BEA Liquid Data for WebLogic
Samples Tutorial: Part |

A Guide to Developing Liquid Data Applications Using BEA WebLogic Workshop
and WebLogic Platform 8.1

Note: This tutorial is based in large part on a guide originally developed for enterprises evaluating
Liquid Data for their specific requirements.

‘."‘:

'I s
zhea’
L



Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the
BEA Systems License Agreement and may be used or copied only in accordance with the terms of that
agreement. It is against the law to copy the software except as specifically allowed in the agreement.
This document may not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced
to any electronic medium or machine readable form without prior consent, in writing, from BEA
Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA
Systems License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-
Restricted Rights Clause at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013, subparagraph (d) of the Commercial
Computer Software--Licensing clause at NASA FAR supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment
on the part of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS
IS” WITHOUT WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE
SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY,
RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt,
JoltBeans, SteelThread, Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems,
Inc. BEA Aqualogic, BEA Aqualogic Data Services Platform, BEA AquaLogic Enterprise Security,
BEA AquaLogic Service Bus, BEA Aqualogic Service Registry, BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise
Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for
Mainframe, BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic
Server Process Edition, BEA WebLogic WorkGroup Edition, BEA WebLogic Workshop, and Liquid
Computing are trademarks of BEA Systems, Inc. BEA Mission Critical Support is a service mark of
BEA Systems, Inc. All other company and product names may be the subject of intellectual property
rights reserved by third parties.

All other trademarks are the property of their respective companies.

BEA Liquid Data for WebLogic: Samples Tutorial 2



BEA Liquid Data for WebLogic: Samples Tutorial



Contents

BEA LIQUID DATA FOR WEBLOGIC SAMPLES TUTORIAL: PART I ...............e. 1
A Guide to Developing Liquid Data Applications Using BEA WebLogic Workshop and WebLogic
Platform 8.1........ccueevrvecennrnnnee. 1
Lesson 1 Introducing the Liquid Data for WebLogic Environment........ 12
Lab 1.1 Starting WebLogiC WOTrKSNOP .......cciiriiiiiiiiciiceceeee ettt sttt e e saessaenneas 12
Lab 1.2 Navigating the Liquid Data for WebLogic IDE Environment............ccccceoeeeeieiienienene e 14
Lab 1.3 Starting WebLOZIC SEIVET .....ocuviiuiiiiiiiieie ittt ettt et st st sae et e bt et ea e eaeesbeenbeas 19
Lab 14 StOPPING WEDLOZIC SEIVET .. .cueiuiiuiiiitieteettetieiet ettt ettt et e et e e e tesbesbeebeeaeeneeneenseaaesseebesseeneeneensennens 20
Lab 1.5 SAVING YOUL WOTK ..ttt ettt s b ettt ettt esaeesae e st e et enteenteeneesneennean 20
Lesson 2 Creating a Physical Data Service..........ccccueeeueeene. 22
Lab 2.1 Creating a Liquid Data APPIICAtION ......ccueiuiiiiiiiiieieiee ettt sttt et e e 22
Lab2.2 Creating a Liquid Data PTOJECE .......c..eiiiiiiiiriieiieiieie ettt sttt 25
Lab2.3 Creating Project SUD-FOIAETS .......cc.oiiiiiieeee et 26
Lab2.4 Importing Relational Source Metadata .............coooieiiieiiiiieieeeeee e e 27
Lab2.5 BUilding @ PIOJECT ....coueieiiieiieeieeeteee et ettt et a ettt et r e b b et eneeens 30
Lab2.6 Viewing Physical Data Service Information............cccoeoeiiiiiiniinienieeee e 31
Lab 2.7 Testing Physical Data Service FUNCHONS..........coooiiiiieiieieeieeeeeie et 36
Lesson 3 Creating a Logical Data Service ........cccceeeeueeenees 39
Lab 3.1 Creating a Simple Logical Data ServiCe.........cccveiieiiieiiieieieieeee et e 40
Lab3.2 Defining the Logical Data Service Shape .........cceoieiieiieieiierieeee e e 41
Lab3.3 Adding a Function to a Logical Data SerViCe.........cccveriiriiiiiierieriieriieie ettt ees 44
Lab3.4 Mapping Source and Target EICMENTS ..........c.ccverieiiieiieieeiieseeeeie et 45
Lab 3.5 Viewing XQUETY SOUICE COAC ....cuviriiiiiiiieiierieit ettt te st te ettt e st et esteenseesaesseesseeseensesnnenees 47
Lab 3.6 Testing a Logical Data Service FUNCHON..........c.coiiiiieiiiieiieceieee ettt 48
Lesson4  Integrating Data from Multiple Data Services ......cccevecsecseisenssnessnicsnecssecsaecsncssscsncens 51
Lab 4.1 Joining Multiple Physical Data Services within a Logical Data Service.........cccccoevereneneneeieneennenn. 52
Lesson 5 Modeling Data Services .........cceeeuenee. 63
Lab 5.1 Creating a Basic Model Diagram for Physical Data Services..........coccvvoierienieniieiinieeieseeeee e 64
Lab5.2 Modeling Relationships Between Physical Data SOUICES.........cccceeieriiiiiinieiieieeeeeeeeee e 66
Lesson 6  Accessing Data in Web Services.......cueeeecsecseesnesnnees 69
Lab 6.1 Importing a Web Service Project into the Application ..........c.ccccveeerinernienenneneneneceeneeeeeeaee 69
Lab 6.2 Importing Web Service Metadata into @ ProOject .........ccccoeviririiiinienienininenceeecicienese et 72

BEA Liquid Data for WebLogic: Samples Tutorial 4



Lab 6.3
Lab 6.4

Lesson 7
Lab 7.1
Lab 7.2
Lab 7.3

Lesson 8
Lab 8.1
Lab 8.2
Lab 8.3
Lab 8.4

Lesson 9
Lab 9.1
Lab 9.2

Lesson 10
Lab 10.1
Lab 10.2
Lab 10.3

Lesson 11
Lab 11.1
Lab 11.2
Lab11.3

Lesson 12
Lab 12.1
Lab 12.2
Lab 12.3

Lesson 13
Lab 13.1
Lab 13.2

Lesson 14
Lab 14.1
Lab 14.2
Lab 14.3

Testing the Web Service via @ SOAP REQUESL........ccvieiieieiiiiieiceie ettt 76
Invoking a Web Service in @ Data SEIVICE .......ccieieiiiiieiiriieiieiieeieeie ettt 77
Consuming Data Services Using Java .......ccceverevcnerene 82
Running a Java Program Using the Untyped Mediator API..........ccccocvvvienieiieiieieceeeeee e 83
Running a Java Program Using the Typed Mediator APL..........ccccooviveiiiiirienieiieieceeeeeseee e 88
Resetting the Mediator AP .........coooviiiiiiicieeee ettt sa e sreesbaebeesbeeneeees 91
Consuming Data Services Using WebLogic Workshop Controls....... 92
Installing a Liquid Data CONtIOl ..........cceiiiiiiriiiiciieieete sttt sre et ebeeeaesseesbaesseesseenneens 92
Defining the Liquid Data Control............cccooviiiiiiiieiiieiieiescese ettt sraesraesseese e ees 93
Inserting a Liquid Data Control into a Page FIOW .......c.ccceviiiieniiiiiiiiicieeeeeeee et 95
RUnning the Web APPIICALION .......oouiiiiieiiieiieteete ettt sttt ettt sae e e bt aeesee e e e nes 97
Accessing Data Service Functions Through Web Services...... 102
Generating a Web Service from a Liquid Data Control...........ccoccvevierieniiicieiiesieceeeeieeve e 102
Using a Liquid Data Control to Generate a WSDL for a Web Service.........cccevvveeiievieieenveneenieenenns 104
Updating Data Services Using Java........cceeereuee 107
Modifying and Saving Changes to the Underlying Data Source .........c..coceeveveeieieniencnincncneneenne. 107
Inserting New Data to the Underlying Data Source Using Java..........coccocevereriinienienenincncnencenes 110
Deleting Data from the Underlying Data Source Using Java ..........ccccceevvieviiiciinienienieieeveeieeeenn 112
Filtering, Sorting, and Truncating XML Data......... 115
Filtering Data Service RESUILS .........cccieriiiiiiiiiiecieiiee ettt sttt ebe e ssaennees 115
Sorting Data Service RESUILS ........cccviiiiiiiiiieieieeee ettt seese e ses 118
Truncating Data Service RESUILS.........cooieriiiiiiiiicieiee ettt e nnees 120
Consuming Data Services through JDBC/SQL.... 121
RUNNING DBVISUALIZET......cutieiieiieiieiiesieete ettt ettt e sseesneesaeesseenseenseensessaesseensean 122
Integrating Crystal Reports and Liquid Data for WebLOgiC........ccoveriierierieeiiesierieceeee e 124
(Optional) Configuring JDBC Access through Crystal Reports ........c.cecuevverieneeieniienieniereeieeeene 125
Consuming Data via Streaming API .........cccoeervevercscnrcssercssnrescnencne 127
Stream results int0 @ flat fI1e .......c.oooiiiiie e 127
Consume data in streaming fAShION .........ccvieiiiierieriei et nees 128
Managing Data Service Metadata ..........cceceeeeunenee. 130
Defining Customized Metadata for a Logical Data Service ..........ccceveereriiiiinienieeeeeeeeeeeen 131
Viewing Data Service Metadata via Liquid Data Console ...........ccooceerierieiieiiieienieseeeee e 133
Synching a Data Service with Underlying Data Source Tables..........c.ccoooverieiiniinienieieeee e 135

BEA Liquid Data for WebLogic: Samples Tutorial 5



Lesson 15
Lab 15.1
Lab 15.2
Lab 15.3
Lab 15.4
Lab 15.5

Lesson 16
Lab 16.1
Lab 16.2
Lab 16.3
Lab 16.4
Lab 16.5
Lab 16.6

Lesson 17
Lab 17.2
Lab 17.3

Managing Data Service Caching.............. 138

Determining the Non-Cache Query EXecution Time..........cceevevierienieenieiie e 139
Configuring a Caching Policy via Liquid Data Console..........ccccuereerieeriiiriiiiesienieenieeieeve e 139
Testing the Caching POLICY ......cccviiiiiiiiieii ettt sre e s e e sre e b e esbeesbeesaessaenseas 141
Determining Performance Impact of the Caching Policy ..........cccoiiiiiiiiiiiiiieee e, 141
DiSADIE CACRINE ...ttt ettt ettt es et et e sbe st e ebeesten s e s et e ebesbeebeeneeneeneenean 142
Managing Data Service Security........ce. 145
Creating NEeW USCT ACCOUNTS.......cccueiierieieeieeteettesteeteereeteessessaesseesseesesssesseesseesseesseesseessesssesseessees 146
Setting Application-Level SECUTITEY........iiiiiiiiieieieee ettt 147
Granting User Access to Read FUNCHIONS ........ocooiiiiiiiiiiiiiiieieeeee e 149
Granting User Access t0 WIite FUNCHONS. ......couiviiiiiiiiiiiiiieeierieieeeee e 152
Setting Element-Level Data SECUTTLY......c.eiiiirieieieeeee ettt st 153
Testing Element-Level SECUTITLY ......cciiiiiiiii ettt ettt neeas 155
(Optional) Consuming Data Services through Portals and Business Processes........... 157
Installing a Liquid Data Control in a Portal Project...........ccoeiiieieiiiieie et 157
Testing the Control and RetrieVing Data .........ceieveriiiiiiiiiiiieeee e 160

BEA Liquid Data for WebLogic: Samples Tutorial



About This Document

Welcome to the BEA Liquid Data for WebLogic Samples Tutorial. In this document, we provide step-

by-step instructions that show how you can use Liquid Data to solve the types of data integration

problems frequently faced by Information Technology (IT) managers and staff. These issues include:
What is the best way to normalize data drawn from widely divergent sources?

Having normalized the data, can you access it, ideally through a single point of access?

After you define a single point of access, can you develop reusable queries that are easily tested, stored,
and retrieved?

After you develop your query set, can you easily incorporate results into widely available applications?

Other questions may occur. Is the data-rich solution scalable? Is it reusable throughout the enterprise?
Are the original data sources largely transparent to the application — or do they become an issue each
time you want to make a minor adjustments to queries or underlying data sources?

Document Organization
This guide is organized into 35 lessons that illustrate many aspects of Liquid Data functionality:
Data service development. In which you specify the query functions that Liquid Data will use to
access, aggregate, and transform distributed, disparate data into a unified view. In this stage, you

also specify the XML type that defines the data view that will be available to client-side
applications.

Data modeling. In which you define a graphical representation of data resource relationships and
functions.

Client-side development. In which you define an environment for retrieving data results.

Each lesson in the tutorial consists of an overview plus “labs” that demonstrate Liquid Data’s
capabilities on a topic-by-topic basis. Each lab is structured as a series of procedural steps that details
the specific actions needed to complete that part of the demonstration.

The lessons are divided into two parts:

Part 1: Core Training includes Lessons 1 through 16, which illustrate the Liquid Data capabilities
that are most commonly used.

Part 2: Power-User Training includes Lessons 17 through 35; these illustrate Liquid Data's more
advanced capabilities.

Note: The lessons build on each other and must be completed in sequential order.

BEA Liquid Data for WebLogic: Samples Tutorial



Technical Prerequisites

The lessons within this guide require a familiarity with the following topics: data integration and
aggregation concepts, the BEA WebLogic® Platform™ (particularly WebLogic Server and WebLogic
Workshop), Java, query concepts, and the environment in which you will install and use Liquid Data.

For some lessons, a background in XQuery is helpful.

System Requirements

To complete the lessons, your computer requires:

Server:

Application:

Operating System:

Memory:

Browser:

BEA WebLogic Server
BEA Liquid Data for WebLogic 2.0

Windows 2000 or Windows XP

512 MB RAM minimum; 1 GB RAM recommended

Internet Explorer 6 or higher

Data Sources Used Within These Lessons

The BEA Liquid Data for WebLogic Samples Tutorial builds data services that draw on a variety of
underlying data sources. These data sources, which are provided with the product, are described in the

following table:

Data Source Types and Sources Utilized by the Liquid Data Samples Tutorial

Data Source Type

Relational

Relational

Relational

Relational

Web service
Stored procedure
Java function
Java function

Java function

XML files
Flat file

Data Source

Customer Relationship Management
(CRM) RTLCUSTOMER database

Order Management System (OMS)
RTLAPPLOMS database

Order Management System (OMS)
RTLELECOMS database

RTLSERVICE database

CreditRatingWS
GETCREDITRATING_SP
Functions. DSML
Functions.excel jcom

Functions.CreditCardClient

ProductUNSPSC.xsd

Valuation.csv

Data

Customer and credit card data

Apparel product, order, and order line
data

Electronics product, order, and order
line data

Customer service data, organized in a
single Service Case table

Credit rating data

Customer credit rating information
Java function enabling LDAP access
Excel spreadsheet data, via JCOM

Customer credit card information, via
an XMLBean

Third-party product information

Customer valuation data received from
an internal department that deals with

BEA Liquid Data for WebLogic: Samples Tutorial



customer scoring and valuation
models

Related Information

In addition to the material covered in this guide, you may want to review the wealth of resources
available at the BEA web site, WebLogic developer site, and third-party sites. Information at these
sites includes datasheets, product brochures, customer testimonials, product documentations, code
samples, white papers, and more.

For more information about Java and XQuery, refer to the following sources:

The Sun Microsystems, Inc. Java site at:

http://java.sun.com/

The World Wide Web Consortium XML Query section at:
http://www.w3.0org/XML/Query

For more information about BEA products, refer to the following sources:

Liquid Data documentation site at:

http://edocs.bea.com/liquiddata/docs85/index.html

BEA e-docs documentation site at:
http://e-docs.bea.com/

BEA online community for WebLogic developers at:
http://dev2dev.bea.com

BEA Liquid Data for WebLogic: Samples Tutorial


http://java.sun.com/
http://www.w3.org/XML/Query
http://edocs.bea.com/liquiddata/docs85/index.html/
http://e-docs.bea.com/
http://dev2dev.bea.com/

Part 1 Core Training

Liquid Data approaches the problem of creating integration architectures by providing tools that let
you build physical data services around individual physical data sources, and then develop logical data
services and business logic that integrate and return data from multiple physical and logical data
services. Logical data services use easily-maintained, graphically-designed XML queries (XQueries) to
access, aggregate, transform, and deliver its data results.

Developing Liquid Data services involves three basic steps.

1. Create a unified view of information from all relevant sources. This step, which involves
development of physical data services and (optionally) data models, is typically performed by a
data services architect who understands the information available in underlying sources and can
define the unified view that different projects will use. Liquid Data is capable of modeling
relational and non-relational sources; it includes tools for introspection and mapping of the
underlying sources to the unified data view.

2. Develop application-specific queries. This step, which involves development of logical data
services, is typically performed by application developers who write simple queries against the
unified view to get the required data. Liquid Data provides tools to visually create robust XQueries
and also publish them as services.

3. Tie query results to client applications. This step, which involves accessing data through a
variety of consuming applications, is typically performed by application developers who execute
the queries and receive results as XML or Java objects. In addition, Liquid Data provides an out-of-
the-box Workshop control to easily develop portal or Web applications from which to access data
retrieved by a data service.

Develop Application Ul

Develop Application-Specific Queries

Customer Dala View

Create Unified View of All Data Sources

Web

Liquid Data Development Process

As part of the development process, Liquid Data provides flexible options for updating both relational
and non-relational data sources. Liquid Data lets you write update logic via an EJB in BEA WebLogic
Server™; via a database, JMS, or Liquid Data control in Workshop; or via a business process in BEA
WebLogic Integration™.

In addition, Liquid Data provides visual tools for managing various administrative tasks, including
controlling data service metadata, caching, and security.

Within Part 1, examples are provided that illustrate Liquid Data's most commonly used capabilities:
developing and testing physical and logical data services, accessing data services through various
consuming applications, updating underlying data sources, and managing various administrative tasks.

BEA Liquid Data for WebLogic: Samples Tutorial 10



Note: The lessons within Part 1 build upon one another and should be completed in sequential order.

BEA Liquid Data for WebLogic: Samples Tutorial

11



Lesson 1 Introducing the Liquid Data for WebLogic Environment

Objectives

Overview

Lab1.1

The Liquid Data for WebLogic™ environment provides the tools and components that let you build
physical data services around individual physical data sources, and then develop the logical data
services and business logic that integrate data from multiple physical and logical data services. The
environment also lets you test the data service and manage data service metadata, caching, and
security.

The basic menus, behavior, and look-and-feel associated with the WebLogic Workshop environment
apply to Liquid Data. However, there are several tools and components within WebLogic Workshop
that are especially relevant to Liquid Data. In this lesson, you will learn about a few of those tools and
components. In addition, you will learn how to complete several basic tasks, such as starting and
stopping WebLogic Server, that are essential to using WebLogic Workshop.

As the first lesson within the BEA Liquid Data for WebLogic Samples Tutorial, there are no
dependencies on other lessons. However, your familiarity with WebLogic Workshop is assumed.
Workshop is fully described in online documentation, which you can view at:

http://e-docs.bea.com/workshop/doc82/index.html

After completing this lesson, you will be able to:

Navigate the Liquid Data for WebLogic Workshop environment.
Start and stop WebLogic Server.

Save a Liquid Data application and associated files.

WebLogic Workshop consists of two parts: an Integrated Development Environment (IDE) and a
standards-based runtime environment. The purpose of the IDE is to remove the complexity in building
applications for the entire WebLogic platform. Applications you build in the IDE are constructed from
high-level components rather than low-level API calls. Best practices and productivity are built into
both the IDE and runtime.

Starting WebLogic Workshop

The first step is starting WebLogic Workshop and opening the RTLApp sample application, which you
will use in the next lab.

Objectives

In this lab, you will:

Start WebLogic Workshop.

Open the RTLApp application.

Instructions

1. Choose Start — Programs — BEA WebLogic Platform 8.1 — WebLogic Workshop 8.1. If this is
the first time you are starting WebLogic Workshop since it was installed, then the SamplesApp
project opens. Otherwise, the project that you last opened appears.

BEA Liquid Data for WebLogic: Samples Tutorial 12


http://e-docs.bea.com/workshop/doc82/index.html

2. Choose File — Open — Application.
3. Navigate to the <beahome> \weblogic81\samples\LiquidData\RTLApp\ directory.
4. Open the RTLApp.work file. The RTLApp application opens.

Note: Depending on your computer settings, the .work extension may not be visible. Also, depending
on whether or not RTLApp application was previously opened, the application will open in the last
active view. In Figure 1-1, the RTLApp application opens in Design View for the Case data service. If
this is not the view that you see, double-click Case.ds located at DataServices/ RTLServices and select
the Design View tab.

BEA Liquid Data for WebLogic: Samples Tutorial 13



Lab 1.2 Navigating the Liquid Data for WebLogic IDE Environment

Within the WebLogic Workshop environment, there are several tools and components that are relevant
to developing Liquid Data applications and projects. Five of the most frequently used are:

Application Pane
Design View
XQuery Editor View
Source View

Test View

Screenshots of the environment are taken from within the RTLApp application.

|+ E By B g Sy

S |
[ [ e [ewiees Gal ey [k pres (e
DaEw Bl a8 d EAEREs - HEE OB
s . Ry Lt s L
Faflatamrrnm
I s - [
i milo

o SalR | e

]

aseeEEEEE]

Funetions i
Data Scuress i e = *

e
A XML Type
'_:_..'__'E

Property
E
Data Service Views

pane

e m———|

]

Output Results NQuery Function Paletie

Build Results

e e Fo (DTS

Figure 1-1 Liquid Data for WebLogic Application Running in WebLogic Workshop

Objectives

In this lab, you will:

Explore five of the most frequently used development tools.

Discover the features and functions of those tools.

BEA Liquid Data for WebLogic: Samples Tutorial 14



Application Pane

The Application pane displays a hierarchical
representation of a Liquid Data application.

A Workshop application is a collection of all resources

and components—projects, schemas, modules, libraries,
and security roles—deployed as a unit to an instance of
WebLogic Server. Only one application can be active at
a time. Open files display in boldface type.

If the Application pane is not open, complete one of the
following options:

Choose View — Application.

Press Alt+1.

Design View

Design View presents an editable, graphical
representation of a data service. It is a single point of
consolidation for a data service's query functions and
other business logic. Using Design View, you can:

View the data service's XML type, native data types,
functions, and data source relationships.

Add functions and data source relationships.

| Apckcation (s s

| EYATLADD
| == DataServces
= ) ElirhB
Ol )=
= ) Customed DB
= ) Dero
=) ElectorcsDE
# ] Blectronicsis
5 CAMETR-INF
& CyMODELS
Ol 1]
5 CIRTLSerices
= ) ServiceDE
= ) WeliSerices
=Y s, epdoonfig
=] ey bypars. s
= Z)Elecws
=] ATLSESErvice

| = Mok

=1 29 Libravies
= [} DataSenvices
31 [=) BlocDETest jar
5 [=) Id-soveer-apn. ja
= (2} LDt onitred ja
¥ () Sehemis.ju
(i) Security Roks

Create an XML type definition for elements within the data service, such as xs:string or xs:date.

Associate the data service with an XML Schema Definition (.xsd) that defines the unified view for

all retrieved data.

| Casmcl - {utaserioet\ATLSandoer

m Case Dty Servion

= g QUSTOMER _CRAZE  rotalr TypenlASE_TTFE

—p— gt B CxalD  wsdistrng
B OrtomedDd asctstig
At e it i Cus D B Productily  ssestring
W CaeType xdsting
B Ceaheription  ockiting
B Caselabte wrldie
B asyeell  xsditing
B Sube  wdsing
Functions [=] 51amg:.T9 wychelate
Data Service
Relationships XML Type
O.r!-I.CI'I"IEl/:u
e getOustoiner

D Vierwr | Wimsry Ecitor View | Source View | Tt View | Qs Plin View

Figure 1-2 Design View of a Logical Data Service

If Design View is not open, complete the following steps:

Data Service File name and Project

oo ServcoDEJSERVT.
i

Data Sources

BEA Liquid Data for WebLogic: Samples Tutorial

15



1. Open a data service (for example, Case.ds, located in the DataServices/RTLServices project

folder).
2. Select the Design View tab.

XQuery Editor View

XQuery Editor View provides a graphical, drag-and-drop approach to constructing queries. Using this

view, you can inspect or edit the query Return type and add the data source nodes, parameters,
expressions, conditions, and source-to-target mappings that are the foundation of data service query

functions.
CruigeCitahvure. ch” - (Tt Elarvicen | A TLGanm) E
e ot o Do o i, pustrmmes i =
: i Reteen
s e Sl CROER_PETAL DROER_PYTAN _MIEW
- gt - & CADER DETAL * CRDIR_ETAL_TYFE
Function Name aar d wrg DT ¢ airg
A Cutut Crrder I sireg
5 APRL_ORDER * APRY,_ORDER_TYFE Oatormar D) strng
BFE 7 gt Crdaelte dite
OrdecD s Shopngbettiod i1y
CutomeiD st verdirgihage dedmal
Crdaeats dae SupToed dsomal
Foorgiethod g TofaOrdenkinount [Hecmal
|?iParametes: Soid . vardingCharge decmal SaeiTan dwcrmal
P r— 1 SueTotd decmal EstrrateeShoDate [lite
TordCr Aot dacrnal saha g
SalaTae shocmal
Esbrratectholaie dete
St T
sheifo sy
shoTohie vy
BTo sirg
Tesckinghiurber 7 strg
AEOAREL | ITEM ¢ ASPAREL LB ITEM
unefveml sorg
13| Pttt Seust SR
P
oy g1
APRAREL S [TEM * ASPAAEL LB ITH=
LrelneeslD sty
Ot T Return l'rpe
Parameter At g
FroduciDesroion g
@ L
Pron deomal
E:%rnnlnn Sk g
ditor 7 Source to Target mapping

oE ../:1

TN Vs | eonmry Eotor Ve (Tt Wierw [ Tind Wi | Qlary Pln Vi |

Figure 1-3 XQuery Editor View

If XQuery Editor View is not open:

1. Open a data service (for example, Case.ds, located in the DataServices/RTLServices project

folder).
2. Select the XQuery Editor View tab.

XQuery Editor View Tools

XQuery Editor View includes several editors and palettes that simplify the
construction of queries:

Expression Editor. Lets you add where and order by conditions to
parameter, let or for nodes. The Expression Editor is only active when
you select a specific node.

0N [ |v2 :

Where $pk/CUSTOMER_ID eq $FkfCUSTOMER_ID

|| LiguidData Palette
1 DataServices

& ] ApparelDB

& ] BillingDE

& Z CustomerDB
& ] Demo

& ] ElectronicsWs
&) RTLServices
# (] ServiceDB

o (€]

BEA Liquid Data for WebLogic: Samples Tutorial

16




Liquid Data Palette. Lets you add previously-defined query functions as data sources. Each
function displays as a for node, which serves as a for clause within the FLWOR (for-let-where-

order by-return) statement that is the heart of an XQuery.

To add data sources, drag and drop an item from Liquid Data Palette into the XQuery Editor View
work area. After you drop the node into XQuery Editor View, the node’s data source schema

(shape) displays in the XQuery Editor View.

If Liquid Data Palette is not open, choose View — Windows — Liquid Data Palette.

XQuery Function Palette. Lets you add any of the more than 100 built-in
functions provided within the XQuery language. In addition, you can add any of
the special built-in functions defined by BEA.

To add a built-in function, drag and drop the selected item into the Expression
Editor.

If XQuery Function Palette is not open, choose View — Windows — XQuery
Function Palette.

| ¥Query Function Palette ®

-] #QueryFunctions

(2 Accessor Functions
{21 Agaregate Functions
{21 Boolean Functions
(2] Context Accessars
{21 Duration, Diate, and Time Functior)
{21 Error and Trace Funchions
(22 1dfIdref Functions

{20 Liquid Data Access Control Functid
[Z7) Liquid Data Debugging Functions
(2] Liquid Data Execution Contral Fun

Any work created in XQuery Editor View is immediately reflected in Source View,
which permits you to augment the graphical approach to constructing queries with
direct work on the XQuery syntax. Two-way editing is supported. Changes you
make in Source View are reflected in XQuery Editor View, and vice versa.

(2] URI Functions

{2 Liguid Data 501 Functions
{21 Mode Functions

(221 Mumeric Functions

{21 9Name Functions

C] Sequence Functions

(2 String Functions

{20 ML Data Source Functions

Source View

(K1l

)

Source View lets you view and/or modify a data service's XQuery annotated source code. Although

Liquid Data provides extensive visual design tools for developing a data service, sometimes you may

need to work directly with the underlying XQuery syntax.

Two-way editing is supported. Changes you make in Source View are reflected in XQuery Editor
View, and vice versa.

OrderDataiview.ds - {DataSenvices)|RTLSemces) *
7 i .

= fumction nslT.
we7: (PEFR._BETATL

gethpplOcdeiDetailView|

an waisteing,

an xsistiing) s elesentinsT: OPDER_DETAIL) |

P50 et el
=11 < Hamdl gty

) < fTatalfrdes R

Date) ) </EstimatedShipbate

| Design View | XiGuery Editor View | Source view | Test View [ Guery Plan View

Figure 1-4 Source View

BEA Liquid Data for WebLogic: Samples Tutorial

17



If Source View is not open, complete the following steps:

1. Open a data service (for example, Case.ds, located in the DataServices/RTLServices project
folder).

2. Select the Source View tab.

Within Source View, you can use the XQuery Construct Palette, which lets you add any of several
built-in generic FLWOR statements to the XQuery syntax. You can then customize the generic
statement to match your particular needs.

To add a FLWOR construct, drag and drop the selected item into the appropriate declare function
space.

If XQuery Construct Palette is not open, choose View — Windows — XQuery Construct Palette.

Test View

Test View provides a means of running developed query functions within the IDE. Options available in
Test View depend on the query being tested. For example, if the query supports parameters, then the
Parameters section appears, providing a field for each parameter required by the query.

Using Test View, you can select a specific function, specify appropriate parameters, and execute the
query to determine that it is functioning properly. In addition, you can edit the results of the query and
pass the modifications back to the underlying data source.

| Casa.ds - {DataSenoes R TL Senvices, ES
Balect Funtion:

+] gatCasByCustiD{cust_id) = Data service Function

Faramelers

wsistrne cust_id: | | CUSTOMERL

Humbiér  Elérment (By path)
Lirre® edaments in amay resulls o

= .|
C5tart Chent Transacton \
Parametrs

Rt Tex HHL
= ored: Ay TS TOMER _CASE wrnine :re0= "urrcretuler Type™ >
- arslUSTOMER_CASE >
oCrelDe CASE_11 <Crells
«CustomeiDs> CUSTOMERL </CustomerlDs e

cProductiDe Netgear Router </ProductiDos
«CaseTypes DEFECT «/CaaTypes
el meDescrption: FHL 14 Cable/ DS, Wireless Router with Printer has defect. < /Cealesciptions
«Caelata> 2002-05-03 «fCaselatex
cisgwalD> SERVICE_REP 4 < [AggreeiDs
«Statis> OPEN <[Statuss
cttateDates 2002-05-07 < /StaheDates
< s CUSTOMER _CASES Data Results
e rElDCUSTOMER _CASE >
+ arslOUSTOMER _CASE >
< rel Ay OFCOUSTOMER _CASE>

| Dersign Vierwr | iy Editon View | Source Vienw BTest Vicw Plan Wienw |

Figure 1-5 Test View

If Test View is not open, complete the following steps:

BEA Liquid Data for WebLogic: Samples Tutorial 18



Lab 1.3

3. Open a data service (for example, Case.ds, located in the DataServices/RTLServices project
folder).

4. Select the Test View tab.

Starting WebLogic Server

It is necessary that WebLogic Server be running while you are designing a Liquid Data project.
However, before you import source metadata or test a developed function, you must start an instance
of WebLogic Server.

Any Liquid Data projects that you create will run on your system’s installation of WebLogic Server, at
least until you deploy them.

Objectives
In this lab, you will:
Discover ways to start WebLogic Server.

Confirm that your server is running.

Instructions

There are three ways to start WebLogic Server:
Menu Command Tools — WebLogic Server — Start WebLogic Server
Shortcut Keys Ctrl + Shift + S

Procedure | Right-click the red Server Stopped icon, located at the bottom
of the WebLogic Workshop window. Then click Start
WebLogic Server.

Starting the WebLogic Server may take several moments. During the server start-up sequence,
you may see the following message box:

WebLogic Workshop

Authentication Failure when connecting to the server.

n Check that your WeblLogic Server username and password are
correct,
and that the user has full admin rights.

Figure 1-6  (Possible) WebLogic Server Startup Message

If this box displays, select OK.

When WebLogic Server is running, the status indicator in the lower edge of the WebLogic Workshop
development environment will turn green.

@ 3Server Running

BEA Liquid Data for WebLogic: Samples Tutorial 19



Lab1.4

Lab 1.5

Stopping WebLogic Server

There may be times when you want to stop WebLogic Server while still working within Liquid Data
for WebLogic Workshop.

Objectives
In this lab, you will:
Discover how to stop WebLogic Server.

Confirm that the server is not running.

Instructions

There are three ways to stop WebLogic Server:

Menu Command Tools — WebLogic Server — Stop WebLogic Server
Shortcut Keys Ctrl + Shift + T
Procedure Right-click the green Server Running icon, located at the bottom of the

WebLogic Workshop window. Then click Stop WebLogic Server.

Check the status bar at the bottom of WebLogic Workshop to determine whether WebLogic Server is
stopped. If WebLogic Server is stopped, the following icon displays:

@ Server Stopped

Saving Your Work

As you build your data services, you may want to save your work on a regular basis.

Objectives

In this lab, you will:

Discover three ways to save your work while working within the application.

Discover how to save one or more files when exiting the application or closing WebLogic
Workshop.

BEA Liquid Data for WebLogic: Samples Tutorial

20



Instructions

You can save your work using the following commands:

Menu Command Icon
File — Save =
File — Save As Not Applicable
File — Save All =il

Save All is generally recommended for Liquid Data applications.

In addition, if you exit WebLogic Workshop and there are any unsaved changes, you are provided with
an option to save either specific or all edited files.

Save Files X

The files listed below have changed, Please indicate those vou'd like to save before continuing.

Customer.ds [ {DataServices}H, ]
Customer.xsd [ {DataServices}\schemas!, ]

ok | | Cancel

Select Al | | Select Mone

Figure 1-7  Save File Options on Exiting WebLogic Workshop

Lesson Summary

In this lesson, you learned how to:
Use several of the key tools within the Liquid Data for WebLogic Workshop environment.

Start and stop the WebLogic Server.

Save files within a Liquid Data application.

BEA Liquid Data for WebLogic: Samples Tutorial

21



Lesson 2 Creating a Physical Data Service

Objectives

Overview

Lab 2.1

The heart of Liquid Data is a data service, which is simply a file containing XQuery functions and
supporting structured information. The most basic data service is a physical data service, which
models a single physical data source residing in a relational database, Web service, flat file, XML file,
or Java function.

Liquid Data approaches the problem of creating integration architectures by building data services
around multiple physical data services. Therefore, in this lesson, you will create data services based on
relational data included in the sample PointBase database provided with Liquid Data:

Customer Relationship Management (CRM) data, stored in the RTLCUSTOMER database.

Order Management System (OMS) data for apparel and electronic products, stored in the
RTLAPPLOMS and RTLELECOMS databases.

Customer service data, stored in the RTLSERVICE database.

After completing this lesson, you will be able to:

Create a Liquid Data application and project.
Generate multiple physical data services, based on underlying relational data sources.

Test a physical data service.

A data service is a collection of one or several related query functions. The service typically models a
unit of enterprise information, such as customer or product data.

The shape of a data service is defined by an XML type that classifies each data element as a particular
form of information, according to its allowable contents and units of data. For example, an xs:string
type can be a sequence of alphabetic, numeric, and/or special characters, while an xs:date type can only
be numeric characters presented in a YYYY-MM-DD format. Liquid Data uses the XML type to model
and normalize disparate data into a unified view.

The data service interface consists of public functions that enable client-based consuming applications
to retrieve data from the modeled data source.

Creating a Liquid Data Application

Since a data service is part of a specific Liquid Data project, and a project is part of a single WebLogic
Workshop application, you will first need to create the application, and then a project, before creating a
physical data service. (Alternatively, an existing application could be used; in that case you would
simply create a Liquid Data project within the application.)

An application, which is deployed as a single unit to an instance of WebLogic Server, is a J2EE
enterprise application that ultimately produces a J2EE Enterprise Application Archive (EAR) file.
This, in turn, provides you with a multi-user application that is ready for Internet deployment. Except
in specific cases, such as accessing remote EJBs or web services, an application is self-contained. The
application’s components may reference each other, but may not generally reference components in
other applications. An application’s components include:

BEA Liquid Data for WebLogic: Samples Tutorial 22



One or more projects, data services, schemas, and libraries.
Zero or more modules and security roles.

An application should represent a related collection of business solutions. For example, if you are
deploying two web sites — one an e-commerce site and the other a human resources portal for
employees — you would probably create separate WebLogic applications for each.

An application is also the top-level unit of work that you manipulate within the WebLogic Workshop
environment. Only one application can be active at a time.

Objectives

In this lab, you will:

Create a Liquid Data-enabled application.

Explore default application components.

Instructions
1. Choose File — New — Application — Liquid Data Application.
2. Enter Evaluation in the Name field.

3. Click Create.

X

New Application

C Al 147 Default Application
(C) Liquid Data éﬁl Empty Application
g Portal éﬁl Liquid Daka Application
Process - P
Paortal Application
[Z) Tutarial o PP

éﬁl Process Application

éﬁl Tutorial: Enterprise JavaBeans

éﬁl Tutorial: Hello World Process application
éﬁl Tutorial: Java Control

M T+

Direckory: | [:\beanewiweblogics1isamplesiLiquidDatalEvaluation | | Browse, .. |
Mame: | Evaluation |
Server: | [:\beanewiweblogics1isamplesidomainsidanube | - | | Browse, .. |

Creates a new empty application with a Liquid Data project.

Figure 2-1  Creating a Liquid Data Application

The components of the application are represented in a hierarchical tree structure in the Application
pane. When you first create a Liquid Data application, the following default components are
automatically generated:

Liquid Data project. Takes the name of your application (in this case, EvaluationDataServices).
Within the project folder, there is initially a single component, the xquery-types.xsd file. This file is
an XML Schema Definition (XSD) that describes the contents, semantics, and structure of the
project.

Modules. Initially an empty folder.

Libraries. Contains the ld-server-app.jar file. Within this file are several folders and files, as
displayed in Figure 2-2.

BEA Liquid Data for WebLogic: Samples Tutorial 23



Security Roles. Initially an empty folder.

Figure 2-2 displays the default folders created for the Evaluation application.

&pplication ™ Files ®

(3 Evaluation
=23 EvaluationDataServices
Fj wOuery-tvpes,xsd
£ Madules
=29 Libraries
E=l E] |d-server-app.jar
=29 com
] bea
=29 META-INF
4% MDEx LIST
42| MANIFEST MF
=423 schema
[C] element
£ javanarne
[C] namespace
Cste
[C system
Ctvpe
Iﬂ sdoupdate_en. properties
(] Security Rales

- FEEE

Figure 2-2 Initial Application Structure

BEA Liquid Data for WebLogic: Samples Tutorial



Lab 2.2  Creating a Liquid Data Project

A project groups related files — data services, models, and metadata — within an application. Each

application can support multiple projects. As you develop the application, you may want to create new
projects for the following reasons:

To separate unrelated functionality. Each project should contain closely-related components. For
example, if you want to create one or more data services that expose order status to your customers,

and also one or more web services that expose inventory status to your suppliers, you would
probably organize these two sets of unrelated web services into two projects.

