
BEA JRockit SDK
Using BEA JRockit SDK

Version 1.4.2
June 2004

Copyright
Copyright © 2004 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic
Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Using WebLogic JRockit SDK iii

Contents

Introduction
What’s In the User Guide?. 1-1

Finding Additional Information . 1-2

BEA JRockit Support . 1-2

Supported Platforms . 1-2

Tuning BEA JRockit. 1-2

Documentation . 1-2

Starting and Configuring BEA JRockit JVM
Before Starting BEA JRockit . 2-1

Starting BEA JRockit. 2-1

Sample Start-up Command . 2-2

Configuring BEA JRockit . 2-2

Using Standard Options . 2-3

Setting the JVM Type . 2-3

Setting General Information . 2-3

Providing Information to the User. 2-4

Using Non-standard Options . 2-4

Setting Behavioral Options . 2-5

Displaying Logging Information . 2-5

Including a Timestamp with Logging Information . 2-9

Protecting Systems by Using the Security Manager . 2-10

Using WebLogic JRockit SDK iv

Preventing BEA JRockit JVM (When Run as a Service) from Shutting Down After
Receiving a Logoff Event . 2-10

Special Instructions for Linux Users . 2-10

Enabling Core Dumps on Red Hat AS . 2-11

Overriding NPTL. 2-11

Using the BEA JRockit Memory Management System
The Mark-and-Sweep Collection Model . 3-2

Garbage Collector Permutations . 3-2

Generational . 3-2

Single-spaced . 3-3

Concurrent . 3-3

Parallel . 3-3

Running the Dynamic Garbage Collector . 3-3

Using Static Garbage Collection Methods . 3-4

Using Backward-compatible Garbage Collectors . 3-5

Pros and Cons . 3-5

Garbage Collector Selection Matrix . 3-6

Setting the Default Garbage Collector . 3-7

Overriding Garbage Collectors . 3-8

Viewing Garbage Collection Activity . 3-8

Thread-local Allocation. 3-9

Using the BEA JRockit Management Console
Console Overhead . 4-1

Starting the Console. 4-2

Enable the Management Server . 4-2

Attaching a Management Client . 4-2

Start the JRockit Management Console . 4-2

Using WebLogic JRockit SDK v

Starting the Management Server with a Security Manager. 4-3

Set the Port . 4-4

Change the Number of Connections. 4-4

Parts of the Console. 4-4

Setting Up the Console . 4-6

Making Connections. 4-6

Creating a New Folder . 4-7

Creating a New Connection . 4-7

Connecting a Connection to BEA JRockit JVM. 4-8

Disconnecting a Connection from BEA JRockit JVM . 4-8

Renaming a Connection or Folder . 4-9

Removing a Connection or Folder . 4-10

Hiding Disconnected Connections . 4-10

Enabling Console Settings . 4-10

Setting the Operation Mode . 4-10

Setting Other Preferences . 4-11

Customizing the Display . 4-13

Using the Settings File . 4-15

Using the Console . 4-16

Information Tabs . 4-16

Overview Tab . 4-16

Memory Tab . 4-17

Processor Tab . 4-19

System Tab . 4-20

Notification Tab. 4-22

View Historical Data . 4-28

Using Advanced Features of the Console . 4-30

View Thread Stack Dump . 4-31

Using WebLogic JRockit SDK vi

Method Profiling Tab . 4-31

Exception Counting Tab . 4-35

Creating a JRA Recording. 4-37

Closing the Console. 4-38

Starting and Running the Console in the Headless Mode . 4-39

Running a Headless Management Console . 4-39

Controlling the Console with Command-line Options. 4-39

Using the BEA JRockit Memory Leak Detector
Starting the Memory Leak Detector . 5-2

Using the Memory Leak Detector . 5-4

Overview of the Memory Leak Detection Process. 5-4

Getting Started . 5-5

Memory Leak Detection. 5-6

An Example of How to Find a Real Memory Leak . 5-9

Help Us Improve BEA JRockit . 5-11

How will BEA Systems Use This Feedback . 5-12

BEA JRockit Support for the Memory Leak Detector . 5-12

Frequently Asked Questions . 5-12

Does BEA Systems Guarantee the Accuracy of this tool’s output? 5-12

Does the Memory Leak Detector Cause Any Overhead? 5-12

What Kind of Support is Available for the Memory Leak Detector? 5-13

Is There a Forum Where I can Discuss the Memory Leak Detector? 5-13

Known Issues. 5-13

Code Caching with BEA JRockit
Why Is Code Caching Helpful?. 6-2

What is the Cache? . 6-2

Using WebLogic JRockit SDK vii

How to Use Code Caching . 6-2

Enabling Code Caching . 6-3

Specifying a Cache Name . 6-3

Code Caching in the Read/Write Mode . 6-3

Code Caching in the Read-only Mode . 6-3

Other Code Caching Arguments . 6-4

Using Code Caching to Improve Performance. 6-4

Setting the Verbosity Level . 6-4

Enabling Code Caching by Using an Environment Variable 6-5

How Code Caching Works . 6-5

What Happens When Code Caching Runs. 6-5

Dealing with Code Changes . 6-6

Dealing with Cache Cleanup . 6-6

Removing Obsolete Methods . 6-6

Cache File Validity . 6-7

Error Recovery. 6-7

Cleaning Up the Cache . 6-7

Using BEA JRockit JVM with Other WebLogic Applications
Using BEA JRockit JVM with BEA WebLogic Server . 7-1

Certified Versions . 7-2

Verifying that BEA JRockit is Your JVM . 7-2

Starting JRockit from the Node Manager. 7-2

Enabling the Management Server from the Node Manager. 7-2

Setting Options by Using the Node Manager. 7-3

Tuning BEA JRockit for WebLogic Server . 7-3

Monitoring BEA JRockit JVM from WebLogic Server. 7-4

Switching to BEA JRockit JVM in WebLogic Server . 7-6

viii Using WebLogic JRockit SDK

Switching VMs When WebLogic Server is Running as a Service 7-6

Configuring JRockit for BEA WebLogic Workshop . 7-7

Adding Custom Notification Actions and Constraints
Locating consolesettings.xml . A-1

Creating a Custom Action . A-2

Creating and Implementing an Action: Example . A-2

Create the Action (Step 2) . A-3

Implementing handleNotificationEvent() (Step 3). A-5

Creating the Action Editor (Step 4) . A-5

Implementing the Abstract Methods (Step 5) . A-7

Adding the New Action to the Deployment Entries (Step 6). A-8

Displaying the New Action Editor (Steps 7 and 8) . A-8

Creating a Custom Constraint . A-8

Using the Java Plugin
Supported Operating Systems and Browsers . B-2

Installing the Plugin . B-2

Note on Installing the BEA JRockit Plugin and Sun Plugin B-2

Implementing the Plugin . B-3

Plugin Reference . B-3

Tracing Thread Activity With Stack Dumps
Monitoring Information in Stack Dumps . C-1

