
BEA
 Liquid Data for
WebLogic�

Building Queries and Data
Views
Release: 1.1
Document Date: April 2003
Revised: April 2003

Copyright

Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED �AS IS� WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server,
BEA WebLogic Workshop, BEA Liquid Data for WebLogic, and How Business Becomes E-Business are
trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Building Queries and Data Views

Part Number Date Software Version

N/A October 2002 1.0

N/A April 2003 1.1

About This Document

Read this document to learn how to build and test queries in XQuery language that can
retrieve real-time information from heterogeneous data sources using the BEA Liquid
Data for WebLogic� server.

This document describes how to use the Data View Builder to design and generate
XML-based queries with the Builder drag-and-drop tools, functions, source and target
schemas. The focus of this document is on how to use the Data View Builder to create
queries in Liquid Data. Liquid Data accepts queries written in XQuery, which is an
Extensible Markup Language (XML) Query language that adheres to the standards
described by the World Wide Web Consortium (W3C). The XQuery standard, version
1.0, is the structured query language used by the Liquid Data server.

This document covers the following topics:

! Chapter 1, �Overview and Key Concepts,� introduces key concepts such as
XQuery, ad hoc queries, and Builder-generated queries.

! Chapter 2, �Starting the Builder and Touring the GUI,� explains how to start the
Data View Builder and provides graphical user interface (GUI) tour and
reference.

! Chapter 3, �Designing Queries,� explains how to design a query using the Data
View Builder to define source conditions; map source data to target schemas; use
joins, unions, and functions; and how to apply explicit scope to a target schema
for well-defined query results. Provides examples of building basic queries.

! Chapter 4, �Optimizing Queries,� describes some advanced concepts that can
improve query performance and refine query output. It also has more
information about using some Data View Builder features.

! Chapter 5, �Testing Queries,� describes how you run the query and view the
results.
Building Queries and Data Views iii

! Chapter 9, �Query Cookbook,� provides detailed examples about how to
construct queries using some advanced techniques and functions.

! Chapter 6, �Using Data Views,� has information and examples about saving and
reusing data views as new query resources.

! Appendix A, �Functions Reference� provides information about complete
reference of the World Wide Web (W3C) functions supported in Liquid Data as
built-in functions.

! Appendix B, �Supported Data Types,� is a reference list of data types supported
in Liquid Data.

! Appendix C, �Type Casting Reference,�is a reference list of

What You Need to Know

Users creating queries with Data View Builder should have a high-level understanding
of XML, XML schemas, and declarative database query languages. Users creating ad
hoc queries to run in a Liquid Data environment should have the additional skill of
being proficient in the W3C standard XQuery syntax.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the �e-docs�
Product Documentation page at e-docs.bea.com.
iv Building Queries and Data Views

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File�>Print option on your Web browser.

A PDF version of this document is available on the Liquid Data documentation Home
page on the e-docs Web site (and also on the documentation CD). You can open the
PDF using Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDF files, open the Liquid Data documentation Home
page, click PDF files and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can obtain a free version from the
Adobe Web site at www.adobe.com.

Related Information

For more information about XQuery and XML Query languages, see the World Wide
Web Consortium (W3C) Web site at http://www.w3.org/.

Contact Us!

Your feedback on the BEA Liquid Data documentation is important to us. Send us
e-mail at docsupport@bea.com if you have questions or comments. Your comments
will be reviewed directly by the BEA professionals who create and update the Liquid
Data documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Liquid Data for WebLogic 1.0 release.
Building Queries and Data Views v

If you have any questions about this version of Liquid Data, or if you have problems
installing and running Liquid Data, contact BEA Customer Support through BEA
WebSupport at www.bea.com. You can also contact Customer Support by using the
contact information provided on the Customer Support Card, which is included in the
product package.

When contacting Customer Support, be prepared to provide the following information:

! Your name, e-mail address, phone number, and fax number

! Your company name and company address

! Your machine type and authorization codes

! The name and version of the product you are using

! A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.
vi Building Queries and Data Views

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.
Example:
void commit ()

monospace
italic
text

Identifies variables in code.
Example:
String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.
Examples:
LPT1
SIGNON
OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Convention Item
Building Queries and Data Views vii

... Indicates one of the following in a command line:
! That an argument can be repeated several times in a command line
! That the statement omits additional optional arguments
! That you can enter additional parameters, values, or other information
The ellipsis itself should never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
viii Building Queries and Data Views

Contents

About This Document
What You Need to Know .. iv
e-docs Web Site... iv
How to Print the Document...v
Related Information...v
Contact Us! ..v
Documentation Conventions ... vi

1. Overview and Key Concepts
W3C XQuery, XML, and Liquid Data.. 1-2

XQuery Use in Liquid Data and Data View Builder 1-3
The Role of XML in Creating Global Business Solutions......................... 1-3
Supported XML Schema Versions In Liquid Data 1-4
Learning More About the XQuery Language .. 1-4

Data View Builder Overview .. 1-4
Advantages of the Data View Builder.. 1-5
How the Data View Builder Works ... 1-5

Key Concepts of Query Building .. 1-6
Query Plans .. 1-6
Stored Queries .. 1-6
Ad Hoc Queries.. 1-7
Different Kinds of Data Sources .. 1-7

Relational Databases ... 1-8
XML Files ... 1-9
Web Services... 1-9
Application Views... 1-9
Data Views�Using the Result of a Query as a Data Source 1-10
Building Queries and Data Views ix

Stored Procedures.. 1-10
Source and Target Schemas.. 1-10

Understanding Source Schemas .. 1-11
Understanding Target Schemas... 1-11

Anatomy of a Query: Joins, Unions, Aggregates, and Functions 1-14
Joins... 1-15
Unions ... 1-16
Aggregates... 1-16
Functions ... 1-16
Query Parameters .. 1-17

Understanding XML Namespaces... 1-17
XML Namespace Overview... 1-17

Predefined Namespaces in XQuery... 1-18
Other XML Namespace References.. 1-18

XML Namespaces in Liquid Data Queries .. 1-19
Namespace Declarations in XQuery Prolog...................................... 1-19
Namespaces in Target Schema Definitions....................................... 1-20
Data Sources that Require Namespace Declarations 1-20

Migrating Liquid Data 1.0 Queries .. 1-21
Next Steps.. 1-21

2. Starting the Builder and Touring the GUI
Starting the Data View Builder ... 2-2
Data View Builder GUI Tour .. 2-3

Design Tab.. 2-4
Overview Picture of Design Tab Components.................................... 2-4
1. Menu Bar for the Design Tab.. 2-6
2. Toolbar for the Design Tab ... 2-8
3. Builder Toolbar ... 2-9
4. Source Schemas... 2-21
5. Target Schema... 2-22
6. Conditions Tab .. 2-24
7. Mappings Tab.. 2-28
8. Sort By Tab ... 2-29
9. Status Bar .. 2-30
x Building Queries and Data Views

Optimize Tab.. 2-30
Overview Picture of Optimize Tab Components 2-30
1. Source Order Optimization ... 2-31
2. Join Pair Hints... 2-32

Test Tab.. 2-32
Overview Picture of Test Tab Components 2-33
1. Menu Bar for the Test Tab.. 2-34
2. Toolbar for the Test Tab ... 2-34
3. Builder-Generated XQuery ... 2-35
4. Query Parameters: Submitted at Query Runtime.......................... 2-35
5. Query Results - Large Results .. 2-36
6. Run Query ... 2-36
7. Result of a Query .. 2-37

Working With Projects .. 2-38
To Make a Project Portable, Save Target Schema to Repository 2-38
Saving a Project is Not the Same as Saving a Query 2-38
Using Schemas Saved With Projects ... 2-39

Special Characters: Occurrence Indicators.. 2-39
Next Steps: Building and Testing Sample Queries ... 2-40

3. Designing Queries
Designing a Query... 3-2
Building a Query ... 3-3

Opening the Source Schemas for the Data Sources You Want to Query .. 3-4
Adding a Target Schema .. 3-5

Editing a Target Schema ... 3-7
Mapping Source and Target Schemas.. 3-8

Mapping Node to Node... 3-8
Example: Query Customers by State .. 3-9
Mapping Nodes to Functions .. 3-10
Supported Mapping Relationships .. 3-12
Removing Mappings ... 3-13

Setting Conditions .. 3-14
What are Functions?.. 3-14
Using Constants and Variables in Functions 3-15
Building Queries and Data Views xi

Enabling and Disabling Conditions... 3-16
Removing Conditions.. 3-16
Adding or Deleting Parameters in a Condition Statement 3-17

Showing or Hiding Data Types .. 3-17
Using Automatic Type Casting .. 3-17

Exceptions to Automatic Type Casting... 3-18
Examples of Simple Queries ... 3-19

Example: Return Customers by Name ... 3-19
Build the Query ... 3-19
View the XQuery and Run the Query to Test it 3-22

Example: Query Customers by ID and Sort by State 3-25
Open the Data Sources and Add a Target Schema............................ 3-26
Map Nodes from Source to Target Schema to Project Output.......... 3-26
Join Two Sources .. 3-26
Specify the Order of the Result Using the Sort By Features............. 3-27
View the XQuery and Run the Query to Test it 3-28

Understanding Scope in Basic and Advanced Views...................................... 3-30
Where Does Scope Apply?... 3-31
Basic View (Automatic Scope Settings) .. 3-31
Advanced View (Setting the Scope Manually) .. 3-31
When to Use Advanced View to Set Scope Manually 3-33
Task Flow Model for Advanced View Manual Scoping.......................... 3-34
Returning to Basic View .. 3-37
Saving Projects from Basic or Advanced View 3-38

Version Control ... 3-38
Scope Recursion Errors .. 3-38

Recommended Action ... 3-39
Understanding Query Design Patterns .. 3-39

Target Schema Design Guidelines and Query Examples......................... 3-39
Design Guidelines ... 3-40
Examples of Effective Query Design.. 3-41

Source Replication.. 3-49
Why is source replication necessary?.. 3-50
When is source replication necessary?.. 3-50
When should you manually replicate sources? 3-50
xii Building Queries and Data Views

Next Steps.. 3-51

4. Optimizing Queries
Factors in Query Performance... 4-1
Using the Features on the Optimize Tab ... 4-2
Source Order Optimization.. 4-3

Example: Source Order Optimization... 4-4
Optimization Hints for Joins ... 4-5

Choosing the Best Hint .. 4-5
Using Parameter Passing Hints (ppleft or ppright) 4-6
Using a Merge Hint .. 4-8

5. Testing Queries
Switching to the Test View ... 5-1
Using Query Parameters.. 5-2
Specifying Large Results for File Swapping... 5-3
Running the Query .. 5-4
Viewing the Query Result ... 5-5
Saving a Query .. 5-6

Saving a Query to the Repository as a �Stored Query� 5-6
Naming Conventions for Stored Queries ... 5-7

6. Using Data Views
Enterprise and the Data View.. 6-1
Understanding Data Views.. 6-2

A Data View Use Case... 6-3
Simple and Parameterized Data Views .. 6-4
Using Data Views as Data Sources .. 6-4

Creating a Data View ... 6-4
Creating and Saving the Query to the Liquid Data Repository.................. 6-5
Configuring a Data View Data Source Description 6-5
Adding a Data View as a Data Source ... 6-6

Creating a Parameterized Data View .. 6-6
Data View Query Samples .. 6-12
Building Queries and Data Views xiii

7. Using Complex Parameter Types in Queries
Understanding Complex Parameter Types .. 7-2

A CPT Use Case... 7-3
Understanding CPT Schema and Data ... 7-4

Sample CPT Schema... 7-4
Sample XML Data Stream .. 7-5

Notes on Hand-Crafting CPT XQueries... 7-6
Unique Namespace.. 7-7
XQuery of type element Declaration .. 7-7

Creating a Complex Parameter Type... 7-8
1. Create a CPT Schema.. 7-8
2. Create Your Runtime Source .. 7-8
3. Define Your CPT in the Administration Console 7-8
4. Build Your Query.. 7-9
4. Run your query.. 7-9

Complex Parameter Type Query Samples... 7-13

8. Defining Stored Procedures
Defining Stored Procedures to Liquid Data .. 8-2

To Define Stored Procedures to Liquid Data ... 8-2
Stored Procedure Description File Schema ... 8-4

Basic Structure.. 8-4
Type Definitions.. 8-4
Function Definitions.. 8-4

Schema Definition File for Stored Procedure Description File.................. 8-5
Element and Attribute Reference for Stored Procedure Description File .. 8-6
Supported Datatypes... 8-9

Rules for Specifying Stored Procedure Description Files 8-10
Rules for Element and Attribute Names... 8-11
Rules for Procedure Names Containing a Semi-Colon 8-12
Rules and Examples of <type> Declarations to Use in the <function>

return_type Attribute ... 8-12
Example 1: Type Definition with No Return Value 8-13
Example 2: Type Definition with Simple Return Value 8-14
Example 3: Type Definition for Complex Row Set Type................. 8-14
xiv Building Queries and Data Views

Example 4: Type Definition with Complex Return Value 8-15
Example 5: Type Definition with Simple Return Value and Two Row

Sets... 8-15
Rules for the mode Attribute output_only <argument> Element............. 8-16
Rules for Transforming the Function Signature When Hand Writing an

XQuery.. 8-16
Namespace Declaration... 8-16
Function Transformation... 8-17

Sample Stored Procedure Description Files .. 8-19
DB2 Simple input_only, output_only, and input_output Example.......... 8-20
Oracle Cursor Output Parameter Example... 8-22
DB2 Multiple Result Set Example ... 8-23
Oracle Cursor as return_value.. 8-25

Stored Procedure Support by Database ... 8-26
Oracle ... 8-27
Microsoft SQL Server .. 8-28
Sybase... 8-29
IBM DB2.. 8-30
Informix.. 8-31

Using Stored Procedures in Queries.. 8-32
Define Stored Procedures to Liquid Data .. 8-33
Example: Defining and Using a Customer Orders Stored Procedure 8-33

Business Scenario ... 8-33
View a Demo .. 8-33
Step 1: Create the Stored Procedure in the Database........................ 8-34
Step 2: Create the Stored Procedure Description File....................... 8-34
Step 3: Specify the Stored Procedure Description File in the Liquid Data

Console .. 8-35
Step 4: Open the Data View Builder to See Your Stored Procedures

8-36
Step 5: Use the Stored Procedure in a Query.................................... 8-36
Step 6: Run the Query... 8-37

9. Query Cookbook
Example 1: Simple Joins ... 9-2

The Problem ... 9-3
Building Queries and Data Views xv

The Solution ... 9-3
View a Demo... 9-4
Ex 1: Step 1. Verify the Target Schema is Saved in Repository......... 9-4
Ex 1: Step 2. Open Source and Target Schemas 9-5
Ex 1: Step 3. Map Nodes from Source to Target Schema to Project the

Output... 9-6
Ex 1: Step 4. Create a Query Parameter for a Customer ID to be Provided

at Query Runtime ... 9-6
Ex 1: Step 5. Assign the Query Parameter to a Source Node 9-6
Ex 1: Step 6. Join the Wireless and Broadband Customer IDs 9-6
Ex 1: Step 7. Set Optimization Hints .. 9-7
Ex 1: Step 8. View the XQuery and Run the Query to Test it 9-7
Ex. 1: Step 9. Verify the Result... 9-8

Example 2: Aggregates.. 9-8
The Problem ... 9-9
The Solution ... 9-9

View a Demo... 9-10
Ex 2: Step 1. Locate and Configure the �AllOrders� Data View...... 9-10
Ex 2: Step 2. Restart the Data View Builder and Find the New Data View

9-13
Ex 2: Step 3. Verify the Target Schema is Saved in the Repository. 9-13
Ex 2: Step 4. Open the Data Sources and Target Schema................. 9-14
Ex 2: Step 5. Map Source Nodes to Target to Project the Output..... 9-14
Ex 2: Step 6. Create Two Query Parameters to be Provided at Query

Runtime.. 9-15
Ex 2: Step 7. Assign the Query Parameters to Source Nodes 9-15
Ex 2: Step 8. Add the �count� Function.. 9-15
Ex 2: Step 9. Verify Mappings and Conditions 9-16
Ex 2: Step 10. View the XQuery and Run the Query to Test it 9-17
Ex 2: Step 11. Verify the Result.. 9-18

Example 3: Date and Time Duration ... 9-18
The Problem ... 9-18
The Solution ... 9-18

View a Demo... 9-19
Ex 3: Step 1. Verify the Target Schema is Saved in Repository....... 9-19
xvi Building Queries and Data Views

Ex 3: Step 2. Open Source and Target Schemas............................... 9-21
Ex 3: Step 3. Map Source to Target Nodes to Project the Output 9-21
Ex 3: Step 4. Create Joins ... 9-23
Ex 3: Step 5. Create Two Query Parameters for Customer ID and Date to

be Provided at Query Runtime... 9-23
Ex 3: Step 6. Set a Condition Using the Customer ID...................... 9-24
Ex 3: Step 7. Set a Condition to Determine if Order Ship Date is Earlier

or Equal to a Date Submitted at Query Runtime 9-24
Ex 3: Step 8. Set a Condition to Include Only �Open� Orders in the

Result ... 9-25
Ex 3: Step 9. View the XQuery and Run the Query to Test it 9-25
Ex 3: Step 9. Verify the Result ... 9-27

Example 4: Union.. 9-28
The Problem ... 9-28
The Solution ... 9-28

View a Demo .. 9-29
Ex 4: Step 1. Verify the Target Schema is Saved in Repository 9-29
Ex 4: Step 2. Open Source and Target Schemas............................... 9-30
Ex 4: Step 3. Clone the Orders Element of the Target Schema 9-31
Ex 4: Step 4. Create a Query Parameter for a Customer ID 9-31
Ex 4: Step 5. Assign a Query Parameters ... 9-31
Ex 4: Step 6. Define Source Relationships 9-31
Ex 4: Step 7. Project the Output to the Target Schema..................... 9-32
Ex 4: Step 8. Add Optimization Hints .. 9-32
Ex 4: Step 9. View the XQuery and Run the Query to Test it 9-33
Ex 4: Step 10. Verify the Result ... 9-34

Example 5: Minus.. 9-35
The Problem ... 9-36
The Solution ... 9-36

View a Demo .. 9-37
Ex 5: Step 1. Verify the Target Schema is Saved in Repository 9-37
Ex 5: Step 2. Open Source and Target Schemas............................... 9-38
Ex 5: Step 3. Find Broadband and Wireless Customers with the Same

Customer ID... 9-38
Ex 5: Step 4. Find the Count of the Wireless Customers.................. 9-39
Building Queries and Data Views xvii

Ex 5: Step 5. Set a Condition that Specifies the Output of �count� is Zero
9-39

Ex 5: Step 6. View the XQuery and Run the Query to Test it 9-40
Ex 5: Step 7. Verify the Result.. 9-40

Example 6: Complex Parameter Type (CPT).. 9-41
The Problem ... 9-41
The Solution ... 9-41

View a Demo... 9-42
Ex 6: Step 1. Verify the Availability of Schemas and Sample Data

Stream .. 9-42
Ex 6: Step 2. Open the Target Schema and CO-CPTSAMPLE CPT9-45
Ex: 6: Step 3. Create an orderLimit Query Parameter 9-45
Ex 6: Step 4. Save the Project ... 9-46
Ex 6: Step 5. Test Access to the Complex Parameter Source 9-46
Ex 6: Step 6: Determine the Total Amount of New Orders 9-47
Ex 6: Step 7. Create the Necessary Joins and Mappings to the Target

Schema ... 9-49
Ex 6: Step 8. Determine the Amount of Currently Open Orders 9-51
Ex 6: Step 9: Determine the Total Amount of All Open and New Orders

9-52
Ex 6: Step 10: Test If Open Orders + New Orders Exceeds the Order

Limit... 9-52
Ex 6: Step 11: Determine If the Order is Accepted or Rejected 9-52
Ex 6: Step 12: View the XQuery... 9-53
Ex 6: Step 13. Run the XQuery to Verify the Result 9-54

A. Functions Reference
About in Liquid Data XQuery Functions ... A-3

Naming Conventions ... A-3
Occurrence Indicators.. A-3
Data Types... A-4
Date and Time Patterns ... A-7

Accessor and Node Functions .. A-9
xf:data .. A-9
xf:local-name... A-10

Aggregate Functions... A-11
xviii Building Queries and Data Views

xf:avg... A-12
xf:count.. A-13
xf:max.. A-13
xf:min .. A-15
xf:sum.. A-16

Boolean Functions .. A-17
xf:false ... A-18
xf:not ... A-18
xf:true .. A-19

Cast Functions .. A-20
cast as xs:boolean .. A-21
cast as xs:byte.. A-22
cast as xs:date .. A-22
cast as xs:dateTime.. A-23
cast as xs:decimal .. A-24
cast as xs:double.. A-25
cast as xs:float ... A-26
cast as xs:int .. A-27
cast as xs:integer.. A-28
cast as xs:long.. A-28
cast as xs:short... A-29
cast as xs:string.. A-29
cast as xs:time.. A-30

Comparison Operators.. A-32
eq ... A-32
ge ... A-33
gt.. A-34
le .. A-35
lt... A-36
ne ... A-37

Constructor Functions .. A-38
xf:boolean-from-string .. A-39
xf:byte.. A-40
xf:decimal.. A-41
xf:double.. A-42
Building Queries and Data Views xix

xf:float ... A-43
xf:int .. A-44
xf:integer.. A-45
xf:long.. A-46
xf:short... A-47
xf:string.. A-48

Date and Time Functions.. A-50
xf:add-days .. A-51
xf:current-dateTime... A-52
xf:date .. A-53
xfext:date-from-dateTime.. A-54
xfext:date-from-string-with-format ... A-55
xf:dateTime.. A-56
xfext:dateTime-from-string-with-format... A-58
xf:get-hours-from-dateTime .. A-59
xf:get-hours-from-time .. A-60
xf:get-minutes-from-dateTime .. A-61
xf:get-minutes-from-time .. A-62
xf:get-seconds-from-dateTime .. A-62
xf:get-seconds-from-time .. A-63
xf:time.. A-64
xfext:time-from-dateTime ... A-66
xfext:time-from-string-with-format... A-67

Logical Operators ... A-68
and ... A-68
or.. A-70

Numeric Operators ... A-71
* (multiply).. A-71
+ (add) ... A-73
- (subtract) ... A-75
div .. A-76
mod.. A-77

Numeric Functions ... A-79
xf:ceiling.. A-79
xf:floor... A-80
xx Building Queries and Data Views

xf:round ... A-81
xfext:decimal-round .. A-82
xfext:decimal-truncate... A-83

Other Functions .. A-84
xfext:if-then-else ... A-84

Sequence Functions .. A-85
xf:distinct-values ... A-85
xf:empty .. A-86
xf:subsequence (format 1) ... A-87
xf:subsequence (format 2) ... A-88

String Functions.. A-90
xf:compare... A-90
xf:concat .. A-92
xf:contains ... A-93
xf:ends-with... A-94
xf:lower-case ... A-96
xf:starts-with.. A-97
xf:string-length .. A-98
xf:substring (format1) ... A-99
xf:substring (format 2) .. A-100
xf:substring-after ... A-102
xf:substring-before .. A-103
xf:upper-case ... A-104
xfext:match.. A-105
xfext:trim... A-108

Treat Functions... A-109
treat as xs:boolean ... A-111
treat as xs:byte... A-111
treat as xs:date ... A-112
treat as xs:dateTime... A-112
treat as xs:decimal ... A-113
treat as xs:double... A-114
treat as xs:float .. A-114
treat as xs:int.. A-115
treat as xs:integer... A-116
Building Queries and Data Views xxi

treat as xs:long... A-116
treat as xs:short .. A-117
treat as xs:string... A-118
treat as xs:time... A-118

B. Supported Data Types
Overview .. B-1

JDBC Types... B-2
JDBC Names ... B-3

Database-Specific Names ... B-5
Oracle Names .. B-5
Microsoft SQL Server Names ... B-6
DB2 Names ... B-7
Sybase Names.. B-7
Informix Names... B-8

C. Type Casting Reference
Type Casting to a Numeric Target .. C-2
Type Casting to a Non-Numeric Target .. C-3
Type Casting Function Parameters.. C-4

Index
xxii Building Queries and Data Views

CHAPTER
1 Overview and Key
Concepts

This section introduces key concepts you need to understand to plan, design, build and
test queries using BEA Liquid Data for WebLogic�. The notion of a stored query
versus an ad hoc query is introduced. Also covered is using a hand-coded query versus
a Builder-generated query. Since we want to encourage most users to leverage the
Data View Builder to generate queries for Liquid Data, many of the considerations and
concepts introduced here assume use of the Builder, including a GUI overview for the
Builder. However, key concepts that are relevant to all types of query-smiths are
introduced here as well such as data sources, stored queries, data views, XQuery, the
anatomy of a query (joins, unions, aggregates and so on), and the process of building
and testing a query.

The following topics are covered.

! W3C XQuery, XML, and Liquid Data

" XQuery Use in Liquid Data and Data View Builder

" The Role of XML in Creating Global Business Solutions

" Supported XML Schema Versions In Liquid Data

" Learning More About the XQuery Language

! Data View Builder Overview

" Advantages of the Data View Builder

" How the Data View Builder Works

! Key Concepts of Query Building

" Query Plans
Building Queries and Data Views 1-1

1 Overview and Key Concepts
" Stored Queries

" Ad Hoc Queries

" Different Kinds of Data Sources

" Source and Target Schemas

" Anatomy of a Query: Joins, Unions, Aggregates, and Functions

! Understanding XML Namespaces

! Next Steps

W3C XQuery, XML, and Liquid Data

XQuery is a World Wide Web consortium (W3C) standard XML-based Query
language. Whereas SQL is a well-known query language for querying relational
databases, XQuery is a query language for querying XML-based information.
Developers who are familiar with SQL will find XQuery to be a natural next step.
Liquid Data uses XQuery to query multiple types of data sources�the structure of
which are represented as XML by the query engine.

XML is evolving from a W3C specification for a markup language to an entire family
of specifications and technologies. The W3C has chartered working groups focused on
creating, among other things, a more approachable XML language for database
developers, including the published specifications for schemas and a query language.
The evolving language is XQuery, which gives XML developers a structured solution
for accessing XML data. The W3C Query Working Group used a formal approach by
defining a data model and formal query algebra as the basis for XQuery. XQuery uses
a simple type system and supports query optimization. It is statically typed, which
supports compile-time type checking. It includes familiar database operations such as
projection, iteration, selection, and join.
1-2 Building Queries and Data Views

W3C XQuery, XML, and Liquid Data
XQuery Use in Liquid Data and Data View Builder

BEA Liquid Data uses a stable components of the W3C XQuery specification to take
advantage of XML query power as the standards continue to evolve. By using XQuery,
Liquid Data can model XML schemas for various types of data sources. These
schemas are surfaced as design tools in the Data View Builder, which generates
queries in XQuery in the background. The Liquid Data server can process ad hoc or
Builder-generated queries in XQuery syntax and use them to query all different kinds
of data sources (relational databases, Web services, application views, data views, and
so on) and return results in XML.

Once you have configured Liquid Data access to the data sources you want to use (see
the Liquid Data Administration Guide), you can query the data by sending queries
written in XQuery to the data sources via Liquid Data.

The Role of XML in Creating Global Business Solutions

By supporting XML technology, creating specifications, fostering software
development, the W3C hopes to use XML as a forum for information exchange,
business development, and global communication.

XML is being used on the Internet is to create a simple way to exchange data among
diverse clients. Proprietary data definitions and access methods inhibit data exchange.
They lock you into using only those products and programs that can send, receive, and
process your data.

You could compare the universality of XML to a global monetary exchange standard,
or to an international spoken language that removes barriers to global commerce and
communication. Data View Builder and the Liquid Data query generation engine
adhere to these standards to facilitate cross-platform and cross-repository access to
critical business information.

You can learn more about XML on the W3C Web site at http://www.w3.org/XML/.
Building Queries and Data Views 1-3

1 Overview and Key Concepts
Supported XML Schema Versions In Liquid Data

XML schemas are used in Liquid Data to describe the hierarchical structure of the
various data sets with which you are working. Liquid Data recognizes XML Schema
versions 2001, 2000/08, and 2000/10.

You can learn more about XML schemas on the W3C Web site at
http://www.w3.org/XML/Schema and
http://www.w3.org/2001/12/xmlbp/xml-schema-wg-charter.html.

For an introduction on working with schemas in the Data View Builder see �Source
and Target Schemas� on page 1-10.

Learning More About the XQuery Language

You can learn more about the standard on the W3C Web site at
http://www.w3.org/TR/xquery/.

For a comprehensive list of relevant XQuery references, see the topic XQuery Links
in �Liquid Data Concepts� in the Liquid Data Product Overview.

Data View Builder Overview

The Data View Builder is a GUI-based tool for designing and generating XML-based
queries (in W3C XQuery syntax). You can then run the queries against heterogeneous
data sources to retrieve information. The Builder provides a pictorial, drag-and-drop
mapping approach to query design and construction. Using the Data View Builder
frees you from having to focus on the intricacies of query languages so that you can
give full attention to information design, the conceptual synthesis of information
coming from multiple sources, and the content and shape of the information you want
in the query result or target. In this way, you can to directly access distributed,
heterogeneous data sources as �integrated logical views.�
1-4 Building Queries and Data Views

Data View Builder Overview
Advantages of the Data View Builder

The Data View Builder lets you create queries using an intuitive, drag-and-drop
mapping strategy that frees you from having to grapple with the details of query
languages. The XML schema representations and mappings of source and target data
are packaged and saved as a project. Users can retrieve the full picture of the query
complete with source schemas and target mappings thereby getting access to the query
in the context of a design model. Queries can also be stored as data views that can be
configured as data sources themselves in Liquid Data and re-used to create nested
subqueries; �views on views� of information.

How the Data View Builder Works

In the Data View Builder, you drag and drop elements and attributes among XML
schema representations of data sources to create source conditions (joins, unions, and
so on). The default source condition is a join (that uses an equality function); you can
also use the more complex functions provided in the Builder toolbar. You also map
source to target schema elements and attributes to shape the structure of the query
result. As you build up the query with drag-and-drop modeling, the Builder is
constructing the query in the background in valid, well-formed XQuery syntax. An
�Optimize� view is also available for adding optimization hints to a query to improve
performance. When you are ready to run a query, you can switch to the Builder �Test�
view, see the generated XQuery for the current query, run it and see the query result in
XML.

The Data View Builder provides hierarchical tree XML schema representations of all
data sources configured in Liquid Data, regardless of the data source type. Once a data
source has been configured in Liquid Data using the WebLogic Server Administration
Console (see the Liquid Data Administration Guide), it shows up in the Builder toolbar
where you can access its XML schema representation. The structure of the data stored
in relational databases, Web services, application views, data views, and XML files
themselves are all represented as XML schemas in the Data View Builder. By creating
this coherent picture of heterogeneous data sources as XML schemas, Data View
Builder makes it easy for you to browse and map data elements and attributes among
different types of data sources.
Building Queries and Data Views 1-5

1 Overview and Key Concepts
Key Concepts of Query Building

The following terms and concepts introduced here:

! Query Plans

! Stored Queries

! Ad Hoc Queries

! Different Kinds of Data Sources

! Source and Target Schemas

! Anatomy of a Query: Joins, Unions, Aggregates, and Functions

Query Plans

A query plan is a compiled query. Before a query is run, Liquid Data compiles the
XQuery into an optimized query plan. At runtime, Liquid Data executes the query plan
against physical data sources and returns the query results.

Stored Queries

A stored query is a query that has been saved to the Liquid Data repository in the
stored_queries folder. Queries must be saved with a .xq extension to be recognized
as stored queries in Liquid Data. There is a performance benefit to using a stored query
because caching is available as follows:

! The query plan for a stored query is always cached in memory. (For an ad-hoc
query, the query plan is not cached.)

! The query result for a stored query can be cached.

Caching of query results for stored queries is configurable through the
Administration Console (see Configuring the Query Results Cache in the Liquid
1-6 Building Queries and Data Views

Key Concepts of Query Building
Data Administration Guide). Using this feature, you can specify whether or not
to cache query results for stored queries.

Note: Queries can be stored in subdirectories of the stored_queries folder and
accessed similarly to a path expression. For example, if a query is saved in a
repository directory under:

stored_queries/uCustomer/custQuery.xq

it could be executed from a jsp with:

<lds:query name=”uCustomer.custQuery”>
</lds:query>

Ad Hoc Queries

An ad hoc query is a query that has not been stored in the Liquid Data repository as a
stored query but rather is passed to the Liquid Data server on the fly. Liquid Data does
not cache the query plan or the result for an ad hoc query the way it can for a stored
query, so an ad hoc query cannot leverage the performance benefit of caching.

Different Kinds of Data Sources

Information can reside in various kinds of data sources in an enterprise or across
business entities. The most obvious of these is the relational database, which we
typically think of as a data storage and retrieval resource. The reality is that the
development of global business and distributed systems has generated information in
many other types of data sources as well. Information resides not only in various kinds
of databases, but also in packaged enterprise information system (EIS) applications
such as PeopleSoft or Siebel, and in emerging net-based technologies like Web
services and XML documents. Liquid Data and Data View Builder give you the ability
to query and get views into data that resides in all these kinds of information sources.
Building Queries and Data Views 1-7

1 Overview and Key Concepts
Relational Databases

All types of businesses and other organizations use an RDBMS (relational database
management system) to store information. Relational refers to the way the database
organizes information. All information in a relational database appears in logical tables
with rows and columns. Instead of a series of static records with one or more data fields
that can be redundant from one file to another, information is directly accessible using
queries. You can create logical table records that contain just the data you need by
constructing a query.

Some databases track information, such as reservations or overnight package delivery
information. Other databases store information for perpetual access, such as the IRS or
the Library of Congress. Others change dynamically, depending on frequent updates,
additions, and deletions, such as a newspaper subscriber database. Databases can
reside on large mainframes, web servers, or powerful desktop systems.

Imagine how many times your employee number can appear in static records that
describe your company 401K investment, employment, and health insurance records.
In an isolated case, this represents three separate files with much of the same
information repeated in each instance where there is a record of information. A
comprehensive RDBMS would store your employee number, name, address, and other
information once with pointers to other related pieces of information about you. Well
designed queries could extract only information related to a specific task.

Note: When Data View Builder inspects the metadata for a relational database, if the
schema contains any columns that start with numeric values, the Data View
Builder adds an underscore character (_) to the beginning of the element name
that represents the column. For example, if you have a column in the database
named 123_COLUMN, the element corresponding to that column in the Data
View Builder is labeled _123_COLUMN.

Also, the following characters from any catalog, schema, table, or column
names are replaced with an underscore character:

: < > \ / $, tab, newline, and spaces

For example, a table named customer><$table can be referenced as
customer___table (three underscore characters replace the three special
characters).

Additionally, if you are hand editing queries, the element or attribute names
that refer to column names that begin with a numeric value must begin with an
underscore character (_) when used in XPath expressions.
1-8 Building Queries and Data Views

Key Concepts of Query Building
Tuples

Tuples are another way to refer to data in a database. In a relational database, a tuple
is a complete set of information, or a logical record. For example, a personnel schema
might contain records that has four fields: an employee number, a name field, an
address field, and a phone number field. This tuple, or record, might occur many
thousands of times in a very large company with many employees.

XML Files

Extensible Markup Language (XML) files are proving to be a convenient and portable
format for storing many different kinds of information for document processing and
information exchange. Liquid Data and Data View Builder supports use of XML files
as data sources.

Web Services

A web service is a self-contained, platform-independent morsel of business logic,
located somewhere on the Internet, that is accessible through standards-based Internet
protocols like HTTP or SMTP. Web services facilitate application-to-application
communication over the Internet or within and across enterprises. A familiar example
of an externalized Web service is a weather portlet or stock quotes that you can
integrate into your Web browser. You can use Web services to encapsulate information
and operations. With the standards and wide-spread use of Web services for enterprise
information exchange evolving, Web services are becoming important resources of
global business information. Liquid Data and Data View Builder support the use of
Web services as data sources.

Application Views

Enterprise Information Systems (EIS) and custom applications store information that
you might need to aggregate for a complete view of data. You can query and retrieve
subsets of relevant information from applications such as SAP, Siebel, PeopleSoft,
Oracle Financial and so on and treat these views as application view data sources in
your data integration solution.
Building Queries and Data Views 1-9

1 Overview and Key Concepts
Data Views—Using the Result of a Query as a Data Source

A data view is a special type of data source in which the result of a query is used as a
data source. The query result will change as your data changes. In this way, you can
build on the queries you design to create "views on data views" for an up-to-date
picture of continually changing information.

Stored Procedures

For relational databases that support stored procedures, you can create stored
procedures in the RDBMS and expose them to Liquid Data. Liquid Data treats a stored
procedure as a function which requires one or more inputs to produce zero or more
outputs. A stored procedure allows database programmers to combine business logic
with database queries, and they provide a powerful way to produce information from
relational databases. Also, stored procedures allow the database administrators to tune
the queries run by the stored procedures, thus ensuring good performance and
minimizing impact on database performance.

Source and Target Schemas

XML schemas are used in Liquid Data to describe the hierarchical structure of the
various data sets with which you are working. The Data View Builder uses XML
schema representations as follows:

! Source Schemas�XML schemas that describe the structure of the source data.

! Target Schema�An XML schema that describes the structure of the target data;
that is, the structure of the query result.

To define schema to Liquid Data, you configure Liquid Data data sources. These data
sources must have an associated schema. For relational databases, you can specify a
schema or use the default schema determined automatically based on the metadata
available through the database JDBC driver. For XML files, Views, Complex
Parameter Types, Stored Procedures, or Web Services, you specify the schema when
you define the data source to Liquid Data. Once the data sources are defined, you can
use them in queries.

Note: For information on which versions of XML schema are supported, see
�Supported XML Schema Versions In Liquid Data� on page 1-4.
1-10 Building Queries and Data Views

Key Concepts of Query Building
This section includes the following:

! Understanding Source Schemas

! Understanding Target Schemas

Understanding Source Schemas

A source schema is the XML schema representation of the structure of the data in a
data source.

The Data View Builder provides graphical representation of source schemas in a tree
structure format. Nodes contain elements, attributes, and sub-elements and attributes
that you can expand or collapse. If you are building a query that queries more than one
data source, you will use multiple source schemas (one for each data source).

Understanding Target Schemas

A target schema describes the structure of a query result that will be produced when
the query runs. As with source schemas, the Data View Builder provides a graphical
representation of target schemas in a tree structure format. Nodes represent elements,
attributes, and sub-elements that you can expand or collapse. Only one target schema
per query is allowed.

Target schemas have two main purposes:

! Target schemas provide a template for mapping data from source schemas in
order to generate a query.

! Target schemas provide the schema definition when creating Liquid Data Web
Service definitions and Data View definitions.

You can specify a target schema in the Data View Builder in the following ways:

! You can set the target schema to simply use an existing schema for the target
schema. For example, you might have a target schema that a data architect built
to use in a given class of queries.

! You can open an existing target schema and then use the Data View Builder to
modify and save it.
Building Queries and Data Views 1-11

1 Overview and Key Concepts
! You can use the Data View Builder to build a new target schema from scratch,
using the tools available on the right-click menu in the target schema Data View
Builder pane.

The way you use target schemas with the Data View Builder varies depending upon
the situation. Sometimes you have a schema-driven scenario where you have an
existing target schema and want to generate a query that maps data to it appropriately.
Other times you have a query-driven scenario where you are trying to generate a
particular query result set, and you can use the target schema as a means of shaping
your query results.

A target schema can either describe just the portion of the hierarchy that you want to
appear in the result set or it can be a superset of the data that actually is mapped in the
query. For example, you could choose the same schema for both the source and target
data structure, but then map only some of the source elements to the target schema. The
query result will show only those data elements that are actually mapped to nodes in
the target schema. When a target schema contains unmapped elements, as in this
example, the unmapped elements must be specified as Optional in the target schema
definition.

You can specify Repeatable and Optional attributes of each node for a target schema
in the properties dialog of each node. The Data View Builder uses these target schema
attributes to infer your intent during query construction, and these attributes therefore
affect the queries that the Data View Builder generates. If a node is not specified as
optional, then it must be mapped in the query in order for the query to conform to that
target schema. If a node is repeatable, then it can be repeated in the result set of the
generated query. For example, consider the following target schema:

Figure 1-1 Target schema with non-repeatable node

In this target schema, the firstname and lastname elements are defined as
non-repeatable, and the custrecord node is defined as repeatable and required (the +
next to the custrecord name indicates that the node is repeatable and that it must
appear at least once�if it had an asterisk [*] instead of the +, that would indicate the
1-12 Building Queries and Data Views

Key Concepts of Query Building
node is repeatable and optional, and could therefore occur zero or more times). If you
map data to the firstname and lastname nodes, this target schema will generate
results similar to the following sample result set:

<customers>
 <custrecord>
 <firstname>John</firstname>
 <lastname>Parker</lastname>
 </custrecord>
 <custrecord>
 <firstname>John</firstname>
 <lastname>Warfin</lastname>
 </custrecord>
.......
......

</customers>

If you modify the target schema so the firstname and lastname elements are also
repeatable, the result set schema for the generated query will be different. For example,
in the schema shown in Figure 1-1, you could open the properties dialog on the
firstname and lastname elements and modify it to look as follows:

Figure 1-2 Properties dialog from target schema with repeatable elements
Building Queries and Data Views 1-13

1 Overview and Key Concepts
With the changed target schema, the Data View Builder will now generate a query with
results similar to the following sample result set:
<customers>
 <custrecord>
 <firstname>John</firstname>
 <firstname>John</firstname>

........

........
<lastname>Parker</lastname>

 <lastname>Warfin</lastname>
........
........

 </custrecord>
</customers>

In this case, it is likely that the query designer would want the result set to display the
first and last names together for the same customer, and would therefore desire the
non-repeatable nodes for the firstname and lastname elements. To understand how
these attributes affect the query results, experiment with different Node Property
settings, run the queries, and compare the results.

When you use the Liquid Data Console to create a Data View defiinition or a Web
Service definition, you must specify both a target schema and a stored query. The
queries in these definitions must conform to the specified target schema; that is, if the
target schema contains elements that are required (Optional box not checked), those
elements must be mapped in the query. Make sure your Data View and Web Service
queries conform to the specified target schema, as Data Views and Web Services
whose queries and target schemas do not conform might produce unexpected behavior.

Anatomy of a Query: Joins, Unions, Aggregates, and
Functions

A query can be thought of as a way of filtering through large amounts of data or
information to extract only the specifics relevant to a particular instance. A query is
made up of one or more types of conditions that accomplish the filtering task or �ask
the question.� The most commonly used techniques for establishing the source
conditions are:

! Joins

! Unions
1-14 Building Queries and Data Views

Key Concepts of Query Building
! Aggregates

! Functions

! Query Parameters

Joins

A join operation merges data from two sources based on a common field. A query with
a join operation combines information in two data source schemas when there is a
match on a common field. The common field is a link between the two schemas.

Using this common field, you can gather other information that is unique to each
source into a single target schema or view of the data.

For example, you could specify first and last names of all customers in two data
sources Broadband and Wireless, but limit the output (query result described by target
schema) to the subset of those customers with matching customer IDs in both source
schemas.

There are two types of join operations based on equality of matching fields (or
columns):

! Inner Joins�An inner join is the default join type. It combines data from two
data sources only if values in the joined fields match. The matching fields must
have compatible data types or contain similar data.

! Outer Joins�An outer join behaves like an inner join, but it includes data that
does not match the join condition. You can create two different types of outer
joins by specifying which unmatched data elements to include in the query
results

" Left Outer Join�In a left outer join, all selected nodes from the leftmost
schema in the join clause appear. Unmatched data nodes in the rightmost
schema in the join clause do not appear in the result.

" Right Outer Join�In a right outer join, all rows in the rightmost schema in
the join clause appear. Unmatched data nodes in the leftmost schema in the
join clause do not appear in the result.
Building Queries and Data Views 1-15

1 Overview and Key Concepts
Unions

Union operations enable you to combine data from multiple sources into a single set
of results described by the structure of the target schema. Even though the content of
the source schemas can be the same, or different, you can use a union query to combine
selected data nodes in the source schemas into a complete view of the data. For
example, we could construct a query that reports all customer orders from multiple
sources into a single result.

Aggregates

You can create queries in Liquid Data that aggregate query results, providing summary
information on a set of data. The typical aggregate functions are average (avg), count,
maximum (max), minimum (min), and sum. You can use aggregate operations to
perform various business calculations such as counting the number of customers,
calculating the total purchases of a single employee, calculating the average salary of
workers, and so on.

Functions

Liquid Data provides a functions library with built-in functions can by used by any
Liquid Data client, and also supports configuration and use of user-defined custom
functions related to specific business needs.

All source conditions are established using some type of function. The default function
for a simple join is the standard �equals� function (abbreviated eq). If you drag and
drop one data source element onto another of the same name you have created a simple
join using the equals function with two parameters (the two data source elements)
which gets expressed as value1 eq value2 in the Builder-generated XQuery.

You can also choose from the functions library to explicitly specify a function to use.

The W3C specification for XQuery supports a discrete list of functions�Liquid Data
supports a subset of those functions. For more information on W3C standard functions,
see the XQuery 1.0 and XPath 2.0 Functions and Operators specification.
1-16 Building Queries and Data Views

Understanding XML Namespaces
Query Parameters

The parameters to a function can be elements in a source schema, or they can be query
parameters that you define as generic placeholders for a variable value. You can
specify the variable value at query run time. For example, a query parameter could be
defined as lastname, which is a placeholder for a real last name, such as Smith, that
you identify when the query runs. Each time you run the query you can change the
value of lastname, which gives you a lot of flexibility without creating a separate query
for every unique last name you might be interested in. By supplying a new value each
time, you could run queries on customers named Smith, or Jones, or any other last
name of interest without redesigning the query.

Note: Query parameters are case sensitive.

Understanding XML Namespaces

XML namespaces are a mechanism to ensure there are no name conflicts when
combining XML documents. Liquid Data supports XML namespaces and includes
namespaces in the XQuery queries generated in Data View Builder. This section
includes the following topics:

! XML Namespace Overview

! XML Namespaces in Liquid Data Queries

! Migrating Liquid Data 1.0 Queries

XML Namespace Overview

XML Namespaces appear in queries as a string followed by a colon. For example, the
xs:integer data type uses the XML namespace xs.

XML namespaces ensure that names do not collide when combining data from
heterogeneous XML documents. For example, if there is an element named <tires>
from an automobile tire manufacturer in one document and an element named
<tires> from a bicycle tire manufacturer, it might not be appropriate to combine
Building Queries and Data Views 1-17

1 Overview and Key Concepts
those elements, as they are very different things. XML namespaces can prevent such
name collisions by referring to the elements as <automobile:tires> and
<bicycle:tires>.

Predefined Namespaces in XQuery

The following table shows predefined namespaces used in XQuery:

Other XML Namespace References

The following are some internet links to more information on XML namespaces:

! http://www.w3.org/TR/REC-xml-names/

! http://www.rpbourret.com/xml/NamespacesFAQ.htm/

Table 1-1 Predefined Namespaces in XQuery

Namespace
Prefix

Description Examples

xf The prefix for XQuery
functions.

xf:data

xf:sum

xf:substring

xfext The prefix for Liquid Data-specific
extensions to the standard set of
XQuery functions.

xfext:match

xfext:trim

xs The prefix for XML schema types. xs:element

xs:string

xsext The prefix for Liquid Data-specific
extensions to the standard set of
XML schema types.

xsext:myownstringtype
1-18 Building Queries and Data Views

Understanding XML Namespaces
XML Namespaces in Liquid Data Queries

If you are using the Data View Builder to generate queries, it automatically generates
the correct namespace declarations when it generates the query. If you are hand-coding
your queries, you must include the necessary namespace declaration(s). For a list of
data sources that require namespace declarations, see �Data Sources that Require
Namespace Declarations,� on page 1-20.

Namespace Declarations in XQuery Prolog

The beginning portion of an XQuery is known as the prolog. For Liquid Data queries,
the namespace declarations appear in the XQuery prolog. There can be zero or more
namespace declarations in a query prolog. Each namespace has the following form:

namespace <logical_name> = "<URI>"

where <logical_name> is a string used as a prefix in the query and <URI> is a uniform
resource indicator.

Consider the following simple query:

namespace view = "urn:views"

<CustomerOrderID>
{
for $view:MY_VIEW.order_2 in

view:MY_VIEW()/results/result/broadband/order
return
<ORDER_ID>{ xf:data($view:MY_VIEW.order_2/ORDER_ID) }
</ORDER_ID>

}
</CustomerOrderID>

The line in the prolog:

namespace view = "urn:views"

is the namespace declaration in this query. Each time the object (in this case, a view)
is referenced in the query, the object name is prefixed with the logical name view.
Building Queries and Data Views 1-19

1 Overview and Key Concepts
You must define all namespaces in the XQuery prolog to use them in a query (except
for the predefined namespaces described in �Predefined Namespaces in XQuery,� on
page 1-18). If you do not define namespaces in the XQuery prolog, the query will fail
with a compilation error.

Namespaces in Target Schema Definitions

When you use the Data View Builder to create or modify target schemas, you can
specify a namespace for an element or an attribute. If you specify a namespace, it is
added to the XML markup in the query (and therefore to the query results). For
example, if you add the view namespace to an element of the target schema named
milano as follows:

The query results for this target schema definition are of a form similar to the
following:

<view:milano xmlns:view="urn:views">100.0</view:milano>

Data Sources that Require Namespace Declarations

All data sources except relational databases and XML files require the namespace
declaration in the XQuery prolog. Queries involving the following data sources
therefore require namespace declarations in the XQuery prolog:

! Data Views

! Web Services

! Application Views

! Stored Procedures
1-20 Building Queries and Data Views

Next Steps
! Complex Parameter Types

Migrating Liquid Data 1.0 Queries

Liquid Data 1.0 did not support XML namespaces, and any queries used in Liquid
Data 1.0 must be migrated to work in Liquid Data 1.1. If you have queries that are
generated in a Data View Builder project file, you can open the project file in Data
View Builder 1.1. When you click the test tab, the Data View Builder automatically
generates the new query with the proper namespace declarations in the query prolog.

If you have stored queries and data views, you must use the queryMigrate tool to
migrate the queries so they work properly in Liquid Data 1.1. For information on the
queryMigrate tool, see Migrating Queries and Data Views in the Installation and
Migration Guide.

Next Steps

! If you have not already done so, we suggest working through the steps in
Getting Started, which takes you through the basic tasks of configuring some
data sources and using the Data View Builder to design a query using the Order
Query example from our Avitek Sample.

! To learn how to start the Data View Builder and understand the GUI tools and
views, see Chapter 2, �Starting the Builder and Touring the GUI.�

! To learn more about planning and designing queries and using the Data View
Builder to build them, see Chapter 3, �Designing Queries.�

! For information on query optimization and performance, see Chapter 4,
�Optimizing Queries.�

! For information on defining stored procedures to Liquid Data, see Chapter 8,
�Defining Stored Procedures.�

! For examples of building different types of queries using advanced functions and
tools, see Chapter 9, �Query Cookbook.�
Building Queries and Data Views 1-21

1 Overview and Key Concepts
! For details on creating queries by using custom functions, see �Using Custom
Functions� in Invoking Queries Programmatically.
1-22 Building Queries and Data Views

CHAPTER
2 Starting the Builder
and Touring the GUI

This section describes how to start the Data View Builder tool in BEA Liquid Data for
WebLogic�. It provides a complete GUI reference and explanation of the tools, data
sources, schemas, and task flow for designing, optimizing, and testing a
Builder-generated query. The following topics are covered:

! Starting the Data View Builder

! Data View Builder GUI Tour

" Design Tab

" Optimize Tab

" Test Tab

! Working With Projects

! Special Characters: Occurrence Indicators

! Next Steps: Building and Testing Sample Queries
Building Queries and Data Views 2-1

2 Starting the Builder and Touring the GUI
Starting the Data View Builder

To start the Data View Builder, follow these basic steps.

1. Start the Data View Builder.

" On a Windows platform, choose the menu item:
Start�>Programs�>BEA WebLogic Platform 7.0�>BEA Liquid Data for
WebLogic 1.0�>Launch Data View Builder

You can also start the Data View Builder by double-clicking on the file:
BEA_Home\WL_HOME\liquiddata\DataViewBuilder\bin\DVBuilder.cmd

A login window is displayed. This is for logging in to a Liquid Data server.

2. Connect to the Liquid Data server on which the data sources you want to use are
located.

a. The username and password for the Data View Builder is specified in the
WebLogic Server (WLS) Compatibility Security via the WLS Administration
Console for the Liquid Data server to which you want to connect. For more
information, see Implementing Security in the Liquid Data Administration
Guide. If the server allows guest users, you do not need to enter a username and
password�you can leave these fields blank.

b. Enter the URL for the Liquid Data server. For example, to connect to a server
running on your own machine as a local host you would enter the following:

t3://localhost:7001

c. Click the Login button.

The Data View Builder work area and tools appear, as shown in Figure 2-1.
2-2 Building Queries and Data Views

Data View Builder GUI Tour
Figure 2-1 Starting Data View Builder

Data View Builder GUI Tour

The Data View Builder consists of three main views or modes that you can get to by
clicking on the associated tabs. Each tab represents a phase in the process of designing
and testing a query. Generally, you will use the Design and Test tabs to design and run
(test) the query, respectively. Some, but not all, queries will require the use of
optimization hints and techniques on the Optimize tab.

! Design Tab

! Optimize Tab

! Test Tab
Building Queries and Data Views 2-3

2 Starting the Builder and Touring the GUI
Design Tab

The Design tab is where you construct the query by working with source and target
schemas to specify source conditions and source-to-target mappings.

The following sections describe the features available on the Design tab.

! Overview Picture of Design Tab Components

! 1. Menu Bar for the Design Tab

! 2. Toolbar for the Design Tab

! 3. Builder Toolbar

! 4. Source Schemas

! 5. Target Schema

! 6. Conditions Tab

! 7. Mappings Tab

! 8. Sort By Tab

! 9. Status Bar

Overview Picture of Design Tab Components

The following figure and accompanying sections describe the components on the
Design tab. (Click the tab to access it.)
2-4 Building Queries and Data Views

Data View Builder GUI Tour
Figure 2-2 Design Tab

Note: Although not entirely specific to the Design tab, the menus, horizontal shortcut
toolbar and status bar are also covered in detail in this section since this is the
first place you encounter them. Although some menu options and toolbar
shortcut buttons do stay the same regardless of which tab you are on, there are
mode-specific menus and toolbar options for Design, Optimize, and Test tabs
which are explained in those topics.

5

7

4

Source Schemas

Target Schema (only one)

Conditions, Mappings, Sort-By tabs

1 Menu bar

2

9 Status Bar

6 8
(Conditions tab is shown)

Toolbar

Builder Toolbar
with Sources and Toolbox
sub-tabs (Sources tab is
shown here)

3

Building Queries and Data Views 2-5

2 Starting the Builder and Touring the GUI
1. Menu Bar for the Design Tab

The menus provide File, Schema, View, and Window menus as detailed in Table 2-1.

