
BEAWebLogic
JRockit
Using WebLogic JRockit
8.1 SDK

Version 8.1 Service Pack 2
December 2003

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic
Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Using WebLogic JRockit 8.1 SDK iii

Contents

Introduction to BEA WebLogic JRockit 8.1 SDK
What is JRockit? . 1-1

About the SDK . 1-2

Why Should I Use JRockit? . 1-2

What Platforms Does JRockit Support?. 1-3

32-bit Platform Support . 1-3

64-bit Platform Support . 1-4

JRockit 8.1 SDK Support. 1-4

If WebLogic JRockit JVM Crashes . 1-4

Using JRockit 8.1 SDK Documentation . 1-5

Printing These Documents . 1-5

Understanding Documentation Conventions . 1-6

Understanding WebLogic JRockit SDK
The BEA WebLogic JRockit Management Console . 2-1

Code Generation and Optimization . 2-2

Memory Management (Garbage Collection) . 2-3

Threads. 2-3

Starting and Configuring WebLogic JRockit JVM
Before Starting WebLogic JRockit . 3-1

Starting WebLogic JRockit . 3-2

Sample Start-up Command . 3-2

Using WebLogic JRockit 8.1 SDK iv

Configuring WebLogic JRockit. 3-2

Using Standard Options . 3-3

Setting General Information . 3-3

Providing Information to the User . 3-3

Using Non-standard Options . 3-4

Setting Behavioral Options . 3-4

Displaying Logging Information. 3-5

Preventing WebLogic JRockit JVM (When Run as a Service) from Shutting Down
After Receiving a Logoff Event. 3-10

Attaching a Debugger to a Process . 3-11

Enabling Core Dumps on Linux . 3-11

Selecting and Running a Memory Management System
Memory Management Terminology . 4-1

WebLogic JRockit JVM Garbage Collectors . 4-2

Generational Copying. 4-2

Concurrent Garbage Collectors . 4-3

Single Spaced Concurrent . 4-3

Generational Concurrent . 4-3

Parallel . 4-3

Starting a Garbage Collector . 4-4

Choosing a Garbage Collection Method . 4-4

Pros and Cons . 4-5

Garbage Collector Selection Matrix. 4-6

Tuning for Garbage Collection . 4-6

Viewing Garbage Collection Activity . 4-7

Selecting and Running a Thread System
Native Threads. 5-1

Using WebLogic JRockit 8.1 SDK v

Thin Threads . 5-1

Starting the Thread System . 5-2

Choosing a Thread System . 5-3

Pros and Cons . 5-4

Thread System Selection Matrix . 5-4

Using the WebLogic JRockit Management Console
Console Overhead . 6-1

Starting the Console. 6-2

Enable the Management Server . 6-2

Start the JRockit Management Console . 6-2

Starting the Management Server with a Security Manager. 6-2

Set the Port . 6-3

Change the Number of Connections. 6-4

Parts of the Console. 6-4

Setting Up the Console . 6-7

Making Connections. 6-7

Creating a New Folder . 6-7

Creating a New Connection . 6-8

Connecting a Connection to WebLogic JRockit JVM . 6-8

Disconnecting a Connection from WebLogic JRockit JVM. 6-9

Renaming a Connection or Folder . 6-9

Removing a Connection or Folder . 6-10

Hiding Disconnected Connections . 6-10

Enabling Console Settings . 6-10

Setting the Operation Mode . 6-11

Setting Other Preferences . 6-12

Customizing the Display . 6-14

Using WebLogic JRockit 8.1 SDK vi

Using the Settings File . 6-16

Using the Console . 6-16

Information Tabs . 6-17

Overview Tab . 6-17

Memory Tab . 6-18

Processor Tab . 6-20

System Tab . 6-21

Notification Tab. 6-22

View Historical Data . 6-29

Using Advanced Features of the Console . 6-31

View Thread Stack Dump . 6-31

Method Profiling Tab . 6-32

Exception Counting Tab . 6-35

Closing the Console . 6-37

Using WebLogic JRockit JVM with Other WebLogic Applications
Using WebLogic JRockit JVM with BEA WebLogic Server . 7-1

Certified Versions . 7-2

Verifying that WebLogic JRockit is Your JVM . 7-2

Starting JRockit from the Node Manager. 7-2

Enabling the Management Server from the Node Manager. 7-3

Setting Options by Using the Node Manager. 7-3

Tuning WebLogic JRockit for WebLogic Server . 7-3

Monitoring WebLogic JRockit JVM from WebLogic Server 7-4

Running JRockit with Thin Threads on WebLogic Server. 7-6

Switching to WebLogic JRockit JVM in WebLogic Server. 7-6

Switching VMs When WebLogic Server is Running as a Service. 7-7

Configuring JRockit for BEA WebLogic Workshop . 7-7

Using WebLogic JRockit 8.1 SDK vii

What’s in the WebLogic JRockit 8.1 SDK?
SDK Contents .A-1

Development Tools. .A-1

Runtime Environment .A-2

Additional Libraries .A-2

C Header Files .A-2

The Management Console .A-2

File Differences Between WebLogic JRockit 8.1 SDK and Sun HotSpot SDK.A-3

Adding Custom Notification Actions and Constraints
Locating consolesettings.xml . B-1

Creating a Custom Action . B-2

Creating and Implementing an Action: Example . B-2

Create the Action (Step 2) . B-3

Implementing handleNotificationEvent() (Step 3) . B-5

Creating the Action Editor (Step 4) . B-5

Implementing the Abstract Methods (Step 5) . B-7

Adding the New Action to the Deployment Entries (Step 6) B-8

Displaying the New Action Editor (Steps 7 and 8) . B-8

Creating a Custom Constraint . B-8

Index

Using WebLogic JRockit 8.1 SDK viii

Using WebLogic JRockit 8.1 SDK ix

x Using WebLogic JRockit 8.1 SDK

Using WebLogic JRockit 8.1 SDK 1-1

C H A P T E R 1

Introduction to BEA WebLogic JRockit
8.1 SDK

BEA WebLogic JRockit 8.1 SDK provides tools, utilities, and a complete runtime environment
for developing and running applications using the Java programming language. The WebLogic
JRockit SDK includes the WebLogic JRockit Java Virtual Machine (JVM), the first commercial
server-side JVM. The WebLogic JRockit JVM was developed uniquely for server-side
applications and optimized for Intel architectures to ensure reliability, scalability, and
manageability for Java applications.

This user guide provides instructions for using WebLogic JRockit SDK and JVM on the
Windows and Linux platforms.

This section contains information on the following subjects:

What is JRockit?

Why Should I Use JRockit?

What Platforms Does JRockit Support?

JRockit 8.1 SDK Support

Understanding Documentation Conventions

What is JRockit?
The WebLogic JRockit 8.1 JVM is the only credible high performance JVM developed uniquely
for server-side applications and optimized for Intel architectures. It ensures reliability, scalability,
manageability, and flexibility for Java applications. As a crucial component of the BEA
WebLogic Platform, the WebLogic JRockit JVM delivers a new level of performance for Java

I n t roduct i on to BEA WebLogi c JRocki t 8 .1 SDK

1-2 Using WebLogic JRockit 8.1 SDK

applications deployed on Intel 32-bit and 64-bit (Itanium) architecture at significantly lower costs
to the enterprise. Furthermore, it is the only enterprise-class JVM optimized for Intel
architectures, providing seamless interoperability across multiple hardware and operating system
configurations. WebLogic JRockit 8.1 JVM makes it possible to gain optimal performance for
your server-side application when running it on either the Windows and Linux operating systems
and on either 32-bit and 64-bit architectures.

For more information on JVMs in general, see the Introduction to the JVM specification at.

http://java.sun.com/docs/books/vmspec/2nd-edition/html/Introduction.doc.html#3057

About the SDK
The WebLogic JRockit 8.1 JVM is one component of the WebLogic JRockit 8.1 software
development kit (SDK). Along with the WebLogic JRockit 8.1 JVM, this kit is comprised of the
Java Runtime Environment (JRE), which contains the JVM and Java class libraries (as specified
by the Java 2 Platform API Specification), along with a set of development tools, such a compiler,
a debugger, and so on. For more information on the contents of the WebLogic JRockit 8.1 SDK,
please refer to What’s in the WebLogic JRockit 8.1 SDK?

Why Should I Use JRockit?
There are three compelling reasons for using the WebLogic JRockit JVM:

WebLogic JRockit SDK provides optimal running performance for applications developed
for and running on BEA WebLogic Server.

WebLogic JRockit JVM is the default production JVM for WebLogic Server-based
applications. During “typical” WLS installation, WebLogic JRockit SDK is automatically
installed with the server. The Configuration Wizard creates startup scripts that invoke the
WebLogic JRockit JVM, making its use simple and transparent.

WebLogic JRockit JVM is designed for server-side applications.

If you are running server-side applications, the WebLogic JRockit JVM is the most
effective VM you can use. A server-side JVM is designed with server applications in mind.
Server-side applications have very different requirements than client-side applications and
demand different behavior from a JVM. These applications generally do not use graphical
user interfaces, run for longer periods of time, and are usually parallel and thread intensive.
To fully exploit server-side applications and ensure optimal performance, your JVM should
employ a server-specific design policy.

What P lat fo rms Does JRocki t Suppor t?

Using WebLogic JRockit 8.1 SDK 1-3

WebLogic JRockit JVM employs adaptive optimization to significantly improve runtime
performance.

Adaptive optimization is a WebLogic JRockit JVM feature that detects and removes
bottlenecks in a running program, significantly improving program performance.
Adaptively optimized code usually performs better than statically compiled code because it
has access to more information regarding the running program. Another advantage is that
the code does not lose any of the dynamic characteristics of interpreted languages.

What Platforms Does JRockit Support?
WebLogic JRockit 8.1 SDK is certified to be compatible with J2SE 1.4.1.

32-bit Platform Support
The 32-bit versions WebLogic JRockit 8.1 SDK are supported on the following operating system
releases:

Table 1-1 32-bit Platform Support

Operating Systems Hardware Platforms JRockit Support Status Notes

Microsoft Windows
2000 SP2 (or higher)

Intel Pentium II or
higher (and
compatible)

Development and Production
Support

None

Micorsoft Windows
XP

Intel Pentium II or
higher (and
compatible

Development Support None

Red Hat Enterprise
Linux AS / ES / WS
2.1

Intel Pentium II or
higher (and
compatible)

Development and Production
Support for Red Hat Enterprise
Linux AS & ES editions

Development Support for Red
Hat Enterprise Linux WS

Tested with kernel 2.4.9,
glibc 2.2.4-31.7

SuSE SLES 8.0
(United Linux 1.0)

Intel Pentium II or
higher (and
compatible)

Development and Production
Support

Tested with kernel 2.4.19,
glibc 2.2.5

I n t roduct i on to BEA WebLogi c JRocki t 8 .1 SDK

1-4 Using WebLogic JRockit 8.1 SDK

64-bit Platform Support
The 64-bit versions WebLogic JRockit 8.1 SDK are supported on the following operating system
releases

JRockit 8.1 SDK Support
This section describes how to get support for WebLogic JRockit 8.1 SDK.

If WebLogic JRockit JVM Crashes
If WebLogic JRockit 8.1 crashes, it will dump information about the crash to stderr and create,
in the directory where the VM was started, a file containing the same information, called
jrockit.<pid>.dump (and, if you are using Windows, jrockit.<pid>.mdmp), where <pid>
is the id of the process that crashed.

After a crash, send a copy of jrockit.<pid>.dump (and, if you are using Windows,
jrockit.<pid>.mdmp), along with as much information as possible about your system setup
and the application you were running when the VM crashed, to support@bea.com. You should
provide the following information:

Hardware

Version of WebLogic JRockit JVM

Table 1-2 64-bit Platform Support

Operating Systems Hardware Platforms JRockit Support Status Notes

Microsoft Windows
Server 2003 EE

Intel Itanium 2 or
higher

Development and Production
Support

None

Red Hat Linux
Advanced Server for
Itanium Processor 2.1

Red Hat Linux
Advanced
Workstation for
Itanium Processor 2.l

Intel Itanium 2 or
higher

Development and Production
Support for Red Hat Advanced
Server for Itanium Processor

Development Support for Red
Hat Advanced Workstation for
Itanium Processor

Tested with kernel
2.4.18, glibc 2.2.4

Requires kernel 2.4.18-e.25
(or higher)

SuSE SLES 8.0
(United Linux 1.0)

Intel Itanium 2 or
higher

Development and Production
Support

Tested with kernel 2.4.19,
glibc 2.2.5

Using JRocki t 8 .1 SDK Documentat i on

Using WebLogic JRockit 8.1 SDK 1-5

Operating system and its version

The program you ran

Stack dumps (if any)

If possible, a small code example that will reproduce the error.

Using JRockit 8.1 SDK Documentation
This section provides hints for using this user guide. It includes information on the following
subjects:

Printing These Documents

Understanding Documentation Conventions

Printing These Documents
You can print a copy of any WebLogic JRockit SDK document from a Web browser, one file at
a time, by using the File—>Print option on the browser.

PDF versions of all WebLogic JRockit 8.1 documents are available on the WebLogic JRockit 8.1
documentation pages on the e-docs Web site. You can open the PDF in Adobe Acrobat Reader
and print the entire document (or a portion of it) in book format. To access and print the PDFs,
do the following:

1. Open the web page for the WebLogic JRockit 8.1 document you want to print and click the
view as PDF icon.

A new browser launches, running the Adobe Acrobat Reader, which contains the PDF
version of the document you selected.

2. Click the print button on the Adobe Acrobat Reader toolbar.

The Print dialog box appears.

3. Select the Print range (All, Current page, or Pages from) and click OK to print the
document.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe Web site at
http://www.adobe.com/.

I n t roduct i on to BEA WebLogi c JRocki t 8 .1 SDK

1-6 Using WebLogic JRockit 8.1 SDK

Understanding Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Item

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and their
members, data types, directories, and filenames and their extensions. Monospace text
also indicates text that you must enter from the keyboard.

Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:
void commit ()

monospace
italic
text

Identifies variables in code.

Example:
String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should never be typed.

Using JRocki t 8 .1 SDK Documentat i on

Using WebLogic JRockit 8.1 SDK 1-7

[] Indicates optional items in a syntax line. The brackets themselves should never be
typed.

Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself should never
be typed.

... Indicates one of the following in a command line:
• That an argument can be repeated several times in a command line
• That the statement omits additional optional arguments
• That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line. The vertical
ellipsis itself should never be typed.

Convention Item

I n t roduct i on to BEA WebLogi c JRocki t 8 .1 SDK

1-8 Using WebLogic JRockit 8.1 SDK

Using WebLogic JRockit 8.1 SDK 2-1

C H A P T E R 2

Understanding WebLogic JRockit SDK

WebLogic JRockit SDK has a number of important features that separate it from other JVMs on
the market today. This section provides high-level descriptions of some of the more critical SDK
features to help you better undertand what they can do. This section includes information on the
following subjects:

The BEA WebLogic JRockit Management Console

Code Generation and Optimization

Memory Management (Garbage Collection)

Threads

For more detailed information on additional WebLogic JRockit SDK features, please refer to
What’s in the WebLogic JRockit 8.1 SDK?

