
BEALiquid Data for
WebLogic™

Liquid Data by Example

Version 8.1
Document Date: December 2003
Revised: January 2004

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy the
software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine readable form without prior consent, in writing, from
BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License Agreement
and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR 52.227-19; subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013, subparagraph (d) of the
Commercial Computer Software--Licensing clause at NASA FAR supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER,
BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY,
RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign Manager for
WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA WebLogic Workshop and
How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Liquid Data by Example iii

Contents

About This Document
What You Need to Know . xi

e-docs Web Site . xii

How to Print the Document . xii

Related Information . xii

Contact Us!. xii

Documentation Conventions .xiii

1. Understanding the Avitek Customer Self-Service Sample
Application

About Avitek . 1-1

Quick Start . 1-2

Introduction. 1-2

Case for an Avitek Self-Service Web Site . 1-3

Design Requirements . 1-3

Information Technology (IT) Comes On Board: The Moment of Truth 1-4

Search for an Alternative . 1-4

A Solution. 1-5

Anatomy of the Avitek SampleApp . 1-6

Finding the Components . 1-6

Analyzing the SampleApp Architecture . 1-7

Steps Used in Developing the SampleApp . 1-7

iv Liquid Data by Example

Available Data Sources .1-8

Avitek Customer Self-Service Sample Application Queries .1-8

Running the Avitek Customer Self-Service Sample Application in a Browser1-14

SampleApp Home Page. .1-15

Order Search .1-15

Viewing the Avitek Customer Self-Service Sample Application Source.1-16

WebLogic Workshop Components of the SampleApp. .1-17

Liquid Data Control. .1-18

Application Pages .1-20

Application Logic: Page Flow .1-21

Inter-page Navigation .1-24

Pagination .1-25

Data Binding .1-25

Ad Hoc Query .1-28

Page from the SampleApp .1-28

Summary. .1-29

Where To Go From Here .1-29

2. Query Cookbook
Example 1: Simple Joins .2-2

The Problem. .2-2

The Solution .2-2

View a Demo. .2-3

Ex 1: Step 1. Verify the Target Schema is Saved in Repository .2-3

Ex 1: Step 2. Open Source and Target Schemas .2-4

Ex 1: Step 3. Map Nodes from Source to Target Schema to Project the Output2-5

Ex 1: Step 4. Create a Query Parameter for a Customer ID to be Provided at Query

Runtime .2-5

Liquid Data by Example v

Ex 1: Step 5. Assign the Query Parameter to a Source Node . 2-5

Ex 1: Step 6. Join the Wireless and BroadBand Customer IDs 2-5

Ex 1: Step 7. View the XQuery and Run the Query to Test it . 2-5

Ex. 1: Step 8. Verify the Result. 2-6

Example 2: Retrieving Information. 2-8

The Problem . 2-8

The Solution . 2-8

Open Data Sources and Add a Target Schema. 2-8

Map Elements from Source to Target Schema to Project Output 2-8

Join Two Sources. 2-9

Specify the Order of the Result Using the Sort By Features . 2-10

View and Run the Query. 2-10

Example 3: Aggregates . 2-13

The Problem . 2-13

The Solution . 2-13

View a Demo . 2-14

Ex 3: Step 1. Configure the “AllOrders” Stored Query as a Data View 2-14

Ex 3: Step 2. Restart the Data View Builder and Find the New Data View. 2-16

Ex 3: Step 3. Verify that the Target Schema is Saved in the Repository 2-16

Ex 3: Step 4. Open the Data Sources and Target Schema. 2-17

Ex 3: Step 5. Map Source Nodes to Target to Project the Output 2-18

Ex 3: Step 6. Create Two Query Parameters to be Provided at Query Runtime 2-18

Ex 3: Step 7. Assign the Query Parameters to Source Nodes . 2-18

Ex 3: Step 8. Add the Count XQuery Function . 2-19

Ex 3: Step 9. Verify Mappings and Conditions . 2-19

Ex 3: Step 10. View the XQuery and Test by Running the Query 2-20

Ex 3: Step 11. Verify the Result . 2-21

Example 4: Date and Time Duration . 2-22

vi Liquid Data by Example

The Problem. .2-22

The Solution .2-22

View a Demo. .2-23

Ex 4: Step 1. Verify the Target Schema is Saved in Repository2-23

Ex 4: Step 2. Open Source and Target Schemas .2-24

Ex 4: Step 3. Map Source to Target Nodes to Project the Output2-25

Ex 4: Step 4. Create Joins .2-26

Ex 4: Step 5. Create Two Query Parameters for Customer ID and Date to be Provided at

Query Runtime. .2-26

Ex 4: Step 6. Set a Condition Using the Customer ID .2-27

Ex 4: Step 7. Set a Condition to Determine if Order Ship Date is Earlier or Equal to a

Date Submitted at Query Runtime. .2-27

Ex 4: Step 8. Set a Condition to Include Only “Open” Orders in the Result2-28

Ex 4: Step 9. View the XQuery and Run the Query to Test it .2-28

Ex 4: Step 9. Verify the Result .2-30

Example 5: Union .2-31

The Problem. .2-31

The Solution .2-31

View a Demo. .2-32

Ex 5: Step 1. Verify the Target Schema is Saved in Repository2-32

Ex 5: Step 2. Open Source and Target Schemas .2-33

Ex 5: Step 3. Clone the Orders Element of the Target Schema 2-33

Ex 5: Step 4. Create a Query Parameter for a Customer ID .2-34

Ex 5: Step 5. Assign a Query Parameters .2-34

Ex 5: Step 6. Define Source Relationships .2-34

Ex 5: Step 7. Project the Output to the Target Schema. .2-34

Ex 5: Step 8. View, then Run the Query .2-35

Ex 5: Step 9. Verify the Result .2-36

Liquid Data by Example vii

Example 6: Minus . 2-39

The Problem . 2-39

The Solution . 2-39

View a Demo . 2-40

Ex 6: Step 1. Verify the Target Schema is Saved in Repository 2-40

Ex 6: Step 2. Open Source and Target Schemas . 2-41

Ex 6: Step 3. Find BroadBand and Wireless Customers with the Same Customer ID2-41

Ex 6: Step 4. Find the Count of the Wireless Customers . 2-41

Ex 6: Step 5. Set a Condition that Specifies the Output of “count” is Zero 2-41

Ex 6: Step 6. View the XQuery and Run the Query to Test it . 2-43

Ex 6: Step 7. Verify the Result . 2-43

Example 7: Complex Parameter Type (CPT) . 2-45

The Problem . 2-45

The Solution . 2-45

View a Demo . 2-46

Ex 7: Step 1. Verify the Availability of Schemas and Sample Data Stream. 2-46

Ex 7: Step 2. Open the Target Schema and CO-CPTSAMPLE CPT 2-49

Ex: 7: Step 3. Create an orderLimit Query Parameter . 2-49

Ex 7: Step 4. Save the Project . 2-50

Ex 7: Step 5. Test Access to the Complex Parameter Source. 2-50

Ex 7: Step 6: Determine the Total Amount of New Orders . 2-51

Ex 7: Step 7. Create the Necessary Joins and Mappings to the Target Schema. 2-52

Ex 7: Step 8. Determine the Amount of Currently Open Orders 2-54

Ex 7: Step 9: Determine the Total Amount of All Open and New Orders 2-55

Ex 7: Step 10: Test If Open Orders + New Orders Exceeds the Order Limit 2-55

Ex 7: Step 11: Determine If the Order is Accepted or Rejected 2-55

Ex 7: Step 12: View the XQuery . 2-56

Ex 7: Step 13. Run the XQuery to Verify the Result. 2-57

viii Liquid Data by Example

3. Samples Installed with Liquid Data
Simple Liquid Data Queries .3-2

DB-XML Sample Query .3-2

What This Query Demonstrates .3-2

How to Run the Query .3-2

If You Want to Recreate the Query … .3-3

References .3-3

Data Transformation Sample Query . 3-4

What This Query Demonstrates .3-4

How to Run the Query .3-4

If You Want to Recreate the Query … .3-5

References .3-11

DB-DB Sample Query . 3-12

What This Query Demonstrates .3-12

How to Run the Query .3-12

If You Want to Recreate the Query … .3-13

References .3-14

Complex Parameter Type (CPT) Sample Queries .3-16

DB-CPT Sample Query .3-16

What This Query Demonstrates .3-16

How to Run the Query .3-16

If You Want to Create a Query that Uses a Complex Parameter Type (CPT).3-17

References .3-17

DB-CPTCO Sample Query . 3-18

What This Query Demonstrates .3-18

How to Run the Query .3-18

If You Want to Create a Query That Use a Complex Parameter Type.3-19

Liquid Data by Example ix

References. 3-19

Data View Sample Queries . 3-20

Simple Data View Sample Query . 3-20

What This Query Demonstrates. 3-20

How To Run the Query . 3-20

If You Want to Recreate the Query … . 3-21

References. 3-23

Parameterized Data View Sample Queries. 3-25

pviewSample . 3-25

pviewSample1 . 3-26

Application View Sample Queries . 3-29

DB-AppView (Three Data Source) Sample Query . 3-29

What This Query Demonstrates. 3-29

How to Run the Query . 3-29

If You Want to Recreate the Query … . 3-30

Reference. 3-32

DB-AppView (Two Data Source) Sample Query . 3-33

What This Query Demonstrates. 3-33

How to Run the Query . 3-33

If You Want to Recreate the Query … . 3-34

References. 3-36

Miscellaneous Samples . 3-37

Stored Procedure Sample Query . 3-37

What This Query Demonstrates. 3-37

How to Run the Query . 3-38

If You Want to Create a Query That Uses Stored Procedures. 3-38

References. 3-38

Custom Functions (DB-UDF) Sample Query . 3-39

x Liquid Data by Example

What this Query Demonstrates .3-39

How to Run the Queries .3-39

If You Want to Recreate the Custom Functions and the Queries …3-40

If You Want to Build the Sample Source Code … .3-45

DB-Web Service Sample Query . 3-47

What This Query Demonstrates .3-47

How to Run the Query .3-47

If You Want to Recreate the Query … .3-47

References .3-48

SQL_Call Sample Query . 3-50

What This Query Demonstrates .3-50

How to Run the Query .3-50

If You Want to Recreate the Query3-50

References .3-52

CSV-XML Sample Query . 3-54

What This Query Demonstrates .3-54

How to Run the Query .3-54

If You Want to Recreate the Query3-54

References .3-56

EJB API Sample . 3-57

To build the EJBAPI testing classes .3-57

To run the ejbAPI test classes .3-57

To examine the code .3-58

Index

Liquid Data by Example xi

About This Document

Read this document to learn how to build and test queries in XQuery language that can retrieve
real-time information from heterogeneous data sources using the BEA Liquid Data for WebLogic
server.

This document describes how to use the Data View Builder to design and generate XQueries with the
Builder drag-and-drop tools, functions, source and target schemas. The focus of this document is on
how to use the Data View Builder to create queries in Liquid Data. Liquid Data accepts queries written
in XQuery, which is an Extensible Markup Language (XML) Query language that adheres to the
standards described by the World Wide Web Consortium (W3C). The XQuery standard, version 1.0, is
the structured query language used by the Liquid Data server.

This document covers the following topics:

Chapter 1, “Understanding the Avitek Customer Self-Service Sample Application,” describes the
make-up of a sample application that uses

Chapter 2, “Query Cookbook,” introduces key concepts such as XQuery, ad hoc queries, and
Builder-generated queries.

Chapter 3, “Samples Installed with Liquid Data,” provides detailed examples about how to
construct queries using some advanced techniques and functions.

What You Need to Know
Users creating queries with Data View Builder should have an understanding of XML and XML
schemas.

About Th is Document

xii Liquid Data by Example

e-docs Web Site
BEA product documentation is available on the BEA corporate Web site. From the BEA Home page,
click on Product Documentation or go directly to the “e-docs” Product Documentation page at
e-docs.bea.com.

How to Print the Document
You can print a copy of this document from a Web browser, one file at a time, by using the File—>Print
option on your Web browser.

A PDF version of this document is available on the Liquid Data documentation Home page on the
e-docs Web site (and also on the documentation CD). You can open the PDF using Adobe Acrobat
Reader and print the entire document (or a portion of it) in book format. To access the PDF files, open
the Liquid Data documentation Home page, click PDF files and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can obtain a free version from the Adobe Web site
at www.adobe.com.

Related Information
For more information about XQuery and XML Query languages, see the World Wide Web Consortium
(W3C) Web site at http://www.w3.org/.

Contact Us!
Your feedback on the BEA Liquid Data documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed directly
by the BEA professionals who create and update the Liquid Data documentation.

In your e-mail message, please indicate that you are using the documentation for the BEA Liquid Data
for WebLogic 1.0 release.

If you have any questions about this version of Liquid Data, or if you have problems installing and
running Liquid Data, contact BEA Customer Support through BEA WebSupport at www.bea.com. You
can also contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Documentat i on Convent ions

Liquid Data by Example xiii

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and their
members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

About Th is Document

xiv Liquid Data by Example

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should never
be typed.

[] Indicates optional items in a syntax line. The brackets themselves should never
be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself should
never be typed.

... Indicates one of the following in a command line:

• That an argument can be repeated several times in a command line

• That the statement omits additional optional arguments

• That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line. The
vertical ellipsis itself should never be typed.

Convention Item

Liquid Data by Example 1-1

C H A P T E R 1

Understanding the Avitek Customer
Self-Service Sample Application

This chapter provides a brief overview of the Avitek Customer Self-Service Sample Application
(SampleApp), including a description of data sources, queries, and other application components
necessary to develop the SampleApp.

Quick Start

Introduction

Case for an Avitek Self-Service Web Site

Anatomy of the Avitek SampleApp

Running the Avitek Customer Self-Service Sample Application in a Browser

Viewing the Avitek Customer Self-Service Sample Application Source

Where To Go From Here

About Avitek
Avitek is a retailer that has grown through acquisitions. Because of this growth it has two different
order management systems (OMS) to manage electronics and apparel orders. These systems are
under separate platforms and are not integrate with each other. Avitek has a customer relationship
management (CRM) system to manage customer profile information. Finally, Avitek also has a
Customer Service system to manage the support cases for Electronic products.

Avitek now want to build a customer self-service web site and this chapter will walk you through the
the challenges in creating this application and how SampleApp was built to satisfy Avitek’s needs.

Unders tandi ng the Av i tek Customer Se l f -Se rv i ce Sample App l i ca t i on

1-2 Liquid Data by Example

Quick Start
To run the Avitek Customer Self-Service Sample Application:

1. Make sure you have installed Liquid Data 8.1 with samples (the full installation) into a WebLogic
Platform 8.1 directory.

2. Start the Liquid Data Samples server, as described in Set Up and Run the Samples.

3. Run the SampleApp:

Start—>Programs—>BEA WebLogic Platform 8.1—>BEA Liquid Data for WebLogic 8.1—>Liquid Data Samples
—>Sample Application Home

Alternatively, use the following URL to open the SampleApp login page:

http://localhost:7001/LDSampleApp/login.jsp

Log in using one of the names shown in the dialog box. Simply move your mouse over the login name
of your choice to fill-in the name and password.

Figure 1-1 Sample App Login Page

Introduction
The Avitek Customer Self-Service Sample Application shows how you can use Liquid Data to solve the
type of data integration problems frequently faced by Information Technology (IT) managers and
staff. Issues include:

../install/post.html#1041611

Case fo r an Av i t ek Se l f -Se rv ice Web S i te

Liquid Data by Example 1-3

What is the best way to normalize data drawn from widely divergent sources?

Having normalized the data, can you access it, ideally through a single point of access.

Once you have such a single point of access to your data, can you develop reusable queries that
are easily tested, stored, and retrieved?

Once you have your query set, can you easily incorporate results into a widely available
application?

Other questions may occur. Is the data-rich solution scalable? Is it reusable throughout the
enterprise? Are the original data sources transparent to the application — or do they become an issue
each time you want to make a minor adjustment?

Case for an Avitek Self-Service Web Site
A survey commissioned by Marketing found Avitek customers to be dissatisfied with the call-in wait
time required to track orders or update customer information. In a focus group the idea of a
self-service web site resonated with Avitek customers. Customer Service agreed; they have been
requesting such a site for years, but the internal costs were always above budget. But now that
Marketing is on board …

Design Requirements
Site requirements seem simple. Customers need to:

Log in and out.

Review order status. A Home page will provide information on open orders, including product
names and quantities of items ordered, order amount, shipping instructions, and a summary of
any open customer service cases, with details.

Review order history.

Review and change personal profile information.

Search through orders. A sample page provides the ability to retrieve orders based on a range
of prices, range of dates, etc.

A business analyst develops the requirements for the application:

A7/24 web site

Less than 10 pages

Unders tandi ng the Av i tek Customer Se l f -Se rv i ce Sample App l i ca t i on

1-4 Liquid Data by Example

Low-maintenance

Easily modified.

An application/UI designer starts “spec out" the required JSPs.

Information Technology (IT) Comes On Board: The Moment of
Truth
Then an IT data architect analyzes the data requirements. This turns up a problem. In surveying the
information needed by the application -- customer data for one data source, order data from two very
separate divisions of the company (two more data sources), and customer support data (a fourth data
source) — the architect realizes that integrating data from these diverse data sources will be
complicated and time consuming. Challenges included:

Cost of development. Writing the code to access and integrate data from multiple diverse data
sources would take more time than originally expected and require more expensive and scarcer
resources.

Time to market. Developing and testing an application against multiple data sources would
extend beyond the date when the application is needed.

Cost of testing and maintenance. High.

Perhaps most frustrating: little of the specialized code needed by the application can be reused.

Search for an Alternative
Developing a unified view into distributed data is one of the most persistent challenges faced by IT
departments. Just when you get all the available data sources normalized, new sources appear that
must be dealt with, but which also make yesterday’s data integration solution obsolete.

This problem is so pervasive that each year thousands of arguably critically-needed applications go
unwritten, are delayed, or are delivered in highly compromised form because of the data integration
challenges faced by even the most sophisticated enterprises.

Compared to the above, the SampleApp team preferred a solution that:

Provides a layer of data abstraction so that queries can treat highly-divergent data sources as a
single, virtual data source.

Allows development of human-readable, reusable queries.

Can be easily accessed by consuming applications through a simple API.

A Solu t i on

Liquid Data by Example 1-5

Protects the integrity and security of the underlying data.

A Solution
When Avitek looked at Liquid Data, they found a product that addressed the underlying challenges
posed by the apparently simple SampleApp:

In Liquid Data, queries are described in simple, declarative text.

Addressing the problem of data access, Liquid Data provides data integration through a
highly-accessible graphical interface.

Once data integration is achieved, persistent queries are generated.

Specifically, the features that the team found most appealing included:

Data Access. First, Liquid Data puts a common face on the data. This allows you to access information
from anywhere in the company — or beyond — through an easily-created virtual data access layer.
Once accessed, data can easily be aggregated through a combination of reusable queries and views
that are maintained in the Liquid Data server.

Query Development. Then, once the data is collected under a single point of access, it is not difficult
to write queries that pull data together from these disparate sources and present a common, reusable
view ready for more specialized queries.

The declarative form of Liquid Data artifacts (queries) makes them very readable. These queries are
easily developed in the Data View Builder.

Query Deployment. Once developed, queries are easily integrated into a client application such as
WebLogic Workshop.

Queries are as readily available to processes client applications thorough a variety of access methods
such as an EJB API or a JSP tag library. Alternatively, these queries can also be accessed as web
services.

Integration. Business logic for the SampleApp is provided by the NetUI and page flow features of
WebLogic Workshop.

However, Liquid Data queries are easily integrated and maintained within the business logic of any
J2EE application.

Unders tandi ng the Av i tek Customer Se l f -Se rv i ce Sample App l i ca t i on

1-6 Liquid Data by Example

Anatomy of the Avitek SampleApp
The SampleApp shows how Liquid Data-generated queries can aggregate data from potentially highly
disparate data sources, allowing access to that data through a single point of access that itself is easily
integrated with the application.

Figure 1-2 Avitek Queries Supported by the rtlBaseView

Note: To simplify the running of the SampleApp, the multiple data sources described in this
document are simulated using the PointBase RDBMS which is shipped with Liquid Data. In
the original implementation, these databases were represented by major vendor RDBMS
systems.

Finding the Components
The SampleApp is located in the following directory:

<WL_HOME>/samples/liquiddata/SampleApp

A Solu t i on

Liquid Data by Example 1-7

SampleApp project files are available from:

<WL_HOME>/samples/liquiddata/SampleApp/DVBProject

SampleApp controls, pages, processes, and resources used to create the SampleApp can be found at:

<WL_HOME>/samples/liquiddata/SampleApp/LiquidDataSampleApp

Schemas used in the SampleApp are in the following directory:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/rtl

The Workshop .work file for the SampleApp is located at:

<WL_HOME>/samples/liquiddata/SampleApp/SampleApp.work

When you install Liquid Data with the WebLogic Platform, the source code for the SampleApp can be
accessed from WebLogic Workshop. For instructions, see “Viewing the Avitek Customer Self-Service
Sample Application Source” on page 1-16.

For additional information and references, see:

“Running the Avitek Customer Self-Service Sample Application in a Browser” on page 1-14.

“Using Workshop Controls to Develop Liquid Data Applications” in the Application Developer’s
Guide for the specific steps required to create the Liquid Data control.

Analyzing the SampleApp Architecture
Several BEA technologies are used in the Avitek Customer Self-Service Sample Application.

Query Development. Queries and a data view that draw data from multiple data sources are
created in the Data View Builder.

Query Access. The WebLogic Workshop Liquid Data Control provides programmable access to
Liquid Data queries.

Client-side Development. WebLogic Workshop also provides an environment for building
application logic through NetUI, page flow, and other technologies.

Steps Used in Developing the SampleApp
The basic steps used to develop the Avitek Customer Self-Service Sample Application were:

1. In Liquid Data:

– Identify and analyze data sources

– Configure Liquid Data to access these sources

../program/ld_control.html#1042898

Unders tandi ng the Av i tek Customer Se l f -Se rv i ce Sample App l i ca t i on

1-8 Liquid Data by Example

2. In the Data View Builder:

– Design and test queries and a data view

– Deploy queries to the Liquid Data repository

3. In WebLogic Workshop:

– Create a Liquid Data control

– Add deployed queries to the Liquid Data control

– Develop necessary client-side logic for the application

4. Test and deploy your application.

Available Data Sources
Although the SampleApp is very simple, the underlying data acquisition is potentially complex
because date comes from four heterogeneous data sources. These are:

Customer Relationship Management (CRM) system. CRM data (customer and credit card
information) is stored in a database called RTL-CUSTOMER.

Order Management System (OMS). Avitek has two order management systems:

– Electronic products. OMS information is available from a legacy system via a web service.
The web service has a method called getOpenOrders(), which takes a customer ID as
input and returns a list of customer open order information through a web service,
ElectOrderService.

– Apparel products. Information is maintained on site in a second database. This is
represented in Liquid Data as RTL-APPL-OMS.

Customer Service. Service data is stored in a third database. The schema for this data is
RTL-SERVICE.

Avitek Customer Self-Service Sample Application Queries
The following section describes work done by the main SampleApp queries.

Data View Source (RTLBaseView.xq)
The RTLBaseView query forms the basis of the parameterized data view of the same name
(RTLBaseView.xv) that supplies data for the Avetek SampleApp queries. Every element in the four
underlying data sources is mapped to the customerBaseView.xsd target schema. A custid query
parameter identifies the particular customer.

A Solu t i on

Liquid Data by Example 1-9

Figure 1-3 Project Showing RTLBaseView Query, the Basis for the Data View Underlying RTLSample Queries

A Data View Builder project is available that can help in understanding how this query was developed.
You can review and run this project from:

<WL_HOME>/samples/liquiddata/SampleApp/DVBProject/RTLBaseView.qpr

Once perfected, the RTLBaseView.xq query is turned into a data view. Figure 1-4 shows the data view
consolidates disparate data sources into a single complex object which can then be easily mapped to
the target schema.

The CustomerView project (CustomerView.qpr) illustrates how the RTLBaseView data view is used
to free the query developer from a need to directly access and map multiple data sources to the target
schema. Instead, the RTLBaseView data source becomes a source schema that contains a superset of
the data elements needed by any particular query.

Unders tandi ng the Av i tek Customer Se l f -Se rv i ce Sample App l i ca t i on

1-10 Liquid Data by Example

Of course other data sources could also be used in creating a query but in this particular case a more
effective design consolidating all the data elements into a since data view data source.

Default View (CustomerView.xq)
This query populates the home page of the SampleApp.