To control build units. Each project produces a particular type of file when the project is built. For

example, a Java project produces a JAR file. If you want to reuse the Java classes, you would
segregate the Java classes into a separate project, and then reference the resulting JAR file from

other projects in your application.

Although a default Liquid Data project is created when you create a new Liquid Data application, for

this tutorial you will create a new project.

Objectives

In this lab, you will:

Create a new Liquid Data project.

Review the results.

Instructions

1. Choose File — New — Project — Liquid Data Project.

2. Enter DataServices in the Project name field.

3. Click Create.

New Project

3

Al

(1 Business Logic
ClE®.

1 Liquid Data

1 Portal

() Process

1 Schema

1 vieb Services

1 “web User Interface

@ Control Deliverable Project
4] Control Praject
E Datasync Project
@ EJB Project
@ Java Project
Fj Liquid Drata Project
2] OAG Schemas
@ Portal Web Project
@ Process Project
@ Schema Project

51 WL System Schema:

A ]

Project name: | DataServices|

Creates a new project For building Data Services.

Figure 2-3 Creating a New Liquid Data Project

The components of your new Liquid Data project are represented in a hierarchical tree structure in the

Application pane. At present, there is only one component in the project, the xquery-types.xsd file.
This file is an XML schema definition that describes the contents, semantics, and structure of the

project.

BEA Liquid Data for WebLogic: Samples Tutorial

25



Lab 2.3  Creating Project Sub-Folders

Folders let you logically group different data services, and their associated files, within a single
project. For example, if you had three data sources — one a relational database containing tables for
customer-oriented information, and two Web services providing credit rating and information — you
would probably want to create two folders, one for the database and one for the Web services.

Objectives

In this lab, you will:

Create four sub-folders within the DataServices project folder.

Review the results.

Instructions

1. Right-click the DataServices project folder.
Choose New — Folder.

Enter CustomerDB in the Name field.
Click OK.

wok v

Repeat steps 1 through 4 to create data service folders for:
ApparelDB
CustomerDB
ElectronicsDB
ServiceDB

After adding these four folders, your DataServices project folder should look similar to Figure 2-4.

Application ™ Files b

3 Evaluation
= {4 Datadervices
£ ApparelDBE
() CustomerDE
(C) EletronicsDE
] ServiceDE
@ wquery-types,xsd
() EvaluationDataServices
£ Modules
) Libraries
(] Security Raoles

Figure 2-4  Project Sub-Folders

BEA Liquid Data for WebLogic: Samples Tutorial 26



Lab 2.4 Importing Relational Source Metadata

When you installed Liquid Data, several sample data sources were also installed. One such sample data
source is the Avitek RTL PointBase database. It contains a number of relational database schemas that
provide the metadata needed to build your physical data services, including:

Customer Relationship Management (CRM) data, stored in the RTLCUSTOMER database.

Order Management System (OMS) data for apparel products, stored in the RTLAPPLOMS
database.

Order Management System (OMS) data electronic products, stored in the RTLELECOMS
database.

Customer service data, stored in the RTLSERVICE database.

A physical data service, which models physical data existing somewhere in your enterprise, is
automatically generated when you import relational source metadata. Each generated physical data
service represents a single data source that can be integrated with other physical or logical data
services.

Objectives

In this lab, you will:

Import source metadata from four RTL PointBase databases, thereby generating multiple physical
data services.

Review the results.

Instructions

Note: WebLogic Server must be running. If it is not already running, start the server (Lab 1-3) before
you begin this lab.

1. Right-click the CustomerDB folder.
2. Choose Import Source Metadata from the pop-up menu.
3. Select Relational from the Data Source Type drop-down list and click Next.

& Select data source type @

Data Source Type: ‘ FRelational | - |

‘ Next H || Cancel |

Figure 2-5 Select Data Source Type

BEA Liquid Data for WebLogic: Samples Tutorial 27



4. Specify the data source, by completing the following steps:

a. Select cgDataSource from the Data Source drop-down list.

b. Click Select All and click Next.

2 Select data source X
Data Source: | cghatasource |v | | = |
@) Select all

Dicplaye all tables, wiews, and procedures from the data source,
(21 Selected data source objects
Displays selected tables, wiews, and procedures from the data source.
Catalog
Schermna
Tahle/View
Procedure

JDEC wildcard operators: _ For single charackers; % For stri.,

() SO skatement

Allows data serwice creation from a user-provided SCL staternent.:

| Prewvious | | et | | | | Cancel |

Figure 2-6 Select Data Source

WebLogic Server fetches the specified data, and then displays the Select Database objects to import

window. The source metadata for each selected object will be used to generate a physical data service.

5. Expand the RTLCUSTOMER and RTLBILLING folders, located in the left pane.

6. Select all tables from both schemas and click Add. The selected objects display in the right pane.

&2 Select database objects to import E‘
Available database objects Selected database objects
|- Schemas =2 RTLE_‘[IL;ING
() EROADEAND =0 ° Z;EDH e
Sycrm RTLcLu)STOMER B
(CARTLAPPLOMS =0
4o B £ Tables
o © ADDRESS
_ _ @ CUSTOMER
=0 °
. [Rencee ]
o
@
(CARTLELECOMS
(CJRTLSERVICE
() WEBLOSIC
(O WIRELESS
[Frevions | [ wext_]| | [cncel |

Figure 2-7  Selected Database Objects to Import

BEA Liquid Data for WebLogic: Samples Tutorial

28



7. Click Next. A Summary window opens, displaying the following information:
XML type, for database objects whose source metadata will be imported.

Name, for each data service that will be generated from the source metadata. (Any name
conflicts appear in red; you can modify any data service name.)

Location, where the generated data services will reside.

28 Summary. &‘

The following data service{s) will be created. Edit suggested name(s) as needed.
=ML Type

Marne:

ADDRESS ADDRESS

]

CREDIT_CARD CREDIT_CARD

CUSTOMER CUSTOMER

]

Location ‘ Di\testi Testappi TestAppDataServices ‘ | Browse. .. |

‘ Previous ‘ | | ‘ Finish ‘ | cancel |

Figure 2-8 Metadata Summary

8. Click Finish.

9. Repeat steps | through 8 to import source metadata into the ApparelDB, ElectronicsDB, and
ServiceDB folders, substituting the following information for steps 1 and 5:

Step 1 Step 5
ApparelDB RTLAPPLOMS
ElectronicsDB RTLELECOMS
ServiceDB RTLSERVICE

The Application pane should appear similar to Figure 2-9. If you expand a data service's schema
folder, you will see XSD files for each data service generated from the underlying data source.

BEA Liquid Data for WebLogic: Samples Tutorial

29



Lab 2.5

=% Db mlon
= Daanrric Py
= 7 Appar il
=3 AP
] CLEETOME R DIRTEE wid
A CLETOMER ORDES LME ITEM w8
<o PRODACT xil
iE CUSTOMER_ORDER. du
iE CUSTOMER_OROER_UKE MEM.ds
5 PRODUCT, da

Y Crliers L]
=y i
af ADDEE ST a8l
o} CRENT_CARD x5
3 CLES T e B

1F ADORESS di
I CREDIT_CARD da

¥ CUSTOMER. &4
N e i
i bR ]

ICLEETOREE OEDED v
L EUSTORER CGPOED LrE IFTEMxa
o S T e
iE CUSTOMER_ORODA. da
iE CUSTOMER_OROER LIKE MEM.di
i¥ PRODUCT.da
o ServidelE
At
M SERACE CASE wid
IE SERWCE CASE &4
4 mlpritp-Fpeitd ol
e T A ]
LT
i O Liowrne
11 St ey e

Figure 2-9 New Data Services

Building a Project

Building a project simply means that the project's source code is compiled into machine-readable
instructions. Each project produces a particular type of file when the project is built. For example, a

Java project produces a JAR file.

Objectives

In this lab, you will:

Build the DataServices project.

Review the results in the Build window.

Instructions

1. Right-click the DataServices project folder.

2. Choose Build DataServices. It may take a few moments for the project to be built. When complete,
you will see a message in the Build window, similar to that displayed in Figure 2-10. (If the Build

window is not open, choose View — Windows — Build or press Alt+5.)

BEA Liquid Data for WebLogic: Samples Tutorial

30



Build ™. *
Building zip: D:\TEMP\wlw-temp-52Z85584wly compile3z02Z\DataServices. Jar E‘

move-jar:

Mowing 1 files to D:\bea\user_ projecta‘\applicationstdanube\Evaluation’\APP-INF\lih
update-jar:

build.prepareEAR:

build.ejb:

build. ejhdd:

Created dir: D:\bea\weblogic8liliquiddataldeploymenth tup

Copying 2 files to D:ivbhea'\weblogicSlylirmiddata)deployment) tup

Building jar: D:\bea\user_projects)applications)danube)\EvaluationiEvaluation_ejb.jar
Copying 1 file to D:tbeajuger_projectalapplicationstdanubehEvaluation\META-INF
BUILD SUCCEISFUL

Build project Datafervices complete.

[l ] O

[

Figure 2-10 Build Project Information

3. Scroll through the Build window. As part of the Build process, Liquid Data generated several files,

including the following:
Data service (.ds) files for each table within the underlying data source.
ArrayOf schema (.xsd) files for each data service.
Miscellaneous JAR, EJB, and EAR files.

Figure 2-11 displays the complete Build information for the DataServices project.

Build ™. bad
Build project DataSerwices started.
BUILD 3TARTED
build:
ServiceDB/SERVICE_CASE.ds
CustomerDE/CUSTOMER. d=
ElectronicsDE/PRODUCT. d=
ApparelDB/PRODUCT, d=
ElectronicsDE/CUSTOMER_ORDER_LINE ITEM.ds
AdpparelDB/CUSTOMER_ORDER. d=
CustomerDE/ADDRESS. d=
CustonerDE/CREDIT_CARD.ds
ElectronicsDE/CUSTOMER_ORDER. d3
ApparelDB/CUSTOMER_ORDER_LINE_ITEM.ds
Generated Schema File: \bea\user_projectsiapplications)danubetEvaluation\Datadervices\ApparelDB)schenas\Array0f
Generated Schema File bea\user_projectshapplications)danube’Evaluation)lataiervices\ApparelDB)schenastirraylf
Generated Jchema File bea\user_projectshapplications)danube’Evaluation)lataiervices)CustonerDEYschenas\Arrayl
Generated 3chema File bea‘user_projectshapplications)danube’Evaluation\Datafervices\CustonerDBYschenas\irrayl
Generated 3chema File beajuser_projectshapplications)danube’Evaluation\DataServices\ElectronicsDE\schemnas\hrr
Generated 3chema File heajuser_projectalapplicationa)danubesEvaluation\DataServices\ElectronicsDE)achenas\hrr
Generated Schema File heajuser_projectalapplicationa)danubesEvaluation\DataServices)ServiceDB\ schemas)rray0f
Generated Schema File beaj\user_projectshapplications)danube’Evaluation\Dataiervices)CustonerDEyschenas \Arrayl
Generated Schema File bea\user_projectshapplications)danube’Evaluation\Dataiervices\ApparelDB)schenasidrraylf
Generated Schema File: \bea\user_projectsiapplications)danubetEvaluationiDatadervices\ElectronicsDB\schenasiirr
enerating index for project: Datafervices
Copying 1 file to D:‘bea‘user_projectshapplications)damube’\Evaluation‘\APP-INF4\1lib
Copying 1 file to D:\beaiuser_projectsiapplications)damubelEvaluationiDataervices
build-sub:
compile:
Created dir: D:\TEMP\wlw-temp-52559%wlw _compile3z0zzyDataServices
Coupiling 45 source files to DIZTEMPA\wlw-temp-52359%wlw _compile3z0z2\DataServices

Time to compile code: 15.593 seconds

Time to build schema type systen: 1.923 seconds

Time to generate code: Z.002 seconds

Building zip: D:\TEMPA\wlw-temp-523594wlw_compile3Z022\DataServices. jar

nove-jar:

Moving 1 files to D:ybeahuser_projects’applications)danube’lEvaluationtAFP-INFY1ib
update-jar:

build.prepareEaR:

build.ejb:

build.ejbdd:

Created dir: D:\bealwehlogicGlhliguiddataldeployment! tup

Copying 2 files to D:vbea\wehlogicGlyliquiddataldeployment) tonp

Building jar: D:\bea\user_projectshapplicarionsidarube\Evaluarion\Evaluation_ejb.jar
Copying 1 file to D:‘\beatuser_projectshapplications)damube’\Evaluation\META-INF
BUILD SUCCESSFUL

Build project DatalSerwices complete.

1 bJ

Figure 2-11 Complete Build Information for the DataServices Project

4. (Optional) In the Application pane, expand the schema folder for CustomerDB. You should see a
list of the generated array schemas.

5. (Optional) Expand the Libraries folder. You should see the DataServices.jar file.

Lab 2.6  Viewing Physical Data Service Information

A physical data service is automatically generated when you import source metadata and build the
associated project. Each generated physical data service represents a single data source that can be
integrated with other physical or logical data services.

BEA Liquid Data for WebLogic: Samples Tutorial

31



When Liquid Data generates a physical data service, it also generates XML data types, an XML
Schema Definition (.xsd file), default query and navigation functions, and pragma information.

Objectives

In this lab, you will:

View XML type, native data types, XML schema definition, generated functions, and metadata.

Use Design View and Source View to obtain information about a data service.

Viewing XML type

An XML type, which derives from the data service's XML Schema Definition (XSD), is a structured
XML document that classifies each element within the data service as a particular form of information,
according to its allowable contents and units of data. For example, the XML type for the CUSTOMER
data service is CUSTOMER, whose elements include:

CUSTOMER _ID, whose xs:string classification indicates the element's return data will be
formatted as a sequence of alphabetic, numeric, and/or special characters.

CUSTOMER_SINCE, whose xs:date classification indicates the element's return data will be
formatted as numeric characters presented in a YYYY-MM-DD format.

Multiple data services can use a single XML type. Liquid Data uses the XML type as the default
superset of data elements that will be returned by a set of queries. This superset XML type, known as
the Return type, models and normalizes data retrieved from the underlying data source, thereby
transforming disparate data into a unified view.

Instructions
1. Inthe Application pane, expand the CustomerDB folder.
2. Double-click the CUSTOMER.ds file. The data service opens in Design View.

Note: The data service automatically opens in the View workspace last used; if Design View is not
currently open, click the Design View tab.

3. In the middle of the data service representation you should see the CUSTOMER XML type for the
data service, plus the XML classification for each element in the data service. Items marked with a
question (?) mark are optional elements, which means two things: 1) if there is no data in the
underlying data source, that element will not display in the data set returned by the data service and
2) a query function can succeed without providing any value for particular element.

BEA Liquid Data for WebLogic: Samples Tutorial 32



R T T et e =

L TR

X
i B TH DAY T i e

W DEFART TR WTHOD 7 o pig
LR - ML A3 ST
o MW LET =
@ OMUME STATE SR
@ LOGN 07 a
Db
ok 8 XML Type

e e e RESE

Do v | $CMey EdRor view' | Soure view | Tisd view | Dhery Pl view
Figure 2-12 Design View of XML Type
Viewing Native Data Type

A Native Data Type classifies each data element according to the definitions specified in the
underlying data source. For relational data sources, Liquid Data generates Native Data Type
definitions based on the underlying database's table structure and column data definitions.

Instructions

1. Right-click the CUSTOMER Data Service header. (You can also right-click any empty space
within the data service diagram.)

2. Select Display Native Type. This will display the original data type for each element in the
underlying data source.

3. In the middle of the data service representation, you should see Native Types for each data element
in the data service.

i AEWS LETTTER
@ oHLnE STATEWENT
ok LIDDE_ID T WARCHARY S0

Mative Type

Parign Vi m‘fww" S e | Tl View MHV-—

BEA Liquid Data for WebLogic: Samples Tutorial 33



Figure 2-13 Design View of Native Type

Viewing XML Schema Definition

An XML Schema Definition file (.xsd) corresponds exactly to the XML type of a data service. It
defines the structure and content of an XML document, such as the XML type document. In other
words, it defines the vocabulary, rules, and conventions for representing information in a system.

An .xsd file is organized as a flat catalog of complex elements, any attributes, and any child elements.
For physical data services, Liquid Data automatically generates an .xsd file from underlying data when
the underlying data source's metadata is imported. Generated .xsd files are placed in the appropriate
data service’s schema directory.

Note: For logical data services, you must create a schema. You can use XQuery Editor View,
discussed in Lesson 3, to create such schemas (XSD files).

Instructions
1. Right-click the CUSTOMER element, located in the XML type pane. A pop-up menu opens.

2. Choose Go to Source to view the underlying schema information.

CUSTONER et - [DiaaSenaces|\CisinmerTEaremash "
hema tazgetlamsrpac =" L4 : e taSerrices f Cowtomes s BB CTTTORES
ot Ak LLEprpas s 2
 TLPLE oy

pa# = ¥ TOEER 15" Ty
. - =" FIRST_EANE
L 1. 3. LiST _HifI™ =

LEL Lo = wasaLP SEECE

LB == "B e RDGFEET" Ufpr="EilAtLLGF

B % Fesws “TEREFHTHE_FUREER™ oy« "uni $T0404
B E i ™ oypes"TN: NI i e
. £ sommes"BIRTH DAT™ ypesxm:Lats

swime= "DITRULT _THIF EETHE
a~="EELEE _FTo| FICATIONT ¢
=~ W LETSTE Jere=uE | NEE” mi Ll

_STATERENT™ coyppss"wnshapt” sin =
1] 1L e

Figure 2-14 XML Schema Definition

3. After reviewing the XSD, click the Close box (X) in the upper-right corner of the source pane to
return to Design View of your data service.

Note: Clicking the large red X will close WebLogic Workshop.
Viewing Generated Functions
The data service interface consists of public functions of the data service, which can be of several
types:

One or more read functions, which typically return data in the form of the data service XML type.

One or more navigation functions, which return data from related data services. The navigation
functions are based on any relationships defined within the underlying data source. Relationships
enhance the flexibility of data services by enabling the return of data in the shape of another data
service.

One submit() function, which allows users to persist changes back to the original data source. (The
submit() function does not appear in Design View.)

BEA Liquid Data for WebLogic: Samples Tutorial 34



In addition to public functions, a data service can include private functions that are only used within
the data service. They generally contain common processing logic that can be used by more than one
data service function. (For more information, see the Data Service Developer’s Guide.)

Instructions

1. In Design View, notice the public functions displayed in the left pane of the diagram. These
functions, which were generated for the data service, include the following:

CUSTOMER(), a read function that retrieves data from the underlying RTLCUSTOMER
database.

getADDRESS(), a navigate function that retrieves data from the ADDRESS data service. This
function is based on a relationship between the CUSTOMER and ADDRESS tables, which are
defined in the RTLCUSTOMER database.

ff CUSTOMER Dot
s . {5 P TS - '=

Read
Functions

Genarated
Function

Navigate
Function

— — e [
J P LS e

Dot i (RO Ot Wiew | Bourte Wi | TEst Vidw | Dhiery Plan View

Figure 2-15 Design View: Generated Functions

2. (Optional) Right-click the CUSTOMER Data Service header and choose Display XML type from
the pop-up menu. (You can also right-click any empty space within the data service diagram.)

Viewing Data Service Metadata

Metadata is simply information about the structure of data; it provides facts about the data service's
data, format, meaning, and lineage. For example, a list of tables and columns within a database is
metadata. Liquid Data uses metadata to describe a data service: what information is provided by the
data service and the information's lineage (that is, the source for the information.)

In addition to documenting data services for potential consumers, metadata helps you determine what
data services are affected when inevitable changes occur in the underlying data source layer. Of course
in the case of physical data services, the metadata primarily describes metadata extracted from the
physical data source.

Metadata information is contained in the data service's META-INF folder. Normally you should not
need to refer to the contents of this folder.

BEA Liquid Data for WebLogic: Samples Tutorial

35



Lab 2.7

1.

Instructions

(Also available in Source View are data service namespace, schema namespace, and XQuery
functions; these items are not displayed in Figure 2-16.)

2. Click the + icon to display all metadata information.

3. Notice the following:

The date the data service was created.
The data source from which the metadata was imported.

The XML type, XPath, Native Data Type, and native XPath for each element within the data
service.

Select the Source View tab. The metadata information used by the Customer data service appears.

The relationship target, role name, role number, XDS, and relationship parameters for each data

service associated with the active data service.

CUSTOMER.ds - {DataServicesHiCustomerDB)Y,

(rrpragma xds <x:xds rmlns:y="urniannotations.ld.bea. cor"™ fargetType="t:CUSTOMER" ymlns:t="1ld:DataServices CustonerDE CUSTOMERT>

woreationllatex2005-03-21T16:11: §3=/creationlater

<relationalDlB dbVersion="4" dbType="pointbase” name="cglataSource" >

<field type="xs:string" xpath="CUSTOMER ID™:
<extension nativeFractionalDigits="0" nativeSize="3i" nativelypelode="12" nativelype="VARCHAR" nativeXpath="CUSTOMER ID"/>
<propertias nullable="false"/> -

</ field=

<field type="ya:string" xpath="FIRST NAME":
<extension nativeFractionalDigits="0" nativeSize="éd" nativeTyperode="12" nativeType="VARCHAR" nativeXpath="FIRST NAME"/ >
<properties nullable="rfalse"/ > -

</Field>

<field type="xs:string" xpath="LAST NAME'™:
<eytension nativeFractionalligits="0" netiveSize="64" nativeTypeCode="12" nativeType="VARCHAR" nativeXpath="LAST NAME" >
<propertias nullable="false"/> -

</ field=

<field type="xardate" xpath="CUSTOMER SINCE'™:
<extension nativeFractionalDigits="0" netiveSize="10" nativeTypetode="01" nativeType="DATE™ nativeXpath="CUSTOMER SINCE" =
<properties nullable="rfalse"/ > -

</Field>

<field type="xs:string" xpath="EMATL ADDRESS">
<eytension nativeFractionalligits="0" netiveSize="32" nativelypeCode="12" nativelype="VARCHAR" nativeXpath="EMAIL ADDEESS"/ >
cproperties nullable="false"/> -

</ field=

«field type="xs:string" xpath="TELETPHONE NUMEER'":
<extension nativeFractionalDigits="0" nativeSize="32" nativeTypeCode="12" nativeType="VARCEAR" nativeXpsth="TELEDRONE NUMEER™/>
<properties nullable="rfalse"/ > -

</Field>

<fisld type="ksistring" xpath="S5N"> E‘

[« D

Design View | #Query Editor Yisw | Source Yiew [Test Yiew | Query Plan View

Figure 2-16 Source View of Metadata

Testing Physical Data Service Functions

Testing a data service's functionality within Test View lets you determine whether the data service is
able to return the expected data results.

Objectives

In this lab, you will:

Test the CUSTOMER() function.
Review the results in Test View.

Review the results in the Output window to confirm that the data is pulled from the correct data
source.

Instructions
1. Select the Test View tab.
2. Select CUSTOMER() from the function drop-down list.

BEA Liquid Data for WebLogic: Samples Tutorial

36



3. Click Execute. You should see data returned from the RTLCUSTOMER database, formatted
according the CUSTOMER data service's Return type, which is defined by each element's XML

type.

4. Expand the nodes and notice the following: Each element defined by the XML type returns specific
data retrieved from the RTLCUSTOMER database. For example, the <FIRST NAME> element
returns “Jack” as an xs:string, while the <CUSTOMER_SINCE> element returns "2001-10-01" as

an xs:date.

ﬁbﬁ.mﬂ-_mm,

[t i

| =] customry)
* e wiy
Ml Ewe Oy BAT
Limil siarsaety i wry el i |
O = it Teanii

RS N0 DRSETACEN o DEC LS TOME R

RO CUBTOMER] «CUSTOMER IO

SFERET NAME S RS T HAME

CLAGT_AMEs Bk <LAST_RAMEs

wCUS TOMER SPiCEr 20001001 «alirk IOMER SmcEs
“EMAL_ADDHRESE> Jachhotmalcom cEMAL_ADDRERE

S TELEPHONE_NUMBERS 31801 34118 </ TELEPHORE 1AMBERs

=il CUGTOMER »
=anall CUETOMER =
= ariall CLUSTOMER »

ST AT AL TR
Em
Tty WHew | Wy ERET Vit | O Vb | T2 veem | IRy UM R

Figure 2-17 Physical Data Service Test Results

[ =}

5.
6.

Open the Output window (View — Windows — Output).
Confirm that the output is similar to that displayed in Figure 2-18.

Note: You can use the Output window to verify that each element in the data service is pulling data
from the correct data source. In this example, the return results are pulled from the
RTLCUSTOMER database, CUSTOMER table 1, and a specific column (c1, c2, c3, and so on) for
each element.

O x|

i, dnefulanll
ramE, ConE eIl
revzan_profule_dace=Ties spenc iz XTuacy sngine swscucion: 1ims

Deataiurte mame! Ocatalouree Ievodatidems! 1 Time: 10ms

frarsment] JELECT ol “BIRTH_BAY= A% ok, ol “CUSTORMER_EP™ A3 o, cl, “COFTOMER_SINCE® A3 o3,
o1, "DEFLILT_SHIF _FCTHED™ A3 cd, ol "EEATL ASOETSS™ &S of, ol "FAATL_BOSTIFICATION™ kI of,
£1."FIRST NART™ &S o7, TI_TLAST WAMT™ A5 o, tl."LOEIN IDT 1S i, t1."EEWS_LETTITR™ A3 <10,
Bl TONLINE FTATERENT AZF cll; EL73HC AS €12, TL.TTELEISONE NIPEER. AT £1]

FRE “FTLONFTORE", “ (FTRrER" ol

Figure 2-18 Test Results Output

Lesson Summary

In this lesson, you learned how to:

Create a Liquid Data application and project.

BEA Liquid Data for WebLogic: Samples Tutorial

37



Create project sub-folders to group data services.

Import relational tables to create a simple physical data services.

Build a project and review the build information.

Examine a physical data service’s shape/schema definition, data types, functions, and source code.

Test a data service function.

BEA Liquid Data for WebLogic: Samples Tutorial 38



Lesson 3 Creating a Logical Data Service

As noted in Lesson 2, there are two types of data services: physical and logical. Physical data services
model a single physical data source residing in a relational database, Web service, flat file, XML file,
or Java function.

To enable the integration of data from multiple sources, you define a logical data service. In this lesson
you will create a logical data service that integrates data from the CUSTOMER data service.

Objectives

After completing this lesson, you will be able to:

Create a simple logical data service, define its shape, and specify it query conditions.

Test the logical data service's read, write, and limit functions.

Overview

A logical data service integrates data from two or more physical or logical data services. Its shape is
defined by an XML type schema that classifies a data element as a particular form of information,
according to its allowable contents and units of data. For example, an xs:string type can be a sequence
of alphabetic, numeric, and/or special characters, while an xs:date type can only be numeric characters
presented ina YYYY-MM-DD format.

The data service interface consists of public functions that enable client-based consuming applications
to retrieve data from the modeled data source. A data service's functions can be of several types:

One or more read functions, which typically return data in the form of the XML type.

One or more navigate functions, which return data from related data services. Within a logical data
service, you must define relationships through modeling. Although similar to relationships in the
RDBMS context, a logical data service lets you establish relationships between data from any
source. This gives you the ability to, for example, relate an ADDRESS relational table with a
STATE look-up web service.

One submit() function, which allow users to persist changes to the back-end storage

In addition to public functions, a data service can include private functions that are only used within
the data service.

Every function within a logical data service also includes source-to-target mappings that define what
results will be returned by that function. There are four types of mappings:

A simple mapping means that you are mapping simple source node elements to simple elements in
the Return type one at a time. You can create a simple mapping by dragging and dropping any
element from the source node to its corresponding target element in the Return type. Optional
Return type elements do not need to be mapped; otherwise elements in the Return type need to be
mapped in order for your query to run.

An induced mapping means that a complex element is mapped to a complex element in the Return
type. In this gesture the top level complex element in the Return type is ignored (source node name
need not match). The editor automatically then maps any child elements (complex or simple) that
are an exact match for source node elements.

An overwrite mapping replaces a Result type element and all its children (if any) with the source
node elements. As an example of the general steps needed to create an overwrite mapping, you

BEA Liquid Data for WebLogic: Samples Tutorial 39



Lab 3.1

would press <Ctrl>, then drag and drop the source node's complex element onto the corresponding
element in the Result type. The entire source node's complex element is brought to the Result type,
where it completely replaces the target element with the source element.

An append mapping adds a simple or complex element (and any children or attributes) as a child of
the specified element in the Return type. To create an append mapping, select the source element,

then press <Ctrl>+<Shift> while dragging and dropping the source node’s element onto the

element in the Return type that you want to be the parent of the new element(s).

Alternatively, if you simply want to add a child element to a Return type, you can drag a source
element to a complex element in your Return type. The element will be added as a child of the

complex element and mapped accordingly.

In addition to the mappings, each function can also include parameters and variations on the basic

XQuery FLWOR (for-let-where-order by-return) statements that further define the data retrieval results.

In Figure 3-1, what you see in Design View is a logical data service that:

Uses the getAllCustomers, getCustomer, and getPaymentList, and getLatePaymentList functions to

retrieve data.

Uses the CUSTOMER.XSD schema definition to define its XML type, and thus its Return type.

Integrates data from the ApparelDB and CustomerDB physical data services, plus a CreditRating

web service.

Customer,ds - {DataServicesH

*

A getAllCustomers

At (et CUSEOMEY

Read
Functions

Navigate
PAYENTS” Il Functions

At (121 P2y IEMELiSE
At (1t AbePaymENELisk

—

_’a Customer Data Service

B @) CUSTOMER.
@ CUSTOMERID xs:int
(@) CUSTOMERMAME xs:string
£ @ CREDIT*
(@ CREDITSCORE xavink
(@) (CREDITRATIMG xs:string
£ @) ORDER*
@ ORDERID xs:int
@ CUSTOMERID xs:ink
Bl @) POITEM*
=) ORDERID xsvint
KEY xsrint
ITEMMUMEER. ? it
QUANTITY 7 xeatint

000¢

XML Type

.ﬁ CUSTOMERS.ds
.ﬁ PO_CUSTOMERS.ds
.ﬁ PO_ITEMS.ds
.ﬁ getCustomerCredi, .,

Data Sources

| Design View [®Guery Editor Yiew | Source View | Test Yiew | Query Plan Yiew

Figure 3-1 Design View of a Logical Data Service

If you open XQuery Editor View for a particular function, you would see that function's source-to-

target mappings.

If you open Source View, you would see each function's parameters and FLWOR statements.

Creating a Simple Logical Data Service

A logical data service integrates and transforms data from multiple physical and logical data services.

Objectives

In this lab, you will:

BEA Liquid Data for WebLogic: Samples Tutorial

40



Create a new folder for the logical data service.
Create an empty data service that can be built into a logical data service.

Import a pre-defined XML schema definition that you will associate as the logical data service's
XML type.

Define functions and their mappings, parameters, and FLWOR statements.

Instructions
1. Create a new folder within the DataServices project and name it CustomerManagement.

2. Create a new data service within the CustomerManagement folder by completing the following
steps:

a. Right-click the CustomerManagement folder.

b. Choose New — Data Service. The New File window opens.
c. Confirm that Liquid Data — Data Service are selected.

d. Enter CustomerProfile in the Name field.

e. Click Create.

"Hew File %]

1Al 88 Model Diagram

0 Bussiness Logic AE Data Service

{21 Liquid Data [ |6 Query Function Library
T Web Services

—1'Web User Interfac

1 Cammon

i 1 [¥
File name:| CuscomerProfile, ds

Create in:  {DataServices lCustomeriManagementy, 'Bmwse..: |

Create a new Data Service,

Create || Cancel |

Figure 3-2 New Data Service

A new data service is generated, but without any associated data services or functions. (If you open
XQuery Editor View, you will see that an empty Return type was also generated for the data service.)

Lab 3.2 Defining the Logical Data Service Shape

A data service transforms received data into the shape defined by its Return type. Pragmatically, the
Return type is the "R" in a FLWOR (for-let-where-order by-return) query. A Return type, which
describes the structure or shape of data returned by the data service's queries, serves two main

purposes:

BEA Liquid Data for WebLogic: Samples Tutorial 41



Provide a superset of data elements that can be returned by an XQuery.
Define the unified structure, and order of the data returned by an XQuery.

The Return type is generated from the data service's XML type. An XML type classifies a data element
as a particular form of information, according to its allowable contents and units of data. For example,
an xs:string type can be a sequence of alphabetic, numeric, and/or special characters, while an xs:date
type can only be numeric characters presented in a YYYY-MM-DD format.

Objectives

In this lab, you will:

Import a schema file, which you will associate with the data service's XML type.

Review the results.

Instructions

Note: Although you can use Liquid Data for WebLogic Workshop to graphically build a schema file,
in this lab you will import a pre-defined schema file to save time. For more information on using
WebLogic Workshop to build the return type's .xsd file, see BEA Liquid Data for WebLogic: Data
Services Developer’s Guide.

1. Create a new folder in the CustomerManagement folder and name it sSchemas.
2. Import a schema file into the schema folder by completing the following steps:
a. Right-click the schema folder, located in the CustomerManagement folder.
b. Choose Import.
c. Navigate to the <beahome>\weblogic81\samples\liquiddata directory.
d. Select the CustomerProfile.xsd file.

e. Click Import.

25| Import Files to Project ‘DataServices’ @
o s ]
(T AlterTable CasaL
(T CreditRatingte's [T XMLFiles
(Z) CustomerManagementWebapp @ AleerTable,java
(*) DataserviceClient [%) creditRatingQuery.bxt
Caeb ] CustomerProfile. zsd
T excel [%) index.jsp
(C) FlatFiles @ protectSSh.java
Caldap m showCrystal. jsp
(T MyPartal J SpendByCustomers. rpt
(C) MyQueries
Neme: | CustomerProfile.xsd |
Typs: |AI\ Files |~ ‘

Figure 3-3 Import XML Schema Definition File

3. Right-click the CustomerProfile Data Service header.

4. Choose Associate XML type.

5. Select the CustomerProfile.xsd file, located in the CustomerManagement\schemas folder.
6

Click Select.

BEA Liquid Data for WebLogic: Samples Tutorial 42



& Select XML type... X

|<—j CustornetProfile.xsd

Mame: | CustomerProfile.xsd |

Type: |XML schema Files ‘ - |

Figure 3-4 Associating XML type with XSD

You should see that the CustomerProfile data service is now shaped by the CustomerProfile.xsd file.

You should also see that several of the elements are identified with a question (?) mark. This indicates
that these elements are optional. Since the schema file identifies these elements as optional, Liquid
Data will not require the mapping of these elements to the Return type; however, if mapped to the
Return type and there is no corresponding data in the underlying data source, then the result set will
not include the empty elements.

x

CustomerProfile. ds* - {DataServices HCustomerianagement!

_’E\ CustomerProfile Data Service
Bl (@) CustomerProfils
=@ customer +
customer_id xed:string

[r

oo

first_name xsd:string

last_narme xsd:skring
customer_since 7 xgd:dake
email_address 7 xsd:shring
telephane_number 7 xediskring
ssn ¥ xsd:sking

birth_day 7 xsd:date
default_ship_method ? xed:sting

email_natification ¥ xsd:shork
news_lstter ¥ xsd:shork

online_statement 7 xsd:short

00O OOOOO®

orders ?

B order *

arder_id xsd:skring

customer_id xed:string

order_date xsd:dsbe

ship_methad xsd:string E

DO0®

IE1 0]

|| Desian Yiew [®Query Editor Yiew | Source View | Test Yiew | Query Plan View

Figure 3-5 Logical Data Service XML type

BEA Liquid Data for WebLogic: Samples Tutorial 43



Lab 3.3

Adding a Function to a Logical Data Service

A data service consumer — a client application or another data service — uses the data service’s
function calls to retrieve information. A logical data service includes the same types of functions that
are found in a physical data service:

One or more read functions that form the data service’s external interface, which is exposed to
consuming applications requesting data. These read functions typically return data in the form of
the data service's XML type.

One or more navigate functions that return data from other data services. Within a logical data
service, you must define relationships through modeling. Although similar to relationships in the
RDBMS context, a logical data service lets you establish relationships between data from any
source. This gives you the ability, for example, to relate an ADDRESS relational table with a
STATE lookup web service.

One submit() function, which allows users to persist changes to the back-end storage.

Objectives

In this lab, you will:

Add a new read function, getAllCustomers, to the logical data service.

View the results in XQuery Editor View.

Instructions
1. Right-click the CustomerProfile Data Service header.
2. Choose Add Function. A new function displays in the left pane of the data service model.

3. Enter getAllCustomers as the function name.

H

CustomerProfile.ds* - {DataServicesHCustomerManagement),

E CustomerProfile Data Service

]

B @ CustomerProfile

B @ customer +
o customer_id xsd:string
first_name xsd:string

A b4 ICustomers

last_name xsd:string

customer _since 7 xsdhdate
email_address ? xsdistring
telephone_number ? xsd: skring
55N 7 xsdiskring

birth_day 7 xsd:date
default_ship_method ? xsd:string
email_notification 7 xed:short
news_letter 7 xad:short
online_statement 7 xsd:short

00000000000 0C

orders 7
= *

o}
@
-]
&

order_id xsd:string
customer _id xsd:stving
order_date xsd.dats
ship_method xsd: skring El

XL )

| Design Wiew [¥GQuery Editor View | Source Yiew | Test Wiew | Query Plan View

Figure 3-6  Design View of New Function

BEA Liquid Data for WebLogic: Samples Tutorial

44



Lab 3.4 Mapping Source and Target Elements

In the previous lab, you associated a logical data service with an XML Schema Definition (.xsd file),
which generated a Return type that includes all data elements defined within the schema. However,
there are no conditions associated with the Return type; conditions specify which source data will be
returned.

You can define conditions by mapping source and target (Return) elements.

Objectives
Add a physical data service function as a data source for the logical data service.

Create a simple map between the source node and the Result type.

Instructions

1. Click the getAllCustomers() function to open XQuery Editor View for that function. You should
see a Return type populated with the CustomerProfile schema definition. The Return type
determines what data can be made available to consuming applications, as well as the shape (string,
data, integer, and so on) that the data will take. The Return type was automatically populated when
you associated the logical data service with the CustomerProfile.xsd.

Chtorme oo - {aeafraies | Yo st nagese,

T

'Y ]
s View | =Goery Foditor View (B Warw | Tk Wersr | Courry Pilan View

Figure 3-7 XQuery Editor View of Function Return Type

BEA Liquid Data for WebLogic: Samples Tutorial 45



2. In Liquid Data Palette, expand the CustomerDB\CUSTOMER.ds folders. (If Liquid Data Palette is
not open, choose View — Windows — Liquid Data Palette.)

| LiquidData Palette X

1 DataServices
O ApparelDB
= CustomerDB
L1 ADDRESS.ds
L1 CREDIT_CARD.Gs
= L) CUSTOMER. ds
+] CUSTOMER()
&) getADDRESS()
{1 CustomerManagement
CABlkctronicsDB
1ServiceDB

Figure 3-8 Liquid Data Palette

3. Drag and drop CUSTOMER() into XQuery Editor View. This method call represents a root or
global element within the CUSTOMER physical data service (see Lesson 2). A for node for that
element is automatically generated and assigned a variable, such as For: SCUSTOMER. Within the
XQuery Editor View, this for node is a graphical representation of a for clause, which is an integral
part of an XQuery FLWOR expression (for-let-where-order By-return).

CuntrmrPriof " - (Do vices [ CantisnaMiragmen ),

I‘.‘:l« FOUBTOML I
CLETOMEN *

o i}
WG Yo | oQuery SO0 v | SEUTCR Wi [Tt Vi Dt P Wi

Figure 3-9  Source Node and Return Type

4. Create a simple map: Drag and drop individual elements from the SCUSTOMER source node onto
the corresponding elements in the Return type. The logical data service CustomerProfile should
now be similar to what is shown in Figure 3-10.

