
BEA
 Liquid Data for
WebLogic™

Invoking Liquid Data
Queries Programmatically
Release: 1.0
Document Date: October 2002
Revised:

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server,
BEA WebLogic Workshop, BEA Liquid Data for WebLogic, and How Business Becomes E-Business are
trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Invoking Liquid Data Queries Programmatically

Part Number Date Software Version

N/A October 2002 1.0

Contents

About This Document
What You Need to Know .. viii
e-docs Web Site... viii
How to Print the Document... viii
Related Information... ix
Contact Us!.. ix
Documentation Conventions ...x

1. About the Liquid Data Query API
About Liquid Data Queries ... 1-1

Stored Queries .. 1-2
Ad Hoc Queries .. 1-2
Parameterized Queries.. 1-2

Components of the Liquid Data Query API .. 1-3
Packages ... 1-3
Query Execution EJB ... 1-3
Query Parameters ... 1-4
Query Attributes ... 1-5
Query Results ... 1-5

Types of Java Clients... 1-5
EJB Clients ... 1-6
JSP Clients.. 1-6

2. Invoking Queries in EJB Clients
Step 1: Connect to the Liquid Data Server... 2-1
Step 2: Specify Query Parameters.. 2-4
Step 3: Execute the Query.. 2-6
Invoking Liquid Data Queries Programmatically iii

Step 4: Process the Results of the Query.. 2-8

3. Invoking Queries in JSP Clients
About the Liquid Data Tag Library ... 3-1

Scope of the Liquid Data Tag Library.. 3-2
Location of the Liquid Data Tag Library ... 3-2
Tags in the Liquid Data Tag Library.. 3-2

query Tag... 3-2
param Tag.. 3-3

Processing Steps .. 3-3
Step 1: Reference the Liquid Data Tag Library ... 3-4
Step 2: Connect to the Liquid Data Server... 3-4
Step 3: Specify Query Parameters.. 3-5
Step 4: Execute the Query .. 3-5

Executing Stored Queries.. 3-6
Executing Ad Hoc Queries.. 3-6
Handling Exceptions ... 3-7

Step 5: Process the Query Results .. 3-7

4. Invoking Queries in Web Service Clients
Finding the WSDL URL for Generated Web Services 4-1
Invoking Web Services Programmatically .. 4-2

5. Invoking Queries in Business Process Manager Applications
Liquid Data and the BPM Component .. 5-1
Setting Up a Query Invocation in BPM Client Applications 5-2

6. Invoking Queries in BEA WebLogic Portal Applications
Invoking Liquid Data Queries as EJB Clients... 6-1
Invoking Liquid Data Queries as JSP Clients ... 6-2

7. Using Custom Functions
About Custom Functions ... 7-1
Defining Custom Functions... 7-2

Step 1: Write the Custom Function Implementation in Java...................... 7-3
Rules for Writing Custom Function Implementations 7-3
iv Invoking Liquid Data Queries Programmatically

Correspondence Between XML and Java Data Types........................ 7-3
Step 2: Create the Custom Functions Library Definition File 7-4

Contents of a CFLD File ... 7-4
Structure of a CFLD File .. 7-5
Elements and Attributes in a CFLD File... 7-6

Step 3: Register the Custom Function in the Administration Console 7-7
Examples of Custom Functions... 7-7

Example That Uses Simple Types ... 7-7
Implementation of Custom Functions for Simple Types 7-8
CFLD File That Declares Custom Functions for Simple Types......... 7-9
Query That Uses the Custom Functions for Simple Types............... 7-11

Example That Uses Complex Types .. 7-13
Implementation of a Custom Function for a Complex Type 7-13
CFLD File That Declares the Custom Function for a Complex Type

7-13
Query That Uses the Custom Function for a Complex Type............ 7-15

Index
Invoking Liquid Data Queries Programmatically v

vi Invoking Liquid Data Queries Programmatically

About This Document

This document describes how to use the BEA Liquid Data for WebLogic™ EJB API
and JSP tag library.

This following topics are covered:

Chapter 1, “About the Liquid Data Query API,” describes concepts that you’ll
need to understand in order to invoke Liquid Data queries programmatically.

Chapter 2, “Invoking Queries in EJB Clients,” describes how to invoke Liquid
Data queries from EJB clients.

Chapter 3, “Invoking Queries in JSP Clients,” describes how to invoke Liquid
Data queries from JSP clients.

Chapter 4, “Invoking Queries in Web Service Clients,” describes how to invoke
Liquid Data queries as Web service clients that access Web services that were
generated using the Liquid Data node in the Administration Console.

Chapter 5, “Invoking Queries in Business Process Manager Applications,”
describes how to invoke Liquid Data queries as Business Operations in Business
Process Manager workflows.

Chapter 6, “Invoking Queries in BEA WebLogic Portal Applications,” describes
how to invoke Liquid Data queries in BEA WebLogic Portal applications.

Chapter 7, “Using Custom Functions,” describes how to write Java code for
custom functions that extend the power and functionality of Liquid Data.
Invoking Liquid Data Queries Programmatically vii

What You Need to Know

This document is intended mainly for EJB and JSP developers responsible for
developing the client-server deployment strategy for data integration applications.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the Liquid Data documentation Home
page on the e-docs Web site (and also on the documentation CD). You can open the
PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in book
format. To access the PDFs, open the Liquid Data documentation Home page, click the
PDF files button and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.
viii Invoking Liquid Data Queries Programmatically

Related Information

For more information in general about Java and XQuery, refer to the following
sources.

The Sun Microsystems, Inc. Java site at:
http://java.sun.com/

The World Wide Web Consortium XML Query section at:
http://www.w3.org/XML/Query

For more information about BEA products, refer to the BEA documentation site at:

http://edocs.bea.com/

Contact Us!

Your feedback on the BEA Liquid Data documentation is important to us. Send us
e-mail at docsupport@bea.com if you have questions or comments. Your comments
will be reviewed directly by the BEA professionals who create and update the Liquid
Data documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Liquid Data for WebLogic1.0 release.

If you have any questions about this version of Liquid Data, or if you have problems
installing and running Liquid Data, contact BEA Customer Support through BEA
WebSupport at www.bea.com. You can also contact Customer Support by using the
contact information provided on the Customer Support Card, which is included in the
product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address
Invoking Liquid Data Queries Programmatically ix

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.
Example:
void commit ()

monospace
italic
text

Identifies variables in code.
Example:
String expr
x Invoking Liquid Data Queries Programmatically

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.
Examples:
LPT1
SIGNON
OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:
That an argument can be repeated several times in a command line
That the statement omits additional optional arguments
That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
Invoking Liquid Data Queries Programmatically xi

xii Invoking Liquid Data Queries Programmatically

CHAPTER
1 About the Liquid Data
Query API

This topic describes concepts that you need to understand in order to invoke queries
programmatically using the BEA Liquid Data for WebLogic™ Query API. It contains
the following sections:

About Liquid Data Queries

Components of the Liquid Data Query API

Types of Java Clients

For reference information about the Liquid Data Query API, see the Liquid Data
Javadoc. For an introduction to the XQuery standard, see “Liquid Data Implements the
XQuery Standard” in “Liquid Data Concepts” in the Product Overview.