Figure 1-4 CustomerView Project Illustrating How the RTLBaseView Data View Supports Query Development

Using the RTLBaseView data view, the query returns:

A Solu t i on

Liquid Data by Example 1-11

For a specific customer ID: FIRST_NAME and LAST_NAME.

For Apparel open orders: ORDER_ID, ORDER_DATE, TOTAL_ORDER_AMOUNT, shipping
information, and PRODUCT_DESC and QUANTITY for each items in the order.

For Electronics open orders: the same information as is returned for open orders for apparel.

For any customer support cases associated with the customer ID: CASE_ID, CASE_TYPE,
PRODUCT_ID, STATUS, and STATUS_DATE.

A Data View Builder project is available that can help in understanding how this query was developed.
You can review and run this project from:

<WL_HOME>/samples/liquiddata/SampleApp/DVBProject/CustomerView.qpr

Customer Profile (ProfileView.xq)
Retrieves information about customers from a RDBMS system maintained by the CRM software.

The query ProfileView.xq returns:

For a given customer ID: name, email address, SSN, BIRTH_DATE, DEFAULT_SHIP_METHOD,
and two Booleans identifying if the customer wants email notification of shipment and an
online statement.

For a given customer ID: address information such as ADDR_ID, CUSTOMER_ID, name,
address, phone, ALIAS, STATUS, and whether the address is the default.

For a given customer ID: credit card information such as CC_ID, CUSTOMER_NAME, CC_TYPE,
CC_BRAND, LAST_DIGITS, EXPIRATION_DATE, ALIAS, STATUS, and ADDR_ID.

A Data View Builder project is available that can help in understanding how this query was developed.
You can review and run this project from:

<WL_HOME>/samples/liquiddata/SampleApp/DVBProject/ProfileView.qpr

Electronic Division Order Detail (RTLElecOrderDetail.xq)
Provides customers with detailed information on any particular order selected from the History or
Home page. Data originates in a proprietary order management system (OMS) which is made available
to Liquid Data through a web service.

The query ElecOrderDetail.xq returns:

For a given order ID: order information (ORDER_DATE, STATUS, and so forth).

Unders tandi ng the Av i tek Customer Se l f -Se rv i ce Sample App l i ca t i on

1-12 Liquid Data by Example

For a given customer ID and order ID: ship to information (CUSTOMER_ID, address
information, STATUS, and so forth).

For a given customer ID and order ID:

– Bill to information (name of purchaser, DAY_PHONE, ALIAS, STATUS, IS_DEFAULT, and so
forth).

– Tracking information (TRACKING_NUMBER and information about each item in the order
such as LINE_ITEM_ID, ORDER_ID, PRODUCT_ID, PRODUCT_DESC, QUANTITY, PRICE,
and STATUS).

A Data View Builder project is available that you can use to understand how this query was developed.
You can review and run this project from:

<WL_HOME>/samples/liquiddata/SampleApp/DVBProject/ElecOrderDetailView.qpr

Apparel Division Order Detail (AppOrderDetailView.xq)
Provides a customer with detailed information on any particular order found in the order history or on
the Home page. The data originates in a RDBMS system.

The query AppOrderDetailView.xq returns the same data elements as
ElecOrderDetailView.xq

A Data View Builder project is available for this query. You can review and run this project from:

<WL_HOME>/samples/liquiddata/SampleApp/DVBProject/ApplOrderDetailView.qpr

Order Summary (OrderSummaryView.xq)
Provides customers with summary information about all their orders with the company.

The query RTLOrderSummaryView.xq returns:

For a range of dates: Apparel sale summary order information (ORDER_ID, ORDER_DATE,
TOTAL_ORDER_AMOUNT, SHIP_TO_NAME, ESTIMATED_SHIP_DATE, TRACKING_NUMBER
plus PRODUCT_DESC and QUANTITY for each items in the order).

For a range of dates: Electronics sale summary information in the same form as for an Apparel
sale (ORDER_ID, ORDER_DATE, and so forth).

A Data View Builder project is available for this query.You can review and run this project from:

<WL_HOME>/samples/liquiddata/SampleApp/DVBProject/OrderSummaryView.qpr

Table 1-5 shows the relationship between the data sources, major data elements (for RDBMS systems
this means tables and columns), sample application JSPs, and the SampleApp web pages.

A Solu t i on

Liquid Data by Example 1-13

Table 1-5 SampleApp Primary Pages and Their Data Sources, Primary Data Elements, and Associated JSP

Customer Page Data Source(s) Primary Data Elements JSP

Home page • Customer
Relationship
Management (CRM)
RDBMS

• Order Management
System (OMS)
RDBMS

• OMS via a web service

• Customer Service
RDBMS

from RTL_Customer

• CustID, name

from RTL_APPL_OMS

• Order summary
information

from ElectOrdeService

• Order summary
information

from RTL_SERVICE

• Open case information

DefaultView.jsp

Profile page Customer Relationship
Management (CRM)
RDBMS

from RTL_Customer

• Customer profile

• Bill-to, ship-to address

• Credit card information

ProfileView.jsp

Details
(accessible from
Home page or
History page)

For apparel order detail:

• Order Management
System (OMS)
RDBMS

• Customer
Relationship
Management (CRM)
RDBMS

For electronics order
detail:

• OMS via a web service

• Customer
Relationship
Management (CRM)
RDBMS

For apparel order detail:

from RTL_APPL_OMS

• Order detail information

• tracking information

from RTL_Customer

• CustID, name, ship to
address, billing
information including
last 5 digits of credit card

For electronics order detail:

(same as apparel order
detail)

OrderDetail.jsp

History page Same as Home page but no
use of CS system

Same as Home page but shows
no case information

OrderHistory.jsp

Unders tandi ng the Av i tek Customer Se l f -Se rv i ce Sample App l i ca t i on

1-14 Liquid Data by Example

Running the Avitek Customer Self-Service Sample Application
in a Browser

If you have not already done so, use “Quick Start” on page 1-2 to start the Avitek Customer Self-Service
Sample Application. The following table shows the combination of login names and passwords:

Table 1-6 Sample App Login Names and Passwords

Once a customer logs in, she or he sees the Customer Order Status screen (Figure 1-7). This page also
serves as the Home page of the application.

Name Password

Steve steve123

Jack jack1234

Tim tim12345

Homer homer123

Jerry jerry123

Runn ing the Av i t ek Customer Se l f -Ser v ice Sample App l i cat i on i n a Browse r

Liquid Data by Example 1-15

SampleApp Home Page

Figure 1-7 SampleApp Home Page

The Home page summarizes the customers order status. This customer service home page is
controlled by a JSP called default.jsp. Call-outs show the underlying data sources. The page derives its
font and other look-and-feel characteristics from a cascading stylesheet. For additional information
on how this page is created, see “Page from the SampleApp” on page 1-28.

Order Search
In addition to being able to get Order History and Profile information from the SampleApp Home Page,
the customer can search for specific orders based on order dates, items, or amounts.

from CRM
RDBMS

from electronics
OMS web service

from apparel OMS
RDBMS

from customer
service RDBMS

Unders tandi ng the Av i tek Customer Se l f -Se rv i ce Sample App l i ca t i on

1-16 Liquid Data by Example

Figure 1-8 Avitek Customer Self-Service Sample Application Search Form

The JSP for this page initiates a small Java program that incorporates the customers input and
generates an XQuery based on the selected parameters. See “Ad Hoc Query” on page 1-28.

Viewing the Avitek Customer Self-Service Sample Application
Source

The JSP pages and connection logic for the SampleApp were created in WebLogic Workshop. You can
view the source for the SampleApp in WebLogic Workshop.

To open the SampleApp project, open the SampleApp.work file in WebLogic Workshop. The full path
is:

<WL_HOME>/samples/liquiddata/SampleApp/SampleApp.work

Note: If you are already running WebLogic Workshop or have previously run it with a different
server setting, you may need to fix your application properties settings. If necessary, select
the following from the WebLogic Workshop menu:

Tools —> Application Properties —> WebLogic Server

When opening the Avitek Customer Self-Service Sample Application in WebLogic Workshop, you
initially see the application components and the work area.

V iewing the Av i tek Customer Se l f -Ser v ice Sampl e App l i ca t i on Source

Liquid Data by Example 1-17

Figure 1-9 Initial Avitek Customer Self-Service Sample Application Initial Project View

WebLogic Workshop allows you to work with the application you have under development as
components or files. Web pages can be displayed and run, page flows and application logic can be
developed and tested.

Note: Getting Started with WebLogic Workshop fully describes the development environment and
how it can be used to build enterprise applications on the WebLogic Platform 8.1. The on-line
document includes numerous examples and tutorials.

The WebLogic Workshop Samples application contains a number of samples relevant to data access
and XML. See:

<WL_HOME>/samples/workshop/SamplesApp/SamplesApp.work

WebLogic Workshop Components of the SampleApp
All the components of the Avitek Customer Self-Service Sample Application are available from the
Liquid Data Samples directory. See “Finding the Components” on page 1-6.

http://e-docs.bea.com/workshop/docs81/doc/en/core/index.html

Unders tandi ng the Av i tek Customer Se l f -Se rv i ce Sample App l i ca t i on

1-18 Liquid Data by Example

Figure 1-10 Avitek Customer Self-Service Sample Application Application Palette

When you click on the LiquidDataSampleApp folder in WebLogic Workshop, a number of components
become visible. The following components are of special interest.

Controls folder. For the SampleApp there are three controls:

– RTL_Control.jcx This control contains methods for each stored query used in the Liquid
Data application.

– UpdateAddress.jcx This control contains methods that allow for updates to customer
profile information.

– UpdateCreditCard.jcx This is a control that contains methods to update customer
credit card information.

Pages folder. Contains the JSPs and the page flow controller,
demoPageFlowController.jpf, that make up the SampleApp.

Resources folder. Contains common resources such as the HTML style sheet, graphics files and
common JSPs such as headers and footers.

WEB-INF folder. Contains application source components, in particular struts and NetUI
components that come with WebLogic Workshop.

Liquid Data Control
The RTLControl contains automatically-generated methods based on a set of Liquid Data stored
queries selected by the developer of the control. For information on accessing Liquid Data queries in

V iewing the Av i tek Customer Se l f -Ser v ice Sampl e App l i ca t i on Source

Liquid Data by Example 1-19

WebLogic Workshop see “Select Queries to Add to a Control” in Using Workshop Controls to Develop
Liquid Data Applications in the Application Developer’s Guide.

Figure 1-11 Design View of Liquid Data Control and Control Methods

For information on deploying a Liquid Data stored query see Deploying a Query in the Testing Queries
chapter of Building Queries and Data Views.

A portion of the Source View of the RTLOrderSummary method of the RTLControl.jcx file is
shown in Figure 1-12. Note that the name of the target schema for the query appears in comments.

Methods based on
deployed Liquid
Data queries that
are used by the ap-
plication.

The method used by
the client applica-
tion to issue ad hoc
queries against the
Liquid Data server.

../program/ld_control.html#1044633
../program/ld_control.html#1044633
../querybld/run.html#1063393

Unders tandi ng the Av i tek Customer Se l f -Se rv i ce Sample App l i ca t i on

1-20 Liquid Data by Example

Figure 1-12 Source view of a Liquid Data Control
.

Each method in the Liquid Data Control corresponds to a stored query. Each method returns an
XMLBean type. The XMLBeans are generated when the control is created, and are stored in the
Libraries directory of the WebLogic Workshop application.

Application Pages
In the Pages folder you can find the Java Server Pages (JSPs) that make up the Avitek Customer
Self-Service Sample Application. These were constructed entirely in WebLogic Workshop using
queries from the Liquid Data control and NetUI graphical elements.

V iewing the Av i tek Customer Se l f -Ser v ice Sampl e App l i ca t i on Source

Liquid Data by Example 1-21

Figure 1-13 JSP Pages in the SampleApp

Application Logic: Page Flow
The Avitek Customer Self-Service Sample Application is composed of java server pages (JSPs) that are
managed by a WebLogic Workshop PageFlowController. In the Avitek Customer Self-Service Sample
Application the PageFlowController is named demoPageFlowController.jpf.

From an application logic perspective, whenever a user releases control of a page by selecting an
option such as Next, Previous, Ok, Cancel, and so forth, application logic returns to the
PageFlowController. Once that logic is processed, the user see with the appropriate web page.

Using WebLogic Workshop you can inspect, change and extend page flow programmatically or
graphically. There are three views of page flow: page flow, action, and source.

Page Flow: Flow View
The WebLogic Workshop page flow schematic (Figure 1-14) illustrates graphically the relationship
between JSPs, including has modeless page flow is determined by user actions.

Unders tandi ng the Av i tek Customer Se l f -Se rv i ce Sample App l i ca t i on

1-22 Liquid Data by Example

When you click on a particular page name, the page opens in the WebLogic Workshop development
browser.

Figure 1-14 Avitek Customer Self-Service Sample Application Page Flow

The three primary elements found in Page Flow View are:

Pages. Clicking on a particular page will open the page for editing.

Actions. The transition between pages is controlled by actions. Specific actions are user-driven
such as in the case of a user accepting an option (“OK") or deciding against it (“Cancel") via a
particular form or dialog box.

Source. When source is selected, the code for the page appears in the work area.

V iewing the Av i tek Customer Se l f -Ser v ice Sampl e App l i ca t i on Source

Liquid Data by Example 1-23

Page Flow: Action View
The Action View tab is help in finding the location of page flow actions associated with the Avitek
Customer Self-Service Sample Application.

Figure 1-15 Avitek Customer Self-Service Sample Application Action View

Page Flow: Source View
The PageFlowController file contains several parts:

Declarations of graphical elements in the application.

Public transient simple and array variables that facilitate and persist application logic between
pages.

@jpf:forward calls within comments that associate user actions with appropriate target
JSPs.

Queries and associated logic.

Clicking an action item opens
demoPageFlowController to
the relevant section of code

Unders tandi ng the Av i tek Customer Se l f -Se rv i ce Sample App l i ca t i on

1-24 Liquid Data by Example

Inter-page Navigation
The code in Listing 1-1 shows the application’s entry point and page flow options, as determined by
whether the customer’s login efforts qualify as success or invalidLogin.

Listing 1-1 also shows how customer details are obtained from Liquid Data through a query. Some
things to note in examining this section of code are:

A single if/else if statement allows you to pull data from two independent data sources.

XQuery makes it possible to access data through Java rather than having to enter or preformat
SQL statements.

Listing 1-1 Page Flow Logic Supporting the OrderDetails.jsp

/**
 * @jpf:action
 * @jpf:forward name="success" path="OrderDetails.jsp"
 */
 protected Forward ViewOrderDetails()
 {
 String oId = getRequest().getParameter("orderId");
 String orderType = getRequest().getParameter("orderType");

 ORDERDETAILTYPE[] orders1 = null;

 if (orderType.equals("ELEC")){
 orders1 = rtlControl.getElecOrderDetailView(oId,
customer.getCUSTOMERID()).

getOrderDetailView().getORDERDETAILVIEWArray(0).getORDERDETAILArray();
 } else if (orderType.equals("APPL")){
 orders1 = rtlControl.getApplOrderDetailView(oId,
customer.getCUSTOMERID()).

getOrderDetailView().getORDERDETAILVIEWArray(0).getORDERDETAILArray();
 }
 order = (orders1 != null && orders1.length > 0) ? orders1[0] : null;
 ...
 return new Forward("success");
 }

V iewing the Av i tek Customer Se l f -Ser v ice Sampl e App l i ca t i on Source

Liquid Data by Example 1-25

Pagination
The OrderHistory page provides pagination; that is it retrieves data in batches and provides an
interface to the user to get the next or previous batch of data.

Figure 1-16 Pagination, illustrated in OrderHistory.jsp.

When you click the Next or the Previous button a new parameterized query is executed that retrieves
the next five or previous five records from both data sources, even though they do not have a common
key between them. A local variable is incremented or decremented as part of the parameterization
process.

Data Binding
In the Avitek Customer Self-Service Sample Application two types of data binding occur: read and
update.

Read Cycle
When creating a page which reads data, you need to follow these steps:

Unders tandi ng the Av i tek Customer Se l f -Se rv i ce Sample App l i ca t i on

1-26 Liquid Data by Example

1. Create the control to access the query you plan to use.

2. Create a page flow.

3. When the page is accessed, application logic invokes the query.

4. Data is bound to the JSP through NetUI.

Update Cycle
In the Avitek Customer Self-Service Sample Application update is accomplished in two ways.

Updating Credit Card Information Using a WebLogic Workshop Database Control
When a customer changes his or her credit card information, a WebLogic Workshop database
control.is used to update the data source using SQL. You can view source for this control in the file
process.jpd in WebLogic Workshop processes folder.

Updating Customer Profile Information Using WebLogic Workshop Process Control
When the customer update profile information, the Liquid Data control invokes a WebLogic
Integration (WLI) process that updates the source database and refreshes information in the
application.

V iewing the Av i tek Customer Se l f -Ser v ice Sampl e App l i ca t i on Source

Liquid Data by Example 1-27

Figure 1-17 Design View of processControl.jcx

When activated, processControl.jcx completes its work by refreshing profile information
through the Liquid Data server with this Liquid Data control call:

rtlControl.getProfileView(custId)

A change in profile
information initiates the
process

Changes are decoded
and placed in an array

Underlying databases are
updated

Refreshed customer profile
information is obtained from
the Liquid Data server

Unders tandi ng the Av i tek Customer Se l f -Se rv i ce Sample App l i ca t i on

1-28 Liquid Data by Example

Ad Hoc Query
The AdHocQueryProvider.java has code to construct an XQuery based on inputs (such as an
amount, date, or word) a user enters from a web page. Once created, the ad hoc query is called from
demoPageFlowController as part of the SearchOrders routine.

Page from the SampleApp
The SampleApp Home page is called default.jsp

Figure 1-18 Design View of DefaultView.jsp, the SampleApp Home Page

Elements of defaultView.jsp were built through dragging-and-dropping variables of XMLBean
type onto the JSP page. Other points of interest include:

The NetUI repeater wizard was used to create the Current Open Order listing.

The entire page is populated by a single Liquid Data data query, getCustomerView.xq,
which takes a single custID parameter.

Summary

Liquid Data by Example 1-29

Summary
In summary, the Avitek Customer Self-Service Sample Application provides:

A virtual data access layer that allows you to treat heterogeneous data as from a single source.

Ability to access the data through declarative queries that can be created in the Data View
Builder or developed externally.

Availability of Liquid Data queries and server for easy integration into applications or
processes.

Where To Go From Here
Here are some additional resources for learning more about Liquid Data and WebLogic Workshop:

“Using Liquid Data Controls to Develop Workshop Applications” in the Application Developer’s
Guide describes steps required to create the Liquid Data control.

“Finding the Components” on page 1-6 lists where you can findSampleApp components and the
Liquid Data project files that help in understanding how the underlying queries were
developed.

To learn more about WebLogic Workshop see Getting Started with WebLogic Workshop.

To learn more about XML Beans see Getting Started with XML Beans.

The WebLogic Workshop Samples application contains a number of samples relevant to data
binding and XML. See:

<WL_HOME>/samples/workshop/SamplesApp/Samples.work

../program/ld_control.html#1042898
http://e-docs.bea.com/workshop/docs81/doc/en/core/index.html
http://e-docs.bea.com/workshop/docs81/doc/en/core/index.html

Unders tandi ng the Av i tek Customer Se l f -Se rv i ce Sample App l i ca t i on

1-30 Liquid Data by Example

Liquid Data by Example 2-1

C H A P T E R 2

Query Cookbook

This section provides examples of BEA Liquid Data for WebLogic queries using some of the advanced
features and tools offered in the Data View Builder. This book assumes that you are familiar with the
Data View Builder user interface and that you have an understanding of the basic concepts and tasks
using the Data View Builder. For details on using the Data View Builder, see Building Queries and
Data Views.

The following use cases and examples are provided here to give you a jump-start for constructing
real-world queries to solve common problems. Each use case includes a viewlet demo of building the
solution using Data View Builder. Watching a viewlet takes 3 to 5 minutes.

Example 1: Simple Joins (View a Demo)

Example 3: Aggregates (View a Demo)

Example 4: Date and Time Duration (View a Demo)

Example 5: Union (View a Demo)

Example 6: Minus (View a Demo)

Example 7: Complex Parameter Type (CPT) (View a Demo)

For an example of using a stored procedure in a query, see “Example: Defining and Using a Customer
Orders Stored Procedure.”

Each use case has an example with a description of the problem and the steps to solve the problem.
The examples use two databases:

The BroadBand database (PB-BB) contains “BroadBand” subscribers and service orders

Query Cookbook

2-2 Liquid Data by Example

The Wireless database (PB-WL) contains “Wireless” subscribers.

In cases where the target schemas do not already exist in the Liquid Data Samples Server repository,
they are provided in this documentation along with the examples. You can cut-and-paste the schema
content into a.xsd file to construct your own target schemas. (You can also copy from the PDF version
of this document which may give you a copy that formats better your text editor.)

Note: To find out what data are contained in any data source, create a new “test” project, open the
source schema you are interested in, and map key source nodes to any appropriate target
schema. (For example, map customer first and last names and customer ID from source to
target schemas.) Then click on Test tab and choose Query—>Run Query. The result will
return all customers in the data source queried.

As you work through the examples, remember to save any projects that you want to keep before
creating new ones.

Example 1: Simple Joins
A join merges data from two data sources based on a certain relation.

The Problem
For each Wireless Customer ID, determine whether the customer has any BroadBand orders. Assume
that the Customer ID matches across databases.

The Solution
First, you want to find matching BroadBand customers (who are also included in the Wireless
database), then return BroadBand Order IDs for the matching customers. Because Customer IDs in
the Wireless database align with those in BroadBand, we can find matching BroadBand customers
with a simple join of Wireless Customer IDs with the Customer IDs in the BroadBand order
information.

To create the solution, follow these steps:

View a Demo

Ex 1: Step 1. Verify the Target Schema is Saved in Repository

Ex 1: Step 2. Open Source and Target Schemas

Ex 1: Step 3. Map Nodes from Source to Target Schema to Project the Output

Ex 1: Step 4. Create a Query Parameter for a Customer ID to be Provided at Query Runtime

Example 1 : S imple J o i ns

Liquid Data by Example 2-3

Ex 1: Step 5. Assign the Query Parameter to a Source Node

Ex 1: Step 6. Join the Wireless and BroadBand Customer IDs

Ex 1: Step 7. View the XQuery and Run the Query to Test it

Ex. 1: Step 8. Verify the Result

View a Demo
Simple Joins Demo... If you are looking at this documentation online, you can click the “Demo” button
to see a viewlet demo showing how to build the conditions and create the mappings described in this
example. This demo previews the steps described in detail in the following sections. The demo
assumes you already have the target schema in the Liquid Data Samples Server repository.

Ex 1: Step 1. Verify the Target Schema is Saved in Repository
For this example, we will use a target schema called customerOrders.xsd. This schema is available
in the Liquid Data Samples Server repository. The path to the schemas folder is:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/

Just in case you want to verify that you have the right schema file, the following code listing shows the
XML for this schema.

Listing 2-1 XML Source for customerOrders.xsd Target Schema File

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema">
<xsd:element name = "customers">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref = "customer" minOccurs = "0" maxOccurs =
"unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name = "customer">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref = "first_name"/>
<xsd:element ref = "last_name"/>
<xsd:element ref = "orders" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>

Query Cookbook

2-4 Liquid Data by Example

<xsd:attribute name = "id" use = "optional" type = "xsd:string"/>
</xsd:complexType>

</xsd:element>
<xsd:element name = "first_name" type = "xsd:string"/>
<xsd:element name = "last_name" type = "xsd:string"/>
<xsd:element name = "orders">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref = "order" minOccurs = "0" maxOccurs = "unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name = "order">

<xsd:complexType>
<xsd:attribute name = "id" use = "optional" type = "xsd:string"/>
<xsd:attribute name = "date" use = "optional" type = "xsd:string"/>
<xsd:attribute name = "amount" use = "optional" type = "xsd:string"/>

</xsd:complexType>
</xsd:element>

</xsd:schema>

Ex 1: Step 2. Open Source and Target Schemas
1. In the Data View Builder, choose File—>New Project to clear your desktop and reset all default

values.

2. On the Builder Design—>Sources tab, click Relational Databases and open two data sources:

– Double-click on the PB-WL (Wireless) relational database to open the schema for this data
source.

– Double-click on the PB-BB (BroadBand) relational database to open the schema for this
data source.

3. Choose the menu option File—>Set Target Schema.

Navigate to the Liquid Data Samples Server repository or to the location where you saved the
customerOrders.xsd schema. Choose customerOrders.xsd and click Open.

customerOrders.xsd appears as the target schema.

This target schema is displayed as a docked schema window on the right side of the design
area.