Detecting Deadlocks . C-3

What is a “Lock Chain”? . C-3

Lock Chain Types . C-4

Open Chains . C-4

Deadlock Chains . C-4

Using WebLogic JRockit SDK ix

Closed Chains . C-4

Using Web Start with BEA JRockit
What You Can Do with Web Start .D-1

Web Start Security. .D-2

Installing and Launching Web Start .D-2

Windows Implementations .D-2

Linux Implementations. .D-2

Comprehensive Web Start Documentation .D-3

Index

x Using WebLogic JRockit SDK

Using WebLogic JRockit SDK xi

xii Using WebLogic JRockit SDK

Using BEA JRockit SDK 1-1

C H A P T E R 1

Introduction

Welcome to Using BEA JRockit SDK. This document contains procedures and other information
necessary for you to gain optimal performance from BEA Systems’ industry-leading Java Virtual
Machine, BEA JRockit.

This Introduction includes information on the following subjects:

What’s In the User Guide?

Finding Additional Information

What’s In the User Guide?
This user guide is organized as follows:

Using the BEA JRockit Memory Management System describes how to implement the best
memory management system—or garbage collection method—for your application.
Garbage collection is the process of clearing dead objects from the heap, thus releasing that
space for new objects.

Starting and Configuring BEA JRockit JVM describes how to start BEA JRockit JVM and
configure it to provide the best performance for your application.

Using the BEA JRockit Management Console shows how to monitor and control running
instances of BEA JRockit JVM using this graphic tool. The management console provides
real-time information about the running application’s characteristics, which is helpful both
during development and in a deployed environment

In t roduc t i on

1-2 Using BEA JRockit SDK

Using BEA JRockit JVM with Other WebLogic Applications discusses how to use the
JVM configuration options to optimize BEA JRockit JVM performance with both BEA
WebLogic Server and BEA WebLogic Workshop.

Adding Custom Notification Actions and Constraints shows you how to create custom
notification actions and constraints for the Management Console.

Finding Additional Information
You can find additional information about BEA JRockit throughout this documentation set. For
a complete list of available documents, please refer to BEA JRockit SDK 1.4.2 Online
Documentation. The following list cites the most commonly referenced information.

BEA JRockit Support
To get support for BEA JRockit, please refer to “BEA JRockit 1.4.2 SDK Support” in
Introduction to BEA JRockit.

Supported Platforms
For a list of platforms supported by BEA JRockit, please refer to “Supported Platforms”.

Tuning BEA JRockit
Tuning information can be found in Tuning BEA JRockit 1.4.2 JVM.

Documentation
Descriptions of all documents available with BEA JRockit and of the document conventions used
is available in Using BEA JRockit 1.4.2 SDK Documentation.

Using BEA JRockit SDK 2-1

C H A P T E R 2

Starting and Configuring BEA JRockit
JVM

This section describes how to start BEA JRockit and how to configure it by using standard and
non-standard command line options. It includes information on the following subjects:

Before Starting BEA JRockit

Starting BEA JRockit

Configuring BEA JRockit

Note: If JRockit behaves in some unexpected way, please consult the BEA JRockit Developers
FAQ. If that doesn't solve your problem, please send an e-mail to support@bea.com.

Before Starting BEA JRockit
Before starting BEA JRockit JVM, ensure that you have the following directory set in your PATH
environment variable:

<jrockit-install-directory>/bin (for Linux)

<jrockit-install-directory>\bin (for Windows)

Starting BEA JRockit
To start the BEA JRockit, at the command line enter the following:

java <configuration and tuning options> myClass

Where <configuration and tuning options> are the configuration and tuning options you
want to use. The configuration options are described in Configuring BEA JRockit, below. See

Star t ing and Conf igur ing BEA JRock i t JVM

2-2 Using BEA JRockit SDK

Tuning BEA JRockit JVM for details on the tuning options available for this version of BEA
JRockit.

Note: You can alternatively start JRockit with by fully qualifying the path to the file; for
example, /usr/local/java/bin/java (depending on where it is installed) on Linux
and c:\bea\jrockitxxx\bin\java (depending on where its installed) on Windows.

Sample Start-up Command
A sample start-up command, with some tuning options specified, might look like this:

java -verbose:memory -Xgcprio:throughput -Xmx:256m -Xms:64m -Xns:24m myClass

In this example, the following options are set:

-verbose:memory—Displays verbose output about memory usage.

-Xgcprio:throughput—A dynamic garbage collector prioritized for memory throughput
will be used.

-Xmx:256m—The maximum heap size is set to 256 megabytes.

-Xms:64m—The initial heap size is set to 64 megabytes.

-Xns:24m—The nursery size is set to 24 megabytes.

myClass—Identifies the class that contains the Main() method.

For more information on the tuning options discussed above, please refer to

Configuring BEA JRockit
When you start BEA JRockit, you can set behavioral parameters by using either standard or
non-standard command line options. This section describes these options and how to use them at
startup to configure BEA JRockit. It contains information on the following subjects:

Using Standard Options for:

– Setting the JVM Type

– Setting General Information

– Providing Information to the User

Using Non-standard Options for:

– Setting Behavioral Options

Conf igur ing BEA JRocki t

Using BEA JRockit SDK 2-3

– Displaying Logging Information

– Including a Timestamp with Logging Information

– Protecting Systems by Using the Security Manager

– Preventing BEA JRockit JVM (When Run as a Service) from Shutting Down After
Receiving a Logoff Event

Special Instructions for Linux Users

– Enabling Core Dumps on Red Hat AS

– Overriding NPTL

Using Standard Options
Standard command line options work the same regardless of the JVM; in other words, these
options work the same whether you are running BEA JRockit JVM, Sun Microsystem’s HotSpot
JVM, or any other third-party JVM.

Setting the JVM Type
The following commands set the type of JVM you want to run, server-side or client-side:

-server

Starts BEA JRockit JVM as a server-side JVM. This value is the default.

-client

Starts BEA JRockit JVM as a client-side JVM. This option is helpful if you have a smaller
heap and are anticipating shorter runtimes for your application.

You should be aware that setting the JVM type (or accepting the default) will also set the garbage
collection algorithm that will be used during runtime. -server will start a single-spaced, parallel
mark, parallel sweep collector while -client will start a a single-spaced, concurrent mark,
concurrent sweep garbage collector. If you want to use a different collector, such as the dynamic,
unified garbage collector or one of the specific fixed garbage collectors, you can override the
default by using either the -Xgcprio or -Xgc command line options. For more information on
garbage collection and the -server and -client options, please refer to “Using -server and
-client to Set a Fixed Garbage Collector” in Using BEA JRockit Memory System.

