filter—a filter with two conditions.

Filter Operators

You can use the following operators in filters:
e LESS_THAN (<)
e GREATER_THAN (>)
e LESS_THAN_EQUAL (<=)
e GREATER_THAN_EQUAL (>=)
e EQUAL (=)
e NOT_EQUAL (!=)
e matches (for string equality)

o sql-like (tests whether a string contains a specified pattern)

These compound operators can be applied to more than one filter:
e OR
e NOT
e AND

Client Application Developer's Guide

8-5

Advanced Topics

The following example uses the AND operator to apply a combination of filters to a result set, given a
data service instance customerDS:

FilterXQuery myFilter = new FilterXQuery() ;

Filter f1 = myFilter.createFilter("CUSTOMER_PROFILE/ADDRESS/ISDEFAULT",
FilterXQuery.NOT EQUAL,"0");

Filter f2 = myFilter.createFilter ("CUSTOMER/ADDRESS/STATUS",
FilterXQuery.EQUAL,
"\"ACTIVE\"") ;

Filter f3 = myFilter.createFilter(f1l,f2, FilterXQuery.AND) ;

Customer customerDS = Customer.getInstance (ctx, "RTLApp") ;
CustomerDS.setFilterCondition (myFilter) ;

Ordering and Truncating Data Service Results

An ordering condition is a type of filter that lets you specify the order in which results are returned
from a data service. They allow you to arrange results in either ascending or descending order based
on the value of a specified property.

The ordering methods are in the FilterXQuery class. The following example shows how to use ordering.
It gets a list of customer profiles in ascending order based on the dates the person became a customer.

FilterXQuery myFilter = new FilterXQuery() ;
myFilter.addOrderBy ("CUSTOMER PROFILE", "CustomerSince"
FilterXQuery.ASCENDING) ;
ds.setFilterCondition (myFilter) ;
DataObject objArrayOfCust =
(DataObject) ds.invoke ("getCustomer", null) ;

Similarly, you can set the maximum number of results that can be returned from a function. The
setLimit () function limits the number of elements in an array element to the specified number.
And on a repeating node, it makes sense to specify a limit on the results to be returned. (Setting the
limits on non-repeating nodes does not truncate the results.)

The following shows how to use the setLimit () method. It limits the number of active address in
the result set (filtering out active addresses) to 10 given a data service instance ds:

FilterXQuery myFilter = new FilterXQuery() ;

Filter f2 = myFilter.createFilter("CUSTOMER_PROFILE/ADDRESS",
FilterXQuery.EQUAL, "\"INACTIVE\"") ;

myFilter.addFilter ("CUSTOMER PROFILE", £2);

Client Application Developer's Guide

Consuming Large Result Sets (Streaming API)

myFilter.setLimit (" CUSTOMER_PROFILE", "10");
ds.setFilterCondition (myFilter) ;

Consuming Large Result Sets (Streaming API)

This section discusses further programming topics related to client programming with the Data
Service Mediator API. It includes the following topics:

e Using the Streaming Interface

e Writing Data Service Function Results to a File

Using the Streaming Interface

When a function in the standard data service interface is called, the requested data is first
materialized in the system memory of the server machine. If the function is intended to return a large
amount of data, in-memory materialization of the data may be impractical. This may be the case, for
example, for administrative functions that generate "inventory reports" of the data exposed by Liquid
Data. For such cases, Liquid Data can serve information as an output stream.

Liquid Data leverages the WebLogic XML Streaming API for its streaming interface. The WebLogic
Streaming API is similar to the standard SAX (Streaming API for XML) interface. However, instead of
contending with the complexity of the event handlers used by SAX, the WebLogic Streaming API lets
you use stream-based (or pull-based handling of XML documents in which you step through the data
object elements. As such, the WebLogic Streaming API affords more control than the SAX interface,
in that the consuming application initiates events, such as iterating over attributes or skipping ahead
to the next element, instead of reacting to them.

Note: For more information on the WebLogic Streaming API, see "Using the WebLogic XML
Streaming API" at http://e-docs.bea.com/wls/docs81/xml/xml_stream.html.

It is important to note that although serving data as a stream relieves the server from having to
materialize large objects in memory, the server is using the request thread while output streaming
occurs. This can tie up a thread for quite a while and affect the server’s ability to respond to other
service requests in a timely fashion. The streaming API is intended for use only for administrative sorts
of uses, and should be avoided except at off-peak times or in non-production environments.