BEA Liquid Data for WebLogic: Samples Tutorial 46



oR
Do Vo | wuery e i | s Vi | Tl Wi | Ghairy P e

Figure 3-10 Simple Mapping Between Source Node and Return Type

Lab 3.5 Viewing XQuery Source Code

When you use XQuery Editor View to construct an XQuery, source code in XQuery syntax is
automatically generated. You can view this generated source code in Source View and, if needed,
modify the code. Any changes made in Source View will be reflected in XQuery Editor View.

Objectives

In this lab, you will:

View generated XQuery source code in Source View.

Review the for and return clauses of the getAllCustomers() query function.

Instructions

1. Select the Source View tab. A portion of the generated XQuery source code is displayed in Figure
3-11.

2. Notice the for clause, which references the CUSTOMER() function.

3. Notice the return clause, which reflects the simple mapping between the SCUSTOMER source
node and the Return type. All optional elements are identified with a questionmark in the field
description as shown below (emphasis added):

<TelephoneNumber?> {fn:data($x0/TELEPHONE_NUMBER)}</Telephone number

4. Notice that the <orders> elements are empty, since order information has not yet been mapped to
the Return type. This means that a consuming application, using this query, will only see customer
information, not order information.

BEA Liquid Data for WebLogic: Samples Tutorial 47



L3

e lare Pameljon olgeiALiTuatomenndl g =iearmf el TurlamrifinLilea® §
| il Cuaimwl Fiefils

fed e il oyl CURYOREE )
redwrn
sl
runtommn Ll | Brc data JOTSTORER OO o fommfomer 2l

FLest e | Cnldatad Py FIRET_MAREN ]« w1 s
v | fm datai 310 LAST IEE | Tlaab
¢ mimeow o ERi Saka) TIACEETARER_FINCEI )
aalleli =i - [ fni data FOyERATL_RIDHESS) |« foinild bl v
bem iy Vo) Endafag 21 O TELLIONE_RPEF| - ] rpless iy
- BT TNERT S
SEINTH BT § <k day

> FryBETRIRT_EHER_AETIORG | e Batil ) whilje ot el
i=nfo|2n: dats| AOELIL_WOTITECATION | i Pt l_mstaficatiea
Il darai
ik st 75 | Bru: daca

apdar_ 16l fa

feel phip dits o featinatsd ghap das

2 Falal mn
kil el filila_seulis

sidei |l
Hims dalecflims 5
sibei e fupideg jok
prebwi gl fpredai Ld
Prlm o fpphm §

Pt ity

m

L e vl el e it
veilmatien_Eiep < dvalmaiisa_tisr
Fealnal i

{1 Vi T3Cuy By Ve | Sckrce view Teot View | Qiry Pl View |

Figure 3-11 Source View of XQuery Code for CUSTOMER() Node

Lab 3.6 Testing a Logical Data Service Function

You can use Test View to validate the functionality of a logical data service.

Objectives

In this lab, you will:

Build the DataServices project.

Test the function's retrieve and truncate capabilities.

Instructions

1. Build the DataServices project by right-clicking the DataServices folder and choosing Build
DataServices from the pop-up menu.

2. Select the Test View tab.
3. Select getAllCustomers() from the function drop-down list.

Test the function's truncate capabilities by completing the following steps:

BEA Liquid Data for WebLogic: Samples Tutorial

48



a. Enter CustomerProfile/customer in the Parameter field. This specifies the XPath expression for
the element whose return results you want to limit to a set number of occurrences.

b. Enter 5 in the Number field. This will truncate the results to the first five customers retrieved.

c. Click Execute.

CustomerProfile.ds - {DataServicesHCustomeriManagement), *

Select Function:

getalCustomers) | - |

Parameters

Mumber  Elerment (by path)

Limit elements in array results to;
| 5 | | CustomerProfile fcustomer| |

[ start Client Transaction

Design Yiew | ®0uery Editor Yiew | Source View | Tesk Yiew [Query Plan Yiew

Figure 3-12 Test Truncate Capabilities
4. View the results, which appear in the Result pane.

5. Expand the top-level node. There should be only five Customer Profiles listed.

6. Expand the first <customer> node. You should see a Customer Profile for Jack Black, as displayed
in Figure 3-13.

e
st Cherst Trarmaccn
[
R e | o f

=LA O L AR P relr e PR T L R S L R P T i LS i ol 1l
« aFED CLESomarPTe =

- afyaTer
apumtoerar i3y CLETOMER] < opinoer s
e v MK <0 raeses
vl it BlaCk ML -
wLEtieeT _SNCes 000 - 1001 = st Sriles
comal_adie s hatk@lstmalloom - ereal_adies s
e ruamber s JP-AS1IHL19 < Asepriore s
apne PO VLD <fane
<tadi_dFE 1OT0-0R-00 < baT_aRe
sdetal ghy_memode AR <ddee i g st
Lo - TR T T
afiEwi e s i) « e B
airire_dalesraris | < /forire_ilafsmerds
< ids ek < legn K
=aordes -
= <CISdT H >
= LN

© fLr L n

SLl- T, s

+zniomear

+ Z Ot

> <OUpiDmE ¥

- SO =

e

(=]

Figure 3-13 Customer Profile Test Results

BEA Liquid Data for WebLogic: Samples Tutorial 49



Lesson Summary

In this lesson, you learned how to:

Create a simple logical data service.

Associate an XML schema definition with the data service.

Create a simple function.

Use XQuery editor view to map elements from the source node to the return type.
Use Source View to examine an XQuery function’s source code.

Use Test View to test a logical data service query capabilities, limit the number of data set results
returned as part of the query, and test data service editing capabilities.

BEA Liquid Data for WebLogic: Samples Tutorial

50



Lesson 4 Integrating Data from Multiple Data Services

Objectives

Overview

The power of logical data services is the ability to integrate and transform data from multiple physical
and logical data services.

In the previous lesson, you created a simple logical data service that mapped to a single physical data
service. In this lesson, you will further develop the logical data service to enable data retrieval from
multiple data services.

After completing this lesson, you will be able to:

Use Liquid Data Palette to add physical and logical data service functions to a logical data service,
thereby accessing data from multiple sources.

Join data services by connecting source elements, thereby integrating data from multiple sources.
Use the Expression Builder to define a parameterized where clause.

Set the context for nested elements in the source node.

Create a complex override mapping.

Test parameterized data services to verify the return of integrated data results.

How is data integration different from process integration? Most applications involve a combination of
informational interactions and transactional interactions. Examples of informational interaction
include: get customer info, review order status, get customer profile, and get customer’s case history.
Examples of transactional interactions include: place order, update customer address, and create
customer.

Informational interactions involve efficiently aggregating discrete pieces of data that are potentially
resident in multiple data sources, and potentially in multiple data formats. Developers can end up
spending inordinate amounts of time writing custom code to handle the various interface protocols and
data formats, and integrate disparate data into manageable, business-relevant information. Liquid Data
simplifies this activity by providing a simple, declarative approach to aggregating data from
heterogeneous data sources.

Transactional interactions involve taking a piece of data (say a purchase order) and orchestrating its
propagation to the various underlying applications. This involves coordinating a business process
through a formal or informal workflow, managing long-running processes, managing human
interactions (such as a supervisor approval to an order), handling applications that have indeterminate
response times (such as batch systems), maintaining transactional integrity across applications, etc.

Both data integration and process integration are essential elements when building applications that
handle information from across multiple data sources. For functions of interest across data services,
you can use function libraries. A function library (.xfl file) contains operations that return simple types
(not the XML data type of a standard data service) that can be called from various data services. Read
functions on a data service can be defined to return information in various ways. For example, the data
service may define read functions for getting all customers, customers by region, or customers with a
minimum order amount.

BEA Liquid Data for WebLogic: Samples Tutorial 51



Lab 4.1  Joining Multiple Physical Data Services within a Logical Data Service

In the previous lab, you mapped a single physical data service to the Return type. In this lab, you will
enable data retrieval from both the CUSTOMER and CUSTOMER _ORDER physical data services.

Objectives

In this lab, you will:

Create a second for node, by adding the CUSTOMER ORDER() function.
Create a simple map between the new for node and the Return type.

Create an automatically-generated where clause, by joining the two for nodes.
Review source code.

Test the results (read and write capability)

Instructions

1.
2.
3.

Open CustomerProfile.ds in XQuery Editor View.
In Liquid Data Palette, expand the ApparelDB\CUSTOMER ORDER data service folders.

Drag and drop CUSTOMER ORDER() into XQuery Editor View to create a second for node,
For:3CUSTOMER ORDER.

Create a simple map: Drag and drop the individual elements from the SCUSTOMER ORDER
source node onto their corresponding elements in the Return type.

Note: Do not map the TRACKING NUMBER element.

Create a join: Drag and drop the CUSTOMER _ID element from the SCUSTOMER source node
onto the C_ID element in the SCUSTOMER_ORDER source node. This action joins the two for
nodes. By joining these two nodes, you automatically create a where clause within the FLWOR
statement.

* - Dt arvicnsi e

et ustinersl)| -

]

T For SCUSTOUER
= cLsToMER *

* [ For SCUSTOMER _ORDER

ik P Wy Ehor Ve | Sinice W | Pk Wi | Sy Pl oemd

Figure 4-1 Joined Data Services

BEA Liquid Data for WebLogic: Samples Tutorial

52



6. Select the Source View tab to view the XQuery code. You should see a where clause joining
$CUSTOMER and $CUSTOMER ORDER, using the CUSTOMER _ID element. In Figure 4-2,
the where clause is:

where $CUSTOMER/CUSTOMER_ID eq $CUSTOMER_ORDER/C_ID

CustomerProfile.ds* - {DakaServicesH CustomerManagement),
declare function tns:getdllCustoners() as elementi(ns0:CustonerProfile)® { E
<ns0:CustomerProfilex
¢
for SCUSTOMER in nsl:CUSTOMER()
return
“customer>
<customer_id-{fn:data(sCUSTOMER/CUSTOMER_ID) }</customer id-
<first name>{fn:data(§CUSTOMER/FIRST _NAME) }<ffirst name>
<last_name>-{ En:data( SCOSTOMER/LAST NAME] }</last_name:-
{fn-bea: rename | SCUSTOMER/CUSTOMER,_SINCE, <customer since></customer sincex)}
{fn-hea: rename | §CUSTOMEE/EMATL_ADDRESS, <email addresss<femail address>)}
{fn-bea: rename | SCUSTOMER/TELEFHONE_NUMEER, deiep]mne mmher}(?tele'p]mne number>) }
{fn-hea: rename | SCTSTOMER/SSN, <ssnr<fssns) b - -
{fn-beai renane ( SCUSTOMER/BIRTH DAY, -birth day>—/birth_day-)}
{fn-bea: renane ( §CUSTOMER/DEFAULT_SHIP_METHOD, <default ship method-</default ship method=)}
{fn-bea: rename ( SCUSTOMEE/EMATL_NOTIFICATION, <email notification>-<femail notification:-)}
{fn-bea: rename | SCUSTOMER/NEWS _LETTIER, <news 1etter><fnews  letter>))
{fn-bea: rename ( SCUSTOMER/ONLINE_STATEMENT, -<online statement><fonline statement>]}
<orders:

{

=

for SCUSTOMER ORDER in ns2: CUSTOMER_ORDER()

where sCUSTOMER/CUSTOMER_ID = §CUSTOMER ORDER/CUSTOMER_ID

return

<order>
<order id-{fn:data(FCUSTUMEE (REDEE/ORDER_ID) }<forder id-
<customer id={fn:data(§CUSTOMER ORDER/CUSTOMER_ID) }</customer id-
<order_dater{fn:data(§CUSTOMER ORDER/ORDER_DATE) }<forder datex
<ship method-{fn: data(sCUSTOMER ORDER/SHIF_METHOD) }</ship method-
<handling_charge>{fn:data| CUSTOMER ORDER/HANDLING_CHARGE) }</handling_charge>
<subtotal>{fn: data [ FCUSTOMER | ORDER/SUBTOTAL) }<fsubtotal>
<total_order_ amount:{fn:data($CUSTOMEE ORDEE/TOTAL_ORDER_AMOUNT) }</total order amount: B
<sale t,ax>{fn data [ FCUSTOMER | ORDER/SALE _ThX) }<isale_tax-
<ship_tox{fn:data(§CUSTOMER GEDER/SHIP_TO) }-<fship tox
<ship_to_name>{fn:data(sCOSTOMER OEDEE/SHIF TO_NANE) }</ship to_name:-
<bill to={fn:data(§CUSTOMER ORDER/BILL_TO) }-<</bill tox
<estimated ship date{fn:data(SCUSTOMER ORDER/ESTINATED SHIP_DATE) }<festimated ship dates-
<status>{fn:data(sCUSTOMER ORDER/STATUS) }</status>
<data_source><fdata source>

{

<order_line>
<1ine_id~fline_id>
<order 1d.}<{ord.er ids
<product_id>-</product_id>-
<product—fproduct >
<guantity></quantity>
<pricex=fprice>
<status></status>
<forder_line>-
)
<forder>
H
<forders:
<creditrating-
<rating><frating>
<customer id-<fcustomer id-
<jcreditrating: -
<waluation-
<valuation date></vraluation datex
<valuation_| t19r>—<fva1uat,1nn tier>
<fraluation>
<fcustomer> =

[« [l
Design View | #Query Editor View | Source Yiew |Test View | Query Plan Wiew

Figure 4-2 Source View of Joined Data Services

7. Build the DataServices project. (Right-click the DataServices project folder and choose Build
DataServices.)

8. Select the Test View tab and determine whether you can retrieve order information integrated with
the customer information, by completing the following steps:

a. Select getAllCustomers() from the function drop-down list.
b. Click Execute. (You don't need any parameters, since you are not testing the truncate feature.)

c. Expand the nodes. The results should include order information for each customer, as displayed
in Figure 4-3.

BEA Liquid Data for WebLogic: Samples Tutorial 53



. ..1.:.'-.*'1;-—" .: s -..... L5 |
|5--|:l.hw ]

| S et smnemers)

L ]
i [ e iy poT

Lofl adairdi g parw il

L Start Ot TR Bacnon
| | Enmtnii
|u¢-u- kLl oy

e e T Profle omi el Thiip (e openur o DS e e chemn A s Profle oad” v
b S I T
s plire .
«quatoere il CLRTORTRD <ot ol

afrph_ruemes Keyin <8 names
L e ST o MNE N

o CLE Pl . NN <0 DL o ALl O
gl osis Kewinfisoloom « Sl _skfes s
atphore_rumbers HEEERMIEL < Selapbore rumbars
< (PO ranl < s

DA Oyt R0 00 o DOy

udefnlf iy _rrdincds (ROURD «ffal g reeffacds
asrmal_notiiations | < femall_noSicatorc
cswy_ether s 0« ireeylether s

sorine_sidemercs 1 « fonine_ et

Wl e R i

Doy Vs | Qumry [olbor Vem  Dource vew | Te Vies Qe AN Ve

Figure 4-3 Integrated Customer and Order Data Results

Defining a Where Clause to Join Multiple Physical Data Services

In the previous lab, you joined the CUSTOMER and CUSTOMER ORDER data services, thereby
automatically generating a where clause. In this lab, you will manually define the where clause that
joins multiple data services.

Objectives

In this lab, you will:

Add a third for node, by adding the CUSTOMER _ORDER _LINE ITEM() function.
Define a where clause, using the Expression Editor.
View the results in Design View and Source View.

Test the results.

Instructions
1. Open XQuery Editor View for the getAllCustomers() function.

2. In Liquid Data Palette, expand the AppareIDB\CUSTOMER ORDER LINE ITEM data services
folders.

3. Drag and drop CUSTOMER ORDER LINE ITEM() into XQuery Editor View. This creates a
third for node: For: SCUSTOMER ORDER LINE ITEM.

BEA Liquid Data for WebLogic: Samples Tutorial 54



4. Create a simple map by dragging and dropping the individual elements from the
$CUSTOMER _ORDER_LINE ITEM source node onto the corresponding elements in the Return

type.

:-—:w‘.u\.l.'.lu-rr' -
Falar STUNTORE R
= QUG TOMER ®
QUSTOMER_IY W)
FEST_ME AT
ST _HAME i
DUSTORER _"RET &fs
LAY ADDRESS rhrmg
TELEPHORE _WUNEER: ftring
SEN T W)
ERTH_ DAY ¥ ihi
DEFELT _ShE= W THOD 7 ity
FMAL. RICTRRCATION 7 pherd
MEWE _LETTUIER ¥ #roat
OHLENE _STATEMENT 7 ghaort
WO D oy :
S F e SCUNTOMH_ ORI
= CLETOMER ORDEs =
OFDER_ID mve
L_D i
OFDIR 0T St
TP GO0 [0 wrg
NG, THRG AT sl
SUBTOTAL AT decireal
TOTaL OROER_aF decrad
S T AT cecra
0 TO_D g
S_TD_hM thrg
L TS B drng
ESTREATED _SHIP_ DT dats
STATLE s

e §CUSTOMER _CRER LRE_ITER
CUFSTORCR _Oeres LPE [TEM = -
LN st
[EDER. D

3 etuin
Crnfrmes P
ELFTITE &
ok are il B iRl
NT_jhifre SRR,
et G
it e ¢ dife
anal_iten 7 T
{ephore_reanbsy ¥ sbrg
i ¥ g
BTy ey § dain
NIl e v oAl
wrnal_rofScaton * et
e initer ¥ et
b ot
foge i o
v
e
ordam g iy
agtome_d g
e _ietw chibe
i _rrathod 4

il chuege Secreal | |

S ol

tofs ok ol desw
it checaral

i ie sy
shi_So_name 5
LR

it g clita ity |

it g

Sd ERaTe v

e e
il e
e R L ]
ot i B
et Hinng
iy decrrl
s decmal
LA T g ]

i EG
g ity

Figure 4-4 Three Data Service Functions Mapped to the Return Type

5. Define a where clause that joins two data services, by completing the following steps:

a. Select the node header for SCUSTOMER ORDER LINE ITEM to activate the expression

editor for that node. (Note: Do not select the CUSTOMER _ORDER LINE ITEM* element.)

b. Click the Add Where Clause icon. | 7
c. Click the ORDER _ID element in

$CUSTOMER ORDER _LINE ITEM source node. You should see the following in the

the

WHERE field (the variable name may be different, in your case):

$CUSTOMER_ORDER_L INE_ITEM/ORDER_ID

d. Select eq: Compare Sequence from the operator list (“...” icon). You should see the following

in the Where field:

$CUSTOMER_ORDER_LINE_ITEM/ORDER_ID eq

e. Click the ORDER_ID element in the CUSTOMER ORDER source node. You should see the

following in the where field (the variable name may be different, in your case):

$CUSTOMER_ORDER_LINE_ITEM/ORDER_ID eq

$CUSTOMER_ORDER/ORDER__ID

f. Click the green check to add the parameterized WHERE clause to the getAllCustomers()

function.

BEA Liquid Data for WebLogic: Samples Tutorial

55



{1

Figure 4-5 Where Clause Joining Two Data Services

6. View the results, by completing the following steps:

ol

Satar SCUSTOMTRE o) £ atern

= CUSTOMER ® - 5 Guntrmercacy
QUSTOMER_ I swns B msome -
T s ey | oo g 5Ty
LEST _HaMD vt - eil_parre 1]
TUGTOMER SF Aetw : Lien_parrm ﬁ'ﬁ!’ T
BAL_MLRESE ot _oree
Mm - wrul_ihees 7 shg
5T g = Seaphona_rmia T v
BT WY F i | xj’:‘:

a D | e
m_mﬁmm: ot} - S T
REWS _LETTVER * ghait LS omal_rebfcgton P ot
CHLINE STATEMENT ¥ ghon __ | e fiwtter ¥ ghort

R — - e _Fanemant 7
[EL 1 = £ g 3 e =y | T
* fafer scuntoute onore - et #
& EUSTOMER_RDE: =] Pl
CANER. 0 2 # ordiee i st
K |mg = oustoma i 3
TRER DT date L] o _idite e
P METHOD DS 1inng L e _rethod dbieg
DL D HRG AT decreal L Py o decma
ST _pT oo - e ——
TOTL i AT dhecias - ttal_proder_smourd e
CALE_TAK_KMT chinciral " sain_tm il
E_TO D thrg [ FO_N Y
BHPE_TOMM sy & Pt e g
LT ] = Bl 18 g
ESTITEL 548 (7 dain » gt s dite cat
STATUS morg = B ahu ST
[1 ][ 1 e _HarTe g
v = onde_iew
2 '%rmm 0 . g
B TR _ R # - L e 1 thirg
o i B . proskat_ i g
CRIER_ID g il | pradact i
RO B g | LRy T
] L i decrral
QUENTITY it L1 ahe BTG
ENICE il = crodfrating
STATLS worg = g By

a. Open CustomerProfile.ds in Design View. The physical data services associated with the three

functions that you dropped into XQuery Editor View as for nodes are displayed in the right
pane as data sources for the logical data service.

Figure 4-6

s

b. Open CustomerProfile.ds in Source View. The XQuery code for the logical data service is

displayed.

Design View of Integrated and Parameterized Data Service

BEA Liquid Data for WebLogic: Samples Tutorial

56



[

b Laaiw P Ll )| L L T g n f p amn w femeri |yl e Topm g Tgufil=| ® |

1 s Wi CROG B Vs | Soufne Ve [THERR WS T QoG PRary Vs |

e —

no i Cmk s Frs ks
i

[ FP0 b e s CHITERER
ceiwrs
sl e

s ey L | Rl

VEUTTORE [0 1< gl s i
firwt mmejin # FFIFST LR = fired s

Bas i | BTy | daaa i ForLTT HARE |/ hail e

e T e R IE T LT e I A ATETONLY_S (BCE) | A milemmy phew
rouiil_smielrens 7o fEnsdaca -I!.ll'._]."l-l-!."- 1+ Fowaia ] _swleiy sun

Ve lepheme nomiei 7[5 daTa TGS PR ) | (el rpleine wimled
u®jEnrdatai T VIR |- e

Sarnd dapr | in daai ol P BIFTH_BAT |- Mdnih day

b TarnBE wige vl besall P 2 T bR TR TR PALT BRI _RETHIS | kel aliip et el

sl L il s o B et | T TAMMAIE NTTIFDCETION j« fomii ] mek o foakisn
Bt LeE8ed T | fE dara | FEEDHT_LETTERE| | - fues Brtney

el i pdaleemmt V| {a data SO L R STARERIN T | “imalilae ul ol vt
Nesgin sl fEn:dara| TEnE o LT 8- e i

apdleia
i
L L i) P ouE pedo COSTORES I-I.'I:ll
ey TH AT 1R - '--'l_Ii
L ]
ek n
C L CEE] 4 TE CLE TR e | LR _ ] ey el
immiamen Ll | B darad Tl TR TD Fomah s _id
mide il | TR data £} IEOd SR T il
aliip vl el | Pu- datad = 1 rekigp wed e
Tl b s bl v - |0 T mEl CUDER ML I".- CH_ VT |- Mlimll] Liep i Bl
wdababi ] f 10 skt i i TR -rr-nL AT T
LE ensder aewvnmd - jEncdata) .i'l'ui. ?"D’,ﬂ'l' lofi=fnl spdes swasi
sal= Cam-fETyidara) i FARLE TJ..- AT
ship PosDEridaba) TUATY e -ﬂrr\. il .--..|.|| |.
ship be e[ Encdata) e I HLFT\unl rEbIp 15 B
el 10w {Ewd ilaka e T tll.l.'| _EFI1</mall ia
ead Lostesd Bl kot Eny dakal T AETTIRATEY _SHEP_DTh) fot it ship @t
il mm o | BEc daca| .TJ'!_-'.Il bl
Bt pmimive = ol i
i
Fag - I :l. il : OEETOSEE I'P""!I- LITE ITERI
whrpe I'T T SRR B I"El' I
TekmE
midei Bime
Lis jal | fmo diits L4 I ITEEYLERE_ (3 1<ilie id
arder bl [iu: data Jorh L THA RN ID | - fecder ad
il T §ill B b 1 f] e R LT R S
predn-i |n: data = A Bl ITEASFROD B3 |- fpr e §
w1 s data 4 iie g TN POLNTTTY | | Aaastuty
e TEndalai A LT ENITRECL | P fpriim
Voahmz - |20 dakan T I : ITEESTRTOO i dud el m
ST P
i
Fardsn
i
Jagsbars
i 0 el L L L

.l [ g g
smafvmer id - dommlemey jd
PR el

Figure 4-7  Source Code for Data Integrated with WHERE Clauses and Parameters

7. Test the results, by completing the following steps:

a.

b.

Build the DataServices project.
Open CustomerProfile.ds in Test View.
Select getAllCustomers() from the function drop-down list.

Click Execute. (You do not need any parameters.)

Expand the nodes and confirm that you can retrieve order line information integrated with order
information, similar to that displayed in Figure 4-8. (You can use customer_id = CUSTOMER3

to verify this information).
Click on Edit button.

Navigate to order node for CUSTOMER3 and update handling_charge information by double
clicking on the element content (the 6.8 value).

Confirm changes by pressing Submit button.

Verify that the update was done successfully by re-executing getAllCustomers() function and
navigating to order information for CUSTOMER3.

BEA Liquid Data for WebLogic: Samples Tutorial

57



Bt e - (DN o | o M g .}

| Eater Pt

IP.-J.'ulu.

K [lrmen] By pall
Ll iy o R TR T .

] St Ol Trirct bt
Lo
| I .Tﬂ |l

areny OE- 33008 < e
atrs e WRD0-00 < fhath deve
adelad_vhp methods GROUND < fdetau® s et
adredl_ronfcatons 1 o el rosfcsn s
e it i 1 o Fraees_ 6T
a0 _FLte e 1 oSS
wioagry s KR o g _id
WP =
SOHIN =
st e ENEMEM A0V 00 « o els
Aty _els DIPSTOPMESN) o Foustorres s
Al _chite s FANIL-RIID 2 borde difad
o _frethods ERNIUND e frefieed s

wiotl_prder oo s ITLAS < ot pnder_emoends
o s 0 £ fuse § o
citup_foo ADDE L0 0 «jdwz_tos
wihip_So rume s ewn Smithe < M6 fo rumes
ofll_toe O _I0_K =/ oo
anparaing s detws JAN]- 1048 «Getraded dp ditws
eoptshae DUDSE « et
At SouRDE [n
wighd s w
afra_ils @ 4 fina_ide
it _icln ENDER_ 200 _fh « Jovdes_idn
Ot il APTA_ W1 o eendut il
w0 Py el B Dl el saimleesd o g0 Ol s
a0 Ll

Figure 4-8 Order Line Data Integrated Within Order Information

Creating a Parameterized Function

Adding a parameter to a function ensures that the consuming application can access specific user-
defined data, such as an individual customer's profile information.

Objectives

In this lab, you will:

Add a new function, getCustomerProfile().
Add a for node based on the getAllCustomers() function.

Set the context for nested elements within the logical data service.

Instructions

1. In Design View, create a new function for the CustomerProfile data service, and name it
getCustomerProfile.

2. Click the getCustomerProfile function to open XQuery Editor View for that function.
3. In the Liquid Data Palette, expand the CustomerManagement\CustomerProfile data service folders.

4. Drag and drop getAllCustomers() into the XQuery Editor View. You should see a new for node.
For: $CustomerProfile, with its shape defined by the CustomerProfile logical data service's
getAllCustomers() function.

BEA Liquid Data for WebLogic: Samples Tutorial 58



-

e i Retum -
= Ourtomenr e
= ousiomer +
ostorner_id sting
drm_nare g
L% e 147G
oustormer_sros 7 dabe
wrrul_adekoss F - siring
Earh_day P it Tk on_rurmber ¥ g
clalait_thp mathed ¥ giirg EEa kil by v
amal_ncifcation 7 haort i ey 7 dile
rares_lather 7 thort detaut_shp_maerthod 7 stnng
[ T v _rodficabion F dhort
e el 1eTg rrey_Jivitgs ¥ ghoy
4 ordery ? el _itibimens
= ok ™ logn_d g
orde i stng = orders #
CusRomme el 10 = order *
m-#* (=" ek i3 dlring
whip_matod 1ieng cufomen_id sty
hareling_chargn decval orcer_cte dube
Seiltotdl ChRCET shp_matFod srg
et ordr_irount clacrral harcling_chags ccrnal
e L checrmal migly cheral
shp_tn =eng botl_order_amount ceoreal
#hp_10_Narma g Saip_tun docrral
H_to g thip_fo g
wnrrated_tho _cdte dite g o nere itrrg
st g bl ko strrg
dabi_smurce $Tng mtirabed_ship_cie dibe
=k Bl * slafs sirng
e _il g dirta_iounch firrg
e el st 7 B orch b *
podict_d g o g =g
product st orde_id shireg
QU el prochuct el dirirg
pren deermal ot firry
stahE sireg quarity cema
2 ariEliratrg - s decrral
Latiy TR atatun girieg
cunitorm il 5irg 1 craditrating
ST Tk =1 L ] -
L

Figure 4-9 Complex Element Node

Note: In a previous lab, you defined getAllCustomers() to include a complex, nested customer element
associated with the customer_id element of the SCUSTOMER ORDER_LINE ITEM source Since
customer_id uses a string parameter for filtering, you need to set the context of the $CustomerProfile
source node to point to the customer element.

5. Create a parameter by completing the following steps:

a.
b.

C.

Right-click an empty space in XQuery Editor View.
Select Add Parameter.

Enter CustomerID in the Parameter Name field.

Select xs:string from the Primitive Type drop-down list.

Click OK.

BEA Liquid Data for WebLogic: Samples Tutorial 59



Add Parameter... fz|

Parameter Mame | CustomerID |

Specify the type of the parameter

(2) Complex Type

Figure 4-10 Add Parameter

Note: You may need to move the $CustomerProfile node to make the parameter node visible.

6. Create a complex, overwrite mapping, by completing the following steps:

a. Press Ctrl.

b. Drag and drop the $CustomerProfile customer* element onto the customer+ element in the
Return type. (The Return type will change.)

7. Create a join: Drag and drop the parameter's string element onto the customer id element of the
$CustomerProfile source node. This joins the string parameter to the $CustomerProfile source node
and creates a function that will return data based on the user-specified parameter. (You will see this

in action in the next lab.)

- T LTI i
|7 Faampier [Cuyiemprdi L L] ) A
S — ForaTie A
natoree a4
R

e oy

st wwe Aee

g wikge Ty

wil_al ]
T i g

o _des S
rEmEE T

e e i ]
BAbAE e

s _aeaid T
57T

L L YT
i
AR e
el vl

P i g

S e ey o o ey
e ]
N ey

L T =

on T
D s | v L v il Ve [T Vi | DL P Ve

BEA Liquid Data for WebLogic: Samples Tutorial 60



Figure 4-11 Data Source Node and Parameter Joined

8. Select the Source View tab and confirm that the XQuery code for the getCustomerProfile()
function is as follows:

declare function tns:getCustomerProfile($CustomerlID as xs:string) as
element(nsO:CustomerProfile)* {

<nsO:CustomerProfile>

{
for $CustomerProfile in tns:getAllCustomers()/customer
where $CustomerlID = $CustomerProfile/customer_id
return
$CustomerProfile

}

</ns0:CustomerProfile>

9. Remove the asterisk * from the return type element(ns0:CustomerProfile)*, since this function, as
currently written, will return all customer profiles. Your source code should be similar to that
displayed in Figure 4-12.

kY

CustomerProfile.ds - {DataServicesH CustomerManagement),

<fns0: CustomerProfile El

) as xs:atring) as elementins0:CustomerProfile) !

[+ declare function tns:gecaddress(serg as element(ns0:CustomerProfile)) as element(ns5:ADDRESE)

B HE v Funcbinn fresaar@RDUTOR M1EF /s ae alamant inefls CrstomarDrafilats as ol sment fnefs SEDWTOR Chamis (U =

Kl | ]

Figure 4-12 Source Code for a Parameterized and Complex Overwrite Mapped Function
10. Test the function, by completing the following steps:

a. Build your application.

b. Open CustomerProfile.ds in Test View.

c. Select getCustomerProfile(CustomerID) from the function drop-down list.

d. Enter CUSTOMERS3 in the xs:string CustomerID Parameter field. (Note: The parameter is case-
sensitive.)

e. Confirm that you retrieved the requested information — customer, orders, and order line items
for Britt Pierce.

BEA Liquid Data for WebLogic: Samples Tutorial 61



Selecl Funtlion

] petustomenProfielCustomer... | -

';IFH.“IEIFE

=5itng CusbomeriD; || CUSTOMERT

Muriber  Elémant by patn)

Limit elereens in airsy rasuls by
' 500 -

[lStart Chenit Tranmaction

Exncuty |
B [ 7o | on
- enslein a0 fCusthomeProfie s red= Tty termp.opeme) ongDatsServicesschemas Customes Profie vd” »
- ansCustoinerFrafie >
- eoushomer
<rustomer_ds CUSTOMERT «<[oustomes_id>
sfest_pames DRt < frst_names
<ist_name> Plerce <jlat_naves
<OEOS_arces A001-10-01 </Culoimss_Gnde s
<emal_sddress: JOHN_Tatt.com < femal_sidesss
<helephnr_ murbes > 9ZETTIISO < teighons e s
wvos GAT-T3-1259 < funs
<brth_diy> 1952-05-09 </bith_dsy>
odefadt_shin_methods PRIDRITY-1 < fdefadt_ship_methods
<imal_natficitons 1 </emal_notScitons
crws latters O «jrewes lottors
corine_staterment> 1 <jonlng_statement >
<logn_ids Britt </flogn_ids
+ cordars »
+ girgdirating >
4 cvalugtion »
<joustomen s
< frslCustomevPrafias
< fnslranmayCfCustomerProfias.

o

Figure 4-13 Integrated Data Results

Lesson Summary

In this lesson, you learned how to:

Use the Liquid Data Palette to add physical and logical data service functions to a logical data
service, thereby accessing data from multiple sources.

Join data services by connecting source elements, thereby integrating data from multiple sources.

Use the Expression Builder to define a parameterized where clause.
Set the context for nested elements in the source node.

Create a complex override mapping.

Test parameterized data services to verify the return of integrated data results.

BEA Liquid Data for WebLogic: Samples Tutorial

62



Lesson

Objectives

Overview

5 Modeling Data Services

Any data service — physical or logical — can be placed in a model diagram. Model diagrams show:
The basic structure of the data returned by each data service within the model.
Any functions associated with that data service.
Any relationships between data services.

The main purpose of the diagram is to help you envision meaningful subsets of the model, but it can
also be used to define new artifacts or edit existing artifacts.

After completing this lesson, you will be able to:

Create model diagrams and add data source nodes to the diagram.
Confirm relationships inferred during the Import Source Metadata process.

Define new relationships between data services and modify relationship properties.

Model diagrams show how various data services are related. Models can represent physical data
services, logical data services, or a combination.

Each physical model entity represents a single data source. In the case of relational sources, you can
automatically generate physical models that are representative of data sources. After being generated,
physical data services can be integrated with other physical or logical sources in the same or new
models. Physical model types use a key icon to identify primary keys.

Logical data model entities, which are discussed in detail in the Data Service Developer’s Guide,
represent composite views of physical and/or logical models.

Within the model diagram, data services appear as boxes. Relationships are represented by annotated
lines between two data services. Each side of the relationship line represents the role played by the
nearest data service. The annotations for each relationship include the following:

Target Role Name. By default, the target role name reflects the name of its adjacent data service.
You can modify the target role name to better express the relationship, which is particularly useful
when there are multiple relationships between two data services.

Cardinality. A relationship can be zero-to-one (0:1 or 1:0), one-to-one (1:1), one-to-many (1:%) or
many-to-many (n:n). For example, a customer can have multiple orders, therefore, the relationship
should be 1:n (customer:orders).

Directionality. A relationship can be either unidirectional or bidirectional. If unidirectional, data
service @ can navigate to data service b but b does not navigate to a. If bidirectional, data service a
can navigate to b and b can navigate to a.

A data service's navigation functions determine the relationship's cardinality and directionality.
Arrowheads indicate possible navigation paths.

BEA Liquid Data for WebLogic: Samples Tutorial

63



Lab 5.1

Liquid Data model diagrams are very flexible; they can be based on existing data services (and
corresponding underlying data sources), planned data services, or a combination. Using models you
can easily manage multiple data services as well as identify needs for new data services. You can also
create and modify data service types directly in the modeler and inspect data services.

& Evaluation - AEA WebLogic Workahop - ApparelDB_Physical_Modelmd
Fin £8 Yo Bl Delng Tk Mk trk

D@ e ~|tmlde+|aaydNuEEs ~cNEE R IG8
Data Service .
Hods |HECUSTOMER ORDER_LINE ...
s S @ OUSTOMR_ORDER LI [TEM
o T UNE_I st
o T cetn it se-string
@ CUSTOMER 1D spstring i d @ PROCUCT_ID erenng 3 PROGUCT
W ONICK PATE ordcn e £ ITE & FROOUCT_PRSC serrg | & moouer
A PR > @ CUANTITY artager - T PROOUCT_0 sty
B HYELNG CHARGE el @ Mtk st @ CATEGORY_ID awstneg
W, ANCOT . ! ’ R & STATUS arstng 1 PROCUCT S arstiing
8 TOTAL CRDER_AMOUNT wx:decml [ TS @ s G ey
AT e C @ MARACTLRER ap sty
b kg it o Ll @ LIST_PRICE amdecmal
W TSI e L = | R R ppe—
& LT xestng | 1 oo omoe s _iiimg) |
@ ESTIMATED SHIP_DATE sedate
B STATUS s:sting HE CUSTOMER
i TRACKING_MINEER T sxsirig 5 CUSTCHER ~
-~ = - ¥ . I PROCUCT()
| T omoe) T CUSTOMER 10 wnistring 5
i FINST_NAVE wabeig
B LASI A pming
i@ CUSTOMER_SIWCE wndste
§ 400R_ID xsing @ BWL_ADORESS crstng
@ CUSTOHER I sasatring @ TILWONE DR sty
@ FIRST NAVE st :; ;:';I-Jx;::c .
AT ety -
@ STREET_ADCRESS! snsrng ) DEFALT SHIPHETHOD T crstrg
@ SERT ALONESS? a1 [
@ ar i NEWS_LETTTER 7 xa:shart
& o st = o
@ STATE ey = L (@ OMINE_STATEMENT 7 rp:shovt
@ It @ CREDT_CARD |1 amrorg
@ COUNTRY et ¥ iy
DAY NN ity @ ST D it
@ D _FHONE 7 xaiatring @ CCOUSTOMER KAME erstrng
= @ CC_IE arrng
B STATUS P seaszring @ CC_BRAND wstng
i 15 DEFALLT crsort Ly @ O sy
. B LAST_DIGITS aaising
ADURESS() -
f & BT DATE rpdste
-
4
=]
-
I
[T 3
& Server Stogped s (s

Figure 5-1 Model Diagram for Physical Data Services

Creating a Basic Model Diagram for Physical Data Services

Modeling data services begins by adding individual data services to a diagram.

Objectives

In this lab, you will:

Create a diagram that you will use to model relationships between physical data services.
Add the ApparelDB and CustomerDB physical data services to the model diagram.

Confirm relationships “captured” during the Import Source Metadata process.

Instructions
1. Create a new folder in the DataServices project and name it Models.
2. Create a new folder in the Models folder and name it Physical.
3. Create a blank model diagram, by completing the following steps:
a. Right-click the Physical folder.
b. Choose New — Model Diagram.
c. Select Liquid Data — Model Diagram.