Table 2-1 Menu Bar for the Design Tab

Menu Description of Menu Options

File Menu Provides Project-related actions (creating a new project, saving a project, and so on) along with
an Exit option that closes the Data View Builder application. For more information on working
with projects in the Data View Builder, see �Working With Projects� on page 2-38.
! New Project�Creates a new �blank slate� project. When you choose this option while

you have an unsaved project in the workspace you are given the option to save your current
work to a project. If you choose not to save, the query you had in work along with any
associated source conditions and schema mappings will be lost.

! Open Project�Opens an existing project you specify.
! Close Project�Closes the current project. If you have not saved your work, you are given

an opportunity to do so.
! Open Query�Opens an existing saved query. When you open a saved query, you only

see the Test Tab; the Design and Optimize tabs are greyed out. You can then edit, run, and
save the query.

! Save Project�Saves the current project. Data View Builder projects are saved with a
.qpr filename extension.

! Save Project As�Saves the current project under another file name. Data View Builder
projects are saved with a .qpr filename extension.

! Add Selected Schema�Adds/opens the source schema that is selected in the Builder
Toolbar to the current project.

! Set Target Schema�Brings up a file browser for browsing to and choosing a target
schema file from local system, network drive, or Liquid Data server repository. The file
you select is added to the current project as the target schema.

! Set Selected Source Schema as Target Schema�Causes the source schema that is
selected on the Builder Toolbar to be set as the target schema in the current project.

! Save Target Schema�Saves the current target schema to the Liquid Data Repository or
to a folder location and filename you choose. If you choose Repository when saving a
target schema, it saves a relative path to the file in the project file, making the target
schema available to other Liquid Data users and ensuring that the target schema is found
if the project is run on another server. If you save a target schema to a local file, the fully
qualified path is saved in the project file, making the schema accessible only on the local
machine.

! Save Query�For a description of this option, see Table 2-3, �Menu Bar for the Test Tab,�
on page 2-34.

! Exit�Closes the Data View Builder application.
2-6 Building Queries and Data Views

Data View Builder GUI Tour
Edit Menu Provides standard edit features. These are activated or deactivated depending on what is
selected on the User Interface. For example, you can delete a node in a schema so when any
schema node is selected �Delete� is active.
! Cut
! Copy
! Paste
! Delete
! Select All

View Menu As an alternative to using the tabs the View menu lets you navigate to the following UI views:
! Design�Same as clicking on Design tab.
! Optimize�Same as clicking on Optimize tab.
! Test�Same as clicking on Test tab.
! Sources and Tools�Provides navigation to the tabs (Sources and Toolbox) and panels on

the Builder Toolbar. Same as clicking on the associated tab and panel. For example,
choosing View�>Sources and Tools�>Relational Databases is the same as clicking on
the Sources Tab and then clicking Relational Databases.

To help with screen real estate and workspace, the View menu provides toggles to show or
hide various windows, tools, and tabs in the Design view. You can show or hide the following:
! Toolbars�Includes submenu with options to show/hide horizontal shortcut Toolbar or

Builder Toolbar.
! Panels�Includes submenu with options to show/hide various windows and tabs.
! Messages�Brings up a Messages dialog for you to keep notes on queries.
! Data Types�Toggle to show/hide data types for all source and target nodes in the schema

windows, as well as required function parameter types. Clear the Data Types check box to
disable this feature.

On the menu, an �x� by an option indicates it is currently displayed. By default, all tools,
windows and tabs are shown when you first open the Data View Builder.

Table 2-1 Menu Bar for the Design Tab (Continued)

Menu Description of Menu Options
Building Queries and Data Views 2-7

2 Starting the Builder and Touring the GUI
2. Toolbar for the Design Tab

The toolbar, located directly below the menus, provides shortcuts to a subset of
commonly used actions also available from the menus.

Query Menu ! Run Query�Runs the query. (See �6. Run Query� on page 2-36)
! Stop Query Execution�Stops a running query. (See �Stopping a Running Query� on

page 2-36.)
! Automatic Type Casting�Toggle to turn automatic type casting on/off. An �X� next to

this option indicates that automatic type casting is on. For more information about using
automatic type casting see �Using Automatic Type Casting� on page 3-17.

! Automatic Treat-as�Toggle to turn automatic treat-as on/off. An �X� next to this option
indicates that automatic type casting is on. When automatic treat-as is on, treat
functions are automatically placed in the query whenever there is a type mismatch. For
details on the treat functions, see �Treat Functions,� on page A-109.

! Condition Targets�>Advanced View�Toggle to turn Advanced View for manual
scoping on/off. For more information on using scoping in Advanced View see
�Understanding Scope in Basic and Advanced Views� on page 3-30.

For a description of the other options in the Query menu (Run or Stop Query Execution) which
are relevant only for running/testing a query, see Table 2-3, �Menu Bar for the Test Tab,� on
page 2-34.

Window Menu The Window menu provides various options for window management:
As you open source schema windows they are listed in the Window menu so that you choose
an open schema from the menu to navigate to it.

Help Menu Provides online documentation for the Data View Builder.

Note: For this release Liquid Data, the online help for the Data View Builder simply links
into the main topics in online documentation for the Data View Builder.

Table 2-1 Menu Bar for the Design Tab (Continued)

Menu Description of Menu Options
2-8 Building Queries and Data Views

Data View Builder GUI Tour
Figure 2-3 Toolbar

3. Builder Toolbar

The Builder Toolbar includes two subtabs:

! Sources Tab�Provides access to the XML schema representations for data
sources configured in the Liquid Data server. This is where you can get source
schema windows for a data source.

! Toolbox Tab�Provides access to functions, constants, query parameters, and
other components used in query design.

Sources Tab

The Sources tab on the Builder Toolbar contains the data sources configured on the
Liquid Data Server to which you are connected. Note that a data source type only
shows up as a button on the Builder Toolbar if it has been configured in the Server to
which you are connecting.

! Relational Databases

! XML Files

! Web Services

! Application Views (defined with the Application Integration)

! Data Views

Note: For a detailed introduction to these data sources, see �Different Kinds of Data
Sources� on page 1-7 in Chapter 1, �Overview and Key Concepts.�

Create new project

Open project Save project Add source schema
Add target schema
Building Queries and Data Views 2-9

2 Starting the Builder and Touring the GUI
To open a schema for a data source, click on the data source type (for example
Relational Databases) to get a list of configured data sources of that type. Then
double-click on the particular data source you want to work with The schema window
for that source is displayed in a movable window on the Liquid Data desktop.

Figure 2-4 Builder Toolbar: Sources Tab

Toolbox Tab

The Toolbox tab on the Builder Toolbar provides the following tools to use in query
construction:

! XQuery Functions (information on The Function Editor is included here)

" Custom Functions (included with Functions in a custom grouping you
define)

! Constants

! Query Parameters: Defining
2-10 Building Queries and Data Views

Data View Builder GUI Tour
! Components

Note: Any custom functions configured in the Liquid Data Server through the
WebLogic Server Administration Console will show up on the Builder
Toolbar on the Functions panel along with the standard functions provided.

Figure 2-5 Builder Toolbar: Toolbox Tab

XQuery Functions

XQuery Functions are built-in code modules that return a value when they run. The
XQuery Functions panel provides a library of standard W3C functions compliant with
the W3C XQuery 1.0 and XPath 2.0 Functions and Operators specification. (See
Figure 2-5 for an example of the Functions panel on the Builder Toolbar Toolbox tab.)
Building Queries and Data Views 2-11

2 Starting the Builder and Touring the GUI
In Data View Builder, the Functions are displayed in the Builder Toolbar on the
Toolbox tab XQuery Functions panel by category names like Aggregate Functions,
Boolean Functions, Cast Functions, and so on. To view all the functions in a category
or group, expand the group node.

You can double click or drag and drop a function object to the Liquid Data desktop
where it appears in a tree format showing the number and type of parameters required.

A copy of any mapped function saves automatically with the project when you close
it. The saved function (with associated parameters) appears in the Components panel
when you reopen the project. If you do not map the new function and you terminate
the session, Data View Builder discards it and it does not appear in the Components
panel.

Each function has a specification for required parameters and expected behavior. Some
functions cannot be used in the work area, but must appear only on the desktop. For
complete information about each function, its parameters, and expected behavior, see
Appendix A, �Functions Reference.� For more detailed information, see the W3C
XQuery 1.0 and XPath 2.0 Functions and Operators specification.

The Function Editor

The functions editor gives you a space to create functions using drag-and-drop and to
view existing functions in your project.

Figure 2-6 Function Editor

There are two ways to open the Functions Editor:

! When you drag and drop a function into the work area the Function Editor is
displayed with the chosen function and anticipates the equation with placeholder
values (for example anyValue1 eq anyValue2).
2-12 Building Queries and Data Views

http://www.w3.org/TR/2001/WD-xquery-operators-20011220/

Data View Builder GUI Tour
! You can open the Functions Editor to view or modify an existing function by
selecting a condition in a particular row and then clicking the edit button.

Figure 2-7 Click Edit Button to Get the Functions Editor

Click Close to close the Functions Editor.

Custom Functions

If you have custom functions configured through the Administration Console, these
will show up in the Data View Builder on the Toolbar Functions tree in a custom
group. The name of the group is what you specify in the �presentation group�
element in the custom functions library definition (.CFLD) file. If no grouping label is
specified �Ungrouped�. For more information on this, see �Contents of a CFLD File�
and �Structure of a CFLD File� in �Using Custom Functions� in Invoking Queries
Programmatically.

Constants

You can use the Constants panel to create function parameters with constant values.
Building Queries and Data Views 2-13

2 Starting the Builder and Touring the GUI
Figure 2-8 Builder Toolbar: Toolbox Tab: Constants

Choose the type of constant based on how you want the data to be considered in the
query. Strings are alphanumeric values that typically contain alphabetic letters, special
characters, and digits used in non-numeric comparisons. Names, zip codes, phone
numbers, and street addresses are typical examples of string values.

Numbers can be integers (positive or negative), decimal values, or floating point
expressions. The Empty element enables you to force an element to appear in the
query. We expect mapped data elements to appear in the query result, but you may
wish to see other data elements appear that are not mapped. If you drag and drop the
Empty element onto a node, that node will appear in the query result.

To include a String, Number, or Empty element constant as a function parameter,
follow steps similar to those shown in this example:

1. Drag an appropriate function to a row on the Condition tab or to the Liquid Data
desktop. For example: choose the startswith function. You get the following
placeholder in the Functions Editor:

xf:starts-with(str1,str2)

2. Drag an appropriate source node onto the first string placeholder (str1). For
example, choose CustomerID from a source schema.

...then drag and drop one
of the associated

Type constant in
one of the fields

constant icons into the
Functions Editor or
elsewhere to build
the function
2-14 Building Queries and Data Views

Data View Builder GUI Tour
3. Type a value in the String constant text box. For example, CUS. Drag the
Constants icon onto the second string placeholder (str2).

The condition appears in the Functions Editor as shown in the following figure.

Figure 2-9 Condition with starts-with Constant in Functions Editor

Close the Functions Editor by clicking the Close button. The new condition you
created is also now displayed in the Source column on the Condition tab.

Figure 2-10 Condition with starts-with Constant in Row on Conditions Tab

Note: If you design a query with a constant, and then design another query using a
query parameter that specifies exactly the same value, the generated XQuery
translation is different even though the functionality in each query is exactly
the same.

Query Parameters: Defining

Query parameters can be strings, integers, floating point numbers, boolean
expressions, or date and time types. They are variables that you define with no static
value. On the Test tab, you can supply a different value each time you run the query
(see �4. Query Parameters: Submitted at Query Runtime� on page 2-35).
Building Queries and Data Views 2-15

2 Starting the Builder and Touring the GUI
The Query Parameter section of the Toolbox provides a text box where you can enter
a new parameter value to be stored.

! Type a value that is one of the five supported types of parameters and click the
drop-down list to select the type of parameter.

! Click Add to save it to the Query Parameter resource tree.

The parameters you add are added to the tree in the Query Parameters panel.

Figure 2-11 Builder Toolbar: Toolbox Tab: Query Parameters

You can invoke these variables when you build conditions. As a convenience, you can:

! Right-click a parent node and click Expand to show all child nodes.

! Right-click a child node and click Delete or Rename.

Table 2-2 describes supported simple query parameter data types.
2-16 Building Queries and Data Views

Data View Builder GUI Tour
To use a simple query parameter, drag and drop a parameter from the Query Parameter
resource area to the appropriate item of source data. Then, when you run your query,
a window will appear where you can enter your test parameter.

To see use of a simple query parameter, please see the Order Query demo, available
from the Liquid Data documentation home page.

http://e-docs.bea.com/liquiddata/docs10/interm/demopage.html

Note: If you design a query with a constant, and then design another query using a
query parameter, the generated XQuery translation is different even though the
functionality in each query is exactly the same.

Table 2-2 Query Parameter Types

Parameter Type Examples

Boolean (xs:boolean) Boolean expressions test true or false. You can specify that the
Boolean Query Parameter has an implicit definition of True or
False, then use it as query resource.

Byte (xs:byte) A positive or negative whole number. The maximum value is
127 and the minimum value is -128. For example:
! -1
! 0
! 126
! +100

Date (xs:date) Input must be in this format: MMM dd, YYYY
For example:
JUN 12, 2002

Date and Time
(xs:dateTime)

Input must be in this format:
MMM dd, YYYY HH:MM:SS AM/PM

For example:
MAY 12, 2002 12:12:11 AM
Building Queries and Data Views 2-17

2 Starting the Builder and Touring the GUI
Decimal (xs:decimal) A precise real number (negative or positive) that can contain a
fractional part. If the fractional part is zero, the period and
following zero(s) can be omitted. For example:
! -1.23
! 12678967.543233
! +100000.00
! 210.

Double (xs:double) A real number (negative or positive) that can contain fractional
part. For example: 3.159
Liquid Data does not support floating point formats expressed in
fractions (½) or IEEE floating point notation (3E-5).

Floating Point
(xs:float)

A real number (negative or positive) that can contain a fractional
part. For example:
! 100.0
! -100.5
Liquid Data does not support floating point formats expressed in
fractions (½) or IEEE floating point notation (3E-5).

Int (xs:int) A positive or negative whole number. The maximum value is
2147483647 and minimum value is -2147483648. For example:
! -1
! 0
! 126789675
! +100000

Integer (xs:integer) A positive or negative whole number. The maximum value is
2147483647 and minimum value is -2147483648. For example:
! 1
! -100
! +100

Table 2-2 Query Parameter Types

Parameter Type Examples
2-18 Building Queries and Data Views

Data View Builder GUI Tour
Long (xs:long) A positive or negative whole number. The maximum value is
9223372036854775807 and minimum value is
-9223372036854775808. For example:
! -1
! 0
! 12678967543233
! +100000

Short (xs:short) A positive or negative whole number. The maximum value is
32767 and minimum is -32768. For example:
! -1
! 0
! 126789
! +10000

String (xs:string) An alphanumeric expression such as:
! Smith
! Jones
! 12345 State St.

Note: An unspecified value for a query parameter of type
String is considered an empty string.

Time (xs:time) Input must be in this format: HH:MM:SS AM/PM
For example:
01:02:15 AM

Table 2-2 Query Parameter Types

Parameter Type Examples
Building Queries and Data Views 2-19

2 Starting the Builder and Touring the GUI
Components

The Components panel shows the structure of the current project in Design View. All
elements of the query, except the target schema appear in this view of the project,
including any data source schemas you are using or functions that you map with
parameters.

If a particular component schema is unavailable when a project is re-opened, the
schema will still be listed, but it will be flagged as unavailable (off-line) and a red mark
will appear over the schema name.

Figure 2-12 Builder Toolbar: Toolbox Tab: Components

Any component that appears in this panel can be minimized on the Liquid Data
desktop by double clicking the appropriate node. Click again and the component
reappears on the desktop. The target schema does not appear in the Components panel
because you cannot close it while working on the project.

When you save a project by name and reopen it, the project components appear in this
window, but minimized on the desktop. You can move them to the desktop by double
clicking a selected component. When you reopen a saved project, the output schema
appears directly on the desktop instead of in the Components tree.
2-20 Building Queries and Data Views

Data View Builder GUI Tour
You can right-click any parent node and click Edit, Delete, or Rename to complete
those tasks.

4. Source Schemas

Source schema windows show XML schema representations of the structure of the
data in the selected data source. Used to create source conditions and mappings to a
target schema. You can have multiple data source schemas open on the Liquid Data
desktop as needed.

Note: For a detailed description of the special characters used to identify
characteristics of schema nodes, see �Special Characters: Occurrence
Indicators� on page 2-39.

To open a schema for a data source:

1. Click on the Sources tab on the Builder Toolbar (if the Sources tab is not already
showing).

2. Click on the data source type (for example Relational Databases) to get a list of
configured data sources of that type.

3. Double-click on the particular data source you want to work with.

The schema window for that source is displayed in a movable window on the
Liquid Data desktop.
Building Queries and Data Views 2-21

2 Starting the Builder and Touring the GUI
Figure 2-13 Source Schemas

5. Target Schema

The Target Schema window shows the XML schema representation for the structure
of the target data (query result).

Only one target schema per project is allowed. If you have a target schema open and
decide to choose another, the current target schema is closed and the new one replaces
it.

Note: For a detailed description of the special characters used to identify
characteristics of schema nodes, see �Special Characters: Occurrence
Indicators� on page 2-39.

To open and set a target schema for a project:

1. Choose the menu item File�>Set Target Schema.

This brings up a file browser.
2-22 Building Queries and Data Views

Data View Builder GUI Tour
If you choose Repository in the Open dialog, the Data View Builder displays
any target schemas saved in the Liquid Data repository.

2. Navigate to the schema you want to use, select the file and click Open in the file
browser.

The target schema is displayed as a docked on the right side of the Design tab.
Building Queries and Data Views 2-23

2 Starting the Builder and Touring the GUI
(You can also choose the menu item File�>Set Selected Source Schema as Target
Schema to add a source schema selected on the Builder Toolbar as the target schema.)

Figure 2-14 Target Schema

6. Conditions Tab

The Conditions tab shows:

! In Basic mode, conditions filtering) defined for the source data (see
�Conditions� on page 2-25)

! In Advanced mode, conditions (filtering) defined to force Scope for the target
data or query result (see �Advanced View for Defining Explicit Scope for
Conditions� on page 2-27)

The Conditions area functions both as a tracking and reflection tool, and as a
workspace that you can manipulate directly. Whenever you do a drag-and-drop
operation that causes an update to Conditions, the Conditions tab is automatically
displayed.
2-24 Building Queries and Data Views

Data View Builder GUI Tour
Figure 2-15 Conditions Tab on the Design tab

Conditions

The Conditions section shows conditions (filters) for source data. As you build up the
query by creating drag-and-drop source-to-source node relationships among data
source schemas, the implied condition statements are recorded and reflected as joins
under the Conditions. Even if you don�t drag and drop anything directly into the
Conditions tab, you will see the appropriate conditions building up here as a result of
your work with the source schemas. (When you drag and drop a source element onto
another source element, the equals function is used by default to create a simple join.)

Drag and drop to specify conditions within source schemas

Details of conditions shown
shown on Conditions tab

trashcan for
deleting conditions

Functions Editor
button

Display filter

Toggles to enable
or disable a condition
Building Queries and Data Views 2-25

2 Starting the Builder and Touring the GUI
Figure 2-16 Conditions Tab in Basic View

You can also use the Conditions area as a workspace to explicitly drag-and-drop
elements of a query statement into the rows under Conditions to build up the query.
You can drag-and-drop elements and attributes from source schemas as well as
functions, constants, and parameters from the Builder Toolbar �Toolbox� tab directly
into the rows under Conditions to craft conditions statements.

This tab includes the following features to facilitate working with conditions:

! Function Editor�To edit an existing condition, select it and click on the
Function Editor. You can also drag and drop a function from the Functions panel
on the Toolbox panel into an empty row on the Conditions tab. For more about
working with the Function Editor, see �XQuery Functions� on page 2-11 and
�The Function Editor� on page 2-12.

! Trashcan for Deleting Conditions�To remove a condition, select the row that
contains the condition you want to remove and click the trashcan.

! Enabled/Disabled Toggle�For each condition you can use the
Enabled/Disabled toggle to include the selected condition in the query or disable
it. Select the row that contains the condition you want to enable or disable and
then click the Enabled/Disabled toggle for that condition. When a condition is
disabled, it will not be used to generate the XQuery. When a condition is
enabled it will be included when the XQuery is generated.
2-26 Building Queries and Data Views

Data View Builder GUI Tour
Advanced View for Defining Explicit Scope for Conditions

When you click the Advanced View toggle, the Conditions tab displays a column for
defining explicit scope for each condition.

Figure 2-17 Conditions Tab in Advanced View Showing Explicit Scope

The Scope area on the Conditions tab shows any explicit narrowing conditions (filters)
you define for the target data to refine the query result. In basic mode (with Advanced
toggle off) Data View Builder creates queries based on the scope implied by the source
conditions you create and the structure of the target schema (implicit scope). In other
words, by default the implicit scope is auto-generated by the Data View Builder. The
auto-generated, implicit scope should be sufficient for most cases. However, there may
be situations in which you want to control scoping explicitly. In these cases, you can
switch to the Advanced view.

A scope setting affects the placement of a where clause in the XQuery generation. The
Data View Builder best guess at implicit scope will satisfy most cases, and you will
generally not have to specify scope. For cases where you need to explicitly define
scope to force the where clause to the right place in the query or sometimes to force it
to be there at all, you can do this directly by dragging the appropriate node in the target
schema into a row under Scope.

For more information and examples about when and how to set scope, see
�Understanding Scope in Basic and Advanced Views� on page 3-30 in Chapter 3,
�Designing Queries.�

Returning to Basic View (Automated Scope)

When you toggle Advanced View off (no X showing next to Advanced View), Data
View Builder returns to automatic scoping mode and discards the changes you made
in manual mode. The Current Scope text box and the Targets column disappear.

To define an explicit scope for a condition,
drag and drop target nodes into the Scope column.

Current scope refers an
element in target schema
Building Queries and Data Views 2-27

2 Starting the Builder and Touring the GUI
7. Mappings Tab

The Mappings tab shows source-to-target mappings that will define the structure of the
query result. As you drag-and-drop source elements onto target elements among the
schema windows, the Mappings tab records these relationships, which build up the
shape the data will take in the query result. For example, dragging and dropping
FIRST_NAME and LAST_NAME elements from CUSTOMER in a source schema to
the associated CUSTOMER elements in the target schema specifies that in the query
result customers will be identified with first and last names as defined.

Whenever you do a drag-and-drop operation that causes an update to Mappings, the
Mappings tab is automatically displayed.

Figure 2-18 Mappings Tab

Drag and drop to map nodes from source to target schemas

trashcan for
deleting conditions
and mappings

Functions Editor
button

Display filter

Details of mapping
on Mappings tab
2-28 Building Queries and Data Views

Data View Builder GUI Tour
Deleting a Mapping

To delete a mapping, select the row on the Mappings tab that contains the
source-to-target mapping you want to delete (selected mapping is highlighted) and
click the trashcan.

8. Sort By Tab

The Sort By tab specifies how the result should be ordered and a list of candidate nodes
that you can order. Figure 2-19 shows the order of a repeatable node segment of the
target schema. The drop-down list shows all repeatable data nodes in the target schema
marked with an asterisk (*) or a plus sign (+). A repeatable node is the parent of child
nodes that can appear in the query result once for every instance of a match. A
repeatable node is an ancestor to one or more nodes that will represent unique data
returned by the query.

The blue arrows move rows up and down. These icons are enabled only when you
select a data item that can move up or down. The drop-down list shows the repeatable
nodes with subordinate nodes that can be sorted. When you select a repeatable node
from the drop-down list, the associated child nodes appear in the Sort By list. Move
these child nodes up or down to specify how the result should be sorted. For example,
a CUSTOMER* element can be sorted first by LAST_NAME and then by FIRST_NAME by
having the LAST_NAME row at the top and the FIRST_NAME row directly beneath it.

An item can be moved if it is assigned an ascending or descending attribute in the
source schema. (The database administrator or data architect who creates the source
schema specifies this.) Items with ascending or descending attributes can be moved up
only if there is another item above, and they can be moved down only if the next item
down also has an ascending or descending attribute.

Figure 2-19 Sort By Tab

Repeatable Nodes List
Building Queries and Data Views 2-29

2 Starting the Builder and Touring the GUI
9. Status Bar

The Status Bar is a horizontal bar at the bottom of the Data View Builder that provides status
information about current actions and processes.

Figure 2-20 Status Bar

Optimize Tab

The Optimize tab is where you can optionally add more information such as �hints� to
data sources to improve query performance.

The following sections describe the features available on the Optimize tab.

! Overview Picture of Optimize Tab Components

! 1. Source Order Optimization

! 2. Join Pair Hints

Overview Picture of Optimize Tab Components

The following figure and accompanying sections describe the components on the
Optimize tab. (Click the tab to access it.)
2-30 Building Queries and Data Views

Data View Builder GUI Tour
Figure 2-21 Optimize Tab

Note: The Optimize tab contains a subset of the menu options and toolbar buttons
available on the Design tab. For a full description of these options, see �1.
Menu Bar for the Design Tab� on page 2-6 and �2. Toolbar for the Design
Tab� on page 2-8.

1. Source Order Optimization

You can re-order source schemas on the top frame on the Optimize tab to improve
query performance. To move a schema up or down, select the schema and click the up
or down arrow buttons to the right of the list of schemas.

When a query uses data from two sources, the Liquid Data Server brings the two data
sources into memory and creates an intermediate result (cross-product) using the two
sources. If you specify more than two sources, the Liquid Data Server creates a

Source Order Optimization (order sources in this query for best performance)

Join Pair Hints (pairs of data elements in each join and associated Optimize Hint)

Hints available to modify processing of joins for improved query performance

1

2

Building Queries and Data Views 2-31

2 Starting the Builder and Touring the GUI
cross-product of the first two sources, then continues to integrate each additional
resource, one at a time, in the order that they appear in FOR clauses. The intermediate
result grows with each integration, until all sources are accounted for.

The size of a source is the number of tuples, or records, used in the query from that
source. The size of the intermediate result depends on the input size of the first source
multiplied by the input size of the second source and so on. A query is generally more
efficient when it minimizes the size of intermediate results. You can re-order source
schemas in certain situations to improve performance.

For detailed information on how to optimize a query by ordering source schemas, see
Chapter 4, �Optimizing Queries.�

2. Join Pair Hints

A query hint is a way to supply more information to the Liquid Data Server about the
amount of data each source contains when processing a query. The Join Hints frame
contains a drop-down list of data source pairs, and a table that shows all the joins for
each pair. Only source pairs that have join conditions across them appear in the
drop-down list. For each join condition in the table, you can provide a hint about how
to join the data most efficiently.

For detailed information on how to optimize a query by using optimization hints, see
Chapter 4, �Optimizing Queries.�

Test Tab

The Test tab is where you view the generated XQuery language interpretation of the
query elements you developed on the Design and Optimize tabs, and run the query
against your data sources to verify the result and evaluate performance.

From this view, you can provide different parameters to the query before you run it.

The following sections describe the features available on the Test tab.

! Overview Picture of Test Tab Components

! 1. Menu Bar for the Test Tab

! 2. Toolbar for the Test Tab
2-32 Building Queries and Data Views

Data View Builder GUI Tour
! 3. Builder-Generated XQuery

! 4. Query Parameters: Submitted at Query Runtime

! 6. Run Query

! 7. Result of a Query

Overview Picture of Test Tab Components

The following figure and accompanying sections describe the components on the Test
tab. (Click the tab to access it.)

Figure 2-22 Test Tab

Run Query Button

Builder-Generated XQuery Translation

Query Parameters

Query Results

Result of Query (shows when run)7

3

4

5

6

2 Toolbar

1 Menu Bar

(Large Results)
Building Queries and Data Views 2-33

2 Starting the Builder and Touring the GUI
1. Menu Bar for the Test Tab

2. Toolbar for the Test Tab

The toolbar, located directly below the menus, provides shortcuts to a subset of
commonly used actions also available from the menus.

Figure 2-23 Toolbar on the Test Tab

Table 2-3 Menu Bar for the Test Tab

Menu Description of Menu Options

File Menu Provides most of the same options as shown on the Design tab menu bar with
one additional menu option as follows:
! Save Query�Saves the current query to a file you specify. The file must

be saved with a .xq extension. (If you do not add a .xq extension, Data
View Builder will append it automatically.) If the query is saved into the
stored_queries folder in the Liquid Data server Repository, it is
considered a stored query in Liquid Data. For more details on saving a
query, see �Saving a Query� on page 5-6 in Chapter 5, �Testing Queries.�

For a description of the other File menu items available from the Test tab
(which are a subset of those on the File menu for the Design tab), see Table 2-1
in �Design Tab� on page 2-4

Query Menu Provides the following options related to running a query:
! Run Query�Runs the query. (See �6. Run Query� on page 2-36)
! Stop Query Execution�Stops a running query. (See �Stopping a

Running Query� on page 2-36.)
The Query menu options for Automatic Type Casting and Condition
Targets�>Advanced View are more relevant to designing a query and,
therefore, are described in �1. Menu Bar for the Design Tab� on page 2-6.

Run Query

Stop Query Execution
Save query (if saved to Liquid Data
Repository as .xq extension, becomes
a stored query)
2-34 Building Queries and Data Views

Data View Builder GUI Tour
3. Builder-Generated XQuery

The query you developed on the Design and Optimize tabs is shown in XQuery
language in the �Query� window on the upper left panel on the Test tab.

Figure 2-24 Builder-Generated XQuery Shown in Query Window

4. Query Parameters: Submitted at Query Runtime

You can use the Query Parameters panel to add variable values to a query each time
you run it. The list of variables depends on the number of variables you defined as
Query Parameters on the Design tab (see �Query Parameters: Defining� on page 2-15)
and which ones appear as one or more function parameters.

Figure 2-25 Query Parameters Settings on Test Tab
Building Queries and Data Views 2-35

2 Starting the Builder and Touring the GUI
5. Query Results - Large Results

If you anticipate a large set of data coming back in the query result, click Large Results
(an X in the box indicates this feature is on). The default is off (no X).

When this option is on, Liquid Data uses swap files to temporarily store results on disk
in order to prevent an out-of-memory error when the query is run.

Figure 2-26 Specifying Large Results

6. Run Query

To run a query, click the Run Query button on the toolbar in the upper left of the Test
tab. (You can also choose the Run Query option from the Query menu.)

Figure 2-27 Click the �Run Query� Button to Run the Query

The query is run against your data sources and the result is displayed in the
Results panel in XML format.

Stopping a Running Query

You can stop a running query before it has finished processing by clicking the Stop
Query Execution button in the toolbar. (You can also choose the Stop Query option
from the Query menu.)

Run Query
button
2-36 Building Queries and Data Views

Data View Builder GUI Tour
Figure 2-28 Click the �Stop Query Execution Button� to Stop a Running Query

7. Result of a Query

When you run a query, the result is displayed in the Results window on the Test tab in
XML format.

Figure 2-29 Query Result is Shown on Test Tab When Query is Run

Stop Query Execution
button

Query Result
Building Queries and Data Views 2-37

2 Starting the Builder and Touring the GUI
Working With Projects

It is a good practice to save the project file immediately once you have chosen and set
up a target schema, and started creating conditions and mappings for a query. Save
frequently or after you make a significant change to avoid losing your work. To save
the project for the first time.

To save a project choose File�>Save Project or File�>Save Project As from the
menus (or click the �Save the project� toolbar button). Data View Builder projects are
saved with a .qpr filename extension. (For a complete description of options available for
handling projects, see Table 2-1 in �1. Menu Bar for the Design Tab� on page 2-6.

To Make a Project Portable, Save Target Schema to
Repository

For the project to be portable so that other users can open the project and use it, the
target schema must be saved to the Liquid Data server repository on the server where
the project will be used.

Saving a Project is Not the Same as Saving a Query

Please keep in mind that �saving a project� is not the same as �saving a query�. Saving
a project creates a Data View Builder .qpr file that includes the conditions and
mappings for source and target schemas used in a particular query. You can re-open
any project in the Data View Builder, modify the conditions and mappings on the XML
schemas, and re-optimize or re-run the query from within the Builder tool.

However, saving a project does not make the query in that project available as a stored
query in Liquid Data. To create a stored query, you need to use the Save Query option
on the Test tab. For more information on saving a query, see �Saving a Query� on page
5-6 in Chapter 5, �Testing Queries.�
2-38 Building Queries and Data Views

Special Characters: Occurrence Indicators
Using Schemas Saved With Projects

When you save a project, the schema definitions of all source and target schemas that
you mapped in the project are saved. When you reopen the project, Data View Builder
first looks for the schema definitions in the Liquid Data repository.

If a schema definition is unavailable, the schema definition saved in the project file is
used. Data View Builder adds the schema to the list of available resources, but flags it
as offline by putting a red mark over the schema name. A warning is also generated in
the Administration Console log that queries using this schema will not run.

Offline resources are available only to the previously associated project.

Special Characters: Occurrence Indicators

The Data View Builder uses a set of special characters (occurrence indicators) to
indicate the number of items in a sequence. Occurrence indicators are generally used
to specify characteristics for elements or attributes in schemas, but are also found
elsewhere in the Builder user interface (UI) where they are needed to specify
occurrence characteristics. You can apply these characteristics to elements and
attributes of schemas that you build or modify by accessing the right-mouse click
pop-up menu on schema nodes.

Table 2-4 Occurrence Indicators in Data View Builder

Character Description

Question mark (?) Indicates zero items or one single item. The item is
optional and does not have to be included or mapped.

Asterisk (*) Indicates zero or more items. This item is optional and
multiple occurrences of it are allowed.

Plus sign (+) Indicates one or more items. This is a required element
of which multiple occurrences are allowed.
Building Queries and Data Views 2-39

2 Starting the Builder and Touring the GUI
Next Steps: Building and Testing Sample
Queries

If you have not already done so, we suggest working through the steps in Getting
Started, which takes you through the basic tasks of configuring some data sources and
using the Data View Builder to design a query using the Order Query example from
our Avitek Sample. (For more information about the Avitek Sample and other samples,
see the Samples introduction page.) Working through the Getting Started (or even
reading through the steps related specifically to using the Data View Builder) is an
easy, hands-on way to get familiar with working with schema representations of data
sources and using the basic query-building tools, task flow, and workspaces in the Data
View Builder.

If you have already worked through the Getting Started topic or if you are ready to get
started on building some other basic queries, we suggest you skip to the following
topics in this document:

! �Examples of Simple Queries� on page 3-19 (at the end of Chapter 3,
�Designing Queries�) provides two example queries that provide practice in
some basic techniques such as creating join conditions, using functions, setting
scope of the target, using the sort-by feature to specify the order of the result,
and running queries.

! �Query Cookbook� on page 9-1 provides several examples of complex queries
using more advanced features and functions such as creating unions, using date
and time functions, using aggregate functions, using hints to optimize queries,
and using data views in queries.
2-40 Building Queries and Data Views

CHAPTER
3 Designing Queries

This section explains how to design and build a BEA Liquid Data for WebLogic�
query using the Data View Builder, and provides example walk-throughs of how to
build some simple queries. The following topics are included:

! Designing a Query

! Building a Query

" Opening the Source Schemas for the Data Sources You Want to Query

" Adding a Target Schema

" Mapping Source and Target Schemas

" Setting Conditions

" Showing or Hiding Data Types

" Using Automatic Type Casting

! Examples of Simple Queries

" Example: Return Customers by Name

" Example: Query Customers by ID and Sort by State

! Understanding Scope in Basic and Advanced Views

" Where Does Scope Apply?

" Basic View (Automatic Scope Settings)

" Advanced View (Setting the Scope Manually)

" When to Use Advanced View to Set Scope Manually

" Task Flow Model for Advanced View Manual Scoping

" Returning to Basic View
Building Queries and Data Views 3-1

3 Designing Queries
" Saving Projects from Basic or Advanced View

" Scope Recursion Errors

! Understanding Query Design Patterns

" Target Schema Design Guidelines and Query Examples

" Source Replication

! Next Steps

Designing a Query

The first step in constructing a query (or, more often, a set of queries) is a design step�
drawing on the requirements identified to answer the following questions critical to the
query design:

! What types of data sources do I need to query?

! What is the structure of each data source; that is, what do the XML source
schemas look like?

! What do I want the query result (that is, the output of the query) to look like? In
other words, how do I want to structure the output?

" What should the target XML schema look like? (The target schema defines
the structure of the query result.)

" What target schema design pattern should I use?

Note: Proper design of the target schema is a key factor in building a successful
query. In a nutshell, you need to ensure that cardinality is correct and check
for target conformity. For complete guidelines and examples of
recommended design patterns, see �Target Schema Design Guidelines and
Query Examples� on page 3-39.

! What source conditions do I need to define to get the information I need from
the data sources? (Source conditions are joins, unions, aggregations and so on
defined to filter the source data in a certain way.)
3-2 Building Queries and Data Views

Building a Query
Once you have designed or �modeled� the query in this way based on what you want
the query to do and defined an outline strategy for accomplishing the information
filtering, you are ready to build a test version of the query. For other than very simple
queries, you will probably revise, refine and test the query several times adding
optimization if necessary.

Building a Query

Building a query involves specifying one or more source schemas that describe
resource data, selecting a single target schema that describes the shape of the query
result, creating source-to-target mappings to further define what the query result will
look like, and defining source conditions or filters on the data sources. The query
extracts the results based on the conditions and mappings that you define in the query.
The results can change dramatically depending on how you do the following:

! Specify conditions (filters on the source data)

! Map or project source data from one or more sources to the target schema.

If you have taken the time to outline a design for the query first, considering all the
factors mentioned in the previous section (�Designing Queries� on page 3-1),
constructing it will be a matter of following your design as a blueprint for
drag-and-drop query building. Then you can test, fine-tune, and modify as needed to
produce variations on the results, or to optimize the query for better performance.

The following sections take you through the basic tasks involved in building a query:

! Opening the Source Schemas for the Data Sources You Want to Query

! Adding a Target Schema

! Mapping Source and Target Schemas

! Setting Conditions
Building Queries and Data Views 3-3

3 Designing Queries
Opening the Source Schemas for the Data Sources You
Want to Query

A source schema is the XML schema representation for the structure of the data in a
data source. You can use multiple data source schemas per query.

The Sources tab on the Builder Toolbar contains the data sources configured on the
Liquid Data Server to which you are connected. Note that a data source type only
shows up as a button on the Builder Toolbar if it has been configured in the Server to
which you are connecting.

Note: Only data sources that have been configured for access by Liquid Data are
available from the Builder Toolbar. For information on how to configure
Liquid Data data sources, see the Liquid Data Administration Guide.

For this example, open the schemas for the following two data sources which are
already configured on the Liquid Data Samples server:

! PB-WL relational database

! XM-BB-C XML file

To do this, follow these steps:

1. Click the Design tab.

2. On the Builder Toolbar, click the Sources tab (on the bottom of the left vertical
panel).

3. Open the data sources from the Builder toolbar as follows:

" Click the Relational Databases and double-click on PB-WL data source to
open the associated XML schema showing �Wireless� customers.

" Click the XML Files button in the navigation panel and double-click on
XM-BB-C data source to open the associated XML schema showing
�BroadBand� customers.

The XML schemas for the each of the data sources are displayed.

Position the schema windows so you can view the data nodes in each schema.
You can expand the data nodes by clicking the plus (+) sign. For example, in the
PB-WL data source, CUSTOMER is a parent node with subordinate child nodes.
3-4 Building Queries and Data Views

Building a Query
The child nodes are the ones you will use as function parameters and map to the
target schema.

Adding a Target Schema

A target schema is the XML schema representation for the structure of the target data
(query result). Only one target schema per project is allowed. If you have a target
schema open and decide to choose another, the current target schema is closed and the
new one replaces it.

You can use a target schema file that you have saved on your local system or on the
network, or one that has been saved to the Liquid Data server repository.

Note: Only target schemas that are saved to the Liquid Data server repository will be
available to other Liquid Data users for distributed, team-style development.

For this example, we will use a target schema called amtByState. If this schema is not
available in the Samples server repository and you would like to follow along with our
example, you can create it yourself and save it locally or to the server repository as a
.xsd file.

To create and set the target schema do the following:

1. Use a text editor to copy the following XML into a plain text file and save it to the
server Repository as amtByState.xsd.

The path to the schemas folder in the Liquid Data server repository is:

<WL_HOME>liquiddata/samples/config/ld_samples/repository/schemas/

Note: It is not necessary to save the target schema to the server Repository in
order to use it in your local project�you can save it anywhere on your
system. However, we recommend saving schemas to the Repository
because it makes projects more �portable� and schema files accessible to
all users who log onto this server.

Listing 3-1 XML Source for amtByState.xsd Target Schema File

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema">
 <xsd:element name="customers">
Building Queries and Data Views 3-5

3 Designing Queries
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="STATE" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="state" type="xsd:string" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="CUSTOMER" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="FIRST_NAME" type="xsd:string"/>
 <xsd:element name="LAST_NAME" type="xsd:string"/>
 <xsd:element name="AVERAGE_ORDER" type="xsd:string"/>
 <xsd:element name="CUSTOMER_ID" type="xsd:string"/>
 <xsd:element name="STATE" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

2. In the Data View Builder, choose File�>New Project to clear your desktop and
reset all default values.

3. Choose the menu option File�>Set Target Schema.

Navigate to the server Repository or to the location where you saved the
amtByState.xsd schema. Choose amtByState.xsd and click Open.

amtByState.xsd appears as the target schema.

This target schema is displayed as a docked schema window on the right side of
the workspace.

Note: Remember that only one target schema per project is allowed. The target
schema docks on the right side of the desktop area. The target schema may
have more data nodes than you need for your result, but it must contain the data
nodes required for the query result. Unreferenced nodes are disregarded in the
result.
3-6 Building Queries and Data Views

Building a Query
Editing a Target Schema

You can make simple changes to a target schema by right-clicking a node. A shortcut
menu shows the editing functions that are available.

Function Rules

Copy You can copy both a source and a target node if:
! The node or its parent is not a clone.
! The node or its parent has not been cloned.

Paste Appends the copied node and its children as a child of the selected node. If a copied node
contains cloned nodes, Data View Builder pastes them as regular nodes. Only the
hierarchical structure transfers.
! If a pasted node is a duplicate, Data View Builder renames the node as _copy1,

_copy2, and so on.
! Pasted nodes lose any mapping attributes; however, Data View Builder will display

a warning and allow you to abandon the task.
! The paste function works only on an element node. You cannot paste a child node to

an attribute node.
! This menu item is unavailable unless you have data on the clipboard.

Add a Child (Node
or Attribute)

Appends a new node or attribute as a child to the selected node. The name of the new
element or node is new_node or new_attribute.
The add function works only on an element node. You cannot add a child node to an
attribute node.

Note: Only string type data is supported.

Delete Removes a selected node. If the node to be deleted is a mapped node, Data View Builder
will display a warning and allow you to abandon the task.

Rename Allows you to rename the selected node. An error message appears if the new name is a
duplicate of a node at the same hierarchical level. As detailed in the XML specification,
target schema element names must consist of ASCII characters and must not include
double-byte characters or single-byte Katakana characters.
Building Queries and Data Views 3-7

3 Designing Queries
Mapping Source and Target Schemas

Mapping is a visual relationship structure among the critical data elements in the
query. When you combine these relationships with functions, you have a set of
instructions for the query generation engine. If you think of the selected data nodes as
the nouns (what we want to work on), the functions as the verbs (the action), then the
mapping among the data elements creates a logical sentence that expresses the query.

Before you begin creating a query, it is important to expand the nodes in the source
schemas to reveal the data elements that you want to use at their lowest level. To
expand a node, right click on it and choose Expand.

Note: You can use automatic type casting to ensure that input parameters used in
functions and mappings are appropriate to the function in which they are used.
When Automatic Type Casting is in effect, Liquid Data verifies (and if
necessary promotes) the data types of input parameters for all source-to-target
mappings and functions. For more information about automatic type casting,
see �Using Automatic Type Casting� on page 3-17.

Mapping Node to Node

You can use drag-and-drop mappings from one element or attribute to another to create
conditions on source data and source-to-target mappings that will define the shape of
the query result.

Mapping Nodes to Create Conditions on Source Data

Choose one of the following methods to map a source schema node to another source
schema node to create a Condition.

! Drag and drop a source schema element/attribute to another source schema
element/attribute to define an eq (equality) source condition

Or

! For all functions other than eq (equality), drag and drop the function to the first
empty row in the Condition column in the Work area first before you drag and
drop elements/attributes as function parameters. Then drag a source schema
element/attribute and drop it into the same row of the Condition column. Drag a
second source schema element/attribute and drop it into the same row of the
Condition column.
3-8 Building Queries and Data Views

Building a Query
Mapping Nodes to Create Source-to-Target Mappings

Choose one of the following methods to map a source schema node to a target schema
node.

! Drag and drop a source schema element/attribute to a target schema
element/attribute.

! On the Mappings tab, drag-and-drop a source schema element/attribute into a
row in the Sources column and drag-and-drop a target schema element/attribute
into the same row in the Target column. For all functions other than eq
(equality), drag-and-drop the function first before you drag and drop elements or
attributes as function parameters.

Note: You cannot map the same node from more than one source schema to a single
node in the target schema. For example, if you map STATE (under
CUSTOMER) from the Broadband database to state? in the target schema, you
cannot successfully map STATE from a second source schema to state? in the
target schema. The last mapping completed is the only mapping from source
to target that the query generation engine processes. If you need to create a
relationship among all three STATE elements, map the element in one source
schema to the element in the second source schema. Then map one of the
source elements to the target element.

Example: Query Customers by State

Figure 3-1 shows a simple join of the source element STATE in the Broadband source
schema (XM-BB-C) with a source element STATE in the Wireless source schema
(PB-WL). This action joins the common elements in each schema and disregards those
that do not occur in both schemas.

Next, to project a result we designate what the output of this relationship should look
when the query runs. By mapping one of the sources to the target, we specify that we
want to store the result in the target schema. Because we are collecting only
information about states and defining only one element in the target schema, we are in
effect asking that Liquid Data fill only that data element in the result when the query
runs.

To do this, drag and drop the STATE element in PB-WL source schema onto the
state? element (under STATE*) in the Target schema.

See Figure 3-1 for an example of the mappings described in this example.
Building Queries and Data Views 3-9

3 Designing Queries
Figure 3-1 Mapping Element to Element

Mapping Nodes to Functions

When you drag and drop a source node onto another source node (either within the
same source schema or among different source schemas) you are automatically
creating an equality relationship between the two elements/attributes using the eq
(equals) function. In other words, the eq function is mapped by default for all
drag-and-drop relationships you create among source elements/attributes.

You can also create the same equality relationship the �long� way by dragging and
dropping the eq function onto a row in the Conditions tab and then dragging and
dropping source elements/attributes into the same row, or by opening the Functions
Editor and dragging and dropping the function and elements directly into the Editor.

To use any of the available functions other than eq (equality) function, you must use
this second method of dealing directly with the functions as described below.

Drag-and-drop �state� in Source schemas to define
functional Condition of equality between these nodes

Drag-and-drop �state� from Source
to Target node to map the elements
you want to appear in query result
3-10 Building Queries and Data Views

Building a Query
To use a function:

1. Drag and drop the function from the Toolbox �Functions� panel to the first empty
row under the �Conditions� on the Conditions tab.

2. Drag a source schema node and drop it into the same row of the Condition
column. Drag a second source schema node and drop it into the same row of the
Condition column.

To edit an existing functional relationship:

1. Open the Functions Editor by clicking the Edit button.

2. Edit the statement as needed. You can delete the current parameters or function,
and drag and drop a new function and source elements/attributes into the
Functions Editor.

Figure 3-2 shows the functional relationship of equality (eq) between two source
elements that was created by default when you mapped the source elements in
�Example: Query Customers by State� on page 3-9. (Note that you could have created
this same relationship directly in the Functions Editor the way you would create any
other functional relationship between elements/attributes.)
Building Queries and Data Views 3-11

3 Designing Queries
Figure 3-2 Mapping Elements to Functions

To get the view shown in Figure 3-2, click on the Conditions tab, select the row with
the condition in it to activate the Edit button, and click the Edit button. This displays
the condition in the Functions Editor.

For more information about functions, see �What are Functions?� on page 3-14.

For more information about using the Functions Editor and working with functions on
the UI, see �XQuery Functions� on page 2-11 and �The Function Editor� on page 2-12
in Chapter 2, �Starting the Builder and Touring the GUI.�

Supported Mapping Relationships

Data View Builder and Liquid Data support any of the Mapping actions described in
the following table.
3-12 Building Queries and Data Views

Building a Query
Table 3-1 Supported Mapping Relationships

Removing Mappings

Mapped elements/attributes in a query are displayed on the Mappings tab. You can
change your mind and remove a mapping by selecting the row or cell that contains it
and then clicking the trashcan button. (See Figure 3-3.)

Types of Mappings Description

Source node to another
source node

Creates an equality relationship between the two elements/attributes using the eq
(equals) function. The eq function is used by default for all drag-and-drop mappings
created among source elements/attributes to create a condition that will filter for
matching items found.

Source node to a function The data becomes an input parameter to a function. (You can also provide constants
and variables as function parameters.) Each function has its own specification of
parameters. The output from a function can be input to another function. For an
example of this, see �Example 2: Aggregates� on page 9-8 in Chapter 9, �Query
Cookbook� (specifically, the step �Ex 2: Step 8. Add the �count� Function� on page
9-15 within the Aggregates example).

Source node to a target
node

By mapping a source to a target, you are projecting, or storing, the data onto the
target schema. All query examples provided in this documentation show how to
map source schema elements/attributes to target elements/attributes. For example,
see �Example: Return Customers by Name� on page 3-19 and �Example: Query
Customers by ID and Sort by State� on page 3-25.

Function to target node A function (f1)output can be another function's (f2) input. For an example of this,
see �Example 2: Aggregates� on page 9-8 in Chapter 9, �Query Cookbook�
(specifically, the step �Ex 2: Step 8. Add the �count� Function� on page 9-15 within
the Aggregates example).
Building Queries and Data Views 3-13

3 Designing Queries
Figure 3-3 Removing a Mapping

Setting Conditions

You can create conditions or filters on source data by doing any of the following:

! Drag-and-drop a source node onto another source node to build a conditional
statement that defines the default eq (equality) functional relationship between
the mapped elements/attributes. (See �Supported Mapping Relationships� on
page 3-12.)

! Drag-and-drop source elements/attributes and functions directly into a row on
the Conditions tab to build a conditional statement with any of the functions
available from Design tab�> Toolbox tab�>Functions panel.

What are Functions?

Functions are used as the verbs or actions in condition statements that establish
relationships between or operations on data source elements or attributes. (The data
source elements/attributes become one type of parameter to the functions.) A function
is a built-in executable process that manipulates the data to perform a task. You must
pass one or more parameters, which can be source data, variables, or constant values,
for the function to produce output. The function returns a result to you based on the
conditional statements you build and how you specify where to store the result.

In the previous example (�Example: Query Customers by State� on page 3-9) we
defined the default equality relationship between two source elements (by dragging
and dropping the CUSTOMER �STATE� element from one source to another); then
defined the result by dragging and dropping the CUSTOMER �STATE� element from one
of the source schemas onto the analogous �STATE� element in the target schema.

To remove a mapping, select it and click the trash can
3-14 Building Queries and Data Views

Building a Query
If you need to find out something other than information based on equality, you will
need to use a different function. For example, suppose you want to find out how many
customer IDs in the Broadband database are not equal to those in the Wireless
database. The default functional action is to look for equality. If you simply map one
customer ID source element/attribute to the other, the query engine looks for those
instances of matching data, or equality.

(For the relationship of not equal to, you need to go to Builder Toolbar�>Sources
tab�>Functions panel, expand the Operators node, and choose the ne function.)

When any functional relationship is involved besides equality, you must chose from
the list of functions available in the Builder Toolbar�>Sources tab�>Functions
panel. At that point you are applying a filter of your choice. It is very important to
choose the function before you map the elements. Most of the Data View Builder
functions are standard XML query language functions supported by the W3C. For
related information about using functions, see Appendix A, �Functions Reference.�

Note: You can use automatic type casting to ensure that input parameters used in
functions and mappings are appropriate to the function in which they are used.
When Automatic Type Casting is in effect, Liquid Data verifies (and if
necessary promotes) the data types of input parameters for all source-to-target
mappings and functions. For more information about automatic type casting,
see �Using Automatic Type Casting� on page 3-17.

Using Constants and Variables in Functions

Instead of choosing an existing element/attribute as a parameter value, you can use one
of these methods to specify that a constant value should be used instead of a data
element from a source schema.

! Click the Query Parameter Navigation panel. If you wish to add a new
variable, type the variable name in the available text box. Click Add. The new
variable appears in the Query Parameter tree. Double click the new variable to
use it as a parameter value. You can change the value each time your run the
query. (For details on defining query parameters, see �Query Parameters:
Defining� on page 2-15, which includes a list of supported data types for query
parameters in Table 2-2, �Query Parameter Types,� on page 2-17.)

! Click the Constant Navigation panel. If the constant already exists in the
Constant tree, double click the constant you want to use as a parameter in a
function or drag and drop the constant to the appropriate row in the Condition
column.(For details on defining constants, see �Constants� on page 2-13.)
Building Queries and Data Views 3-15

3 Designing Queries
Enabling and Disabling Conditions

Conditions are displayed in the Design view on the Conditions tab. If you want to test
your query without one or more of the conditions you have set, but still keep the
condition configured for possible later use, you can disable a condition. Conversely,
you can enable a disabled condition.

To enable or disable a condition, click the Enabled box to the left of the Condition. (See
Figure 3-4.) When the box is checked, the condition is used when the query is
generated; when the box is blank, the condition is not used in the generated query.

Figure 3-4 Enabling or Disabling a Condition

Removing Conditions

Conditions are displayed in the Design view on the Conditions tab. You can change
your mind and remove a condition by selecting the row or cell that contains it and then
clicking the trashcan button. (See Figure 3-5.)

Figure 3-5 Removing a Condition

To enable/disable a condition, click the Enabled box

To remove a condition, select it and click the trash can
3-16 Building Queries and Data Views

Building a Query
Adding or Deleting Parameters in a Condition Statement

To add or delete a parameter, select the row that contains the condition you want to edit
and click the Edit button to bring up the Functions Editor.

In the Functions Editor, you can select the parameter you want to delete and click the
trash can or use the options on the Edit menu to modify the condition statement.

You can drag and drop different functions into the Functions Editor from the Functions
panel on the Builder Toolbar�>Toolbox tab.

Showing or Hiding Data Types

You can show or hide data types on all source and target elements/attributes in schema
windows. Select View�>Data Types to display the data type of any source or target
element/attribute, as well as required function parameter types. (An �X� next to the
Data Types option on the View menu indicates that it is on.)

Using Automatic Type Casting

You can use automatic type casting to ensure that input parameters used in functions
and mappings are appropriate to the function in which they are used.