Setting General Information
The following standard command line options set general information about BEA JRockit JVM:

Star t ing and Conf igur ing BEA JRock i t JVM

2-4 Using BEA JRockit SDK

-classpath <directories and zips/jars separated by : (Linux) or ;
(Windows)>

Tells the VM where to look for classes and resources.

Alternately, you can use the option -cp to represent -classpath; for example:
-cp <directories and zips/jars separated by : or ;>

-D<name>[=<value>]

Tells the VM to set a Java system property. These can be read by a Java program, using the
methods in java.lang.System.

Providing Information to the User
The following options determine if the system will provide messages to the operator and what the
form and content of those messages should be.

-version

Tells JRockit to display its product version number and then exit.

-showversion

Tells the VM to display its product version number and then continue.

-verbose[:<components separated by ,>]

Tells JRockit to display verbose output. This option is used mainly for debugging purposes
and causes a lot of output to the console. Supported components are memory, load, gc,
opt, and codegen. If no component is given, JRockit will display verbose information on
everything. For more information on the components and the -verbose information they
display, please refer to Table 2-1.

-help

Tells the VM to display a short help message.

-X

Tells the VM to display a short help message on the extended options (do not confuse -X
with the non-standard, or -X, options described in the following section).

Using Non-standard Options
Non-standard, or -X, command line options are options that are exclusive to BEA JRockit JVM
that change the behavior of BEA JRockit JVM to better suit the needs of different Java

Conf igur ing BEA JRocki t

Using BEA JRockit SDK 2-5

applications. These options are all preceded by -X and will not work on other JVMs (conversely,
the non-standard options used by other JVMs won’t work with BEA JRockit).

Note: Since these options are non-standard, they are subject to change at any time.

Setting Behavioral Options
The following non-standard options define general BEA JRockit JVM behavior:

-Xnoopt

Tells the VM not to optimize code.

-Xverify

Tells the VM to do complete bytecode verification.

-Xstrictfp

Enables strict floating point arithmetics globally for all methods in all classes. This option
is similar to the Java keyword strictfp. See the Java Language Specification for more
details on strictfp.

Displaying Logging Information
-Xverbose

-Xverbose causes BEA JRockit to print to the screen specific information about the system. The
information displayed depends upon the parameter specified with the option; for example,
specifying the parameter cpuinfo displays information about your CPU and indicates whether
or not the JVM can determine if hyper threading is enabled. Table 2-1 lists the parameters
available for -Xverbose.

Note: To use more than one parameter, separate them with a comma; for example:

Star t ing and Conf igur ing BEA JRock i t JVM

2-6 Using BEA JRockit SDK

-Xverbose:gc,opt

Table 2-1 -Xverbose Parameters

This
Parameter...

Prints to the screen...

codegen The names of each method that is being compiled. Verbose output for codegen might look like
this:
[codegen] 0 : 17.9411 ms
[codegen] 0 68592131 1 java.lang.Object.unlockFatReal_jvmpi
(Ljava.lang.Object;Ljava.lang.Thread;I)V: 17.94 ms
[codegen] 1 : 2.0262 ms
[codegen] 0 0 2
java.lang.Object.acquireMonitor(Ljava.lang.Object;II)I: 19.97 ms
[codegen] 2 : 4.4926 ms
[codegen] 0 10 3
java.lang.Object.unlockFat(Ljava.lang.Object;Ljava.lang.Thread;I)
V: 24.46 ms
[codegen] 3 : 0.3328 ms

cpuinfo Any interesting information about your CPUs. Verbose output for cpuinfo might look like
this:
[cpuinfo] Vendor: GenuineInt
[cpuinfo] Type: Original OEM
[cpuinfo] Family: Pentium Pro
[cpuinfo] Model: Pentium III/Pentium III Xeon
[cpuinfo] Brand: Pentium III processor
[cpuinfo] Supports: On-Chip FPU
[cpuinfo] Supports: Virtual Mode Extensions
[cpuinfo] Supports: Debugging Extensions
[cpuinfo] Supports: Page Size Extensions

load The names of each loaded class. Verbose output for load might look like this:
[load] 0 1 java.lang.Object+
[load] 0 2 java.io.Serializable+
[load] 0 3 java.lang.Class+
[load] 0 5 java.lang.reflect.AccessibleObject+
[load] 0 6 java.lang.reflect.Member+
[load] 0 6 java.lang.reflect.Method+

Conf igur ing BEA JRocki t

Using BEA JRockit SDK 2-7

memory;
gc

Information about the memory management system, including:
• Start time of collection (seconds since JVM start)
• End time of collection (seconds since JVM start)
• Memory used by objects before collection (KB)
• Memory used by objects after collection (KB)
• Size of heap after collection (KB)
• Total time of collection (seconds or milliseconds)
• Total pause time during collection (milliseconds)

The information displayed by -Xverbose:memory or -Xverbose:gc will vary depending
upon the type of garbage collector you are using.

memory;
gc

with gencon

A report for a JVM running a generational concurrent collector (-Xgc:gencon) with memory
or gc specified might look like this:
[memory] Generational Concurrent collector
[memory] nursery 20480K, heap 65536K, maximal heap 262144K
[memory] <start>: Nursery GC <before>K-><after>K (<heap>K),
<total> ms
[memory] <s>-<end>: GC <before>K-><after>K (<heap>K), <total> s
(<pause> ms)
[memory] <s/start> - start time of collection (seconds since jvm
start)
[memory] <end> - end time of collection (seconds since jvm
start)
[memory] <before> - memory used by objects before collection (KB)
[memory] <after> - memory used by objects after collection (KB)
[memory] <heap> - size of heap after collection (KB)
[memory] <total> - total time of collection (seconds or
milliseconds)
[memory] <pause> - total pause time during collection
(milliseconds)
Now running The GcList Test
[memory] 0.860: Nursery GC 61615K->42008K (86016K), 11.400 ms
[memory] 0.953: Nursery GC 62488K->42876K (86016K), 10.895 ms
[memory] 1.031: Nursery GC 63356K->45303K (86016K), 30.156 ms
[memory] 1.172: Nursery GC 65783K->46168K (86016K), 11.639 ms
[memory] 1.250: Nursery GC 66648K->48596K (86016K), 31.189 ms
The execution of The GcList Test took 0.578s

Table 2-1 -Xverbose Parameters

This
Parameter...

Prints to the screen...

