0?7,

r
S’ 7
L/

BEAJROCKIT

Using the BEA JRockit
Runtime Analyzer

JRockit 8.1 Service Pack 5
June 2005

Copyright

Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign Manager
for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA
WebLogic Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic JRockit,
BEA WebLogic Log Central, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal,
BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup Edition, BEA WebLogic Workshop, and Liquid
Computing are trademarks of BEA Systems, Inc. BEA Mission Critical Support is a service mark of BEA Systems, Inc.
All other company and product names may be the subject of intellectual property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Contents

Using the BEA JRockit Runtime Analyzer

Downloading the JRA Tool o 1-2
Creating a Recordingo i 1-2
Start Recording from Management Console (JRockit J2SE 1.4 or higher) 1-2
Start Recording with the JraRecordingStarter Command. 1-4
Start a Recording from the JRockit Command Line. 1-5
Starting the JRA Toolo 1-6

Looking at a Recording

Viewing General Data about the Application 2-1
Miscellaneous Information. 2-2
Memory Usage of JRockit Process Information. 2-3
Threads Information 2-3
Allocation Values Information i 2-3
Exceptions Information. 2-3

Viewing Hot Methods i e e 2-4

Viewing Garbage Collection Data. 2-5
GCs During Recording Information. 2-6
GC Charts Tab Information i 2-6
General Information 2-7
Selected GC Infomation 2-7

Viewing Java Heap Content. ottt e e 2-10

Using BEA JRockit Runtime Analyzer 1

Heap Contents Pie Chart i, 2-10

Free Memory Distribution Pie Chart 2-11
Viewing Object StatistiCsot v ittt et 2-11
Viewing Method Optimizationsuuiteen e, 2-12
Viewing Lock Activities in Your Application and JRockit 2-12

Java Lock Profiling o 2-13

Native Lock Profiling. 2-14
Adding Comments to the Recording. 2-14

Help Us Improve BEA JRockit and the JRA Tool
How will BEA Use These Recordings, 3-1
JRockit Support for JRAo 3-2
Frequently Asked QUEStionSttt 3-2

Is the Performance Overhead of the JRA Recording in BEA JRockit Significant? . 3-2

Does BEA Guarantee the Accuracy of the JRA output? 3-2

When JRA reports method time, is it CPU time or elapsed time?............... 3-3

Is There a Forum Where I can Discussthe JRA? 3-3

Index

2 Using BEA JRockit Runtime Analyzer

CHAPTERo

Using the BEA JRockit Runtime
Analyzer

This product is provided “as-is,” without any expressed or implied warranties or support by BEA
Systems, Inc. This product, which may or may not become an officially supported product from BEA
Systems, may contain errors and/or inaccuracies. Use of this product is left solely upon the discretion of
the user without any endorsement from BEA Systems. The JRA functionality may or may not be available
in future BEA JRockit versions. Questions and problems may be reported via online BEA JRockit
newsgroups at http://newsgroups.bea.com.

The BEA JRockit Runtime Analyzer (JRA) tool provides a wealth of information on internals in
BEA JRockit that are interesting to the development team of BEA JRockit. Some of these metrics
are also interesting to Java developers using BEA JRockit as their runtime VM.

Note: The JRA tool itself requires J2SE version 1.4 or higher; however, you can create JRA
recordings from BEA JRockit version 7.0 sp6 or higher.

The BEA JRockit Runtime Analyzer consists of two parts. One is running inside the JVM and
recording information about the JVM and the Java application currently running. This
information is saved to a file which is then opened in the other part: the analyzer tool. This is a
regular Java application used to visualize the information contained in the JRA recording file.

This section describes how to get started with JRA, i.e. downloading, creating a recording, and
open the tool. The following subjects will be covered:

e Downloading the JRA Tool

e Creating a Recording

Using BEA JRockit Runtime Analyzer 1-1

Using the BEA JRockit Runtime Analyzer

e Starting the JRA Tool

Downloading the JRA Tool

Download a copy of the JRA tool from:

http://dev2dev.bea.com/wljrockit/tools.html

Creating a Recording

There are several ways to create and start a JRA recording:
e Start Recording from Management Console (JRockit J2SE 1.4 or higher)
e Start Recording with the JraRecordingStarter Command

e Start a Recording from the JRockit Command Line

Start Recording from Management Console (JRockit J2SE 1.4
or higher)

1. Start your Java application with BEA JRockit, and add the -xmanagement option to the
command line.

2. Start the Management Console and connect to the JRockit instance you just started. (See the
BEA JRockit Management Console documentation for details on how to do this.)

3. Make sure that your application is running and is under load.

If you run the application without stress, the data captured from that application will not
show where there is room for improvements.

4. Inthe BEA JRockit Management Console, click Plugins > Start JRA recording.
The JRA Recording dialog box appears (Figure 1-1).

1-2 Using BEA JRockit Runtime Analyzer

Creating a Recording

Figure 1-1 JRA Recording Dialog Box

ake: this file will be created locally on the selected servers!

File name: jrarecarding. xml
Duration in seconds: 120

Enable method sampling
Enable GC sampling

[Enable native sampling

| Start recording | | Cancel |

5. Type a descriptive name for the recording in the File name field.

This is the name of the file on the host machine where the recording is made. The file is
created in the current directory of the BEA JRockit process, unless you specify a different
path. It will be overwritten if it already exists.

6. Set a time for the length of the recording (in seconds).

Note: If you set a time that is too short, e.g. shorter than 30 seconds, you will probably not
get enough sample data for the recording to be meaningful.

7. Select none, one, or all of the following sampling options:
— Method sampling—records samples of methods
— GC sampling—records garbage collection events
— Native sampling—records samples of native code
8. Click Start recording.
The JRA Recording Progress box appears (Figure 1-2).

Using BEA JRockit Runtime Analyzer 1-3

Using the BEA JRockit Runtime Analyzer

1-4

Figure 1-2 JRA Recording Progress Box

JRA Recording Progress @

Connections:
localhost (started)

Recording finished in 85 seconds

This box indicates that the recording has started. You will see a confirmation message, in
the JRockit command line window, halfway through the recording and when the recording
is finished. After the final message is printed you can shut down your application if you
want.

Start Recording with the JraRecordingStarter Command

1.

3.

Add the startup command -Xmanagement when you start your Java application with BEA
JRockit. This tells BEA JRockit to open a port and listen to commands from the management
server (for more information, please refer to Enable the Management Server in Using the
BEA JRockit 5.0 Management Console document for your corresponding JRockit version).

Make sure that your application is running and is under load.

If you run the application without stress, the data captured from that application will not
show where there is room for improvements.

Use the following command to initiate a recording:

java -jar JraRecordingStarter 15.jar <server> <port> <filename> <recording

time>

Where the arguments are:

— server—the host name (or IP address) of the machine where your application is
running (usually “localhost”).

— port—the port that BEA JRockit is listening to (usually 7091 for JRockit 1.4 or earlier,
it is usually 7090).

Using BEA JRockit Runtime Analyzer

Creating a Recording

— filename—the name of the file you want to save the recording to (for example
jrarecording.xml). This is the name of the file on the host where the recording is
done (server above). The file will be created in the current directory of the BEA
JRockit process. It will be overwritten if it already exists.

— recording_time — the duration of the recording in seconds (a good length is 300
seconds, i.e., five minutes).

