
BEALiquid Data for
WebLogic™

Application Developer’s
Guide

Version 8.1
Document Date: July 2003
Revised: December 2003

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy the
software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine readable form without prior consent, in writing, from
BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License Agreement
and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR 52.227-19; subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013, subparagraph (d) of the
Commercial Computer Software--Licensing clause at NASA FAR supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER,
BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY,
RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign Manager for
WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA WebLogic Workshop and
How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Application Developer’s Guide iii

Contents

About This Document
What You Need to Know . x

e-docs Web Site . x

How to Print the Document . x

Related Information . xi

Contact Us!. xi

Documentation Conventions . xii

1. Application Development with the Liquid Data API
Types of Application Development . 1-1

WebLogic Workshop Development. 1-2

EJB Development . 1-2

JSP Tag Library Development . 1-2

About Liquid Data Queries. 1-3

Stored Queries. 1-3

Ad Hoc Queries . 1-3

Parameterized Queries. 1-3

Components of the Liquid Data Query API . 1-4

Packages . 1-4

Query Execution EJB . 1-4

Query Parameters . 1-4

Query Attributes . 1-5

iv Application Developer’s Guide

Query Results .1-5

Types of Java Clients .1-6

2. Using Liquid Data Controls to Develop Workshop Applications
WebLogic Workshop and Liquid Data .2-2

Liquid Data Control. .2-2

XMLBean Generation .2-2

Use With Page Flow, Web Services, Business Processes .2-2

Liquid Data Control JCX File .2-3

Design View .2-3

Source View .2-4

Schema Project Location .2-6

Running Ad-Hoc Queries through the Liquid Data Control .2-7

Creating Liquid Data Controls .2-8

General Steps to Create a Liquid Data Control .2-8

Step 1: Create a Project in an Application .2-8

Step 2: Start the Liquid Data Server, If It is Not Already Running 2-9

Step 3: Create a Folder in a Project. .2-9

Step 4: Create the Liquid Data Control. .2-10

Step 5: Enter Connection Information to the Liquid Data Server2-12

Step 6: Select Queries to Add to the Control .2-13

To Create a Liquid Data Control in a Web Project .2-14

To Create a Liquid Data Control in a Web Service Project .2-15

To Add a Liquid Data Control to an Existing Web Service File. .2-16

To Create a Test Web Service From a Liquid Data Control .2-19

Modifying Existing Liquid Data Controls .2-19

To Change the Query Associated With a Single Control Method .2-20

To Add a New Method to a Control .2-21

Application Developer’s Guide v

To Invoke the Query Wizard to Modify an Existing Control . 2-22

Updating an Existing Control if Schemas Change. 2-23

Using NetUI to Display Liquid Data Results . 2-24

Generating a Page Flow From a Control . 2-24

To Generate a Page Flow From a Control . 2-24

Adding a Liquid Data Control to an Existing Page Flow . 2-26

Adding XMLBean Variables to the Page Flow . 2-27

To Add a Variable to a Page Flow . 2-28

To Initialize the Variable in the Page Flow . 2-29

Displaying Query Results in a Table or List . 2-30

To Add a Repeater to a JSP File . 2-30

To Add a Nested Level to an Existing Repeater. 2-32

To Add Code to Handle Null Values. 2-33

Security Considerations With Liquid Data Controls . 2-34

Security Credentials Used to Create Liquid Data Control . 2-34

Testing Controls With the Run-As Property in the JWS File . 2-35

Trusted Domains . 2-35

To Configure Trusted Domains . 2-36

Moving Your Liquid Data Control Applications to Production. 2-37

Development to Production Lifecycle Architecture . 2-37

Packaging Liquid Data JAR Files in Application .ear Files . 2-38

Liquid Data ldcontrol.properties File. 2-39

Steps For Deploying to Production . 2-40

Step 1: Generate Enterprise Application Archive (.ear) in Workshop 2-40

Step 2: Merge ldcontrol.properties File entries to Production Server 2-40

Step 3: Deploy Enterprise Application Archive (.ear) on Production Server. 2-41

vi Application Developer’s Guide

3. Invoking Queries in EJB Clients
Step 1: Connect to the Liquid Data Server .3-1

Step 2: Specify Query Parameters .3-4

Step 3: Execute the Query. .3-6

Step 4: Process the Results of the Query. .3-8

4. Invoking Queries in JSP Clients
About the Liquid Data Tag Library .4-1

Scope of the Liquid Data Tag Library .4-2

Location of the Liquid Data Tag Library .4-2

Making the Tag Library Accessible to a Web Application .4-2

Copy the LDS-taglib.jar File to the WEB-INF/lib Directory .4-2

Add the <taglib> Entry to the web.xml File. .4-2

Tags in the Liquid Data Tag Library .4-3

query Tag .4-3

param Tag .4-4

Processing Steps .4-4

Step 1: Add the Tag Library to your Web Application .4-4

Step 2: Reference the Liquid Data Tag Library .4-5

Step 3: Connect to the Liquid Data Server .4-5

Step 4: Specify Query Parameters .4-5

Step 5: Execute the Query. .4-6

Executing Stored Queries .4-7

Executing Ad Hoc Queries .4-7

Handling Exceptions .4-8

Step 6: Process the Query Results .4-8

Application Developer’s Guide vii

5. Invoking Queries in Web Service Clients
Finding the WSDL URL for Generated Web Services . 5-1

Invoking Web Services Programmatically . 5-1

6. Invoking Queries in WebLogic Integration Business Processes
Liquid Data and WebLogic Integration Business Processes . 6-2

Setting Up a Liquid Data Query in a Business Process. 6-2

Create the Liquid Data Control. 6-2

Adding a Liquid Data Control to a JPD File. 6-3

Setting Up the Control in the Business Process . 6-3

7. Invoking Queries in BEA WebLogic Portal Applications
Invoking Liquid Data Queries as EJB Clients . 7-1

Invoking Liquid Data Queries as JSP Clients . 7-1

8. Using Custom Functions
About Custom Functions . 8-1

Defining Custom Functions . 8-2

Step 1: Write the Custom Function Implementation in Java. 8-2

Rules for Writing Custom Function Implementations . 8-3

Correspondence Between XML and Java Data Types . 8-3

Step 2: Create the Custom Functions Library Definition File . 8-4

Contents of a CFLD File. 8-4

Structure of a CFLD File . 8-4

Elements and Attributes in a CFLD File . 8-5

Step 3: Register the Custom Function in the Administration Console 8-6

Examples of Custom Functions . 8-6

Example That Uses Simple Types . 8-7

Implementation of Custom Functions for Simple Types . 8-7

viii Application Developer’s Guide

CFLD File That Declares Custom Functions for Simple Types.8-9

Query That Uses the Custom Functions for Simple Types. .8-11

Example That Uses Complex Types .8-12

Implementation of a Custom Function for a Complex Type .8-12

CFLD File That Declares the Custom Function for a Complex Type8-12

Query That Uses the Custom Function for a Complex Type .8-14

9. Setting Complex Parameter Types
Architecture of Complex Parameter Types. .9-1

Sample Complex Parameter Type Code .9-2

Sample Query .9-3

Sample Code. .9-4

Compiling and Running the Sample Code .9-8

10.Using the Cache Purging APIs
The com.bea.ldi.cache.ejb Package .10-1

Security Issues When Using the Cache APIs. .10-1

Writing Java Code to Purge Cache Entries .10-2

Enable Caching in Liquid Data .10-2

Import the Liquid Data Packages .10-2

Lookup the EJB Home in the JNDI Tree .10-3

Sample Cache Purging Code. .10-4

Index

Application Developer’s Guide ix

About This Document

This document describes how to use the BEA Liquid Data for WebLogic Workshop Control, EJB API,
and JSP tag library.

This following topics are covered:

Chapter 1, “Application Development with the Liquid Data API,” describes concepts that you’ll
need to understand in order to invoke Liquid Data queries programmatically.

Chapter 2, “Using Liquid Data Controls to Develop Workshop Applications,” describes how to
use the Liquid Data control to develop applications that run Liquid Data queries.

Chapter 3, “Invoking Queries in EJB Clients,” describes how to invoke Liquid Data queries from
EJB clients.

Chapter 4, “Invoking Queries in JSP Clients,” describes how to invoke Liquid Data queries from
JSP clients.

Chapter 5, “Invoking Queries in Web Service Clients,” describes how to invoke Liquid Data
queries as Web service clients that access Web services that were generated using the Liquid
Data node in the Administration Console.

Chapter 6, “Invoking Queries in WebLogic Integration Business Processes,” describes how to
invoke Liquid Data queries in WebLogic Integration Business Processes.

Chapter 7, “Invoking Queries in BEA WebLogic Portal Applications,” describes how to invoke
Liquid Data queries in BEA WebLogic Portal applications.

About Th is Document

x Application Developer’s Guide

Chapter 8, “Using Custom Functions,” describes how to write Java code for custom functions
that extend the power and functionality of Liquid Data.

Chapter 9, “Setting Complex Parameter Types,” describes how to write Java code which
accesses streaming XML data in a Liquid Data query.

Chapter 10, “Using the Cache Purging APIs,” describes how to write Java code to purge the
entries in the Liquid Data query cache.

What You Need to Know
This document is intended mainly for EJB and JSP developers responsible for developing the
client-server deployment strategy for data integration applications.

e-docs Web Site
BEA product documentation is available on the BEA corporate Web site. From the BEA Home page,
click on Product Documentation or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com.

How to Print the Document
You can print a copy of this document from a Web browser, one file at a time, by using the File—>Print
option on your Web browser.

A PDF version of this document is available on the Liquid Data documentation Home page on the
e-docs Web site (and also on the documentation CD). You can open the PDF in Adobe Acrobat Reader
and print the entire document (or a portion of it) in book format. To access the PDFs, open the Liquid
Data documentation Home page, click the PDF files button and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe Web site at
http://www.adobe.com/.

Re lated Inf ormat ion

Application Developer’s Guide xi

Related Information
For more information in general about Java and XQuery, refer to the following sources.

The Sun Microsystems, Inc. Java site at:

http://java.sun.com/

The World Wide Web Consortium XML Query section at:

http://www.w3.org/XML/Query

For more information about BEA products, refer to the BEA documentation site at:

http://edocs.bea.com/

Contact Us!
Your feedback on the BEA Liquid Data documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed directly
by the BEA professionals who create and update the Liquid Data documentation.

In your e-mail message, please indicate that you are using the documentation for the BEA Liquid Data
for WebLogic 8.1 release.

If you have any questions about this version of Liquid Data, or if you have problems installing and
running Liquid Data, contact BEA Customer Support through BEA WebSupport at www.bea.com. You
can also contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

About Th is Document

xii Application Developer’s Guide

Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and their
members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

Documentat i on Convent ions

Application Developer’s Guide xiii

{ } Indicates a set of choices in a syntax line. The braces themselves should never
be typed.

[] Indicates optional items in a syntax line. The brackets themselves should never
be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself should
never be typed.

... Indicates one of the following in a command line:

• That an argument can be repeated several times in a command line

• That the statement omits additional optional arguments

• That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line. The
vertical ellipsis itself should never be typed.

Convention Item

About Th is Document

xiv Application Developer’s Guide

Application Developer’s Guide 1-1

C H A P T E R 1

Application Development with the
Liquid Data API

This chapter describes types of applications you can build with Liquid Data and the tools available to
application developers. It also describes concepts relevant to the using the using the BEA Liquid Data
for WebLogic Query API to invoke queries. It contains the following sections:

Types of Application Development

About Liquid Data Queries

Components of the Liquid Data Query API

Types of Java Clients

For reference information about the Liquid Data Query API, see the Liquid Data Javadoc. For an
introduction to the XQuery standard, see “Liquid Data Implements the XQuery Standard” in “Liquid
Data Concepts” in the Concepts Guide.

Types of Application Development
Developers can display data from Liquid Data queries in a wide variety of applications. Liquid Data
includes an application programming interface (API) to access Liquid Data queries. You can develop
Liquid Data applications using the following application development models:

WebLogic Workshop Development

EJB Development

JSP Tag Library Development

App l i ca t i on Devel opment w i th the L iqu id Data API

1-2 Application Developer’s Guide

WebLogic Workshop Development
WebLogic Workshop includes a rich integrated development environment (IDE) designed for rapidly
building J2EE applications. The workshop IDE includes a wide array of application development tools
such as Java controls for accessing enterprise resources, NetUI tag libraries to display enterprise data
in the applications, and drag-and-drop functionality to make it easy to assemble rich and scalable
application.

Liquid Data includes a Java Control Extension for WebLogic Workshop. The Liquid Data Control
allows application developers using Workshop to easily access data from Liquid Data. The Liquid Data
Control also generates an XMLBean interface to the data. Developers can then use the XMLBean
interface to rapidly create rich user interfaces to the data returned from a Liquid Data query.

For details on using the Liquid Data Control, see Chapter 2, “Using Liquid Data Controls to Develop
Workshop Applications.”

EJB Development
EJB clients are any applications that invoke queries on the Liquid Data Server using the Liquid Data
EJB API. All Java clients can leverage the flexibility and the powerful data integration properties
offered by XQuery in order to meet their data access needs. All these types of clients access the EJB
remote interfaces directly, therefore they can be collectively characterized as EJB clients. For more
information about EJB clients, see Chapter 3, “Invoking Queries in EJB Clients.”

Note: A special kind of EJB client is the Data View Builder itself, which may be used by data
architects and developers to build and execute queries.

JSP Tag Library Development
In addition to the procedural Liquid Data API, JSP clients, in particular, may use the Liquid Data
Server tag library, which provides a declarative way to extend their querying and data access
capabilities. The Liquid Data Server tag library is typically deployed within the web application that
contains the JSP clients. The declarative nature of the tag library makes it simpler for JSP clients to
issue stored or ad hoc, fixed or parameterized, queries. These JSP clients form a second family of API
clients, collectively characterized as tag library clients. For more information about JSP clients, see
Chapter 4, “Invoking Queries in JSP Clients.”

About L iqu id Data Quer i es

Application Developer’s Guide 1-3

About Liquid Data Queries
This section describes the following Liquid Data query concepts:

Stored Queries

Ad Hoc Queries

Parameterized Queries

For more information about Liquid Data queries, see “Key Concepts of Query Building” in “Overview
and Key Concepts” in Building Queries and Data Views.

Stored Queries
Stored queries have been predefined by the personnel (typically data architects) of the organization
that operates the Liquid Data Server. Stored queries are assigned a unique name starting with an
alphabetic character (A-Z a-z) and reside in the Liquid Data server repository. Clients may execute
stored queries by merely specifying their name and parameters, if any. For more information about
the server repository, see “Managing the Liquid Data Repository” in the Liquid Data Administration
Guide.

Ad Hoc Queries
An ad hoc query is a query that has not been stored in the Liquid Data repository as a stored query
but rather is passed to the Liquid Data server on the fly. Ad hoc queries are defined by the client. In
effect, clients need to provide the actual content of ad hoc queries to the server at run time.

Parameterized Queries
Although queries may return results that are of general interest, it is often the case that the content
of query results, and therefore also the content of the query, needs to be customized in order to better
fit the client’s needs. This requirement is commonly addressed through the use of parameterized
queries, which are queries that allow for substitution of parts of the query with parameters whose
value can be provided (and changed) per query execution.

The Liquid Data Server API provides support for parameterized queries using named parameters.
When parameterized queries are used, clients need to provide the value and the type of each named
parameter in the query.

App l i ca t i on Devel opment w i th the L iqu id Data API

1-4 Application Developer’s Guide

Components of the Liquid Data Query API
This section describes the components of the Liquid Data Query API. It contains the following
sections:

Packages

Query Execution EJB

Query Parameters

Query Attributes

Query Results

For reference information about the Liquid Data Query API, see the Liquid Data Javadoc.

Packages
The Liquid Data API includes the following packages:

Query Execution EJB
The com.bea.ldi.server package defines the following stateless session bean:

bea.ldi.server.QueryBean

The com.bea.ldi.server package also defines the home and remote interfaces for this EJB. The
query execution EJB, along with the Liquid Data Server, can be deployed in a cluster.

Query Parameters
The com.bea.ldi.server.common.QueryParameters class represents parameters that are
specified for parameterized queries prior to query execution. In addition to Java primitive types

Table 1-1 Packages in the Liquid Data Query API

Package Name Description

com.bea.ldi.server Defines the Liquid Data query execution EJBs, including their home and
remote interfaces.

com.bea.ldi.server.common Defines interfaces and classes for query parameters, query results, query
result exceptions, and attributes for query evaluation.