Liquid Data limits its use to applications that are local to the WebLogic server. The application must
use the local server interface to the WebLogic server to use the Streaming API.

Client Application Developer's Guide 8-7

http://e-docs.bea.com/wls/docs81/xml/xml_stream.html

Advanced Topics

8-8

Note: Alternatively, a client application that is remote can use the ToFile interface to have the
output written to a file on the server’s file system, and then FTP to the server to get the file.
For more information, see “Writing Data Service Function Results to a File” on page 8-11.

You can get Liquid Data information as a stream by using either an ad hoc or an untyped data service
interface.

Note: Streaming is not supported through static interfaces.

The streaming interface is in these classes in the com.bea.1d.dsmediator.client package:
e StreamingDataService

e StreamingPreparedExpression

Using these interfaces is very similar to using their SDO mediator client API equivalents. However,
instead of a document object, they return data as an XML InputStream. For functions that take
complex elements (possibly with a large amount of data) as input parameters, XMLInputStream is
supported as an input argument as well. The following is a example:

StreamingDataService ds = StreamingDataServiceFactory.getInstance (
context,
"ld:DataServices/RTLServices/Customer") ;

XMLInputStream stream = ds.invoke ("getCustomerByCustID", "CUSTOMERO") ;

The previous example shows the dynamic streaming interface. The following example uses an ad hoc
query:
String adhocQuery =
"declare namespace ns0=\"ld:DataServices/RTLServices/Customer\";\n" +
"declare variable Scust id as xs:string external;\n" +
"for $customer in ns0:getCustomerByCustID($cust_id)\n" +
"return\n" +
n Scustomer\n";
StreamingPreparedExression expr =

DataServiceFactory.prepareExpression (context, adhocQuery) ;

If you have external variables in the query string (adhocQuery in the above example), you will also
need to do the following:

expr.bindString ("$cust id", "CUSOMERO") ;

XMLInputStream xml = expr.executeQuery() ;

Note: For more information on using the dynamic and ad hoc interfaces, see “Using the Dynamic
Data Service Interface” in Chapter 4, “Accessing Data Services from Java Clients” and “Using

Client Application Developer's Guide

Consuming Large Result Sets (Streaming API)

Ad Hoc Queries” on page 8-11. Also, a Javadoc that contains descriptions of the
StreamingDataService interface is available in the Javadoc that describes the Filter API is
available at:

http://e-docs.bea.com/liquiddata/docs85/1dapidavadoc/index.html

Listing 8-1 shows an example of a method that reads the XML input stream. This method uses an
attribute iterator to print out attributes and namespaces in an XML event and throws an XMLStream
exception if an error occurs.

Listing 8-1 Sample Streaming Application

import weblogic.xml.stream.Attribute;

import weblogic.xml.stream.Attributelterator;
import weblogic.xml.stream.ChangePrefixMapping;
import weblogic.xml.stream.CharacterData;
import weblogic.xml.stream.XMLEvent ;

import weblogic.xml.stream.EndDocument ;

import weblogic.xml.stream.EndElement;

import weblogic.xml.stream.EntityReference;
import weblogic.xml.stream.Space;

import weblogic.xml.stream.StartDocument;
import weblogic.xml.stream.XMLInputStream;
import weblogic.xml.stream.XMLInputStreamFactory;
import weblogic.xml.stream.XMLName;

import weblogic.xml.stream.XMLStreamException;
import java.io.FileInputStream;

import java.io.FileNotFoundException;

public class ComplexParse {

public void parse (XMLEvent event)throws XMLStreamException
{
switch(event.getType())
case XMLEvent.START ELEMENT:
StartElement startElement = (StartElement) event;
System.out.print ("<" + startElement.getName ().getQualifiedName ()) ;
Attributelterator attributes = startElement.getAttributesAndNamespaces () ;
while (attributes.hasNext ())
Attribute attribute = attributes.next () ;