Note: For a complete reference showing how Liquid Data transforms source
element/attribute data types to data types of target elements/attributes, see
Appendix C, �Type Casting Reference.�

Select Automatic Type Casting on the Query menu to ensure that Liquid Data will
assign (cast) a new data type when the source node data type does not match the
mapped target node data type, and the source node is eligible to be type cast to the
target node data type. (An �X� next to the Automatic Type Casting option on the Query
menu indicates that it is on.)
Building Queries and Data Views 3-17

3 Designing Queries
When function parameters have a numeric type mismatch, the Liquid Data server can
promote the input source to the input type required by the function if the promotion
adheres to the prescribed promotion hierarchy. The promotion hierarchy exists only for
numeric values.

If the type mismatch requires casting in the reverse order, the server does not attempt
type casting. In this case, Liquid Data attempts to type cast but the results may be
unpredictable. For example, if the required function input type is xs:decimal, then
source data that is integer, long, int, short, or byte can easily be promoted to a data type
with more precision or larger number of digits. The server will complete that task. If
the input function type is xs:double or xs:float and the required input type is xs:integer
or xs:byte, Liquid Data tries to type cast successfully, but there may be unpredictable
rounding or truncating. All other type mismatches, such as xs:date, xs:dateTime, or
xs:string, require a type cast to avoid a type mismatch error.

Clear the Automatic Type Casting check box to disable this feature.

Exceptions to Automatic Type Casting

Liquid Data does not type cast comparison operators (such as eq, le, ge, ne, gt, lt, or
ne) or any functions that accept xsext:anytype.

Type casting does not apply to function parameters (as well as target schema
elements/attributes) that require these data types:

! xsext:item

Type Promoted Type

byte short

short int

int long

long integer

integer decimal

decimal float

float double
3-18 Building Queries and Data Views

Examples of Simple Queries
! xsext:anyValue

! xsext:anyType

! Any other data type that cannot be cast

Automatic type casting does not succeed in all cases. If the source data is not
compatible with the data type of the target node, automatic type casting will not
improve the query results. For example, mapping a date to a numeric type may not
produce useful results if the data is not relevant. You may not see an error on a type
mismatch until the Liquid Data Server tries to run the query.

Examples of Simple Queries

This section includes walk-through examples of how to build some simple queries
using the Data View Builder tools and features just described:

! Example: Return Customers by Name

! Example: Query Customers by ID and Sort by State

To work through these examples, begin on the Data View Builder �Design� tab. If you
have worked through the previous example using amtByState target schema, we
suggest you close that project and open/save a new project for each of the examples
described below.

Example: Return Customers by Name

In this example, you want to return the last and first names of all Wireless customers
with a last name that begins with �K.�

Build the Query

The approach we will use is similar to the first example in this chapter; however, you
are adding a condition that the last name begins with �K.� Build the condition with the
starts-with function as follows.
Building Queries and Data Views 3-19

3 Designing Queries
1. Choose File�>New Project to clear your desktop and reset all default values.

2. On the Builder Toolbar�>Sources tab, click Relational Databases. Double-click
on the PB-WL (Wireless) relational database to add it to the project.

3. Create amtByState.xsd target schema and add it to the server repository. (For a
copy of the schema file and instructions on how to save it to the repository, see
�Adding a Target Schema� on page 3-5 and the schema shown in Listing 3-1.)

4. Choose File�>Set Target Schema. Use the file browser to navigate to the
Repository and select amtByState.xsd as the target schema.

This target schema is displayed as a docked schema window on the right side of
the workspace. To expand all nodes in the target schema, select the top level
node, right mouse click and choose Expand from the popup menu.

5. Map the source schema CUSTOMER LAST_NAME to the corresponding LAST_NAME
element in the target schema.

6. On the Builder Toolbar�>Toolbox tab, click Functions. Under String functions,
find the starts-with function. Drag and drop starts-with onto the first row
in the Conditions Tab.

When you do this, the Functions Editor will automatically pop up and show you
the condition statement with the starts-with function and variable
placeholders.

7. Drag and drop CUSTOMER �LAST_NAME� element from the Source schema onto
the first parameter (operand1).

Note: This example shows what the function looks like with menu option
View�>Data Types turned off. If you have this option on (it is on by
default), data types for each parameter will also show.
3-20 Building Queries and Data Views

Examples of Simple Queries
8. On the Builder Toolbar�>Toolbox tab, click Constants. Type �K� in the text
box, then drag and drop the Constants icon to the right of the text field onto the
second parameter (operand2). (For details on using the Constants panel, see
�Constants� on page 2-13 in Chapter 2, �Starting the Builder and Touring the
GUI.�)

The condition statement should look similar to that shown in following figure.

9. Close the Function Editor by clicking Close. (The condition statement is
displayed on the first row of the Conditions tab in the Source column.)

Figure 3-6 shows the Design view of the query with conditions and source-to-target
mappings completed.
Building Queries and Data Views 3-21

3 Designing Queries
Figure 3-6 Design View of Query Example: Return Customers By Name

View the XQuery and Run the Query to Test it

Now that you have built the query, you can switch to the Test tab to view the generated
XQuery and run the query to see the kind of result it returns.

1. Click on the Test tab.

The generated XQuery is displayed in the Query panel on the left side of the
Test tab as shown in Figure 3-7. The full XQuery is also provided in Listing 3-2.
3-22 Building Queries and Data Views

Examples of Simple Queries
Figure 3-7 XQuery for Example: Return Customers By Name

Listing 3-2 XQuery for Example: Return Customers By Name

{-- Generated by Data View Builder 1.0 --}

<customers>
{
for $PB_WL.CUSTOMER_1 in document("PB-WL")/db/CUSTOMER
where xf:starts-with($PB_WL.CUSTOMER_1/LAST_NAME,"K")
return
<CUSTOMER>

<LAST_NAME>{ xf:data($PB_WL.CUSTOMER_1/LAST_NAME) }</LAST_NAME>
</CUSTOMER>
}

</customers>

Builder-generated XQueryRun Query Button
Building Queries and Data Views 3-23

3 Designing Queries
2. Click the �Run query� button to run the query against the data sources.

The query result is shown in the Result panel on the right side of the Test tab as
shown in Figure 3-8. The full XML query result is provided in Listing 3-3.

Figure 3-8 Query Result for Example: Return Customers By Name

Listing 3-3 XML Query Result for Example: Return Customers By Name

<customers>
 <CUSTOMER>
 <LAST_NAME>KAY_1</LAST_NAME>
 </CUSTOMER>
 <CUSTOMER>
 <LAST_NAME>KAY_2</LAST_NAME>
 </CUSTOMER>
 <CUSTOMER>
 <LAST_NAME>KAY_3</LAST_NAME>

Query Result in XML
3-24 Building Queries and Data Views

Examples of Simple Queries
 </CUSTOMER>
 <CUSTOMER>
 <LAST_NAME>KAY_4</LAST_NAME>
 </CUSTOMER>
 <CUSTOMER>
 <LAST_NAME>KAY_5</LAST_NAME>
 </CUSTOMER>
 <CUSTOMER>
 <LAST_NAME>KAY_6</LAST_NAME>
 </CUSTOMER>
 <CUSTOMER>
 <LAST_NAME>KAY_7</LAST_NAME>
 </CUSTOMER>
 <CUSTOMER>
 <LAST_NAME>KAY_8</LAST_NAME>
 </CUSTOMER>
 <CUSTOMER>
 <LAST_NAME>KAY_9</LAST_NAME>
 </CUSTOMER>
 <CUSTOMER>
 <LAST_NAME>KAY_10</LAST_NAME>
 </CUSTOMER>
</customers>

(For complete details on how to test and run a query, see Chapter 5, �Testing
Queries.�)

Example: Query Customers by ID and Sort by State

In this example, there are two pieces of information that we want to display in the
result. We want to find Customer IDs for customers who exist in both databases and
we want to know the state each found customer resides in.

This example shows how to do the following:

! Project output

! Specify the order of the result
Building Queries and Data Views 3-25

3 Designing Queries
Open the Data Sources and Add a Target Schema

1. Choose File�>New Project to clear your desktop and reset all default values.

2. On the Builder Toolbar�>Sources tab, click Relational Databases and open two
data sources:

" Double-click on the PB-WL relational database to open the schema for this
data source.

" Double-click on the PB-BB relational database to open the schema for this
data source.

3. Choose File�>Set Target Schema. Use the file browser to navigate to the
Repository and select amtByState.xsd as the target schema.

Note: If amtByState.xsd is not already saved in the Samples server Repository,
you can create it yourself and save it to the Repository. For a copy of the
schema file and instructions on how to save it to the Repository, see
�Adding a Target Schema� on page 3-5 and the schema shown in
Listing 3-1.

This target schema is displayed as a docked schema window on the right side of
the workspace.

Map Nodes from Source to Target Schema to Project Output

To project Customer first and last names and state to Target, do the following:

1. Drag and drop Wireless (PB-WL) FIRST_NAME (under CUSTOMER*) onto
FIRST_NAME in the Target schema.

2. Drag and dropWireless (PB-WL) LAST_NAME (under CUSTOMER*) onto LAST_NAME
in the Target schema.

3. Drag and drop Wireless (PB-WL) STATE (under CUSTOMER*) onto STATE (under
CUSTOMER*) in the Target schema.

Join Two Sources

To create a join between Wireless (PB-WL) and Broadband (PB-BB) on customer IDs,
do the following:
3-26 Building Queries and Data Views

Examples of Simple Queries
! Drag and drop Broadband (PB-BB) CUSTOMER_ID (under CUSTOMER*) onto
the associated Wireless (PB-WL) CUSTOMER_ID element.

The following shows the mappings in the Data View Builder.

Figure 3-9 Example: Query Customers by ID and Sort Output by State

Specify the Order of the Result Using the Sort By Features

To order the output alphabetically by State do the following:

1. Click the Sort By tab.

This tab shows repeatable nodes in the target schema with subordinate fields that
you can select for ordering.

2. From the drop-down menu choose CUSTOMER*, and then click into the
Direction cell next to STATE and set STATE to Ascending.
Building Queries and Data Views 3-27

3 Designing Queries
This will cause the query to display the results in ascending order by state.

View the XQuery and Run the Query to Test it

Now that you have built the query, you can switch to the Test tab to view the generated
XQuery and run the query to see the kind of result it returns.

1. Click on the Test tab.

The generated XQuery for this query is shown in the following code listing.

Listing 3-4 XQuery for Example: Query Customers by ID and Sort by State

{-- Generated by Data View Builder 1.0--}

<customers>
{
for $PB_WL.CUSTOMER_1 in document("PB-WL")/db/CUSTOMER
let $CUSTOMER_2 :=
 for $PB_BB.CUSTOMER_3 in document("PB-BB")/db/CUSTOMER
 where ($PB_BB.CUSTOMER_3/CUSTOMER_ID eq

$PB_WL.CUSTOMER_1/CUSTOMER_ID)
 return
 xf:true()
where xf:not(xf:empty($CUSTOMER_2))
return
<CUSTOMER>

<FIRST_NAME>{ xf:data($PB_WL.CUSTOMER_1/FIRST_NAME) }</FIRST_NAME>
<LAST_NAME>{ xf:data($PB_WL.CUSTOMER_1/LAST_NAME) }</LAST_NAME>
<STATE>{ xf:data($PB_WL.CUSTOMER_1/STATE) }</STATE>

</CUSTOMER>
sortby(STATE ascending)
}

</customers>

2. Click the �Run query� button to run the query against the data sources.

Querying these data sources as described in this example produces the XML
query result shown in the following code listing.
3-28 Building Queries and Data Views

Examples of Simple Queries
Listing 3-5 XML Result for Example: Query Customers by ID and Sort by State

<customers>
 <CUSTOMER>
 <FIRST_NAME>JOHN_3</FIRST_NAME>
 <LAST_NAME>KAY_3</LAST_NAME>
 <STATE>AZ</STATE>
 </CUSTOMER>
 <CUSTOMER>
 <FIRST_NAME>JOHN_8</FIRST_NAME>
 <LAST_NAME>KAY_8</LAST_NAME>
 <STATE>AZ</STATE>
 </CUSTOMER>
 <CUSTOMER>
 <FIRST_NAME>JOHN_10</FIRST_NAME>
 <LAST_NAME>KAY_10</LAST_NAME>
 <STATE>CA</STATE>
 </CUSTOMER>
 <CUSTOMER>
 <FIRST_NAME>JOHN_5</FIRST_NAME>
 <LAST_NAME>KAY_5</LAST_NAME>
 <STATE>CA</STATE>
 </CUSTOMER>
 <CUSTOMER>
 <FIRST_NAME>JOHN_4</FIRST_NAME>
 <LAST_NAME>KAY_4</LAST_NAME>
 <STATE>NV</STATE>
 </CUSTOMER>
 <CUSTOMER>
 <FIRST_NAME>JOHN_9</FIRST_NAME>
 <LAST_NAME>KAY_9</LAST_NAME>
 <STATE>NV</STATE>
 </CUSTOMER>
 <CUSTOMER>
 <FIRST_NAME>JOHN_1</FIRST_NAME>
 <LAST_NAME>KAY_1</LAST_NAME>
 <STATE>TX</STATE>
 </CUSTOMER>
 <CUSTOMER>
 <FIRST_NAME>JOHN_6</FIRST_NAME>
 <LAST_NAME>KAY_6</LAST_NAME>
 <STATE>TX</STATE>
 </CUSTOMER>
 <CUSTOMER>
 <FIRST_NAME>JOHN_2</FIRST_NAME>
 <LAST_NAME>KAY_2</LAST_NAME>
 <STATE>WA</STATE>
 </CUSTOMER>
 <CUSTOMER>
 <FIRST_NAME>JOHN_7</FIRST_NAME>
 <LAST_NAME>KAY_7</LAST_NAME>
 <STATE>WA</STATE>
 </CUSTOMER>
</customers>
Building Queries and Data Views 3-29

3 Designing Queries
Understanding Scope in Basic and Advanced
Views

Adding Scope to a condition is a way to specify the extent that the condition applies to
the result. It helps you specify which part of a data view is the focal point for a
particular condition in the query. A scope setting affects the placement of a �where�
clause in the XQuery generation.

When you add a condition, the Data View Builder makes a best guess as to where the
condition should appear in the query. The Data View Builder draws information from
the structure of the target schema, the mappings from source schemas to the target
schema, and the conditions.

In most cases, scope is implicit and the query generator can determine what the desired
result should be. In other cases, it makes a very conservative assumption about the
resulting scope of the condition. You can communicate your objectives more
efficiently if you specify exactly what you want the query to return. By toggling to the
Advanced view in the Data View Builder (�Advanced View for Defining Explicit
Scope for Conditions� on page 2-27) and setting scope you explicitly indicate what
part of the output, or query result, is affected by the condition.

The following sections are included here:

! Where Does Scope Apply?

! Basic View (Automatic Scope Settings)

! Advanced View (Setting the Scope Manually)

! When to Use Advanced View to Set Scope Manually

! Task Flow Model for Advanced View Manual Scoping

! Returning to Basic View
3-30 Building Queries and Data Views

Understanding Scope in Basic and Advanced Views
Where Does Scope Apply?

There are three candidate areas where Liquid Data sets scope. Scope candidates are:

! All repeatable elements in the target schema

! All repeatable input elements in functions

! The root of the target schema

Remember that a repeatable element always appears with an asterisk (*) or plus sign
(+) occurrence indicator.

Basic View (Automatic Scope Settings)

The default setting in the Data View Builder is the basic view. In this view, when you
add a condition to any query, the Data View Builder applies an automatic scope setting
using internal rules that specify where the condition should appear in the query.

In most cases, the scope setting that Data View Builder chooses for each condition is
the correct setting. When you have complex conditions, or a particular result in mind,
you may want to switch to the Advanced mode where you can change scope settings
as you wish.

Advanced View (Setting the Scope Manually)

Data View Builder enables you to override the automatic scope setting by using an
Advanced view of the existing scope settings. When you switching to an Advanced
view, Data View Builder displays the setting it selected for automatic scoping. You can
change any or all of the individual scope settings or allow them to retain their original
values.

When you switch to the Advanced view, it is not necessary to change any of the
explicit scope settings selected by Data View Builder. However, if you add new
conditions when you are in Advanced view, or change existing conditions, you must
set the new scope manually for each condition.
Building Queries and Data Views 3-31

3 Designing Queries
To switch to the Advanced view, click Advanced view toggle so that an X is displayed
next to Advanced view. The Conditions tab expands to show more information about
the condition targets.

! The Current Scope initially shows the target schema root. Before you map
schema sections and create conditions, you can drag a repeatable target schema
or function input node to set the scope for a complete section of the target
schema. Thereafter, the value in the Current Scope text box determines what will
appear automatically in a Scope column cell for any new condition that you
create. For more information about this technique, see Task Flow Model for
Advanced View Manual Scoping.

! The Enabled column contains a switch to include or exclude a condition when
the query runs.

! The Condition column shows the source node, condition, and condition target
node.

! The Scope column shows which node Liquid Data automatically selected in the
target schema to focus the result. You can also drag a repeatable target schema
node directly to a cell in this column to change the scope for that condition.

! The Reset button in the upper right recalculates all scope settings and returns
them to the automatic settings selected by Liquid Data.

Figure 3-10 Advanced View Showing Explicit Scope on Conditions Tab

Condition and Target pairs appear row by row. If there are multiple scope settings for
a condition, the condition reappears in separate rows to display each unique scope
setting.

To define an explicit scope for a condition, drag and drop
target elements/attributes into the Scope column.
3-32 Building Queries and Data Views

Understanding Scope in Basic and Advanced Views
Figure 3-11 Advanced View

The Current Scope text box shows the default scope setting for every condition that
you add. Remember that the Basic view settings will continue to appear until you
change them. If you add a new condition in Advanced view, the default scope is the
target schema root until you change that value.

When to Use Advanced View to Set Scope Manually

Data View Builder automatically scopes conditions wherever it is most logical,
possibly in more than one place. However, occasionally it may not put the automatic
scope setting where you think it should be. In these cases, you can switch to the
Advanced view to overwrite the automatic scope setting.
Building Queries and Data Views 3-33

3 Designing Queries
The most common case occurs when a condition logically applies in two places, but
you want it to appear in only one place. You can diagnose this by examining the
XQuery translation for where clauses, or do a test run of the query to view the result.
If you are not satisfied, switch to the Advanced view to determine where the condition
appears. Remember that Data View Builder lists the same condition more than once if
it has more than one scope setting. Change the scope setting that you do not want by
following the directions in �Task Flow Model for Advanced View Manual Scoping�
on page 3-34.

A less common case is when you want to create an assertion. For example, the Liquid
Data Server should return a result only when a certain condition occurs. You can
accomplish this if you switch to the Advanced view, create the condition, and set the
scope for the condition to be the root of the target schema.

Note: It is a good idea to run the query using the automatic scope settings first to
ensure that it is necessary to revise the scope setting.

Task Flow Model for Advanced View Manual Scoping

If you decide to override automatic scope settings, there is a workflow model that will
help you design the query, create conditions, and determine the scope. By following
this methodology, you will find it is easy to create a query where you control the scope.
Consider the example shown in Figure 3-12 of two source schemas: PB-BB and
PB-WL, and the target schema customerLineItems.xsd.
3-34 Building Queries and Data Views

Understanding Scope in Basic and Advanced Views
Figure 3-12 Schemas for Manual Scope Example

The target schema, customerLineItems.xsd, has a hierarchical structure. There are
three distinct sections in the schema that represent repeatable data. customer and order
each have an asterisk (*) as the occurrence indicator. line_item has a plus sign (+) as
the occurrence indicator. This means that the child nodes without an asterisk or plus
are non-repeating. For each customer, there is one occurrence of first_name,
last_name, and id. Each customer may have zero or more orders. When an order exists,
each order has one id, date, and amount. If an order exists, there must be at least one
line_item. Work on sections that appear under a repeatable node.

This workflow model assumes that you can build your query in steps, focusing on each
section in the target schema as you go. Follow these steps for each section in the target
schema where you want a result to appear.

1. Choose a repeatable section of the target schema for our scope. A section is a
repeatable node (parent) and its children. It is recommended that you work from
the outside in. In this case, the outermost section is the customer* section. (For this
example we want to collect the first_name, last_name, and id in the result.)

2. Set the highest repeatable node in this section as the default scope, which in this
case is customer*. Drag that element from the target schema onto the Current
Scope text box on the Conditions tab. (For this example we drag and drop
customerLineItems.xsd onto the Current Scope text box.)
Building Queries and Data Views 3-35

3 Designing Queries
3. Map selected source elements/attributes to that repeatable section in the target
schema.

For this example, we do the following mappings:

" Map [PB-WL]/db/CUSTOMER*/FIRST_NAME to
[customerLineItems.xsd]/customers/customer*/first_name.

" Map [PB-WL]/db/CUSTOMER*/LAST_NAME to
[customerLineItems.xsd]/customers/customer*/last_name.

" Map [PB-WL]/db/CUSTOMER*/CUSTOMER_ID to
[customerLineItems.xsd]/customers/customer*/id.

4. Set any conditions that connect and filter the mapped sources.

By setting the default scope before creating the condition, Data View Builder
sets the condition scope to that value.

By mapping one section at a time and using the repetitive ancestor node as the
default scope, your conditions will apply exactly where you need them to appear
in the result.

For our example, we set as a condition a join between CUSTOMER_ID in the
PB-BB schema and CUSTOMER_ID in the PB-WL schema as shown in the
figure below.
3-36 Building Queries and Data Views

Understanding Scope in Basic and Advanced Views
5. Repeat these steps for each section of the target schema where you want data to
appear in the result. Work on one section at a time and work from the outside
(more general) to the inside (most specific). Ensure that you set the default target,
map, and define the conditions, before you move to the next section. The general
rule is that any mapping with an associated condition requires a scope setting.

In a small number of cases, you may apply a condition on the argument (input) to a
function that requires choosing the function as the default scope. This is not common
but will occur when you choose a complex aggregate function.

Returning to Basic View

When you toggle Advanced view off (no X showing next to Advanced view), Data
View Builder returns to automatic scoping mode and discards the changes you made
in manual mode. The Current Scope text box and the Targets column disappear.
Building Queries and Data Views 3-37

3 Designing Queries
Saving Projects from Basic or Advanced View

If you save a project from Basic view, the project file discards scope information.
When you reopen this project, Liquid Data once again applies automatic scope using
its internal algorithms.

If you save a project from the Advanced view, all conditions retain current scope
settings. When you reopen this project, all Advanced view settings appear.

Version Control

Liquid Data assigns a version attribute to the project file. If you open a project file
created with an earlier version of Liquid Data, the project opens in the Advanced view
if all conditions have explicit scope settings.

Scope Recursion Errors

It is possible to create a query where a condition depends on the values returned by a
function, but the function input depends on the condition. For example:

! Select the xf:count function and map a source node to be the input of
xf:count.

! Create a condition that uses the output of the xf:count function.

! In the Advanced view, set the condition target to the input of the xf:count
function.

The xf:count function input must be filtered by applying the condition, but the
condition input is the output of xf:count.

Data View Builder does not allow this to happen when automatic scoping is enabled.
However, if you clear the Auto-Select Targets check box and set scope manually, it is
possible for you to set the scope of a condition to a function input that creates a circular
dependency. Data View Builder cancels the action and generates an error message:

Setting Scope/Target of condition {condition} to {scope node}
creates circular dependency
3-38 Building Queries and Data Views

Understanding Query Design Patterns
Recommended Action

Basic view should generally support most scenarios�we expect that only a few users
and/or queries will require use of the Advanced view manual scoping feature. You can
assume that Liquid Data can interpret the scope requirements correctly for most types
of queries. If you do choose to set scope manually, examine the generated XQuery to
ensure the condition targets meet your expectations. If the recursion error message
appears, consider resetting all condition scope targets. Override the automatic settings
one at a time, switch to Test view to examine the query, run it, and assess the results.

Understanding Query Design Patterns

Here we present some common query patterns generated by the Data View Builder and
provide high-level guidelines for effective query design including target schema
design and source replication.

! Target Schema Design Guidelines and Query Examples

! Source Replication

Target Schema Design Guidelines and Query Examples

This section provides several examples of queries built with the Data View Builder.
We describe the conditions and mappings for a query and the resulting XQuery. The
purpose of this is to illustrate how we follow certain guidelines to design the various
types of example queries.

! Design Guidelines

! Examples of Effective Query Design

For a detailed description of target schemas, see �Understanding Target Schemas,� on
page 1-11.
Building Queries and Data Views 3-39

3 Designing Queries
Design Guidelines

Use these guidelines when working with target schemas in your queries:

1. Make sure the target schema has proper cardinality. For example, if you intend to
project customer orders in your result, the target schema should reflect the
parent-child relationship between �customer� and �orders.�

All examples in �Examples of Effective Query Design� on page 3-41
demonstrate this guideline.

2. Understand how target schema conformity works and use it efficiently. In an
XML schema:

" A plus sign (+) next to a node indicates that the node is repeatable and
required. (In other words, there must be 1 or more occurrences of this.)

Since this setting requires extra checking of the data, most queries that use it
pay some performance penalty.

" An asterisk (*) next to a node indicates that the node is repeatable and
optional. (In other words, there can be 0 or more occurrences of this.)

Always use this setting if appropriate to avoid unnecessary data checking and
the associated performance hit. Use this especially if you know that the
underlying data sources enforce referential integrity between parent-child
items.

The following examples demonstrate this guideline:

" �Example 3: Find all Broadband customers (CUSTOMER is Repeatable and
Optional)� on page 3-46

" �Example 4: Find all Broadband customers (CUSTOMER is Repeatable and
Required)� on page 3-46

" �Example 5: Find all Broadband customers and return their Wireless orders if
the customer has Wireless orders (ORDER is Required and Optional)� on
page 3-47

" �Example 6: Find the list of all Broadband customers that have at least one
Wireless order and return their Wireless orders (ORDER is Repeatable and
Required)� on page 3-48

3. Project at least one element from each data source that is part of the query to the
target schema. The following examples illustrates this guideline:
3-40 Building Queries and Data Views

Understanding Query Design Patterns
" �Example 1: Find all Broadband customers who are also Wireless customers�
on page 3-42

" �Example 2: Find all Broadband customers and their Wireless line items� on
page 3-43

4. If your eventual goal is to create a data view from your query, your target schema
should only contain required elements that are utilized in the query. For example,
if the Customer table contains first_name, last_name, email, and phone elements
and each of those elements is required in the target schema, then you need to map
each element of your query before saving it.

Alternatively, you can modify your target schema to reflect only the elements
your query is using or give your revised target schema a new name. One of the
benefits of this approach is that when your data view is created, the only
elements of your schema available for queries are those you specifically identify
through the target schema.

In the Data View Builder you can save a target schema using the menu
commands:

File -> Save Target Schema

See Adding a Target Schema for details.

Examples of Effective Query Design

For the following examples, assume we have two schema sets (databases) with the
following entities (tables).

Broadband Schema with the following tables:

! Customer

! Order

! Line Item

Wireless Schema with the following tables:

! Customer

! Order

! Line Item
Building Queries and Data Views 3-41

3 Designing Queries
Example 1: Find all Broadband customers who are also Wireless customers

In this situation you do not project anything from the Wireless customer table.

The generated query will iterate over all customers and in Broadband and check for the
existence of a matching customer in Wireless. This query also ensures duplicate
customers are not returned from Broadband in the event a Broadband customer
matches more than one Wireless customer.

Instructions to create query using Data View Builder:

1. Map the source PB-BB.CUSTOMER FIRST_NAME and LAST_NAME to the
target CUSTOMER FIRST_NAME and LAST_NAME respectively.

2. Create the condition PB_BB.CUSTOMER CUSTOMER_ID eq
PB_WL.CUSTOMER.CUSTOMER_ID

The query looks like:

<db>
{
for $PB_BB.CUSTOMER_1 in document("PB-BB")/db/CUSTOMER
let $CUSTOMER_2 :=
 for $PB_WL.CUSTOMER_3 in document("PB-WL")/db/CUSTOMER
 where ($PB_BB.CUSTOMER_1/CUSTOMER_ID eq

$PB_WL.CUSTOMER_3/CUSTOMER_ID)
 return
 xf:true()
where xf:not(xf:empty($CUSTOMER_2))
return
<CUSTOMER>

<FIRST_NAME>{ xf:data($PB_BB.CUSTOMER_1/FIRST_NAME) }</FIRST_NAME>
<LAST_NAME>{ xf:data($PB_BB.CUSTOMER_1/LAST_NAME) }</LAST_NAME>

</CUSTOMER>
}

</db>

If you do not care about duplicates or know there will not be duplicates, you can avoid
xf:entity(...) checking by projecting an element from the Wireless customer
table.

Instructions to create this alternative version of the query using Data View Builder:

1. Map the source PB-BB.CUSTOMER FIRST_NAME and LAST_NAME to the
target CUSTOMER FIRST_NAME and LAST_NAME respectively.
3-42 Building Queries and Data Views

Understanding Query Design Patterns
2. Map the source PB-WL.CUSTOMER STATE to the target CUSTOMER STATE
(Additional projection).

3. Create the condition PB_BB.CUSTOMER CUSTOMER_ID eq
PB_WL.CUSTOMER.CUSTOMER_ID

The query now looks like:

<db>
{
for $PB_WL.CUSTOMER_1 in document("PB-WL")/db/CUSTOMER
for $PB_BB.CUSTOMER_2 in document("PB-BB")/db/CUSTOMER
where ($PB_BB.CUSTOMER_2/CUSTOMER_ID eq $PB_WL.CUSTOMER_1/CUSTOMER_ID)
return
<CUSTOMER>

<FIRST_NAME>{ xf:data($PB_BB.CUSTOMER_2/FIRST_NAME) }</FIRST_NAME>
<LAST_NAME>{ xf:data($PB_BB.CUSTOMER_2/LAST_NAME) }</LAST_NAME>
<STATE>{ xf:data($PB_WL.CUSTOMER_1/STATE) }</STATE>

</CUSTOMER>
}

</db>

Example 2: Find all Broadband customers and their Wireless line items

This query basically asks for all Broadband customers and Wireless line items for
which there exists a Wireless order that joins with both the Broadband customer and
Wireless line item.

Now for this situation user does not project anything from Wireless order table.

The generated query will iterate over all customers and in Broadband, then for each
line item it will check for the existence of a matching order in Wireless that also
matches a customer in Broadband.

Instructions to create query using Data View Builder:

1. Map the source PB-BB.CUSTOMER FIRST_NAME and LAST_NAME to the
target CUSTOMER FIRST_NAME and LAST_NAME respectively.

2. Map the source PB-WL.CUSTOMER_ORDER_LINE_ITEM
PRODUCT_NAME and EXPECTED_SHIP_DATE to the target
CUSTOMER_ORDER_LINE_ITEM PRODUCTION and
EXPECTED_SHIP-DATE respectively.

3. Create the condition PB_BB.CUSTOMER CUSTOMER_ID eq
PB_WL.CUSTOMER_ORDER.CUSTOMER_ID
Building Queries and Data Views 3-43

3 Designing Queries
4. Create the condition PB_WL.CUSTOMER_ORDER.ORDER_ID eq
PB_WL.CUSTOMER_ORDER_LINE_ITEM.ORDER _ID

The query looks like:

<ROWS>
{
for $PB_BB.CUSTOMER_1 in document("PB-BB")/db/CUSTOMER
return
<CUSTOMER>

<FIRST_NAME>{ xf:data($PB_BB.CUSTOMER_1/FIRST_NAME) }</FIRST_NAME>
<LAST_NAME>{ xf:data($PB_BB.CUSTOMER_1/LAST_NAME) }</LAST_NAME>
<CUSTOMER_ORDER>

{
for $PB_WL.CUSTOMER_ORDER_LINE_ITEM_2 in

document("PB-WL")/db/CUSTOMER_ORDER_LINE_ITEM
let $CUSTOMER_ORDER_LINE_ITEM_3 :=
 for $PB_WL.CUSTOMER_ORDER_4 in

document("PB-WL")/db/CUSTOMER_ORDER
 where ($PB_BB.CUSTOMER_1/CUSTOMER_ID eq

$PB_WL.CUSTOMER_ORDER_4/CUSTOMER_ID)
 and ($PB_WL.CUSTOMER_ORDER_4/ORDER_ID eq

$PB_WL.CUSTOMER_ORDER_LINE_ITEM_2/ORDER_ID)
 return
 xf:true()
where xf:not(xf:empty($CUSTOMER_ORDER_LINE_ITEM_3))
return
<CUSTOMER_ORDER_LINE_ITEM>

<PRODUCT_NAME>{
xf:data($PB_WL.CUSTOMER_ORDER_LINE_ITEM_2/PRODUCT_NAME)

}</PRODUCT_NAME>
<EXPECTED_SHIP_DATE>{

xf:data($PB_WL.CUSTOMER_ORDER_LINE_ITEM_2/EXPECTED_SHIP_DATE)
}</EXPECTED_SHIP_DATE>

</CUSTOMER_ORDER_LINE_ITEM>
}

</CUSTOMER_ORDER>
</CUSTOMER>
}

</ROWS>

For performance reasons, we recommend that you project the intermediate data,
especially if you do not care about duplicates or know there will not be duplicates. In
the example above, you can project an element from the Wireless order table.

Instructions to create query using Data View Builder:
3-44 Building Queries and Data Views

Understanding Query Design Patterns
1. Map the source PB-BB.CUSTOMER FIRST_NAME and LAST_NAME to the
target CUSTOMER FIRST_NAME and LAST_NAME respectively.

2. Map the source PB-WL.CUSTOMER_ORDER ORDER_ID to the target
CUSTOMER_ORDER ORDER_ID. (Additional projection)

3. Map the source PB-WL.CUSTOMER_ORDER_LINE_ITEM
PRODUCT_NAME and EXPECTED_SHIP_DATE to the target
CUSTOMER_ORDER_LINE_ITEM PRODUCTION and
EXPECTED_SHIP-DATE respectively.

4. Create the condition PB_BB.CUSTOMER CUSTOMER_ID eq
PB_WL.CUSTOMER_ORDER.CUSTOMER_ID

5. Create the condition PB_WL.CUSTOMER_ORDER.ORDER_ID eq
PB_WL.CUSTOMER_ORDER_LINE_ITEM.ORDER _ID

The query looks like:

<ROWS>
{
for $PB_BB.CUSTOMER_1 in document("PB-BB")/db/CUSTOMER
return
<CUSTOMER>

<FIRST_NAME>{ xf:data($PB_BB.CUSTOMER_1/FIRST_NAME) }</FIRST_NAME>
<LAST_NAME>{ xf:data($PB_BB.CUSTOMER_1/LAST_NAME) }</LAST_NAME>
{
for $PB_WL.CUSTOMER_ORDER_2 in document("PB-WL")/db/CUSTOMER_ORDER
where ($PB_BB.CUSTOMER_1/CUSTOMER_ID eq

$PB_WL.CUSTOMER_ORDER_2/CUSTOMER_ID)
return
<CUSTOMER_ORDER>

<ORDER_ID>{ xf:data($PB_WL.CUSTOMER_ORDER_2/ORDER_ID)
}</ORDER_ID>

{
for $PB_WL.CUSTOMER_ORDER_LINE_ITEM_3 in

document("PB-WL")/db/CUSTOMER_ORDER_LINE_ITEM
where ($PB_WL.CUSTOMER_ORDER_2/ORDER_ID eq

$PB_WL.CUSTOMER_ORDER_LINE_ITEM_3/ORDER_ID)
return
<CUSTOMER_ORDER_LINE_ITEM>

<PRODUCT_NAME>{
xf:data($PB_WL.CUSTOMER_ORDER_LINE_ITEM_3/PRODUCT_NAME)

}</PRODUCT_NAME>
<EXPECTED_SHIP_DATE>{

xf:data($PB_WL.CUSTOMER_ORDER_LINE_ITEM_3/EXPECTED_SHIP_DATE) }
</EXPECTED_SHIP_DATE>
Building Queries and Data Views 3-45

3 Designing Queries
</CUSTOMER_ORDER_LINE_ITEM>
}

</CUSTOMER_ORDER>
}

</CUSTOMER>
}

</ROWS>

Example 3: Find all Broadband customers (CUSTOMER is Repeatable and Optional)

The target schema is ROWS(CUSTOMER*). This query returns the root element and all
Broadband customers. Since, CUSTOMER is optional, an empty <ROWS/> element could
be returned as the result of the query since it would conform to the schema.

Instructions to create query using Data View Builder:

! Map the source PB-BB.CUSTOMER FIRST_NAME and LAST_NAME to the
target CUSTOMER FIRST_NAME and LAST_NAME respectively.

The following query will be generated. Notice that this query will indeed return an
empty root element <ROWS/> if there are not any Broadband customers.

The query looks like:

<ROWS>
{
for $PB_BB.CUSTOMER_1 in document("PB-BB")/db/CUSTOMER
return
<CUSTOMER>

<FIRST_NAME>{ xf:data($PB_BB.CUSTOMER_1/FIRST_NAME) }</FIRST_NAME>
<LAST_NAME>{ xf:data($PB_BB.CUSTOMER_1/LAST_NAME) }</LAST_NAME>

</CUSTOMER>
}

</ROWS>

Example 4: Find all Broadband customers (CUSTOMER is Repeatable and Required)

This time the target schema is ROWS(CUSTOMER+). Again, this query returns the root
element and all Broadband customers. But, since, CUSTOMER is required, in case there
are no Broadband customer, an empty <ROWS/> element cannot be returned as the
result of the query since such a result would not conform to the given target schema.

Instructions to create query using Data View Builder:

! Map the source PB-BB.CUSTOMER FIRST_NAME and LAST_NAME to the
target CUSTOMER FIRST_NAME and LAST_NAME respectively.
3-46 Building Queries and Data Views

Understanding Query Design Patterns
Below is the query generated under this schema. This query will return the root
element and all Broadband customers that exist. Observe that if there are not any
Broadband customers then an empty result will be returned (not even the root element).

let $CUSTOMER_1 :=
 for $PB_BB.CUSTOMER_2 in document("PB-BB")/db/CUSTOMER
 return
 <CUSTOMER>
 <FIRST_NAME>{ xf:data($PB_BB.CUSTOMER_2/FIRST_NAME)

}</FIRST_NAME>
 <LAST_NAME>{ xf:data($PB_BB.CUSTOMER_2/LAST_NAME) }</LAST_NAME>
 </CUSTOMER>
where xf:not(xf:empty($CUSTOMER_1))
return
<ROWS>

{ $CUSTOMER_1 }
</ROWS>

The pattern of this query is discussed in more detail in �Example 6: Find the list of all
Broadband customers that have at least one Wireless order and return their Wireless
orders (ORDER is Repeatable and Required)� on page 3-48.

Example 5: Find all Broadband customers and return their Wireless orders if the customer has
Wireless orders (ORDER is Required and Optional)

In this case, the target schema is ROWS(CUSTOMER*(ORDER*)). The target schema
allows for customers with zero orders. This means that the query can (and should)
return customers without orders. Practically, this makes the query is a left outer-join
between customers and orders.

Instructions to create query using Data View Builder:

1. Map the source PB-BB.CUSTOMER FIRST_NAME and LAST_NAME to the
target CUSTOMER FIRST_NAME and LAST_NAME respectively.

2. Map the source PB-WL.CUSTOMER_ORDER ORDER_DATE and
SHIP_METHOD to the target CUSTOMER_ORDER ORDER_DATE and
SHIP_METHOD respectively.

3. Create the condition PB_BB.CUSTOMER CUSTOMER_ID eq
PB_WL.CUSTOMER_ORDER.CUSTOMER_ID

The query looks like:
Building Queries and Data Views 3-47

3 Designing Queries
<ROWS>
{
for $PB_BB.CUSTOMER_1 in document("PB-BB")/db/CUSTOMER
return
<CUSTOMER>

<FIRST_NAME>{ xf:data($PB_BB.CUSTOMER_1/FIRST_NAME) }</FIRST_NAME>
<LAST_NAME>{ xf:data($PB_BB.CUSTOMER_1/LAST_NAME) }</LAST_NAME>
{
for $PB_WL.CUSTOMER_ORDER_2 in document("PB-WL")/db/CUSTOMER_ORDER
where ($PB_BB.CUSTOMER_1/CUSTOMER_ID eq

$PB_WL.CUSTOMER_ORDER_2/CUSTOMER_ID)
return
<CUSTOMER_ORDER>

<ORDER_DATE>{ xf:data($PB_WL.CUSTOMER_ORDER_2/ORDER_DATE) }
</ORDER_DATE>
<SHIP_METHOD>{ xf:data($PB_WL.CUSTOMER_ORDER_2/SHIP_METHOD) }
</SHIP_METHOD>

</CUSTOMER_ORDER>
}

</CUSTOMER>
}

Example 6: Find the list of all Broadband customers that have at least one Wireless order and
return their Wireless orders (ORDER is Repeatable and Required)

In this case, the target schema is ROWS(CUSTOMER*(ORDER+)). Now, the target
schema does not allow for customers with zero orders. This means that the query
should not return customers without orders. Practically, this makes the query is a
(natural) join between customers and orders.

Instructions to create query using Data View Builder:

1. Map the source PB-BB.CUSTOMER FIRST_NAME and LAST_NAME to the
target CUSTOMER FIRST_NAME and LAST_NAME respectively.

2. Map the source PB-WL.CUSTOMER_ORDER ORDER_DATE and
SHIP_METHOD to the target CUSTOMER_ORDER ORDER_DATE and
SHIP_METHOD respectively.

3. Create the condition PB_BB.CUSTOMER CUSTOMER_ID eq
PB_WL.CUSTOMER_ORDER.CUSTOMER_ID

The query looks like:

<ROWS>
{
3-48 Building Queries and Data Views

Understanding Query Design Patterns
for $PB_BB.CUSTOMER_1 in document("PB-BB")/db/CUSTOMER
let $CUSTOMER_ORDER_2 :=
 for $PB_WL.CUSTOMER_ORDER_3 in

document("PB-WL")/db/CUSTOMER_ORDER
 where ($PB_BB.CUSTOMER_1/CUSTOMER_ID eq

$PB_WL.CUSTOMER_ORDER_3/CUSTOMER_ID)
 return
 <CUSTOMER_ORDER>
 <ORDER_DATE>{ xf:data($PB_WL.CUSTOMER_ORDER_3/ORDER_DATE) }

</ORDER_DATE>
 <SHIP_METHOD>{ xf:data($PB_WL.CUSTOMER_ORDER_3/SHIP_METHOD) }

</SHIP_METHOD>
 </CUSTOMER_ORDER>
where xf:not(xf:empty($CUSTOMER_ORDER_2))
return
<CUSTOMER>

<FIRST_NAME>{ xf:data($PB_BB.CUSTOMER_1/FIRST_NAME) }</FIRST_NAME>
<LAST_NAME>{ xf:data($PB_BB.CUSTOMER_1/LAST_NAME) }</LAST_NAME>
{ $CUSTOMER_ORDER_2 }

</CUSTOMER>
}

</ROWS>

The general pattern for handling required repeatable elements in the target schema is
as follows. The goal is to be able to check for existence of at least one element before
we generate the parent. Generation of required repeatable elements is �promoted� the
element to the nearest optional repeatable ancestor (or the root of the result if there is
no such element). There the list of elements is computed inside a let clause. After that,
and the result (list) of this let clause is checked whether it is empty or not, before
producing the rest of the result.

In this case, the ORDER element is required so we need to check for existence of orders
before we produce customer. This means that we need to generate the list of orders for
each customer, and output the customer only if this list is not empty.

Source Replication

A source is said to be replicated if the source appears multiple times in a query.
Specifically in XQuery, a source is replicated if document(�source name�) appears
multiple times in the XQuery, usually appearing in two different for clauses. Similarly
in SQL, a source is replicated if the source (table) appears twice in a FROM clause (or
in two different FROM clauses). (See the next section for examples.)
Building Queries and Data Views 3-49

3 Designing Queries
Why is source replication necessary?

The simplest example of a necessary source replication would be a self-join in SQL.
In the classic example of a self-join, the query wants to get all the pairs of employee
names to manager names from a single employee table:

SELECT e.name, m.name
FROM employee e, employee m
WHERE e.manager_id = m.id

In XQuery, the query would look like:

<employee_managers>
{
for $e in document(“employee”)//employee
for $m in document(“employee”)//employee
where $e.manager_id eq $m.id
return
<employee_manager>

<employee> {$e.name} </employee>
<manager> {$m.name} </manager>

</employee_manager>
}
</employee_managers>

In both of these examples, given the sources, there is no way to write these queries
without replicating the sources.

When is source replication necessary?

Source replication is necessary whenever you want to use a source for two different
purposes that will require iterating over the source twice. Another way to state it is
when two different tuples from a source will be required at the same time.

When should you manually replicate sources?

In ambiguous cases, both replicating and not replicating a source would lead to
reasonable queries.

For example, at the beginning of this section, we presented a self-join to get
employee-manager pairs. Without replicating the source, you might try the following:

1. Map name to the target (get the employee name)

2. Join manager_id with id (join to get the manager)
3-50 Building Queries and Data Views

Next Steps
3. Map name to the target (get the manager name)

Of course, the Data View Builder would interpret this query as: �give me all employees
who are their own manager.� This interpretation is no less valid than the desired one.

There is no way to go into Advanced mode to fix this query. You simply must replicate
the source in this case.

Next Steps
! If you are ready to jump in and start designing more complex queries, refer to

the advanced example queries in Chapter 9, �Query Cookbook.�

! For detailed information on how to run a query, see Chapter 5, �Testing
Queries.�

! For information on how to optimize a query for better performance, see
Chapter 4, �Optimizing Queries.�
Building Queries and Data Views 3-51

3 Designing Queries
3-52 Building Queries and Data Views

CHAPTER
4 Optimizing Queries

The topics covered here relate directly to tasks you can accomplish in the Data View
Builder while building and testing BEA Liquid Data for WebLogic� queries. See
Tuning Performance in Deploying Liquid Data for a broader discussion of factors
related to tuning and performance of Liquid Data including query design, data sources,
and platform considerations.

The following sections are included here:

! Factors in Query Performance

! Using the Features on the Optimize Tab

! Source Order Optimization

! Optimization Hints for Joins

" Choosing the Best Hint

" Using Parameter Passing Hints (ppleft or ppright)

" Using a Merge Hint

Factors in Query Performance

Queries can be designed and built to optimize performance. Query performance tuning
and optimization can be accomplished through the following approaches:

! Making decisions about what type of query to use based on a consideration of
data sources and the nature of the data you are querying.
Building Queries and Data Views 4-1

4 Optimizing Queries
! Planning and designing the type of query to use and how to implement it based
on factors like expected query result size, memory requirements, and ability to
leverage stored queries as appropriate.

! Adding standard optimization hints to queries

This section covers some key factors related to performance and memory that you
should consider while designing and building queries with the Data View Builder.
Examples and recommendations for some typical scenarios and use cases are provided.

See Tuning Performance in Deploying Liquid Data for a broader discussion of factors
related to tuning and performance of Liquid Data including query design, data sources,
and platform considerations.

Using the Features on the Optimize Tab

To access tools to improve query performance, click on the Optimize tab. (See
Figure 4-1.) You can re-order data sources and add hints to a query from this tab
provides as described in the following sections:

! Source Order Optimization

! Optimization Hints for Joins
4-2 Building Queries and Data Views

Source Order Optimization
Figure 4-1 Optimize Tab

Source Order Optimization

You can re-order source schemas on the top frame on the Optimize tab to improve
query performance. To move a schema up or down, select the schema and click the up
or down arrow buttons to the right of the list of schemas.

When a query uses data from two sources, the Liquid Data Server brings the two data
sources into memory and creates an intermediate result (cross-product) using the two
sources. If you specify more than two sources, the Liquid Data Server creates a
cross-product of the first two sources, then continues to integrate each additional
resource, one at a time, in the order that they appear in FOR clauses.

Source Order Optimization (order sources in this query for best performance)

Join Pair Hints (pairs of data elements in each join and associated Optimize Hint)

Hints available to modify processing of joins for improved query performance
Building Queries and Data Views 4-3

4 Optimizing Queries
The size of a source is the number of tuples, or records, used in the query from that
source. The size of the intermediate result depends on the input size of the first source
multiplied by the input size of the second source and so on. A query is generally more
efficient when it minimizes the size of intermediate results.

The order of the FOR clauses in the query matches the order of the data sources in the
Source Order list. In general, you should order sources in ascending order by
increasing size�that is, the smallest resource should appear first in the list and the
largest resource should appear last.

Example: Source Order Optimization

Consider a query to find all managers and the departments they manage that contains
a three-way join across three sources: Employees, Employees2 (Employees opened a
second time), and Departments. This query joins the Employees schema ID field and
the Employees2 schema MANAGER_ID to return all managers, and joins on the
Employees schema DEPT_ID and Departments schema DEPARTMENT_NO to return the
corresponding department information. The generated XQuery language looks like the
following example.

for $EMP1 in document(“Employees”)/db/EMP
for $EMP2 in document(“Employees”)/db/EMP
for $DEPT in document(“Department”)/db/DEPT
where $EMP1/id eq $EMP2/manager_id and

$EMP1/dept_id eq $DEPT/department_no
...

This creates a cross-product of Employees ID and Employees MANAGER_ID, then a
cross-product with Departments DEPARTMENT_NO. If there are 100 employees, and
five departments, the query would generate (100 * 100) + (10,000 * 5) intermediate
results.

A better plan would be to combine Employees with Departments first, then combine
that result with Employees2. The effect is to generates (100 * 5) + (500 * 100)
intermediate results. The generated XQuery language looks like the following
example.

for $EMP1 in document(“Employees”)/db/EMP
for $DEPT in document(“Department”)/db/DEPT
for $EMP2 in document(“Employees”)/db/EMP
where $EMP1/id eq $EMP2/manager_id and

$EMP1/dept_id eq $DEPT/department_no
...
4-4 Building Queries and Data Views

Optimization Hints for Joins
Optimization Hints for Joins

A query hint is a way to supply more information to the Liquid Data server about how
to process the join.

The Optimize tab on the Data View Builder provides a drop-down menu for where you
can select a hint for each join in the query that helps the Liquid Data Server choose the
most appropriate join algorithm. (See the Optimize tab in Figure 4-1.)

Query hints appear in the query as character strings enclosed within braces
{--! hint !--}. They specify which join algorithm should be selected when the query
runs. The Join Hints frame contains a drop-down list of data source pairs, and a table
that shows all the joins for each pair. Only source pairs that have join conditions across
them appear in the drop-down list. For each join condition in the table, you can provide
a hint about how to join the data most efficiently.

After you run the query, you can always return to the Optimize view to change the
source orders and the hints for each join operation.

Choosing the Best Hint

The Liquid Data Server has three hints to choose from when it processes a join request.
By default no hints are specified. To add a hint, select the join to which you want the
hint to apply and choose a hint from the drop-down Query Hints list. The available
hints are shown below.

Table 4-1 Optimization Hints

Hint Description Syntax

No Hint (default) Index

Left Parameter Pass to the Left (ppleft) {--! ppleft !--}

Right Parameter Pass to the Right (ppright) {--! ppright !--}

Merge Merge {--! merge !--}
Building Queries and Data Views 4-5

4 Optimizing Queries
Apply these rules to determine the correct hint to choose.

Notes:

! Using optimization hints can help you improve performance on equijoin
conditions, which contain only one equality. The optimization features
do not support complex join conditions, such as (A eq B) eq (C eq D).
This type of conditional expression would be treated as
A eq (B eq C eq D).

! Choosing the wrong direction could degrade performance instead of
improving it.

Using Parameter Passing Hints (ppleft or ppright)

Choose a Parameter Passing hint when one of the sources has fewer objects than the
other. In order to use the parameter passing hints (ppleft and ppright) effectively,
you need to know which data sources contain the larger data sets.

Table 4-2 When to Use a Hint

Use this Hint When

No Hint (default) The size of the source identified on the right side of the hint is
small enough to fit into memory.
Where the left and right sources are generally equal in size.
There is at least one non-relational source used in the join.

Merge Both the sources in the join are relational databases.
Both the sources are large and cannot fit into memory.

Parameter Passing (Left
or Right)

One of the sources has fewer objects than the other.
When you choose the direction for the Parameter Passing hint,
always choose the database to the left or right with the larger
number of items as the receiver. For example, if there are more
items on the right side of the equality, choose Right. The
direction indicated in the hint identifies the side in the equation
that receives the parameter.
4-6 Building Queries and Data Views

Optimization Hints for Joins
When you choose the direction for the Parameter Passing hint, always choose the data
source to the left or right with the larger number of items as the receiver. For example,
if there are more items on the right side of the equality, then pass the parameter to the
Right. The direction indicated in the hint identifies the side in the equation that receives
the parameter. In other words, the hints are named for the receiver.

Consider the following example, which is described fully in �Example 1: Simple
Joins� on page 9-2 in Chapter 9, �Query Cookbook.�

Listing 4-1 XQuery with ppright Hints

{-- Generated by Data View Builder 1.0 --}

<customers>
{
for $PB-WL.CUSTOMER_1 in document("PB-WL")/db/CUSTOMER
where ($#wireless_id of type xs:string eq $PB-WL.CUSTOMER_1/CUSTOMER_ID)
return
<customer id={$PB-WL.CUSTOMER_1/CUSTOMER_ID}>

<first_name>{ xf:data($PB-WL.CUSTOMER_1/FIRST_NAME) }</first_name>
<last_name>{ xf:data($PB-WL.CUSTOMER_1/LAST_NAME) }</last_name>
<orders>

{
for $PB-BB.CUSTOMER_ORDER_3 in

document("PB-BB")/db/CUSTOMER_ORDER
where

($PB-WL.CUSTOMER_1/CUSTOMER_ID eq {--! ppright !--} $PB-BB.CUSTOMER_2/CUSTOMER_ID)
return
<order id={$PB-BB.CUSTOMER_ORDER_3/ORDER_ID}

date={$PB-BB.CUSTOMER_ORDER_3/ORDER_DATE}></order>
}

</orders>
</customer>
}

</customers>

Let�s focus on the second join in the example; the join between PB-WL customer IDs
and PB-BB customer IDs:

where
($PB-WL.CUSTOMER_1/CUSTOMER_ID eq {--! ppright !--} $PB-BB.CUSTOMER_2/CUSTOMER_ID)

In the example above, the where clause indicates that the PB-WL data source
CUSTOMER table will output only one customer ID. We can assume the PB-BB data
source has a larger amount of customer IDs. We can optimize the join by providing the
hint shown above (ppright), which tells the server to retrieve the PB-WL customer
Building Queries and Data Views 4-7

4 Optimizing Queries
information first and then pass the CUSTOMER ID as a parameter to the right to look
for matches in the PB-BB data source. The engine will thus require much less memory
and respond faster than if no hint was provided. Then it might have iterated through
multiple records, and for each one asked the database to select the one with a highly
optimized query.

Using a Merge Hint

Choose a merge hint when both the sources in the join are relational databases and both
the sources are large and cannot fit into memory.

The following example shows the XQuery for a merge hint.