About Liquid Data Queries

This section describes the following Liquid Data query concepts:

Stored Queries

Ad Hoc Queries

Parameterized Queries

For more information about Liquid Data queries, see “Key Concepts of Query
Building” in “Overview and Key Concepts” in Building Queries and Data Views.
Invoking Liquid Data Queries Programmatically 1-1

1 About the Liquid Data Query API
Stored Queries

Stored queries have been predefined by the personnel (typically data architects) of the
organization that operates the Liquid Data Server. Stored queries are assigned a unique
name and reside in the Liquid Data server repository. Clients may execute stored
queries by merely specifying their name and parameters, if any. For more information
about the server repository, see “Managing the Liquid Data Repository” in the Liquid
Data Administration Guide.

Ad Hoc Queries

An ad hoc query is a query that has not been stored in the Liquid Data repository as a
stored query but rather is passed to the Liquid Data server on the fly. Ad hoc queries
are defined by the client. In effect, clients need to provide the actual content of ad hoc
queries to the server at run time.

Parameterized Queries

Although queries may return results that are of general interest, it is often the case that
the content of query results, and therefore also the content of the query, needs to be
customized in order to better fit the client’s needs. This requirement is commonly
addressed through the use of parameterized queries, which are queries that allow for
substitution of parts of the query with parameters whose value can be provided (and
changed) per query execution.

The Liquid Data Server API provides support for parameterized queries using named
parameters. When parameterized queries are used, clients need to provide the value
and the type of each named parameter in the query.
1-2 Invoking Liquid Data Queries Programmatically

Components of the Liquid Data Query API
Components of the Liquid Data Query API

This topic describes the components of the Liquid Data Query API. It contains the
following sections:

Packages

Query Execution EJB

Query Parameters

Query Attributes

Query Results

For reference information about the Liquid Data Query API, see the Liquid Data
Javadoc.

Packages

The Liquid Data API includes the following packages:

Query Execution EJB

The com.bea.ldi.server package defines the following stateless session bean:

bea.ldi.server.QueryBean

Table 1-1 Packages in the Liquid Data Query API

Package Name Description

com.bea.ldi.server Defines the Liquid Data query execution EJBs, including their home and
remote interfaces.

com.bea.ldi.server.common Defines interfaces and classes for query parameters, query results, query
result exceptions, and attributes for query evaluation.
Invoking Liquid Data Queries Programmatically 1-3

1 About the Liquid Data Query API
The com.bea.ldi.server package also defines the home and remote interfaces for
this EJB. The query execution EJB, along with the Liquid Data Server, can be
deployed in a cluster.

Query Parameters

The com.bea.ldi.server.common.QueryParameters class represents parameters
that are specified for parameterized queries prior to query execution. In addition to
Java primitive types (byte, float, int, long, short, and double) that you can
specify using setxxxx() methods, query parameters can be any of the following
types:

java.lang.Boolean

java.lang.Byte

java.lang.Double

java.lang.Float

java.lang.Integer

java.lang.Long

java.lang.Short

java.lang.String

java.math.BigDecimal

java.math.BigInteger

java.util.Calendar

java.sql.Date

java.sql.Time

java.sql.Timestamp

The QueryParameters class provides methods for setting parameters based on these
types as well as a getParameters() method that collects defined query parameters in
a java.util.Map object.
1-4 Invoking Liquid Data Queries Programmatically

Types of Java Clients
Query Attributes

The com.bea.ldi.server.common.QueryAttributes interface provides a
variable (LARGE_DATA) that specifies whether the query is expected to produce a large
final result set or large intermediate result sets.

Query Results

The com.bea.ldi.server.common.QueryResult interface represents the results of
a query. The QueryResult interface provides methods for retrieving the query results,
expressed in XML, as a DOM document (org.w3c.dom.Document), determining
whether the query result is empty, printing the query results as XML to a specified
device, and deallocating local and server resources.

Types of Java Clients

Any authorized Java client can use Java Naming and Directory Interface (JNDI) to
obtain references to the EJBs and use them to issue queries against the Liquid Data
Server.

Different types of Java clients include:

Standalone Java applications

Java servlets

Java Server Pages (JSPs)

Java Beans

Other EJBs

Business operations in workflows that execute in the Business Process
Management (BPM) component of WebLogic Integration

WebLogic Portal
Invoking Liquid Data Queries Programmatically 1-5

1 About the Liquid Data Query API
Web Services

Both local and remote clients can access the Liquid Data Query API.

EJB Clients

EJB clients are any applications that invoke queries on the Liquid Data Server using
the Liquid Data EJB API. All Java clients can leverage the flexibility and the powerful
data integration properties offered by XQuery in order to meet their data access needs.
All these types of clients access the EJB remote interfaces directly, therefore they can
be collectively characterized as EJB clients. For more information about EJB clients,
see Chapter 2, “Invoking Queries in EJB Clients.”

Note: A special kind of EJB client is the Data View Builder itself, which may be used
by data architects and developers to build and execute queries.

JSP Clients

In addition to the procedural Liquid Data API, JSP clients, in particular, may use the
Liquid Data Server tag library, which provides a declarative way to extend their
querying and data access capabilities. The Liquid Data Server tag library is typically
deployed within the web application that contains the JSP clients. The declarative
nature of the tag library makes it simpler for JSP clients to issue stored or ad hoc, fixed
or parameterized, queries. These JSP clients form a second family of API clients,
collectively characterized as tag library clients. For more information about JSP
clients, see Chapter 3, “Invoking Queries in JSP Clients.”
1-6 Invoking Liquid Data Queries Programmatically

CHAPTER
2 Invoking Queries in
EJB Clients

This topic describes how to execute BEA Liquid Data for WebLogic™ queries in EJB
clients. It contains the following steps:

Step 1: Connect to the Liquid Data Server

Step 2: Specify Query Parameters

Step 3: Execute the Query

Step 4: Process the Results of the Query

For more information about EJB clients, see “EJB Clients” on page 1-6.

Step 1: Connect to the Liquid Data Server

An EJB client may use standard JNDI and EJB calls in order to obtain a reference to
the remote interfaces of the query execution session beans.