Client Application Developer's Guide 8-9

http://e-docs.bea.com/liquiddata/docs85/ldapiJavadoc/index.html

Advanced Topics

System.out.print (" " + attribute.getName () .getQualifiedName () +
"='" 4+ attribute.getValue() + "'");
}
System.out.print (">") ;
break;
case XMLEvent.END ELEMENT:
System.out.print ("</" + event.getName ().getQualifiedName () +">");
break;
case XMLEvent.SPACE:
case XMLEvent.CHARACTER_DATA:
CharacterData characterData = (CharacterData) event;
System.out.print (characterData.getContent ()) ;
break;
case XMLEvent .COMMENT :
// Print comment
break;
case XMLEvent.PROCESSING_ INSTRUCTION:
// Print ProcessingInstruction
break;
case XMLEvent.START DOCUMENT:
// Print StartDocument
break;
case XMLEvent.END DOCUMENT:
// Print EndDocument
break;
case XMLEvent.START PREFIX MAPPING:
// Print StartPrefixMapping
break;
case XMLEvent.END PREFIX MAPPING:
// Print EndPrefixMapping
break;
case XMLEvent.CHANGE PREFIX MAPPING:
// Print ChangePrefixMapping
break;
case XMLEvent.ENTITY REFERENCE:
// Print EntityReference
break;
case XMLEvent.NULL ELEMENT:

8-10 Client Application Developer's Guide

Using Ad Hoc Queries

throw new XMLStreamException ("Attempt to write a null event.");
default:
throw new XMLStreamException ("Attempt to write unknown event["

+event.getType () +"]1") ;

Writing Data Service Function Results to a File

You can write serialized results of a data service function to a file using a ToFile function. A ToFile
function is generated automatically for each function defined in the data service. For security reasons,
it writes only to a file on the server’s file system.

These functions provide services that are similar to the Streaming API. They are intended for creating
reports or an inventory of data service information. However, whereas the Streaming APIs can only be
invoked by an application that resides on the same machine as the server, the ToFile functions
provided by the on-streaming API can be invoked remotely.

The following example shows how to write to a file from the untyped interface.

StreamingDataService sds =
DataServiceFactory.newStreamingDataService (
context, "RTLApp", "1d:DataServices/RTLServices/Customer"") ;
sds.writeOutputToFile ("getCustomer", null, "streamContent.txt");

sds.closeStream() ;

Using Ad Hoc Queries

An ad hoc query is an XQuery function that is not stored in a data service, but is instead defined by the
client application. You can use an ad hoc query to execute any XQuery function, possibly against a data
source defined on a remote Liquid Data server or even with no back-end data source at all.

To use ad hoc queries, use the PreparedExpression interface of the Mediator API. The
PreparedExpression interface is similar to the Preparedstatement interface of JDBC. You
create the prepared expression by passing the function body as a string in the constructor (along with
the JNDI server context and the application name), then call the executeQuery () method on the
prepared expression as follows:

Client Application Developer's Guide 8-11

Advanced Topics

8-12

PreparedExpression adHocQuery =
DataServiceFactory.prepareExpression (
context, "RTLApp", "<CustomerID>CUSTOMERO</CustomerID>") ;
XmlObject adHocResult = adHocQuery.executeQuery () ;

The above sample merely returns an XML node named cusToMER _1D. A more useful ad hoc query,
however, would typically invoke data service functions and process their results in some way.

To invoke data service functions in ad hoc queries, the query needs to import the namespace of the
data service to be used. It can then invoke the data service’s function. The following returns the results
of a data service function named get Customers (), which is in the name space
"ld:DataServices/RTLServices/Customer":

String queryStr =
"declare namespace ns0=\"ld:DataServices/RTLServices/Customer\";" +
"<Results>" +
" { for $customer profile in nsO:getCustomer ()" +
" return Scustomer profile }" +
"</Results>";

PreparedExpression adHocQuery =
DataServiceFactory.prepareExpression (context, "RTLApp" , queryStr) ;

XmlObject objResult = (XmlObject) adHocQuery.executeQuery() ;

Liquid Data passes information back to the ad hoc query caller as an XMLObject object. Because all
typed data objects implement the XMLObject interface, ad hoc query results that conform to a
deployed schema can be downcast to the type of the schema.

For data service functions that return arrays, you must create a root element in the ad hoc query as a
container for the array because an XmlObject must have a single root type. For example, the data
service function getCustomer() invoked in the code sample above returns an array of
CUSTOMER_PROFILE elements; therefore, the ad hoc query specifies a container <Results> to hold
the returned array.

