BEA JRockit™ SDK

Using Code Coverage
with BEA JRockit

Version 1.4.2
December 2003

0?7,

r
S’ 7
L/

Copyright

Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic
Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Contents

Using Code Coverage with BEA JRockit

What is Code CoVerage?ttt e e e 1
How Code Coverage WOrkso ot et e 1
When to Use Code COVETageo vttt e et 2

Enabling Code Coverageo vttt et ettt et e 2

Command Line Options for Code Coveragettt 2
Enabling Code COVerageoutiri ittt et iee e 3
Identifying the Classestobe Covered, 3
Naming the Filter File. e 3
Identifying the File Location, 3
Identifying the Initial TeSt. oottt e e e 3

Modifying the Testid During Runtime 4
Displaying Code Coverage in the Verbose Mode. 4
Appending an Output File. 4

Code Coverage OULPUL.ottt ettt e e et ettt 5
Events Described 5
Filter File Rules e 5
File Formato 6

Using Code Coverage with WebLogic JRockit iii

iv

Using Code Coverage with WebLogic JRockit

Using Code Coverage with BEA JRockit

This document describes how to use code coverage on applications you plan to run on BEA
JRockit. It includes information on the following subjects:

e What is Code Coverage?

e How to Enable Code Coverage

e Command Line Options for Code Coverage
e Code Coverage Output

e Format in Verbose Mode

What is Code Coverage?

Code coverage ensures that the tests you run are actually testing your code. When you run a tests,
the possibility exists that the parameters of that test might not expose all of the code in your
applicaiton; thus it will not be tested. Code coverage anticipates this situation and will tell you
how much of your code was actually tested. Consider that even though your tests might all pass
successfully, if you've only exercised half of your code, those tests could be woefully inaccurate.

How Code Coverage Works

Code coverage is an iterative tool; that is, it is most useful when you can compare the results of
one application coverage with an earlier version of coverage for the same application. Code
coverage is a simple process that requires you to define the coverage parameters at the command
line and then let the application run. During the run, the coverage tool determines what code is

Using Code Coverage with WebLogic JRockit 1

Using Code Coverage with BEA JRockit

actually being tested an which code is not. As it makes this determination, it writes to a filter file
all code not covered. You can then compare the information in the latest filter file to the same
information in an earlier iteration to determine if the test suite you are using is covering more or
less code.

When to Use Code Coverage

Code coverage requires knowledge of and access to the code itself rather than simply using the
interface provided and is therefore considered a “white box™ text. You will find code coverage
most effective during the module testing and to some extent during integration testing. Depending
upon what you are testing, you might find other occasions where code coverage will be helpful.
Regression tests are usually black box tests and as such may be unsuitable for use with code
coverage.

Enabling Code Coverage

Code coverage is run from the command line upon program startup. Simply inlcude the option
-XXcodecoverage along with the rest of your command string; for example:

java -XXcodecoverage -Djrockit.codecoverage.filter=java.util. Hashtable;com.bea.*;
-com.bea.blabla.* -Xgc:parallel -Xms:64 -Xmx:64 myClass

Command Line Options for Code Coverage

Along with -XXcodecoverage, BEA JRockit provides a number of additional options that you
can use to define the classes to cover, specify an alternate name for the filter file, identify the
initial test, and so on. These options are also specified at startup; for example:

java -XXcodecoverage -Djrockit.codecoverage.filter=java.util.Hashtable;

com.bea.*;-com.bea.blabla.* -Xgc:parallel -Xms:64 -Xmx:64 myClass

This section describes the how to use these command line options to enable these functions:

Enabling Code Coverage

Identifying the Classes to be Covered

Naming the Filter File

Identifying the File Location

Identifying the Initial Test

2 Using Code Coverage with WebLogic JRockit

Command Line Options for Code Coverage

e Displaying Code Coverage in the Verbose Mode

e Appending an Output File

Enabling Code Coverage

-XXcodecoverage

As mentioned in How to Implement Code Coverage, -Xxcodecoverage enables code coverage.
This option cannot be used together with -Xdebug.

|dentifying the Classes to be Covered

-Djrockit.codecoverage.filter=<filterspec>

The £ilter= option identifies which classes should be covered. Filterstrings starting with “-”
will be considered as classes that should not be covered. Separate filters with “;” on windows and

[33% 3]

> on linux
Example:

-Djrockit.codecoverage.filter=java.util. Hashtable;com.bea. *;-com.bea.blabla.*

Naming the Filter File

-Djrockit.codecoverage.filterfile=<filename>

The filterfile= option sets the name of a file that will include the filter (specified or default).
The file format is one filterstring per line. If no filter or filterfile is specified JRockit will default
to filter.txt in the current directory.

|dentifying the File Location

-Djrockit.codecoverage.outputfile=<filename>

The outputfile= option to set the file where output is written. If the output file cannot be
opened for writing it will sequence through <filename> 0, <filename> 1 until a usable name
can be found. This can be useful if sevaral JVMs share a common commandline. If no outputfile
is specified JRockit will default to coverage.txt in the current directory.

|dentifying the Initial Test

-Djrockit.codecoverage.testid=<id-string>

Using Code Coverage with WebLogic JRockit 3

Using Code Coverage with BEA JRockit

The testid option sets the initial test identifier. If no test identifier is specified, BEA JRockit
will default to an empty string.