To do so, a remote client first needs to set up the JNDI initial context by specifying the
INITIAL_CONTEXT_FACTORY and PROVIDER_URL environment properties.

The value of INITIAL_CONTEXT_FACTORY should be set to
weblogic.jndi.WLInitialContextFactory.

The value of PROVIDER_URL should reflect the location (URI) of the application
server hosting the Liquid Data Server (for example, t3://localhost:7001).
Invoking Liquid Data Queries Programmatically 2-1

2 Invoking Queries in EJB Clients
A local client, i.e. a client that resides on the application server that hosts the Liquid
Data Server, may bypass these steps by using the settings in the default context
obtained by invoking the empty initial context constructor (i.e. by calling new
InitialContext()).

At this stage, the client may also optionally authenticate itself by passing its security
context to the corresponding JNDI environment properties SECURITY_PRINCIPAL and
SECURITY_CREDENTIALS. Alternatively, the client may use the query execution API
as an anonymous (default) user.

Once the JNDI context is set up, the client may use the JNDI names of the remote home
interfaces of the stateless query execution session bean in order to perform a lookup
and obtain remote references to the EJBHome objects.

The JNDI name for the home interface of the query execution SSB is
bea.ldi.server.QueryHome. The home interface may finally be used to obtain
references to the EJBObject objects of the session bean.

The JNDI name for the remote interface of the query execution SSB is
com.bea.ldi.server.QueryHome. The home interface may finally be used to obtain
references to the EJBObject object (com.bea.ldi.server.Query) of the session
bean.

The code excerpt below is an example of a remote client that obtains a reference to the
EJBObject of the stateless query execution session bean and it illustrates the concepts
discussed above:

Listing 2-1 Obtaining a Reference to EJB Object Query

 import java.util.Hashtable;

 import javax.naming.Context;

 import javax.naming.InitialContext;

 import javax.naming.NamingException;

 import javax.rmi.PortableRemoteObject;

 import com.bea.ldi.server.*;

 ...// more code

 private static final String QUERY_HOME_JNDI_NAME = "bea.ldi.server.QueryHome";
2-2 Invoking Liquid Data Queries Programmatically

 ...// more code

 QueryHome queryHome = null;

 Query query = null;

 // obtain a remote Query reference

 try {

queryHome = lookupQueryHome();

Object obj = queryHome.create();

query = (com.bea.ldi.server.Query) narrow(obj, com.bea.ldi.server.Query.class);

 }

 catch (Exception e) {

// code to handle the exception

 }

 ...// more code

 /**

 * Lookup the EJB home in the JNDI tree of the specified Liquid Data Server.

 */

 private QueryHome lookupQueryHome()

 throws NamingException {

Context ctx = getInitialContext();

// Lookup the bean’s home using JNDI

Object home = ctx.lookup(QUERY_HOME_JNDI_NAME);

return (QueryHome) narrow(home, QueryHome.class);

 }

 /**

 * Obtains the JNDI context.

 */

 private Context getInitialContext() throws NamingException {
Invoking Liquid Data Queries Programmatically 2-3

2 Invoking Queries in EJB Clients
// Set up the environment properties

 Hashtable h = new Hashtable();

 h.put(Context.INITIAL_CONTEXT_FACTORY,

 "weblogic.jndi.WLInitialContextFactory");

h.put(Context.PROVIDER_URL, "t3://localhost:7001");

h.put(Context.SECURITY_PRINCIPAL, "username");

h.put(Context.SECURITY_CREDENTIALS, "password");

// Get an InitialContext

return new InitialContext(h);

 }

 /**

 * RMI/IIOP clients should use this narrow function

 */

 private Object narrow(Object ref, Class c) {

 return PortableRemoteObject.narrow(ref, c);

 }

Step 2: Specify Query Parameters

Parameterized queries need to be configured before they are executed. Parameterized
queries require the client to specify the values of the query parameters. Query
parameters allow for dynamic binding of parts of an XQuery query to values specified
at runtime. The presence of a parameter in an XQuery query is manifested through the
use of the following notation:

$#pname

where pname is a unique name across the query assigned to the parameter. In general,
parameters may be used in those places inside a query where a constant could be used.
For a list of valid parameter types, see “Parameterized Queries” on page 1-2.
2-4 Invoking Liquid Data Queries Programmatically

The following sample query illustrates the use of a parameter inside a query.

Listing 2-2 Parameterized XQuery Query

<root>

{

for $b in document("bib")//book,

$pub in $b/publisher

where $pub = $#publisher

return

<result>

{$b/title}
{$b/author}

</result>

}

</root>

The following code excerpt demonstrates the sequence of calls required to set the
parameter for such a query using the Liquid Data Server API.

Listing 2-3 Setting Query Parameters

import com.bea.ldi.server.common.QueryParameters;

... // more code

QueryParameters qp = new QueryParameters();

qp.setString("publisher", "Morgan Kaufmann Publishers");
Invoking Liquid Data Queries Programmatically 2-5

2 Invoking Queries in EJB Clients
The value of a parameter can be overwritten and reused in a new query execution by
setting it to a new value. Using anything other than a String for a parameter name, or
setting a parameter value of an invalid type, results in a RuntimeException.

Step 3: Execute the Query

Once the reference to the EJBObject of the query execution session bean has been
obtained and the query has been configured by setting any query parameters or
attributes, the query is ready to be executed. The Query remote interface offers a
variety of execution calls based on whether the query is parameterized or fixed and
whether it is stored or ad hoc.

As an example, assuming that the client has obtained a reference to a Query object, as
shown in the following code listing, and the String variable queryString has been
loaded with the contents of an ad hoc XQuery query, the following excerpt shows how
to obtain the query result.

Listing 2-4 Execution of an Ad Hoc Non-Parameterized Query

import com.bea.ldi.server.Query;

import com.bea.ldi.server.common.QueryResult;

... // more code

Query query = null;

... // obtain reference to Query

QueryResult result = null;

try {

result = query.execute(queryString);

}

if !(result.isEmpty()){

... // process result

}

else {
2-6 Invoking Liquid Data Queries Programmatically

... // query returned no data

}

catch(RemoteException e) {

// code to handle the exception

}

finally {

try {

query.remove();

}

catch(Exception e) {

 // code to handle the exception

}

}

If a stored query is to be executed, then call executeStored(queryName), where the
String variable queryName is assumed to contain the name of the stored query to be
executed.

If the query is parameterized, once the query parameters have been set, they should be
passed in the execution call, that is, the execute(queryString) call should be
replaced with the calls execute(queryString, qp) and
executeStored(queryName, qp) in the case of ad hoc and stored queries
respectively. The QueryParameters variable qp in the previous calls is assumed to be
loaded with the query parameters.

