
BEAWebLogic
JRockit™ SDK

Tuning WebLogic JRockit
with WebLogic Server on
Linux

Version 8.1
July 2003

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic
Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Tuning WebLogic JRockit with WebLogic Server on Linux iii

 Contents

1. Introduction
Why is Tuning Necessary? . 1-1

How Do You Tune a JVM? . 1-2

Migrating Applications to WebLogic JRockit . 1-2

What Linux Operating Systems Does WebLogic JRockit Support? 1-2

Installing WebLogic JRockit with WLS on Linux . 1-3

2. Running WebLogic JRockit JVM with WebLogic Server on Linux
Starting BEA WebLogic JRockit . 2-1

Starting BEA WebLogic JRockit JVM from the Command Line 2-1

Starting BEA WebLogic JRockit from the Node Manager. 2-2

Configuring WebLogic JRockit JVM by Using Command Line Options. 2-2

Standard Command Line Options. 2-3

Presenting General Information Options . 2-3

Setting Logging Options . 2-3

Non-standard Command Line Options . 2-4

Setting Behavioral Options . 2-4

Displaying Logging Information . 2-4

Using a Thread System . 2-5

Using a Memory Management System (Garbage Collection) . 2-6

Starting a Garbage Collector. 2-7

Default . 2-7

iv Tuning WebLogic JRockit with WebLogic Server on Linux

Printing a Comprehensive Report . 2-7

3. Tuning WebLogic JRockit JVM with WebLogic Server on Linux
Basic JRockit Tuning. 3-1

Setting the Initial Heap Size . 3-2

Default . 3-2

Setting the Maximum Heap Size . 3-2

Default . 3-3

Setting -Xmx to Avoid Fragmentation . 3-3

Setting the Size of the Nursery. 3-3

Default . 3-3

Setting Thread Local Object Allocation. 3-4

Default . 3-4

Defining When a Memory will be Cleared . 3-4

Default . 3-5

Setting the Thread Stack Size. 3-5

Default . 3-5

Tuning Tips and Techniques . 3-6

Determine What You Want to Tune For . 3-6

Set the Heap Size . 3-7

Tune for High Responsiveness . 3-7

Tune for High Performance . 3-7

Analyze Garbage Collection and Pause Times. 3-8

Modify Threading Options When Using a Large Number of Threads. 3-8

Check for Task and Open File Allowance . 3-8

Optimizing WebLogic JRockit for Use with WebLogic Server . 3-9

Configuring JRockit for WebLogic Server. 3-9

Setting Options by Using the Node Manager . 3-9

Tuning WebLogic JRockit with WebLogic Server on Linux v

Monitoring WebLogic JRockit JVM from WebLogic Server. 3-9

Running JRockit with Thin Threads on WebLogic Server . 3-10

Switching to WebLogic JRockit JVM in WebLogic Server 3-10

4. Migrating to WebLogic JRockit with WebLogic Server on Linux
Additional Migration Information . 4-1

Required Changes . 4-2

Changes to Environment Variables. 4-2

Changes to Start-up Scripts. 4-2

Changes to config.xml . 4-2

Enabling Core Dumps . 4-2

Migration Restrictions . 4-3

Migration Support . 4-3

vi Tuning WebLogic JRockit with WebLogic Server on Linux

Tuning WebLogic JRockit with WebLogic Server on Linux 1-1

C H A P T E R 1

Introduction

Welcome to Tuning WebLogic JRockit with WebLogic Server on Linux. This document is
specifically designed for WebLogic JRockit users who are running the JVM with BEA WebLogic
Server 8.1 on the Linux operating system. Much of the information in this guide is similar to that
in Tuning WebLogic JRockit 8.1 JVM, however this document contains information and
examples specific to Linux users.

This Introduction further describes the contents of this guide and answers some basic questions
about tuning WebLogic JRockit. It includes information on the following subjects:

Why is Tuning Necessary?

How Do You Tune a JVM?

Migrating Applications to WebLogic JRockit

What Linux Operating Systems Does WebLogic JRockit Support?

Installing WebLogic JRockit with WLS on Linux

Why is Tuning Necessary?
Although WebLogic JRockit JVM automatically adapts to its underlying hardware and to the
application running on it, the JVM cannot know everything about your system. For example, how
much memory do you want the JVM to use? Or, how long should the maximum pauses be, to
work best within the tolerances of your application? To instruct WebLogic JRockit on how to
handle this critical processing functions, you can configure—or tune—many aspects of your
JVM’s performance by setting appropriate configuration options at startup.

In t roduc t i on

1-2 Tuning WebLogic JRockit with WebLogic Server on Linux

How Do You Tune a JVM?
While WebLogic JRockit uses many of the standard start-up options available for other JVMs—
such as logging options like -version, which tells WebLogic JRockit to display its product
version number and -verbose, which tells JRockit to display verbose output—actual tuning of
the JVM requires manipulating WebLogic JRockit’s two main subsystems: the memory
management system (often called garbage collection), and the thread system.