Components o f the L i qu id Data Quer y AP I

Application Developer’s Guide 1-5

(byte, float, int, long, short, and double) that you can specify using setxxxx() methods,
query parameters can be any of the following types:

java.lang.Boolean

java.lang.Byte

java.lang.Double

java.lang.Float

java.lang.Integer

java.lang.Long

java.lang.Short

java.lang.String

java.math.BigDecimal

java.math.BigInteger

java.util.Calendar

java.sql.Date

java.sql.Time

java.sql.Timestamp

The QueryParameters class provides methods for setting parameters based on these types as well
as a getParameters() method that collects defined query parameters in a java.util.Map object.

Query Attributes
The com.bea.ldi.server.common.QueryAttributes interface provides a variable
(LARGE_DATA) that specifies whether the query is expected to produce a large final result set or large
intermediate result sets.

Query Results
The com.bea.ldi.server.common.QueryResult interface represents the results of a query.
The QueryResult interface provides methods for retrieving the query results, expressed in XML, as
a DOM document (org.w3c.dom.Document), determining whether the query result is empty,
printing the query results as XML to a specified device, and deallocating local and server resources.

App l i ca t i on Devel opment w i th the L iqu id Data API

1-6 Application Developer’s Guide

Types of Java Clients
Any authorized Java client can use Java Naming and Directory Interface (JNDI) to obtain references
to the EJBs and use them to issue queries against the Liquid Data Server.

Different types of Java clients include:

Java applications created using WebLogic Workshop and Liquid Data controls

Standalone Java applications

Java servlets

Java Server Pages (JSPs)

Java Beans

Other EJBs

Business operations in business processes that execute in a WebLogic Integration Business
Process

WebLogic Portal

Web Services

Both local and remote clients can access the Liquid Data Query API.

Application Developer’s Guide 2-1

C H A P T E R 2

Using Liquid Data Controls to Develop
Workshop Applications

This chapter describes how to use the Liquid Data control in WebLogic Workshop to develop
applications that use data from Liquid Data queries. Applications can use the data to display results
in a web application, to use in a Web Service, to use as an input to a WebLogic Integration business
process, or in many other ways. The following topics are included:

WebLogic Workshop and Liquid Data

Liquid Data Control JCX File

Creating Liquid Data Controls

Modifying Existing Liquid Data Controls

Using NetUI to Display Liquid Data Results

Security Considerations With Liquid Data Controls

Moving Your Liquid Data Control Applications to Production

Using L iqui d Data Cont ro ls to Deve lop Workshop Appl ica t ions

2-2 Application Developer’s Guide

WebLogic Workshop and Liquid Data
WebLogic Workshop allows you to create Liquid Data Controls. The Liquid Data Control is a Java
Control, and it allows you to very rapidly generate robust applications that use results from Liquid
Data queries (for example, to display in a web application or to use in a WebLogic Integration business
process). This section describes the Liquid Data control and the applications you can create with it.

Liquid Data Control
The Liquid Data Control is available in WebLogic Workshop. The Liquid Data Control is an extensible
Java Control that accesses the Liquid Data server to execute queries from applications developed in
WebLogic Workshop. The Liquid Data Control is available with all of the other Java Controls in
WebLogic Workshop (for example, the database control). When you use the Liquid Data Control in
WebLogic Workshop, Workshop displays a query wizard which connects to a Liquid Data server to get
the query metadata needed for configuring the control. After you select the queries to use in your
Liquid Data Control, Workshop generates XMLBean classes for the target schemas associated with the
queries and then generates a Liquid Data Control (.jcx) file.

XMLBean Generation
When you create a Liquid Data control in WebLogic Workshop, the Liquid Data Control wizard
generates XMLBean classes for each query in the control. The Liquid Data Control wizard uses the
schema associated with the stored query in the Liquid Data repository to generate the structure for
the XMLBean classes. The XMLBean classes provide Java methods to traverse the XML result set
returned from Liquid Data.

The XMLBean classes are automatically generated in a schema project in the workshop application.
There is one schema project per Liquid Data Control (.jcx) file.

Use With Page Flow, Web Services, Business Processes
You can use the Liquid Data Control like other controls in WebLogic Workshop, and you can take
advantage of Workshop features to use Liquid Data Controls in Web Services, Page Flows and
WebLogic Integration business processs. For example, you can generate a page flow from your Liquid
Data control and then use the XMLBeans to bind the data returned from Liquid Data to the JSPs in
your application.

L iqui d Data Cont ro l JCX F i l e

Application Developer’s Guide 2-3

Liquid Data Control JCX File
When you create a Liquid Data Control, WebLogic Workshop generates a Java Control Extension
(.jcx) file. The file contains methods corresponding to the queries in which the control accesses,
shows the schema files of each query as a comment, and contains a commented method which, when
uncommented, allows you to pass any XQuery statement to execute an ad-hoc query. This section
describes the Liquid Data Control (.jcx) file and includes the following sections:

Design View

Source View

Schema Project Location

Running Ad-Hoc Queries through the Liquid Data Control

Design View
The design view of the Liquid Data Control (.jcx) file shows the available methods in a graphical
view.

Figure 2-1 Design View of a Control File

With the right-click menu, you can add, modify (for example, change the query accessed by a method),
rename, and delete methods. The right-click menu is context-sensitive; it displays different items if the
mouse cursor is over a method, or in the control portion of the design pane.

Using L iqui d Data Cont ro ls to Deve lop Workshop Appl ica t ions

2-4 Application Developer’s Guide

Source View
The source view shows the source code of the Java Control Extension (.jcx) file. It includes as
comments the schema used to generate the XMLBean classes for each query. The signature for each
method shows the return type of the method. The return type is the XMLBean class which was
generated for the schemas.

This file is a generated file and the only time you should need to edit the source code is if you want to
add a method to run an ad-hoc query, as described in “Running Ad-Hoc Queries through the Liquid
Data Control” on page 2-7.

The following shows the source code for a generated Liquid Data Control (.jcx) file. It shows the
package declaration, import statements, connection properties, the schema project and filename
used with the ApplOrderDetailView query, and the method that executes the
ApplOrderDetailView query.

package myFolder;

 import weblogic.jws.control.*;

 import com.bea.ld.control.LDControl;

 /**

 * @jc:LiquidData urlKey="myApp.myAppWeb.myFolder.anotherLDControl"

 */

public interface anotherLDControl extends LDControl,

com.bea.control.ControlExtension

 {

 /* Generated methods corresponding to stored queries.

 */

 /**

 * @return Schema Project: myAppWeb-myFolder-anotherLDControl-Schemas

 Schema File: rtl\OrderDetailView.xsd

 TargetNamespace: urn:retailer

 Element Name: OrderDetailView

 *

 * @param orderid java.lang.String

 *

 * @param custid java.lang.String

L iqui d Data Cont ro l JCX F i l e

Application Developer’s Guide 2-5

 *

 * @jc:Stored-Query Name="rtl.ElecOrderDetailView"

 */

 retailer.OrderDetailViewDocument ElecOrderDetailView

(java.lang.String orderid, java.lang.String custid);

 /**

 * Default method to execute an ad hoc query.

 * This method can be customized to have a differnt method name

* (e.g. runMyQuery), return a XML Bean class (e.g. Customer),

 * or to have one or both of the following two extra parameters:

 * com.bea.ldi.server.common.QueryParameters and

* com.bea.ldi.server.common.QueryAttributes

 * e.g. exec(String query, QueryParameters params);

 * e.g. exec(String query, QueryAttributes attrs);

 * e.g. exec(String query, QueryParameters params,

* QueryAttributes attrs);

 *

 com.bea.xml.XmlObject executeXQuery(String query);

 */

}

Using L iqui d Data Cont ro ls to Deve lop Workshop Appl ica t ions

2-6 Application Developer’s Guide

Schema Project Location
The XMLBean classes corresponding to the queries in the Liquid Data Control (.jcx) file are
generated in a schema project. There is one schema project for each control. The schema project(s)
also contain a copy of the schema files associated with the queries in the Liquid Data Control (.jcx)
file. The JAR file for the XMLBean classes is generated in the Libraries directory of your WebLogic
Workshop application.

The @return Schema Project section of the generated Liquid Data Control (.jcx) file displays
the location of the schemas corresponding to the query method below this section in the control file.
For example, the following code snippet from a generated Liquid Data Control (.jcx) file shows the
name of the schema project and the name of the target schema.

/**

 * @return Schema Project: myAppWeb-myFolder-anotherLDControl-Schemas

 Schema File: rtl\OrderDetailView.xsd

 TargetNamespace: urn:retailer

 Element Name: OrderDetailView

 *

 * @param orderid java.lang.String

 *

 * @param custid java.lang.String

 *

 * @jc:Stored-Query Name="rtl.ElecOrderDetailView"

 */

 retailer.OrderDetailViewDocument ElecOrderDetailView

(java.lang.String orderid, java.lang.String custid);

The name of the schema project is myAppWeb-myFolder-anotherLDControl-Schemas, and the
schema file is in the rtl subdirectory and is named OrderDetailView.xsd. Figure 2-2 shows the
generated schema project in WebLogic Workshop.

L iqui d Data Cont ro l JCX F i l e

Application Developer’s Guide 2-7

Figure 2-2 Generated Schema Project in WebLogic Workshop

Running Ad-Hoc Queries through the Liquid Data Control
At the bottom of the generated Liquid Data Control (.jcx) file is a comment showing methods you
can add which allow you to run an ad-hoc query through the control. To add one of these methods,
uncomment the appropriate method and add a return type to the signature.

/**

* Default method to execute an ad hoc query. This method can be customized

* to have a differnt method name (e.g. runMyQuery), return a XML Bean class

Using L iqui d Data Cont ro ls to Deve lop Workshop Appl ica t ions

2-8 Application Developer’s Guide

* (e.g. Customer), * or to have one or both of the following two extra

* parameters: com.bea.ldi.server.common.QueryParameters and

* com.bea.ldi.server.common.QueryAttributes

* e.g. exec(String query, QueryParameters params);

* e.g. exec(String query, QueryAttributes attrs);

* e.g. exec(String query, QueryParameters params, QueryAttributes attrs);

* com.bea.xml.XmlObject executeXQuery(String query); */

Creating Liquid Data Controls
You can create Liquid Data controls in a variety of WebLogic Workshop projects. This section includes
the following procedures to create Liquid Data controls:

General Steps to Create a Liquid Data Control

To Create a Liquid Data Control in a Web Project

To Create a Liquid Data Control in a Web Service Project

To Add a Liquid Data Control to an Existing Web Service File

To Create a Test Web Service From a Liquid Data Control

The steps are similar for creating Liquid Data controls in other types of WebLogic Workshop projects.

General Steps to Create a Liquid Data Control
This section describes the general steps for creating a Liquid Data control. For detailed steps for
creating a Liquid Data control in a Web Project or in a Web Service project, see “To Create a Liquid
Data Control in a Web Project” on page 2-14 or “To Create a Liquid Data Control in a Web Service
Project” on page 2-15.

Step 1: Create a Project in an Application
Before you can create a Liquid Data control in WebLogic Workshop, you must create an application
and create a project in the application. You can create a Liquid Data control in most types of Workshop
projects, but the most common projects in which you create Liquid Data controls are Web Projects,
Web Service Projects, Portal Web Projects, or a Process Web Projects.

Creat ing L iqu id Data Cont r o ls

Application Developer’s Guide 2-9

Step 2: Start the Liquid Data Server, If It is Not Already Running
Make sure the Liquid Data server is running. The Liquid Data server can be running locally (on the
same domain as WebLogic Workshop) or remote (on a different domain from workshop). If the Liquid
Data server is not running, start up the domain in which it runs.

Step 3: Create a Folder in a Project
Create a folder in the project to hold the Liquid Data control(s). You can also create other controls
(database controls, for example) in the same folder, if needed. Workshop controls cannot be created
at the top-level of a project directory structure; they must be created in a folder. When you create the
folder, enter a name that makes sense for your application.

Figure 2-3 Create a New Folder in WorkshopLiquid Data

Using L iqui d Data Cont ro ls to Deve lop Workshop Appl ica t ions

2-10 Application Developer’s Guide

Step 4: Create the Liquid Data Control
The Liquid Data Control is a Java Control Extension. To create a Liquid Data Control, start the Java
Control wizard by selecting your folder within a project, right-clicking, and selecting New —> Java
Control, as shown in Figure 2-4. You can also create a control using the File —> New—> Java Control
menu item.

Figure 2-4 Create a New Liquid Data Control

Creat ing L iqu id Data Cont r o ls

Application Developer’s Guide 2-11

Then select Liquid Data from the New Java Control Extension dialog, as shown in Figure 2-5. Enter a
filename for the control (.jcx) file and click Next.

Figure 2-5 Liquid Data Control in WebLogic Workshop

Note: The LiquidDataControl.jar file is copied into the Libraries directory (if it does not
already exist) of your application when you create a Liquid Data Control.

Using L iqui d Data Cont ro ls to Deve lop Workshop Appl ica t ions

2-12 Application Developer’s Guide

Step 5: Enter Connection Information to the Liquid Data Server
A screen similar to the one in Figure 2-6 allows you to enter connection information to your Liquid
Data server. If the server is local, the Liquid Data control uses the connection information stored in
the application properties (to view these settings, access the Tools —> Application Properties menu
item in the IDE).

If the Liquid Data server is remote, click the Remote button and fill in the appropriate server URL,
user name, and password.

Note: You can specify a different username and password with which you connect to a local machine
on the Liquid Data Control Wizard Connection Information dialog, too. To do this, click the
Remote button and enter the connection information (with a different username and
password) for your local machine. The security credentials specified through the Application
Properties or through the Liquid Data Control Wizard are only used for creating the Liquid
Data Control (.jcx) file, not for testing queries through the control. For more details, see
“Security Considerations With Liquid Data Controls” on page 2-34.

When the information is correct, click Create to go to the next step.

Figure 2-6 Liquid Data Control Wizard—Connection Information

Creat ing L iqu id Data Cont r o ls

Application Developer’s Guide 2-13

Step 6: Select Queries to Add to the Control
In the Select Liquid Data Queries screen, select queries from the left pane and click Add to add those
queries to the control. If you mouse over a query, the signature of the control method for the query
appears in a tooltip popup. A “fetching metadata” message appears if the signature has not yet been
retrieved from the Liquid Data server.

Note: Only stored queries with a schema configured appear in the Stored Queries list. For details
on configuring stored queries, see “Configuring Stored Queries” in the Administration
Guide. You can also deploy stored queries from directly from the Data View Builder, as
described on “Deploying a Query” in Building Queries and Data Views.

Select one or more queries, add them to the right pane, and click Finish. When you click Finish, the
Liquid Data Control (.jcx) file is generated and XMLBean classes corresponding to the schema for
each stored query in the control are generated. The XMLBeans are stored in the Libraries directory
of the Workshop Application. In the Libraries directory, there is one JAR file for each Liquid Data
control, with the XMLBeans included in the JAR file. The JAR files are named according to the project
and directory hierarchy for the control (.jcx) file.

Figure 2-7 Liquid Data Control Wizard—Select Queries

http://edocs.bea.com/liquiddata/docs81/admin/storedquery.html
http://edocs.bea.com/liquiddata/docs81/querybld/run.html#Deploy

Using L iqui d Data Cont ro ls to Deve lop Workshop Appl ica t ions

2-14 Application Developer’s Guide

Note: The stored queries should be named according to the “Naming Conventions for Stored
Queries” described in Building Queries and Data Views. If a stored query contains illegal
characters (for example, a hyphen), the method generated in the Liquid Data Control (.jcx)
file might be an invalid Java name, causing compilation errors. If a method name is invalid,
you can change the name to make it valid.

New Query
Clicking the New Query button launches the Data View Builder. You can then use the Data View
Builder to create, modify, test, and deploy new queries.

Refresh
The Refresh button updates the stored query list from the Liquid Data server. If you create and deploy
a new query with the Data View Builder, click the Refresh button to display the new query in the
wizard.

To Create a Liquid Data Control in a Web Project
This section describes the basic steps for creating a Liquid Data control in a new Web Project. If you
are adding the control to an existing project, you might not need to perform each step (for example,
creating a new project). Perform the following steps to create a Liquid Data control in a new WebLogic
Workshop Web Project.

1. Make sure your Liquid Data domain is running.

2. Start WebLogic Workshop.

3. Either open an existing Workshop application or create a new application (File —> New —>
Application).

4. Select the top-level folder of your Workshop application, right-click, and select New —> Project.

5. Select Web Project as the type of project, enter a name, and click Create.

6. Create a folder in your Web Project. To create the new folder, select the project folder you just
created, right-click, and select New —> Folder (see Figure 2-3). Enter a name for the folder and
click OK.