Security policies defined for a data service apply to the data service calls in an ad hoc query as well.
Appropriate credentials must be passed when creating the JNDI initial context in an ad hoc query that
uses secured resources. For more information, see “Getting a WebLogic JNDI Context for Liquid
Data,” in Chapter 4, “Accessing Data Services from Java Clients.”

Like the PreparedStatement interface of JDBC, you can bind variables dynamically in ad hoc query
expressions. The ad hoc query PreparedExpression interface includes a number of methods for
binding values of various types, named in the form bind Type.

Client Application Developer's Guide

Using Ad Hoc Queries

You bind a variable to a value by specifying the variable as a qualified name (grname) and passing the
value in the bind method as follows:

PreparedExpression adHocQuery = DataServiceFactory.preparedExpression (
context, "RTLApp",
"declare variable $i as xs:int external;
<result><zip>{fn:data($i) }</zip></result>");

adHocQuery.bindInt (new QName ("i"),94133) ;

XmlObject adHocResult = adHocQuery.executeQuery () ;

@Name stands for qualified name. For more information on qnames, see:

http://www.w3.org/TR/xmlschema-2/#QName

Listing 8-2 shows a complete ad hoc query example, using the preparedExpression interface and
qualified names to pass values in bind methods.

Listing 8-2 Ad hoc query sample

import com.bea.ld.dsmediator.client.DataServiceFactory;
import com.bea.ld.dsmediator.client.PreparedExpression;
import com.bea.xml.XmlObject;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import javax.xml.namespace.QName;

import weblogic.jndi.Environment;

public class AdHocQuery

{

public static InitialContext getInitialContext () throws NamingException ({

Environment env = new Environment () ;

env.setProviderUrl ("t3://localhost:7001") ;
env.setInitialContextFactory ("weblogic.jndi.WLInitialContextFactory") ;
env.setSecurityPrincipal ("weblogic") ;

env.setSecurityCredentials ("weblogic") ;

return new InitialContext (env.getInitialContext () .getEnvironment ()) ;
public static void main (String args[]) {

System.out .println("========== Ad Hoc Client ==========");

try {

StringBuffer xquery = new StringBuffer();
xquery.append ("declare variable $p firstname as xs:string external; \n");
xquery.append ("declare variable $p lastname as xs:string external; \n");

Client Application Developer's Guide 8-13

http://www.w3.org/TR/xmlschema-2/#QName

Advanced Topics

xquery .append (

"declare namespace nsl=\"ld:DataServices/MyQueries/XQueries\"; \n");
xquery.append (

"declare namespace ns0O=\"ld:DataServices/CustomerDB/CUSTOMER\"; \n\n");

xquery.append ("<nsl:RESULTS> \n") ;
xquery.append (" { \n") ;
xquery.append (" for $customer in nsO0:CUSTOMER () \n") ;
xquery.append (" where ($customer/FIRST NAME eq $p_ firstname \n");
xquery.append (" and $customer/LAST NAME eq $p_ lastname) \n") ;
xquery.append (" return \n") ;
xquery.append (" Scustomer \n") ;
xquery.append (" } \n") ;
xquery.append ("</nsl:RESULTS> \n") ;
PreparedExpression pe = DataServiceFactory.prepareExpression (
getInitialContext (), "RTLApp", =xquery.toString()) ;
pe.bindString (new QName ("p firstname"), "Jack");
pe.bindString(new QName ("p lastname"), "Black") ;

XmlObject results = pe.executeQuery() ;
System.out.println(results) ;

} catch (Exception e) {
e.printStackTrace() ;
}

Transaction Considerations

The API to Liquid Data is supported internally by stateless EJBs; therefore, the data sources used by
Liquid Data must support the trans-attribute settings of the EJB methods. The default settings for the
methods are:

e NotSupported is the default for the execute query methods.

e Required is the default for submit ().

The trans-attribute for the submit () method is Required and cannot be changed. Other methods
allow you to set the attribute to a value other than the default value by resetting
ReadTransactionAttribute when creating a data service. For the executeQuery and
executeFunction methods, you have the option of setting the trans-attribute to Required. You can
set trans-attribute for executeQueryToStreamand executeFunctionToStreamto Supported

8-14 Client Application Developer's Guide

Setting Up Data Source Aliases for Relational Sources Accessed by Liquid Data

For detailed information about the trans-attribute values of the EJBs, refer to section 17.6.2 of the EJB
2.0 specification. The specification is available at:

http://java.sun.com/products/ejb/docs.html.