Note that all execution calls are remote and therefore they may throw a
RemoteException, which should be handled by the client. Note also, that once the
query result has been retrieved, the client may release resources by removing the
EJBObject. If the query is parameterized, the client may use the Query reference to
execute the same query multiple times, possibly setting different values for the query
parameters each time, before removing the EJBObject. In any case, other server-side
resources related to query execution (for example, database cursors) are automatically
released once a query has been executed.
Invoking Liquid Data Queries Programmatically 2-7

2 Invoking Queries in EJB Clients
Step 4: Process the Results of the Query

Further processing of the query result at the client side may take various forms ranging
from merely extracting, or printing out the XML string to using the DOM
representation of the result in order to drill into specific subsets of it.

The result is fully materialized on the server in the form of an unformatted XML string,
which is transmitted to the client. The client may then extract the XML content of the
query result as a String using toXML() method. Alternatively, the client may use the
getDocument() call in order to obtain the DOM representation of the result, provided
that a JAXP-compliant parser is available in the client environment. In either case, the
client is free to process the result using any XML processor (for example, using an
XSLT processor to convert the result to a presentable format like HTML).
2-8 Invoking Liquid Data Queries Programmatically

CHAPTER
3 Invoking Queries in
JSP Clients

This topic describes how to invoke BEA Liquid Data for WebLogic™ queries in JSP
client applications using the Liquid Data tag library. It contains the following sections:

About the Liquid Data Tag Library

Processing Steps

For more information about JSP clients, see “JSP Clients” on page 1-6.

Note: The following discussion assumes that you are familiar with the use of custom
tag libraries. For more information, see Programming WebLogic JSP Tag
Extensions in the WebLogic Server documentation.

About the Liquid Data Tag Library

This topic introduces the Liquid Data tag library. It contains the following sections:

Scope of the Liquid Data Tag Library

Location of the Liquid Data Tag Library

Tags in the Liquid Data Tag Library
Invoking Liquid Data Queries Programmatically 3-1

3 Invoking Queries in JSP Clients
Scope of the Liquid Data Tag Library

The goal of the Liquid Data tag library is to provide simple declarative means for JSP
clients to obtain access to the XML results of XQuery queries. Tag library clients need
only be concerned with the configuration of parameterized queries. The following
section provides detailed information on how to set up query parameters in this case.

Location of the Liquid Data Tag Library

The Java classes and other file resources required by tag library clients are packaged
inside LDS-client.jar, LDS-em-client.jar, and LDS-taglib.jar. The tag
library descriptor file (taglib.tld) defines the elements and attributes in the Liquid
Data tag library. The taglib.tld is stored under META-INF inside the
LDS-taglib.jar file.

Tags in the Liquid Data Tag Library

The Liquid Data tag library contains the following tags:

query Tag

param Tag

query Tag

The query tag specifies the query to execute and the host machine on which to run the
query. The query tag has the following attributes.

Table 3-1 Attributes of the query tag

Attribute Description

name Specifies the name of a stored query from which to retrieve
results.
3-2 Invoking Liquid Data Queries Programmatically

Processing Steps
The following example specifies the stored query on the specified host machine.

<lds:query name="MyStoredQuery" server="t3://222.222.22:7001">

param Tag

The param tag specifies a query parameter as a name-value pair. For each parameter,
you specify a separate param tag. The param tag has the following attributes.

The following example specifies the name of a publisher in the param tag.

<lds:param name="publisher" value="<%=\"Morgan Kaufmann
Publishers\"%>"/>

Processing Steps

This section describes the process of executing queries from JSP clients. It contains the
following steps:

Step 1: Reference the Liquid Data Tag Library

Step 2: Connect to the Liquid Data Server

server Specifies the host machine on which the Liquid Data Server is
running. Use only when JSP clients are deployed on different
machine from the one hosting the Liquid Data Server.

Table 3-1 Attributes of the query tag (Continued)

Attribute Description

Table 3-2 Attributes of the param tag

Attribute Description

name Name of the query parameter.

value Value of the query parameter.
Invoking Liquid Data Queries Programmatically 3-3

3 Invoking Queries in JSP Clients
Step 3: Specify Query Parameters

Step 4: Execute the Query

Step 5: Process the Query Results

Step 1: Reference the Liquid Data Tag Library

To use the tags in the Liquid Data tag library, you must reference them in each JSP
page. To reference the JSP tags described in “Tags in the Liquid Data Tag Library” on
page 3-2, including the following code near the top of each JSP page:

<%@ taglib uri="LDSTLD" prefix="lds" %>

Note: The default prefix (lds:) is configurable.

Step 2: Connect to the Liquid Data Server

Tag library clients are JSP clients. JSP clients that are deployed on the same
application server that hosts Liquid Data Server do not need to take any steps in order
to connect to Liquid Data Server, as this case is supported by default.

JSP clients deployed on a server other than the one hosting Liquid Data Server need to
specify the location (URL) of the server hosting Liquid Data Server using the server
attribute of the query tag, as shown in the following example.

Listing 3-1 Non-Local JSP Client Connecting to Liquid Data Server

<%@ taglib uri="LDSTLD" prefix="lds" %>

...

<lds:query ... server="t3://222.222.22:7001">

...

</lds:query>
3-4 Invoking Liquid Data Queries Programmatically

Processing Steps
Step 3: Specify Query Parameters

In the Liquid Data tag library, the query tag accepts a nested param tag, which may
be used to specify the name and the value of a parameter applied to the XQuery query
represented by the query tag. The following excerpt illustrates how to set the parameter
for the query shown in Listing 3-3.

Listing 3-2 Setting the Query Parameters

<%@ taglib uri="LDSTLD" prefix="lds" %>

...

<lds:query ... server="t3://222.222.22:7001">

...

<lds:param name="publisher"

value="<%=\"Morgan Kaufmann Publishers\"%>"/>

</lds:query>

The value of the parameter is a JSP expression that is evaluated at run time. Quotes are
escaped out. The supported parameter types are the same as those supported for EJB
clients. The actual type of the parameter is implied by the Java type of the value
specified as the content of the value attribute. So, for example, a value
Date.valueOf("2002-03-01") would correspond to a parameter of type
java.sql.Date. A query that uses multiple parameters would require the use of as
many param elements.

Step 4: Execute the Query

The Liquid Data Server Tag Library supports both ad hoc and stored queries.
Invoking Liquid Data Queries Programmatically 3-5

3 Invoking Queries in JSP Clients
Executing Stored Queries

Stored queries are specified by having their name being passed as the value of the name
attribute of the query tag, as shown in the following example of a parameterized,
stored query.

Listing 3-3 Sample Stored Query

<%@ taglib uri="LDSTLD" prefix="lds" %>

...