For example:
java -jar JraRecordingStarter 15.jar localhost 7091 jrarecording.xml 300

Note: For JRockit versions 1.4 or older, the command to start a JRockit recording is
JraRecordingStarter 14.jar.

After the recording is initiated, BEA JRockit prints a message indicating that the recording
has started. Another message will appear halfway through the recording and a final
message when the recording is finished. After the final message appears, you can shut
down your application.

Start a Recording from the JRockit Command Line

You can also start a JRA recording from the command line by using some additional options to
the java command when you start up the application you want to record. Table 1-1 lists the
different options depending on which version of JRockit you are running.

If you are running BEA JRockit version 1.4.2 04 or newer use the command -XXjra together
with the parameters listed in the BEA JRockit 1.4.2 04 or newer.

If you are running BEA JRockit version 1.4.2 03 or older, you need to set each parameter with
its own startup option (listed in BEA JRockit 1.4.2 03 or older in Table 1-1).

Table 1-1 Command Line Startup Parameters
BEAJRockit1.4.2 04or BEA JRockit 1.4.2_03 or Description

newer older

delay -XXjradelay Amount of time, in seconds, to wait before recording
starts.

recordingtime -XXjrarecordingtime Duration, in seconds, for the recording. This is an
optional parameter. If you don’t use it, the default is 60
seconds)

Using BEA JRockit Runtime Analyzer 1-5

Using the BEA JRockit Runtime Analyzer

Table 1-1 Command Line Startup Parameters

BEAJRockit1.4.2_04or BEAJRockit 1.4.2_03 or Description

newer older

filename -XXjrafilename The name of recording file. This is an optional
parameter. If you don’t use it, the default is
jrarecording.xml.

sampletime -XXjrasampletime The time, in milliseconds, between samples. Do not
use this parameter unless you are familiar with how it
works. This is an optional parameter.

nativesamples -XXjranativesamples Displays method samples in native code; that is, you

will see the names of functions written in C-code. This
is an optional parameter.

An example of using the -XXjra startup command:

-XXjra:delay=10,recordingtime=100, filename=jrarecording2.xml
would result in a recording that:

e Commenced ten seconds after JRockit started (delay=10).

e Lasted 100 seconds (recordingtime=100).

e Was written to a file called jrarecording2.xml (filename=jrarecording2.xml).

To replicate this data with the JRA version released with BEA JRockit 1.4.2 03 or older, you
would need to enter the following four separate commands:

® -XXjradelay=10
® -XXjrarecordingtime=100

® -XXjrafilename=jrarecording2.xml

Starting the JRA Tool

Use the JRA tool to see the recording you just created. Start the tool with java -jar
RuntimeAnalyzer.jar. This will open the JRA application (see Figure 1-3):

1-6 Using BEA JRockit Runtime Analyzer

Figure 1-3 JRA Application with an Open Recording

E JRockit Runtime Analyzer - jrarecording.xmlLzip

Fle Wew Took Help

Starting the JRA Tool

Genssl |

o Methiods ‘

i acs

| Heap overview ‘ & Object statistics | Cptimizations

& Lock profiling | [l Comments ‘

Misc
IRA File Format version:
Recorded on:

Expected recording tims:
Actual recording time:
JRockkt version:

Operating syskem:

Memory usage of JRackit process
Before sampling

¥M arguments

E

| Tue May 03 10:21:26 2005

[120 seconas

[120 seconas

| BEA Weblogic JRockit(R) dra-43671-20050415-2003-win-ia32

| Microsoft Windaws XP Service Pack 2 (Build 2600)

Mumber of CPLis: [

Total physical memory: [s10m8

WM information; [zs.1.0-105
Mas heap: [rua

Mumber of codeblocks: [+

Total size of codeblacks: [2.26408
Unused space in codeblocks: | 522 KB

613 MB

56 MB

Virtual memory usags:
RAM memory usage:
Committed java heap: 16 MB

Page Faults: 43,752

After sampling
Virtual memory usags:
RAM memory usage: 35 ME
Committed java heap: 16 MB

Page Faults: 56,763

613 MB

Threads
Tatal #threads before recarding:
Tatal #threads sfter racording:
#daeman threads before recording:
#daemon threads after recording:
#threads started during recording:

System kotal of #context switches/second:

w | w
o e

o
&

[l

1,471

Allocation
Thread local area size:
#TLAs allocated:
#large objects allocated:
Size of largest object allocated:
Frequency - large objects:
Frequency - small cbjects:
Average size of large objects:
Ratio of bytes for large { small objects:

#free list misses:

[2,048 bytes

EED

[&700

[11ke

[108 ks (73 abectsys)

EX

[2ke

[0.405422

[0 o missests)

Exceptions

Tokal #exceptions thrown during recording:

#hardware generated exceptions thrown:

194

|

Dapplication. home=C \jrockitrockit-jdk 5.0_02 -Djrackit.launcher type=jrockit shipment -client -Xmanagement

Opening a Recorded File

1.
2.

Note:

Click OK.
The JRA General window is now filled with data (see Figure 1-3).

Click File > Open file.

Locate and select the recorded file and click Open.

data, since that data was impossible to obtain.

Using BEA JRockit Runtime Analyzer

The Improve JRockit window opens. In this window you find information on how you can
help the JRockit engineering team improving JRockit and the JRA.

If you are running an older version of the JRA, some fields may not have any relevant

—_

-1

Using the BEA JRockit Runtime Analyzer

1-8 Using BEA JRockit Runtime Analyzer

Looking at a Recording

This section describes the information displayed on the different tabs on the JRA tool. A lot of
the information requires a very deep understanding of the inner workings of the BEA JRockit
virtual machine to be useful. It is out of the scope of this document to explain the meaning of all
that data in detail. The following topics are covered in this section:

e Viewing General Data about the Application

e Viewing Hot Methods

Viewing Garbage Collection Data

e Viewing Java Heap Content

Viewing Object Statistics

Viewing Method Optimizations

Viewing Lock Activities in Your Application and JRockit

Adding Comments to the Recording

Viewing General Data about the Application

The General tab (see Figure 2-1) displays data about the recorded application behavior, such as
thread, allocation, exception and memory usage statistics. It also displays the command line
options that were used to start BEA JRockit (VM arguments section).

Using BEA JRockit Runtime Analyzer 2-1

Looking at a Recording

Note: Ifyou are running an older version of JRockit (older than 5.0), data will not be collected
for all fields, i.e. the field is left blank or marked as “unknown.”

Most of the information that is displayed in the General tab is pretty straight forward and
self-explanatory; however, some labels require further explanation. Below follows explanations
on selected label of the General tab.