Star t ing and Conf igur ing BEA JRock i t JVM

2-8 Using BEA JRockit SDK

memory;
gc

with
singlecon

A report for a JVM running a single generation concurrent collector (-Xgc:singlecon) with
memory or gc specified might look like this:
[memory] Single Generation Concurrent collector
[memory] heap 65536K, maximal heap 262144K
[memory] <s>-<end>: GC <before>K-><after>K (<heap>K), <total> s
(<pause> ms)
[memory] <s/start> - start time of collection (seconds since jvm
start)
[memory] <end> - end time of collection (seconds since jvm
start)
[memory] <before> - memory used by objects before collection (KB)
[memory] <after> - memory used by objects after collection (KB)
[memory] <heap> - size of heap after collection (KB)
[memory] <total> - total time of collection (seconds or
milliseconds)
[memory] <pause> - total pause time during collection
(milliseconds)
Now running The GcList Test
[memory] 1.016-1.172: GC 58543K->13906K (89716K), 0.156 s (3.420
ms)
The execution of The GcList Test took 0.563s
Now running The GcList Test
[memory] 1.422-1.469: GC 102004K->389K (122816K), 0.047 s (5.048
ms)

Table 2-1 -Xverbose Parameters

This
Parameter...

Prints to the screen...

Conf igur ing BEA JRocki t

Using BEA JRockit SDK 2-9

Including a Timestamp with Logging Information
-Xverbosetimestamp

You can force a timestamp to print out with other information generated by -Xverbose by using
the command -Xverbosetimestamp. When you use this command, the time and date will
precede the verbose information, as shown here:

[Wed Jan 14 16:51:57 2004][14578][load]created: java/lang/Integer : 1.4034ms

memory;
gc

with
parallel

A report for a JVM running a parallel collector (-Xgc:parallel) with memory or gc
specified might look like this:
[memory] Parallel collector
[memory] heap 65536K, maximal heap 262144K
[memory] <start>: GC <before>K-><after>K (<heap>K), <total> ms
[memory] <start> - start time of collection (seconds since jvm
start)
[memory] <before> - memory used by objects before collection (KB)
[memory] <after> - memory used by objects after collection (KB)
[memory] <heap> - size of heap after collection (KB)
[memory] <total> - total time of collection (milliseconds)
Now running The GcList Test
[memory] 1.016: GC 65536K->1463K (65536K) in 12.933 ms
The execution of The GcList Test took 0.500s
Now running The GcList Test
[memory] 1.282: GC 65536K->1502K (65536K) in 11.046 ms
[memory] 1.563: GC 65536K->1503K (65536K) in 12.119 ms
The execution of The GcList Test took 0.484s
Now running The GcList Test
[memory] 1.782: GC 65536K->593K (65536K) in 9.365 ms
The execution of The GcList Test took 0.125s

opt Information about all methods that get optimized. Verbose output for opt might look like this:
[opt] 280 2434 0 ObjAlloc.main([Ljava.lang.String;)V: 0.00 ms
[opt] 0 : 9.8996 ms

Table 2-1 -Xverbose Parameters

This
Parameter...

Prints to the screen...

Star t ing and Conf igur ing BEA JRock i t JVM

2-10 Using BEA JRockit SDK

Protecting Systems by Using the Security Manager
BEA JRockit allows its own Management Console, JRA, and other tools, to connect to running
processes through its own proprietary interface. You can open a port on the VM that can only
connect to the tools that run locally on your system and not allow a connection from other tools
running anywhere else on the network. This allows authorized users to access the production
system and run the tool locally so they can monitor or attach to a running BEA JRockit instance,
without exposing a security hole for non-authorized users to invade production systems.

To do this, you need to run the JVM with a security manager and grant access to the management
server from the host(s) to which you choose to grant privileges. Use this procedure:

1. Run BEA JRockit with -Djava.security.manager.

2. In the policy file, grant the appropriate permissions, as shown in the following code sample:

grant {
 permission java.net.SocketPermission "localhost:7090", "*";
}

Preventing BEA JRockit JVM (When Run as a Service) from Shutting Down
After Receiving a Logoff Event
When BEA JRockit JVM is run as a service (for example, the servlet engine for a web server), it
might receive CTRL_LOGOFF_EVENT or SIGHUP. Upon receiving such events, if the VM tries to
initiate shutdown, it will fail, since the operating system will not actually terminate the process.
To avoid possible interference such as this, use the -Xnohup command-line option. When this
option is used with BEA JRockit, the JVM does not watch for or process CTRL_LOGOFF_EVENT
or SIGHUP events.

If you specify -Xnohup, be aware of the following:

Pressing Ctrl-Break to create a thread dump does not work.

User code is responsible for causing shutdown hooks to run; for example by calling
System.exit() when BEA JRockit is to be terminated.

Special Instructions for Linux Users
If you are running BEA JRockit on either a 32- or 64-bit Linux machine, two additional
configuration options allow you to enable core dumps on Red Hat AS and to select one of two
thread libraries for any Linux version. This information is described below.

Conf igur ing BEA JRocki t

Using BEA JRockit SDK 2-11

Enabling Core Dumps on Red Hat AS
If you are using Red Hat AS and want to ensure that a core/javacore file is created in the working
directory in the event BEA JRockit crashes, you need to enable core dumps. To do this, set the
ulimit -c value to something greater than zero, but no greater than a value your filesystem can
accommodate; for example, ulimit -c 10000000. These values are measured in blocks, with
each block equaling one kilobyte. You can set the ulimit value either from the command line,
in the *.profile file, or in a shell script.

Overriding NPTL
The Native POSIX Thread Library (NPTL) is a thread library option available for use instead of
LinuxThreads with Red Hat Enterprise Linux 3.0. If you want to disable NPTL and use
LinuxThreads, set LD_ASSUME_KERNEL=2.4.1 in your environment.

Star t ing and Conf igur ing BEA JRock i t JVM

2-12 Using BEA JRockit SDK

Using BEA JRockit SDK 3-1

C H A P T E R 3

Using the BEA JRockit Memory
Management System

Memory management relies on effective “garbage collection,” the process of clearing dead
objects from the heap, thus releasing that space for new objects. Effective memory management
ensures efficient processing. BEA JRockit’s unified garbage collector allows you to select a
dynamic garbage collector based solely upon one of two priorities: memory throughput or
duration of pause time caused by collection. The unified garbage collector is dynamic in that, as
it runs, it uses predefined heuristics to determine which collection algorithm to use and changing
that algorithm as the individual case might warrant. You do not need to specify the actual
algorithm to run this garbage collector.

In some instances, dynamic garbage collection might not be the most effective way to free-up
memory. In those cases, BEA JRockit also provides a number of “static” collectors that can be
started either by specifying the actual collector (-Xgc:<collectorName>) or by default, as
determined by the JVM mode you select at startup.