Tuning these subsystems requires setting non-standard, or -X, options at startup. This guide
documents the different startup options and tells you what you need to know about these
subsystems to be able to tune them successfully. By using these options and following the
recommendations suggested in this guide, you can ensure that you application performs
optimally. You should note that, on Linux, these options do not differ from those used with other
O/Ss, such as Windows.

Migrating Applications to WebLogic JRockit
WebLogic JRockit is the default JVM shipped with BEA WebLogic Server. Although there are
other JVMs available on the market today that you can use to develop Java applications, BEA
Systems recommends that you use WebLogic JRockit JVM as the production JVM for any
application deployed on WebLogic Server. Migrating to WebLogic JRockit with WebLogic
Server on Linux describes basic environment changes necessary to migrate to WebLogic JRockit
JVM from Sun Microsystems HotSpot JVM or any other third-party JVM.

What Linux Operating Systems Does WebLogic JRockit Support?
This version on WebLogic JRockit SDK supports these versions of the Linux operating system:

For 32-bit processors (Intel Pentium II—or comparable—and higher):

– Red Hat Enterprise Linux AS / ES / WS 2.1

– SuSE SLES 8.0 (United Linux 1.0)

For 64-bit processors (Intel Itanium 2 or higher):

– Red Hat Linux Advanced Server for Itanium Processor 2.1

– Red Hat Linux Advanced Workstation for Itanium Processor 2.1

For complete platform support details, please refer to:

http://edocs.bea.com/wljrockit/docs81/certif.html

Ins ta l l ing WebLog ic JRock i t w i th WLS on L inux

Tuning WebLogic JRockit with WebLogic Server on Linux 1-3

Installing WebLogic JRockit with WLS on Linux
Installing WebLogic JRockit to run with WebLogic Server on a Linux machine is handled no
differently that installing it in any other configuration. You can either install the JVM as part of
the BEA WebLogic Platform product suite (which includes WLS) or you can install it as a
standalone application. With either of these installation methods, you also have the option of
installing it in either a graphic mode or from the console (command line mode), should you not
be using a GUI.

To install WebLogic JRockit as part of WebLogic Platform, please refer to Installing WebLogic
Platform, specifically:

Installing WebLogic Platform Using Graphical-Mode Installation

Installing WebLogic Platform Using Console-Mode Installation

To install WebLogic JRockit as a standalone application, please refer to Installing WebLogic
JRockit 8.1 SDK, specifically:

Installing WebLogic JRockit SDK

Installing and Uninstalling WebLogic JRockit SDK in the Console Mode

In t roduc t i on

1-4 Tuning WebLogic JRockit with WebLogic Server on Linux

Tuning WebLogic JRockit with WebLogic Server on Linux 2-1

C H A P T E R 2

Running WebLogic JRockit JVM with
WebLogic Server on Linux

This section describes how to start up and configure the BEA WebLogic JRockit JVM. It also
provides some background on selecting and running both a thread system and a memory
management system (called a “garbage collector”). This section includes information the
following subjects:

Starting BEA WebLogic JRockit

Configuring WebLogic JRockit JVM by Using Command Line Options

Using a Thread System

Using a Memory Management System (Garbage Collection)

Starting BEA WebLogic JRockit
You can start BEA WebLogic JRockit either from the command line or from the WebLogic
Server’s Node Manager. This section describes both methods.

Starting BEA WebLogic JRockit JVM from the Command Line
Before starting WebLogic JRockit JVM, ensure that you have the following directory set in your
PATH environment variable:

<jrockit-install-directory>/bin

(where <jrockit-install-directory> is the folder where you installed WebLogic JRockit,
such as c:/bea/jrockit81_141_02/.)

Runn ing WebLogi c JRocki t JVM wi th WebLog ic Se rve r on L inux

2-2 Tuning WebLogic JRockit with WebLogic Server on Linux

To start the JVM, at the command line enter on of the following:

java

and any tuning or configuration and tuning options you want to use; for example, you might start
WebLogic JRockit JVM with the following command string:

java -verbose -Xgc:gencopy -Xms:64 -Xmx:512 -Xns:64 -Xnopt myClass

Here, the standard configuration parameter -Verbose requests verbose output from the system
and the non-standard option -Xgc:gencopy sets the generational copying memory management
system (the “garbage collector”). The tuning parameters -Xms:64 and -Xmx:512 set the
minimum (-Xms) and maximum (-Xmx) heap sizes, while the tuning parameter -Xns:64 set the
size of the young generation (the “nursery”; required for generational collectors). myClass
identifies the class that contains the main() method and is required whenever you start
WebLogic JRockit.

All of the options in this example—along with others—are described in Configuring WebLogic
JRockit JVM by Using Command Line Options, below, or in Tuning WebLogic JRockit JVM
with WebLogic Server on Linux.