The BEA WebLogic JRockit Management Console
The Management Console connects to the WebLogic JRockit JVM and provides real-time
information about server behavior and resource availability, such as memory usage and profiling
information. This gives you a powerful way of retrieving constant profile data about your
application.

The Management Console provides a unique advantage when deploying a commercial Java
solution because it gives you greater control of the complex set of interrelated variables that may
affect your application in production. Administrators can monitor the WebLogic JRockit JVM
operating characteristics and the Java application, and be automatically notified of changes in

Unders tandi ng WebLog ic JRock i t SDK

2-2 Using WebLogic JRockit 8.1 SDK

resource availability or operating characteristics as they occur. Based on this information,
administrators can identify bottlenecks in performance and change operating and environmental
parameters to optimize performance and availability.

For more information on the Management Console, please refer to Using the WebLogic JRockit
JVM Management Console.

Code Generation and Optimization
WebLogic JRockit differs from most JVMs in that it compiles the code at first use by
implementing a JIT ("Just In Time") compiler. This ensures desirable application performance
from the outset, albeit at the cost of a slightly longer start-up time. To expedite start-up, however,
WebLogic JRockit does not use all possible compiler optimizations. While doing so might lead
to even better performance early in the application run, that would result in slower start-up.

Compilation time is part of application execution time, thus compiling all of the methods with all
available optimizations also negatively impacts application performance. Therefore, WebLogic
JRockit does not fully optimize all methods at start-up; in fact, it leaves many methods
unoptimized throughout the entire application run. Instead, WebLogic JRockit chooses those
functions whose optimization will most benefit application performance and only optimizes those
methods.

WebLogic JRockit can thus be seen to have two distinct, but cooperating, code generators: a JIT
compiler, which resolves data from bytecode, through three levels of intermediate representation,
to native code (assembly language); and an optimizing compiler, which optimizes targeted
methods at each level of intermediate representation.

WebLogic JRockit uses a “sampler thread” to identify which functions merit optimization. This
thread wakes up at periodic intervals and checks the status of several application threads. It
identifies what each thread is executing and notes some of the execution history. This information
is tracked for all the methods and when it is perceived that a method is experiencing heavy us—
-in other words, is “hot”—that method is earmarked for optimization. Usually, a flurry of such
optimization opportunities occur in the application's early run stages, with the rate slowing down
as execution continues.

The optimizing compiler in WebLogic JRockit includes many of the best-known techniques for
code generation, particularly for IA64 machines. This includes a sophisticated register allocator
that takes full advantage of IA64’s large register stacks.

Memory Management (Garbage Col l ec t i on)

Using WebLogic JRockit 8.1 SDK 2-3

Memory Management (Garbage Collection)
WebLogic JRockit JVM manages memory by employing four different garbage collectors. These
collectors work during runtime to clear the memory heap of expired objects, or “garbage.” These
four garbage collectors are:

Generational Copy, which divides the memory into two areas called “generations.”
Instead of allocating objects in one single space and garbage collecting that whole space
when it gets full, most of the objects are allocated in the “young generation”, called the
nursery.

Single-Spaced Concurrent, one of two types of concurrent collectors, which does its work
in parallel with ordinary processing; that is, it does not stop all Java threads to do the
complete garbage collection. This is designed to support garbage collection without
disruption and to improve multiprocessor garbage collection performance.

Generational Concurrent is the second type of concurrent collector WebLogic JRockit
employs. Although very similar to a single-spaced concurrent collector, a generational
concurrent garbage collector does its actual object allocation in a “nursery,” reducing the
need to do collection of the entire heap so often.

Parallel garbage collection, which stops all Java threads and uses all CPUs to perform a
complete garbage collection of the entire heap.

For information on selecting and using garbage collectors, see Selecting and Running a Memory
Management System.

Threads
WebLogic JRockit JVM can use one of two thread systems to maximize processing:

Native Threads which maps Java threads directly to the operating system threads, directly
taking advantage of the operating system's thread scheduling and load balancing policies.
Native Threads is the default thread system for WebLogic JRockit JVM.

Thin threads, wherein multiple Java threads are run on a singe operating system thread.
This allows WebLogic JRockit to optimize thread scheduling, thread switching, and thread
synchronization, while using less memory.

Warning: Thin threads is experimental functionality in this version of WebLogic JRockit,
and is not recommended for general use. This feature is subject to change without
notice.

Unders tandi ng WebLog ic JRock i t SDK

2-4 Using WebLogic JRockit 8.1 SDK

For information on selecting a thread system, please refer to Selecting and Running a Thread
System.

Using WebLogic JRockit 8.1 SDK 3-1

C H A P T E R 3

Starting and Configuring WebLogic
JRockit JVM

This section describes how to start WebLogic JRockit and how to configure it by using standard
and non-standard command line options. It includes information on the following subjects:

Before Starting WebLogic JRockit

Starting WebLogic JRockit

Configuring WebLogic JRockit

Attaching a Debugger to a Process

Enabling Core Dumps on Linux

Note: If JRockit behaves in some unexpected way, please consult the WebLogic JRockit
Developers FAQ. If that doesn't solve your problem, please send an e-mail to
support@bea.com.

Before Starting WebLogic JRockit
Before starting WebLogic JRockit JVM, ensure that you have the following directory set in your
PATH environment variable:

<jrockit-install-directory>/bin (for Linux)

<jrockit-install-directory>\bin (for Windows)

Sta r t ing and Conf igur ing WebLogi c JRock i t JVM

3-2 Using WebLogic JRockit 8.1 SDK

Starting WebLogic JRockit
To start the WebLogic JRockit, at the command line enter the following:

java <configuration and tuning options> myClass

Where <configuration and tuning options> are the configuration and tuning options you
want to use. The configuration options are described in Configuring WebLogic JRockit, below.
See Tuning WebLogic JRockit JVMfor details on the tuning options available for this version of
WebLogic JRockit.

Note: You can alternatively start JRockit with by fully qualifying the path to the file; for
example, /usr/local/java/bin/java (depending on where it is installed) on Linux
and c:\bea\jrockitxxx\bin\java (depending on where its installed) on Windows.

Sample Start-up Command
A sample start-up command, with some tuning options specified, might look like this:

java -verbose:memory -Xgc:gencopy -Xmx:256m -Xms:64m -Xns:24m myClass

In this example, the following options are set:

-verbose:memory—Displays verbose output about memory usage.

-Xgc:gencopy—A generational copy garbage collector will be used.

-Xmx:256m—The maximum heap size is set to 256 megabytes.

-Xms:64m—The initial heap size is set to 64 megabytes.

-Xns:24m—The nursery size is set to 24 megabytes.

myClass—Identifies the class that contains the Main() method.

For more information on the tuning options discussed above, please refer to

Configuring WebLogic JRockit
When you start WebLogic JRockit, you can set behavioral parameters by using either standard or
non-standard command line options. This section describes these options and how to use them at
startup to configure WebLogic JRockit. It contains information on the following subjects:

Using Standard Options for:

– Setting General Information

Conf igur ing WebLogi c JRocki t

Using WebLogic JRockit 8.1 SDK 3-3

– Providing Information to the User

Using Non-standard Options for:

– Setting Behavioral Options

– Displaying Logging Information

– Preventing WebLogic JRockit JVM (When Run as a Service) from Shutting Down
After Receiving a Logoff Event

Enabling Core Dumps on Linux

Using Standard Options
Standard command line options work the same regardless of the JVM; in other words, these
options work the same whether you are running WebLogic JRockit JVM, Sun Microsystem’s
HotSpot JVM, or any other third-party JVM.

Setting General Information
The following standard command line options set general information about WebLogic JRockit
JVM:

-classpath <directories and zips/jars separated by : (Linux) or ;
(Windows)>

Tells the VM where to look for classes and resources.

Alternately, you can use the option -cp to represent -classpath; for example:
-cp <directories and zips/jars separated by : or ;>

-D<name>[=<value>]

Tells the VM to set a Java system property. These can be read by a Java program, using the
methods in java.lang.System.

Providing Information to the User
The following options determine if the system will provide messages to the operator and what the
form and content of those messages should be.

-version

Tells JRockit to display its product version number and then exit.

-showversion

Sta r t ing and Conf igur ing WebLogi c JRock i t JVM

3-4 Using WebLogic JRockit 8.1 SDK

Tells the VM to display its product version number and then continue.

-verbose[:<components separated by ,>]

Tells JRockit to display verbose output. This option is used mainly for debugging purposes
and causes a lot of output to the console. Supported components are memory, load, gc,
opt, and codegen. If no component is given, JRockit will display verbose information on
everything. For more information on the components and the -verbose information they
display, please refer to Table 3-1.

-help

Tells the VM to display a short help message.

-x

Tells the VM to display a short help message on the extended options (do not confuse -x
with the non-standard, or -X, options described below).

Using Non-standard Options
Non-standard, or -X, command line options are options that are exclusive to WebLogic JRockit
JVM that change the behavior of WebLogic JRockit JVM to better suit the needs of different Java
applications. These options are all preceded by -X and will not work on other JVMs (conversely,
the non-standard options used by other JVMs won’t work with WebLogic JRockit).

Note: Since these options are non-standard, they are subject to change at any time.

Setting Behavioral Options
The following non-standard options define general WebLogic JRockit JVM behavior:

-Xnoopt

Tells the VM not to optimize code.

-Xverify

Tells the VM to do complete bytecode verification.

-Xstrictfp

Enables strict floating point arithmetics globally for all methods in all classes. This option
is similar to the Java keyword strictfp. See the Java Language Specification for more
details on strictfp.

Conf igur ing WebLogi c JRocki t

Using WebLogic JRockit 8.1 SDK 3-5

Displaying Logging Information
-Xverbose

-Xverbose causes WebLogic JRockit to print to the screen specific information about the
system. The information displayed depends upon the parameter specified with the option; for
example, specifying the parameter cpuinfo displays information about your CPU and indicates
whether or not the JVM can determine if hyper threading is enabled. Table 3-1 lists the
parameters available for -Xverbose.

Note: To use more than one parameter, separate them with a comma; for example:

-Xverbose:gc,opt

Table 3-1 -Xverbose Parameters

This
Parameter...

Prints to the screen...

codegen The names of each method that is being compiled. Verbose output for codegen might look like
this:
[codegen] 0 : 17.9411 ms
[codegen] 0 68592131 1 java.lang.Object.unlockFatReal_jvmpi
(Ljava.lang.Object;Ljava.lang.Thread;I)V: 17.94 ms
[codegen] 1 : 2.0262 ms
[codegen] 0 0 2
java.lang.Object.acquireMonitor(Ljava.lang.Object;II)I: 19.97 ms
[codegen] 2 : 4.4926 ms
[codegen] 0 10 3
java.lang.Object.unlockFat(Ljava.lang.Object;Ljava.lang.Thread;I)
V: 24.46 ms
[codegen] 3 : 0.3328 ms

cpuinfo Any interesting information about your CPUs. Verbose output for cpuinfo might look like
this:
[cpuinfo] Vendor: GenuineInt
[cpuinfo] Type: Original OEM
[cpuinfo] Family: Pentium Pro
[cpuinfo] Model: Pentium III/Pentium III Xeon
[cpuinfo] Brand: Pentium III processor
[cpuinfo] Supports: On-Chip FPU
[cpuinfo] Supports: Virtual Mode Extensions
[cpuinfo] Supports: Debugging Extensions
[cpuinfo] Supports: Page Size Extensions

Sta r t ing and Conf igur ing WebLogi c JRock i t JVM

3-6 Using WebLogic JRockit 8.1 SDK

load The names of each loaded class. Verbose output for load might look like this:
[load] 0 1 java.lang.Object+
[load] 0 2 java.io.Serializable+
[load] 0 3 java.lang.Class+
[load] 0 5 java.lang.reflect.AccessibleObject+
[load] 0 6 java.lang.reflect.Member+
[load] 0 6 java.lang.reflect.Method+

memory;
gc

Information about the memory management system, including:
• Start time of collection (seconds since JVM start)
• End time of collection (seconds since JVM start)
• Memory used by objects before collection (KB)
• Memory used by objects after collection (KB)
• Size of heap after collection (KB)
• Total time of collection (seconds or milliseconds)
• Total pause time during collection (milliseconds)

The information displayed by -Xverbose:memory or -Xverbose:gc will vary depending upon the
type of garbage collector you are using.

Table 3-1 -Xverbose Parameters

This
Parameter...

Prints to the screen...

Conf igur ing WebLogi c JRocki t

Using WebLogic JRockit 8.1 SDK 3-7

memory;
gc

with gencon

A report for a JVM running a generational concurrent collector (-Xgc:gencon) with memory
or gc specified might look like this:
[memory] Generational Concurrent collector
[memory] nursery 20480K, heap 65536K, maximal heap 262144K
[memory] <start>: Nursery GC <before>K-><after>K (<heap>K),
<total> ms
[memory] <s>-<end>: GC <before>K-><after>K (<heap>K), <total> s
(<pause> ms)
[memory] <s/start> - start time of collection (seconds since jvm
start)
[memory] <end> - end time of collection (seconds since jvm
start)
[memory] <before> - memory used by objects before collection (KB)
[memory] <after> - memory used by objects after collection (KB)
[memory] <heap> - size of heap after collection (KB)
[memory] <total> - total time of collection (seconds or
milliseconds)
[memory] <pause> - total pause time during collection
(milliseconds)
Now running The GcList Test
[memory] 0.860: Nursery GC 61615K->42008K (86016K), 11.400 ms
[memory] 0.953: Nursery GC 62488K->42876K (86016K), 10.895 ms
[memory] 1.031: Nursery GC 63356K->45303K (86016K), 30.156 ms
[memory] 1.172: Nursery GC 65783K->46168K (86016K), 11.639 ms
[memory] 1.250: Nursery GC 66648K->48596K (86016K), 31.189 ms
The execution of The GcList Test took 0.578s

Table 3-1 -Xverbose Parameters

This
Parameter...

Prints to the screen...

Sta r t ing and Conf igur ing WebLogi c JRock i t JVM

3-8 Using WebLogic JRockit 8.1 SDK

memory;
gc

with
singlecon

A report for a JVM running a single generation concurrent collector (-Xgc:singlecon) with
memory or gc specified might look like this:
[memory] Single Generation Concurrent collector
[memory] heap 65536K, maximal heap 262144K
[memory] <s>-<end>: GC <before>K-><after>K (<heap>K), <total> s
(<pause> ms)
[memory] <s/start> - start time of collection (seconds since jvm
start)
[memory] <end> - end time of collection (seconds since jvm
start)
[memory] <before> - memory used by objects before collection (KB)
[memory] <after> - memory used by objects after collection (KB)
[memory] <heap> - size of heap after collection (KB)
[memory] <total> - total time of collection (seconds or
milliseconds)
[memory] <pause> - total pause time during collection
(milliseconds)
Now running The GcList Test
[memory] 1.016-1.172: GC 58543K->13906K (89716K), 0.156 s (3.420
ms)
The execution of The GcList Test took 0.563s
Now running The GcList Test
[memory] 1.422-1.469: GC 102004K->389K (122816K), 0.047 s (5.048
ms)

Table 3-1 -Xverbose Parameters

This
Parameter...