This section describes how to use all of these garbage collection methods. It contains information
on the following subjects:

The Mark-and-Sweep Collection Model

Garbage Collector Permutations

Running the Dynamic Garbage Collector

Using Static Garbage Collection Methods

Overriding Garbage Collectors

Viewing Garbage Collection Activity

Using the BEA JRock i t Memor y Management Syst em

3-2 Using BEA JRockit SDK

Thread-local Allocation

The Mark-and-Sweep Collection Model
The unified garbage collector is a mark-and-sweep collector that runs either as generational or
single-spaced; that is, with or without a “nursery” (see Generational, below). Both
mark-and-sweep options can implement either a concurrent or parallel algorithm. Please refer to
Garbage Collector Permutations for more information on garbage collection options and
algorithms.

A mark-and-sweep collector is a three-pass model that frees all unreferenced objects. It works as
described in these steps:

1. The first pass clears all objects in the system that have their mark bit set. The mark bit
identifies whether the block is in use if the block contains garbage.

2. The second pass, or “mark” phase, traverses all pointers, starting at the accessible roots of a
program (conventionally, globals, the stack, and registers) and marks each object traversed.

3. The third pass, or “sweep” phase, re-walks the heap linearly and removes all objects that are
not marked.

Garbage Collector Permutations
The unified garbage collector is comprised of various permutations—or “states”—of two garbage
collector options:

Generational

Single-spaced

and two garbage collection algorithms:

Concurrent

Parallel

Generational
In generational garbage collection, the heap is divided into two sections: an old generation and a
young generation—also called the “nursery.” Objects are allocated in the nursery and when it is
full, the JVM “stops-the-world” (that is, stops all threads) and moves the live objects in the young
generation into the old generation. At the same time, an old collector thread runs in the

Runn ing the Dynamic Garbage Co l l ec to r

Using BEA JRockit SDK 3-3

background, marking live objects in the old generation and removing the dead objects, returning
free space to JVM.

Single-spaced
The single-spaced option of garbage collection means that all objects live out their lives in a
single space on the heap, regardless of their age. In other words, a single-spaced garbage collector
does not have a nursery.

Concurrent
The concurrent garbage collection algorithm does its marking and/or sweeping “concurrently”
with all other processing; that is, it does not stop Java threads to do the complete garbage
collection.

Parallel
The parallel garbage collection algorithm stops Java threads when the heap is full and uses every
CPU to perform a complete mark and/or sweep of the entire heap. A parallel collector can have
longer pause times than concurrent collectors, but it maximizes throughput. Even on single CPU
machines, this maximized performance makes parallel the recommended garbage collector,
provided that your application can tolerate the longer pause times.

Running the Dynamic Garbage Collector
The unified garbage collector combines the options and algorithms described above within the
mark-and-sweep model to perform collection. Depending upon the heuristics used, the collector
will employ a generational or single-spaced collector with either a concurrent or parallel mark
phase and a concurrent or parallel sweep phase.

The main benefit of a dynamic—or “optimizing”—garbage collector is that the only
determination you need to make to run the collector best-suited to your needs is whether your
application responds best to optimal memory throughput during collection or minimized pause
times at that time. You do not need to understand the garbage collection algorithms themselves,
or the various permutations thereof, just the behavior of your application.

To start the unified garbage collector, use the -Xgcprio command line option with either the
throughput or pausetime parameter, depending upon which priority you want to use:

-Xgcprio:<throughput|pausetime>

Using the BEA JRock i t Memor y Management Syst em

3-4 Using BEA JRockit SDK

Table 3-1 describes the priorities under which you can start a dynamic garbage collector and the
parameters used to select that priority.

Upon selecting the priority and starting the JVM, the dynamic garbage collector will then try to
choose the garbage collection state that optimizes performance based upon the priority. It will
seek modes that optimize throughput when -Xgcprio:throughput is set or that minimize the
pause times (as much as possible) when -Xgcprio:pausetime is set.

Using Static Garbage Collection Methods
In some circumstances, you might not want to use a dynamic garbage collector. In those cases,
you can use a static collector started by default or by selecting one of the backwardly-compatible
garbage collectors provided in earlier versions of BEA JRockit. Unlike the dynamic garbage
collector started with -Xgcprio, static collectors do not change from the algorithm originally
selected to collect garbage. They will not attempt to optimize performance by changing
algorithms.

This section contains information on the following subjects:

Using Backward-compatible Garbage Collectors

Setting the Default Garbage Collector

Table 3-1 -Xgcprio Option Priorities

Priority Description Parameter

Memory Throughput Memory throughput is usually the most important priority for
garbage collection and the one you will probably select most often. It
measures the time between when an object is no longer referenced
and the time that it’s reclaimed and returned as free memory. The
higher the memory throughput the shorter is the time between the two
events. Moreover, the higher the memory throughput the smaller the
heap you will need.

throughput

Pause Time Pause time is the length of time that the garbage collector stops all
Java threads during a garbage collection. The longer the pause, the
more unresponsive your system will be. The longest pause time and
the average pause time during an application run are extremely useful
values for tuning the JVM. You will most commonly select pause
time as your top priority when you know that your system is sensitive
to lengthy pauses.

pausetime

Us ing Sta t i c Garbage Col lec t i on Methods

Using BEA JRockit SDK 3-5

Using Backward-compatible Garbage Collectors
Three static garbage collectors originally available in earlier versions of BEA JRockit SDK are
still available for your use in this version. In some circumstances, the performance of these
collectors might meet your needs better than the unified collector or the default collectors
available with the -server or -client flags. Additionally, if you want to use scripts written for
the earlier versions of BEA JRockit that implement these collectors, those scripts will continue
to work without requiring any modification—unless they use the generational copy garbage
collector, which is no longer available (of course, your scripts can be modified to implement the
unified garbage collector).

The available garbage collectors (and the command to start them) are:

Single-spaced Concurrent (-Xgc:singlecon; this is the default garbage collector when
BEA JRockit is run in the -client mode)

Generational Concurrent (-Xgc:gencon)

Parallel (-Xgc:parallel; this is the default garbage collector in the -server mode)

Pros and Cons
Table 3-2 lists the pros and cons of each garbage collector.

Table 3-2 Garbage Collector Pros and Cons

Garbage Collector Pros Cons

Single Spaced Concurrent • Virtually removes all pauses.
• Can handle gigabyte-sized heaps.
• Default garbage collector when

running with the -client option.

• Trades memory for fewer pauses.
• If ordinary Java threads create

more garbage than this collector
can collect, pauses occur while
these threads are waiting for the
collector to complete its cycle.

• Only effective so long as the
program doesn’t run out of
memory during collection.