<lds:query name="MyStoredQuery" server="t3://222.222.22:7001">

<lds:param name="publisher"

value="<%=\"Morgan Kaufmann Publishers\"%>"/>

</lds:query>

Executing Ad Hoc Queries

Ad hoc queries should have their content directly embedded inside the query element,
as shown in the following example.

Listing 3-4 Sample Ad Hoc Query

<%@ taglib uri="LDSTLD" prefix="lds" %>

...

<lds:query server="t3://222.222.22:7001">

<lds:param name="publisher"

value="<%=\"Morgan Kaufmann Publishers\"%>"/>

<root>

{

for $b in document("bib")//book,
3-6 Invoking Liquid Data Queries Programmatically

Processing Steps
$pub in $b/publisher

where $pub = $#publisher

return

<result>

{$b/title}

{$b/author}

</result>

}

</root>

</lds:query>

Handling Exceptions

Any exception that is thrown during query execution should be handled using standard
JSP error handling techniques.

Step 5: Process the Query Results

Query execution results in the unformatted XML content of the query result becoming
available to the JSP client for further processing.

A typical post-processing step followed by JSP clients at this point would be to apply
an XSL transform to the query result XML content in order to convert it to a
presentable format. This can normally be conveniently accomplished by enclosing the
query tag with another custom tag that performs the XSL transformation. For
example, the following listing uses the x:transform tag described in the JavaServer
Pages Standard Tag Library 1.0 Specification, which is published by the Sun
Microsystems, Inc. at the following URL:

http://java.sun.com/products/jsp/jstl/index.html
Invoking Liquid Data Queries Programmatically 3-7

3 Invoking Queries in JSP Clients
Listing 3-5 Applying an XSL Transform to the Query Result

<%@ taglib uri="LDSTLD" prefix="lds" %>

<%@ taglib uri="X" prefix="x" %>

...

<x:transform xsltUrl="url-to-xsl-script">

<lds:query server="t3://222.222.22:7001">

<lds:param name="publisher"

value="<%=\"Morgan Kaufmann Publishers\"%>"/>

<root>

for $b in document("bib")//book,

$pub in $b/publisher

where $pub = $#publisher

return

<result>

{$b/title}

{$b/author}

</result>

}

</root>

</lds:query>

</x:transform>
3-8 Invoking Liquid Data Queries Programmatically

CHAPTER
4 Invoking Queries in
Web Service Clients

This topic introduces how to invoke BEA Liquid Data for WebLogic™ queries in Web
service client applications. It contains the following sections:

Finding the WSDL URL for Generated Web Services

Invoking Web Services Programmatically

For more information about Liquid Data-generated Web services, see “Generating and
Publishing Web Services” in the Liquid Data Administration Guide.

Finding the WSDL URL for Generated Web
Services

After generating a Web service for a selected stored query, the Administration Console
displays a confirmation message that shows the URL of the generated Web service.
The URL of the WSDL of a generated Web service has the following pattern:

http://HOSTNAME:PORT/liquiddata/query_name/webservice?WSDL

For example, if the stored query is named order.xq, then the URL of its WSDL is:

http://localhost:7001/liquiddata/order/webservice?WSDL.
Invoking Liquid Data Queries Programmatically 4-1

4 Invoking Queries in Web Service Clients
Invoking Web Services Programmatically

You invoke Liquid Data Web services that were generated in the Administration
Console using the same approach that you would use for invoking any WebLogic Web
Service. For more information, see “Invoking Web Services” in Programming
WebLogic Web Services in the WebLogic Server documentation.
4-2 Invoking Liquid Data Queries Programmatically

CHAPTER
5 Invoking Queries in
Business Process
Manager Applications

This topic describes how to invoke BEA Liquid Data for WebLogic™ queries from
workflows in the Business Process Manager (BPM) component of BEA WebLogic
Integration. It contains the following sections:

Liquid Data and the BPM Component

Setting Up a Query Invocation in BPM Client Applications

Liquid Data and the BPM Component

Workflows in the Business Process Management (BPM) component of WebLogic
Integration can invoke Liquid Data queries in BPM business operations using the
Liquid Data EJB API. For comprehensive information about BPM, see Business
Process Management in the WebLogic Integration documentation.

A business operation represents a method call on an EJB, including any variables that
are passed to it as parameters, and result values that are returned to the workflow.

You define business operations using the business operations facility in the WebLogic
Integration Studio, as described in “Configuring Business Operations” in Configuring
Workflow Resources in Using the WebLogic Integration Studio. Once defined,
Invoking Liquid Data Queries Programmatically 5-1

5 Invoking Queries in Business Process Manager Applications
individual workflows can use the Perform Business Operation action to invoke the
business operation and, optionally, assign the results of the query to a workflow
variable.

Setting Up a Query Invocation in BPM Client
Applications

To invoke a query using the Liquid Data EJB API, you must first define the business
operation using the WebLogic Integration Studio. For each business operation, you
define the name of the business operation, the JNDI name of the Query EJB to be
invoked (com.bea.ldi.server.QueryHome), and the method to invoke. Stateless
session EJB references persist for the duration of a workflow instance.
For more information, see “Configuring Business Operations” in Configuring Workflow
Resources in Using the WebLogic Integration Studio.
5-2 Invoking Liquid Data Queries Programmatically

CHAPTER
6 Invoking Queries in
BEA WebLogic Portal
Applications

BEA WebLogic Portal™ users can invoke the BEA Liquid Data for WebLogic™
Query API from WebLogic Portal. Calls to the Liquid Data query API are transparent
to Portal users. This topic includes the following sections:

Invoking Liquid Data Queries as EJB Clients

Invoking Liquid Data Queries as JSP Clients

For general information about developing portals, see the “WebLogic Portal
Development Guide” in the WebLogic Portal documentation.

Invoking Liquid Data Queries as EJB Clients

WebLogic Portal needs to be configured to find the Liquid Data query EJB
(com.bea.ldi.server.QueryHome), a stateless session bean. For more information,
see Chapter 2, “Invoking Queries in EJB Clients.”
Invoking Liquid Data Queries Programmatically 6-1

6 Invoking Queries in BEA WebLogic Portal Applications
Invoking Liquid Data Queries as JSP Clients

WebLogic Portal can invoke Liquid Data queries using the Liquid Data Query API and
the Liquid Data tag library. Invocations of Liquid Data queries are transparent to Portal
users. For more information, see Chapter 3, “Invoking Queries in JSP Clients.”