Prints to the screen...

Conf igur ing WebLogi c JRocki t

Using WebLogic JRockit 8.1 SDK 3-9

memory;
gc

with
parallel

A report for a JVM running a parallel collector (-Xgc:parallel) with memory or gc
specified might look like this:
[memory] Parallel collector
[memory] heap 65536K, maximal heap 262144K
[memory] <start>: GC <before>K-><after>K (<heap>K), <total> ms
[memory] <start> - start time of collection (seconds since jvm
start)
[memory] <before> - memory used by objects before collection (KB)
[memory] <after> - memory used by objects after collection (KB)
[memory] <heap> - size of heap after collection (KB)
[memory] <total> - total time of collection (milliseconds)
Now running The GcList Test
[memory] 1.016: GC 65536K->1463K (65536K) in 12.933 ms
The execution of The GcList Test took 0.500s
Now running The GcList Test
[memory] 1.282: GC 65536K->1502K (65536K) in 11.046 ms
[memory] 1.563: GC 65536K->1503K (65536K) in 12.119 ms
The execution of The GcList Test took 0.484s
Now running The GcList Test
[memory] 1.782: GC 65536K->593K (65536K) in 9.365 ms
The execution of The GcList Test took 0.125s

Table 3-1 -Xverbose Parameters

This
Parameter...

Prints to the screen...

Sta r t ing and Conf igur ing WebLogi c JRock i t JVM

3-10 Using WebLogic JRockit 8.1 SDK

Preventing WebLogic JRockit JVM (When Run as a Service) from Shutting
Down After Receiving a Logoff Event
When WebLogic JRockit JVM is run as a service (for example, the servlet engine for a web
server), it might receive CTRL_LOGOFF_EVENT or SIGHUP. Upon receiving such events, if the VM

memory;
gc

with
gencopy

A report for a JVM running a Generational Copying collector (-Xgc:gencopy) with memory
or gc specified might look like this:
[memory] Generational Copying collector
[memory] nursery 640K, to/fromspace 32768K, pinnedspace 4K
[memory] maximal heap 131712-262144K
[memory] <start>: Nursery GC <before>K-><after>K (<heap>K),
<total> ms
[memory] <start>: GC <before>K-><after>K (<heap>K), <total> ms
[memory] <start> - start time of collection (seconds since jvm
start)
[memory] <before> - memory used by objects before collection (KB)
[memory] <after> - memory used by objects after collection (KB)
[memory] <heap> - size of heap after collection (KB)
[memory] <total> - total time of collection (milliseconds)
Now running The GcList Test
[memory] 0.828: Nursery GC 298K->212K (33596K), 1.561 ms
[memory] 0.859: Nursery GC 852K->532K (33596K), 3.637 ms
[memory] 0.859: Nursery GC 1172K->852K (33596K), 3.639 ms
[memory] 0.875: Nursery GC 1492K->1172K (33596K), 3.600 ms
[memory] 0.875: Nursery GC 1812K->1492K (33596K), 3.665 ms
[memory] 0.891: Nursery GC 2132K->1812K (33596K), 3.620 ms
[memory] 0.891: Nursery GC 2452K->2132K (33596K), 3.610 ms
[memory] 0.906: Nursery GC 2772K->2452K (33596K), 3.720 ms
[memory] 0.906: Nursery GC 3092K->2772K (33596K), 4.307 ms
[memory] 0.922: Nursery GC 3412K->3092K (33596K), 3.794 ms
[memory] 0.937: Nursery GC 3732K->3412K (33596K), 3.834 ms
[memory] 0.937: Nursery GC 4052K->3732K (33596K), 3.640 ms
[memory] 0.953: Nursery GC 4372K->4052K (33596K), 3.538 ms
[memory] 0.953: Nursery GC 4692K->4372K (33596K), 3.621 ms

opt Information about all methods that get optimized. Verbose output for opt might look like this:
[opt] 280 2434 0 ObjAlloc.main([Ljava.lang.String;)V: 0.00 ms
[opt] 0 : 9.8996 ms

Table 3-1 -Xverbose Parameters

This
Parameter...

Prints to the screen...

Attaching a Debugger to a Pr ocess

Using WebLogic JRockit 8.1 SDK 3-11

tries to initiate shutdown, it will fail, since the operating system will not actually terminate the
process. To avoid possible interference such as this, use the -Xnohup command-line option. When
this option is used with WebLogic JRockit, the JVM does not watch for or process
CTRL_LOGOFF_EVENT or SIGHUP events.

If you specify -Xnohup, be aware of the following:

Ctrl-Break thread dumps are not available.

User code is responsible for causing shutdown hooks to run; for example by calling
System.exit() when WebLogic JRockit is to be terminated.

Attaching a Debugger to a Process
You can attach a debugger to a process so that you can see any error messages thrown by that
process. To do so, use this procedure:

1. At the command line, enter the command:

-Djrockit.waitonerror

Note: waitonerror is analogous to Sun’s ShowMessageBoxOnError parameter.

When a fatal error occurs, the dumps are produced as usual and a dialog box appears
saying “An error occured. Attach the debugger now, then press Yes to debug or No to
exit.”

a. At this point, if you want a thread dump, press [Ctrl]-[Break]. Be aware that this might
not always work.

b. Attach the debugger to the process; be sure not to break into the processat this time.

2. Click Yes in the dialog box to have the debugger to catch the error and break into the
process.

If you want better symbol information you should replace the default .pdb file with the private
one. You may have problems in getting the debugger to display source code. If this happens, use
windbg, as it allows you to set the paths.

Enabling Core Dumps on Linux
If you are using Red Hat AS and want to ensure that a core/javacore file is created in the working
directory in the event WebLogic JRockit crashes, you need to enable core dumps. To do this, set
the ulimit -c value to something greater than zero, but no greater than a value your filesystem
can accommodate; for example, ulimit -c 10000000. These values are measured in blocks,

Sta r t ing and Conf igur ing WebLogi c JRock i t JVM

3-12 Using WebLogic JRockit 8.1 SDK

with each block equaling one kilobyte. You can set the ulimit value either from the command
line, in the *.profile file, or in a shell script.

Using WebLogic JRockit 8.1 SDK 4-1

C H A P T E R 4

Selecting and Running a Memory
Management System

Memory management, known as “garbage collection” is the process of clearing “dead” objects
from the heap, thus releasing that space for new objects. Effective memory management ensures
efficient processing This section includes information on the following subjects:

Choosing a Garbage Collection Method

WebLogic JRockit JVM Garbage Collectors

Choosing a Garbage Collection Method

Tuning for Garbage Collection

Memory Management Terminology
Before continuing, there are some terms you should understand. You may already be familiar
with some of the terms, especially if you have read any other documents about garbage collectors.

Thread-local allocation
Thread-local allocation removes object allocation contention and reduces the need to
synchronize between thread performing allocations on the heap. It also gives increased
cache performance on a multi-CPU system, because it reduces the risk of two threads
running on different CPUs having to access the same memory pages at the same time.

Thread-local allocation is not the same thing as thread-local objects, but many people tend
to confuse the two terms. Thread-local allocation does not determine whether the objects
can be accessed from a single thread only (that is, thread-local objects); thread-local
allocation means that the thread has an area of its own where no other thread will create

Selec t ing and Runn ing a Memory Management Sys tem

4-2 Using WebLogic JRockit 8.1 SDK

new objects. The objects that the thread creates in that area may still be reached from other
threads.

Pause time
Garbage collector pause time is the length of time that the garbage collector stops all Java
threads during a garbage collection. The longer the pause, the more unresponsive your
system will be. The worst pause time and the average pause time are the two most
interesting values you can use for tuning the system.

Memory throughput
Memory throughput measures the time between when an object is no longer referenced
and the time that it’s reclaimed and returned as free memory. The higher the memory
throughput the shorter is the time between the two events. Moreover, the higher the
memory throughput the smaller the heap you will need.

WebLogic JRockit JVM Garbage Collectors
This section describes the four garbage collectors available in WebLogic JRockit JVM. These
collectors are:

Generational Copying

Concurrent Garbage Collectors

Parallel

Generational Copying
A generational copying garbage collector divides the memory into two or more areas called
“generations”. Instead of allocating objects in one single space and garbage collecting that whole
space when it gets full, most of the objects are allocated in the “young generation”, called the
nursery. As most objects die young, most of the time it will be sufficient to collect only the
nursery and not the entire heap.

A generational copying garbage collector is specifically designed as a lightweight alternative for
use on single CPU systems with a small (less then 128 MB) heap. It is suitable for testing
applications on your desktop machine; however for a deployment environment with multiple
processors and/or a large heap size (in excess of 128 MB), another garbage collector would in
most cases be more efficient.

WebLog ic JRock i t J VM Garbage Co l lec to rs

Using WebLogic JRockit 8.1 SDK 4-3

Concurrent Garbage Collectors
A concurrent garbage collector does its work in parallel with ordinary work; that is, it does not
stop all Java threads to do the complete garbage collection. Most garbage collectors today are
“stop-the-world,” or parallel, collectors and are not very efficient; for example, if you have a large
heap and use a parallel collector, if you need to collect the whole heap, you might experience
pauses lasting up to several seconds, depending on the heap size. Concurrent garbage collectors
are designed to rectify this condition.

WebLogic JRockit can employ two types of concurrent garbage collectors:

Single Spaced Concurrent

Generational Concurrent

Single Spaced Concurrent
A single spaced concurrent garbage collector (-Xgc:singlecon) completely eliminates garbage
collection pauses. If you use these garbage collectors, the heaps can be gigabyte-size and still
long pauses will not occur. However, to achieve this elimination of pauses, concurrent garbage
collectors trade memory throughput; that is, it takes longer between the time the object is
referenced the last time and the system detects and reclaims it. The natural consequence of this is
that you will most likely need a larger heap with a concurrent garbage collector than you need
with any other. In addition, if your ordinary Java threads create more garbage than the concurrent
garbage collector manages to collect, unanticipated pauses will occur while the Java threads are
waiting for the garbage collector to complete its cycle.

Generational Concurrent
With generational concurrent garbage collectors (-Xgc:gencon), objects are allocated in the
young generation (the nursery). When the nursery is full, WebLogic JRockit JVM
“stops-the-world” and moves the live objects in the young generation to the old generation. An
old collector thread runs in the background all the time; it marks objects in the old space as live
and removes the dead objects, returning them to WebLogic JRockit JVM as free space. The
advantage of the generational concurrent garbage collector compared to the single spaced
concurrent garbage collector is that it has a higher memory throughput.

Parallel
Parallel garbage collectors (-Xgc:parallel) stop all Java threads when the heap is full and use
every CPU to perform a complete garbage collection of the entire heap. A parallel collector can

Selec t ing and Runn ing a Memory Management Sys tem

4-4 Using WebLogic JRockit 8.1 SDK

have longer pause times than concurrent collectors, but it maximizes throughput. Even on single
CPU machines, this maximized performance makes parallel the recommended garbage collector,
provided that your application can tolerate the longer pause times.

Starting a Garbage Collector
To start a garbage collector, simply include at the command line the -Xgc option and the type of
collector you want to use. Table 4-1 lists these arguments:

When started, JRockit will run with the specified garbage collector.

Default
If the garbage collector has not been set and the maximum heap size (set by using -Xmx or using
the default as described above) is less than 128 MB, the default garbage collector is generational
copying (-Xgc:gencopy); otherwise the default is generational concurrent (-Xgc:gencon).

Choosing a Garbage Collection Method
Each of the four garbage collectors has its benefits and its drawbacks. In an effort to help you
choose the collector that best suits your needs, this section discusses the pros and con of each
collector and provides a matrix to help you decide which one to use.

Table 4-1 Garbage Collector Implementation Options

Garbage Collector Option

Generational Copying -Xgc:gencopy

Single Spaced Concurrent -Xgc:singlecon

Generational Concurrent -Xgc:gencon

Parallel -Xgc:parallel

Choos ing a Garbage Co l l ec t i on Method

Using WebLogic JRockit 8.1 SDK 4-5

Pros and Cons
Table 4-2 lists the pros and cons of each garbage collector.

Table 4-2 Garbage Collector Pros and Cons

Garbage Collector Pros Cons

Generational Copying • Works well with single CPU
systems with a heap smaller than
128mB.

• Packs small objects together
during each collection.

• Good for testing on a single
machine.

• Default garbage collector for
heaps less than 128 mB.

• Not effective with large (>128mB)
heaps.

• Lacks speed and scaleability.
• Moves objects back and forth

between the two semispaces so it
doesn’t fully utilize the whole heap.

• Not recommended in a deployment
environment.

Single Spaced Concurrent • Virtually removes all pauses.
• Can handle gigabyte-sized heaps.

• Trades memory for fewer pauses.
• If ordinary Java threads create more

garbage than this collector can
collect, pauses occur while these
threads are waiting for the collector
to complete its cycle.

• Only effective so long as the
program doesn’t run out of memory
during collection.

Generational Concurrent • Virtually removes all pauses.
• Has a higher memory throughput

than single spaced concurrent
garbage collector.

• Reduces the risk of running out
of allocatable memory during
collection because the old space
is not filled at the same speed.

• Trades memory for fewer pauses.
• If ordinary Java threads create more

garbage than this collector can
collect, pauses occur while these
threads are waiting for the collector
to complete its cycle.

Parallel • Uses all processors during
collection, thus maximizing
memory throughput.

• “Stop the world” might cause a
longer than desirable pause in
processing.

Selec t ing and Runn ing a Memory Management Sys tem

4-6 Using WebLogic JRockit 8.1 SDK

Garbage Collector Selection Matrix
Table 4-3 is a matrix that you can use to determine which garbage collector is right for your
WebLogic JRockit JVM implementation. Use the If... column to locate a condition that matches
your implementation and select the garbage collector indicated in the Select this Method...
column.

Tuning for Garbage Collection
The effectiveness of the garbage collector depends upon a number of memory management
parameters you can set; for example, heap size and thread allocation. To provide the optimal
out-of-the-box experience, WebLogic JRockit comes with default values for these—and other—
settings that adapt automatically to the specific platform on which you are running the JVM.

Table 4-3 Garbage Collector Selection Matrix

If You... Select this Garbage Collector...

• Want lightweight alternative for use on single CPU systems
with a small (less then 128 mB) heap.

• Are testing applications on your desktop machine.

Generational Copying

• Cannot tolerate pauses of any length.
• Employ gigabyte-sized heaps.
• Willing to trade memory thoughput for eliminating pauses.
• Have a single CPU machine with a lot of memory.

Single Spaced Concurrent

• Cannot tolerate pauses of any length.
• Employ gigabyte-sized heaps.
• Willing to trade some memory thoughput for eliminating

pauses.
• Want better memory throughput than possible with Single

Spaced Concurrent.
• Are not sure that the other three methods would be adequate

given how you’ve implemented WebLogic JRockit JVM.

Generational Concurrent

• Using a machine with four CPUs or better or a single CPU
machine with a lot of memory.