Setting Up Data Source Aliases for Relational Sources
Accessed by Liquid Data

When you import metadata from relational sources, you can provide logic in your application that
maps users to different data sources depending on the user’s role. This is accomplished by creating an
intercepter and adding an attribute to the RelationalDB annotation for each data service in your
application.

The interceptor is a Java class that implements the SourceBindingProvider interface. This class
provides the logic for mapping a users, depending on their current credentials, to a logical data source
name or names. This makes it possible to control the level of access to relational physical source based
on the logical data source names. For example, you could have the data source names cgDataSourcel,
cgDataSourc2, and cgDataSource3 defined on your WebLogic server and define the logic in your class
so that an user who is an administrator can access all three data sources, but a normal user only has
access to the data source cgDataSourcel.

Note: Allrelational, update overrides, stored procedure data services, or stored procedure XFL files
that refer to the same relational data source should also use the same source binding
provider; that is, if you specify a source binding provider for at least one of the data service
(. as) files, you should set it for the rest of them.

To implement the interceptor logic, do the following:
1. Write a Java class sQLInterceptor that implements the interface

com.bea.ld.binds.SourceBindingsProvider and define a getBindings () public
method within the class. The signature of this method is:

public String getBinding(String genericLocator, boolean isUpdate)

The genericLocator parameter specifies the current logical data source name. The
isUpdate parameter indicates whether a read or an update is occurring. A value of true
indicates an update. A value of false indicates a read. The string returned is the logical data
source name to which the user is to be mapped. Listing 8-3 shows an example
SQLInterceptor class.

2. Compile your class into a . jar file.

3. Inyour application, save the . jar file in the APP-INF/lib directory of your WebLogic Workshop
application.

Client Application Developer's Guide 8-15

http://java.sun.com/products/ejb/docs.html

Advanced Topics

Define the configuration interceptor for the data source in your .ds or .xf1 files (or both if
necessary) by adding a sourceBindingProviderClassName attribute to the RelationalDB
annotation. The attribute must be assigned the name of a valid Java class, which is the name of
as your interceptor class. For example (the attribute and Java class are in bold):

<relationalDB dbVersion="4" dbType="pointbase" name="cgDataSource"
sourceBindingProviderClassName="sql.SQLInterceptor"/>

Compile and run you application. The interceptor will be invoked on execution.

Listing 8-3 Interceptor Class Example

package sql;

public class SglProvider implements com.bea.ld.bindings.SourceBindingProvider{

public String getBinding (String dataSourceName, boolean isUpdate) {

weblogic.security.Security security = new weblogic.security.Security () ;
javax.security.auth.Subject subject = security.getCurrentSubject () ;
weblogic.security.SubjectUtils subUtils =

new weblogic.security.SubjectUtils() ;
System.out.println(" the user name is " + subUtils.getUsername (subject)) ;

if (subUtils.getUsername (subject) .equals("weblogic"))
dataSourceName = "cgDataSourcel";

System.out.println("The data source is " + dataSourceName) ;
System.out.println("SDO " + (isUpdate ? " YES " : " NO "));

return dataSourceName;

8-16

Client Application Developer's Guide

Setting Up Handlers for Web Services Accessed by Liquid Data

Setting Up Handlers for Web Services Accessed by Liquid Data

When you import metadata from web services for Liquid Data, you can create SOAP handler for
intercepting SOAP requests and responses. The handler will be invoked when a web service method
is called. You can chain handlers that are invoked one after another in a specific sequence by defining
the sequence in a configuration file.

To create and chain handlers, follow these two steps:

1. Create Java class implements the interface javax.xml.rpc.handler.GenericHandler.
This will be your handler. (Note that you could create more than one handler. For, example you
could have one named WShandler and one named AuditHandler.) Listing 8-4 shows an example
implementation of a GenericHandler class. Place your handlers in a folder named WShandler
in Weblogic Workshop. (For detailed information on how to write handlers, refer to “Creating
SOAP Message Handlers to Intercept the SOAP Message” in the Programming WebLogic Web
Services.