7. Select the new folder, right-click, and select New —> Java Control (see Figure 2-4).

8. In the New Java Control Extension wizard, select Liquid Data as the control type, enter a name,
and click Next (see Figure 2-5).

http://edocs.bea.com/liquiddata/docs81/querybld/run.html#QueryNaming
http://edocs.bea.com/liquiddata/docs81/querybld/run.html#QueryNaming

Creat ing L iqu id Data Cont r o ls

Application Developer’s Guide 2-15

9. If your Liquid Data server is local to your machine, accept the default and click Create (see
Figure 2-6). If Liquid Data is running on a remote server, click the Remote button, enter your
connection information, test your connection, and click Create.

10. In the Edit Liquid Data Control - Select Queries screen, select any queries you want accessible
to your control from the left pane and click Add to add them to the right pane (see Figure 2-7).

11. If you want to create any new queries, click the Create New Query button to launch the Data
View Builder, where you can create, test, and deploy queries.

12. If you have added any Liquid Data queries, click Refresh to display the new queries.

13. After you have added all the queries you need in the wizard, click Finish.

Workshop generates the .jcx Java Control Extension file for your Liquid Data control. Each
method in the .jcx file returns an XMLBean type corresponding to the stored query schema.
The XMLBean classes for each query are automatically generated when you create the Liquid
Data control. The XMLBean classes are stored in the Libraries directory of the Workshop
Application.

To Create a Liquid Data Control in a Web Service Project
This section describes the basic steps for creating a Liquid Data control in a new Web Service. If you
are adding the control to an existing Web Service, you might not need to perform each step (for
example, creating a new project). Perform the following steps to create a Liquid Data control in a new
WebLogic Workshop Web Service Project.

1. Make sure your Liquid Data domain is running.

2. Start WebLogic Workshop.

3. Either open an existing Workshop application or create a new application (File —> New —>
Application).

4. Select the top-level folder of your Workshop application, right-click, and select New —> Project.

5. Select Web Service Project as the type of project, enter a name, and click Create.

6. Create a folder in your Web Service Project. To create the new folder, select the project folder
you just created, right-click, and select New —> Folder (see Figure 2-3). Enter a name for the
folder and click OK.

7. Select the new folder, right-click, and select New —> Java Control (see Figure 2-4).

Using L iqui d Data Cont ro ls to Deve lop Workshop Appl ica t ions

2-16 Application Developer’s Guide

8. In the New Java Control Extension wizard, select Liquid Data as the control type, enter a name,
and click Next (see Figure 2-5).

9. If your Liquid Data server is local to your machine, accept the default and click Create (see
Figure 2-6). If Liquid Data is running on a remote server, click the Remote button, enter your
connection information, test your connection, and click Create.

10. In the Edit Liquid Data Control - Select Queries screen, select any queries you want accessible
to your control from the left pane and click Add to add them to the right pane (see Figure 2-7).

11. If you want to create any new queries, click the Create New Query button to launch the Data
View Builder, where you can create, test, and deploy queries.

12. If you have added any Liquid Data queries, click Refresh to display the new queries.

13. After you have added all the queries you need in the wizard, click Finish.

Workshop generates the .jcx Java Control Extension file for your Liquid Data control. Each
method in the .jcx file returns an XMLBean of the type corresponding to the schema from the
stored query. The XMLBean for each query is automatically generated when you create the
Liquid Data control. The XMLBeans are stored in the Libraries directory of the Workshop
Application.

To Add a Liquid Data Control to an Existing Web Service File
Perform the following steps to add a Liquid Data Control to an existing Web Service .jws file.

1. Make sure your Liquid Data domain is running.

2. In WebLogic Workshop, open an existing Web Service .jws file.

3. Click the Design View tab on the Web Service.

4. In the graphical representation of the Web Service, right-click and select Add Control —>
Liquid Data.

Creat ing L iqu id Data Cont r o ls

Application Developer’s Guide 2-17

Figure 2-8 Add a Liquid Data Control to Web Service

5. In the Insert Control Wizard, enter a variable name for the control (STEP 1 in the dialog in
Figure 2-9). The variable name can be any valid variable name that is unique in the Web Service.

6. In the Insert Control Wizard, either browse to an existing Liquid Data Control (it must be in the
same project as the Web Service) or click the Create a New Liquid Data Control button.

7. If you want the control to be a factory, check the Make This a Control Factory button. If the
control is a factory, it will create multiple instances at runtime if a query is called multiple
times. Otherwise, requests to the control are serialized and each request for a given query must
complete before another can begin.

Using L iqui d Data Cont ro ls to Deve lop Workshop Appl ica t ions

2-18 Application Developer’s Guide

Figure 2-9 Insert Control Wizard

8. If your Liquid Data server is running on a separate domain from Workshop, click remote (in
STEP 3 of the Insert Control Wizard dialog). For details about specifying local or remote Liquid
Data server, see “Step 5: Enter Connection Information to the Liquid Data Server” on page 2-12.

9. Click the Create button on the Insert Control Wizard.

10. If you created a new control, choose the queries for your control, as described in “Step 6: Select
Queries to Add to the Control” on page 2-13.

Modi fy ing Ex i st ing L iqu id Data Cont r o ls

Application Developer’s Guide 2-19

To Create a Test Web Service From a Liquid Data Control
Perform the following steps to generate and test a web service from a Liquid Data Control.

1. Select a Liquid Data Control (.jcx) file, right-click, and select Generate Test JWS File.

Workshop generates the .jws Java Web Service file for your Liquid Data control.

2. Select your Web Service project, right-click, and select Build Project.

Workshop builds an asynchronous Web Service from the .jws file.

3. When the build is complete, double-click the .jws file to open it.

4. On the Design View of the Web Service, notice the startTestDrive and finishTestDrive
methods, as well as a method for each of the queries you specified in the Liquid Data Control
wizard.

5. Click the test button (or select Debug —> Start from the Workshop menu) to test the web
service.

6. Click the startTestDrive button to start the conversation for the Web Service.

7. Click the Continue this Conversation link (in the left corner of the test page).

8. Enter values for any query parameters (if the query has parameters) and click the button with
the name corresponding to the query you want to execute.

The Web Service executes the query and the results are returned to the test browser.

9. If you want to run the query again or run other queries in the Web Service, click Continue this
Conversation, enter any needed parameters and click the button with the name corresponding
to the query you want to execute.

10. To end the Web Service conversation, click the Continue this Conversation link and then click
the finishTestDrive button.

Modifying Existing Liquid Data Controls
This section describes the ways you can modify an existing Liquid Data control. It contains the
following procedures:

To Change the Query Associated With a Single Control Method

To Add a New Method to a Control

Using L iqui d Data Cont ro ls to Deve lop Workshop Appl ica t ions

2-20 Application Developer’s Guide

To Invoke the Query Wizard to Modify an Existing Control

Updating an Existing Control if Schemas Change

To Change the Query Associated With a Single Control Method
Perform the following steps to change the query that a method in a Liquid Data Control accesses.

1. In WebLogic Workshop, open the Design View for a Liquid Data Control (.jcx) file.

2. Select the method you want to change, right-click, and select Edit Stored-Query Name to bring
up the Liquid Data Control Wizard.

Figure 2-10 Changing the Query a Method Accesses

Note: You can also access the Liquid Data Control Wizard from the property editor

Modi fy ing Ex i st ing L iqu id Data Cont r o ls

Application Developer’s Guide 2-21

Figure 2-11 Opening the Property Editor from the Stored-Query Name Property

3. If you are accessing a remote Liquid Data server, enter a password on the connection
information screen. If you are using a local Liquid Data server, the connection information
screen does not appear.

4. In the Property editor, navigate to the query you want the method to access, select it, and click
OK.

To Add a New Method to a Control
Perform the following steps to add a new method to an existing Liquid Data control.

1. In Workshop, open an existing control in Design View.

2. In the control Design View, move your mouse inside the box showing the control methods,
right-click, and select Add Method, as shown in Figure 2-12.

Using L iqui d Data Cont ro ls to Deve lop Workshop Appl ica t ions

2-22 Application Developer’s Guide

Figure 2-12 Add a Method to a Control

3. Enter a name for the new method.

4. Move your mouse over the new method, right-click, and select Edit Stored-Query Name to launch
the query wizard (see Figure 2-10).

Alternately, you can launch the query wizard from the Stored-Query name property, as shown in
Figure 2-11.

5. If you are accessing a remote Liquid Data server, enter a password on the connection
information screen. If you are using a local Liquid Data server, the connection information
screen does not appear.

6. In the Property editor, navigate to the query you want the method to access, select it, and click
OK.

To Invoke the Query Wizard to Modify an Existing Control
You can use the query wizard to modify one or more queries accessed in an existing Liquid Data
Control. A query corresponds to a method in the Liquid Data Control (.jcx) file. Perform the
following to invoke the Liquid Data query wizard and modify the query selection for an existing Liquid
Data Control.

1. In WebLogic Workshop, open the Design View for a Liquid Data Control (.jcx) file.

2. If you are not already viewing the Property Editor, select View —> Property Editor from the
Workshop menu.

3. If you want to change any of the connection information, enter a value for the url or username
attributes in the property editor.

Modi fy ing Ex i st ing L iqu id Data Cont r o ls

Application Developer’s Guide 2-23

4. In the Liquid Data section of the property editor, click the three dots (see Figure 2-13) to launch
the query wizard.

Figure 2-13 Invoking the Query Wizard from the Workshop Property Editor

5. If you entered new values for the url or username attributes, or if the Liquid Data Server is in
a remote domain, the Liquid Data Connection Information screen appears. Enter a password
and click OK. If you did not change the value of these attributes, then the wizard opens to the
Property Editor where you select queries.

6. Add or remove queries as you need in the Property Editor screen and click OK. For details, see
“Step 6: Select Queries to Add to the Control” on page 2-13.

Updating an Existing Control if Schemas Change
If any of the schemas corresponding to any methods in a Liquid Data Control change, then you must
update the Liquid Data Control to regenerate the XMLBeans for the changed schemas. Perform the
following steps to update a Liquid Data Control

1. In WebLogic Workshop, open the Liquid Data Control (.jcx) file.

2. In the Liquid Data section of the property editor, click the three dots (see Figure 2-13) to invoke
the Liquid Data query wizard.

3. If you are accessing a remote Liquid Data server, enter a password on the connection
information screen. If you are using a local Liquid Data server, the connection information
screen does not appear.

4. In the query wizard Property Editor, click OK. Workshop regenerates the Liquid Data Control
and the XMLBeans for all the schemas used by queries in the control.

Click ... to Launch the
Query Wizard

Using L iqui d Data Cont ro ls to Deve lop Workshop Appl ica t ions

2-24 Application Developer’s Guide

Using NetUI to Display Liquid Data Results
WebLogic Workshop includes NetUI, which allows you to rapidly assemble applications that display
data returned from Liquid Data queries.

When you create a Liquid Data control, XMLBean classes are generated for the target schema of each
stored query included as a method in the control. The following sections represent the basic steps for
using NetUI to display results from a Liquid Data Control:

Generating a Page Flow From a Control

Adding a Liquid Data Control to an Existing Page Flow

Adding XMLBean Variables to the Page Flow

Displaying Query Results in a Table or List

Generating a Page Flow From a Control
You can generate a page flow from a Liquid Data Control (.jcx) file. When you generate the page
flow, Workshop creates the page flow, a start page (index.jsp), and a JSP file for each method you
specify in the Page Flow wizard.

To Generate a Page Flow From a Control
Perform the following steps to generate a page flow from a Liquid Data control.

1. Select a Liquid Data Control (.jcx) file from the application file browser, right-click, and select
Generate Page Flow.

2. In the Page Flow Wizard, enter a name for your Page Flow and click Next.

Us ing NetU I t o D isp lay L iqu id Data Resu l ts

Application Developer’s Guide 2-25

Figure 2-14 Enter a Name for the Page Flow

3. On the Page Flow Wizard - Select Actions screen, check the methods for which you want a new
page created. The wizard has a check box for each method in the control.

Figure 2-15 Choose Liquid Data Methods for the Page Flow

Using L iqui d Data Cont ro ls to Deve lop Workshop Appl ica t ions

2-26 Application Developer’s Guide

4. Click Create.

Workshop generates the .jpf Java Page Flow file, a start page (index.jsp), and a JSP file for
each method you specify in the Page Flow wizard.

5. Add and initialize the variables to the .jpf file for the XMLBeans. For details, see “Adding
XMLBean Variables to the Page Flow” on page 2-27.

6. Drag and drop the XMLBean variables to your JSPs to bind the data from Liquid Data to your
page layout. For details, see “Displaying Query Results in a Table or List” on page 2-30.

7. Build and test the application in WebLogic Workshop.

Adding a Liquid Data Control to an Existing Page Flow
You can add a Liquid Data Control to an existing Page Flow .jpf file. The procedure is the same as
adding a Liquid Data Control to a Web Service, described in “To Add a Liquid Data Control to an
Existing Web Service File” on page 2-16, except instead of opening the Web Service in Design View,
you open the Page Flow .jpf file in Action View.

You can also add a control to an existing page flow from the Page Flow Data Palette (available in Flow
View and Action View of a Page Flow), as shown in Figure 2-16.

Figure 2-16 Adding a Control to a Page Flow from the Data Palette

Us ing NetU I t o D isp lay L iqu id Data Resu l ts

Application Developer’s Guide 2-27

Adding XMLBean Variables to the Page Flow
In order to use the NetUI features to drag and drop data from an XMLBean into a JSP, you must first
create one or more variables in the page flow .jpf file. The variables must be of the XMLBean type
corresponding to the schema associated with the query. If you create a single variable at the top level
of the XMLBean class (the same as the return type of the method in the Liquid Data Control (.jcx)
file), the NetUI repeater wizard can then access all the data from the query.

Defining a single variable in the page flow .jpf file for the top-level class of the XMLBean (the same
as the return type of the method in the Liquid Data Control (.jcx) file) provides you access to all the
data from the query (through the NetUI repeater wizard). When you create the Liquid Data control
and the XMLBeans are generated, the XMLBean generation defines an array for each element in the
schema that is repeatable. You might want to add other variables corresponding to other arrays in the
XMLBean classes to make it more convenient to drag and drop data onto a JSP, but it is not required.
Define each variable with a type corresponding to the XMLBean object of the parent node.

Define the variables in the class that extend the PageFlowController class. For example, consider
the case where you are trying to display XML data of the following form:

<CUSTOMER>data</CUSTOMER>

......<PROMOTION>promotion data</PROMOTION>

......

You can add the following code snippet, which shows two variables (shown in bold type) added to the
page flow:

public class myPageFlowController extends PageFlowController

{

/**

 * This is the control used to generate this pageflow

 * @common:control

 */

 private aLDControl myControl;

// Add public Variables with XMLBeam types from the generated XMLBeans.

// The type matches the return type of the method corresponding to the

// query in the Liquid Data Control (.jcx) file.

public com.mycorp.crm.CUSTDocument aVar;

This code snippet declares one variable in the page flow, aVar, and the variable will display in the IDE
to allow for drag-and-drop operations onto JSP files.

Using L iqui d Data Cont ro ls to Deve lop Workshop Appl ica t ions

2-28 Application Developer’s Guide

Note: The variables of XMLBean type in the page flow must be declared public.

You must also initialize the variable in the page flow method corresponding to the page flow action
that calls the query. For details, see “To Initialize the Variable in the Page Flow” on page 2-29.

Figure 2-17 Page Flow Variables for XMLBean Objects

When you drag-and-drop an array onto a JSP file, the NetUI Repeater Wizard appears and guides you
through selecting the data you want to display.

To Add a Variable to a Page Flow
Perform the following steps to add a variable of XMLBean type for your query.

1. Open your Page Flow (.jpf) file in Workshop.

2. In the variable declarations section of your Page Flow class, enter a variable with the XMLBean
type corresponding to the schema elements you want to display. Depending on your schema,
what you want to display, and how many queries you are using, you might need to add several
variables.

3. To determine the XMLBean type for the variables, perform the following:

4. In your Liquid Data control, examine the method signature for each method that corresponds to
a query. The return type is the root level of the XMLBean. Create a variable of that type. For
example, if the signature for a control method is as follows:

This is the variable
added to the Page Flow

Us ing NetU I t o D isp lay L iqu id Data Resu l ts

Application Developer’s Guide 2-29

mySchema.CUSTOMERPROFILEDocument myQuery(java.lang.String custid);

create a variable as follows:

public mySchema.CUSTOMERPROFILEDocument myCustomerVar;

5. After you create your variables, initialize them as described in To Initialize the Variable in the
Page Flow.

To Initialize the Variable in the Page Flow
You must initialize your XMLBean variables in the Page Flow. Initializing the variables ensures that
the data bindings to the variables work correctly and that there are no tag exceptions when the JSP
displays the results the first time.