4. Click the plus (+) sign (or right-mouse click and choose Expand) to expand the nodes in each
source schema and in the target schema.

Example 1 : S imple J o i ns

Liquid Data by Example 2-5

Ex 1: Step 3. Map Nodes from Source to Target Schema to Project the Output
1. Drag and drop [PB-WL]db/CUSTOMER/CUSTOMER_ID from source schema onto the target

schema [customerOrders.xsd]/customers/customer/id

2. Drag and drop [PB-WL]db/CUSTOMER/FIRST_NAME from source schema onto the target
schema [customerOrders.xsd]/customers/customer/first_name

3. Drag and drop [PB-WL]db/CUSTOMER/LAST_NAME from source schema onto the target
schema [customerOrders.xsd]/customers/customer/last_name

4. Drag and drop [PB-BB]db/CUSTOMER_ORDER/ORDER_DATE onto the target schema
[customerOrders.xsd]customers/customer/orders/order/order_date

5. Drag and drop [PB-BB]db/CUSTOMER_ORDER/ORDER_ID onto the target schema
[customerOrders.xsd]customers/customer/orders/order/id

Ex 1: Step 4. Create a Query Parameter for a Customer ID to be Provided at
Query Runtime
Create a Query Parameter wireless_id variable for a Wireless Customer ID that you will supply at query
execution time:

1. On the Builder Design, click Toolbox and then click Query Parameter.

2. From the Type drop-down menu, choose xs:string.

3. In Parameter Name field, enter wireless_id and click Add.

The new parameter is displayed in the Query Parameters tree.

Ex 1: Step 5. Assign the Query Parameter to a Source Node
Drag and drop the wireless_id query parameter to [PB-WL]db/CUSTOMER/CUSTOMER_ID.

Ex 1: Step 6. Join the Wireless and BroadBand Customer IDs
Drag and drop [PB-WL]db/CUSTOMER/CUSTOMER_ID to
[PB-BB]db/CUSTOMER_ORDER/CUSTOMER_ID

Ex 1: Step 7. View the XQuery and Run the Query to Test it
1. Click on the Test tab.

The generated XQuery for this query is shown in the following code listing.

Query Cookbook

2-6 Liquid Data by Example

Listing 2-2 XQuery for Example 1: Simple Joins

<customers>
{
for $PB_WL.CUSTOMER_1 in document("PB-WL")/db/CUSTOMER
where ($#wireless_id of type xs:string eq $PB_WL.CUSTOMER_1/CUSTOMER_ID)
return
<customer id={$PB_WL.CUSTOMER_1/CUSTOMER_ID}>

<first_name>{ xf:data($PB_WL.CUSTOMER_1/FIRST_NAME) }</first_name>
<last_name>{ xf:data($PB_WL.CUSTOMER_1/LAST_NAME) }</last_name>
<orders>

{
for $PB_BB.CUSTOMER_ORDER_2 in document("PB-BB")/db/CUSTOMER_ORDER
where ($PB_WL.CUSTOMER_1/CUSTOMER_ID eq

$PB_BB.CUSTOMER_ORDER_2/CUSTOMER_ID)
return
<order id={$PB_BB.CUSTOMER_ORDER_2/ORDER_ID} date={cast as

xs:string($PB_BB.CUSTOMER_ORDER_2/ORDER_DATE)}></order>
}

</orders>
</customer>
}

</customers>

2. Set the variable value to submit to the query when the query runs. To do this, you need to enter a
value in the Query Parameter panel. Click into the cell under Value and enter CUSTOMER_3.

(Customer IDs CUSTOMER_1 through CUSTOMER_10 are available in the data source to try.)

3. Click the Run query button to run the query against the data sources.

Ex. 1: Step 8. Verify the Result
Running this query with the wireless_id parameter set to CUSTOMER_3 produces the following
XML query result.

Listing 2-3 Result for Example 1: Simple Joins

<customers>

 <customer id="CUSTOMER_3">

 <first_name>JOHN_3</first_name>

 <last_name>KAY_3</last_name>

Example 1 : S imple J o i ns

Liquid Data by Example 2-7

 <orders>

 <order date="2002-03-06-08:00" id="ORDER_ID_3_0"/>

 <order date="2002-03-06-08:00" id="ORDER_ID_3_1"/>

 <order date="2002-03-06-08:00" id="ORDER_ID_3_2"/>

 <order date="2002-03-06-08:00" id="ORDER_ID_3_3"/>

 </orders>

 </customer>

</customers>

Query Cookbook

2-8 Liquid Data by Example

Example 2: Retrieving Information

The Problem
Find Customer IDs for customers who have both Wireless and BroadBand accounts and include in the
generated data the state each customer resides in.

The Solution
This example shows how to do the following:

Project output

Specify the order of the result

Open Data Sources and Add a Target Schema
1. Choose File —> New Project to clear your desktop and reset all default values.

2. On the Builder Toolbar —> Sources tab, click Relational Databases and open two data sources:

– Double-click on the PB-WL relational database to open the schema for this data source.

– Double-click on the PB-BB relational database to open the schema for this data source.

3. Choose File —> Set Target Schema. Use the file browser to navigate to the Liquid Data Samples
Server repository and select amtByState.xsd as the target schema.

Note: If amtByState.xsd is not already available from the repository, you can create and save
it yourself. For a copy of the schema file and instructions on how to save it to the Liquid
Data Samples Server repository, see “Target Schemas” in Building Queries and Data
Views. The schema itself is shown in Listing 5-1 of the same book.

This target schema is displayed as a docked schema window on the right side of the workspace.

Map Elements from Source to Target Schema to Project Output
To project Customer first and last names and state to Target, do the following:

1. Drag and drop Wireless [PB-WL]/FIRST_NAME (under CUSTOMER*) onto FIRST_NAME in the
Target schema.

2. Drag and drop Wireless [PB-WL]/LAST_NAME (under CUSTOMER*) onto LAST_NAME in the
Target schema.

../querybld/schema.html#addingATargetSchema
../querybld/design.html#amtByStateSchema

Example 1 : S imple J o i ns

Liquid Data by Example 2-9

3. Drag and drop Wireless [PB-WL]/STATE (under CUSTOMER*) onto STATE (under CUSTOMER*)
in the Target schema.

Join Two Sources
To create a join between Wireless [PB-WL] and BroadBand [PB-BB] on customer IDs, do the
following:

Drag and drop BroadBand [PB-BB]/CUSTOMER_ID (under CUSTOMER*) onto the associated
Wireless [PB-WL]/CUSTOMER_ID element.

The following shows the mappings in the Data View Builder.

Figure 2-1 Query to Identify Customers by Customer ID and Sort by State

Query Cookbook

2-10 Liquid Data by Example

Specify the Order of the Result Using the Sort By Features
To order the output alphabetically by State do the following:

1. Click the Sort By tab.

This tab shows repeatable elements in the target schema with subordinate fields that you can
select for ordering.

2. From the drop-down menu choose CUSTOMER, and then click into the Direction cell next to
STATE and set STATE to Ascending.

This will cause the query to display the results in ascending order by state.

View and Run the Query
Now that you have built the query, you can switch to the Test tab to view the generated XQuery and
run the query to see the kind of result it returns.

1. Click on the Test tab.

The generated XQuery for this query is shown in the following code listing.

Listing 2-4 XQuery for Example: Query Customers by ID and Sort by State

<customers>
{
for $PB_WL.CUSTOMER_1 in document("PB-WL")/db/CUSTOMER
where xf:not(xf:empty(

for $PB_BB.CUSTOMER_2 in document("PB-BB")/db/CUSTOMER
where ($PB_BB.CUSTOMER_2/CUSTOMER_ID eq $PB_WL.CUSTOMER_1/CUSTOMER_ID)
return
xf:true()))

return
<CUSTOMER>

<FIRST_NAME>{ xf:data($PB_WL.CUSTOMER_1/FIRST_NAME) }</FIRST_NAME>
<LAST_NAME>{ xf:data($PB_WL.CUSTOMER_1/LAST_NAME) }</LAST_NAME>
<STATE>{ xf:data($PB_WL.CUSTOMER_1/STATE) }</STATE>

</CUSTOMER>
sortby(STATE ascending)
}

</customers>

2. Click the Run query button to run the query against the data sources.

Example 1 : S imple J o i ns

Liquid Data by Example 2-11

Querying these data sources as described in this example produces the XML query result shown
in the following code listing.

Figure 2-2 XML Result for Example: Query Customers by ID and Sort by State
<customers>
 <CUSTOMER>
 <FIRST_NAME>JOHN_3</FIRST_NAME>
 <LAST_NAME>KAY_3</LAST_NAME>
 <STATE>AZ</STATE>
 </CUSTOMER>
 <CUSTOMER>
 <FIRST_NAME>JOHN_8</FIRST_NAME>
 <LAST_NAME>KAY_8</LAST_NAME>
 <STATE>AZ</STATE>
 </CUSTOMER>
 <CUSTOMER>
 <FIRST_NAME>JOHN_10</FIRST_NAME>
 <LAST_NAME>KAY_10</LAST_NAME>
 <STATE>CA</STATE>
 </CUSTOMER>
 <CUSTOMER>
 <FIRST_NAME>JOHN_5</FIRST_NAME>
 <LAST_NAME>KAY_5</LAST_NAME>
 <STATE>CA</STATE>
 </CUSTOMER>
 <CUSTOMER>
 <FIRST_NAME>JOHN_4</FIRST_NAME>
 <LAST_NAME>KAY_4</LAST_NAME>
 <STATE>NV</STATE>
 </CUSTOMER>
 <CUSTOMER>
 <FIRST_NAME>JOHN_9</FIRST_NAME>
 <LAST_NAME>KAY_9</LAST_NAME>
 <STATE>NV</STATE>
 </CUSTOMER>
 <CUSTOMER>
 <FIRST_NAME>JOHN_1</FIRST_NAME>
 <LAST_NAME>KAY_1</LAST_NAME>
 <STATE>TX</STATE>
 </CUSTOMER>
 <CUSTOMER>
 <FIRST_NAME>JOHN_6</FIRST_NAME>
 <LAST_NAME>KAY_6</LAST_NAME>
 <STATE>TX</STATE>
 </CUSTOMER>
 <CUSTOMER>
 <FIRST_NAME>JOHN_2</FIRST_NAME>
 <LAST_NAME>KAY_2</LAST_NAME>
 <STATE>WA</STATE>
 </CUSTOMER>
 <CUSTOMER>
 <FIRST_NAME>JOHN_7</FIRST_NAME>

Query Cookbook

2-12 Liquid Data by Example

 <LAST_NAME>KAY_7</LAST_NAME>
 <STATE>WA</STATE>
 </CUSTOMER>
</customers>

Example 3 : Aggregates

Liquid Data by Example 2-13

Example 3: Aggregates
Aggregate functions produce a single value from a set of input values. An example of an aggregate
function in Data View Builder is the count function, which takes a list of values and returns the
number of values in the list.

The Problem
Find the number of orders placed in the BroadBand database for a given customer who is also in the
Wireless database.

The Solution
This query relies on a data view called AllOrders which retrieves customers who are in the BroadBand
database and also in the Wireless database. For each of these customers, the customer ID and orders
are retrieved. Then, we use the Aggregate function count to determine how many orders are
associated with a given customer. At query runtime, a customer ID is submitted as a query parameter
and the result returns the number of orders associated with the given customer ID.

To create the solution, follow these steps:

View a Demo

Ex 3: Step 1. Configure the “AllOrders” Stored Query as a Data View

Ex 3: Step 2. Restart the Data View Builder and Find the New Data View

Ex 3: Step 3. Verify that the Target Schema is Saved in the Repository

Ex 3: Step 4. Open the Data Sources and Target Schema

Ex 3: Step 5. Map Source Nodes to Target to Project the Output

Ex 3: Step 6. Create Two Query Parameters to be Provided at Query Runtime

Ex 3: Step 7. Assign the Query Parameters to Source Nodes

Ex 3: Step 8. Add the Count XQuery Function

Ex 3: Step 9. Verify Mappings and Conditions

Ex 3: Step 10. View the XQuery and Test by Running the Query

Ex 3: Step 11. Verify the Result

Query Cookbook

2-14 Liquid Data by Example

View a Demo
Aggregates Demo... If you are looking at this documentation online, you can click the “Demo” button
to see a viewlet demo showing how to build the conditions and create the mappings described in this
example. This demo previews the steps described in detail in the following sections. The demo
assumes you already have the target schema in the Liquid Data Samples Server repository and have
created and configured the data view data source required for this example.

Ex 3: Step 1. Configure the “AllOrders” Stored Query as a Data View
For this example, we will use a data view data source called AllOrders.xv. However, before this
data view can be used, it must first be created.

Figure 2-3 XML Source for AllOrders.xv Data View File

<customers>
{
for $PB-BB.CUSTOMER_1 in document("PB-BB")/db/CUSTOMER
for $PB-WL.CUSTOMER_2 in document("PB-WL")/db/CUSTOMER
where ($PB-WL.CUSTOMER_2/CUSTOMER_ID eq $PB-BB.CUSTOMER_1/CUSTOMER_ID)

return
<customer id={$PB-WL.CUSTOMER_2/CUSTOMER_ID}>

<first_name>{ xf:data($PB-WL.CUSTOMER_2/FIRST_NAME) }</first_name>
<last_name>{ xf:data($PB-WL.CUSTOMER_2/LAST_NAME) }</last_name>
<orders>

{
for $PB-BB.CUSTOMER_ORDER_4 in document("PB-BB")/db/CUSTOMER_ORDER
where ($PB-BB.CUSTOMER_1/CUSTOMER_ID eq

$PB-BB.CUSTOMER_ORDER_4/CUSTOMER_ID)
return
<order id={$PB-BB.CUSTOMER_ORDER_4/ORDER_ID}

date={$PB-BB.CUSTOMER_ORDER_4/ORDER_DATE}></order>
}

</orders>
</customer>
}

</customers>

Use the WLS Administration Console to Configure Your Data View Data Source

1. Start and login to the WLS Administration Console for the Samples server you are using.

Example 3 : Aggregates

Liquid Data by Example 2-15

To start the WLS Administration Console for the Liquid Data Samples server running on your
local machine, type the following URL in a browser address field:

http://localhost:7001/console

Login to the console by providing the following default username and password for the Samples
server.

Table 2-4 User Name and Password for Samples WLS Administration Console

2. In the left pane, click the Liquid Data node.

3. In the right pane click the Stored Queries tab.

4. Locate AllOrders among the queries (it will be near the bottom of the listing).

5. Click the Configure link.

6. For a schema enter customerOrders.xsd or browse to the file. (You do not need to enter a
namespace URI or schema root element name for this example.)

7. Click Create.

Field Defaults

Username system

Password security

Query Cookbook

2-16 Liquid Data by Example

Figure 2-5 Configuring Liquid Data Source Description for a Data View

8. Find all orders in the list of stored queries (now it should be near the top of the listing).

9. Click the Create Data View link.

The Create a Data View dialog box is displayed.

10. Provide a name such as AllOrders for your new data view, then click Create.

Available data views will display. AllOrders should appear in the list.

Ex 3: Step 2. Restart the Data View Builder and Find the New Data View
1. Reconnect to the Data View Builder by selecting File—>Connect.

2. On the Design tab, on the Builder Toolbar, click the Sources tab, then click Data Views.

The AllOrders.xv data view should be displayed in the list of available data views.

Ex 3: Step 3. Verify that the Target Schema is Saved in the Repository
For this example, we will use a target schema called customerOrdersA.xsd. This schema is
available in the Liquid Data Samples Server repository. The path to the schemas folder is:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/

Just in case you want to verify that you have the right schema file, the following code listing shows the
XML for this schema.

Example 3 : Aggregates

Liquid Data by Example 2-17

Listing 2-5 XML Source for customerOrdersA.xsd Target Schema File

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="customers">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="customer" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="first_name" type="xsd:string"/>
<xsd:element name="last_name" type="xsd:string"/>
<xsd:element name="orders" minOccurs="0"

maxOccurs="unbounded">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="order" minOccurs="0"

maxOccurs="unbounded">
<xsd:complexType>

<xsd:sequence>
</xsd:sequence>

<xsd:attribute name="id" type="xsd:string"/>
<xsd:attribute name="date" type="xsd:string"/>
<xsd:attribute name="amount" type="xsd:string"/>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="amount" type="xsd:string"/>

</xsd:sequence>
<xsd:attribute name="id" type="xsd:string"/>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>

Ex 3: Step 4. Open the Data Sources and Target Schema
1. In the Data View Builder, choose File —> New Project to clear your desktop and reset all default

values.

Query Cookbook

2-18 Liquid Data by Example

2. On the Builder Design —> Sources tab, click Data Views, and double-click on AllOrders.xv
to open the schema for that data source.

3. Choose File —> Set Target Schema. Use the file browser to navigate to the Liquid Data Samples
Server repository. Select CustomerOrdersA.xsd as the target schema. This target schema is
displayed as a docked schema window on the right side of the design area.

Ex 3: Step 5. Map Source Nodes to Target to Project the Output
1. Drag and drop [AllOrders]/ customers/customer/first_name from the AllOrders

source schema onto [CustomerOrdersA.xsd]/customers/customer/first_name in the
target schema.

2. Drag and drop [AllOrders]/ customers/customer/last_name from AllOrders source
schema onto [CustomerOrdersA.xsd]/customers/customer/last_name in the target
schema.

Ex 3: Step 6. Create Two Query Parameters to be Provided at Query Runtime
Create two Query Parameter variables: first_name and last_name, that you can use to insert
variable customer information when the query runs. Create both variables as type xs:string. Do
this as follows:

1. On the Builder Toolbar, click Toolbox and then click Query Parameter.

2. From the Type drop-down menu, choose xs:string.

3. In Parameter Name field, enter first_name and click Add.

The new parameter is displayed in the Query Parameters tree.

4. Repeat steps 2 and 3 to create the last_name variable.

You should now see both parameters displayed in the Query Parameters tree.

Ex 3: Step 7. Assign the Query Parameters to Source Nodes
Assign the first_name and last_name Query Parameter variables to customer first name and last
name nodes in the AllOrders data view as follows:

1. Drag and drop the first_name variable onto
[allOrders]/customers/customer/first_name in the AllOrders source schema.

2. Drag and drop the last_name variable onto [allOrders]/
customers/customer/last_name in the AllOrders source schema.

Example 3 : Aggregates

Liquid Data by Example 2-19

Ex 3: Step 8. Add the Count XQuery Function
Add the count XQuery function and specify the input and output as follows:

1. On the Builder Toolbar, click Toolbox and then click XQuery Functions.

2. Double-click on the count function (under Aggregate Functions)

The count function window is displayed, showing input parameter srcval and output as some
integer result.

Note: Create complex or aggregate functions only on the desktop by double-clicking as described in
this step. Do not attempt to drag and drop them directly into the Conditions tab.

3. Drag and drop [AllOrders]/customer/orders/order/date from the AllOrders source
schema onto [count-Function]input/Parameters/srcval.

4. Drag and drop [count-Function]Output/result to
[customerOrdersA.xsd]/customers/customer/amount in the target schema.

Note: Make sure to drag result onto the customer amount — the last node in the fully
expanded schema tree; not onto the optional orders amount?

Ex 3: Step 9. Verify Mappings and Conditions
Your mappings should look like those shown in Figure 2-6.

Figure 2-6 Mappings for Example2: Aggregates

Your Conditions should like those shown in Figure 2-7.

Figure 2-7 Conditions for Example 2: Aggregates

Query Cookbook

2-20 Liquid Data by Example

Ex 3: Step 10. View the XQuery and Test by Running the Query
1. Click on the Test tab.

The generated XQuery for this query is shown in the following code listing.

Listing 2-6 XQuery for Example 2: Aggregates

namespace view = "urn:views"
<customers>

{
for $view:AllOrders.customer_2 in view:AllOrders()/customers/customer
let $srcval_3 :=
 for $view:AllOrders.orders_5 in $view:AllOrders.customer_2/orders
 for $view:AllOrders.order_6 in $view:AllOrders.orders_5/order
 return
 xf:data($view:AllOrders.order_6/@date)
where ($#last_name of type xs:string eq

$view:AllOrders.customer_2/last_name)
 and ($#first_name of type xs:string eq

$view:AllOrders.customer_2/first_name)
return
<customer>

<first_name>{ xf:data($view:AllOrders.customer_2/first_name)
}</first_name>

<last_name>{ xf:data($view:AllOrders.customer_2/last_name) }</last_name>
<amount>{ cast as xs:string(xf:count($srcval_3)) }</amount>

</customer>
}

</customers>

2. In the Query Parameter panel on the Test tab, set the variable values as follows:

– last_name

(For last_name, KAY_1 through KAY_10 are available in the data source.)

– first_name

(For first_name, JOHN_1 through JOHN_10 are available in the data source.)

3. Click the Run query button to run the query against the data sources.

Example 3 : Aggregates

Liquid Data by Example 2-21

Ex 3: Step 11. Verify the Result
Running this query with last_name set to KAY_1 and first_name set to JOHN_1 produces the
following XML query result.

Listing 2-7 Result for Example 2: Aggregates

<customers>

 <customer>

 <first_name>JOHN_1</first_name>

 <last_name>KAY_1</last_name>

 <amount>2</amount>

 </customer>

</customers>

Query Cookbook

2-22 Liquid Data by Example

Example 4: Date and Time Duration
Data View Builder supports a set of functions that operate on date and time. (For more information
on date and time functions see “Date and Time Functions” in the XQuery Reference Guide.)

The Problem
Determine if a BroadBand customer has any open orders in the BroadBand database before a
specified date.

The Solution
For each BroadBand order that matches the given Customer ID, you need to set these conditions:

The order status is “OPEN”

The ship date for a given customer_id is earlier than or equal to the date (date1) provided.
(customer_id and date1 are a variables that you define as query parameters to be submitted at
query runtime).

To create the solution, follow these steps:

View a Demo

Ex 4: Step 1. Verify the Target Schema is Saved in Repository

Ex 4: Step 2. Open Source and Target Schemas

Ex 4: Step 3. Map Source to Target Nodes to Project the Output

Ex 4: Step 4. Create Joins

Ex 4: Step 5. Create Two Query Parameters for Customer ID and Date to be Provided at Query
Runtime

Ex 4: Step 6. Set a Condition Using the Customer ID

Ex 4: Step 7. Set a Condition to Determine if Order Ship Date is Earlier or Equal to a Date
Submitted at Query Runtime

Ex 4: Step 8. Set a Condition to Include Only “Open” Orders in the Result

Ex 4: Step 9. View the XQuery and Run the Query to Test it

Ex 4: Step 9. Verify the Result

Example 4 : Date and T ime Dura t i on

Liquid Data by Example 2-23

View a Demo
Date and Time Duration Demo... If you are looking at this documentation online, you can click the
“Demo” button to see a viewlet demo showing how to build the conditions and create the mappings
described in this example. This demo previews the steps described in detail in the following sections.
The demo assumes you already have the target schema in the Liquid Data Samples Server repository.

Ex 4: Step 1. Verify the Target Schema is Saved in Repository
For this example, we will use a target schema called customerLineItems.xsd. This schema is
available in the Liquid Data Samples Server repository.

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/

Just in case you want to verify that you have the right schema file, the following code listing shows the
XML for this schema.

Listing 2-8 XML Source for customerLineItems.xsd Target Schema File

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema">
<xsd:element name = "customers">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref = "customer" minOccurs = "0" maxOccurs =
"unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name = "customer">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref = "first_name"/>
<xsd:element ref = "last_name"/>
<xsd:element ref = "orders" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>
<xsd:attribute name = "id" use = "required" type = "xsd:string"/>

</xsd:complexType>
</xsd:element>
<xsd:element name = "first_name" type = "xsd:string"/>
<xsd:element name = "last_name" type = "xsd:string"/>
<xsd:element name = "orders">

<xsd:complexType>
<xsd:sequence>

Query Cookbook

2-24 Liquid Data by Example

<xsd:element ref = "order" minOccurs = "0" maxOccurs = "unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name = "order">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref = "line_item" minOccurs = "0" maxOccurs =
"unbounded"/>

</xsd:sequence>
<xsd:attribute name = "id" use = "required" type = "xsd:string"/>
<xsd:attribute name = "date" use = "required" type = "xsd:string"/>
<xsd:attribute name = "amount" use = "required" type = "xsd:string"/>

</xsd:complexType>
</xsd:element>
<xsd:element name = "line_item">

<xsd:complexType>
<xsd:attribute name = "id" use = "required" type = "xsd:string"/>
<xsd:attribute name = "product" use = "required" type = "xsd:string"/>
<xsd:attribute name = "status" use = "required" type = "xsd:string"/>
<xsd:attribute name = "expected_ship_date" use = "required" type =

"xsd:string"/>
</xsd:complexType>

</xsd:element>
</xsd:schema>

Ex 4: Step 2. Open Source and Target Schemas
1. In the Data View Builder, choose File—>New Project to clear your desktop and reset all default

values.