Note: You can also start JRockit from the command by specifying a fully-qualified path to the
file; for example, enter:

<jrockit-install-directory>/bin/java

Starting BEA WebLogic JRockit from the Node Manager
You can also start WebLogic JRockit JVM from the WLS Node Manager. To do this, access the
Node Manager and go to the Remote Start Page. In the Java Home field, enter the fully-qualifying
path, as suggested in the example above. For more information on using the Node Manager,
please see Overview of Node Manager in Configuring and Managing WebLogic Server.

Configuring WebLogic JRockit JVM by Using Command Line
Options

Configure WebLogic JRockit JVM by using a number of standard and non-standard command
line options that you enter at startup. These options work with WebLogic JRockit on all supported
operating systems; none are specific to Linux.

If you start WebLogic JRockit JVM from the Remote Start page of the WLS Node Manager,
simply enter the options, with the appropriate arguments, in the Arguments field on the Remote

Conf i gur ing WebLog ic JRock i t J VM by Us ing Command L ine Opt ions

Tuning WebLogic JRockit with WebLogic Server on Linux 2-3

Start page. For more information on using the Node Manager,please see Overview of Node
Manager in Configuring and Managing WebLogic Server. This section describes:

Standard Command Line Options for:

– Presenting General Information Options

– Setting Logging Options

Non-standard Command Line Options for:

– Setting Behavioral Options

– Displaying Logging Information

Standard Command Line Options
Standard command line configuration options work the same regardless of the JVM; in other
words, these options work the same whether you are running WebLogic JRockit JVM, Sun
Microsystem’s HotSpot JVM, or any other third-party JVM.

Presenting General Information Options
The following standard command line options set general information about WebLogic JRockit
JVM:

-classpath <directories and zips/jars separated by :>

Tells the VM where to look for classes and resources. Alternately, you can use the option
-cp to represent -classpath; for example:

-cp <directories and zips/jars separated by :>

-D<name>[=<value>]

Tells the VM to set a Java system property. These can be read by a Java program, using the
methods in java.lang.System.

Setting Logging Options
The following options determine if the system will provide messages to the operator and what the
form and content of those messages should be.

-version

Tells JRockit to display its product version number and then exit.

-showversion

Runn ing WebLogi c JRocki t JVM wi th WebLog ic Se rve r on L inux

2-4 Tuning WebLogic JRockit with WebLogic Server on Linux

Tells the VM to display its product version number and then continue.

-verbose[:<components separated by ,>]

Tells JRockit to display verbose output. This option is used mainly for debugging purposes
and causes a lot of output to the console. Supported components are memory, load and
codegen. If no component is given, JRockit will display verbose information on
everything.

-help

Tells the VM to display a short help message.

-X

Tells the VM to display a short help message on the extended options.

Non-standard Command Line Options
The non-standard, or -X, command line options are options that are exclusive to WebLogic
JRockit JVM that change the behavior of WebLogic JRockit JVM to better suit the needs of
different Java applications. Non-standard options are used extensively with thread system and
memory management. These options normally won’t work on other JVMs (conversely, the
non-standard options used by other JVMs normally won’t work with WebLogic JRockit).

Warning: Since these options are non-standard, they are subject to change at any time.

Setting Behavioral Options
The following non-standard options define general WebLogic JRockit JVM behavior:

-Xnoopt

Tells the VM not to optimize code.

-Xverify

Tells the VM to do complete bytecode verification.

Displaying Logging Information
-Xverbose

-Xverbose causes WebLogic JRockit to print to the screen specific information about the
system. The information displayed depends upon the parameter specified with the option; for
example, specifying the parameter cpuinfo displays information about your CPU and indicates

Us ing a Th read Syst em

Tuning WebLogic JRockit with WebLogic Server on Linux 2-5

whether or not the JVM can determine if hyper threading is enabled. The valid parameters for
-Xverbose are: .

codegen — The names of each method that is being compiled.

cpuinfo — Any interesting information about your CPUs.

load — The names of each loaded class.

memory; gc — Information about the memory management system, including:

– Start time of collection (seconds since JVM start)

– End time of collection (seconds since JVM start)

– Memory used by objects before collection (KB)

– Memory used by objects after collection (KB)

– Size of heap after collection (KB)

– Total time of collection (seconds or milliseconds)

– Total pause time during collection (milliseconds)

– The information displayed by -Xverbose:memory or -Xverbose:gc will vary depending
upon the type of garbage collector you are using.

opt — Information about all methods that get optimized.

For descriptions and examples of the information these parameters display, please refer to Table
3-1 in Starting and Configuring WebLogic JRockit JVM (found in Using WebLogic JRockit 8.1
SDK).

Using a Thread System
The thread system allows WebLogic JRockit JVM to take optimal advantage of the underlying
operating system. WebLogic JRockit JVM supports two types of thread systems:

Native Threads, which maps Java threads directly to the operating system threads, taking
advantage of the operating system's thread scheduling and load balancing policies. Native
Threads is the default thread system for WebLogic JRockit JVM.

Thin Threads, wherein multiple Java threads are run on a singe operating system thread.
This allows WebLogic JRockit JVM to optimize thread scheduling, thread switching, and
thread synchronization, while using less memory.