• Can tolerate the occasional long pause
• Need to maximize memory throughput

Parallel

V iewing Garbage Co l l ec t i on Ac t iv i t y

Using WebLogic JRockit 8.1 SDK 4-7

However, you can modify these values to improve performance by specifying at the command
line any of the options listed in Tuning WebLogic JRockit JVM in Tuning WebLogic JRockit
JVM.

Viewing Garbage Collection Activity
To observe garbage collection activity, use one or both of the options described here. Using these
options will help you evaluate the effectiveness of the selected garbage collector and make
necessary tuning decisions.

If you want to see a comprehensive report of garbage collection activity, enter the
-Xgcreport option at startup. This option causes WebLogic JRockit JVM to print a
comprehensive garbage collection report at program completion.

If you want to see garbage collection activity when it occurs, enter the -Xgcpause
optiom.This option causes the VM to print a line each time Java threads are stopped for
garbage collection.

Combining these two options is a very good way of examining the memory behavior of your
application; for example:

-java -Xgcparallel -Xgcreport -Xgcpause myClass

Selec t ing and Runn ing a Memory Management Sys tem

4-8 Using WebLogic JRockit 8.1 SDK

Using WebLogic JRockit 8.1 SDK 5-1

C H A P T E R 5

Selecting and Running a Thread
System

WebLogic JRockit’s thread systems allow the JVM to take optimal advantage of the underlying
operating system. WebLogic JRockit JVM supports two types of thread systems: native threads
and thin threads. This section describes these thread systems and how to select and run them with
your application. It includes information on the following subjects:

Native Threads

Thin Threads

Starting the Thread System

Choosing a Thread System

Native Threads
This is the WebLogic JRockit JVM’s default thread system. It maps Java threads directly to the
operating system threads, taking advantage of the operating system's thread scheduling and load
balancing policies.

Thin Threads
Warning: Thin threads is experimental functionality in this version of WebLogic JRockit, and

is not recommended for general use. This feature is subject to change without notice.

Thin threads simulate several Java threads with one (or more) native threads that represent the
running program (Figure 5-1). Context switches and scheduling is done internally within

Selec t ing and Runn ing a Thread Sys tem

5-2 Using WebLogic JRockit 8.1 SDK

WebLogic JRockit, and is therefore much light-weight than context switching done within native
threads by the operating system.

Figure 5-1 Thin Threads Model

Thin threads are independent of native threads and are implemented in WebLogic JRockit JVM,
thus they are not part of the operating system. This means WebLogic JRockit JVM uses less
memory to perform optimized thread scheduling, thread switching, and thread synchronization.
This makes it possible to run a significantly higher number of threads at a higher speed than with
any other JVM.

To fully utilize system resources on a multi-processor system, WebLogic JRockit JVM is not
restricted to running all Java threads in the same operating system thread. A variety of operating
system threads can be used, which splits the Java threads among them. A Java thread is not bound
to a specific operating system thread; it can move between them to allow for optimal load
balancing.

Starting the Thread System
Note: For information on selecting the best thread system for your application, please refer to

Choosing a Thread System.

Choos ing a Th read Syst em

Using WebLogic JRockit 8.1 SDK 5-3

To start a thread system, include one of the options listed in Table 5-1 when you start WebLogic
JRockit JVM:

Choosing a Thread System
This section includes some tools that will help you determine which thread system is right for
your WebLogic JRockit JVM implementation. It contains a list of the pros and cons of each
method and a decision matrix that will help you identify the optimal threading model.

Table 5-1 Options Used to Implement Threading

To Use... Use this Option...

Native Threads -Xnativethreads

This option is the default and only needs to be specified if you are
switching from native threads.

Thin Threads -Xthinthreads

This option is not available on IA64. Additionally, thin threads is
experimental functionality in this version of WebLogic JRockit
and it is recommended that you do not use it. It is subject to change
at any time.

Selec t ing and Runn ing a Thread Sys tem

5-4 Using WebLogic JRockit 8.1 SDK

Pros and Cons
Table 5-2 lists the pros and cons of each thread system.

Thread System Selection Matrix
Because thin threads is experimental functionality and subject to change, BEA Systems
recommends that you always use native threads as your threading system. However, under certain

Table 5-2 Thread System Pros and Cons

Thread System Pros Cons

Native Threads • Takes advantage of the operating
system's thread scheduling and load
balancing policies.

• Are standard for native applications,
which relies upon the fact that each
Java thread is mapped to an operating
system thread of its own, this is the
only model that works (both DB2 and
Oracle level 2 JDBC database drivers
have been known to rely upon this).

• On a multiprocessor system when the
application has few active threads, the
operating system scheduling system is
better at utilizing the CPUs efficiently.

• Context switching is more costly as it
has to be done in the operating system
instead of only in the JVM.

• Every Java thread consumes more
resources, because it requires an
operating system thread of its own.

Thin Threads • Since several Java threads are run in
the same operating system thread,
JRockit can perform optimized thread
scheduling, thread switching, and
thread synchronization with less
memory.

• A variety of operating system threads
can be used, splitting the Java threads
instead of the operating system threads
among them. A Java thread is not
bound to a specific operating system
thread, so it can move between them to
allow for optimal load balancing.

• Not fully supported by or tested with
this version of WebLogic JRockit.

• Adds complexity because bridging
against the operating system becomes
less obvious.

• Requires WebLogic JRockit JVM,
instead of the operating system, to
schedule threads, which can negatively
impact performance.

• Not an effective on multiprocessing
systems that require a small number of
threads (a few hundred or less).

• Not designed to run with IA64
machines.

Choos ing a Th read Syst em

Using WebLogic JRockit 8.1 SDK 5-5

circumstances, thin threads might provide optimal performance for your WebLogic JRockit JVM
implementation. Use the If... column in Table 5-3 to locate a condition that matches your
implementation and select the thread system indicated in the Select this Method... column..

Table 5-3 Threading System Selection Matrix

If... Select this Method...

You have a relatively small number of threads
(less than 100)

Native Threads

Require a proven thread system Native Threads

You are using an IA64 machine Native Threads

You have in excess of a couple hundred threads Thin Threads

You are running Linux on a single-CPU system Thin Thread. This is because Linux threads are very
expensive to use.

Selec t ing and Runn ing a Thread Sys tem

5-6 Using WebLogic JRockit 8.1 SDK

Using WebLogic JRockit 8.1 SDK 6-1

C H A P T E R 6

Using the WebLogic JRockit
Management Console

The JRockit Management Console can be used to monitor and control running instances of
WebLogic JRockit JVM. It provides real-time information about the running application’s
characteristics, which can be used both during development—for example, to find where in an
application’s life cycle it consumes more memory—and in a deployed environment—for
example, to monitor the system health of a running application server.

This section includes information on the following subjects:

Console Overhead

Parts of the Console

Setting Up the Console

Using the Console

Console Overhead
The extra cost of running the JRockit Management Console against a running WebLogic JRockit
JVM is very small and can almost be disregarded. This provides for a very low cost monitoring
and profiling of your application.

Note: It is not recommended that you run the Management Console on the same machine as the
VM you are monitoring. If you run the Console on the same machine as the WebLogic
JRockit you are monitoring, the Management Console GUI will steal valuable resources
from the application running on the JVM and you risk performance degradation as a
result.

Using the WebLog ic JRock i t Management Console

6-2 Using WebLogic JRockit 8.1 SDK

Starting the Console
Starting the Management Console is a two-step process:

1. Enable the Management Server

2. Start the JRockit Management Console

Additionally, you might want to also complete these tasks as part of the start-up process:

Set the Port

Change the Number of Connections

Enable the Management Server
Before the Management Console can connect to WebLogic JRockit JVM, the management server
in the VM needs to be started. The server is disabled by default. To enable the management
server, start WebLogic JRockit JVM with the -Xmanagement option:

-Xmanagement

Start the JRockit Management Console
Start the JRockit Management Console from the command prompt by typing:

console

Note: Before starting the Management Console, you must specify the JRE path and the
classpath to the .jar file.

You can also start the Management Console without using the launcher. At the command line,
enter:

java -jar <jrockit-install-directory>/console/ManagementConsole.jar

Starting the Management Server with a Security Manager
If you try to start the management server (-Xmanagement option) with a security manager
running (-Djava.security.manager option) the management server might not start and you
will get error messages such as the following:

"ERROR: failed to initialize class com.jrockit.management.rmp.

 RmpSocketListener."

Star t ing the Console

Using WebLogic JRockit 8.1 SDK 6-3

To allow the management server to run under a security manager, add the text shown in
Listing 6-1 to your policy file. The standard location of the policy file is:

java.home/lib/security/java.policy (Linux)

java.home\lib\security\java.policy (Windows)

For more information on policy files please refer to:

http://java.sun.com/products/jdk/1.2/docs/guide/security/PolicyFiles.html

Listing 6-1 Code for Starting the Management Server with a Security Manager

/* --- Permissions for the JRockit management Server --- */

/* TODO 1: Locate the installed managementserver.jar in JAVA_HOME/jre/lib */

grant codeBase "file:C:/MY_JAVA_HOME/jre/lib/managementserver.jar" {

 /* TODO 2: Add permissions for your console client to connect. */

 permission java.net.SocketPermission "my-console-client.com", "accept,

 resolve";

 /* TODO 3: Add permissions for the management server to listen for

 connections. */

 permission java.net.SocketPermission "localhost:7090", "listen,

 resolve";

 /* Add permissions for management server standard operations. */

 permission com.bea.jvm.ManagementPermission "createInstance";

 permission java.lang.RuntimePermission "modifyThreadGroup";

 permission java.lang.RuntimePermission "modifyThread";

 permission java.lang.RuntimePermission "shutdownHooks";

 permission java.util.PropertyPermission "*", "read, write";

 };

Set the Port
When WebLogic JRockit JVM is started with the -Xmanagement option set—and provided the
VM is not running in “quiet” mode—it should print out a short message following the command

Using the WebLog ic JRock i t Management Console

6-4 Using WebLogic JRockit 8.1 SDK

line indicating that the management server is running and which port it is using. You can
optionally choose which port to use by setting, as a command line argument, the port number in
the port property:

java -Djrockit.managementserver.port=<portnumber>

The default port the management server uses to connect is 7090. It is strongly recommended that
you block this port in your firewall, otherwise unauthorized users might access the management
server.

Change the Number of Connections
You can change the number of connections allowed to the server by setting the maxconnect
property:

-Djrockit.managementserver.maxconnect=<maximum number of connections>

The default limit is four concurrent connections. While this should be enough for most users, you
can change it, if necessary. The connection limit protects against Denial of Service (DoS) attacks
by intruders.

Parts of the Console
When the JRockit Management Console window appears, the console has started, as shown in
Figure 6-1:

Par ts of the Console

Using WebLogic JRockit 8.1 SDK 6-5

Figure 6-1WebLogic JRockit JVM Management Console

The JRockit Management Console window is divided into two panes: a connection browser tree
in the left pane (Figure 6-2) and a tabbed interface in the right pane (Figure 6-3).

Using the WebLog ic JRock i t Management Console

6-6 Using WebLogic JRockit 8.1 SDK

Figure 6-2Connection Browser

Figure 6-3Information Tabs (Administrator Mode)

The first tab shows an Overview of information for the selected WebLogic JRockit JVM
connection(s) (as highlighted in the connection browser pane). The other tabs contain detailed
information about different areas of the VM, as will be described in Information Tabs.

Figure 6-3 shows the information tabs available in the console’s Administrator operation mode.
When the console is in the Developer mode, additional tabs appear, as shown in Figure 6-4. These
two operation modes are described in Setting the Operation Mode.

Figure 6-4Information Tabs (Developer Mode)

The console includes a toolbar that contains command buttons for some of the menu options
(Figure 6-5). To toggle the Toolbar on or off, on the View menu select Tool Bar.

Figure 6-5Management Console Toolbar

The status bar (Figure 6-6) at the bottom of the window displays informational messages and tool
tips when you hover over a toolbar button or select something in a menu. It also indicates whether
the JRockit Management Console is connected to one or several WebLogic JRockit JVM
implementations or not. To toggle the Status Bar on or off, on the View menu, select Status Bar.

Figure 6-6Status Bar

Set t ing Up the Console

Using WebLogic JRockit 8.1 SDK 6-7

Setting Up the Console
Once the console is running, you will need to configure it to suit your needs. Configuring—or
“setting up”—the console includes these tasks:

Making Connections

Enabling Console Settings

Making Connections
The connection browser displays a collection of saved connections to WebLogic JRockit JVM
organized in folders. If necessary, you can add your own folders and connection nodes to the tree
structure. Active connections currently connected to a running VM are indicated by a green icon;
those disconnected are indicated by a red icon.

Creating a New Folder
To create your own folder in the connection browser, do the following:

1. Select an existing folder (for example, Connections) for which you want to create a subfolder.

2. Open the New Folder dialog box by doing one of the following:

– Choose Connection→New Folder.

– Press the right mouse button to open a context menu and select New Folder.

– Press Ctrl+N.

– Click the New Folder button on the toolbar.

The Add new folder dialog box (Figure 6-7) appears:

Figure 6-7Add New Folder Dialog Box

3. Enter the name of the new folder in the text field and click OK.

The new folder will appear in the connection browser.

Using the WebLog ic JRock i t Management Console

6-8 Using WebLogic JRockit 8.1 SDK

Creating a New Connection
To create a new connection to WebLogic JRockit JVM in the connection browser, do the
following:

1. Select the folder in which the connection should be placed

2. Open the New Connection dialog box by doing one of the following:

– Open the Connection menu and select New Connection.

– Press the right mouse button to open a context menu and select New Connection.

– Click the New Connection button on the toolbar.

The Add new connection dialog box (Figure 6-8) appears:

Figure 6-8Add New Connection Dialog Box

3. Enter the name of the server, the port and the new connection in the appropriate text fields
or retain the default values. Then, select or deselect Connect now and click Add
Connection.

Connecting a Connection to WebLogic JRockit JVM
To connect to WebLogic JRockit, do the following:

1. Select the WebLogic JRockit JVM connection to connect, a subfolder of connections to
connect, or the folder Connections to connect all existing connections.

2. Do one of the following to connect the selected connection(s):

– Open the Connection menu and select Connect.

– Press the right mouse button to open a context menu and select Connect.

– Press Ctrl+O.

Set t ing Up the Console

Using WebLogic JRockit 8.1 SDK 6-9

– Click the Connect button on the toolbar.

When the connection is made, the status bar will read “Connected” and activity on the
console will commence.

Disconnecting a Connection from WebLogic JRockit JVM
To disconnect a connection from WebLogic JRockit JVM, do the following:

1. Select the WebLogic JRockit JVM connection to connect, a subfolder of connections to
connect, or the folder Connections to disconnect all existing connections.

2. Do one of the following to disconnect the selected connection(s):

– Open the Connection menu and select Disconnect.

– Press the right mouse button to open a context menu and select Disconnect.

– Press Ctrl+D.

– Click the Disconnect button on the toolbar.

The connection will be lost and the status bar will indicate that you’ve been disconnected.
All activity on the console will cease.