Listing 4-2 XQuery with Merge Hint

<root>
{
for $Wireless.CUSTOMER_1 in document("Wireless")/db/CUSTOMER
for $Broadband.CUSTOMER_2 in document("Broadband")/db/CUSTOMER
where ($Wireless.CUSTOMER_1/CUSTOMER_ID eq {--!merge!--}

$Broadband.CUSTOMER_2/CUSTOMER_ID)
return
<row>

<CUSTOMER_ID>{ xf:data($Broadband.CUSTOMER_2/CUSTOMER_ID)
}</CUSTOMER_ID>

</row>
}

</root>

A merge join requires a minimal amount of memory to operate; however, it requires
that the input be sorted on join attributes. A query using a merge join might have
slower response time than a query without a hint, but the memory footprint is typically
much smaller with the merge join.

Note: A merge join in a character column might yield unexpected results because the
collating sequence for each database may be vary. See Table 4-3 for an
example of how incompatible ordering sequences for strings from two
different vendors can affect query results.
4-8 Building Queries and Data Views

Optimization Hints for Joins
Table 4-3 Collation Sequences for Some Data Types Vary by Database Vendor

To ensure predictable results you should use an index join when merging
character (varchar, string, and so forth) columns from different databases.

Oracle MS SQL

ORDER_ID_8009_4 ORDER_ID_8009_4

ORDER_ID_8010_0 ORDER_ID_801_0

ORDER_ID_8011_0 ORDER_ID_8010_0

ORDER_ID_8012_0 ORDER_ID_8011_0

ORDER_ID_801_0 ORDER_ID_8011_1

ORDER_ID_801_1 ORDER_ID_8012_0
Building Queries and Data Views 4-9

4 Optimizing Queries
4-10 Building Queries and Data Views

CHAPTER
5 Testing Queries

This topic describes how to test BEA Liquid Data for WebLogic� queries.
The following sections are included here:

! Switching to the Test View

! Using Query Parameters

! Specifying Large Results for File Swapping

! Running the Query

! Viewing the Query Result

! Saving a Query

" Saving a Query to the Repository as a �Stored Query�

" Naming Conventions for Stored Queries

Switching to the Test View

The Data View Builder provides a �Test� view where you can view the generated
XQuery language interpretation of the query elements you developed on the Design
and Optimize tabs, and run the query against your data sources to verify the result.

From this view, you can provide different parameters to the query before you run it.

To switch to the Test View click the Test tab.
Building Queries and Data Views 5-1

5 Testing Queries
Figure 5-1 Test Tab

The query you developed on the Design and Optimize tabs is shown in XQuery
language in the �Query� window on the upper left panel on the Test tab.

Using Query Parameters

You can use the Query Parameters panel to add variable values to a query each time
you run it. The list of variables depends on the number of variables you defined as
Query Parameters on the Design tab and which ones appear as one or more function
parameters. (For details on defining query parameters, see �Query Parameters:
Defining� on page 2-15, which includes a list of supported data types for query
parameters in Table 2-2, �Query Parameter Types,� on page 2-17.)

Run Query
Builder-Generated XQueryTranslation

Query Parameters

Large Results

Result (shows when query is run)

Toggle for
File Swapping

Button
5-2 Building Queries and Data Views

Specifying Large Results for File Swapping
Figure 5-2 Query Parameters Settings on Test Tab

Double-click into a cell in the Values column to type a value.

Figure 5-3 Entering Values for Query Parameters

For some examples of using query parameters see the following example queries in the
Chapter 9, �Query Cookbook.�

! �Example 1: Simple Joins� on page 9-2

! �Example 2: Aggregates� on page 9-8

! �Example 3: Date and Time Duration� on page 9-18

Specifying Large Results for File Swapping

Note: The �Large Results� option is a space/performance trade-off. You can expect
a query to run more slowly when the this option is set to on. Before using this
option, please increase heap size first. For other alternatives, see Performance
Tuning in Deploying Liquid Data.

For a query that you know will produce a large result set, you can select �Large
Results� in the Query Results panel on the Test tab. (An X next to Large Results
indicates that the feature is on.) If the Large Results option is selected for a query, then
Liquid Data uses swap files to temporarily store intermediate results on disk in order
to prevent an out-of-memory error when the query is run.
Building Queries and Data Views 5-3

5 Testing Queries
You can explicitly specify a directory to use for file swapping on the Liquid Data
Administration Console. For more information about this, see Configuring Liquid
Data Server Settings in the Liquid Data Administration Guide.

Running the Query

When you are ready to run the query, click the Run Query button on the toolbar in the
upper left.

Figure 5-4 Click the Run Query Button to Run the Query

The query is run against your data sources and the result is displayed in the
Results panel in XML format.

Stopping a Running Query

You can stop a running query before it has finished processing by clicking the Stop
Query Execution button in the toolbar.

Figure 5-5 Click the �Stop Query Execution Button� to Stop a Running Query

Run Query
button

Stop Query Execution
button
5-4 Building Queries and Data Views

Viewing the Query Result
Viewing the Query Result

When you run a query, the result is displayed in the Results window on the Test tab in
XML format.

Figure 5-6 Query Result

Query Result
Building Queries and Data Views 5-5

5 Testing Queries
Saving a Query

From the Test tab, you can save a query by choosing File�>Save Query from the
menus or by clicking on the Save Query button on the toolbar.

You can save the query to a file on a local folder or other location on the network, or
you can save the query to the Liquid Data server Repository in the stored_queries
folder as described in the following section.

Note: Query files must be saved with a .xq extension. If you do not specify an
extension, the Data View Builder automatically appends the .xq extension to
the filename when the query file is saved.

Saving a Query to the Repository as a “Stored Query”

If the query is saved into the stored_queries folder in the Liquid Data server Repository,
it becomes a stored query in Liquid Data. There is a performance benefit to using stored queries
in Liquid Data in that the query plan is automatically cached in Liquid Data and you have the
option to configure caching on the query result as well. For more information about using
stored queries, see �Stored Queries� on page 1-6 in Chapter 1, �Overview and Key
Concepts.�

To create a stored query do the following:

1. On the Test tab, choose File�>Save Query from the menus. (The File�>Save
Query menu option is available only from the Test view.)

This brings up a file browser.

2. Use the file browser to navigate to the Repository.

3. The stored_queries folder is the only Liquid Data server repository directory
available from the Data View Builder. This is the appropriate location in the
repository in which to save a query.

4. Enter a name for the query in the File name field on the file browser and click
Save. The query is saved to the stored_queries folder in the server repository
with the appropriate .xq extension which identifies it as a stored query in Liquid
Data.
5-6 Building Queries and Data Views

Saving a Query
You can reload a stored query using the Data View Build File : Open Query
command. You may need to navigate to the directory containing your stored queries.

Once a stored query has been loaded, it can be run. See Running the Query for details.

Naming Conventions for Stored Queries

! Stored queries need .xq extension�Queries saved to the Liquid Data
stored_queries folder in the Liquid Data server repository must have a .xq
extension which identifies it as a stored query in Liquid Data. If you save the
query via the Data View Builder, the .xq extension is automatically appended.

! Names of queries to be generated as Web services must follow W3C XML
tag naming conventions�If you want to use Liquid Data to generate a Web
service from a query, the query name must adhere to the same naming
conventions as an XML tag since the query name is converted to an XML tag in
the Web service generation process.

" The most salient of these XML naming conventions is that the query name
(which will be converted to an XML tag name) must be alphanumeric and
must begin with an alphabetic character (letter)�not a number. No special
characters (such as an underscore) are allowed in the name. For example,
myquery.xq and my12query.xq are both query names that will work with
Web services generation, whereas 12query.xq will not work as a generated
Web service.

" For a complete description of naming conventions for schema tags see
described in the W3C XML Schema document at
http://www.w3.org/XML/Schema.

(For information on how to generate a Web service from a stored query, see
Generating and Publishing Web Services in the Liquid Data Administration
Guide.)
Building Queries and Data Views 5-7

5 Testing Queries
5-8 Building Queries and Data Views

CHAPTER
6 Using Data Views

Data views play a central role in the Liquid Data enterprise development model.

! Enterprise and the Data View

! Understanding Data Views

! Creating a Data View

! Creating a Parameterized Data View

! Data View Query Samples

Enterprise and the Data View

In Liquid Data, data views are central to solving the data integration problem one time
(as opposed to once per query) and providing a basis for simpler application
development work on top of that integrated view. In this model:

! A data architect with an intimate knowledge of the relationship of the available
diverse data sources develops a set of data views based on the needs of various
parts of the enterprise.

For example, a view of an employee developed for an enterprise might include
employee salary and address information from one data source; information
about their health insurance from another data source; information from their
company assets (computer, phone, etc.) might be included from a third data
source.

! Liquid Data is then used to create, refine, and validate each of the data views
through queries built up through the Data View Builder.
Building Queries and Data Views 6-1

6 Using Data Views
! Once validated, a reusable representation of each data view is developed through
the Data View Builder and Administration Console as a new data view.

! Then the Liquid Data data view can be used throughout the enterprise as a
virtual data source for queries. For example, a query for a new payroll division
application might select salary information from this view.

In this model a data view provides an appropriate architectural view of corporate data
that is available for specialized queries and sharable throughout the enterprise.

Understanding Data Views

In Liquid Data a stored query and a target schema comprise a data view.

Figure 6-1 Components of a Data View

To create a data view from a query:

! You first create a query and save it.

! Then you configure a data view data source description for the query in the
WebLogic Server Administration Console.

To create a virtual data source in this way, you must first create a query and save it to
the Liquid Data server repository, then configure a data view data source description
for the query in the WebLogic Administration Console. It is recommended that you
create the query and save it to the repository using the Data View Builder, but it is also
possible to use hard-coded queries in generally the same way.

Stored
Query + a

Target
Schema Dataview
6-2 Building Queries and Data Views

Understanding Data Views
The following sections explain what a data view is and how to use a data view data
source with the assumption that you are using the Data View builder to construct the
query. Also included is a clarification of the relationship between a query and a a data
view.

Functionally, a data view extends the power of a stored query through its association
with a target schema that describes the data. This combination allows a data view to be
identified in the Data View Builder as a data source for additional queries.

The following sections describe in detail how to create Liquid Data data views and use
such views as data sources. Also included is a discussion of the relationship between
a query and a data view.

A Data View Use Case

eWorld Co, a company that through multiple mergers and acquisitions has
50,000 employees, also has multiple payroll systems. Using Liquid Data,
information in each of these systems can be accessed. The company also has two
relational databases from separate vendors for tracking incentive bonuses.
Human Resources very frequently gets questions about when such bonus
payments will show up in affected employee�s paychecks.

" To enable HR to get answers to employees quickly and economically, an
Information Technology data architect creates a query using Liquid Data that
can access relevant information from the multiple payroll systems and the
company�s incentive bonus databases.

" Once satisfied that the query works, the IT architect creates a data view and
makes it available to an HR data specialist. This specialist can then use
Liquid Data to quickly get answers to inquiries from individual employees
about their bonus payments.

The benefits of this approach are significant:

" A single integrated view can be created for use throughout an enterprise.
Access to sensitive information is controlled and consistency is maintained.

" HR can quickly get the information it needs without having to either staff up
with its own data architect or get in the queue for expensive and
low-availability IT custom programming services.
Building Queries and Data Views 6-3

6 Using Data Views
" Since data views are typically created by information architects, more time
can be spent designing and testing the generalized query.

Simple and Parameterized Data Views

The difference between a simple and a parameterized data view is that a parameterized
data view has one or more input parameters. Specifically views that centrally contain
functional sources such as an application view, web service, custom function, or stored
procedure often require an input parameter.

Using Data Views as Data Sources

From the Data View Builder, you access a data view as you would any other data
source. There is no limit to the number of data views that can be used in creating a new
query, although currently there may be performance implications to nesting data
views. A data view can reference on another data view.

Creating a Data View

The following sections explain the steps needed to turn a query into a data view data
source:

! Creating and Saving the Query to the Liquid Data Repository

! Configuring a Data View Data Source Description

! Adding a Data View as a Data Source
6-4 Building Queries and Data Views

Creating a Data View
Creating and Saving the Query to the Liquid Data
Repository

Follow these steps to create and save a query to the Liquid Data Repository:

1. Construct the query in the Design view as described in Chapter 3, �Designing
Queries.�

2. Test the query in the Test Query view as described in Chapter 5, �Testing
Queries.�

3. Save the query to the Liquid Data repository as a stored query as described in
Saving a Query to the Repository as a �Stored Query� in Chapter 5, �Testing
Queries.�

Note: When you are creating a data view, it is important that the query and its target
schema be in conformance. In the current release this means that all required
elements in a target schema must be mapped if the query is to be turned into a
view. See �Source and Target Schemas� and subsequent discussions for
details.

Alternatively you can load queries and target schemas into the Liquid Data repository
directly using the Administration Console. See Uploading Files to the Server
Repository for details.

Configuring a Data View Data Source Description

In the WebLogic Server Administration console, configure a data view source
description for the query as described in Configuring Access to Data Views in the
Liquid Data Administration Guide. Then follow these steps:

1. In the Administration Console click the Repository tab.

2. Double-click on the Stored Queries folder.

3. Find the stored query you want to use and click the Data View Data Source
link.
Building Queries and Data Views 6-5

6 Using Data Views
This links you into the Data View configuration tab, automatically copies the
stored query to the data_views folder for you, and assigns an xv extension to
the file name.

See �Managing the Liquid Data Server Repository� in the Liquid Data Administration
Guide for additional details.

Adding a Data View as a Data Source

After you have created the data view, reconnect to the liquid Data server using the
File -> Connect menu command. Your new data view should appear under Data
Views when the Sources tab in Design mode is selected (see Figure 6-5).

Creating a Parameterized Data View

You can use the following simple example to create a stored query and then turn it into
a parameterized data view that retrieves customer order information based on a unique
customer ID.

Note: To follow along with the creation of this example data view, you should have
the Liquid Data sample server installed and running and be familiar with the
sample. If not, please see the Liquid Data Getting Started guide.

1. Open the Data View Builder, drag the relational database source pb-bb onto the
Liquid Data desktop. Set your target schema to customerOrders.xsd. Map
elements to your target schema as shown in Figure 6-2.
6-6 Building Queries and Data Views

Creating a Parameterized Data View
Figure 6-2 Creating a Parameterized Query in the Data View Builder

1. From the Liquid Data Toolbox tab, choose Query Parameter. Create a single query
parameter, CUST_ID and using the pulldown Type menu. Assign it a type string of
xs:string.

2. Drag cust_id to the CUSTOMER_ID field of the CUSTOMER table in the
PB_BB data source (also shown in Figure 6-2).

3. Drag CUSTOMER_ID in the Customer table to CUSTOMER_ID in the
Customer Order table to create a join.

4. In Test mode supply CUSTOMER_1 as a value for CUST_ID and run the query.
Building Queries and Data Views 6-7

6 Using Data Views
Note: Values are case-sensitive.

The Data View Builder will display an XML report containing information on
the orders made by this particular customer.

5. Using the File -> Save Query menu command in the Data View Builder, save
your query (shown in Figure 6-3) under the name param_dv to the Repository
folder. It will automatically be placed in the ld_repository/stored_query
folder and the extension .xq appended.

Figure 6-3 Saving the Query

6. Now you can use the Liquid Data Administration Console to create your data
view from your newly saved query.
6-8 Building Queries and Data Views

Creating a Parameterized Data View
a. Start the Administration Console.

b. Click the Liquid Data node.

c. Select the Repository tab.

d. Go to stored_queries.

e. Choose the query param-dv.xq

f. Select the Data View Data Source option.

g. Enter information as shown in Figure 6-4.

h. Click Create.

Your new data view should appear in the Administration Console list of
available data views.

Figure 6-4 Creating the Data View in the Administration Console
Building Queries and Data Views 6-9

6 Using Data Views
See �Creating Data Views from Stored Queries� in the Liquid Data
Administration Guide for information on how to generate data views from stored
queries.

7. Return to the Data View Builder. Select File -> Connect. When you click on
Data Views, your newly created data view should appear.

Figure 6-5 Data View on the Liquid Data Desktop

8. Drag the data view onto the Liquid Data desktop as you would any other data
source (Figure 6-5).

9. Add a valid target schema. In this case, you can use the File menu Set
Selected Source as Target Schema command. (The generated schema is
shown in Figure 6-6.)
6-10 Building Queries and Data Views

Creating a Parameterized Data View
You may see a message asking if it is OK to close the existing target schema
since that will remove all its mappings in the Data View Builder. Click Yes.

Figure 6-6 Setting Input and Associating Columns With Target Schema

10. Using the Data View Builder toolbox create a string constant called CUSTOMER_3
and drag it into the data view input CUST_ID (see Figure 6-6).

You could have provided an input parameter from a built-in XQuery function,
custom function, an input from a web service, or another source.

11. Map all the elements in your target schema.

12. Test, then run your new query.
Building Queries and Data Views 6-11

6 Using Data Views
Figure 6-7 XQuery and Generated XML Report

Data View Query Samples

Two additional Data View Query samples are installed with the Liquid Data samples.
These samples show how to create a data view, configure it as a data source, and then
use that data source in other data views.

Instructions for running the samples are provided in readme files located at:

! <LDHome>/samples/buildQuery/view/readme.htm

! <LDHome>/samples/buildQuery/parameter_view/readme.htm
6-12 Building Queries and Data Views

Data View Query Samples
Also see the Liquid Data Samples page for more information on other available query
samples.
Building Queries and Data Views 6-13

6 Using Data Views
6-14 Building Queries and Data Views

CHAPTER
7 Using Complex
Parameter Types in
Queries

You can use complex parameter types (CPTs) to make one or several streaming data
sources available for Liquid Data queries. Such content is variously called runtime
source, data stream, real-time data, or in-flight XML. As long as an XML schema can
model the runtime source, you can use it with Liquid Data queries. Liquid Data
complex parameter types enable the on-the-fly aspect of this query.

The following subjects are discussed in this chapter:

! Understanding Complex Parameter Types

! Creating a Complex Parameter Type

! Complex Parameter Type Query Samples
Building Queries and Data Views 7-1

7 Using Complex Parameter Types in Queries
Understanding Complex Parameter Types

A complex parameter type is a user-defined variable that allows modelling of runtime
data as a data source for a Liquid Data query. CPTs are defined through an XML
schema. In other words, a CPT is a user-defined variable whose signature is expressed
in via an XML schema.

In order to use CPTs, you need:

! An XML schema that models the type of the user-defined variable as a CPT.

! A complex parameter type definition that you configure through the Liquid Data
Administration Console (see Configuring Access to Complex Parameter Types
in the Administration Guide).

! A runtime source that provides XML data conforming to the XML schema
mentioned above.

You can use the Data View Builder to develop and test the query that uses CPT. When
testing a complex parameter types using the Data View Builder, you must assign an
XML file to the CPT variable.

When you are satisfied with your ability to run your query using a runtime data source,
the query can be invoked via a EJB API or via a JSP. For details on invoking queries
programmatically and the Liquid Data API see:

! Setting Complex Parameter Types in Invoking Liquid Data Queries
Programmatically.

! Invoking Queries in EJB Clients in Invoking Liquid Data Queries
Programmatically.

! Liquid Data 1.1 API Reference (Javadoc).

There is also a Liquid Data EJB API sample in:

BEA_HOME/weblogic700/liquidata/samples/ejbAPI
7-2 Building Queries and Data Views

Understanding Complex Parameter Types
A CPT Use Case

Complex parameter types allow you to access information that may not be available
from traditional static data sources. For example, an enterprise frequently needs to
bring together highly diverse pieces of information to complete a business activity or
analysis.

Use Case

eWorldCo typically receives large electronically-transmitted orders for customized
computer chips from companies and governments all over the world. Orders are
transmitted using an agreed-upon XML schema provided by eWorld. When an order
is received, a variety of commissions and bonuses become payable.

Some information about the transaction is readily available from existing data sources
such as:

! products database

! sales discount schedule (from sales management software)

! a partner commission structure (from a spreadsheet maintained by the regional
sales organization)

However, some data only becomes available when the order is received including:

! customer identification

! item

! quantity

! salesperson

When an order arrives, Liquid Data uses information from all these data sources,
including the runtime order information. As the order is received as an in-flight XML
document, a query is run and an XML report generated that calculates costs and
commissions, taking into account both the order and cumulative discount and
commission schedules for the buyers, middlemen, and sales people involved in the
transaction.
Building Queries and Data Views 7-3

7 Using Complex Parameter Types in Queries
Understanding CPT Schema and Data

This section describes elements of a sample CPT schema and its XML instance. It uses
the DB-CPTCO sample installed with Liquid Data when describing a CPT Schema and
XML Data Source. The sample is installed in the following directory:

BEA_HOME/weblogic700/liquidata/samples/buildQuery/db-cptco

The project file is coCPTSample.

Sample CPT Schema

The CPT schema shown in Listing 7-1 (coCptSample2.xsd) is from the DB-CPTCO
sample. It is located in the LDrepository/schemas directory.

This simple example defines a complex variable type containing four data elements:
customer_id, product_name, quantity, and price. The complex type you design
will vary depending on the signature of your runtime source.

Listing 7-1 DB-CPTCO Sample CPT Schema (coCptSample2.xsd)

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="urn:schemas-bea-com:ld-cocpt"

xmlns:cocpt="urn:schemas-bea-com:ld-cocpt"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="CustOrder">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="CUSTOMER_ORDER" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>

<xsd:element name="CUSTOMER_ID" type="xsd:string"/>
<xsd:element name=

"NEW_ORDER_LINE_ITEM"type="cocpt:NEW_ORDER_LINE_ITEMType"
minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:complexType name="NEW_ORDER_LINE_ITEMType">
<xsd:sequence>
7-4 Building Queries and Data Views

Understanding Complex Parameter Types
<xsd:element name="PRODUCT_NAME" type="xsd:string"/>
<xsd:element name="QUANTITY" type="xsd:decimal"/>
<xsd:element name="PRICE" type="xsd:decimal"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Components of the sample schema shown in Listing 7-1 include:

xmlns:cocpt="urn:schemas-bea-com:ld-cocpt”

Declares a namespace cocpt associated with the URI.

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

Declares a namespace xsd to the standard XML schema URI.

<xsd:element name=”CustOrder”>

Declares CustOrder as the schema root element.

It is the unique combination of namespace and schema root element that defines the
portion of a schema used as a complex parameter type.

Note: One one instance of a CPT (that is, a unique combination of namespace and
schema root element) can be available in the Data View Builder. If you try and
duplicate a CPT under another alias name, a red mark will appear over the
duplicate CPT name to indicate that it is unavailable.

Sample XML Data Stream

When you are first developing your query, you will likely want to create a sample
XML data file to test your query with an EJB client such as the data in the Data View
Builder. In the following listing from the DB-CPTCO sample XML data stream, note
that the namespace must match that in the DB-CPTCO sample schema.

Listing 7-2 DB-CPTCO Sample XML Data Stream (coCptSample2.xml)

<?xml version="1.0" encoding="UTF-8"?>
<cocpt:CustOrder xmlns:cocpt="urn:schemas-bea-com:ld-cocpt"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:schemas-bea-com:ld-cocpt

coCptSample2.xsd">
Building Queries and Data Views 7-5

7 Using Complex Parameter Types in Queries
<CUSTOMER_ORDER>
<CUSTOMER_ID>CUSTOMER_1</CUSTOMER_ID>
<NEW_ORDER_LINE_ITEM>

<PRODUCT_NAME>RBBC01</PRODUCT_NAME>
<QUANTITY>1000</QUANTITY>
<PRICE>20</PRICE>

</NEW_ORDER_LINE_ITEM>
<NEW_ORDER_LINE_ITEM>

<PRODUCT_NAME>CS2610</PRODUCT_NAME>
<QUANTITY>1000</QUANTITY>
<PRICE>20</PRICE>

</NEW_ORDER_LINE_ITEM>
</CUSTOMER_ORDER>

</cocpt:CustOrder>

The DB-CPTCO sample XML file is located in the LDRepository/xml_files
directory.

Components in the sample XML data stream shown in Listing 7-2 include:

cocpt:CustOrder xmlns:cocpt="urn:schemas-bea-com:ld-cocpt”

Defines urn:schemas-bea-com:ld-cocpt as the namespace aliased to
cocpt and CustOrder as the complex data type:

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance”

Declares the standard XML schema instance URI.

xsi:schemaLocation="urn:schemas-bea-com:ld-cocpt coCptSample2.xsd”

Identifies the schema location to resolve the name space declaration. Note
that Liquid Data automatically looks in the repository schema directory for
the specified file. Otherwise a full path name to coCptSample2.xsd is
needed.

Notes on Hand-Crafting CPT XQueries

There are two issues to remember when hand crafting an XQuery that accesses a
Complex Parameter Type:

! Unique Namespace

! XQuery of type element Declaration
7-6 Building Queries and Data Views

Understanding Complex Parameter Types
Unique Namespace

The namespace of your Complex Parameter Type must be unique. It is a good design
pattern to have a namespace defined in your schema file and specified when you define
your Complex Parameter Type to Liquid Data. If a namespace is specified in the
Complex Parameter Type definition, all XQueries that access the Complex Parameter
Type must specify the namespace. Regardless of whether you use namespaces,
uniqueness is required.

XQuery of type element Declaration

When you use a Complex Parameter Type in a query, you need to specify a query
parameter with the following declaration.

of type element [<namespace>:]<root element>

The namespace is optional, but the specified root element must be unique. For
example, consider the following query:

namespace cocpt = "urn:schemas-bea-com:ld-cocpt"

<cocpt:CustOrder>
{
for $CO_CPTSAMPLE.CUSTOMER_ORDER_2 in

($#QParamForCO-CPTSAMPLE of type element cocpt:CustOrder)
/CUSTOMER_ORDER

return
<CUSTOMER_ORDER>

<CUSTOMER_ID>
{xf:data($CO_CPTSAMPLE.CUSTOMER_ORDER_2/CUSTOMER_ID) }

</CUSTOMER_ID>
</CUSTOMER_ORDER>

}
</cocpt:CustOrder>

The alias cocpt is used in the namespace declaration of this query, and the bold section
(which uses the cocpt alias) defines the XML input stream for the Complex Parameter
Type.
Building Queries and Data Views 7-7

7 Using Complex Parameter Types in Queries
Creating a Complex Parameter Type

This section describes the steps needed to create and run a complex parameter type.

Step 1. Create a CPT Schema

Step 2. Create Your Runtime Source

Step 3. Define Your CPT in the Administration Console

Step 4. Build Your Query

Step 5. Run your query

Step 1. Create a CPT Schema

Create a schema that models the runtime source. See the �Sample CPT Schema� on
page 7-4 for a small schema example.

Note: In some design situations you may first create a CPT schema and then develop
a model for the runtime source. The important point is that there is a tightly
coupled relationship between the schema and the runtime data that it models.
Both must work together and, once working, the structure of the documents
cannot be changed independently.

Step 2. Create Your Runtime Source

Create an instance of your runtime source. The runtime source needs to be in XML.

Step 3. Define Your CPT in the Administration Console

Using the Liquid Data Administration Console, define a complex parameter type. for
a detailed procedure, see Configuring Access to Complex Parameter Types in the
Administration Guide.
7-8 Building Queries and Data Views

Creating a Complex Parameter Type
Figure 7-1 Creating a Complex Parameter Type in the Administration Console

A valid CPT definition includes an alias identifier and a schema. It is also a good
programming practice to provide both a namespace URI and a schema root element
name to uniquely identify your CPT.

Step 4. Build Your Query

Create your query either using the Data View Builder or by hand. See �Key Concepts
of Query Building� on page 1-6 for information on designing queries in Liquid Data.

Step 5. Run your query

Once you have created a CPT schema, have a data sample available, and have defined
the CPT in the Administration Console, you are ready to use a complex parameter type
in a query.

Note: Complex parameter types are not type aware and are always of the type
xs:string in Liquid Data. You need to cast each element appropriately.

The Liquid Data DB-CPT sample cptSample.qpr uses a CPT to supply a promotion
plan name for a given state. The sample is installed in the following directory:

BEA_HOME/weblogic700/liquidata/samples/buildQuery/db-cpt
Building Queries and Data Views 7-9

7 Using Complex Parameter Types in Queries
When the query runs details of one or more matching promotion plans names are
retrieved from a database.

Figure 7-2 shows the DB-CPT project. Notice that there are two complex parameter
types available for use. CPTSAMPLE is the complex parameter type used in the
query.

Figure 7-2 DB-CPT Project (CPTSAMPLE.QPR) with Complex Parameter
Types Displayed
7-10 Building Queries and Data Views

Creating a Complex Parameter Type
To test your query the name of an XML data file that is modeled on the CPT schema
must be entered in the Data View Builder (see Figure 7-3). For Liquid Data sample
XML click on the Value field to open the Liquid Data file browser to the
LDRepository/XML_files directory.

Figure 7-3 DB-CPT Project in Test Mode

Figure 7-4 shows the DB-CPT (CPTSAMPLE.QPR) project when the query is run.

Supply the CPT data
source file name.
Building Queries and Data Views 7-11

7 Using Complex Parameter Types in Queries
Figure 7-4 DB-CPT Project (CPTSAMPLE.QPR) in Run Mode

When you are satisfied with your ability to run your query using runtime data source,
the query can be invoked through an EJB API. For details on invoking queries
programmatically and the Liquid Data API see:

! Setting Complex Parameter Types in Invoking Liquid Data Queries
Programmatically.

! Invoking Queries in EJB Clients in Invoking Liquid Data Queries
Programmatically.

! Liquid Data 1.1 API Reference (Javadoc).

There is also a Liquid Data EJB API sample in:

BEA_HOME/weblogic700/liquidata/samples/ejbAPI
7-12 Building Queries and Data Views

Complex Parameter Type Query Samples
Complex Parameter Type Query Samples

For a step by step example of building a query with a CPT, see �Example 6: Complex
Parameter Type (CPT)� on page 9-41.

There are also two CPT query samples installed with the Liquid Data samples. These
samples show how to create a complex parameter type, configure it as a complex
parameter type, and then run the query.

Instructions for running the samples are provided in readme files located at:

! LDHome/samples/buildQuery/db-cpt/readme.htm

! LDHome/samples/buildQuery/db-cptco/readme.htm

Also see the Liquid Data Samples page for information on other available query
samples.
Building Queries and Data Views 7-13

7 Using Complex Parameter Types in Queries
7-14 Building Queries and Data Views

CHAPTER
8 Defining Stored
Procedures

If you have stored procedures defined in your databases, you can expose them to
Liquid Data as a data source and use them in your Liquid Data queries.

! Defining Stored Procedures to Liquid Data

! Stored Procedure Description File Schema

! Rules for Specifying Stored Procedure Description Files

! Sample Stored Procedure Description Files

! Stored Procedure Support by Database

! Using Stored Procedures in Queries

For an example and a demo of defining a stored procedure and using it in a query, see
�Example: Defining and Using a Customer Orders Stored Procedure� on page 8-33.
Building Queries and Data Views 8-1

8 Defining Stored Procedures
Defining Stored Procedures to Liquid Data

To use stored procedures in Liquid Data, you must create a Stored Procedure
Description file. The Stored Procedure Description file is an XML schema file that
defines the types and the functions for a set of stored procedures. For details on
defining a Stored Procedure Description file, see �Stored Procedure Description File
Schema� on page 8-4 and �Rules for Specifying Stored Procedure Description Files�
on page 8-10. For database-specific information, see �Stored Procedure Support by
Database� on page 8-26.

To Define Stored Procedures to Liquid Data

Perform the following steps to define a stored procedure for use with Liquid Data.

1. Create your stored procedures in the underlying database, if they do not already
exist. For details about Liquid Data support of stored procedures for your database,
see �Stored Procedure Support by Database� on page 8-26.

2. In the WebLogic Console, create a JDBC Connection Pool to access your
database, if one does not already exist.

3. In the WebLogic Console, create a JDBC Data Source for the connection pool
created in the previous step.

4. Create a Stored Procedure Description file for your stored procedures and save it
to the stored_procedures directory of the Liquid Data repository. For details,
see �Stored Procedure Description File Schema� on page 8-4 and �Rules for
Specifying Stored Procedure Description Files� on page 8-10.

5. In the Liquid Data Administration Console (to access the Liquid Data Console,
click the Liquid Data link at the bottom of the list on the WebLogic
administration console), click the Data Sources tab.

6. Click the Relational Databases tab.

7. Click the Configure a New Relational Data Source Description Link (or open an
existing Data Source to modify it).
8-2 Building Queries and Data Views

Defining Stored Procedures to Liquid Data
8. If you are creating a new data source, enter values for Name, Data Source Name,
and Schema fields in the Configure Relational Data Source Description screen.
For more details on configuring relational data sources, see Configuring Access
to Relational Databases in the Administration Guide.

9. In the Configure Relational Data Source Description screen, specify a Stored
Procedure Description file by clicking the Browse Repository link next to the
Stored Procedure Description File field.

10. In the Repository Browser, select the file you created containing your stored
procedure definitions. After making your selection, click the Select button.

11. In the Configure Relational Data Source Description screen, click the Apply
button to save your Data Source definition.

12. Check the WebLogic Server log file for any errors, and correct them as necessary.

You can now access your stored procedures in the Data View Builder. If you are
already connected to the server in the Data View Builder, you must re-connect by
selecting File �> Connect from Data View Builder menu. The Stored Procedures tab
appears in the Design view under the sources tab of the Data View Builder. You can
now use your stored procedures as you do other building blocks (for example, data
sources, XQuery functions, and so on) to build queries.
Building Queries and Data Views 8-3

8 Defining Stored Procedures
Stored Procedure Description File Schema

The Stored Procedure Description file is an XML file that defines stored procedures to
Liquid Data. This section describes the schema of the Stored Procedure Description
file, and contains the following sections:

! Basic Structure

! Schema Definition File for Stored Procedure Description File

! Element and Attribute Reference for Stored Procedure Description File

! Supported Datatypes

For sample Stored Procedure Description files, see �Sample Stored Procedure
Description Files� on page 8-19.

Basic Structure

The Stored Procedure Description file has the following main sections:

! Type Definitions

! Function Definitions

Type Definitions

The type definitions section of the Stored Procedure Description file is defined in the
<types> element. This element defines namespaces and complex types for the stored
procedures defined in the Stored Procedure Description file.

Function Definitions

The function definitions section of the Stored Procedure Description file is defined in
the <functions> element. Within the <functions> element are <function>
elements, each of which defines the signature of a stored procedure. You can define
one or more stored procedures in a single Stored Procedure Description file.
8-4 Building Queries and Data Views

Stored Procedure Description File Schema
Schema Definition File for Stored Procedure Description
File

The following is the schema definition file for the Stored Procedure Description file:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

<xsd:element name="definitions">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="types"/>
<xsd:element ref="functions"/>

</xsd:sequence>
<xsd:attribute name="targetNamespace" use="optional"

type="xsd:string"/>
</xsd:complexType>

</xsd:element>
<xsd:element name="types">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="schema"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="schema" type="xsd:anyType"/>
<xsd:element name="functions">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="function" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="function">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="argument" minOccurs="0"
maxOccurs="unbounded"/>

<xsd:element ref="presentation" minOccurs="0"/>
<xsd:element ref="description" minOccurs="0"/>

</xsd:sequence>
<xsd:attribute name="name" use="required"

type="xsd:string"/>
<xsd:attribute name="return_type" use="required"

type="xsd:string"/>
</xsd:complexType>
Building Queries and Data Views 8-5

8 Defining Stored Procedures
</xsd:element>
<xsd:element name="argument">

<xsd:complexType>
<xsd:attribute name="type" use="required"

type="xsd:string"/>
<xsd:attribute name="label" use="required"

type="xsd:string"/>
<xsd:attribute name="mode" use="required" type="modeType"/>

</xsd:complexType>
</xsd:element>
<xsd:simpleType name="modeType">

<xsd:restriction base="xsd:string">
<xsd:enumeration value="input_only"/>
<xsd:enumeration value="output_only"/>
<xsd:enumeration value="input_output"/>

</xsd:restriction>
</xsd:simpleType>
<xsd:element name="presentation">

<xsd:complexType>
<xsd:attribute name="group" use="required"

type="xsd:string"/>
</xsd:complexType>

</xsd:element>
<xsd:element name="description" type="xsd:string"/>

</xsd:schema>

Element and Attribute Reference for Stored Procedure
Description File

Table 8-1 lists and describes the elements and attributes of the Stored Procedure
Description file.

Table 8-1 Stored Procedure Description file XML elements and descriptions

Element Attribute Description

<definitions> targetNameSpace The namespace declared for the stored
procedures.

<types> Declares any primitive or complex
data types used in the stored
procedure.
8-6 Building Queries and Data Views

Stored Procedure Description File Schema
<functions> Contains the function definitions for
all of the stored procedures
represented in this file.

<function> Function definition for a single stored
procedure.

name Name of the stored procedure as
defined in the database. If the stored
procedure is part of a package, the
name is the fully qualified name of the
stored procedure (for example,
packagename.sp_name).
If you are using procedure groups in
Sybase or Microsoft SQL Server, see
�Rules for Procedure Names
Containing a Semi-Colon� on page
8-12.

return_type Return type of the stored procedure.
The type is defined in the <types>
element of this file. Note that this type
differs from the type which the stored
procedure returns. If you are
hand-crafting your own XQueries, you
must perform a function signature
transformation; for details, see �Rules
for Transforming the Function
Signature When Hand Writing an
XQuery� on page 8-16.

Table 8-1 Stored Procedure Description file XML elements and descriptions

Element Attribute Description
Building Queries and Data Views 8-7

8 Defining Stored Procedures
Note: An element within the types definition with a name specified with
name="return_value" is reserved to specify the return value from a function
or a procedure. For an example, see �Example 2: Type Definition with Simple
Return Value� on page 8-14.

<argument> Contains the argument declarations for
the inputs and/or outputs of the stored
procedure.

label The name of the argument input or
output. This name is used in queries
and is displayed in clients such as the
Data View Builder.

type Type of the argument. The type can be
one of the types listed in �Supported
Datatypes� on page 8-9, or it can be a
complex type declared in the Stored
Procedure Description file.

mode Lists whether the argument is part of
the input, output, or both. Possible
values are:
! input_only

! output_only

! input_output

<presentation
group>

Currently not supported.

<description> Comment text describing the stored
procedures used in the Stored
Procedure Description file.

Table 8-1 Stored Procedure Description file XML elements and descriptions

Element Attribute Description
8-8 Building Queries and Data Views

Stored Procedure Description File Schema
Supported Datatypes

The stored procedures you define in the Stored Procedure Description files must use
the XML data types shown in Table 8-2. You must map the database data types to one
of the types in this table. For datatype support by database, see �Stored Procedure
Support by Database� on page 8-26.

Except for user-defined complex data types, the types are all primitive data types.

For JDBC and database-specific type mapping, see Appendix B, �Supported Data
Types.�

Table 8-2 XML data types and their Java equivalents for Stored Procedure
Description files

XML Data Type Equivalent Java Data Type

xs:boolean java.lang.boolean

xs:byte java.lang.byte

xs:short java.lang.short

xs:integer java.lang.Integer

xs:int java.lang.Integer

xs:long java.lang.Long

xs:float java.lang.float

xs:double java.lang.double

xs:decimal java.math.BigDecimal

xs:string java.lang.String

xs:dateTime java.util.Date

Complex Element Type org.w3c.dom.Element
Building Queries and Data Views 8-9

8 Defining Stored Procedures
Rules for Specifying Stored Procedure
Description Files

This section describes rules for the return_type attribute of the <function> element
and the mode attribute of the <argument> element. This section includes the following
rules:

! Rules for Element and Attribute Names

! Rules for Procedure Names Containing a Semi-Colon

! Rules and Examples of <type> Declarations to Use in the <function>
return_type Attribute

! Rules for the mode Attribute output_only <argument> Element

! Rules for Transforming the Function Signature When Hand Writing an XQuery
8-10 Building Queries and Data Views

Rules for Specifying Stored Procedure Description Files
Rules for Element and Attribute Names

XML requires that element and attribute names begin with a non-numeric character.
Therefore, when you specify the name attribute of the <xs:element> element in a
Stored Procedure Description file, you must specify a name that does not start with a
numeric character. For example, if you have a stored procedure that returns a cursor,
and the cursor returns columns that start with a numeric character, you must map those
column names to valid XML element names in your Stored Procedure Description file.

For the W3C definition of a valid name for an attribute or element, see:

http://www.w3.org/TR/2000/WD-xml-2e-20000814#dt-name

For example, consider a cursor named MY_CURSOR is declared with the following SQL
statement:

open MY_CURSOR for
select 1_column, 2_column, 3_column
from MY_TABLE

return MY_CURSOR

When you define the cursor type in the <types> section of your Stored Procedure
Description file, you must map the column names from the cursor output to start with
a non-numeric character so the resulting XML generated is valid. You could use the
following type definiton for this cursor, which starts each numeric column name with
an underscore character (_):

<types>
<xs:element name="MY_CURSOR" minOccurs="0"

maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="_1_column" type="xs:integer"/>
<xs:element name="_2_column" type="xs:string"/>
<xs:element name="_3_column="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</types>

For some notes on relational database object names and how to specify them so they
can be used in an XQuery, see �Relational Databases� on page 1-8.
Building Queries and Data Views 8-11

8 Defining Stored Procedures
Rules for Procedure Names Containing a Semi-Colon

Sybase and Microsoft SQL Server databases provide the ability to group stored
procedures by using a semi-colon character (;) to separate a procedure name with a
number. For example, you can have two stored procedures with the following names:

MY_SP;1
MY_SP;2

When you specify these procedures in the Stored Procedure Description file, use the
database name (the name with the semi-colon character). When you use these
procedure names in an XQuery, however, you must substitute an underscore character
(_) for the semi-colon character. The Data View Builder automatically substitutes the
underscore character for the semi-colon character in the XQuery it generates.

For example, consider the following definition for a stored procedure in a Stored
Procedure Description file:

<function name="MY_SP;2" return_type="Results">
<argument label="COLUMN_123" mode="input_only"

type="xs:string"/>
<argument label="ANOTHER_COLUMN" mode="output_only"

type="xs:int"/>
</function>

When you reference this function in an XQuery, it is referred to as follows:

MY_SP_2

Rules and Examples of <type> Declarations to Use in the
<function> return_type Attribute

The return_type attribute of the <function> element specifies the complex type for
the stored procedure. The complex type must be declared in the <types> section of the
Stored Procedure Description file. For example, the following element opening tag
shows a function named myFunction with a return_type of myReturnType:

<function name="myFunction" return_type="myReturnType" >
8-12 Building Queries and Data Views

Rules for Specifying Stored Procedure Description Files
The return type myReturnType must be declared in the <types> section. The type
must contain the actual return value of the stored procedure (if it has a return value)
and the row set definitions (if applicable). The row set definitions must appear in the
order in which the stored procedure returns them.

When a stored procedure returns a primitive type, you must declare the primitive type
using the return_value keyword for the name attribute. For an example of this, see
�Example 2: Type Definition with Simple Return Value� on page 8-14.

Example 1: Type Definition with No Return Value

The following is a type definition for a stored procedure that has no return value and
returns no row sets.

<types>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="EmptyOutput">
<xs:complexType>

<xs:sequence>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>
</types>

Use a similar type definition in a stored procedure that does not have any return value.
This EmptyOutput type definition is required for all stored procedures and functions
that do not return anything.
Building Queries and Data Views 8-13

8 Defining Stored Procedures
Example 2: Type Definition with Simple Return Value

The following is a type definition for a stored procedure that has a simple return value
(xs:integer) and returns no row sets.

<types>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="SimpleOutput">
<xs:complexType>

<xs:sequence>
<xs:element name="return_value"

type="xs:integer" />
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>
</types>

Use a similar type definition with a stored procedure that returns a status code or a
single value.

Example 3: Type Definition for Complex Row Set Type

The following is a type definition for a stored procedure that returns a row set, which
is a complex type.

<types>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="customerTable">
<xs:complexType>

<xs:sequence>
<xs:element name="CUSTOMER" minOccurs="0"

maxOccurs="unbounded" >
<xs:complexType>

<xs:sequence>
<xs:element name="C_NAME"

type="xs:string"/>
<xs:element name="C_ACCTBAL"

type="xs:decimal"/>
</xs:sequence>

</xs:complexType>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>
</types>
8-14 Building Queries and Data Views

Rules for Specifying Stored Procedure Description Files
Use a similar type definition with a stored procedure that returns a result set (for
example, in Sybase, Microsoft SQL Server, or DB2).

Example 4: Type Definition with Complex Return Value

The following is a type definition for a stored procedure that returns a complex type.
Assume that the customerTable complex type (shown in the previous example) is
defined in the same Stored Procedure Definition file.

<types>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="return_value" type="customerTable">
</xs:element>

</xs:schema>
</types>

Use a similar type definition with an Oracle stored procedure that returns a cursor with
a complex type.

Example 5: Type Definition with Simple Return Value and Two Row Sets

The following is a type definition for a stored procedure that has a simple return value
(xs:integer) and returns two row sets.

<types>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

......

......{-- Definitions for complex types customerTable and
ordersTable go here --}

......
<xs:element name="OutputName">

<xs:complexType>
<xs:sequence>

<xs:element name="return_value"
type="xs:integer" />

<xs:element ref="customerTable" />
{-- customerTable defined above--}

<xs:element ref="ordersTable" />
{-- ordersTable defined above --}

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

</types>
Building Queries and Data Views 8-15

8 Defining Stored Procedures
Rules for the mode Attribute output_only <argument>
Element

If you define a function that has an <argument> element that has the mode
output_only, then you need only reference the type definition in the function
definition. The following example references the customerTable type (defined in the
<types> section of the Stored Procedure Description file, as described in �Example 3:
Type Definition for Complex Row Set Type� on page 8-14). Assume that the
customerTable type maps to a cursor returned from an Oracle stored procedure.

<function name="GetAllCustomersByState" return_type="EmptyOutput">
<argument label="state" mode="input_only" type="xs:string"/>
<argument label="CustomersOutput" mode="output_only"

type="customerTable"/>
</function>

Rules for Transforming the Function Signature When
Hand Writing an XQuery

There are two issues to remember when hand crafting an XQuery that accesses a stored
procedure:

! Namespace Declaration

! Function Transformation

Namespace Declaration

All queries that access stored procedures must have a unique namespace with a URI of
the of the following form:

urn:<Liquid_Data_Relational_data_source_name>

Declare the namespace in the query prolog. The namespace declaration has the
following syntax:

namespace <alias>="<URI>"

For example:
8-16 Building Queries and Data Views

Rules for Specifying Stored Procedure Description Files
namespace SY_WL_NS="urn:SY-WL"

You can then access the stored procedure using the namespace alias and the name of
the stored procedure object. For example:

SY_WL_NS:wireless.dbo.RetAndOpParamTransformation("CUSTOMER_11")

Function Transformation

For stored procedures that return both a return value (for example, an integer return
value) and have output or input_output parameters, the function signature in the
Stored Procedure Description file is different from the signature that is used to write
queries that access the stored procedure. If you look at the schema that displays in the
the Stored Procedures palette of the Data View Builder, you will see the transformed
signature.

The transformed signature combines the return value and any output or
input_output parameters.

For example, consider an example using a Sybase stored procedure with the following
signature:

create proc RetAndOpParamTransformation (@custidPattern
varchar(64), @custCount numeric(10) output)
 as
 select @custCount = count(*) from CUSTOMER
 where
 CUSTOMER.CUSTOMER_ID Like '%' + @custidPattern + '%'
RETURN 1

The following is the Stored Procedure Description file for this stored procedure:

<?xml version="1.0" encoding="UTF-8"?>
<definitions>

<types>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<!-- The stored procedure returns an integer, which is mapped as
the return_value, a reserved element name for stored procedure with
a return.
-->

<xs:element name="RetAndOpParamTransformation">
<xs:complexType>

<xs:sequence>
<xs:element name="return_value"

type="xs:integer"/>
Building Queries and Data Views 8-17

8 Defining Stored Procedures
</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

</types>

<!-- The stored procedure signature mapping. The element
RetAndOpParamTransformation wraps the return_value of the stored
procedure. This stored procedure has custidPattern as an input
parameter. custCount is defined as an output parameter of type
integer (because it returns an integer count).
-->

<functions>
<function name="wireless.dbo.RetAndOpParamTransformation"

return_type="RetAndOpParamTransformation">
<argument label="custidPattern" mode="input_only"

type="xs:string"/>
<argument label="custCount" mode="output_only"

type="xs:integer"/>
<presentation group="Sample to show transformation of

return_value and output prameter in a stored procedure"/>
</function>

</functions>
</definitions>

Because this stored procedure has a return value and an output parameter, the output
of the function is transformed to the following schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="RetAndOpParamTransformation">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="return_value"
type="xsd:integer"/>

<xsd:element name="custCount" type="xsd:integer"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>

where the return_value is the return from the stored procedure and custCount is
the output parameter. If you view this stored procedure in the Data View Builder, you
will see the transformed schema.
8-18 Building Queries and Data Views

Sample Stored Procedure Description Files
The following is a query against this stored procedure:

namespace SY-WL-NS = "urn:SY-WL"

let $SY_WL_SP_Return :=
SY-WL-NS:wireless.dbo.RetAndOpParamTransformation("CUSTOMER_11")
return

<RetAndOpParamTransformation>
<return_value>{
xf:data($SY_WL_SP_Return/RetAndOpParamTransformation/return_value
) }
</return_value>

<custCount>{
xf:data($SY_WL_SP_Return/RetAndOpParamTransformation/custCount) }

</custCount>
</RetAndOpParamTransformation>

In this query, the XPath expressions for return_value and for custCount have the
same parent element.

Sample Stored Procedure Description Files

This section shows several sample Stored Procedure Description files. For simplicity
and readability, each of the examples shown defines a single stored procedure and its
supporting type; your Stored Procedure Description files can define multiple stored
procedures and multiple types. This section includes the following examples:

! DB2 Simple input_only, output_only, and input_output Example

! Oracle Cursor Output Parameter Example

! DB2 Multiple Result Set Example

! Oracle Cursor as return_value
Building Queries and Data Views 8-19

8 Defining Stored Procedures
DB2 Simple input_only, output_only, and input_output
Example

The following Stored Procedure Description file describes a DB2 stored procedure that
returns simple data types with input_only, output_only, and input_output
parameters.

<?xml version="1.0" encoding="UTF-8"?>
<definitions>
<types>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="EmptyOutput">
<xs:complexType>
<xs:sequence>
</xs:sequence>

</xs:complexType>
</xs:schema>

</types>
<functions>

<!-- given a customer id if valid, returns as output
parameters all the customer details -->

<function name="CALLINCALLOUT" return_type="EmptyOutput">
<argument label="custid" mode="input_only" type="xs:string"/>
<argument label="fname" mode="output_only" type="xs:string"/>
<argument label="lname" mode="output_only" type="xs:string"/>
<argument label="telephoneNumber" mode="output_only"

type="xs:long"/>
<argument label="customerSinceAsData" mode="output_only"

type="xs:date"/>
<argument label="customerSinceAsTimeStamp"

mode="output_only" type="xs:dateTime"/>
<presentation group="DB2 stored procedures"/>

 </function>
</functions>

</definitions>

The following is the stored procedure signature for this Stored Procedure Description
file. This signature creates a procedure that has one simple input and returns five
simple outputs.

CREATE PROCEDURE DB2ADMIN.CALLINCALLOUT (
IN CUSTID varchar(64), OUT FNAME varchar(4000),
OUT LNAME varchar(4000), OUT TELEPHONENUMBER bigint,
OUT CUSTOMERSINCE date, OUT CUSTOMERSINCE1 timestamp)

EXTERNAL NAME
8-20 Building Queries and Data Views

Sample Stored Procedure Description Files
'"DB2ADMIN".SQL30205005750980:db2test.CallInCallOut.callInCallOut'
SPECIFIC DB2ADMIN.CALLINCALLOUT
RESULT SETS 0
LANGUAGE JAVA
PARAMETER STYLE JAVA
NOT DETERMINISTIC
FENCED NO
DBINFO NULL
CALL MODIFIES SQL DATA
Building Queries and Data Views 8-21

8 Defining Stored Procedures
Oracle Cursor Output Parameter Example

The following Stored Procedure Description file describes an Oracle stored procedure
that returns an output parameter as a cursor.

<?xml version="1.0" encoding="UTF-8"?>
<definitions>
<types>

<xs:element name="OutCursor">
<xs:complexType>
<xs:sequence>
<xs:element name="CUSTOMER" minOccurs="0"

maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="C_CUSTKEY" type="xs:integer"/>
<xs:element name="C_FNAME" type="xs:string"/>
<xs:element name="C_LNAME" type="xs:string"/>
<xs:element name="C_STATE" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="Output">
<xs:complexType>
<xs:sequence/>

</xs:complexType>
</xs:element>

</xs:schema>
</types>
<functions>
<function name="TEST_PACKAGE.GETCUSTOMER" return_type="Output">
<argument label="CUSTID" mode="input_only" type="xs:string"/>
<argument label="customer_OUT" mode="output_only"

type="OutCursor"/>
<presentation group="OR-TEST stored procedures"/>

</function>
</functions>

</definitions>

The following is the stored procedure signature for this Stored Procedure Description
file. This signature creates a procedure that returns a cursor as an output parameter.
8-22 Building Queries and Data Views

Sample Stored Procedure Description Files
create or replace package test_package as
-- Stored procedure that returns a cursor as an output parameter
procedure getCustomer

(CUSTOMERID IN VARCHAR, cust_cursor1 OUT ref_cursor);
end test_package ;

DB2 Multiple Result Set Example

The following Stored Procedure Description file describes a DB2 stored procedure that
returns multiple result sets.

<?xml version="1.0" encoding="UTF-8"?>
<definitions>
<types>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="CustomerAndOrders">

<xs:complexType>
<xs:sequence>
<xs:element ref="resultSetCustomer"/>
<xs:element ref="resultSetCustomerOrders"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="resultSetCustomer">
<xs:complexType>
<xs:sequence>

<xs:element name="customerRow" minOccurs="1"
maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>
<xs:element name="C_CUSTKEY" type="xs:string"/>
<xs:element name="C_FNAME" type="xs:string"/>
<xs:element name="C_LNAME" type="xs:string"/>
<xs:element name="C_STATE" type="xs:string"/>
<xs:element name="C_SINCE" type="xs:date"/>
<xs:element name="C_TELEPHONENO" type="xs:long"/>
</xs:sequence>

</xs:complexType>
</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="resultSetCustomerOrders">
<xs:complexType>
Building Queries and Data Views 8-23

8 Defining Stored Procedures
<xs:sequence>
<xs:element name="orderRow" minOccurs="1"

maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="C_CUSTKEY" type="xs:string"/>
<xs:element name="CO_ORDERKEY" type="xs:string"/>
<xs:element name="CO_ORDERDATE" type="xs:date"/>
<xs:element name="CO_SHIPMETHOD" type="xs:date"/>
<xs:element name="CO_TOTALORDERAMT" type="xs:decimal"/>
</xs:sequence>

</xs:complexType>
</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>
</types>
<functions>
 <!-- result one returns a customer, result 2 has the

orders for that customer -->
<function name="CALLMULTIPLERESULTSET"

return_type="CustomerAndOrders">
<argument label="custid" mode="input_only" type="xs:string"/>

<presentation group="DB2 stored procedures"/>
</function>

</functions>
</definitions>

The following is the stored procedure signature for this Stored Procedure Description
file. This signature creates a procedure that returns multiple result sets.

