
BEA JRockit
Memory Leak
Detector
Using the BEA JRockit
Memory Leak Detector

JRockit 5.0 Service Pack 2
June 2005

Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign Manager
for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA
WebLogic Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic JRockit,
BEA WebLogic Log Central, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal,
BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup Edition, BEA WebLogic Workshop, and Liquid
Computing are trademarks of BEA Systems, Inc. BEA Mission Critical Support is a service mark of BEA Systems, Inc.
All other company and product names may be the subject of intellectual property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Using BEA JRockit Memory Leak Detector v

Contents

Introduction
What is New in the BEA JRockit Memory Leak Detector? . 1-2

The BEA JRockit Memory Leak Detector Overhead . 1-2

About this User Guide . 1-2

Finding Additional Information . 1-2

Getting Started with Memory Leak Detection
Overview of the Memory Leak Detection Process . 2-1

Starting the Memory Leak Detector. 2-2

Touring the Memory Leak Detector Interface . 2-2

Tabs Explained . 2-3

Toolbar Explained. 2-4

Status Bar Explained. 2-4

Using the Memory Leak Detector
Analyzing the Application . 3-1

Investigating a Suspicious Object Type. 3-3

Investigating an Object Instance . 3-8

Viewing Allocation Stack Traces . 3-9

Customizing Settings . 3-10

Help Us Improve JRockit
How will BEA Systems Use This Feedback . 4-1

Using BEA JRockit Memory Leak Detector vi

BEA JRockit Support for the Memory Leak Detector . 4-2

Frequently Asked Questions . 4-2

Does BEA Systems Guarantee the Accuracy of this tool’s output?. 4-2

Does the Memory Leak Detector Cause Any Overhead? . 4-2

What Kind of Support is Available for the Memory Leak Detector?. 4-2

Is There a Forum Where I can Discuss the Memory Leak Detector? 4-3

Known Issues. 4-3

Using BEA JRockit Memory Leak Detector 1-1

C H A P T E R 1

Introduction

The BEA JRockit Memory Leak Detector detects memory leaks within Java applications that run
on BEA JRockit. A memory leak means application code is holding on to memory that is not used
by the application any more. The BEA JRockit Memory Leak Detector is a real-time profiling
tool that gives information about what type of objects are allocated, how many, of what size, and
how they relate to each other. Unlike other similar tools, there is no need to create full heap dumps
that you need to analyze at a later stage. The data presented is fetched directly from the running
JVM, which can continue to run with a relatively small overhead. When the analysis is done, the
tool can be disconnected and the JVM will run at full speed again. This makes the tool viable for
use in a production environment.

The purpose of this tool is to display memory leaking object types (that is, classes) and provide
help to track the source of the problem. Another purpose of this tool is to help increase the
understanding and knowledge to avoid similar programming errors in future projects.

Note: To access the full version of the BEA JRockit Memory Leak Detector, JRockit J2SE 5.0
sp1 or higher is required.

This product is provided “as-is,” without any expressed or implied warranties or support by BEA
Systems, Inc. This product, which may or may not become an officially supported product from BEA
Systems, may contain errors and/or inaccuracies. Use of this product is left solely upon the discretion of
the user without any endorsement from BEA Systems. The Memory Leak Detector functionality may or
may not be available in future BEA JRockit versions. Questions and problems may be reported via online
BEA JRockit newsgroups at http://newsgroups.bea.com.

In t roduct ion

1-2 Using BEA JRockit Memory Leak Detector

The following subjects are covered in this section:

What is New in the BEA JRockit Memory Leak Detector?

The BEA JRockit Memory Leak Detector Overhead

About this User Guide

Finding Additional Information

What is New in the BEA JRockit Memory Leak Detector?
The biggest change from the previous version of the Memory Leak Detector for BEA
JRockit 1.4.2_05 is that it is now a stand-alone tool and you do not need to access it
through the BEA JRockit Management Console.