Renaming a Connection or Folder
To rename a connection or a folder of connection, do the following:

1. Select the WebLogic JRockit JVM connection or folder to rename.

2. Do one of the following to rename the selected connection or folder:

– Open the Connection menu and select Rename.

– Press the right mouse button to open a context menu and select Properties.

– Press F2.

– Click the name label of the item (see Note, below).

The Folder properties dialog box (Figure 6-9) appears:

Using the WebLog ic JRock i t Management Console

6-10 Using WebLogic JRockit 8.1 SDK

Figure 6-9Folder Properties Dialog Box

3. Enter a new name into the text field and click OK

Note: If you select the last option (click the item label), the Folder properties dialog box will
not appear. Instead, the label itself will be enabled for direct editing. Simply type the new
name over the old and click away from the label or press Enter.

Removing a Connection or Folder
To remove a connection or folder, do the following:

1. Select a connection or a subfolder to remove.

2. Do one of the following to remove the selected item:

– Open the Connection menu and select Remove.

– Press the right mouse button to open a context menu and select Remove.

– Press Delete.

3. Click Yes on the confirmation dialog box that appears.

The selected item disappears from the connection browser.

Hiding Disconnected Connections
Sometimes you might want to show just information about active WebLogic JRockit JVM
connections. To hide information about disconnected connections, do one of the following:

Open the View menu and select Hide Disconnected.

Click the Hide Disconnected button on the toolbar.

To show the information about disconnected connections again, simply deselect Hide
Disconnected in same way that you made the selection.

Enabling Console Settings
This section describes how to enable various JRockit Management Console settings.

Set t ing Up the Console

Using WebLogic JRockit 8.1 SDK 6-11

Setting the Operation Mode
The Management Console can be run in two different operating modes:

Administrator Mode; This is the default mode, designed for system administrators who
are interested in observing the state of the WebLogic JRockit JVM.

Developer Mode; The developer mode is for developers and provides additional features
such as a rudimentary method profiler and exception count functionality. Additional pages
appearing in the developer mode are the Method Profiler page and the Exception Count
page.

To set the operation mode, do the following:

1. From the Tools menu, select Preferences...

The Preferences dialog box (Figure 6-10) appears:

Figure 6-10Preferences Menu (General Tab)

2. Click the Mode of operation drop-down control to display the list of operation modes
(Figure 6-11).

Figure 6-11List of Operation Modes

Using the WebLog ic JRock i t Management Console

6-12 Using WebLogic JRockit 8.1 SDK

3. Select the mode you want to use and click OK.

Depending upon the mode to which you are toggling, the tabs on the console will change.
See Figure 6-3 and Figure 6-4 for examples.

Setting Other Preferences
In addition to setting the operation mode, you can use the Preferences dialog box to change these
settings:

Default e-mail settings for the notification system (please refer to Notification Tab).

Persistence behavior.

To change either of these values, open the Preferences dialog box from the Tools menu and
proceed are described in the following sections:

Setting E-mail Preferences
To change e-mail preferences, do the following:

1. Display the General tab on the Preferences dialog box

2. In the appropriate text fields, enter the new e-mail information (SMTP server and E-mail
address), as shown in Figure 6-12.

3. Click OK

Figure 6-12E-mail Preferences Panel

Enabling Persistence
Enabling the persistence means that aspect values are saved to a file and can be reviewed in charts
by opening the View menu and selecting View Historical Data (View Historical Data).

Selecting Aspects to Persist To set persistence preferences, do the following:

1. Disconnect any WebLogic JRockit JVM connections.

Set t ing Up the Console

Using WebLogic JRockit 8.1 SDK 6-13

Note: If you have not disconnected the connections and attempt to use this dialog box, you
will be prompted to disconnect.

The checkboxes in the Aspects to persist panel become enabled (Figure 6-13):

Figure 6-13Aspects to Persist Panel

2. Select the aspects you want to persist.

3. Click OK.

The selected aspect values are saved to a file that you can review in charts as described in
“View Historical Data” on page 6-29.

Specifying the Persistence Directory In addition to setting preferences for the aspects to
persist, you can also specify where to save the file that contains the aspect value (the “Persistence
directory”). To do so:

1. Click Choose (next to the Persistence directory field).

If you are still connected to WebLogic JRockit JVM, you will be prompted to disconnect;
click Yes to proceed. A standard Open dialog box appears.

2. Locate the directory where you want to save the file and click Open.

The Open dialog box closes, returning you to the Preferences dialog box.

3. Click OK.

The new Persistence directory will appear in that field.

Erasing Persistence Value Logs Finally, you can erase all persistence value logs by clicking
Clear all aspect logs. You will see a confirmation message to which you should respond Yes. Be
aware that, if you delete all persistance value logs by clicking this button, you will also delete any
other files stored in the <USER_HOME>/console/data directory.

Using the WebLog ic JRock i t Management Console

6-14 Using WebLogic JRockit 8.1 SDK

Customizing the Display
You can customize the console and change the way some of the monitoring data is displayed, as
described in this section.

Customizing Gauges and Bars
The gauges and bars are graphical devices showing memory and processor usage (Figure 6-14).

Figure 6-14Gauges and Bars

 To change from a gauge display to bar display, press the right mouse button when
pointing at the gauge and select Bar display, as shown in Figure 6-15.

Figure 6-15Gauge Context Menu (Bar Display Selected)

The selected gauge will appear as a bar (Figure 6-16).

Set t ing Up the Console

Using WebLogic JRockit 8.1 SDK 6-15

Figure 6-16Gauges and Bars with Gauge Converted to a Bar Display

To change back to a gauge, repeat the above, but select Gauge display.

To reset the watermark—which indicates the highest level measured so far—press the right
mouse button when pointing at the gauge or bar and select Reset Watermark.

Customizing Charts
Charts appear on the JRockit Management Console to show specified information about
WebLogic JRockit.

To change scale on any of the chart, select the desired scale unit (seconds, minutes or
hours) to the right of the chart (Figure 6-17) to be changed.

Figure 6-17Range Selection Radio Buttons

To hide a chart click the vertical tab at the left of the diagram you want to hide. When the
diagram is hidden, the tab appears horizontally (Figure 6-18).

Using the WebLog ic JRock i t Management Console

6-16 Using WebLogic JRockit 8.1 SDK

Figure 6-18Hiding a Chart

To show the diagram again, click the horizontal tab again.

Using the Settings File
When you exit the JRockit Management Console, your settings are automatically saved in a file
called consolesettings.xml. This file is located in the folder:

<user home directory>\ManagementConsole

The exact path to the user home directory will vary on different platforms. On Windows it is
usually something like \Documents and Settings\<username>; for example:

C:\Documents and Settings\jsmith\ManagementConsole

If no settings file exists in this directory it will be automatically created the next time the
Management Console is closed.

Warning: Do not edit this file by hand! Doing so can make it unusable and may cause the
Management Console to crash on startup.

If you are experiencing problems with the settings file, you can always delete it and let the
Management Console create a new one for you.

Using the Console
The JRockit Management Console monitors different “aspects” of WebLogic JRockit JVM. An
aspect is data that can be measured; for example, used heap size or VM uptime.

Chart Displayed

Chart Hidden

Click this tab to
display/hide the chart.

Us ing the Console

Using WebLogic JRockit 8.1 SDK 6-17

Information Tabs
Information tabs are pages containing details about different areas of the monitored WebLogic
JRockit JVM. Display a tab by clicking it or by accessing the View menu. This section describes
the tabs available on the JRockit Management Console.

Overview Tab
The Overview tab (Figure 6-19) shows an overview of selected connections. To select more than
one connection, select the folder containing the connections you want to view. They will appear
simultaneously. The page is divided into a “dashboard” with gauges in the upper part and charts
in the lower part.

Figure 6-19Overview Tab

Using the WebLog ic JRock i t Management Console

6-18 Using WebLogic JRockit 8.1 SDK

The Used Memory gauge shows the percentage of occupied physical memory on the
computer.

The Used Heap gauge shows the percentage of occupied Java heap memory in the VM.

The CPU Load bar shows the usage rate of the processor - or the average processor load
on a multi-processor machine.

The Heap Usage chart shows the percentage of used Java heap over time.

The CPU Usage chart shows the average usage rate of the processor(s) over time.

Memory Tab
The Memory tab (Figure 6-20) shows information about the memory status of the system, as
shown.

Us ing the Console

Using WebLogic JRockit 8.1 SDK 6-19

Figure 6-20Memory Tab

The Used Memory gauge shows the percentage of machine memory in use.

The Used Heap gauge shows the percentage of occupied Java heap.

The Heap Usage chart shows the percentage of occupied heap over time.

The Time in GC chart shows the average time spent on garbage collection over time. This
chart is only updated when running WebLogic JRockit JVM with the Parallel garbage
collector, and an actual garbage collection occurs.

At the bottom of the page the following text information is displayed (in kilobytes):

Used Heap shows the occupied heap space.

Free Heap shows the free heap space.

Using the WebLog ic JRock i t Management Console

6-20 Using WebLogic JRockit 8.1 SDK

Total Heap shows the heap size.

Used Memory shows the amount of occupied physical memory.

Free Memory shows the amount of free physical memory.

Total Memory shows the total physical memory size.

Processor Tab
The Processor tab (Figure 6-21) shows information about the processor status of the system.

Figure 6-21Processor Tab

The CPU Load bar shows the average processor load as a percentage. The overall load is
displayed in green while the load of the JVM process(es) is displayed in yellow.

Us ing the Console

Using WebLogic JRockit 8.1 SDK 6-21

The CPU Usage chart shows the average processor load as a percentage over time.

At the bottom of the page the following text information is displayed:

Number of Processors shows the number of processors.

CPU Load shows the overall processor load as a percentage.

JVM Process Load shows the load of the WebLogic JRockit JVM process(es), expressed
as a percentage.

System Tab
The System tab (Figure 6-22) shows various information about the system status.

Figure 6-22System Tab

Using the WebLog ic JRock i t Management Console

6-22 Using WebLogic JRockit 8.1 SDK

Garbage Collection System shows which garbage collector WebLogic JRockit JVM is
running.

JRockit Uptime shows how long WebLogic JRockit JVM has been running.

Connection Uptime shows how long the currently displayed connection has been
connected.

Process Affinity contains buttons that correspond to processors. It displays a green icon if
WebLogic JRockit JVM is running on this processor and a red icon if it is not. By selecting
a button, the WebLogic JRockit JVM process can be bound to one or more processors. The
VM might be released from such a connection by deselecting the button again. This is only
a suggested affinity: the operating system might not follow the suggestion. Changing the
process affinity is a feature that is only available when monitoring a VM instance running
on the Windows platform. The Process Affinity display is only activated when the
Management Console is in the Developer mode, described in Setting the Operation Mode.

System Properties shows the Java System Properties loaded in the VM.

Notification Tab
Use the Notification tab (Figure 6-23) to define alerts that notify users when certain events occur.
You can create your own notification rules based on different triggers, with optional constraints,
that alert you with a prescribed notification. This section describes how to create these rules.

Creating Custom Actions and Constraints
After starting the Management Console for the first time, a file named consolesettings.xml
will be created in the \ManagementConsole directory in your <user_home> directory. Among
the contents of this file are the entries for the default actions and constraints. You can
programatically create custom notification actions and constraints, which are also stored in this
file. Once added, these actions and constraints will appear on the Notifications tab of the
Management Console. For complete information on creating custom notification actions and
constraints, see “Adding Custom Notification Actions and Constraints.”

Us ing the Console

Using WebLogic JRockit 8.1 SDK 6-23

Figure 6-23Notification Tab (No Rules Defined)

A notification trigger can be a certain event, for example, that the connection to WebLogic
JRockit JVM was lost, or that an aspect reaches a certain value, for example, the used memory
reaches 95%. A notification constraint can limit when a rule is triggered for example by not
sending alerts at night or on certain dates.

The notification action is how the alert is communicated to the user. It can be one of the
following:

E-mail shows an e-mail when the notification is sent to the specified address by using the
specified SMTP server.

System out action displays the notification in the command window where you started the
JRockit Management Console.

Application alert displays the notification in an alert dialog in the Management Console.

Using the WebLog ic JRock i t Management Console

6-24 Using WebLogic JRockit 8.1 SDK

Log to file logs the notification to the specified file.

Creating a New Rule
Rules determine when and how to issue a notification. To create a new rule, do the following:

1. Click New Rule.

The Name rule dialog box appears (Figure 6-24):

Figure 6-24Name Rule Dialog Box

2. Enter the name of the new rule in Rule name: and click Next.

The Select trigger dialog box appears (Figure 6-25):

Us ing the Console

Using WebLogic JRockit 8.1 SDK 6-25

Figure 6-25Select Trigger Dialog Box

3. Select a trigger (the individual triggers are described in the right panel).

4. Enter a threshold in the text box below the trigger list, if required (Figure 6-26; this box will
be marked either Min value or Max value, depending on the type of trigger selected.

Figure 6-26Trigger Threshold and Options Text Boxes

5. Select further options under the Option tab. For example, in Figure 6-26, you need to select
what kind of aspect value change will trigger the notification:

– on trigger, which triggers the notification when the aspect reaches the trigger value
from a lower value (for example, if the trigger is 80 and the aspect value moves up
from 75).

Options tab
opened

Using the WebLog ic JRock i t Management Console

6-26 Using WebLogic JRockit 8.1 SDK

– on recovery, which triggers the notification when the aspect reaches the trigger value
from a higher value (for example, if the trigger is 80 and the aspect value moves down
from 85).

6. Click Next.

The Select Action dialog box appears (Figure 6-27):

Figure 6-27Select Action Dialog Box

7. Select an action and enter settings data, if required.

8. If necessary, add a constraint to the rule (this step is optional; if you don’t want to add a
constraint, go to step 8):

a. Click Next.

The Add Constraint dialog box appears (Figure 6-28):

Us ing the Console

Using WebLogic JRockit 8.1 SDK 6-27

Figure 6-28Add Constraint Dialog Box

b. Select a constraint and click Add.

The constraint name will appear in the add list, as shown in Figure 6-29.

Figure 6-29Constraint Added

c. Enter constraint settings in the text fields under the list of constraints (Figure 6-29).

9. Click Finish.

The new rule appears in the All available rules list on the Notification tab, as shown in
Figure 6-30.

Constraint settings;
Day of week
selected.

Using the WebLog ic JRock i t Management Console

6-28 Using WebLogic JRockit 8.1 SDK

Figure 6-30New Rule in List

10. Add the rule to your connection as described in Add a Rule to WebLogic JRockit JVM.

Editing a Rule
To edit a rule, do the following:

1. In the Available rules list, select the rule to be edited and click Edit Rule.

2. Check the name of the rule, edit it, if necessary, and click Next.

3. Check the trigger and trigger settings, edit them, if necessary, and click Next.

4. Check the action and the action settings and edit them if necessary.

5. To continue editing the rule, the do the following (optional; if you don’t want to add a
constraint, go to step 6):

a. Click Next.

b. Check the constraints and the constraint settings. Edit them, if necessary.

6. To finish the editing a rule, click Finish.

Add a Rule to WebLogic JRockit JVM
To add a rule to WebLogic JRockit JVM, do the following:

1. Select the rule to be added in the Available rules list.

2. Click Add to JRockit.

The rule appears in the Active rules for this connection list, as shown in Figure 6-31.