2. On the Builder Design—>Sources tab, click Relational Databases and open one data source:

– Double-click on the PB-BB (BroadBand) relational database to open the schema for this
data source.

3. Choose the menu option File—>Set Target Schema.

Navigate to the Liquid Data Samples Server repository or to the location where you saved the
customerLineItems.xsd schema. Choose customerLineItems.xsd and click Open.

customerLineItems.xsd appears as the target schema.

This target schema is displayed as a docked schema window on the right side of the design
area.

Example 4 : Date and T ime Dura t i on

Liquid Data by Example 2-25

4. Click the plus (+) sign (or right-mouse click and choose Expand) to expand the nodes in each
source schema and in the target schema.

Ex 4: Step 3. Map Source to Target Nodes to Project the Output
Project the output values as follows.

1. Drag and drop [PB-BB]/db/CUSTOMER/FIRST_NAME from the source schema onto
[customerLineItems.xsd]/customers/customer/first_name in the target schema.

2. Drag and drop [PB-BB]/db/CUSTOMER/LAST_NAME from the source schema onto
[customerLineItems.xsd]/customers/customer/last_name in the target schema.

3. Drag and drop [PB-BB]/db/CUSTOMER/CUSTOMER_ORDER_LINE_ITEM/LINE_ID from the
source schema onto
[customerLineItems.xsd]/customers/customer/orders/order/line_item/id in
the target schema (id is an attribute of line_item).

4. Drag and drop [PB-BB]/db/CUSTOMER/CUSTOMER_ORDER_LINE_ITEM/PRODUCT_NAME
from the source schema onto
[customerLineItems.xsd]/customers/customer/orders/order/line_item/produ

ct in the target schema (product is an attribute of line_item).

5. Drag and drop [PB-BB]/db/CUSTOMER/CUSTOMER_ORDER_LINE_ITEM/STATUS from the
source schema
[customerLineItems.xsd]/customers/customer/orders/order/line_item/statu

s in the target schema (status is an attribute of line_item).

6. Drag and drop [PB-BB]/db/CUSTOMER/CUSTOMER_ORDER_LINE_ITEM/EXPECTED_
SHIP_DATE from the source schema
[customerLineItems.xsd]/customers/customer/orders/order/line_item/expec

ted_ship_date in the target schema (expected_ship_date is an attribute of line_item).

At this point, the following mappings should be displayed on the Mappings tab. (Getting the mappings
in the same order as shown is not as important as verifying that the relationships between source and
target nodes are the same. The @ symbols indicate attributes.)

Query Cookbook

2-26 Liquid Data by Example

Ex 4: Step 4. Create Joins
Join customer with corresponding line-item data. This requires two joins, one to find the customer’s
Order IDs, and another that uses the Order IDs and finds the corresponding line-item information:

1. Drag and drop [PB-BB]/db/CUSTOMER/CUSTOMER_ID onto
[PB-BB]/db/CUSTOMER_ORDER/CUSTOMER_ID

2. Drag and drop [PB-BB]/db/CUSTOMER_ORDER/ORDER_ID onto
[PB-BB]/db/CUSTOMER_ORDER_LINE_ITEM/ORDER_ID

Ex 4: Step 5. Create Two Query Parameters for Customer ID and Date to be
Provided at Query Runtime
Create two Query Parameter variables: customer_id and date1, that you can use to insert as variable
values when the query runs. Create both variables as type xs:string. Do this as follows:

Source Target

[PB-BB]/db/CUSTOMER/FIRST_NAME [customerLineItems.xsd]/customers/cust
omer/
first_name

[PB-BB]/db/CUSTOMER/LAST_NAME [customerLineItems.xsd]/customers/cust
omer/
last_name

[PB-BB]/db/CUSTOMER/CUSTOMER_
ORDER_LINE_ITEM/LINE_ID

[customerLineItems.xsd]/customers/cust
omer/
orders/order/line_item/@id

[PB-BB]/db/CUSTOMER/CUSTOMER_
ORDER_LINE_ITEM/PRODUCT_NAME

[customerLineItems.xsd]/customers/cust
omer/
orders/order/line_item/@product

[PB-BB]/db/CUSTOMER/CUSTOMER_
ORDER_LINE_ITEM/STATUS

[customerLineItems.xsd]/customers/cust
omer/
orders/order/line_item/@status

[PB-BB]/db/CUSTOMER/CUSTOMER_
ORDER_LINE_ITEM/EXPECTED_SHIP_
DATE

[customerLineItems.xsd]/customers/cust
omer/
orders/order/line_item/@expected_ship_
date

Example 4 : Date and T ime Dura t i on

Liquid Data by Example 2-27

1. On the Builder Toolbar, click Toolbox and then click Query Parameter.

2. From the “Type” drop-down menu, choose xs:string.

3. In Parameter Name field, enter customer_id and click Add.

The new parameter is displayed in the Query Parameters tree.

4. Repeat steps 2 and 3 to create the date1 variable.

You should now see both parameters displayed in the Query Parameters tree.

Ex 4: Step 6. Set a Condition Using the Customer ID
1. On the Builder Toolbar, click Toolbox and then click XQuery Functions.

2. Drag and drop the equals [eq] function (under Comparison operators) onto the next empty row
in the Conditions tab.

The Functions Editor appears, displaying placeholder variables for you to fill in.

3. On the Builder Toolbar, click on Query Parameter, then drag customer_id onto anyValue1 onto
the left side of the equation.

4. Drag [PB-BB]/db/CUSTOMER/CUSTOMER_ID onto the right side of the equation.

The function should look like this:

(customer_id eq [PB-BB]/db/CUSTOMER/CUSTOMER_ID)

5. Close the Functions Editor.

Ex 4: Step 7. Set a Condition to Determine if Order Ship Date is Earlier or
Equal to a Date Submitted at Query Runtime
1. Click on XQuery Functions, and drag and drop the Operator function [le] (less than or equal)

onto the next empty row on the Conditions tab.

The Functions Editor pops up and displays a statement with placeholder variables for you to fill
in.

2. Drag and drop
[PB-BB]/db/CUSTOMER_ORDER_LINE_ITEM/EXPECTED_SHIP_DATE onto anyValue1 on the
left side of the equation.

3. Click on XQuery Functions, and drag and drop the date-from-string-with-format
function (under Data and Time functions) onto anyValue2 on the right side of the equation.

Query Cookbook

2-28 Liquid Data by Example

At this point, the expression in the Functions Editor should appear as:

([PB-BB]/db/CUSTOMER_ORDER_LINE_ITEM/EXPECTED_SHIP_DATE le
xfext:date-from-string-with-format(pattern,srcval))

4. Click Constants, enter the following in the String field:

yyyy-MM-dd

Now drag it (via the Constant icon next to the field) onto pattern (first placeholder parameter
to the date function).

5. Click on Query Parameter, and drag and drop date1 from the Query Parameters panel onto
srcval (the second placeholder parameter to the date function).

The completed expression should look like this:

([PB-BB]/db/CUSTOMER_ORDER_LINE_ITEM/EXPECTED_SHIP_DATE le
xfext:date-from-string-with-format("yyyy-MM-dd",date1))

6. Close the Functions Editor.

The condition you created is displayed on the Conditions tab in the Source column.

Ex 4: Step 8. Set a Condition to Include Only “Open” Orders in the Result
Set the second condition to an Open ORDER status.

1. Click on XQuery Functions, and drag and drop the Comparison operator [eq] (equal) function
onto the Conditions tab.

The Functions Editor pops up and displays a statement with placeholder variables for you to fill
in.

2. For the left parameter (anyValue1), drag and drop
[PB-BB]/db/customer_order_line_item/status on to anyValue1.

3. For the right parameter (anyValue2), create a constant String with a value of OPEN, and drop it
(via the Constant icon next to the field) onto anyValue2.

The completed expression should look like this:

([PB-BB]/db/CUSTOMER_ORDER_LINE_ITEM/STATUS eq "OPEN")

Close the Functions Editor.

Ex 4: Step 9. View the XQuery and Run the Query to Test it
1. Click on the Test tab.

Example 4 : Date and T ime Dura t i on

Liquid Data by Example 2-29

The generated XQuery for this query is shown in the following code listing.

Listing 2-9 XQuery for Example 3: Date and Time Duration

<customers>
{
for $PB_BB.CUSTOMER_1 in document("PB-BB")/db/CUSTOMER
where ($#customer_id of type xs:string eq $PB_BB.CUSTOMER_1/CUSTOMER_ID)
return
<customer>

<first_name>{ xf:data($PB_BB.CUSTOMER_1/FIRST_NAME) }</first_name>
<last_name>{ xf:data($PB_BB.CUSTOMER_1/LAST_NAME) }</last_name>
<orders>

<order>
{
for $PB_BB.CUSTOMER_ORDER_LINE_ITEM_4 in

document("PB-BB")/db/CUSTOMER_ORDER_LINE_ITEM
where xf:not(xf:empty(

for $PB_BB.CUSTOMER_ORDER_5 in
document("PB-BB")/db/CUSTOMER_ORDER

where ($PB_BB.CUSTOMER_1/CUSTOMER_ID eq
$PB_BB.CUSTOMER_ORDER_5/CUSTOMER_ID)

 and ($PB_BB.CUSTOMER_ORDER_5/ORDER_ID eq
$PB_BB.CUSTOMER_ORDER_LINE_ITEM_4/ORDER_ID)

return
xf:true()))

 and ($PB_BB.CUSTOMER_ORDER_LINE_ITEM_4/STATUS eq "OPEN")
 and ($PB_BB.CUSTOMER_ORDER_LINE_ITEM_4/EXPECTED_SHIP_DATE le

xfext:date-from-string-with-format("yyyy-MM-dd",$#date1 of type xs:string))
return
<line_item id={$PB_BB.CUSTOMER_ORDER_LINE_ITEM_4/LINE_ID}

product={$PB_BB.CUSTOMER_ORDER_LINE_ITEM_4/PRODUCT_NAME}
status={$PB_BB.CUSTOMER_ORDER_LINE_ITEM_4/STATUS}
expected_ship_date={$PB_BB.CUSTOMER_ORDER_LINE_ITEM_4/EXPECTED_SHIP_DATE} />

}
</order>

</orders>
</customer>
}

</customers>

2. In the Query Parameter panel on the Test tab, set the variable values for customer_id and date1
to submit to the query when the query runs.

Query Cookbook

2-30 Liquid Data by Example

For example:

– customer_id: CUSTOMER_1 (CUSTOMER_1 through CUSTOMER_10 are available in the
data source.)

– date1: 2002-08-01 (You can enter any date in the form yyyy-MM-dd.)

3. Click the Run query button to run the query against the data sources.

Ex 4: Step 9. Verify the Result
Running this query with customer_id set to CUSTOMER_1 and date1 set to 2002-08-01 produces
the following XML query result.

Listing 2-10 Result for Example 3: Date and Time Duration

<customers>
 <customer>
 <first_name>JOHN_B_1</first_name>
 <last_name>KAY_1</last_name>
 <orders>
 <order>
 <line_item id="LINE_ID_1" product="RBBC01" status="OPEN"
expected_ship_date="2002-03-06"/>
 <line_item id="LINE_ID_3" product="BN16" status="OPEN"
expected_ship_date="2002-03-06"/>
 <line_item id="LINE_ID_5" product="CS100" status="OPEN"
expected_ship_date="2002-03-06"/>
 <line_item id="LINE_ID_1" product="RBBC01" status="OPEN"
expected_ship_date="2002-03-06"/>
 <line_item id="LINE_ID_3" product="BN16" status="OPEN"
expected_ship_date="2002-03-06"/>
 <line_item id="LINE_ID_5" product="CS100" status="OPEN"
expected_ship_date="2002-03-06"/>
 </order>
 </orders>
 </customer>
</customers>

Example 5 : Uni on

Liquid Data by Example 2-31

Example 5: Union
A union query is equivalent to concatenating two or more subordinate queries, and pooling the query
results into the same output. There are two important rules for a union query.

Each subordinate query produces a result directed at a repeatable target schema node that is
not shared (parent or child) with any other subordinate query target.

You cannot specify any conditions across these subordinate queries.

The Problem
For any BroadBand Customer ID, list any BroadBand and Wireless orders. Assume the Customer IDs
match across databases.

The Solution
This query requests a union of BroadBand orders and Wireless orders. Remember that a union
retrieves data from multiple sources, such as the BroadBand and Wireless databases, but there are no
conditions for the query. If you specify any condition, such as matching order dates, then you are
creating a join query. In this example, you need a target schema that contains a repeatable list of
Customer IDs, and within that list, a repeatable list of orders. Then you will clone the orders element,
using one element for BroadBand orders and the other element for Wireless orders.

To create the solution, follow these steps:

View a Demo

Ex 5: Step 1. Verify the Target Schema is Saved in Repository

Ex 5: Step 2. Open Source and Target Schemas

Ex 5: Step 3. Clone the Orders Element of the Target Schema

Ex 5: Step 4. Create a Query Parameter for a Customer ID

Ex 5: Step 5. Assign a Query Parameters

Ex 5: Step 6. Define Source Relationships

Ex 5: Step 7. Project the Output to the Target Schema

Ex 5: Step 8. View, then Run the Query

Ex 5: Step 9. Verify the Result

Query Cookbook

2-32 Liquid Data by Example

View a Demo
Union Demo... If you are looking at this documentation online, you can click the “Demo” button to see
a viewlet demo showing how to build the conditions and create the mappings described in this
example. This demo previews the steps described in detail in the following sections. The demo
assumes you already have the target schema in the Liquid Data Samples Server repository.

Ex 5: Step 1. Verify the Target Schema is Saved in Repository
For this example, we will use a target schema called unionOrders.xsd. This schema is available in
the Liquid Data Samples Server repository. The path to the schemas folder is:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/

Just in case you want to verify that you have the right schema file, the following code listing shows the
XML for this schema.

Listing 2-11 XML Source for unionOrders.xsd Target Schema File

<?xml version = "1.0" encoding = "UTF-8"?>
<!--Generated by Data View Builder 1.1. Conforms to w3c
http://www.w3.org/2001/XMLSchema-->
<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema" >

<xsd:element name="customers">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="customer" minOccurs="0" maxOccurs="unbounded">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="first_name" type="xsd:string"/>
<xsd:element name="last_name" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="orders" minOccurs="0"

maxOccurs="unbounded">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="order" minOccurs="0"

maxOccurs="unbounded">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="date"

type="xsd:string"/>
<xsd:element name="amount"

type="xsd:decimal"/>
</xsd:sequence>

Example 5 : Uni on

Liquid Data by Example 2-33

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

Ex 5: Step 2. Open Source and Target Schemas
1. In the Data View Builder, choose File —> New Project to clear your desktop and reset all default

values.

2. On the Builder Toolbar Design —> Sources tab, click Relational Databases and open two data
sources:

– Double-click on the PB-WL (Wireless) relational database to open the schema for this data
source.

– Double-click on the PB-BB (BroadBand) relational database to open the schema for this
data source.

3. Choose the menu option File —> Set Target Schema.

4. Navigate to the Liquid Data Samples Server repository. Choose unionOrders.xsd and click
Open.

unionOrders.xsd appears as the target schema.

5. Click the plus (+) sign (or right-mouse click and choose Expand) to expand the nodes in each
source schema and in the target schema.

Ex 5: Step 3. Clone the Orders Element of the Target Schema
1. In the Data View Builder, select the Orders element of the target schema and right-mouse click.

The Orders element is a child of the Customers element and has a child called Order.

2. Choose Clone from the right-mouse menu.

Query Cookbook

2-34 Liquid Data by Example

The Cloned complex element labeled Orders(2) appears. The name of the original complex
element is changed to Orders(1).

Ex 5: Step 4. Create a Query Parameter for a Customer ID
Create a Query Parameter variable, customer_id, that you can use to insert as a variable for a
BroadBand customer ID value when the query runs. To create this parameter, do the following:

1. On the Builder Toolbar, click Toolbox and then click Query Parameter.

2. From the Type drop-down menu, choose xs:string.

3. In Parameter Name field, enter customer_id and click Create.

The new parameter is displayed in the Query Parameters tree.

Ex 5: Step 5. Assign a Query Parameters
Assign the query parameter customer_id to the BroadBand customer ID by dragging and dropping
query parameter customer_id to the [PB-BB]/db/CUSTOMER/CUSTOMER_ID element.

Ex 5: Step 6. Define Source Relationships
1. Within PB-BB, join the BroadBand Customer ID to the Order Customer ID.

Drag and drop [PB-BB]/db/CUSTOMER/CUSTOMER_ID onto BroadBand
[PB-BB]/db/CUSTOMER_ORDER/CUSTOMER_ID

2. Join the BroadBand customer ID from the BroadBand Customer table with the Wireless
customer ID from the Wireless Customer Order table as follows:

Drag and drop [PB-BB]/db/CUSTOMER/CUSTOMER_ID onto
[PB-WL]/db/CUSTOMER_ORDER/CUSTOMER_ID

Ex 5: Step 7. Project the Output to the Target Schema
1. Project the BroadBand order information.

– Drag and drop [PB-BB]/db/CUSTOMER_ORDER/TOTAL_ORDER_AMOUNT onto
[UnionOrders.xsd]/customers/customer/orders(1)/order/amount

– Drag and drop [PB-BB]/db/CUSTOMER_ORDER/ORDER_DATE onto
[UnionOrders.xsd]/customers/customer/orders(1)/order/date

2. Project the Wireless [PB-WL] order information.

Example 5 : Uni on

Liquid Data by Example 2-35

– Drag and drop [PB-WL]/db/CUSTOMER_ORDER/TOTAL_ORDER_AMOUNT onto
[UnionOrders.xsd]/customers/customer/orders(2)/order/amount

– Drag and drop [PB-WL]/db/CUSTOMER_ORDER/ORDER_DATE onto
[UnionOrders.xsd]/customers/customer/orders(2)/order/date

3. Project the BroadBand user information.

– Drag and drop [PB-BB]/db/CUSTOMER/FIRST_NAME onto
[unionOrders.xsd]/customers/customer/first_name

– Drag and drop [PB-BB]/db/CUSTOMER/LAST_NAME onto
[unionOrders.xsd]/customers/customer/last_name

– Drag and drop [PB-BB]/db/CUSTOMER/STATE onto
[unionOrders.xsd]/customers/customer/state

Ex 5: Step 8. View, then Run the Query
1. Click on the Test tab.

The generated XQuery for this query is shown in the following code listing.

Listing 2-12 XQuery for Example 4: Union

<customers>
{
for $PB_BB.CUSTOMER_1 in document("PB-BB")/db/CUSTOMER
where ($#customer_id of type xs:string eq $PB_BB.CUSTOMER_1/CUSTOMER_ID)
return
<customer>
<orders>

{
for $PB_BB.CUSTOMER_ORDER_6 in document("PB-BB")/db/CUSTOMER_ORDER
where ($PB_BB.CUSTOMER_1/CUSTOMER_ID eq

$PB_BB.CUSTOMER_ORDER_6/CUSTOMER_ID)
return
<order>

<date>{ xf:data($PB_BB.CUSTOMER_ORDER_6/ORDER_DATE) }</date>
<amount>{ xf:data($PB_BB.CUSTOMER_ORDER_6/TOTAL_ORDER_AMOUNT)

}</amount>
</order>
}

</orders>
<orders>

{
for $PB_WL.CUSTOMER_ORDER_9 in document("PB-WL")/db/CUSTOMER_ORDER

Query Cookbook

2-36 Liquid Data by Example

where ($PB_BB.CUSTOMER_1/CUSTOMER_ID eq
$PB_WL.CUSTOMER_ORDER_9/CUSTOMER_ID)

return
<order>

<date>{ xf:data($PB_WL.CUSTOMER_ORDER_9/ORDER_DATE) }</date>
<amount>{ xf:data($PB_WL.CUSTOMER_ORDER_9/TOTAL_ORDER_AMOUNT)

}</amount>
</order>
}

</orders>
<custID>{ xf:data($PB_BB.CUSTOMER_1/CUSTOMER_ID) }</custID>

</customer>
}

</customers>

2. In the Query Parameter panel, click into the cell under “Value” and enter a value for
customer_id. (CUSTOMER_1 through CUSTOMER_10 are available to try.)

3. Click the Run query arrow to run the query against the data sources.

Ex 5: Step 9. Verify the Result
Querying these data sources as described in this example produces an XML query result similar to that
shown in the following code listing where CUSTOMER_4 was used as the query parameter value for
customer_id.

Listing 2-13 Result for Example 4: Union

<customers>

 <customer>

 <first_name>JOHN_B_4</first_name>

 <last_name>KAY_4</last_name>

 <state>NV</state>

 <orders>

 <order>

 <date>2002-03-06-08:00</date>

 <amount>1000</amount>

 </order>

 <order>

Example 5 : Uni on

Liquid Data by Example 2-37

 <date>2002-03-06-08:00</date>

 <amount>1500</amount>

 </order>

 <order>

 <date>2002-03-06-08:00</date>

 <amount>2000</amount>

 </order>

 <order>

 <date>2002-03-06-08:00</date>

 <amount>2500</amount>

 </order>

 <order>

 <date>2002-03-06-08:00</date>

 <amount>3000</amount>

 </order>

 </orders>

 <orders>

 <order>

 <date>2002-03-06-08:00</date>

 <amount>1000</amount>

 </order>

 <order>

 <date>2002-03-06-08:00</date>

 <amount>2000</amount>

 </order>

 <order>

 <date>2002-03-06-08:00</date>

 <amount>4000</amount>

 </order>

 <order>

 <date>2002-03-06-08:00</date>

 <amount>5000</amount>

 </order>

 <order>

 <date>2002-03-06-08:00</date>

 <amount>10000</amount>

 </order>

 </orders>

Query Cookbook

2-38 Liquid Data by Example

 </customer>

</customers>

Exampl e 6 : M inus

Liquid Data by Example 2-39

Example 6: Minus
A minus relationship (A minus B) returns all instances of some named value that are in A but not in
B. There is no explicit minus operation in the XQuery language or Data View Builder; however, a
simple compare and count technique can be used. For example: for each instance of the named value
in A, count all matching instances in B; if the count is zero, that means there are no matches, and the
query therefore returns the instance from A.

The Problem
Find all customers that are BroadBand customers, but not Wireless customers. Assume that Customer
IDs match across databases.

The shaded area in Figure 2-8 represents the BroadBand customers who are not Wireless customers.

Figure 2-8 BroadBand and Wireless Customers

The Solution
If a customer has only a BroadBand account, then a join across the BroadBand and Wireless databases
on that Customer ID produces an empty result. We can take advantage of that fact by counting the
number of instances produced by the join. If the number is zero, then the Customer ID represents a
BroadBand-only customer.

To create the solution, follow these steps:

View a Demo

Ex 6: Step 1. Verify the Target Schema is Saved in Repository

Ex 6: Step 2. Open Source and Target Schemas

Ex 6: Step 3. Find BroadBand and Wireless Customers with the Same Customer ID

Ex 6: Step 4. Find the Count of the Wireless Customers

BroadBand Customers Wireless Customers

Query Cookbook

2-40 Liquid Data by Example

Ex 6: Step 5. Set a Condition that Specifies the Output of “count” is Zero

Ex 6: Step 6. View the XQuery and Run the Query to Test it

Ex 6: Step 7. Verify the Result

View a Demo
Minus Demo... If you are looking at this documentation online, you can click the “Demo” button to see
a viewlet demo showing how to build the conditions and create the mappings described in this
example. This demo previews the steps described in detail in the following sections. The demo
assumes you already have the target schema in the Liquid Data Samples Server repository.

Ex 6: Step 1. Verify the Target Schema is Saved in Repository
For this example, we will use a target schema called minus.xsd. This schema is available in the
Liquid Data Samples Server repository. The path to the schemas folder is:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/

Just in case you want to verify that you have the right schema file, the following code listing shows the
XML for this schema.

Listing 2-14 XML Source for minus.xsd Target Schema File

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema">
<xsd:element name="results">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="CUSTOMER" minOccurs="1" maxOccurs="unbounded">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="FIRST_NAME" type="xsd:string"/>
<xsd:element name="LAST_NAME" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>

Exampl e 6 : M inus

Liquid Data by Example 2-41

Ex 6: Step 2. Open Source and Target Schemas
1. In the Data View Builder, choose File—>New Project to clear your desktop and reset all default

values.