Major improvements on usability and look and feel have also been done.

The BEA JRockit Memory Leak Detector Overhead
The extra cost of running the BEA JRockit Memory Leak Detector against a running BEA
JRockit is very small and is noticeable only in that garbage collections take a little bit more time.
The overhead of enabling allocation stack traces can be more significant and should therefore be
used with care. This provides for a low cost monitoring and profiling of your application.

About this User Guide
In this document you will be guided through how you can spot a memory leak in your Java
application. You will also get hints on how to repair a memory leak. This user guide assumes that
you know what a JVM is and that you are familiar with Java application development.

Finding Additional Information
You can find additional information about BEA JRockit throughout the BEA JRockit
documentation set. For a complete list of available documents, please refer to the BEA JRockit
Online Documentation.

Using BEA JRockit Memory Leak Detector 2-1

C H A P T E R 2

Getting Started with Memory Leak
Detection

This section describes the BEA JRockit Memory Leak Detector (from now on referred to as
Memory Leak Detector) start-up procedure and the user interface. Information on the following
topics are included:

Overview of the Memory Leak Detection Process

Starting the Memory Leak Detector

Touring the Memory Leak Detector Interface

Overview of the Memory Leak Detection Process
The memory leak detection process consists of three phases:

1. Trend analysis

2. Object type relations study

3. Instance investigation

Trend analysis means to observe continuously updated object type related information and try
to discover object types with suspicious memory growth. These object types should then be
studied in the next phase of the memory leak detection process. The information in the trend
analysis table is updated every ten seconds or more often if there are very frequent garbage
collections.

Studying object type relations means repeatedly following reference paths between object
types. The goal is to find interesting connections between growing object types and what types

Get t ing Star ted wi th Memory Leak Detect ion

2-2 Using BEA JRockit Memory Leak Detector

of objects point to them. Finding the object type guilty of unusual memory growth will lead to
the third and final phase of the memory leak detection process.

Instance investigation consists of finding an instance of abnormal memory size or an abnormal
amount of references being held and then inspecting that instance. When inspecting an instance,
values will be displayed; e.g. field names, field types, and field values. These values will
hopefully lead you to the correct place for the error in the application code; i.e. where that
particular instance of that particular object type is allocated, modified, or removed from the
collection, depending upon what the situation implies. Minimizing the problem areas of the ones
connected to the suspected instance will most likely lead you on the right track to finding the
actual problem causing the memory leak and you will be able to fix it.

Starting the Memory Leak Detector
Before you start the Memory Leak Detector and your application, you need to start the
management server.

1. Start your Java application with the BEA JRockit JVM as usual, but add the -Xmanagement
option to the command line.

2. Start the Memory Leak Detector by typing java -jar MemoryLeakDetector.jar in a
command window.

3. Enter a name for the server in Server name. This is the name (or IP address) of the
computer that runs JRockit and the application that you want to monitor.

The default port is 7091. For changing the port of the management server, see “Changing
the Port” in Using the BEA JRockit Management Console at:

http://edocs.bea.com/wljrockit/docs50/usingJMC/start.html#1036322

4. Click Connect in the Connect to JRockit window.

The Memory Leak Detector window opens (see Figure 2-1).

Touring the Memory Leak Detector Interface
When it is not connected to any BEA JRockit JVM, the Memory Leak Detector window looks
like Figure 2-1. The interface consists of four tabs, a tool bar, main menus, and a status bar.

Tour ing the Memory Leak Detec to r In te r face

Using BEA JRockit Memory Leak Detector 2-3

Figure 2-1 The Main Window of the Memory Leak Detector

Tabs Explained
The main window of the Memory Leak Detector contains four tabs as shown in Figure 2-2:
Trend, Types, Instances, and Allocation Stack Traces.