Figure 2-1 General Tah

E JRockit Runtime Analyzer - jrarecording.xmlLzip

Flle Wisw Tocls Help
General | [oh Methods ‘ J GCs | Heap overvisw ‘ & Object statistics | Optimizations & Lock profiing | [k comments ‘
Misc Threads
IRA Fils Format version: E | Total #threads before recording:
Recorded on: [7ue May 03 10:21:26 2005 | Total #threas after recording:
Expected recording tims: [120 seconas | #daemon threads before recording:
Actual recording time: [120 seconas | sdaemon threads after recording:
okl version: [En weblogic Rackt(R) dra-43671-20050418-2003winria3z | #threads started during recording: o]
Operating system: [Mirosoft indows 4P Service Pack 2 (Buld 2600) | system total of #eontext switchesfsscond:
Mumber of CPLis: [| Alocation
RN S —— [s10m8 | Threadlocal area size [2,048 bytes |
Y information: [zs.1.0-105 | s e EED |
Max heap: [a | #arge obiects dlocated: [&700 |
Number of codeblacks: [+ | e oflrgest objert allocatec: [11ke |
Total size of codeblacks: [s.610e | Frequency - lerge objects: [108 ks (73 abectsys) |
Unused space in codeblocks: | 522 KB | Frequency -smal objects: EXn ‘
Memory usage of JRockit process Average size of large objects: [2ke |
el i S Ratio of bytes for large { small objects: [0.405422 |
Virtual memory sags: Virtual memory sags: P (s e ‘
RAM memory Usags: RAM memory Usags: Exceptions
Faga fas: Faga fas: it g T e]
VM arguments
Tispplication, home—Ce rackErorkt-idki .5.0_D2 -Dirack laLinches . byps—irackE, shipment -clsnt -Hmanagement

Miscellaneous Information

e The value Actual recording time can differ from expected recording time, e.g. if the
application that runs on BEA JRockit finished while a recording was still in progress.

e The Max heap, maximum heap size, that is set with a BEA JRockit startup option.

e The value Number of codeblocks is a JVM internal value. All generated code is divided
into (non-heap) memory blocks called codeblocks.

2-2 Using BEA JRockit Runtime Analyzer

Viewing General Data about the Application

Memory Usage of JRockit Process Information

This section shows a snapshot of the memory usage before and after the recording of JRockit’s
memory usage.

e The value Committed java heap is the current total heap size. It is less than or equal to
the maximum heap size.

Threads Information

This section shows information on the number of Java threads that existed before and after the
recording.

e The value System total of # (number) context switches per second is fetched from the
operating system. An unusually high context switch value compared to other applications
may indicate contention in your application.

Allocation Values Information

e The Thread local area (TLA) size is a JRockit internal value. It is a small memory area,
local to a thread, where the JVM can allocate small objects without having to take the heap
lock.

e Ratio of bytes for large/small objects. Per default, JRockit considers an object to be large
if it is larger than the thread local area size; it is small if it would normally fit in a thread
local area. Large objects are always allocated in the old space (second generation) of the
heap, never in the nursery.

e The Number (#) free list misses is a JRockit internal value. JRockit has a list of free
memory blocks on the Java heap. During allocation, an object is normally put in the first
free block on the “free list.” If it does not fit there, JRockit will try the next block, and the
next, etc. Each block where the code block did not fit is considered a “free list miss.”

Exceptions Information

This section displays information on the total number of Java exceptions that are thrown during
a recording. This includes both caught and uncaught exceptions. Excessive exception throwing
can be a performance problem. Hardware generated exceptions are originating from a “trap” in
the hardware and are usually the most expensive kind of exception.

Using BEA JRockit Runtime Analyzer 2-3

Looking at a Recording

Viewing Hot Methods

The Methods tab (see Figure 2-2) lists the top hot methods during the recording. The method

sampling in JRockit is based on CPU sampling. This requires that you put load on the system to
get any samples.

The Top Hot Methods lists all methods sampled during the recording and sorts them with the
most sampled method s first. These are the methods where most of JRockit’s time is spent.

Figure 2-2 The Methods Tah

E JRockit Runtime Analyzer - jrarecording.xmlLzip

Fle Wew Took Help

General [oh Methods ‘ 3 6Cs Heap overview +& Obiect statistics Cptimizations 8 Lock profiling | [k comments

@® Tree visw Methad: sun.java2d.pipe DuctusshapeRenderer renderPathisun. javazd SunGraphics2D, java. awt. Shape, java, awt, Basicstroke) void
all methods| ~ | | Fitering options

) Lisk view Pradecessors

Top Hot Methods 4= 100% [1] sun.javaizd pips, DuchusShapeRendsrer rendsrPathisun.java2d, SUnGraphics20, jswa. swt. Shape, java, swt, Basicstr = |
Mo WMethod Py ¥Samples [} 4= 100% sun.java2d.pips.DuctusShapeR sndsrer. draw(sun. java2d. SunGraphics2D, java. awt. Shape) void

1 Reflect IClassElock. getCB(inG) 5.33% 1 [} 4= 100% sun.javazd.pips. PizelToshapsConverter drawlins(sun java2d. SUnGraphics2D, int,int,int,int) void

z PathFiller reset() 533% 1 [} 4= 100% sun.java2d.SunGraphics2D. drawLine(int,int,int,int) void

e Locks. monitorEnterSecondstage(javal., §.33% 1 [} 4= 100% se.hirt. areychart.impl.DsFaultYAxis. render(java. awt. Graphics2D, java, swk Rectangls, java, awt. Rectar

4 UIManager.getLAFStatel) 8.33% 1 [=] 4= 100% se hirt. greychart.impl DefaultXyGreyChart, render(java, awt Graphics2D, java, awt Rectangles) vaid

= Hashhap.get{java.lang. Object) 8.33% 1) 4= 100% se.hirt. areychart. GreyChartPansl.createPlotImage(int,int) Image

s Memary.getFlaat{nt) e 8 - 4= 100% se hirt greyehart. GreyChartPanel. paintComponent(java.ant .Graphics) void

7 Reflect checkarrayStore(java.lang.Obj... §.3%% 1)))

s e T () 4= 100% javan.swing. JComponsnt.paint(java, swt.Graphics) void

o T T e e e T = A (5} 4= 100% javan.swing. JCamponsnt.paintChildren(iava. awt. Graphics) void

10 DuctusRenderer, createShapeRasterize. ., 8.33% 1 (=] 4= 100% javax.swing. JComponent . paint{java, awk. Graphics) void

11 Glyphlist.gstGrayBits() 5.33% 1 [} 4= 100% javax.swing. JCompanent. paintwithOffscreenBuffertjavax. swing. JCampc

1z Arrays.mergeSort(iava.lang. Object]d. .. 8.33% 1 [} 4= 100% javax.swing.J}Component. paintDoubleBuffered(javax:. swing, JCompor

) 4= 100% javax.swing. JCompanent._paintimmediatelylint,int,int,int) void
() 4= 100% javax.swing. JCampanent.paintImmediately(int, int, int, int) vo[7

<1]

Successors

=+ 100% [1] sun.java2d pipe. DuctusShapeRenderer. renderPath(sun. javazd. SunGraphics2D, java. awt.Shape, java,awk, Basicstroke,

Number of method samples: 12

Number of call traces: H 4

2-4

The hot methods data is collected periodically by JRockit sampling the running threads and
looking at which method the threads are executing. If your recording has native sampling
enabled, you can also see methods prefixed by jvm#, which are native methods in the JVM. You
can limit the methods shown in the top list by clicking Filtering options and select the least
number of samples that you want displayed.

Using BEA JRockit Runtime Analyzer

Viewing Garbage Collection Data

By selecting a method in the list, you can see its sampled Predecessors and Successors in the
tree view to the right. These are the methods that call the method and the methods that the selected
method calls. The number in brackets is the number of sampled call traces of which the method
is part. The percentages show how common a particular path is in the method tree.

If you prefer to see the successors and predecessors in a list view, you can change the view by
selecting List view instead of Tree view.