BEA Liquid Data for WebLogic: Samples Tutorial 64



d. Enter ApparelDB_Physical Model in the File name field.

e. Click Create. A blank workspace opens, which you can use to construct the model diagram.

-Nuw File

%]

Tl | | B8 Model Diagram

.‘_I Business Logic 12 Data Service

/1 Liquid Data [¢9) ¥Query Function Library
1 Web Services
—1weh User Interface
‘2] Common

File name:| ApparelDB_Physical Model.ud

Create in:  {DataServices}\Models\Physical|

Create a new Model Diagram.

_Cancel_

Figure 5-2 Create Model Diagram

4. Add the ApparelDB and CustomerDB physical data services to the model by dragging and
dropping the following data service files from the application pane into the model:

Data Service File

CUSTOMER_ORDER .ds
CUSTOMER_ORDER-LINE_ITEM.ds
PRODUCT .ds

ADDRESS.ds

CREDITCARD.ds

CUSTOMER.ds

Located In:
DataServices\ApparelDB
DataServices\ApparelDB
DataServices\ApparelDB
DataServices\CustomerDB
DataServices\CustomerDB

DataServices\CustomerDB

Notice that relationships between the data services already exist. These relationships were
automatically generated during the Import Source Metadata process, and are based on the foreign
key relationship defined in the underlying database.

BEA Liquid Data for WebLogic: Samples Tutorial

65



Apparse_Physicl_Modsl.md” - {DataServicesH ModelsiPhyscall

A CUSTOMER_URDER 1ECUSTOMER_ORDER_LINE_I...
= i@ CUSTOMER _ORDER i CLSTOMER _CRDER_LINE_ITEM
T oroER 1D ssistrng T UNEID wsistring
S b g 1 CRLER D istring 1% PRODUCT
S ORDER DT xeddate . @ PROD_ID wssting —
& SHIP_METHOD T rsstring i@ PROD_DEC  xsasining =8 PROCUCT
@ HANDLING CHRG_AMT  xs:decimal @ CUANTITY  x5:integer 7 IC:‘:;’:D"!;";B ’-‘--"’!"_V
o ETOTAL_AMT  idecmal i PRICE  asideomal b - ]
S TOTAL_ORDER_SMT  widacmal |- @ STATUS  ssstrng 19 PRODLICT NAME  xsistring
= o & PRODUCT_DESC sting
‘\j:w;_j;xf:ujs ;n.(“m' (| CUSTOMCR_ORDLR_LINE ITEM(} @ MANEACTURER  xsstrrxy
B GHIP_T st DRDER_LINE ITEMH) 5
@ SHE_TONM ssistrng @ LIST_PRICE  msoddocimad
S HILL_TO_ID  xestng i@ AVERAGE SERVICE COST 7 xsdeomal
& ESTIMATED_SHIP T nsekater Llprobuci() .
@ STATLE  xsstring
B TRACKING_ND ? awistring
4] CUSTOMER_ORDER()

'[Emnm: BR

L CUSTOMER
S @ ADORESS === cx =
"? ALOH_ID sistrng v féﬁmm D xsistring gc_RE OIT_CARD
i OUSTOMER_ID  xssstorg & FIRST_NAME  assting =@ CREOIT_CARD
i FIRST MAME wscsbriog B LAST_NAME  xscsting T oD mstrig
@ LAST MAME strng © QUETOMER SINCE  xeelite @ QSTOMER D smistring
© STREET_ADDRESS1 xisting @ EMAIL_ADDRESS ws:sting & CC_OSTOMER NAME  ssistrng
© STREET_ADDRESS? ? rsistring & TELEPHONE_IMBER. xe:stig © CC_TVPE xushivg
@ CTY st 1 @ ESN? rsshieg @ CCBRAND  wscsbrig
@ STATE xesting © DIMTHLDAY P xseclate & 0C_MUMEER  smistring
@ ZPUE sty & DEFAULT_SHIP_METHOD 7 xs:strin @ LAST_DIGITS istng
© COUNTRY  xssdirg © EMAIL_NOTIFICATION ? xsishort © EXP_DATE  rsceite
@ DAY _PHONE 7 xsi5tring ) HEWS LETTTER ? rothrrt @ STATLG 7 sistring
& EVE_PHONE ? xsastring | o cenme craroucir 3w [T @ [5_DEFALT  xsishort
B ALRS 7 sssTog - - B ALIAS 7 sEtng
B STATUS ? asshiivg ] CUSTUMER) @ ADDR_ID  rscstring
@ 15 DEFAILT xsishort £ EREDIT_CARD()

4] ADDRESS()

Figure 5-3 Model Diagram for a Physical Data Service

Lab 5.2 Modeling Relationships Between Physical Data Sources

The next step in data service modeling is to define additional relationships, beyond any automatically
generated during the import source metadata process.

A relationship is a logical connection between two data services, such as the CUSTOMER and
CUSTOMER ORDER data services. A relationship exists when one data service retrieves data from
another, by invoking one or more of the other data service's functions.

A data service's navigation functions determine the relationship's cardinality and directionality.
Arrowheads indicate possible navigation paths. Directionality can be either one directional or
bidirectional.

Objectives

In this lab, you will:

Define a relationship between the CUSTOMER and CUSTOMER _ORDER nodes, thereby
creating a navigational function between the two nodes.

Modify the relationship properties to enable a “1:0 or many” relationship.

Instructions

1. Drag and drop the top-level CUSTOMER element onto the top-level CUSTOMER ORDER
element. The Relationship Properties window opens.

2. In the Relationship Properties window, modify the cardinality properties for the
CUSTOMER_ORDER role, by completing the following steps:

a. Select 0 from the Min occurs drop-down list.

BEA Liquid Data for WebLogic: Samples Tutorial 66



b. Select n from the Max occurs drop-down list.

The relationship cardinality is now "1:0 or many" between the CUSTOMER and
CUSTOMER_ORDER data services. In other words, one customer can include one or more orders.

3. Click Finish.

Note: In subsequent lessons, you will use additional features of the Relationship Properties window
to customize relationship properties.

& Relationship Properties
7] Rekationship CUSTOMER. - CUSTOMER_CRDER. 7] Restatiorship CUSTOMER_ORODER - CUSTOMER
Dataervice CUSTOMER; - | (Dmaservice CUSTOMER_CROER; -
Torget R o | e, cpes| Target Roke rrn: | o sronien
M ocours: -] ht M0 oo 1
M gcurs: L} = Haz i !
et || Frish || Coneel

Figure 5-4 Relationship Properties — Cardinality

Note: It may take a few seconds to generate the relationship line.

|1 cursToman_ownis sy

i TRACNG MR T g

I iR

& M08 sry
| taspa1_tanngy

® S ncpet L ]
Figure 5-5 New Customer: Customer_Order Relationship Defined
4. Save all files.

5. Open CUSTOMER.ds in Design View. (The file is located in the DataServices\CustomerDB
folder.)

6. Confirm that the CUSTOMER data service includes a new relationship with the
CUSTOMER ORDER data service, using the getCustomer Order function.

BEA Liquid Data for WebLogic: Samples Tutorial 67



e ——_——
[[H5 T A it e

b LS TONER

s e 1 1 TR,

¥ OUSTONDE_ I aisdrsy

o FFST_MAME  axwbng

i LAST _RAME  micimneeg

b OLGTOMNEE, SPCE  godele
Bl _SDDRESS g

fof TELEFWORE MUREER  wid®rg
W T mabrg

o BRTH DAy ? axdae

i DEFEULT_ 9@ METHCD P apiing
e AR NOTIFICATION ¥ mnoherd
¥ MEWE LETTTER P sihart

ff DRLENE STATEMENT ¢ olaarf
e Lo P appbirsg

et e i CLETOMER OFDER

D v | W0y e Vi T 500Cn Vit | Tanidl Vi | Doy Py Vi

Figure 5-6 Design View of Added Relationship Function

7. Open CUSTOMER ORDER.ds in Design View. (The file is located in the
DataServices\ApparelDB folder.)

8. Confirm that the CUSTOMER ORDER data service includes a new relationship with the
CUSTOMER data service, using the getCustomer() function.

CLSTOMER _ORDER.ds - {DataServicesH apparelDBEY *
[a]
| |y CUSTOMER_ORDER Data Service ]
= @ CUSTOMER_ORDER
At IS TOMER,_ORDER @ ORDER_ID xsistring
(0 CUSTOMER_ID xs:string
(@ CRDER_DATE xs:date
@  SHIP_METHOD xs:string
(0 HAMDLING_CHARGE xs:decinal
(0 SUBTOTAL xardecimal
@) TOTAL_ORDER_AMOUNT xsdecimal
@ SALE_TAX xs:decimal
(@) SHIP_TO xs:sking
(0 SHIP_TO_NAME xs:string
custo... L= @ BILL_TO xs:string
() ESTIMATED SHIP_DATE xs:date
_ AT (0 STATUS xsstring
() TRACKING_MUMBER 7 xs:skring
ST, l/tL
— QetCUSTOMER ORDER LINE ITEMs
=]
[ 3]
| Design View [RGuery Editor View | Source iew | Test View | Query Plan Yiew

Figure 5-7 Design View of Added Relationship Function

9. (Optional) Create a relationship between CUSTOMER and CREDIT_CARD data services.

10. (Optional) Close all open files.

Lesson Summary

In this lesson, you learned how to:

Create model diagrams and add data source nodes to the diagram.
Confirm relationships inferred during the Import Source Metadata process.

Define relationships between data services.

BEA Liquid Data for WebLogic: Samples Tutorial

68



Lesson

Objectives

Overview

Lab 6.1

6 Accessing Data in Web Services

One of the data sources available with the samples installed with Liquid Data is a web service that
provides customer credit rating information. In this lesson, you will generate a physical data service
that can be integrated into the CustomerProfile logical data service.

The process for creating a data service based on a web service is similar to importing relational
database source metadata. The difference is that Liquid Data uses the WSDL (web service definition
language) metadata to intraspect the web service's operation and generate the data service.

After completing this lesson, you will be able to:

Import a WSDL.
Use the WSDL to generate a data service.
Test the web service by passing a SOAP request body as a query parameter.

Use a logical data service to invoke the web service and retrieve data.

A web service is a self-contained, platform-independent unit of business logic that is accessible to
other systems on a network. The network can be a corporate intranet or the Internet. Other systems can
call the web services' functions to request data or perform an operation.

Web services are increasingly important resources for global business information. Web services can
facilitate application-to-application communication and are a useful way to provide data, like stock
quotes and weather reports, to an array of consumers over a corporate intranet or the Internet. But they
take on additional new power in the enterprise, where they offer a flexible solution for integrating
distributed systems, whether legacy systems or new technology.

WSDLs are generally publicly accessible and provide enough detail so that potential clients can figure
out how to operate the service solely from reading the WSDL file. If a web service translates English
sentences into French, the WSDL file will explain how the English sentences should be sent to the web
service, and how the French translation will be returned to the requesting client.

Importing a Web Service Project into the Application

When you want to use an external web service from within WebLogic Workshop, you should first
obtain that service’s WSDL file. In this lab, you will use the WSDL for a web service project that was
created in WebLogic Workshop.

Objectives

In this lab, you will:

Import the CreditRatingWS web service into your sample application. This web service provides
getCreditRating and setCreditRating functions for retrieving and updating a customer’s credit
rating.

Run the web service to test whether you can retrieve credit rating information.

BEA Liquid Data for WebLogic: Samples Tutorial 69



Instructions

1. Import a web service into a Liquid Data-enabled application, by completing the following steps:

a.

b.

Choose File — Import Project. The Import Project — New Project window opens.

Select Web Service Project.

Caution: Make sure that you select a project of type web service. If you select another project type,
then the CreditRatingWS application may not work correctly.

c. Click Browse.
d. Navigate to the <beahome>\weblogic81\samples\liquiddata\EvalGuide directory.
e. Select CreditRatingWS and click Open.
f. Make sure that the Copy into Application directory checkbox is selected.
g. Click Import and Yes (when the confirmation message opens).
Import Project - New Project E‘

1Al @ EJB Project [+]

(1 Business Logic 5] Java Project

g E.JB id Dat. %] Liquid Data Project

= PI:rutlaI ot @) Partal Web Project

El Process @ Process Project

=1 Schema @ Schema Project

) Wb Services @] Web Project

(1 eb User Interface @ ‘Web Service Project =]

Directory: | [:\bealweblogicalsamplesliquiddatalCreditR.atingw's | | Browse... |

Name:

Copy inko Application direckary,

| CreditRatinglls |

Creates a new web service project.

Figure 6-1 Import Web Project

2. In the Application pane, verify that the following items were imported:

A CreditRatingWS project folder containing:

A controls folder, within which are the CreditRatingDB.jcx control and
CreditratingDBTest.jws web service.

A credit rating folder, within which is the web service folder that contains the
CreditRating.java file.

A WEB-INF folder.

BEA Liquid Data for WebLogic: Samples Tutorial 70



|| Application X

{29 Evaluation
= (=¥ CreditRatings
=29 controls
A creditRatingDB. jox
4 CreditRatingDBTest jws
=129 creditrating
() webservice
=-zd WEE-TNF
1 -pageflow-struts-gener ated
[ classes
Calb
|<__?| netui-tags-databinding. tld
|<_j netui-tags-databinding. tldx
|<_j nekui-tags-htrml. tid
I—j netui-tags-htrl. Eldx
|<—j netui-tags-template. td

=

Fj netui-tags-template. tldx

walidation_1_1.dtd

|<_j walidatar-rules. =ml

validator-rules_1_1.dtd

|<—_§| web,zml

|<—j wehlogic, xml
Fj wihw-config.xml

(] DataServices

(1) EvaluationDataServices

£ Madules

() Libraries

(3 Security Raoles

Figure 6-2 Web Service Project

3. Open CreditRatingDBTest.jws in Design View. (This file is located in the
CreditRatingWS\controls folder.) The web service diagram should be as displayed in Figure 6-3.

CreditRatingDBTest, jws - {CreditR.atingWStHcontrols| .
_@' CreditRatingDBTest Web Service
getCreditRating
_I:II>—' setiCreditRatin s TR
getCreditRating
setCreditRating
Mermber Yariables
|| Design Yiew [Source Yiew |

Figure 6-3 Design View of Credit Rating Web Service
4. Test the imported web service, by completing the following steps:
a. Click the Start icon (or press Ctrl + F5) to open the Workshop Test Browser.
b. Enter CUSTOMERS in the customer id field.
c. Click getCreditRating. The requested information displays in the Workshop Test Browser.

BEA Liquid Data for WebLogic: Samples Tutorial



Lab 6.2

) Workshop Test Browser

4= = @ < || hetp:lacalhost:7001/CredicRatingwscontrals/CreditR atingDBTest, is? EXPLORE=. TEST

[Owerview | [Consale] [ Test Form | [TestXML]| hiip:/localhost;7001 ACreditRating/S /controls/CreditRatingDB Test, jws

Test operations

Message Lo & Refresh

Log is empt

getCreditRating

string customer_id: [CUSTOMERS
getCradiRating

setCreditRating

setCreditRating is not supparted an the Test Form page (HTTP-GET), pleass use the Test
XML page (HTTP-POST) ko ket this operation 3

Figure 6-4 Workshop Test Browser

d. Scroll down to the Service Response section and confirm that you can retrieve credit rating
information for CUSTOMER3.

% Workshop Test Browser
-+ 0 <

“o | hitpflocalhost: 7001 jCrediR stingwSjcontrols/CrediR atingDBTest jws? EXPLORE=, TESTE, LOGENTRY=D

Returned from context_onRelease on creditRatingDB
Submitted at Tuesday, March 22, 2005 12:31:20 PM PST

Context Event context_onReset on Control creditRatingDB
Submitted at Tuesday, March 22, 2005 12:31:20 PM PST
Method: com.bea.wiw.runtime. core, control, DiatabaseControlmpl. conkext_onReset
Event source: context
CallStack:
creditRatingDB context_onReset()
creditRatingDE:context.onReset()

Returned from context_onReset on creditRatingDB
Submitted at Tuesday, March 22, 2005 12:31:20 PM PST

Service Response
Submitted at Tuesday, March 22, 2005 12:31:20 PM PST
<ns: CredltRatmg zminsins=' http vanw.openuri.org”
srnlnsxsd="http: [ fumm w3, org[2001 ML Schema"
xmins:xsi="http:/ i, w3, org/2001 XML Schema-instance" >
<nsiRating>600<ns:Rating>
<ns:Customer_id:>CUSTOMER3 <jns:Customer_id:
</ns:CreditRating>

< |

Figure 6-5 Web Service Results

Importing Web Service Metadata into a Project

WSDL is a standard XML document type for describing an associated web service so that other
software applications can interface with the web service. Files with the .wsdl extension contain web
service interfaces expressed in the Web Service Description Language (WSDL).

A WSDL file contains all of the information necessary for a client to invoke the methods of a web
service:

The data types used as method parameters or return values.
The individual methods names and signatures (WSDL refers to methods as operations).
The protocols and message formats allowed for each method.

The URLSs used to access the web service.

Objectives

In this lab, you will:

Import the CreditRatingWS source metadata via its WSDL, into the DataServices project, thereby

generating a new data service (getCreditRatingResponse.ds).

Confirm that the new data service includes the getCreditRating function that you tested in the
previous lab.

BEA Liquid Data for WebLogic: Samples Tutorial

72



Instructions
1. In the Workshop Test Browser, scroll to the top of the window.
2. Click the Overview tab.

23 Workshop Test Browser

| [ Overview | [ Console | [ Test Form | [Test XML]| htip:/flocalhost: 7001/CreditR ating\w'S/controls/CreditRatingDBTest. jws

Public Information See other services in this project
ahout CreditRatingDBTest, jws Wieh Service

Web Service Description Language files

This WSDL fils describes the complete public contract of CreditRatingDETest, jws, including both

operations and calbacks.
Web Service Clients

Source code fior a Service Control that can be used by a iwehLogic workshop weh service o

communicate with this service.

4 18R fils comtaining Java classes you can use t access this weh service as though it were a
local Java class.

Javapackage: [ | befSutpocksgs: wablbgic jws provies)

A J4R, file containing support classes that are needed by all WebLogic web service Java Proxies,
Service Description
Thig web service implements the following operations:

getCreditRating

setCreditRating
This web service has no callbacks.
useful links

To learn how to build a client proxy that can talk to any service described by a WSDL file see "Invoking YWeb Services"
For mare detaile on WSDL, see the WSDL Specification vi.1

For mare details on SOAP, ses the SOAP Specification ¥1.1

For more details on XML namespaces, see the W3C recommendation on Namespaces in XML

For mare details on URIs, see RFC 2396

Figure 6-6 Workshop Test Browser Overview
3. Click Complete WSDL.

4. Copy the WSDL URI, located in the Address field. The URI is typically:
http://localhost:7001/CreditRatingWS/controls/CreditRatingDBTest.jws?WSDL~=

= Workshop Test Browser

+ = @ H http: /flocalhost: 7001 CreditR atingWSfcantrals/CreditR atingDETest jws?WSDL= ,r:
”~
<?uml version="1.0" encoding="utf-8" 7= =
- zdefinitions xmins="http:/ fschemas.xmlsoap.org/wsdl/"
smins:conv="http://www.openuri.org/2002/04/soap/conversation /"
smins:cw="http:/ /www.openuri.org/2002/04/wsdl/conversation/"
smins:http="http://schemas.xmlsoap.org/wsdl/http /"
swmins:jms="http:/ /www.openuri.org/2002/04/wsdl/jms /"
smins:mime="http:/ fschemas.xumlsoap.org/wsdl/mime /"
smins:s="http:/ fwww.w3.org/ 2001 /XMLSchema" =mins: s0="http:/ /www.openuri.org/"
smins: soap="http://schemas.xmlsoap.org/wsdl/soap/"
smins:soapenc="http:/ /schemas.xmlsoap.org/soap/encoding/" ~
< >

Figure 6-7 WSDL URI

5. Close Workshop Test Browser.

6. In Workshop: Close all open files.

7. Create a new folder within the DataServices project folder, and name it WebServices.

8. Import web service source metadata into the WebServices folder, by completing the following
steps:

a. Right-click on the WebServices folder.

b. Choose Import Source Metadata.

BEA Liquid Data for WebLogic: Samples Tutorial

73


http://localhost:7001/CreditRatingWS/controls/CreditRatingDBTest.jws?WSDL

¢. Choose Web Service from the Data Source Type drop-down list. Then click Next.

&% Select data source type @

[rata Source Type: | Web Service | - |

| Mext || || Cancel |

Figure 6-8 Web Service Data Source Type
d. Paste the copied WSDL URI into the URI or WSDL File field and click Next.

4 Specify web service URI @
URT ar WSDL fle: | »:{flocalhast: 7001 {CreditRatingws controlsiCreditR atingDB Test. jws?wSDL= | | Browse. .. |

| Previous | | Mext | | | | Cancel |

e. Expand the CreditRatingDBTestSoap and Operations folders.

f. Select the getCreditRating operation, then click Add to populate the Selected Web Service
Operations pane.

&= Select web service operations to import E]

Available web service operations Selected web service operations
[ [sem] ks
B 1 CreditRatingDETestSoap
| Parts = () Operations
= 1 CreditRatingDETestSoap @ getcredtrating
= (£ Operations
@) setCreditRating I:l
Remove Al
| Pravious | | ek ‘ | | | Cancel |

Figure 6-9 Selected Web Service Operations

BEA Liquid Data for WebLogic: Samples Tutorial

74



g. Click Next and review the Summary information. The Summary information includes:
XML type, for web service objects whose source metadata will be imported.

Name, for each data service that will be generated from the source metadata. (Any name

conflicts appear in red and must be resolved before proceeding; however, you can modify
any data service name.)

Location, where the generated data service(s) will reside.

h. Click Finish.

ﬁSummary E|
The following data service(s) will be created. Edit suggested name(s) as needed.
[ AL Type: Name
‘ getcreditRating ‘ getcraditRatingResponse |%
Location | Dritestlabifvalustion|Dataservices\WebServices | [ Browse. . |
[ Previous | | || Fish | [ cancel |

Figure 6-10 Web Services Summary

9. Open getCreditRatingResponse.ds in Design View. (This file is located in the
DataServices\WebServices folder.)

10. Confirm that there is a function called getCreditRating().

getCreditRatingRespanse ds - {DataServicesHiwebservices),

*

[y - getCreditRatingResponse Data Servics =
@) getCreditRatingResponse
B @ getCrediRatingResult ? ape: CredtR ating
@ Rating_p v e ink
@) Customer id? _p v e rshing

M 1t &:f/ER, LTI

4 ][]

" Design View [#Query Editor View | Source View | Test View | Qusry Plan View |

Figure 6-11 Web Service Function Added

BEA Liquid Data for WebLogic: Samples Tutorial 75



Lab 6.3

Testing the Web Service via a SOAP Request

Extensible Markup Language (XML) messages provide a common language by which different
applications can talk to one another over a network. Most web services communicate via XML. A
client sends an XML message containing a request to the web service, and the web service responds
with an XML message containing the results of the operation. In most cases these XML messages are
formatted according to Simple Object Access Protocol (SOAP) syntax.

SOAP specifies a standard format for applications to call each other's methods and pass data to one
another.

Note: Web services may communicate with XML messages that are not SOAP-formatted. The types of
messages supported by a particular web service are described in the service’s WSDL file.

Objectives

In this lab, you will:

Use the getCreditRating() function and a SOAP parameter to test the getCreditRatingResponse data
service.

Review the results.

Instructions
1. Build the DataServices project.

2. Open getCreditRatingResponse.ds in Test View. (This file is located in the
DataServices\WebServices folder.)

3. Select getCreditRating(x1) from the Function drop-down list.

4. Enter the following SOAP body in the Parameter field:
<getCreditRating xmlns="http://www.openuri.org/*>
<customer_id>CUSTOMER3</customer_id>

</getCreditRating>

Note: You can create a template for the input parameter by clicking Insert Template.

i rpoed i - ([ At P | .

Sl Fursbon |

| it iatrniin 1 |
Faramuiey

Pl i LG i Bipwg s Pauis Fegus i i TeTpests

i AT e R feerw g unig) s
L s i O TORER B ot o _idl>
< SO R i >

Click here for creating a input template

| ey Yo | Wnimey Exficn Vs | Smian oo | T warer | ey Bl s

BEA Liquid Data for WebLogic: Samples Tutorial 76



Figure 6-12 SOAP Parameter

5. Click Execute.

6. Review the results, which should be similar to those displayed in Figure 6-13. Notice that only two
data elements are returned: the customer ID and the credit rating for that customer.

getCreditRatingResponse. ds - {DataServices}WsbServices) B3

Select Function;

qetCreditRating(x1) -]

Parameters
t1:getCreditRating x1: ‘ Paste Result
<gebCreditRating xrolns="http: { fwww, openori.org/" > [=]
<customer_id>CUSTOMERS </customer_id=>

<fgetCreditRating >

Murnber  Element {by path)
Limit elerments in array results to:

EZH |
[ stark Client Transaction

=D

Result

- <nsigetCreditRatingResponse xminsns="http: /v, openuri,orgl” >
- <ns:getCreditRatingResult xmins:ns="http:/fwww, openuri.org)" =
<nsiRating> 600 </ns:Rating
<ns:Customer_d> CUSTOMER3 <fns:Customer_id>
<JnsigetCreditRatingResult>
<fns:getCreditRatingResponse >

Design Yiew | 20uery Editor View | Source Wiew | Test View Query Plan View

Figure 6-13 Web Service Results

Lab 6.4 Invoking a Web Service in a Data Service

You are now ready to use the web service to provide the data that populates the CustomerProfile
logical data service.

Objectives
In this lab, you will:

Use the getCreditRatingResponse data service to populate the credit rating element in the
CustomerProfile data service.

Test the invocation.

Review the results.

Instructions

1. Open CustomerProfile.ds file in Source View. (The file is located in the
DataServices\CustomerManagement folder.)

2. Add the following namespace definitions, in addition to the ones already defined for the
CustomerProfile data service:

declare namespace
wsl=""lId:DataServices/WebServices/getCreditRatingResponse™;

declare namespace ws2 = "http://www.openuri.org/";

BEA Liquid Data for WebLogic: Samples Tutorial



3. In a Windows browser, open the creditRatingXQuery.txt file, located in the
<beahome>\weblogic81\samples\liquiddata directory.

4. Copy the following code from the creditRatingXQuery.txt file:
{
for $rating in wsl:getCreditRating(
<ws2:getCreditRating>

<ws2:customer_id>{data($CUSTOMER/CUSTOMER_ID)}</ws2:customer_id>
</ws2:getCreditRating> )
return

<creditrating>
<rating>{data($rating/ws2:getCreditRatingResult/ws2:Rating)}</rating>

<customer_id>{data($rating/ws2:getCreditRatingResult/ws2:Customer_id)
}</customer_id>

</creditrating>
}
5. In the CustomerProfile.ds file, expand the getAllCustomers function.

6. Insert the copied text into the section where the empty CreditRating complex element is located.
The empty complex element is as follows:

<creditrating>
<rating/>
<customer_id/>

</creditrating>

7. Confirm that the <creditrating> code is as displayed in Figure 6-14.

CustomerProfile. ds* - {DataservicesPCustomerManagement,

S

for srating im wsl:getCreditRating( E
<ws2: getCredi tRating-
=ws2:customer id-{data($CUSTOMER/CUSTOMER_ID) }<fws2:customer id-
<fws2:getCreditRating> )
return
<creditrating-
<ratimg-{data|§rating/us2: getCreditRatingResult/ws2:Rating) J<srating>
<customer id>{data(§rating/ws2:getCreditRatingResult/ws2: Customer_id) }</customer id>
[/creditrating-

<valuation>
<valuation datei</valuation date>
<raluation_tier></valuation_tierx>
<fvaluation>-
<fcustomer:

</ns0:CustomerProfile>
}i

o
declare function tns:getCustomerProfilelsiustoserIl as xs:string) as element(ns0:CustomerProfile}® |
<ns0:CustomerProfiles
{
for SCustomerProfile in tns:gethllCustonersi)/customer
where sCustomerllD = §CustomerProfilefcustomer_id
return
stustomerfrofile

<fns0:CustomerProfile>

}i
O O]
¥Cuery Editor View | Source View [Test View | GQuery Plan view

Figure 6-14 Credit Rating Source Code
8. View the results, by completing the following steps:

a. Open CustomerProfile.ds in XQuery Editor View.

BEA Liquid Data for WebLogic: Samples Tutorial 78



b. Select getAllCustomers() from the Function dropdown list. The function should be similar to

that displayed in Figure 6-15.

TaiT el W HORF
Al RCFFECATEON ¢ rar
g TR e
SRLRE_ TN TS b
Wl 11 T g

o G P Cele ) el i S
mil_EY ey
CRCNE_D) vy

]

&

s |

B | E—
=

DETMAE e
AT T sty = il
L ] pabrwr il dry
aadd vl g find_rarm g
Huifokds it aes =T g
A3 EURETE e s e ¢
TELRCR LB vl _idwn b oman
e T FL P
L it e i

&N vl

Figure 6-15 XQuery Editor View of a Web Service Being Invoked

¢. Open CustomerProfile.ds in Design View. The web service is listed as a data source, in the right

pane of the diagram.

| : B W ot .

W e g

o antmr_roe P ocdtdies

il ik P g

LT T B ]

B un P tesing

ol B e il

b et e et P o et

il aral_noefe o} o ot

i st 7 e

il Gl _nanieverd B

-

o i e

5 i e
LS S T
o e ol g
[ N DU ]
o method  andhrg
i bGP o ol
ol RADIOEE i e

—_ — T S

Figure 6-16 Design View of a Web Service Invoked in a Data Service

9. Test the data service by completing the following steps:
a. Build the DataServices project.

b. Open CustomerProfile.ds in Test View.

c. Select getCustomerProfile(CustomerID) from the Function drop-down list.

BEA Liquid Data for WebLogic: Samples Tutorial

79



d. Enter CUSTOMERS in the xs:string CustomerID field.

e. Click Execute.

f. Confirm that you can retrieve the credit rating for Customer 3.

CustomerPrafile.ds - {DataServicesHiCustomerManagement), X
Select Function:
lgetCustomerPrafie(Customer D) [~ |
Parameters
xsistring CustomerID: ‘ CUSTOMER3 |
MNumber  Element (by path)
Limit elements in array results to:
[0 | |
[ start Client Transaction
B

Result

- <aArrayOFCuskomerProfile xmins:a="http: /ftemp openuri.org/DataServices/schemas/CustomerProfile. xsd” >
- <nsi: CustomerProfile xmins:nsO="http: /temp.openun. orgDataServices schemas/CustomerPrafile.xsd" >

- <customer >
<customer_id> CUSTOMERS </customer_id:>
<first_name> Britt <jfirst_name>
<last_name> Pierce </last_name>
<customer_since> 2001-10-01 <jcustomer_since
«email_address> JOHN_3@att.com «/email_address>
<telephone_number> 9287731259 <jtelephone_number >
<gen> B47-T3-1259 <fsen>
<birth_day> 1952-05-09 </birth_day>
<default_ship_method> PRIDRITY-1 </default_ship_method:
<email_nokification> 1 <jemail_nokification>
<news_letter> 0 </news_lstter>
<online_statement> 1 <jonline_statement>
+ <orders =
- <creditrating >

<rating> 600 <frating>
<customer_id> CUSTOMERS <feustomer_id>
<Jcreditrating>
+ <yaluation >
<feustamer =
<Ins0:CustomerProfile=

<faifirrayOfCustomerProfile =

ey Edtor View Test View |Guery Plan View |

Figure 6-17 Customer Profile Data Integrated with Web Service Credit Rating Data
10. Import CreditRatingExit1file from lab folder:

a. Right-click the WebServices folder.

b. Select Import option.

c. Navigate to the <beahome>\weblogic81\samples\liquiddata directory and select file
CreditRatingExit1 for import.

d. Build the DataServices project.

e. Open getCreditRatingResponse.ds; click on the header and update the UpdateOverride Class
property in the Property Editor to WebServices.CreditRatingExit1. (If the Property Editor is not
open, you can select it using the View menu Property Editor option.

BEA Liquid Data for WebLogic: Samples Tutorial 80



T e —

@ S Burrrg e iR

11. (Optional) Open the Output window to view the data sources used to generate the Test View
results. You should see the following statement, which indicates that data was pulled from the
invoked web service:

DataSource name: ld:DataServices/WebServices/getCreditRatingResponse
Invocations: 1 Time: 2344ms

Statement: getCreditRating

Lesson Summary

In this lesson, you learned how to:

Import a web service project, locate its WSDL, and use that WSDL to generate a data source.
Test the web service by passing a SOAP request body as a query parameter.

Use a logical data service to invoke a web service and retrieve data.

BEA Liquid Data for WebLogic: Samples Tutorial

81



Lesson 7 Consuming Data Services Using Java

After a Liquid Data application is deployed to a WebLogic Server, clients can use it to access real-time
data. Liquid Data supports a services-oriented approach to data access, using several technologies:

Mediator API. The Java-based Mediator API instantiates Liquid Data information as data objects,
which are defined by the Service Data Objects (SDO) specification. SDO is a proposed standard

that defines a language and architecture intended to simplify and unify the way applications handle
data.

Liquid Data Workshop Control. The Liquid Data Workshop control is a wizard-generated Java
file that exposes a user-specified data service function to WebLogic Workshop client applications
(such as page flows, portals, or web services). You can add functions to the control from data
services deployed on any WebLogic server that is accessible to the client application, whether it is
on the same WebLogic Server as the client application or on a remote WebLogic Server.

WSDL. WSDL-based web services can act as wrappers for data services.

SQL. The Liquid Data JDBC driver gives SQL clients (such as reporting and database tools) and
JDBC applications a traditional, database-oriented view of the data layer. To users of the JDBC
driver, the set of data served by Liquid Data appears as a single virtual database, with each service
appearing as a table.

In this lesson, you will enable Liquid Data to consume data through the SDO Mediator API.

Objectives

After completing this lesson, you will be able to:

Use SDO in a Java application.
Invoke a data service function using the untyped SDO Mediator API interface.

Access data services from Java, using the typed SDO Mediator API.

Overview

SDO is a joint specification of BEA and IBM that defines a Java-based programming architecture and
API for data access. A central goal of SDO is to provide client applications with a unified interface for
accessing and updating data, regardless of its physical source or format.

SDO has similarities with other data access technologies, such as JDBC, Java Data Objects (JDO), and
XMLBeans. However, what distinguishes SDO from other technologies is that SDO gives applications
both static programming and a dynamic API for accessing data, along with a disconnected model for
accessing externally persisted data. Disconnected data access means that when Liquid Data gets data
from a source, such as a database, it opens a connection to the source only long enough to retrieve the
data. The connection is closed while the client operates on the data locally. When the client submits
changes to apply to the source, the connection is reopened.

Liquid Data implements the SDO specification as its client programming model. In concrete terms, this
means that when a client application invokes a read function on a data service residing on a server, any
data is returned as a data object. A data object is a fundamental component of the SDO programming
model. It represents a unit of structured information, with static and dynamic interfaces for getting and
setting its properties.

BEA Liquid Data for WebLogic: Samples Tutorial 82



Lab 7.1

In addition to static calls, SDO, like RowSets in JDBC, has a dynamic Mediator API for accessing data
through untyped calls (for example, getString("CUSTOMER_NAME'")). An untyped Mediator API is
useful if you do not know the data service to run at development time.

The Mediator API gives client applications full access to data services deployed on a WebLogic server.
The application can invoke read functions, get the results as Service Data Objects, and pass changes
back to the source. To use the Mediator API, a client program must first establish an initial context
with the server that hosts the data services. The client can then invoke data service queries and operate
on the results as Service Data Objects.

Running a Java Program Using the Untyped Mediator API

An untyped Mediator API is useful if, at development time, you do not know the data service to run.

Objectives

In this lab, you will:

Add the 1d-client.jar file to your application library.
Add a Java project to your application.
Add the method calls necessary to use the Mediator API.

Review the results in the Output window and a standalone Java application.

Instructions

1. Add the Liquid Data client library to your Libraries folder by completing the following steps:
a. Right-click the Libraries folder.
b. Choose Add Library.

c. Navigate to BEA_HOME\weblogic81\liquiddata\lib, where BEA_ HOME is the directory where you
installed Liquid Data.

d. Select Id-client.jar and click Open. The file is added to the Libraries folder.

Lok

@ binzml-danube. jar [g ldjdbcwaclient_no_client_libs. jar
@ Id-client. jar [g wisdo. jar

@ Id-server-app.jar [g ¥pp3_1_1_Z.jar

@ Id-server-core.jar

=] Mdidbe.jar

Marme: | Id-cliertt. jar| |

Tvpe: |Java archives | b |

Figure 7-1 Add Library
2. Add aJava project to your application by completing the following steps:
a. Right-click the Evaluation application folder.

b. Choose Import Project.

BEA Liquid Data for WebLogic: Samples Tutorial 83



c. Select Java Project.

d. Click Browse and navigate to the <beahome>\weblogic81\samples\liquiddata directory.

e. Select DataServiceClient, click Open, and then click Import.

Look In: ||:| liquiddata | - |

(C) AlterTable [

() CreditRatingws () ¥MLFiles
E| CustomerManagementWwebapp

|__) DataserviceClisnt

Cde=ib

() =sccel

() FlatFiles

(T ldap

() MyPortal

[T MyQueries

MName: |D:\bea\wahlng\cBl1samplas\llqLuddata\DataServlteChent |

Type: |A\I Files ‘ - |

Figure 7-2 Importing Java Project

The Java project is added to the application, in the DataServiceClient.java folder. To use the Mediator
API, you need to add the method calls to instantiate the data service, invoke the getCustomerProfile()
method and assign the return value of the function to the CustomerProfileDocument SDO/XML bean.

3. Open the DataServiceClient.java file, located in the DataServiceClient folder.

4. Insert the method calls necessary to use the Mediator API, by completing the following steps:

a. Locate the main method. You will see a declaration of the data service, a String params [ ],

plus the CustomerProfileDocument variable.

DataServiceClient java® - {DataServiceClient}|

import com.bea.1d.dsmediator.client.DataService;

import com.bea.ld.dsmedistor.client.DataderviceFactory;

import javax.nauwing. Context:

import javax.nawing. InitialContext;

irmport javax.nawing.NamingException:

import org.openuri.temp.dataServices. scheuas.customerPrafile. CustomerProfileDocument:

import org.opemuri.temp.datafervices.schemas.customerProfile.CustonerProfilebocument, CustomerProfile, Custoner:

import org.openuri.temp.datadervices.schemas.custonerProfile.CustomerProfileDocuent, CustomerProfile, Custoner. Drders;
iMport org.openuri.temp.dataServices. scheuas.customerProfile. CustomerProfileDocument. CustonerProfile. Custoner. Drders.Order:
import org.openuri.tenp.dataServices.schemas.custonerProfile.CustomerProfileDocument, CustomerProfile, Custoner. Drders. Order. Order]
irport weblogic. jndi.Environment;

public class DataServiceClient

public static TnitialContext getTnitialContext(] throws NemingException {
Environment env = mew Enviromment():

I €

env.setProviderUrl('t3: //localhost: 7001") ;

enw. setInitialContextFactory (" Jndi. WLIniti ¥
env. setiecurityPrincipal (' weblogic' ) ;

env. setJecurityCredentials ("weblogic' ) ;

return new InirialContext|env.getInitialContext(]. getEnviroment()):

3

public static void main (String args[]) {
$ystem.out.printin{'———————— Data Service Client —0——u1};
String customer_id = 'CUSTOMER3" ;
if (args.length > 0)
customer_id = args[0];
try {

String params[] = {customer_id};

DataService ds = null;

CustomerProfileDocument doc = null;

S¥Stem. out.printin("Connected to Liquid Data 8.2 : CustomerProfile Data Service ..."):

S¥stem. out.printin| Customer )

Customer customer = doc.gerfustomerProfile().gerfustomerirray(0):

§¥Sten. out.printin("Customer Hame : ' + customer.getlastWame() + ', " + customer.getFirstName(]); =
KT O]

Figure 7-3 Java Source Code

b. Confirm that the String params [ ], which is an object array consisting of arguments to be

passed to the function, is set as follows:

String params[] = {customer_id};

BEA Liquid Data for WebLogic: Samples Tutorial

84



C.