Figure 2-2 The Tabs in the Memory Leak Detector (Indicates Work Flow)

Table 2-1 Tabs Explained

Tab Description

From the Trend tab you view a trend analysis of the object types on the Java heap.
You will see a list of all types that occupy more than 0.1% of the heap. The object
type with the highest growth rate will be listed first.

From the Types tab you view a type graph that shows how different types point to
each other.

From the Instances tab you view an instance graph that shows how different
instances point to each other.

From the Allocation Stack Traces tab you view where a certain type is allocated
in the code.

Get t ing Star ted wi th Memory Leak Detect ion

2-4 Using BEA JRockit Memory Leak Detector

Toolbar Explained
The Memory Leak Detector tool bar, see Figure 2-3, contains, for example, buttons to connect to
the JRockit instance. See Table 2-2 for an explanation of the different tools in the tool bar.

Figure 2-3 The Toolbar in the Memory Leak Detector

Status Bar Explained
The status bar (Figure 2-4) at the bottom of the window displays information regarding the
current connection, whether the trend analysis is on or not, and whether the allocation stack trace
is on or not.

Figure 2-4 The Status bar in the Memory Leak Detector

Table 2-2 Toolbar Explained

Icon Description

Connect to the management server. This button connects you to the management server, which
in turn allows you to monitor your Java application.

Disconnect from the management server and your Java application.

Start monitoring your Java application.

Pause the screen updating.

Stop the current monitoring.

Refresh the current view.

Zoom in on a type or an instance. This tool helps you navigate in the graph.

Zoom out from a type or an instance.

Center objects in your viewing area.

Using BEA JRockit Memory Leak Detector 3-1

C H A P T E R 3

Using the Memory Leak Detector

Now you understand how a flow of events for memory leak detection works and the basic
functions of the user interface, it is time to get to know how powerful the Memory Leak Detector
actually is in action. This part of the user guide describes the different tabs of the interface in
detail and how the Memory Leak Detector works when monitoring a Java application with a real
memory leak. Each tab of the interface will be explained in detail in this section.

The following topics will be covered in this section:

Analyzing the Application

Investigating a Suspicious Object Type

Investigating an Object Instance

Viewing Allocation Stack Traces

Analyzing the Application
From the Trend tab (see Figure 3-1), you start the analysis of your applications. The object types
with the highest growth in bytes/sec are marked red (darkest) in the Trend Analysis table and
they are listed at the top of the table. For each update, the list can change and the type that was
the highest move down the list. The object types listed in Figure 3-1 are fetched from an example
application, where you can suspect a memory leak at the objects marked red.

Using the Memory Leak De tec to r

3-2 Using BEA JRockit Memory Leak Detector

Figure 3-1 Memory Leak Analysis

Table 3-1 explains what each column in the Trend tab displays.

To Start Analyzing Your Application
1. Make sure the Memory Leak Detector is connected to JRockit and that your JRockit

application is running with the -Xmanagement option turned on.

Table 3-1 Trend Analysis - Which types are leaking?

Column Title Displays

Type The type of object (class).

Growth
(bytes/sec)

The amount of memory (in bytes) with which the type is growing, per second.

% of Heap How much of the Java heap is occupied by this type of object, measured in
percentages of the entire heap.

Size (KB) What size in KB does that percentage correspond to.

Instances The number of live objects of this type that currently exist.

Inves t igat ing a Susp ic i ous Ob jec t Type

Using BEA JRockit Memory Leak Detector 3-3

2. Click the Start button to start the trend analysis. If you have an application with a memory
leak, the trend analysis can look something like Figure 3-1.

To Pause Analysis of Your Application
Click the Pause button.

This operation freezes the updating of the trend analysis in the Trend tab and you can start
to analyze the application. If you want to collect more data from the same sample, click the
Play button again and the Memory Leak Detector displays the last samples from the
application.

To Stop Analysis of Your Application
Click the Stop button.

This operation stops the continuous update of the data and when you start the trend
analysis again, the data that is currently displayed will be reset.