Listing 8-4 Example Intercept Handler

package WShandler;

import java.util.Iterator;

import javax.xml.rpc.handler.MessageContext;

import javax.xml.rpc.handler.soap.SOAPMessageContext;
import javax.xml.soap.SOAPElement;

import javax.xml.rpc.handler.HandlerInfo;

import javax.xml.rpc.handler.GenericHandler;

import javax.xml.namespace.QName;

/**

* Purpose: Log all messages to the Server console
*/

public class WShandler extends GenericHandler

{

HandlerInfo hinfo = null;

public void init (HandlerInfo hinfo) {
this.hinfo = hinfo;
System_out _println("*****************************") ;
System.out.println("ConsolelLoggingHandler r: init");
System.out.println(
"ConsoleLoggingHandler : init HandlerInfo" + hinfo.toString());
System_out _println("*****************************") ;

Client Application Developer's Guide 8-11

http://e-docs.bea.com/wls/docs81/webserv/design.html#1053805
http://e-docs.bea.com/wls/docs81/webserv/design.html#1053805

Advanced Topics

8-18

/**
* Handles incoming web service requests and outgoing callback requests
*/
public boolean handleRequest (MessageContext mc) {
logSoapMessage (mc, "handleRequest") ;
return true;

}
/**

* Handles outgoing web service responses and

* incoming callback responses

*/

public boolean handleResponse (MessageContext mc) {
this.logSoapMessage (mc, "handleResponse") ;
return true;

}
/**

* Handles SOAP Faults that may occur during message processing
*/
public boolean handleFault (MessageContext mc) {
this.logSoapMessage (mc, "handleFault");
return true;

}

public QName[] getHeaders() {
QName [] gname = null;
return gname;

}
/**

* Log the message to the server console using System.out
*/
protected void logSoapMessage (MessageContext mc, String eventType) {

try{
System_out.println("*****************************") ;
System.out.println ("Event: "+eventType) ;
System_out.println("*****************************") ;
catch(Exception e){
e.printStackTrace () ;

}

/**

* Get the method Name from a SOAP Payload.

*/

protected String getMethodName (MessageContext mc) {

Client Application Developer's Guide

Setting Up Handlers for Web Services Accessed by Liquid Data

String operationName = null;

try{
SOAPMessageContext messageContext = (SOAPMessageContext) mc;

// assume the operation name is the first element
// after SOAP:Body element
Iterator i = messageContext.

getMessage () .getSOAPPart () .getEnvelope () .getBody () .getChildElements () ;
while (i.hasNext ())
{
Object obj = i.next();
if (obj instanceof SOAPElement)
{
SOAPElement e (SOAPElement) obj;
operationName = e.getElementName () .getLocalName () ;
break;

}
}
}

catch (Exception e) {
e.printStackTrace () ;

}

return operationName;

}

2. Define a configuration file in your application. This file specifies the handler chain and the order
in which the handlers will be invoked. The XML in this configuration file must conform to the
schema shown in Listing 8-5.

Listing 8-5 Handler Chain Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="http://www.bea.com/2003/03/wlw/handler/config/"
xmlns="http://www.bea.com/2003/03/wlw/handler/config/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:element name="wlw-handler-config">
<xs:complexType>
<Xs:sequence>
<xs:element name="handler-chain" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="handler">
<xs:complexType>

Client Application Developer's Guide 8-19

Advanced Topics

<XS:sequences>
<xs:element name="init-param"
minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<XS:sequence>
<xs:element name="description"
type="xs:string" minOccurs="0"/>

<xs:element name="param-name" type="xs:string"/>

<xs:element name="param-value" type="xs:string"/>
</xXs:sequences>

</xs:complexType>
</xs:element>
<xs:element name="soap-header"
type="xs:QName" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="soap-role"
type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="handler-name"
type="xs:string" use="optional"/>
<xs:attribute name="handler-class"
type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
</Xs:sequences>
<xs:attribute name="name" type="xs:string" use="required"/>
</xs:complexTypes>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

The following is an example of the handler chain configuration. In this configuration, there are
two chains. One is named LoggingHandler. The other is named SampleHandler. The first chain

invokes only one handler named AuditHandler. The handler-class attribute specifies the fully
qualified name of the handler.