Construct a new data service instance, by modifying the DataService ds = null line. The
Mediator API provides a class called DataServiceFactory, which can be used to construct the
new data service instance. Using the newDataService method, you can pass in the initial JNDI
context, the application name, and the data service name as parameters. For example:

DataService ds = DataServiceFactory.newDataService(
getinitialContext(), // Initial Context
"Evaluation", // Application Name
"Id:DataServices/CustomerManagement/CustomerProfile"™ // Data Service Name
);
Note: You must have removed “*” in the return type in the getCustomerProfile() function inside
the CustomerProfile data service.
Invoke the data service, by modifying the CustomerProfileDocument doc = null line. For
example:

CustomerProfileDocument doc = (CustomerProfileDocument)
ds. invoke(*'getCustomerProfile",params);

e. Review the inserted code and verify that it is similar to that displayed in Figure 7-4.
DataServiceClient. java® - {DataServiceClient}) X
import com.bea.ld.dsmediator.client.DataService; (=]
import cow.bea.ld.dsuediator.client.DataServiceFactory: ]
import javer.nawing. Context;
import javex.nawing. InitialContext;
import jawvax.naning.NaningException;
import org.openuri.temp.datadervices.schemas.customerProfile.CustonerProfilebocument;
import org.openuri.temp.datadervices.schemas.customerProfile.CustonerProfileDocument. CustomerProfile. Customer;
import org.openuri.temp.datadervices.schemas.customerProfile.CustonerProfileDocument. CustomerProfile. Customer. Orders;
import org.openuri.temp.datadervices.schemas.customerProfile.CustonerProfileDocument. CustomerProfile. Customer. Orders. Order;
import org.opemuri. tewp. dataServices. schemas. customerProfile. CustomerProfilebocument. CustomerProfile. Customer. Orders. Order. Order]
import weblogic. jndi.Environment;
public class DataServiceClient
{
public static InitialContext getInitialCentexti] throws NamingException {
Enviromment env = new Environment():
env.setProviderUrl ("t3://localhost: 7001")
env. setInitialContextFactory (' weblogic.indi.WLInitialContextFactory"):
env. setSecurityPrincipal ("weblogic"] ;
env. setSecurityCredentials ("weblogic" ) ; —
return new InitialContexti{env.getInitialContext().getEnvironment()]:
i
public static void wain (String args[]) !
Systenm. out.println('=————————————— Data Service (lienl —————————-—=";
String customer id = "CUSTOMER3' ;
if (args.length > 0}
customer_id = args[0];
try {
String paraws[] = {customer_id};
Datadervice ds - DataServiceFactory.newXulService |
gerInirialContext(),
"Evaluation" ,
"1d: v f ile"
1
CustomerProfileDocument doc = (CustomerProfileDocument) ds.invoke ("getCustomerProfile" paraws):;
System.out.println('Comnected to Liguid Data 8.2 : CustomerProfile Data Service ..."):
System.out.println( Customer )
Customer customer = doc.getCustomerProfile().getCustomerirrayil);
System.out.println("Customer Hame : " + customer.getlastName() + ", " + customer.getFirstName());
Svstem.out.println( Orders 1z
Gl D

Figure

7-4 Untyped Mediator APl Code Added

5. Review the code included in the /Show Customer Data and //Show Order Data sections. This code
will be used to retrieve customer information, all orders of that customer (order ID, order date, and
total amount) and the line items of each order (product ID, price and quantity). The code should be
similar to that displayed in Figure 7-5.

BEA Liquid Data for WebLogic: Samples Tutorial 85



S

DataServiceClient java® - {DataServiceClientH

public static veid main (String args[]) { [
System.out.println('=—————0oH0—— Data Service Client ———— |,
String customer_id = "CUSTOMER3';
if (args.length > 0}
customer_id - args[0]:
try {

String params[] = {customer_id};

Datafervice ds = DatafServiceFactory.newsmliervice(

getInitialContexti},

"Evaluation' ,

v i ile

1

CustomerProfilebocument doc = {CustomerProfil ) ds.invoke (" getCust file' params):
Systew. out.printin("Connected to Liguid Data 8.2 : CustomerProfile Data Service ...");

Systew. out.printlng 1
Customer customer = doc.getCustowerProfile().getCustonerdrrayil);
System.out.println("Customer Hame : ' + customer.getlastName(} + ', ' + customer.getFirstName()):

System. out.printlnj Orders 1
= customer.getlrders().gevOrderhrray():
xcorder. length; x++) {
System. out.printin(" Order # " + order[x].getOrderId() +
Date " + order[x].getDrderDate(} +
Total §' + order[x].getTotalOrderiuwount() );
Orderline[] orxderline = order[x].getOrderlinehrray():
for (int y=0; y<orderline.length: ¥++] {
$ystem. out.printin(" Product § " + orderline[y].getProductTd(} +
w Price §' + orderline[y].getPrice() +
m Quantity: " + orderline[y].getQuantity{}

} catch (Exception e} {
e.printitackTrace();
¥

H

[T 0]

Figure 7-5 Customer and Order Code

6. Click the Start icon (or press Ctrl + F5) to compile your program (if a Confirmation message

displays, then click OK). It may take a few moments to compile the program.

Note: WebLogic Server must be running. Confirm that the program return the specified results by

viewing the results in the Output window (if the Output window is not open, choose View —

Windows — Output).

|| Output *
Trying to create process and attach to 2418... [a]
D:ibealjdkldZ_05ybiny javaw. exe -Xdebuy -Xnoagent -Diava.coupiler=NONE -Xrunjdwp:[ |
Process started
Atrtached successfully.
==================== Data Service Client =s=s=s================
Comnected to Liguid Data 5.2 @ CustomerProfile Data Service ...
====================== [USLOMEL ====================
Customer Name : Pierce, Britt
s===ss==s==s===s===s===== (rders sssss=ss==s===s=======

Order # ORDER_3_0 Date 2001-10-01 Total §656.65

Product # APPA 3H 4 Price 5249.95 Quantity: L

Product # APPAL 3H 5 Price £299.95 Quantity: 1

Product # AFPA BA 1 Price £99.95 Quantity: 1

Product # AFPPA GL_3 Price g10 Quantity: 10
Order # ORDER_3_1 Date 2001-11-16 Total §732.65

Product # APPA SH 5 Price 5299.95 Quantity: L

Product # APPAL BA 1 Price 599.95 Quantity: 1

Product # AFPA BA 1 Price £325.95 Quantity: 1
Order # ORDER_3_10 Date Z003-01-09 Total §105.65

Product # APPL GL_3 Price 535.95 Quantity: 1

Product # AFPPA MN 3 Price 549,95 Quantity: 1

Product # ALPPA MN 4 Price 512.95 Quantity: 1
Order # ORDER 3 11 Date Z003-02-24 Total §119.65

Product # APPL MN 3 Price 549.95 Quantity: 1

Product # APPA MN 4 Price 512.95 Quantity: 1

Product # AFPPA MN 5 Price 549,95 Quantity: 1
Order # ORDER_3_12 Date 2003-04-12 Total £109.65

Product # APPA MN 4 Price 512.95 Quantity: 1

Product # APPL MN 5 Price 549.95 Quantity: 1

Product # AFPL MN & Price 539.95 Quantity: 1
Order # ORDER_3_13 Date 2003-05-28 Total §1l21.65

Product § APPL MN 5 Price 549.95 Quantity: 1

Product # APPA MN & Price 539.95 Quantity: 1

Product § APPL MN 7 Price 524.95 Quantity: 1

ED Order # ORDER 3 14 Date 2003-07-14 Total §221.65 mlﬂ

Figure 7-6 Results: Output Window

BEA Liquid Data for WebLogic: Samples Tutorial

86



6. (Optional) View the results in a standalone Java environment of your choice.

Note: If you want to use the SDO Mediator API outside of WebLogic Workshop, you need to add
the following files to your classpath:

WebLogic Libraries:
%\bea\weblogic8l\server\lib\weblogic.jar

CustomerProfile classes:

%\bea\weblogic81\samples\LiquidData\Evaluation\APP-
INF\lib\DataServices.jar

XML Bean:
%\bea\weblogic8l\server\lib\xbean.jar

Liquid Data Libraries:
%\bea\weblogic81\liquiddata\lib\ld-server-core.jar

Liquid Data Client Libraries:
%\bea\weblogic8l1\liquiddata\lib\ld-client.jar

Service Data Object:
%\bea\weblogic81\liquiddata\lib\wlsdo.jar

SDO Mediator API Java file:

%\bea\weblogic81\samples\LiquidData\Evaluation\DataServiceClient
\DataServiceClient. java

Microsoft Windows XP [Version 5.1.26881
{C> Copyright 1985-2881 Microsoft Corp.

IC:~Documents and Settings“mblancha>D:
D:>cd beasuser_projectshapplicationssdanubesEvaluationsDataServiceClient

D:vbeasuser_projectshapplicationssdanubes\Evaluation~DatafServiceClient>javac —d .
DatafServiceClient. java

Mote: DataServiceClient.java uses or overrides a deprecated API.

Mote: Recompile with —deprecation for details.

D:“beasuser_projectshapplicationssdanubesEvaluation~DatafServiceClient>java DataS
erviceClient
= = Data Service Client == =
Connected to Liguid Data 8.2 - CustomerProfile Data Service ...
== === == Customers
Connected to Liguid Dataosc.lZ = CustomerProfile Data Service ...
== == Orders == ==
der # ORDER_3_8 Date 2881-18-81 Total $656.65
Product # APPA_SH_ S Price 52 5 Quantity: 1
Product # APPA_BA_1 Price Quantity:z 1
Product # APPA_SH_4 Price Quantity: 1
Product # APPA_BA_1 Price % Quantity: 15
Order # _3_ Date 2881-11-16 $732.65
Product # APPA_SH_S Price -5 Quantity: 1
Product # APPA_BA_1 Price Quantity:z 1
Product # APPA_BA_1 Price 5 Quantity: 1
Order # ORDER_3_18 Date 2883-81-8%
Product # APPA_GL_3 Price 5.95 Quantity:
Product # APPA_MN_3 Price Quantity:
Product # APPA_MN_4 Price .75 Quantity:
Order # ORDER_3_11 Date 2883-82-24 Total $119.65
Product # APPA_MN_3 Price 549.9% Quantity:
Product # APPA_MN_4 Price Quantity:
Product # APPA_MN_S Price Quantity:
Order # ORDER_3_12 Date 2803-B4-12
Product # APPA_MN_4 Price $12.95 Quantity:
Product # APPA_MN_S Price Quantity:
Product # APPA_MN_6 Price 25 Quantity:
Order # ORDER_3_13 Date 28@3-B5-28 Total $121.65
Product # APPA_MN_S Price 5 Quantity:
Product # APPA_MN_6 Price Quantity:
Product # APPA_MN_7? Price .75 Quantity:
Order # ORDER_3_14 Date 2883-87-14 Total $221.65
Product # APPA_MN_6 Price 5$39.95% Quantity:
Product # APPA_MN_7? Price Quantity:
Product # APPA_MH_8 Price 95 Quantity: 1
Order # _3_. Date 2802-81-82 Total $1283.65
Product # APPA_BA_1 Price $99.95 Quantity:z 1
Product # APPA_BA_1 Price $325.95 Quantit 1
Product # AFPPA_BA_3 Price $858.95 Quantit

T e

Figure 7-7 Results: Standalone Java Environment

BEA Liquid Data for WebLogic: Samples Tutorial 87



Lab 7.2 Running a Java Program Using the Typed Mediator API

With the typed mediator interface, you instantiate a typed data service proxy in the client, instead of
using the generic data service interface. The typed data service interface may be easier to program an
it improves code readability.

In this lab, you will access data services from a Java client, using the typed SDO Mediator API. You
will be provided with a generated API for your data service, which lets you directly invoke the actual
functions as methods (for example, ds.getCustomerProfile(customer _id).

Objectives

In this lab, you will:

Build your application as an EAR file.

Build the SDO mediator client.

Add the SDO mediator client's generated JAR file to your libraries folder.
Construct a DataServices instance and invoke the data service.

View the results in the Output window.

View the results in a standalone Java application.

Instructions
1. Build your application as an EAR file by completing the following steps:
a. Choose Tools — Application Properties and click Build.
b. In the Project build order section, place DataServices as the first project.
c. Clear the Project: DataServiceClient checkbox, since this is not required for the EAR file.

d. Click OK.

4 Application Properties &

|| weblogic Server
| Buid
|| source Control (&) Project: DataServices

|| Debug sourcepath

O Project: DataServiceClient
|_JEncoding = Default order

[portal @) Project: CrediRatingWs
Project: EvaluationDataServices

Project build order

Selected projects are buik during an application buid,
deployed o the server, and included in a bulk EAR file.

EAR

File name; | Evaluation.ear |

Directory: | Dr\beaiuser_projectstapplicationsidanube\Evaluation, | \ Browse. . \

Export

Export ko Ant file

Figure 7-8 Project Build Order

2. Build the SDO Mediator Client, by completing the following steps:

d

BEA Liquid Data for WebLogic: Samples Tutorial

88



a. Right-click the Evaluation application.

b. Build your application.

c. Choose Build SDO Mediator Client.

d. Click Yes, when asked whether you want to build an EAR file.

e. Confirm that you see the following text in the Build window (if not open, choose View —
Windows — Build):

Generating SDO client api jar .....
Browsing liquid data jars .....

SDO client api jar generated successfully as
<beahome>/user_projects/applications/Evaluation\Evaluation-ld-client._jar

Note: The drive information may be different for your application.

3. Add the generated SDO mediator client file into your Libraries folder by completing the following
steps:

a. Right-click the Libraries folder.
b. Choose Add Library.

c. Navigate to the <beahome>\weblogic81\samples\LiquidData\Evaluation directory and select
Evaluation-ld-client.jar.

Note: For other JREs, this JAR file needs to be added to the classpath. Click Open.

4. Construct a new data service instance and invoke the data service, by completing the following
steps:

a. Open the DataServiceClient.java file.

b. Replace the declaration of the DataService and CustomerProfileDocument objects with the
following (code to modify is displayed in boldface type):

CustomerProfile ds = CustomerProfile_getlnstance(

getlnitialContext(), // Initial Context
"Evaluation" // Application Name
)

CustomerProfileDocument doc = ds.getCustomerProfile(customer_id);

c. Note: Edit getlnitialContext () to suit your environment. Click Alt + Enter and select
dataservices.customermanagement.CustomerProfile. This imports the specified element.

DataserviceClient.java® - {DataserviceClient}H, *

String params[] = {customer_id}; []

CustomerProfile ds = CustomerProfile.getInstance |

getInitialContext(),

"Evaluation" |:|
):

CustomerProfilebocument doc = ds.getlustomerProfile (customer_id);

System.out.println("Connected to Liguid Data $.2 : CustomerProfile Data Service ..."):

System. out.println(" Customers ———— ),
Customer customer = doc.getCustomerProfile().getfustonerdrray(0);
System. out.println("Connected to Liguid Data $.2 : CustomerProfile Data Serwvice ..."):

[ | ]

Figure 7-9 Source View of Code for Typed Mediator API

BEA Liquid Data for WebLogic: Samples Tutorial 89



5. View the results in the Output window, by completing the following steps:
a. Click the Start icon (or press Ctrl + F5) to compile your program.

b. Confirm that the program return the specified results by viewing the results in the Output
window (if not open, choose View — Windows — Output).

Build | Cutput kS
Trying to create process and attach to 1317... &

Divbeatjdikl4Z 05vbin' javaw.exe -Xdebug -Xnoagent -Djava.conpiler=NONE -Xrunjdwp:transport=do_
Process started

Attached successfully.

= Data Service Client
Connected to Liguid Data 8.2 : CustomerProfile Data Serwvice ...

======================= [USLOLErS =====================
Connected to Ligquid Data &§.2 : CustomerProfile Data Service ...
==== Qrders =============z=z========
Order # ORDER_3_0 Date 2001-10-01 Total $656.65

Product # APPA ZH % Price £2599.95 Quantity: 1

Froduct # APPA Ei 1 Frice $99.95 Quantity: 1

Product # APPA SH_4 Price £249.95 Quantity: 1

Product # APPA EA 1 Price £9.595 Quantity: 15
Order # ORDER_3_1 Date 2001-11-16& Total $732.65

Product # APPA_SH_5 Price £299.95 Quantity: 1

Product # APPA EA 1 Price §99.595 Quantity: 1

Product # APPA Bi 1 Price §325.95 Quantity: 1
Order # ORDER_3_10 Date 2003-01-09 Total $105.65

Product # APPA GL_3 Price §35.595 Quantity: 1

Product # APPA MN 3 Price £49.95 Quantity: 1

ED Profant. & APPA MN 4 Prine 51294 Miantitwr: 1 mlz‘

Figure 7-10 Results—Output Window

6. (Optional) Run your program in a standalone Java application to show customer orders.

Command Prompt

Microsoft Windows XP [Uersion 5.1.26801
(C>» Copyright 1785-2881 Microsoft Corp.

IC=“Documents and Settingszsmblancha>D:
D:~>cd beasuser_projectssapplicationssdanubesEvaluationsDataServiceClient

D:=“hea*user_projectssapplications~danube~Evaluation~DataServiceClient>javac —d .
DatalServiceClient. java

Mote: DataServiceClient.java uses or overrides a deprecated API.

Mote: Recompile with —deprecation for details.

D:sbhea‘user

projectssapplicationssdanubesEvaluation~Data%erviceClient>java Datal
erviceClien

== Data Serwvice Client

Liguid Data 8.2 = CustomerProfile Data Service
= Customers
a 8.2 = G
= Orders

erPro

Order # ORDER_3_@
Product # APPA_
Product # APPA_BA_1

Product # APPA_SH_4

Product # APPA_

Order # ORDER_3_1

Product # APPA_EH_5

Product # APPA_]

Date Z2001-16-81
B Price
Price
Price
BA_1 Price
Date 2801-11-16
Price

BA_1 Price

Product # APPA_BA_1 Py

Order # ORDER_3_18

Product # APPA_GL_3
Product # APPA_MN_3
Product # APPA_MN_4

Order # ORDER_3_11

Product # APPA_MN_3
Product # APPA_MN_4
Product # APPA_MN_G

Order # ORDER_3_12

rice
Date 2003-81-89
Price
Price
Price
Date 2003-B2-24
Price
Price
Price
Date 2003-84-12

Product # APPA_MN_4 Price
Product # APPA_MN_5 Price

5$299.95
§$99.95
5249 95 Quantity: 1
Quantity: 15

$732 .65
Quantity: 1

95
Total 5185.65
75

Quantity:
Quantity:
Quantity:
Total $112.65
$49.95
$12.95
$49.95
Total $18%.65
Quantity:
Quantity:

Quantity:
Quantity:
Quantity:

N L

Figure 7-11 Results—Standalone Java Application

BEA Liquid Data for WebLogic: Samples Tutorial

90



Lab 7.3

Resetting the Mediator API

After Lab 7.2, you must remove the Evaluation_ld-client.jar file from your Libraries folder, since this
JAR file will create inconsistencies in future lessons. You must also revert the method calls to use the
Untyped Mediator API.

Objectives

In this lab, you will:

Remove the Evaluation_ld-client.jar file from the Libraries folder.

Revert the method calls to use the untyped Mediator API.

Instructions

1. Delete the Evaluation-ld-client.jar file by completing the following steps:

a.
b.
c.

d

Expand the Libraries folder.
Right-click the Evaluation-ld-client.jar file.
Choose Delete from the pop-up menu.

Click Yes, when the confirmation message displays.

2. Revert the method calls to use the untyped mediator API, by completing the following steps:

a.

b.

Open the DataServiceClient.java file.

Replace the declaration of the DataService and CustomerProfileDocument objects with the
following (code to modify is displayed in boldface):

DataService ds = DataServiceFactory.newDataService(

getinitialContext(), // Initial Context
"Evaluation", // Application Name
""Id:DataServices/CustomerManagement/CustomerProfile" // Data Service Name
);

CustomerProfileDocument doc = (CustomerProfileDocument)

ds.invoke("'getCustomerProfile",params);

System.out.printIn(**Connected to Liquid Data 8.5 : CustomerProfile Data Service

Note: If your application name is different from Evaluation, locate Evaluation in the
newDataService and rename it to reflect the name of your application. The import
CustomerProfile statement also should be removed.

C.

Save your work.

Lesson Summary

In this lesson, you learned how to:

Set the classpath environment to use the SDO Mediator API.

Use the untyped and typed SDO Mediator API to access data services from Java.

Generate the specific client-side Mediator API for your data service.

BEA Liquid Data for WebLogic: Samples Tutorial

91



Lesson 8 Consuming Data Services Using WebLogic Workshop

Objectives

Overview

Lab 8.1

Controls

A Liquid Data control provides WebLogic Workshop applications with east access to data service
functions.

After completing this lesson, you will be able to:

Create a Java page flow (.jpf) web application file, using WebLogic Workshop.

Use the WebLogic Workshop NetUI data binding context to display customer profile information
on the web.

Use the Liquid Data control to access data services from a Java page flow.

A convenient way to quickly access Liquid Data from a WebLogic Workshop application, such as
page flows, process definitions, portals, or web services, is through the Liquid Data control.

The Liquid Data control is a wizard-generated Java file that exposes to WebLogic Workshop client
applications only those data service function you choose. You can add functions to a control from data
services deployed on any WebLogic Server that is accessible to the client application, whether it is on
the same WebLogic Server as the client application or on a remote WebLogic Server.

If accessing data services on a remote server, information regarding the information that the service
functions return (in the form of XML schema files) are first downloaded from the remote server into
the current application. The schema files are placed in a schema project named after the remote
application. The directory structure within the project mirrors the directory structure of the remote
server.

When you create a Liquid Data control, WebLogic Workshop generates interface files for the target
schemas associated with the queries and then a Java Control Extension (.jcx) file. The .jex file contains
the methods included from the data services when the control was created and a commented method
that, when uncommented, allows you to pass any XQuery statement to the server in the form of an ad-
hoc query.

Installing a Liquid Data Control

Liquid Data controls let you easily access data from page flows, process definitions, portals, or web
services.

Objectives
In this lab, you will:
Import a Web project that will be used to demonstrate Liquid Data control capabilities.

Install a Liquid Data control.

Instructions

1. Right-click the Evaluation application folder.

BEA Liquid Data for WebLogic: Samples Tutorial 92



Lab 8.2

2. Choose Import Project.
3. Choose Web Project.
4. Navigate to the <beahome>\weblogic81\samples\liquiddata directory.
5. Select the CustomerManagementWebApp project and click Open.
6. Click Import, and then click Yes when asked whether you want to install project files.
7. Right-click the Evaluation application folder.
8. Choose Install — Controls — Liquid Data.
Note: The Liquid Data option will not display, if you previously installed a Liquid Data control.

9. Expand the Libraries folder and confirm that the LiquidDataControl.jar file is installed.
|| Application #

29 Ewaluation

[&] CreditRating'w's
EI CustomerManagement webapp
DakaserviceClisnk
L] DataServices
[C1) EvaluationDatagervices
[C 1 Modules
=1-{_9 Libraries
[z] DataServiceClient. jar
[ﬁ Dataervices, jar
[ﬂ EvaluationDataServices, jar
@ |d-server-app.jar
[z LiguidDataContral. jar
(3] Security Roles

F

igure 8-1 Liquid Data Control

Defining the Liquid Data Control

1.

2

New Java Control

Create a new folder in the CustomerManagementWebApp web project, and name it controls.
. Define a new Java control as a Liquid Data control, by completing the following steps:

a. Right-click the controls folder.

b. Choose New — Java Control.

c. Select Liquid Data.

d. Enter CustomerData in the File Name field.

e. Click Next.

®

Select a control to extend o select Custom ko create a new custom control:
1) Custom

[ patzbase

web Service

]

Tuxeda
(2 Applicationtiew -

File rame CustomerDate] |

{CustomerManagementittebapp}t...|
=

BEA Liquid Data for WebLogic: Samples Tutorial

93



Figure 8-2 Creating a New Java Control
f. Click Create.

Note: Do not change any default settings.

New Java Control - Liquid Data. El
[=]
STEP 1 N
STEP 2
Liquid Data Application (& Current (O Other
[Lerorse | &
| Previous | | | | Create | | Cancel |

Figure 8-3 Creating a New Liquid Data Control

g. Inthe Select Liquid Data Queries window: Expand the CustomerManagement and
CustomerProfile folders.

h. Select getCustomerProfile().
i. Press Ctrl.
j-  Select submitCustomerProfile().
k. Click Add and then click Finish.
i Setact Liquid Data Queres...
Refredh

&

Select one or more Quenes to add to the control.

-3 DataServices submitCustomerFrofle
& 2] AppereDB [getCustomerProfie
=2 Custorme e
= ] Custormertanagenment
& [ CustormaProfie.ds
] getabustomers( ) -m
=] getCustomerProfiel ) 3 2]
[ ] submitarraytfustomernProfiel ) Rermove |
|| subsmetCustomenProfie) i
[ BlectronicsDE | Remaove Al |
2] Servicele
=2 WebSenices

Figure 8-4 Selecting Liquid Data Queries for Liquid Data Control

It will take a few moments for the project to compile. After compilation, you should see a Java-based
Liquid Data control called CustomerData. jcx, with the following signatures:

getCustomerProfile() is a data service read function.

getCustomerProfileWithFilter() is a data service read function that uses the XQuery filter for
dynamic filtering and sorting.

BEA Liquid Data for WebLogic: Samples Tutorial 94



Lab 8.3

submitCustomerProfile() is a submit function for all the changes (inserts, updates, and deletes)
done to the customer profile and persisting the data to the data sources involved.

CustomerData,jox - {CustomerManagementiWebappHcontrals), X

[4]

_|—\_ -0 . CustomerData
el

¥ getCustomerProfile
¥ gekCustometProfileWwithFiker

¥ submibCuskomerProfile

|| Design View [Source Yiew |

Figure 8-5 Liquid Data Control

Inserting a Liquid Data Control into a Page Flow

At this point, you created a Liquid Data control and specified which data service functions
(getCustomerProfile() and submitCustomerProfile()) you want to want to use in this control. However,
the control is not yet associated with a page flow, from which end-users can retrieve data.

Objectives

In this lab, you will:

Use Flow View to add the CustomerData control to the CustomerPageFlowController.jpf file.

Use Source View to confirm the addition.

Instructions

1. Open CustomerPageFlowController.jpf in Flow View. (The file is located in the
CustomerManagementWebApp\CustomerPageFlow folder.)

Note: There are two "errors" in the file, indicated by the two red marks in the scrollbar. This is because
the getCustomer() and submitCustomer() functions are not yet associated with a Liquid Data control.

BEA Liquid Data for WebLogic: Samples Tutorial 95



CustomerPageFlowContraller, jpf - {CustomerManagementWebAppHCustomerPageFlow), Y
_ [«]
> [3) wccers () m
Indau gz how_cuslamarFarm
" g e
< > | ] = —
Bl «—=z @
Y . cuamerolFaundyzp iramar
vl D . secesst D
P — T —
cuamerDatallyzn el cumlamerBadlaezn
] =
B = @ ==
cusamarFarm y3p Zubm 2 rstamarFarm
cuslamarSubm KSucoazs 3 e -
—m:;é' 'l?."
_zbmIC e
BOCREE gy
cuslamarSubmbErmargsg | . =N '\“-’,'
— '\t-,' sa0ndarFlhar
shaw_arderLineFarm
b S— I.\';;".I
arderLineFarm ;3p updale_arderLIneFarm
success
— ?)
subm kOrderLingFarm
success
— ?)
delietinderLine
succars
1 1]
zad
[ o 1]
|| Flow View [Ackion Yiew | Source Yiew |

Figure 8-6 Page Flow View

2. In Data Palette, go to Controls. (If Data Palette is not open, choose View — Windows — Data
Palette.)

3. Choose Add — Local Controls — CustomerData, and name it LDControl.

4. Click Create.

Insert Control - CustomerData

Wariable name For this control: | LDContral |

[]Maks this a control Factory that can create mulkiple instances at runtime

Figure 8-7 Insert Custom Liquid Data Control
5. Open the CustomerPageFlowController.jpf in Source View.

6. Confirm that the page flow now includes the control as an instance variable:

private controls.CustomerData LDControl;

BEA Liquid Data for WebLogic: Samples Tutorial

96



Lab 8.4

CustomerPageFlowContraoller. jpf - {CustomeriManagement'Webapp}iCustomerPageFlow)

by

package CustomerPageFlow;

[fipf:controller
EXPhisdata 15 auto-generated, Hand-editing this SEction 15 not recommended, =3

public class CustomerPageFlowController extends PageFlowController
{

Boommon: control

private controls.CustomerData LDControl;

public CustomerProfileDocument customerDocument:

public Customer custComer;

public String customer3ince;

public String birthDay;

private static SimpleDateFormat df = mew SimpleDateFormat (" yyyy-Me-dd" )
public Orderline orderline;

public FilterX(uery filter = new FilterXQuery():

hoolean sortdscending = true;

public int limit = 5;

Kl

| Flow Yiew | Action Yiew | Source Yiew |

Figure 8-8 Source View of Liquid Data Control

Running the Web Application

In this lab you will see the Liquid Data control in action.

Objectives

In this lab, you will:

Run the Web application, which now contains a Liquid Data control.
Use getCustomerProfile() to retrieve data about a specific customer.

Use submitCustomerProfile()to update customer data.

Use Liquid Data Test View to conform that the changes were persisted.

Instructions

Note: The WebLogic Server must be running.

1. Build the CustomerManagementWebApp project

2. Open CustomerPageFlowController.jpf in Flow View.

3. Click the Start icon (or press Ctrl + F5) to run the web application. The Workshop Test Browser

opens after a few moments.

4. Enter CUSTOMER3 in the customer ID field and click Submit. The profile and order information

for Britt Pierce should be returned.

BEA Liquid Data for WebLogic: Samples Tutorial

97



% Workshop Test Browser

- |
BEA WebLogic Workshop™ ]
Version 8.1
Customer Profile
O Name Srmith, Joe 3
| Customer Since 200110401
| Email Address JOHN 3@att.com
Telephone Number 5287731250
. ssN 647-73-1259
| BithDay 19620509
| CreditRating 600 U
Update Profile
Orders
Filters:
Order Amount | > =] |0 Apply filter MNurmber of Orders [5 | _ Set Limit
LINE OAPPA_SH 4 Sancsl at 1249 85Remove
Mordstrom
2001- ey
EREER 1 Yo | 5585 | e | appa s s He”'fm 11299 55 Remove
Farragamo,
CLCci
LINE 2APPA_BA_1 Dejavu 1] 99.95Femove
Hoba
Iewy Order ttem >
< i | >

Figure 8-9 Java Page Flow Results
Modify the customer information by completing the following steps:

a. Click Update Profile.
b. Modify Email Address to the following:

JOHN_3@yahoo.com
c. Click Submit.

) Workshop Test Browser

« = @ < || hprpiocahost:7ooia agementiehapp/CustomerPageFion fiag-
|
— BEA Weblogic Workshop™
g Version 8.1
First Name oe
Last Name: Srnith

Customer Since 2001-10-01
Email Address: JOHN_3@yahoo. com
Telephone Mumber 9287731253

SSN: [poeoggmes
Birthday: [ios2os0s
Default Shipping Method: [PRIORTY-1
Credit Rating GO0

Submit

ST,

[E3

fm; >

Figure 8-10 Updating a Customer Profile
d. Click Submit All Changes. (The link is at the bottom of the Workshop Test Browser page.)

BEA Liquid Data for WebLogic: Samples Tutorial

98



5. Add a new order line item by completing the following steps:

a. InOrder 3 0, click New Order Item. (The link is located at the bottom of all line items for
Order 3 0.)

b. Enter the new order information, as displayed in Figure 8-11, and then click Submit.

) Warkshop Test Browser

BEA Weblogic Warkshop™ |

Version 8.1

LinelD ol
ProductID [aPPA_BAT
Product |5|m—
Quantty [0
Frice pes
Status |opEN—

Back

_— s

Figure 8-11 Adding New Order Information

The new order information displays in the Workshop Test Browser.

%) Workshop Test Browser

=8 % || hittp:f flacalhost: 7001 CustamerManagementwebApp)CustomerPageriow/submitOrderLineForm.do |§'|;’a
-~
BEA Weblogic Workshop™ o—
Version 8.1

Customer Profile

Smith, Joe
2001-10-01
JOHM_3i@ratt.com
92687731259
E47-73-1260
1952-05-09

PRIORITY-1

500
Update Profile

Crders

Filters:

OrderAmount|> '”D Apply filter | NumberufOrders|5 'l 59”—“’”“'

LIKE DW&PP&_SH 4| Sandal &t 1249.95Femove
Mordstrom
Buacrey

ORDER_3.0 20| epgs LiE 1lappa_sHs|  HePRun 1299 85 Femove
10-01 from
Farragamo
Cucci

LIME 2APPA_BA, 1 Dejavu 1| 99.895Remove
Habo

LIME B&PPS_ B 1 Shirt 10| 9.85Remove

Mewy Srder tem =
£ 1l 2

BEA Liquid Data for WebLogic: Samples Tutorial



Figure 8-12 Updated Data
6. Modify an existing order by completing the following steps:
a. InOrder 3 0, click Line 6.
b. Enter 15 in the Quantity field.
c. Click Submit to close the Order Information window.
7. Click Submit All Changes. (The link is at the bottom of the Workshop Test Browser page.)
8. Close Workshop Test Browser.
9. Test whether the changes were persisted by completing the following steps:
a. In WebLogic Workshop, open CustomerProfile.ds in Test View.
b. Select getCustomerProfile(CustomerID) from the Function drop-down list.
c. Enter CUSTOMERS in the Parameter field.
d. Click Execute.

e. Expand the <creditrating™>, <order> and <order line> nodes to confirm that the changes
persisted.

CustomerProfile. ds - {DataServicesHCustomerManagement,

Select Function:

igetCustamerProfile{Customer1D) | - |

Parameters

ysistring CustomerID: ‘ CUSTOMER 3 |

Mumber  Element (by path)

Limit elerments in array results to:
) |

[ start Client Transaction

Result

[ Text | ma

- <order = [=]

<order_id> ORDER_3_0 <forder_id>=

<rustomer_id> CUSTOMER3 <jeustomer _id>
<order_date> 2001-10-01 </order_date:
<ship_method > PRIORITY-1 </ship_method=
<handing_charge> 6.8 <fhandling_charge:
<subtotal> 649.85 </subtotal=
<total_order_amount> 656.65 <ftotal_order_amount>
<sale_tax> 0 <fsale_tax:

«<ship_to> ADDR_3_0 <[ship_to>

<ship_to_name> Britt Pierce <[ship_to_namex
<bil_ta> €C_3_1 «</bil_tox

<estimated_ship_date> 2001-10-03 <festimated_ship_date >
«<status> CLOSED «fstatuss

<data_source [

+ <order_line >
+ <order_line >
+ <order_line >
- <order_line >

<line_id> Line 6 «[line_d>
<order_id> DRDER_3_0 <jorder_id>
<product_id> APPA_BA_1 <fproduct_id>
<product> Shirt </product>
<quantity> 15 <fquantity >
<price> 9.95 <[price>
«<status> OPEN <fstatus>
<forder_linex

<forder>

+ <order >

[ Design View | ®Query Editor View [ Source Wiew | Test Wiew [Query Plan Yigw

Figure 8-13 Test View—Confirm Changes

BEA Liquid Data for WebLogic: Samples Tutorial 100



Lesson Summary

In this lesson, you learned how to:

Install the Liquid Data control in your application.

Create a Liquid Data control for a web project, and then add functions from your data service into
the Liquid Data control.

Add the Liquid Data control into a Java Page Flow.
Use the Liquid Data control to access data services from a web application.

(Optional) Pass data service results to the JSP, using NetUI.

BEA Liquid Data for WebLogic: Samples Tutorial 101



Lesson 9 Accessing Data Service Functions Through Web

Objectives

Overview

Lab 9.1

Services

A Liquid Data control can be used to access data through a page flow, web service, or business logic.
In the previous lesson, you created a Liquid Data control and used it within a web application's page
flow. In this lesson, you will use that same Liquid Data control to generate a .wsdl for a web service
that can invoke data service functions.

After completing this lesson, you will be able to:

Use a Liquid Data control to generate a web service for a data service.
Test the generated web service and invoke data service functions through the web service interface.

Generate a .wsdl file for web service clients.

A web service is a set of functions packaged into a single entity that is available to other systems on a
network. The network can be a corporate intranet or the Internet. Other systems can call these
functions to request data or perform an operation.

Web services are a useful way to provide data to an array of consumers over the Internet, like stock
quotes and weather reports. But they take on a new power in the enterprise, where they offer a flexible
solution for integrating distributed systems, whether legacy systems or new technology.

Generating a Web Service from a Liquid Data Control

In the previous lesson, you created a Liquid Data control, which enabled WebLogic Workshop to
generate a Java Control Extension (.jex) file. This file contains the underlying data service's method
calls. In this lab, you will use that Liquid Data control to generate a web service.

Objectives

In this lab, you will:

Generate a stateless web service interface, through which you can access the Liquid Data control.

Test the web service to determine that it returns customer profile and order information.

Instructions
1. Expand the CustomerManagementWebApp and controls folders.
2. Right-click the CustomerData.jcx control.

3. Choose Generate Test JWS (Stateless). A new file, CustomerDataTest.jws, is generated. With this
Java Web Service (.jws) file, the Liquid Data control methods are now available through a web
service interface.

BEA Liquid Data for WebLogic: Samples Tutorial 102



|| Application

23 Evaluation
(22 AlterTable
(30 CreditRatingws
=) 33 CustomerManagementWebApp
=23 cantrals
A CustomerData.jox
«£ CustomerDataTest.jws
() CustomerPageFiow
(] resources
(1) WEB-INF
Contrallsr jpf
[ error.jsp
[E] index.jsp
(2] DataserviceClient
() Dataservices
(2 EvaluationDataservices
(£ Modules
() Libraries
{30 Security Roles

Figure 9-1 Java Web Service File

4. Open the CustomerDataTest.jws file in Source View.

5. Click the Start icon (or press Ctrl+F5). The Workshop Test Browser opens.

6. Enter CUSTOMERS in the stringp0 field.

= Workshop Test Browser
+ =+ 8 < ”http:fﬂn(alhnst:7EIEIl,iCu5tDmErManagEmEntWEhApDf(nntrnlsf[ustDmErDataTest‘]ws7‘E><PLORE=‘TEST

CustomerDataTest.jws Web Service

hitp: Hflocalhost: 7001 /CustormerManage rentieb App /contrals/
Overview | [ Console | [ Test Farm | [ Test ML | CustomerDataTest, jws
Test operations

Message Lo £l Refresh

Log is empt:

Created by

submitCustomerProfile
submitCustomerProfile is nat supported on the Test Form page (HTTP-GET), plaase use the
Test XML page (HTTP-FOST) to test this operation

getCustomerProfile

string p0: |CUSTOMER3
getCustomerPrafile

getCustomerProfileWithFilter
getCustomerProfileWithFilter is nat supported on the Test Form page (HTTP-GET), please
Use the Test ¥ML page (HTTP-POST) ko test this operation

| {hear
~

v

Figure 9-2 Workshop Test Browser: Web Service

7. Click getCustomerProfile. The customer profile and order information for Customer 3 is retrieved.

8. View both the "Returned from" and "Service Response" results, which should be similar to that

displayed in Figure 9-3.