CREATE PROCEDURE DB2ADMIN.CALLMULTIPLERESULTSET (
IN CUSTID varchar(64))

EXTERNAL NAME
'"DB2ADMIN".SQL30206110348560:db2test.CallMultipleResultSet.

callMultipleResultSet'
SPECIFIC DB2ADMIN.CALLMULTIPLERS
RESULT SETS 2
LANGUAGE JAVA
PARAMETER STYLE JAVA
NOT DETERMINISTIC
FENCED NO
DBINFO NULL
CALL MODIFIES SQL DATA
8-24 Building Queries and Data Views

Sample Stored Procedure Description Files
Oracle Cursor as return_value

The following Stored Procedure Description file describes an Oracle stored procedure
that returns a cursor as a return_value.

<?xml version="1.0" encoding="UTF-8"?>
<definitions>
<types>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="Output_TEST_PACKAGE.GETCUSTOMERBYID">
<xs:complexType>
<xs:sequence>
<xs:element name="return_value">
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" minOccurs="0"

name="customer">
<xs:complexType>
<xs:sequence>
<xs:element name="FIRST_NAME" type="xs:string"/>
<xs:element name="LAST_NAME" type="xs:string"/>
<xs:element name="CUSTOMER_ID" type="xs:string"/>
<xs:element name="STATE" type="xs:string"/>
<xs:element name="ZIPCODE" type="xs:string"/>
<xs:element name="CITY" type="xs:string"/>
<xs:element name="STREET_ADDR2"

type="xs:string"/>
<xs:element name="STREET_ADDR1"

type="xs:string"/>
<xs:element name="CUSTOMER_SINCE"

type="xs:dateTime"/>
<xs:element name="EMAIL_ADDRESS"

type="xs:string"/>
<xs:element name="TELEPHONE_NUMBER"

type="xs:string"/>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>
</types>
Building Queries and Data Views 8-25

8 Defining Stored Procedures
<functions>
<function name="TEST_PACKAGE.GETCUSTOMERBYID"

return_type="Output_TEST_PACKAGE.GETCUSTOMERBYID">
<argument label="CUSTID" mode="input_only" type="xs:string"/>

</function>
</functions>

</definitions>

The following is the stored procedure signature for this Stored Procedure Description
file. This signature creates a procedure that returns a cursor.

create or replace package body test_package as
-- SP that returns a cursor
FUNCTION getCustomerByID (custID varchar)

RETURN CUST_CURSOR IS cur CUST_CURSOR;
BEGIN

open cur for
select first_name, last_name, customer_id, state,

zipCode,city, street_address2, street_address1,
customer_since, email_address, telephone_number

from wireless.customer
where customer_id = custID;

return cur;
END;

end test_package ;

Stored Procedure Support by Database

This section lists stored procedure support by database vendor. Each vendor supports
the datatypes supported in their respective databases. The following databases are
supported:

! Oracle

! Microsoft SQL Server

! Sybase

! IBM DB2

! Informix
8-26 Building Queries and Data Views

Stored Procedure Support by Database
Oracle

Table 8-3 describes the stored procedure support for Oracle databases. Table 8-4
describes Oracle stored procedures return values.

Table 8-3 Oracle Stored Procedure parameter support

Parameter
Mode

Data Types Supported Notes and Restrictions

input_only Only database data types that you
can map to one of the Liquid Data
primitive types defined in
�Supported Datatypes� on page
8-9.

! The PL/SQL %TYPE
definitions must be translated
to the XML schema types
defined in �Supported
Datatypes� on page 8-9.

output_only ! A Cursor
! Only database data types that

you can map to one of the
Liquid Data primitive types
defined in �Supported
Datatypes� on page 8-9.

input_output Only database data types that you
can map to one of the Liquid Data
primitive types defined in
�Supported Datatypes� on page
8-9.

Table 8-4 Oracle Stored Procedure returned values support

Return Value Types Supported

Primitive type An primitive type such as an integer, a
string, etc.

Return cursor See Table 8-3.
Building Queries and Data Views 8-27

8 Defining Stored Procedures
Microsoft SQL Server

Table 8-5 describes the stored procedure support for Microsoft SQL Server databases.
Table 8-6 describes Microsoft SQL Server stored procedures return values.

If you are using procedure groups, see �Rules for Procedure Names Containing a
Semi-Colon� on page 8-12 for information on mapping the procedure names to the
Stored Procedure Description file and using the names in an XQuery.

Microsoft SQL Server parameter names begin with the @ character, but the name must
appear in the Stored Procedure Description file without the @ character. For example,
a parameter named @myInputParameter must be mapped as myInputParameter.

Table 8-5 Microsoft SQL Server Stored Procedure parameter support

Parameter
Mode

Data Types Supported Notes and Restrictions

input_only Only database data types that you
can map to one of the Liquid Data
primitive types defined in
�Supported Datatypes� on page
8-9.

output_only Only database data types that you
can map to one of the Liquid Data
primitive types defined in
�Supported Datatypes� on page
8-9.

! You must map TINYINT
values to xs:short in the
Stored Procedure
Description File.

Table 8-6 Microsoft SQL Server Stored Procedure returned values support

Return Value Types Supported Notes and Restrictions

Return Status code An integer value.

Row Set Single or multiple result sets. ! You must map TINYINT values to
xs:short in the Stored
Procedure Description File.
8-28 Building Queries and Data Views

Stored Procedure Support by Database
Sybase

Table 8-7 describes the stored procedure support for Sybase databases. Table 8-8
describes Sybase stored procedures return values.

If you are using procedure groups, see �Rules for Procedure Names Containing a
Semi-Colon� on page 8-12 for information on mapping the procedure names to the
Stored Procedure Description file and using the names in an XQuery.

Sybase parameter names begin with the @ character, but the name must appear in the
Stored Procedure Description file without the @ character. For example, a parameter
named @myInputParameter must be mapped as myInputParameter.

Table 8-7 Sybase Stored Procedure parameter support

Parameter
Mode

Data Types Supported Notes and Restrictions

input_only Only database data types that you
can map to one of the Liquid Data
primitive types defined in
�Supported Datatypes� on page
8-9.

output_only Only database data types that you
can map to one of the Liquid Data
primitive types defined in
�Supported Datatypes� on page
8-9.

! You must map TINYINT
values to xs:short in the
Stored Procedure
Description File.

Table 8-8 Sybase Stored Procedure returned values support

Return Value Types Supported Notes and Restrictions

Return Status code An integer value.

Row Set Single or multiple result sets. ! You must map TINYINT values to
xs:short in the Stored
Procedure Description File.
Building Queries and Data Views 8-29

8 Defining Stored Procedures
IBM DB2

Table 8-9 describes the stored procedure support for IBM DB2 databases. Table 8-10
describes IBM DB2 stored procedures return values.

Table 8-9 IBM DB2 Stored Procedure parameter support

Parameter Mode Data Types Supported

input_only Only database data types that you can map to
one of the Liquid Data primitive types defined
in �Supported Datatypes� on page 8-9.

output_only Only database data types that you can map to
one of the Liquid Data primitive types defined
in �Supported Datatypes� on page 8-9.

input_output Only database data types that you can map to
one of the Liquid Data primitive types defined
in �Supported Datatypes� on page 8-9.

Table 8-10 IBM DB2 Stored Procedure returned values support

Return Value Types Supported

Primitive type An primitive type such as an integer, a
string, etc.

Row Set Single or multiple result sets.
8-30 Building Queries and Data Views

Stored Procedure Support by Database
Informix

Table 8-11 describes the stored procedure support for Informix databases. Table 8-12
describes Informix stored procedures return values.

Table 8-11 Informix Stored Procedure parameter support

Parameter Mode Data Types Supported

input_only Only database data types that you can map to
one of the Liquid Data primitive types defined
in �Supported Datatypes� on page 8-9.

Table 8-12 Informix Stored Procedure returned values support

Return Value Types Supported

Row Set Single or multiple result sets.
Building Queries and Data Views 8-31

8 Defining Stored Procedures
Using Stored Procedures in Queries

You can use stored procedures to build queries in the Data View Builder just like you
use other data sources. Drag and drop input elements into the inputs of the procedure
and drag and drop output elements to combine with other sources or to map onto a
target schema.

This section shows an example of defining a stored procedure and then using it in a
query, and is divided into the following sections:

! Define Stored Procedures to Liquid Data

! Example: Defining and Using a Customer Orders Stored Procedure
8-32 Building Queries and Data Views

Using Stored Procedures in Queries
Define Stored Procedures to Liquid Data

You must define the stored procedures to Liquid Data before you can use them in
queries. For details, see �To Define Stored Procedures to Liquid Data� on page 8-2. To
use a stored procedure in the Data View Builder, select Stored Procedures from the
Sources tab, navigate to your stored procedure, then drag and drop it into the design
workspace. You can then connect data by dragging and dropping inputs and outputs.

Example: Defining and Using a Customer Orders Stored
Procedure

This example details the steps to define a stored procedure to Liquid Data and then use
it in a query. This example is similar to the example installed in the following
directory:

BEA_HOME/liquiddata/samples/buildQuery/stored-procedure

The demo in this directory includes the Stored Procedure Description file and a Data
View Builder project file.

Business Scenario

The stored procedure in this example answers the following business question: For all
orders greater than or equal to $500.00, find the number of orders and the total value
of all of those orders for a given customer.

View a Demo

Stored Procedure Demo... If you are looking at this documentation online, you can
click the �Demo� button to see a viewlet demo showing how to define a stored
procedure and use it in a query. This demo previews the steps described in detail in the
following sections.
Building Queries and Data Views 8-33

8 Defining Stored Procedures
Step 1: Create the Stored Procedure in the Database

You must have stored procedures defined in your database before you can access them
through Liquid Data.

Every database has its own way of creating stored procedures. This sample uses a
Pointbase database, and Pointbase uses Java stored procedures. The source code for the
sample stored procedure is installed with Liquid Data in the following file:

BEA_HOME/liquiddata/samples/buildQuery/stored-procedure/pbsp.java

The signature for this stored procedure is created with the following SQL statements:

create procedure
GetOrderInfo(IN P1 VARCHAR(20), IN P2 INTEGER,

OUT P3 INTEGER, OUT P4 INTEGER)
LANGUAGE JAVA
SPECIFIC GetOrderInfo
EXTERNAL NAME "com.bea.ldi.sample.pbsp::GetOrderInfo"
PARAMETER STYLE SQL;

Step 2: Create the Stored Procedure Description File

For details on the structure of the Stored Procedure Description file, see �Stored
Procedure Description File Schema� on page 8-4 and �Rules for Specifying Stored
Procedure Description Files� on page 8-10.

The Stored Procedure Description file for this example defines an empty complex type
in the <types> section and defines a function that returns that complex type in the
<functions> section. The function definition contains <argument> elements for
each input and output argument. The <argument> elements specify the name (label
attribute), parameter type (mode attribute), and data type (type attribute) for each input
and output of the stored procedure.

The following is a code listing of the Stored Procedure Description file for this
example.

<?xml version="1.0" encoding="UTF-8"?>
<definitions>

<types>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Results">
<xs:complexType>

<xs:sequence>
 </xs:sequence>
8-34 Building Queries and Data Views

Using Stored Procedures in Queries
</xs:complexType>
</xs:element>

</xs:schema>
</types>
<functions>

<function name="GetOrderInfo" return_type="Results">
<argument label="customer_id" mode="input_only"

type="xs:string"/>
<argument label="order_amount" mode="input_only"

type="xs:integer"/>
<argument label="totalsum" mode="output_only"

type="xs:integer"/>
<argument label="totalorder" mode="output_only"

type="xs:integer"/>
<presentation group="Pointbase stored procedures"/>

</function>

</functions>
</definitions>

Step 3: Specify the Stored Procedure Description File in the Liquid Data
Console

Perform the following steps to specify the Stored Procedure Description File in the
data source description:

1. In the Liquid Data Administration Console (to access the Liquid Data Console,
click the Liquid Data link at the bottom of the list on the WebLogic administration
console), click the Data Sources tab.

2. Click the Relational Databases tab.

3. Select an existing relational data source and edit it or create a new relational data
source.

If you are creating a new data source, you must also configure a JDBC
Connection Pool to access your database and a JDBC Data Source for the
connection pool.

4. In the Configure Relational Data Source Description screen, enter values for
Name, Data Source Name, and Schema fields, if they are not already entered. For
more details on configuring relational data sources, see Configuring Access to
Relational Databases in the Administration Guide.
Building Queries and Data Views 8-35

8 Defining Stored Procedures
5. In the Configure Relational Data Source Description screen, click the Browse
Repository link next to the Stored Procedure Description File field.

6. In the Repository Browser, select the file you created containing your stored
procedure definitions. After making your selection, click the Select button.

7. In the Configure Relational Data Source Description screen, click the Apply
button to save your Data Source definition.

Step 4: Open the Data View Builder to See Your Stored Procedures

Start the Data View Builder and connect to the Liquid Data server. If you are already
connected, run the File > Connect command to reconnect. If you configured the Stored
procedure correctly, it appears in the Sources tab as one of the stored procedures.

Step 5: Use the Stored Procedure in a Query

Perform the following steps in the Data View Builder to create a query that uses the
stored procedure.

1. Start a new Data View Builder project (File �> New Project).

2. Open the source and target schemas.

" Drag and drop Source �> Stored Procedure �> PB-WL �>
getOrderInfo into the design area.

" Set the target schema to getorderinfo.xsd (in the repository).

3. Create a query parameter named CUST_ID of type xs:string for customer_id.

4. Drag the CUST_ID query parameter into the customer_id stored procedure
input.

5. Create a numeric constant of 500 and drag it into the order_amount input
parameter.

6. Drag the totalsum stored procedure output to the totalsum element of the
target schema.

7. Drag the totalorder stored procedure output to the totalorder element of the
target schema.
8-36 Building Queries and Data Views

Using Stored Procedures in Queries
Step 6: Run the Query

Perform the following to run this query:

1. Click the test tab in the Data View Builder.

2. Enter a value for the CUST_ID query parameter. For example, enter CUSTOMER_1.

3. Click the Run button. The results will look similar to the following:

<Results>
<totalsum>7000</totalsum>
<totalorder>3</totalorder>

</Results>
Building Queries and Data Views 8-37

8 Defining Stored Procedures
8-38 Building Queries and Data Views

CHAPTER
9 Query Cookbook

This section provides examples of more complex BEA Liquid Data for WebLogic�
queries using some of the advanced features and tools offered in the Data View
Builder. At this point, we assume that you are familiar with the Data View Builder user
interface (described in Chapter 2, �Starting the Builder and Touring the GUI�) and that
you have an understanding of the basic concepts and tasks presented in Getting Started,
Chapter 1, �Overview and Key Concepts�, and Chapter 3, �Designing Queries.�

The following use cases and examples are provided here to give you a jump-start for
constructing real-world queries to solve common problems. Each use case includes a
viewlet demo of building the solution using Data View Builder. Watching a viewlet
takes 3 to 5 minutes�we suggest sitting back and enjoying with popcorn and your
favorite soda pop.

! Example 1: Simple Joins (View a Demo)

! Example 2: Aggregates (View a Demo)

! Example 3: Date and Time Duration (View a Demo)

! Example 4: Union (View a Demo)

! Example 5: Minus (View a Demo)

! Example 6: Complex Parameter Type (CPT) (View a Demo)

For an example of using a stored procedure in a query, see �Example: Defining and
Using a Customer Orders Stored Procedure� on page 8-33.

Each use case has an example with a description of the problem and the steps to solve
the problem. The examples use two databases:

! The Broadband database (PB-BB) contains �Broadband� subscribers and service
orders

! The Wireless database (PB-WL) contains �Wireless� subscribers.
Building Queries and Data Views 9-1

9 Query Cookbook
In cases where the target schemas do not already exist in the Samples repository, they
are provided in this documentation along with the examples. You can cut-and-paste the
schema content into an .xsd file to construct your own target schemas. (You can also
copy from the PDF version of this document which may give you a copy that formats
better your text editor.)

Note: To find out what data are contained in any data source, create a new �test�
project, open the source schema you are interested in, and map key source
nodes to any appropriate target schema. (For example, map customer first and
last names and customer ID from source to target schemas.) Then click on Test
tab and choose Query�>Run Query. The result will return all customers in the
data source queried.

As you work through the examples, remember to save any projects that you want to
keep before creating new ones.

Example directories

Examples used in this chapter assume that the Liquid Data 1.1 directory is located at:

BEAHOME/weblogic700/liquiddata/

where BEAHOME is the location of the WebLogic server and liquiddata is the
location of the Liquid Data 1.1 Samples server installation.

The examples also assume that the path to the Samples server Liquid Data
repository is:

BEAHOME/weblogic700/liquiddata/samples/config/ld_samples/ldrepository

The symbolic name ld_repository represents the Liquid Data repository and its
contents.

Example 1: Simple Joins

A join merges data from two data sources based on a certain relation.
9-2 Building Queries and Data Views

Example 1: Simple Joins
The Problem

For each Wireless Customer ID, determine whether the customer has any Broadband
orders. Assume that the Customer ID matches across databases.

The Solution

First, you want to find matching Broadband customers (who are also included in the
Wireless database), then return Broadband Order IDs for the matching customers.
Because Customer IDs in the Wireless database align with those in Broadband, we can
find matching Broadband customers with a simple join of Wireless Customer IDs with
the Customer IDs in the Broadband order information.

To create the solution, follow these steps:

! View a Demo

! Ex 1: Step 1. Verify the Target Schema is Saved in Repository

! Ex 1: Step 2. Open Source and Target Schemas

! Ex 1: Step 3. Map Nodes from Source to Target Schema to Project the Output

! Ex 1: Step 4. Create a Query Parameter for a Customer ID to be Provided at
Query Runtime

! Ex 1: Step 5. Assign the Query Parameter to a Source Node

! Ex 1: Step 6. Join the Wireless and Broadband Customer IDs

! Ex 1: Step 7. Set Optimization Hints

! Ex 1: Step 8. View the XQuery and Run the Query to Test it

! Ex. 1: Step 9. Verify the Result
Building Queries and Data Views 9-3

9 Query Cookbook
View a Demo

Simple Joins Demo... If you are looking at this documentation online, you can click
the �Demo� button to see a viewlet demo showing how to build the conditions and
create the mappings described in this example. This demo previews the steps described
in detail in the following sections. The demo assumes you already have the target
schema in the server Repository.

Ex 1: Step 1. Verify the Target Schema is Saved in Repository

For this example, we will use a target schema called customerOrders.xsd. This
schema is available in the Samples server repository. The path to the schemas folder
in the Liquid Data server repository is:

ld_repository/schemas/

See �Example directories� on page 9-2 for information on how example directory
names are used.

Just in case you want to verify that you have the right schema file, the following code
listing shows the XML for this schema.

Listing 9-1 XML Source for customerOrders.xsd Target Schema File

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema">
<xsd:element name = "customers">

<xsd:complexType>
<xsd:sequence>
<xsd:element ref = "customer" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name = "customer">

<xsd:complexType>
<xsd:sequence>
<xsd:element ref = "first_name"/>
<xsd:element ref = "last_name"/>
<xsd:element ref = "orders" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>
<xsd:attribute name = "id" use = "optional" type = "xsd:string"/>

</xsd:complexType>
</xsd:element>
<xsd:element name = "first_name" type = "xsd:string"/>
<xsd:element name = "last_name" type = "xsd:string"/>
9-4 Building Queries and Data Views

Example 1: Simple Joins
<xsd:element name = "orders">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref = "order" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name = "order">

<xsd:complexType>
<xsd:attribute name = "id" use = "optional" type = "xsd:string"/>
<xsd:attribute name = "date" use = "optional" type = "xsd:string"/>
<xsd:attribute name = "amount" use = "optional" type = "xsd:string"/>

</xsd:complexType>
</xsd:element>

</xsd:schema>

Ex 1: Step 2. Open Source and Target Schemas

1. In the Data View Builder, choose File�>New Project to clear your desktop and
reset all default values.

2. On the Builder Design�>Sources tab, click Relational Databases and open two
data sources:

" Double-click on the PB-WL (Wireless) relational database to open the schema
for this data source.

" Double-click on the PB-BB (Broadband) relational database to open the
schema for this data source.

3. Choose the menu option File�>Set Target Schema.

Navigate to the server Repository or to the location where you saved the
customerOrders.xsd schema. Choose customerOrders.xsd and click Open.

customerOrders.xsd appears as the target schema.

This target schema is displayed as a docked schema window on the right side of
the design area.

4. Click the plus (+) sign (or right-mouse click and choose Expand) to expand the
nodes in each source schema and in the target schema.
Building Queries and Data Views 9-5

9 Query Cookbook
Ex 1: Step 3. Map Nodes from Source to Target Schema to Project the Output

1. Drag and drop [PB-WL]db/CUSTOMER/CUSTOMER_ID from source schema
onto the target schema [customerOrders.xsd]/customers/customer/id.

2. Drag and drop [PB-WL]db/CUSTOMER/FIRST_NAME from source schema
onto the target schema [customerOrders.xsd]/customers/customer/first_name.

3. Drag and drop [PB-WL]db/CUSTOMER/LAST_NAME from source schema
onto the target schema [customerOrders.xsd]/customers/customer/last_name.

4. Drag and drop [PB-BB]db/CUSTOMER_ORDER/ORDER_DATE onto the
target schema [customerOrders.xsd]customers/customer/orders/order/order_date.

5. Drag and drop [PB-BB]db/CUSTOMER_ORDER/ORDER_ID onto the target
schema [customerOrders.xsd]customers/customer/orders/order/id.

Ex 1: Step 4. Create a Query Parameter for a Customer ID to be Provided at
Query Runtime

Create a Query Parameter wireless_id variable for a Wireless Customer ID that you
will supply at query execution time:

1. On the Builder Design, click Toolbox and then click Query Parameter.

2. From the �Type� drop-down menu, choose xs:string.

3. In Parameter Name field, enter wireless_id and click Add.

The new parameter is displayed in the Query Parameters tree.

Ex 1: Step 5. Assign the Query Parameter to a Source Node

Drag and drop the wireless_id query parameter to
[PB-WL]db/CUSTOMER/CUSTOMER_ID.

Ex 1: Step 6. Join the Wireless and Broadband Customer IDs

Drag and drop (join) [PB-WL]db/CUSTOMER/CUSTOMER_ID to
[PB-BB]db/CUSTOMER_ORDER/CUSTOMER_ID.
9-6 Building Queries and Data Views

Example 1: Simple Joins
Ex 1: Step 7. Set Optimization Hints

1. Click the Optimize tab.

2. Under Join Pair Hints, on the drop-down menu select PB-WL and PB-BB.

This represents the first join you created between Wireless and Broadband
Customer IDs.

3. Click into the empty cell under Hints to get the drop-down menu and choose
�Pass Parameter to Right� for the PB-WL and PB-BB join.

Note: For information on using optimization hints see �Optimization Hints for
Joins� on page 4-5.

Ex 1: Step 8. View the XQuery and Run the Query to Test it

1. Click on the Test tab.

The generated XQuery for this query is shown in the following code listing.

Listing 9-2 XQuery for Example 1: Simple Joins

{-- Generated by Data View Builder 1.0--}

<customers>
{
for $PB_WL.CUSTOMER_1 in document("PB-WL")/db/CUSTOMER
where ($#wireless_id of type xs:string eq $PB_WL.CUSTOMER_1/CUSTOMER_ID)
return
<customer id={$PB_WL.CUSTOMER_1/CUSTOMER_ID}>

<first_name>{ xf:data($PB_WL.CUSTOMER_1/FIRST_NAME) }</first_name>
<last_name>{ xf:data($PB_WL.CUSTOMER_1/LAST_NAME) }</last_name>
<orders>

{
for $PB_BB.CUSTOMER_ORDER_2 in

document("PB-BB")/db/CUSTOMER_ORDER
where ($PB_WL.CUSTOMER_1/CUSTOMER_ID eq

$PB_BB.CUSTOMER_ORDER_2/CUSTOMER_ID)
return
<order id={$PB_BB.CUSTOMER_ORDER_2/ORDER_ID} date={cast as

xs:string($PB_BB.CUSTOMER_ORDER_2/ORDER_DATE)}></order>
}

</orders>
</customer>
}

</customers>
Building Queries and Data Views 9-7

9 Query Cookbook
2. Set the variable value to submit to the query when the query runs. To do this, you
need to enter a value in the Query Parameter panel. Double-click into the cell
under Value and enter CUSTOMER_3.

(Customer IDs CUSTOMER_1 through CUSTOMER_10 are available in the
data source to try.)

3. Click the �Run query� button to run the query against the data sources.

Ex. 1: Step 9. Verify the Result

Running this query with the wireless_id parameter set to CUSTOMER_3 produces
the following XML query result.

Listing 9-3 Result for Example 1: Simple Joins

<customers>
 <customer id="CUSTOMER_3">
 <first_name>JOHN_3</first_name>
 <last_name>KAY_3</last_name>
 <orders>
 <order date="2002-03-06-08:00" id="ORDER_ID_3_0"/>
 <order date="2002-03-06-08:00" id="ORDER_ID_3_1"/>
 <order date="2002-03-06-08:00" id="ORDER_ID_3_2"/>
 <order date="2002-03-06-08:00" id="ORDER_ID_3_3"/>
 </orders>
 </customer>
</customers>

Example 2: Aggregates

Aggregate functions produce a single value from a set of input values. An example of
an aggregate function in Data View Builder is the count function, which takes a list of
values and returns the number of values in the list.
9-8 Building Queries and Data Views

Example 2: Aggregates
The Problem

Find the number of orders placed in the Broadband database for a given customer who
is also in the Wireless database.

The Solution

This query relies on a data view called �AllOrders� which retrieves customers who
are in the Broadband database and also in the Wireless database. For each of these
customers, the customer ID and orders are retrieved. Then, we use the Aggregate
function �count� to determine how many orders are associated with a given customer.
At query runtime, a customer ID is submitted as a query parameter and the result
returns the number of orders associated with the given customer ID.

To create the solution, follow these steps:

! View a Demo

! Ex 2: Step 1. Locate and Configure the �AllOrders� Data View

! Ex 2: Step 2. Restart the Data View Builder and Find the New Data View

! Ex 2: Step 3. Verify the Target Schema is Saved in the Repository

! Ex 2: Step 4. Open the Data Sources and Target Schema

! Ex 2: Step 5. Map Source Nodes to Target to Project the Output

! Ex 2: Step 6. Create Two Query Parameters to be Provided at Query Runtime

! Ex 2: Step 7. Assign the Query Parameters to Source Nodes

! Ex 2: Step 8. Add the �count� Function

! Ex 2: Step 9. Verify Mappings and Conditions

! Ex 2: Step 10. View the XQuery and Run the Query to Test it

! Ex 2: Step 11. Verify the Result
Building Queries and Data Views 9-9

9 Query Cookbook
View a Demo

Aggregates Demo... If you are looking at this documentation online, you can click the
�Demo� button to see a viewlet demo showing how to build the conditions and create
the mappings described in this example. This demo previews the steps described in
detail in the following sections. The demo assumes you already have the target schema
in the server Repository and have created and configured the data view data source
required for this example.

Ex 2: Step 1. Locate and Configure the “AllOrders” Data View

For this example, we will use a data view data source called AllOrders.xv. This data
view is available in the Samples server repository. The path to the data_views folder
in the Liquid Data server repository is:

ld_repository/data_views/

See �Example directories� on page 9-2 for information on how example directory
names are used.

Just in case you want to verify that you have the right data view file, the following code
listing shows the XML for this data view.

Listing 9-4 XML Source for AllOrders.xv Data View File

<customers>
{
for $PB-BB.CUSTOMER_1 in document("PB-BB")/db/CUSTOMER
for $PB-WL.CUSTOMER_2 in document("PB-WL")/db/CUSTOMER
where ($PB-WL.CUSTOMER_2/CUSTOMER_ID eq {--! ppright !--}

$PB-BB.CUSTOMER_1/CUSTOMER_ID)

return
<customer id={$PB-WL.CUSTOMER_2/CUSTOMER_ID}>

<first_name>{ xf:data($PB-WL.CUSTOMER_2/FIRST_NAME) }</first_name>
<last_name>{ xf:data($PB-WL.CUSTOMER_2/LAST_NAME) }</last_name>
<orders>

{
for $PB-BB.CUSTOMER_ORDER_4 in

document("PB-BB")/db/CUSTOMER_ORDER
where ($PB-BB.CUSTOMER_1/CUSTOMER_ID eq {--! ppright !--}

$PB-BB.CUSTOMER_ORDER_4/CUSTOMER_ID)
return
<order id={$PB-BB.CUSTOMER_ORDER_4/ORDER_ID}

date={$PB-BB.CUSTOMER_ORDER_4/ORDER_DATE}></order>
9-10 Building Queries and Data Views

Example 2: Aggregates
}
</orders>

</customer>
}

</customers>

Use the WLS Administration Console to Configure Your Data View Data Source

1. Start and login to the WLS Administration Console for the Samples server you are
using.

To start the WLS Administration Console for the Liquid Data Samples server
running on your local machine, type the following URL in a Web browser
address field:

http://localhost:7001/console

Login to the console by providing the following default username and password
for the Samples server.

Table 9-1 User Name and Password for Samples WLS Administration Console

2. In the left pase, click the Liquid Data node.

3. In the right pane, click the Configuration tab.

4. Click the Data Sources tab.

5. Click the Data Views tab.

6. Start and login to the Administration Server. See Start the WLS Administration
Console is the Getting Started guide for details.

7. In the left pane, click the Liquid Data node.

8. In the right pane, click the Configuration tab.

9. Click the Data Sources tab.

Field Defaults

Username system

Password security
Building Queries and Data Views 9-11

9 Query Cookbook
10. Click the Data Views tab.

11. Click the Configure a new Data View source description text link.

The configuration tab for creating a new Data View Liquid Data source
description is displayed.

Figure 9-1 Configuring Liquid Data Source Description for a Data View

12. Fill in the fields as indicated in the following table.

13. Click Create.

You can click on Data Views in the breadcrumbs path at the top of the console to
see the data view you added displayed in the summary table.

Table 9-2 Liquid Data Data View Configuration

Field Description

Name AllOrders

Query File AllOrders.xv

Schema customerOrders.xsd
9-12 Building Queries and Data Views

Example 2: Aggregates
Ex 2: Step 2. Restart the Data View Builder and Find the New Data View

1. Restart the Data View Builder.

If the Data View Builder was running while you configured the new data view,
shut it down (menu option File�>Exit) and restart it in order to see the new
data view you created show up in the Builder as a data source.

2. On the Design tab, on the Builder Toolbar, click the Sources tab, then click Data
Views.

The AllOrders.xv data view should be displayed in the list of available data
views.

Ex 2: Step 3. Verify the Target Schema is Saved in the Repository

For this example, we will use a target schema called customerOrdersA.xsd. This
schema is available in the Samples server repository. The path to the schemas folder
in the Liquid Data server repository is:

ld_repository/schemas/

Just in case you want to verify that you have the right schema file, the following code
listing shows the XML for this schema.

Listing 9-5 XML Source for customerOrdersA.xsd Target Schema File

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema">
<xsd:element name="customers">

<xsd:complexType>
<xsd:sequence>
<xsd:element name="customer" minOccurs="0" maxOccurs="unbounded">

<xsd:complexType>
<xsd:sequence>
<xsd:element name="first_name" type="xsd:string"/>
<xsd:element name="last_name" type="xsd:string"/>
<xsd:element name="orders" minOccurs="0" maxOccurs="unbounded">

<xsd:complexType>
<xsd:sequence>
<xsd:element name="order" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>

<xsd:sequence>
</xsd:sequence>

<xsd:attribute name="id" type="xsd:string"/>
Building Queries and Data Views 9-13

9 Query Cookbook
<xsd:attribute name="date" type="xsd:string"/>
<xsd:attribute name="amount" type="xsd:string"/>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="amount" type="xsd:string"/>
</xsd:sequence>

<xsd:attribute name="id" type="xsd:string"/>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>

Ex 2: Step 4. Open the Data Sources and Target Schema

1. In the Data View Builder, choose File�>New Project to clear your desktop and
reset all default values.

2. On the Builder Design�>Sources tab, click Data Views, and double-click on
AllOrders.xv to open the schema for that data source.

3. Choose File�>Set Target Schema. Use the file browser to navigate to the
Repository and select CustomerOrdersA.xsd as the target schema.

CustomerOrdersA.xsd appears as the target schema.

This target schema is displayed as a docked schema window on the right side of
the design area.

Ex 2: Step 5. Map Source Nodes to Target to Project the Output

1. Drag and drop [AllOrders]/ customers/customer/first_name from AllOrders source
schema onto [CustomerOrdersA.xsd]/customers/customer/first_name in the target
schema.

2. Drag and drop [AllOrders]/ customers/customer/last_name from AllOrders
source schema onto [CustomerOrdersA.xsd]/customers/customer/last_name in
the target schema.
9-14 Building Queries and Data Views

Example 2: Aggregates
Ex 2: Step 6. Create Two Query Parameters to be Provided at Query Runtime

Create two Query Parameter variables: first_name and last_name, that you can use to
insert variable customer information when the query runs. Create both variables as
type xs:string. Do this as follows:

1. On the Builder Toolbar, click Toolbox and then click Query Parameter.

2. From the �Type� drop-down menu, choose xs:string.

3. In Parameter Name field, enter first_name and click Add.

The new parameter is displayed in the Query Parameters tree.

4. Repeat steps 2 and 3 to create the last_name variable.

You should now see both parameters displayed in the Query Parameters tree.

Ex 2: Step 7. Assign the Query Parameters to Source Nodes

Assign the first_name and last_name Query Parameter variables to customer first
name and last name nodes in the AllOrders data view as follows:

1. Drag and drop the first_name variable onto
[allOrders]/customers/customer/first_name in the AllOrders source schema.

2. Drag and drop the last_name variable onto [allOrders]/
customers/customer/last_name in the AllOrders source schema.

Ex 2: Step 8. Add the “count” Function

Add the count function and specify the input and output as follows:

1. On the Builder Toolbar, click Toolbox and then click Functions.

2. Double-click on the count function (under Aggregate Functions)

The count function window is displayed, showing input parameter srcval and
output as some integer.

Note: Create complex or aggregate functions only on the desktop by double-clicking
as described in this step. Do not attempt to drag and drop them directly into the
Conditions tab.
Building Queries and Data Views 9-15

9 Query Cookbook
3. Drag and drop [AllOrders]/customer/orders/order/date from the AllOrders source
schema onto [count-Function]input/Parameters/srcval.

4. Drag and drop [count-Function]Output/integer to
[customerOrdersA.xsd]/customers/customer/amount in the target schema.

Note: Make sure to drag integer onto the customer amount�the last node in
the fully expanded schema tree; not onto the optional orders amount?.

Ex 2: Step 9. Verify Mappings and Conditions

Your mappings should look like those shown in Figure 9-2.

Figure 9-2 Mappings for Example2: Aggregates

Your Conditions should like those shown in Figure 9-3.

Figure 9-3 Conditions for Example 2: Aggregates
9-16 Building Queries and Data Views

Example 2: Aggregates
Ex 2: Step 10. View the XQuery and Run the Query to Test it

1. Click on the Test tab.

The generated XQuery for this query is shown in the following code listing.

Listing 9-6 XQuery for Example 2: Aggregates

{-- Generated by Data View Builder 1.0 --}

<customers>
{
for $AllOrders.customer_1 in document("AllOrders")/customers/customer
let $srcval_2 :=
 for $AllOrders.order_3 in $AllOrders.customer_1/orders/order
 where ($#first_name of type xs:string eq

$AllOrders.customer_1/first_name)
 and ($#last_name of type xs:string eq

$AllOrders.customer_1/last_name)
 return
 $AllOrders.order_3/@date
let $count_4 := xf:count($srcval_2)
where ($#first_name of type xs:string eq $AllOrders.customer_1/first_name)
 and ($#last_name of type xs:string eq $AllOrders.customer_1/last_name)
return
<customer>

<first_name>{ xf:data($AllOrders.customer_1/first_name) }</first_name>
<last_name>{ xf:data($AllOrders.customer_1/last_name) }</last_name>
<amount>{ $count_4 }</amount>

</customer>
}

</customers>

2. In the Query Parameter panel on the Test tab, set the variable values as follows:

" last_name

(For last_name, KAY_1 through KAY_10 are available in the data source.)

" first_name

(For first_name, JOHN_1 through JOHN_10 are available in the data
source.)

3. Click the �Run query� button to run the query against the data sources.
Building Queries and Data Views 9-17

9 Query Cookbook
Ex 2: Step 11. Verify the Result

Running this query with last_name set to �KAY_1� and first_name set to
�JOHN_1� produces the following XML query result.

Listing 9-7 Result for Example 2: Aggregates

<customers>
 <customer>
 <first_name>JOHN_1</first_name>
 <last_name>KAY_1</last_name>
 <amount>2</amount>
 </customer>
</customers>

Example 3: Date and Time Duration

Data View Builder supports a set of functions that operate on date and time. For more
information on date and time functions see �Date and Time Functions� on page A-50
in the �Functions Reference.�

The Problem

Determine if a Broadband customer has any open orders in the Broadband database
before a specified date.

The Solution

For each Broadband order that matches the given Customer ID, you need to set these
conditions:

! The order status is �OPEN�
9-18 Building Queries and Data Views

Example 3: Date and Time Duration
! The ship date for a given customer_id is earlier than or equal to the date (date1)
provided. (customer_id and date1 are a variables that you define as query
parameters to be submitted at query runtime).

To create the solution, follow these steps:

! View a Demo

! Ex 3: Step 1. Verify the Target Schema is Saved in Repository

! Ex 3: Step 2. Open Source and Target Schemas

! Ex 3: Step 3. Map Source to Target Nodes to Project the Output

! Ex 3: Step 4. Create Joins

! Ex 3: Step 5. Create Two Query Parameters for Customer ID and Date to be
Provided at Query Runtime

! Ex 3: Step 6. Set a Condition Using the Customer ID

! Ex 3: Step 7. Set a Condition to Determine if Order Ship Date is Earlier or Equal
to a Date Submitted at Query Runtime

! Ex 3: Step 8. Set a Condition to Include Only �Open� Orders in the Result

! Ex 3: Step 9. View the XQuery and Run the Query to Test it

! Ex 3: Step 9. Verify the Result

View a Demo

Date and Time Duration Demo... If you are looking at this documentation online, you
can click the �Demo� button to see a viewlet demo showing how to build the
conditions and create the mappings described in this example. This demo previews the
steps described in detail in the following sections. The demo assumes you already have
the target schema in the server Repository.

Ex 3: Step 1. Verify the Target Schema is Saved in Repository

For this example, we will use a target schema called customerLineItems.xsd. This
schema is available in the Samples server repository.

ld_repository/schemas/
Building Queries and Data Views 9-19

9 Query Cookbook
See �Example directories� on page 9-2 for information on how example directory
names are used.

Just in case you want to verify that you have the right schema file, the following code
listing shows the XML for this schema.

Listing 9-8 XML Source for customerLineItems.xsd Target Schema File

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema">
<xsd:element name = "customers">

<xsd:complexType>
<xsd:sequence>
<xsd:element ref = "customer" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name = "customer">

<xsd:complexType>
<xsd:sequence>
<xsd:element ref = "first_name"/>
<xsd:element ref = "last_name"/>
<xsd:element ref = "orders" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>
<xsd:attribute name = "id" use = "required" type = "xsd:string"/>

</xsd:complexType>
</xsd:element>
<xsd:element name = "first_name" type = "xsd:string"/>
<xsd:element name = "last_name" type = "xsd:string"/>
<xsd:element name = "orders">

<xsd:complexType>
<xsd:sequence>
<xsd:element ref = "order" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name = "order">

<xsd:complexType>
<xsd:sequence>
<xsd:element ref = "line_item" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>
<xsd:attribute name = "id" use = "required" type = "xsd:string"/>
<xsd:attribute name = "date" use = "required" type = "xsd:string"/>
<xsd:attribute name = "amount" use = "required" type = "xsd:string"/>

</xsd:complexType>
</xsd:element>
<xsd:element name = "line_item">

<xsd:complexType>
<xsd:attribute name = "id" use = "required" type = "xsd:string"/>
<xsd:attribute name = "product" use = "required" type = "xsd:string"/>
9-20 Building Queries and Data Views

Example 3: Date and Time Duration
<xsd:attribute name = "status" use = "required" type = "xsd:string"/>
<xsd:attribute name = "expected_ship_date" use = "required" type = "xsd:string"/>

</xsd:complexType>
</xsd:element>

</xsd:schema>

Ex 3: Step 2. Open Source and Target Schemas

1. In the Data View Builder, choose File�>New Project to clear your desktop and
reset all default values.

2. On the Builder Design�>Sources tab, click Relational Databases and open one
data source:

" Double-click on the PB-BB (Broadband) relational database to open the
schema for this data source.

3. Choose the menu option File�>Set Target Schema.

Navigate to the server Repository or to the location where you saved the
customerLineItems.xsd schema. Choose customerLineItems.xsd and
click Open.

customerLineItems.xsd appears as the target schema.

This target schema is displayed as a docked schema window on the right side of
the design area.

4. Click the plus (+) sign (or right-mouse click and choose Expand) to expand the
nodes in each source schema and in the target schema.

Ex 3: Step 3. Map Source to Target Nodes to Project the Output

Project the output values as follows.

1. Drag and drop [PB-BB]/db/CUSTOMER/FIRST_NAME from the source schema
onto [customerLineItems.xsd]/customers/customer/first_name in the target
schema.

2. Drag and drop [PB-BB]/db/CUSTOMER/LAST_NAME from the source schema
onto [customerLineItems.xsd]/customers/customer/last_name in the target
schema.
Building Queries and Data Views 9-21

9 Query Cookbook
3. Drag and drop
[PB-BB]/db/CUSTOMER/CUSTOMER_ORDER_LINE_ITEM/LINE_ID from
the source schema onto
[customerLineItems.xsd]/customers/customer/orders/order/line_item/id in the
target schema (id is an attribute of line_item).

4. Drag and drop
[PB-BB]/db/CUSTOMER/CUSTOMER_ORDER_LINE_ITEM/PRODUCT_
NAME from the source schema onto
[customerLineItems.xsd]/customers/customer/orders/order/line_item/product in
the target schema (product is an attribute of line_item).

5. Drag and drop
[PB-BB]/db/CUSTOMER/CUSTOMER_ORDER_LINE_ITEM/STATUS from
the source schema
[customerLineItems.xsd]/customers/customer/orders/order/line_item/status in the
target schema (status is an attribute of line_item).

6. Drag and drop
[PB-BB]/db/CUSTOMER/CUSTOMER_ORDER_LINE_ITEM/EXPECTED_
SHIP_DATE from the source schema
[customerLineItems.xsd]/customers/customer/orders/order/line_item/expected_
ship_date in the target schema (expected_ship_date is an attribute of
line_item).

At this point, the following mappings should be displayed on the Mappings tab.
(Getting the mappings in the same order as shown is not as important as verifying that
the relationships between source and target nodes are the same. The @ symbols
indicate attributes.)

Source Target

[PB-BB]/db/CUSTOMER/FIRST_NAME [customerLineItems.xsd]/customers/customer/
first_name

[PB-BB]/db/CUSTOMER/LAST_NAME [customerLineItems.xsd]/customers/customer/
last_name

[PB-BB]/db/CUSTOMER/CUSTOMER_
ORDER_LINE_ITEM/LINE_ID

[customerLineItems.xsd]/customers/customer/
orders/order/line_item/@id
9-22 Building Queries and Data Views

Example 3: Date and Time Duration
Ex 3: Step 4. Create Joins

Join customer with corresponding line-item data. This requires two joins, one to find
the customer�s Order IDs, and another that uses the Order IDs and finds the
corresponding line-item information:

1. Drag and drop [PB-BB]/db/CUSTOMER/CUSTOMER_ID onto
[PB-BB]/db/CUSTOMER_ORDER/CUSTOMER_ID.

2. Drag and drop [PB-BB]/db/CUSTOMER_ORDER/ORDER_ID onto
[PB-BB]/db/CUSTOMER_ORDER_LINE_ITEM/ORDER_ID.

Ex 3: Step 5. Create Two Query Parameters for Customer ID and Date to be
Provided at Query Runtime

Create two Query Parameter variables: customer_id and date1, that you can use to
insert as variable values when the query runs. Create both variables as type
xs:string. Do this as follows:

1. On the Builder Toolbar, click Toolbox and then click Query Parameter.

2. From the �Type� drop-down menu, choose xs:string.

3. In Parameter Name field, enter customer_id and click Add.

The new parameter is displayed in the Query Parameters tree.

4. Repeat steps 2 and 3 to create the date1 variable.

You should now see both parameters displayed in the Query Parameters tree.

[PB-BB]/db/CUSTOMER/CUSTOMER_
ORDER_LINE_ITEM/PRODUCT_NAME

[customerLineItems.xsd]/customers/customer/
orders/order/line_item/@product

[PB-BB]/db/CUSTOMER/CUSTOMER_
ORDER_LINE_ITEM/STATUS

[customerLineItems.xsd]/customers/customer/
orders/order/line_item/@status

[PB-BB]/db/CUSTOMER/CUSTOMER_
ORDER_LINE_ITEM/EXPECTED_SHIP_
DATE

[customerLineItems.xsd]/customers/customer/
orders/order/line_item/@expected_ship_date

Source Target
Building Queries and Data Views 9-23

9 Query Cookbook
Ex 3: Step 6. Set a Condition Using the Customer ID

1. On the Builder Toolbar, click Toolbox and then click Functions.

2. Drag and drop the equals (eq) function (under Operators) onto the next empty
row in the Conditions tab.

The Functions Editor pops up and displays a statement with placeholder
variables for you to fill in.

3. On the Builder Toolbar, click on Query Parameter, then drag customer_id onto
anyValue1 onto the left side of the equation.

4. Drag [PB-BB]/db/CUSTOMER/CUSTOMER_ID onto the right side of the
equation.

The function should look like this:

(customer_id eq [PB-BB]/db/CUSTOMER/CUSTOMER_ID)

5. Close the Functions Editor.

Ex 3: Step 7. Set a Condition to Determine if Order Ship Date is Earlier or Equal
to a Date Submitted at Query Runtime

1. Click on Functions, and drag and drop the Operator function le (less than or equal)
onto the next empty row on the Conditions tab.

The Functions Editor pops up and displays a statement with placeholder
variables for you to fill in.

2. Drag and drop
[PB-BB]/db/CUSTOMER_ORDER_LINE_ITEM/EXPECTED_SHIP_DATE
onto anyValue1 on the left side of the equation.

3. Click on Functions, and drag and drop the date-from-string-with-format
function onto anyValue2 on the right side of the equation.

At this point, the expression in the Functions Editor should look like this:

([PB-BB]/db/CUSTOMER_ORDER_LINE_ITEM/EXPECTED_SHIP_DATE le
xfext:date-from-string-with-format(pattern,srcval))

4. Click Constants, enter the following in the String field:

yyyy-MM-dd
9-24 Building Queries and Data Views

Example 3: Date and Time Duration
Now drag it (via the Constant icon next to the field) onto pattern (first
placeholder parameter to the date function).

5. Click on Query Parameter, and drag and drop date1 from the Query Parameters
panel onto srcval (the second placeholder parameter to the date function).

The completed expression should look like this:

([PB-BB]/db/CUSTOMER_ORDER_LINE_ITEM/EXPECTED_SHIP_DATE le
xfext:date-from-string-with-format("yyyy-MM-dd",date1))

6. Close the Functions Editor.

The condition you created is displayed on the Conditions tab in the Source
column.

Ex 3: Step 8. Set a Condition to Include Only “Open” Orders in the Result

Set the second condition to an Open ORDER status.

1. Click on Functions, and drag and drop the Operator function eq (equal) onto the
Conditions tab.

The Functions Editor pops up and displays a statement with placeholder
variables for you to fill in.

2. For the left parameter (anyValue1), drag and drop
[PB-BB]/db/CUSTOMER_ORDER_LINE_ITEM/STATUS on to anyValue1.

3. For the right parameter (anyValue2), create a constant String with a value of
OPEN, and drop it (via the Constant icon next to the field) onto anyValue2.

The completed expression should look like this:

([PB-BB]/db/CUSTOMER_ORDER_LINE_ITEM/STATUS eq "OPEN")

Close the Functions Editor.

Ex 3: Step 9. View the XQuery and Run the Query to Test it

1. Click on the Test tab.

The generated XQuery for this query is shown in the following code listing.
Building Queries and Data Views 9-25

9 Query Cookbook
Listing 9-9 XQuery for Example 3: Date and Time Duration

{-- Generated by Data View Builder 1.0 --}

<customers>
{
for $PB-BB.CUSTOMER_1 in document("PB-BB")/db/CUSTOMER
where ($#customer_id of type xs:string eq $PB-BB.CUSTOMER_1/CUSTOMER_ID)
return
<customer>

<first_name>{ xf:data($PB-BB.CUSTOMER_1/FIRST_NAME) }</first_name>
<last_name>{ xf:data($PB-BB.CUSTOMER_1/LAST_NAME) }</last_name>
<orders>

<order>
{
for $PB-BB.CUSTOMER_ORDER_2 in

document("PB-BB")/db/CUSTOMER_ORDER
for $PB-BB.CUSTOMER_ORDER_LINE_ITEM_3 in

document("PB-BB")/db/CUSTOMER_ORDER_LINE_ITEM
where ($PB-BB.CUSTOMER_ORDER_2/ORDER_ID eq

$PB-BB.CUSTOMER_ORDER_LINE_ITEM_3/ORDER_ID)
 and

($PB-BB.CUSTOMER_ORDER_LINE_ITEM_3/EXPECTED_SHIP_DATE le
xfext:date-from-string-with-format("yyyy-MM-dd",$#date1 of type xs:string))

 and ($PB-BB.CUSTOMER_ORDER_LINE_ITEM_3/STATUS eq
"OPEN")

 and ($PB-BB.CUSTOMER_1/CUSTOMER_ID eq
$PB-BB.CUSTOMER_ORDER_2/CUSTOMER_ID)

return
<line_item

id={$PB-BB.CUSTOMER_ORDER_LINE_ITEM_3/LINE_ID}
product={$PB-BB.CUSTOMER_ORDER_LINE_ITEM_3/PRODUCT_NAME}
status={$PB-BB.CUSTOMER_ORDER_LINE_ITEM_3/STATUS}
expected_ship_date={$PB-BB.CUSTOMER_ORDER_LINE_ITEM_3/EXPECTED_SHIP_DATE}>
</line_item>

}
</order>

</orders>
</customer>
}

</customers>

2. In the Query Parameter panel on the Test tab, set the variable values for
customer_id and date1 to submit to the query when the query runs.

For example:

" customer_id: CUSTOMER_1 (CUSTOMER_1 through CUSTOMER_10 are
available in the data source.)
9-26 Building Queries and Data Views

Example 3: Date and Time Duration
" date1: 2002-08-01 (You can enter any date in the form yyyy-MM-dd.)

3. Click the �Run query� button to run the query against the data sources.

Ex 3: Step 9. Verify the Result

Running this query with customer_id set to �CUSTOMER_1� and date1 set to
�2002-08-01� produces the following XML query result.

Listing 9-10 Result for Example 3: Date and Time Duration

<customers>
 <customer>
 <first_name>JOHN_B_1</first_name>
 <last_name>KAY_1</last_name>
 <orders>
 <order>
 <line_item expected_ship_date="2002-03-06-08:00" id="LINE_ID_1" product="RBBC01"
status="OPEN"/>
 <line_item expected_ship_date="2002-03-06-08:00" id="LINE_ID_3" product="BN16"
status="OPEN"/>
 <line_item expected_ship_date="2002-03-06-08:00" id="LINE_ID_5" product="CS100"
status="OPEN"/>
 <line_item expected_ship_date="2002-03-06-08:00" id="LINE_ID_1" product="RBBC01"
status="OPEN"/>
 <line_item expected_ship_date="2002-03-06-08:00" id="LINE_ID_3" product="BN16"
status="OPEN"/>
 <line_item expected_ship_date="2002-03-06-08:00" id="LINE_ID_5" product="CS100"
status="OPEN"/>
 </order>
 </orders>
 </customer>
</customers>
Building Queries and Data Views 9-27

9 Query Cookbook
Example 4: Union

A union query is equivalent to concatenating two or more subordinate queries, and
pooling the query results into the same output. There are two important rules for a
union query.

! Each subordinate query produces a result directed at a repeatable target schema
node that is not shared (parent or child) with any other subordinate query target.

! You cannot specify any conditions across these subordinate queries.

The Problem

For any Broadband Customer ID, list any Broadband and Wireless orders. Assume the
Customer IDs match across databases.

The Solution

This query requests a union of Broadband orders and Wireless orders. Remember that
a union retrieves data from multiple sources, such as the Broadband and Wireless
databases, but there are no conditions for the query. If you specify any condition, such
as matching order dates, then you are creating a join query. In this example, you need
a target schema that contains a repeatable list of Customer IDs, and within that list, a
repeatable list of orders. Then you will clone the orders element, using one element for
Broadband orders and the other element for Wireless orders.

To create the solution, follow these steps:

! View a Demo

! Ex 4: Step 1. Verify the Target Schema is Saved in Repository

! Ex 4: Step 2. Open Source and Target Schemas

! Ex 4: Step 3. Clone the Orders Element of the Target Schema

! Ex 4: Step 4. Create a Query Parameter for a Customer ID
9-28 Building Queries and Data Views

Example 4: Union
! Ex 4: Step 5. Assign a Query Parameters

! Ex 4: Step 6. Define Source Relationships

! Ex 4: Step 7. Project the Output to the Target Schema

! Ex 4: Step 8. Add Optimization Hints

! Ex 4: Step 9. View the XQuery and Run the Query to Test it

! Ex 4: Step 10. Verify the Result

View a Demo

Union Demo... If you are looking at this documentation online, you can click the
�Demo� button to see a viewlet demo showing how to build the conditions and create
the mappings described in this example. This demo previews the steps described in
detail in the following sections. The demo assumes you already have the target schema
in the server Repository.

Ex 4: Step 1. Verify the Target Schema is Saved in Repository

For this example, we will use a target schema called unionOrders.xsd. This schema
is available in the Samples server repository. The path to the schemas folder in the
Liquid Data server repository is:

ld_repository/schemas/

See �Example directories� on page 9-2 for information on how example directory
names are used.

Just in case you want to verify that you have the right schema file, the following code
listing shows the XML for this schema.

Listing 9-11 XML Source for unionOrders.xsd Target Schema File

<?xml version = "1.0" encoding = "UTF-8"?>
<!--Generated by Data View Builder 1.1. Conforms to w3c
http://www.w3.org/2001/XMLSchema-->
<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema" >

<xsd:element name="customers">
<xsd:complexType>
<xsd:sequence>
Building Queries and Data Views 9-29

9 Query Cookbook
<xsd:element name="customer" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="first_name" type="xsd:string"/>
<xsd:element name="last_name" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="orders" minOccurs="0" maxOccurs="unbounded">

<xsd:complexType>
<xsd:sequence>
<xsd:element name="order" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="date" type="xsd:string"/>
<xsd:element name="amount" type="xsd:decimal"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

Ex 4: Step 2. Open Source and Target Schemas

1. In the Data View Builder, choose File�>New Project to clear your desktop and
reset all default values.

2. On the Builder Toolbar Design�>Sources tab, click Relational Databases and
open two data sources:

" Double-click on the PB-WL (Wireless) relational database to open the schema
for this data source.