Perform the following steps to initialize the XMLBean variables in the Page Flow:

1. Open your Page Flow (.jpf) file in Workshop.

2. In the page flow action which corresponds to the Liquid Data query for which you are going to
display the data, add some code to initialize the variables used in the query displayed in that
action.

The following sample code shows an example of initializing a variable on the Page Flow. The code (and
comments) in bold is what was added. The rest of the code was generated when the Page Flow was
generated from the Liquid Data control (see “Generating a Page Flow From a Control” on page 2-24).

/**
 * Action encapsulating the control method :RTLCustomerProfile
 * @jpf:action
 * @jpf:forward name="success" path="index.jsp"
 * @jpf:catch method="exceptionHandler" type="Exception"
 */
 public Forward RTLCustomerProfile(RTLCustomerProfileForm aForm)
 throws Exception
 {
 schemasBeaComLdCustview.PROFILEVIEWDocument var =

myControl.RTLCustomerProfile(aForm.custid);
 getRequest().setAttribute("results", var);

 //initialize the profile variable to var from the above statement

 profile=var;

 return new Forward("success");
 }

Using L iqui d Data Cont ro ls to Deve lop Workshop Appl ica t ions

2-30 Application Developer’s Guide

Displaying Query Results in a Table or List
Once you create and initialize your variables in the Page Flow, you can drag and drop the variables
onto a JSP file. When you drag and drop an XMLBean variable onto a JSP File, Workshop displays the
repeater wizard to guide you through the process of selecting the data you want to display. The
repeater wizard provides choices for displaying the results in an HTML table or in a list.

To Add a Repeater to a JSP File
Perform the following to add a NetUI repeater tag (used to display the data from a Liquid Data query)
to a JSP file.

1. Open a JSP file in your Page Flow project where you want to display data.

2. In the Data Palette —> Page Flow Properties, locate the variable containing the data you want
to display.

3. Expand the nodes of the variable to expose the node that contains the data you want to display.
If the variable does not traverse deep enough into your schema, you will have to create another
variable to expose the part of your schema you require. For details, see “To Initialize the Variable
in the Page Flow” on page 2-29.

4. Select the node you want and drag and drop it onto the location of your JSP file in which you
want to display the data. You can do this either in Design View or Source View.

Note: You can only drag and drop leaf nodes from the Page Flow Properties.

5. Workshop displays the repeater wizard.

Us ing NetU I t o D isp lay L iqu id Data Resu l ts

Application Developer’s Guide 2-31

Figure 2-18 Repeater Wizard

6. In the repeater wizard, navigate to the data you want to display and uncheck any fields that you
do not want to display. There might be multiple levels in the repeater tag, depending on your
schema.

7. Click Next. The Select Format screen appears.

Using L iqui d Data Cont ro ls to Deve lop Workshop Appl ica t ions

2-32 Application Developer’s Guide

Figure 2-19 Repeater Wizard Select Format Screen

8. Choose the format to display your data in and click Create.

Workshop generates the layout for your data.

9. Click the test button to see your data display.

To Add a Nested Level to an Existing Repeater
You can create repeater tags inside of other repeater tags. You can display nested repeaters on the
same page (in nested tables, for example) or you can set up Page Flow actions to display the nested
level on another page (with a link, for example).

Perform the following steps to create a nested repeater tag.

1. Add a repeater tag as described in “To Add a Repeater to a JSP File” on page 2-30.

Us ing NetU I t o D isp lay L iqu id Data Resu l ts

Application Developer’s Guide 2-33

2. Add a column to the table where you want to add the nested level.

3. Drag and drop the array from your variable corresponding to your nested level into the data cell
you created in the table.

4. In the repeater wizard, select the items you want to display.

5. Click the Create button in the repeater wizard to create the repeater tags.

6. Click the test button to test the application.

To Add Code to Handle Null Values
Perform the following steps to add code in your JSP file to handle null values for your data. It is a
common JSP design pattern to add conditional code to handle null values. If you do not handle null
values, your page will display tag errors if it is rendered before the queries on it are executed.

1. Add a repeater tag as described in “To Add a Repeater to a JSP File” on page 2-30.

2. Open the JSP file in source view.

3. Find the netui-data:repeater tag in the JSP file.

4. If the dataSource attribute of the netui-data:repeater tag directly accesses an array
variable from the page flow, then you can set the defaultText attribute of the
netui-data:repeater tag. For example:

<netui-data:repeater dataSource="{pageFlow.promo}" defaultText="no data">

If the dataSource attribute of the netui-data:repeater tag accesses a child of the
variable from the page flow, you must add if/else logic in the JSP file as described below.

5. If the defaultText attribute does not work for your netui-data:repeater tag, add code
before and after the tag to test for null values. The following is sample code. The code in bold is
added, the rest is generated by the repeater wizard. This code uses the profile variable
initialized in “To Initialize the Variable in the Page Flow” on page 2-29.

<%

PageFlowController pageFlow = PageFlowUtils.getCurrentPageFlow(request);

if (((pF2Controller)pageFlow).profile == null

 ||

((pF2Controller)pageFlow).profile.getPROFILEVIEW().getCUSTOMERPROFILEArray

() == null

 ||

((pF2Controller)pageFlow).profile.getPROFILEVIEW().getCUSTOMERPROFILEArray

Using L iqui d Data Cont ro ls to Deve lop Workshop Appl ica t ions

2-34 Application Developer’s Guide

().length == 0){

 %>

<p>No data</p>

<% } else {%>

<netui-data:repeater dataSource=

"{pageFlow.profile.PROFILEVIEW.CUSTOMERPROFILEArray}">

 <netui-data:repeaterHeader>

 <table cellpadding="2" border="1" class="tablebody" >

 <tr>

<!- the rest of the table and NetUI code goes here -->

<td><netui:label value

="{container.item.PROFILE.DEFAULTSHIPMETHOD}"></netui:label></td>

 </tr>

 </netui-data:repeaterItem>

 <netui-data:repeaterFooter></table></netui-data:repeaterFooter>

 </netui-data:repeater>

<% }%>

6. Test the application.

Security Considerations With Liquid Data Controls
This section describes security considerations to be aware of when developing applications using
Liquid Data controls. The following sections are included:

Security Credentials Used to Create Liquid Data Control

Testing Controls With the Run-As Property in the JWS File

Trusted Domains

Security Credentials Used to Create Liquid Data Control
The WebLogic Workshop Application Properties (Tools —> Application Properties) allow you to set
the connection information to connect to the domain in which you are running. You can either use the
connection information specified in the domain boot.properties file or override that information
with a specified username and password.

Secur i t y Cons ide ra t i ons Wi th L iqu id Data Cont r o ls

Application Developer’s Guide 2-35

When you create a Liquid Data Control (.jcx) file and are connecting to a local Liquid Data server
(Liquid Data on the same domain as Workshop), the user specified in the Application Properties is
used to connect to the Liquid Data server. When you create a Liquid Data Control and are connecting
to a remote Liquid Data server (Liquid Data on a different domain from Workshop), you specify the
connection information in the Liquid Data Control Wizard Connection information dialog (see
Figure 2-6).

When you create a Liquid Data Control, the Control Wizard displays all queries to which the specified
user has access privileges. The access privileges are defined by any security policies set on the queries,
either directly or indirectly.

Note: The security credentials specified through the Application Properties or through the Liquid
Data Control Wizard are only used for creating the Liquid Data Control (.jcx) file, not for
testing queries through the control. To test a query through the control, you must get the user
credentials either through the application (from a login page, for example) or by using the
run-as property in the Web Service file.

Testing Controls With the Run-As Property in the JWS File
For testing, you can use the run-as property to test a control running as a specified user. To set the
run-as property in a Web Service, open the Web Service and enter a user for the run-as property in the
WebLogic Workshop property editor. Queries run through a Liquid Data Control used by the Web
Service

When a query is run from an application, the application must have a mechanism for getting the
security credential. The credential can come from a login screen, it can be hard-coded in the
application, or it can be imbedded in a J2EE component (for example, using the run-as property in a
.jws Web Service file).

Note: The Liquid Data Control property editor shows a run-as property, but the run-as property in
the Liquid Data Control does not cause the Liquid Data Control to run as the specified user.
If you want to use this feature, you must specify the run-as property in the .jws file, not in
the .jcx file.

Trusted Domains
If the Liquid Data server is on different domain from WebLogic Workshop, then both domains must be
set up as trusted domains.

Domains are considered trusted domains if they share the same security credentials. With trusted
domains, a user that exists on one domain need not be authenticated on the other domain (as long as
the user exists on both domains).

Using L iqui d Data Cont ro ls to Deve lop Workshop Appl ica t ions

2-36 Application Developer’s Guide

Note: After configuring domains as trusted, you must restart the domains before the trusted
configuration takes effect.

To Configure Trusted Domains
Perform the following steps to configure domains as a trusted:

1. Log into the WebLogic Administration Console as an administrator.

2. Click the node corresponding to your domain.

3. At the bottom of the General tab for the domain configuration, click the link labeled “View
Domain-wide Security Links.”

4. Click the Advanced tab.

Figure 2-20 Setting up Trusted Domains

5. Uncheck the Enable Generated Credential box, enter and confirm a credential (usually a
password), and click Apply.

6. Repeat this procedure for all of the domains you want to set up as trusted. The credential must
be the same on each domain.

For more details on WebLogic security, see “Configuring Security for a WebLogic Domain” in the
WebLogic Server documentation.

http://e-docs.bea.com/wls/docs81/secmanage/domain.html

Moving Your L iqu id Data Cont r o l App l i ca t i ons to P roduc t i on

Application Developer’s Guide 2-37

Moving Your Liquid Data Control Applications to Production
When you move any Liquid Data deployment from development to production, you must move Liquid
Data and WebLogic Server resources (JDBC Connection Pools, Liquid Data Data Sources, the Liquid
Data repository, and so on) from the development environment to the production environment. For
details about deploying Liquid Data, see the Liquid Data Deployment Guide.

For applications that use Liquid Data controls, you must also deploy and update the
ldcontrol.properties file, which contains connection information for Liquid Data controls. This
section describes the development to production lifecycle and provides the basic steps for moving an
application containing Liquid Data controls from development to production. The following sections
are included:

Development to Production Lifecycle Architecture

Steps For Deploying to Production

Development to Production Lifecycle Architecture
In a typical development scenario, you will develop your applications in one environment and then
deploy them in another. There are two main artifacts that you need to deploy on the production
environment:

Packaging Liquid Data JAR Files in Application .ear Files

Liquid Data ldcontrol.properties File

http://edocs.bea.com/liquiddata/docs81/deploy/index.html

Using L iqui d Data Cont ro ls to Deve lop Workshop Appl ica t ions

2-38 Application Developer’s Guide

Figure 2-21 Development to Production Lifecycle

Packaging Liquid Data JAR Files in Application .ear Files
After you have developed and tested your application using WebLogic Workshop in your development
environment, you must create a .ear file for deployment to your production server(s). All the
resources the application needs are already included in the application Libraries directory, so the
only thing you need to do is create the .ear file for the application.

To Generate the .ear File in Workshop
Perform the following steps to generate an enterprise archive file (.ear) in WebLogic Workshop:

1. Open your application in WebLogic Workshop, if it is not already opened.

2. Select Build —>Build EAR from the Workshop menu.

When the build is complete, WebLogic Workshop lists the .ear file location in the Build window.

Development Environment Production Environment

Deploy

Update and Deploy

ldcontrol.properties

 File

.ear File

WebLogic Server
WebLogic Portal
Other Components

WebLogic Server
WebLogic Portal
Other Components

Liquid Data

Liquid Data

WebLogic Workshop

Moving Your L iqu id Data Cont r o l App l i ca t i ons to P roduc t i on

Application Developer’s Guide 2-39

Liquid Data ldcontrol.properties File
Each domain that runs Liquid Data Control applications has a single ldcontrol.properties file,
which stores the connection information for all Liquid Data Control applications running in the
domain. The ldcontrol.properties file is located at the root directory of your domain where the
Liquid Data Control application .ear file is deployed. There is an entry in the
ldcontrol.properties file for each control you have created in each application.

The entries in the ldcontrol.properties file are of the following form:

AppName.ProjectName.FolderName.jcxName=t3\://hostname\:port

where:

Note: The colons (:) in the URL must be escaped with a backslash (\) character.

If the URL value is missing, the Liquid Data Control uses the connection information from the domain
config.xml file.

Name Description

AppName The name of the WebLogic Workshop application.

ProjectName The name of the WebLogic Workshop Project which contains the
Liquid Data Control.

FolderName The name of the folder which contains the Liquid Data Control.

jcxName The name of the Liquid Data Control file (without the .jcx
extension). For example, if the control file is named
myLDControl.jcx, the entry in this file is myLDControl.

hostname The hostname or IP address of the Liquid Data Server for this
control.

port The port number for the Liquid Data Server for this control.

Using L iqui d Data Cont ro ls to Deve lop Workshop Appl ica t ions

2-40 Application Developer’s Guide

The following is a sample ldcontrol.properties file.

#Fri Oct 31 15:30:36 PST 2003

myTest.myTestWeb.myFolder.Untitled=t3\:myLDServer\:7001

myTest.myTestWeb.myFolder.myControl=

SampleApp.LiquidDataSampleApp.Controls.RTLControl=t3\:myLDServer\:7001

SampleApp.Untitled.NewFolder.Untitled=t3\:yourLDServer\:7001

testnew.Untitled.NewFolder.ldc=

test.testWeb.NewFolder.Untitled=

Steps For Deploying to Production
This section describes the following basic steps for moving an application from development to
production:

Step 1: Generate Enterprise Application Archive (.ear) in Workshop

Step 2: Merge ldcontrol.properties File entries to Production Server

Step 3: Deploy Enterprise Application Archive (.ear) on Production Server

Step 1: Generate Enterprise Application Archive (.ear) in Workshop
Use WebLogic Workshop to generate the .ear file for your application as described in “To Generate the
.ear File in Workshop” on page 2-38.

Step 2: Merge ldcontrol.properties File entries to Production Server
Merge the entries in the ldcontrol.properties file from the root level of your development
domain with the ldcontrol.properties file in the root level of the production domain. There
must be one entry for each Liquid Data Control. If the ldcontrol.properties file does not exist
in the production domain, copy it from your development domain.

You must also update the URLs in each entry of the file to reference the production Liquid Data
servers. For details on and for the syntax of the ldcontrol.properties file, see “Liquid Data
ldcontrol.properties File” on page 2-39.

Moving Your L iqu id Data Cont r o l App l i ca t i ons to P roduc t i on

Application Developer’s Guide 2-41

Step 3: Deploy Enterprise Application Archive (.ear) on Production Server
Deploy your enterprise archive (.ear) file on the production WebLogic Server. You deploy the .ear
file from the domain —> Deployments —> Applications node of the WebLogic Server Administration
Console. The .ear file must be accessible from the filesystem in which the WebLogic administration
server is running. For details on deploying .ear files, see “Deploying WebLogic Server Applications”
from the WebLogic Server documentation.

http://e-docs.bea.com/wls/docs81/deployment/index.html

Using L iqui d Data Cont ro ls to Deve lop Workshop Appl ica t ions

2-42 Application Developer’s Guide

Application Developer’s Guide 3-1

C H A P T E R 3

Invoking Queries in EJB Clients

This chapter describes how to execute BEA Liquid Data for WebLogic queries in EJB clients. It
contains the following steps:

Step 1: Connect to the Liquid Data Server

Step 2: Specify Query Parameters

Step 3: Execute the Query

Step 4: Process the Results of the Query

For more information about EJB clients, see “EJB Development” on page 1-2.

Step 1: Connect to the Liquid Data Server
An EJB client may use standard JNDI and EJB calls in order to obtain a reference to the remote
interfaces of the query execution session beans.

To do so, a remote client first needs to set up the JNDI initial context by specifying the
INITIAL_CONTEXT_FACTORY and PROVIDER_URL environment properties.

The value of INITIAL_CONTEXT_FACTORY should be set to
weblogic.jndi.WLInitialContextFactory.

The value of PROVIDER_URL should reflect the location (URI) of the application server hosting
the Liquid Data Server (for example, t3://localhost:7001).