2. On the Builder Toolbar Design—>Sources tab, click Relational Databases and open two data
sources:

– Double-click on the PB-WL (Wireless) relational database to open the schema for this data
source.

– Double-click on the PB-BB (BroadBand) relational database to open the schema for this
data source.

3. Choose the menu option File —> Set Target Schema.

Navigate to the Liquid Data Samples Server repository or to the location where you saved the
minus.xsd schema. Choose minus.xsd and click Open.

minus.xsd appears as the target schema.

This target schema is displayed as a docked schema window on the right side of the design
area.

4. Click the plus (+) sign (or right-mouse click and choose Expand) to expand the nodes in each
source schema and in the target schema.

Ex 6: Step 3. Find BroadBand and Wireless Customers with the Same
Customer ID

Drag and drop [PB-BB]/db/CUSTOMER/CUSTOMER_ID onto
[PB-WL]/db/CUSTOMER/CUSTOMER_ID to join the BroadBand CUSTOMER_ID and the
Wireless CUSTOMER_ID.

Ex 6: Step 4. Find the Count of the Wireless Customers
1. On the Builder Toolbar Design —> Toolbox tab, click XQuery Functions and double-click on the

xf:count function (under Aggregate functions) to open it.

2. Drag and drop the [PB-WL]/db/CUSTOMER/CUSTOMER_ID onto the input of the xf:count
function.

Ex 6: Step 5. Set a Condition that Specifies the Output of “count” is Zero
1. Click on the Conditions tab.

Query Cookbook

2-42 Liquid Data by Example

2. Drag and drop the eq (equal) function (in the XQuery functions Comparison operators folder)
onto the next empty row under Conditions on the Conditions tab.

The Functions Editor is displayed.

3. For the first parameter, drop xf:count/result onto anyValue1.

4. For the second parameter, create a Number constant, set it to 0 and drop it on anyValue2.

Note: To create the Number constant, on Builder —> Toolbox tab, click Constants, enter 0 in
the Number field, and drag the Constant icon next to that field onto anyValue2 in the
equation in the Functions Editor.

The equality condition should look like this:

([xf:count]/result eq 0)

Close the Functions Editor.

5. Project the BroadBand customers to the target results.

– Drag and drop [PB-BB]/db/CUSTOMER/FIRST_NAME onto
[minus.xsd]/results/CUSTOMER/FIRST_NAME

– Drag and drop [PB-BB]/db/CUSTOMER/LAST_NAME onto
[minus.xsd]/results/CUSTOMER/LAST_NAME

Exampl e 6 : M inus

Liquid Data by Example 2-43

Ex 6: Step 6. View the XQuery and Run the Query to Test it
1. Click on the Test tab.

The generated XQuery for this query is shown in the following code listing.

Listing 2-15 XQuery for Example 5: Minus

<results>
{
for $PB_BB.CUSTOMER_1 in document("PB-BB")/db/CUSTOMER
let $srcval_2 :=
 for $PB_WL.CUSTOMER_3 in document("PB-WL")/db/CUSTOMER
 where ($PB_BB.CUSTOMER_1/CUSTOMER_ID eq

$PB_WL.CUSTOMER_3/CUSTOMER_ID)
 return
 xf:data($PB_WL.CUSTOMER_3/CUSTOMER_ID)
let $xf:count_4 := xf:count($srcval_2)
where ($xf:count_4 eq 0)
return
<CUSTOMER>

<FIRST_NAME>{ xf:data($PB_BB.CUSTOMER_1/FIRST_NAME) }</FIRST_NAME>
<LAST_NAME>{ xf:data($PB_BB.CUSTOMER_1/LAST_NAME) }</LAST_NAME>

</CUSTOMER>
}

</results>

2. Click the “Run query” button to run the query against the data sources.

Ex 6: Step 7. Verify the Result
When you run this query on the sample data sources as described here, the result will be one record
because the sample BroadBand data source has one customer record that is different from the
Wireless customer records.

Listing 2-16 Result for Example 5: Minus

<results>

<CUSTOMER>

<FIRST_NAME>JOHN</FIRST_NAME>

<LAST_NAME>PARKER</LAST_NAME>

Query Cookbook

2-44 Liquid Data by Example

</CUSTOMER>

</results>

Example 7 : Complex Paramete r T ype (CPT)

Liquid Data by Example 2-45

Example 7: Complex Parameter Type (CPT)
The Complex Parameter Type Cookbook example shows how to use Liquid Data to create an integrated
view that connects two enterprise information systems: a database and an in-flight XML data source
using a complex parameter type (CPT). A query that uses both data sources determines whether the
customer has sufficient credit for the incoming order to be processed.

The Problem
The company receives dozens of electronically transmitted orders daily and needs to quickly respond
to its field office if an order cannot be accepted because a customer has exceeded their credit limit.
The credit limit and amount of outstanding orders is known to the system. The quantity and price of
the items being ordered is supplied in real-time along with the order.

The Solution
The company develops a complex parameter type (CPT) that models the incoming purchase order as
an XML schema and sets a simple orderLimit parameter that an operator can change whenever the
query is run. The query also calculates the total amount outstanding of current orders and the total
amount of the incoming order. The objective is to accept orders if the total amount of both outstanding
and incoming orders is within the order limit. Otherwise, the order is rejected.

To recreate the solution, follow these steps:

View a Demo

Ex 7: Step 1. Verify the Availability of Schemas and Sample Data Stream

Ex 7: Step 2. Open the Target Schema and CO-CPTSAMPLE CPT

Ex: 7: Step 3. Create an orderLimit Query Parameter

Ex 7: Step 4. Save the Project

Ex 7: Step 5. Test Access to the Complex Parameter Source

Ex 7: Step 6: Determine the Total Amount of New Orders

Ex 7: Step 7. Create the Necessary Joins and Mappings to the Target Schema

Ex 7: Step 8. Determine the Amount of Currently Open Orders

Ex 7: Step 9: Determine the Total Amount of All Open and New Orders

Query Cookbook

2-46 Liquid Data by Example

Ex 7: Step 10: Test If Open Orders + New Orders Exceeds the Order Limit

Ex 7: Step 11: Determine If the Order is Accepted or Rejected

Ex 7: Step 12: View the XQuery

Ex 7: Step 13. Run the XQuery to Verify the Result

Note: The implementation details of the Complex Parameter Type demo, the DB-COCPT sample,
and the CPT cookbook example vary slightly.

View a Demo
Complex Parameter Type (CPT) Demo. If you are looking at this documentation online, you can click
the “Demo” button to see a viewlet demo showing how to build the conditions and create the mappings
described in this example.

Ex 7: Step 1. Verify the Availability of Schemas and Sample Data Stream
In creating the DB-CPTCO sample query, we use the following files that are installed with Liquid Data
samples.

From the Liquid Data Samples Server repository schema directory:

BroadBand database schema. The path to this file is:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/broadbandp.sql

Complex parameter type schema. The path to this file is:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/coCptSample2.xsd

Target schema. The path to this file is:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/COCPTSampleTarge

t-Schema.xsd

CPT sample XML stream. The path to this file is:

<WL_HOME>/samples/domains/liquiddata/ldrepository/xml_files/coCPTsample2.x

ml

If you want to refer to the sample DB-CPTCO project, it is installed as the following file:

<WL_HOME>/<LD_HOME>/liquiddata/buildquery/db-cptco/coCPTSample.qpr

For reference purposes, code listings for several of the XML files used in this example appear below:

Example 7 : Complex Paramete r T ype (CPT)

Liquid Data by Example 2-47

Listing 2-17 DB-CPTCO Sample CPT Schema (coCptSample2.xsd)

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="urn:schemas-bea-com:ld-cocpt"

xmlns:cocpt="urn:schemas-bea-com:ld-cocpt"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="CustOrder">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="CUSTOMER_ORDER" minOccurs="0" maxOccurs="unbounded">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="CUSTOMER_ID" type="xsd:string"/>
<xsd:element name=

"NEW_ORDER_LINE_ITEM"type="cocpt:NEW_ORDER_LINE_ITEMType"
minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:complexType name="NEW_ORDER_LINE_ITEMType">

<xsd:sequence>
<xsd:element name="PRODUCT_NAME" type="xsd:string"/>
<xsd:element name="QUANTITY" type="xsd:decimal"/>
<xsd:element name="PRICE" type="xsd:decimal"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Listing 2-18 DB-CPTCO Target Schema (COCPTSampleTargetSchema.xsd)

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="urn:schemas-bea-com:ld-cocpt"
xmlns:cocpt="urn:schemas-bea-com:ld-cocpt"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="CustOrder">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="CUSTOMER_ORDER" minOccurs="0"

maxOccurs="unbounded">
<xsd:complexType>

<xsd:sequence>

Query Cookbook

2-48 Liquid Data by Example

<xsd:element name="CUSTOMER_ID"
type="xsd:string"/>

<xsd:element name="NEW_ORDER_LINE_ITEM"
type="cocpt:NEW_ORDER_LINE_ITEMType" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:complexType name="NEW_ORDER_LINE_ITEMType">

<xsd:sequence>
<xsd:element name="PRODUCT_NAME" type="xsd:string"/>
<xsd:element name="QUANTITY" type="xsd:decimal"/>
<xsd:element name="PRICE" type="xsd:decimal"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Listing 2-19 DB-CPTCO Sample XML Data Stream (coCptSample2.xml)

<?xml version="1.0" encoding="UTF-8"?>
<cocpt:CustOrder xmlns:cocpt="urn:schemas-bea-com:ld-cocpt"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:schemas-bea-com:ld-cocpt
coCptSample2.xsd">
<CUSTOMER_ORDER>
<CUSTOMER_ID>CUSTOMER_1</CUSTOMER_ID>
<NEW_ORDER_LINE_ITEM>
<PRODUCT_NAME>RBBC01</PRODUCT_NAME>
<QUANTITY>1000</QUANTITY>
<PRICE>20</PRICE>
</NEW_ORDER_LINE_ITEM>
<NEW_ORDER_LINE_ITEM>
<PRODUCT_NAME>CS2610</PRODUCT_NAME>
<QUANTITY>1000</QUANTITY>
<PRICE>20</PRICE>
</NEW_ORDER_LINE_ITEM>
</CUSTOMER_ORDER>
</cocpt:CustOrder>

You may also want to examine the CO-CPTSAMPLE definition in the WLS Administration Console for
the Samples server you are using.

Example 7 : Complex Paramete r T ype (CPT)

Liquid Data by Example 2-49

1. Login to the Administration Server. See Start the WLS Administration Console in the Getting
Started guide for details.

2. In the left pane, click the Liquid Data node.

3. In the right pane, click the Complex Parameter Types tab and click on CO-CPTSAMPLE.

See the section “Creating a Complex Parameter Type” for details.

Ex 7: Step 2. Open the Target Schema and CO-CPTSAMPLE CPT
1. In the Data View Builder, choose File—>New Project.

2. On the Design tab, on the Builder Toolbar, click the Toolbox tab, then click Complex Parameter
Type. The CO-CPTSAMPLE complex parameter type is listed.

3. Double-click on CO-CPTSAMPLE to open the CPT schema.

4. Choose File -> Set Target Schema. Browse to the Liquid Data Samples Server repository
schema directory.

5. Select the following file as the target schema:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/COCPTSampleTargetSch
ema.xsd

In the target schema window on the right side of the design area, right-click on the top element
expand the target schema.

Ex: 7: Step 3. Create an orderLimit Query Parameter
Since credit limits vary from customer to customer, it is convenient to have an order limit query
parameter that can be changed whenever a query is run.

1. In the Data View Builder select Design—>Toolbox.

2. Click on the Query Parameter tab.

3. Enter orderLimit as a parameter name.

4. Select xs:decimal as the parameter type.

5. Click Create.

6. Drag and drop the orderLimit parameter icon onto the target schema
[COCPTSampleTargetSchema.xsd]/cocpt:CustOrderStatus/CUSTOMER/CUSTOMER_O
RDER/TOTAL_OPEN_ORDERLIMIT

Query Cookbook

2-50 Liquid Data by Example

Ex 7: Step 4. Save the Project
You can save a project at any time. To initially create a project, use File—>Save Project As. Use
the file browser to choose a location and project name (we use myCoCPT).

Ex 7: Step 5. Test Access to the Complex Parameter Source
Follow these steps to verify access to the CPT data source:

1. Drag and drop output from:

[CO-CPTSAMPLE]/cocpt:CustOrder/CUSTOMER_ORDER/CUSTOMER_ID

onto the target schema:

[COCPTSampleTargetSchema.xsd]/cocpt:CustOrderStatus/cocpt:CUSTOMER/cocp
t:CUSTOMER_ID.

2. Click the Test tab.

3. In the lower-left pane of the Data View Builder (Test mode), click in the Values area under
Query Parameters to the right of the CPT name (CO-CPTSAMPLE).

4. Navigate to the XML data file associated with the CO-CPTSAMPLE complex parameter type.

<WL_HOME>/samples/domains/liquiddata/ldrepository/xml_files/coCptSam
ple2.xml

5. Enter an orderLimit value such as 200000.

6. Now you can click the Run arrow to execute a preliminary query. The following result shows that
your CPT is successfully retrieving from the XML file data:

Listing 2-20 Interim Results (1) from the CPT Example Query

<prefix1:CustOrderStatus xmlns:prefix1="urn:schemas-bea-com:ld-cocpt">
 <prefix1:CUSTOMER>
 <prefix1:CUSTOMER_ID>CUSTOMER_1</prefix1:CUSTOMER_ID>
 <prefix1:CUSTOMER_ORDER>
 <prefix1:TOTAL_OPEN_ORDERLIMIT>200000</prefix1:TOTAL_OPEN_ORDERLIMIT>
 </prefix1:CUSTOMER_ORDER>
 </prefix1:CUSTOMER>
</prefix1:CustOrderStatus>

Example 7 : Complex Paramete r T ype (CPT)

Liquid Data by Example 2-51

7. Return to the Toolbar Design mode.

In the case of this data source, the customer identification is provided so there is no need to create a
customer ID query parameter.

Ex 7: Step 6: Determine the Total Amount of New Orders
Since all runtime source items from a CPT are treated as character strings, any data items from the
CO-CPTSAMPLE data source must first be cast appropriately. Then quantities and prices are
multiplied together. The sum of the products of quantity and prices is the total amount of new orders.

1. Click XQuery Functions.

2. Drag and drop a multiply [*] function into the design area (from the Numeric operators group).

3. Drag and drop a sum Aggregate function (xf:sum) into the design area.

Figure 2-9 XQuery Functions Used to Calculate Total New Orders in Data Stream

4. Drag and drop the output result of xs:decimal to one side of the multiply equation and the
output result of xs:decimal2 to the other.

Query Cookbook

2-52 Liquid Data by Example

5. Drag and drop
[CO-CPTSAMPLE]cocpt:CustOrder/CUSTOMER_ORDER/NEW_ORDER_LINE_ITEM/QUANTI

TY to one side of the multiply equation.

6. Drag and drop
[CO-CPTSAMPLE]cocpt:CustOrder/CUSTOMER_ORDER/NEW_ORDER_LINE_ITEM/PRICE
to the other side of the multiply equation.

7. Drag the [*] function output result to the input parameter of xf:sum. This gives you the
total order amount in the CPT data source.

8. Drag and drop output from xf:sum onto the target schema
[COCPTSampleTargetSchema.xsd]/cocpt:CustOrderStatus/CUSTOMER/CUSTOMER_O
RDER/NEW_ORDER_TOTAL_AMOUNT

9. Rerun your query. A new order total of 40000 appears.

10. Return to Design mode.

Ex 7: Step 7. Create the Necessary Joins and Mappings to the Target Schema
Move the PB-BB relational source schema onto the design area.

1. On the Builder Toolbar Design—>Sources tab, click Relational Databases, and double-click on
PB-BB to open the schema for the BroadBand sample data source.

2. Expand the PB-BB schema.

Create the necessary joins to allow us to fetch the line items for a particular order for a particular
customer.

1. Drag and drop [CO-CPTSAMPLE]/cocpt:CustOrder/CUSTOMER_ORDER/CUSTOMER_ID onto
[PB-BB]/db/CUSTOMER/CUSTOMER_ID

2. Drag and drop [PB-BB]/db/CUSTOMER/CUSTOMER_ID onto the
[PB-BB]/db/CUSTOMER_ORDER/CUSTOMER_ID

3. Drag and drop [PB-BB]/db/CUSTOMER_ORDER/ORDER_ID onto
[PB-BB]/db/CUSTOMER_ORDER_LINE_ITEM/ORDER_ID

Example 7 : Complex Paramete r T ype (CPT)

Liquid Data by Example 2-53

Figure 2-10 Setting Joins Between CPT and Relational Data Source

Next, project FIRST_NAME and LAST_NAME elements onto the target schema.

1. Drag and drop [PB-BB]/db/CUSTOMER/FIRST_NAME onto the target schema
[cocptsampletarget-schema]/cocptCustOrderStatus/CUSTOMER/FIRST_NAME

2. Drag and drop [PB-BB]/db/CUSTOMER/LAST_NAME onto the target schema
[cocptsampletarget-schema]/cocptCustOrderStatus/CUSTOMER/LAST_NAME

Note: In this version of the CO-CPTSAMPLE, automatic scoping is used. See “Understanding
Condition Scoping” in Building Queries and Data Views for more information.

Although your query is not complete, you can test run it again.

1

2

3

Query Cookbook

2-54 Liquid Data by Example

Listing 2-21 Interim Results (2) from CPT Example Query

<prefix1:CustOrderStatus xmlns:prefix1="urn:schemas-bea-com:ld-cocpt">

 <prefix1:CUSTOMER>

 <prefix1:FIRST_NAME>JOHN_B_1</prefix1:FIRST_NAME>

 <prefix1:LAST_NAME>KAY_1</prefix1:LAST_NAME>

 <prefix1:CUSTOMER_ID>CUSTOMER_1</prefix1:CUSTOMER_ID>

 <prefix1:CUSTOMER_ORDER>

 <prefix1:NEWORDER_TOTAL_AMOUNT>40000</prefix1:NEWORDER_TOTAL_AMOUNT>

 <prefix1:TOTAL_OPEN_ORDERLIMIT>200000</prefix1:TOTAL_OPEN_ORDERLIMIT>

 </prefix1:CUSTOMER_ORDER>

 </prefix1:CUSTOMER>

</prefix1:CustOrderStatus>

3. Return to Design mode.

Ex 7: Step 8. Determine the Amount of Currently Open Orders
Follow these steps to find the total amount of open orders in the sample PB-BB database:

1. Click the XQuery Functions.

2. Drag and drop the multiply [*] operator into the design area.

3. Drag and drop [PB-BB]/db/CUSTOMER_ORDER_LINE_ITEM/QUANTITY and
[PB-BB]/db/CUSTOMER_ORDER_LINE_ITEM/PRICE to the function operands.

4. Drag and drop another xf:sum into the design area. Drag the output result of the f()*2 -
Function (*2 being the second use of a multiplication function) to the input parameter of
xf:sum2.

5. Drag and drop output from xf:sum2 onto the target schema
[COCPTSampleTargetSchema.xsd]/cocpt:CustOrderStatus/CUSTOMER/CUSTOMER_O
RDER/OPEN_ORDER_TOTAL_AMOUNT

Finally, we need to restrict results to open orders:

1. In the Data View Builder select Design —> Toolbox.

2. Click on Constants.

Example 7 : Complex Paramete r T ype (CPT)

Liquid Data by Example 2-55

3. Create a string constant called OPEN and drag the icon to the right of OPEN to the
[PB-BB]/db/CUSTOMER_ORDER_LINE_ITEM/STATUS item.

If we run the query, the amount of open orders should be 150000.

Ex 7: Step 9: Determine the Total Amount of All Open and New Orders
1. Click XQuery Functions.

2. Drag and drop the plus [+] numeric operator into the design area.

3. Use xf:sum (total new orders) and xf:sum2 (total open orders) as the operands to obtain the
total of open and new order amount.

Ex 7: Step 10: Test If Open Orders + New Orders Exceeds the Order Limit
1. Select XQuery Functions.

2. Under Comparison operators locate the [gt] (greater than) function. Drag it into the design
area.

3. Use the output of the sum of open and newly arrived orders as the first input parameter.

4. Use the query parameter orderLimit as input for operand2. The result is a Boolean value
that is True if the sum of open and newly arrived orders is greater than the overall order limit.

Ex 7: Step 11: Determine If the Order is Accepted or Rejected
Now that the relationships and conditions are established, set up an if-then-else test to solve the
business problem. See “The Problem” on page 2-45.

1. Under Other functions locate the xfext:if-then-else function. Drag it into the design area.

2. Drag the output of the gt function to the if-then-else condition parameter.

3. Click on the Toolbox Constants tab. In the String field enter REJECT, drag the String field icon
to the then parameter in the xfext:if-then-else function.

4. Change the String field to ACCEPT, then drag the String field icon to the else parameter.

5. Drag the output result onto the target schema
[COCPTSampleTargetSchema.xsd]/cocpt:CustOrderStatus/CUSTOMER/CUSTOMER_O
RDER/ORDER_REVIEW_STATUS

6. Click Test.

Query Cookbook

2-56 Liquid Data by Example

Ex 7: Step 12: View the XQuery
The generated XQuery is shown in the following code listing.

Listing 2-22 XQuery for Example 6: Complex Parameter Type (CPT)

namespace cocpt = "urn:schemas-bea-com:ld-cocpt"

<cocpt:CustOrderStatus>
{
for $COCPTSAMPLE.CUSTOMER_ORDER_2 in ($#COCPTSAMPLE of type element

cocpt:CustOrder)/CUSTOMER_ORDER
for $PB_BB.CUSTOMER_3 in document("PB-BB")/db/CUSTOMER
let $srcval_4 :=
 for $PB_BB.CUSTOMER_ORDER_LINE_ITEM_5 in

document("PB-BB")/db/CUSTOMER_ORDER_LINE_ITEM
 where xf:not(xf:empty(
 for $PB_BB.CUSTOMER_ORDER_7 in

document("PB-BB")/db/CUSTOMER_ORDER
 where ($PB_BB.CUSTOMER_3/CUSTOMER_ID eq

$PB_BB.CUSTOMER_ORDER_7/CUSTOMER_ID)
 and ($PB_BB.CUSTOMER_ORDER_7/ORDER_ID eq

$PB_BB.CUSTOMER_ORDER_LINE_ITEM_5/ORDER_ID)
 return
 xf:true()))
 and ("OPEN" eq $PB_BB.CUSTOMER_ORDER_LINE_ITEM_5/STATUS)
 return
 $PB_BB.CUSTOMER_ORDER_LINE_ITEM_5/QUANTITY *

$PB_BB.CUSTOMER_ORDER_LINE_ITEM_5/PRICE
let $xf:sum2_8 := xf:sum($srcval_4)
let $srcval_9 :=
 for $COCPTSAMPLE.NEW_ORDER_LINE_ITEM_10 in

$COCPTSAMPLE.CUSTOMER_ORDER_2/NEW_ORDER_LINE_ITEM
 return
 $COCPTSAMPLE.NEW_ORDER_LINE_ITEM_10/QUANTITY *

$COCPTSAMPLE.NEW_ORDER_LINE_ITEM_10/PRICE
let $xf:sum_12 := xf:sum($srcval_9)
let $v_13 := $xf:sum2_8 + $xf:sum_12
let $gt_14 := $v_13 gt $#orderLimit of type xs:decimal
where ($COCPTSAMPLE.CUSTOMER_ORDER_2/CUSTOMER_ID eq

$PB_BB.CUSTOMER_3/CUSTOMER_ID)
return
<cocpt:CUSTOMER>

<cocpt:FIRST_NAME>{ xf:data($PB_BB.CUSTOMER_3/FIRST_NAME)
}</cocpt:FIRST_NAME>

<cocpt:LAST_NAME>{ xf:data($PB_BB.CUSTOMER_3/LAST_NAME)
}</cocpt:LAST_NAME>

Example 7 : Complex Paramete r T ype (CPT)

Liquid Data by Example 2-57

<cocpt:CUSTOMER_ID>{ xf:data($COCPTSAMPLE.CUSTOMER_ORDER_2/CUSTOMER_ID)
}</cocpt:CUSTOMER_ID>

<cocpt:CUSTOMER_ORDER>
<cocpt:OPENORDER_TOTAL_AMOUNT>{ $xf:sum2_8

}</cocpt:OPENORDER_TOTAL_AMOUNT>
<cocpt:NEWORDER_TOTAL_AMOUNT>{ $xf:sum_12

}</cocpt:NEWORDER_TOTAL_AMOUNT>
<cocpt:TOTAL_OPEN_ORDERLIMIT>{ $#orderLimit of type xs:decimal

}</cocpt:TOTAL_OPEN_ORDERLIMIT>
<cocpt:ORDER_REVIEW_STATUS>{ xfext:if-then-else(treat as

xs:boolean($gt_14), "REJECT", "ACCEPT") }</cocpt:ORDER_REVIEW_STATUS>
</cocpt:CUSTOMER_ORDER>

</cocpt:CUSTOMER>
}

</cocpt:CustOrderStatus>

7. Return to Design mode.

Ex 7: Step 13. Run the XQuery to Verify the Result
When you run this query on the sample data sources as described in this example, the result is an
accepted order.