Using the BEA JRock i t Memor y Management Syst em

3-6 Using BEA JRockit SDK

Garbage Collector Selection Matrix
Table 3-3 is a matrix that you can use to determine which garbage collector is right for your BEA
JRockit JVM implementation. Use the If... column to locate a condition that matches your
implementation and select the garbage collector indicated in the Select this Garbage Collector...
column. The third column lists the supported garbage collector that might suit your needs as well
as—if not better than—an unsupported collector.

Generational Concurrent • Virtually removes all pauses.
• Has a higher memory throughput

than single spaced concurrent
garbage collector.

• Reduces the risk of running out
of allocatable memory during
collection because the old space
is not filled at the same speed.

• Trades memory for fewer pauses.
• If ordinary Java threads create

more garbage than this collector
can collect, pauses occur while
these threads are waiting for the
collector to complete its cycle.

Parallel • Uses all processors during
collection, thus maximizing
memory throughput.

• Default garbage collector when
running with the -server option
(default behavior).

• “Stop the world” might cause a
longer than desirable pause in
processing.

Table 3-2 Garbage Collector Pros and Cons

Garbage Collector Pros Cons

Table 3-3 Garbage Collector Selection Matrix

If You... Select this Garbage
Collector...

Or use...

• Cannot tolerate pauses of any length.
• Employ gigabyte-sized heaps.
• Willing to trade memory thoughput for

eliminating pauses.
• Have a single CPU machine with a lot of

memory.

Single Spaced
Concurrent

-Xgcprio:pausetime

Us ing Sta t i c Garbage Col lec t i on Methods

Using BEA JRockit SDK 3-7

Setting the Default Garbage Collector
If you don’t set -Xgcprio or -Xgc at startup, BEA JRockit defaults to a preselected, static
garbage collector based upon the JVM mode you select: server-side (-server; the default) or
client-side (-client). These are not garbage collectors themselves, but JVM configuration
options that start a static collector and set default initial and maximum heap sizes. Table 3-4
describes how these startup options set a garbage collector.

• Cannot tolerate pauses of any length.
• Employ gigabyte-sized heaps.
• Willing to trade some memory thoughput

for eliminating pauses.
• Want better memory throughput than

possible with Single Spaced Concurrent.
• Are not sure that the other two methods

would be adequate given how you’ve
implemented BEA JRockit JVM.

Generational
Concurrent

-Xgcprio:pausetime

• Using a machine with four CPUs or better
or a single CPU machine with a lot of
memory.

• Can tolerate the occasional long pause
• Need to maximize memory throughput

Parallel -Xgcprio:throughput

Table 3-3 Garbage Collector Selection Matrix

If You... Select this Garbage
Collector...

Or use...

Using the BEA JRock i t Memor y Management Syst em

3-8 Using BEA JRockit SDK

For more information on using the -server and -client options, please refer to Starting and
Configuring BEA JRockit JVM.

Overriding Garbage Collectors
Setting -Xgcprio will override any settings associated with -server and -client. Setting
-Xgc will override -Xgcprio and -server and -client.

Viewing Garbage Collection Activity
To observe garbage collection activity, use one or both of the options described here. Using these
options will help you evaluate the effectiveness of the selected garbage collector and make
necessary tuning decisions.

If you want to see a comprehensive report of garbage collection activity, enter the
-Xgcreport option at startup. This option causes BEA JRockit JVM to print a
comprehensive garbage collection report at program completion.

If you want to see garbage collection activity when it occurs, enter the -Xgcpause
option.This option causes the VM to print a line each time Java threads are stopped for
garbage collection.

Combining these two options is a very good way of examining the memory behavior of your
application; for example:

Table 3-4 Garbage Collectors Started by JVM Modes

JVM Mode Description

-server By definition, BEA JRockit is a server-side JVM, thus the -server option replicates
BEA JRockit’s default behavior. When you select -server, BEA JRockit will run
Parallel garbage collector (equivalent to setting -Xgc:parallel). For information
on how -server sets heap and nursery size, please refer to “Setting the Maximum
Heap Size” and “Setting the Minimum Heap Size” in Tuning BEA JRockit.

-client When you start BEA JRockit in the -client mode, you are asking it to behave as a
client-side JVM. This mode is appropriate when you have a smaller heap and are
anticipating shorter runtimes for your application. When you select -client at JVM
startup, BEA JRockit will run a Single-spaced Concurrent garbage collector
(equivalent to setting -Xgc:singlecon). For information on how -client sets
heap and nursery size, please refer to “Setting the Maximum Heap Size” and “Setting
the Minimum Heap Size” in Tuning BEA JRockit.

Thread- loca l A l l oca t i on

Using BEA JRockit SDK 3-9

-java -Xgcreport -Xgcpause myClass

Thread-local Allocation
Thread-local allocation removes object allocation contention and reduces the need to synchronize
between threads allocating memory on the heap. It also increases cache performance on a
multi-CPU system, because it reduces the risk of two threads running on different CPUs needing
to access the same memory pages at the same time.

Thread-local allocation is not the same thing as thread-local objects, but many people tend to
confuse the two terms. Thread-local allocation does not determine whether the objects can be
accessed from a single thread only (that is, thread-local objects); thread-local allocation means
that the thread has an area of its own where no other thread will create new objects. The objects
that the thread creates in that area may still be reached from other threads.

Using the BEA JRock i t Memor y Management Syst em

3-10 Using BEA JRockit SDK

Using BEA JRockit SDK 4-1

C H A P T E R 4

Using the BEA JRockit Management
Console

The JRockit Management Console can be used to monitor and control running instances of BEA
JRockit JVM. It provides real-time information about the running application’s characteristics,
which can be used both during development—for example, to find where in an application’s life
cycle it consumes more memory—and in a deployed environment—for example, to monitor the
system health of a running application server.

This section includes information on the following subjects:

Console Overhead

Parts of the Console

Setting Up the Console

Using the Console

Creating a JRA Recording

Closing the Console

Starting and Running the Console in the Headless Mode

Console Overhead
The extra cost of running the JRockit Management Console against a running BEA JRockit JVM
is very small and can almost be disregarded. This provides for a very low cost monitoring and
profiling of your application.

Using the BEA JRock i t Management Conso le

4-2 Using BEA JRockit SDK

Note: It is not recommended that you run the Management Console on the same machine as the
VM you are monitoring. If you run the Console on the same machine as the BEA JRockit
you are monitoring, the Management Console GUI will steal valuable resources from the
application running on the JVM and you risk performance degradation as a result.