Note: You do not stop the application itself by stopping the analysis.

To Start the Investigation
1. Right-click the object you think contains a memory leak.

2. Select Show Referring Types.

The Types tab appears (see Figure 3-2). For instructions on how to investigate further, see
To Get Closer to the Memory Leaking Object.

Investigating a Suspicious Object Type
Once you have found a suspected memory leak (a type that is high in growth and is colored red),
you investigate the suspected leak further in the Types tab, see Figure 3-2. Before anything is
displayed in this tab, you need to start the investigation by selecting a type from the Trend tab,
see To Start the Investigation.

The Types tab offers a view of the relationships between all the types pointing to the type you
are investigating. For each type you also see a number, which is the number of instances that point
to that type.

Using the Memory Leak De tec to r

3-4 Using BEA JRockit Memory Leak Detector

Figure 3-2 Types Tab

The color red (dark) means that the type has a high growth rate (which may or may not be related
to a memory leak).

To Get Closer to the Memory Leaking Object
1. Double-click on the type with the darkest color.

The type expands further (see Figure 3-3).

Inves t igat ing a Susp ic i ous Ob jec t Type

Using BEA JRockit Memory Leak Detector 3-5

Figure 3-3 Type Graph Expanded

2. Keep clicking the type with the darkest color red, until you get down to a “natural end”
where you think you can pinpoint the memory leak.

3. Right-click the type where you suspect a leak (see Figure 3-4).

Using the Memory Leak De tec to r

3-6 Using BEA JRockit Memory Leak Detector

Figure 3-4 Type Graph with Memory Leak Pinpointed

4. Select List Instances.

The Instances part of the Types tab opens.

List instances shows you instances of the selected type. The instances shown will only be
those that have references to the type indicated by the arrow from the selected type in the
above type graph.

Inves t igat ing a Susp ic i ous Ob jec t Type

Using BEA JRockit Memory Leak Detector 3-7

Figure 3-5 List of Instances in Types Tab

The lower half of the tab lists all instances of type A pointing to type B if the instance list
is not too large (see Figure 3-5). If the list is too large, the Memory Leak Detector might
time out when trying to display the list. You can change the time out setting under File >
Preferences.

The column Data kept alive (bytes) shows how much data a certain instance keeps alive.
That data cannot be garbage collected.

Have the Overview part of the window open to see where you are in the graph (see To Get
an Overview of the Graph for how to turn on the overview). You can also zoom in/out or
re-center the view (see Table 2-2 for an explanation of the zooming tools).

To Get an Overview of the Graph
Click View > Birds-eye Overview.

A small Overview window opens on the tab. This Overview is good to help you navigate
in large graphs. You can refocus the view in the current tab by moving the shaded area.

Using the Memory Leak De tec to r

3-8 Using BEA JRockit Memory Leak Detector

To Investigate an Instance of a Type
1. Right-click an instance in the Types tab (probably one with the highest data kept alive).

2. Select Show Referring Instances.

The Instances tab appears (see Figure 3-6).

Investigating an Object Instance
In the Instance tab, see Figure 3-6, you view the instances of the type that you suspect is leaking
memory. You can also see the name of the specific field by looking at the arrow that is referring.
Right-click an instance to get a popup menu with the Inspect Instance option. When inspecting
an instance you will see all instance variables that the object contains. This information will help
you pinpoint where in your application the leaking object is located.

Figure 3-6 Referring Instances Tab

Viewing A l locat ion S tack T races

Using BEA JRockit Memory Leak Detector 3-9

Table 3-2 explains what you will be able to view in the Instances tab.

Viewing Allocation Stack Traces
In the Allocation Stack Traces tab, see Figure 3-7, you can check for where in the code
allocations of a certain type are done. Enabling allocation stack traces may deteriorate the
performance of JRockit. Collecting information about all the allocation points might take a while.