To invoke Liquid Data queries, you first need to deploy Liquid Data and WebLogic
Portal according to the instructions in “Deploying with WebLogic Portal” in
“Deployment Tasks” in Deploying Liquid Data. Once deployed, you can access the
Liquid Data query API from a portlet.jsp file using the JSP tag library. For
example, the following JSP code invokes a query named isq on port 7001 of a server
named myserver:

Listing 6-1 Sample JSP Code Invoking the Liquid Data Query API

<!-- Declare the LD taglib library -->

<%@ taglib uri="LDSTLD" prefix="lds" %>

<!-- Execute the stored procedure "isq" at server "myserver" -->

<lds:query name="isq" server="t3://myserver:7001">

</lds:query>
6-2 Invoking Liquid Data Queries Programmatically

CHAPTER
7 Using Custom
Functions

This section describes how to create custom functions in BEA Liquid Data for
WebLogic™. It contains the following sections:

About Custom Functions

Defining Custom Functions

Examples of Custom Functions

About Custom Functions

Liquid Data provides a set of standard functions to use when creating data views and
queries. You can also define custom functions in the Liquid Data server repository to
use in the Data View Builder or in hand-coded queries. Custom functions, which are
implemented as Java methods, allow you to extend the power and functionality of
Liquid Data. Queries can invoke custom functions during query execution just as they
can standard functions.

A custom function is:

Implemented in Java code, as described in “Step 1: Write the Custom Function
Implementation in Java” on page 7-3.

You can package Java implementations in a JAR file that is stored in the
custom_lib folder of the Liquid Data repository. If any custom functions refer
to addition Java libraries that are not stored in the custom_lib folder of the
Invoking Liquid Data Queries Programmatically 7-1

7 Using Custom Functions
repository, then you must specify those folders in the Liquid Data CLASSPATH
that you configure on the General tab in the Liquid Data node of the
Administration Console. For more information, see “Configuring Liquid Data
Server Settings” in the Liquid Data Administration Guide.

Declared as a method in a custom functions library definition (.CFLD) file, as
described in “Step 2: Create the Custom Functions Library Definition File” on
page 7-4.

A function library is a collection of one or more declared custom functions that
Liquid Data manages as a single unit. Each function library usually corresponds
to a Java class file that contains the function implementations. However, the
function library can also reference functions that are implemented in several
Java class files. You store custom functions library definition files in the
custom_functions folder of the Liquid Data repository.

Registered on the Repository tab in the in the Administration Console, as
described in “Step 3: Register the Custom Function in the Administration
Console” on page 7-7.

Once configured as custom functions, descriptions in the Liquid Data server
repository will show up as functions available for use in any Data View Builder
client or hand-coded XQuery that connects to this server.

Invoked in a query in the same way that you would invoke a standard function.

Defining Custom Functions

This section describes the sequence of tasks for defining custom functions for use in
the Data View Builder. The process of defining custom functions involves the
following steps:

Step 1: Write the Custom Function Implementation in Java

Step 2: Create the Custom Functions Library Definition File

Step 3: Register the Custom Function in the Administration Console

Once a custom function is created, declared, and registered, you can invoke them in
queries created using the Data View Builder.
7-2 Invoking Liquid Data Queries Programmatically

Defining Custom Functions
Step 1: Write the Custom Function Implementation in
Java

To define a custom function, you first write its implementation in Java and then
compile it. The custom function implementation can exist in a single or multiple Java
class files. A single Java class file can contain implementations of multiple custom
functions. You package Java implementation in a JAR file that is stored in the
custom_lib folder of the Liquid Data repository.

For examples of custom function implementations, see:

“Implementation of Custom Functions for Simple Types” on page 7-8

“Implementation of a Custom Function for a Complex Type” on page 7-13

Rules for Writing Custom Function Implementations

When writing a custom function, you must comply with the following rules:

Declare the custom function as a static method.

For parameters and returned values, you must use the data types described in
Table 7-1, “Relationship Between XML and Java Data Types,” on page 7-3.

Correspondence Between XML and Java Data Types

The following table describes the correspondence between XML and Java data types.

Note: For XML data types, the xs prefix corresponds to the XML schema namespace
described at the following URL: http://www.w3.org/2001/XMLSchema.

Table 7-1 Relationship Between XML and Java Data Types

XML Data Type Corresponding Java Data Type

xs:boolean java.lang.Boolean

xs:byte java.lang.Byte

xs:short java.lang.Short
Invoking Liquid Data Queries Programmatically 7-3

7 Using Custom Functions
Step 2: Create the Custom Functions Library Definition
File

After implementing a custom function in Java, you must declare the custom function
in a custom functions library definition (CFLD) file. A CFLD file describes each
custom function in a structured XML format. You store custom functions library
definition files in the custom_functions folder of the Liquid Data repository.

For examples of custom function implementations, see:

“CFLD File That Declares Custom Functions for Simple Types” on page 7-9

“CFLD File That Declares the Custom Function for a Complex Type” on page
7-13

Contents of a CFLD File

A CFLD file contains the following information:

Complex element definitions (for custom functions that operate on complex
types)

xs:integer java.lang.Integer

xs:long java.lang.Long

xs:float java.lang.float

xs:double java.lang.double

xs:decimal java.math.BigDecimal

xs:string java.lang.String

xs:dateTime java.util.Calendar

Complex Element Type org.w3c.dom.Element

Table 7-1 Relationship Between XML and Java Data Types

XML Data Type Corresponding Java Data Type
7-4 Invoking Liquid Data Queries Programmatically

Defining Custom Functions
Custom function signatures

Custom function implementation bindings—function name, return type, class,
method, and any arguments

Run-time attributes—running the custom function synchronously or
asynchronously

Structure of a CFLD File

A CFLD file has the following structure:

Listing 7-1 Structure of a CFLD File

<?xml version = "1.0" encoding = "UTF-8"?>

<definitions>

<types>

<xs:schema> complex types </xs:schema>

</types>

<functions>

<function name="Name of the function" return_type="Return Type"

class="Implementation class" method="Implementation method"

asynchronous="boolean value"? > *

<argument type="Argument Type" label="Argument label"/> *

<presentation group="Data View Builder Presentation Group" />

<description>Function Description</description>

</function>

</functions>

</definitions>
Invoking Liquid Data Queries Programmatically 7-5

7 Using Custom Functions
Elements and Attributes in a CFLD File

The following table describes the elements in a CFLD file.

Table 7-2 Elements in a CFLD File

Element Attribute Description

<types> Declares any complex data types that a custom function can
accept as parameters or return as results, if applicable.

<functions> Function definitions for all functions.

<function> Function definition for a single function.

name Name of the function in the form of prefix:localname.
The prefix must be declared in the <types> section.

return type Return type of the function, which can be either a
supported XML simple data type or a complex data type
declared in the <types> section.

class Implementation class.

method Implementation method.

asynchronous Optional. Determines whether the method should be executed
asynchronously (true) in a separate thread or not (false).
Specify true for functions that execute more slowly than other
functions.