Runn ing WebLogi c JRocki t JVM wi th WebLog ic Se rve r on L inux

2-6 Tuning WebLogic JRockit with WebLogic Server on Linux

Warning: Thin threads is experimental functionality in this version of WebLogic JRockit
SDK and is not recommended for general use. This feature is subject to change
without notice.

For more information on native and thin threads and on how to select a thread system that best
meets your needs, please refer to Choosing the Thread System in Using WebLogic JRockit 8.1
SDK.

To start a thread system, include one of the options listed in Table 2-1 when you start WebLogic
JRockit JVM:

Using a Memory Management System (Garbage Collection)
WebLogic JRockit JVM manages memory by employing four different garbage collectors. These
collectors work during runtime to clear the memory heap of expired objects, or “garbage.” The
four garbage collectors are:

Generational Copy, which divides the memory into two areas called “generations.”
Instead of allocating objects in one single space and garbage collecting that whole space
when it gets full, most of the objects are allocated in the “young generation,” called the
nursery.

Single-Spaced Concurrent, one of two types of concurrent collectors, which does its work
in parallel with ordinary processing; that is, it does not stop all Java threads to do the
complete garbage collection. This is designed to support garbage collection without
disruption and to improve multiprocessor garbage collection performance.

Generational Concurrent is the second type of concurrent collector WebLogic JRockit
employs. Although very similar to a single-spaced concurrent collector, a generational
concurrent garbage collector does its actual object allocation in a “nursery,” reducing the
need to do collection of the entire heap so often.

Table 2-1 Thread System Implementation Options

To Use... Use this Option...

Native Threads -Xnativethreads

This option is the default.

Thin Threads -Xthinthreads

This option is not available on IA64.

Using a Memory Management Sys tem (Garbage Col l ec t i on)

Tuning WebLogic JRockit with WebLogic Server on Linux 2-7

Parallel garbage collection, which stops all Java threads and uses all CPUs to perform a
complete garbage collection of the entire heap.

For information and tips on selecting a garbage collector, please refer to Choosing a Garbage
Collection Method in Using WebLogic JRockit 8.1 SDK.

Starting a Garbage Collector
To start a garbage collector, simply include at the command line the -Xgc option and the type of
collector you want to use, as shown in Table 2-2.

When started, JRockit will run with the specified garbage collector.

Default
If the garbage collector has not been set and the maximum heap size (set by using -Xmx or by
using the default, as described in Setting the Maximum Heap Size) is less than 128 MB, the
default garbage collector is generational copying (-Xgc:gencopy); otherwise the default is
parallel (-Xgc:parallel).

Printing a Comprehensive Report
-Xgcreport

-Xgcreport causes WebLogic JRockit JVM to print a comprehensive garbage collection report
at program completion. The option -Xgcpause causes the VM to print a line each time Java
threads are stopped for garbage collection. Combining the two is a very good way of examining
the memory behavior of your application.

Table 2-2 Garbage Collector Implementation Options

To select... Enter...

Generational Copying -Xgc:gencopy

Single Spaced Concurrent -Xgc:singlecon

Generational Concurrent -Xgc:gencon

Parallel -Xgc:parallel

Runn ing WebLogi c JRocki t JVM wi th WebLog ic Se rve r on L inux

2-8 Tuning WebLogic JRockit with WebLogic Server on Linux

Tuning WebLogic JRockit with WebLogic Server on Linux 3-1

C H A P T E R 3

Tuning WebLogic JRockit JVM with
WebLogic Server on Linux

This section describes how to tune BEA WebLogic JRockit JVM by using its command line
options. It also provides tips that help Linux users to exploit the tuning options to achieve optimal
performance by the VM.

This section includes information on the following subjects:

Basic JRockit Tuning

Tuning Tips and Techniques

Optimizing WebLogic JRockit for Use with WebLogic Server

Basic JRockit Tuning
To provide the optimal out-of-the-box experience, WebLogic JRockit JVM comes with default
values that adapt automatically to the specific platform on which you are running WebLogic
JRockit JVM. Depending upon the application you are running or the configuration of your
machine, you might want to tune the JVM to take fullest advantage of its capabilities.

Tuning WebLogic JRockit JVM is accomplished by using non-standard—or -X—start-up
options to change the default settings for elements such as heap size and thread stack size (for an
example, see Starting BEA WebLogic JRockit). -X options are exclusive to WebLogic JRockit
JVM.

This section descibes how to use these options to tune WebLogic JRockit. It includes information
on the following subjects:

Setting the Initial Heap Size

Tun ing WebLogic JRocki t JVM w i th WebLog ic Se rver on L inux

3-2 Tuning WebLogic JRockit with WebLogic Server on Linux

Setting the Maximum Heap Size

Setting the Size of the Nursery

Setting Thread Local Object Allocation

Defining When a Memory will be Cleared

Setting the Thread Stack Size

Setting the Initial Heap Size
-Xms<size>

-Xms sets the initial size of the heap. For this, we recommend that you set it to the same size as
the maximum heap size; for example:

-java -Xgc:gencon -Xmx:64m -Xms:64m myClass

Default
The defalt initial heap size is 16 MB if maximum -Xmx is less than 128 MB; otherwise it is 25%
of available physical memory up to, but not exceeding, 64 MB.