Viewing Garbage Collection Data

Fle Wew Took Help

The GCs tab (see Figure 2-3) shows detailed information about each garbage collection (GC)
event that has occurred. Graphs show the heap usage before and after each garbage collection as
well as pause times and number of java.lang.ref.* objects discovered. You select a specific
garbage collection event in the list, GCs during recording, to view details about it in the lower
right pane.

Figure 2-3 The GCs Tab

IIE JRockit Runtime Analyzer, - specjbb_demo_recording.xml.zip

Genersl | o Methiods ‘ 6 | Heap owsrvisw

#30h]ectstatist\cs| Cptimizations 8 Lock profiling | [k comments

- GC charts | GC method cal tres ‘ GC strateqy changes |

1 - Old collection -
2 - Old collection

5 - Voung collection

4 - Young collection

5 - Voung collection

6 - Voung collection

7 - Voung collection

5 - Voung collection

9 - Young collection

10 - oung callection Titne In seconds since JRockt start
11 - oung callection
12 - oung callection e usage over tine | Coritted hesp size gGC pavse lmes
13 - Young callection
14 - Young callection
15 - oung callection
16 - oung callection
17 - oung callection
15 - oung callection
19 - Young callection
- Young collection
- Young collection
- Young collection
- Young collection [S — ¥ T T T T T T T ¥ T ¥ T

~Voung collction) E a0 50 &0] a0 B 100 110 120 130 140 150
- Young colection Time in seconds since JRockt start
- Young collection

- Young collection
- Young collection Details on selected GO
29 - oung collection [=]

Genersl
Total no of GCs: 146
#oung collections: 143

e — . Sterttims: 52,345 ms Heap Usags before: 72 e st reFerences:

]
Total pause time: 16,25 Endtime: 52,423 ms Heap Usage after: 66 ME: Hweak references: 2
AvgOCpassetine, 180ms Pausetime: 78 ms Committed heap size after: 300 MB #phantom references: 1

]

g VC pause time: 109 ms Generation: 0 #objects panding finalization: 0 ohjecks (0} #ohjecks with finalizers:

Avg time between OCs: 405

GC Charts

.

Memory in ME:

0 30 40 50 60 70 a0 an 100 110 120 130 140 150

Palise time in ms

Show GC strategy changes | | Clear annotations

Objsct count

Detsls | OC specific | Y¥Cspecfic | Cache lists

Using BEA JRockit Runtime Analyzer 2-5

Looking at a Recording

GCs During Recording Information

This section lists all garbage collection (GC) events during the recording, provided that the
garbage collection sampling was enabled. A garbage collection can be an old collection, which
is a garbage collection in the old space of the Java heap or a young collection, which is a garbage
collection in the young space (nursery). Click on a garbage collection in the list to see it in the
GC Charts tab and the Details on selected GC part.

GC Charts Tab Information

The information that is displayed on the GC Charts tab contains two different charts and two
buttons:

e The upper chart, Heap usage chart, shows how the heap usage varies with the garbage
collections (in red) and how long the garbage collection pause times are (in blue).

e The lower chart, References chart, shows different types of reference counts after each
old collection. For more information, see the javadocs for java.lang.ref package.

By clicking a garbage collection sample in the left-hand list of GCs, a small flag, annotation, is
lit to indicate that specific garbage collection on the chart. See Figure 2-4.

Figure 2-4 The Annotation that Indicates Statistics for the Selected Garbhage Collection

GCs during recording —————————— GC Charts GC method call tree | ¢

1 - Old collection Iz‘
- Old collection

- ¥oung collection N\

- Yfoung collection 1 2"
200
3

- ¥oung collection
i}] Loy

- ¥oung collection
- ¥oung collection 20 30 40 =0

[= RN I = Uy I N TS
Memary in ME

- ¥oung collection

Click the Show GC strategy changes button to view garbage collection strategy changes
in the heap usage chart (if any).

Click the Clear annotations button to remove all annotations from the charts.

The GC method call tree tab shows an aggregation of the call traces of the threads
triggering a garbage collection.

The GC strategy changes tab shows the list of garbage collection strategy changes that
occurred during the recording. These changes can only happen if you are running BEA

JRockit with the default -Xgcprio: throughput option (-Xgcprio for versions earlier
than JRockit 5.0).

2-6 Using BEA JRockit Runtime Analyzer

Viewing Garbage Collection Data

General Information

This section displays general garbage collection statistics for the duration of the recording, for
example, the average old collection pause time (Avg OC pause time) or the average young
collection pause time (Avg YC pause time).

Selected GC Infomation

The Details on selected GC section contains four tabs with in-depth information relevant to the
garbage collection round you have selected.

Details Tah

The following information is displayed in the Details tab (see Figure 2-5).

Figure 2-5 Details Tabh

Details ‘ OC specific | Wi specific | Cache lists

Start bime: 50,993 ms Heap usage before: 300 MEB #s0ft references: 139
End time: 51,184 ms Heap usage after: 53 ME #weak references: 157
Pause time: 191 ms Committed heap size after: 300 ME #phantom references: 4
Generation: 1 #objects pending finalization: 0 objects (0) #objects with finalizers: 26

Start and End time(s)—the time(s) when the garbage collection started/ended, counted in
milliseconds from when JRockit started.

Pause time—the time in milliseconds that the garbage collector stops all threads in
JRockit. This is not the same as end time-start time in the case of a concurrent garbage
collector.

Generation—1 indicates a garbage collection in old space, 0 a garbage collection in young
space. In the case of a parallel garbage collector, only generation 1 exists.

Heap usage before/after—the used heap size before/after the garbage collection.

Committed heap size after—the total size of the heap (used + unused memory) after the
garbage collection.

e # objects pending finalization—if a number in parentheses is shown, this is the value
before the recording.

Using BEA JRockit Runtime Analyzer 2-1

Looking at a Recording

0C Specific Tab

The following information is displayed in the Old Collection (OC) specific tab (see Figure 2-6).

Figure 2-6 Old Collection (0C) Specific Tah

Detas ‘ OC specific | Wi specific | Cache lists ‘
Compaction: 8% (23 ME:
IMark phase: Parallel B o) Mursery size before: O kB
Desired evacuation: OKE .
Sweep phase! Parallel Nursery size after: 10 ME
Actual evacuation: OKB
Mark phase time: 181 ms MNursery position start: Ox 10020000
TLA allocation Failed
Sweep phase time: 15 ms GIC reason: Alocarion Fals Mursery position end: Ox 10676890
Heap toa Full

e Mark/Sweep phase—indicates if the phase is concurrent or parallel.
e Mark/Sweep phase time—indicates the time spent in this phase measured in milliseconds.

e Compaction—ratio and size of the heap that was compacted in this old space garbage
collection.

e Desired/Actual evacuation—the desired evacuation is the size of the area on the Java
heap that you want to evacuate and the actual evacuation is the size of the area that JRockit
managed to evacuate. The value for actual evacuation can be smaller than the desired due
to temporarily pinned objects (objects that are not allowed to be moved during garbage
collection). The evacuation takes place during compaction or shrinking of the Java heap.

e GC reason—indicates the reason for doing this garbage collection.

e Nursery size—indicates the size of the young space of the heap before and after garbage
collection (in some cases the nursery size can increase).

e Nursery position—memory address of nursery (sum internal).