<argument> Argument declarations.

type Type of the argument (simple or complex).

label Optional. Label for the function that the Data View Builder
displays in the list.

<presentation
group>

For a group of related custom functions, if specified, defines the
label of a custom tab that appears in the Data View Builder.

<description> Text that describes the function in some detail.
7-6 Invoking Liquid Data Queries Programmatically

Examples of Custom Functions
Step 3: Register the Custom Function in the
Administration Console

After implementing a custom function and creating the CFLD file, you must register
the custom function using the Administration Console. Registration involves the
following tasks:

Adding the JAR and CFLD files for the custom function to the custom_lib
folder and custom_functions folder, respectively, in the Liquid Data Server
repository.

Adding the path to the JAR file in the Custom Functions Classpath field on the
General tab in the Liquid Data node, if any other JAR is referenced.

Creating a custom function description for each set of custom functions.

If security is enabled, assign ACLs to the custom function description and to the
JAR and CFLD files in the Liquid Data Server repository.

For detailed instructions, see “Configuring Access to Custom Functions” in the Liquid
Data Administration Guide.

Examples of Custom Functions

This topic provides examples of custom functions that use simple and complex types.
It includes the following sections:

Example That Uses Simple Types

Example That Uses Complex Types

Example That Uses Simple Types

This example shows how to create, declare and use custom functions that operate on
simple types.
Invoking Liquid Data Queries Programmatically 7-7

7 Using Custom Functions
Implementation of Custom Functions for Simple Types

The following Java code implements custom functions. These functions implement a
simple echo operation that returns its argument back to the caller.

Listing 7-2 Java Code for Custom Functions That Use Simple Types

package cf;

import java.math.*;

import java.util.Date;

public class CustomFunctions

{

public static BigDecimal echoDecimal(BigDecimal v)

{

return v;

}

public static Integer echoInteger(Integer v)

{

return v;

}

public static Float echoFloat(Float v)

{

return v;

}

public static String echoString(String v)

{

return v;

}

public static Boolean echoBoolean(Boolean v)
7-8 Invoking Liquid Data Queries Programmatically

Examples of Custom Functions
{

return v;

}

public static Calendar echoDateTime(Calendar v)

{

return v;

}

public static Long echoLong(Long v)

{

return v;

}

public static Short echoShort(Short v)

{

return v;

}

public static Byte echoByte(Byte v)

{

return v;

}

public static Double echoDouble(Double v)

{

return v;

}

}

CFLD File That Declares Custom Functions for Simple Types

The following sample CFLD file declares the custom functions for simple types.
Invoking Liquid Data Queries Programmatically 7-9

7 Using Custom Functions
<?xml version = "1.0" encoding = "UTF-8"?>

<definitions>

<types>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

</xs:schema>

</types>

<functions>

<function name="echoString" return_type="xs:string"

class="cf.CustomFunctions" method="echoString" >

<argument type="xs:string" />

</function>

<function name="echoBoolean" return_type="xs:boolean"

class="cf.CustomFunctions" method="echoBoolean" >

<argument type="xs:boolean" />

</function>

<function name="echoByte" return_type="xs:byte"

class="cf.CustomFunctions" method="echoByte" >

<argument type="xs:byte" />

</function>

<function name="echoShort" return_type="xs:short"

class="cf.CustomFunctions" method="echoShort" >

<argument type="xs:short" />

</function>

<function name="echoInteger" return_type="xs:integer"

class="cf.CustomFunctions" method="echoInteger" >

<argument type="xs:integer" />

</function>
7-10 Invoking Liquid Data Queries Programmatically

Examples of Custom Functions
<function name="echoLong" return_type="xs:long"

class="cf.CustomFunctions" method="echoLong" >

<argument type="xs:long" />

</function>

<function name="echoFloat" return_type="xs:float"

class="cf.CustomFunctions" method="echoFloat" >

<argument type="xs:float" />

</function>

<function name="echoDouble" return_type="xs:double"

class="cf.CustomFunctions" method="echoDouble" >

<argument type="xs:double" />

</function>

<function name="echoDecimal" return_type="xs:decimal"

class="cf.CustomFunctions" method="echoDecimal" >

<argument type="xs:decimal" />

</function>

<function name="echoDateTime" return_type="xs:dateTime"

class="cf.CustomFunctions" method="echoDateTime" >

<argument type="xs:dateTime" />

</function>

</functions>

</definitions>

Query That Uses the Custom Functions for Simple Types

After the function library is registered in Liquid Data, it can be called from the
following query (mycf is the logical name specified in the CFLD file):

let
Invoking Liquid Data Queries Programmatically 7-11

7 Using Custom Functions
$es:=mycf:echoString("hello"),

$ebool:=mycf:echoBoolean(xf:true()),

$eb:=mycf:echoByte(cast as xs:byte("127")),

$eh:=mycf:echoShort(cast as xs:short("32767")),

$ei:=mycf:echoInteger(cast as xs:integer("2147483647")),

$el:=mycf:echoLong(cast as xs:long("9223372036854775807")),

$ef:=mycf:echoFloat(cast as xs:float("1.0")),

$ed:=mycf:echoDouble(cast as xs:double("2.0")),

$edec:=mycf:echoDecimal(cast as xs:decimal("1.5")),

$edateTime:=mycf:echoDateTime(cast as xs:dateTime("1999-05-31
13:20:00.0")),

return

<echo>

<string>{$es}</string>

<boolean>{$ebool}</boolean>

<byte>{$eb}</byte>

<short>{$eh}</short>

<integer>{$ei}</integer>

<long>{$el}</long>

<float>{$ef}</float>

<double>{$ed}</double>

<decimal>{$edec}</decimal>

<dateTime>{$edateTime}</dateTime>

</echo>
7-12 Invoking Liquid Data Queries Programmatically

Examples of Custom Functions
Example That Uses Complex Types

This example shows how to create, declare and use a custom function that takes a
complex type as a parameter and returns a complex type.

Implementation of a Custom Function for a Complex Type

The following Java code implements a custom function for a complex type.
This function simply returns its parameter.

Listing 7-3 Custom Function for a Complex Type

package mycf;

import org.w3c.dom.Element;

public static Element echoElement(Element v)

{

return v;

}

CFLD File That Declares the Custom Function for a Complex Type

The following sample CFLD file declares the custom function for a complex type.