<?xml version="1.0"?>
<hc:wlw-handler-config name="sampleHandler"
xmlns:hc="http://www.bea.com/2003/03/wlw/handler/config/">

<hc:handler-chain name="LoggingHandler">
<hc:handler

handler-name="handlerl"handler-class="WShandler.AuditHandler"/>
</hc:handler-chain>
<hc:handler-chain name="SampleHandler">
<hc:handler

8-20 Client Application Developer's Guide

Setting Up Handlers for Web Services Accessed by Liquid Data

handler-name="TestHandlerl" handler-class="WShandler.WShandler"/>
<hc:handler handler-name="TestHandler2"
handler-class="WShandler.WShandler"/>
</hc:handler-chain>
</hc:wlw-handler-configs>

In your Liquid Data application, define the interceptor configuration for the method in the data
service to which you want to attach the handler. To do this, add a line similar the bold text
shown in the following example:

xquery version "1.0" encoding "WINDOWS-1252";

(::pragma xds <x:xds xmlns:x="urn:annotations.ld.bea.com"
targetType="t:echoStringArray return"
xmlns:t="1d:SampleWS/echoStringArray return"s
<creationDate>2005-05-24T12:56:38</creationDate>
<webService targetNamespace=
"http://soapinterop.org/WSDLInteropTestRpcEnc"
wsdl="http://webservice.bea.com:7001/rpc/WSDLInteropTestRpcEncService?W
SDL"/></x:xds>::)

declare namespace fl1 = "ld:SampleWS/echoStringArray return";

import schema namespace tl = "ld:AnilExplainsWS/echoStringArray return"
at "ld:SampleWS/schemas/echoStringArray param0.xsd";

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
kind="read" nativeName="echoStringArray"
nativeLevellContainer="WSDLInteropTestRpcEncService"
nativeLevel2Container="WSDLInteropTestRpcEncPort" style="rpc">
<params>

<param nativeType="null"/>
</params>
<interceptorConfiguration aliasName="LoggingHandler"
fileName="1d:SampleWS/handlerConfiguration.xml" />

</f:function>::)

declare function fl:echoStringArray ($xl as

element (t1:echoStringArray param0)) as

schema-element (t1l:echoStringArray return) external;
<interceptorConfiguration aliasName="LoggingHandler"
fileName="1d:testHandlerWS/handlerConfiguration.xml">

Here the aliasName attribute specifies the name of the handler chain to be invoked and the
fileName attribute specifies the location of the configuration file.

Include the JAR file in the library module that defines the handler class referred to in the
configuration file.

Client Application Developer's Guide 8-21

Advanced Topics

5. Compile and run your application. Your handlers will be invoked in the order specified in the
configuration file.

8-22 Client Application Developer's Guide

	Introducing Liquid Data for Client Applications
	Simplifying Data Programming
	What is a Liquid Data Client?
	Deciding Which Programming Model to Use
	Service Data Objects (SDO)
	Development Steps
	Security Considerations in Client Applications
	Runtime Client JAR Files
	Enabling Data Source Updates

	Client Programming with Service Data Objects (SDO)
	What is Service Data Objects (SDO) Programming?
	SDO and Liquid Data
	Looking at an SDO Client Application
	Looking at a Data Graph
	XML Schema-to-Java Type Mapping
	ArrayOf Types
	Static versus Dynamic Interfaces
	Static Interface
	Dynamic Data Object Interface

	Common SDO Operations and Examples
	Instantiating and Populating Data Objects
	Static Interface Instantiation
	Dynamic Interface Instantiation

	Accessing Data Object Properties
	Typed Property Access
	Untyped Property Access

	Setting Data Object Properties
	Adding New Data Objects
	Deleting Data Objects
	Submitting Data Object Changes
	Typed Interface Submit
	Untyped Interface Submit

	Introspecting a Data Object
	Working with Data Graphs

	XPath Support in the Untyped SDO API
	For More Information

	Enabling SDO Data Source Updates
	Overview
	How Data Source Updates Work
	Decomposition
	Update Processing Sequence
	Update Overrides

	Update Behavior
	Update Order
	Understanding Property Maps
	Multi-Level Data Services
	Transaction Management
	SDO Submit Inside a Containing Transaction

	When to Customize Updates
	Developing an Update Override Class
	UpdateOverride Interface
	Development Steps
	Testing Submit Results
	Understanding Update Override Context
	Physical Level Update Override Considerations