Figure 3-7 Allocation Stack Traces Tab

Table 3-2 Instances of Suspected Memory Leaks

Part of Tab Displays

Instances Graph This graph shows how the instances are connected to each other.

Inspector In the inspector view you can see all fields the object contains and their values. The
information that is displayed is depending on the application you monitor.

Using the Memory Leak De tec to r

3-10 Using BEA JRockit Memory Leak Detector

Customizing Settings
The Memory Leak Detector can be customized in many different ways. Figure 3-8 through
Figure 3-13 explains the different settings you can make.

To Open the Preferences Window
Click File > Preferences.

The Preferences window opens (see Figure 3-8).

When you have set your preferences, click OK for them to take effect.

To Reset Preferences to Default Values
1. Click File > Preferences.

2. Click Defaults.

3. Click OK.

Figure 3-8 Confirm Exit Setting

Select the Confirm Exit option if you want to get a confirmation message when you are closing
the Memory Leak Detector.

Customiz ing Se t t ings

Using BEA JRockit Memory Leak Detector 3-11

Figure 3-9 Display of Heap Usage

Here you set the ratio of the Java heap that you want displayed. Those types that are smaller than
the set ratio are not displayed. If you want to display all types, set the ratio to 0 (zero).

Using the Memory Leak De tec to r

3-12 Using BEA JRockit Memory Leak Detector

Figure 3-10 Graph Settings

Select Animate Layout if you want the types graph in the Types tab and the Instances
tab to be animated when you expand a node on the type.

Select Center at Expand if you want the graphs in the Types tab and Instances tab to be
centered in the viewing area when you expand a node on the type or instance.

Specify the value for Number of Nodes to Expand to control how many nodes you want
to be displayed in the Types tab and Instances tab. If you specify a very high number, the
view can become cluttered.

Select Show Package Names if you want the complete class name displayed.

Customiz ing Se t t ings

Using BEA JRockit Memory Leak Detector 3-13

Figure 3-11 Number of Instances that are Fetched

Here you set the number of instances you want to list when doing List instances of a type. The
list is shown in the Types tab under Instances.

Using the Memory Leak De tec to r

3-14 Using BEA JRockit Memory Leak Detector

Figure 3-12 Number of Array Elements that are Fetched

Specify the value for the Max number of Array Elements to fetch. These elements are
displayed in the Types tab when you have selected List Largest Arrays.

Customiz ing Se t t ings

Using BEA JRockit Memory Leak Detector 3-15

Figure 3-13 Timeout Setting

Set a number for Timeout for fetching instance relations. This number is measured in
seconds. The instance relation is showed in the Instances tab. The time out error can be
caused by too many instances that need to be fetched.

Set a value, in bytes, for the Maximum keep alive size to trace. When the Memory Leak
Detector looks at an object until it reaches this value.

Using the Memory Leak De tec to r

3-16 Using BEA JRockit Memory Leak Detector

Using BEA JRockit Memory Leak Detector 4-1

C H A P T E R 4

Help Us Improve JRockit

The Memory Leak Detector is designed to help developers more easily find memory leaks and to
better understand critical points of program engineering. It provides an easy way to capture
information about object type allocation statistics.

If you have any suggestions about how to improve this tool or information on how it is most
commonly used in development environments, we would be grateful to receive your input. This
information would contribute to our understanding on how to best further improve this tool in the
future.

Please, send an email with feedback and your ideas on how to use it to:

jrockit-improve@bea.com

How will BEA Systems Use This Feedback
The feedback will be considered by the development team designing the Memory Leak Detector.
We will look at collected ideas and improve the tools of BEA JRockit to make them even easier
to use. Our goal with the development of this tool is to simplify the difficult task of finding
memory leaks and help developers work more efficiently.

BEA JRockit is already providing a lot of appreciated manageability tools and, to keep a close
dialogue with developers using Java Runtime Environments, BEA Systems is always trying to
find ways to improve BEA JRockit. This is one of the ways.