Starting the Console
Starting the Management Console is a two-step process:

1. Enable the Management Server

2. Start the JRockit Management Console

Additionally, you might want to also complete these tasks as part of the start-up process:

Set the Port

Change the Number of Connections

Enable the Management Server
Before the Management Console can connect to BEA JRockit JVM, the management server in
the VM needs to be started. The server is disabled by default. To enable the management server,
start BEA JRockit JVM with the -Xmanagement option:

-Xmanagement

Attaching a Management Client
You can use the class= and classpath= parameters with -Xmanagement to specify a
management class and its classpath; for example:

-Xmanagement:class=<classname>,classpath=<path>

 This option loads the class and causes its empty constructor to be called early in JVM startup.
From the constructor, a new thread is then started, from which your management client is run.
You should ensure that the constructor returns control quickly because this call is made early in
BEA JRockit startup.

Start the JRockit Management Console
Start the JRockit Management Console from the command prompt by typing:

console

Star t ing the Console

Using BEA JRockit SDK 4-3

Note: Before starting the Management Console, you must specify the JRE path and the
classpath to the .jar file.

You can also start the Management Console without using the launcher. At the command line,
enter:

java -jar <jrockit-install-directory>/console/ManagementConsole.jar

Starting the Management Server with a Security Manager
If you try to start the management server (-Xmanagement option) with a security manager
running (-Djava.security.manager option) the management server might not start and you
will get error messages such as the following:

"ERROR: failed to initialize class com.jrockit.management.rmp.

 RmpSocketListener."

To allow the management server to run under a security manager, add the text shown in
Listing 4-1 to your policy file. The standard location of the policy file is:

java.home/lib/security/java.policy (Linux)

java.home\lib\security\java.policy (Windows)

For more information on policy files please refer to:

http://java.sun.com/products/jdk/1.2/docs/guide/security/PolicyFiles.html

Listing 4-1 Code for Starting the Management Server with a Security Manager

/* --- Permissions for the JRockit management Server --- */

/* TODO 1: Locate the installed managementserver.jar in JAVA_HOME/jre/lib */

grant codeBase "file:C:/MY_JAVA_HOME/jre/lib/managementserver.jar" {

 /* TODO 2: Add permissions for your console client to connect. */

 permission java.net.SocketPermission "my-console-client.com", "accept,

 resolve";

 /* TODO 3: Add permissions for the management server to listen for

 connections. */

 permission java.net.SocketPermission "localhost:7090", "listen,

 resolve";

Using the BEA JRock i t Management Conso le

4-4 Using BEA JRockit SDK

 /* Add permissions for management server standard operations. */

 permission com.bea.jvm.ManagementPermission "createInstance";

 permission java.lang.RuntimePermission "modifyThreadGroup";

 permission java.lang.RuntimePermission "modifyThread";

 permission java.lang.RuntimePermission "shutdownHooks";

 permission java.util.PropertyPermission "*", "read, write";

 };

Set the Port
When BEA JRockit JVM is started with the -Xmanagement option set—and provided the VM is
not running in “quiet” mode—it should print out a short message following the command line
indicating that the management server is running and which port it is using. You can optionally
choose which port to use by setting, as a command line argument, the port number in the port
property:

java -Djrockit.managementserver.port=<portnumber>

The default port the management server uses to connect is 7090. It is strongly recommended that
you block this port in your firewall, otherwise unauthorized users might access the management
server.

Change the Number of Connections
You can change the number of connections allowed to the server by setting the maxconnect
property:

-Djrockit.managementserver.maxconnect=<maximum number of connections>

The default limit is four concurrent connections. While this should be enough for most users, you
can change it, if necessary. The connection limit protects against Denial of Service (DoS) attacks
by intruders.

Parts of the Console
When the JRockit Management Console window appears, the console has started, as shown in
Figure 4-1:

Par ts of the Console

Using BEA JRockit SDK 4-5

Figure 4-1BEA JRockit JVM Management Console

The JRockit Management Console window is divided into two panes: a connection browser tree
in the left pane (Figure 4-2) and a tabbed interface in the right pane (Figure 4-3).

Figure 4-2Connection Browser

Figure 4-3Information Tabs (Administrator Mode)

The first tab shows an Overview of information for the selected BEA JRockit JVM connection(s)
(as highlighted in the connection browser pane). The other tabs contain detailed information
about different areas of the VM, as will be described in Information Tabs.

Using the BEA JRock i t Management Conso le

4-6 Using BEA JRockit SDK

Figure 4-3 shows the information tabs available in the console’s Administrator operation mode.
When the console is in the Developer mode, additional tabs appear, as shown in Figure 4-4. These
two operation modes are described in Setting the Operation Mode.

Figure 4-4Information Tabs (Developer Mode)

The console includes a toolbar that contains command buttons for some of the menu options
(Figure 4-5). To toggle the Toolbar on or off, on the View menu select Tool Bar.

Figure 4-5Management Console Toolbar

The status bar (Figure 4-6) at the bottom of the window displays informational messages and tool
tips when you hover over a toolbar button or select something in a menu. It also indicates whether
the JRockit Management Console is connected to one or several BEA JRockit JVM
implementations or not. To toggle the Status Bar on or off, on the View menu, select Status Bar.

Figure 4-6Status Bar

Setting Up the Console
Once the console is running, you will need to configure it to suit your needs. Configuring—or
“setting up”—the console includes these tasks:

Making Connections

Enabling Console Settings

Making Connections
The connection browser displays a collection of saved connections to BEA JRockit JVM
organized in folders. If necessary, you can add your own folders and connection nodes to the tree
structure. Active connections currently connected to a running VM are indicated by a green icon;
those disconnected are indicated by a red icon.

Set t ing Up the Console

Using BEA JRockit SDK 4-7

Creating a New Folder
To create your own folder in the connection browser, do the following:

1. Select an existing folder (for example, Connections) for which you want to create a subfolder.

2. Open the New Folder dialog box by doing one of the following:

– Choose Connection→New Folder.

– Press the right mouse button to open a context menu and select New Folder.

– Press Ctrl+N.

– Click the New Folder button on the toolbar.

The Add new folder dialog box (Figure 4-7) appears:

Figure 4-7Add New Folder Dialog Box

3. Enter the name of the new folder in the text field and click OK.

The new folder will appear in the connection browser.

Creating a New Connection
To create a new connection to BEA JRockit JVM in the connection browser, do the following:

1. Select the folder in which the connection should be placed

2. Open the New Connection dialog box by doing one of the following:

– Open the Connection menu and select New Connection.

– Press the right mouse button to open a context menu and select New Connection.

– Click the New Connection button on the toolbar.

The Add new connection dialog box (Figure 4-8) appears:

Using the BEA JRock i t Management Conso le

4-8 Using BEA JRockit SDK

Figure 4-8Add New Connection Dialog Box

3. Enter the name of the server, the port and the new connection in the appropriate text fields
or retain the default values. Then, select or deselect Connect now and click Add
Connection.