" Double-click on the PB-BB (Broadband) relational database to open the
schema for this data source.

3. Choose the menu option File�>Set Target Schema.

4. Navigate to the server Repository. Choose unionOrders.xsd and click Open.

unionOrders.xsd appears as the target schema.
9-30 Building Queries and Data Views

Example 4: Union
This target schema is displayed as a docked schema window on the right side of
the design area.

5. Click the plus (+) sign (or right-mouse click and choose Expand) to expand the
nodes in each source schema and in the target schema.

Ex 4: Step 3. Clone the Orders Element of the Target Schema

1. In the Data View Builder, select the Orders element of the target schema and
right-mouse click. The Orders element is a child of the Customers element and has
a child called Order.

2. Choose Clone from the right-mouse menu.

The Cloned element labeled Orders(2) appears.

Ex 4: Step 4. Create a Query Parameter for a Customer ID

Create a Query Parameter variable, customer_id, that you can use to insert as a variable
for a Broadband customer ID value when the query runs. To create this parameter, do
the following:

1. On the Builder Toolbar, click Toolbox and then click Query Parameter.

2. From the �Type� drop-down menu, choose xs:string.

3. In Parameter Name field, enter customer_id and click Add.

The new parameter is displayed in the Query Parameters tree.

Ex 4: Step 5. Assign a Query Parameters

! Assign the query parameter customer_id to the Broadband customer ID as
follows:

Drag and drop query parameter customer_id to the
[PB-BB]/db/CUSTOMER/CUSTOMER_ID node.

Ex 4: Step 6. Define Source Relationships

1. Within PB-BB, join the Broadband Customer ID to the Order Customer ID.
Building Queries and Data Views 9-31

9 Query Cookbook
Drag and drop [PB-BB]/db/CUSTOMER/CUSTOMER_ID onto Broadband
[PB-BB]/db/CUSTOMER_ORDER/CUSTOMER_ID.

2. Join the Broadband customer ID from the Broadband Customer table with the
Wireless customer ID from the Wireless Customer Order table as follows:

Drag and drop [PB-BB]/db/CUSTOMER/CUSTOMER_ID onto
[PB-WL]/db/CUSTOMER_ORDER/CUSTOMER_ID.

Ex 4: Step 7. Project the Output to the Target Schema

1. Project the Broadband order information.

" Drag and drop
[PB-BB]/db/CUSTOMER_ORDER/TOTAL_ORDER_AMOUNT onto
[UnionOrders.xsd]/customers/customer/orders(1)/order/amount.

" Drag and drop [PB-BB]/db/CUSTOMER_ORDER/ORDER_DATE onto
[UnionOrders.xsd]/customers/customer/orders(1)/order/date.

2. Project the Wireless (PB-WL) order information.

" Drag and drop
[PB-WL]/db/CUSTOMER_ORDER/TOTAL_ORDER_AMOUNT onto
[UnionOrders.xsd]/customers/customer/orders(2)/order/amount.

" Drag and drop [PB-WL]/db/CUSTOMER_ORDER/ORDER_DATE onto
[UnionOrders.xsd]/customers/customer/orders(2)/order/date.

3. Project the Broadband user information.

" Drag and drop [PB-BB]/db/CUSTOMER/FIRST_NAME onto
[unionOrders.xsd]/customers/customer/first_name.

" Drag and drop [PB-BB]/db/CUSTOMER/LAST_NAME onto
[unionOrders.xsd]/customers/customer/last_name.

" Drag and drop [PB-BB]/db/CUSTOMER/STATE onto
[unionOrders.xsd]/customers/customer/state.

Ex 4: Step 8. Add Optimization Hints

Because you know that the Customer table is much smaller than the Customer Orders
table, you can add optimization hints to improve query performance.
9-32 Building Queries and Data Views

Example 4: Union
1. Click the Optimize tab in the Data View Builder.

2. On the Join Pair Hints panel, choose All from the drop-down list to display all of
the join conditions.

3. For both of the join pairs, select Pass Parameter to Right. You pass the parameter
to the right because the right table (the Customer Orders table) is much larger
than the left table (the Customer table).

Ex 4: Step 9. View the XQuery and Run the Query to Test it

1. Click on the Test tab.

The generated XQuery for this query is shown in the following code listing.

Listing 9-12 XQuery for Example 4: Union

{--Generated by Data View Builder 1.1--}
<customers>

{
for $PB_BB.CUSTOMER_1 in document("PB-BB")/db/CUSTOMER
where ($#customer_id of type xs:string eq $PB_BB.CUSTOMER_1/CUSTOMER_ID)
return
<customer>

<first_name>{ xf:data($PB_BB.CUSTOMER_1/FIRST_NAME) }</first_name>
<last_name>{ xf:data($PB_BB.CUSTOMER_1/LAST_NAME) }</last_name>
<state>{ xf:data($PB_BB.CUSTOMER_1/STATE) }</state>
<orders>

{
for $PB_BB.CUSTOMER_ORDER_2 in document("PB-BB")/db/CUSTOMER_ORDER
where ($PB_BB.CUSTOMER_1/CUSTOMER_ID eq {--! ppright !--}

$PB_BB.CUSTOMER_ORDER_2/CUSTOMER_ID)
return
<order>

<date>{ cast as xs:string(xf:data($PB_BB.CUSTOMER_ORDER_2/ORDER_DATE))
}</date>

<amount>{ xf:data($PB_BB.CUSTOMER_ORDER_2/TOTAL_ORDER_AMOUNT) }</amount>
</order>
}

</orders>
<orders>

{
for $PB_WL.CUSTOMER_ORDER_3 in document("PB-WL")/db/CUSTOMER_ORDER
where ($PB_BB.CUSTOMER_1/CUSTOMER_ID eq {--! ppright !--}

$PB_WL.CUSTOMER_ORDER_3/CUSTOMER_ID)
return
<order>

<date>{ cast as xs:string(xf:data($PB_WL.CUSTOMER_ORDER_3/ORDER_DATE))
Building Queries and Data Views 9-33

9 Query Cookbook
}</date>
<amount>{ xf:data($PB_WL.CUSTOMER_ORDER_3/TOTAL_ORDER_AMOUNT) }</amount>

</order>
}

</orders>
</customer>
}

</customers>

2. In the Query Parameter panel, click into the cell under �Value� and enter a value
for customer_id. (CUSTOMER_1 through CUSTOMER_10 are available to
try.)

3. Click the �Run query� button to run the query against the data sources.

Ex 4: Step 10. Verify the Result

Querying these data sources as described in this example produces an XML query
result similar to that shown in the following code listing where CUSTOMER_4 was
used as the query parameter value for customer_id.

Listing 9-13 Result for Example 4: Union

<customers>
 <customer>
 <first_name>JOHN_B_4</first_name>
 <last_name>KAY_4</last_name>
 <state>NV</state>
 <orders>
 <order>
 <date>2002-03-06-08:00</date>
 <amount>1000</amount>
 </order>
 <order>
 <date>2002-03-06-08:00</date>
 <amount>1500</amount>
 </order>
 <order>
 <date>2002-03-06-08:00</date>
 <amount>2000</amount>
 </order>
 <order>
 <date>2002-03-06-08:00</date>
9-34 Building Queries and Data Views

Example 5: Minus
 <amount>2500</amount>
 </order>
 <order>
 <date>2002-03-06-08:00</date>
 <amount>3000</amount>
 </order>
 </orders>
 <orders>
 <order>
 <date>2002-03-06-08:00</date>
 <amount>1000</amount>
 </order>
 <order>
 <date>2002-03-06-08:00</date>
 <amount>2000</amount>
 </order>
 <order>
 <date>2002-03-06-08:00</date>
 <amount>4000</amount>
 </order>
 <order>
 <date>2002-03-06-08:00</date>
 <amount>5000</amount>
 </order>
 <order>
 <date>2002-03-06-08:00</date>
 <amount>10000</amount>
 </order>
 </orders>
 </customer>
</customers>

Example 5: Minus

A minus relationship (A minus B) returns all instances of some named value that are
in A but not in B. There is no explicit minus operation in the XQuery language or Data
View Builder; however, a simple compare and count technique can be used. For
example: for each instance of the named value in A, count all matching instances in B;
if the count is zero, that means there are no matches, and the query therefore returns
the instance from A.
Building Queries and Data Views 9-35

9 Query Cookbook
The Problem

Find all customers that are Broadband customers, but not Wireless customers. Assume
that Customer IDs match across databases.

The shaded area in Figure 9-4 represents the Broadband customers who are not
Wireless customers.

Figure 9-4 Broadband and Wireless Customers

The Solution

If a customer has only a Broadband account, then a join across the Broadband and
Wireless databases on that Customer ID produces an empty result. We can take
advantage of that fact by counting the number of instances produced by the join. If the
number is zero, then the Customer ID represents a Broadband-only customer.

To create the solution, follow these steps:

! View a Demo

! Ex 5: Step 1. Verify the Target Schema is Saved in Repository

! Ex 5: Step 2. Open Source and Target Schemas

! Ex 5: Step 3. Find Broadband and Wireless Customers with the Same
Customer ID

! Ex 5: Step 4. Find the Count of the Wireless Customers

Broadband Customers Wireless Customers
9-36 Building Queries and Data Views

Example 5: Minus
! Ex 5: Step 5. Set a Condition that Specifies the Output of �count� is Zero

! Ex 5: Step 6. View the XQuery and Run the Query to Test it

! Ex 5: Step 7. Verify the Result

View a Demo

Minus Demo... If you are looking at this documentation online, you can click the
�Demo� button to see a viewlet demo showing how to build the conditions and create
the mappings described in this example. This demo previews the steps described in
detail in the following sections. The demo assumes you already have the target schema
in the server Repository.

Ex 5: Step 1. Verify the Target Schema is Saved in Repository

For this example, we will use a target schema called minus.xsd. This schema is
available in the Samples server repository. The path to the schemas folder in the Liquid
Data server repository is:

ld_repository/schemas/

See �Example directories� on page 9-2 for information on how example directory
names are used.

Just in case you want to verify that you have the right schema file, the following code
listing shows the XML for this schema.

Listing 9-14 XML Source for minus.xsd Target Schema File

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema">
<xsd:element name="results">

<xsd:complexType>
<xsd:sequence>
<xsd:element name="CUSTOMER" minOccurs="1" maxOccurs="unbounded">

<xsd:complexType>
<xsd:sequence>
<xsd:element name="FIRST_NAME" type="xsd:string"/>
<xsd:element name="LAST_NAME" type="xsd:string"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
Building Queries and Data Views 9-37

9 Query Cookbook
</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

Ex 5: Step 2. Open Source and Target Schemas

1. In the Data View Builder, choose File�>New Project to clear your desktop and
reset all default values.

2. On the Builder Toolbar Design�>Sources tab, click Relational Databases and
open two data sources:

" Double-click on the PB-WL (Wireless) relational database to open the schema
for this data source.

" Double-click on the PB-BB (Broadband) relational database to open the
schema for this data source.

3. Choose the menu option File�>Set Target Schema.

Navigate to the server Repository or to the location where you saved the
minus.xsd schema. Choose minus.xsd and click Open.

minus.xsd appears as the target schema.

This target schema is displayed as a docked schema window on the right side of
the design area.

4. Click the plus (+) sign (or right-mouse click and choose Expand) to expand the
nodes in each source schema and in the target schema.

Ex 5: Step 3. Find Broadband and Wireless Customers with the Same
Customer ID

! Drag and drop [PB-BB]/db/CUSTOMER/CUSTOMER_ID onto
[PB-WL]/db/CUSTOMER/CUSTOMER_ID to join the Broadband
CUSTOMER_ID and the Wireless CUSTOMER_ID.
9-38 Building Queries and Data Views

Example 5: Minus
Ex 5: Step 4. Find the Count of the Wireless Customers

1. On the Builder Toolbar Design�>Toolbox tab, click Functions and double-click
on the xf:count function (under Aggregate functions) to open it.

2. Drag and drop the [PB-WL]/db/CUSTOMER/CUSTOMER_ID onto the input of
the xf:count function.

Ex 5: Step 5. Set a Condition that Specifies the Output of “count” is Zero

1. Click on the Conditions tab.

2. Drag and drop the eq (equal) function (in the XQuery functions Comparison
operators folder) onto the next empty row under Conditions on the Conditions
tab.

The Functions Editor is displayed.

3. For the first parameter, drop [count-Function:Output]/Parameters/integer onto
anyValue1.

4. For the second parameter, create a Number constant, set it to 0 and drop it on
anyValue2.

Note: To create the Number constant, on Builder�>Toolbox tab, click
Constants, enter 0 in the Number field, and drag the Constant icon next to
that field onto anyValue2 in the equation in the Functions Editor.

The equality condition should look like this:

([xf:count]/result eq 0)

Close the Functions Editor.

5. Project the Broadband customers to the target results.

" Drag and drop [PB-BB]/db/CUSTOMER/FIRST_NAME onto
[minus.xsd]/results/CUSTOMER/FIRST_NAME.

" Drag and drop [PB-BB]/db/CUSTOMER/LAST_NAME onto
[minus.xsd]/results/CUSTOMER/LAST_NAME.
Building Queries and Data Views 9-39

9 Query Cookbook
Ex 5: Step 6. View the XQuery and Run the Query to Test it

1. Click on the Test tab.

The generated XQuery for this query is shown in the following code listing.

Listing 9-15 XQuery for Example 5: Minus

{--Generated by Data View Builder 1.1--}
<results>

{
for $PB_BB.CUSTOMER_1 in document("PB-BB")/db/CUSTOMER
let $srcval_2 :=
 for $PB_WL.CUSTOMER_3 in document("PB-WL")/db/CUSTOMER
 where ($PB_BB.CUSTOMER_1/CUSTOMER_ID eq $PB_WL.CUSTOMER_3/CUSTOMER_ID)
 return
 xf:data($PB_WL.CUSTOMER_3/CUSTOMER_ID)
let $xf:count_4 := xf:count($srcval_2)
where ($xf:count_4 eq 0)
return
<CUSTOMER>

<FIRST_NAME>{ xf:data($PB_BB.CUSTOMER_1/FIRST_NAME) }</FIRST_NAME>
<LAST_NAME>{ xf:data($PB_BB.CUSTOMER_1/LAST_NAME) }</LAST_NAME>

</CUSTOMER>
}

</results>

2. Click the �Run query� button to run the query against the data sources.

Ex 5: Step 7. Verify the Result

When you run this query on the sample data sources as described here, the result will
be one record because the sample Broadband data source has one customer record that
is different from the Wireless customer records.

Listing 9-16 Result for Example 5: Minus

<results>
<CUSTOMER>

<FIRST_NAME>JOHN</FIRST_NAME>
<LAST_NAME>PARKER</LAST_NAME>

</CUSTOMER>
</results>
9-40 Building Queries and Data Views

Example 6: Complex Parameter Type (CPT)
Example 6: Complex Parameter Type (CPT)

The Complex Parameter Type Cookbook example shows how to use Liquid Data to
create an integrated view that connects two enterprise information systems: a database
and an in-flight XML data source using a complex parameter type (CPT). A query that
uses both data sources determines whether the customer has sufficient credit for the
incoming order to be processed.

The Problem

The company receives dozens of electronically transmitted orders daily and needs to
quickly respond to its field office if an order cannot be accepted because a customer
has exceeded their credit limit. The credit limit and amount of outstanding orders is
known to the system. The quantity and price of the items being ordered is supplied in
real-time along with the order.

The Solution

The company develops a complex parameter type (CPT) that models the incoming
purchase order as an XML schema and sets a simple orderLimit parameter that an
operator can change whenever the query is run. The query also calculates the total
amount outstanding of current orders and the total amount of the incoming order. The
objective is to accept orders if the total amount of both outstanding and incoming
orders is within the order limit. Otherwise, the order is rejected.

To recreate the solution, follow these steps:

! View a Demo

! Ex 6: Step 1. Verify the Availability of Schemas and Sample Data Stream

! Ex 6: Step 2. Open the Target Schema and CO-CPTSAMPLE CPT

! Ex: 6: Step 3. Create an orderLimit Query Parameter

! Ex 6: Step 4. Save the Project
Building Queries and Data Views 9-41

9 Query Cookbook
! Ex 6: Step 5. Test Access to the Complex Parameter Source

! Ex 6: Step 6: Determine the Total Amount of New Orders

! Ex 6: Step 7. Create the Necessary Joins and Mappings to the Target Schema

! Ex 6: Step 8. Determine the Amount of Currently Open Orders

! Ex 6: Step 9: Determine the Total Amount of All Open and New Orders

! Ex 6: Step 10: Test If Open Orders + New Orders Exceeds the Order Limit

! Ex 6: Step 11: Determine If the Order is Accepted or Rejected

! Ex 6: Step 12: View the XQuery

! Ex 6: Step 13. Run the XQuery to Verify the Result

Note: The implementation details of the Complex Parameter Type demo, the
DB-COCPT sample, and the CPT cookbook example vary slightly.

View a Demo

Complex Parameter Type (CPT) Demo. If you are looking at this documentation
online, you can click the �Demo� button to see a viewlet demo showing how to build
the conditions and create the mappings described in this example.

Ex 6: Step 1. Verify the Availability of Schemas and Sample Data Stream

In creating the DB-CPTCO sample query, we use the following files that are installed
with Liquid Data samples. (See �Example directories� on page 9-2 for information on
how example directory names are used.)

From the Liquid Data samples repository schema directory:

! BroadBand database schema. The path to this file is:

ld_repository/schemas/broadbandp.sql

! Complex parameter type schema. The path to this file is:

ld_repository/schemas/coCptSample2.xsd

! Target schema. The path to this file is:
9-42 Building Queries and Data Views

Example 6: Complex Parameter Type (CPT)
ld_repository/schemas/COCPTSampleTarget-Schema.xsd

! CPT sample XML stream. The path to this file is:

ld_repository/xml_files/coCPTsample2.xml

If you want to refer to the sample DB-CPTCO project, it is installed as the following
file:

<BEA_HOME>/liquiddata/samples/buildQuery/db-cptco/coCPTSample.qpr

For reference purposes, code listings for several of the XML files used in this example
appear below:

Listing 9-17 DB-CPTCO Sample CPT Schema (coCptSample2.xsd)

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="urn:schemas-bea-com:ld-cocpt"

xmlns:cocpt="urn:schemas-bea-com:ld-cocpt"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="CustOrder">
<xsd:complexType>
<xsd:sequence>

<xsd:element name="CUSTOMER_ORDER" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>

<xsd:element name="CUSTOMER_ID" type="xsd:string"/>
<xsd:element name=

"NEW_ORDER_LINE_ITEM"type="cocpt:NEW_ORDER_LINE_ITEMType"
minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:complexType name="NEW_ORDER_LINE_ITEMType">

<xsd:sequence>
<xsd:element name="PRODUCT_NAME" type="xsd:string"/>
<xsd:element name="QUANTITY" type="xsd:decimal"/>
<xsd:element name="PRICE" type="xsd:decimal"/>
</xsd:sequence>

</xsd:complexType>
</xsd:schema>
Building Queries and Data Views 9-43

9 Query Cookbook
Listing 9-18 DB-CPTCO Target Schema (COCPTSampleTargetSchema.xsd)

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="urn:schemas-bea-com:ld-cocpt"
xmlns:cocpt="urn:schemas-bea-com:ld-cocpt"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="CustOrder">
<xsd:complexType>
<xsd:sequence>

<xsd:element name="CUSTOMER_ORDER" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="CUSTOMER_ID" type="xsd:string"/>
<xsd:element name="NEW_ORDER_LINE_ITEM"

type="cocpt:NEW_ORDER_LINE_ITEMType" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:complexType name="NEW_ORDER_LINE_ITEMType">

<xsd:sequence>
<xsd:element name="PRODUCT_NAME" type="xsd:string"/>
<xsd:element name="QUANTITY" type="xsd:decimal"/>
<xsd:element name="PRICE" type="xsd:decimal"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Listing 9-19 DB-CPTCO Sample XML Data Stream (coCptSample2.xml)

<?xml version="1.0" encoding="UTF-8"?>
<cocpt:CustOrder xmlns:cocpt="urn:schemas-bea-com:ld-cocpt"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:schemas-bea-com:ld-cocpt

coCptSample2.xsd">
<CUSTOMER_ORDER>

<CUSTOMER_ID>CUSTOMER_1</CUSTOMER_ID>
<NEW_ORDER_LINE_ITEM>

<PRODUCT_NAME>RBBC01</PRODUCT_NAME>
<QUANTITY>1000</QUANTITY>
<PRICE>20</PRICE>

</NEW_ORDER_LINE_ITEM>
<NEW_ORDER_LINE_ITEM>

<PRODUCT_NAME>CS2610</PRODUCT_NAME>
<QUANTITY>1000</QUANTITY>
<PRICE>20</PRICE>

</NEW_ORDER_LINE_ITEM>
9-44 Building Queries and Data Views

Example 6: Complex Parameter Type (CPT)
</CUSTOMER_ORDER>
</cocpt:CustOrder>

You may also want to examine the CO-CPTSAMPLE definition in the WLS
Administration Console for the Samples server you are using.

1. Login to the Administration Server. See Start the WLS Administration Console in
the Getting Started guide for details.

2. In the left pane, click the Liquid Data node.

3. In the right pane, click the Complex Parameter Types tab and click on
CO-CPTSAMPLE.

See the section �Creating a Complex Parameter Type� on page 7-8 for details.

Ex 6: Step 2. Open the Target Schema and CO-CPTSAMPLE CPT

1. In the Data View Builder, choose File—>New Project.

2. On the Design tab, on the Builder Toolbar, click the Toolbox tab, then click
Complex Parameter Type. The CO-CPTSAMPLE complex parameter type is listed.

3. Double-click on CO-CPTSAMPLE to open the CPT schema. Right click on the top
element (cocpt:CustOrder) to expand.

4. Choose File—>Set Target Schema. Browse to the Liquid Data repository
schema directory.

5. Select the following file as the target schema:

ld_repository/schemas/COCPTSampleTargetSchema.xsd

In the target schema window on the right side of the design area, right-click on
the top element expand the target schema.

Ex: 6: Step 3. Create an orderLimit Query Parameter

Since credit limits vary from customer to customer, it is convenient to have an order
limit query parameter that can be changed whenever a query is run.

1. In the Data View Builder select Design—>Toolbox.
Building Queries and Data Views 9-45

9 Query Cookbook
2. Click on the Query Parameter tab.

3. Enter orderLimit as a parameter name.

4. Select xs:decimal as the parameter type.

5. Click Add.

6. Drag and drop the orderLimit parameter icon onto the target schema
[COCPTSampleTargetSchema.xsd]/cocpt:CustOrderStatus/CUSTOMER/CUSTO
MER_ORDER/TOTAL_OPEN_ORDERLIMIT.

Ex 6: Step 4. Save the Project

You can save a project at any time. To initially create a project, use File—>Save
Project As. Use the file browser to choose a location and project name (we use
myCoCPT).

Ex 6: Step 5. Test Access to the Complex Parameter Source

Follow these steps to verify access to the CPT data source:

1. Drag and drop output from
[CO-CPTSAMPLE]/cocpt:CustOrder/CUSTOMER_ORDER/NEW_ORDER_LI
NE_ITEM/CUSTOMER_ID onto the target schema
[COCPTSampleTargetSchema.xsd]/cocpt:CustOrderStatus/CUSTOMER/CUSTO
MER_ID.

2. Click the Test tab.

3. In the lower-left pane of the Data View Builder (Test mode), click in the Values
area under Query Parameters to the right of the CPT name (CO-CPTSAMPLE).

4. Navigate to the XML data file associated with the CO-CPTSAMPLE complex
parameter type.

ld_repository/xml_files/coCptSample2.xml

5. Enter an orderLimit value such as 200000.

6. Now we can click the Run button to execute a preliminary query. The following
result shows that your CPT is successfully retrieving from the XML file data:
9-46 Building Queries and Data Views

Example 6: Complex Parameter Type (CPT)
Listing 9-20 Interim Results (1) from CPT Example Query

<cocpt:CustOrderStatus xmlns:cocpt="urn:schemas-bea-com:ld-cocpt">
 <CUSTOMER>
 <CUSTOMER_ID>CUSTOMER_1</CUSTOMER_ID>
 <CUSTOMER_ORDER>
 <TOTAL_OPEN_ORDERLIMIT>200000</TOTAL_OPEN_ORDERLIMIT>
 </CUSTOMER_ORDER>
 </CUSTOMER>
</cocpt:CustOrderStatus>

7. Return to the Toolbar Design mode.

In the case of this data source, the customer identification is provided so there is no
need to create a customer ID query parameter.

Ex 6: Step 6: Determine the Total Amount of New Orders

Since all runtime source items from a CPT are treated as character strings, any data
items from the CO-CPTSAMPLE data source must first be cast appropriately. Then
quantities and prices are multiplied together. The sum of the products of quantity and
prices is the total amount of new orders.

1. Click XQuery Functions.

2. Drag and drop (or double-click) two cast as xs:decimal functions into the
design area. These are labeled as xs:decimal and xs:decimal2.

3. Drag and drop a multiply (*) function into the design area.

4. Drag and drop a sum aggregate function into the design area.
Building Queries and Data Views 9-47

9 Query Cookbook
Figure 9-5 Functions Used to Calculate Total New Orders in Data Stream

5. Drag and drop
[CO-CPTSAMPLE]/cocpt:CustOrder/CUSTOMER_ORDER/NEW_ORDER_LI
NE_ITEM/QUANTITY to become the input parameter to xs:decimal.

6. Drag and drop
[CO-CPTSAMPLE]/cocpt:CustOrder/CUSTOMER_ORDER/NEW_ORDER_LI
NE_ITEM/PRICE to become the input parameter to xs:decimal2.

7. Drag and drop the output result of xs:decimal to one side of the multiply
equation and the output result of xs:decimal2 to the other.

8. Drag the * - Function output result to the input parameter of xf:sum. This
gives us the total order amount in the CPT data source.

9. Drag and drop output from xf:sum onto the target schema
[COCPTSampleTargetSchema.xsd]/cocpt:CustOrderStatus/CUSTOMER/CUSTO
MER_ORDER/NEW_ORDER_TOTAL_AMOUNT.

10. Rerun your query. A new order total of 40,000 appears.
9-48 Building Queries and Data Views

Example 6: Complex Parameter Type (CPT)
11. Return to Design mode.

The only query construction components we will reuse are sum and CO-CPTSAMPLE
source. The others can be closed or minimized.

Ex 6: Step 7. Create the Necessary Joins and Mappings to the Target Schema

Move the PB-BB relational source schema onto the design area.

1. On the Builder Toolbar Design�>Sources tab, click Relational Databases, and
double-click on PB-BB to open the schema for the broadband sample data source.

2. Expand the PB-BB schema.

Create the necessary joins to allow us to fetch the line items for a particular order for
a particular customer.

1. Drag and drop
[CO-CPTSAMPLE]/cocpt:CustOrder/CUSTOMER_ORDER/CUSTOMER_ID
onto [PB-BB]/db/CUSTOMER/CUSTOMER_ID.

2. Drag and drop [PB-BB]/db/CUSTOMER/CUSTOMER_ID onto the
[PB-BB]/db/CUSTOMER_ORDER/CUSTOMER_ID.

3. Drag and drop [PB-BB]/db/CUSTOMER_ORDER/ORDER_ID onto
[PB-BB]/db/CUSTOMER_ORDER_LINE_ITEM/ORDER_ID.
Building Queries and Data Views 9-49

9 Query Cookbook
Figure 9-6 Setting Joins Between CPT and Relational Data Source

Next, project FIRST_NAME and LAST_NAME elements onto the target schema.

1. Drag and drop [PB-BB]/db/CUSTOMER/FIRST_NAME onto the target schema
[cocptsampletarget-schema]/cocptCustOrderStatus/CUSTOMER/FIRST_NAME.

2. Drag and drop [PB-BB]/db/CUSTOMER/LAST_NAME onto the target schema
[cocptsampletarget-schema]/cocptCustOrderStatus/CUSTOMER/LAST_NAME.

Note: In this version of the CO-CPTSAMPLE, automatic scoping is used. See
�Understanding Scope in Basic and Advanced Views� on page 3-30 for more
information.

Although your query is not complete, you can test run it again.

1

2

3

9-50 Building Queries and Data Views

Example 6: Complex Parameter Type (CPT)
Listing 9-21 Interim Results (2) from CPT Example Query

<cocpt:CustOrderStatus xmlns:cocpt="urn:schemas-bea-com:ld-cocpt">
 <CUSTOMER>
 <FIRST_NAME>JOHN_B_1</FIRST_NAME>
 <LAST_NAME>KAY_1</LAST_NAME>
 <CUSTOMER_ID>CUSTOMER_1</CUSTOMER_ID>
 <CUSTOMER_ORDER>
 <NEWORDER_TOTAL_AMOUNT>40000</NEWORDER_TOTAL_AMOUNT>
 <TOTAL_OPEN_ORDERLIMIT>200000</TOTAL_OPEN_ORDERLIMIT>
 </CUSTOMER_ORDER>
 </CUSTOMER>
</cocpt:CustOrderStatus>

Ex 6: Step 8. Determine the Amount of Currently Open Orders

Follow these steps to find the total amount of open orders in the sample PB-BB
database:

1. Click the XQuery Functions.

2. Drag and drop the multiply (*) operator into the design area.

3. Drag and drop [PB-BB]/db/CUSTOMER_ORDER_LINE_ITEM/QUANTITY
and [PB-BB]/db/CUSTOMER_ORDER_LINE_ITEM/PRICE to the function
operands.

4. Drag and drop another xf:sum into the design area. Drag the output result of the
f()*2 - Function (*2 being the second use of a multiplication function) to the
input parameter of xf:sum2.

5. Drag and drop output from xf:sum2 onto the target schema
[COCPTSampleTargetSchema.xsd]/cocpt:CustOrderStatus/CUSTOMER/CUSTO
MER_ORDER/OPEN_ORDER_TOTAL_AMOUNT.

Finally, we need to restrict results to open orders:

1. In the Data View Builder select Design—>Toolbox.

2. Click on Constants.

3. Create a string constant called OPEN and drag the icon to the right of OPEN to the
[PB-BB]/db/CUSTOMER_ORDER_LINE_ITEM/STATUS item.
Building Queries and Data Views 9-51

9 Query Cookbook
If we run our current query, the amount of open orders should be 150,000.

Ex 6: Step 9: Determine the Total Amount of All Open and New Orders

1. Click XQuery Functions.

2. Drag and drop the plus (+) numeric operator into the design area.

3. Use xf:sum (total new orders) and xf:sum2 (total open orders) as the operands
to obtain the total open and new order amount.

Ex 6: Step 10: Test If Open Orders + New Orders Exceeds the Order Limit

1. Click on XQuery Functions.

2. Under Comparison operators locate the gt (greater than) function. Drag it into
the design area.

3. Use the output of the sum of open and newly arrived orders as the first input
parameter.

4. Use the query parameter orderLimit as input for operand2. The result is a
Boolean value that is True if the sum of open and newly arrived orders is greater
than the overall order limit.

Ex 6: Step 11: Determine If the Order is Accepted or Rejected

Now that the relationships and conditions are established, set up an if-then-else test to
solve the business problem. See �The Problem� on page 9-41.

1. Under Other functions locate the xfext:if-then-else function. Drag it into the
design area.

2. Drag the output of the gt function to the if-then-else input condition
parameter.

3. Click on the Toolbox Constants tab. In the String field enter REJECT, drag the
String field icon to the then parameter in the xfext:if-then-else function.

4. Change the String field to ACCEPT, then drag the String field icon to the else
parameter.
9-52 Building Queries and Data Views

Example 6: Complex Parameter Type (CPT)
5. Drag the output result onto the target schema
[COCPTSampleTargetSchema.xsd]/cocpt:CustOrderStatus/CUSTOMER/CUSTO
MER_ORDER/ORDER_REVIEW_STATUS.

Ex 6: Step 12: View the XQuery

The generated XQuery is shown in the following code listing.

Listing 9-22 XQuery for Example 6: Complex Parameter Type (CPT)

{--Generated by Data View Builder 1.1--}
namespace cocpt = "urn:schemas-bea-com:ld-cocpt"
<cocpt:CustOrderStatus>

{
for $CO_CPTSAMPLE.CUSTOMER_ORDER_2 in ($#CO-CPTSAMPLE of type element

cocpt:CustOrder)/CUSTOMER_ORDER
for $MyBroadBand_LD_DS.CUSTOMER_3 in document("MyBroadBand-LD-DS")/db/CUSTOMER
let $srcval_4 :=
 for $MyBroadBand_LD_DS.CUSTOMER_ORDER_LINE_ITEM_5 in

document("MyBroadBand-LD-DS")/db/CUSTOMER_ORDER_LINE_ITEM
 let $srcval_9 :=
 for $MyBroadBand_LD_DS.CUSTOMER_ORDER_10 in

document("MyBroadBand-LD-DS")/db/CUSTOMER_ORDER
 where ($MyBroadBand_LD_DS.CUSTOMER_ORDER_10/ORDER_ID

eq $MyBroadBand_LD_DS.CUSTOMER_ORDER_LINE_ITEM_5/ORDER_ID)
 and ($MyBroadBand_LD_DS.CUSTOMER_3/CUSTOMER_ID eq

$MyBroadBand_LD_DS.CUSTOMER_ORDER_10/CUSTOMER_ID)
 return
 xf:true()
 where xf:not(xf:empty($srcval_9))
 and ("OPEN" eq $MyBroadBand_LD_DS.CUSTOMER_ORDER_LINE_ITEM_5/STATUS)
 return
 $MyBroadBand_LD_DS.CUSTOMER_ORDER_LINE_ITEM_5/QUANTITY *

$MyBroadBand_LD_DS.CUSTOMER_ORDER_LINE_ITEM_5/PRICE
let $xf:sum2_11 := xf:sum($srcval_4)
let $srcval_12 :=
 for $CO_CPTSAMPLE.NEW_ORDER_LINE_ITEM_14 in

$CO_CPTSAMPLE.CUSTOMER_ORDER_2/NEW_ORDER_LINE_ITEM
 let $cast_as_xs:decimal2_17 := cast as

xs:decimal($CO_CPTSAMPLE.NEW_ORDER_LINE_ITEM_14/QUANTITY)
 let $cast_as_xs:decimal_20 := cast as

xs:decimal($CO_CPTSAMPLE.NEW_ORDER_LINE_ITEM_14/PRICE)
 return
 $cast_as_xs:decimal2_17 * $cast_as_xs:decimal_20
let $xf:sum_22 := xf:sum($srcval_12)
let $v_23 := $xf:sum2_11 + $xf:sum_22
let $gt_24 := $v_23 gt $#orderLimit of type xs:decimal
where ($CO_CPTSAMPLE.CUSTOMER_ORDER_2/CUSTOMER_ID eq

$MyBroadBand_LD_DS.CUSTOMER_3/CUSTOMER_ID)
Building Queries and Data Views 9-53

9 Query Cookbook
return
<CUSTOMER>

<FIRST_NAME>{ xf:data($MyBroadBand_LD_DS.CUSTOMER_3/FIRST_NAME) }</FIRST_NAME>
<LAST_NAME>{ xf:data($MyBroadBand_LD_DS.CUSTOMER_3/LAST_NAME) }</LAST_NAME>
<CUSTOMER_ID>{ xf:data($CO_CPTSAMPLE.CUSTOMER_ORDER_2/CUSTOMER_ID)

}</CUSTOMER_ID>
<CUSTOMER_ORDER>
<OPENORDER_TOTAL_AMOUNT>{ cast as xs:decimal($xf:sum2_11)

}</OPENORDER_TOTAL_AMOUNT>
<NEWORDER_TOTAL_AMOUNT>{ cast as xs:decimal($xf:sum_22)

}</NEWORDER_TOTAL_AMOUNT>
<TOTAL_OPEN_ORDERLIMIT>{ $#orderLimit of type xs:decimal

}</TOTAL_OPEN_ORDERLIMIT>
<ORDER_REVIEW_STATUS>{ cast as xs:string(xfext:if-then-else(treat as

xs:boolean($gt_24), "REJECT", "ACCEPT")) }</ORDER_REVIEW_STATUS>
</CUSTOMER_ORDER>

</CUSTOMER>
}

</cocpt:CustOrderStatus>

Ex 6: Step 13. Run the XQuery to Verify the Result

When you run this query on the sample data sources as described in this example, the
result is an accepted order.

Listing 9-23 Result of Example 6: Complex Parameter Type (CPT)

<cocpt:CustOrderStatus xmlns:cocpt="urn:schemas-bea-com:ld-cocpt">
 <CUSTOMER>
 <FIRST_NAME>JOHN_B_1</FIRST_NAME>
 <LAST_NAME>KAY_1</LAST_NAME>
 <CUSTOMER_ID>CUSTOMER_1</CUSTOMER_ID>
 <CUSTOMER_ORDER>
 <OPENORDER_TOTAL_AMOUNT>150000</OPENORDER_TOTAL_AMOUNT>
 <NEWORDER_TOTAL_AMOUNT>40000</NEWORDER_TOTAL_AMOUNT>
 <TOTAL_OPEN_ORDERLIMIT>200000</TOTAL_OPEN_ORDERLIMIT>
 <ORDER_REVIEW_STATUS>ACCEPT</ORDER_REVIEW_STATUS>
 </CUSTOMER_ORDER>
 </CUSTOMER>
</cocpt:CustOrderStatus>
9-54 Building Queries and Data Views

CHAPTER
A Functions Reference

The World Wide Web (W3C) specification for XQuery supports a discrete set of
functions. BEA Liquid Data for WebLogic� supports a subset of those functions as
built-in functions. The Liquid Data built-in functions are accessible in the Data View
Builder from Builder Toolbar�>Toolbox tab�>Functions panel. (See also �XQuery
Functions� on page 2-11 in Chapter 2, �Starting the Builder and Touring the GUI.�)

For more information on the functions described here, see also:

! W3C XQuery 1.0 and XPath 2.0 Functions and Operators specification.

! Appendix D, the �Function and Operator Quick Reference� in the XQuery 1.0
and XPath 2.0 Functions and Operators specification

! XML Schema Part 2: Datatypes
Building Queries and Data Views A-1

http://www.w3.org/TR/2001/WD-xquery-operators-20011220/

A Functions Reference
This section provides a complete reference of the W3C functions Liquid Data supports,
as well as any extended functions Liquid Data supports. This functions reference is
organized by category as follows:

! About in Liquid Data XQuery Functions

" Naming Conventions

" Occurrence Indicators

" Data Types

" Date and Time Patterns

! Accessor and Node Functions

! Aggregate Functions

! Boolean Functions

! Cast Functions

! Comparison Operators

! Constructor Functions

! Date and Time Functions

! Logical Operators

! Numeric Operators

! Numeric Functions

! Other Functions

! Sequence Functions

! String Functions

! Treat Functions
A-2 Building Queries and Data Views

About in Liquid Data XQuery Functions
About in Liquid Data XQuery Functions

You can browse the Liquid Data XQuery function in the Data View Builder. The
functions are located in Design tab �> Toolbox tab �> XQuery Functions. You can
also make your own custom functions. This section describes the conventions used in
the Liquid Data XQuery functions and describes the XQuery data types.

Naming Conventions

The xf: prefix is a W3C XML naming convention, also known as a namespace. Liquid
Data supports extended functions that are enhancements to the XQuery specification,
which you can recognize by their extended function prefix xfext:. For example, the full
XQuery notation for an extended function is xfext:function_name. Extended functions
accept standard input types, but they are limited to single values.

Liquid Data also supports extensions to XQuery data types that are designated with
xsext:datatype notation. When you encounter the xsext: prefix, it means that the data
type may have Liquid Data-imposed restrictions that are necessary to interface
successfully with the Liquid Data Server.

The xfext: prefix identifies an extended function. The prefix identifies the type of
function to you but the Data View Builder does not recognize or process the prefix.

Occurrence Indicators

An occurrence indicator indicates the number of items in a sequence. This notation
usually appears on a parent node in a schema. Use these identifiers to determine the
repeatability of a node.

! A question mark (?) indicates zero items or one single item.

! An asterisk (*) indicates zero or more items.

! A plus sign (+) indicates one or more items.
Building Queries and Data Views A-3

A Functions Reference
These occurrence indicators also communicate information about the data type when
they appear in a function signature. For example:

! xs:integer* represents a list of zero or more integers.

! string+ represents a list of one or more strings.

! decimal? represents zero or one decimal values. Therefore, the decimal value is
optional.

Data Types

Every data element or variable has a data type. Function parameters have data type
requirements and the function result is returned as a data type. The following table
describes other data types that conform to the XQuery specification. Current
compliance with the W3C XQuery specification extends to XQuery 1.0 and XPath 2.0
Functions and Operators specification dated 30 April 2002. Another helpful reference
is XML Schema Part 2: Datatypes.

Table A-1 Data Types

Data Type Name Description

xs:anyType Represents the most generic data type. All data types including anyAttribute,
anyElement, anySimpleType, anyValue, as well as sequences, items, nodes,
strings, decimals.

xsext:anyValue A subset of xs:anyType including dateTime, boolean, string, numeric values,
or any single value. Does not include anyAttribute, anyElement, item, node,
sequence, or anySimpleType.

xs:boolean A subset of xsext:anyValue. A value that supports the mathematical concept
of binary-valued logic: true or false.

xs:byte A subset of xs:short. A sequence of decimal digits (0�9) with a range of 127
to -128. If the sign is omitted, plus (+) is assumed.
Examples: -1, 0, 126, +100
A-4 Building Queries and Data Views

About in Liquid Data XQuery Functions
xs:date A subset of xsext:anyValue. Represents the leftmost component of dateTime
YYYY-MM-DD where:
! YYYY is the year
! MM is the month
! DD is the day
May be preceded by a leading minus (-) sign to indicate a negative number. If
the sign is omitted, plus (+) is assumed.
May be immediately followed by a Z to indicate Coordinated Universal Time
(UTC) or, to indicate the time zone (the difference between the local time and
Coordinated Universal Time), immediately followed by a sign, + or -,
followed by the difference from UTC represented as hh:mm.
Example:
To specify 1:20 pm on May the 31st, 1999, write: 1999-05-31.

xs:dateTime A subset of xsext:anyValue. Represents the format YYYY-MM-DDThh:mm:ss
where:
! YYYY is the year
! MM is the month
! DD is the day
! T is the date/time separator
! hh is the hour
! mm is the minute
! ss is the second
May be preceded by a leading minus (-) sign to indicate a negative number. If
the sign is omitted, plus (+) is assumed. Additional digits can be used to
increase the precision of fractional seconds if desired (ss.ss...) with any
number of digits after the decimal point is supported.
May be immediately followed by a Z to indicate Coordinated Universal Time
(UTC) or, to indicate the time zone (the difference between the local time and
Coordinated Universal Time), immediately followed by a sign, + or -,
followed by the difference from UTC represented as hh:mm.
Example:
To specify 1:20 pm on May the 31st, 1999 EST, which is five hours behind
Coordinated Universal Time (UTC), write: 1999-05-31T13:20:00-05:00.

Table A-1 Data Types

Data Type Name Description
Building Queries and Data Views A-5

A Functions Reference
xs:decimal A subset of xsext:anyValue. Includes all integer types, such as xs:integer,
xs:long, xs:short, xs:int, or xs:byte.
Represents a finite-length sequence of decimal digits (0�9) separated by an
optional period as a decimal indicator. An optional leading sign is allowed. If
the sign is omitted, plus (+) is assumed. Leading and trailing zeroes are
optional. If the fractional part is zero, the period and following zeroes can be
omitted.
Examples: -1.23, 12678967.543233, +100000.00, 210

xs:double A subset of xsext:anyValue. There are no subordinate data types; however,
xs:float and xs:decimal, and all derived types, can be promoted to xs:double in
certain cases, such as function calls.
Represents a double precision 64-bit floating point value. Supports the special
values positive and negative zero, positive and negative infinity and
not-a-number (0, -0, INF, -INF and NaN).

xs:float A subset of xsext:anyValue. There are no subordinate data types; however,
xs:decimal, and all derived types, can be promoted to xs:float in certain cases,
such as function calls.

Represents a single-precision 32-bit floating point value. Supports the special
values positive and negative zero, positive and negative infinity and
not-a-number (0, -0, INF, -INF and NaN).

xsext:item A subset of xs:anyType. Includes xsext:anyValue and xsext:node. Excludes
any sequence. Represents a list element, individual value, or attribute.

xs:int A subset of xs:long. Represents a finite-length sequence of decimal digits (0�
9). An optional leading sign is allowed. If the sign is omitted, plus (+) is
assumed.
Examples: -1, 0, 12678967543233, +100000

xs:integer A subset of xs:decimal. Represents a finite-length sequence of decimal digits
(0�9). An optional leading sign is allowed. If the sign is omitted, plus (+) is
assumed.
Examples: -1, 0, 12678967543233, +100000

Table A-1 Data Types

Data Type Name Description
A-6 Building Queries and Data Views

About in Liquid Data XQuery Functions
Date and Time Patterns

You can construct date and time patterns using standard Java class symbols. The
following table shows the pattern symbols you can use.

xs:long A subset of xs:decimal. A sequence of decimal digits (0�9) with a range of
9223372036854775807 to -9223372036854775808. If the sign is omitted,
plus (+) is assumed.
Examples: -1, 0, 12678967543233, +100000

xsext:node A subset of xsext:anyValue. A component in a tree structure that represents a
data element.

xs:short A subset of xs:int. A sequence of decimal digits (0�9) with a range of 32767
to -32768. If the sign is omitted, plus (+) is assumed.
Examples: -1, 0, 12678, +10000

xs:string A subset of xsext:anyValue. A sequence that contains alphabetic, numeric, or
special characters.

xs:time A subset of xsext:anyValue. Represents the rightmost segment of the
dateTime format where:
! hh is the hour
! mm is the minute
! ss is the second

May contain an optional following time zone indicator.
Examples:
! To indicate 1:20 pm EST, which is five hours behind Coordinated

Universal Time (UTC), write: 13:20:00-05:00.
! Midnight is 00:00:00.

Table A-1 Data Types

Data Type Name Description
Building Queries and Data Views A-7

A Functions Reference
Repeat each symbol to match the maximum number of characters required to represent
the actual value. For example, to represent 4 July 2002, the pattern is d MMMM yyyy.
To represent 12:43 PM, the pattern is hh:mm a.

Table 9-3 Date and Time Patterns

This Symbol Represents This Data Produces This Result

G Era AD

y Year 1996

M Month of year July, 07

d Day of the month 19

h Hour of the day (1�12) 10

H Hour of the day (0�23) 22

m Minute of the hour 30

s Second of the minute 55

S Millisecond 978

E Day of the week Tuesday

D Day of the year 27

w Week in the year 27

W Week in the month 2

a am/pm marker AM, PM

k Hour of the day (1�24) 24

K Hour of the day (0�11) 0

z Time zone Pacific Standard Time
Pacific Daylight Time
A-8 Building Queries and Data Views

Accessor and Node Functions
Accessor and Node Functions

Accessor and node functions operate on different types of nodes and node values. They
accept single node input and return a value based on the node type. These function are
not available in the XQuery functions section of the Data View Builder, but the Data
View Builder will, in some circumstances, generate queries that use these functions.
The functions avaiulable are:

! xf:data

! xf:local-name

xf:data

Returns the typed-value of each input node. This function is not available in the XQuery
functions section of the Data View Builder.

Data Types

! Input data type: xsext:node?

! Returned data type: xsext:anyValue?

Notes

The xf:data function is available to Liquid Data, but you cannot explicitly map a node
in the Data View Builder, so you therefore cannot construct a query in the Data View
Builder that uses the xf:data function. In some cases, however, the Data View Builder
will implicitly generate queries that use the xf:data function. The typical case when the
Data View Builder generates the xf:data function is when it does not know the name
of the elements at query generation time, and it uses the xf:data function in a variable
expression containing wildcard characters.

If the source value is not a node, the function returns an error.
Building Queries and Data Views A-9

A Functions Reference
XQuery Specification Compliance

! Liquid Data does not use a list of nodes; it uses only an optional node.

! Liquid Data does not generate an error when you specify a document node. It
returns an empty list.

Examples

! xf:data(<a>{3}) returns the numeric value 3.

! xf:data(<a/>) returns an empty list ().

! xf:data((<a>{3}, <a>{7})) generates a compile-time error because the
parameter is a list of nodes.

! xf:data(<date location="SD">2002-07-12</date>) returns the string value
"2002-07-12.".

! xf:data(3) generates a compile-time error because 3 is not a node.

xf:local-name

Returns a string value that corresponds to the local name of the specified node. This
function is not available in the XQuery functions section of the Data View Builder.

Data Types

! Input data type: xsext:node

! Returned data type: xs:string?

Notes

The xf:local-name function is available to Liquid Data, but you cannot explicitly map
a node in the Data View Builder, so you therefore cannot construct a query in the Data
View Builder that uses the xf:local-name function. In some cases, however, the Data
View Builder will implicitly generate queries that use the xf:local-name function. The
A-10 Building Queries and Data Views

Aggregate Functions
typical case when the Data View Builder generates the xf:local-name function is when
it does not know the name of the elements at query generation time, and it uses the
xf:local-name function in a variable expression containing wildcard characters.

XQuery Specification Compliance

! Liquid Data does not support the format that accepts no input parameters.

! Liquid Data supports an optional string as the returned value instead of a
required string.

Examples

! xf:local-name(<db:homes/>) returns the string value "homes."

! xf:local-name(73) generates a compile-time error because the parameter is a
number and not a node.

Aggregate Functions

Aggregate functions process a sequence as argument and return a single value
computed from values in the sequence. Except for the Count function, if the sequence
contains nodes, the function extracts the value from the node and uses it in the
computation. The following aggregate functions are available:

! xf:avg

! xf:count

! xf:max

! xf:min

! xf:sum
Building Queries and Data Views A-11

A Functions Reference
xf:avg

Returns the average of a sequence of numbers.

Data Types

! Input data type: xs:double*

! Returned data type: xs:double?

Notes

If the source value contains nodes, the value of each node is extracted using the xf:data
function. If an empty list occurs, it is discarded.

If the source value contains only numbers, the Avg function returns the average of the
numbers, which is the sum of the source sequence divided by the count of the source
sequence.

If the source value is an empty list, the function returns an empty list.

If the source value contains non-numeric data, the function returns an error.

XQuery Specification Compliance

Liquid Data requires a list of double precision values instead of a list of items.

Examples

! xf:avg((4, 10)) returns the double precision floating point value 7.0.

! xf:avg((4, (), 10)) also returns the double precision floating point value 7.0.

! xf:avg((4, "10")) generates a compile-time error because the input sequence
contains a string.
A-12 Building Queries and Data Views

Aggregate Functions
xf:count

Returns the number of items in the sequence in an unsigned integer.

Data Types

! Input data type: xs:item*

! Returned data type: xs:integer

Notes

If the source value is an empty list, the function returns an empty list.

XQuery Specification Compliance

Liquid Data returns an integer value (xs:integer) instead of an unsigned int
(xs:unsignedInt) value.

Examples

! xf:count((3, "10")) returns the integer value 2.

! xf:count(()) returns the integer value 0.

! xf:count((3, "10", (),)) returns the value 3 (the empty list is ignored).

xf:max

Returns the maximum value from a sequence. If there are two or more items with the
same value, the specific item whose value is returned is implementation-dependent.
Building Queries and Data Views A-13

A Functions Reference
Data Types

! Input data type: xsext:item*

! Returned data type: xsext:item?

Notes

If the source value contains nodes, the value of each node is extracted using the xf:data
function. If an empty list occurs, it is discarded.

All values in the list must be instances of one of the following types:

! numeric

! xs:string

! xs:date

! xs:time

! xs:dateTime

For example, if the list contains items with typed values that represent both decimal
values and dates, an error will occur.

The values in the sequence must have a total order:

! DateTime values must all contain a time zone or omit a time zone.

! Duration values must contain only years and months or contain only days, hours,
minutes and seconds.

Both of these conditions must be true; otherwise, the function returns an error.

XQuery Specification Compliance

! Liquid Data does not support a format with a collation literal.

! Liquid Data has no restrictions on date and time input values.

! Liquid Data supports a correct return type of xs:item? instead of
xs:anySimpleType?, which is incorrect.

! Liquid Data supports only numeric, xs:string, xs:date, xs:time, and xs:dateTime
data types.
A-14 Building Queries and Data Views

Aggregate Functions
Examples

! xf:max((3, 10)) returns the value 10.

! xf:max((<a>{4}, 3, (), {2})) returns <a>{4}.

xf:min

Returns the minimum value from a sequence of numbers. If there are two or more
items with the same value, the specific item whose value is returned is
implementation-dependent.

Data Types

! Input data type: xsext:item*

! Returned data type: xsext:item?

Notes

If the source value contains nodes, the value of each node is extracted using the Data
function. If an empty list occurs, it is discarded.

After extracting the values from nodes, the sequence must contain only values of a
single type.

The values in the sequence must have a total order:

! DateTime values must all contain a time zone or omit a timezone

! Duration values must contain only years and months or contain only days, hours,
minutes and seconds

Both of these conditions must be true; otherwise, the function returns an error.
Building Queries and Data Views A-15

A Functions Reference
XQuery Specification Compliance

! Liquid Data does not support a format with a collation literal.

! Liquid Data has no restrictions on date and time input values.

! Liquid Data supports a correct return type of xs:item? instead of
xs:anySimpleType?, which is incorrect.

! Liquid Data supports only numeric, xs:string, xs:date, xs:time, and xs:dateTime
data types.

Examples

! xf:min((3, 10)) returns the value 3.

! xf:min((<a>{4}, 3, (), {2})) returns {2}.

! xf:min((3, 4, "2")) generates an error because the sequence contains both
numeric and string values.

! xf:min(()) returns an empty list ().

xf:sum

Returns the sum of a sequence of numbers.

Data Types

! Input data type: xsext:anyValue*

! Returned data type: xsext:anyValue?

Notes

If the source value contains nodes, the value of each node is extracted using the Data
function. If an empty list occurs, it is discarded.
A-16 Building Queries and Data Views

Boolean Functions
If the source value contains only numbers, the Sum function returns the sum of the
numbers.

If the source value contains non-numeric data, the function returns an error.

If the input sequence is empty, the function returns an empty list.

XQuery Specification Compliance

! Liquid Data adheres to the prior XQuery specification (December, 2001) by
returning an empty list if the input sequence is empty.

! Liquid Data output depends on the input type. If the input type is xs:decimal, the
returned value is xs:decimal; if the input type is xs:decimal and xs:float, the
returned value is xs:float; if the input type is xs:double, the returned value is
xs:double.