Help Us Improve JRock i t

4-2 Using BEA JRockit Memory Leak Detector

BEA JRockit Support for the Memory Leak Detector
Only more recent versions of BEA JRockit fully support the stand-alone Memory Leak Detector:
BEA JRockit 5.0 sp1 and sp2.

Frequently Asked Questions
Following are some questions we have frequently been asked about the Memory Leak Detector:

Does BEA Systems Guarantee the Accuracy of this tool’s output?

Does the Memory Leak Detector Cause Any Overhead?

What Kind of Support is Available for the Memory Leak Detector?

Is There a Forum Where I can Discuss the Memory Leak Detector?

Does BEA Systems Guarantee the Accuracy of this tool’s
output?
Since this is not a supported product, we cannot make any guarantees about the accuracy of the
data shown or the stability of JRockit when using the Memory Leak Detector.

Does the Memory Leak Detector Cause Any Overhead?
In the trend analysis of the memory leak detection process, the data presented is continuously
updated; however, the overhead during this phase is very small. Each garbage collection will take
a bit longer. During the second and third phase the only overhead will be some additional garbage
collections, which in most cases is negligible. Overall, there is practically no overhead and it
should not affect the speed or results of your application.

What Kind of Support is Available for the Memory Leak
Detector?
The Memory Leak Detector functionality is currently being provided as-is for your convenience
and to help with memory leak detection and is not supported by BEA Support.

Known Issues

Using BEA JRockit Memory Leak Detector 4-3

Is There a Forum Where I can Discuss the Memory Leak
Detector?
If you have any questions you are welcome to share them in the BEA JRockit general interest
newsgroup, which is monitored by our engineering team. To access the newsgroup, go to:

http://newsgroups.bea.com

Known Issues
Sometimes static fields and the number of thread roots are not correctly displayed in the window
displaying instances referring to an other instance. You can fix this by starting the memory leak
detection process once again (that is, unfreezing and freezing the memory leak system); however,
any data displayed is correct.

Help Us Improve JRock i t

4-4 Using BEA JRockit Memory Leak Detector

Using BEA JRockit Memory Leak Detector 1-1

Index

A
allocation stack traces tab 2-3
animate Layout 3-12
array elements 3-14

C
center at expand 3-12
center objects 2-4
confirmation message 3-10
connect 2-4

D
default port 2-2
disconnet 2-4

G
graphs 3-12

H
heap usage 3-11

I
instance investigation 2-2
instance tab 2-3
instances 3-13

J
java -jar memleakapp.jar 2-2

L
list largest arrays 3-14

M
max number of array elements to fetch 3-14
maximum keep alive size to trace 3-15

N
number of nodes to expand 3-12

O
object type relations 2-1
overview 3-7

P
pause 2-4

R
refresh 2-4

S
server name 2-2
show package names 3-12
start monitoring 2-4
status bar 2-4
stop monitoring 2-4

1-2 Using BEA JRockit Memory Leak Detector

T
timeout for fetching instance relations 3-15
trend analysis 2-1
trend tab 2-3
types tab 2-3

X
-Xmanagement 2-2

Z
zoom in 2-4, 3-7
zoom out 2-4, 3-7

	What is New in the BEA JRockit Memory Leak Detector?
	The BEA JRockit Memory Leak Detector Overhead
	About this User Guide
	Finding Additional Information
	Overview of the Memory Leak Detection Process
	Starting the Memory Leak Detector
	Touring the Memory Leak Detector Interface
	Analyzing the Application
	Investigating a Suspicious Object Type
	Investigating an Object Instance
	Viewing Allocation Stack Traces
	Customizing Settings
	How will BEA Systems Use This Feedback
	BEA JRockit Support for the Memory Leak Detector
	Frequently Asked Questions
	Known Issues
	Index