Setting the Maximum Heap Size
-Xmx:<size>

-Xmx sets the maximum size of the heap. Use the following guidelines to determine this value:

On IA32 the maximum possible heap size is about 1.8GB (which is the largest contigous
address space the O/S will give a process).

Because IA64 macines have a larger address space, the 1.8GB limit does not apply.

Typically, for any platform you don't want to use a larger maximum heap size setting than
75% of the available physical memory. This is because you need to leave some memory
space available for internal usage in the JVM.

Note: If you encounter OutOfMemory errors, you should increase the maximum heap size
according to the preceding guidelines.

Basi c JRock i t Tuning

Tuning WebLogic JRockit with WebLogic Server on Linux 3-3

Default
If you are running -Xgc:gencopy, the default maximum heap size is the lesser of 75% of the
physical memory and 400 MB; otherwise it is the lesser of 75% of physical memory and 1536
MB.

Setting -Xmx to Avoid Fragmentation
Be aware that fragmentation can occur if you rely on the default maximum heap size (described
above). Fragmentation can cause paging, which can degrade system performance. This is because
WebLogic JRockit grows the heap aggressively when fragmentation occurs, potentially
out-stripping the physical memory available. To avoid this situation, you should override the
default and manually set -Xmx to 75% of the available physical memory, up to 1.8 GB. Note that
if you have other processes running that require large amounts of the physical memory, you will
have to account for their expense when calculating how much memory is available.

Setting the Size of the Nursery
-Xns:<size>

-Xns sets the size of the young generation (nursery) in generational concurrent and generational
copying garbage collectors (these are the only collectors that use nurseries). Optimally, you
should try to make the nursery as large as possible while still keeping the garbage
collection-pause times acceptably low. This is particularly important if you are creating a lot of
temporary objects.

Note: To display pause times, include the option-Xgcpause when you start WebLogic JRockit
JVM.

The maximum size of a nursery may not exceed 25% of the total heap size if you’re using gencon
and 15% of the total heap size if you’re using gencopy.

Default
If the nursery size (-Xns) has not been set the default size depends on the type of garbage
collector and the number of CPUs:

For the generational copying garbage collector (-Xgc:gencopy) the default nursery size is
320 KB per CPU; for example, the default for a ten CPU system using gencopy would be
3200 KB (3.2 GB).

Tun ing WebLogic JRocki t JVM w i th WebLog ic Se rver on L inux

3-4 Tuning WebLogic JRockit with WebLogic Server on Linux

For the generational concurrent garbage collector (-Xgc:gencon) the default nursery size is
10 MB per CPU; for example, the default for a ten CPU system using gencon would be
100 MB.

Setting Thread Local Object Allocation
-Xallocationtype:<global|local>

-Xallocationtype sets the type of thread allocation, global or local as described in
Table 3-1.

Default
If the allocation type (-Xallocationtype) is not set, the default is global for the generational
copying (-Xgc:gencopy) garbage collector and local for all others (singlecon, gencon, and
parallel).

Defining When a Memory will be Cleared
-Xcleartype:<gc|local|alloc>

Table 3-1 -Xallocationtype Parameters

Use this type... When...

local The maximum heap size is large (more then 128 MB) or if the number of threads used
by the application is low (less than several hundred).

global The maximum heap size is very small (less then 128 MB) or if the number of threads
used by the application is very high (several hundred). This is because every
thread-local area consumes a fixed amount of memory (approximately 2 kilobytes). If
the number of threads is very high or the heap size very small when using thread-local
allocation the potential waste of space could cause excess fragmentation of the heap.
This leads to more frequent garbage collections and may cause the application to run
out of memory prematurely.

Basi c JRock i t Tuning

Tuning WebLogic JRockit with WebLogic Server on Linux 3-5

-Xcleartype defines when the memory occupied by an object that has been garbage collected
will be cleared. Specified parameters dictate when the memory will be cleared, as described in
Table 3-2.

Note: The preferred options are local or alloc.

Default
If -Xcleartype is not set the default is alloc on IA32 systems and gc on IA64 systems.

Setting the Thread Stack Size
-Xss<size>[k|K]

-Xss<size>[k|K] sets the thread stack size, in kilobytes [k|K].

 In addition to setting the thread stack size, if the number of threads is high, you can reduce heap
fragmentation by setting -Xallocationtype:global, as suggested in Setting the Thread Stack
Size.

Default
If the thread stack size has not been set the default value depends on the threading system and the
platform you are running on. When using thin threads the minimum thread stack size is 8
kilobytes and the default is 64 kilobytes. When using native threads the minimum thread stack

Table 3-2 -Xcleartype Parameters

Use this parameter... To clear space...

gc During the garbage collection

local

This option is available only if the
-Xallocationtype is set to local.