Listing 2-23 Result of Example 6: Complex Parameter Type (CPT)

<prefix1:CustOrderStatus xmlns:prefix1="urn:schemas-bea-com:ld-cocpt">
 <prefix1:CUSTOMER>
 <prefix1:FIRST_NAME>JOHN_B_1</prefix1:FIRST_NAME>
 <prefix1:LAST_NAME>KAY_1</prefix1:LAST_NAME>
 <prefix1:CUSTOMER_ID>CUSTOMER_1</prefix1:CUSTOMER_ID>
 <prefix1:CUSTOMER_ORDER>
 <prefix1:OPENORDER_TOTAL_AMOUNT>150000</prefix1:OPENORDER_TOTAL_AMOUNT>
 <prefix1:NEWORDER_TOTAL_AMOUNT>40000</prefix1:NEWORDER_TOTAL_AMOUNT>
 <prefix1:TOTAL_OPEN_ORDERLIMIT>200000</prefix1:TOTAL_OPEN_ORDERLIMIT>
 <prefix1:ORDER_REVIEW_STATUS>ACCEPT</prefix1:ORDER_REVIEW_STATUS>
 </prefix1:CUSTOMER_ORDER>
 </prefix1:CUSTOMER>
</prefix1:CustOrderStatus>

Query Cookbook

2-58 Liquid Data by Example

Liquid Data by Example 3-1

C H A P T E R 3

Samples Installed with Liquid Data

This chapter describes samples installed with Liquid Data which are arranged in the following
sections:

Simple Liquid Data Queries

Complex Parameter Type (CPT) Sample Queries

Data View Sample Queries

Application View Sample Queries

Miscellaneous Samples

– Custom Functions (DB-UDF) Sample Query

– DB-Web Service Sample Query

– SQL_Call Sample Query

– EJB API Sample

Sample queries can be found at:

<WL_HOME>/samples/liquiddata/

In the following sub-directories:

buildQuery contains all sample queries other than EJB programming examples and the retail
sample application

ejbAPI provides an EJB programming example

Sampl es Ins ta l l ed w i th L i qu id Data

3-2 Liquid Data by Example

SampleApp contains the Retail Sample Application, described in Chapter 1, “Understanding
the Avitek Customer Self-Service Sample Application.”

Simple Liquid Data Queries
This section describes several types of simple queries you can run and/or recreate in the Data View
Builder.

DB-XML Sample Query
This section includes the following topics related to the DB-XML sample query:

– What This Query Demonstrates

– How to Run the Query

– If You Want to Recreate the Query …

– References

What This Query Demonstrates
The sample order query demonstrates how to use Liquid Data to create an integrated view that shows
the connection of two different Enterprise Information Systems (EIS), a database, and XML. Creating
an integrated view provides the ability to seamlessly access separate EISs using a single query.

Business Scenario
A wireless service provider uses a relational database system to manage its customer and order
information. Recently it purchased a broadband service from another company. The broadband
customer and order information is managed by a non-DBMS system, e.g., XML file system. To provide
an integrated customer service system, we use the Liquid Data engine to seamlessly access customer
order information across different types of Enterprise Information Systems (EIS).

How to Run the Query
1. Start the Liquid Data Samples server.

2. Start the Data View Builder.

3. In the Data View Builder, open the following project file:

<WL_HOME>/<LD_HOME>/liquiddata/buildquery/db-xml/e2e-order.qpr

Si mple L iqu id Data Quer ies

Liquid Data by Example 3-3

4. Click the Test tab. (This shows the generated query statement.)

5. Click the Run Query button and view the results. Results include:

– Last name: KAY_1

– Two wireless orders: 1000 and 2000

– Two BroadBand orders: 1000 and 1500

If You Want to Recreate the Query …
You can find a detailed tutorial describing how to create a similar query in the Liquid Data Getting
Started guide.

References
You can find the Wireless database schema at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/WIRELESSP.sql

You can find the BroadBand XML schema at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/b-co.xsd

You can find the target schema at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/customerOrderRep

ort.xsd

You can find the query statement at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/stored_queries/order.xq

../qkstart/steps.html

Sampl es Ins ta l l ed w i th L i qu id Data

3-4 Liquid Data by Example

Data Transformation Sample Query
This section includes the following topics related to the Data Transformation Sample query:

– What This Query Demonstrates

– How to Run the Query

– If You Want to Recreate the Query …

– References

What This Query Demonstrates
This query demonstrates the use of functions for:

Simple data transformations such as to_lower_case, to_upper_case and concatenation

Aggregation

Business Scenario
A telecom service provider has information on its BroadBand customers stored in one database
system, represented in Liquid Data by a schema called BroadBand. Information about its wireless
customers is in a different database system and is represented by a schema called Wireless.

The problem to be solved is that the customer representative needs to find out the average spending
for customers who use both Broadband and Wireless services.

How to Run the Query
1. Start the Liquid Data Samples server.

2. Start the Data View Builder.

In the Data View Builder, open the following project file:

<WL_HOME>/<LD_HOME>/liquiddata/buildquery/dataTransform/data.qpr

3. Click the Test tab. (This shows the generated query statement.)

4. Click the Run Query button and view the result. For CUSTOMER_1 results are:

– john_b_1

– KAY_1

– 1375

Si mple L iqu id Data Quer ies

Liquid Data by Example 3-5

– KAY_1, JOHN_B_1

If You Want to Recreate the Query …
You can use existing sample data sources when recreating this query.

Build the Query in the Data View Builder
There are several ways to effect data transformations. The approach taken in this example is to
transform a data element to the point where it is ready to be mapped to the target schema and then
do the mapping.

All the data transformation functions shown in this sample are available under in the XQuery
Functions section of the Toolbox. The term srcval refer to the input side of an XQuery function.

There are six parts to the data transformation sample:

– Setting Up the Project

– Converting a String to Lower Case

– Converting a String to Upper Case

– Combining Two Strings (Concatenation)

– Determining Average Sale Price

Setting Up the Project

1. Create a new project.

2. Move the following data sources into the work area:

Relational Databases:

– PB-BB (BroadBand orders RDBMS)

– PB-WL (Wireless orders RDBMS)

3. Set the target schema to dta.xsd

4. Click on the Toolbox tab.

5. Select Query Parameters.

6. In the name field enter custID.

7. Assign a type of xs:string. Then click Create.

Sampl es Ins ta l l ed w i th L i qu id Data

3-6 Liquid Data by Example

8. Create a join (eq) between your new query parameter and the CUSTOMER_ID field in the
BroadBand data source [PB-BB]:.

9. Create a join (eq) between the following pair of elements by dragging one element over the
other:

Converting a String to Lower Case

1. Click XQuery Functions in the Toolbox.

1. Move the XQuery string function xf:lower-case into the work area.

2. Transform the Broadband [PB-BB] First Name element to lower case:

3. Map the output of the lower-case function to the target schema:

4. Close xf:lower-case.

Join Element Join Element

[Query Parameter] custID [PB-BB]/db/CUSTOMER/CUSTOMER_ID

Join Element Join Element

[PB-BB]/db/CUSTOMER/CUSTOMER_ID [PB-BB]/db/CUSTOMER_ORDER/CUSTOMER_ID

[PB-BB]/db/CUSTOMER/CUSTOMER_ID [PB-WL]/db/CUSTOMER/CUSTOMER_ID

[PB-WL]/db/CUSTOMER/CUSTOMER_ID [PB-WL]/db/CUSTOMER_ORDER/CUSTOMER_ID

Source:[PB-BB]/db/ Target: String Function

CUSTOMER/FIRST_NAME xf:lower-case/srcval

Source: String Function Target: [dta.xsd]/results/

xf:lower-case/result result/FIRST_NAME

Si mple L iqu id Data Quer ies

Liquid Data by Example 3-7

Converting a String to Upper Case

1. Move the XQuery string function xf:upper-case into the work area.

2. Transform the Broadband [PB-BB] Last Name element to upper case:

3. Map the output of the xf:upper-case function to the target schema:

4. Close xf:upper-case.

Combining Two Strings (Concatenation)
In this section you can create a string containing a concatenation of first and last name, last name
first. This involves using the two XQuery concatenate functions you just moved into the work area.
Once the string is built up, you can map it into the target schema.

1. Move two instances of the XQuery string concatenate function into the work area. They will be
automatically labeled xf:concat and xf:concat2.

2. Click on the Constants button in the left pane. In the string field enter “, “ (do not type the
quotes, only the comma followed by a space).

3. Drag the BroadBand LAST_NAME element [PB-BB] to the first input field of the first
concatenation function:

Source:[PB-BB]/db/ Target: String Function

CUSTOMER/LAST_NAME xf:/upper-case/srcval

Source: String Function Target: [dta.xsd]/results/

xf:uppercase/result result/LAST_NAME

Source:[PB-BB]/db/ Target: String Function

CUSTOMER/LAST_NAME [xf:concat]/operand1

Sampl es Ins ta l l ed w i th L i qu id Data

3-8 Liquid Data by Example

4. Drag the string constant “, “ to the second input field of the first concatenation function:

5. Populate the input fields of the second concatenation function with the output result of the first
concatenation function and [PB-BB] FIRST_NAME.

.

6. Map the second concatenation function to the target schema:

7. Close both concatenation functions.

Determining Average Sale Price
You first need to get a total for both Wireless and BroadBand sales.

1. Move two instances of the XQuery aggregate sum function into the work area. They will be
automatically labeled xf:sum and xf:sum2.

Source: Constant Target: String Function

, [xf:concat]/operand2

Source: String Function Target: String Function

[xf:concat]/result [xf:concat]/operand1

Source:[PB-BB]/db/ Target: String Function

CUSTOMER/FIRST_NAME [xf:concat]/operand2

Source: String Function Target: [dta.xsd]/results/

[xf:concat]/result result/FULL_NAME

Si mple L iqu id Data Quer ies

Liquid Data by Example 3-9

2. Move the BroadBand TOTAL_ORDER_AMOUNT element to the input field of the first sum and
Wireless TOTAL_ORDER_AMOUNT to the input field of the second sum function:

3. Move an instance of the XQuery numeric plus (+) function into the work area.

4. Add together the TOTAL_ORDER_AMOUNT sums of Wireless and BroadBand:

5. Move an instance of the XQuery numeric division (DIV) function into the work area.

6. Move the result of the addition of Wireless and BroadBand sales to the first DIV operand:

7. Close instances of plus [xf:+] and sum [xf:sum].

Next you want to get the total number of sales for Wireless and BroadBand combined.

1. Move two instances of the XQuery aggregate xf:count function into the work area. They will be
automatically labeled xf:count and xf:count2.

Source:[PB-BB]/db/ Target: Aggregate Function

[PB-BB]/db/CUSTOMER_ORDER/TOTAL_ORDER_A
MOUNT

[xf:sum]/srcval (BroadBand)

[PB-WL]/db/CUSTOMER_ORDER/TOTAL_ORDER_A
MOUNT

[xf:sum]/srcval (Wireless)

Source: Aggregate Function Target: Numeric Operator Function

[xf:sum]/result (Wireless) [+]/operand1

[xf:sum]/result (BroadBand) [+]/operand2

Source: Numeric Operator Function Target: Numeric Operator Function

[+]/result (total order amount) xf:div/operand1

Sampl es Ins ta l l ed w i th L i qu id Data

3-10 Liquid Data by Example

2. Move the BroadBand ORDER_ID element to the input field of the first xf:count function and
Wireless ORDER_ID to the input field of the second xf:count function.

3. Move an instance of the XQuery numeric plus (+) function into the work area.

4. Add together the ORDER_ID count totals of Wireless and BroadBand:

5. Move the result of the addition of Wireless and BroadBand sales counts to the second DIV
operand:

Map the output of the XQuery division function to the target schema:

6. Enter Test mode.

7. Supply CUSTOMER_1 for the custID parameter.

8. Run your query. Results are:

– john_b_1

Source:[PB-BB]/db/ Target: Aggregate Function

[PB-BB]/db/CUSTOMER_ORDER/ORDER_ID [xf:count]/srcval (BroadBand)

[PB-WL]/db/CUSTOMER_ORDER/ORDER_ID [xf:count]/srcval (Wireless)

Source: Aggregate Function Target: Numeric Operator Function

[xf:count]/result (Wireless) [+]/operand1

[xf:count]/result (BroadBand) [+]/operand2

Source: Numeric Operator Function Target: Numeric Operator Function

[+]/result (total order amount) xf:div/operand2

Source: String Function Target: [dta.xsd]/results/

xf:div/result result/average

Si mple L iqu id Data Quer ies

Liquid Data by Example 3-11

– KAY_1

– 1375

– KAY_1, JOHN_B_1

References
You can find the wireless data base schema file at:

<WL_HOME>/samples/domains/liquiddata/scripts/ddl/WIRELESSP.sql

You can find the BroadBand XML schema at:

<WL_HOME>/samples/domains/liquiddata/scripts/ddl/BROADBANDP.sql

You can find the target schema at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/dta.xsd

Sampl es Ins ta l l ed w i th L i qu id Data

3-12 Liquid Data by Example

DB-DB Sample Query
This section includes the following related to the DB-DB sample query:

– What This Query Demonstrates

– How to Run the Query

– If You Want to Recreate the Query …

– References

What This Query Demonstrates
This query demonstrates how to use Liquid Data to construct a query that integrates data from two
distributed heterogeneous database sources.

Traditionally, an application developer needs to write a set of data access methods and some join
coding to complete the information extraction and assembly. This example demonstrates how you can
use a single XQuery statement to declaratively accomplish the same task in much cleaner way.

Business Scenario
A service provider has customer information stored in one database server. All the promotion plans
are managed by another database server. This sample query illustrates how to use Liquid Data to
extract qualified promotion information for a customer based on the state the customer lives in.

How to Run the Query
1. Start the Liquid Data Samples server.

2. Start the Data View Builder.

3. In the Data View Builder, open the following project file:

<WL_HOME>/<LD_HOME>/liquiddata/buildquery/db-db/e2e-promotion.qpr

4. Click the Test tab. (This shows the generated query statement.)

5. Click the "Run Query" button and view the result.

Results should include:

Last name: KAY_1

State: TX

Si mple L iqu id Data Quer ies

Liquid Data by Example 3-13

Promotion name: WIRELESS UPSELL

Price: $49.99

If You Want to Recreate the Query …
You can use existing sample data sources when recreating this query.

Build the Query in the Data View Builder

1. Create a new project.

2. Move the following Relational Database data source schemas into the work area:

– PB-WL (Wireless)

– PB-CR (Relationship Management)

3. Set promotionData.xsd from the repository schema directory as the target schema and
expand the schema.

4. Map the following elements from the Wireless customer data source (PB-WL) to the target
schema:

5. Map the following elements from the customer relationship data source (PB-CR) to the target
schema:

Source: [PB-WL]/db/ Target:
[promotionData.xsd]/PromotionInfo/Customer_promotion

CUSTOMER/FIRST_NAME CUSTOMER/FIRST_NAME

CUSTOMER/LAST_NAME CUSTOMER/LAST_NAME

CUSTOMER/CUSTOMER_ID CUSTOMER/CUSTOMER_ID

CUSTOMER/STATE CUSTOMER/STATE

Source: [PB-CR]/db/ Target:
[promotionData.xsd]/PromotionInfo/Customer_promotion

PROMOTION/PROMOTION_NAME PROMOTION_PLAN/PROMOTION_NAME

PROMOTION_PLAN/PLAN_NAME PROMOTION_PLAN/PLAN_NAME

Sampl es Ins ta l l ed w i th L i qu id Data

3-14 Liquid Data by Example

6. In the Toolbox, click on the Constants button, enter CUSTOMER_1 in the string field.

7. Create equal joins (eq) between the following pairs of elements by dragging one element over
the other:

8. Map the CUSTOMER_1 constant to the Wireless data source CUSTOMER_ID element.

9. Enter Test mode and run your query.

Results should include:

Last name: KAY_1

State: TX

Promotion name: WIRELESS UPSELL

Price: $49.99

References
You can find the Wireless data base schema file at:

PROMOTION_PLAN/FROM_DATE PROMOTION_PLAN/FROM_DATE

PROMOTION_PLAN/TO_DATE PROMOTION_PLAN/TO_DATE

PROMOTION_PLAN/PRICE PROMOTION_PLAN/PRICE

Join Element Join Element

[PB-CR]/db/PROMOTION/PROMOTION_NAME [PB-CR]/db/PROMOTION_PLAN/PROMOTION
_NAME

[PB-CR]/db/PROMOTION/STATE [PB-WL]/db/CUSTOMER/STATE

Source: Constant Target: [PB-WL]/db/

CUSTOMER_1 CUSTOMER/CUSTOMER_ID

Source: [PB-CR]/db/ Target:
[promotionData.xsd]/PromotionInfo/Customer_promotion

Si mple L iqu id Data Quer ies

Liquid Data by Example 3-15

<WL_HOME>/samples/domains/liquiddata/scripts/ddl/WIRELESSP.sql

You can find the CRM database schema at:

<WL_HOME>/samples/domains/liquiddata/scripts/ddl/CRMP.sql

You can find the target schema at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/promotionData.xs

d

You can find the query statement at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/stored_queries/promotion

.xq

Sampl es Ins ta l l ed w i th L i qu id Data

3-16 Liquid Data by Example

Complex Parameter Type (CPT) Sample Queries

DB-CPT Sample Query
This section includes the following topics related to the DB-CPT sample query:

– What This Query Demonstrates

– How to Run the Query

– If You Want to Create a Query that Uses a Complex Parameter Type (CPT)

– References

What This Query Demonstrates
This example demonstrates use of Liquid Data to create a single query spanning two Enterprise
Information Systems (EIS), a database, and a complex parameter type (CPT).

Business Scenario
A CRM service provider uses a relational database system to manage its promotion plan. A CRM CPT
has the promotion plan name for a given state and wishes to extract the details of one or more
matching plan name from the database. We use the Liquid Data engine to seamlessly access CRM
information across different types of Enterprise Information Systems (EIS).

How to Run the Query
1. Start the Liquid Data Samples server.

2. Start the Data View Builder.

3. In the Data View Builder, open the following project file:

<WL_HOME>/<LD_HOME>/liquiddata/buildquery/db-cpt/cptSample.qpr

4. Click the Test tab. (This shows the generated query statement.)

5. Specify the location of the CPT sample XML stream for the sample parameter:

<WL_HOME>/samples/domains/liquiddata/ldrepository/xml_files/crm-p-cptSa
mple.xml

6. Click the Run Query button and view the result. Five promotion plans (CA, TX, WA, AZ, NV) are
returned.

Complex Paramete r Type (CPT) Sample Quer i es

Liquid Data by Example 3-17

If You Want to Create a Query that Uses a Complex Parameter Type (CPT)
You can find a detailed example of creating a query that uses CPTs in “Example 7: Complex Parameter
Type (CPT)” on page 2-45.

References
You can find the CRM database schema at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/CRMP.sql

You can find the CPTSAMPLE XML schema at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/crm-p-cptSample.

xsd

You can find the target schema at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/cpt_sample.xsd

You can find the query statement at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/stored_queries/crm_cptSa

mple.xq

Sampl es Ins ta l l ed w i th L i qu id Data

3-18 Liquid Data by Example

DB-CPTCO Sample Query
This section includes the following topics related to the DB-CPTCO sample query:

– What This Query Demonstrates

– How to Run the Query

– If You Want to Create a Query That Use a Complex Parameter Type

– References

What This Query Demonstrates
This sample order query demonstrates how to use Liquid Data to create an integrated view that shows
the connection of two different Enterprise Information (EIS) Systems, a database, and a complex
parameter type (CPT).

Business Scenario
A BroadBand service provider uses a relational database system to manage its customer and order
information. It received a new order for a given customer via XML mapped to a complex parameter
type (CPT). The XML for CPT consists of a customer id along with one or more new orders specifying
the price and quantity that the customer is ordering.

The objective is to accept or reject orders based on determining the total outstanding balance once
the existing outstanding (unpaid) balance and the total value of the new order are added together.

If the result is above the limit, then the routine outputs the statement Order Rejected. Otherwise
the statement Order Accepted is output.

It is noteworthy that these results can be obtained only after the Liquid Data engine accesses
customer order information through separate EISs using a single query.

How to Run the Query
1. Start the Liquid Data Samples server.

2. Start the Data View Builder.

3. In the Data View Builder, open the following project file:

<WL_HOME>/<LD_HOME>/liquiddata/buildquery/db-cptco/coCPTSample.qpr

4. Click the Test tab. (This shows the generated query statement.)

Complex Paramete r Type (CPT) Sample Quer i es

Liquid Data by Example 3-19

5. Specify the location of the CPT sample XML stream. Navigate to:

<WL_HOME>/samples/domains/liquiddata/ldrepository/xml_files/coCptSample2.xml

6. Click the Run Query button to view the result. Results include:

– Last name: KAY_1

– Open orders: 150000

– New order amount: 40000

– Status: Order Accepted

If You Want to Create a Query That Use a Complex Parameter Type
You can find a detailed example of creating a query that uses CPTs in “Example 7: Complex Parameter
Type (CPT)” on page 2-45.

References
You can find the CRM database schema at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/CRMP.sql

You can find the CPTSAMPLE XML schema at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/crm-p-cptSample.

xsd

You can find the target schema at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/cpt_sample.xsd

You can find the query statement at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/stored_queries/crm_cptSa

mple.xq

Sampl es Ins ta l l ed w i th L i qu id Data

3-20 Liquid Data by Example

Data View Sample Queries

Simple Data View Sample Query
This section includes the following topics related to the simple data view sample query:

– What This Query Demonstrates

– How To Run the Query

– If You Want to Recreate the Query …

– References

What This Query Demonstrates
This query demonstrates how to add data views (created with the Data View Builder) to the Liquid
Data Server repository as data sources. Once configured (as shown in the following example), Data
Views become data sources for any Data View Builder client that connects to the server.

Business Scenario
It's getting close to the end of the quarter. The Accounts Receivable department wants to collect on
receivables. An “outstanding order” query has been generated by the MIS team in the Sales
Department. It provides a listing of all the outstanding orders with unpaid balance.

However, only the order id is included in the list. The MIS team in the Account Receivable department
will turn this query into a Data View and design a light-weight ad hoc query to find the name and
address of the outstanding accounts with more than $1,000 in amount based on the order ID reported
in the Data View source.

How To Run the Query
1. Start the Liquid Data Samples server.

2. Start the Data View Builder.

3. In the Data View Builder, open the following project file:

<WL_HOME>/<LD_HOME>/liquiddata/buildquery/view/viewSample.qpr

4. Click the Test tab. (This shows the generated query statement.)

5. Click the run query button and view the result. Results include:

Data V iew Sample Quer i es

Liquid Data by Example 3-21

– Broadband order amount: 1500

– Wireless order amount: 2000

If You Want to Recreate the Query …
You can use existing sample data sources when recreating this query.