	Update Programming Patterns
	Override Decomposition and Update
	Augment Original Data Object Content
	Accessing the Data Service Mediator Context
	Accessing the Decomposition Map
	Customizing an Update Plan
	Executing an Update Plan
	Retrieving the Container of the Current Data Object
	Retrieving and Updating Data Through Other Data Services
	Setting the Log Level
	Configuring Optimistic Locking
	Handling Foreign and Primary Keys
	Returning Computed Primary Keys
	Managing Key Dependencies
	Foreign Keys

	Accessing Data Services from Java Clients
	Overview of the Data Service Mediator API
	What’s in the Data Service Mediator API?
	Setting the Classpath
	Creating the Mediator Client JAR File from the Command Line
	Build an EAR File
	Build the Client JAR

	How to Use the Mediator API
	Getting a WebLogic JNDI Context for Liquid Data
	Using the Static Data Service Interface
	Using the Dynamic Data Service Interface
	Using Navigation Functions

	Accessing Data Services from Workshop Applications
	WebLogic Workshop and Liquid Data
	Liquid Data Control
	Use With Page Flow, Web Services, Portals, Business Processes

	Liquid Data Control JCX File
	Design View
	Source View
	Running Ad Hoc Queries Through a Liquid Data Control

	Creating Liquid Data Controls
	Step 1: Create a Project in an Application
	Step 2: Start WebLogic Server, If Not Already Running
	Step 3: Create a Folder in a Project
	Step 4: Create the Liquid Data Control
	Step 5: Enter Connection Information to the WebLogic Server
	Step 6: Select Data Service Functions to Add to the Control

	Modifying Existing Liquid Data Controls
	Changing a Method Used by a Control
	Adding a New Method to a Control
	Updating an Existing Control if Schemas Change

	Using Liquid Data with NetUI
	Generating a Page Flow From a Control
	To Generate a Page Flow From a Control

	Adding a Liquid Data Control to an Existing Page Flow
	Adding Service Data Objects (SDO) Variables to the Page Flow
	To Add a Variable to a Page Flow
	To Initialize the Variable in the Page Flow
	Working with Data Objects

	Displaying Array Values in a Table or List
	Adding a Repeater to a JSP File
	Adding a Nested Level to an Existing Repeater
	Adding Code to Handle Null Values

	Using Liquid Data in Business Process Projects
	Creating a Liquid Data Control
	Adding a Liquid Data Control to a JPD File
	Setting Up the Control in the Business Process
	Submitting Changes from a Business Process

	Security Considerations With Liquid Data Controls
	Security Credentials Used to Create Liquid Data Control
	Testing Controls With the Run-As Property in the JWS File
	Trusted Domains
	Configuring Trusted Domains

	Exposing Data Services through Web Services
	Exposing Data Services as Web Services
	Adding a Liquid Data Control to a Web Service Project
	Creating a Web Service From a Liquid Data Control

	Using the Liquid Data JDBC Driver
	About the Liquid Data JDBC Driver
	Features of the Liquid Data JDBC Driver
	Liquid Data and JDBC Driver Terminology

	Installing the Liquid Data JDBC Driver with JDK 1.4x
	Using the JDBC Driver
	Obtaining a Connection
	Using the preparedStatement Interface
	Getting Data Using JDBC

	Connecting to the JDBC Driver from a Java Application
	Connecting to Liquid Data Client Applications Using the ODBC-JDBC Bridge from Non-Java Applications
	Using the EasySoft ODBC-JDBC Bridge
	Using OpenLink ODBC-JDBC Bridge

	Using Reporting Tools with the Liquid Data ODBC-JDBC Driver
	Crystal Reports 10 - ODBC
	Crystal Reports 10 - JDBC
	Business Objects 6.1 - ODBC
	Microsoft Access 2000 - ODBC

	Liquid Data and SQL Type Mappings
	SQL-92 Support
	Supported Features
	Limitations

	Advanced Topics
	Applying Filter Data Service Results
	Using Filters
	Specifying Filter Effects
	Filter Operators

	Ordering and Truncating Data Service Results
	Consuming Large Result Sets (Streaming API)
	Using the Streaming Interface
	Writing Data Service Function Results to a File

	Using Ad Hoc Queries
	Transaction Considerations
	Setting Up Data Source Aliases for Relational Sources Accessed by Liquid Data
	Setting Up Handlers for Web Services Accessed by Liquid Data