YC Specific Tab

The following information is displayed in the Young Collection (YC) specific tab (see
Figure 2-7).

2-8 Using BEA JRockit Runtime Analyzer

Figure 2-7 Young Collection (YC) Specifics Tab

Detas ‘ OC specific | Wi specific | Cache lists ‘

Viewing Garbage Collection Data

Mursery usage before: 10 MEB
Mursery usage after: 440 KB

o Nursery usage before/after—the amount of used memory in the nursery before and after

the garbage collection.

Cache Lists Tah

Here you can view the specification for the different cache lists (see Figure 2-8). Each cache list

contains settings for upper and lower cache size.

Figure 2-8 Cache Lists Tab

Detas ‘ OC specific | Wi specific | Cache lists

#free list misses sofar: 0

Cache list state at start of GC (sizes in bytes):

Index #free blocks Cache size Avg free block size
1 o 0 o
Zz o 0 o
3 14 6,404,344 457,453

Cache size—the total size of this cache list.

Index—this is the identification number for the cache list.

#free blocks—the number of free blocks in the cache list.

Lo limnit: High limit.
Z,045 3,192
8,192 65,536
65,536 574,268

Avg free block size—the average size of each free memory block in the cache list.

e Low limit—the lower limit of a free memory block. There will be no smaller memory

block than this in the selected cache list.

e High limit—the upper limit of a free memory block. There will be no larger memory

blocks than this in the selected cache list.

Using BEA JRockit Runtime Analyzer 2-9

Looking at a Recording

Viewing Java Heap Content

2-10

The Heap overview tab (see Figure 2-9) gives a quick overview of what the memory in the Java
heap consists of at the time of the recording. The tab consists of two pie charts that display the
proportions of the: Heap contents (to the right) and Free memory distribution (to the left).

The information that is listed at the top of the Heap overview tab shows various statistics about
the memory use on the Java heap.

Figure 2-9 The Heap Overview Tab

E JRockit Runtime Analyzer - jrarecording.xml.zip

Fle Wew Took Help

General | [oh Methods ‘ 3 6Cs Heap overview % Obiect statistics Cptimizations 8 Lock profiling | [k comments ‘

Snapshot of the heap at the end of the recarding

Committed heap size: 16 MB
Memory in large object chunks: 4.1 ME
Memory in pinned object chunks: 0ME
Mumnber of pinned object chunks:]

Mumber of unused free blocks (dark matter): 3,079
Average dark matter block size: 823 bytes

Heap contents Free memory distribution

Dark matter is caused by fragmentation Free blocks in different size categories (Unit: bytes)

1,976,104 (21%)

Large object chunks (26%)
2,845,352 (30%)

Small object chunks (2%)
Free (57%)

2,068,536 (22%)

Dark matter (15%)

2,658,240 (28%)

iy Ler e obiect chunks gy Small object chunks gy Dark matter g Pinned 12 small block(s), 24410 B4 gy147 medium block(s), 8K to 64K & large block(s), 5414 to 5121

[Free 2 very large block(s), > §121¢

Heap Contents Pie Chart

The Heap contents pie chart shows how much of the heap that consists of large and small object
chunks, dark matter, and free space. The amount of dark matter indicates how much space in the
Java heap that is wasted due to fragmentation of the Java heap. It is normal to have a certain
amount of dark matter in the heap.

Using BEA JRockit Runtime Analyzer

Viewing Object Statistics

Free Memory Distribution Pie Chart

The Free memory distribution pie chart shows how the free memory is distributed in free blocks
of different sizes on the Java heap.

Viewing Object Statistics

At the beginning and end of a recording session, snapshots are taken of the most common
types/classes of objects that occupy the Java heap, that is, the types which instances in total
occupy most memory. The results are shown on the Object statistics tab (see Figure 2-10).
Abnormal results in the object statistics might help you detect the existence of a memory leak in
your application.

Figure 2-10 The Object Statistics Tab

IIE JRackit Runtime Analyzer - jrarecording.xml.zip

Fie Wew Tooks Help
General | ok Methods ‘ i acs Heap averview % Obiect statistics Optimizations & Lock profiling | [k comments ‘
Mast common types in the heap
Types that occupy more than 0.5% of the used heap space. This information is only available For parallel G,
Ak start of recording:
Class name % of used heap #Instances Total size (KE)
charl] 13.9% 15,010 1,009[<]
int[] B.4%, 471 615
java.lang.String 4.8%, 15,077 353
java.lang.Class 4.2%, 3,582 308
lvtel] 3.7%, 99 274
double]] 1.8% 128 134
jjava.lang.Object(] 1.6% 1,807 118
lsun.Farit. TrueTypeFant. DirectoryEntry 1.2% 3,812 89
java.wtil. Hashtable. Entry 1.1% 3,478 82
ljava. il HashMap.Entry 1% 3,112 73
java.til.HashMap.Entry[] 0.5%, 557 57
lcam. jrockit. console. attribute. AttributeEvent 0.7%, 2,306 s4[=
At end of recording:
Class name % of used heap #Instances Total size (KE) Difference (kB)
charl] 14.7%] 16,296 1,165 +148 (<]
int[] 7.6%, 472 603 -12)
java.lang.String 4.8%, 16,367 e +30
java.lang.Class 3.9%, 3,562 208
lvtel] 3.5%, 99 274
double]] 1.6% 143 127 E
lcam. jrockit. console. attribute. AttributeEvent 1.6% 5,358 126 +72,
java.lang.Cbject(] 1.5% 1,757, 118 -1
java. il TreeMap.Entry 1.2% 3,130 kS +48
lsun.Font. True TypeFont. DirectoryEntry 1.1% 3,812 a9 [
ljava.til. Hashtable. Entry 1.1% 3,559 83 +2
ljava.til. HashMap.Entry 0.9%, 3,102 73 0=

Using BEA JRockit Runtime Analyzer 2-11

Looking at a Recording

Viewing Method Optimizations

The Optimizations tab (see Figure 2-11) displays the methods that were optimized by the
adaptive optimization system in BEA JRockit during the recording.

The optimized methods are displayed in chronological order. The sizes in the Methods
optimized during recording table are the method size in bytes before and after optimization.
Some optimizations, like inlining, causes the method size to increase. The information that is
available under Optimization & JIT displays how JRockit has performed in optimizing the code
of your application.