Examples

! xf:sum((3, 8, (), 1)) returns the value 12.

! xf:sum(()) returns an empty list ().

! xf:sum((<a>{4}, 3)) returns a value of 7.

! xf:sum(("7", 3)) generates a compile-time error because the sequence that is
passed in to the function is not homogenous.

Boolean Functions

Boolean functions return true (1) or false(0) values. The following boolean functions
are available:

! xf:false

! xf:not

! xf:true
Building Queries and Data Views A-17

A Functions Reference
xf:false

Returns the boolean value false.

Data Types

! Input data type: No input data required.

! Returned data type: xs:boolean

XQuery Specification Compliance

Conforms to the current specification.

Examples

! xf:false() returns false.

! xf:false(34) generates a compile-time error because the function does not accept
any parameters.

xf:not

Returns true if the value of the source value is false and false if the value of the source
value is true.

Data Types

! Input data type: xs:boolean?

! Returned data type: xs:boolean?
A-18 Building Queries and Data Views

Boolean Functions
XQuery Specification Compliance

! Liquid Data accepts an optional boolean value instead of a sequence as input.

! Liquid Data returns a true value if the input is an empty list.

! Liquid Data returns an optional boolean value instead of one boolean value.

Examples

! xf:not(xf:false()) returns the boolean value true.

! xf:not(xf:true()) returns the boolean value false.

! xf:not(32) generates a compile-time error because the input value is not boolean.

! xf:not(()) returns the boolean value true.

xf:true

Returns the boolean value true.

Data Types

! Input data type: No input data required.

! Returned data type: xs:boolean

XQuery Specification Compliance

Conforms to the current specification.

Examples

! xf:true() returns true.

! xf:true("34") generates a compile-time error because the function does not
accept any parameters.
Building Queries and Data Views A-19

A Functions Reference
Cast Functions

Cast functions process a source value as the argument and type cast the output to a
different datatype. Type casting will typically fail if applied to more than one element.
An empty list is allowed, but the result of the type casting will consist of an empty list.
Type casting functions are more likely to generate exceptions at run time if the
parameter cannot be converted to the corresponding type.

The following table describes Liquid Data data types that conform to the XQuery
specification that you can use in type casting functions. For more information about
data types, see the XQuery 1.0 and XPath 2.0 Functions and Operators specification.
The following cast functions are available:

! cast as xs:boolean

! cast as xs:byte

! cast as xs:date

! cast as xs:dateTime

! cast as xs:decimal

! cast as xs:double

! cast as xs:float

! cast as xs:int

! cast as xs:integer

! cast as xs:long

! cast as xs:short

! cast as xs:string

! cast as xs:time
A-20 Building Queries and Data Views

Cast Functions
cast as xs:boolean

Converts the input to a boolean value (true or false).

If the input parameter is empty, the function returns an empty list. Otherwise, Liquid
Data generates an error.

Data Types

! Input data type: xs:anyValue

! Returned data type: xs:boolean

Notes

This function uses the xf:boolean-from-string function.

XQuery Specification Compliance

Conforms to the current specification; however, Liquid Data does not accept the values
�1� and �0� to represent true and false, as described in the W3C XML Schema
document.

Examples

! Cast as xs:boolean ("true") returns the boolean value true.

! Cast as xs:boolean ("FalSE") returns the boolean value false.

! Cast as xs:boolean (0) generates a runtime error because the value cannot be cast
to a boolean value.

! Cast as xs:boolean (1) generates a runtime error because the value cannot be cast
to a boolean value.

! Cast as xs:boolean (()) returns an empty list ().
Building Queries and Data Views A-21

A Functions Reference
cast as xs:byte

Converts the input to a byte value.

Data Types

! Input data type: xs:anyValue

! Returned data type: xs:byte

Notes

This function uses the xf:byte function.

This function will complete sucessfully only if the value cast is a numeric value greater
than -128 or less than 128; all other values will fail.

XQuery Specification Compliance

Conforms to the current specification.

Examples

! cast as xs:byte(22) returns the byte value of 22.

! cast as xs:byte(22.9334) returns the byte value 22.

cast as xs:date

Converts the input to a date value.

Data Types

! Input data type: xs:anyValue

! Returned data type: xs:date
A-22 Building Queries and Data Views

Cast Functions
Notes

This function uses the xf:date function.

The string must contain a date in one of these formats:

! YYY-MM-DD

! YYYY-MM-DDZ

! YYYY-MM-DD-hh:mm

where YYYY represents the year, MM represents the month (as a number), DD
represents the day, hh and mm represents the number of hours and minutes that the
timezone differs from GMT (UTC). Z indicates that the date is in the GMT timezone.

If the string cannot be parsed into a date value, Liquid Data generates an error.

XQuery Specification Compliance

Conforms to the current specification.

Examples

! Cast as xs:date ("2002-07-23") returns the date July 23rd, 2002.

! Cast as xs:date ("2002-07") generates a runtime error because the value cannot
be converted to a date.

cast as xs:dateTime

Converts the input to a dateTime value.

Data Types

! Input data type: xs:anyValue

! Returned data type: xs:dateTime
Building Queries and Data Views A-23

A Functions Reference
Notes

This function uses the xf:date function.

XQuery Specification Compliance

Conforms to the current specification.

Examples

! Cast as xs:dateTime ("2002-07-23T23:04:44") returns the dateTime value July
23rd, 2002 at 11:04:44 PM in the local timezone.

! Cast as xs:dateTime ("2002-07-23T23:04:44-08:00") returns the dateTime value
July 23rd, 2002 at 11:04:44 PM in the a timezone that is offset by -8 hours from
GMT (UTC).

! Cast as xs:date ("2002-07-23") generates a runtime error because no time value
is specified.

cast as xs:decimal

Converts the input to a decimal value.

Data Types

! Input data type: xs:anyValue

! Returned data type: xs:decimal

Notes

This function uses the xf:decimal function.
A-24 Building Queries and Data Views

Cast Functions
XQuery Specification Compliance

! Liquid Data does not support not-a-number (NaN), -0, or the negative and
positive infinity values -INF and INF.

! Liquid Data attempts to support any input value, instead of just string literals,
and convert it at run time.

! Liquid Data supports "e" and "E" to construct floating point integer values.

Examples

! Cast as xs:decimal ("213") returns the decimal value 213.

! Cast as xs:decimal ("-100") returns the decimal value -100.

! Cast as xs:decimal (0) returns the decimal value 0.

cast as xs:double

Converts the input to a double precision value.

Data Types

! Input data type: xs:anyValue

! Returned data type: xs:double

Notes

This function uses the xf:double function.
Building Queries and Data Views A-25

A Functions Reference
XQuery Specification Compliance

! Liquid Data does not support not-a-number (NaN), -0, or the negative and
positive infinity values -INF and INF.

! Liquid Data attempts to support any input value, instead of just string literals,
and convert it at run time.

Examples

! Cast as xs:double ("21") returns the double precision value 21.0.

! Cast as xs:double ("-3e3") returns the double precision value -3000.0.

! Cast as xs:double (0) returns the double precision value 0.0.

! Cast as xs:double ("abc) generates a runtime error because the string cannot be
converted to a double precision value.

cast as xs:float

Converts the input to a floating point value.

Data Types

! Input data type: xs:anyValue

! Returned data type: xs:float

Notes

This function uses the xf:float function.
A-26 Building Queries and Data Views

Cast Functions
XQuery Specification Compliance

! Liquid Data does not support not-a-number (NaN), -0, or the negative and
positive infinity values -INF and INF.

! Liquid Data attempts to support any input value, instead of just string literals,
and convert it at run time.

Examples

! Cast as xs:float ("21") returns the floating point value 21.0.

! Cast as xs:float ("-3e3") returns the floating point value -3000.0.

! Cast as xs:float (0) returns the floating point value 0.0.

! Cast as xs:float ("abc) generates a runtime error because the string cannot be
converted to a floating point value.

cast as xs:int

Converts the input to an int value.

Data Types

! Input data type: xs:anyValue

! Returned data type: xs:int

Notes

This function uses the xf:int function.
Building Queries and Data Views A-27

A Functions Reference
XQuery Specification Compliance

Conforms to the current specification.

cast as xs:integer

Converts the input to an integer value.

Data Types

! Input data type: xs:anyValue

! Returned data type: xs:integer

Notes

This function uses the xf:integer function.

XQuery Specification Compliance

Conforms to the current specification.

cast as xs:long

Converts the input to a long value.

Data Types

! Input data type: xs:anyValue

! Returned data type: xs:long
A-28 Building Queries and Data Views

Cast Functions
Notes

This function uses the xf:long function.

XQuery Specification Compliance

Conforms to the current specification.

cast as xs:short

Converts the input to a short value.

Data Types

! Input data type: xs:anyValue

! Returned data type: xs:short

Notes

This function uses the xf:short function.

XQuery Specification Compliance

Conforms to the current specification.

cast as xs:string

Converts the input to a string value.
Building Queries and Data Views A-29

A Functions Reference
Data Types

! Input data type: xs:anyValue

! Returned data type: xs:string

Notes

This function uses the xf:string function.

XQuery Specification Compliance

! Liquid Data treats xf:string as both a constructor and an accessor.

! Liquid Data supports only the string format that requires one node of any type as
the input.

! Liquid Data accepts xsext:anyType input instead of a list of items.

! Liquid Data returns an optional string.

! Liquid Data does not recognize entities.

Examples

! Cast as xs:string ("abc") returns the string value "abc."

! Cast as xs:string (21) returns the string value "21."

! Cast as xs:string (xf:true()) returns the string value "true."

! Cast as xs:string (xf:false()) returns the string value "false."

cast as xs:time

Converts the input to a time value.
A-30 Building Queries and Data Views

Cast Functions
Data Types

! Input data type: xs:anyValue

! Returned data type: xs:time

Notes

This function uses the xf:time function.

XQuery Specification Compliance

Conforms to the current specification.

Examples

! Cast as xs:time ("09:35:20") returns the time value 9:35:20 AM in the current
timezone.

! Cast as xs:time (<a>09:35:20) returns the time value 9:35:20 AM in the
current timezone.

! Cast as xs:time ("9:35:20") generates a runtime error because the time format is
incorrect (hour specified with 1 digit instead of 2) and therefore the string cannot
be converted to a time value.

! Cast as xs:time ("21:35:20-08:00") returns the time value 9:35:20 PM in the a
timezone that is offset by -8 hours from GMT (UTC).
Building Queries and Data Views A-31

A Functions Reference
Comparison Operators

XQuery has operators that are specific to comparisons operations. The following
operators are available:

! eq

! ge

! gt

! le

! lt

! ne

eq

Returns true if Parameter1 is exactly equal to Parameter2.

Data Types

! Parameter1 data type: xsext:anyValue?

! Parameter2 data type: xsext:anyValue?

! Returned data type: xs:boolean?

Notes

This is a comparison operator that you can use as a function to compare operands.

If either operand is a node, Liquid Data extracts its typed value first, then performs a
type check to ensure that the type of one operand is promotable to the other type;
otherwise Liquid Data generates an error.

If either operand is an empty list, the function returns an empty list.
A-32 Building Queries and Data Views

Comparison Operators
XQuery Specification Compliance

! Liquid Data does not cast xs:anySimpleType to any other supported type.

! Liquid Data does not support these data types: xs:yearMonthDuration,
xs:dayTimeDuration, gregorian, xs:hexBinary, xs:base64Binary, xs:anyURI,
xs:QName, or xs:NOTATION values.

Examples

! 45 eq 45.0 returns the boolean value true.

! 170 eq 34 returns the boolean value false.

! 3 eq "3" generates an error because the decimal value 3 cannot be promoted to
the string value "3."

! 1 eq xf:true() generates an error because the decimal value 1 cannot be promoted
to the boolean value true.

! "abc" eq "abc" returns the boolean value true.

! (1, ()) eq 1 evaluates to the boolean value true because there is exactly one value
in the leftmost list and that value is equal to the rightmost value.

! (1, 2) eq 1 generates a compile-time error because the operator does not evaluate
lists.

ge

Returns true if Parameter1 is greater than or equal to Parameter2.

Data Types

! Parameter1 data type: xsext:anyValue?

! Parameter2 data type: xsext:anyValue?

! Returned data type: xs:boolean?
Building Queries and Data Views A-33

A Functions Reference
Notes

This is a comparison operator that you can use as a function to compare operands.

If either operand is a node, Liquid Data extracts its typed value first, then performs a
type check to ensure that the type of one operand is promotable to the other type;
otherwise Liquid Data generates an error.

If either operand is an empty list, the function returns an empty list.

XQuery Specification Compliance

! Liquid Data does not cast xs:anySimpleType to any other supported type.

! Liquid Data does not support these data types: xs:yearMonthDuration,
xs:dayTimeDuration, gregorian, xs:hexBinary, xs:base64Binary, xs:anyURI,
xs:QName, or xs:NOTATION values.

Examples

See the examples for �eq� operator (previous entry in this table).

gt

Returns true if Parameter1 is greater than Parameter2.

Data Types

! Parameter1 data type: xsext:anyValue?

! Parameter2 data type: xsext:anyValue?

! Returned data type: xs:boolean?

Notes

This is a comparison operator that you can use as a function to compare operands.
A-34 Building Queries and Data Views

Comparison Operators
If either operand is a node, Liquid Data extracts its typed value first, then performs a
type check to ensure that the type of one operand is promotable to the other type;
otherwise Liquid Data generates an error.

If either operand is an empty list, the function returns an empty list.

XQuery Specification Compliance

Liquid Data does not cast xs:anySimpleType to any other supported type.

Liquid Data does not support these data types: xs:yearMonthDuration,
xs:dayTimeDuration, gregorian, xs:hexBinary, xs:base64Binary, xs:anyURI,
xs:QName, or xs:NOTATION values.

Examples

See the examples for the �eq� operator (previous entry in this table).

le

Returns true if Parameter1 is less than or equal to Parameter2.

Data Types

! Parameter1 data type: xsext:anyValue?

! Parameter2 data type: xsext:anyValue?

! Returned data type: xs:boolean?

Notes

This is a comparison operator that you can use as a function to compare operands.

If either operand is a node, Liquid Data extracts its typed value first, then performs a
type check to ensure that the type of one operand is promotable to the other type;
otherwise Liquid Data generates an error.
Building Queries and Data Views A-35

A Functions Reference
If either operand is an empty list, the function returns an empty list.

XQuery Specification Compliance

Liquid Data does not cast xs:anySimpleType to any other supported type.

Liquid Data does not support these data types: xs:yearMonthDuration,
xs:dayTimeDuration, gregorian, xs:hexBinary, xs:base64Binary, xs:anyURI,
xs:QName, or xs:NOTATION values.

Examples

See the examples for the �eq� operator (previous entry in this table).

lt

Returns true if Parameter1 is less than or equal to Parameter2.

Data Types

! Parameter1 data type: xsext:anyValue?

! Parameter2 data type: xsext:anyValue?

! Returned data type: xs:boolean?

Notes

This is a comparison operator that you can use as a function to compare operands.

If either operand is a node, Liquid Data extracts its typed value first, then performs a
type check to ensure that the type of one operand is promotable to the other type;
otherwise Liquid Data generates an error.

If either operand is an empty list, the function returns an empty list.
A-36 Building Queries and Data Views

Comparison Operators
XQuery Specification Compliance

Liquid Data does not cast xs:anySimpleType to any other supported type.

Liquid Data does not support these data types: xs:yearMonthDuration,
xs:dayTimeDuration, gregorian, xs:hexBinary, xs:base64Binary, xs:anyURI,
xs:QName, or xs:NOTATION values.

Examples

See the examples for the �eq� operator (previous entry in this table).

ne

The result is false if both values are false and true if at least one of the values is true.
Parameter2 is not evaluated if Parameter1 evaluates to true.

Data Types

! Parameter1 data type: xsext:boolean?

! Parameter2 data type: xsext:boolean?

! Returned data type: xs:boolean?

Notes

This is a boolean operator that you can use as a function to return a true or false result.
It is not a standard XQuery operator, but necessary to complete certain comparative
expressions in Liquid Data.

The arguments and return type are all boolean.

If either operand is a node, Liquid Data extracts its typed value first, then performs a
type check to ensure that the type of one operand is promotable to the other type;
otherwise Liquid Data generates an error.

If either operand is an empty list, the function returns an empty list.
Building Queries and Data Views A-37

A Functions Reference
XQuery Specification Compliance

Liquid Data does not support these data types: xs:yearMonthDuration,
xs:dayTimeDuration, gregorian, xs:hexBinary, xs:base64Binary, xs:anyURI,
xs:QName, or xs:NOTATION values.

Examples

See the examples for the �eq� operator (previous entry in this table).

Constructor Functions

Constructor functions process a source value as the argument. Every data element or
variable has a data type. The data type determines the value that any function
parameter can contain and the operations that can be performed on it. The Liquid Data
supports the following type casting functions. The following constructor functions are
available:

! xf:boolean-from-string

! xf:byte

! xf:decimal

! xf:double

! xf:float

! xf:int

! xf:integer

! xf:long

! xf:short

! xf:string
A-38 Building Queries and Data Views

Constructor Functions
xf:boolean-from-string

Returns a boolean value of true or false from the string source value.

Data Types

! Input data type: xs:string?

! Returned data type: xs:boolean?

Notes

If the input parameter is empty, the function returns an empty list. Otherwise, Liquid
Data generates an error.

XQuery Specification Compliance

! Conforms to the current specification; however, Liquid Data does not accept the
values �1� and �0� to represent true and false, as described in the W3C XML
Schema document.

Examples

! xf:boolean-from-string("true") returns the boolean value true.

! xf:boolean-from-string("FaLSe") returns the boolean value false.

! xf:boolean-from-string("43") generates a runtime error because the input value
cannot be parsed into a boolean value.

! xf:boolean-from-string(43) generates a compile-time error because the input
value is not a string.
Building Queries and Data Views A-39

A Functions Reference
xf:byte

Constructs a byte integer value from the string source value.

Data Types

! Input data type: xsext:anyValue?

! Returned data type: xs:byte?

Notes

An error occurs if the source value is greater than 127 or less than -128.

Liquid Data truncates the input if it is a non-integer number.

If the number falls outside of the range of byte values, the number wraps.

If the number is an integer that falls within the range, the value is unchanged.

If the input is a string, Liquid Data tries to parse it into a byte value.

If the input is the boolean value true, the function returns 1. If it is false, it returns 0.

XQuery Specification Compliance

! Liquid Data does not support not-a-number (NaN) or -0.

! Liquid Data attempts to support any input value and convert it at run time.
A-40 Building Queries and Data Views

Constructor Functions
Examples

! xf:byte('127') returns the byte value one hundred twenty seven.

! xf:byte(38) returns the byte value 38.

! xf:byte("-4") returns the byte value -4.

! xf:byte(128) returns the byte value -128 because the number wraps.

! xf:byte(-129) returns the byte value 127 because the number wraps.

! xf:byte(xf:true()) returns the byte value 1.

! xf:byte(xf:false()) returns the byte value 0.

! xf:byte("true") generates a runtime error because the string literal cannot be
converted to a byte value.

! xf:byte('128') returns an error because one hundred twenty eight is invalid for a
byte integer expression.

xf:decimal

Constructs a decimal value from the source value.

Data Types

! Input data type: xsext:anyValue?

! Returned data type: xs:decimal?
Building Queries and Data Views A-41

A Functions Reference
XQuery Specification Compliance

! Liquid Data does not support not-a-number (NaN), -0, or the negative and
positive infinity values -INF and INF.

! Liquid Data attempts to support any input value, instead of just string literals,
and convert it at run time.

! Liquid Data supports "e" and "E" to construct floating point integer values.

Examples

! xf:decimal("3") returns the decimal value 3.

! xf:decimal(99.1) returns the decimal value 99.1 (the same value that is input to
the function).

! xf:decimal(xf:true()) returns the decimal value 1.

! xf:decimal(xf:false()) returns the decimal value 0.

! xf:decimal("true") generates a runtime error because the string literal cannot be
converted to a decimal value.

xf:double

Constructs a double precision value from the source value.

Data Types

! Input data type: xsext:anyValue?

! Returned data type: xs:double?
A-42 Building Queries and Data Views

Constructor Functions
XQuery Specification Compliance

! Liquid Data does not support not-a-number (NaN), -0, or the negative and
positive infinity values -INF and INF.

! Liquid Data attempts to support any input value, instead of just string literals,
and convert it at run time.

Examples

! xf:double("3") returns the double precision floating point value 3.0.

! xf:double(5.1) returns the double precision floating point value 5.1.

! xf:double(xf:true()) returns the double precision floating point value 1.0.

! xf:double(xf:false()) returns the double precision floating point value 0.0.

! xf:double("true") generates a runtime error because the string literal cannot be
converted to a double precision floating point value.

! xf:double("12345678901234567890") evaluates to the double precision floating
point value 1.2345678901234567E19.

xf:float

Constructs a floating point value from the source value.

Data Types

! Input data type: xsext:anyValue?

! Returned data type: xs:float?
Building Queries and Data Views A-43

A Functions Reference
XQuery Specification Compliance

! Liquid Data does not support not-a-number (NaN), -0, or the negative and
positive infinity values -INF and INF.

! Liquid Data attempts to support any input value, instead of just string literals,
and convert it at run time.

Examples

! xf:float(1) returns the floating-point value 1.0.

! xf:float("1") returns the floating-point value 1.0.

! xf:float(xf:true()) returns the floating point value 1.0.

! xf:float(xf:false()) returns the floating-point value 0.0.

! xf:float("true") generates a runtime error because the string literal cannot be
converted to a floating-point value.

! xf:float("12345678901234567890") returns the floating-point value
1.2345679E19.

xf:int

Constructs an integer value from the source value. The largest integer value is limited
to a 32-bit expression.

Data Types

! Input data type: xsext:anyValue?

! Returned data type: xs:integer?
A-44 Building Queries and Data Views

Constructor Functions
Notes

An error occurs if the source value is greater than 2,147,483,647 or less than
-2,147,483,648. To the Liquid Data Server, the xf:int function is exactly the same as
the xf:integer function.

XQuery Specification Compliance

! Liquid Data does not support not-a-number (NaN) or -0.

! Liquid Data attempts to support any input value, instead of just string literals,
and convert it at run time.

Examples

! xf:int(4056) returns the int value 4056.

! xf:int("-35") returns the int value -35.

! xf:int(xf:true()) returns the int value 1.

! xf:int(xf:false()) returns the int value 0.

! xf:int("true") generates a runtime error because the string literal cannot be
converted to an int value.

xf:integer

Constructs an integer value from the source value. The largest integer value is limited
to a 32-bit expression.

Data Types

! Input data type: xsext:anyValue?

! Returned data type: xs:integer?
Building Queries and Data Views A-45

A Functions Reference
Notes

An error occurs if the source value is greater than 2,147,483,647 or less than
-2,147,483,648. To the Liquid Data Server, the xf:integer function is exactly the same
as the xf:int function.

XQuery Specification Compliance

! Liquid Data does not support not-a-number (NaN), -0, or the negative and
positive infinity values -INF and INF.

! Liquid Data attempts to support any input value, instead of just string literals,
and convert it at run time.

Examples

! xf:integer(4056) returns the int value 4056.

! xf:integer("-35") returns the int value -35.

! xf:integer(xf:true()) returns the int value 1.

! xf:integer(xf:false()) returns the int value 0.

! xf:integer("true") generates a runtime error because the string literal cannot be
converted to an int value.

xf:long

Constructs a four-byte integer value from the source value. Use a long integer data type
when the value exceeds the limitations imposed by other integer data types.

Data Types

! Input data type: xsext:anyValue?

! Returned data type: xs:long?
A-46 Building Queries and Data Views

Constructor Functions
Notes

An error occurs if the source value is greater than 9,223,372,036,854,775,807 or less
than -9,223,372,036,854,775,808.

XQuery Specification Compliance

! Liquid Data does not support not-a-number (NaN) or -0.

! Liquid Data attempts to support any input value, instead of just string literals,
and convert it at run time.

Examples

! xf:long(1) returns the long integer value 1.

! xf:long("-91") returns the long integer value -91.

! xf:long(xf:true()) returns the long integer value 1.

! xf:long(xf:false()) returns the long integer value 0.

! xf:long("true") generates a runtime error because the string literal cannot be
converted to a long integer value.

xf:short

Constructs a two-byte integer value from the source value. The largest short integer
value is limited to a 16-bit expression.

Data Types

! Input data type: xsext:anyValue?

! Returned data type: xs:short?
Building Queries and Data Views A-47

A Functions Reference
Notes

An error occurs if the source value is greater than 32,767 or less than -32,768.

XQuery Specification Compliance

! Liquid Data does not support not-a-number (NaN) or -0.

! Liquid Data attempts to support any input value, instead of just string literals,
and convert it at run time.

Examples

! xf:short(1) returns the short integer value 1.

! xf:short("-91") returns the short integer value -91.

! xf:short(xf:true()) returns the short integer value 1.

! xf:short(xf:false()) returns the short integer value 0.

! xf:short("true") generates an error because the string literal cannot be converted
to a short integer value.

xf:string

Constructs a string value from the source value. The source value can be a sequence,
a node of any kind, or a simple value.

Data Types

! Input data type: xs:anyType

! Returned data type: xs:string?
A-48 Building Queries and Data Views

Constructor Functions
Notes

Liquid Data accepts any simple value, but supports no other accessor types, such as a
sequence or other type of node.

XQuery Specification Compliance

! Liquid Data treats xf:string as both a constructor and an accessor.

! Liquid Data supports only the string format that requires one node of any type as
the input.

! Liquid Data accepts xsext:anyType input instead of a list of items.

! Liquid Data returns an optional string.

! Liquid Data does not recognize entities.

Examples

! xf:string(1) returns the string value "1."

! xf:string("-91") returns the string value "-91."

! xf:string(xf:true()) returns the string value "true."

! xf:string(xf:false()) returns the string value "false."

! xf:string("abc", "def") generates a compile-time error because the function does
not accept two parameters.

! xf:string(("abc", "def")) generates a compile-time error because the function
does not accept a sequence as parameter.

! xf:string(<a/>) returns an empty string value "".

! xf:string(<a>abc) returns the string value "abc."
Building Queries and Data Views A-49

A Functions Reference
Date and Time Functions

Date and Time functions extract all or part of a dateTime expression and use it in a
query. The following date and time functions are available:

! xf:add-days

! xf:current-dateTime

! xf:date

! xfext:date-from-dateTime

! xfext:date-from-string-with-format

! xf:dateTime

! xfext:dateTime-from-string-with-format

! xf:get-hours-from-dateTime

! xf:get-hours-from-time

! xf:get-minutes-from-dateTime

! xf:get-minutes-from-time

! xf:get-seconds-from-dateTime

! xf:get-seconds-from-time

! xf:time

! xfext:time-from-dateTime

! xfext:time-from-string-with-format
A-50 Building Queries and Data Views

Date and Time Functions
xf:add-days

Adds the number of days specified by Parameter2 to the date specified by Parameter1.
The value of Parameter2 may be negative.

Data Types

! Parameter1 data type: xs:date?

! Parameter2 data type: xs:decimal?

! Returned data type: xs:date?

Notes

If Parameter1 has a timezone, it remains unchanged. The returned value is always
normalized into a correct Gregorian calendar date. If either parameter is an empty list,
the function returns an empty list.

XQuery Specification Compliance

Conforms to the current specification.

Examples

! xf:add-days(xf:date("2002-07-15"), -3) returns a date value corresponding to
July 12, 2002.

! xf:add-days(xf:date("2002-07-15"), 0) returns a date value corresponding to July
15, 2002.

! xf:add-days(xf:date("2002-07-15"), 2) returns a date value corresponding to July
17, 2002.

! xf:add-days("2002-07-15", 2) generates a compile-time error because the first
parameter is a string and not a date value.
Building Queries and Data Views A-51

A Functions Reference
xf:current-dateTime

Returns the current date and time.

Data Types

No parameters required.

Returned data type: xs:dateTime

Notes

The function returns the current date and time in the current timezone.

If the function is called multiple times during the execution of a query, it returns the
same value each time.

XQuery Specification Compliance

Liquid Data returns the time zone where the Liquid Data Server is running.

Example

xf:current-dateTime() can return a dateTime value such as
2002-07-25T01:00:38.812-08:00, which represents July 25th, 2002 at 1:00:38 and 812
thousandths of a second in a time zone that is offset by -8 hours from GMT (UTC).
A-52 Building Queries and Data Views

Date and Time Functions
xf:date

Returns a date from a source value, which must contain a date in one of these formats:

! YYYY-MM-DD

! YYYY-MM-DDZ

! YYYY-MM-DD+hh:mm

! YYYY-MM-DD-hh:mm

where:

! YYYY represents the year

! MM represents the month (as a number)

! DD represents the day

! Plus (+) or minus (-) is a positive or negative time zone offset

! hh represents the hours

! mm represents the number minutes that the time zone differs from GMT (UTC)

! Z indicates that the time is in the GMT time zone

Data Types

! Input data type: xs:string?

! Returned data type: xs:date?

Notes

The representation for date is the leftmost representation for dateTime:
YYYY-MM-DD+hh:mm with an optional following time zone indicator (Z).

Liquid Data supports this year range: 0000�9999.

XQuery Specification Compliance

Conforms to the current specification.
Building Queries and Data Views A-53

A Functions Reference
Examples

! xf:date("2002-07-15") returns a date value corresponding to July 15th, 2002 in
the current time zone.

! xf:date("2002-07-15-08:00") returns a date value corresponding to July 15th,
2002 in a timezone that is offset by -8 hours from GMT (UTC).

! xf:date("2002-7-15") generates a runtime error because the month is not
specified with two digits.

! xf:date("2002-07-15Z") returns a date value corresponding to July 15th, 2002 in
the GMT time zone.

! xf:date("2002-02-31") generates a runtime error because the string (02-31) does
not represent a valid date.

xfext:date-from-dateTime

Returns the leftmost date portion of a dateTime value.

Data Types

! Input data type: xs:dateTime?

! Returned data type: xs:date?

Notes

This is an extended function. It has an xfext: prefix identifier (namespace), which is
the extension to the standard XQuery function namespace (xf:). For more information
about extended functions, see �Naming Conventions� on page A-3. For more
information about valid formats for dateTime, see �xf:dateTime� on page A-56.

XQuery Specification Compliance

Liquid Data supports date-from-dateTime as an extended function.
A-54 Building Queries and Data Views

Date and Time Functions
Examples

! xfext:date-from-dateTime(xf:dateTime("2002-07-15T21:09:44")) returns a date
value corresponding to July 15th, 2002 in the current time zone.

! xfext:date-from-dateTime(()) returns an empty list ().

xfext:date-from-string-with-format

Returns the right-most date portion of a dateTime value according to the pattern
specified by Parameter1. For more information, see �Date and Time Patterns� on page
A-7.

Data Types

! Parameter1 data type: xs:string?

! Parameter2 data type: xs:string?

! Returned data type: xs:date?

Notes

This is an extended function. It has an xfext: prefix identifier (namespace), which is
the extension to the standard XQuery function namespace (xf:). For more information
about extended functions, see �Naming Conventions� on page A-3.

XQuery Specification Compliance

Liquid Data supports date-from-string-with-format as an extended function.
Building Queries and Data Views A-55

A Functions Reference
Examples

! xfext:date-from-string-with-format("yyyy-MM-dd G", "2002-06-22 AD") returns
the specified date in the current time zone.

! xfext:date-from-string-with-format("yyyy-MM-dd", "2002-July-22") generates
an error because the date string does not match the specified format.

! xfext:date-from-string-with-format("yyyy-MMM-dd", "2002-July-22") returns
the specified date in the current time zone.

xf:dateTime

Returns a dateTime value from a source value, which must contain a date and time in
one of these formats:

! YYYY-MM-DDThh:mm:ss

! YYYY-MM-DDThh:mm:ssZ

! YYYY-MM-DDThh:mm:ss+hh:mm

! YYYY-MM-DDThh:mm:ss-hh:mm
A-56 Building Queries and Data Views

Date and Time Functions
where the following is true:

! YYYY represents the year

! MM represents the month (as a number)

! DD represents the day

! T is the date and time separator

! hh represents the number of hours

! mm represents the number of minutes

! ss represents the number of seconds

! Plus (+) or minus (-) is a positive or negative time zone offset

! hh represents the hours

! mm represents the number minutes that the time zone differs from GMT (UTC)

! Z indicates that the time is in the GMT time zone

Data Types

! Input data type: xs:string?

! Returned data type: xs:dateTime?

Notes

Returns a date and time in YYYY-MM-DDT+hh:mm:ss format.

This expression can be preceded by an optional leading minus (-) sign to indicate a
negative number. If the sign is omitted, positive (+) is assumed.

Use additional digits to increase the precision of fractional seconds if desired. The
format ss.ss... with any number of digits after the decimal point is supported. Fractional
seconds are optional.

Liquid Data supports this year range: 0000�9999.
Building Queries and Data Views A-57

A Functions Reference
XQuery Specification Compliance

Conforms to the current specification.

Examples

! xf:dateTime("2002-07-15T21:09:44") returns a date value corresponding to July
15th, 2002 at 9:09PM and 44 seconds in the current time zone.

! xf:dateTime("2002-07-15T21:09:44.566") returns a date value corresponding to
July 15th, 2002 at 9:09PM and 44.566 seconds in the current time zone

! xf:dateTime("2002-07-15T21:09:44-08:00") returns a date value corresponding
to July 15th, 2002 at 9:09PM and 44 seconds, in a time zone that is offset by -8
hours from GMT (UTC).

! xf:dateTime("2002-7-15T21:09:44") generates a runtime error because the
month is not specified using two digits

! xf:dateTime("2002-07-15T21:09:44Z") returns a date value corresponding to
July 15th, 2002 at 9:09PM and 44 seconds, in the GMT timezone

xfext:dateTime-from-string-with-format

Returns a new dateTime value from a string source value according to the pattern
specified by Parameter1.

Data Types

! Parameter1 data type: xs:string?

! Parameter2 data type: xs:string?

! Returned data type: xs:dateTime?
A-58 Building Queries and Data Views

Date and Time Functions
Notes

This is an extended function. It has an xfext: prefix identifier (namespace), which is
the extension to the standard XQuery function namespace (xf:).

For more information about extended functions, see �Naming Conventions� on page
A-3, and see �Date and Time Patterns� on page A-7.

XQuery Specification Compliance

Liquid Data supports dateTime-from-string-with-format as an extended function.

Examples

! xfext:dateTime-from-string-with-format("yyyy-MM-dd G", "2002-06-22 AD")
returns the specified date, 12:00:00AM in the current time zone.

! xfext:dateTime-from-string-with-format("yyyy-MM-dd 'at' hh:mm", "2002-06-22
at 11:04") returns the specified date, 11:04:00AM in the current time zone.

! xfext:dateTime-from-string-with-format("yyyy-MM-dd", "2002-July-22")
generates an error because the date string does not match the specified format.

! xfext:dateTime-from-string-with-format("yyyy-MMM-dd", "2002-July-22")
returns 12:00:00AM in the current time zone.

xf:get-hours-from-dateTime

Returns an integer value representing the hour identified in dateTime.

Data Types

! Input data type: xs:dateTime?

! Returned data type: xs:integer?
Building Queries and Data Views A-59

A Functions Reference
Notes

The hour value ranges from 0 to 23.

If the source value is an empty list, the function returns an empty list.

XQuery Specification Compliance

Conforms to the current specification.

Examples

! xf:get-hours-from-dateTime(xf:dateTime("2002-07-15T21:09:44")) returns the
integer value 21.

! xf:get-hours-from-dateTime(()) returns an empty list ().

xf:get-hours-from-time

Returns an integer representing the hour identified in time.

Data Types

! Input data type: xs:time?

! Returned data type: xs:integer?

Notes

The hour value ranges from 0 to 23, inclusive.

If the source value is an empty list, the function returns an empty list.

XQuery Specification Compliance

Conforms to the current specification.
A-60 Building Queries and Data Views

Date and Time Functions
Examples

! xf:get-hours-from-time(xf:time("21:09:44")) returns the integer value 21.

! xf:get-hours-from-time(()) returns an empty list ().

xf:get-minutes-from-dateTime

Returns an integer value representing the minutes identified in dateTime.

Data Types

! Input data type: xs:dateTime?

! Returned data type: xs:integer?

Notes

Returns an integer value representing the minute identified in the source value. The
minute value ranges from 0 to 59, inclusive.

If the source value is an empty list, the function returns the empty list.

XQuery Specification Compliance

Conforms to the current specification.

Examples

! xf:get-minutes-from-dateTime(xf:dateTime("2002-07-15T21:09:44")) returns the
integer value 9.

! xf:get-minutes-from-dateTime(()) returns an empty list ().
Building Queries and Data Views A-61

A Functions Reference
xf:get-minutes-from-time

Returns an integer value representing the minutes identified in time.

Data Types

! Input data type: xs:time?

! Returned data type: xs:integer?

Notes

The minute value ranges from 0 to 59.

If the source value is an empty list, the function returns an empty list.

XQuery Specification Compliance

Conforms to the current specification.

Examples

! xf:get-minutes-from-time(xf:time("21:09:44")) returns the integer value 9.

! xf:get-minutes-from-time(()) returns an empty list ().

xf:get-seconds-from-dateTime

Returns an integer value representing the seconds identified in dateTime.

Data Types

! Input data type: xs:dateTime?

! Returned data type: xs:integer?
A-62 Building Queries and Data Views

Date and Time Functions
Notes

The seconds value ranges from 0 to 60.999. The precision (number of digits) of
fractional seconds depends on the relevant facet of the argument.

The value can be greater than 60 seconds to accommodate occasional leap seconds
used to keep human time synchronized with the rotation of the planet.

If the source value is an empty list, the function returns an empty list.

XQuery Specification Compliance

Conforms to the current specification.

Examples

! xf:get-seconds-from-dateTime(xf:dateTime("2002-07-15T21:09:44")) returns the
integer value 44.

! xf:get-seconds-from-dateTime(()) returns an empty list ().

xf:get-seconds-from-time

Returns an integer value representing the seconds identified in time.

Data Types:

! Input data type: xs:time?

! Returned data type: xs:integer?

Notes

The seconds value ranges from 0 to 60.999. The precision (number of digits) of
fractional seconds depends on the relevant facet of the argument.
Building Queries and Data Views A-63

A Functions Reference
The value can be greater than 60 seconds to accommodate occasional leap seconds
used to keep human time synchronized with the rotation of the planet.

If the source value is an empty list, the function returns an empty list.

XQuery Specification Compliance

Conforms to the current specification.

Examples

! xf:get-seconds-from-time(xf:time("21:09:44")) returns the integer value 44.

! xf:get-seconds-from-time(()) returns an empty list ().

xf:time

Returns a tine from a source value, which must contain the time in one of these
formats:

! hh:mm:ss

! hh:mm:ssZ

! hh:mm:ss+hh:mm

! hh:mm:ss-hh:mm
A-64 Building Queries and Data Views

Date and Time Functions
where the following is true:

! hh represents the number of hours

! mm represents the number of minutes

! ss represents the number of seconds

! Plus (+) or minus (-) is a positive or negative time zone offset

! hh represents the number of hours that the time zone differs from GMT (UTC)

! mm represents the number of minutes that the time zone differs from GMT
(UTC)

! Z indicates that the time is in the GMT time zone

Data Types

! Input data type: xs:string?

! Returned data type: xs:time?

Notes

Liquid Data generates an error if it cannot parse the string successfully.

XQuery Specification Compliance

Conforms to the current specification.
Building Queries and Data Views A-65

A Functions Reference
Examples

! xf:time("22:04:22") returns a time value corresponding to 10:04PM and 22
seconds in the current time zone.

! xf:time("22:04:22.343") returns a time value corresponding to 10:04PM and
22.343 seconds, in the current time zone.

! xf:time("22:04:22-08:00") returns a time value corresponding to 10:04PM and
22 seconds in a time zone that is offset by -8 hours from GMT (UTC).

! xf:time("22:4:22") generates a runtime error because the minutes are not
specified with two digits.

! xf:time("22:04:22Z") returns a time value corresponding to 10:04PM and 22
seconds in the GMT time zone.

xfext:time-from-dateTime

Returns the time from dateTime.

Data Types

! Input data type: xs:dateTime?

! Returned data type: xs:time?

Notes

This is an extended function. It has an xfext: prefix identifier (namespace), which is
the extension to the standard XQuery function namespace (xf:). For more information
about extended functions, see �Naming Conventions� on page A-3. For more
information about valid formats for dateTime, see �xf:dateTime� on page A-56.

XQuery Specification Compliance

Liquid Data supports time-from-dateTime as an extended function.
A-66 Building Queries and Data Views

Date and Time Functions
Examples

! xfext:time-from-dateTime(xf:dateTime("2002-07-15T21:09:44")) returns a date
value corresponding to 9:09:44PM in the current time zone.

! xfext:time-from-dateTime(()) returns an empty list ().

xfext:time-from-string-with-format

Returns a new time value from a string source value according to the pattern specified
by Parameter1.

Data Types

! Parameter1 data type: xs:string?

! Parameter2 data type: xs:string?

! Returned data type: xs:time?

Notes

This is an extended function. It has an xfext: prefix identifier (namespace), which is
the extension to the standard XQuery function namespace (xf:).

For more information about extended functions, see �Naming Conventions� on page
A-3, and see �Date and Time Patterns� on page A-7.

XQuery Specification Compliance

Liquid Data supports time-from-string-with-format as an extended function.
Building Queries and Data Views A-67

A Functions Reference
Examples

! xfext:time-from-string-with-format("HH.mm.ss", "21.45.22") returns the time
9:45:22PM in the current time zone.

! xfext:time-from-string-with-format("hh:mm:ss a", "8:07:22 PM") returns the
time 8:07:22PM in the current time zone.

! xfext:time-from-string-with-format("hh:mm:ss z", "8:07:22 EST") returns the
time 8:07:22AM in the EST time zone.

Logical Operators

XQuery has operators that are specific to logical operations. The following logical
operators are available:

! and

! or

and

The result is true if both values are true, and false if one of the values is false.

Data Types

! Parameter1 data type: xs:boolean?

! Parameter2 data type: xs:boolean?

! Returned data type: xs:boolean?
A-68 Building Queries and Data Views

Logical Operators
Notes

This is a boolean operator that you can use as a function to return a true or false result.

The arguments and return type are all boolean.

The following table shows how Liquid Data determines the result. The leftmost
column contains the possible values of the first parameter; the top row contains the
possible values of the second parameter.

XQuery Specification Compliance

! Liquid Data does not support error values.

! Liquid Data does not support a list of nodes as an input parameter to a boolean
operator.

Examples

! xf:true() and xf:true() returns the boolean value true.

! xf:true() and xf:false() returns the boolean value false.

! xf:false() and xf:false() returns the boolean value false.

! xf:true() and (<a/>,) generates a compile-time error because lists are not
supported as input parameters to boolean operators.

! xf:false() and "false" generates a compile-time error because the second
parameter is not a boolean value.

 true false ()
true true false false
false false false false
Building Queries and Data Views A-69

A Functions Reference
or

The result is false if both values are false and true if at least one of the values is true.
Parameter2 is not evaluated if Parameter1 is true.

Data Types

! Parameter1 data type: xs:boolean?

! Parameter2 data type: xs:boolean?

! Returned data type: xs:boolean?

Notes

This is a boolean operator that you can use as a function to return a true or false result.

The arguments and return type are all boolean.

The following table shows how Liquid Data determines the result. The leftmost
column contains the possible values of the first parameter; the top row contains the
possible values of the second parameter

XQuery Specification Compliance

! Liquid Data does not support error values.

! Liquid Data does not support a list of nodes as an input parameter to a boolean
operator.

 true false ()
true true true true
false true false false
() true false false
A-70 Building Queries and Data Views

Numeric Operators
Examples

! xf:true() or xf:true() returns the boolean value true.

! xf:true() or xf:false() returns the boolean value true.

! xf:false() or xf:false() returns the boolean value false.

! xf:true() or (<a/>,) generates a compile-time error because lists are not
supported as parameters to boolean operators.

! xf:false() or "false" generates a compile-time error because the second parameter
is not a boolean value.

Numeric Operators

XQuery has operators that are specific to numeric operations. The following numeric
operators are available:

! * (multiply)

! + (add)

! - (subtract)

! div

! mod

* (multiply)

Returns the arithmetic product of the operands: ($operand1*$operand2).
Building Queries and Data Views A-71

A Functions Reference
Data Types

! Parameter1 data type: xs:anyValue?

! Parameter2 data type: xs:anyValue?

! Returned data type: xs:anyValue?

Notes

This is a numeric operator that you can use as if it were a function to compute numeric
results.

The operator accepts two numeric values as parameters, computes their product, and
returns the result.

Liquid Data applies the following rules:

! If both parameters are promotable to xs:decimal, the operator returns their
product as a decimal value.

! If both parameters are promotable to xs:float, the operator returns their product
as a floating point value.

! If both parameters are promotable to xs:double, the operator returns their product
as a double precision value.

! Otherwise, an error occurs because one of the parameters is not a number.

XQuery Specification Compliance

! Liquid Data supports only numeric multiplication (op:numeric-multiply) and no
other backup functions. It does not support values, such as
xs:yearMonthDuration and xs:dayTimeDuration.

! Liquid Data does not support not-a-number (NaN), -0, or the negative and
positive infinity values -INF and INF.
A-72 Building Queries and Data Views

Numeric Operators
Examples

! 12 * 3 returns the decimal value 36.

! xf:integer("1") * 3.1 returns the decimal value 3.1.

! "abc" * "cde" generates a compile-time error because the operator can be used
only with numbers.

+ (add)

Returns the arithmetic sum of the operands: ($operand1+$operand2).

Data Types

! Parameter1 data type: xs:anyValue?

! Parameter2 data type: xs:anyValue?

! Returned data type: xs:anyValue?

Notes

This is a numeric operator that you can use as if it were a function to compute numeric
results.

The operator accepts two numeric values as parameters, computes their sum, and
returns the result.
Building Queries and Data Views A-73

A Functions Reference
Liquid Data applies the following rules:

! If both parameters are promotable to xs:decimal, the operator returns their sum
as a decimal value.

! If both parameters are promotable to xs:float, the operator returns their sum as a
floating point value.

! If both parameters are promotable to xs:double, the operator returns their sum as
a double precision value.

! Otherwise, an error occurs because one of the parameters is not a number.

XQuery Specification Compliance

! Liquid Data supports only numeric multiplication (op:numeric-add) and no other
backup functions. It does not support values, such as xs:yearMonthDuration and
xs:dayTimeDuration.

! Liquid Data does not support not-a-number (NaN), -0, or the negative and
positive infinity values -INF and INF.

Examples

! 20 + 1 returns the decimal value 21.

! xf:integer("1") + 3.1 returns the decimal value 4.1.

! "abc" + "cde" generates a compile-time error because the operator can only be
used with numbers.
A-74 Building Queries and Data Views

Numeric Operators
- (subtract)

Returns the arithmetic difference of the operands: ($operand1-$operand2).

Data Types

! Parameter1 data type: xs:anyValue?

! Parameter2 data type: xs:anyValue?

! Returned data type: xs:anyValue?

Notes

This is a numeric operator that you can use as if it were a function to compute numeric
results.

Liquid Data applies the following rules:

! If both parameters are promotable to xs:decimal, the operator returns their
difference as a decimal value.

! If both parameters are promotable to xs:float, the operator returns their
difference as a floating point value.

! If both parameters are promotable to xs:double, the operator returns their
difference as a double precision value.

! Otherwise, an error occurs because one of the parameters is not a number.

XQuery Specification Compliance

! Liquid Data supports only numeric multiplication (op:numeric-subtract) and no
other backup functions. It does not support values, such as
xs:yearMonthDuration and xs:dayTimeDuration.

! Liquid Data does not support not-a-number (NaN), -0, or the negative and
positive infinity values -INF and INF.
Building Queries and Data Views A-75

A Functions Reference
Examples

! 20 - 1 returns the decimal value 19.

! xf:integer("1") - 3.1 returns the decimal value -2.1.

! "abc" - "cde" generates a compile-time error because the operator can only be
used with numbers.

div

Returns the arithmetic quotient of the operands ($operand1/$operand2).

Data Types

! Parameter1 data type: xs:anyValue?

! Parameter2 data type: xs:anyValue?

! Returned data type: xs:anyValue?

Notes

This is a numeric operator that you can use as if it were a function to compute numeric
results.

Liquid Data applies the following rules:

! If both parameters are promotable to xs:decimal, the operator returns their
quotient as a decimal value.

! If both parameters are promotable to xs:float, the operator returns their quotient
as a floating point value.

! If both parameters are promotable to xs:double, the operator returns their
quotient as a double precision value.

! Otherwise, an error occurs because one of the parameters is not a number.
A-76 Building Queries and Data Views

Numeric Operators
XQuery Specification Compliance

! Liquid Data supports only numeric multiplication (op:numeric-divide) and no
other backup functions. It does not support values, such as
xs:yearMonthDuration and xs:dayTimeDuration.

! Liquid Data does not support not-a-number (NaN), -0, or the negative and
positive infinity values -INF and INF.

Examples

! 2 div 5 returns the decimal value 0.

! 3 div 5 returns the decimal value 1.

! 4 div "abc" generates a compile-time error because the operator can only be used
with numbers.

mod

Returns the remainder after dividing the first operand by the second operand:
($operand1 mod $operand2).

Data Types

! Parameter1 data type: xs:anyValue?

! Parameter2 data type: xs:anyValue?

! Returned data type: xs:anyValue?

Notes

This is a numeric operator that you can use as if it were a function to compute numeric
results.
Building Queries and Data Views A-77

A Functions Reference
Liquid Data applies the following rules:

! If both parameters are promotable to xs:decimal, the operator returns the
remainder as a decimal value.

! If both parameters are promotable to xs:float, the operator returns the remainder
as a floating point value.

! If both parameters are promotable to xs:double, the operator returns the
remainder as a double precision value.

! Otherwise, an error occurs because one of the parameters is not a number.

XQuery Specification Compliance

Liquid Data does not support not-a-number (NaN), -0, or the negative and positive
infinity values -INF and INF.

Examples

! 2 mod 5 returns the decimal value 2.

! 3 mod 5 returns the decimal value -2.

! 4 mod "abc" generates a compile-time error because the operator can only be
used with numbers.
A-78 Building Queries and Data Views

Numeric Functions
Numeric Functions

Numeric functions operate on numeric data types. The following numeric functions are
available:

! xf:ceiling

! xf:floor

! xf:round

! xfext:decimal-round

! xfext:decimal-truncate

xf:ceiling

Returns the smallest (closest to negative infinity) integer that is not smaller than the
source value.

Data Types

! Input data type: xs:double?

! Returned data type: xs:integer?

Notes

If the argument is an empty list, the function returns an empty list.

XQuery Specification Compliance

Conforms to the current specification.
Building Queries and Data Views A-79

A Functions Reference
Examples

! xf:ceiling(38.3) returns the integer value 39.

! xf:ceiling(38) returns the integer value 38.

! xf:ceiling(-3.3) returns the integer value -3.

! xf:ceiling("38.3") generates a compile-time error because the parameter is a
string and not a numeric value.

xf:floor

Returns the largest (closest to positive infinity) integer that is not greater than the
source value.

Data Types

! Input data type: xs:double?

! Returned data type: xs:integer?

Notes

If the argument is an empty list, the function returns an empty list.

XQuery Specification Compliance

Conforms to the current specification.
A-80 Building Queries and Data Views

Numeric Functions
Examples

! xf:floor(38.3) returns the integer value 38.

! xf:floor(38) returns the integer value 38.

! xf:floor(-3.3) returns the integer value -4.

! xf:floor("38.3") generates a compile-time error because the parameter is a string
and not a numeric value.

xf:round

Returns the integer that is closest to the source value.

Data Types

! Input data type: xs:double?

! Returned data type: xs:integer?

Notes

Round(x) produces the same result as the Floor function(x+0.5). If there are two such
numbers, returns the one that is closest to +INF.

If the argument is +INF, returns +INF.

If the argument is -INF, returns -INF.

If the argument is +0, returns +0.

If the source value is an empty list, the function returns an empty list.

XQuery Specification Compliance

Liquid Data does not support not-a-number (NaN) or -0.
Building Queries and Data Views A-81

A Functions Reference
Examples

! xf:round(3) returns the integer value 3.

! xf:round(3.3) returns the integer value 3.

! xf:round(3.5) returns the integer value 4.

! xf:round(3.7) returns the integer value 4.

! xf:round(-3.3) returns the integer value -3.

! xf:round(-3.5) returns the integer value -3.

! xf:round(-3.7) returns the integer value -4.

! xf:round(-0) returns the integer value 0.

! xf:round("3.3") generates an error because the parameter is a string and not a
numeric value.

xfext:decimal-round

Returns a decimal value rounded to the specified precision (scale).

Data Types

! dec - Input data type: xs:decimal?

! scale - Input data type: xs:integer?

! Returned data type: xs:decimal?

Notes

The scale input is the precision with which to round the decimal input. A scale value
of 1 rounds the input to tenths, a scale value of 2 rounds it to hundreths, and so on.
A-82 Building Queries and Data Views

Numeric Functions
XQuery Specification Compliance

This is an extended function and is not part of the XQuery specification.

Examples

! xfext:decimal-round(127.444, 2) returns 127.44.

! xfext:decimal-round(0.1234567, 6) returns 0.123457.

xfext:decimal-truncate

Returns a decimal value truncated to the specified precision (scale).

Data Types

! dec - Input data type: xs:decimal?

! scale - Input data type: xs:integer?

! Returned data type: xs:decimal?

Notes

The scale input is the precision with which to truncate the decimal input. A scale value
of 1 truncates the input to tenths, a scale value of 2 truncates it to hundreths, and so on.

XQuery Specification Compliance

This is an extended function and is not part of the XQuery specification.

Examples

! xfext:decimal-truncate(127.444, 2) returns 127.44.

! xfext:decimal-truncate(0.1234567, 6) returns 0.123456.
Building Queries and Data Views A-83

A Functions Reference
Other Functions

The other functions folder is where the if-then-else function is in the Data View
Builder.

xfext:if-then-else

The xfext:if-then-else function accepts the value of a boolean parameter to select one
of two other input parameters.

Data Types

! Parameter1 data type: xs:boolean?

! Parameter2 data type: xs:anyValue?

! Parameter3 data type: xs:anyValue?

! Returned data type: xs:anyValue

Notes

The If-then-else function is an extended function. For more information about
extended functions, see �Naming Conventions� on page A-3.

Liquid Data examines the value of the first parameter. If the condition is true, Liquid
Data returns the value of the second parameter (then). If the condition is false, Liquid
Data returns the value of the third parameter (else). If the returned condition is not a
boolean value, Liquid Data generates an error.

XQuery Specification Compliance

This is an extended function. Liquid Data converts it to an XQuery if-then-else
expression.
A-84 Building Queries and Data Views

Sequence Functions
Examples

! If (xf:true()) then 3 else "10" returns the value 3.

! If (xf:false()) then 3 else "10" returns the value "10."

! If ("true") then 3 else "10" generates a compile-time error because the condition
is a string value and not a boolean value.