Listing 7-4 CFLD File That Declares the Custom Function for a Complex Type

<?xml version = "1.0" encoding = "UTF-8"?>

<definitions>

<types>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name = "book">

<xs:complexType>
Invoking Liquid Data Queries Programmatically 7-13

7 Using Custom Functions
<xs:sequence>

<xs:element ref = "title"/>

<xs:element ref = "author" maxOccurs = "unbounded"/>

<xs:element ref = "publisher"/>

<xs:element ref = "price"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name = "title" type = "xs:string"/>

<xs:element name = "author">

<xs:complexType>

<xs:sequence>

<xs:element ref = "last"/>

<xs:element ref = "first"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name = "publisher" type = "xs:string"/>

<xs:element name = "price" type = "xs:string"/>

<xs:element name = "last" type = "xs:string"/>

<xs:element name = "first" type = "xs:string"/>

</xs:schema>

</types>

<functions>

<function name="echoBook" return_type="book"

class="mycf.CustomFunctions2" method="echoElement" >

<argument type="book" />
7-14 Invoking Liquid Data Queries Programmatically

Examples of Custom Functions
</function>

</functions>

</definitions>

Query That Uses the Custom Function for a Complex Type

After the function is registered in Liquid Data, it can be called from the following
query:

Listing 7-5 Sample Query That Uses the Custom Function for a Complex Type

for $b in document("bib")//book

let $c:=echoBook($b)

return

<ans>

{

for $t in $c/title

return $t

}

</ans>
Invoking Liquid Data Queries Programmatically 7-15

7 Using Custom Functions
7-16 Invoking Liquid Data Queries Programmatically

Index

A
ad hoc queries

defined 1-2
executing in JSP clients 3-6

B
bea.ldi.server.QueryBean stateless

session bean 1-3
Business Process Manager

invoking queries from 5-1
setting up query invocation 5-2

C
clients

EJB clients 1-6
JSP clients 1-6
types of clients 1-5
Web service clients 4-1

com.bea.ldi.server package 1-3
com.bea.ldi.server.common package 1-3
connecting to the Liquid Data Server

EJB clients 2-1
JSP clients 3-4

custom function library definition (CFLD)
files

attributes, described 7-6
contents of 7-4
creating 7-4
elements, described 7-6

structure of 7-5
custom functions

about custom functions 7-1
custom function library definition

(CFLD) files, creating 7-4
defining 7-2
implementing in Java 7-3
registering in the Administration

Console 7-7
samples

complex types 7-13
simple types 7-7

customer support contact information 1-ix

D
documentation, where to find it 1-viii

E
EJB clients

connecting to Liquid Data server 2-1
defined 1-6
executing queries 2-6
invoking queries 2-1
processing results 2-8
query parameters, specifying 2-4

executing queries
EJB clients 2-6
JSP clients 3-5
Invoking Liquid Data Queries Programmatically I-1

I
invoking queries

Business Process Manager component of
WebLogic Integration 5-1

EJB clients 2-1
JSP clients 3-3
Web service clients 4-1
WebLogic Portal

EJB client 6-1
JSP client 6-2

J
JSP clients

connecting to the server 3-4
defined 1-6
executing queries 3-5
handling exceptions 3-7
invoking queries 3-3
processing results 3-7
tag library 3-1

L
Liquid Data Query API

bea.ldi.server.QueryBean 1-3
packages 1-3
query attributes 1-5
query parameters 1-4

P
packages in the Liquid Data Query API 1-3
param tag 3-3
parameterized queries

described 1-2
EJB clients 2-4

printing product documentation 1-viii
processing query results

EJB clients 2-8
JSP clients 3-7

Q
queries

about queries in Liquid Data 1-1
ad hoc queries 1-2, 3-6
attributes 1-5
execution in EJB clients 2-6
parameterized queries 1-2
parameters 1-4, 2-4, 3-5
result processing in EJB clients 2-8
stored queries 1-2, 3-6

query parameters
EJB clients 2-4
JSP clients 3-5

query results 1-5
query tag 3-2

R
related information 1-ix

S
server, EJB client connecting to 2-1
stored queries

defined 1-2
executing in JSP clients 3-6

support, technical 1-ix

T
tag library 3-1
tags

connecting to the server 3-4
param tag 3-3
query parameters 3-5
query tag 3-2

W
Web service clients

invoking queries 4-1
I-2 Invoking Liquid Data Queries Programmatically

invoking Web services
programmatically 4-2

WSDL URL, finding 4-1
WebLogic Portal

EJB clients 6-1
JSP clients 6-2

WSDL URL, in Web service clients 4-1

X
XSL transform 3-8
Invoking Liquid Data Queries Programmatically I-3

	Invoking Liquid Data Queries Programmatically
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 About the Liquid Data Query API
	About Liquid Data Queries
	Stored Queries
	Ad Hoc Queries
	Parameterized Queries

	Components of the Liquid Data Query API
	Packages
	Query Execution EJB
	Query Parameters
	Query Attributes
	Query Results

	Types of Java Clients
	EJB Clients
	JSP Clients

	2 Invoking Queries in EJB Clients
	Step 1: Connect to the Liquid Data Server
	Step 2: Specify Query Parameters
	Step 3: Execute the Query
	Step 4: Process the Results of the Query

	3 Invoking Queries in JSP Clients
	About the Liquid Data Tag Library
	Scope of the Liquid Data Tag Library
	Location of the Liquid Data Tag Library
	Tags in the Liquid Data Tag Library
	query Tag
	param Tag

	Processing Steps
	Step 1: Reference the Liquid Data Tag Library
	Step 2: Connect to the Liquid Data Server
	Step 3: Specify Query Parameters
	Step 4: Execute the Query
	Executing Stored Queries
	Executing Ad Hoc Queries
	Handling Exceptions

	Step 5: Process the Query Results

	4 Invoking Queries in Web Service Clients
	Finding the WSDL URL for Generated Web Services
	Invoking Web Services Programmatically

	5 Invoking Queries in Business Process Manager Applications
	Liquid Data and the BPM Component
	Setting Up a Query Invocation in BPM Client Applications

	6 Invoking Queries in BEA WebLogic Portal Applications
	Invoking Liquid Data Queries as EJB Clients
	Invoking Liquid Data Queries as JSP Clients

	7 Using Custom Functions
	About Custom Functions
	Defining Custom Functions
	Step�1:�Write the Custom Function Implementation in Java
	Rules for Writing Custom Function Implementations
	Correspondence Between XML and Java Data Types

	Step�2:�Create the Custom Functions Library Definition File
	Contents of a CFLD File
	Structure of a CFLD File
	Elements and Attributes in a CFLD File

	Step�3:�Register the Custom Function in the Administration Console

	Examples of Custom Functions
	Example That Uses Simple Types
	Implementation of Custom Functions for Simple Types
	CFLD File That Declares Custom Functions for Simple Types
	Query That Uses the Custom Functions for Simple Types

	Example That Uses Complex Types
	Implementation of a Custom Function for a Complex Type
	CFLD File That Declares the Custom Function for a Complex Type
	Query That Uses the Custom Function for a Complex Type

	Index