Build the Query in the Data View Builder

1. Create a new project.

2. Move the following data sources into the work area:

Relational Databases:

– PB-BB (broadband orders RDBMS)

– PB-WL (wireless orders RDBMS)

Data Views:

– V_SRC

3. Set the target schema to viewtarget.xsd

4. Map the following elements from the Wireless customer data source (PB-WL) to the target
schema:

Source: [PB-WL]/db/ Target: [viewtarget.xsd]/ViewResult/

CUSTOMER/FIRST_NAME wireless/FIRST_NAME

CUSTOMER/LAST_NAME wireless/LAST_NAME

CUSTOMER/CUSTOMER_ID wireless/CUSTOMER_ID

CUSTOMER_ORDER/TOTAL_ORDER_AMOUNT wireless/TOTAL_ORDER_AMOUNT

Sampl es Ins ta l l ed w i th L i qu id Data

3-22 Liquid Data by Example

5. Map the following elements from the BroadBand customer data source (PB-BB) to the target
schema:

6. Map the following elements from the data view orders data source (V_SRC) to the target
schema:

7. Create a join (eq) between the following pairs of elements by dragging one element over the
other:

8. In the Toolbox choose the greater than function (xf:gt) from Comparison Operators.

Source: [PB-BB]/db/ Target: [viewtarget.xsd]/ViewResult/

CUSTOMER/FIRST_NAME broadband/FIRST_NAME

CUSTOMER/LAST_NAME broadband/LAST_NAME

CUSTOMER/CUSTOMER_ID broadband/CUSTOMER_ID

CUSTOMER_ORDER/TOTAL_ORDER_AMOUNT broadband/TOTAL_ORDER_AMOUNT

Source: [V_SRC]/results/result/ Target: [viewtarget.xsd]/ViewResult/

broadband/order/ORDER_ID broadband/ORDER_ID

wireless/order/ORDER_ID wireless/ORDER_ID

Join Element Join Element

[PB-BB]/db/CUSTOMER/CUSTOMER_ID [PB-BB]/db/CUSTOMER/CUSTOMER_ORDER/
CUSTOMER_ID

[PB-WL]/db/CUSTOMER/CUSTOMER_ID [PB-WL]/db/CUSTOMER/CUSTOMER_ORDER/
CUSTOMER_ID

[V_SRC]/results/result/broadband/or
der/ORDER_ID

[PB-BB]/db/CUSTOMER_ORDER/ORDER_ID

[V_SRC]/results/result/wireless/ord
er/ORDER_ID

[PB-WL]/db/CUSTOMER_ORDER/ORDER_ID

Data V iew Sample Quer i es

Liquid Data by Example 3-23

9. Click on XQuery Functions. Under Comparison Operators locate the gt function. Move two
instances into the work area. These will automatically be labeled xf:gt and xf:gt2.

10. Click on the Constants button in the left pane, enter 1000 in the number field. Then click Ok.

11. Create a comparison that determines whether BroadBand (PB-BB)
CUSTOMER_ORDER/TOTAL_ORDER_AMOUNT is greater than (gt) 1,000. Then associate the
GT test result with TOTAL_ORDER_AMOUNT.

12. Close the GT function whose results you just mapped.

13. Using the second GT function repeat Step 11 using the Wireless (PB-WL)
CUSTOMER_ORDER/TOTAL_ORDER_AMOUNT field and the 1000 constant.

14. Enter Test mode and run your query. Results include:

– Broadband order amount: 1500

– Wireless order amount: 2000

References
You can find the Wireless database schema file at:

<WL_HOME>/samples/domains/liquiddata/scripts/ddl/WIRELESSP.sql

You can find the BroadBand database schema at:

<WL_HOME>/samples/domains/liquiddata/scripts/ddl/BROADBANDP.sql

You can find the target schema at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/viewtarget.xs
d

You can find the query statement at:

Source Target: Comparison Function

[PB-BB]/db/CUSTOMER_ORDER/TOTAL_ORD
ER_AMOUNT

[GT]/anyValue1

[CONSTANT]/1000 [GT]/anyValue2

[GT]/result [PB-BB]/db/CUSTOMER_ORDER/TOTAL_ORD
ER_AMOUNT

Sampl es Ins ta l l ed w i th L i qu id Data

3-24 Liquid Data by Example

<WL_HOME>/samples/domains/liquiddata/ldrepository/stored_queries/viewSa
mple.xq

Data V iew Sample Quer i es

Liquid Data by Example 3-25

Parameterized Data View Sample Queries
This section includes two parameterized data view sample queries.

pviewSample
The following topics related to the pviewSample parameterized data view sample query:

What This Queries Demonstrates

How to Run the Query

If You Want to Create a Query That Uses Parameterized Views

References

What This Queries Demonstrates
This parameterized sample query demonstrate how to construct and use a parameterized view.

Orders are aggregated from two different data sources: an EIS system (via J2EE connector
architecture and a WebLogic Application View), and a relational data source.

The order view is constructed as a parameterized view with CUSTOMER_ID being the input
parameter. Once the data view is constructed and configured, it can be used to construct other
queries; for example, you can create a query that returns customer information and all detail order
information from the parameterized view.

How to Run the Query

1. Start the Liquid Data Samples server.

2. Start the Data View Builder.

3. In the Data View Builder, open either of the following project files:

<WL_HOME>/<LD_HOME>/liquiddata/buildquery/parameterized-view/pviewSample.qpr

4. Click the Test tab. (This shows the generated query statement.)

5. Click the Run Query button and view the result for the CUSTOMER_2 customer ID. Results
include:

– Customer ID: CUSTOMER_2

– Last name: KAY_2

Sampl es Ins ta l l ed w i th L i qu id Data

3-26 Liquid Data by Example

– Three BroadBand orders: 1000, 1500, 2000

– Three Wireless orders: 1000, 2000, 4000

If You Want to Create a Query That Uses Parameterized Views
You can find a detailed example describing how to create a parameterized query in “Creating a
Parameterized Data View” in Building Queries and Data Views.

References
You can find the sample Wireless database schema file at:

<WL_HOME>/samples/domains/liquiddata/scripts/ddl/WIRELESSP.sql

You can find the sample BroadBand database schema at:

<WL_HOME>/samples/domains/liquiddata/scripts/ddl/BROADBANDP.sql

You can find the sample target schema at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/pviewsrc.xsd

and

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/pviewsrc.xsd/pviewSa
mple.xsd

You can find the sample query statements at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/stored_queries/pviewsrc.xq

and

<WL_HOME>/samples/domains/liquiddata/ldrepository/stored_queries/pviewSample.x
q

pviewSample1
The following topics related to the pviewSample1 parameterized data view sample query:

What This Queries Demonstrates

How to Run the Query

If You Want to Create a Query That Uses Parameterized Views

References

Data V iew Sample Quer i es

Liquid Data by Example 3-27

What This Query Demonstrates
This parameterized sample query demonstrate how to construct and use a parameterized view.

Orders are aggregated from two different data sources: a web service and a relational data source.

The order view is constructed as a parameterized view with CUSTOMER_ID being the input
parameter. Once the data view is constructed and configured, it can be used to construct other
queries; for example, you can create a query that returns customer information and all detail order
information from the parameterized view.

How to Run the Query

1. Start the Liquid Data Samples server.

2. Start the Data View Builder.

3. In the Data View Builder, open either of the following project files:

<WL_HOME>/<LD_HOME>/liquiddata/buildquery/parameterized-view/pviewSample1.qpr

4. Click the Test tab. (This shows the generated query statement.)

5. Click the Run Query button and view the result for the CUSTOMER_2 customer ID. Results
include:

– Customer ID: CUSTOMER_2

– Last name: KAY_2

– Three BroadBand orders: 1000, 1500, 2000

– Two Wireless orders: 1000, 2000

If You Want to Create a Query That Uses Parameterized Views
You can find a detailed example describing how to create a parameterized query in “Creating a
Parameterized Data View” in Building Queries and Data Views.

References
You can find the sample Wireless database schema file at:

<WL_HOME>/samples/domains/liquiddata/scripts/ddl/WIRELESSP.sql

You can find the sample BroadBand database schema at:

<WL_HOME>/samples/domains/liquiddata/scripts/ddl/BROADBANDP.sql

Sampl es Ins ta l l ed w i th L i qu id Data

3-28 Liquid Data by Example

You can find the target schema at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/pviewsrc.xsd

and

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/pviewsrc.xsd/pviewSa
mple.xsd

You can view the query statements at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/stored_queries/pviewsrc1.xq

and

<WL_HOME>/samples/domains/liquiddata/ldrepository/stored_queries/pviewSample1.
xq

App l i cat i on V iew Sample Quer i es

Liquid Data by Example 3-29

Application View Sample Queries

DB-AppView (Three Data Source) Sample Query
This section includes the following topics related to the DB-AppView sample query that uses three
data sources:

What This Query Demonstrates

How to Run the Query

If You Want to Recreate the Query …

Reference

What This Query Demonstrates
This sample illustrates how to use LiquidData to extract customer information from three
heterogeneous data sources: a JCA/Application View, an XML file, and a relational database.

Business Scenario
Customer information is stored in XML; customer orders can only be accessed through an EIS system
(via J2EE Connector Architecture and WebLogic Application View); and promotion information is
stored in a relational database. Traditionally, an application developer needs to write a set of data
access methods and some application logic to complete the information extraction and assemble the
result. Using Liquid Data, a single XQuery statement is used to accomplish this task.

How to Run the Query
1. Start the Liquid Data Samples server.

2. Start the Data View Builder.

3. In the Data View Builder, open the following project file:

<WL_HOME>/<LD_HOME>/liquiddata/buildquery/db-appview-xml/threeds.qpr

4. Click the Test tab. (This shows the generated query statement.)

5. Click the Run Query button to view the result. Results include:

– First name: JOHN_1

– Last name: KAY_1

Sampl es Ins ta l l ed w i th L i qu id Data

3-30 Liquid Data by Example

– Two customer orders in the amounts of 1000 and 2000

– One $49.99 promotion plan called Family Holiday Connect

If You Want to Recreate the Query …
You can use existing sample data sources when recreating this query.

Build the Query in the Data View Builder

1. Create a new project.

2. Move the following data sources into the work area:

XML Files:

– XM-WL-C (wireless customers)

Relational Databases:

– PB-CR (promotion plan RDBMS)

Application Views:

– AV-WL/getCustomerOrder (wireless customer orders)

3. Set the target schema to threeds.xsd

4. Map the following elements from the Wireless customer XML data source (XM-WL-C) to the
target schema:

Source: [XM-WL-C]/db/ Target: [threeds.xsd]/CUSTOMERINFO/

CUSTOMER/FIRST_NAME CUSTOMER/FIRST_NAME

CUSTOMER/LAST_NAME CUSTOMER/LAST_NAME

CUSTOMER/CUSTOMER_ID CUSTOMER/CUSTOMER_ID

App l i cat i on V iew Sample Quer i es

Liquid Data by Example 3-31

5. Map the following elements from the Wireless orders application view (AV-WL) to the target
schema:

6. Map the following elements from the Relational promotion plan data source (PB-CR) to the
target schema:

7. Click on the Toolbox tab.

8. Click Constants. Enter CUSTOMER_1 in the String field.

9. Create joins (eq) between the following pairs of elements by dragging one element over the
other:

Source: [AV-WL]/getCustomerOrder/ Target: [threeds.xsd]/CUSTOMERINFO/

ns:Rows/Row/TOTAL_ORDER_AMOUNT ORDERS/ORDER/TOTAL_ORDER_AMOUNT

ns:Rows/Row/ORDER_ID ORDERS/ORDER/ORDER_ID

ns:Rows/Row/SHIP_METHOD ORDERS/ORDER/SHIP_METHOD

Source: [PB-CR]/db/ Target: [threeds.xsd]/CUSTOMERINFO/

PROMOTION/PROMOTION_NAME PROMOTIONPLANS/PROMOTIONPLAN/PROMOTION_NAME

PROMOTION_PLAN/FROM_DATE PROMOTIONPLANS/PROMOTIONPLAN/FROM_DATE

PROMOTION_PLAN/TO_DATE PROMOTIONPLANS/PROMOTIONPLAN/TO_DATE

PROMOTION_PLAN/PRICE PROMOTIONPLANS/PROMOTIONPLAN/PRICE

Join Element Join Element

[XM-WL-C]/db/CUSTOMER/CUSTOMER_ID [AV-WL:getCustomerOrder]/ns1:Input/
CUSTOMER_ID

[XM-WL-C]/db/CUSTOMER/STATE [PB-CR]/db/PROMOTION/STATE

[PB-CR]/db/PROMOTION/PROMOTION_NAME [PB-CR]/db/PROMOTION_PLAN/PROMOTION
_NAME

Sampl es Ins ta l l ed w i th L i qu id Data

3-32 Liquid Data by Example

10. Map the CUSTOMER_1 constant to the Wireless Customer [XM-WL-C] CUSTOMER_ID field:

11. Create the following greater than (GT) tests which will filter out orders less than $1,000:

12. Run your query. Results should include:

First name: JOHN_1

Last name: KAY_1

Two customer orders in the amounts of 1000 and 2000

One $49.99 promotion plan called Family Holiday Connect

Reference
You can find the wireless data base schema file at:

<WL_HOME>/samples/domains/liquiddata/scripts/ddl/WIRELESSP.sql

You can find the CRM database schema at:

<WL_HOME>/samples/domains/liquiddata/scripts/ddl/CRMP.sql

You can find the target schema at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/threeds.xsd

Source: Constant Target: [XM-WL-C]/db/

CUSTOMER_1 CUSTOMER/CUSTOMER_ID

App l i cat i on V iew Sample Quer i es

Liquid Data by Example 3-33

DB-AppView (Two Data Source) Sample Query
This section includes the following topics related to the DB-AppVIew sample query that uses two data
sources:

– What This Query Demonstrates

– How to Run the Query

– If You Want to Recreate the Query …

– References

What This Query Demonstrates
The sample for customer care query illustrates how to use Liquid Data to extract customer order
handling information from two data sources:

a JCA Application View

a relational database containing customer information

Business Scenario
Due to historical reasons a telecom company has two separate order management systems: one for
wireless service and the other for broadband. The wireless customer order information can only be
accessed as an EIS system (via J2EE Connector Architecture and WebLogic Application View), and
the broadband customer order information can only be accessed through its relational database.

The customer ID is the same across two systems. Traditionally, an application developer needs to write
a set of data access methods and some application logic to complete the information extraction and
assembly. Using Liquid Data, we demonstrate the use of one single Xquery statement to declaratively
accomplish the same task.

How to Run the Query
1. Start the Liquid Data Samples server.

2. Start the Data View Builder.

3. In the Data View Builder, open the following project file:

<WL_HOME>/<LD_HOME>/liquiddata/buildquery/db-appview/db_appview.qpr

4. Click the Test tab. (This shows the generated query statement.)

Sampl es Ins ta l l ed w i th L i qu id Data

3-34 Liquid Data by Example

5. Click the Run Query button and view the result. Results include:

– First name: JOHN_1

– Last name: KAY_1

– Orders: Six orders (three for 200; three for 300)

If You Want to Recreate the Query …
You can use existing sample data sources when recreating this query.

Build the Query in the Data View Builder

1. Create a new project.

2. Move the following data sources into the work area:

Relational Databases:

– PB-BB (broadband customer RDBMS)

Application Views:

– AV-WL/AV-WL/getCustomerByFullName (wireless customer orders)

3. Set the target schema to customerOrders.xsd

4. Click the Toolbox tab.

5. Click the Constants button, enter JOHN_1 in the string field.

6. Create a join (eq) between the following elements by dragging one element over the other:

7. Enter KAY_1 in the constant string field.

Source: Constant Target: [AV-WL]:getCustomerByFullName/

JOHN_1 ns3:Input/FIRST_NAME

App l i cat i on V iew Sample Quer i es

Liquid Data by Example 3-35

8. Create an equal join (eq) between the following elements by dragging one element over the
other:

9. Map the following elements from the AV-WL data source to the target schema:

10. Create a join [eq] between the following elements by dragging one element over the other:

11. Map the following elements from the BroadBand customer relation data source [PB-BB] to the
target schema:

Source: Constant Target: [AV-WL]:getCustomerByFullName/

KAY_1 ns3:Input/LAST_NAME

Source: [AV-WL]:getCustomerByFullName/ Target:
[customerOrders.xsd]/customers/

ns2:Rows/Row/CUSTOMER_ID/FIRST_NAME customer/first_name

ns2:Rows/Row/CUSTOMER_ID/LAST_NAME customer/last_name

ns2:Rows/Row/CUSTOMER_ID/CUSTOMER_ID customer/id

Join Element Join Element

[AV-WL]/getCustomerByFullName/ns2:R
ows/Row/CUSTOMER_ID

[PB-BB]/db/CUSTOMER/CUSTOMER_ORDER/
CUSTOMER_ID

[PB-BB]/db/CUSTOMER/CUSTOMER_ORDER/
ORDER_ID

[PB-BB]/db/CUSTOMER/CUSTOMER_ORDER_
LINE_ITEM/ORDER_ID

Source: [PB-BB]/db/CUSTOMER/ Target: [customerOrders.xsd]/customers/

CUSTOMER_ORDER/ORDER_DATE orders/order/date

CUSTOMER_ORDER/ORDER_ID orders/order/id

CUSTOMER_ORDER_LINE_ITEM/PRICE orders/order/amount

Sampl es Ins ta l l ed w i th L i qu id Data

3-36 Liquid Data by Example

12. In the Constants string field enter OPEN.

13. Map the OPEN constant to the BroadBand orders [PB-BB] CUSTOMER_ORDER_LINE_ITEM by
dragging one element over the other:

14. Enter Test mode and run your query. Results include:

– First name: JOHN_1

– Last name: KAY_1

– Orders: Six orders (three for 200; three for 300)

References
You can find the BroadBand database schema file at:

<WL_HOME>/samples/domains/liquiddata/scripts/ddl/BROADBANDP.sql

You can find the target schema at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/customerOrder
s.xsd

You can find the query statement at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/stored_queries/db_app
view.xq

Source: Constant Target: [PB-BB]/db/CUSTOMER/

OPEN CUSTOMER_ORDER_LINE_ITEM/STATUS

Miscel laneous Samples

Liquid Data by Example 3-37

Miscellaneous Samples
This section contains several samples, including:

Stored Procedure Sample Query

Custom Functions (DB-UDF) Sample Query

DB-Web Service Sample Query

EJB API Sample

Stored Procedure Sample Query
This section includes the following topics related to the stored procedure sample query:

– What This Query Demonstrates

– How to Run the Query

– If You Want to Create a Query That Uses Stored Procedures

– References

What This Query Demonstrates
This query demonstrates how to use RDBMS stored procedures as Liquid Data data sources. Once
configured a RDBMS stored procedure becomes available as a function to any Data View Builder
client that connects to the Liquid Data Server.

Business Scenario
For example, the MIS Department of a wireless service provider uses a database management system
to manage its customer and order information. The engineers have already developed a full set of
stored procedures with embedded business logic.

Liquid Data allows them to treat a stored procedure as a regular function that users can build queries
on top of it. All the existing investment in stored procedure will be preserved.

In this example, a stored procedure is developed to report the total outstanding balance and number
of outstanding orders for a particular customer. The stored procedure is used in a joint query with
another data source.

Sampl es Ins ta l l ed w i th L i qu id Data

3-38 Liquid Data by Example

How to Run the Query
1. Start the Liquid Data Samples server.

2. Start the Data View Builder.

3. In the Data View Builder, open the following project file:

<WL_HOME>/<LD_HOME>/liquiddata/buildquery/stored-procedure/GetOrderInfo.qp

r

4. Click the Test tab. (This shows the generated query statement.)

5. Click the Run Query button and view the result. Results include:

– Sum: 3000

– Totalorders: 2

If You Want to Create a Query That Uses Stored Procedures
You can find a detailed example describing how to create a stored procedure in Defining Stored
Procedures to Liquid Data in Building Queries and Data Views.

References
You can find the target schema at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/getorderinfo.xsd

You can find the query statement at:

<WL_HOME>/<LD_HOME>/liquiddata/buildquery/stored-procedure/getorderinfo.xq

../querybld/storedproc.html#definingStoredProceduresToLiquidData
../querybld/storedproc.html#definingStoredProceduresToLiquidData

Miscel laneous Samples

Liquid Data by Example 3-39

Custom Functions (DB-UDF) Sample Query
This section includes the following topics related to the DB-UDF sample query:

– What this Query Demonstrates

– How to Run the Queries

– If You Want to Recreate the Custom Functions and the Queries …

What this Query Demonstrates
This query demonstrates how to create a custom function (also known as a user-defined function).
Once the custom functions are defined you can use them in XQuery statements as you would any
built-in Liquid Data function.

For example, suppose you need to access legacy data via a custom interface such as a session bean,
entity bean, stored procedure and so on. Assume the custom interface is the only way to get data that
is needed for another query. In this example, the custom interface is exposed by a session bean which
implements two functions: getCustomerOrder() and getCustomer().

By exposing the interface methods as custom functions, the need to expose the data source and hence
all the data in it, to the Liquid Data engine is eliminated.

A custom function only delivers a subset of data from the data source (in this case, Customer Orders
and Customers) without exposing other tables and content.

How to Run the Queries
1. Start the Liquid Data Samples server.

2. Start the Data View Builder.

3. In the Data View Builder, open either of the following project files:

<WL_HOME>/<LD_HOME>/liquiddata/buildquery/db-udf/src/sampleProjects/dvbProject
s/CustUdf.qpr

<WL_HOME>/<LD_HOME>/liquiddata/buildquery/db-udf/src/sampleProjects/dvbProject
s/CustOrdUdf.qpr

4. Click the Test tab. (This shows the generated query statement.)

5. Click the Run Query button and view the result.

For the CustUdf query results include:

Sampl es Ins ta l l ed w i th L i qu id Data

3-40 Liquid Data by Example

First name: JOHN_B_1

Last name: KAY_1

For the CustOrdUdf query results include:

– Two orders, one for 1000 and one for 1500.

If You Want to Recreate the Custom Functions and the Queries …
You can use existing sample data sources when recreating this query.

Create a CFLD file
A CFLD file is where you define your function along with a schema associated with the function's
return type. This sample uses the cfld file located at:

<WL_HOME>/<LD_HOME>/liquiddata/buildquery/db-udf/src/examples/ldi/userDefinedF
unc/UserDefinedFunction.cfld

The cfld is copied to the Repository under custom_functions folder.

Listing 3-1

<types>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<!-- The schema describing the CustomerOrder object returned -->

<xs:element name="CustomerOrder">

<xs:complexType>

<xs:sequence>

<xs:element ref="ORDER_DATE"/>

<xs:element ref="ORDER_ID"/>

<xs:element ref="CUSTOMER_ID"/>

<xs:element ref="SHIP_METHOD"/>

<xs:element ref="TOTAL_ORDER_AMOUNT"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="ORDER_DATE" type="xs:date"/>

<xs:element name="ORDER_ID" type="xs:string"/>

<xs:element name="SHIP_METHOD" type="xs:string"/>

Miscel laneous Samples

Liquid Data by Example 3-41

<xs:element name="TOTAL_ORDER_AMOUNT" type="xs:decimal"/>

<xs:element name="CUSTOMER_ID" type="xs:string"/>

<xs:element name="CustomerOrders">

<xs:complexType>

<xs:sequence>

<xs:element ref="CustomerOrder" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

</types>

Note that in the CFLD file shown above under TYPE we have defined a customerOrder Element
consisting of ORDER_DATE,ORDER_ID,SHIP_METHOD,TOTAL_ORDER_AMOUNT,CUSTOMER_ID

Next create a function.

Listing 3-2

<functions>

<!-- name is the function name,

return_type : is the custom method return type

class: fully qualified classname

method: the method in the class to map to

argument: list of argument with type. This is are the input(s) to the method

with asscociated labels

-->

<!-- The function is mapping to getCustomerOrder in

examples.ldi.userDefinedFunc.UserFunctionMapping.class

It takes to input (url and customer_id), and returns a Element object of

type CustomerOrder

as defined above

-->

<function name="getCustomerOrder" return_type="CustomerOrders"

class="examples.ldi.userDefinedFunc.UserDefinedFuncMapping"

method="getCustomerOrder">

Sampl es Ins ta l l ed w i th L i qu id Data

3-42 Liquid Data by Example

<argument type="xs:string" label="url"/>

<argument type="xs:string" label="customerID"/>

<presentation group="Sample custom functions" />

<description>Get Customer Order gets a list of customer order for a given

customer id </description>

</function>

Create a Mapping class
Finally, create a mapping class that maps the functions defined in the cfld with the actual
implementation.

The mapping class used in this sample is located at:

<WL_HOME>/<LD_HOME>/liquiddata/buildquery/db-udf/src/examples/ldi/userDefinedF
unc/UserDefinedFuncMapping.java

public static Element getCustomerOrder(String url, String customerID)

The method getCustomerOrder() matches with the function description specified in the CFLD. Note
that its return type is an Element (XML). But this element is described in the CFLD file as a type of
customerOrders. Hence the function mapping is responsible for generating an element of type
customerOrder. In our sample the mapping function does a JNDI lookup to call getCustomerOrder()
in the session bean.