BEA Liquid Data for WebLogic: Samples Tutorial

103



i Workshop Test Browser Q@J

+ = @ ",4‘ Hlocalhost: 7001 /CustomerManagementWebAppicontrols/CustomerDataTest jws? EXPLORE=, TEST&.LOGENTRY=0

—¥ getCustomerProfile Submitted at Manday, March 21, 2005 10:25:54 AM PST
Ed Clear Lo

p0 = CUSTOMER3

Operation getCustomerProfile
Submitted at Morday, March 21, 2005 10:25:54 AM PST
Method: contrals. CustomerDataTest. getCustamerPrafile
Arguments:

pi : CUSTOMERS
CallStack:

getCustomerProfile)

DOperation getCustomerProfile on Control customerData
Submitted at Monday, March 21, 2005 10:25:54 AM PST
Method: controls, Customer Data, getCustomerProfile
Arguments:

p0 : CUSTOMERS
Callstack:

customerData, getCustomerProfilel)

getCustomerProfile()

Returned from getCustomerProfile on customerData
Submitted at Monday, March 21, 2005 10:26:05 AM PST
Return value: <nsi:CustamerProfile
srmlns:ns0="http:ftemp. openuri.org/Dataservices/schemas/CustomerProfile xsd"s
<customer >

<customer_id>CUSTOMER </customer_ids
«firsk_name =Britt <first_nams>

<last_name>Pierce <ilast_name:

<customer_since >2001-10-01<fcustomer_since»
«<emai_address=JOHN_3@att.com<femail_address>>
<telephone_number >9287731259 < telephone_number >
55N >B47-73-1259 <fssn >

<hirth_day 1952-05-09<birth_day =
<defaill_ship_method =PRIORITY-1</deFault_ship_method:
<email_notification:>1 </email_notification>

<news_letter >0<news_letter:>

<online_statement =1 <fonling_statement:>

<orderss

<orderz

<order_id=ORDER_3_0<forder_id>
<customer_id>CUSTOMERS <fcustomer_id>
<order_date>2001-10-01 <forder_date>

<ship_method =PRIORITY-1</ship_method:
<handling_charge >6.8</handiing_charge >
<subtotal>649,85<fsubtotal»

<tatal_order_smount >656,65<(tokal_order_amounk:
<sale_tax=O</sale_tax>

<ship_to=ADDR_3_0</ship_to:>

<ship_to_name>Britt Pierce</ship_ta_name >
<hill_to=>CC_3_1</bil_to=

<estimated_ship_date >2001-10-03</sstimated_ship_date:
<status »CLOSED < status>

<data_source/=

<order_line>

line_d>LINE_D</line_id>
<order_jd=ORDER_3_0<forder_id>
<product_id=APPA_SH_d</product_id=

<product=Debra Sandal at Modstrom</product >
<quantity =1 < quantity>

<price>249,95</price’>

<stabus >CLOSED < fstatus>

<forder_line>

<order_line>

<line_id=LINE_1 </line_id=>
<order_jd>ORDER_3_0<jorder_id>
<product_id=APPA_SH_S</product_id>

<product>Audrey Hepbun From Farragama </product > hd

Figure 9-3 Web Service Test Results

9. Close the Workshop Test Browser.

Lab 9.2 Using a Liquid Data Control to Generate a WSDL for a Web Service

You can use the Java Web Service file to generate a WSDL. A WSDL file contains all of the
information necessary for a client to invoke the methods of a web service:

The data types used as method parameters or return values.
The individual methods names and signatures (WSDL refers to methods as operations).
The protocols and message formats allowed for each method.

The URLs used to access the web service.
Objectives
In this lab, you will:

Generate a .wsdl file, based on the Liquid Data control.

(Optional) View the .wsdl file's structure and source code.

Instructions

1. Right-click the CustomerDataTest.jws control.

BEA Liquid Data for WebLogic: Samples Tutorial

104



2. Choose Generate WSDL File. The CustomerDataTestContract.wsdl is generated, which can be
used by other web service clients.

|| Application

23 Evaluation
2] AlterTable
(3] CreditRatingw's
= @ CustomerManagement'webapp
-2 contrals
J4A customerData.jex
0-@ CustomerDataTest. jws
[5] CustomerDataTestCantract vsdl
D CustomerDataTestContract.wsdl.bak
{21 CustamerPageFlaw
L resources
(30 WEB-INF
Controller. jpf
E Brror.jsp
[E] index.jsp
2] DataserviceClient
{01 DataServices
{2 EvaluationDataServices
£ Madules
L Libraries
{3 Fecurity Roles

s

Figure 9-4 New WSDL File

3. (Optional) Open the CustomerDataTestContract.wsdl file and explore the document structure and
source code.

BEA Liquid Data for WebLogic: Samples Tutorial 105



|| Document Structure ®

[=1-definitions
= types

[l schema
import
element @ submitCustomerProfile
element : submitCustomerProfileResponse
element : getCustomerProfile
element : getCustomerProfileResponse
element : getCustaomerProfile'withFilker
element 1 getCustomerProfilewithFilterRes)
complexType : FilkersQuery
complexType ¢ ArrayOfFilkerContainer
complexType : FilterContainer
complexType : Filker
complexType : FieldLevelFilker
complexType : CompoundFilker
complexType ¢ ArrayOfOrderByContainer
complexType : OrderByContainer
complexType : OrderByw
complexType ¢ ArrayOFOrderByField
complexType @ OrderByField
complexType : ArrayOfLimitData
complexType : LimitData

schema

= message ! submitCustomerProfileSoapIn

part : parameters
= message : submitCustomerProfileSoapOut

part : parameters

HHEHHBEHBEEEBEBHEEHBEHE®

= message @ getCustomerProfileSoapln
park : parameters
= message @ getCustomerProfileSoapOut
part : parameters
message : getCustomerProfileWwithFilter SoapIn

i

partk : parameters
message ¢ getCustomerProfilewithFilter SoapOut
message : getCustomerProfileHttpGetin
message : getCustomerProfileHtpGetOut
message : getCustomerProfileHtpPostIn
message : getCustomerProfileHttpPostOut
portType @ CustomerDataTestSoap
portType @ CustomerDataTestHEkpiet
portType | CuskomerDataTestHEkpPost
binding : CustomerDataTestSoap
binding : CustomerDataTestHttpGet
binding : CustomerDataTestHttpPost
service | CustomerDataTest

HEHEHEEEEEHNEF

K | [

Figure 9-5 Document Structure

Lesson Summary

In this lesson, you learned how to:

Use a Liquid Data control to generate a web service for a data service.
Test the generated web service and invoke data service functions through the web service interface.

Generate a .wsdl file for web service clients.

BEA Liquid Data for WebLogic: Samples Tutorial 106



Lesson 10 Updating Data Services Using Java

One of the features introduced with BEA Liquid Data for WebLogic 8.5 is the ability to write data
back to the underlying data sources. This write service is built on top of the Service Data Object (SDO)
specification, and provides the ability to update, insert, and delete results returned by a data service. It
also provides the ability to submit all changes to the SDO (inserts, deletes, and updates) to the
underlying data sources for persisting.

Objectives

After completing this lesson, you will be able to:

Update, add to, and delete data from data service objects.

Submit changes to the underlying data sources, using the Mediator API.

Overview

When you update, add, or delete from data service objects, all changes are logged in the SDO's change
summary. When the change is submitted, items indicated in the Change Summary log are applied in a
transactionally-safe manner, and then persisted to the underlying data source. Changes to relational
data sources are automatically applied, while changes to other data services, such as web services and
portals, are applied using a Liquid Data update framework.

Lab 10.1 Modifying and Saving Changes to the Underlying Data Source

Although the steps in the next three labs are different, the underlying principle is the same: When you
update, add, or delete from data service objects, all changes are logged in the SDO's change summary.
When the change is submitted, items indicated in the Change Summary log are applied in a
transactionally-safe manner, and then persisted to the underlying data source. Changes to relational
data sources are automatically applied, while changes to other data services, such as web services and
portals, are applied using a Liquid Data update framework.

Objectives

In this lab, you will:

Modify customer data and save the changes to the SDO Change Summary log.
View the results in the Output window.
Invoke the submit() method of the Mediator API to save the changes to the underlying data source.

View the results in a web service.

BEA Liquid Data for WebLogic: Samples Tutorial 107



Instructions
1. Open the DataServiceClient.java file, located in the DataServiceClient project folder.

2. Change the first and last name of CUSTOMERS3 to Joe Smith (it’s currently Brett Pierce), by using
the set() methods of the Customer data object instance. You do this by adding the set() method to
the //Show Customer Data section (new code is displayed in boldface type):

Customer customer = doc.getCustomerProfile().getCustomerArray(0);
customer.setLastName(**Smith™);
customer.setFirstName(''Joe");

System.out.printIn(*’Customer Name : ™" + customer.getLastName() +
", " + customer.getFirstName());

DataServiceClient java® - {DataServiceClient}, ®

DataService ds = DataServiceFactory.newXnlService |
getInitialContext(),
"Evaluation' ,

"1d:DataServi file"

CustomerProfileDocument doc = (CustomerProfileDocument) ds.invoke("getCustomerProfile’ parans):
$ystem. out.printin('Connected to Liguid Data 8.2 : CustomerProfile Data Service ..."):

SYSTEN. OUT., println{ Customers 1

Customer customer = doc.getCustomerProfile().getCustomerArray(0):
customer. setlastame ' Smith' | »
custoner. secFirstlame (" Joe' ) ;
System. out.printin{'Customer Hame : ' + customer.getlastieme(j + ", " + customer.getFirstiane(]);

System. out. println( Orders 1
Ozder[] order = customer.getOrders(].getOrderArray():
for [imt x=0: x<order.length; x++) {
Sysren. out. println(” Order # " + order[x].gecOrderId() +
" Date ' + order[x].gecOrderbate() +
0 Total §' + order[x].getTotalOrderimount{) );
Orderline[] orderline = order[x].getOrderLineirrayi);
for (int y=0; y<orderline.length; y++) {
SysStem. out. printin(’ Product. # " + orderline[y].getProductld(] +
" Price §" + orderline[y].getPrice() +
" Quantity: " + orderline[y].gecuanticyi(]

i
+

} catch (Exception e} {
e.printitackTrace();
+

}

[ D]

Figure 10-1 set() Method Specified

3. Save your work.

4. Right-click the DataServiceClient project folder and choose Build DataServiceClient.
5. Click the DataServiceClient.java file's Start icon (or press Ctrl + F5).
6

Confirm that the changes were submitted, by viewing the results in the Output window. (If the
window is not open, choose View — Windows — Output.)

Note: At this point, the changes only exist as entries in the SDO Change Summary Log, not in the data
source. You must complete the remaining steps in this lab to ensure that the underlying data source is
updated.

OUpLE X
Trying to create process and attach to 1380... B
D:ybea)jdil42 05\bintjavaw.exe -Xdebug —Xnoagent -Djava.cowpiler=NONE erunj\imp:t}:anspurt=dt750:ket,address=l390,suspe.|:

Process started
Attached successfully.
=== == === Data Service Client ==
classclass com.bea, ld. dswediator. client.XnlDatalerviceInpl
: CustomerProfile Data Serwice ...
== Customer ==== ====
1, last_name, falsze, -1}
{postSet in Handler: 1, last name, false, -1}
{preset in Handler: 1, first name, false, -1}
{postSet in Handler: 1, first_name, false, -1}
Customer Name : Smith, Joe
Orders
Order # ORDER_3_0 Date 2001-10-01 Total §656.65

L] 0]

Figure 10-2 Change Results in Output Window

BEA Liquid Data for WebLogic: Samples Tutorial 108



7. Invoke the Mediator API’s submit() method and save the changes to the data source, by using the
data service instance. The submit() method takes two parameters: the document to submit and the

data service name. You do this by adding the following code into the //Show Customer Data

section of the file:
ds.submit(doc,

"Id:DataServices/CustomerManagement/CustomerProfile.ds");

8. Change the output code, as follows:
System.out.printIn(*’*Change Submitted");

DataserviceClient java* - {DataServiceClienthy

%

DataService ds = DataServiceFactory.newXulService(
gerInitialContexti),

"Evaluation" ,

"1d:DataServices f i ile"

i

§ystem. out.println(" Custamers 1z
Customer customer = doc.getCustomerProfile(). gerCustomerirray(0);

customer. setLastName (" Smith' ) ;

customer. setFirsthame (' Joe') ;
ds. submit(doc, " i ile.ds"):
SYSTem. DUt.println(’Change Submitted');

System. out.println(” Orders )
Order[] order = customer.getOrders(}.getOrderdrrayi);
for (int x=0: x<order.length: x++) {
Systen. out. println(’ Orvder # " + order[x].gecOrderId() +
Date " + order[x].getOrderDate(] +
Total §' + order[x].getTotalOrderAnownt{) ]:
Orderline[] orderline = order[x].getOrderlinehrray():
for (int ¥=0; y<orderline.length; w+] {

S¥stem. out.printin(" Product # " + orderline[y].getProductId() +
" Price §" + orderline[y].gecPrice() +
Quantity: ' + orderline[y].getuantity(]

12
i

} catch (Exception e} {
e.printstackTrace() ;

¥

¥

CustomerProfileDocument doc = (CustomerProfileDocument) ds.inwoke (' getCustomerProfile’ ,parauns);
System. out.println('Connected to Liquid Data 8.2 : CustomerProfile Data Service ..."):

[T

Figure 10-3 submit() and Output Method Specified

9. Click the DataServiceClient.java file's Start icon (or press Ctrl + F5).

10. Confirm that the changes persisted to the underlying data source by completing the following steps:

a. Click the CustomerPageFlowController.jpf application's Start icon (or press Ctrl + F5) to open

the Workshop Test Browser.

b. In the Workshop Test Browser, enter CUSTOMER3 in the Customer ID field and click Submit.

¢. Confirm that the CUSTOMER3 name is now Smith, Joe.

d. Close the Workshop Test Browser.

Figure 10-4 Change Results in Test Browser

BEA Liquid Data for WebLogic: Samples Tutorial

109



Lab 10.2 Inserting New Data to the Underlying Data Source Using Java

You can use the Mediator API to add new information to the underlying data source, thereby reducing
the need to know a variety of data source APIs.

Objectives

In this lab, you will:

Add new data and save the changes to the SDO Change Summary log.
Invoke the submit() method of the Mediator API to save the changes to the underlying data source.

View the results in a web service.

Instructions
1. In WebLogic Workshop: Open the DataServiceClient.java file.

2. Add anew item to ORDER 3 0 (the first order placed by CUSTOMER3), by using the
addNewOrderLine()method of the Order Item data object instance. You do this by inserting the
following code into the //Show Customer Data section, after System.out.println("Change
Submitted"):

// Get the order
Order myorder = customer.getOrders().getOrderArray(0);
// Create a new order item

OrderLine newitem = myorder.addNewOrderLine();

3. Set the values of the new order item, including values for all required columns. (You can check the
physical or logical .xsd file to determine what elements are required.) All foreign keys must be
valid; therefore, use APPA_GL _3 as the Product ID.

Since the item will be added as a child of ORDER 3 0, you do not need to setOrderID(); the SDO
update will automatically set the foreign key to match its parent.

To set the values, insert the following code above the /Show Order Data section of the Java file:
// Fill the values of the new order item
newitem.setLineld(*'8");
newitem.setProductld("'APPA_GL_3");
newitem.setProduct(*'Shirt');
newitem.setQuantity(new BigDecimal (10));
newitem.setPrice(new BigDecimal (10));

newitem.setStatus("'OPEN');

4. Press Alt + Enter to enable java.math.BigDecimal.

BEA Liquid Data for WebLogic: Samples Tutorial 110



5. Invoke the Mediator API’s submit method and save the changes to the data source, by using the
data service instance. (The submit() method takes in two parameters: the document to submit and
the data service name.)

You do this by inserting the following code into the /Show Order Data section of the java file:
// Submit new order item
ds.submit(doc, "ld:DataServices/CustomerManagement/CustomerProfile.ds");
System.out.printIn(*'‘Change Submitted");

6. Comment out the code where customer first name and last name were set, including call to submit
method

7. Confirm that the /Show Order Data section of your java file is as displayed in Figure 10-5.

DataServiceClient., java® - {DataServiceClisnt}H, e
"ld:DataServicesfCust FCust Profile" -
System. out. println (' ———m——o——o— Customers ————1'|
System, out.println("Connected to Liguid Data 8.2 : CustomerProfile Data Service ..."):
CustomerProfileDocunent doc = (CustomerProfileDocument) ds.invoke ("getCustomerProfile’ params);

Customer customer = doc.getCustomerProfile(). getCustonerdrray(0):

£ customer. setlastNane ("Snith") ;

£ customer. setFirs tNape ("Joe")

£ ds. submit (doc, "ldiDataServices/CustomerManiagepent CustomerProfile.ds™);
Aystem.out.println("Customer Hame : " + customer.getlastName() +

", " + custoner,getFirstName ()] :

£ Get the order
Order myorder = customer.getlrders().getlrderdrray(0);
4 Create @ new order item
Orderline newitem = myorder.addNewOrderLine(]:
/7 Fill the walues of the new order item
hewiten.seclineId("8");
newiten. setProductId("APPR GL 3"):
newiten. setProduct("Shirt"y: ~
newiten.setQuantity (mew BigDecimal(10));
newiten. secPrice (new BigDecimal (10)):
newiten.setitatus ("OPEH") ;

ds.subnit(doc, "ld:DataServices/Cust fCust, Profile.ds") ;
Aystem,out.println('Change Submitted"):

System.out.printlng" Orders 1
Order[] order = customer.getlrders().getOrderfrray();
for (int x=0; x<order.length; x+H) {
System.out.printlni(" Order # " + order[x].getOrderId() + lz‘

[ 0]

Figure 10-5 Java Code to Add Line Item
8. Click the DataServiceClient.java file's Start icon (or press Ctrl + F5).
9. Confirm that the changes persisted to the underlying data source by completing the following steps:

a. Click the CustomerPageFlowController.jpf application's Start icon (or press Ctrl + F5) to open
the Workshop Test Browser.

b. In the Workshop Test Browser, enter CUSTOMER3 in the Customer ID field and click Submit.
c. Find ORDER 3 0 and verify that the new item (8) exists.

BEA Liquid Data for WebLogic: Samples Tutorial 111



2 Workshop Test Browser

+«~ = 3 ‘G| 3Flow,|’getCustomer.do,'jsessionid=CQDv?pwn1MdeI5L3meDPZBthKDTxQZTDzecXJanTT1DQ4hT!3?3838308| @

BEA Weblogic Workshop™ re—

Version 8.1

Customer Profile

Smith, Joe
2001-10-01
JOHM_3@att.com
GAETT31258
G47-73-1259
1952-05-09

PRIORITY-1

600
Update Profile

Crders

Filters:

OrderAmount|> vIID Apply filter | Numherngrderle <] Set Limit|

LIKE DAPPA_SH 4 Sandal at 1249 95 Remove
Mardstrom
Aacrey
Hepbun

ORDER_3_0 123_031_ 65665 LIME 18PPA_SH_S i 1299 95 Remove
Farragamo
Cucci

LIME ZaPPA_BA 1 Drejareut 1| 99.95Remove
Hobao

LIME GAaPPA_BA 1 Shirt 13| 9.95Femove

LIME 5APPA_GL_3 Shirt 10 10Remove

ey Order tem w
£ 1} 2

Figure 10-6 New Order Item Added

Lab 10.3 Deleting Data from the Underlying Data Source Using Java

You can use the Mediator API to delete information to the underlying data source, thereby reducing
the need to know a variety of data source APIs.

Objectives

In this lab, you will:

Delete data and save the changes to the SDO Change Summary log.
Invoke the submit() method of the Mediator API to save the changes to the underlying data source.

View the results in a web service.

Instructions

1. In the Workshop Test Browser, determine the new item’s placement in the array and subtract 1. For
example, if line item with line_id = 8 is the fifth item for ORDER_3 0, its order placement is 4.

2. Close the Workshop Test Browser.

BEA Liquid Data for WebLogic: Samples Tutorial 112



3. In the DataServicesClient.java file delete or comment out the code that added a new order line
item.

4. Add an instance of the item that you want to delete, by inserting the following code file:

// Get the order item

OrderLine myltem = customer.getOrders().getOrderArray(0).getOrderLineArray(4);

Note: The getOrderLineArray() is based on the item's placement in the array. As displayed in
Figure 10-6, 8 is the fifth item, making the variable 4. You should use the variable that is correct
for your situation.

5. Call the delete method by inserting the following code:
// Delete the order item
myltem.delete();
6. Submit the changes, using the Mediator API’s submit() method.
// Submit delete order item

ds.submit(doc, "ld:DataServices/CustomerManagement/CustomerProfile.ds");

System.out.printIn(*'‘Change Submitted™);

7. Confirm that the code is as displayed in Figure 10-7.

ES

DataServicedlient, java - {DataServiceClientH,
T T IO =

"ld:DataServices/fCust fCust Profile"

Vi

System. out.println(" Customers —— vy
System.out.println("Connected to Liguid Data $.2 : CustomerProfile Data Service ..."];

CustomerProfilelocument doc = (CustomerProfilellocument) ds.inwvoke("getCustomerProfile"  params);

Customer customer = doc.getCustomerProfile().getCustonerdrrayi0);

S¥stem. out.println("Customer Hame : " + customer.getlLastName () +
", " 4+ custoner.getFirstName());

SF Get the order item
Orderline myltem = customer.getlrders().geclrderdrray(0).gecirderlinedrray(2);
wyltem,delete (]
dz.zubnitidoc, "ld:DataSerwvices/{Cust t FCust Profile.ds");
S¥stem. out.println("Change Submitted");

System. out.println(" Orders 1:
Order[] order = customer.getlrdersi().getOrderdrray():
for (imt x=0: x<order.length; =x+) {
S¥stem. out.println(” Order # " + order[x].gecOrderId() +
" Date " + order[x].getOrderDate() +
i Total §" + order[x].getTotalOrderdmount() ):
OrderLine[] orderline = order[x].getOrderLinedrray():
for [(int ¥=0; y<orderline.length; ¥++) {
Fysten.out. println(" Product # " + orderline[v].getProductId() +
" Price 5" + orderline[y].getPricei) +
" Quantity: " + orderline[¥].getQuancity()

\ 1 &
K1 | ]

Figure 10-7 Java Code to Delete Line Item

8. Build the DataServiceClient project.

9. Click the DataServiceClient.java file's Start icon (or press Ctrl + F5).

10. Confirm that the changes persisted to the underlying data source by completing the following steps:

a. Click the CustomerPageFlowController.jpf application's Start icon (or press Ctrl+F5) to open
the Workshop Test Browser.

b. In the Workshop Test Browser, enter CUSTOMER3 in the Customer ID field and click Submit.

c. Find ORDER 3 0 and verify that Line 8 is no longer present.

BEA Liquid Data for WebLogic: Samples Tutorial 113



d. Close the Workshop Test Browser.
Lesson Summary
In this lesson, you learned how to:

Update, add to, and delete data from data service objects.

Submit changes to the underlying data sources, using the Mediator API.

BEA Liquid Data for WebLogic: Samples Tutorial 114



Lesson

Objectives

Overview

Lab 11.1

11 Filtering, Sorting, and Truncating XML Data

When designing your data service, you can specify read functions that filter data service return values.
However, instead of trying to create a read function for every possible client requirement, you can
create generalized read functions to which client applications can apply custom filtering or ordering
criteria at runtime.

After completing this lesson, you will be able to:

Use the FilterXQuery class to create dynamic filter, sort, and truncate data service results.

Apply the FilterXQuery class to a data service, using the Mediator API or Liquid Data control.

Data users often want to access information in ways that are not anticipated in the design of a data
service. The filtering and ordering API allow client applications to control what data is returned by a
data service read function call based on conditions specified at runtime.

Although you can specify read functions that filter data service return values, it may be difficult to
anticipate all the ways that client applications may want to filter return values. To deal with this
contingency, Liquid Data lets client applications specify dynamic filtering, sorting, and truncating
criteria against the data service. These criteria are evaluated on the Server, before being transmitted on
the network, thereby reducing the data set results to items matching the criteria. Where possible, these
instances are “pushed down” to the underlying data source, thereby reducing the data set returned to
the user.

The advantage of the FilterXQuery class is that you can define client-side filtering operations, without
modifying or re-deploying your data services.

Filtering Data Service Results

With the FilterXQuery class addFilter() method, filtering criteria are specified as Boolean condition
statements (for example, ORDER_AMOUNT > 1000). Only items that meet the condition are included
in the return set.

The addFilter() method also lets you create compound filters that provide significant flexibility, given
the hierarchical structure of the data service return type. In other words, given a condition on a nested
element, compound filters let you control the effects of the condition in relation to the parent element.

For example, consider a multi-level data hierarchy for CUSTOMERS/CUSTOMER/ORDER, in which
CUSTOMERS is the top level document element, and CUSTOMER and ORDER are sequences within
CUSTOMERS and CUSTOMER respectively. Finally, ORDER_AMOUNT is an element within
ORDER.

An ORDER_AMOUNT condition (for example, CUSTOMER/ORDER/ORDER_AMOUNT > 1000)
can affect what values are returned in several ways:

It can cause all CUSTOMER objects to be returned, but filter ORDERS that have an amount less
than 1000.

It can cause only CUSTOMER objects to be returned that have at least one large order. All
ORDER objects are returned for every CUSTOMER.

BEA Liquid Data for WebLogic: Samples Tutorial 115



It can cause only CUSTOMER objects to be returned that have at least one large order along with
only large ORDER objects.

It can cause only CUSTOMER objects to be returned for which every ORDER is greater than
1000.

Instead of writing XQuery functions for each case, you just pass the filter object as a parameter when
executing a data service function, either using the Liquid Data control or Mediator API.

Objectives

In this lab, you will:

Import the FilterXQuery class, which enables filtering, truncating, and sorting of data.
Add a condition filter.

View the results through the Mediator API.

Instructions
1. Open the DataServiceClient.java file.
2. Delete the code that removed the line item with line_id = 8 order item delete code.

3. Delete the invoke and println code from the //Insert Code section:

CustomerProfileDocument doc = (CustomerProfileDocument)
ds. invoke("'getCustomerProfile",params);

System.out.printIn(’’Connected to Liquid Data 8.5 : CustomerProfile
Data Service ...");

4. Import the FilterXQuery class by adding the following code:
import com.bea.ld.filter.FilterXQuery;

5. Create a filter instance of the FilterXQuery, plus specify a condition to filter orders greater than
$1,000, by adding the following code:

//Create a filter and condition
FilterXQuery Ffilter = new FilterXQuery(Q);
filter.addFilter(

""CustomerProfile/customer/orders/order",
""CustomerProfile/customer/orders/order/total_order_amount",

">, "1000™);

6. Apply the filter to the data service, by adding the following code:

// Apply the filter
ds.setFilterCondition(filter);

CustomerProfileDocument doc = (CustomerProfileDocument)
ds. invoke("'getCustomerProfile",params);

7. Change the //Show Customer Data code so that it is as follows:
// Show Customer Data

System.out._printin(" Customers ");

Customer customer = doc.getCustomerProfile().getCustomerArray(0);

BEA Liquid Data for WebLogic: Samples Tutorial 116



System.out.printIn(*'Connected to Liquid Data 8.5 : CustomerProfile Data Service ..."

DataServiceClient. java™ - {DatassrviceClient}, 3

DataService ds = DataServiceFactory.newXmlService(
getInitialContext(),

"Evaluation" ,

"1d:DataServices /CustomerManagement /CustomerProfile"
1:

FilrterXQuery filter = mew FilterXQuery():
filter.addFilter(
"CustomerProfile/customerfordersforder" , "CustomerProfile/customerforders/order/total order amount',

[PCRETTT I
ds.setFilterCondition(filter);

CustomerProfileDocument doc = (CustomerFrofilelocument) ds.inwoke ('getCustomerProfile'  params);

System. out.println(’ Customers 1

Customer customer = doc.getCustomerProfile(].getCustomerdrray(0);

$ystem.out.println("Connected to Ligquid Data 8.2 : CustomerProfile Data Service ..."}:

System. out.println(" Orders 1

Order[] arder = customer.getOrders().getOrderirray();

for (int x=0; x<order.length; x+) {

System.out.println(’ Order # " + order[x].getlrderId() + ||
" Date " + order[x].getOrderDate(] +
" Total §" + order[x].getTotalOrderdnounc() )
OrderlLine[] orderline = order[x].getOrderLinedrray():
for (int y=0; y<orderline.length; v+ {
System.out.println(" Product # " + orderline[¥].getProductId() +
" Price §' + orderline[y].getPrice{) +
" Quantity: " + orderline[y].getQuantityi)
1:

} catch (Exception e} {
e.printdtackTrace (] ;

+
[0 B]

Figure 11-1 Filter Code
8. Click the DataServiceClient.java file's Start icon (or press Ctrl + F5).

9. Use the Mediator API to view the results in the Output window and/or a standalone Java
environment. The return results should be similar to those displayed in Figure 11-2.

|| output bt
Tryihg to create process and attach to 3370...
D:vbheatjdk142_05%vhint javaw. exe -Xdebug -Xnoagent -Djava.compiler=NONE -Xrunjdup:transport=dt_.
Process started
Attached successfully.
== Data Serwvice Client
Connected to Licguid Data 8.2 @ CustomerProfile Data Service

Ordera
Order # ORDER_3_2 Date 2002-01-02 Total $1283.65
FProduct # APPA BA 1 Price §599.35 Quantity: 1
Product # APPAL BA 1 Price §325.95 Quantity: 1
Product # APPAL BA 3 Price §850.95 Quantity: 1
Order # ORDER_3_3 Date Z00Z-02-17 Total §1679.65
Product # APPAL EA 1 Price §325.95 Quantity: 1
Product # APPL EA 3 Price £&50.95 Quanticy: 1
Product # APPAL EA 4 Price £495.95 Quanticy: 1
Order # ORDER_3_4 Date 2002-04-05 Total §1944.65
Product # APPL BA 3 Price £850.95 Quantity: 1
Froduct # APPA EA 4 Frice §495.85 Quantity: 1
Froduct # APPA BA S Frice §590.85 Quantity: 1
Order # ORDER_3_5 Date 2002-05-21 Total $1106.65
Froduct # APPA EA 4 Frice §495.85 Quantity: 1
Froduct # APPA BA S Frice §550.95 Quantity: 1
Product # APPA_WH_1 Price £12.95 Quantity: 1

Debugging Finished

EIH| 0

Figure 11-2 Filtered Data Results

BEA Liquid Data for WebLogic: Samples Tutorial 117



Lab 11.2 Sorting Data Service Results

With the FilterXQuery class sortfilter.addOrderBy() method, you can specify criteria for organizing the

data service return results. For example, to sort the order amount results in ascending order, you would

use a sort condition similar to the following:
("'CustomerProfile/customer/orders/order","total_order_amount",

FilterXQuery.ASCENDING) ;

Objectives

In this lab, you will:

Add a sort condition.

View the results through the Mediator API.

Instructions
1. Open the DataServiceClient.java file.

2. Create a sort instance of the FilterXQuery, by adding the following code before the //Apply Filter
section:

// Create a sort

FilterXQuery sortfilter = new FilterXQuery(Q);

3. Add a sort condition, using the addOrderBy() method, to sort orders based on total order amount
ascending. An example of the code is as follows:

sortfilter.addOrderBy(
""CustomerProfile/customer/orders/order",
""total_order_amount",
FilterXQuery.ASCENDING) ;
4. Apply the sort filter to the data service by adding the following code:
// Apply the sort
Ffilter._.setOrderByList(sortfilter._getOrderByList());

BEA Liquid Data for WebLogic: Samples Tutorial 118



DataServiceClient.java® - {DataServiceClient}H,

Data3ervice ds = DataferviceFactory.newXnl3ervice(
getInitialContext(),

"Evaluation",

"1d:DataServices fCust fCust Profile"

1

FilterXQuery filter = mew FilterXQuerw();

filter.addFilter(

"CustomerProfilefcustomer fordersforder" , "CustomerProfilefcustomer forders/forderftotal order amount',
wn w1000 ) ;

ds.setFilterConditionifilter);
CustomerProfilelDocument doc = (CustomerProfileDocument) ds.inwvoke("getCustomerProfile’  params);

FilterXQuery sortfilter = new FilterXQuery():;
sortfilter. addirderByi
"CustomerProfile /customer forders forder" ,
"total order amount",
FilterXQuery. ASCENDING) ;

filter.secOrderBylistisortfilter. getOrderByLisci)):

System.out.printlng" Customers 1z

Custoner customer = doc.getCustomerProfile().getCustonerirray(0);

Systen.out.println("Connected to Liguid Data 8.2 : CustomerProfile Data Service ...");
dystenw.out.printlng” Orders 1

Order[] order = customer.getlrders().getOrderdrray();
for (int x=0; x<order.length; x++) [
System. out.printin(" Order # " + order[x].getOrderTd() +
" Date " + order[x].getOrderDate() +
" Total 5" + order[x].getTotalOrderAmounti] );
OrderLine[] orderline = order[x].gecOrderLinearray():
for (int ¥=0; y<orderline.length; ¥+ {

System. out.printlng” Product # " + orderline([v].getProductIdi) +
" Price 5" + orderline[y].getPricei) +
" Quantity: " + orderlinelv1.getOuantitv(} |Z|
K ]

Figure 11-3 Sort Code

5. Click the Start icon (or press Ctrl + F5) for the DataServiceClient.java file.

6. Use the Mediator API to view the results in the Output window and/or a standalone Java

environment. The data results should be similar to those displayed in Figure 11-4.

|| Output *
Trying to create process and attach to 3400,..
D:vbeabjdkl42 05\binhjavan. exe -Xdebug -Xnoagent -Djawva.compiler=HONE -Xrunjdup: tr
Frocess started
Attached successfully.
= Data Jervice Client ==
Connected to Liemid Data 8.2 @ CustomerProfile Data Serwice ...
= Ordersz ==
Order # ORDER_3_5 Date 2002-05-21 Total $1106.65
Froduct # APPA Bi 4 Price 495,95 Quantity: 1
Product # APPA BA 5 Price §590.95 Quantity: 1
Froduct # APPL WN_1 Price §12.95 Quantity: 1
Order # ORDER_3_2 Date Z00Z-01-02 Total §12583.65
Froduct # APPA BA 1 Price §99.95 Quantity: 1
Product # APPA BA 1 Price §325.95 Quantity: 1
Froduct # APPA BA 3 Price 5$850.95 Quantity: 1
Order # ORDER_3_3 Date Z00Z-02-17 Total §1679.65
Froduct # APPA Ba 1 Price §325.95 Quantity: 1
Product # APPA BA 3 Price £850.95 Quantity: 1
Froduct # APPA Ba 4 Price 495,95 Quantity: 1
Order # ORLDER_3_4 Date Z002-04-05 Total $1944.65
Froduct # APPA BA 3 Price §850.95 Quantity: 1
Product # APPA EA 4 Price §495.95 Quantity: 1
Froduct # APPA BA 5 Price 5590.95 Quantity: 1
Debugging Finished
0 [

Figure 11-4 Filtered and Sorted Data Results

BEA Liquid Data for WebLogic: Samples Tutorial

119



Lab 11.3 Truncating Data Service Results

The FilterXQuery class also provides the filter.setLimit() method, which lets you limit the number of
return results. For example, to limit the return results to two line items, you would use a truncate
condition similar to the following:

("'CustomerProfile/customer/orders/order/order_line",”2”);

The filter.setLimit method is based on the following:

public void setLimit(Java.lang.String appliesTo, String max)

Objectives

In this lab, you will:

Truncate the data result set.

View the results in through the Mediator API.

Instructions
1. Open the DataServiceClient.java file.

2. Add a truncate condition, using the setLimit() method to limit the result set to a maximum of two
order lines for each order. An example of the code is as follows:
// Truncate result set

Filter.setLimit("'CustomerProfile/customer/orders/order/order_line",”2”);

Figure 11-5 Truncate Code

3. Click the Start icon (or press Ctrl + F5) for the DataServiceClient.java file.

4. Use the Mediator API to view the results in the Output window and/or a standalone Java
environment.

Lesson Summary
In this lesson, you learned how to:

Use the FilterXQuery class to filter, sort, and truncate data service results.

Apply the FilterXQuery class to a data service, using the Mediator API or Liquid Data control.

BEA Liquid Data for WebLogic: Samples Tutorial 120



Lesson 12 Consuming Data Services through JDBC/SQL

Objectives

Overview

Liquid Data JDBC driver gives JDBC clients read-only access to the information supplied by data
services. With the Liquid Data JDBC driver, Liquid Data acts as a virtual database. The The driver
allows you to invoke data service functions from any JDBC client, from custom Java applications to
database and reporting tools, including Crystal Reports.

After completing this lesson, you will be able to:

Access Liquid Data via JDBC.

Integrate a Crystal Report file, populated by Liquid Data, into your web application.

Data services built in Liquid Data can be accessed using a Liquid Data JDBC driver, which provides
access to the Liquid Data Server via JDBC APIs. With this functionality, JDBC clients — including
business intelligence and reporting tools such as Business Objects and Crystal Reports — are granted
read-only access to the information supplied by Liquid Data services. The main features of the Liquid
Data JDBC driver are:

Supports most SQL-92 SELECT statements.

Provides error handling; if an error is detected in SQL query, then the error will be reported along
with an error code.

Performs metadata validation; the translator checks SQL syntax and validates it against the data
service schema.

When communicating with Liquid Data via a JDBC/ODBC interface, standard SQL-92 query language
is supported. The Liquid Data JDBC driver implements components of the java.sql.* interface, as
specified in JDK 1.4x.

Note: The Liquid Data JDBC driver needs to be in your computer’s CLASSPATH variable within
System variables:

$BEA_HOME\weblogic81\liquiddata\lib\ldjdbc. jar

BEA Liquid Data for WebLogic: Samples Tutorial 121



Lab 12.1 Running DBVisualizer

Liquid Data includes DBVisualizer, which is a third-party database tool designed to simplify database
development and management.

Before you start:

The Liquid Data JDBC driver needs to be in your computer’s CLASSPATH variable:

$BEA_HOME\weblogic81\liquiddata\lib\ldjdbc. jar
The WebLogic Server needs to be running.

Make sure that your Evaluation application is deployed correctly to WebLogic Server

Objectives

In this lab, you will:

Create a database connection that enables DBVisualizer to access your Evaluation application as if
it were a database.

Use DBVisualizer to explore your Evaluation application.

Instructions

1. Choose Start — Programs — BEA WebLogic Platform8.1 — Other Development Tools —
DBVisualizer. The DBVisualizer tool opens.

E.DbYisualizer Free 4.0.2 for WebLogic Workshop - C:\Documents and ... [Z B

ObVisualizer

The Universal Database Tool

Figure 12-1 DBVisualizer Interface

2. Choose Database — Add Database Connection.

3. Enter the following parameters:
Connection Alias: LD
JDBC Driver: com.bea.ld.jdbc.LiquidDataJDBCDriver
Database URL: jdbc:ld@localhost:7001:Evaluation
Userid: weblogic
Password: weblogic

4. Click Connect.

BEA Liquid Data for WebLogic: Samples Tutorial 122



B DbVisualizer Free 4.0.2 for WeblLogic Werkshop - C:\Documents and ..