Invok ing Que r ies i n EJB C l i en t s

3-2 Application Developer’s Guide

A local client, i.e. a client that resides on the application server that hosts the Liquid Data Server, may
bypass these steps by using the settings in the default context obtained by invoking the empty initial
context constructor (i.e. by calling new InitialContext()).

At this stage, the client may also optionally authenticate itself by passing its security context to the
corresponding JNDI environment properties SECURITY_PRINCIPAL and
SECURITY_CREDENTIALS. Alternatively, the client may use the query execution API as an
anonymous (default) user.

Once the JNDI context is set up, the client may use the JNDI names of the remote home interfaces of
the stateless query execution session bean in order to perform a lookup and obtain remote references
to the EJBHome objects.

The JNDI name for the home interface of the query execution SSB is bea.ldi.server.QueryHome.
The home interface may finally be used to obtain references to the EJBObject objects of the session
bean.

The JNDI name for the remote interface of the query execution SSB is
com.bea.ldi.server.QueryHome. The home interface may finally be used to obtain references to
the EJBObject object (com.bea.ldi.server.Query) of the session bean.

The code excerpt below is an example of a remote client that obtains a reference to the EJBObject
of the stateless query execution session bean and it illustrates the concepts discussed above:

Listing 3-1 Obtaining a Reference to EJB Object Query

 import java.util.Hashtable;

 import javax.naming.Context;

 import javax.naming.InitialContext;

 import javax.naming.NamingException;

 import javax.rmi.PortableRemoteObject;

 import com.bea.ldi.server.*;

 ...// more code

 private static final String QUERY_HOME_JNDI_NAME = "bea.ldi.server.QueryHome";

 ...// more code

 QueryHome queryHome = null;

Application Developer’s Guide 3-3

 Query query = null;

 // obtain a remote Query reference

 try {

queryHome = lookupQueryHome();

Object obj = queryHome.create();

query = (com.bea.ldi.server.Query) narrow(obj, com.bea.ldi.server.Query.class);

 }

 catch (Exception e) {

// code to handle the exception

 }

 ...// more code

 /**

 * Lookup the EJB home in the JNDI tree of the specified Liquid Data Server.

 */

 private QueryHome lookupQueryHome()

 throws NamingException {

Context ctx = getInitialContext();

// Lookup the bean’s home using JNDI

Object home = ctx.lookup(QUERY_HOME_JNDI_NAME);

return (QueryHome) narrow(home, QueryHome.class);

 }

 /**

 * Obtains the JNDI context.

 */

 private Context getInitialContext() throws NamingException {

// Set up the environment properties

 Hashtable h = new Hashtable();

Invok ing Que r ies i n EJB C l i en t s

3-4 Application Developer’s Guide

 h.put(Context.INITIAL_CONTEXT_FACTORY,

 "weblogic.jndi.WLInitialContextFactory");

h.put(Context.PROVIDER_URL, "t3://localhost:7001");

h.put(Context.SECURITY_PRINCIPAL, "username");

h.put(Context.SECURITY_CREDENTIALS, "password");

// Get an InitialContext

return new InitialContext(h);

 }

 /**

 * RMI/IIOP clients should use this narrow function

 */

 private Object narrow(Object ref, Class c) {

 return PortableRemoteObject.narrow(ref, c);

 }

Step 2: Specify Query Parameters
Parameterized queries need to be configured before they are executed. Parameterized queries require
the client to specify the values of the query parameters. Query parameters allow for dynamic binding
of parts of an XQuery query to values specified at runtime. The presence of a parameter in an XQuery
query is manifested through the use of the following notation:

$#pname

where pname is a unique name across the query assigned to the parameter. In general, parameters
may be used in those places inside a query where a constant could be used. For a list of valid parameter
types, see “Parameterized Queries” on page 1-3.

The following sample query illustrates the use of a parameter inside a query.

Listing 3-2 Parameterized XQuery Query

<root>

Application Developer’s Guide 3-5

{

for $b in document("bib")//book,

$pub in $b/publisher

where $pub = $#publisher

return

<result>

{$b/title}

{$b/author}

</result>

}

</root>

The following code excerpt demonstrates the sequence of calls required to set the parameter for such
a query using the Liquid Data Server API.

Listing 3-3 Setting Query Parameters

import com.bea.ldi.server.common.QueryParameters;

... // more code

QueryParameters qp = new QueryParameters();

qp.setString("publisher", "Morgan Kaufmann Publishers");

The value of a parameter can be overwritten and reused in a new query execution by setting it to a new
value. Using anything other than a String for a parameter name, or setting a parameter value of an
invalid type, results in a RuntimeException.

Invok ing Que r ies i n EJB C l i en t s

3-6 Application Developer’s Guide

Step 3: Execute the Query
Once the reference to the EJBObject of the query execution session bean has been obtained and the
query has been configured by setting any query parameters or attributes, the query is ready to be
executed.

When executing a query, its fully qualified name must be used. When the physical location of the query
is:

repository/stored_queries/dir1/dir2/SQ1.xq

It would be qualified as:

dir1.dir1.SQ1

For example, if the query is located at:

LDrepository/stored_queries/inventory/widgetsales.xq

the query is qualified as:

inventory.widgetsales

The Query remote interface offers a variety of execution calls based on whether the query is
parameterized or fixed and whether it is stored or ad hoc.

As an example, assuming that the client has obtained a reference to a Query object, as shown in the
following code listing, and the String variable queryString has been loaded with the contents of an
ad hoc XQuery query, the following excerpt shows how to obtain the query result.

Listing 3-4 Execution of an Ad Hoc Non-Parameterized Query

import com.bea.ldi.server.Query;

import com.bea.ldi.server.common.QueryResult;

... // more code

Query query = null;

... // obtain reference to Query

QueryResult result = null;

try {

result = query.execute(queryString);

}

Application Developer’s Guide 3-7

if !(result.isEmpty()){

... // process result

}

else {

... // query returned no data

}

catch(RemoteException e) {

// code to handle the exception

}

finally {

try {

query.remove();

}

catch(Exception e) {

 // code to handle the exception

}

}

If a stored query is to be executed, then call executeStored(queryName), where the String
variable queryName is assumed to contain the name of the stored query to be executed.

If the query is parameterized, once the query parameters have been set, they should be passed in the
execution call, that is, the execute(queryString) call should be replaced with the calls
execute(queryString, qp) and executeStored(queryName, qp) in the case of ad hoc and
stored queries respectively. The QueryParameters variable qp in the previous calls is assumed to
be loaded with the query parameters.

Note that all execution calls are remote and therefore they may throw a RemoteException, which
should be handled by the client. Note also, that once the query result has been retrieved, the client
may release resources by removing the EJBObject. If the query is parameterized, the client may use
the Query reference to execute the same query multiple times, possibly setting different values for

Invok ing Que r ies i n EJB C l i en t s

3-8 Application Developer’s Guide

the query parameters each time, before removing the EJBObject. In any case, other server-side
resources related to query execution (for example, database cursors) are automatically released once
a query has been executed.

Step 4: Process the Results of the Query
Further processing of the query result at the client side may take various forms ranging from merely
extracting, or printing out the XML string to using the DOM representation of the result in order to
drill into specific subsets of it.

The result is fully materialized on the server in the form of an unformatted XML string, which is
transmitted to the client. The client may then extract the XML content of the query result as a String
using toXML() method. Alternatively, the client may use the getDocument() call in order to obtain
the DOM representation of the result, provided that a JAXP-compliant parser is available in the client
environment. In either case, the client is free to process the result using any XML processor (for
example, using an XSLT processor to convert the result to a presentable format like HTML).

Application Developer’s Guide 4-1

C H A P T E R 4

Invoking Queries in JSP Clients

This chapter describes how to invoke BEA Liquid Data for WebLogic queries in JSP client applications
using the Liquid Data tag library. It contains the following sections:

About the Liquid Data Tag Library

Processing Steps

For more information about JSP clients, see “JSP Tag Library Development” on page 1-2.

Note: The following discussion assumes that you are familiar with the use of custom tag libraries.
For more information, see Programming WebLogic JSP Tag Extensions in the WebLogic
Server documentation.

About the Liquid Data Tag Library
This section introduces the Liquid Data tag library. It contains the following sections:

Scope of the Liquid Data Tag Library

Location of the Liquid Data Tag Library

Making the Tag Library Accessible to a Web Application

Tags in the Liquid Data Tag Library

Invok ing Que r ies i n JSP C l i ents

4-2 Application Developer’s Guide

Scope of the Liquid Data Tag Library
The goal of the Liquid Data tag library is to provide simple declarative means for JSP clients to obtain
access to the XML results of XQuery queries. Tag library clients need only be concerned with the
configuration of parameterized queries. The following section provides detailed information on how
to set up query parameters in this case.

Location of the Liquid Data Tag Library
The Java classes and other file resources required by tag library clients are packaged inside
LDS-client.jar, LDS-em-client.jar, and LDS-taglib.jar. The tag library descriptor file
(taglib.tld) defines the elements and attributes in the Liquid Data tag library. The taglib.tld
is stored under META-INF inside the LDS-taglib.jar file.

Making the Tag Library Accessible to a Web Application
In order to use the Liquid Data tag library in a web application, you must do the following:

Copy the LDS-taglib.jar File to the WEB-INF/lib Directory

Add the <taglib> Entry to the web.xml File

Copy the LDS-taglib.jar File to the WEB-INF/lib Directory
Each web application that uses the Liquid Data tag library must have a copy of the LDS-taglib.jar
file in the application_context/WEB-INF/lib directory. The LDS-taglib.jar file is
installed with Liquid Data as the following file:

bea_home/liquiddata/server/lib/LDS-taglib.jar

Add the <taglib> Entry to the web.xml File
You must add the following entry to the web.xml file for each web application that uses the Liquid
Data tag library:

<taglib>

<taglib-uri>LDSTLD</taglib-uri>

<taglib-location>/WEB-INF/lib/LDS-taglib.jar</taglib-location>

</taglib>

About the L iquid Data Tag L ib ra ry

Application Developer’s Guide 4-3

Tags in the Liquid Data Tag Library
The Liquid Data tag library contains the following tags:

query Tag

param Tag

query Tag
The query tag specifies the query to execute and the host machine on which to run the query. The
query tag has the following attributes.

The following example specifies the stored query on the specified host machine.

<lds:query name="MyStoredQuery" server="t3://222.222.22:7001"

username="ldsystem" password="ldsecurity">

Table 4-1 Attributes of the query tag

Attribute Description

name Specifies the name of a stored query from which to retrieve
results.

server Specifies the host machine on which the Liquid Data Server is
running. Use only when JSP clients are deployed on different
machine from the one hosting the Liquid Data Server.

username Specifies the WebLogic user name for the query request. If you do
not specify a username, the query is sent as the guest user.

password Specifies the password for the username attribute.

Invok ing Que r ies i n JSP C l i ents

4-4 Application Developer’s Guide

param Tag
The param tag specifies a query parameter as a name-value pair. For each parameter, you specify a
separate param tag. The param tag has the following attributes.

The following example specifies the name of a publisher in the param tag.

<lds:param name="publisher" value="<%=\"Morgan Kaufmann Publishers\"%>"/>

Processing Steps
This section describes the process of executing queries from JSP clients. It contains the following
steps:

Step 1: Add the Tag Library to your Web Application

Step 2: Reference the Liquid Data Tag Library

Step 3: Connect to the Liquid Data Server

Step 4: Specify Query Parameters

Step 5: Execute the Query

Step 6: Process the Query Results

Step 1: Add the Tag Library to your Web Application
You must add the LDS-taglib.jar file to the WEB-INF/lib directory of your web application and
must update the web.xml file for the web application. For details, see “Making the Tag Library
Accessible to a Web Application” on page 4-2.

Table 4-2 Attributes of the param tag

Attribute Description

name Name of the query parameter.

value Value of the query parameter.

Process ing S teps

Application Developer’s Guide 4-5

Step 2: Reference the Liquid Data Tag Library
To use the tags in the Liquid Data tag library, you must reference them in each JSP page. To reference
the JSP tags described in “Tags in the Liquid Data Tag Library” on page 4-3, including the following
code near the top of each JSP page:

<%@ taglib uri="LDSTLD" prefix="lds" %>

Note: The default prefix (lds:) is configurable.

Step 3: Connect to the Liquid Data Server
Tag library clients are JSP clients. JSP clients that are deployed on the same application server that
hosts Liquid Data Server do not need to take any steps in order to connect to Liquid Data Server, as
this case is supported by default.

JSP clients deployed on a server other than the one hosting Liquid Data Server need to specify the
location (URL) of the server hosting Liquid Data Server using the server attribute of the query tag,
as shown in the following example.

Listing 4-1 Non-Local JSP Client Connecting to Liquid Data Server

<%@ taglib uri="LDSTLD" prefix="lds" %>

...

<lds:query ... server="t3://222.222.22:7001" username="ldsystem"

password="ldsecurity">

...

</lds:query>

Step 4: Specify Query Parameters
In the Liquid Data tag library, the query tag accepts a nested param tag, which may be used to specify
the name and the value of a parameter applied to the XQuery query represented by the query tag. The
following excerpt illustrates how to set the parameter for the query shown in Listing 4-3.

Invok ing Que r ies i n JSP C l i ents

4-6 Application Developer’s Guide

Listing 4-2 Setting the Query Parameters

<%@ taglib uri="LDSTLD" prefix="lds" %>

...

<lds:query ... server="t3://222.222.22:7001">

...

<lds:param name="publisher"

value="<%=\"Morgan Kaufmann Publishers\"%>"/>

</lds:query>

The value of the parameter is a JSP expression that is evaluated at run time. Quotes are escaped out.
The supported parameter types are the same as those supported for EJB clients. The actual type of the
parameter is implied by the Java type of the value specified as the content of the value attribute. So,
for example, a value Date.valueOf("2002-03-01") would correspond to a parameter of type
java.sql.Date. A query that uses multiple parameters would require the use of as many param
elements.

Step 5: Execute the Query
The Liquid Data Server Tag Library supports both ad hoc and stored queries.

When executing a query, its fully qualified name must be used. When the physical location of the query
is:

repository/stored_queries/dir1/dir2/SQ1.xq

The query is qualified as:

dir1.dir1.SQ1

For example, if the query is located at:

LDrepository/stored_queries/inventory/widgetsales.xq

the query would be qualified as:

inventory.widgetsales

Process ing S teps

Application Developer’s Guide 4-7

Executing Stored Queries
Stored queries are specified by having their name being passed as the value of the name attribute of
the query tag, as shown in the following example of a parameterized, stored query.

Listing 4-3 Sample Stored Query

<%@ taglib uri="LDSTLD" prefix="lds" %>

...

<lds:query name="MyStoredQuery" server="t3://222.222.22:7001">

<lds:param name="publisher"

value="<%=\"Morgan Kaufmann Publishers\"%>"/>

</lds:query>

Executing Ad Hoc Queries
Ad hoc queries should have their content directly embedded inside the query element, as shown in
the following example.

Listing 4-4 Sample Ad Hoc Query

<%@ taglib uri="LDSTLD" prefix="lds" %>

...

<lds:query server="t3://222.222.22:7001">

<lds:param name="publisher"

value="<%=\"Morgan Kaufmann Publishers\"%>"/>

<root>

{

for $b in document("bib")//book,

$pub in $b/publisher

where $pub = $#publisher

Invok ing Que r ies i n JSP C l i ents

4-8 Application Developer’s Guide

return

<result>

{$b/title}

{$b/author}

</result>

}

</root>

</lds:query>

Handling Exceptions
Any exception that is thrown during query execution should be handled using standard JSP error
handling techniques.

Step 6: Process the Query Results
Query execution results in the unformatted XML content of the query result becoming available to the
JSP client for further processing.

Typically, you perform some kind of post-processing to the query results for display purposes. JSP
clients can apply an XSL transform to the XML query result in order to convert it to a presentable
format. You can perform the transformation by enclosing the query tag with another custom tag that
performs the XSL transformation.

For example, the following listing uses the x:transform tag described in the JavaServer Pages
Standard Tag Library 1.0 Specification, which is published by the Sun Microsystems, Inc. at the
following URL:

http://java.sun.com/products/jsp/jstl/index.html

Listing 4-5 Applying an XSL Transform to the Query Result

<%@ taglib uri="LDSTLD" prefix="lds" %>

<%@ taglib uri="X" prefix="x" %>

...