When a thread-local area is allocated

alloc

This option is currently not available on IA64
systems. Additionally, it is the preferred option if
the objects allocated are very large (1 to 2
kilobytes).

When that space is allocated for a new object

Tun ing WebLogic JRocki t JVM w i th WebLog ic Se rver on L inux

3-6 Tuning WebLogic JRockit with WebLogic Server on Linux

size is 16 kilobytes. For Linux, the default thread stack size when using native threads is 128
kilobytes.

If -Xss is set below the minimum value, thread stack size will default to the minimum value
automatically.

Tuning Tips and Techniques
When you install WebLogic JRockit 8.1 SDK, the VM includes a number of default start-up
options that ensure a satisfactory out-of-the-box experience; however, often, these options might
not provide your application with the optimal performance you should experience with
WebLogic JRockit 8.1 JVM. Therefore, WebLogic JRockit 8.1 JVM comes with numerous
alternative options and algorithms to suit different applications. This section describes some of
these alternative options and some basic tuning techniques you can use at startup. It includes
information on the following subjects:

Determine What You Want to Tune For

Set the Heap Size

Tune for High Responsiveness

Tune for High Performance

Analyze Garbage Collection and Pause Times

Modify Threading Options When Using a Large Number of Threads

Check for Task and Open File Allowance

Note: The tuning tips in this section create behaviors and performance that don’t differ
noticeably from those on other operating systems.

Determine What You Want to Tune For
Before you start WebLogic JRockit 8.1 JVM, you need to determine these two factors:

How much of your machine memory do you want WebLogic JRockit 8.1 JVM to use?

What do you want from WebLogic JRockit 8.1 JVM, the highest possible responsiveness
or the highest possible performance?

Once you’ve answered these questions, use the information provided below to tune WebLogic
JRockit 8.1 JVM to achieve those goals.

Tun ing T ips and Techn iques

Tuning WebLogic JRockit with WebLogic Server on Linux 3-7

Set the Heap Size
Generally, you want to set the maximum heap size as high as possible, but not so high that it
causes page-faults for the application or for some other application on the same computer. Set it
to something less than the amount of memory in the machine. If you have multiple applications
running on the computer at the same time the value could be much lower. It is recommend that
you set the initial heap size (-Xms) the same size as the maximum heap size. Generally, you don’t
want the heap to exceed 75% of the available memory. However, some machines can have up to
4 GB of phsyical memory and when the heap exceeds about 1.8 GB, failure can occur. Therefore,
you should limit the heap size to something less than 1.8 GB.

For specific guidelines for setting the heap size, please refer to Setting the Initial Heap Size and
Setting the Maximum Heap Size.

Tune for High Responsiveness
If you want the highest responsiveness from your application and guarantee minimal pause times,
set the following options at startup:

Accept the default Generational Concurrent garbage collector (-Xcg:gencon).

Set the initial (-Xms) and maximum (-Xmx) heap sizes, as described in Set the Heap Size.
Since you’re using a generational concurrent garbage collector, the heap size will not cause
longer pauses.

Set the size of the nursery (-Xns).

If you are creating a lot of temporary objects you should have a large nursery. Larger
nurseries usually result in slightly longer pauses, so, while you should try to make the
nursery as large as possible, don’t make it so large that pause times are unacceptable. You
can see the nursery pause times in WebLogic JRockit JVM by starting the JVM with
-Xgcpause.

Tune for High Performance
If you want the highest possible performance WebLogic JRockit 8.1 JVM can provide, set these
tuning options at startup:

Select the Parallel garbage collector (-Xgc:parallel). A parallel garbage collector
doesn’t use a nursery, so you won’t need to set -Xns.

Set the largest initial (-Xms) and maximum (-Xmx) heap sizes that your machine can
tolerate, as described in Set the Heap Size.

Tun ing WebLogic JRocki t JVM w i th WebLog ic Se rver on L inux

3-8 Tuning WebLogic JRockit with WebLogic Server on Linux

Analyze Garbage Collection and Pause Times
Analyzing garbage collection and pause times together will give you a good idea of how well
your application is performing while running with WebLogic JRockit JVM.

Use the option -Xgcreport to generate and end-of-run report that shows the garbage
collection statistics. You can use this report to determine if you’re using the most effective
garbage collector for your application.

Use the option -Xverbose:memory (see Displaying Logging Information) to display the
pause times for every garbage collection during a run. Note that this option is used mainly
for debugging purposes and causes a lot of output to the console.

Modify Threading Options When Using a Large Number of
Threads
If you are running with more than 100 threads and you want to improve system performance, try
the following:

Switch to thin threads by using the option -Xthinthreads. Thin threads are particularly
effective if you’re running your application on a Linux machine (please read the Warning
about thin threads, in Using a Thread System, before implementing them).