-

2, Datsvase Gejects | B 500 Commander |

2. d @B ¥ Database Connection; LD
?i;’:‘:‘;ﬂﬁn | | connection | patahase o | DaaTypes | Tabie Tmes | Taties | Resrences | |

[ Show Tabls Row Count

Fil View Datahase Oookmarks Window Heip

G dHE 30 25 BF I <> POED

2} Mondor |

Connaeson Dats

Connoct Wothod: | 8107 -

Connection Aies LD
JDBC Ditver. |
Databuse URL

usend: [srstam

P [~

| Fetonnect || Disconnact |

Impertint noe about She LFL
T LIL b cortans sirmm Cormman UKL Ieplates Hipince
e n

o "
Connaction Massagn

Iquid Data

2
M e 52 10DeLiguislats  DBCDifvet
I

Connaction Tene: 000014

tion_[ Fropenes |

Figure 12-2 New Database Connection Parameters

5.

Use the DBVisualizer to explore your Liquid Data application as if it were a database. Data service
projects display as database schemas. Functions within a project display as a database view;
functions with parameters display as database functions.

Select a tab (Database Info, Data Types, Table Types, Tables, and References) to view that
category of information for all data services within your application. For example, selecting the
Tables tab displays each data service as a table.

& DbVisualizer Free 4.0.2 for WebLogic Workshop - C:\Documents and Settings\mblancha\... \:HEWZ\

File Edit View Database Bookmarks Window Help
4 3 T £
e JHR LBE L5

@ Database Objects | [ S0L Commander

B @ <> PO a9

4 Monitor

anubeTraining
anubeTraining
anubeTraining
anubeTraining
anubeTraining
anubeTraining
anubeTraining
anubeTraining

|%_CP"“EE“°“5 Connection | Databaselnio | DataTwpes | Tahle Types | Tables | References
810 TABLE_CAT TABLE_SCHEM | TABLE_MNAME

anubeTraining | DataServices~ApparelDB CUSTOMER_ORDER_LINE_ITEM#CUSTOMER_ORDER_LINE_ITEM
anubeTraining  |DataServices~-ApparelDB PRODUGCT#PRODUCT
anubeTraining DataServices~Appare| DB CUSTOMER_ORDER#CUSTOMER_ORDER
anubeTraining  DataServices~CustomerDB CUSTOMER#CUSTOMER
anubeTraining DataServiceg~CustomerDB CREDIT_CARDRFCREDIT_CARD
anubeTraining | DataServices~CustamerDB ADDRESS#ADDRESS
anubeTraining  |DataServices~ElectronicsDB PRODUGCT#PRODUCT

DataServices~ElactranicsDB
DataServices~ElectranicsDB
DataServices~Orderanagement
DataServices~Orderanagement
DataServices~Orderhlanagement
DataServices~OrderManagement
DataServices~Orderdanagement
DataServices~SeniceDB

[

CUSTOMER_ORDER#CUSTOMER_ORDER
CUSTOMER_ORDER_LINE_ITEM#FCUSTOMER_ORDER_LINE_ITEM
CugtomerOrdeRCUSTOMER_ORDER

FroducFRODUCT

Cuslomer#CUSTOMER

Address#ADDRESS
CustomerOrderLineltem#CUSTOMER_ORDER_LINE_ITEM
SERYICE_CASE#SERYICE_CASE

[ Show Table Row Count

4377 sec/.010 sec |15 10 [1-15

Figure 12-3 Tables

7. Double-click an element to view the values for a specific data service. For example, double-
clicking the DataServices~CustomerDB element from the Table Schema column displays that data

services values.

Browse Column Values

Browse Column Yalues

Note: This is & read-anily view
of the column values in 8 row.

TABLE_CAT: [DanubeTraining

TABLE_SCHEM: |[DataServices~CustomerDE

TABLE_MAME: |CUSTOMER#CUSTOMER

TABLE_TYPE: fVIEW

TYPE_CAT: [DanubeTraining

TYPE_SCHEM: [DataSerices~CustomerDB

TYPE_NAME: |CUSTOMER

SELF_REFERENCING_COL_NAME: [nul

REF_GENERATION: |nuH

REMARKS: ld.DataServices/CustomerDB/schemas/CUSTOMER xsdwld.DataSemces/Cu31umErDEtCUE‘.TOMERwCUSTOMER\
J
J
J
J

Figure 12-4 Table Column Values

BEA Liquid Data for WebLogic: Samples Tutorial

123



Lab12.2

Integrating Crystal Reports and Liquid Data for WebLogic

The Liquid Data JDBC driver makes data services accessible from business intelligence and reporting
tools, such as Crystal Reports, Business Objects, Cognos, and so on. In this lab, you will learn how to
use the Liquid Data JDBC driver from Crystal Reports. (For ODBC applications, you can use JDBC to
ODBC Bridge Drivers provided by vendors such as OpenLink, available as of this writing at
http://www.openlinksw.com.)

Objectives

In this lab, you will:

Install Crystal Reports View in a web application.
Import a saved Crystal Report file and JSP into the web application.

View the report from the web application.

Instructions

1. Install Crystal Reports Viewer in the CustomerManagementWebApp by completing the following
steps:

a. Right-click CustomerManagementWebApp.
b. Choose Install — Crystal Reports.

2. Import a saved Crystal Reports file and JSP that displays the report by completing the following
steps:

a. Right-click CustomerManagementWebApp.
b. Choose Import.

c. Navigate to the <beahome>\weblogic81\samples\liquiddata directory and select the following
files:

SpendByCustomers.rpt
showCrystal.jsp

d. Click Import. You should see showCrystal.jsp and SpendByCustomers.rpt files within the
CustomerManagementWebApp.

e. Right-click the CustomerPageFlow folder.

f. Choose Import.

g. Select index.jsp, located in the <beahome>\weblogic81\samples\liquiddata directory.

h. Click Import and choose Yes when asked if you want to overwrite the existing index.jsp file.

3. Open CustomerPageFlowController.jpf, located in the folder:

CustomerManagementWebApp\CustomerPageF low
4. Click the Start icon (or press Ctrl + F5) to run the Workshop Test Browser.

5. In the Workshop Test Browser, click Customer Report to test the report. (The first invocation may
take time to display.)

BEA Liquid Data for WebLogic: Samples Tutorial 124


http://www.openlinksw.com/

T Warbahap Test Browsor

=+ 0 4 I

Hew We
5 i TRV P 8 S N I |

CUSTOMERD
CUSTOMIRE
CUSTOMERZ
CUSTOMERS
CUSTOMERS
CUSTOMERS
CUSTOMERE
CUSTOMERT
CUSTOMIRD
CUSTOMERS

[ Pritod Date: 3G Last mebfiod: 1277504

Feport Des<ription:

100% = “EryEtals

Spend By Customers

d by
“'Crystal oge

USTOMER_ID
CUSTONERD

Total for CUSTOMERD:  1509.50
USTOMER ID FIRST_NAME LAST_NAME
CUSTONER1 duk Black
Total for CUSTOMERY: 152625
USTOMLI_ID IS 1_NAML LAST_NAML
CUSTONER2 oty Greenbing
Toval for CUSTOMERZ: 129330
USTOMLI_ID FIHST_NAML LAST_NAML
CUSTONER? B Piarce
Total for CUSTOMER3: 900975 o

Figure 12-5 Crystal Report

Lab 12.3 (Optional) Configuring JDBC Access through Crystal Reports

Crystal Reports 10.0 comes with a direct JDBC interface, which can be used to directly interact with
the Liquid Data JDBC driver.

Objectives

In this lab, you will:

Install Crystal Reports software, JDBC driver, and Java server files.
Add environment variables.

Create a new JDBC data source in Crystal Reports.

Instructions

1. Install the Crystal Reports software, per the vendor’s installation instructions.

2. Install the JDBC driver files and Java Server, available from Crystal Reports.
You can download the files from:
http://www.businessobjects.com/products/downloadcenter/ceprofessional .asp

3. Select Windows JDBC, XML and DB@ Unicode—all languages.

4. Navigate to where you installed the driver and server files.

5. Addthe JAVA HOME variable to your environment variable. For example:

JAVA_HOME=C:\j2sdk1.4.2_06

BEA Liquid Data for WebLogic: Samples Tutorial 125


http://www.businessobjects.com/products/downloadcenter/ceprofessional.asp

where

C:\J2sdk1.4.2_06
identifies the Java SDK location on your computer.

6. Make sure that the jvm.dll is in the path variable for your computer. For example:
$BEA _HOME\jdk142_04\jre\bin\server

7. Open CRDB_JavaServer.ini and make the following changes:

Move $classpath to the beginning of the line. It should be like this:
CLASSPATH = ${CLASSPATH};C:\Program Files\Common Files\Crystal
Decisions\2._5\bin\CRDBJavaServer.jar;C:\Program Files\Common
Files\Crystal Decisions\2.5\java\lib\external\CRDBXMLExternal.jar
Modify the following entries:
JDBCUserName = weblogic
JDBCDriverName = com.bea.ld.jdbc.LiquidDataJDBCDriver

GenericJDBCDriverBehavior = SQLServer

8. Create a new JDBC data source in Crystal Reports, by providing the following parameters:

JDBC Driver: com.bea.ld.jdbc.LiquidDataJDBCDriver
URL string: jdbe:ld@localhost:7001:Evaluation
Provide a user name and password

9. Login to Crystal Reports. Once authenticated, Crystal Reports will show you a view of the
Evaluation application.

Lesson Summary

In this lesson, you learned how to:

Access Liquid Data via JDBC.

Integrate a Crystal Reports file, populated by Liquid Data, into your web application.

BEA Liquid Data for WebLogic: Samples Tutorial

126



Lesson 13 Consuming Data via Streaming APl

Streaming API allows developers to retrieve results from Liquid Data in a streaming fashion.

Objectives

After completing this lesson, you will be able to:

Stream results returned from LiquidData into a flat file.

Test the results.

Overview

There are situations where you need to extract large amount of data from operational systems using
Liquid Data. For those cases, Liquid Data provides streaming API. Large data sets can be retrieved to
application in a streaming fashion or be streamed directly to a file on server. All security enforcements
previously defined will still be relevant in case of Streaming APIL.

When working with streaming API keep the following things in mind:

The ability to get results as streams will be only available on the Server; there will not be any
client-server support for this API.

Only the Generic Data Service Interface is available for getting streaming results.
Lab 13.1 Stream results into a flat file

Objectives

In this lab, you will:

Create a new function that streams CustomerProfile information into a flat file.
Import a new jsp file to access a streaming function.

Test streaming data into a file.

Instructions

1) Import new index page into your application
a. Right-click CustomerPageFlow located in CustomerManagementWebApp .-
b. Choose Import.
c. Navigate to the <beahome>\weblogic81\samples\liquiddata\Streaming folder.
d. Select index.jsp as the page to be imported.
e. Click on Import button.

f. Open index.jsp and verify that you have a new link called “Export All Data”.

2) Insert streaming function into your page flow

a. Open CustomerPageFlowController.jpf located in WebApp/CustomerPageFlow

BEA Liquid Data for WebLogic: Samples Tutorial 127



Lab 13.2

3)
4)

5)

b. Go to Source View.
c. Add two additional methods into the page flow.

d. Open Streaming.txt file located in <beahome>\weblogic81\samples\liquiddata\streaming
folder

e. Copy and paste both functions found in Streaming.txt file immediately after method
submitChanges in the CustomerPageFlowController.jpf java page flow.

f.  Press four times the key combination of Alt + Enter keys to import missing packages or type
the following in import section of page flow:

- import com.bea.ld.dsmediator.client.StreamingDataService;
- import javax.naming.InitialContext;

- import javax.naming.NamingException;

- import com.bea.ld.dsmediator.client.DataServiceFactory;

- import weblogic.jndi.Environment;

Note: If your application name is different from “Evaluation”, locate “Evaluation” in
newStreamingDataService method and rename it to reflect the name of your application.

g. Save your changes.

Start your CustomerPageFlowController.jpf
Once the application is started, click on the Export All Data link

Verify that data is exported successfully by opening customerexport.txt, located in:

<BEAHOME>\weblogic81\samples\domains\ldplatform

Consume data in streaming fashion

Objectives

In this lab, you will:

Import a new version of CustomerPageFlow.
Instanciate a new Streaming Data Service
Retreive results into XMLInputStream object by calling getCustomerProfile function

Test fetching data from Liquid Data in a streaming fashion.

Instructions

1) Import a new folder into your application

a. Right-click CustomerManagementWebApp located in your Evaluation application.
b. Choose Import.

c. Navigate to the <beahome>\weblogic81\samples\liquiddata folder.

d. Select CustomerPageFlowStream folder to be imported.

e. Click on Import button.

BEA Liquid Data for WebLogic: Samples Tutorial 128



f.  Open CustomerPageFlowController.jpf file in Source View.

g- Locate stream method and the following comments:

//instanciate and initialize your streaming data service here
h. Place the following code after the comments
sds = DataServiceFactory.newStreamingDataService(
new InitialContext(), // Initial Context
“"Evaluation', // Application Name

""1d:DataServices/CustomerManagement/CustomerProfile’” // Data
Service Name

);
i.  The DataServiceFactory class contains a method to create a streaming data service.
j-  Replace stream = null with following code:
stream = sds.invoke(''getCustomerProfile", new String[]{"'CUSTOMER3"});

For reference, your code should look similar to that shown below:

E

CustomerPageFlowController. jpf* - {CustomertdanagementiWebAppHCustomerPageFlowhiewy
protected Forward streawm(] throws Exception B
{

StreamingbDataiervice sds = null:

Alinstanciate and initialize yowr streaming data service heres

zdzs = DataferviceFactory.newitreaningbataliervicel

new InitialContext(), / Initial Context

"Evaluation" , / Application Name

"1d:DataServices /CustomerManagement fCustomerProfile" 7 Data Service Name
Iz

AAocall getCustomerlrofile function and store results into stream ohject
stream = sds.invoke ("getCustomerProfile", new String[]{"CUSTOMER3" !):

=

return nextitreami):

[« | L]

k. Test running your CustomerPageFlowController.jpf. You can use CUSTOMER3 as a
parameter to retrieve results. This time, data is fetched in streaming fashion.

BEA Liquid Data for WebLogic: Samples Tutorial 129



Lesson 14 Managing Data Service Metadata

Liquid Data uses a set of descriptors (or metadata) to provide information about data services. The
metadata describes the data services: what information they provide and where the information derives
from (that is, its lineage). In addition to documenting services for potential consumers, metadata helps
administrators determine what services are affected when inevitable changes occur in the data source
layer. If a database changes, you can easily tell which data services are affected by the change.

Objectives

After completing this lesson, you will be able to:

Synchronize physical data service metadata with changes made to the physical data source.
Analyze impacts and dependencies.

Create custom metadata for a logical data service.

Overview

Liquid Data metadata information is stored as annotations at the data service and function levels. The
metadata is openly structured as XML fragments for easy export and import. At deployment time, the
metadata is incorporated into a compiled data service, and then deployed as part of the data service
application in WebLogic Server.

Stored metadata includes:

Physical data service metadata:
Relational data source, type, and version
Column names, native data types, size, and scale
XML schema types
Web service WSDL URI

User defined metadata:
Description
Custom properties at the data service level
Custom properties at the function level

Relationships created through data modeling

The Liquid Data Administration Console lets you access metadata stored within the Liquid Data
metadata repository. The Console supports the following functionality:

Searching the metadata repository
Exploring where and how a given data service or function is consumed

Analyzing data service lineage and dependencies (all data service objects dependent on a given
data service)

Imported physical data service metadata can be re-synchronized to capture changes at the data source.

BEA Liquid Data for WebLogic: Samples Tutorial 130



Lab 14.1 Defining Customized Metadata for a Logical Data Service

There may be times when you need to modify the generated metadata descriptions to provide more
detailed information to others who will be working with the data service.

Objectives
In this lab, you will:
Create customized metadata for the CustomerProfile logical data service, at both the data service

and function levels.

Build the DataServices project to enable persistence of the new metadata.

Instructions
1. Add customized metadata at the data service level, by completing the following steps:

a. Open CustomerProfile.ds in Design View. (The file is located in the
DataServices\CustomerManagement folder.)

b. Click the data service header to open the Property Editor at the data service level. (If the
Property Editor is not open, choose View — Windows — Property Editor, or press Alt + 6)

c. In Property Editor, click the Description field, located in the General section. This activates
the Description field.

d. Click the "... "icon for the Description field. The Property Text Editor opens.

e. In Property Text Editor, enter the following text:

Unified Customer Profile View — contains CRM, order information, credit rating, and valuation
information.

f.  Click OK. The specified text is added to the Description field.

4 Property Text Editor @

Unified Customer Profile View — contains
CRM, arder infarmation, credit rating, and
waluation information,

Figure 14-1 Property Text Editor
g. In Property Editor, click the + icon for the User-Defined Properties section.
h. Click the + icon for the Property(1) field. This actives the Property(1) field.
i.  Add a user-defined property, using the following values:
Name = Owner

Value = <your name>

BEA Liquid Data for WebLogic: Samples Tutorial 131



Draln Service
General
Harme CustomerProtile s
Dascrpticn snilied € View - sank BM, [ wredit ki,
Buthex
Cregtion Date G- 1 TVOES01
Type
Dt Service Upndate
v Update true

Decompertion Function
Lpstat Crevaricin Claes.

User Defined Properties =
[EEEE -]
Narre Dhraer
Walue Maril Rianaa
Description @

Diata Service Propertics

Figure 14-2 User-Defined Property for a Logical Data Service
2. Add customized metadata at the function level, by completing the following steps:

a. In Design View, click the getCustomerProfile function arrow to open that function’s Property
Editor. (Note: Do not click the function, which will open XQuery Editor View.)

b. In Property Editor, click the + icon, located in the User-Defined Properties section.
c. Add a user-defined property, using the following values:
Name = Notes

Value = This function is consumed by the Customer Management Portal.

|| Property Editar *

XQuery Function
General

MName getCustomerProfile
User Defined Properties
(] Property(1) |E|
Mame Notes
Yalue This function is consumed by the Customer Management Portal.
Cache
Enabled true
Description W

Walue of the user defined property

Figure 14-3 User-Defined Property for a Function
3. Save the file.

4. Build the DataServices project.

BEA Liquid Data for WebLogic: Samples Tutorial 132



Lab 14.2 Viewing Data Service Metadata via Liquid Data Console

All data service metadata, whether automatically generated or user-defined, can be viewed through the
Liquid Data Console.

Objectives

In this lab, you will:

Use the Liquid Data Console to view both generated and customized metadata.

Use the console's Search feature to locate metadata for a specific data service.

Instructions

1.

Open the Liquid Data Administration Console, typically located at http://localhost:7001/Idconsole/.

Note: WebLogic Server must be running.
Log in using the following credentials:
User = weblogic
Password = weblogic

Open the CustomerProfile data service, located in the
ldplatform\Evaluation\DataServices\CustomerManagement folder using the LH Menu.

Thei piege ibscrwrn it of Dl Sarvce forchonn. You i snibl cichng of tha Dath Saics nchions bar, #io yoa G ol TIL (Tors Ta Liei fof aiach bnctios Ts guige B cache
wa S g b

MHimg Lnakle Cache I1Lises) Humler 09 Cacle Lovicies. Farge Carks
PRSI r— o 3 Mk o
GOl R __B ! I L. g a ki
Aoty |

Figure 14-4 Liquid Data Console

4. Select the Metadata tab. The general metadata for the CustomerProfile data service displays. Notice

3 WeblLegie Server [igetd data Consele . Micrasell lstesmet Expleser

that the Description attribute contains the customized metadata added in the previous lab.

&) orit s it o et

Dascaiption
Oremar
Creation Date

Lt Madified Dare

Ratiin Typs
Data Senvice Trps

Data Semmce Type

Figure 14-5 CustomerProfile General Metadata

5

. Click the Properties tab and verify that user-defined properties for the data service display. The

property should be similar to that displayed in Figure 14-6, except that it will be your name in the
Value field.

BEA Liquid Data for WebLogic: Samples Tutorial 133


http://localhost:7001/ldconsole/

I Wbl e Serenr Liquld data Comake - Micrassd] Intermet Laplarer

| T | B popeaies | | T

This page wlrws 1ou 10 verw e user delied properies of s Data Serice

| O] Gioca vt

Figure 14-6 CustomerProfile Properties Metadata
6. Explore the CustomerProfile data service metadata by completing the following steps:

a. Select the Dependencies tab. All data sources used by the CustomerProfile data service
displays. The CUSTOMER, CUSTOMER_ORDER, and
CUSTOMER_ORDER _LINE ITEM links indicate that these are physical data sources.

| i Dicirrwn

Figure 14-7 Metadata—Dependencies
b. Select the Read Functions tab.
c. Click the getCustomerProfile function.

d. Click the Properties tab. The Note that you created for the getCustomerProfile function should
be visible.

I Wbl e Serwnr Liquld data Comuke - Micrsssd] Intersst Explarer

(AN reperses BERRN

propertien of e

# ol Managemend Pt

|8 i ot [ [y

Figure 14-8 Metadata—Read Function Properties

e. (Optional) Select the Return Type, Relationships, Properties, and Where Used tabs to view
other metadata.

7. Search the DataServices folder for metadata by completing the following steps:

a. Right-click the Evaluation folder, located in the left-most pane.

BEA Liquid Data for WebLogic: Samples Tutorial 134



b. Select Search. (A search can be on data service name, function name, description, or return
type.)
c. Enter CustomerProfile in the Data Service Name search box and click Search. The data

service name, path, and type of data service are displayed for the CustomerProfile data
service. Clicking the data service name displays the Admin page for the data service.

3} Wbhogic Sormer Camale | squd Satia etallata Hemeas Do - Micronsft nlerred Cxplarar

Figure 14-9 Search Results

Lab 14.3 Synching a Data Service with Underlying Data Source Tables

Sometimes the underlying data source changes; for example, a new table is added to a database. For
those inevitable situations, Liquid Data provides an easy way to update a data service.

Objectives

In this lab, you will:

Import a Java project that contains additional CUSTOMER_ORDER database columns.
Synchronize the information in the Java project with the CUSTOMER ORDER data service.

Confirm the addition of a new element in the CUSTOMER_ORDER data service schema.

Instructions

1. In WebLogic Workshop, choose File — Import Project.

2. Select Java Project.

3. Navigate to the <beahome>\weblogic81\samples\liquiddata directory.
4. Select the AlterTable folder, click Open, and then click Import.

import Project - New Project Xl
Caal 53] Control Project =
1 Business Logic [T Datasync Project
Ces @ ET6 Project
£ Liaur Data Tava Project
SPortal E
) Frocess Liquid Data Project
) schema @] Portal web Project
=) Web Services @] Process Praject
)'Web User Inkerface | (5] Schema Project =
Dirertory: | D:ibealweblogics 1samples\iuiddata) lterT bl || Bromse... |
Copy inta Application directory.

Neme: | AlterTable ]
Creates a new Java project.

Figure 14-10 Importing Java Project

5. Open AlterTable.java. (The file is located in the AlterTable project folder).

BEA Liquid Data for WebLogic: Samples Tutorial 135



adds a new column to the CUSTOMER ORDER table.

message.

|| output
Trying to create process and attach to 4540...
D:vbeatjdkl4Z 05%vbin' Jjavaw. exe -Xdebug -¥Xnoagent -Diava.c
Procesa started
Attached successfully.
CUSTOMER, OFDER TABLE altered.
Debugging Finished

*

[0

Figure 14-11 Altered Table Message

Click the Start icon, and then click OK when a Confirmation message displays. Compiling the file

Open the Output window and confirm that you see the CUSTOMER _ORDER_TABLE altered

8. Right-click the ElectronicsDB folder, located in the DataServices project folder.

9. Select Update Source Metadata. The Physical Data Sources pop-up opens, displaying a list of all

new columns.

. Physical Data Sources

X

|- coDataSource
J Id:DataServices/ElectronicsDE/PRODUCT.ds
J |d:DataServices ElectronicsDE/CUSTOMER _ORDER_LIME_ITEM.ds
J |d:DataServices/ElectronicsDE/CUSTOMER _ORDER. ds

| Mexk || || Cancel |

Figure 14-12 Physical Data Sources

10. Click Next. The Synchronization Preview window opens, which provides details on the data to be

synchronized.

|2 1d: DataServices{ElectronicsDB/PRODLICT ds
(= [ Schemas.
[ ] Schema differs: Id: DataServices/ElectronicsDBfschemas{PRODUCT xsd
|2 Id: DataServices{ElectronicsDB/CUSTOMER _ORDER _LINE_ITEM.ds
=1 Schemas
[] schema differs: Id: DataServices/ElectronicsDB fschemas|PRODUCT xsd
|11 Id: DataServices/ElectronicsDE/CUSTOMER _ORDER. ds
5 (] Field Differ
[ ] «field xpath=""type=""xmins:urm="urn:syncreport. metadatasync.|d.bea,com'> <extension/> <properties/></fisld>
2] field type="sxs:string" xpath="0WNER" xrins:==" Id.biea. cam” xmins t="ld:DataServicesElectronicsDB/ CLSTOMER_ORDER!
(=2 Schemas
[] Schema differs: Id: DataServices/ElectronicsDBfschemas|CLISTOMER _ORDER _LINE_ITEM, xsd

< ]

¥

[pravous | [t ] [ s | [[coreel

Figure 14-13 Synchronization Preview

11. Click Finish.

12. Open CUSTOMER ORDER.ds in Source View. (The file is located in the ElectronicsDB.)

13. Expand the data service annotation, located on the first line

of the file, to view the captured

metadata for the relational data source (type, version, column names, native data types, size, scale,

and XML schema types).

14. Scroll down until you locate the following code, which represents the customized metadata that

you define in Lab 14.1:

BEA Liquid Data for WebLogic: Samples Tutorial

136



<field type="'xs:string" xpath="OWNER">

<extension nativeFractionalDigits="0" nativeSize="50"
nativeTypeCode="12" nativeType="VARCHAR" nativeXpath="OWNER"/>

<properties nullable="true"/>
</field>

CUSTOMER_ORDER. ds - {DataServices}|ElectronicsDB} X

<field type="xs:string” xpath="BILL_T0"> =
cextension nativeFractionalDigits="0" nativeSize="32" nativeTypeCode="12" nativeType="VARCHAR" nativeX}
<properties nullable="false'/=

</fields

<field type="xs:date" xpath="ESTIMATED SHIP DATE">
<extension nativeFractionalDigits="0™ nativeSize="i0" nativeTypeCode="91" nativeType="DATE" nativeXpatl
<properties mullable="false"/>

<sfields

<risld type="xs:string” xpath="STATUS">
cextension nativeFractionalDigits="0" nativeSize="10" nativeTypeCode="12" nativeType="VARCHAR" nativeX;
<properties nullable="false'/=

</fields

<field type="xs:string" xpath="TRACKING NUMEER">
<extension nativeFractionalDigits="0" nativeSize="iZ" nativeTypeCode="i2" nativeType="VARCHAR" nativei}
<properties nullable="true"/>

</field>

leriela type="xs:string” ¥path="OWNER">
<extension nativeFractionslDigits="0" nativeSize="50" nativeTypsCode="12" nstiveType="VARCHAR" nativeXj
<properties nullable="true" >

</field>

<key name="CUSTOMER ORDER 0 SE TRAINT _PRIMARVFEY">
<field ¥path="ORDER ID'>
<extension nativeXpath="ORDER ID"/>
< /figld>
</key=

<relat 3 1eName="CUSTOMER ORDER LINE ITEM" roleNumber="2z" XDS="ld:DataServices/Electronicsil
</x:xds>:rr)

declare namespace £l = "ld:Datalervices/ElectronicsDE/CUSTOMER_ORDER™:

import schema namespace t3 = "ld:DataServices/ElectronicsDB/CUSTONER ORDER” at "ld:DataServices/Electrond”)

[Desian View | Query Editar View | Source View Guery Plan Tiew

Figure 14-14 Source View of Updated Metadata

15. Select the Design View tab, and verify that an Owner element exists in the XML type for the
CUSTOMER_ORDER data service.

CUSTOMER_DADER s Servae
=g CUSTOMER_ORDER
T oRER_ID westring
@ CUSTOMER_ID cacatving
@ ORLER_DATE xe:dete
@ SHIP M
) HANDLING O
o SETOTAL va:decm,
@ TOTAL_CRDER_AMOUNT ra:deisd
o AL TAY abdecmad
@ P10 xestring
@ HIP_TO_NAME cxstrng
@ BLTE nwsboing
@ ESTIMATED_SHIF_DATE xzidate
@ STAIS eatrng
5 TRAOING NUMEER T srstrng
@ CWHER T xxatring

A————— CUSTCHER_CRDER

CUSTO...

Do Viewr [ Wlgmry Eillior View | Scaarcn View | Tersk Viows | Gty Man Views.

Figure 14-15 Design View

16. Right-click the CUSTOMER ORDER Data Service header and select Display Native Type.
Confirm that there is a new element, called OWNER VARCHAR(50).

Lesson Summary

In this lesson, you learned how to:

Synchronize physical data service metadata with changes made to the physical data source.
Analyze impacts and dependencies.

Create custom metadata for a logical data service.

BEA Liquid Data for WebLogic: Samples Tutorial 137



Lesson

Objectives

Overview

15 Managing Data Service Caching

Caching enables the use of previously obtained results for queries that are repeatedly executed with the
same parameters. This helps reduce processing time and enhance overall system performance.

After completing this lesson, you will be able to:

Use the Liquid Data Console to configure a Liquid Data cache.
Enable the cache for a data service function and define its time-to-live (TTL).
Check the database to verify whether a cache is used.

Determine the performance impact of the cache, by checking the query response time.

When Liquid Data executes a query, it returns to the client the data that resulted from the query
execution. If Liquid Data caching is enabled, then Liquid Data saves its results into a query results
cache the first time a query is executed. The next time the query is run with the same parameters,
Liquid Data checks the cache configuration and, if the results are not expired, quickly retrieves the
results from the cache, rather than re-running the query. Using the previously obtained results for
queries that are repeatedly executed with the same parameters reduces processing time and enhances
overall system performance.

By default, the query results cache is disabled. Once enabled, you can configure the cache for
individual stored queries as needed, specifying how long query results are stored in the cache before
they expire (time out), and explicitly flushing the query cache.

In general, the results cache should be periodically refreshed to reflect data changes in the underlying
data stores. The more dynamic the underlying data, the more frequently the cache should expire. For
queries on static data (data that never changes), you can configure the results cache so that it never
expires. For extremely dynamic data, you would never enable caching.

If the cache policy expires for a particular query, Liquid Data automatically flushes the cache result on
the next invocation. In the event of a Server shutdown, the contents of the results cache are retained.
On the server restart, the Server resumes caching as before. On the first invocation of a cached query,
Liquid Data checks the results cache to determine whether the cached results for that query are valid or
expired, and then proceeds accordingly.

BEA Liquid Data for WebLogic: Samples Tutorial 138



Lab 15.1 Determining the Non-Cache Query Execution Time

To understand whether caching improves query execution time, you first need to know how long it
takes to execute a non-cached query.

Objectives

In this lab, you will:

Execute a query function.

Determine the query execution time.

Instructions

1. Open CustomerProfile.ds in Test View.
Select getCustomerProfile(CustomerID) from the function drop-down menu.
Enter CUSTOMER3 in the Parameter field.

2
3
4. Click Execute. The Output window displays the cache’s execution time.
5. Open the Output window.

6

Locate the query execution time.

OLtpuE ™ X
Trying to create process and attach to 1557... =
D:ibea\jdkl4z 05\binyjavaw.exe -Xdebug -Xnoagent -Diava.compiler=NONE -Xrunjdup:transport=dr_socket,address=1557,suspend=y, serversy D
Process started
httached successfully.

CUSTOMER_CRDER TABLE altered.

Debugging Finished

time.execute=7741

time.coupile=3636

reourn profile data=Overall query execution time: 743lms

DataSource name: cgDataSource Invocations: 1 Time: S0ms
Statement: SELECT tl."BIRTH_DAY" A5 cl, tl."CUSTOMER_ID" AS c2, tl."CUSTOMER_SINCE" A3 c3,
tl."DEFAULT_SHIP_METHOD" AS cd, tl."EMATL_ADDRESS™ AS o5, tl."EMATL_MOTIFICATION™ AS c6, IZ‘

Y - 0]

Figure 15-1 Query Execution Time

Lab 15.2 Configuring a Caching Policy via Liquid Data Console

By default, Liquid data results caching is disabled. You must explicitly enable caching. In this lab, you
will learn how to enable caching.

Objectives

In this lab, you will:

Enable caching at the application level.

Enable caching at the function level.

Instructions

1. Inthe Liquid Data Console (http://localhost:7001/1dconsole/), using the + icon, expand
the Idplatform directory. (Note: If you click the ldplatform name, the Application List page opens.
You do not want this page for this lesson.)

2. Enable caching at the application level, by completing the following steps:

a. Click Evaluation. The Administration Console’s General page opens.

BEA Liquid Data for WebLogic: Samples Tutorial 139


http://localhost:7001/ldconsole/

b. In the Cache section, select Enable Cache.

c. Select cgDataSource from the Cache data source name drop-down list.

d. Enter MYLDCACHE in the Cache table name field.
e. Click Apply.

Sidla " | el

Thua paige allewn o 18 Salee [ it Maes BTGy AT Lagul 2600 Aduis B
i T ad
[k Ay Camivel
L e ]
(2 B3 A e S LA
T T IEDTy T I RS HLTR

Trwrd padp nmtanly prowio i o wie P el

Catha

Imubls Cachs
Planis 15ach Hon s 1 erabin o zacba e Evlashoer. Bppds sion
[ S I ——— P T T |
Proaia poine| dol o vimary 0 PEE =arem baem P nf
Caha inkls neme by DA
Plauia sk s fuble marms [Dtacl Evvisaton CASHE
Eurgs Cacha
erews Rpsasiten
Has nembar ol guery plew cschied rm
. e s e applicatine.
£ Mas beaais 8 saa jasy
Lo L

Lugying Erw ]

Figure 15-2 Liquid Data Console General Page

3. Enable caching at the function level, by completing the following steps (you can cache both logical

and physical data service functions):

a.  Open the CustomerProfile folder, located in the

Evaluation\DataServices\CustomerManagement folder. The List of XSD Read Functions page

opens.

b. For the getCustomerProfile function, select Enable Cache.
c. Enter 300 in the TTL (sec) field.

d. Click Apply.

Note: Application level cache should be enabled.

Figure 15-3 Setting TTL

BEA Liquid Data for WebLogic: Samples Tutorial

140



Lab 15.3 Testing the Caching Policy

Testing the caching policy helps you determine whether the specified query results are being cached.

Objectives

In this lab, you will:

Use WebLogic Workshop to test the caching policy for the getCustomerProfile function.

Use the Liquid Data Console to verify that the cache is populated.

Instructions

1. In WebLogic Workshop, open the CustomerProfile data service in Test View.
2. Select getCustomerProfile(CustomerID) from the Function drop-down list.

3. Enter CUSTOMERS in the Parameter field.

4. Click Execute.
5

. In the Liquid Data Administration Console, verify that the cache is populated by completing the
following steps:

a. Go to the CustomerProfile folder.

b. Confirm that there are entries in the Number of Cache Entries field for the
getCustomerProfile() function.

] Acvint ra g ariad & Local vt

Figure 15-4 Cache Test Results in the Metadata Browser

Lab 15.4 Determining Performance Impact of the Caching Policy

A caching policy can reduces processing time and enhance overall system performance.

Objectives

In this lab, you will:

Use the PointBase Console to confirm that the cache was populated.

Use WebLogic Workshop to determine caching performance.

Instructions

1. Use the PointBase Console to verify that the cache was populated, by completing the following
steps:

BEA Liquid Data for WebLogic: Samples Tutorial 141



a. Start the PointBase Console, by entering the following command in a Command Prompt
window:

$BEA_HOME\weblogic81\common\bin\startPointBaseConsole.cmd
b. Enter the following configuration parameters to connect to your local PointBase Console:
Driver: com.pointbase.jdbc.jdbcUniversalDriver
URL.: jdbc:pointbase:server://localhost:9093/workshop
User: weblogic

Password: weblogic

c. Click OK.
d. Enter the SQL command SELECT * FROM MYLDCACHE to check whether the cache is
populated.

e. Click Execute.

T

- o X b B L3 » i L] = & & 7

Cpm fam. G4 Coy P Ewods Bscssdl Uplsmcuial Comed Mol Bmon  kpel e fases
e —

[T st wstmaten | (b

o0y EELECTPROM MYLCACHE

-

Figure 15-5 PointBase Console
2. In WebLogic Workshop, open the CustomerProfile data service in Test View.
3. Select getCustomerProfile(CustomerID) from the Function drop-down menu.

Enter CUSTOMER3 in the Parameter field.

wo s

Click Execute. The Output window displays the cache’s execution time.

a

Use the Output window to determine whether caching helped reduce the query execution time.

Lab 15.5 Disable Caching

Important: For the purposes of these lessons, you must disable the cache to avoid problems with data
updates in future lessons!

Objectives

In this lab, you will:

BEA Liquid Data for WebLogic: Samples Tutorial 142



Disable caching at the application.

Disable caching at the function level.

Instructions

1. Inthe Liquid Data Administration Console using the + icon, expand the ldplatform directory.
(Note: If you click the Idplatform name, the Application List page opens. You do not want this
page for this lab.)

2. Disable application-level caching, by completing the following steps:
a. Click Evaluation. The Administration Console’s General page opens.
b. In the Cache section, select Enable Cache to clear the checkbox.

c. Click Apply.

BEA Liquid Data for WebLogic: Samples Tutorial 143



3. Disable function-level caching, by completing the following steps:

a. Open the CustomerProfile folder, located in

Evaluation\DataServices\CustomerManagement

The List of Read Functions page opens.
b. For the getCustomerProfile function, select Enable Cache to clear the checkbox.
c. Click Apply.

Lesson Summary

In this lesson, you learned how to:

Use the Liquid Data Console to configure the Liquid Data cache.
Enable the cache for a data service function and define its time-to-live (TTL).
Check the database to verify whether a cache is used.

Determine the performance impact of the cache, by checking the query response time.

BEA Liquid Data for WebLogic: Samples Tutorial 144



Lesson 16 Managing Data Service Security

Liquid Data leverages the security features of the underlying WebLogic platform. Specifically, it uses
resource authorization to control access to Liquid Data resources based on user identity or other
information.

Note: WebLogic Server must be running.

Objectives

After completing this lesson, you will be able to:

Enable application-level security.
Set function-level read and write access security.

Set element-level security.

Overview

Liquid Data’s security infrastructure extends WebLogic Server’s security policies to include Liquid
Data objects such as data sources and stored queries, as well as security roles, groups, and users. These
security policies allow Liquid Data administrators to set up rules that dynamically determine whether a
given user:

Can access a particular object.
Holds read/write/execute permissions on a Liquid Data object or a subset of those permissions.

By default data services do not have any security policies configured. Therefore data is generally
accessible unless a more restrictive policy for the information is configured. Security policies can
apply at various levels of granularity, including:

Application level. The policy applies to all data services within the deployed Liquid Data
application.

Data service level. The policy applies to individual data services within the application.

Element level. A policy can apply to individual items of information within a return type, such as a
salary node in a customer object. If blocked by insufficient credentials at this level, the rest of the
returned information is provided without the blocked element.

Implementing Liquid Data access control involves using the WebLogic Server Console to configure
user groups and roles. You can then use the Liquid Data Administration Console to create policies for
Liquid Data, including data services and their functions.

BEA Liquid Data for WebLogic: Samples Tutorial 145



Lab 16.1 Creating New User Accounts

The first step in creating data service security policies is to create user accounts and either assign the

user account to a default group or configure a new group. There are 12 default authenticator groups:

Objectives

In this lab, you will:

Open the WebLogic Server Console.

Create two user accounts that use a default user group.

View the user list.