Us ing the Console

Using WebLogic JRockit 8.1 SDK 6-29

Figure 6-31Rule Added to Active rules for This Connection List

Remove a Rule from WebLogic JRockit JVM
To remove a rule from WebLogic JRockit JVM, do the following:

1. Select the rule to be removed in the Active rules for this connection list.

2. Click Remove from JRockit.

The rule will now be removed from the Active rules for this connection list.

Remove a Rule
To remove a rule from the Available rules list, do the following:

1. Select the rule to be removed.

2. Click Remove Rule.

A removal confirmation dialog box appears.

3. Click Yes

4. The rule disappears from the Available rules list.

View Historical Data
The historical data window displays a chart where historical data for an aspect can be viewed.
This is useful for observing trends over time and, for example, finding when a server running with
WebLogic JRockit JVM has its peak loads.

To open this window, do the following:

1. Select the connection for which you want to view data.

2. Open the View menu and select View Historical Data.

3. Select the aspect for which you want to view historical data, as shown in Figure 6-32.

Using the WebLog ic JRock i t Management Console

6-30 Using WebLogic JRockit 8.1 SDK

Figure 6-32View Menu with Historical Data Submenu Open

Historical data for the selected aspect appears (Figure 6-33).

Figure 6-33Historical Data (CPU Load Selected)

4. Navigate through time either by using the arrows or changing the start time in the Chart
display settings.

Us ing the Console

Using WebLogic JRockit 8.1 SDK 6-31

To be able to observe historical data, aspect data from WebLogic JRockit JVM must first have
been persisted, that is, written to file. See Setting Other Preferences to enable or disable
persistence. The following aspects are possible to persist, and thus display, historical data for:

Used heap (as a percentage)

CPU load (as a percentage)

Average time spent garbage collecting (as a percentage)

As soon as data has been created by a connected connection, it is available for historical
observation.

Using Advanced Features of the Console
This section describes the more advanced features of the Management Console. Some of these
are only available when running in the Developer mode, described in Setting the Operation Mode.

View Thread Stack Dump
The stack dump contains a list of all running threads in WebLogic JRockit JVM with a method
call stack trace for each thread.

To view the thread stack dump, open the Tool menu and select View Thread Stack Dump. A
dialog box containing the stack dump appears (Figure 6-34).

Using the WebLog ic JRock i t Management Console

6-32 Using WebLogic JRockit 8.1 SDK

Figure 6-34Thread Stack Dump

Method Profiling Tab
Note: You must be in the developer operation mode before you can perform the tasks described

in this section. For more information on entering the developer operation mode, see
Setting the Operation Mode.

The Method Profiler tab allows the developer to monitor method execution in a non-intrusive
way. The Method Profiler can provide information about the average time spent in selected
methods and the number of times methods are invoked.

Method Templates are collections of methods that can be re-used on different connections. There
is a Default template, but the user may also create new templates.

Adding a Method to a Template
To add a method to a template, do the following:

1. Select the template to be modified from the Select template list.

2. Click Add Method.

Us ing the Console

Using WebLogic JRockit 8.1 SDK 6-33

The Enter class name dialog box appears (Figure 6-35).

Figure 6-35Enter Class Name Dialog Box

3. Enter a fully qualified class name, for example, java.util.Vector, in the text field and
click Next.

The Select method dialog box appears (Figure 6-36):

Figure 6-36Select Method Dialog Box

4. Select the methods to be added to the template and press Finish.

Using the WebLog ic JRock i t Management Console

6-34 Using WebLogic JRockit 8.1 SDK

The method name will appear on the Method profiling information list, as shown in
Figure 6-37.

Figure 6-37Method Profiling Information List with Method Added

Removing a Method from a Template
To remove a method from a template, do the following:

1. From the Select template list, select the template you want to modify.

2. From the Method Profiling Information list, select the method(s) to be removed from the
template.

3. Click Remove Method.

Creating a New Template
To create a new template, do the following:

1. Click New template.

The New template dialog box appears (Figure 6-38).

Figure 6-38New Template Dialog Box

2. Enter a name for the new template in the text field.

3. Click OK.

Removing a Template
To remove a template, do the following:

1. From the Select template list select the template to be removed.

Us ing the Console

Using WebLogic JRockit 8.1 SDK 6-35

2. Click Remove.

A confirmation dialog box appears.

3. Click Yes.

Starting and Stopping Method Profiling
To start the method profiling, do the following:

1. From the Select template list, select the template to be started.

2. Click Start/Stop.

If you select Start, numbers in the Invocation count cells for each method begin to
increment as method calls are made. If you select Stop, this activity will cease.

Method Profiling Settings
You can switch between using qualified method names or short names in the method profiling
table.

To enable invocation count, select the Invocation count checkbox at the bottom of the
page.

To enable timing, select the Timing checkbox at the bottom of the page.

Exception Counting Tab
The Exception Count tab (Figure 6-39) shows exceptions thrown in WebLogic JRockit JVM. It
counts the number of exceptions of a certain type thrown.

Using the WebLog ic JRock i t Management Console

6-36 Using WebLogic JRockit 8.1 SDK

Figure 6-39Exception Counting Tab

Add an Exception
To add an exception to observe, do the following:

1. Enter the fully qualified name of the exception into the text field at the top of the page, e.g.,
“java.io.IOException”.

2. Choose whether or not all subclasses of that exception should be included in the count by
selecting or deselecting the Include subclasses checkbox.

3. Click Add. You can only add subclasses of java.lang.Throwable which are loaded in
WebLogic JRockit JVM and you can only add exceptions while connected.

The exception should now be displayed in the table.

Us ing the Console

Using WebLogic JRockit 8.1 SDK 6-37

Starting, Stopping, and Removing an Exception Count
To start the exception count, click Start. The results should now appear next to the name of the
exception being counted. Similarly, to stop the exception count, click Stop.

To remove an exception from the count, select the exception to be removed and click Remove.

Closing the Console
To close the JRockit Management Console and disconnect all connections, open the Connection
menu and select Exit. Clicking X in the top right corner of the window will also close the JRockit
Management Console.

Using the WebLog ic JRock i t Management Console

6-38 Using WebLogic JRockit 8.1 SDK

Using WebLogic JRockit 8.1 SDK 7-1

C H A P T E R 7

Using WebLogic JRockit JVM with Other
WebLogic Applications

The configuration options described elsewhere in this user guide can be set to optimize WebLogic
JRockit JVM performance with both BEA WebLogic Server and BEA WebLogic Workshop.
This chapter defines these optimal settings and discussed how to use the JVM with these
applications. It includes information on the following subjects:

Using WebLogic JRockit JVM with BEA WebLogic Server

Configuring JRockit for BEA WebLogic Workshop

Using WebLogic JRockit JVM with BEA WebLogic Server
BEA WebLogic JRockit JVM is certified for use with BEA WebLogic Server. This section
includes information on the following subjects:

Certified Versions

Verifying that WebLogic JRockit is Your JVM

Starting JRockit from the Node Manager

Enabling the Management Server from the Node Manager

Tuning WebLogic JRockit for WebLogic Server

Setting Options by Using the Node Manager

Monitoring WebLogic JRockit JVM from WebLogic Server

Running JRockit with Thin Threads on WebLogic Server

Using WebLog ic JRock i t J VM wi th Othe r WebLog ic Appl i ca t ions

7-2 Using WebLogic JRockit 8.1 SDK

Switching to WebLogic JRockit JVM in WebLogic Server

Switching VMs When WebLogic Server is Running as a Service

Certified Versions
For details on certified and supported platform combinations of WebLogic Server with
WebLogic JRockit 8.0, please refer to the following Web pages:

http://www.bea.com/products/weblogic/server/

or

http://www.bea.com/products/weblogic/jrockit/

Verifying that WebLogic JRockit is Your JVM
WebLogic JRockit is the default production JVM shipped with WebLogic Server, although you
can use another VM, such as Sun Microsystem’s HotSpot JVM as a development VM. To ensure
that WebLogic JRockit is the JVM running with your instance of WebLogic Server, at the
command line, type:

java -showversion

If WebLogic JRockit is running, the system will respond:

java version "1.4.1_05"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.1_05)

BEA WebLogic JRockit(R) Virtual Machine (build

8.1-1.4.1_05-win32-CROSIS-20030317-1550, Native Threads, Generational

Concurrent Garbage Collector)

Note: This example assumes you are using the native thread method (the default) and
generational concurrent garbage collector (default when maximum heap size is larger
than 128 MB).

Starting JRockit from the Node Manager
If you are starting WebLogic JRockit JVM from the WLS Node Manager, you need to enter the
fully-qualifying path, as shown above, in the Java Home field on the Remote Start Page; for
example:

\bea\jrockit81_141\bin\java

http://www.bea.com/products/weblogic/server/
http://www.bea.com/products/weblogic/jrockit/

Usi ng WebLog ic JRock i t JVM wi th BEA WebLog ic Se rve r

Using WebLogic JRockit 8.1 SDK 7-3

Enabling the Management Server from the Node Manager
You can enable the management server from the WLS Node Manager by doing the following:

1. Start the Node Manager as described in Starting Node Manager with Commands or Scripts
and navigate to the Remote Start page.

2. Ensure that you have specified an absolute pathname to WebLogic JRockit JVM’s top-level
directory in the Java Home field

3. In Arguments, type -Xmanagement.

For more information on using the Node Manager, please refer to the Overview of Node Manager
in Configuring and Managing WebLogic Server.

Setting Options by Using the Node Manager
If you started the server or cluster of servers with the Node Manager and specified an absolute
pathname to WebLogic JRockit JVM’s top-level directory in the Java Home field on the Node
Manager’s Remote Start page, you can set any option from this page, too. Simply enter the option
and any arguments in the Arguments field.

For more information on using the Node Manager, please refer to the Overview of Node Manager
in Configuring and Managing WebLogic Server.

Tuning WebLogic JRockit for WebLogic Server
To use the WebLogic JRockit JVM instead of the Sun JVM, you need to increases the initial heap
size to 64 MB (-Xms:64m)and the maximum heap size to at least 200 MB (-Xmx:200m). In
addition, the following defaults are used:

-Xnativethreads

-Xallocationtype:local

These settings are normally used for initial development. If you want to improve WebLogic
JRockit performance, you can try one of the following, bearing in mind that all applications are
different and you need to verify which settings give the best performance in each case:

Increase the heap initial and maximum size (-Xms and -Xmx).

Change the garbage collector to single spaced concurrent (-Xgc:singlecon) or parallel
(-Xgc:parallel). Note that if you select parallel as your garbage collector, the -Xns
setting will have no affect on processing (see Setting the Size of the Nursery).

Using WebLog ic JRock i t J VM wi th Othe r WebLog ic Appl i ca t ions

7-4 Using WebLogic JRockit 8.1 SDK

For more information on tuning WebLogic JRockit, please refer to Tuning WebLogic JRockit
JVM.

Monitoring WebLogic JRockit JVM from WebLogic Server
If you run WebLogic Server with WebLogic JRockit JVM, you can use the WebLogic Server
Administration Console to view runtime data about the VM and the memory and processors on
the computer hosting it.

To monitor WebLogic JRockit JVM, do the following:

1. Start WebLogic Server with WebLogic JRockit JVM as the VM.

2. In the left pane of the Administration Console, expand the Servers folder.

3. Click a server that is using the WebLogic JRockit JVM.

4. In the right pane, click the Monitoring tab. Then click the JRockit tab.

The JRockit tab displays monitoring information.

Table 7-1 WebLogic JRockit Attributes Monitored by the WebLogic Server Administration Console

Attribute Description

Total Nursery Size Indicates the amount (in bytes) of memory that is currently allocated to the nursery.
The nursery is the area of the Java heap where objects are initially allocated. Instead
of garbage collecting the entire heap, generational garbage collectors focus on the
nursery. Because most objects die young, most of the time it is sufficient to garbage
collect only the nursery and not the entire heap. If you are not using a generational
garbage collector, the nursery size is 0.

Max Heap Size Indicates the maximum amount of memory (in bytes) that the VM can allocate for
its Java heap. This number is fixed at startup time of the VM, typically by the -Xmx
option.

Gc Algorithm Indicates the type of garbage collector that WebLogic JRockit JVM is using.

Total Garbage
Collection Count

Indicates the number of garbage collection runs that have occurred since the VM was
started.

Usi ng WebLog ic JRock i t JVM wi th BEA WebLog ic Se rve r

Using WebLogic JRockit 8.1 SDK 7-5

GCHandles Compaction Indicates whether the VM's garbage collector compacts the Java heap. Usually the
heap is scattered throughout available memory. A garbage collector that compacts
the heap defragments the memory space in addition to deleting unused objects.

Values:
• true
• false

Concurrent Indicates whether JRockit's garbage collector runs in a separate Java thread
concurrently with other Java threads.

Values:
• true
• false

Generational Indicates whether JRockit's garbage collector uses a nursery space. Instead of
garbage collecting the entire heap, generational garbage collectors focus on the
nursery. Because most objects die young, most of the time it is sufficient to garbage
collect only the nursery and not the entire heap.

Values:
• true
• false

Incremental Indicates whether JRockit's garbage collector collects only a small portion of the
heap during each old collection (incremental) or collects the whole heap during each
collection (non-incremental).

Values:
• true
• false

Parallel Indicates whether the JRockit's garbage collector is able to run in parallel on multiple
processors if multiple processors are available.

Values:
• true
• false

Number Of Processors Displays the number of processors on JRockit's host computer. If this is not a
Symetric Multi Processor (SMP) system, the value will be 1.

Table 7-1 WebLogic JRockit Attributes Monitored by the WebLogic Server Administration Console

Attribute Description

Using WebLog ic JRock i t J VM wi th Othe r WebLog ic Appl i ca t ions

7-6 Using WebLogic JRockit 8.1 SDK

To view additional data about WebLogic JRockit, such as how long it spends in a specific
method, use the WebLogic JRockit Management Console, as described in Using the WebLogic
JRockit JVM Management Console.

Running JRockit with Thin Threads on WebLogic Server
Warning: Thin threads is experimental functionality in this version of JRockit, and is not

recommended for general use. This feature is subject to change without notice.

The JRockit high performance thread system (Thin Threads, -Xthinthreads) and the native I/O
system of WebLogic Server are incompatible as they both use asynchronous I/O. To avoid
problems you must disable the native I/O system of WebLogic Server when running JRockit
using thin threads. The native I/O is disabled automatically in WebLogic Server if JRockit is
using thin threads, even if it is turned on in the corresponding WebLogic Server configuration
file. In their respective default setups, WebLogic JRockit JVM does not use thin threads and
WebLogic Server uses native I/O.

Switching to WebLogic JRockit JVM in WebLogic Server
When you switch to WebLogic JRockit JVM in WebLogic Server, any changes to the VM and
start-up setting, should be handled by the WLS Configuration Wizard. Additionally, if any
installation-wide scripts must be updated due to the switch, these will also be handled by the WLS
Configuration Wizard.