Turn off thread local allocation by using the option -Xallocationtype:global. Every
thread-local area consumes a fixed amount of memory (approximately 2 kilobytes). If the
number of threads is very high and you are using thread-local allocation, the potential
waste of space could cause excess fragmentation of the heap. This leads to more frequent
garbage collections and may cause the application to run out of memory prematurely.
Using thread global allocation will result in less fragmentation, although actual allocation
will be slower.

Check for Task and Open File Allowance
You should check the contents of /proc/sys/kernel/threads-max and
/proc/sys/fs/file-max. The former tells you how many tasks the kernel will allow, which
limits how many threads you can create at the Java level. The latter shows how many open files
are allowed.

Opt imiz ing WebLog ic JRocki t fo r Use w i th WebLog ic Se rve r

Tuning WebLogic JRockit with WebLogic Server on Linux 3-9

Optimizing WebLogic JRockit for Use with WebLogic Server
This section describes the tuning requirements for optimizing WebLogic JRockit on BEA
WebLogoc Server.

Configuring JRockit for WebLogic Server
To use the WebLogic JRockit JVM instead of the Sun JVM, you need to increases the initial heap
size to 64 MB (-Xms:64m)and the maximum heap size to at least 200 MB (-Xmx:200m). In
addition, the following options are automatically set:

-Xnativethreads is set as the default thread system setting.

-Xallocationtype:local is set as the default thread allocation setting.

These settings are normally used for initial development. If you want to improve WebLogic
JRockit performance, do any of the following:

Increase the heap initial and maximum size (-Xms and -Xmx).

Change the garbage collector to single space concurrent (-Xgc:singlecon) or parallel
(-Xgc:parallel). Note that if you select parallel as your garbage collector, the -Xns
setting will have no affect on processing (see Setting the Size of the Nursery).

Setting Options by Using the Node Manager
If you started the server or cluster of servers with the Node Manager and specified an absolute
pathname to WebLogic JRockit JVM’s top-level directory in the Java Home field on the Node
Manager’s Remote Start page, you can set any option from this page, too. Simply enter the option
and any arguments in the Arguments field.

For more information on using the Node Manager, please refer to the Overview of Node Manager
in Configuring and Managing WebLogic Server.

Monitoring WebLogic JRockit JVM from WebLogic Server
If you run WebLogic Server with WebLogic JRockit JVM, you can use the WebLogic Server
Administration Console to view runtime data about the VM and the memory and processors on
the computer hosting it. For instructions on monitoring WebLogic JRockit JVM from WebLogic
Server, please see Monitoring WebLogic JRockit JVM from WebLogic Server in Using
WebLogic JRockit 8.1 SDK.

Tun ing WebLogic JRocki t JVM w i th WebLog ic Se rver on L inux

3-10 Tuning WebLogic JRockit with WebLogic Server on Linux

Running JRockit with Thin Threads on WebLogic Server
Warning: Thin threads is experimental functionality in this version of JRockit, and is not

recommended for general use. This feature is subject to change without notice.

The JRockit high performance thread system (Thin Threads, -Xthinthreads) and the native I/O
system of WebLogic Server are incompatible as they both use asynchronous I/O. To avoid
problems you must disable the native I/O system of WebLogic Server when running JRockit
using thin threads. The native I/O is disabled automatically in WebLogic Server if JRockit is
using thin threads, even if it is turned on in the corresponding WebLogic Server configuration
file. In their respective default setups, WebLogic JRockit JVM does not use thin threads and
WebLogic Server uses native I/O.

Switching to WebLogic JRockit JVM in WebLogic Server
When you switch to WebLogic JRockit JVM in WebLogic Server, any changes to the VM and
start-up setting, should be handled by the WLS Configuration Wizard. Additionally, if any
installation-wide scripts must be updated due to the switch, these will also be handled by the WLS
Configuration Wizard. You will also need to restart any servers that are currently running.

For complete details on switching to WebLogic JRockit JVM from another JVM, please refer to
Migrating to WebLogic JRockit with WebLogic Server on Linux.

Tuning WebLogic JRockit with WebLogic Server on Linux 4-1

C H A P T E R 4

Migrating to WebLogic JRockit with
WebLogic Server on Linux

BEA WebLogic JRockit JVM is the default JVM shipped with BEA WebLogic Server. Although
there are other JVMs available on the market today that you can use to develop Java applications,
BEA Systems recommends that you use WebLogic JRockit JVM as the production JVM for any
application deployed on WebLogic Server.

This section describes basic environment changes necessary to migrate to WebLogic JRockit
JVM from Sun Microsystems HotSpot JVM or any other third-party JVM. It includes information
on the following subjects:

Additional Migration Information

Required Changes

Enabling Core Dumps

Migration Restrictions

Migration Support

Additional Migration Information
The migration tips in this chapter are very similar to those for other operating systems, such as
Windows. For more comprehensive migration information than is presented here, please refer to
Migrating to WebLogic JRockit in the Migration Guide. Along with detailed migration
information, this document also includes a discussion of best coding practices for applications
designed to run on WebLogic JRockit and extensive troubleshooting information, both of which
are equally germane to Linux users.