Build the getCustomer() Query in the Data View Builder

1. Create a new project.

2. Click on the Toolbox tab.

3. Move the following custom function (located in the Sample custom function folder) into the
work area:

– getCustomer()

4. Set the target schema to custUdf.xsd

Miscel laneous Samples

Liquid Data by Example 3-43

5. Map the following elements from the getCustomer() custom function to the target schema:

6. Click on the Constants button. Enter the URL t3://localhost:7001 into the string field.

7. Map the URL address to the user-defined function url:

8. Change the string constant value to CUSTOMER_1.

9. Map the CUSTOMER_1 constant to the user-defined function Customer_ID element

10. Click the Run Query button and view the result. Results include:

– First name: JOHN_B_1

– Last name: KAY_1

– CustomerID: CUSTOMER_1

Build the getCustomerOrder() Query in the Data View Builder

1. Create a new project.

2. Click on the Toolbox tab.

Source: [getCustomer]/Customers/ Target: [custUdf.xsd]/RESULT/

CUSTOMER/FIRST_NAME Customer/FIRST_NAME

CUSTOMER/LAST_NAME Customer/LAST_NAME

CUSTOMER/CUSTOMER_ID Customer/CUSTOMER_ID

Source: Constant Target:

/t3://localhost:7001 [UDF:getCustomer]/url

Source: Constant Target:

CUSTOMER_1 [UDF:getCustomer]/CustomerID

Sampl es Ins ta l l ed w i th L i qu id Data

3-44 Liquid Data by Example

3. Move an instance of the following custom function into the work area:

– getCustomerOrder()

4. Set the target schema to custOrdUdf.xsd

5. Map the following elements from the getCustomer() custom function to the target schema:

6. Click on the Constants button in the left pane, enter the URL t3://localhost:7001 in the
string field.

7. Map the URL to the appropriate input parameter of the user-defined function:

8. Change the string constant value to CUSTOMER_1.

9. Map the string constant to the other input parameter of the user-defined function:

10. Enter Test mode and run the query. Results include:

– Two orders, one for 1000 and one for 1500.

Source:
[UDF:getCustomerOrder]/CustomerOrders/

Target: [custOrdUdf.xsd]/RESULT/

CustomerOrder/ORDER_DATE CustomerOrder/ORDER_DATE

CustomerOrder/ORDER_ID CustomerOrder/ORDER_ID

CustomerOrder/CUSTOMER_ID CustomerOrder/CUSTOMER_ID

CustomerOrder/SHIP_METHOD CustomerOrder/SHIP_METHOD

CustomerOrder/TOTAL_ORDER_AMOUNT CustomerOrder/TOTAL_ORDER_AMOUNT

Source: Constant Target:

/t3://localhost:7001 [UDF:getCustomerOrder]/url

Source: Constant Target:

CUSTOMER_1 [UDF:getCustomerOrder]/CustomerID

Miscel laneous Samples

Liquid Data by Example 3-45

If You Want to Build the Sample Source Code …
If you want to build a custom function, you can build the sample source code as follows.

1. Run setLDExampleEnv.cmd or setLDExampleEnv.sh located at:

<WL_HOME>/samples/domains/liquiddata/

This will set up your environment variables needed to run the query.

2. Add ant to your path.

3. Compile the source code via build.xml using ant:

cd <WL_HOME>/<LD_HOME>/liquiddata/buildquery/db-udf/build
ant

This will compile the script and generate the .ear and other .jar files for you in the output
directory.

4. Find the compiled code at:

<WL_HOME>/<LD_HOME>/liquiddata/buildquery/db-udf/build/output.

5. Copy the ldsample_udf.ear to the applications directory of your development domain:

<WL_HOME>/<LD_HOME>/liquiddata/buildquery/db-udf/build/output/applications/lds
ample_udf.ear

to:

<WL_HOME>/samples/domains/liquiddata/applications

6. Copy ldsample_udf_rep.jar and ldsample_clientAPI.jar to the domain's repository
under the custom_lib folder.

7. Copy:

<WL_HOME>/<LD_HOME>/liquiddata/buildquery/db-udf/build/output/mapping_clas

ses/*.jar

to

<WL_HOME>/samples/domains/liquiddata/ldrepository/custom_lib

8. Copy UserDefinedFuncMapping.cfld to the repository under the custom_functions
folder.

9. Copy:

Sampl es Ins ta l l ed w i th L i qu id Data

3-46 Liquid Data by Example

<WL_HOME>/<LD_HOME>/liquiddata/buildquery/db-udf/src/examples/ldi/userDefi

nedFunc/UserDefinedFuncMapping.cfld

to:

<WL_HOME>/samples/domains/liquiddata/ldrepository/custom_functions

10. On the ldConsole server, Liquid Data node refresh or create a entry for functionResourcelib
giving a name for the function group along with the name of the cfld file.

If you used Data View Builder, you will notice your custom functions have been added.

Reference
You can find the target schema that retrieves customers at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/custUdf.xsd

You can find the target schema that retrieves customer orders at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/custorderUdf.xsd

You can find the cfld file at:

<WL_HOME>/<LD_HOME>/liquiddata/buildquery/db-udf/src/examples/ldi/userDefinedF
unc/UserDefinedFunction.cfld

Miscel laneous Samples

Liquid Data by Example 3-47

DB-Web Service Sample Query
This document includes the following topics related to the DB-Web Service sample query:

– What This Query Demonstrates

– How to Run the Query

– If You Want to Recreate the Query …

– References

What This Query Demonstrates
This query demonstrates how to use Liquid Data to access separate Enterprise Information Systems
(EIS) using a single query.

Business Scenario
A wireless service provider uses a relational database management system to manage its product
information. The sales price of these product is computed using a Web Service. To provide an
integrated product and price information, we use liquidData engine to seamlessly access product and
price across EISs.

How to Run the Query
1. Start the Liquid Data Samples server.

2. Start the Data View Builder.

3. In the Data View Builder, open the following project file:

<WL_HOME>/<LD_HOME>/liquiddata/buildquery/db-webservice/WSPricer.qpr

4. Click the Test tab. (This shows the generated query statement.)

5. Click the Run Query button and view the result. Results include:

– Five products (E110, E900, NOK9250, S6225, SS8), each with a sales price of $100.

If You Want to Recreate the Query …
You can use existing sample data sources when recreating this query.

Build the Query in the Data View Builder

1. Create a new project.

Sampl es Ins ta l l ed w i th L i qu id Data

3-48 Liquid Data by Example

2. Move the following data sources into the work area:

Relational Databases:

– PB-WL (wireless orders RDBMS)

Web services:

– Pricer:getSalesPrice()

3. Set the target schema to pricer.xsd

4. Map the product price element from the Wireless product name to the input element of the
getSalesPrice() function:

5. Map the product name from the Wireless order RDBMS data source (PB-WL) to the target
schema:

6. Map the product price from the Pricer:getSalesPrice() function to the target schema:

7. Enter Test mode and run your query. Results include:

– Five products (E110, E900, NOK9250, S6225, SS8), each with a sales price of $100.

References
You can find the wireless data base schema file at:

<WL_HOME>/samples/domains/liquiddata/scripts/ddl/WIRELESSP.sql

You can find the target schema at:

Source: [PB-WL]/db/ Target: Pricer:getSalesPrice/

PRODUCTS/PRODUCT_NAME string

Source: [PB-WL]/ Target: [pricer.xsd]/PRODUCTPRICE/

PRODUCTS/PRODUCT_NAME PRODUCT/NAME

Source: Pricer:getSalesPrice/ Target: [pricer.xsd]/PRODUCTPRICE/

result PRODUCT/SALESPRICE

Miscel laneous Samples

Liquid Data by Example 3-49

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/pricer.xsd

You can access the WSDL File at:

http://localhost:7001/wspricer/Pricer?WSDL

You can find the query statement at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/stored_queries/SalesP
rice.xq

Sampl es Ins ta l l ed w i th L i qu id Data

3-50 Liquid Data by Example

SQL_Call Sample Query
This document includes the following topics related to the SQL_Call sample query:

– What This Query Demonstrates

– How to Run the Query

– If You Want to Recreate the Query …

– References

What This Query Demonstrates
This query demonstrates how to use Liquid Data to construct a query that integrates data from a
user-supplied SQL statement.

Business Scenario
For example, if there is a requirement to execute complicated or database-dependent SQL, the SQL
Call mechanism can be used as a Liquid Data data source. (Note: the SQL Call mechanism should be
used sparingly as it involves manual configuration and precludes certain optimizations that Liquid
Data might otherwise provide.)

How to Run the Query
1. Start the Liquid Data Samples server.

2. Start the Data View Builder.

3. In the Data View Builder, open the following project file:

<WL_HOME>/samples/liquiddata/buildQuery/sql_call/GetOrderSummary.qpr

4. Click the Test tab. (This shows the generated query statement.)

5. Enter CUSTOMER_% for the parameter CUSTOMER_ID_PATTERN

6. Click the Run Query button and view the result. Results include:

– California: 2 order count, average 1000

– Washington: 6 order count, average 2333.3333...

If You Want to Recreate the Query ...
You can use existing sample data sources when recreating this query.

Miscel laneous Samples

Liquid Data by Example 3-51

1. Create a new project.

2. Move the following data sources into the work area:

SQL Calls:

– PB-WL/GetOrderSummarySQL

3. From the File menu select Set selected schema as target schema.

The elements in the PB-WL:GetOrderSummarySQL schema will be replicated in the target
schema.

4. Click on the Toolbox tab and select Query Parameter.

5. Enter CUSTOMER_ID_PATTERN in the name field.

6. Select xs:string as the type and click Create.

7. Map the constant to the customer identifier:

8. Map the elements from the GetOrderSummarySQLCalls web service providing wireless order
data source to the target schema:

9. Enter Test mode.

Source: Constant Target: [PB-WL:/GetOrderSummarySQL]/

CUSTOMER_ID_PATTERN CUSTOMER_ID_PATTERN

Source:
[PB-WL:GetOrderSummarySQL]/OrderSummarys/r
esultSetOrderSummary/

Target:
[PB-WL:/GetOrderSummarySQL2]/OrderSummarys
/resultSetOrderSummary/

orderSummaryRow/STATE orderSummaryRow/STATE

orderSummaryRow/ORDER_COUNT orderSummaryRow/ORDER_COUNT

orderSummaryRow/AVERAGE orderSummaryRow/AVERAGE

orderSummaryRow/MIN orderSummaryRow/MIN

orderSummaryRow/MAX orderSummaryRow/MAX

Sampl es Ins ta l l ed w i th L i qu id Data

3-52 Liquid Data by Example

10. Enter CUSTOMER_% for the CUSTOMER_ID_PATTERN parameter.

11. Run the query. Results include:

– California: 2 order count, average 1000

– Washington: 6 order count, average 2333.3333...

SQL Call Description file
The SQL Call Description File (pbsp.xsd) defines a SQL Call named GetOrderSummary as the SQL
shown below.

Listing 3-3 SQL Call Description File (pbsp.xsd)

SELECT

state,

count(STATE),

avg(total_order_amount),

min(total_order_amount),

max(total_order_amount)

FROM

customer,

customer_order

WHERE

((state = 'CA') OR

 (state = 'OR') OR

 (state = 'WA')) AND

customer.customer_id like ? AND

customer.customer_id = customer_order.customer_id

GROUP BY state

References
You can find the Wireless data base schema file at:

<WL_HOME>/samples/domains/liquiddata/scripts/ddl/WIRELESSP.sql

You can find the target schema at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/getordersummary.xsd

Miscel laneous Samples

Liquid Data by Example 3-53

You can find the SQL Call Definition File at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/sql_calls/pbsp.xsd

You can find the query statement at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/stored_queries/getordersumma
ry.xq

Sampl es Ins ta l l ed w i th L i qu id Data

3-54 Liquid Data by Example

CSV-XML Sample Query
This document includes the following topics related to the CSV-XML sample query:

– What This Query Demonstrates

– How to Run the Query

– If You Want to Recreate the Query …

– References

What This Query Demonstrates
This sample customer information query demonstrates how to use Liquid Data to create an integrated
view that shows the connection of two different data sources, a CSV (i.e. delimited) file which
originated in a spreadsheet and an XML data source.

Creating an integrated view provides the ability to seamlessly access different sources using a single
query.

Business Scenario
An XML file contains a larger set of information about customers (such as name, contact info, and so
on) while a CSV file contains a smaller set of customers information such as age. The two sources share
the same key: customerID. The goal of query is to gather all information about customers that are
younger or at age 40.

How to Run the Query
1. Start the Liquid Data Samples server.

2. Start the Data View Builder.

3. In the Data View Builder, open the following project file:

<WL_HOME>/samples/liquiddata/buildQuery/csv-xml/GetCustomerByAge.qpr

4. Click the Test tab. (This shows the generated query statement.)

5. Click the Run Query button and view the result. Results include information on six customers all
of whom are age 40 or younger.

If You Want to Recreate the Query ...
You can use existing sample data sources when recreating this query.

Miscel laneous Samples

Liquid Data by Example 3-55

1. Create a new project.

2. Move the following data sources into the work area:

XML:

– XM-BB-C

Delimited file:

– cstest1

3. Create a join (eq) between the two CUSTOMER_ID source elements by dragging one element
over the other:

4. Click on the XQuery Functions.

5. Open the Comparison operators folder.

6. Drag the less than [lt] function to the second line in the Conditions area.

7. Map the cstest1 CSV data source age element to the left side of the [lt] equation.

8. Click on the Toolbox tab and select Constants.

9. Enter 41 in the Number field.

10. Create a condition requiring that only customers age 40 or younger will be retrieved by the query
through the following mappings:

11. Close the Function Editor.

Source: [xm-bb-c]/db/ Target: [cstest1]/CustomersInfo/

CUSTOMER/CUSTOMER_ID CustomerInfo/customer_ID

Source: [cstest1]/CustomersInfo/ Target: [lt]/

CustomerInfo/age [left operand]

Source: [CONSTANT]/ Target: [lt]/

41 [right operand]

Sampl es Ins ta l l ed w i th L i qu id Data

3-56 Liquid Data by Example

12. In the XM-BB-C data source schema right-click on the CUSTOMER complex element name and
choose Copy.

13. In the target schema right-click on results; choose Paste and Map.

14. Also in the target schema right-click on CUSTOMER and choose Expand complex mapping. (This
is just an easier way of individually mapping the elements from the source to the target schema.)

15. From the File menu select Save Target Schema. Navigate to the Repository folder and save the
schema file to the name customerInfo2.xsd.

16. In the cstest1 source schema right-click on the age element and choose Copy.

17. In the target schema right-click on CUSTOMER and choose Paste. The age element appears in
the target schema.

18. Map the age element from the CSV data source to the same name element in the target schema:

19. Click on Test mode and run the query. Results include information on six customers all of whom
are age 40 or younger.

References
You can find the CSV file schema at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/csvtest1.xsd

You can find the BroadBand XML schema at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/b-c.xsd

You can find the target schema at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/schemas/getCustomerInfo.xsd

You can find the query statement at:

<WL_HOME>/samples/domains/liquiddata/ldrepository/stored_queries/csv_xml.xq

Source: [cstest1]/CustomersInfo/ Target: [customerInfo2]/results/

CustomerInfo/age CUSTOMER/age

Miscel laneous Samples

Liquid Data by Example 3-57

EJB API Sample
This section references the EJB API sample query.

To build the EJBAPI testing classes
1. Navigate to the directory:

<WL_HOME>/samples/domains/liquiddata/

If you are on a Windows system run:

setLDExamplesEnv.cmd

Or if you are on a UNIX system run:

. setLDExamplesEnv.sh

on unix bsh)

2. go to:

<WL_HOME>/samples/liquiddata/ejbAPI/build

3. run ant in the same directory. The class will be generated under

<WL_HOME>/samples/liquiddata/ejbAPI/obj

To run the ejbAPI test classes
Make sure the sample server is started correctly and running in the non-secure mode.

1. Go to:

<WL_HOME>/samples/liquiddata/

run:

setLDExamplesEnv.cmd (or run setLDExamplesEnv.sh on unix bash)

2. Go to:

<WL_HOME>/samples/liquiddata/ejbAPI/obj

3. Enter the following string for:

Windows:

java -cp .;%CLASSPATH% ejbSample.QueryClient t3://localhost:7001

Sampl es Ins ta l l ed w i th L i qu id Data

3-58 Liquid Data by Example

UNIX:

java -cp . :$CLASSPATH ejbSample.QueryClient t3://localhost:7001

You will see the result on the screen.

4. Enter the following string for:

Windows:

java -cp .;%CLASSPATH% ejbSample.QueryParamClient t3://localhost:7001
orderparam CUSTOMER_1

UNIX:

java -cp .:$CLASSPATH ejbSample.QueryParamClient t3://localhost:7001 orderparam
CUSTOMER_1

you will see the result on the screen.

To examine the code
The source code is under the following directory:

<WL_HOME>/samples/liquiddata/ebjAPI/src

Liquid Data by Example Index-1

Index

A
aggregate

in example query 2-13

B
BEA corporate Web site -xii

C
count function

in example query 2-39
customer support contact information -xii

D
date-time

example query 2-22
documentation, where to find it -xii

F
functions

count used in example query 2-39
date and time in example query 2-22

J
join

in example query 2-2

L
Liquid Data documentation Home page -xii

M
minus

in example query 2-39

P
print, how to -xii
printing product documentation -xii

R
related information -xii

S
support

technical -xii

U
union

in example query 2-31

W
World Wide Web Consortium (W3C) -xi

X
XML -xi
XQuery -xi

Index-2 Liquid Data by Example

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	Understanding the Avitek Customer Self-Service Sample Application
	About Avitek
	Quick Start
	Introduction
	Case for an Avitek Self-Service Web Site
	Design Requirements
	Information Technology (IT) Comes On Board: The Moment of Truth
	Search for an Alternative

	A Solution
	Anatomy of the Avitek SampleApp
	Finding the Components
	Analyzing the SampleApp Architecture
	Steps Used in Developing the SampleApp
	Available Data Sources
	Avitek Customer Self-Service Sample Application Queries

	Running the Avitek Customer Self-Service Sample Application in a Browser
	SampleApp Home Page
	Order Search

	Viewing the Avitek Customer Self-Service Sample Application Source
	WebLogic Workshop Components of the SampleApp
	Liquid Data Control
	Application Pages
	Application Logic: Page Flow
	Inter-page Navigation
	Pagination
	Data Binding
	Ad Hoc Query
	Page from the SampleApp

	Summary
	Where To Go From Here

	Query Cookbook
	Example 1: Simple Joins
	The Problem
	The Solution
	View a Demo
	Ex 1: Step 1. Verify the Target Schema is Saved in Repository
	Ex 1: Step 2. Open Source and Target Schemas
	Ex 1: Step 3. Map Nodes from Source to Target Schema to Project the Output
	Ex 1: Step 4. Create a Query Parameter for a Customer ID to be Provided at Query Runtime
	Ex 1: Step 5. Assign the Query Parameter to a Source Node
	Ex 1: Step 6. Join the Wireless and BroadBand Customer IDs
	Ex 1: Step 7. View the XQuery and Run the Query to Test it
	Ex. 1: Step 8. Verify the Result

	Example 2: Retrieving Information
	The Problem
	The Solution
	Open Data Sources and Add a Target Schema
	Map Elements from Source to Target Schema to Project Output
	Join Two Sources
	Specify the Order of the Result Using the Sort By Features
	View and Run the Query

	Example 3: Aggregates
	The Problem
	The Solution
	View a Demo
	Ex 3: Step 1. Configure the “AllOrders” Stored Query as a Data View
	Ex 3: Step 2. Restart the Data View Builder and Find the New Data View
	Ex 3: Step 3. Verify that the Target Schema is Saved in the Repository
	Ex 3: Step 4. Open the Data Sources and Target Schema
	Ex 3: Step 5. Map Source Nodes to Target to Project the Output
	Ex 3: Step 6. Create Two Query Parameters to be Provided at Query Runtime
	Ex 3: Step 7. Assign the Query Parameters to Source Nodes
	Ex 3: Step 8. Add the Count XQuery Function
	Ex 3: Step 9. Verify Mappings and Conditions
	Ex 3: Step 10. View the XQuery and Test by Running the Query
	Ex 3: Step 11. Verify the Result

	Example 4: Date and Time Duration
	The Problem
	The Solution
	View a Demo
	Ex 4: Step 1. Verify the Target Schema is Saved in Repository
	Ex 4: Step 2. Open Source and Target Schemas
	Ex 4: Step 3. Map Source to Target Nodes to Project the Output
	Ex 4: Step 4. Create Joins
	Ex 4: Step 5. Create Two Query Parameters for Customer ID and Date to be Provided at Query Runtime
	Ex 4: Step 6. Set a Condition Using the Customer ID
	Ex 4: Step 7. Set a Condition to Determine if Order Ship Date is Earlier or Equal to a Date Submi...
	Ex 4: Step 8. Set a Condition to Include Only “Open” Orders in the Result
	Ex 4: Step 9. View the XQuery and Run the Query to Test it
	Ex 4: Step 9. Verify the Result

	Example 5: Union
	The Problem
	The Solution
	View a Demo
	Ex 5: Step 1. Verify the Target Schema is Saved in Repository
	Ex 5: Step 2. Open Source and Target Schemas
	Ex 5: Step 3. Clone the Orders Element of the Target Schema
	Ex 5: Step 4. Create a Query Parameter for a Customer ID
	Ex 5: Step 5. Assign a Query Parameters
	Ex 5: Step 6. Define Source Relationships
	Ex 5: Step 7. Project the Output to the Target Schema
	Ex 5: Step 8. View, then Run the Query
	Ex 5: Step 9. Verify the Result

	Example 6: Minus
	The Problem
	The Solution
	View a Demo
	Ex 6: Step 1. Verify the Target Schema is Saved in Repository
	Ex 6: Step 2. Open Source and Target Schemas
	Ex 6: Step 3. Find BroadBand and Wireless Customers with the Same Customer�ID
	Ex 6: Step 4. Find the Count of the Wireless Customers
	Ex 6: Step 5. Set a Condition that Specifies the Output of “count” is Zero
	Ex 6: Step 6. View the XQuery and Run the Query to Test it
	Ex 6: Step 7. Verify the Result

	Example 7: Complex Parameter Type (CPT)
	The Problem
	The Solution
	View a Demo
	Ex 7: Step 1. Verify the Availability of Schemas and Sample Data Stream
	Ex 7: Step 2. Open the Target Schema and CO-CPTSAMPLE CPT
	Ex: 7: Step 3. Create an orderLimit Query Parameter
	Ex 7: Step 4. Save the Project
	Ex 7: Step 5. Test Access to the Complex Parameter Source
	Ex 7: Step 6: Determine the Total Amount of New Orders
	Ex 7: Step 7. Create the Necessary Joins and Mappings to the Target Schema
	Ex 7: Step 8. Determine the Amount of Currently Open Orders
	Ex 7: Step 9: Determine the Total Amount of All Open and New Orders
	Ex 7: Step 10: Test If Open Orders + New Orders Exceeds the Order Limit
	Ex 7: Step 11: Determine If the Order is Accepted or Rejected
	Ex 7: Step 12: View the XQuery
	Ex 7: Step 13. Run the XQuery to Verify the Result

	Samples Installed with Liquid Data
	Simple Liquid Data Queries
	DB-XML Sample Query
	What This Query Demonstrates
	How to Run the Query
	If You Want to Recreate the Query …
	References

	Data Transformation Sample Query
	What This Query Demonstrates
	How to Run the Query
	If You Want to Recreate the Query …
	References

	DB-DB Sample Query
	What This Query Demonstrates
	How to Run the Query
	If You Want to Recreate the Query …
	References

	Complex Parameter Type (CPT) Sample Queries
	DB-CPT Sample Query
	What This Query Demonstrates
	How to Run the Query
	If You Want to Create a Query that Uses a Complex Parameter Type (CPT)
	References

	DB-CPTCO Sample Query
	What This Query Demonstrates
	How to Run the Query
	If You Want to Create a Query That Use a Complex Parameter Type
	References

	Data View Sample Queries
	Simple Data View Sample Query
	What This Query Demonstrates
	How To Run the Query
	If You Want to Recreate the Query …
	References

	Parameterized Data View Sample Queries
	pviewSample
	pviewSample1

	Application View Sample Queries
	DB-AppView (Three Data Source) Sample Query
	What This Query Demonstrates
	How to Run the Query
	If You Want to Recreate the Query …
	Reference

	DB-AppView (Two Data Source) Sample Query
	What This Query Demonstrates
	How to Run the Query
	If You Want to Recreate the Query …
	References

	Miscellaneous Samples
	Stored Procedure Sample Query
	What This Query Demonstrates
	How to Run the Query
	If You Want to Create a Query That Uses Stored Procedures
	References

	Custom Functions (DB-UDF) Sample Query
	What this Query Demonstrates
	How to Run the Queries
	If You Want to Recreate the Custom Functions and the Queries …
	If You Want to Build the Sample Source Code …

	DB-Web Service Sample Query
	What This Query Demonstrates
	How to Run the Query
	If You Want to Recreate the Query …
	References

	SQL_Call Sample Query
	What This Query Demonstrates
	How to Run the Query
	If You Want to Recreate the Query ...
	References

	CSV-XML Sample Query
	What This Query Demonstrates
	How to Run the Query
	If You Want to Recreate the Query ...
	References

	EJB API Sample
	To build the EJBAPI testing classes
	To run the ejbAPI test classes
	To examine the code

	Index

