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Using Code Coverage with BEA JRockit

This document describes how to use code coverage on applications you plan to run on BEA 
JRockit. It includes information on the following subjects:

What is Code Coverage?

How to Enable Code Coverage

Command Line Options for Code Coverage

Code Coverage Output

Format in Verbose Mode

What is Code Coverage?
Code coverage ensures that the tests you run are actually testing your code. When you run a tests, 
the possibility exists that the parameters of that test might not expose all of the code in your 
applicaiton; thus it will not be tested. Code coverage anticipates this situation and will tell you 
how much of your code was actually tested.  Consider that even though your tests might all pass 
successfully, if you've only exercised half of your code, those tests could be woefully inaccurate.

How Code Coverage Works
Code coverage is an iterative tool; that is, it is most useful when you can compare the results of 
one application coverage with an earlier version of  coverage for the same application. Code 
coverage is a simple process that requires you to define the coverage parameters at the command 
line and then let the application run. During the run, the coverage tool determines what code is 
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actually being tested an which code is not. As it makes this determination, it writes to a filter file 
all code not covered. You can then compare the information in the latest filter file to the same 
information in an earlier iteration to determine if the test suite you are using is covering more or 
less code.

When to Use Code Coverage
Code coverage requires knowledge of and access to the code itself rather than simply using the 
interface provided and is therefore considered a “white box” text. You will find code coverage 
most effective during the module testing and to some extent during integration testing. Depending 
upon what you are testing, you might find other occasions where code coverage will be helpful. 
Regression tests are usually black box tests and as such may be unsuitable for use with code 
coverage. 

Enabling Code Coverage
Code coverage is run from the command line upon program startup. Simply inlcude the option 
-XXcodecoverage along with the rest of your command string; for example:

java -XXcodecoverage -Djrockit.codecoverage.filter=java.util.Hashtable;com.bea.*;
     -com.bea.blabla.* -Xgc:parallel -Xms:64 -Xmx:64 myClass

Command Line Options for Code Coverage
Along with -XXcodecoverage, BEA JRockit provides a number of additional options that you 
can use to define the classes to cover, specify an alternate name for the filter file, identify the 
initial test, and so on. These options are also specified at startup; for example:

java -XXcodecoverage -Djrockit.codecoverage.filter=java.util.Hashtable;

   com.bea.*;-com.bea.blabla.* -Xgc:parallel -Xms:64 -Xmx:64 myClass

This section describes the how to use these command line options to enable these functions:

Enabling Code Coverage

Identifying the Classes to be Covered

Naming the Filter File

Identifying the File Location

Identifying the Initial Test
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Displaying Code Coverage in the Verbose Mode

Appending an Output File

Enabling Code Coverage
-XXcodecoverage

As mentioned in How to Implement Code Coverage, -XXcodecoverage enables code coverage. 
This option cannot be used together with -Xdebug.

Identifying the Classes to be Covered
-Djrockit.codecoverage.filter=<filterspec> 

The filter= option identifies which classes should be covered. Filterstrings starting with “-” 
will be considered as classes that should not be covered. Separate filters with “;” on windows and 
“:” on linux

Example:

-Djrockit.codecoverage.filter=java.util.Hashtable;com.bea.*;-com.bea.blabla.*

Naming the Filter File
-Djrockit.codecoverage.filterfile=<filename>

The filterfile= option sets the name of a file that will include the filter (specified or default). 
The file format is one filterstring per line. If no filter or filterfile is specified JRockit will default 
to filter.txt in the current directory.

Identifying the File Location
-Djrockit.codecoverage.outputfile=<filename>

The outputfile= option to set the file where output is written. If the output file cannot be 
opened for writing it will sequence through <filename>_0, <filename>_1 until a usable name 
can be found. This can be useful if sevaral JVMs share a common commandline. If no outputfile 
is specified JRockit will default to coverage.txt in the current directory.

Identifying the Initial Test
-Djrockit.codecoverage.testid=<id-string>
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The testid option sets the initial test identifier. If no test identifier is specified, BEA JRockit 
will default to an empty string. 

Modifying the Testid During Runtime
The application you are covering can modify the testid during runtime by calling one of the 
following methods shown in Listing 1.

Listing 1   Modifying the Test ID During Runtime

package COM.jrockit.internal;

public final class CodeCoverage

{

   public static native void setTestID(String str);

   public static native void setTestIDAndReset(String str);

}

setTestID changes the test id so that all code that we has not covered been before will be 
reported with the new id.

setTestIDAndReset reports all code covered by the new test.  

You will need to invoke these methods through reflection, for example:

Class.forName("COM.jrockit.internal.CodeCoverage").getMethod("setTestIDAnd

   Reset", new Class[]{String.class}).invoke(null, new Object[] {

   myNewTestIdString })

Displaying Code Coverage in the Verbose Mode
-Djrockit.codecoverage.verbose

The verbose option causes code coverage information to display on the screen. This option is 
useful when you want to see textual differences between coverage files.All information appears 
in plain text. 

Appending an Output File
-Djrockit.codecoverage.appendoutput
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The appendoutput option allows you to append code coverage results to the output file, rather 
than overwrite it.

Code Coverage Output
Code coverage results are output to a filter file. These files will appear as plain text unless you 
specify -Djrockit.codecoverage.verbose at startup, in which case, the format will be 
verbose. 

Events Described
The file shows one event per line for six different event types, as identified by the following 
prefixes:

f: information about the filter used

c: class load

m: method load (happens together at class load time)

g: method code generated (happens at first excecution of the method)

l: code generated for a line of source code (only reported for source lines actually 
containing code)

x: line excecuted

Filter File Rules
The following rules apply to the filter file:

Events are written to the file in exactly the order they occur in the JVM, with no sorting or 
buffering. 

The file is flushed and closed upon termination of the JVM. 

Abnormal exit may result in incomplete data at the end of the file. 

Every line begins with <event>:<testid>.
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File Format
Table 1 describes the filter file format in both the plain text and verbose modes. 

Table 1  Filter File Format by Event Type

Event Type File Format

Filter Plain text:

f:<testid>:<filterspec>:<timestamp>

Verbose:

Same as plain text

Class load Plain text:

c:<testid>:<classname>:<source filename>:<type>

Type can be one of the following
• c - regular class
• a - abstract class
• i - interface

Verbose:

Same

Method load Plain text:

m:<testid>:<classname>.<methodname><descriptor>:<methodid>

The method id is an unique identifier for this method valid for this run only.

Verbose:
m:<testid>:<classname>.<methodname><descriptor>

Method generated 
(excecuted) event

Plain text:

g:<testid>:<methodid>

Verbose:
g:<testid>:<classname>.<methodname><descriptor>
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Line generated event Plain text:
l:<testid>:<methodid>:<lineNo>,<lineNo>,...

Line numbers are in no specific order, so duplicates might exist.

Verbose:
l:<testid>:<classname>.<methodname><descriptor>:<lineNo>

Only one line reported per event.

Line excecuted 
(covered) event

Plain text:
x:<testid>:<methodid>:<lineNo>,<lineNo>,...

Verbose:
x:<testid>:<classname>.<methodname><descriptor>:<lineNo>

• Only one line reported per event.
• Line numbers are excactly the order they are excecuted, so duplicates might 

exist.

Table 1  Filter File Format by Event Type
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