Figure 2-11 The Optimizations Tah

IIE JRackit Runtime Analyzer - recording_with_lockprofiling.xml.zip

Fie Wew Tooks Help
General | Lz Methods ‘ i acs Heap averview & Object statistics Optimizations & Lock profiling | [comments ‘
Optimization & JIT
Before recording After recording
Murber of optimizations: 3 Murber of optimizations: 93
Tirme spent optimizing: 11,361 ms Tirme spent optimizing: 113,076 ms
Murber of JIT compilations: 2,924 Murber of JIT compilations: 3,048
Tirme spent JIT compiling: 4,796 ms Tirme spent JIT compiling: 5,011 ms
Methods optimized during recording
Method Size before (bytes) Size after (bytes)
1 spec.jbb.Order.processLines{spec, jbb. warehouse, short, boolean) boolean 565 6,099 [~]
2 java.lang.String.indexcf{char] int,int,char[] nt, int,int) ink a4 362
3 java.lang.String. <init:»(java.lang. String) vaid a3 1
4 java.lang.String.indexCftjava.lang, String, int) it 50 321
5 spec.jbb.warehouse retrievestock(int) Stack 52, &40
6 spec.jbb.infra.Factory.Container.allocStringhiear{char],java.lang. Object) String a4 362
7 spec.jbb.infra.Factory. Heap. allochrrayMeardink, int, java.lang.Object) Object 78 1,240
8 spec.jbb.infra.Factory Factory.newlnstancewith{java lang.Class, spec. jbb.infra Base) Object 798 1,383
9 jrackit.vm.Allocator.getMoreMemaryAndallac(int ik, int,int) Object 16 138
10 spec.jbb.Company loadWarehouseTable() void 358 6,508
11 jrockit.vm.Allocator. alocObject(int) Object ES) 146
12 spec.jbb.infra.Factory. Heap.allocStringhiear{char[],java.lang. Object) String a1 482
13 jrockit.vm.Locks. manitorEnter{java Jang.Object) Object 57, 102
14 java.lang.String. <init>{char[]ink,int) void 223 470
15 jrockit.vm.Locks. manitorExittjava.lang. Object) void 44 487
16 spec.jbb.StockLevelTransaction process{) boslean 559 2,305
17 spec.jbb.Stock.getld() int 76 70
18 java.lang.String.compareTa(jsva.lang. String) int 216 220
19 spec.jbb.infra.Util DisplayScreen. putTexttjava.lang. String,int inkt, int) void 498 481
20 spec.ibb.infra. Ul DisplayScreen. privIntint, nt, int,int) ink 402 338
21 java.uti.Hashtable.put(java.lang Object, java.lang. Object) Object 461 632
22 spec.ibb.infra. Ul DisplayScreen. putDollars{double, It int,int) void 1,293 1,381
23 spec.jbb.infra. Uil DisplayScreen. dearscreent) void 138 127|7]

Viewing Lock Activities in Your Application and JRockit

The Lock Profiling tab (see Figure 2-12) shows comprehensive information about lock activity
for the application JRA is monitoring. A lock profile can only be generated when the
-Djrockit.lockprofiling command is issued at the JRockit command line.

2-12 Using BEA JRockit Runtime Analyzer

Viewing Lock Activities in Your Application and JRockit

For example:
java -Djrockit.lockprofiling -XXjra:<AnyJRAParam> -jar MyApplication.jar

For more information on locks, please refer to the appendix About Thin, Fat, Recursive, and
Contended Locks in BEA JRockit.

Figure 2-12 Lock Profiling Tab

E JRockit Runtime Analyzer - recording with_lockprofiling.xml.zip

File Wiew Tools Help
General | [oh Methods ‘ 3 6Cs Heap overview % Object statistics Cptimizations 8 Lock profiling | [k comments ‘
Java lock profiling
Class Thin Uneontended Thin Contended Thin Recursive Fat Uncontended Fat Contended Fat Recursive Fat Contende... RB Unconten... R Contended

java.lang.StringBuffer 4,238,488 0 0,936 0 0 0 0 0 of[=]
lspec.jub. Delivery Transaction 58,124 0 29,062 0 0 0 0 0 0
lspec.jbb. Savecutput 21 3 85 0 [0 0 [[
jjava.io. OLtputStreamwricer 144 0 37 0 0 0 0 0 0
lsun.mise. Launcher$appClas. . 5 [5 0 [0 0 [[
java. il Stack 5 0 5 0 0 0 0 0 0
lspec.jbb. JBBmain 5 3 4 0 [0 0 [[
lspec.jbb. Company 10 0 4 0 0 0 0 0 0
lspec.jbb. Customer 2,122,706 2 0 0 [0 0 [[
lspec.jbb.Orderline 34,567,304 0 0 0 0 0 0 0 0
lspec.jbb.Stock 20,329,623 [0 0 [0 0 [[
spec.jbb.Address 4,354,964 0 0 0 0 0 0 0 0
lspec.jbb.order 3,963,323 [0 0 [0 0 [[

pec.ibb.infra.Colections.la. . 2,923,088 0 i i 0 i} i} 0]l
Native lock profiling

Lock Name Times Acquired Times Contended Times TryFailed

IGC: Heap (0x00SC3700) 552 55 of[=]
Iative Lock Profiling (0x005C5638) 1 [[
IGC: Task (x00SC3688) 2,617 0 0
IMemLesk LargestArrays Hook (Dx005C39ED) 0 [[
(GC: Wit For Memory (0xD0SC3510) 64 0 0
1GC: Block (Dx005C3598) 0 [[
Iative Code Modification (0x005C4778) 19,523 0 0
Bootstrap Classloader ((+00SC3465) 7,579 [[
Typegraph (0x00607E58) 10 0 0
R File Lock {0x0D8085C0) 1,567, [[
[J3va Stubs Lock (0x00607538) 0 0 0
MemLesk Id Table (0x005C3A60) 0 [[
MemLeak wirite Queue (1x00SCIE18) 0 0 0
[3WMTI Capabilties (0x0DSC1FFO) i 0 o=

Java Lock Profiling

The information that is displayed under the Java lock profiling chart shows the number of locks
of the threads in your application. You see information on the number of thin uncontended, thin
contended, and thin recursive locks; the number of fat uncontended, fat contended, and fat
recursive locks; and the number of reservation bit (RB) uncontended and contended.

Click on the column header to sort the information for that column content.

Using BEA JRockit Runtime Analyzer 2-13

Looking at a Recording

Native Lock Profiling

If you are looking at a recording of JRockit J2SE 5.0 or later, the recording includes information
about native locks. Native locks are locks in the JRockit internal code and is nothing your
application can control. If you find high contention on a JRockit internal lock that might be
causing issues for your application, either contact BEA support or contact JRockit through the
BEA JRockit newsgroup at the dev2dev web site.

Adding Comments to the Recording

2-14

On the Comments tab (see Figure 2-13), you have a simple text editor where you can add
comments about the recording. This can be a useful place to add comments when sending the JRA
recording to BEA. To save you comments, click File > Save comments.

Figure 2-13 The Comments Tah

IIE JRackit Runtime Analyzer - jrarecording.xml.zip

Fle Wew Tooks Help

General | lzch Methods ‘ i aCs Heap averview 4% Obiect statistics Optimizations & Lock profiling | [comments

Comments about this recording:

nsert your comments in this field|

Using BEA JRockit Runtime Analyzer

CHAPTERa

Help Us Improve BEA JRockit and the
JRA Tool

The JRA tool provides an easy way to capture information about BEA JRockit when it is running
in a deployment environment. JRA is designed to induce a minimal overhead when enabled, and
no overhead at all when not enabled.

Because of this, the JRA can be used to capture a very “true” picture of the running system. The
data that is recorded is actually what is happening and not a side effect of having the tool enabled.
JRA is able to do this by being very tightly integrated into BEA JRockit.

The results of the recordings sent from customers are often used by the engineering team to guide
for future improvements of BEA JRockit. We therefore invite you to help us with this effort by
sending us the JRA recordings of your J2SE or J2EE application running with BEA JRockit.
Once you’ve made a recording, just follow these steps:

1. Attach the recording file to an email
2. Describe your application in a few sentences.

3. Send the email to jrockit-improve@bea.com

How will BEA Use These Recordings

The recordings will be analyzed and used by the development team pretty much in the same way
you have analyzed your recording. The information is then used to find new ways to improve
BEA JRockit. This can help you getting your application to run faster and better in the future.