Migra t ing to WebLog ic JRock i t w i th WebLog ic Se rver on L inux

4-2 Tuning WebLogic JRockit with WebLogic Server on Linux

Required Changes
To migrate from HotSpot (or any third-party JVM) to WebLogic JRockit JVM, you need to make
the following changes to the files specified.

Changes to Environment Variables
You need to change the environment variables in
<WEBLOGIC_HOME>\common\bin\commEnv.sh as described here:

Set the JAVA_HOME environmental variable to the appropriate path; for example:

Set up JAVA HOME
 JAVA_HOME="C:\bea\jdk141_02"

Set the JAVA_VENDOR environmental variable to BEA; for example:

Set up JAVA VENDOR, possible values are
BEA, HP, IBM, Sun ...
 JAVA_VENDOR=BEA

Changes to Start-up Scripts
If you are using start-up scripts, remove any Sun- (or other JVM provider) specific options from
the start command line (for example, -hotspot). If possible, replace them with WebLogic
JRockit-specific options; for example, -jrockit. Other flags that might need to be changed
include MEM_ARGS and JAVA_VM.

Changes to config.xml
Change config.xml to point the default compiler setting(s) to the WebLogic JRockit javac
compiler; for example:

<Server Name="examplesServer" ListenPort="7001" ConsoleInputEnabled=
 "false" JavaCompiler="javac" SocketReaderTimeoutMaxMillis=
 "10"OMEnabled="true">

Enabling Core Dumps
If you are using Red Hat Enterprise Linux AS/ES/WS 2.1 (32-bit) and want to ensure that a
core/javacore file is created in the working directory in the event WebLogic JRockit crashes,
you need to enable core dumps. To do this, set the ulimit -c value to something greater than
zero, but no greater than a value your filesystem can accommodate; for example, ulimit -c

Migra t i on Res t r i c t i ons

Tuning WebLogic JRockit with WebLogic Server on Linux 4-3

10000000. These values are measured in blocks, with each block equaling one kilobyte. You can
set the ulimit value either from the command line, in the *.profile file, or in a shell script.

Migration Restrictions
Migration is available only for Intel-based Windows and Linux systems. For a list of supported
platforms, please refer to:

http://edocs.bea.com/wljrockit/docs81/certif.html

Migration Support
Should you experience any problems or find any bugs with an application you have migrated to
WebLogic JRockit 8.1, please report it to support@bea.com. You should provide as much
information as possible about the problem, for example:

Hardware

Operating system and its version

The program you are attempting to migrate

Stack dumps (if any)

A small code example that will reproduce the error

Copies of any *.dump files

Migra t ing to WebLog ic JRock i t w i th WebLog ic Se rver on L inux

4-4 Tuning WebLogic JRockit with WebLogic Server on Linux

	Introduction
	Why is Tuning Necessary?
	How Do You Tune a JVM?
	Migrating Applications to WebLogic JRockit
	What Linux Operating Systems Does WebLogic JRockit Support?
	Installing WebLogic JRockit with WLS on Linux

	Running WebLogic JRockit JVM with WebLogic Server on Linux
	Starting BEA WebLogic JRockit
	Starting BEA WebLogic JRockit JVM from the Command Line
	Starting BEA WebLogic JRockit from the Node Manager

	Configuring WebLogic JRockit JVM by Using Command Line Options
	Standard Command Line Options
	Presenting General Information Options
	Setting Logging Options

	Non-standard Command Line Options
	Setting Behavioral Options
	Displaying Logging Information

	Using a Thread System
	Using a Memory Management System (Garbage Collection)
	Starting a Garbage Collector
	Default

	Printing a Comprehensive Report

	Tuning WebLogic JRockit JVM with WebLogic Server on Linux
	Basic JRockit Tuning
	Setting the Initial Heap Size
	Default

	Setting the Maximum Heap Size
	Default
	Setting -Xmx to Avoid Fragmentation

	Setting the Size of the Nursery
	Default

	Setting Thread Local Object Allocation
	Default

	Defining When a Memory will be Cleared
	Default

	Setting the Thread Stack Size
	Default

	Tuning Tips and Techniques
	Determine What You Want to Tune For
	Set the Heap Size
	Tune for High Responsiveness
	Tune for High Performance
	Analyze Garbage Collection and Pause Times
	Modify Threading Options When Using a Large Number of Threads
	Check for Task and Open File Allowance

	Optimizing WebLogic JRockit for Use with WebLogic Server
	Configuring JRockit for WebLogic Server
	Setting Options by Using the Node Manager

	Monitoring WebLogic JRockit JVM from WebLogic Server
	Running JRockit with Thin Threads on WebLogic Server
	Switching to WebLogic JRockit JVM in WebLogic Server

	Migrating to WebLogic JRockit with WebLogic Server on Linux
	Additional Migration Information
	Required Changes
	Changes to Environment Variables
	Changes to Start-up Scripts
	Changes to config.xml

	Enabling Core Dumps
	Migration Restrictions
	Migration Support