Instructions

1. Open the WebLogic Server Console (http://localhost:7001/console/), using the following

credentials:
User Name = weblogic

Password = weblogic

2. Choose Security — Realms — myrealm — Users.

3 WeblLogic Server Console - Microsoft Internet Explorer
Fié ESt Vew Faortes Took Heln

O/ Configuie i o User
Fiber By Ftwr|
Usar Description Provider

i) | Adin fof portal domain DalatAuhenticator | @
faut admnesrator | DatautAuhantcatar |

bt Dafettuthonticator | @
fautt admirisirator | DefeutAuhonticator |

] Aot g vt

This Unérs page Sipliys bay infermation about euch wber that has Besn configurd n This securtly mals

5 socal rranet

Figure 16-1 User Security

3. Select Configure New User.

myrealm> Create User e

-y
" Chea

This page allows you 1o define & user in this secunty realm
Hame: nw_user
The logn name for this user
Dascription:
A& shont descnption of this user. For example, the weer's full name
Passwonk

Confirm
Passwonl:

The passwornd sssociated wiih the login name for this uset

Figure 16-2 Define User in Security Realm

BEA Liquid Data for WebLogic: Samples Tutorial

146


http://localhost:7001/console/

Lab 16.2

4. Create a new user account by completing the following steps:
d. Enter Joe in the Name field.
e. Enter password in the Password field.
f.  Enter password in the Confirm Password field.
g. Click Apply.
5. Repeat step 3 and step 4, entering Bob in the Name field (step 4a).

6. (Optional) Choose Security — Realms — myrealm — Users to view the results.

a000aa

Figure 16-3 New Users Added

Setting Application-Level Security

Application-level security applies to all data services within the deployed Liquid Data domain,
regardless of user permission or group. By default, when you turn on access control for an application,
access to any of its resources is blocked, except for users who comply with policies configured for the
resources.

Alternatively, by allowing default anonymous access, you can grant access to its resources by default.
You can enable default anonymous access level by navigating to Application level General tab under
Access Control (application Name — General). In this case, a resource is restricted only if a more
specific security policy for it exists; for example, a security policy at the data service function level.

Objectives

In this lab, you will:

Use the Liquid Data Administration Console to enable application-level security.

Use WebLogic Workshop to test the security policy.

Instructions

1. In the Liquid Data Console (http://localhost:7001/ldconsole/), using the + icon, expand the
Idplatform directory.

Note: If you click the 1dplatform name, the Application List page opens. You do not want this page
for this lesson.

2. Click Evaluation. The Administration Control’s General page opens.

3. Select Check Access Control.

BEA Liquid Data for WebLogic: Samples Tutorial 147


http://localhost:7001/ldconsole/

4. Click Apply.

8 5I' Conscls Ascess Contral
= (P wtamarm
B @8 Evaluation
2 C) hawtatendtes

& ) ElectronitsaDE
& O customarDB
53] -._ICUb'I:-merl-lam;wrr-en'.
& O ApparaiDE
& DwebSenices
& 5D SerdceDB

Ganeral

Wenitor | Socurty ¥wery Functions. | Mninisrm'wl’nfnm |

This page sllows yoia 10 define the configumalion property of Liguid data Apphcation

Access Control

Check Access Control

]

bl defaall AN0AYMDIES ACCASEE

X [Rroy re Fles

To impart securly infomation eegarding recources & texd fle
Third party secunly provider can wie ks information

Cache

Enable Cache

Figure 16-4 Set General Security

5. Test the security policy by completing the following steps:

a. In WebLogic Workshop, open CustomerProfile.ds in Test View.

b. Select getCustomerProfile from the Function drop-down list.

c. Enter CUSTOMERS3 in the Parameters field.

d. Click Execute. The test should return an Access Denied error. With the current security

settings, no one can access the application’s functions. You must grant user access to read and

write functions.

| SuripmerProfe.c - {PotaServices} YCustomerManogement),

Sedect Function:
et CustoimarFroflel Customer [0

Paramartors

acsiriny Dustimerlls || CUS10MERS

Mrknr  Ehrt (by path)
Lt ket i ery reedts toc

) Start Cherdt Temnetion

Exgcute

[rom e M QueryCcegtion: Access dered
8t webloxgiriven. B

8t Hvalang. Thessd.run{ Theesd java 54

Design View: | ¥porey Ecltor Viow 1 Souece View | Te-a View | Qusry Plon View |

Figure 16-5 Access Denied

BEA Liquid Data for WebLogic: Samples Tutorial

148



Lab 16.3 Granting User Access to Read Functions

Liquid Data security policies can be set at the function level, which applies to specific functions within
specific data services. Function-level security can be read and/or write permissions. A policy may
include any number of restrictions; for example, limiting access based on the role of the user or on the
time of access. Specifically, policies can be based on the following criteria:

User Name of the Caller. Creates a condition for a security policy based on a user name. For
example, you might create a condition indicating that only the user John can access the Customer
data service.

Caller is a Member of the Group. Creates a condition for a security policy based on a group.

Caller is Granted the Role. Creates a condition based on a security role. A security role is a
special type of user group specifically for applying and managing common security needs of a
group of users.

Hours of Access are Between. Creates a condition for a security policy based on a specified time
period.

Server is in Development Mode. Creates a condition for a security policy based on whether the
server is running in development mode.

Objectives

In this lab, you will:

Use the Liquid Data Console to grant Joe read access permissions, based on user name.

Use WebLogic Workshop to test the new security policy.

Instructions

1. Inthe Liquid Data Console, open the CustomerProfile data service. (The data service is located in
the ldplatform\Evaluation\DataServices\CustomerManagement folder.)

2. Click the Security tab. The Security Policy window opens.

v e e e

Figure 16-6 Data Service-Level Security Policy

3. Click the Action icon for the getCustomerProfile resource. The Configure window opens.

BEA Liquid Data for WebLogic: Samples Tutorial 149



Figure 16-7 Configure Security

4. Set read access for a specific user, by completing the following steps:
a. Select User name of the caller.
b. Click Add. The Users window opens.
c. Enter Joe in the Name field.

d. Click Add.

Type one name at a time and click Add

Enter Usor Name ¢

Users :
Usar name o the caler is

0| Cameal |

Figure 16-8 Adding User
e. Click OK. The Configure window re-opens.
f.  Click Apply.
5. Login to the now-secure application, by completing the following steps:
a. In WebLogic Workshop, choose Tools — Application Properties — WebLogic Server.
b. Select Use Credentials Below.
c. Enter Joe and password in the Use Credentials Below fields.

d. Click OK.

BEA Liquid Data for WebLogic: Samples Tutorial 150



2 Application Properties @

I

|| weblogic Server

|| Buid

| Dribealuser_projectsidomainsdanube|, |~
L] souree Control

[ Debug sourcepath

| ]Encoding Save server home directary in:
[ Portal @® Personal settings

Server Home Directory:

(O shared application settings (work file)

Paths
DK Home:
[ Dbesjdki42 o5 | [ Bromse... |
wiebLogic Home:
| Dibealweblogicst| | [ Bromse... |

Start Command:

| Dibealuser_projects\domainsidanubelstart weblogic [ [ romse...

Stop Command:

\ Dribeatuser_projects\domainsidanube)stopueblogic \ | Browse.. \
Settings =

Hostname: localhast

Part: FooL

webLogic domain: danibe

wweblogic server: coServer

Authentication options:

O Use domain's boat, properties file
@ Use credertials below:
Username: o

Passnord: =

il

Figure 16-9 Logging Into Secure Application

6.

a.

b.

Test the security policy by completing the following steps:
Open CustomerProfile.ds in Test View.
Select getCustomerProfile from the Function drop-down list.
Enter CUSTOMER3 in the Parameters field.
Click Execute. The test should permit access and return the requested data.

Click Edit, modify an item, and then click Submit. An error message will display, since Joe is
only granted read access.

BEA Liquid Data for WebLogic: Samples Tutorial

151



Lab 16.4 Granting User Access to Write Functions

As noted in the previous lab, security policies at the function level can allow either read and/or write
permissions.

Objectives

In this lab, you will:

Use the Liquid Data Administration Console to grant Joe write access permissions.

Use WebLogic Workshop to test the new security policy.

Instructions
1. Inthe Liquid Data Administration Console, open the CustomerProfile data service.
2. Select the Security tab. The Security Policy window opens.
3. Click the Action icon for the submit resource. The Configure window opens.
4. Set write access to a user, by completing the following steps:

a. Select User name of the caller.

b. Click Add.

c. Enter Joe in the Name field.

d. Click Add.

e. Click OK.

f.  Click Apply.
5. Test the security policy, by completing the following steps:

a. In WebLogic Workshop, open CustomerProfile.ds in Test View. (The file is located in the
DataServices\CustomerManagement folder.)

o

Select getCustomerProfile from the Function drop-down list.
c. Enter CUSTOMERS in the Parameters field.
d. Click Execute. The test should permit access and return the specified results.

e. Click Edit. Since Joe is granted both read and write access, you can now edit the results.

BEA Liquid Data for WebLogic: Samples Tutorial 152



Lab 16.5 Setting Element-Level Data Security

A policy can apply to individual items of information within a return type, such as a salary node in a
customer object. If blocked by insufficient credentials at this level, the rest of the returned information
is provided without the blocked element.

Objectives

In this lab, you will:

Enable element-level security.

Set a security policy for specific elements.

Instructions
1. Inthe Liquid Data Console, open the CustomerProfile data service.
2. Select the Security tab.
3. Set element-level security, by completing the following steps:
a. Select the Secured Elements tab.
b. Expand the CustomerProfile and customer+ nodes.
c. Select the checkbox for the ssn simple element.

d. Expand the orders ? and orders * nodes.

e. Select the checkbox for the order line * complex element.

f.  Click Apply.

&) domit raegpint sttt S Lol et

Figure 16-10 Setting Element-Level Security

4. Return to the Security Policy window for CustomerProfile. You should see two new resources:
CustomerProfile/customer/ssn and CustomerProfile/customer/orders/order/order_line.

BEA Liquid Data for WebLogic: Samples Tutorial 153



I Webdogic Server Liquid data Comsle - Microsslt Infernet [xplorer

Fie Bl Vew Foudes Tods Heb

Qe - # B & e Foreenn @) G- 2-JH B
oot | ) e bt 701 At il O
0 A Consote Aotess Contros - )
B @ dwute Sl » e Ao ? =2 i bea
[conmtetadio locabent A1 | vouselgedmm e et

5 Fnu Metuats |
ard Cacha | Security

m Sacued Elemris |

This page allows y0u 1o view all IRSOUITIES as5ociated with this Data Senice Click on the action ts assgn securty policy
for the lsted ressuice
orees £an by assigned with satunty KOuery fmetians by cheking secuty $0usry Ainctans scon Admin £an craste
aacucty ¥uery Funchons o Applestiun Node
Mesnuce Hams Tont Acsion Sacimity XOuary functisns
CrtlomeProfaicustermsriontersitrdaondur_ine | shemest & E o
CustommProfia/customanisen sament @ Y
e @ L)
wwd @ L)
sebmt wpdate @ ™M
{2 Aot rassopie stirted 8 Lo et

Figure 16-11 New Secured Element Resources

5. Set the security policy for the complex order line element, by completing the following steps:
a.

b.

Return to the Security Policy window for CustomerProfile.

Click the Action icon for the CustomerProfile/customer/orders/order/order line resource. The

Configure window opens.
Select User name of the caller.
Click Add.

Enter Joe in the Name field.
Click Add.

Click OK.

Click Apply.

6. Set the security policy for the simple ssn element, by completing the following steps:

a.

Click the Action icon for the CustomerProfile/customer/ssn resource. The Configure window

opens.

Select User name of the caller.
Click Add.

Enter Bob in the Name field.
Click Add.

Click OK.

Click Apply.

BEA Liquid Data for WebLogic: Samples Tutorial

154



Lab 16.6 Testing Element-Level Security

At this point, element-level security policies are defined for both Bob and Joe. Testing the policy
within WebLogic Workshop lets you determine what data results these two users will be able to
access.

Objectives

In this lab, you will:

Test the security policy for Bob and Joe.

Change the security policy for Bob and test the new security policy.

Instructions
1. Test element-level security for Joe, by completing the following steps:
a. In WebLogic Workshop, open CustomerProfile.ds in Test View.
b. Select getCustomerProfile from the Function drop-down list.
c. Enter CUSTOMERS in the Parameters field.
d. Click Execute. The test should permit access and return all results except SSN.

e. Click Edit, modify an order line value, click Submit, and click OK. The specified change is
submitted.

f.  Click Execute to refresh the data set.
g. Verify that changes have been saved.
2. Test the element-level security policy for Bob, by completing the following steps:
a. Choose Tools — Application Properties — WebLogic Server.
b. Select Use Credentials Below.
c. Enter Bob and password in the Use Credentials Below fields.

d. Click OK.

o

Open CustomerProfile.ds in Test View.

=

Select getCustomerProfile(CustomerID) from the Function drop-down list.
Enter CUSTOMER3 in the Parameters field.

g
h. Click Execute. The test should fail. Although Bob can access the SSN element, he does not
have read access to the getCustomerProfile() function.

3. Change the security policy for Bob, by completing the following steps:
a. Inthe Liquid Data Console, open the CustomerProfile data service.
b. Select the Security tab.
c. Click the Action icon for the getCustomerProfile resource. The Configure window opens.
d. Set read access for Bob, by completing the following steps:
1) Select User name of the caller.

2) Click Add.

BEA Liquid Data for WebLogic: Samples Tutorial 155



3) Enter Bob in the Name field.
4) Click Add.
5) Click OK.

6) Click the "and User name of the caller" line, located in the Policy Statement section
of the window.

7) Click Change, which changes the line to an "or User name of the caller" condition.

8) Click Apply.

davebe » eaten B9 Cher

Dubete | Roant | Apwly

Figure 16-12 Enabling read Access for Two Users

4. In WebLogic Workshop, test the getCustomerProfile() function again. This time, user Bob can
view all elements except order line information.

5. Try modifying data by clicking on Edit button and changing SSN. Submit changes by clicking on
Submit button. An error message will display since Bob does not have write privileges.

6. Reset the application-level security, by completing the following steps:

a. Inthe Liquid Data Console (http://localhost:7001/Idconsole/), using the + icon, expand the
Idplatform directory.

Note: If you click the ldplatform name, the Application List page opens. You do not want this
page for this lesson.

b. Click Evaluation. The Administration Control’s General page opens.
c. Select Check Access Control to clear the checkbox.

d. Click Apply.

Lesson Summary

In this lesson, you learned how to:

Activate application level security.
Set security permissions on both read and write function access.

Set security permissions on simple and complex elements.

BEA Liquid Data for WebLogic: Samples Tutorial 156


http://localhost:7001/ldconsole/

Lesson 17 (Optional) Consuming Data Services through Portals

Objectives

Overview

Lab 17.2

and Business Processes

The previous lessons demonstrated how Liquid Data provides a convenient way to quickly access
Liquid Data from a WebLogic Workshop application such as page flows, process definitions, or
portals. This optional lesson details the steps you take to use a portal to access data services.

Note: WebLogic Portal must be installed.

After completing this lesson, you will be able to:

Import a WebLogic Portal project that contains portals and business processes.

Install the Liquid Data control in the project, thereby making data services available from the
portal and business processes.

Recognize how a Liquid Data control is used from a portal and business process.

At its most basic level, a portal is a Web site that simplifies and personalizes access to content,
applications, and processes. Technically speaking, a portal is a container of resources and functionality
that can be made available to end-users. These portal views, which are called Desktops in WebLogic
Portal, provide the uniform resource location (URL) that end users access.

Employees Customer Service Order Management
Portal Portal Portal
- > [ Client APT _ | )
Datqlsiew Administration
Builder | Security Console
[esign Tool far I ] Caching, Security,
Unifiad Model & — \ Cache ) Mang gemenf’l
Queries - -
| J s . = 4
N Distributed Query Processing
" Model 4
Repository
—_— | | Data Source API | |
L 5 A
e S T S T T v
ec || JoBC | [_ Web 2L | [Inflight | [ Custom | | A
| 5ewitﬁ5| Bl l "ML | FuncHions BEA WebLogic Adapters
Businass File Packaged Custom Legacy
| ROBMS Dl DM Fartmer | | Sustem | .Messages . Crther Apps Apps Bpps

Figure 17-1 Consuming Data Services from Portals

Installing a Liquid Data Control in a Portal Project

The steps within this lab are similar to those detailed in Lab 8.1.

BEA Liquid Data for WebLogic: Samples Tutorial 157



Objectives

In this lab, you will:

Import a portal web project's files and libraries, which you will use to create a new portal
project.

Create a new portal project.

Add a control to the portal project.

Instructions

1. Right-click the Evaluation application.

2. Choose Install — Portal. Liquid Data installs the necessary portal files and libraries.

3. Create a new portal web project by completing the following steps:

a.

b.

c.

Import Project - New Project

Right-click the Evaluation application.
Choose Import Project.
Select Portal Web Project.

Select MyPortal, located in the <beahome>\weblogic81\samples\ liquiddata\EvalGuide
directory.

Click Open and then click Import.

(%)

1A 4] Control Project [+]
() Business Lagic E Datasync Project

) @ EJB Project

g :;E:::I Data @ Java Project

(3 Process Liquid Data Praject

(> Schema @ Partal Web Project

() Wweb Services @ Process Project

() Wb User Inkerface %] Schema Project =

Marme:

Direckory: | [nhbealweblogics1isamplestliquiddatalMyPortal | | Browse, ., |

Copy into Application directory,

| MwPortal |

A new Web Project that includes Weblogic Portal J5P tags, APIs, and default portal
Framewark files. You must add a Portal Web Project to a Portal Application,

Figure 17-2 Importing a Portal Web Project

BEA Liquid Data for WebLogic: Samples Tutorial

158



4. Create a new folder in the MyPortal folder, and name it controls.

5. Create a Liquid Data control within the portal by completing the following steps:

a. Right-click the MyPortal project.

b. Choose New — Java Control.

c. Select Liquid Data Control and name it CustomerData.

New Java Control r5_<|

Seleck & control ko extend or select Custam o create a new custom control:

@ Custarm E
B Database |:

Web Service
EJE Contral
5 M

+ Liquid Data
Tuxedo

(4 Applicationtisw Iz‘

File: narne: CustomerData |

o

| Mext | | || Cancel |

Figure 17-3 Creating a New Liquid Data Control

d. Click Next and then click Yes at the Message window.

e. Select MyPortal\controls as the subfolder in which to locate the new control.

f.  Click Select. The New Java Control — Liquid Data window opens.

New Java Control - Liquid Data

STEF 1

STEP 2
Liquid Data Application (e Current () Other

[Loronse |

]

|Previ0us || | I Create || Cancel |

Figure 17-4 Setting Liquid Data Control Specifications

g. Click Create to accept the default settings. A list containing available data service queries

displays.

BEA Liquid Data for WebLogic: Samples Tutorial

159



h. Open CustomerProfile.ds (located in DataServices/CustomerManagement) and select the
following methods:

o getCustomerProfile()
0 submitCustomerProfile()

6. Click Add and then Finish.

22 Select Liguid Data Queries...

Select one or more queries to add to the contral,

I_ DataZervices subrmit CustormerProfile
) ApparelDE getCustomerProfile
[ CustomerDB
[ 1) CustamerManagement
] CustomerProfile, ds
J getallCustomers()
J gekCustomerProfiled)

J submitArrayOFCustomerProfiled)

J submitCustamerProfilal)

[Z) ElectronicsDE Remove Al

[C) SetviceDE
[C1 WebServices

Figure 17-5 Selecting Query Functions

Lab 17.3 Testing the Control and Retrieving Data

As with all data services, you should test functionality before you deploy the application.

Objectives

In this lab, you will:

Run the CustomerManagement.portal application.

Retrieve data.

Review the results.

Instructions

1. Open CustomerManagement.portal.

a. Click the Start icon to open the Workshop Test Browser and run the portal application
containing the CustomerManagementWebApp and the CustomerReport that were used in
earlier lessons.

b.

Enter CUSTOMER3 in the Customer ID field and press Enter. The Customer Profile
Information page opens.

BEA Liquid Data for WebLogic: Samples Tutorial 160



Warkshop
=0 %

customer Profile Roports

Customer Profile Information

—

Customer Profile

o Neme Smith, Joo
JOHN_3pate.cam
LoseN 647-73-1256
1952-05-09
PRICRITY=1
| Credit Rating 600
Update Profie

Orders

Filtars:

order amount [* =] B Aoyt | e of orgers [5 =] _Satuma |

Dichra
LINE QAPPA_SH_4| Sandal st 124%.958 2mous
Nordstroen.

Tusdray
2001- L e o Hesbun e
ORDER_3_0 Jn g E5EESLINC JAPPA_SH_S froen| 1259958 emove]
Farragamo
ueei
LINE ZAPPA_BA1  Deyavu 1| 99.95R e
Wb
LIHE_GAPPA_BA_ 15/ 9.952smos
i
LINE CIAPPA_GH_§|  Hestun 1299955 2move
Farragamo
2001~ Cuex
OROERID i-6| "% nie sarpa Bal  Dravu 1| 9998 R e
Habo
Burberry ]

Figure 17-6 Portal Access to Web Application Data

c. Click the Reports link. For the Reports page, the first invocation may take a few moments
before displaying.

Gustamer Profile Reports

showCrystal

E Main gt = ﬂdq 1/ b |}u I a “ [75m - W'ﬁ'
CUSTOMERD
CUSTOMERL
CUSTOMERZ
CUSTOMERY
CUSTOMER4
CUSTOMERS.
CUSTOMERE

: Spend By Customers

-

gusRgRes

@ g b g b & b D &
.
S

L L
cusmomens ™ =
Tots foe CUSTOMIRD: 160080
cummen: a ™
Totst for CUSTOMERY: 043638
cusmoness . Gnrery
Toas toe CURTOMERZ: 129230
cusmomens e e
Toas toe CURTOMERS: 33875
cummomens ™
Tobi lie CURTONERS. 534470
cumomens s e
Tobi lie CURTONERS. 708750
e 1ot
-
< >

Figure 17-7 Portal Access to Crystal Reports Data

BEA Liquid Data for WebLogic: Samples Tutorial

161



d. Open the process.jpd file, located in the MyPortal\processes folder. You will see the Design

View of the process definition that accepts a CUSTOMER _ID String, invokes the Liquid
Data control, and returns the customer information in an XML document.

process.jpd - {MyPortal}|processest

®

K1}

®e

process

-

@

getCustomerPy

=

Clierk Request with Return

Finish

=

&

]
=
rofile

Ol
[ 1003l ~

Design view [Source View

Figure 17-8 Design View of process.jpd File

e. Click the Start icon to test the process definition.

f.  Enter CUSTOMER3 in the Customer ID field and then click clientRequestwithReturn.

g. Scroll through the page to view customer information included in the “Returned from

getCustomerProfile on LDControl” section.

& Workshop Test Browser

+ = @ = Hhttp:;’,ﬂﬂcalhnst:?ﬂﬂl)’MyPnrta\fpmcessesfprncass‘jpd7.EXPL0RE=.TEST&.LOGENTR\"=D|

Returned from getCustomerProfile on LDControl
Submitted at Fri Mar 25 03:26:32 PST 2005

Return value: <nsD:CustomerProfile
smins:ns0="http:j/temp.openuri.org/DataSer vices/schemas)CustomerProfile xsd" =
<customer
<customer_id=»CUSTOMER3 </ customer _jd=>
<first_name >Joe<ifirst_name

<last_name=Smith </last_name >
<customer_since >2001-10-01 </customer_since =
<gmail_address»JOHN_3@att,com</email_address>
<telephone_number »9287731259 <telephone_number >
<55n =647-73-1259 <jssn
<hirth_day>1952-05-09</birth_day>
<default_ship_method =PRIORITY-1 < fdefault_ship_methad>
«<email_notification =1 «/email_notifications
<news_letter >0</news_letters
<online_statement =1 <fonline_statement:=

<orders=

<order=

<order_id=0ORDER_3_0</order_id>
<customer_id=»CUSTOMER3 </ customer _jd»
<order_date=2001-10-01 <forder_date>
<ship_method »PRICRITY-1 =/ship_method:>
<handling_charge>&.5</handling_charge >
<subtotal»649,85</subtotal >
<total_order_amount »656.65 <jtotal_order_amount >
<sale_tax=0</sale_taxs
«ship_to=ADDR_3_0</ship_tox

<ship_to_namme=Britt Pierce </ship_to_name>
<bill_to=CC_3_1 «<jbill_to>
<estimated_ship_date>2001-10-03 </estimated_ship_date
<skatus>CLOSED <jskatus>

<data_source/=

<order_line>

<line_id>LINE_1</line_id>
<order_jd=CORDER_3_0=</order_id=>
<product_id=APPa_SH_S</product_id=

<product »Audrey Hepbun From Farragamo</product =
<quantity1 «fquantity >

<price =299, 95<price >

«status>CLOSED «/status»

<forder_line>

<order_linex

<line_id=LINE_2</line_id>
<order_jd=CORDER_3_0</order_id=>
<produck_id=APPA_BA_1</product_id=>

<produck »Cucc Dejavu Hobo=/product >
<quantity =1 <fquantity =

<price »99,95</price>

<status>CLOSED <jstatus

sforder line>

Figure 17-9 Business Process View of Customer Data

BEA Liquid Data for WebLogic: Samples Tutorial

162



Lesson Summary

In this lesson you learned how to:

Import a WebLogic Portal project that contains portals and business processes.

Install the Liquid Data control in the project, thereby making data services available from the
portal and business processes.

Recognize how a Liquid Data control is used from a portal and business process.

BEA Liquid Data for WebLogic: Samples Tutorial 163



BEA Liquid Data for WebLogic: Samples Tutorial 164



Glossary

ad-hoc query. A hand-coded or generated query that is passes to Liquid Data on the fly, rather than stored in the
BEA Liquid Data for WebLogic server repository.

administration console. A web-based administration tool that an administrator uses to configure and monitor
WebLogic Servers. Liquid Data provides another version of the Administration Console that allows administrators
to configure the Liquid Data server via a Liquid Data node.

application. A collection of all resources and components deployed as a unit to an instance of WebLogic Server.
The application contains one or more projects, which in turn contain the folders and files that make up your
application. Only one application can be open at a time.

cache. The location where Liquid Data stores information about commonly executed stored queries for subsequent,
efficient retrieval, thereby enhancing overall system performance. Liquid Data provides query plan cache and result
set cache.

cache policy. In the result set cache, configuration settings determine when the cached results expire for individual
stored queries.

data model. A visual representation of data resources.
data object. In SDO, a complex type that holds atomic values and references to other data objects.

data service. A modeled object that describes a data shape and functions used to retrieve and update the data, as
well as functions to navigate to other related data services.

data service mediator. The SDO mediator that uses data services to retrieve and update data.
data service update. The engine responsible for handling submits of changes to SDOs

data source. Any structured, semi-structured, or unstructured information that can be queried. The types of data
sources that Liquid Data can query include relational databases, Web services, flat files (delimited and fixed width),
XML files, Java functions, application views via web applications (business-level interfaces to the data in packaged
applications such as Siebel, PeopleSoft, or SAP), data views (dynamic results of Liquid Data queries).

data source schema. An XML schema that defines the content, semantics, and physical structure of a data source.

function. A uniquely named portion of an XQuery that performs a specific action. In the case of Liquid Data the
function would typically query physical or logical data.

java server page (JSP). A J2EE component that extends the Servlet class, and allows for rapid server-side
development of HTML interfaces that can be co-mingled with Java.

logical data service. A data service that integrates data from multiple physical and/or logical data services.
mapping. The process of connecting data source schemas to a target (result) schema.
metadata. Descriptors about a data service’s information, format, meaning, and lineage.

physical data service. The leaf-level data services that expose external data. For relational sources, this would be a
data service representing tables or stored procedures. For functional sources, this would be the functions that are
considered to be the initial source of data operated on by XQuery.

project. Groups related files within an application.

query. In Liquid Data an XQuery function that retrieves data from a data source. Functions define what tasks the
query will perform, while expressions define what data to extract.

query operation. Operation that a query performs, such as a join, aggregation, union, or minus.

query plan. A compiled query. Before a query is run, Liquid Data compiles the XQuery code into an executable
query plan. When the query executes, the query plan is sent to the data source for processing.

BEA Liquid Data for WebLogic: Samples Tutorial 165


http://bernal.bea.com/stage/liquiddata/docs82/gloss/index.html#54450
http://bernal.bea.com/stage/liquiddata/docs82/gloss/index.html#57806
http://bernal.bea.com/stage/liquiddata/docs82/gloss/index.html#59865
http://bernal.bea.com/stage/liquiddata/docs82/gloss/index.html#57092

repository. File-based metadata maintained in a Liquid Data project.

result set. The data returned from an executed query. There are two types of result sets: intermediate result sets are
temporary result sets that the query processor generates while processing an analytical query; final result sets are
returned to the client application that requested the query in the form of XML data.

return type. A type of XML schema that defines the shape of data returned by a query.
schema. A model for representing the data types, structure, and relationships of data sets and queries.

security. Set of mechanisms available to prevent access to, corruption of, or theft of data. Liquid Data extends the
WebLogic Server compatibility security mechanisms to define groups, users, and access control to Liquid Data
resources.

service data object (SDQO). Defines a Java-based programming architecture and API for data access.

simple object access protocol (SOAP). An extensible, platform-independent, XML-based protocol that allows
disparate applications to exchange messages over the Web. SOAP can be used to invoke methods on servers, Web
services, application components, and objects in a distributed, heterogencous environment. SOAP-based Web
services are one of the data sources Liquid Data supports.

source schema. XML schema that describes the shape (structure and legal elements) of the source data — that is,
the data to be queried. The Liquid Data server runs queries against source data and returns query results in the form
of the source schema.

stored query. A query that has been saved to the Liquid Data repository. There is a performance benefit to using a
stored query because its query plan is always cached in memory, optionally along with query result. With an ad-hoc
query, however, the query plan and result are not cached. In addition, caching of query results for a stored query is
configurable through the Cache tab on the Liquid Data node in the Administration Console.

structured query language (SQL). The standard, structured language used for communicating with relational
databases. Database programmers use SQL queries to retrieve information and modify information in relational
databases. In order to be able to access different types of data sources dynamically, Liquid Data employs the XML-
based XQuery language as a layer on top of platform-dependent query systems such as SQL.

target schema. See return type.
weblogic server. The platform upon which Liquid Data is built.
weblogic workshop. The IDE in which Liquid Data runs as an application.

web service. Business functionality made available by one company, usually through an Internet connection, for use
by another company or software program. Web services are a type of service that can be shared by, and used as
components of, distributed Web-based applications. Web services communicate with clients (both end-user
applications or other Web services) through XML messages that are transmitted by standard Internet protocols, such
as HTTP. Web services endorse standards-based distributed computing. Currently, popular Web Service standards
are Simple Object Access Protocol (SOAP), Web services description language (WSDL), and Universal
Description, Discovery, and Integration (UDDI).

web services description language (WSDL). Specification for an XML-based grammar that defines and describes
a Web service. A WSDL is necessary if two different online systems need to communicate without human
intervention.

xml schema. A structured model for describing the structure, content, and semantics of XML documents based on
custom rules. Unlike DTDs, XML schemas are written in XML data syntax and provide more support for standard
data types and other data-specific features. When metadata about a data source is obtained, it is stored in an XML
schema in the Liquid Data repository.

xquery. An XML query language, which represents a query as an expression which is used to query relational,
semi-structured, and structured data.

BEA Liquid Data for WebLogic: Samples Tutorial 166



xsd. An abbreviation for XML Schema Definition. An XSD file describes the contents, semantics, and structure of
data within an XML document.

BEA Liquid Data for WebLogic: Samples Tutorial 167



	 Copyright 
	Restricted Rights Legend 
	Trademarks or Service Marks 
	About This Document 
	Document Organization 
	  Technical Prerequisites 
	System Requirements 
	Data Sources Used Within These Lessons 
	Related Information 
	Part 1 Core Training 

	Lesson 1 Introducing the Liquid Data for WebLogic Environment 
	Objectives 
	Overview 

	Lab 1.1 Starting WebLogic Workshop  
	Objectives 
	Instructions 


	Lab 1.2  Navigating the Liquid Data for WebLogic IDE Environment 
	Objectives 
	 Application Pane 
	Design View  
	XQuery Editor View  
	XQuery Editor View Tools 

	Source View 
	Test View  


	Lab 1.3 Starting WebLogic Server 
	Objectives 
	Instructions 


	Lab 1.4  Stopping WebLogic Server 
	Objectives 
	Instructions 


	Lab 1.5 Saving Your Work 
	Objectives 
	 Instructions 

	Lesson Summary 


	Lesson 2 Creating a Physical Data Service  
	Objectives 
	Overview 

	Lab 2.1 Creating a Liquid Data Application 
	Objectives 
	Instructions 


	Lab 2.2  Creating a Liquid Data Project 
	Objectives 
	Instructions 


	Lab 2.3 Creating Project Sub-Folders 
	Objectives 
	Instructions 


	Lab 2.4  Importing Relational Source Metadata  
	Objectives 
	Instructions 


	Lab 2.5 Building a Project 
	Objectives 
	Instructions 


	Lab 2.6 Viewing Physical Data Service Information 
	Objectives 
	Viewing XML type 
	Instructions 
	Instructions 
	Instructions 
	Instructions 
	Viewing Data Service Metadata 
	Instructions 


	Lab 2.7 Testing Physical Data Service Functions 
	Objectives 
	Instructions 

	Lesson Summary 


	Lesson 3 Creating a Logical Data Service  
	Objectives 
	Overview 

	Lab 3.1 Creating a Simple Logical Data Service 
	Objectives 
	Instructions 


	Lab 3.2 Defining the Logical Data Service Shape 
	Objectives 
	Instructions 


	Lab 3.3  Adding a Function to a Logical Data Service 
	Objectives 
	Instructions 


	Lab 3.4  Mapping Source and Target Elements 
	Objectives 
	Instructions 


	Lab 3.5 Viewing XQuery Source Code 
	Objectives 
	Instructions 


	Lab 3.6 Testing a Logical Data Service Function 
	Objectives 
	Instructions 

	 
	Lesson Summary 


	Lesson 4 Integrating Data from Multiple Data Services  
	Objectives 
	Overview 

	Lab 4.1 Joining Multiple Physical Data Services within a Logical Data Service 
	Objectives 
	Instructions 
	Objectives 
	Instructions 
	Objectives 
	Instructions 

	Lesson Summary 


	Lesson 5  Modeling Data Services 
	Objectives 
	Overview 

	Lab 5.1 Creating a Basic Model Diagram for Physical Data Services 
	Objectives 
	Instructions 


	Lab 5.2 Modeling Relationships Between Physical Data Sources 
	Objectives 
	Instructions 

	Lesson Summary 


	Lesson 6 Accessing Data in Web Services  
	Objectives 
	Overview 

	Lab 6.1 Importing a Web Service Project into the Application 
	Objectives 
	Instructions 


	Lab 6.2 Importing Web Service Metadata into a Project 
	Objectives 
	Instructions 


	Lab 6.3  Testing the Web Service via a SOAP Request 
	Objectives 
	Instructions 


	Lab 6.4 Invoking a Web Service in a Data Service 
	Objectives 
	Instructions 

	Lesson Summary 


	Lesson 7 Consuming Data Services Using Java 
	Objectives 
	Overview 

	Lab 7.1 Running a Java Program Using the Untyped Mediator API 
	Objectives 
	Instructions 


	Lab 7.2  Running a Java Program Using the Typed Mediator API 
	Objectives 
	Instructions 


	Lab 7.3  Resetting the Mediator API 
	Objectives 
	Instructions 

	Lesson Summary 


	Lesson 8 Consuming Data Services Using WebLogic Workshop Controls 
	Objectives 
	Overview 

	Lab 8.1 Installing a Liquid Data Control 
	Objectives 
	Instructions 


	Lab 8.2 Defining the Liquid Data Control 
	Lab 8.3 Inserting a Liquid Data Control into a Page Flow 
	Objectives 
	Instructions 


	Lab 8.4 Running the Web Application 
	Objectives 
	Instructions 

	Lesson Summary 


	Lesson 9 Accessing Data Service Functions Through Web Services   
	Objectives 
	Overview 

	Lab 9.1 Generating a Web Service from a Liquid Data Control 
	Objectives 
	Instructions 


	Lab 9.2 Using a Liquid Data Control to Generate a WSDL for a Web Service 
	Objectives 
	Instructions 

	Lesson Summary 


	Lesson 10 Updating Data Services Using Java  
	Objectives 
	Overview 

	Lab 10.1 Modifying and Saving Changes to the Underlying Data Source 
	Objectives 
	 Instructions 


	Lab 10.2 Inserting New Data to the Underlying Data Source Using Java 
	Objectives 
	Instructions 


	Lab 10.3 Deleting Data from the Underlying Data Source Using Java 
	Objectives 
	Instructions 

	Lesson Summary 


	Lesson 11 Filtering, Sorting, and Truncating XML Data 
	Objectives 
	Overview 

	Lab 11.1 Filtering Data Service Results 
	Objectives 
	Instructions 


	Lab 11.2  Sorting Data Service Results 
	Objectives 
	Instructions 


	Lab 11.3  Truncating Data Service Results 
	Objectives 
	Instructions 

	Lesson Summary 


	Lesson 12 Consuming Data Services through JDBC/SQL  
	Objectives 
	Overview 

	Lab 12.1   Running DBVisualizer 
	Objectives 
	Instructions 


	Lab 12.2 Integrating Crystal Reports and Liquid Data for WebLogic  
	Objectives 
	Instructions 


	Lab 12.3 (Optional) Configuring JDBC Access through Crystal Reports 
	Objectives 
	Instructions 

	Lesson Summary 


	Lesson 13 Consuming Data via Streaming API 
	Objectives 
	Overview 

	Lab 13.1 Stream results into a flat file 
	Objectives 
	Instructions 


	Lab 13.2 Consume data in streaming fashion 
	Objectives 
	Instructions 



	Lesson 14 Managing Data Service Metadata  
	Objectives 
	Overview 

	Lab 14.1 Defining Customized Metadata for a Logical Data Service 
	Objectives 
	Instructions 


	Lab 14.2  Viewing Data Service Metadata via Liquid Data Console 
	Objectives 
	Instructions 


	Lab 14.3 Synching a Data Service with Underlying Data Source Tables 
	Objectives 
	Instructions 

	Lesson Summary 


	Lesson 15 Managing Data Service Caching  
	Objectives 
	Overview 

	Lab 15.1  Determining the Non-Cache Query Execution Time 
	Objectives 
	Instructions 


	Lab 15.2 Configuring a Caching Policy via Liquid Data Console 
	Objectives 
	Instructions 


	Lab 15.3 Testing the Caching Policy 
	Objectives 
	Instructions 


	Lab 15.4 Determining Performance Impact of the Caching Policy 
	Objectives 
	Instructions 


	Lab 15.5 Disable Caching 
	Objectives 
	Instructions 

	Lesson Summary 


	Lesson 16 Managing Data Service Security 
	Objectives 
	Overview 

	Lab 16.1  Creating New User Accounts 
	Objectives 
	Instructions 


	Lab 16.2 Setting Application-Level Security  
	Objectives 
	Instructions 


	Lab 16.3  Granting User Access to Read Functions  
	Objectives 
	Instructions 


	Lab 16.4  Granting User Access to Write Functions  
	Objectives 
	Instructions 


	Lab 16.5  Setting Element-Level Data Security  
	Objectives 
	Instructions 


	Lab 16.6  Testing Element-Level Security 
	Objectives 
	Instructions 

	Lesson Summary 


	Lesson 17 (Optional) Consuming Data Services through Portals and Business Processes  
	Objectives 
	Overview 

	Lab 17.2 Installing a Liquid Data Control in a Portal Project 
	Objectives 
	Instructions 


	Lab 17.3 Testing the Control and Retrieving Data 
	Objectives 
	Instructions 

	Lesson Summary 
	 Glossary 