Among information that needs to be changed when switching to WebLogic JRockit JVM are:

The value for the JAVA_HOME variable needs to be changed to the absolute pathname to the
top BEA directory; for example, c:\bea\jrockit81.

You can also change the JAVA_HOME variable from the Node Manager’s Remote Start page
by entering the absolute pathname in the Java Home field.

Total Number Of
Threads

Indicates the number of Java threads (daemon and non-daemon) that are currently
running on JRockit across all processors.

Number Of Daemon
Threads

Indicates the number of daemon Java threads currently running on JRockit across all
processors.

Table 7-1 WebLogic JRockit Attributes Monitored by the WebLogic Server Administration Console

Attribute Description

Conf igur ing JRocki t fo r BEA WebLogi c Workshop

Using WebLogic JRockit 8.1 SDK 7-7

Change the value of the JAVA_VENDOR variable to BEA.

You will also need to restart any servers that are currently running.

For complete details on switching to WebLogic JRockit JVM from another JVM, please refer to
Migrating to WebLogic JRockit. For more information on using the Configuration Wizard when
switching to WebLogic JRockit, please refer to Changing the JVM that Runs Servers.

Switching VMs When WebLogic Server is Running as a Service
To switch the virtual machine when WebLogic Server is running as a service, do the following:

1. Stop the service.

2. Start regedit and find the service keys corresponding to your service
(HKEY_LOCAL_MACHINE/SYSTEM/ControlSet001/Services/{ServiceName}).

3. In the Parameters folder, change the value of the key JavaHome from the default VM to
your WebLogic JRockit SDK directory.

4. Here you can also alter the arguments sent to the VM by editing the values of the key
CmdLine.

5. Restart the service.

Configuring JRockit for BEA WebLogic Workshop
If you are running JRockit with BEA WebLogic Workshop, we recommend that you use the same
configuration parameters specified for WebLogic Server in Tuning WebLogic JRockit for
WebLogic Server.

Using WebLog ic JRock i t J VM wi th Othe r WebLog ic Appl i ca t ions

7-8 Using WebLogic JRockit 8.1 SDK

Using WebLogic JRockit 8.1 SDK A-1

A P P E N D I X A

What’s in the WebLogic JRockit 8.1
SDK?

WebLogic JRockit 8.1 SDK is very similar to the Sun JDK, except that it includes a new JRE
with the WebLogic JRockit JVM and some changes to the Java class libraries (however, all of the
class libraries have the same behavior in WebLogic JRockit as in the Sun JDK). For a more
detailed description of the differences between the two SDKs, please refer to File Differences
Between WebLogic JRockit 8.1 SDK and Sun HotSpot SDK.

This section describes the contents of the WebLogic JRockit 8.1 SDK and compares a WebLogic
JRockit SDK installation to a comparable Sun SDK installation. It includes information on the
following subjects:

SDK Contents

File Differences Between WebLogic JRockit 8.1 SDK and Sun HotSpot SDK

SDK Contents
This section describes the various components that make up the WebLogic JRockit 8.1 SDK. It
also identifies the folder in which these components reside.

Development Tools
Found in: /bin

Development tools and utilities help you develop, execute, debug, and document programs
written in the Java programming language. The WebLogic JRockit 8.1 SDK includes the standard
tools commonly distributed with the typical Java SDKs. While most of these are standard JDK
tools and are proven to work well with Java development projects, you are free to use any other

What ’s in the WebLogic JRocki t 8 .1 SDK?

A-2 Using WebLogic JRockit 8.1 SDK

third party tools, compilers, debuggers, IDEs, and so on that might work best in your situation.
The tools included with WebLogic JRockit 8.1 SDK are:

Javac compiler

Jdb debugger

Javadoc, which is used to create an HTML documentation site for the JVM API

For more information on these tools, please refer to Sun Microsystem’s JavaTM 2 SDK Tools and
Utilities website at:

http://java.sun.com/j2se/1.4/docs/tooldocs/tools.html

Runtime Environment
Found in: /jre

The BEA WebLogic JRockit implementation of the Java 2 runtime environment for use by the
SDK. The runtime environment includes the BEA WebLogic JRockit JVM, class libraries, and
other files that support the execution of programs written in the Java programming language.

Additional Libraries
Found in: /lib

Additional class libraries and support files required by the development tools.

C Header Files
Found in: /include

Header files that support native-code programming using the Java Native Interface, the Java
Virtual Machine Debugger Interface, the Java Virtual Machine Profiler Interface and other
functionality of the Java 2 Platform.

The Management Console
Found in: /console

The WebLogic JRockit Management Console is used to monitor and control running instances of
WebLogic JRockit JVM. It provides real-time information about the running application's
characteristics, which can be used both during development-for example, to find where in an

Fi l e D i f fe rences Be tween WebLog ic JRocki t 8 .1 SDK and Sun Ho tSpo t SDK

Using WebLogic JRockit 8.1 SDK A-3

application's life cycle it consumes more memory-and in a deployed environment-for example,
to monitor the system health of a running application server.

File Differences Between WebLogic JRockit 8.1 SDK and Sun
HotSpot SDK

This section describes how WebLogic JRockit SDK differs from Sun Microsystems’ HotSpot
SDK. Each table below lists, by component and operating system (O/S), files that either exist in
HotSpot SDK 1.4.1 or WebLogic JRockit SDK.

Be aware of these variables:

$ARCH = i386 on linux32, but $ARCH = ia64 on linux64

mydir[/*] means mydir and mydir/*

The following files are included in the 8.1 SP1 SDK by accident and should not be considered
part of the JRockit 8.1 SP1 SDK.

Table A-1 Included Files Not Part of WebLogic JRockit

O/S Files

win32 jre/bin/jpicpl32.cpl

linux32
linux64

jre/lib/$ARCH/libjawt.so
jre/lib/$ARCH/libjsig.so

What ’s in the WebLogic JRocki t 8 .1 SDK?

A-4 Using WebLogic JRockit 8.1 SDK

--

Table A-2 Files Contained Only in Sun SDK; Not Supported by WebLogic JRockit

Component O/S File Notes

Sun Plugin Support win32 bin/HtmlConverter.exe
lib/htmlconverter.jar
jre/bin/ActPanel.dll
jre/bin/jpi*.*
jre/bin/NP*.*
jre/bin/eula.dll

linux32 bin/ControlPanel
jre/bin/ControlPanel
jre/ControlPanel.html
bin/HtmlConverter
lib/htmlconverter.jar
jre/lib/i386/libjavaplugin_jni.so
jre/lib/javaplugin.jar
jre/lib/locale[/*]
jre/plugin[/*]

Sun Java Web Start win32 jre/javaws-1_2_0_03-windows-i586-i.exe

linux32 jre/javaws-1_2_0_03-linux-i586-i.zip

Sun AWT Native
Interface

win32
win64

include/jawt.h
include/win32/jawt_md.h
jre/bin/jawt.dll
jre/lib/jawt.lib
lib/jawt.lib

Linux32
linux64

include/jawt.h
include/linux/jawt_md.h
jre/lib/$ARCH/libjawt.so

Sun VM Native
Interface

win32
win64

lib/jvm.lib This is an
empty file in
WebLogic
JRockit that
only exists to
enable
OptimizeIt
detection

Fi l e D i f fe rences Be tween WebLog ic JRocki t 8 .1 SDK and Sun Ho tSpo t SDK

Using WebLogic JRockit 8.1 SDK A-5

Sun JCOV win32
win64

jre/bin/jcov.dll
jre/lib/jvm.jcov.txt

linux32
linux64

jre/lib/$ARCH/libjcov.so
jre/lib/jvm.jcov.txt

Table A-3 Files Used Only in Sun SDK; Not used by WebLogic JRockit

Component O/S Files Notes

SUN Hotspot VM
support files

win32
win64

jre/bin/msvcrt.dll
jre/bin/msvcrtd.dll
jre/bin/net.dll
jre/bin/nio.dll
jre/bin/zip.dll
jre/bin/hpi.dll
jre/bin/client[/*]
jre/bin/server[/*]

win64 only

win32 only

linux32
linux64

jre/lib/$ARCH/libnet.so
jre/lib/$ARCH/libnio.so
jre/lib/$ARCH/libzip.so
jre/lib/$ARCH/libjsig.so*8
jre/lib/$ARCH/client[/*]
jre/lib/$ARCH/server[/*]

linux32 only

Table A-2 Files Contained Only in Sun SDK; Not Supported by WebLogic JRockit

Component O/S File Notes

Table A-4 Files Contained Only in Sun SDK; Removed from WebLogic JRockit to Reduce
Package Size

Component O/S Files Notes

SUN Demo sources win32
win64
linux32
linux64

demo[/*]

What ’s in the WebLogic JRocki t 8 .1 SDK?

A-6 Using WebLogic JRockit 8.1 SDK

SUN Java API sources win32
win64
linux32
linux64

src.zip

SUN Manual pages linux32
linux64

man[/*]

Table A-4 Files Contained Only in Sun SDK; Removed from WebLogic JRockit to Reduce
Package Size

Table A-5 Files Only in WebLogic JRockit SDK; Not Used or Supported by Sun

Component O/S Files Notes

WebLogic JRockit
Management Console

linux32
linux64
win32
win64

bin/console[.exe]
console[/*]

WebLogic JRockit
Management API

win32
win64
linux32
linux64

jre/lib/managementapi.jar

WebLogic JRockit
JVM support files

win32
win64

jre/bin/dbghelp.dll
jre/bin/jrockit[/*]
jre/lib/managementserver.jar

linux32
linux64

jre/lib/$ARCH/jrockit[/*]
jre/lib/managementserver.jar

Using WebLogic JRockit 8.1 SDK B-1

A P P E N D I X B

Adding Custom Notification Actions
and Constraints

After starting the WebLogic JRockit JVM Management Console for the first time, a file named
consolesettings.xml will be created in the \ManagementConsole directory in your home
directory. Among other entries, this file contains the deployment entries for the default actions
and constraints. You can create custom notification actions and constraints for the Management
Console, which are also stored in this file. Once added, these actions and constraints will appear
on the Notifications tab of the Management Console.

This appendix includes information on the following subjects:

Locating consolesettings.xml

Creating a Custom Action

Creating and Implementing an Action: Example

Creating a Custom Constraint

Locating consolesettings.xml
The consolesettings.xml file is located in your home directory, under the
\ManagementConsole folder. If you are using Windows, the path should be:

C:\Documents and Settings\<user_name>\ManagementConsole

(where <user_name> is the user name under which you are running the Management Console)

If you are using Linux, the path will normally be:

/home/<user_name>/ManagementConsole

Add ing Custom Not i f i ca t ion Ac t ions and Const ra in ts

B-2 Using WebLogic JRockit 8.1 SDK

(where <user_name> is the user name under which you are running Management Console)

Creating a Custom Action
The following procedure walks you through the steps necessary to create and implement a custom
action. In this procedure, you will be creating a print action.

1. Add the ManagementConsole.jar to your build path.

You can find this .jar in the <jrockit_home>/console directory.

2. Create a subclass of AbstractNotificationAction. This class will receive the
NotificationEvents.

3. Implement handleNotificationEvent:

public void handleNotificationEvent(NotificationEvent event)

You can also override the exportToXml and initializeFromXml methods to store your
action settings to XML.

4. Create a subclass of AbstractNotificationActionEditor to create the graphical editor
used to edit the settings. If you have no editable settings for your action, you can just use
the com.jrockit.console.notification.ui.NotificationActionEditorEmpty.

5. Implement the abstract methods:

protected void storeToObject(Describable object);

protected void initializeEditor(Describable object);

6. Edit the consolesettings.xml file to include your new action under the
<registry_entry> element.

7. Add your new classes in the classpath.

8. Run the console.

The new action will be available in the new rule dialog box in the notification section of the
Management Console (see Notification Tab).

Creating and Implementing an Action: Example
This section shows a real-life example of how an action is created and implemented. Once
implemented, a text field where you can enter a parameter will appear on the Notification tab.

Creat ing and Imp lement ing an Ac t ion : Example

Using WebLogic JRockit 8.1 SDK B-3

The step numbers that appear in headings below refer to the steps in the procedures under
Creating a Custom Action.

Note: This example assumes that ManagementConsole.jar has been added to the build path
(Step 1).

Create the Action (Step 2)
First, we create a subclass of AbstractNotificationAction, as shown in Listing B-1. This
class will receive the NotificationEvents.

Listing B-1 Building the Parameterized Action

package com.example.actions;

import org.w3c.dom.Element;

import com.jrockit.console.notification.*;

import com.jrockit.console.util.XmlToolkit;

/**

 * Test class showing how to build a parameterized action.

 *

 * @author Marcus Hirt

 */

public class MyTestAction extends AbstractNotificationAction

{

 private final static String TEST_SETTING = "test_param";

 public final static String DEFAULT_VALUE = "default value";

 private String m_parameter = DEFAULT_VALUE;

 /**

 * @see com.jrockit.console.notification.NotificationAction#

 * handleNotificationEvent(NotificationEvent)

 */

 public void handleNotificationEvent(NotificationEvent event)

 {

 System.out.println("===MyTestAction with param: " +

 getParameter() + "======");

Add ing Custom Not i f i ca t ion Ac t ions and Const ra in ts

B-4 Using WebLogic JRockit 8.1 SDK

 System.out.println(NotificationToolkit.prettyPrint(event));

 }

 /**

 * @see com.jrockit.console.util.XmlEnabled#exportToXml

 * (Element)

 */

 public void exportToXml(Element node)

 {

 XmlToolkit.setSetting(node, TEST_SETTING, m_parameter);

 }

 /**

 * @see com.jrockit.console.util.XmlEnabled#initializeFromXml

 * (Element)

 */

 public void initializeFromXml(Element node)

 {

 m_parameter = XmlToolkit.getSetting(node, TEST_SETTING,

 DEFAULT_VALUE);

 }

 /**

 * Returns the parameter.

 *

 * @return some parameter.

 */

 public String getParameter()

 {

 return m_parameter;

 }

 /**

 * Sets the parameter.

 *

 * @param parameter the value to set the parameter to.

 */

 public void setParameter(String parameter)

Creat ing and Imp lement ing an Ac t ion : Example

Using WebLogic JRockit 8.1 SDK B-5

 {

 m_parameter = parameter;

 }

}

Implementing handleNotificationEvent() (Step 3)
While creating the subclass of AbstractNotificationAction created, we implemented
handleNotificationEvent(), as shown in Listing B-2. This method acts on the incoming event.

Listing B-2 Implementing handleNotificationEvent

public class MyTestAction extends AbstractNotificationAction

{

 private final static String TEST_SETTING = "test_param";

 public final static String DEFAULT_VALUE = "default value";

 private String m_parameter = DEFAULT_VALUE;

 /**

 * @see com.jrockit.console.notification.NotificationAction#

 * handleNotificationEvent(NotificationEvent)

 */

 public void handleNotificationEvent(NotificationEvent event)
 {

Creating the Action Editor (Step 4)
Next, we create a subclass of AbstractNotificationActionEditor to create the graphical
editor used to edit the settings. Listing B-3 shows how this is done.