Process ing S teps

Application Developer’s Guide 4-9

<x:transform xsltUrl="url-to-xsl-script">

<lds:query server="t3://222.222.22:7001">

<lds:param name="publisher"

value="<%=\"Morgan Kaufmann Publishers\"%>"/>

<root>

for $b in document("bib")//book,

$pub in $b/publisher

where $pub = $#publisher

return

<result>

{$b/title}

{$b/author}

</result>

}

</root>

</lds:query>

</x:transform>

You can also use the JSP tag library provided with WebLogic server to perform the XSLT
transformation. For details on this tag library, see:

http://e-docs.bea.com/wls/docs81/xml/xml_apps.html

The following sample code uses the WebLogic JSP tag library to perform the XSLT transformation.

Listing 4-6 Using the WebLogic Server XSLT JSP Tag Library for an XSL Transform

<%@ taglib uri="LDSTLD" prefix="lds" %>

<%@ taglib uri="xmlx" prefix="x" %>

<x:xslt media="http">

<x:xml>

<lds:query name="viewSample" server="t3://localhost:7001"

username="ldsystem" password="ldsystem" >

</lds:query>

</x:xml>

<x:stylesheet media="http" uri="http.xsl"/>

</x:xslt>

Invok ing Que r ies i n JSP C l i ents

4-10 Application Developer’s Guide

Application Developer’s Guide 5-1

C H A P T E R 5

Invoking Queries in Web Service Clients

This chapter introduces how to invoke BEA Liquid Data for WebLogic™ queries in Web service client
applications. It contains the following sections:

Finding the WSDL URL for Generated Web Services

Invoking Web Services Programmatically

For more information about Liquid Data-generated Web services, see “Generating and Publishing Web
Services” in the Liquid Data Administration Guide.

Finding the WSDL URL for Generated Web Services
After generating a Web service for a selected stored query, the Administration Console displays a
confirmation message that shows the URL of the generated Web service. The URL of the WSDL of a
generated Web service has the following pattern:

http://HOSTNAME:PORT/liquiddata/query_name/webservice?WSDL

For example, if the stored query is named order.xq, then the URL of its WSDL is:

http://localhost:7001/liquiddata/order/webservice?WSDL.

Invoking Web Services Programmatically
You invoke Liquid Data Web services that were generated in the Administration Console using the
same approach that you would use for invoking any WebLogic Web Service. For more information, see
“Invoking Web Services” in Programming WebLogic Web Services in the WebLogic Server
documentation.

Invok ing Que r ies i n Web Se rv ice C l i ents

5-2 Application Developer’s Guide

Application Developer’s Guide 6-1

C H A P T E R 6

Invoking Queries in WebLogic
Integration Business Processes

This chapter describes how to invoke BEA Liquid Data for WebLogic queries from business processs
in BEA WebLogic Integration. It contains the following sections:

Liquid Data and WebLogic Integration Business Processes

Setting Up a Liquid Data Query in a Business Process

Invok ing Que r ies i n WebLog ic In teg ra t ion Bus iness P rocesses

6-2 Application Developer’s Guide

Liquid Data and WebLogic Integration Business Processes
Business processes in WebLogic Integration can invoke Liquid Data queries using a Liquid Data
Control. For comprehensive information about WebLogic Integration, see the WebLogic Integration
documentation.

A business process can use a Liquid Data query to easily gather data from disparate data sources. For
an example of a business process that uses a Liquid Data query, open the Liquid Data sample
application in WebLogic Workshop. The sample application is installed in the following location:

<BEA_HOME>/weblogic81/samples/liquiddata/SampleApp/SampleApp.work

The sample application uses a WebLogic Integration business process to submit updated user profile
data entered by the user (for example, address, credit card, and so on), and then use a Liquid Data
query to return the updated profile.

Setting Up a Liquid Data Query in a Business Process
You can easily add Liquid Data queries to WebLogic Integration business processes by creating a
Liquid Data Control that accesses the query or queries you want to use in the business process. The
procedure for invoking a Liquid Data query is similar to that of invoking a database query with a
database control.

There are three basic steps to adding Liquid Data Queries to a WebLogic Integration business
processes:

Create the Liquid Data Control

Adding a Liquid Data Control to a JPD File

Setting Up the Control in the Business Process

Create the Liquid Data Control
Before you can run a Liquid Data query in a WebLogic Integration business process, you must create
a Liquid Data Control that accesses the query or queries you want to run in your business process. For
details, see “Using Liquid Data Controls to Develop Workshop Applications” on page 2-1.

http://edocs.bea.com/wli/docs81/

Se t t ing Up a L iquid Data Que ry in a Bus iness Pr ocess

Application Developer’s Guide 6-3

Adding a Liquid Data Control to a JPD File
Once you have created a Liquid Data Control, you can add it to a business process the same way you
add any other control to a business process. For example, you can drag and drop the control into the
WebLogic Integration business process in the place where you want to run your Liquid Data query or
you can add the Liquid Data Control to the Data Palette. For comprehensive information about using
WebLogic Integration, see the WebLogic Integration documentation.

Setting Up the Control in the Business Process
Once you have added the Liquid Data Control to the business process, you must configure it in your
business process. As shown in Figure 6-1, you must select the query in the General Settings section of
the Liquid Data Control portion of the business process, specify input parameters for the query in the
Send Data section, and specify the output of the query in the Receive Data section.

Figure 6-1 WebLogic Integration Business Process Accessing a Liquid Data Control

For an example of using a Liquid Data Control in a WebLogic Integration business process, see the
Liquid Data sample application.

http://edocs.bea.com/wli/docs81/

Invok ing Que r ies i n WebLog ic In teg ra t ion Bus iness P rocesses

6-4 Application Developer’s Guide

Application Developer’s Guide 7-1

C H A P T E R 7

Invoking Queries in BEA WebLogic
Portal Applications

BEA WebLogic Portal™ users can invoke the BEA Liquid Data for WebLogic Query API from WebLogic
Portal. Calls to the Liquid Data query API are transparent to Portal users. This chapter includes the
following sections:

Invoking Liquid Data Queries as EJB Clients

Invoking Liquid Data Queries as JSP Clients

For general information about developing portals, see the WebLogic Portal documentation.

Invoking Liquid Data Queries as EJB Clients
WebLogic Portal needs to be configured to find the Liquid Data query EJB
(com.bea.ldi.server.QueryHome), a stateless session bean. For more information, see
Chapter 3, “Invoking Queries in EJB Clients.”

Invoking Liquid Data Queries as JSP Clients
WebLogic Portal can invoke Liquid Data queries using the Liquid Data Query API and the Liquid Data
tag library. Invocations of Liquid Data queries are transparent to Portal users. For more information,
see Chapter 4, “Invoking Queries in JSP Clients.”

http://edocs.bea.com/wlp/docs81/

Invok ing Que r ies i n BEA WebLog ic Po r tal App l i cat ions

7-2 Application Developer’s Guide

To invoke Liquid Data queries, you first need to deploy Liquid Data and WebLogic Portal according to
the instructions in “Deploying with WebLogic Portal” in “Deployment Tasks” in Deploying Liquid
Data. Once deployed, you can access the Liquid Data query API from a portlet.jsp file using the
JSP tag library. For example, the following JSP code invokes a query named isq on port 7001 of a
server named myserver:

Listing 7-1 Sample JSP Code Invoking the Liquid Data Query API

<!-- Declare the LD taglib library -->

<%@ taglib uri="LDSTLD" prefix="lds" %>

<!-- Execute the stored procedure "isq" at server "myserver" -->

<lds:query name="isq" server="t3://myserver:7001">

</lds:query>

Application Developer’s Guide 8-1

C H A P T E R 8

Using Custom Functions

This section describes how to create custom functions in BEA Liquid Data for WebLogic. It contains
the following sections:

About Custom Functions

Defining Custom Functions

Examples of Custom Functions

About Custom Functions
Liquid Data provides a set of standard functions to use when creating data views and queries. You can
also define custom functions in the Liquid Data server repository to use in the Data View Builder or
in hand-coded queries. Custom functions, which are implemented as Java methods, allow you to
extend the power and functionality of Liquid Data. Queries can invoke custom functions during query
execution just as they can standard functions.

A custom function is:

Implemented in Java code, as described in “Step 1: Write the Custom Function Implementation
in Java” on page 8-2.

You can package Java implementations in a JAR file that is stored in the custom_lib folder of
the Liquid Data repository. If any custom functions refer to addition Java libraries that are not
stored in the custom_lib folder of the repository, then you must specify those folders in the
Liquid Data CLASSPATH that you configure on the General tab in the Liquid Data node of the
Administration Console. For more information, see “Configuring Liquid Data Server Settings” in
the Liquid Data Administration Guide.

Using Custom Funct ions

8-2 Application Developer’s Guide

Declared as a method in a custom functions library definition (.CFLD) file, as described in
“Step 2: Create the Custom Functions Library Definition File” on page 8-4.

A function library is a collection of one or more declared custom functions that Liquid Data
manages as a single unit. Each function library usually corresponds to a Java class file that
contains the function implementations. However, the function library can also reference
functions that are implemented in several Java class files. You store custom functions library
definition files in the custom_functions folder of the Liquid Data repository.

Registered on the Repository tab in the in the Administration Console, as described in
“Step 3: Register the Custom Function in the Administration Console” on page 8-6.

Once configured as custom functions, descriptions in the Liquid Data server repository will
show up as functions available for use in any Data View Builder client or hand-coded XQuery
that connects to this server.

Invoked in a query in the same way that you would invoke a standard function.

Defining Custom Functions
This section describes the sequence of tasks for defining custom functions for use in the Data View
Builder. The process of defining custom functions involves the following steps:

Step 1: Write the Custom Function Implementation in Java

Step 2: Create the Custom Functions Library Definition File

Step 3: Register the Custom Function in the Administration Console

Once a custom function is created, declared, and registered, you can invoke them in queries created
using the Data View Builder.

Step 1: Write the Custom Function Implementation in Java
To define a custom function, you first write its implementation in Java and then compile it. The custom
function implementation can exist in a single or multiple Java class files. A single Java class file can
contain implementations of multiple custom functions. You package Java implementation in a JAR file
that is stored in the custom_lib folder of the Liquid Data repository.

For examples of custom function implementations, see:

“Implementation of Custom Functions for Simple Types” on page 8-7

“Implementation of a Custom Function for a Complex Type” on page 8-12

Def in ing Custom Funct ions

Application Developer’s Guide 8-3

Rules for Writing Custom Function Implementations
When writing a custom function, you must comply with the following rules:

Declare the custom function as a static method.

For parameters and returned values, you must use the data types described in Table 8-1,
“Relationship Between XML and Java Data Types,” on page 8-3.

Use an alphabetic character (A-Z a-z) as the first letter of your custom function name.

Correspondence Between XML and Java Data Types
The following table describes the correspondence between XML and Java data types.

Note: For XML data types, the xs prefix corresponds to the XML schema namespace described at
the following URL: http://www.w3.org/2001/XMLSchema.

Table 8-1 Relationship Between XML and Java Data Types

XML Data Type Corresponding Java Data Type

xs:boolean java.lang.Boolean

xs:byte java.lang.Byte

xs:short java.lang.Short

xs:integer java.lang.Integer

xs:long java.lang.Long

xs:float java.lang.float

xs:double java.lang.double

xs:decimal java.math.BigDecimal

xs:string java.lang.String

xs:dateTime java.util.Calendar

Complex Element Type org.w3c.dom.Element

Using Custom Funct ions

8-4 Application Developer’s Guide

Step 2: Create the Custom Functions Library Definition File
After implementing a custom function in Java, you must declare the custom function in a custom
functions library definition (CFLD) file. A CFLD file describes each custom function in a structured
XML format. You store custom functions library definition files in the custom_functions folder of
the Liquid Data repository.

For examples of custom function implementations, see:

“CFLD File That Declares Custom Functions for Simple Types” on page 8-9

“CFLD File That Declares the Custom Function for a Complex Type” on page 8-12

Contents of a CFLD File
A CFLD file contains the following information:

Complex element definitions (for custom functions that operate on complex types)

Custom function signatures

Custom function implementation bindings—function name, return type, class, method, and any
arguments

Run-time attributes—running the custom function synchronously or asynchronously

Structure of a CFLD File
A CFLD file has the following structure:

Listing 8-1 Structure of a CFLD File

<?xml version = "1.0" encoding = "UTF-8"?>

<definitions>

<types>

<xs:schema> complex types </xs:schema>

</types>

<functions>

<function name="Name of the function" return_type="Return Type"

Def in ing Custom Funct ions

Application Developer’s Guide 8-5

class="Implementation class" method="Implementation method"

asynchronous="boolean value"? > *

<argument type="Argument Type" label="Argument label"/> *

<presentation group="Data View Builder Presentation Group" />

<description>Function Description</description>

</function>

</functions>

</definitions>

Elements and Attributes in a CFLD File
The following table describes the elements in a CFLD file.

Table 8-2 Elements in a CFLD File

Element Attribute Description

<types> Declares any complex data types that a custom function can accept
as parameters or return as results, if applicable.

<functions> Function definitions for all functions.

<function> Function definition for a single function.

name Name of the function in the form of prefix:localname.
The prefix must be declared in the <types> section.

return type Return type of the function, which can be either a supported
XML simple data type or a complex data type declared in the
<types> section.

class Implementation class.

method Implementation method.

asynchronous Optional. Determines whether the method should be executed
asynchronously (true) in a separate thread or not (false).
Specify true for functions that execute more slowly than other
functions.

Using Custom Funct ions

8-6 Application Developer’s Guide

Step 3: Register the Custom Function in the Administration
Console
After implementing a custom function and creating the CFLD file, you must register the custom
function using the Administration Console. Registration involves the following tasks:

Adding the JAR and CFLD files for the custom function to the custom_lib folder and
custom_functions folder, respectively, in the Liquid Data Server repository.

Adding the path to the JAR file in the Custom Functions Classpath field on the General tab in
the Liquid Data node, if any other JAR is referenced.

Creating a custom function description for each set of custom functions.

If security is enabled, assign roles to the custom function description and to the JAR and CFLD
files in the Liquid Data Server repository.

For detailed instructions, see “Configuring Access to Custom Functions” in the Liquid Data
Administration Guide.

Examples of Custom Functions
This section provides examples of custom functions that use simple and complex types. It includes the
following sections:

Example That Uses Simple Types

Example That Uses Complex Types

<argument> Argument declarations.

type Type of the argument (simple or complex).

label Optional. Label for the function that the Data View Builder
displays in the list.

<presentation
group>

For a group of related custom functions, if specified, defines the
label of a custom tab that appears in the Data View Builder.

<description> Text that describes the function in some detail.

Table 8-2 Elements in a CFLD File (Continued)

Element Attribute Description

Examples of Cus tom Funct ions

Application Developer’s Guide 8-7

Example That Uses Simple Types
This example shows how to create, declare and use custom functions that operate on simple types.

Implementation of Custom Functions for Simple Types
The following Java code implements custom functions. These functions implement a simple echo
operation that returns its argument back to the caller.

Listing 8-2 Java Code for Custom Functions That Use Simple Types

package cf;

import java.math.*;

import java.util.Date;

public class CustomFunctions

{

public static BigDecimal echoDecimal(BigDecimal v)

{

return v;

}

public static Integer echoInteger(Integer v)

{

return v;

}

public static Float echoFloat(Float v)

{

return v;

}

public static String echoString(String v)

{

return v;

Using Custom Funct ions

8-8 Application Developer’s Guide

}

public static Boolean echoBoolean(Boolean v)

{

return v;

}

public static Calendar echoDateTime(Calendar v)

{

return v;

}

public static Long echoLong(Long v)

{

return v;

}

public static Short echoShort(Short v)

{

return v;

}

public static Byte echoByte(Byte v)

{

return v;

}

public static Double echoDouble(Double v)

{

return v;

}

}

Examples of Cus tom Funct ions

Application Developer’s Guide 8-9

CFLD File That Declares Custom Functions for Simple Types
The following sample CFLD file declares the custom functions for simple types.