Modifying the Testid During Runtime

The application you are covering can modify the testid during runtime by calling one of the
following methods shown in Listing 1.

Listing 1 Modifying the Test ID During Runtime

package COM.jrockit.internal;

public final class CodeCoverage

{

public static native void setTestID(String str);

public static native void setTestIDAndReset (String str);

setTestID changes the test id so that all code that we has not covered been before will be
reported with the new id.

setTestIDAndReset reports all code covered by the new test.
You will need to invoke these methods through reflection, for example:

Class.forName ("COM.jrockit.internal.CodeCoverage") .getMethod ("setTestIDAnd
Reset", new Class[] {String.class}).invoke (null, new Object[] ({

myNewTestIdString })

Displaying Code Coverage in the Verbose Mode

-Djrockit.codecoverage.verbose

The verbose option causes code coverage information to display on the screen. This option is
useful when you want to see textual differences between coverage files.All information appears
in plain text.

Appending an Output File

-Djrockit.codecoverage.appendoutput

4 Using Code Coverage with WebLogic JRockit

Code Coverage Output

The appendoutput option allows you to append code coverage results to the output file, rather
than overwrite it.

Code Coverage Output

Code coverage results are output to a filter file. These files will appear as plain text unless you
specify -Djrockit.codecoverage.verbose at startup, in which case, the format will be
verbose.

Events Described

The file shows one event per line for six different event types, as identified by the following
prefixes:

f

(e}

m

<)

1

: information about the filter used

: class load

: method load (happens together at class load time)

: method code generated (happens at first excecution of the method)

: code generated for a line of source code (only reported for source lines actually

containing code)

e x: line excecuted

Filter File Rules

The following rules apply to the filter file:

e Events are written to the file in exactly the order they occur in the JVM, with no sorting or
buffering.

e The file is flushed and closed upon termination of the JVM.

e Abnormal exit may result in incomplete data at the end of the file.

e Every line begins with <event>:<testids>.

Using Code Coverage with WebLogic JRockit 5

Using Code Coverage with BEA JRockit

File Format

Table 1 describes the filter file format in both the plain text and verbose modes.

Table 1 Filter File Format by Event Type

Event Type

File Format

Filter

Plain text:
f:<testid>:<filterspec>:<timestamp>

Verbose:

Same as plain text

Class load

Plain text:

c:<testid>:<classname>:<source filenames:<type>
Type can be one of the following

* c-regular class

* a- abstract class

* i-interface

Verbose:

Same

Method load

Plain text:
m:<testid>:<classnames>.<methodname><descriptors:<methodids>

The method id is an unique identifier for this method valid for this run only.

Verbose:

m:<testid>:<classnames>.<methodname><descriptors>

Method generated
(excecuted) event

Plain text:

g:<testid>:<methodid>

Verbose:

g:<testids>:<classname>.<methodname><descriptors

6 Using Code Coverage with WebLogic JRockit

Code Coverage Output

Table 1 Filter File Format by Event Type

Line generated event

Plain text:

l:<testid>:<methodid>:<lineNo>,<lineNo>, ...

Line numbers are in no specific order, so duplicates might exist.

Verbose:
l:<testid>:<classname>.<methodname><descriptor>:<lineNo>

Only one line reported per event.

Line excecuted
(covered) event

Plain text:

X:<testid>:<methodid>:<lineNo>,<lineNo>, ...

Verbose:
x:<testid>:<classnames>.<methodname><descriptors:<lineNo>
* Only one line reported per event.

* Line numbers are excactly the order they are excecuted, so duplicates might
exist.

Using Code Coverage with WebLogic JRockit 1

Using Code Coverage with BEA JRockit

8 Using Code Coverage with WebLogic JRockit

	What is Code Coverage?
	How Code Coverage Works
	When to Use Code Coverage

	Enabling Code Coverage
	Command Line Options for Code Coverage
	Enabling Code Coverage
	Identifying the Classes to be Covered
	Naming the Filter File
	Identifying the File Location
	Identifying the Initial Test
	Modifying the Testid During Runtime

	Displaying Code Coverage in the Verbose Mode
	Appending an Output File

	Code Coverage Output
	Events Described
	Filter File Rules
	File Format