Listing B-3 Creating the Action Editor

package com.example.actions;

Add ing Custom Not i f i ca t ion Ac t ions and Const ra in ts

B-6 Using WebLogic JRockit 8.1 SDK

import java.awt.*;

import javax.swing.*;

import com.jrockit.console.notification.Describable;

import com.jrockit.console.notification.ui.AbstractNotification

 ActionEditor;

/**

* Simple test editor. Displays a text field where you can enter a

* parameter.

* (Note that you'd get better layout results using a GridbagLayout.)

*

* @author Marcus Hirt

*/

public class MyTestActionEditor extends AbstractNotificationActionEditor

{

 private JTextField m_parameterField = new

 JTextField(MyTestAction.DEFAULT_VALUE);

 /**

 * Constructor for MyTestActionEditor.

 */

 public MyTestActionEditor()

 {

 super();

 setName("MyTestAction settings");

 add(new JLabel("Param:"), BorderLayout.WEST);

 add(m_parameterField, BorderLayout.CENTER);

 setMinimumSize(new Dimension(140,0));

 }

 /**

 * @see com.jrockit.console.notification.ui.Abstract

 * Editor#initializeEditor(com.jrockit.console.notification.

 * Describable)

 */

 protected void initializeEditor(Describable action)

 {

 m_parameterField.setText(((MyTestAction) action).

 getParameter());

Creat ing and Imp lement ing an Ac t ion : Example

Using WebLogic JRockit 8.1 SDK B-7

 }

 /**

 * @see com.jrockit.console.notification.ui.AbstractEditor#

 * storeToObject(com.jrockit.console.notification.Describable)

 */

 protected void storeToObject(Describable action)

 {

 ((MyTestAction)action).setParameter(m_parameterField.

 getText());

 }

}

Implementing the Abstract Methods (Step 5)
When we created the action editor above, we implemented the abstract methods
initializeEditor() and storeToObject(), as shown in Table B-4.

Listing B-4 Implementing the Abstract Methods

 */
 protected void initializeEditor(Describable action)

 {

 m_parameterField.setText(((MyTestAction) action).

 getParameter());

 }

 /**

 * @see com.jrockit.console.notification.ui.AbstractEditor#

 * storeToObject(com.jrockit.console.notification.Describable)

 */

 protected void storeToObject(Describable action)

 {

 ((MyTestAction)action).setParameter(m_parameterField.

 getText());

 }

Add ing Custom Not i f i ca t ion Ac t ions and Const ra in ts

B-8 Using WebLogic JRockit 8.1 SDK

Adding the New Action to the Deployment Entries (Step 6)
Before the action and editor can appear on the Management Console, you need to add it to the
deployment entries in consolesettings.xml, under the <registry_entry> element, as
shown in Listing B-5.

Listing B-5 Adding the New Action to the Deployment Entries

<registry_entry>

 <entry_class>

 com.company.actions.MyTestAction

 </entry_class>

 <entry_name>

 Test action

 </entry_name>

 <entry_description>

 Test action, dynamically added.

 </entry_description>

 <entry_editor_class>

 com.company.actions.MyTestActionEditor

 </entry_editor_class>

</registry_entry>

Displaying the New Action Editor (Steps 7 and 8)
Finally, add the new classes to your classpath and start the console. When you navigate to the
Notifications tab, you’ll see the new editor on the tab.

Creating a Custom Constraint
Create custom constraints by using the same procedure described in Creating a Custom Action,
except that you must implement:

boolean validate(NotificationEvent event)

instead of:

void handleNotificationEvent(NotificationEvent event)

Creat ing a Custom Const ra in t

Using WebLogic JRockit 8.1 SDK B-9

as shown in Listing B-6:

Listing B-6 Code Change for Creating a Customer Constraint

public class MyTestAction extends AbstractNotificationAction

{

 private final static String TEST_SETTING = "test_param";

 public final static String DEFAULT_VALUE = "default value";

 private String m_parameter = DEFAULT_VALUE;

 /**

 * @see com.jrockit.console.notification.NotificationAction#

 * handleNotificationEvent(NotificationEvent)

 */

 boolean validate(NotificationEvent event)
 {

Add ing Custom Not i f i ca t ion Ac t ions and Const ra in ts

B-10 Using WebLogic JRockit 8.1 SDK

Using WebLogic JRockit 8.1 SDK Index-1

Index

Symbols
../tuning/config.html 4-7

A
adaptive optimization 1-3
Administrator mode 6-11
Adobe Acrobat Reader 1-5
architecture 1-2
aspect 6-16
aspect value change 6-25

add constraint 6-27
on trigger 6-25

asynchronous I/O 7-6

C
command line option

-Xstrictfp 3-4
-Xverify 3-4

command line options
-classpath 3-3
-D 3-3
-Djrockit.managementserver.maxconnect

6-4
-Djrockit.managementserver.port 6-4
-help 3-4
-showversion 3-3
-verbose 3-4
-version 3-3
-X 3-4
-Xallocationtype 7-3
-Xgc 4-4

-Xgcpause 4-7
-Xmanagement 6-2
-Xnativethreads 5-3, 7-3
-Xnoop 3-4
-Xthinthreads 5-3, 7-6
-Xverbose 3-5

command-line option 3-11
configuration options 7-1
consolesettings.xml 6-16
context switching 5-1, 5-2, 5-4
conventions

documentation 1-6
CTRL_LOGOFF_EVENT 3-10

D
dead objects 4-3
default values, thread system 4-6
Developer Mode 6-11
documentation

conventions 1-6
PDF version 1-5
printing 1-5
to print 1-5

E
extended options

-Xnohup 3-11

G
garbage collection 7-4

benefits of type 4-4

Index-2 Using WebLogic JRockit 8.1 SDK

choosing 4-4, 4-6
concurrent 4-3

generational concurrent 4-3
generational concurrent 4-4, 4-5, 4-6
single spaced concurrent 4-3, 4-4, 4-5,

4-6
drawbacks of type 4-4
generational copying 4-2, 4-4, 4-5, 4-6
nursery 4-2
old generation 4-3
parallel 4-3, 4-4, 4-5, 4-6
pause time 4-2
pauses 4-3, 4-5
young generation 4-3

garbage collector 2-3, 4-2
Generational Concurrent 2-3
Generational Stop ’n’ Copy 2-3
Parallel 2-3
Single-Spaced Concurrent 2-3

Generational Concurrent 2-3
Generational Copy 2-3
generational copying 4-2

H
heap 7-4, 7-5

size 4-2, 4-3, 4-5
high performance thread system 7-6
High Performance Threading System (thin
threads) 2-3

I
IA64, thread system limitations 5-3, 5-4
Information tabs

Overview tab 6-17
Intel Architecture 1-2
Intel architecture 1-1

J
Java heap memory 6-18
Java thread 4-3, 4-5, 4-7, 5-2, 5-4, 7-5, 7-6
Java Virtual Machine (JVM) 1-1
java.lang.System 3-3
JDBC database drivers 5-4
jrockit.dump 1-4

M
Management Console 6-1, 6-16

adding an exception 6-36
Administrator mode 6-6
advanced features

Exception Count tab 6-35
Method Profiler tab 6-32
method templates 6-32

changing the number of connections 6-4
command buttons 6-6
connecting a connection to JRockit 6-8
connection browser 6-5, 6-7
connection node 6-7
Connection Uptime 6-22
CPU Load 6-21
CPU Load bar 6-18
CPU Usage chart 6-18
customizing 6-14

charts 6-15
gauges and bars 6-14
settings file 6-16

dash board 6-17
disconnecting a connection from JRockit 6-9
enabling console settings 6-10
enabling the management server 6-2
Exception Count 6-11
Free Heap 6-19
Free Memory 6-20
Garbage Collection System 6-22
Heap Usage chart 6-18, 6-19
hiding a disconnected connection 6-10
information tabs 6-17

Using WebLogic JRockit 8.1 SDK Index-3

Memory tab 6-18
Notification tab 6-22, 6-27
Processor tab 6-20
System tab 6-21

JRockit Uptime 6-22
JVM Process Load 6-21
Method Profiler 6-11
new connection 6-8
Number of Processors 6-21
parts of 6-4
Process Affinity 6-22
removing a connection 6-10
removing a folder 6-10
renaming a connection 6-9
renaming a folder 6-9
setting the operation mode 6-11
setting the port 6-3
setting up 6-7
starting 6-2
starting, stopping, and removing an

exception count 6-37
status bar 6-6
System Properties 6-22
tabbed interface 6-5
thread stack dump 6-31

viewing 6-31
Time in GC chart 6-19
Total Heap 6-20
Total Memory 6-20
Used Heap 6-19
Used Heap gauge 6-18, 6-19
Used Memory 6-20
Used Memory gauge 6-19
Used Memory guage 6-18

management console
Developer mode 6-6

memory management 2-3
memory throughput 4-2, 4-5
Method Profiling

Method Profiling Information List 6-34
settings 6-35

starting and stopping 6-35
Method Templates 6-32

adding a method 6-32
creating a new template 6-34
Method Profiling Information List 6-34
removing 6-34
removing a method 6-34

N
native threads 5-1, 5-2, 5-4
notification action 6-23

Application alert 6-23
creating a new rule 6-24
editing a rule 6-28
E-mail 6-23
Log to file 6-24
System out 6-23

notification constraint 6-23
notification trigger 6-23
nursery 4-2, 7-4, 7-5

O
object allocation 4-1, 4-2
operating system thread 5-2, 5-4
operation mode 6-6, 6-11, 6-12

Developer mode 6-11

P
pause time 4-2
performance optimization 7-1
persistence value log 6-13
printing product documentation 1-5
product version 3-3, 3-4

S
SIGHUP 3-10
Single-Spaced Concurrent 2-3
Support 1-4

Index-4 Using WebLogic JRockit 8.1 SDK

Symetric Multi Processor (SMP) system, 7-5
system property, Java 3-3

T
thin threads 5-4, 7-6
thread scheduling 2-3, 5-1, 5-2, 5-4
thread stack dump

viewing 6-31
thread switching 2-3, 5-2, 5-4
thread synchronization 2-3, 5-2, 5-4
thread system 2-3, 5-1, 5-3

choosing 5-3
default 5-1
default values 4-6
High Performance Threading System (thin

threads) 2-3
Native Threads 2-3
native threads 5-1, 5-2, 5-3, 5-4
operating system threads 5-1, 5-4
selection matrix 5-4
thin threads 5-1, 5-3, 5-5
thread allocation

local 4-1
thread-local object 4-1

V
verbose output 3-2, 3-4

W
WebLogic 1-1
WebLogic Platform 1-1
WebLogic Server 7-1, 7-6

Administration Console 7-4
Concurrent 7-5
Gc Algorithm 7-4
GCHandles Compaction 7-5
Generational 7-5
Incremental 7-5
Max Heap Size 7-4

Number Of Daemon Thread 7-6
Number Of Processors 7-5
Parallel 7-5
Total Garbage Collection Count 7-4
Total Number Of Threads 7-6
Total Nursery Size 7-4

configuring JRockit for 7-3
WebLogic Workshop 7-1, 7-7

X
-Xnohup 3-11

Y
young generation 4-2

	Introduction to BEA WebLogic JRockit 8.1 SDK
	What is JRockit?
	About the SDK

	Why Should I Use JRockit?
	What Platforms Does JRockit Support?
	32-bit Platform Support
	64-bit Platform Support

	JRockit 8.1 SDK Support
	If WebLogic JRockit JVM Crashes

	Using JRockit 8.1 SDK Documentation
	Printing These Documents
	Understanding Documentation Conventions

	Understanding WebLogic JRockit SDK
	The BEA WebLogic JRockit Management Console
	Code Generation and Optimization
	Memory Management (Garbage Collection)
	Threads

	Starting and Configuring WebLogic JRockit JVM
	Before Starting WebLogic JRockit
	Starting WebLogic JRockit
	Sample Start-up Command

	Configuring WebLogic JRockit
	Using Standard Options
	Setting General Information
	Providing Information to the User

	Using Non-standard Options
	Setting Behavioral Options
	Displaying Logging Information
	Preventing WebLogic JRockit JVM (When Run as a Service) from Shutting Down After Receiving a Logo...

	Attaching a Debugger to a Process
	Enabling Core Dumps on Linux

	Selecting and Running a Memory Management System
	Memory Management Terminology
	WebLogic JRockit JVM Garbage Collectors
	Generational Copying
	Concurrent Garbage Collectors
	Single Spaced Concurrent
	Generational Concurrent

	Parallel

	Starting a Garbage Collector
	Choosing a Garbage Collection Method
	Pros and Cons
	Garbage Collector Selection Matrix

	Tuning for Garbage Collection
	Viewing Garbage Collection Activity

	Selecting and Running a Thread System
	Native Threads
	Thin Threads
	Starting the Thread System
	Choosing a Thread System
	Pros and Cons
	Thread System Selection Matrix

	Using the WebLogic JRockit Management Console
	Console Overhead
	Starting the Console
	Enable the Management Server
	Start the JRockit Management Console
	Starting the Management Server with a Security Manager

	Set the Port
	Change the Number of Connections

	Parts of the Console
	Setting Up the Console
	Making Connections
	Creating a New Folder
	Creating a New Connection
	Connecting a Connection to WebLogic JRockit JVM
	Disconnecting a Connection from WebLogic JRockit JVM
	Renaming a Connection or Folder
	Removing a Connection or Folder
	Hiding Disconnected Connections

	Enabling Console Settings
	Setting the Operation Mode
	Setting Other Preferences
	Customizing the Display
	Using the Settings File

	Using the Console
	Information Tabs
	Overview Tab
	Memory Tab
	Processor Tab
	System Tab
	Notification Tab

	View Historical Data
	Using Advanced Features of the Console
	View Thread Stack Dump
	Method Profiling Tab
	Exception Counting Tab

	Closing the Console

	Using WebLogic JRockit JVM with Other WebLogic Applications
	Using WebLogic JRockit JVM with BEA WebLogic Server
	Certified Versions
	Verifying that WebLogic JRockit is Your JVM
	Starting JRockit from the Node Manager
	Enabling the Management Server from the Node Manager
	Setting Options by Using the Node Manager
	Tuning WebLogic JRockit for WebLogic Server
	Monitoring WebLogic JRockit JVM from WebLogic Server
	Running JRockit with Thin Threads on WebLogic Server
	Switching to WebLogic JRockit JVM in WebLogic Server
	Switching VMs When WebLogic Server is Running as a Service

	Configuring JRockit for BEA WebLogic Workshop

	What’s in the WebLogic JRockit 8.1 SDK?
	SDK Contents
	Development Tools
	Runtime Environment
	Additional Libraries
	C Header Files
	The Management Console

	File Differences Between WebLogic JRockit 8.1 SDK and Sun HotSpot SDK

	Adding Custom Notification Actions and Constraints
	Locating consolesettings.xml
	Creating a Custom Action
	Creating and Implementing an Action: Example
	Create the Action (Step 2)
	Implementing handleNotificationEvent() (Step 3)
	Creating the Action Editor (Step 4)
	Implementing the Abstract Methods (Step 5)
	Adding the New Action to the Deployment Entries (Step 6)
	Displaying the New Action Editor (Steps 7 and 8)

	Creating a Custom Constraint

	Index