<?xml version = "1.0" encoding = "UTF-8"?>

<definitions>

<types>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

</xs:schema>

</types>

<functions>

<function name="echoString" return_type="xs:string"

class="cf.CustomFunctions" method="echoString" >

<argument type="xs:string" />

</function>

<function name="echoBoolean" return_type="xs:boolean"

class="cf.CustomFunctions" method="echoBoolean" >

<argument type="xs:boolean" />

</function>

<function name="echoByte" return_type="xs:byte"

class="cf.CustomFunctions" method="echoByte" >

<argument type="xs:byte" />

</function>

<function name="echoShort" return_type="xs:short"

class="cf.CustomFunctions" method="echoShort" >

<argument type="xs:short" />

</function>

<function name="echoInteger" return_type="xs:integer"

class="cf.CustomFunctions" method="echoInteger" >

Using Custom Funct ions

8-10 Application Developer’s Guide

<argument type="xs:integer" />

</function>

<function name="echoLong" return_type="xs:long"

class="cf.CustomFunctions" method="echoLong" >

<argument type="xs:long" />

</function>

<function name="echoFloat" return_type="xs:float"

class="cf.CustomFunctions" method="echoFloat" >

<argument type="xs:float" />

</function>

<function name="echoDouble" return_type="xs:double"

class="cf.CustomFunctions" method="echoDouble" >

<argument type="xs:double" />

</function>

<function name="echoDecimal" return_type="xs:decimal"

class="cf.CustomFunctions" method="echoDecimal" >

<argument type="xs:decimal" />

</function>

<function name="echoDateTime" return_type="xs:dateTime"

class="cf.CustomFunctions" method="echoDateTime" >

<argument type="xs:dateTime" />

</function>

</functions>

</definitions>

Examples of Cus tom Funct ions

Application Developer’s Guide 8-11

Query That Uses the Custom Functions for Simple Types
After the function library is registered in Liquid Data, it can be called from the following query (mycf
is the logical name specified in the CFLD file):

let

$es:=mycf:echoString("hello"),

$ebool:=mycf:echoBoolean(xf:true()),

$eb:=mycf:echoByte(cast as xs:byte("127")),

$eh:=mycf:echoShort(cast as xs:short("32767")),

$ei:=mycf:echoInteger(cast as xs:integer("2147483647")),

$el:=mycf:echoLong(cast as xs:long("9223372036854775807")),

$ef:=mycf:echoFloat(cast as xs:float("1.0")),

$ed:=mycf:echoDouble(cast as xs:double("2.0")),

$edec:=mycf:echoDecimal(cast as xs:decimal("1.5")),

$edateTime:=mycf:echoDateTime(cast as xs:dateTime("1999-05-31

13:20:00.0")),

return

<echo>

<string>{$es}</string>

<boolean>{$ebool}</boolean>

<byte>{$eb}</byte>

<short>{$eh}</short>

<integer>{$ei}</integer>

<long>{$el}</long>

<float>{$ef}</float>

<double>{$ed}</double>

<decimal>{$edec}</decimal>

<dateTime>{$edateTime}</dateTime>

</echo>

Using Custom Funct ions

8-12 Application Developer’s Guide

Example That Uses Complex Types
This example shows how to create, declare and use a custom function that takes a complex type as a
parameter and returns a complex type.

Implementation of a Custom Function for a Complex Type
The following Java code implements a custom function for a complex type. This function simply
returns its parameter.

Listing 8-3 Custom Function for a Complex Type

package mycf;

import org.w3c.dom.Element;

public static Element echoElement(Element v)

{

return v;

}

CFLD File That Declares the Custom Function for a Complex Type
The following sample CFLD file declares the custom function for a complex type.

Listing 8-4 CFLD File That Declares the Custom Function for a Complex Type

<?xml version = "1.0" encoding = "UTF-8"?>

<definitions>

<types>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name = "book">

<xs:complexType>

Examples of Cus tom Funct ions

Application Developer’s Guide 8-13

<xs:sequence>

<xs:element ref = "title"/>

<xs:element ref = "author" maxOccurs = "unbounded"/>

<xs:element ref = "publisher"/>

<xs:element ref = "price"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name = "title" type = "xs:string"/>

<xs:element name = "author">

<xs:complexType>

<xs:sequence>

<xs:element ref = "last"/>

<xs:element ref = "first"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name = "publisher" type = "xs:string"/>

<xs:element name = "price" type = "xs:string"/>

<xs:element name = "last" type = "xs:string"/>

<xs:element name = "first" type = "xs:string"/>

</xs:schema>

</types>

<functions>

<function name="echoBook" return_type="book"

class="mycf.CustomFunctions2" method="echoElement" >

<argument type="book" />

Using Custom Funct ions

8-14 Application Developer’s Guide

</function>

</functions>

</definitions>

Query That Uses the Custom Function for a Complex Type
After the function is registered in Liquid Data, it can be called from the following query:

Listing 8-5 Sample Query That Uses the Custom Function for a Complex Type

for $b in document("bib")//book

let $c:=echoBook($b)

return

<ans>

{

for $t in $c/title

return $t

}

</ans>

Application Developer’s Guide 9-1

C H A P T E R 9

Setting Complex Parameter Types

This section describes how to set an XML data stream to input to a complex parameter type. It
contains the following sections:

Architecture of Complex Parameter Types

Sample Complex Parameter Type Code

Architecture of Complex Parameter Types
Complex parameter types provide a facility to use streaming XML data as an input to Liquid Data. You
can define an XML data stream of an arbitrary type, and you can use that XML data as input to a query.

Figure 9-1 shows the overall architecture of sending XML data as an input to a query.

Figure 9-1 Setting XML Data as an input to a stored query

To evaluate a Complex Parameter Type query from the EJB API, you use the setXMLData method on
the QueryParameters object.

XML Data

(setXMLData)

Stream Stored Query Query Results

Set t ing Complex Pa rameter Types

9-2 Application Developer’s Guide

The following Java code sets the XML data for the input to a stored query, then executes the stored
query.

query = (Query) home.create();

QueryParameters qp = new QueryParameters();

qp.setXMLData("CPTSAMPLE", queryParam);

qr= query.executeStored(queryName, qp);

where CPTSAMPLE is a stored query and queryParam is some XML String value.

Sample Complex Parameter Type Code
This section provides sample Java code, using the QueryParameters.setXMLData method, to
input XML data into a complex parameter type. For information on defining complex parameter types
to Liquid data, see Using Complex Parameter Types in the Administration Guide. For information on
using complex parameter types in the Data View Builder, see Using Complex Parameter Types In
Queries in Building Queries and Data Views.

The Data View Builder project for the example shown here is installed in the following directory:

BEA_HOME/weblogic81/samples/liquiddata/buildQuery/db-cpt

The code shown in this sample is installed as the following file:

BEA_HOME/weblogic81/samples/liquiddata/ejbAPI/src/ejbSample/QueryWithCp

tParamClient.java

The section is divided into the following parts:

Sample Query

Sample Code

Compiling and Running the Sample Code

Sample Complex Paramete r T ype Code

Application Developer’s Guide 9-3

Sample Query
Assume the following sample query is saved in the Liquid Data repository as the stored query named
crm_cptSample.xq. This query uses a complex parameter type (CPTSAMPLE) which contains
promotion plan names, and then combines those promotion plan names with the details from the CRM
database (PB-CR).

{--Generated by Data View Builder 8.1--}

namespace crm1 = "urn:schemas-bea-com:ld-crmp"

namespace crm = "urn:schemas-bea-com:ld-cptSample"

<crm1:db>

{

for $CPTSAMPLE.PROMOTION_2 in ($#CPTSAMPLE of type element

crm:db)/crm:PROMOTION

let $PROMOTION_PLAN_3 :=

 for $PB_CR.PROMOTION_PLAN_4 in

document("PB-CR")/db/PROMOTION_PLAN

 where ($CPTSAMPLE.PROMOTION_2/crm:PROMOTION_NAME eq

$PB_CR.PROMOTION_PLAN_4/PROMOTION_NAME)

 return

 <PROMOTION_PLAN>

 <PROMOTION_NAME>{ xf:data($PB_CR.PROMOTION_PLAN_4/PROMOTION_NAME)

}</PROMOTION_NAME>

 <PLAN_NAME>{ xf:data($PB_CR.PROMOTION_PLAN_4/PLAN_NAME)}</PLAN_NAME>

 <FROM_DATE>{ cast as

xs:string(xf:data($PB_CR.PROMOTION_PLAN_4/FROM_DATE)) }</FROM_DATE>

 <TO_DATE>{ cast as xs:string(xf:data($PB_CR.PROMOTION_PLAN_4/TO_DATE))

}</TO_DATE>

 <PRICE>{ cast as xs:string(xf:data($PB_CR.PROMOTION_PLAN_4/PRICE)) }

</PRICE>

 </PROMOTION_PLAN>

where xf:not(xf:empty($PROMOTION_PLAN_3))

return

<PROMOTION>

<STATE>{ xf:data($CPTSAMPLE.PROMOTION_2/crm:STATE) }</STATE>

<PROMOTION_NAME>{ xf:data($CPTSAMPLE.PROMOTION_2/crm:PROMOTION_NAME)

}</PROMOTION_NAME>

{ $PROMOTION_PLAN_3 }

Set t ing Complex Pa rameter Types

9-4 Application Developer’s Guide

</PROMOTION>

}

</crm1:db>

Sample Code
The following code sample shows the setXMLData method used to input data into a query that uses
a complex parameter type source. To simplify the sample code, this sample creates a String variable
named queryParam to represent the XML data stream; you typically will use the setXMLData
method to reference an object which contains XML data.

package ejbSample;

import java.rmi.RemoteException;

import java.util.Properties;

import javax.ejb.CreateException;

import javax.ejb.RemoveException;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import com.bea.ldi.server.*;

import com.bea.ldi.server.common.*;

import java.io.*;

import java.rmi.*;

public class QueryWithCptParamClient {

 private String url=null;

 private String JNDI_NAME="bea.ldi.server.QueryHome";

 private String queryName=null;

 private static QueryHome home=null;

 private Query query =null;

 // public static boolean stop=false;

 private String queryParam =

"<?xml version=\"1.0\" encoding=\"UTF-8\"?> " +

" <db xmlns=\"urn:schemas-bea-com:ld-cptSample\"

Sample Complex Paramete r T ype Code

Application Developer’s Guide 9-5

xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"

xsi:schemaLocation=\"urn:schemas-bea-com:ld-cptSample

crm-p-cptSample.xsd\">" +

"<PROMOTION>" +

"<STATE>CA</STATE>" +

"<PROMOTION_NAME>BROADBAND UPSELL</PROMOTION_NAME>" +

" </PROMOTION>" +

"<PROMOTION>" +

"<STATE>TX</STATE>" +

"<PROMOTION_NAME>WIRELESS UPSELL</PROMOTION_NAME>" +

"</PROMOTION>" +

"<PROMOTION>" +

"<STATE>WA</STATE>" +

"<PROMOTION_NAME>NEW PRODUCTS</PROMOTION_NAME>" +

"</PROMOTION>" +

"<PROMOTION>" +

"<STATE>AZ</STATE>" +

"<PROMOTION_NAME>HOLIDAY PROMOTION</PROMOTION_NAME>" +

"</PROMOTION>" +

"<PROMOTION>" +

"<STATE>NV</STATE>" +

" <PROMOTION_NAME>SALES PROMOTION</PROMOTION_NAME>" +

" </PROMOTION>" +

" </db>";

 /* normally you would pass the argument for the parameter. But

* in this example we are hardcoding the XML data stream

 */

 public QueryWithCptParamClient(String url, String queryName){

 this.url= url;

 this.queryName=queryName;

 }

 public static void main(String[] args) throws Exception

 {

 QueryWithCptParamClient qpc = new QueryWithCptParamClient(args[0],

args[1]);

 qpc.runQuery();

Set t ing Complex Pa rameter Types

9-6 Application Developer’s Guide

 }

 public void runQuery() throws Exception{

 QueryResult qr=null;

 try{

 if(home==null)

 home = lookupHome();

 // log("Creating a query client");

 query = (Query) home.create();

 QueryParameters qp = new QueryParameters();

 qp.setXMLData("CPTSAMPLE", queryParam);

 qr= query.executeStored(queryName, qp);

 System.out.println("Query Result: >>>>>>>\n");

 if(!qr.isEmpty())

 qr.printWithFormat(new OutputStreamWriter(System.out), true);

 }catch(Exception e){

 throw e;

 }finally{

 qr.close();

 }

 }

 /**

 * Lookup the EJBs home in the JNDI tree

 */

 private QueryHome lookupHome()

 throws NamingException

 {

 // Lookup the beans home using JNDI

 Context ctx = getInitialContext();

 try {

 return (QueryHome)ctx.lookup(JNDI_NAME);

 } catch (NamingException ne) {

 ne.printStackTrace();

 log("The client was unable to lookup the EJBHome. Please make sure ");

 log("that you have deployed the ejb with the JNDI name "+JNDI_NAME+"

Sample Complex Paramete r T ype Code

Application Developer’s Guide 9-7

on the WebLogic server at "+url);

 throw ne;

 }

 }

 private Context getInitialContext() throws NamingException {

 try {

 // Get an InitialContext

 Properties h = new Properties();

 h.put(Context.INITIAL_CONTEXT_FACTORY,

 "weblogic.jndi.WLInitialContextFactory");

 h.put(Context.PROVIDER_URL, url);

 return new InitialContext(h);

 } catch (NamingException ne) {

 ne.printStackTrace();

 log("We were unable to get a connection to the WebLogic server at

"+url);

 log("Please make sure that the server is running.");

 throw ne;

 }

 }

 private static void log(String s) {

 System.out.println(s);

 }

}

Set t ing Complex Pa rameter Types

9-8 Application Developer’s Guide

Compiling and Running the Sample Code
Perform the following steps to build and run the crm-cpt complex parameter type example.

1. Open a command window.

2. Navigate to the BEA_HOME/weblogic81/samples/domains/liquiddata directory as in
the following example:

cd /bea/weblogic81/samples/domains/liquiddata

3. Run the setLDExamplesEnv.cmd script (setLDExamplesEnv.sh on UNIX systems) to set
up the environment for the samples, as follows:

setLDExamplesEnv

4. Change to the BEA_HOME/weblogic81/samples/liquiddata/ejbAPI/build directory as
in the following example:

cd /bea/weblogic81/samples/liquiddata/ejbAPI/build

5. Run ant to build the samples, as follows:

ant

6. Change to the BEA_HOME/weblogic81/samples/liquiddata/ejbAPI/obj directory as in
the following example:

cd /bea/weblogic81/samples/liquiddata/ejbAPI/obj

7. Run the following command to add the local directory to your CLASSPATH environment
directory:

set classpath=%CLASSPATH%;./

8. Run the sample with the following command, which specifies the Java class with the URL of
WebLogic Server as the first argument and the name of the query to run as the second argument:

java ejbSample.QueryWithCptParamClient t3://localhost:7001 crm_cptSample

Note: Make sure your Liquid Data Samples domain is running or this command will fail.

Sample Complex Paramete r T ype Code

Application Developer’s Guide 9-9

When you run this sample successfully, results similar to the following appear in your command
window:

D:\bea\weblogic81\samples\liquiddata\ejbAPI\obj>java

ejbSample.QueryWithCptParamClient t3://localhost:7001 crm_cptSample

Result: >>>>>>>

<crm1:db xmlns:crm1="urn:schemas-bea-com:ld-crmp">

 <PROMOTION>

 <STATE>CA</STATE>

 <PROMOTION_NAME>BROADBAND UPSELL</PROMOTION_NAME>

 <PROMOTION_PLAN>

 <PROMOTION_NAME>BROADBAND UPSELL</PROMOTION_NAME>

 <PLAN_NAME>High Speed Holidays</PLAN_NAME>

 <FROM_DATE>2001-11-22</FROM_DATE>

 <TO_DATE>2002-12-31</TO_DATE>

 <PRICE>100</PRICE>

 </PROMOTION_PLAN>

 </PROMOTION>

 <PROMOTION>

 <STATE>TX</STATE>

 <PROMOTION_NAME>WIRELESS UPSELL</PROMOTION_NAME>

 <PROMOTION_PLAN>

 <PROMOTION_NAME>WIRELESS UPSELL</PROMOTION_NAME>

 <PLAN_NAME>Family Holiday Connect</PLAN_NAME>

 <FROM_DATE>2001-11-22</FROM_DATE>

 <TO_DATE>2002-12-31</TO_DATE>

 <PRICE>49.99</PRICE>

 </PROMOTION_PLAN>

 </PROMOTION>

 <PROMOTION>

 <STATE>WA</STATE>

 <PROMOTION_NAME>NEW PRODUCTS</PROMOTION_NAME>

 <PROMOTION_PLAN>

 <PROMOTION_NAME>NEW PRODUCTS</PROMOTION_NAME>

 <PLAN_NAME>New Phone for the Holidays</PLAN_NAME>

 <FROM_DATE>2001-11-22</FROM_DATE>

 <TO_DATE>2002-12-31</TO_DATE>

Set t ing Complex Pa rameter Types

9-10 Application Developer’s Guide

 <PRICE>149.99</PRICE>

 </PROMOTION_PLAN>

 </PROMOTION>

 <PROMOTION>

 <STATE>AZ</STATE>

 <PROMOTION_NAME>HOLIDAY PROMOTION</PROMOTION_NAME>

 <PROMOTION_PLAN>

 <PROMOTION_NAME>HOLIDAY PROMOTION</PROMOTION_NAME>

 <PLAN_NAME>New Year New Connections</PLAN_NAME>

 <FROM_DATE>2001-11-22</FROM_DATE>

 <TO_DATE>2002-12-31</TO_DATE>

 <PRICE>39.99</PRICE>

 </PROMOTION_PLAN>

 </PROMOTION>

 <PROMOTION>

 <STATE>NV</STATE>

 <PROMOTION_NAME>SALES PROMOTION</PROMOTION_NAME>

 <PROMOTION_PLAN>

 <PROMOTION_NAME>SALES PROMOTION</PROMOTION_NAME>

 <PLAN_NAME>Family Plan</PLAN_NAME>

 <FROM_DATE>2001-11-22</FROM_DATE>

 <TO_DATE>2002-12-31</TO_DATE>

 <PRICE>39.99</PRICE>

 </PROMOTION_PLAN>

 </PROMOTION>

</crm1:db>

Application Developer’s Guide 10-1

C H A P T E R 10

Using the Cache Purging APIs

This section describes how to purge the cache for a query using the cache EJB API. It contains the
following sections:

The com.bea.ldi.cache.ejb Package

Security Issues When Using the Cache APIs

Writing Java Code to Purge Cache Entries

For details on configuring the Liquid Data results cache, see “Configuring the Results Cache” in the
Administration Guide.