Sequence Functions

A sequence is an ordered collection of zero or more items. An item may be a node or
a simple typed value. Therefore, a sequence can be an ordered collection of nodes, a
collection of simple typed values, or any mix of nodes and simple typed values.
Sequences may not contain other sequences but may contain duplicate items. There is
no difference between a single item, such as a node or a simple typed value, and a
sequence containing that single item.

! xf:distinct-values

! xf:empty

! xf:subsequence (format 1)

! xf:subsequence (format 2)

xf:distinct-values

If the source value contains only nodes, the function removes duplicates and returns a
subset of unique values.

Data Types

! Input data type: xsext:item*

! Returned data type: xsext:anyValue*
Building Queries and Data Views A-85

A Functions Reference
Notes

The Liquid Data xf:distinct-values function varies from the standard XQuery function
by removing duplicates from the result.

If the source value is an empty list, the function returns an empty list.

XQuery Specification Compliance

! Liquid Data does not support the distinct-values format that accepts collations.

! Liquid Data uses the eq operator instead of xf:deep-equal to identify duplicates.

! Liquid Data does not support duration values.

Examples

! xf:distinct-values(("a", "b", "c", "b")) returns the string sequence ("a", "b", "c").

! xf:distinct-values((<x>a</x>, <x>b</x>, <x>c</x>, <x>b</x>)) returns the
string sequence (<x>a</x>, <x>b</x>, <x>c</x>).

! xf:distinct-values(("a", <x>b</x>, <x>c</x>, "b")) generates a compile-time
error because the list contains mixed nodes and values.

xf:empty

Returns true if the specified list of items is empty; otherwise, returns false.

Data Types

! Input data type: xsext:item*

! Returned data type: xs:boolean?

XQuery Specification Compliance

Liquid Data supports an optional boolean returned value.
A-86 Building Queries and Data Views

Sequence Functions
Examples

! xf:empty((1, 2, 3)) returns the boolean value false.

! xf:empty(1) returns the boolean value false.

! xf:empty(()) returns the boolean value true.

xf:subsequence (format 1)

Returns the contiguous sequence of items described by Parameter 1 beginning at the position
indicated by the Parameter 2 and continuing until the end of the sequence.

Data Types

! Parameter1 data type: xsext:item*

! Parameter2 data type: xs:integer

! Returned data type: xsext:item*

Notes

The first item of a sequence is located at position 1, not position 0.

If you omit the length parameter, the function returns all items up to the end of the
source sequence.

If the starting location is greater than the number of items in the sequence, the function
returns an empty list.

If the item list is empty, Liquid Data returns an empty list.
Building Queries and Data Views A-87

A Functions Reference
XQuery Specification Compliance

! Liquid Data supports xs:integer instead of xs:decimal as the starting location and
length parameters.

! If the starting location is greater than the length of the input sequence, Liquid
Data returns an empty list instead of generating an error.

Examples

! xf:subsequence(("a", "b", "c", "d", "e"), 2) returns the sequence ("b", "c", "d",
"e").

! xf:subsequence("abcde", 2) returns the string value "bcde."

! xf:subsequence("abcde", 6) returns the empty string "".

! xf:subsequence("abcde", 2, 3) returns the string value "bcd."

! xf:subsequence("abcde", 2, 10) returns the string value "bcde."

! xf:subsequence("abcde", ()) returns an empty list ().

xf:subsequence (format 2)

Returns the contiguous sequence of items described by Parameter 1 beginning at the position
indicated by the Parameter 2 and continuing for the number of items indicated by the value of
Parameter 3.

Data Types

! Parameter1 data type: xsext:item*

! Parameter2 data type: xs:integer

! Parameter3 data type: xs:integer

! Returned data type: xsext:item*
A-88 Building Queries and Data Views

Sequence Functions
Notes

The value of Parameter 2 can be greater than the number of items in the value of
Parameter 1, in which case the subsequence includes items to the end of Parameter 3.

If the sum of the starting location and the length parameter is greater than the length of
the source sequence, the function returns all items up to the end of the sequence.

The first item of a sequence is located at position 1, not position 0.

If the starting location is greater than the number of items in the sequence, the function
returns an empty list.

If the item list is an empty list, Liquid Data returns an empty list.

Liquid Data is able to process either format of xf:subsequence. Adding a third
parameter automatically invokes Format 2.

XQuery Specification Compliance

! cimal as the starting location and length parameters.

! If the starting location is greater than the length of the input sequence, Liquid
Data returns an empty list instead of generating an error.

Examples

! xf:subsequence(("a", "b", "c", "d", "e"), 2) returns the sequence ("b", "c", "d",
"e").

! xf:subsequence("abcde", 2) returns the string value "bcde."

! xf:subsequence("abcde", 6) returns the empty string "".

! xf:subsequence("abcde", 2, 3) returns the string value "bcd."

! xf:subsequence("abcde", 2, 10) returns the string value "bcde."

! xf:subsequence("abcde", ()) returns an empty list ().
Building Queries and Data Views A-89

A Functions Reference
String Functions

Strings from a character set may need to be sorted differently for different applications.
You must consider the sort order when you invoke string comparisons. Some string
functions will require understanding of the default sort order and any other special
collation. For more information, see the Character Model for the World Wide Web 1.0.
The following string functions are available:

! xf:compare

! xf:concat

! xf:contains

! xf:ends-with

! xf:lower-case

! xf:starts-with

! xf:string-length

! xf:substring (format1)

! xf:substring (format 2)

! xf:substring-after

! xf:substring-before

! xf:upper-case

! xfext:match

! xfext:trim

xf:compare

Returns -1, 0, or 1, depending on whether the value of Parameter1 is less than (-1),
equal to (0), or greater than (1)the value of Parameter2.
A-90 Building Queries and Data Views

http://www.w3.org/TR/2001/WD-xquery-operators-20011220/#charmod

String Functions
Data Types

! Parameter1 data type: xs:string?

! Parameter2 data type: xs:string?

! Returned data type: xs:integer?

Notes

If either argument is an empty list, the result is an empty list.

Liquid Data generates an error if either parameter is not a string.

XQuery Specification Compliance

Liquid Data does not support the xf:compare format that accepts collations.

Examples

! xf:compare("a", "b") returns the integer value -1.

! xf:compare("a", "a") returns the integer value 0.

! xf:compare("b", "a") returns the integer value 1.

! xf:compare("a", 3) generates a compile-time error because the second parameter
is not a string.

! xf:compare("a", ()) returns an empty list ().

! xf:compare((), "a") returns an empty list ().
Building Queries and Data Views A-91

A Functions Reference
xf:concat

Returns a string that concatenates Parameter1 with Parameter2.

Data Types

! Parameter1 data type: xs:string?

! Parameter2 data type: xs:string?

! Returned data type: xs:string?

Notes

The result string may not reflect Unicode or other W3C normalization.

Returns an empty string if the function has no arguments. If any argument is an empty
list, it is treated as an empty string.

Liquid Data generates an error if either parameter is not a string.

XQuery Specification Compliance

Liquid Data does not support a variable number of parameters to be concatenated.
Choose only two strings to concatenate with each operation.
A-92 Building Queries and Data Views

String Functions
Examples

! xf:concat("a", "b") returns the string value "ab."

! xf:concat("a", xf:concat("b", "c")) returns the string value "abc."

! xf:concat("abc", ()) returns the string value "abc."

! xf:concat((), "abc") returns the string value "abc."

! xf:concat((), ()) returns an empty list ().

! xf:concat("a", 4) generates a compile-time error because the second parameter is
not a string.

xf:contains

Returns a boolean value of true or false indicating whether Parameter1 contains a
string that is equal to Parameter2 at the beginning, at the end, or anywhere within
Parameter1.

Data Types

! Parameter1 data type: xs:string?

! Parameter2 data type: xs:string?

! Returned data type: xs:boolean?

Notes

If the value of Parameter2 is a zero-length string, the function returns true. If the value
of Parameter1 is a zero-length string and the value of Parameter2 is not a zero-length
string, the function returns false.

If the value of Parameter1 or Parameter2 is an empty list, the function returns an empty
list.

Liquid Data generates an error if either parameter is not a string.
Building Queries and Data Views A-93

A Functions Reference
XQuery Specification Compliance

Liquid Data does not support the xf:contains format that accepts collations.

Examples

! xf:contains("abc", "a") returns the boolean value true.

! xf:contains("abc", "b") returns the boolean value true.

! xf:contains("abc", "c") returns the boolean value true.

! xf:contains("abc", "d") returns the boolean value false.

! xf:contains("abc", "") returns the boolean value true.

! xf:contains("abc", ()) returns an empty list ().

! xf:contains((), "abc") returns an empty list ().

! xf:contains("abc", 4) generates a compile-time error because the second
parameter is not a string.

xf:ends-with

Returns a boolean value or true or false indicating whether Parameter1 ends with a
string that is equal to Parameter2.

Data Types

! Parameter1 data type: xs:string?

! Parameter2 data type: xs:string?

! Returned data type: xs:boolean?
A-94 Building Queries and Data Views

String Functions
Notes

If Parameter2 is a zero-length string, then the function returns true. If Parameter1 is a
zero-length string and Parameter2 is not a zero-length string, the function returns false.

If Parameter1 or Parameter2 is an empty list, the function returns an empty list.

Liquid Data generates an error if either parameter is not a string.

XQuery Specification Compliance

Liquid Data does not support the xf:ends-with format that accepts collations.

Examples

! xf:ends-with("abc", "a") returns the boolean value false.

! xf:ends-with("abc", "b") returns the boolean value false.

! xf:ends-with("abc", "c") returns the boolean value true.

! xf:ends-with("abc", "d") returns the boolean value false.

! xf:ends-with("abc", "") returns the boolean value true.

! xf:ends-with("abc", ()) returns an empty list ().

! xf:ends-with((), "abc") returns an empty list ().

! xf:ends-with("abc", 4) generates a compile-time error because the second
parameter is not a string.
Building Queries and Data Views A-95

A Functions Reference
xf:lower-case

Returns the value of the input string after translating every uppercase letter to its
corresponding lower-case value.

Data Types

! Input data type: xs:string?

! Returned data type: xs:string?

Notes

Every uppercase letter that does not have a lower-case corresponding value and every
character that is not an uppercase letter appears in the output in its original form.

If the source value is an empty list, the function returns an empty list.

XQuery Specification Compliance

Conforms to the current specification.

Examples

! xf:lower-case("ABc!D") returns the string value "abc!d."

! xf:lower-case("") returns the empty string "".

! xf:lower-case(()) returns the empty list ().

! xf:lower-case(4) generates a compile-time error because the parameter is not a
string.
A-96 Building Queries and Data Views

String Functions
xf:starts-with

Returns a boolean value or true or false indicating whether Parameter1 starts with a
string that is equal to Parameter2.

Data Types

! Parameter1 data type: xs:string?

! Parameter2 data type: xs:string?

! Returned data type: xs:boolean?

Notes

If Parameter2 is a zero-length string, then the function returns true. If Parameter1 is a
zero-length string and tParameter2 is not a zero-length string, the function returns
false.

If Parameter1 or Parameter2 is an empty list, the function returns an empty list.

Liquid Data generates an error if either parameter is not a string.

XQuery Specification Compliance

Liquid Data does not support the xf:ends-with format that accepts collations.
Building Queries and Data Views A-97

A Functions Reference
Examples

! xf:starts-with("abc", "a") returns the boolean value true.

! xf:starts-with("abc", "b") returns the boolean value false.

! xf:starts-with("abc", "c") returns the boolean value false.

! xf:starts-with("abc", "d") returns the boolean value false.

! xf:starts-with("abc", "") returns the boolean value true.

! xf:starts-with("abc", ()) returns the empty list ().

! xf:starts-with((), "abc") returns the empty list ().

! xf:starts-with("abc", 4) generates a compile-time error because the second
parameter is not a string.

xf:string-length

Returns an integer equal to the number of characters in the input source string.

Data Types

! Input data type: xs:string?

! Returned data type: xs:integer?

Notes

If the source value is an empty list, the function returns an empty list.

Liquid Data generates an error if either parameter is not a string.
A-98 Building Queries and Data Views

String Functions
XQuery Specification Compliance

! Liquid Data treats xf:string as both a constructor and an accessor.

! Liquid Data supports only the string format that requires one node of any type as
the input.

! Liquid Data accepts xsext:anyType input instead of a list of items.

! Liquid Data returns an optional string.

! Liquid Data does not recognize entities.

Examples

! xf:string-length("abc") returns the integer value 3.

! xf:string-length("") returns the integer value 0.

! xf:string-length(()) returns the empty list ().

! xf:string-length(4) generates a compile-time error because the parameter is not a
string.

xf:substring (format1)

Returns that part of the Parameter1 source string from the starting location specified
by Parameter2.

Data Types

! Parameter1 data type: xs:string?

! Parameter2 data type: xs:integer?

! Returned data type: xs:string?
Building Queries and Data Views A-99

A Functions Reference
Notes

If the starting location is a negative value, or greater than the length of source string,
an error occurs.

The first character of a string is located at position 1 (not position 0).

If Parameter1 or Parameter2 is an empty list, the function returns an empty list.

If you omit Parameter3, the function returns characters up to the end of the source
string.

Liquid Data generates an error if Parameter1 is not a string or if the starting location is
less than 1.

XQuery Specification Compliance

! Liquid Data supports xs:integer instead of xs:decimal as the starting location and
length parameters.

! If the starting location is greater than the length of the input sequence, Liquid
Data returns an empty list instead of generating an error.

xf:substring (format 2)

Returns that part of the Parameter1 source string from the starting location specified
by Parameter2 and continuing for the number of characters equal to the length
specified by Parameter3.

Data Types

! Parameter1 data type: xs:string?

! Parameter2 data type: xs:integer?

! Parameter3 data type: xs:integer?

! Returned data type: xs:string?
A-100 Building Queries and Data Views

String Functions
Notes

If the starting location is a negative value, or greater than the length of the source
string, an error occurs.

The first character of a string is located at position 1 (not position 0).

If you omit length, the substring identifies characters to the end of the source string.

If length exceeds the number of characters in the source string, the function identifies
only characters until the end of the source string.

If Parameter1, Parameter2, or Parameter3 is an empty list, the function returns an
empty list.

Liquid Data generates an error if Parameter1 is not a string or if the starting location is
less than 1.

Liquid Data is able to process either format of xf:substring. Adding a third parameter
automatically invokes Format 2.

XQuery Specification Compliance

! Liquid Data supports xs:integer instead of xs:decimal as the starting location and
length parameters.

! If the starting location is greater than the length of the input sequence, Liquid
Data returns an empty list instead of generating an error.
Building Queries and Data Views A-101

A Functions Reference
xf:substring-after

Returns that part of the Parameter1 source string that follows the first occurrence of
those characters specified in Parameter2.

Data Types

! Parameter1 data type: xs:string?

! Parameter2 data type: xs:string?

! Returned data type: xs:string?

Notes

If Parameter2 is a zero-length string, the function returns the value of Parameter1. If
Parameter1 is a zero-length string and Parameter2 is a zero-length string, the function
returns a zero-length string.

If Parameter1 does not contain a string that is equal to Parameter2, the function returns
a zero-length string.

If Parameter1 or Parameter2 is an empty list, the function returns an empty list.

XQuery Specification Compliance

Liquid Data does not support the xf:substring-after format that accepts collations.
A-102 Building Queries and Data Views

String Functions
Examples

! xf:substring-after("abcde", "d") returns the string value "e."

! xf:substring-after("abcde", "") returns the string value "abcde."

! xf:substring-after("abcde", "x") returns the empty string "".

! xf:substring-after("abcde", ()) returns the empty list ().

! xf:substring-after((), "x") returns the empty list ().

! xf:substring-after("abc34de", 3) generates a compile-time error because the
second parameter is not a string.

xf:substring-before

Returns that part of the Parameter1 source string that precedes the first occurrence of
those characters specified in Parameter2.

Data Types

! Parameter1 data type: xs:string?

! Parameter2 data type: xs:string?

! Returned data type: xs:string?

Notes

If Parameter2 is a zero-length string, the function returns the value of Parameter1. If
Parameter1 is a zero-length string and Parameter2 is a zero-length string, the function
returns a zero-length string.

If Parameter1 does not contain a string that is equal to Parameter2, the function returns
a zero-length string.

If Parameter1 or Parameter2 is an empty list, the function returns an empty list.
Building Queries and Data Views A-103

A Functions Reference
XQuery Specification Compliance

Liquid Data does not support the xf:substring-before format that accepts collations.

Examples

! xf:substring-before("abcde", "d") returns the string value "abc."

! xf:substring-before("abcde", "") returns the string value "abcde."

! xf:substring-after("abcde", "x") returns the empty string "".

! xf:substring-before("abcde", ()) returns an empty list ().

! xf:substring-before((), "x") returns an empty list ().

! xf:substring-before("abc34de", 3) generates a compile-time error because the
second parameter is not a string.

xf:upper-case

Returns the value of the input string after translating every lower-case letter to its
uppercase correspondent.

Data Types

! Input Parameter data type = xs:string?

! Returned data type: xs:string?

Notes

Every lower-case letter that does not have an uppercase corresponding value and every
character that is not a lower-case letter appears in the output in its original form.

If the source value is an empty list, the function returns an empty list.

Liquid Data generates an error if the parameter is not a string.
A-104 Building Queries and Data Views

String Functions
XQuery Specification Compliance

Conforms to the current specification.

Examples

! xf:upper-case("ABc!D") returns the string value "ABC!D."

! xf:upper-case("") returns the empty string "".

! xf:upper-case(()) returns the empty list ().

! xf:upper-case(4) generates a compile-time error because the parameter is not a
string.

xfext:match

Returns a list of integers (either an empty list with 0 integers or a list with 2 integers)
specifying which characters in the string input matches the input regular expression.
When the function returns a match, the first integer represents the index of (the position
of) the first character of the matching substring and the second integer represents the
number of matching characters starting at the first match.

Data Types

! source - Input data type: xs:string?

! regularExpression - Input data type: xs:string?

! Returned data type: xs:int?

Notes

The index of the first character of the input source is 1, the index of the second
character is 2, and so on.
Building Queries and Data Views A-105

A Functions Reference
The regularExpression input uses a standard regular expression language. The
regular expression language uses the following components:

Table 9-4 Regular expression syntax examples for the xfext:match function

Syntax Example Description

Characters

unicode Matches the specified unicode character.

\ Used to escape metacharacters such as *, +, and ?.

\\ Matches a single backslash (\) character.

\0nnn Matches the specified octal character.

\0xhh Matches the specified 8-bit hexidecimal character.

\\uxhhh Matches the specified 16-bit hexidecimal character.

\t Matches an ASCII tab character.

\n Matches an ASCII new line character.

\r Matches an ASCII return character.

\f Matches an ASCII form feed character.

Simple Character Classes

[bc] Matches the characters b or c.

[a-f] Matches any character between a and f.

[^bc] Matches any character except b and c.
A-106 Building Queries and Data Views

String Functions
Predefined Character Classes

. Matches any character except the new line character.

\w Matches a word character: an alphanumeric character or
the underscore (_) character.

\W Matches a non-word character.

\s Matches a white space character.

\S Matches a non-white space character.

\d Matches a digit.

\D Matches a non-digit.

Greedy Closures�match as many characters as possible

A* Matches expression A zero or more times.

A+ Matches expression A one or more times.

A? Matches expression A zero or one times.

A(n) Matches expression A exactly n times.

A(n,) Matches expression A at least n times.

A(n, m) Matches expression A between n and m times.

Reluctant Closures�match as few characters as possible (stops when a match
is found)

A*? Matches expression A zero or more times.

A+? Matches expression A one or more times.

A?? Matches expression A zero or one times.

Table 9-4 Regular expression syntax examples for the xfext:match function

Syntax Example Description
Building Queries and Data Views A-107

A Functions Reference
XQuery Specification Compliance

This is an extended function and is not part of the XQuery specification.

Examples

! xfext:match("abcde", "bcd") evaluates to the list (2,3)

! xfext:match("abcde", ()) evaluates to the empty list ()

! xfext:match((), "bcd") evaluates to the empty list ()

! xfext:match("abc", 4) generates an error at compile time because the second
parameter is not a string

! xfext:match("abcccdee", "[bc]") evaluates to the list (2,1)

xfext:trim

Returns the value of the input string with leading and trailing white space removed
from the string.

Data Types

! Input data type: xs:string?

! Returned data type: xs:string?

Logical Operators

AB Matches expression A followed by expression B.

A|B Matches expression A or expression B.

(A) Used for grouping expressions.

Table 9-4 Regular expression syntax examples for the xfext:match function

Syntax Example Description
A-108 Building Queries and Data Views

Treat Functions
Notes

If the input string is an empty list, the function returns an empty list.

Liquid Data generates an error if the parameter is not a string.

XQuery Specification Compliance

The xfext:trim function is an extended function. For more information about
extended functions, see �Naming Conventions� on page A-3.

Examples

! xfext:trim("abc") returns the string value "abc"

! xfext:trim(" abc ") returns the string value "abc"

! xfext:trim(()) returns the empty list ()

! xfext:trim(5) generates a compile-time error because the parameter is not a
string

Treat Functions

The treat functions process a source value as the argument and treat that source
value as if it is the datatype in the treat function. These functions are used when
mapping optional values (which do not have to have data associated with them) to
mandatory values (which do have to have data associated with them). From the Query
menu Automatic Treat As checkbox, you can set up the Data View Builder to
automatically add treat functions when they are needed, or you can add them
manually. Without the treat functions, some queries that attempt to map optional
fields (for example, nullable relational database columns) to mandatory fields might
fail.

Unlike the cast functions, the treat functions do not change the type of the input
value; instead they ensure that an expression has the intended type when it is evaluated
for query execution.
Building Queries and Data Views A-109

A Functions Reference
A typical use case is when you need to map elements from a nullable relational
database column that you know do not contain any null values.

Another use case is where you need to map non-nullable (mandatory) elements to a
function that produces optional (nullable) output. For example, if you map an
xf:string type to a custom function that outputs an xf:string? type, and then map
that output to an xf:string type, there will be a type mismatch which will cause the
query to fail during compilation. The type mismatch is because the output type of the
function is xf:string?, which mismatches xf:string. You can correct this by
placing a treat as xs:string function betweenthe custom function and the output.

The following table describes Liquid Data data types that conform to the XQuery
specification that you can use in treat as functions. For more information about data
types, see the XQuery 1.0 and XPath 2.0 Functions and Operators specification. The
following treat as functions are available:

! treat as xs:boolean

! treat as xs:byte

! treat as xs:date

! treat as xs:dateTime

! treat as xs:decimal

! treat as xs:double

! treat as xs:float

! treat as xs:int

! treat as xs:integer

! treat as xs:long

! treat as xs:short

! treat as xs:string

! treat as xs:time
A-110 Building Queries and Data Views

Treat Functions
treat as xs:boolean

Treats the input value as if it is a boolean value (true or false). Use to map optional
boolean elements to mandatory boolean elements.

Data Types

! Input data type: xs:anyValue?

! Returned data type: xs:anyValue?

Notes

See Treat Functions.

XQuery Specification Compliance

Conforms to the current specification.

treat as xs:byte

Treats the input value as if it is a byte value. Use to map optional boolean elements to
mandatory boolean elements.

Data Types

! Input data type: xs:anyValue?

! Returned data type: xs:anyValue?

Notes

See Treat Functions.
Building Queries and Data Views A-111

A Functions Reference
XQuery Specification Compliance

Conforms to the current specification.

treat as xs:date

Treats the input value as if it is a date value. Use to map optional boolean elements to
mandatory boolean elements.

Data Types

! Input data type: xs:anyValue?

! Returned data type: xs:anyValue?

Notes

See Treat Functions.

XQuery Specification Compliance

Conforms to the current specification.

treat as xs:dateTime

Treats the input value as if it is a dateTime value. Use to map optional boolean
elements to mandatory boolean elements.
A-112 Building Queries and Data Views

Treat Functions
Data Types

! Input data type: xs:anyValue?

! Returned data type: xs:anyValue?

Notes

See Treat Functions.

XQuery Specification Compliance

Conforms to the current specification.

treat as xs:decimal

Treats the input value as if it is a decimal value. Use to map optional boolean elements
to mandatory boolean elements.

Data Types

! Input data type: xs:anyValue?

! Returned data type: xs:anyValue?

Notes

See Treat Functions.

XQuery Specification Compliance

Conforms to the current specification.
Building Queries and Data Views A-113

A Functions Reference
treat as xs:double

Treats the input value as if it is a double value. Use to map optional boolean elements
to mandatory boolean elements.

Data Types

! Input data type: xs:anyValue?

! Returned data type: xs:anyValue?

Notes

This function uses the xf:double function.

XQuery Specification Compliance

! Liquid Data does not support not-a-number (NaN), -0, or the negative and
positive infinity values -INF and INF.

! Liquid Data attempts to support any input value, instead of just string literals,
and convert it at run time.

treat as xs:float

Treats the input value as if it is a float value. Use to map optional boolean elements to
mandatory boolean elements.

Data Types

! Input data type: xs:anyValue?

! Returned data type: xs:anyValue?
A-114 Building Queries and Data Views

Treat Functions
Notes

See Treat Functions.

XQuery Specification Compliance

Conforms to the current specification.

treat as xs:int

Treats the input value as if it is a int value. Use to map optional boolean elements to
mandatory boolean elements.

Data Types

! Input data type: xs:anyValue

! Returned data type: xs:int

Notes

This function uses the xf:int function.

XQuery Specification Compliance

Conforms to the current specification.
Building Queries and Data Views A-115

A Functions Reference
treat as xs:integer

Treats the input value as if it is a integer value. Use to map optional boolean elements
to mandatory boolean elements.

Data Types

! Input data type: xs:anyValue?

! Returned data type: xs:anyValue?

Notes

See Treat Functions.

XQuery Specification Compliance

Conforms to the current specification.

treat as xs:long

Treats the input value as if it is a long value. Use to map optional boolean elements to
mandatory boolean elements.

Data Types

! Input data type: xs:anyValue?

! Returned data type: xs:anyValue?

Notes

See Treat Functions.
A-116 Building Queries and Data Views

Treat Functions
XQuery Specification Compliance

Conforms to the current specification.

treat as xs:short

Treats the input value as if it is a short value. Use to map optional boolean elements to
mandatory boolean elements.

Data Types

! Input data type: xs:anyValue?

! Returned data type: xs:anyValue?

Notes

See Treat Functions.

XQuery Specification Compliance

Conforms to the current specification.
Building Queries and Data Views A-117

A Functions Reference
treat as xs:string

Treats the input value as if it is a string value. Use to map optional boolean elements
to mandatory boolean elements.

Data Types

! Input data type: xs:anyValue?

! Returned data type: xs:anyValue?

Notes

See Treat Functions.

XQuery Specification Compliance

Conforms to the current specification.

treat as xs:time

Treats the input value as if it is a time value. Use to map optional boolean elements to
mandatory boolean elements.

Data Types

! Input data type: xs:anyValue?

! Returned data type: xs:anyValue?

Notes

See Treat Functions.
A-118 Building Queries and Data Views

Treat Functions
XQuery Specification Compliance

Conforms to the current specification.
Building Queries and Data Views A-119

A Functions Reference
A-120 Building Queries and Data Views

CHAPTER
B Supported Data Types

This section provides information about the data types supported in BEA Liquid Data
for WebLogic� and the Data View Builder. The following topics are included:

! Overview

" JDBC Types

" JDBC Names

! Database-Specific Names

" Oracle Names

" Microsoft SQL Server Names

" DB2 Names

" Sybase Names

" Informix Names

Overview

In relational databases, data types are described using two methods. The conventional
way is to use a JDBC number. For example, an integer is 4, varchar is 12, a date is 91,
an so on. These numbers are represented by constants in the java.sql.Types class,
such as Types.INTEGER = 4 and Types.VARCHAR = 12. This numbering system
describes all the JDBC standardized types. However, there are many vendor-specific
types, and most of them use the default JDBC number 1111, meaning �other.� For this
method, there is a name instead of a number associated with each type.
Building Queries and Data Views B-1

B Supported Data Types
The Liquid Data query generation engine first looks at the JDBC number for a match.
If no match occurs, then it uses the name. For example, if the number is 1111, then the
query generation engine looks for a name. If there is no match found for either one, the
query generation engine treats the column as a string.

Depending on the type of database you access, you need to map external database
fields with a compatible data type when you invoke Liquid Data functions. You will
notice that some external data types are not supported by Liquid Data. You may need
to transform these data types to a supported type before you access that data in a query.
The following tables can help you make these decisions.

JDBC Types

The following table maps the JDBC type to the appropriate data type that you should
use with Liquid Data.

JDBC Type Liquid Data Data Type

Types.ARRAY not supported

Types.BIGINT xs:long

Types.BINARY xs:string

Types.BIT xs:boolean

Types.BLOB not supported

Types.CHAR xs:string

Types.CLOB not supported

Types.DATE xs:date

Types.DECIMAL xs:decimal

Types.DOUBLE xs:double

Types.FLOAT xs:double

Types.INTEGER xs:integer

Types.JAVA_OBJECT not supported
B-2 Building Queries and Data Views

Overview
JDBC Names

The following table maps the JDBC name to Liquid Data data types.

Types.LONGVARBINARY xs:string

Types.LONGVARCHAR xs:string

Types.NUMERIC xs:decimal

Types.REAL xs:float

Types.REF xs:string

Types.SMALLINT xs:short

Types.STRUCT not supported

Types.TIME xs:time

Types.TIMESTAMP xs:dateTime

Types.TINYINT xs:byte

Types.VARBINARY xs:string

Types.VARCHAR xs:string

JDBC Type Liquid Data Data Type

JDBC Name Liquid Data Data Type

ARRAY not supported

BIGINT xs:long

BINARY xs:string

BIT xs:boolean

BLOB not supported

CHAR xs:string
Building Queries and Data Views B-3

B Supported Data Types
CLOB not supported

DATE xs:date

DEC xs:decimal

DECIMAL xs:decimal

DOUBLE xs:double

FLOAT xs:double

INTEGER xs:integer

JAVA_OBJECT not supported

LONGVARBINARY xs:string

LONGVARCHAR xs:string

NUM xs:decimal

NUMERIC xs:decimal

REAL xs:float

REF xs:string

SMALLINT xs:short

STRUCT not supported

TIME xs:time

TIMESTAMP xs:dateTime

TINYINT xs:byte

VARBINARY xs:string

VARCHAR xs:string

JDBC Name Liquid Data Data Type
B-4 Building Queries and Data Views

Database-Specific Names
Database-Specific Names

This section includes tables showing the database-specific names and the
corresponding Liquid Data data types. This section includes the following:

! Oracle Names

! Microsoft SQL Server Names

! DB2 Names

! Sybase Names

Oracle Names

The following table maps Oracle names to Liquid Data data types.

Oracle Name Liquid Data Data Type

FLOAT xs:float

BFILE not supported

LONG not supported

LONG RAW not supported

NCHAR xs:string

NCLOB not supported

NUMBER xs:decimal

NVARCHAR2 xs:string

RAW xs:string
Building Queries and Data Views B-5

B Supported Data Types
Microsoft SQL Server Names

The following table maps Microsoft SQL Server names to Liquid Data data types.

ROWID xs:string

UROWID not supported

VARCHAR2 xs:string

Oracle Name Liquid Data Data Type

SQL Name Liquid Data Data Type

DATETIME xs:dateTime

IMAGE not supported

INT xs:integer

MONEY xs:float

NTEXT xs:string// too big?

NVARCHAR xs:string

SMALLDATETIME xs:dateTime

SMALLMONEY xs:float

SQL_VARIANT xs:string

UNIQUEIDENTIFIER xs:string
B-6 Building Queries and Data Views

Database-Specific Names
DB2 Names

The following table maps DB2 data types to Liquid Data data types.

Sybase Names

The following table maps Sybase data types to Liquid Data data types.

DB2 Name Liquid Data Data Type

CHARACTER xs:string

CHARACTER (for bit data) xs:string

DATALINK xs:string

LONG VARCHAR xs:string

LONG VARCHAR (for bit data) xs:string

VARCHAR (for bit data) xs:string

Sybase Name Liquid Data Data Type

SYSNAME xs:string

TEXT xs:string
Building Queries and Data Views B-7

B Supported Data Types
Informix Names
The following table maps Informix data types to Liquid Data data types.

Informix Name Liquid Data Data Type

BLOB not supported

BYTE not supported

BOOLEAN xs:booean

CHAR(n) xs:string

CHARACTER(n) xs:string

CLOB not supported

DATE xs:date

DATETIME xs:dateTime

DEC/DECIMAL xs:decimal

DOUBLE PRECISION/FLOAT xs:double

INT/INTEGER xs:integer

INT8 xs:long

INTERVAL not supported

LVARCHAR xs:string

MONEY xs:float

NCHAR xs:string

NUMERIC xs:decimal

REAL xs:float

SMALLFLOAT xs:float

SMALLINT xs:short

TEXT xs:string
B-8 Building Queries and Data Views

CHAPTER
C Type Casting Reference

This section provides details on how Data View Builder implements data type
transformation for automatic type casting. The following topics are included:

! Type Casting to a Numeric Target

! Type Casting to a Non-Numeric Target

! Type Casting Function Parameters

When you request Automatic Type Casting, Liquid Data can reassign a data type if the
data type of the source node does not match the data type of the mapped target node
but the data types are compatible. Use the information in the following sections to
predict the automatic type casting behavior when this occurs.

Note: For information on how to set the option for automatic type casting in the Data
View Builder, see �Using Automatic Type Casting� on page 3-17.
Building Queries and Data Views C-1

C Type Casting Reference
Type Casting to a Numeric Target

The following table shows whether Liquid Data transforms a source node data type to
the numeric data type of the target node.

Target:
xs:byte

Target:
xs:short

Target:
xs:int

Target:
xs:long

Target:
xs:integer

Target:
xs:decimal

Target:
xs:float

Target:
xs:double

xs:byte N Y Y Y Y Y Y Y

xs:short Y N Y Y Y Y Y Y

xs:int Y Y N Y Y Y Y Y

xs:long Y Y Y N Y Y Y Y

xs:integer Y Y Y Y N Y Y Y

xs:decimal Y Y Y Y Y N Y Y

xs:float Y Y Y Y Y Y N Y

xs:double Y Y Y Y Y Y Y N

xs:string Y Y Y Y Y Y Y Y

xs:boolean Y Y Y Y Y Y Y Y

xs:date N N N N N N N N

xs:time N N N N N N N N

xs:dateTime N N N N N N N N

xsext:anyValue
xsext:anyType
xsext:item

Y Y Y Y Y Y Y Y
C-2 Building Queries and Data Views

Type Casting to a Non-Numeric Target

The following table shows whether Liquid Data transforms a source node data type to
the non-numeric data type of the target node.

Note: The type cast from xs:dateTime to xs:date and xs:time uses
xfext:date-from-dateTime() and xfext:time-from-dateTime.

Target:
xs:byte

Target:
xs:boolean

Target:
xs:date

Target:
xs:time

Target:
xs:dateTime

Target:
xsext:anyValue
xsext:anyType
xsext:item

xs:byte Y Y N N N N

xs:short Y Y N N N N

xs:int Y Y N N N N

xs:long Y Y N N N N

xs:integer Y Y N N N N

xs:decimal Y Y N N N N

xs:float Y Y N N N N

xs:double Y Y N N N N

xs:string N Y Y Y Y N

xs:boolean Y N N N N N

xs:date Y N N N N N

xs:time Y N N N N N

xs:dateTime Y N Y (see note) Y (see note) N N

xsext:anyValue
xsext:anyType
xsext:item

Y Y Y Y Y N
Building Queries and Data Views C-3

C Type Casting Reference
Type Casting Function Parameters

In some cases, Liquid Data can transform the data type for a function parameter when
a mismatch occurs.

Target:
xs:byte

Target:
xs:short

Target:
xs:int

Target:
xs:long

Target:
xs:integer

Target:
xs:decimal

Target:
xs:float

Target:
xs:double

xs:byte N N N N N N N N

xs:short Y N N N N N N N

xs:int Y Y N N N N N N

xs:long Y Y Y N N N N N

xs:integer Y Y Y Y N N N N

xs:decimal Y Y Y Y Y N N N

xs:float Y Y Y Y Y Y N N

xs:double Y Y Y Y Y Y Y N
C-4 Building Queries and Data Views

Index

Symbols
../design.html#1049351 3-41

A
ad hoc query 1-7
advanced view

on Conditions tab 2-27
understanding scope in 3-30

aggregate
definition 1-16
in example query 9-8

application view
as supported data source 1-9

automatic type casting 3-17

B
BEA corporate Web site iii-iv

C
Complex Parameter Types, Using 7-1
components

accessing components of a query from
Toolbox tab 2-11

constants
accessing from Toolbox tab 2-10

count function
in example query 9-35

CPT (Complex Paramater Type) 7-1
custom functions

accessing from Toolbox tab 2-10
use cases for 7-3

customer support contact information iii-v

D
data sources

order optimization 4-3
supported in Liquid Data 1-7

data view
as supported data source 1-10

data views
simple and parameterized 6-4
using as data sources 6-4, 7-8

date-time
example query 9-18

DB2
names for Liquid Data data types B-7

Design tab 2-4
documentation, where to find it iii-iv

F
functions

accessing from Toolbox tab 2-10
count used in example query 9-35
date and time in example query 9-18
introduction to use of in Data View

Builder 1-16
W3C XQuery links A-1
Building Queries and Data Views I-1

H
hints

for parameter passing 4-6
merge 4-8
optimizing queries with 4-5
ppleft 4-6
ppright 4-6

I
IBM DB2

stored procedure support 8-30
Informix

names for Liquid Data data types B-8
stored procedure support 8-31

J
JDBC

names for Liquid Data data types B-3
supported data types for Liquid Data B-2

join
adding hints for optimizing query

performance 4-5
definition 1-15
in example query 9-2

L
Liquid Data documentation Home page iii-v

M
Microsoft SQL Server

stored procedure support 8-28
minus

in example query 9-35
MSQL

server names for Liquid Data data types
B-6

N
namespaces, XML 1-17
naming conventions

for queries 5-7
for stored queries to be generated as Web

services 5-7

O
optimization

data source order in query 4-3
hints for joins 4-5

Optimize tab 2-30
Oracle

names for Liquid Data data types B-5
stored procedure support 8-27

P
parameter

types 2-17
parameters

introduction to use of in functions 1-17
ppleft 4-6
ppright 4-6
print, how to iii-v
printing product documentation iii-v

Q
query

ad hoc 1-7
optimizing source order in 4-3
plans 1-6
result 5-5
running 5-4
saving 5-6
saving as a stored query 5-6
stopping while running 5-4
stored 1-6
testing 5-4
I-2 Building Queries and Data Views

query parameters
defining 2-15
defining in Toolbox tab 2-10
introduction to use of in functions 1-17
submitting at query runtime 2-35
types 2-17

query plan
definition 1-6

R
related information iii-v

S
schemas

off-line (unavailable) 2-39
source-introduction 1-10
target-introduction 1-10

scope
defining in Advanced view on

Conditions tab 2-27
source

order optimization 4-3
source schema

introduction 1-10
stored procedure

support by database 8-26
Stored Procedure Description file

DB2 multiple result sets 8-23
elements and attributes 8-6
Oracle cursor as a return_value 8-25
Oracle cursor output parameter 8-22
overview 8-4
rules for specifying 8-10
sample files 8-19
schema definition file 8-5

stored procedures
as supported data source 1-10
defining to Liquid Data 8-2
example 8-33

overview 8-1
Stored Procedure Description file 8-4
using in queries 8-32

stored query
definition 1-6
saving as 5-6

support
technical iii-vi

Sybase
names for Liquid Data data types B-7
stored procedure support 8-29

T
target schema

introduction 1-10
namespaces 1-20
understanding 1-11

Test tab 2-32
type casting

automatic in Data View Builder 3-17

U
union

definition 1-16
in example query 9-28

W
W3C

relationship to XQuery and Liquid Data
1-2

Web services
definition 1-9
naming conventions for queries 5-7

World Wide Web Consortium (W3C) iii-iii

X
XML iii-iii, iii-iv

role in XQuery 1-2
Building Queries and Data Views I-3

XML files as supported data source 1-9
XML file

definition 1-9
XML namespaces 1-17
XQuery iii-iii

as used in Liquid Data 1-3
definition 1-2
links to more information 1-4
I-4 Building Queries and Data Views

	About This Document
	1 Overview and Key Concepts
	W3C XQuery, XML, and Liquid Data
	XQuery Use in Liquid Data and Data View Builder
	The Role of XML in Creating Global Business Solutions
	Supported XML Schema Versions In Liquid Data
	Learning More About the XQuery Language

	Data View Builder Overview
	Advantages of the Data View Builder
	How the Data View Builder Works

	Key Concepts of Query Building
	Query Plans
	Stored Queries
	Ad Hoc Queries
	Different Kinds of Data Sources
	Relational Databases
	XML Files
	Web Services
	Application Views
	Data Views—Using the Result of a Query as a Data Source
	Stored Procedures

	Source and Target Schemas
	Understanding Source Schemas
	Understanding Target Schemas

	Anatomy of a Query: Joins, Unions, Aggregates, and Functions
	Joins
	Unions
	Aggregates
	Functions
	Query Parameters

	Understanding XML Namespaces
	XML Namespace Overview
	Predefined Namespaces in XQuery
	Other XML Namespace References

	XML Namespaces in Liquid Data Queries
	Namespace Declarations in XQuery Prolog
	Namespaces in Target Schema Definitions
	Data Sources that Require Namespace Declarations

	Migrating Liquid Data 1.0 Queries

	Next Steps

	2 Starting the Builder and Touring the GUI
	Starting the Data View Builder
	Data View Builder GUI Tour
	Design Tab
	Overview Picture of Design Tab Components
	1. Menu Bar for the Design Tab
	2. Toolbar for the Design Tab
	3. Builder Toolbar
	4. Source Schemas
	5. Target Schema
	6. Conditions Tab
	7. Mappings Tab
	8. Sort By Tab
	9. Status Bar

	Optimize Tab
	Overview Picture of Optimize Tab Components
	1. Source Order Optimization
	2. Join Pair Hints

	Test Tab
	Overview Picture of Test Tab Components
	1. Menu Bar for the Test Tab
	2. Toolbar for the Test Tab
	3. Builder-Generated XQuery
	4. Query Parameters: Submitted at Query Runtime
	5. Query Results - Large Results
	6. Run Query
	7. Result of a Query

	Working With Projects
	To Make a Project Portable, Save Target Schema to Repository
	Saving a Project is Not the Same as Saving a Query
	Using Schemas Saved With Projects

	Special Characters: Occurrence Indicators
	Next Steps: Building and Testing Sample Queries

	3 Designing Queries
	Designing a Query
	Building a Query
	Opening the Source Schemas for the Data Sources You Want to Query
	Adding a Target Schema
	Editing a Target Schema

	Mapping Source and Target Schemas
	Mapping Node to Node
	Example: Query Customers by State
	Mapping Nodes to Functions
	Supported Mapping Relationships
	Removing Mappings

	Setting Conditions
	What are Functions?
	Using Constants and Variables in Functions
	Enabling and Disabling Conditions
	Removing Conditions
	Adding or Deleting Parameters in a Condition Statement

	Showing or Hiding Data Types
	Using Automatic Type Casting
	Exceptions to Automatic Type Casting

	Examples of Simple Queries
	Example: Return Customers by Name
	Build the Query
	View the XQuery and Run the Query to Test it

	Example: Query Customers by ID and Sort by State
	Open the Data Sources and Add a Target Schema
	Map Nodes from Source to Target Schema to Project Output
	Join Two Sources
	Specify the Order of the Result Using the Sort By Features
	View the XQuery and Run the Query to Test it

	Understanding Scope in Basic and Advanced Views
	Where Does Scope Apply?
	Basic View (Automatic Scope Settings)
	Advanced View (Setting the Scope Manually)
	When to Use Advanced View to Set Scope Manually
	Task Flow Model for Advanced View Manual Scoping
	Returning to Basic View
	Saving Projects from Basic or Advanced View
	Version Control

	Scope Recursion Errors
	Recommended Action

	Understanding Query Design Patterns
	Target Schema Design Guidelines and Query Examples
	Design Guidelines
	Examples of Effective Query Design

	Source Replication
	Why is source replication necessary?
	When is source replication necessary?
	When should you manually replicate sources?

	Next Steps

	4 Optimizing Queries
	Factors in Query Performance
	Using the Features on the Optimize Tab
	Source Order Optimization
	Example: Source Order Optimization

	Optimization Hints for Joins
	Choosing the Best Hint
	Using Parameter Passing Hints (ppleft or ppright)
	Using a Merge Hint

	5 Testing Queries
	Switching to the Test View
	Using Query Parameters
	Specifying Large Results for File Swapping
	Running the Query
	Viewing the Query Result
	Saving a Query
	Saving a Query to the Repository as a “Stored Query”
	Naming Conventions for Stored Queries

	6 Using Data Views
	Enterprise and the Data View
	Understanding Data Views
	A Data View Use Case
	Simple and Parameterized Data Views
	Using Data Views as Data Sources

	Creating a Data View
	Creating and Saving the Query to the Liquid Data Repository
	Configuring a Data View Data Source Description
	Adding a Data View as a Data Source

	Creating a Parameterized Data View
	Data View Query Samples

	7 Using Complex Parameter Types in Queries
	Understanding Complex Parameter Types
	A CPT Use Case
	Understanding CPT Schema and Data
	Sample CPT Schema
	Sample XML Data Stream

	Notes on Hand-Crafting CPT XQueries
	Unique Namespace
	XQuery of type element Declaration

	Creating a Complex Parameter Type
	Step 1. Create a CPT Schema
	Step 2. Create Your Runtime Source
	Step 3. Define Your CPT in the Administration Console
	Step 4. Build Your Query
	Step 5. Run your query

	Complex Parameter Type Query Samples

	8 Defining Stored Procedures
	Defining Stored Procedures to Liquid Data
	To Define Stored Procedures to Liquid Data

	Stored Procedure Description File Schema
	Basic Structure
	Type Definitions
	Function Definitions

	Schema Definition File for Stored Procedure Description File
	Element and Attribute Reference for Stored Procedure Description File
	Supported Datatypes

	Rules for Specifying Stored Procedure Description Files
	Rules for Element and Attribute Names
	Rules for Procedure Names Containing a Semi-Colon
	Rules and Examples of <type> Declarations to Use in the <function> return_type Attribute
	Example 1: Type Definition with No Return Value
	Example 2: Type Definition with Simple Return Value
	Example 3: Type Definition for Complex Row Set Type
	Example 4: Type Definition with Complex Return Value
	Example 5: Type Definition with Simple Return Value and Two Row Sets

	Rules for the mode Attribute output_only <argument> Element
	Rules for Transforming the Function Signature When Hand Writing an XQuery
	Namespace Declaration
	Function Transformation

	Sample Stored Procedure Description Files
	DB2 Simple input_only, output_only, and input_output Example
	Oracle Cursor Output Parameter Example
	DB2 Multiple Result Set Example
	Oracle Cursor as return_value

	Stored Procedure Support by Database
	Oracle
	Microsoft SQL Server
	Sybase
	IBM DB2
	Informix

	Using Stored Procedures in Queries
	Define Stored Procedures to Liquid Data
	Example: Defining and Using a Customer Orders Stored Procedure
	Business Scenario
	View a Demo
	Step 1: Create the Stored Procedure in the Database
	Step 2: Create the Stored Procedure Description File
	Step 3: Specify the Stored Procedure Description File in the Liquid Data Console
	Step 4: Open the Data View Builder to See Your Stored Procedures
	Step 5: Use the Stored Procedure in a Query
	Step 6: Run the Query

	9 Query Cookbook
	Example 1: Simple Joins
	The Problem
	The Solution
	View a Demo
	Ex 1: Step 1. Verify the Target Schema is Saved in Repository
	Ex 1: Step 2. Open Source and Target Schemas
	Ex 1: Step 3. Map Nodes from Source to Target Schema to Project the Output
	Ex 1: Step 4. Create a Query Parameter for a Customer ID to be Provided at Query Runtime
	Ex 1: Step 5. Assign the Query Parameter to a Source Node
	Ex 1: Step 6. Join the Wireless and Broadband Customer IDs
	Ex 1: Step 7. Set Optimization Hints
	Ex 1: Step 8. View the XQuery and Run the Query to Test it
	Ex. 1: Step 9. Verify the Result

	Example 2: Aggregates
	The Problem
	The Solution
	View a Demo
	Ex 2: Step 1. Locate and Configure the “AllOrders” Data View
	Ex 2: Step 2. Restart the Data View Builder and Find the New Data View
	Ex 2: Step 3. Verify the Target Schema is Saved in the Repository
	Ex 2: Step 4. Open the Data Sources and Target Schema
	Ex 2: Step 5. Map Source Nodes to Target to Project the Output
	Ex 2: Step 6. Create Two Query Parameters to be Provided at Query Runtime
	Ex 2: Step 7. Assign the Query Parameters to Source Nodes
	Ex 2: Step 8. Add the “count” Function
	Ex 2: Step 9. Verify Mappings and Conditions
	Ex 2: Step 10. View the XQuery and Run the Query to Test it
	Ex 2: Step 11. Verify the Result

	Example 3: Date and Time Duration
	The Problem
	The Solution
	View a Demo
	Ex 3: Step 1. Verify the Target Schema is Saved in Repository
	Ex 3: Step 2. Open Source and Target Schemas
	Ex 3: Step 3. Map Source to Target Nodes to Project the Output
	Ex 3: Step 4. Create Joins
	Ex 3: Step 5. Create Two Query Parameters for Customer ID and Date to be Provided at Query Runtime
	Ex 3: Step 6. Set a Condition Using the Customer ID
	Ex 3: Step 7. Set a Condition to Determine if Order Ship Date is Earlier or Equal to a Date Submi...
	Ex 3: Step 8. Set a Condition to Include Only “Open” Orders in the Result
	Ex 3: Step 9. View the XQuery and Run the Query to Test it
	Ex 3: Step 9. Verify the Result

	Example 4: Union
	The Problem
	The Solution
	View a Demo
	Ex 4: Step 1. Verify the Target Schema is Saved in Repository
	Ex 4: Step 2. Open Source and Target Schemas
	Ex 4: Step 3. Clone the Orders Element of the Target Schema
	Ex 4: Step 4. Create a Query Parameter for a Customer ID
	Ex 4: Step 5. Assign a Query Parameters
	Ex 4: Step 6. Define Source Relationships
	Ex 4: Step 7. Project the Output to the Target Schema
	Ex 4: Step 8. Add Optimization Hints
	Ex 4: Step 9. View the XQuery and Run the Query to Test it
	Ex 4: Step 10. Verify the Result

	Example 5: Minus
	The Problem
	The Solution
	View a Demo
	Ex 5: Step 1. Verify the Target Schema is Saved in Repository
	Ex 5: Step 2. Open Source and Target Schemas
	Ex 5: Step 3. Find Broadband and Wireless Customers with the Same Customer�ID
	Ex 5: Step 4. Find the Count of the Wireless Customers
	Ex 5: Step 5. Set a Condition that Specifies the Output of “count” is Zero
	Ex 5: Step 6. View the XQuery and Run the Query to Test it
	Ex 5: Step 7. Verify the Result

	Example 6: Complex Parameter Type (CPT)
	The Problem
	The Solution
	View a Demo
	Ex 6: Step 1. Verify the Availability of Schemas and Sample Data Stream
	Ex 6: Step 2. Open the Target Schema and CO-CPTSAMPLE CPT
	Ex: 6: Step 3. Create an orderLimit Query Parameter
	Ex 6: Step 4. Save the Project
	Ex 6: Step 5. Test Access to the Complex Parameter Source
	Ex 6: Step 6: Determine the Total Amount of New Orders
	Ex 6: Step 7. Create the Necessary Joins and Mappings to the Target Schema
	Ex 6: Step 8. Determine the Amount of Currently Open Orders
	Ex 6: Step 9: Determine the Total Amount of All Open and New Orders
	Ex 6: Step 10: Test If Open Orders + New Orders Exceeds the Order Limit
	Ex 6: Step 11: Determine If the Order is Accepted or Rejected
	Ex 6: Step 12: View the XQuery
	Ex 6: Step 13. Run the XQuery to Verify the Result

	A Functions Reference
	About in Liquid Data XQuery Functions
	Naming Conventions
	Occurrence Indicators
	Data Types
	Date and Time Patterns

	Accessor and Node Functions
	xf:data
	xf:local-name

	Aggregate Functions
	xf:avg
	xf:count
	xf:max
	xf:min
	xf:sum

	Boolean Functions
	xf:false
	xf:not
	xf:true

	Cast Functions
	cast as xs:boolean
	cast as xs:byte
	cast as xs:date
	cast as xs:dateTime
	cast as xs:decimal
	cast as xs:double
	cast as xs:float
	cast as xs:int
	cast as xs:integer
	cast as xs:long
	cast as xs:short
	cast as xs:string
	cast as xs:time

	Comparison Operators
	eq
	ge
	gt
	le
	lt
	ne

	Constructor Functions
	xf:boolean-from-string
	xf:byte
	xf:decimal
	xf:double
	xf:float
	xf:int
	xf:integer
	xf:long
	xf:short
	xf:string

	Date and Time Functions
	xf:add-days
	xf:current-dateTime
	xf:date
	xfext:date-from-dateTime
	xfext:date-from-string-with-format
	xf:dateTime
	xfext:dateTime-from-string-with-format
	xf:get-hours-from-dateTime
	xf:get-hours-from-time
	xf:get-minutes-from-dateTime
	xf:get-minutes-from-time
	xf:get-seconds-from-dateTime
	xf:get-seconds-from-time
	xf:time
	xfext:time-from-dateTime
	xfext:time-from-string-with-format

	Logical Operators
	and
	or

	Numeric Operators
	* (multiply)
	+ (add)
	- (subtract)
	div
	mod

	Numeric Functions
	xf:ceiling
	xf:floor
	xf:round
	xfext:decimal-round
	xfext:decimal-truncate

	Other Functions
	xfext:if-then-else

	Sequence Functions
	xf:distinct-values
	xf:empty
	xf:subsequence (format 1)
	xf:subsequence (format 2)

	String Functions
	xf:compare
	xf:concat
	xf:contains
	xf:ends-with
	xf:lower-case
	xf:starts-with
	xf:string-length
	xf:substring (format1)
	xf:substring (format 2)
	xf:substring-after
	xf:substring-before
	xf:upper-case
	xfext:match
	xfext:trim

	Treat Functions
	treat as xs:boolean
	treat as xs:byte
	treat as xs:date
	treat as xs:dateTime
	treat as xs:decimal
	treat as xs:double
	treat as xs:float
	treat as xs:int
	treat as xs:integer
	treat as xs:long
	treat as xs:short
	treat as xs:string
	treat as xs:time

	B Supported Data Types
	Overview
	JDBC Types
	JDBC Names

	Database�Specific Names
	Oracle Names
	Microsoft SQL Server Names
	DB2 Names
	Sybase Names
	Informix Names

	C Type Casting Reference
	Type Casting to a Numeric Target
	Type Casting to a Non-Numeric Target
	Type Casting Function Parameters

	Index