Using BEA JRockit Runtime Analyzer 3-1

Help Us Improve BEA JRockit and the JRA Tool

JRockit Support for JRA

Only the most recent versions of BEA JRockit supports the possibility to create JRA recordings,
i.e., versions 7.0sp4, 8.1spl, 8.1sp2, 1.4.2 x, and 5.0 (listed in chronological order).

The different BEA JRockit versions do not provide the exact same data to the recordings.
Recordings of BEA JRockit 5.0 support more types of data than previous versions. You can use
the latest JRA tool to view recordings from different BEA JRockit versions, but when you see a
field in the tool that says “unknown”, this means that this particular data was not recorded in that
version of BEA JRockit. Ifa field says “N/A” (Not Applicable) it means that the data is supported
but not applicable in that particular case (for example, no data about garbage collections in young
space exists if you run with the parallel garbage collector).

Frequently Asked Questions

3-2

The following are some questions that have frequently been asked about the JRA:

Is the Performance Overhead of the JRA Recording in BEA JRockit Significant?

Does BEA Guarantee the Accuracy of the JRA output?

When JRA reports method time, is it CPU time or elapsed time?

Is there any way to select CPU time v.s elapsed time or self v.s including children?

What Kind of Support is Available for the JRA?

Is There a Forum Where I can Discuss the JRA?

s the Performance Overhead of the JRA Recording in BEA
JRockit Significant?

Performance overhead required for making a JRA recording is very low. For the applications that
have been measured for BEA JRockit 8.1sp1 and 2 it has been only 1-2%. For BEA JRockit 5.0
it is a bit higher since more data is recorded. The overhead can momentarily be larger when the
recording is zipped and the file is written to disk., but there is absolutely no overhead once the
recording has stopped.

Does BEA Guarantee the Accuracy of the JRA output?

Since this tool is not a supported product, BEA does not make any guarantees about the
correctness of the data shown or the stability of the product itself.

Using BEA JRockit Runtime Analyzer

Frequently Asked Questions

When JRA reports method time, is it CPU time or elapsed time?

It is the CPU time that is reported and the time reported is only for the method itself not its
children.

s there any way to select CPU time v.s elapsed time or self v.s
including children?

No, you can only see elapsed time in the CPU and elapsed time of the method, not its children.

What Kind of Support is Available for the JRA?

BEA does not provide support or answer questions about JRA; however, the engineering team
gladly collects comments about the tool and looks at recordings of you application to improve
future versions of the tool.

|s There a Forum Where | can Discuss the JRA?

If you have any questions you are welcome to share them in the BEA JRockit general interest
newsgroup, which is monitored by our engineering team. To access the newsgroup, go to:

http://newsgroups.bea.com/cgi-bin/dnewsweb?cmd=xover&group=jrockit.develop

er.interest.general&utag=

Using BEA JRockit Runtime Analyzer 3-3

Help Us Improve BEA JRockit and the JRA Tool

3-4 Using BEA JRockit Runtime Analyzer

APPENDlxa

About Thin, Fat, Recursive, and
Contended Locks in BEA JRockit

This is a description of the different kinds of locks in BEA JRockit.
Let’s start with the easiest part: recursive locks. A recursive lock occurs in the following scenario:
synchronized(foo) { // first time thread takes lock

/] ..

synchronized(foo) { // this time, the lock is taken recursively

/] ...

}

The recursive lock taking may also occur in a method call several levels down—it doesn’t matter.
Recursive locks are not necessarily any sign of bad programming, at least not if the recursive lock
taking is done by a separate method.

The good news is that recursive lock taking in JRockit is extremely fast. In fact, the cost to take
a lock recursively is almost negligible. This is regardless if the lock was originally taken as a thin
or a fat lock (explained in detail below).

Now let’s talk a bit about contention. Contention occurs whenever a thread tries to take a lock,
and that lock is not available (that is, it is held by another thread). Let me be clear: contention
always costs in terms of performance. The exact cost depends on many factors. I’ll get to some
more details on the costs later on.

So if performance is an issue, you should strive to avoid contention. Unfortunately, in many cases
it is not possible to avoid contention—if your application requires several threads to access a

Using BEA JRockit Runtime Analyzer A-1

About Thin, Fat, Recursive, and Contended Locks in BEA JRockit

A-2

single, shared resource at the same time, contention is unavoidable. Some designs are better than
others, though. Be careful that you don’t overuse synchronized-blocks. Minimize the code that
has to be run while holding a highly-contended lock. Don't use a single lock to protect unrelated
resources, if that lock proves to be easily contended.

In principle, that is all you can do as an application developer: design your program to avoid
contention, if possible. There are some experimental flags to change some of the JRockit locking
behavior, but I strongly discourage anyone from using these. The default values is carefully
trimmed, and changing this is likely to result in worse, rather than better, performance.

Still, I understand if you’re curious to what JRockit is doing with your application. I’1l give some
more details about the locking strategies in JRockit.

All objects in Java are potential locks (monitors). This potential is realized as an actual lock as
soon as any thread enters a synchronized block on that object. When a lock is born in this way, it
is a kind of lock that is known as a “thin lock.” A thin lock has the following characteristics:

e [t requires no extra memory—all information about the lock is stored in the object itself.
e It is fast to take.

o Other threads that try to take the lock cannot register themselves as contending.

The most costly part of taking a thin lock is a CAS (compare-and-swap) operation. It’s an atomic
instruction, which means as far as CPU instructions goes, it is slow. Compared to other parts of
locking (contention in general, and taking fat locks in specific), it is still very fast.

For locks that are mostly uncontended, thin locks are great. There is little overhead compared to
no locking, which is good since a lot of Java code (especially in the class library) use lot of
synchronization.

However, as soon as a lock becomes contended, the situation is not longer as obvious as to what
is most efficient. If a lock is held for just a very short moment of time, and JRockit is running on
a multi-CPU (SMP) machine, the best strategy is to “spin-lock.” This means, that the thread that
wants the lock continuously checks if the lock is still taken, “spinning” in a tight loop. This of
course means some performance loss: no actual user code is running, and the CPU is “wasting”
time that could have been spent on other threads. Still, if the lock is released by the other threads
after just a few cycles in the spin loop, this method is preferable. This is what’s meant by a
“contended thin lock.”

If the lock is not going to be released very fast, using this method on contention would lead to
bad performance. In that case, the lock is “inflated” to a “fat lock.” A fat lock has the following
characteristics:

Using BEA JRockit Runtime Analyzer

e [t requires a little extra memory, in terms of a separate list of threads wanting to acquire the
lock.

e It is relatively slow to take.

e One (or more) threads can register as queueing for (blocking on) that lock.

A thread that encounters contention on a fat lock register itself as blocking on that lock, and goes
to sleep. This means giving up the rest of its time quantum given to it by the OS. While this means
that the CPU will be used for running real user code on another thread, the extra context switch

is still expensive, compared to spin locking. When a thread does this, we have a “contended fat
lock.”

When the last contending thread releases a fat lock, the lock normally remains fat. Taking a fat
lock, even without contention, is more expensive than taking a fat lock (but less expensive than
converting a thin lock to a fat lock). If JRockit believes that the lock would benefit from being
thin (basically, if the contention was pure “bad luck” and the lock normally is uncontended), it
might “deflate” it to a thin lock again.