The com.bea.ldi.cache.ejb Package
The com.bea.ldi.cache.ejb package has a CacheRemote interface with methods you can use to
purge cache entries for queries. There is a purgeCache() method to purge the entire cache, and
there are methods to purge entries for a specified query. For details on the APIs, see the Javadoc.

Security Issues When Using the Cache APIs
If security is enabled in your Liquid Data domain, then the user who makes the API call to purge the
cache must have the necessary permissions to purge the cache. If the user does not have the needed
permissions, the purge will fail. For details about setting a security policy for purging the cache, see
"Configuring a Security Policy for Purging the Cache Results” in the Liquid Data Administration
Guide.

../admin/cache.html
../javadoc/index.html
../admin/cache.html#cacheSecurity

Using the Cache Purgi ng AP Is

10-2 Application Developer’s Guide

Writing Java Code to Purge Cache Entries
You can write Java code to purge the cache entries for a query. There are methods to purge the entire
cache, purge all the entries for a specified query, and to purge the instances of a query with specified
parameters. This section describes the basic steps required to write Java code to purge cache entries
in the results cache, including a sample program, and includes the following subsections:

Enable Caching in Liquid Data

Import the Liquid Data Packages

Lookup the EJB Home in the JNDI Tree

Sample Cache Purging Code

Enable Caching in Liquid Data
In order for the Liquid Data cache APIs to purge any cache entries, you must configure and enable the
results cache in Liquid Data. Setting up and enabling the cache involves the following general steps:

Creating the cache database

Creating the cache LDCacacheDS data source

Enabling Results Caching in Liquid Data

Setting cache policies for individual queries

For details on setting up the Liquid Data results cache, see “Configuring the Results Cache” in the
Administration Guide.

Import the Liquid Data Packages
Any program that uses the Liquid Data cache APIs must import the Liquid Data packages. Depending
on which APIs the program uses, you should have import statements similar to the following:

//import the Liquid Data cache and QueryParameters Packages

import com.bea.ldi.cache.ejb.CacheRemote;

import com.bea.ldi.cache.ejb.CacheRemoteHome;

import com.bea.ldi.server.common.QueryParameters;

../admin/cache.html

Wri t ing Java Code to Purge Cache Ent r ies

Application Developer’s Guide 10-3

Lookup the EJB Home in the JNDI Tree
A program that purges a result cache entry must find the JNDI entry for the Cache EJB. The Cache
EJP has the following JNDI name:

bea.ldi.cache.CacheHome

If the JNDI name does not exist in the JNDI tree, then the EJB is not properly deployed and the cache
APIs will not be available.

The following code shows a sample JNDI lookup.

//Declare JNDI_NAME variable

private String JNDI_NAME="bea.ldi.cache.CacheHome";

// Lookup the EJBs home in the JNDI tree

private CacheRemoteHome lookupHome()

 throws NamingException

 {

 // Lookup the beans home using JNDI

 Context ctx = getInitialContext();

 try {

 return (CacheRemoteHome)ctx.lookup(JNDI_NAME);

 } catch (NamingException ne) {

 ne.printStackTrace();

 log("The client was unable to lookup the EJBHome. Please make sure ");

 log("that you have deployed the ejb with the JNDI name "+JNDI_NAME+

" on the WebLogic server at "+url);

 throw ne;

 }

 }

Using the Cache Purgi ng AP Is

10-4 Application Developer’s Guide

Sample Cache Purging Code
The following sample program uses the purgeCache method to purge the Liquid Data query cache.

package myFolder;

//import the Liquid Data cache and QueryParameters Packages
import com.bea.ldi.cache.ejb.CacheRemote;
import com.bea.ldi.cache.ejb.CacheRemoteHome;
import com.bea.ldi.server.common.QueryParameters;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import java.util.Properties;

public class QueryPurgeClient {
 private String url=null;
 private String JNDI_NAME="bea.ldi.cache.CacheHome";
 private String cacheQueryName=null;
 private QueryParameters qparams = null;
 private static CacheRemoteHome home=null;

 // public static boolean stop=false;

 /* normally you would pass the argument for the parameter. But in this
* example we are hardcoding the stream

 */
 public QueryPurgeClient(String url, String queryName,

QueryParameters qparams){
 this.url= url;
 this.cacheQueryName=queryName;
 this.qparams = qparams;

 }

 public static void main(String[] args) throws Exception {
 // ignore query parameters for now
 QueryPurgeClient qpc = new QueryPurgeClient(args[0], args[1],null);
 qpc.runPurgeCache(args[1]);
 }

Wri t ing Java Code to Purge Cache Ent r ies

Application Developer’s Guide 10-5

// Create a method to purge cache entries for a specified query
// This method uses com.bea.ldi.cache.ejb.CacheRemote.purgeCache(queryName)
//

 public void runPurgeCache(String queryName) throws Exception{

 try{
 if(home==null)
 home = lookupHome();
 // log("Creating a query client");
 CacheRemote cacheQuery = (CacheRemote) home.create();
 cacheQuery.purgeCache(queryName);
 log("Purged all cached instances of: >>>>>>>\n" + cacheQueryName);
 } catch(Exception e){
 e.printStackTrace();
 throw e;
 }
 }

// Lookup the EJBs home in the JNDI tree
private CacheRemoteHome lookupHome()

 throws NamingException
 {
 // Lookup the beans home using JNDI
 Context ctx = getInitialContext();

 try {
 return (CacheRemoteHome)ctx.lookup(JNDI_NAME);
 } catch (NamingException ne) {
 ne.printStackTrace();
 log("The client was unable to lookup the EJBHome. Please make sure ");
 log("that you have deployed the ejb with the JNDI name "+JNDI_NAME+

" on the WebLogic server at "+url);
 throw ne;
 }
 }

Using the Cache Purgi ng AP Is

10-6 Application Developer’s Guide

// Get the context for WebLogic Server, to make sure it is running
private Context getInitialContext() throws NamingException {

 try {
 // Get an InitialContext
 Properties h = new Properties();
 h.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 h.put(Context.PROVIDER_URL, url);
 return new InitialContext(h);
 } catch (NamingException ne) {
 ne.printStackTrace();
 log("We were unable to get a connection to the WebLogic server at "+url);
 log("Please make sure that the server is running.");
 throw ne;
 }
 }

 private static void log(String s) {
 System.out.println(s);
 }
}

Application Developer’s Guide Index-1

Index

A
ad hoc queries

defined 1-3
executing in JSP clients 4-7

B
bea.ldi.server.QueryBean stateless session
bean 1-4

C
cache APIs 10-1
clients

EJB clients 1-2
JSP clients 1-2
types of clients 1-6
Web service clients 5-1

com.bea.ldi.server package 1-4
com.bea.ldi.server.common package 1-4
Complex Parameter Types

architecture 9-1
sample code 9-2
setting 9-1

connecting to the Liquid Data Server
EJB clients 3-1
JSP clients 4-5

custom function library definition (CFLD) files
attributes, described 8-5
contents of 8-4
creating 8-4
elements, described 8-5
structure of 8-4

custom functions
about custom functions 8-1
custom function library definition (CFLD)

files, creating 8-4
defining 8-2
implementing in Java 8-2
registering in the Administration Console 8-6
samples

complex types 8-12
simple types 8-7

customer support contact information -xi

D
documentation, where to find it -x

E
EJB clients

connecting to Liquid Data server 3-1
defined 1-2
executing queries 3-6
invoking queries 3-1
processing results 3-8
query parameters, specifying 3-4

executing queries
EJB clients 3-6
JSP clients 4-6

I
invoking queries

EJB clients 3-1
from WebLogic Integration 6-2

Index-2 Application Developer’s Guide

JSP clients 4-4
Web service clients 5-1
WebLogic Portal

EJB client 7-1
JSP client 7-1

J
JSP clients

connecting to the server 4-5
defined 1-2
executing queries 4-6
handling exceptions 4-8
invoking queries 4-4
processing results 4-8
tag library 4-1

L
ldcontrol.properties file

described 2-39
merge in production domain 2-40
sample 2-40

Liquid Data Query API
bea.ldi.server.QueryBean 1-4
packages 1-4
query attributes 1-5
query parameters 1-4

P
packages in the Liquid Data Query API 1-4
param tag 4-4
parameterized queries

described 1-3
EJB clients 3-4

printing product documentation -x
processing query results

EJB clients 3-8
JSP clients 4-8

Q
queries

about queries in Liquid Data 1-3
ad hoc queries 1-3, 4-7
attributes 1-5
execution in EJB clients 3-6
parameterized queries 1-3
parameters 1-4, 3-4, 4-5
result processing in EJB clients 3-8
stored queries 1-3, 4-7

query parameters
EJB clients 3-4
JSP clients 4-5

query results 1-5
query tag 4-3

R
related information -xi

S
server, EJB client connecting to 3-1
setXMLData method, complex parameter types 9-4
stored queries

defined 1-3
executing in JSP clients 4-7

support, technical -xi

T
tag library 4-1
tags

connecting to the server 4-5
param tag 4-4
query parameters 4-5
query tag 4-3

W
Web service clients

invoking queries 5-1

Application Developer’s Guide Index-3

invoking Web services programmatically 5-1
WSDL URL, finding 5-1

WebLogic Integration
setting up query invocation 6-2

WebLogic Integration business processes
invoking queries from 6-2

WebLogic Portal
EJB clients 7-1
JSP clients 7-1

WSDL URL, in Web service clients 5-1

X
XSL transform 4-8

Index-4 Application Developer’s Guide

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	Application Development with the Liquid Data API
	Types of Application Development
	WebLogic Workshop Development
	EJB Development
	JSP Tag Library Development

	About Liquid Data Queries
	Stored Queries
	Ad Hoc Queries
	Parameterized Queries

	Components of the Liquid Data Query API
	Packages
	Query Execution EJB
	Query Parameters
	Query Attributes
	Query Results

	Types of Java Clients

	Using Liquid Data Controls to Develop Workshop Applications
	WebLogic Workshop and Liquid Data
	Liquid Data Control
	XMLBean Generation
	Use With Page Flow, Web Services, Business Processes

	Liquid Data Control JCX File
	Design View
	Source View
	Schema Project Location
	Running Ad-Hoc Queries through the Liquid Data Control

	Creating Liquid Data Controls
	General Steps to Create a Liquid Data Control
	Step 1: Create a Project in an Application
	Step 2: Start the Liquid Data Server, If It is Not Already Running
	Step 3: Create a Folder in a Project
	Step 4: Create the Liquid Data Control
	Step 5: Enter Connection Information to the Liquid Data Server
	Step 6: Select Queries to Add to the Control

	To Create a Liquid Data Control in a Web Project
	To Create a Liquid Data Control in a Web Service Project
	To Add a Liquid Data Control to an Existing Web Service File
	To Create a Test Web Service From a Liquid Data Control

	Modifying Existing Liquid Data Controls
	To Change the Query Associated With a Single Control Method
	To Add a New Method to a Control
	To Invoke the Query Wizard to Modify an Existing Control
	Updating an Existing Control if Schemas Change

	Using NetUI to Display Liquid Data Results
	Generating a Page Flow From a Control
	To Generate a Page Flow From a Control

	Adding a Liquid Data Control to an Existing Page Flow
	Adding XMLBean Variables to the Page Flow
	To Add a Variable to a Page Flow
	To Initialize the Variable in the Page Flow

	Displaying Query Results in a Table or List
	To Add a Repeater to a JSP File
	To Add a Nested Level to an Existing Repeater
	To Add Code to Handle Null Values

	Security Considerations With Liquid Data Controls
	Security Credentials Used to Create Liquid Data Control
	Testing Controls With the Run-As Property in the JWS File
	Trusted Domains
	To Configure Trusted Domains

	Moving Your Liquid Data Control Applications to Production
	Development to Production Lifecycle Architecture
	Packaging Liquid Data JAR Files in Application .ear Files
	Liquid Data ldcontrol.properties File

	Steps For Deploying to Production
	Step 1: Generate Enterprise Application Archive (.ear) in Workshop
	Step 2: Merge ldcontrol.properties File entries to Production Server
	Step 3: Deploy Enterprise Application Archive (.ear) on Production Server

	Invoking Queries in EJB Clients
	Step 1: Connect to the Liquid Data Server
	Step 2: Specify Query Parameters
	Step 3: Execute the Query
	Step 4: Process the Results of the Query

	Invoking Queries in JSP Clients
	About the Liquid Data Tag Library
	Scope of the Liquid Data Tag Library
	Location of the Liquid Data Tag Library
	Making the Tag Library Accessible to a Web Application
	Copy the LDS-taglib.jar File to the WEB-INF/lib Directory
	Add the <taglib> Entry to the web.xml File

	Tags in the Liquid Data Tag Library
	query Tag
	param Tag

	Processing Steps
	Step 1: Add the Tag Library to your Web Application
	Step 2: Reference the Liquid Data Tag Library
	Step 3: Connect to the Liquid Data Server
	Step 4: Specify Query Parameters
	Step 5: Execute the Query
	Executing Stored Queries
	Executing Ad Hoc Queries
	Handling Exceptions

	Step 6: Process the Query Results

	Invoking Queries in Web Service Clients
	Finding the WSDL URL for Generated Web Services
	Invoking Web Services Programmatically

	Invoking Queries in WebLogic Integration Business Processes
	Liquid Data and WebLogic Integration Business Processes
	Setting Up a Liquid Data Query in a Business Process
	Create the Liquid Data Control
	Adding a Liquid Data Control to a JPD File
	Setting Up the Control in the Business Process

	Invoking Queries in BEA WebLogic Portal Applications
	Invoking Liquid Data Queries as EJB Clients
	Invoking Liquid Data Queries as JSP Clients

	Using Custom Functions
	About Custom Functions
	Defining Custom Functions
	Step�1:�Write the Custom Function Implementation in Java
	Rules for Writing Custom Function Implementations
	Correspondence Between XML and Java Data Types

	Step�2:�Create the Custom Functions Library Definition File
	Contents of a CFLD File
	Structure of a CFLD File
	Elements and Attributes in a CFLD File

	Step�3:�Register the Custom Function in the Administration Console

	Examples of Custom Functions
	Example That Uses Simple Types
	Implementation of Custom Functions for Simple Types
	CFLD File That Declares Custom Functions for Simple Types
	Query That Uses the Custom Functions for Simple Types

	Example That Uses Complex Types
	Implementation of a Custom Function for a Complex Type
	CFLD File That Declares the Custom Function for a Complex Type
	Query That Uses the Custom Function for a Complex Type

	Setting Complex Parameter Types
	Architecture of Complex Parameter Types
	Sample Complex Parameter Type Code
	Sample Query
	Sample Code
	Compiling and Running the Sample Code

	Using the Cache Purging APIs
	The com.bea.ldi.cache.ejb Package
	Security Issues When Using the Cache APIs
	Writing Java Code to Purge Cache Entries
	Enable Caching in Liquid Data
	Import the Liquid Data Packages
	Lookup the EJB Home in the JNDI Tree
	Sample Cache Purging Code

	Index