A special note regarding locks: if wait/notify/notifyall is called on a lock, it will
automatically inflate to a fat lock. A good advice (not only for this reason) is therefore not to mix
actual locking with this kind of notification on a single object.

JRockit uses a complex set of heuristics to determine amongst other things:

e When to spin-lock on a thin lock (and how long), and when to inflate it to a fat lock on
contention.

e If and when to deflate a fat lock back to a thin lock.

e If and when to skip on the fairness on a contended fat lock to improve performance.

These heuristics are dynamically adaptive, which means that they will automatically change to
what’s best suited for the actual application that is being run.

Since the switch between thin and fat locks are done automatically by JRockit to the kind of lock
that maximizes performance of the application, the relative difference in performance between
thin and fat locks shouldn't really be of any concern to the user. It is impossible to give a general
answer to this question anyhow, since it differs from system to system, depending on how many
CPUs you have, what kind of CPUs, the performance on other parts of the system (memory,
cache, etc.) and similar factors. In addition to this, it is also very hard to give a good answer to
the question even for a specific system. Especially tricky is it to determine with any accuracy the
time spent spinning on contended thin locks, since JRockit loops just a few machine instructions

Using BEA JRockit Runtime Analyzer A-3

About Thin, Fat, Recursive, and Contended Locks in BEA JRockit

A-4

a few times before giving up, and profiling of this is likely to heavily influence the time, giving
a skewed image of the performance.

To summarize: If you’re concerned about performance, and can change your application to avoid
contention on a lock—then do so. If you can’t avoid contention, try to keep the code needed to
run contended to a minimum. JRockit will then do whatever is in its power to run your application
as fast as possible. Use the lock information provided by JRA as a hint: fat locks are likely to have
been contended much or for a long time. Put your coding efforts into minimizing contention on
them.

Using BEA JRockit Runtime Analyzer

Index

Symbols

objects pending finalization 2-7
#free blocks 2-9

A

actaual evacuation 2-8
actual recording time 2-2
avg free block size 2-9
avg OC pause time 2-7
avg YC pause time 2-7

B
buttons

Clear annotations 2-6

Filtering options 2-4

Show GC strategy changes 2-6
C

cache lists tab 2-9
cache size 2-9
change view 2-5
clear annotations 2-6
codeblocks 2-2
comments tab 2-14
commited heap size after 2-7
commited java heap 2-3
compaction 2-8
concurrent 2-8
contended fat lock A-3
contended locks

thin 2-13

contended thin lock A-2
CPU time 3-3

dark matter 2-10

delay 1-5

desired evactuation 2-8
details on selected GC 2-7
details tab 2-7

E

end time 2-7
exceptions 2-3

F

fat contended locks 2-13
fat lock A-2
fat recursive locks 2-13
fat uncontended locks 2-13
filename 1-6
filtering options 2-4
free list miss 2-3
free memory block
lower limit 2-9
upper limit 2-9
free memory distribution 2-10

G

garbage collection 2-5
GC charts tab 2-6

Using BEA JRockit Runtime Analyzer

GC method call tree tab 2-6
GC reason 2-8

GC strategy changes tab 2-6
GCs during recording 2-6
GCs tab 2-5

general tab 2-1

generation 2-7

heap contents 2-10
heap overview tab 2-10
heap usage 2-7

heap usage chart 2-6
high limit 2-9

|
index 2-9

J

Java lock profiling 2-13

Java threads 2-3

java.lang.ref 2-6
java.lang.ref.* 2-5

JT 2-12

JraRecordingStarter 1-4
JraRecordingStarter 14.jar 1-5
JraRecordingStarter 15.jar 1-4
Jjvm# 2-4

L

list view 2-5

lock activity 2-12
lock profiling tab 2-12
locks 2-13

low limit 2-9

1-6 Using BEA JRockit Runtime Analyzer

mark phase 2-8

mark phase time 2-8

max heap 2-2

memory leak 2-11

methods optimized during recording 2-12
methods tab 2-4

nativesamples 1-6

newsgroup 3-3

number of codeblocks 2-2
number of context switches 2-3
number of free list misses 2-3
nursery position 2-8

nursery size 2-8

nursery usage after 2-9

nursery usage before 2-9

0

object statistics tab 2-11
OC 2-7

OC specific tab 2-8

old collection 2-6, 2-7
old space 2-7
optimization & JIT 2-12
optimizations tab 2-12

P

parallel 2-8
pause time 2-7
predecessors 2-5

R

ratio of bytes for large/small objects 2-3
RB 2-13

recording time 2-2

recordingtime 1-5

recursive locks

fat 2-13

thin 2-13
references chart 2-6

reservation bit contended locks 2-13

reservation bit uncontended 2-13

S

sampletime 1-6

save comments 2-14

show GC strategy changes 2-6
spin-lock A-2

start time 2-7

successors 2-5

sweep phase 2-8

sweep phase time 2-8

T

text editor 2-14

thin contended locks 2-13
thin lock A-2

thin recursive locks 2-13
thin unconteded locks 2-13
thread local area size 2-3
tree view 2-5

U

uncontended locks
fat 2-13
thin 2-13

X
Xgcprio

throughput 2-6
XXjra 1-5, 1-6, 2-13
XXjradelay 1-5
XXjrafilename 1-6
XXjranativesamples 1-6

XXjrarecordingtime 1-5
XXjrasampletime 1-6

Y

YC2-7

YC specific tab 2-8
young collection 2-6, 2-7
young space 2-7

Using BEA JRockit Runtime Analyzer

1-1

1-8 Using BEA JRockit Runtime Analyzer

	Using the BEA JRockit Runtime Analyzer
	Downloading the JRA Tool
	Creating a Recording
	Start Recording from Management Console (JRockit J2SE 1.4 or higher)
	Start Recording with the JraRecordingStarter Command
	Start a Recording from the JRockit Command Line

	Starting the JRA Tool
	Opening a Recorded File

	Looking at a Recording
	Viewing General Data about the Application
	Miscellaneous Information
	Memory Usage of JRockit Process Information
	Threads Information
	Allocation Values Information
	Exceptions Information

	Viewing Hot Methods
	Viewing Garbage Collection Data
	GCs During Recording Information
	GC Charts Tab Information
	General Information
	Selected GC Infomation
	Details Tab
	OC Specific Tab
	YC Specific Tab
	Cache Lists Tab

	Viewing Java Heap Content
	Heap Contents Pie Chart
	Free Memory Distribution Pie Chart

	Viewing Object Statistics
	Viewing Method Optimizations
	Viewing Lock Activities in Your Application and JRockit
	Java Lock Profiling
	Native Lock Profiling

	Adding Comments to the Recording

	Help Us Improve BEA JRockit and the JRA Tool
	How will BEA Use These Recordings
	JRockit Support for JRA
	Frequently Asked Questions
	Is the Performance Overhead of the JRA Recording in BEA JRockit Significant?
	Does BEA Guarantee the Accuracy of the JRA output?
	When JRA reports method time, is it CPU time or elapsed time?
	Is there any way to select CPU time v.s elapsed time or self v.s including children?
	What Kind of Support is Available for the JRA?
	Is There a Forum Where I can Discuss the JRA?

	About Thin, Fat, Recursive, and Contended Locks in BEA JRockit
	Index