Connecting a Connection to BEA JRockit JVM
To connect to BEA JRockit, do the following:

1. Select the BEA JRockit JVM connection to connect, a subfolder of connections to connect,
or the folder Connections to connect all existing connections.

2. Do one of the following to connect the selected connection(s):

– Open the Connection menu and select Connect.

– Press the right mouse button to open a context menu and select Connect.

– Press Ctrl+O.

– Click the Connect button on the toolbar.

When the connection is made, the status bar will read “Connected” and activity on the
console will commence.

Disconnecting a Connection from BEA JRockit JVM
To disconnect a connection from BEA JRockit JVM, do the following:

Set t ing Up the Console

Using BEA JRockit SDK 4-9

1. Select the BEA JRockit JVM connection to connect, a subfolder of connections to connect,
or the folder Connections to disconnect all existing connections.

2. Do one of the following to disconnect the selected connection(s):

– Open the Connection menu and select Disconnect.

– Press the right mouse button to open a context menu and select Disconnect.

– Press Ctrl+D.

– Click the Disconnect button on the toolbar.

The connection will be lost and the status bar will indicate that you’ve been disconnected.
All activity on the console will cease.

Renaming a Connection or Folder
To rename a connection or a folder of connection, do the following:

1. Select the BEA JRockit JVM connection or folder to rename.

2. Do one of the following to rename the selected connection or folder:

– Open the Connection menu and select Properties.

– Press the right mouse button to open a context menu and select Properties.

– Press F2.

– Click the name label of the item (see Note, below).

The Folder properties dialog box (Figure 4-9) appears:

Figure 4-9Folder Properties Dialog Box

3. Enter a new name into the text field and click OK

Note: If you select the last option (click the item label), the Folder properties dialog box will
not appear. Instead, the label itself will be enabled for direct editing. Simply type the new
name over the old and click away from the label or press Enter.

Using the BEA JRock i t Management Conso le

4-10 Using BEA JRockit SDK

Removing a Connection or Folder
To remove a connection or folder, do the following:

1. Select a connection or a subfolder to remove.

2. Do one of the following to remove the selected item:

– Open the Connection menu and select Remove.

– Press the right mouse button to open a context menu and select Remove.

– Press Delete.

3. Click Yes on the confirmation dialog box that appears.

The selected item disappears from the connection browser.

Hiding Disconnected Connections
Sometimes you might want to show just information about active BEA JRockit JVM
connections. To hide information about disconnected connections, do one of the following:

Open the View menu and select Hide Disconnected.

Click the Hide Disconnected button on the toolbar.

To show the information about disconnected connections again, simply deselect Hide
Disconnected in same way that you made the selection.

Enabling Console Settings
This section describes how to enable various JRockit Management Console settings.

Setting the Operation Mode
The Management Console can be run in two different operating modes:

Administrator Mode; This is the default mode, designed for system administrators who
are interested in observing the state of the BEA JRockit JVM.

Developer Mode; The developer mode is for developers and provides additional features
such as a rudimentary method profiler and exception count functionality. Additional pages
appearing in the developer mode are the Method Profiler page and the Exception Count
page.

To set the operation mode, do the following:

Set t ing Up the Console

Using BEA JRockit SDK 4-11

1. From the Tools menu, select Preferences...

The Preferences dialog box (Figure 4-10) appears:

Figure 4-10Preferences Menu (General Tab)

2. Click the Mode of operation drop-down control to display the list of operation modes
(Figure 4-11).

Figure 4-11List of Operation Modes

3. Select the mode you want to use and click OK.

Depending upon the mode to which you are toggling, the tabs on the console will change.
See Figure 4-3 and Figure 4-4 for examples.

Setting Other Preferences
In addition to setting the operation mode, you can use the Preferences dialog box to change these
settings:

Default e-mail settings for the notification system (please refer to Notification Tab).

Persistence behavior.

Using the BEA JRock i t Management Conso le

4-12 Using BEA JRockit SDK

To change either of these values, open the Preferences dialog box from the Tools menu and
proceed are described in the following sections:

Setting E-mail Preferences
To change e-mail preferences, do the following:

1. Display the General tab on the Preferences dialog box

2. In the appropriate text fields, enter the new e-mail information (SMTP server and E-mail
address), as shown in Figure 4-12.

3. Click OK

Figure 4-12E-mail Preferences Panel

Enabling Persistence
Enabling the persistence means that aspect values are saved to a file and can be reviewed in charts
by opening the View menu and selecting View Historical Data (View Historical Data).

Selecting Aspects to Persist To set persistence preferences, do the following:

1. Disconnect any BEA JRockit JVM connections.

Note: If you have not disconnected the connections and attempt to use this dialog box, you
will be prompted to disconnect.

The checkboxes in the Aspects to persist panel become enabled (Figure 4-13):

Set t ing Up the Console

Using BEA JRockit SDK 4-13

Figure 4-13Aspects to Persist Panel

2. Select the aspects you want to persist.

3. Click OK.

The selected aspect values are saved to a file that you can review in charts as described in
“View Historical Data” on page 4-28.

Specifying the Persistence Directory In addition to setting preferences for the aspects to
persist, you can also specify where to save the file that contains the aspect value (the “Persistence
directory”). To do so:

1. Click Choose (next to the Persistence directory field).

If you are still connected to BEA JRockit JVM, you will be prompted to disconnect; click
Yes to proceed. A standard Open dialog box appears.

2. Locate the directory where you want to save the file and click Open.

The Open dialog box closes, returning you to the Preferences dialog box.

3. Click OK.

The new Persistence directory will appear in that field.

Erasing Persistence Value Logs Finally, you can erase all persistence value logs by clicking
Clear all aspect logs. You will see a confirmation message to which you should respond Yes. Be
aware that, if you delete all persistence value logs by clicking this button, you will also delete any
other files stored in the <USER_HOME>/console/data directory.

Customizing the Display
You can customize the console and change the way some of the monitoring data is displayed, as
described in this section.

Using the BEA JRock i t Management Conso le

4-14 Using BEA JRockit SDK

Customizing Gauges and Bars
The gauges and bars are graphical devices showing memory and processor usage (Figure 4-14).

Figure 4-14Gauges and Bars

 To change from a gauge display to bar display, press the right mouse button when
pointing at the gauge and select Bar display, as shown in Figure 4-15.

Figure 4-15Gauge Context Menu (Bar Display Selected)

The selected gauge will appear as a bar (Figure 4-16).

Figure 4-16Gauges and Bars with Gauge Converted to a Bar Display

To change back to a gauge, repeat the above, but select Gauge display.

To reset the watermark—which indicates the highest level measured so far—press the right
mouse button when pointing at the gauge or bar and select Reset Watermark.

Customizing Charts
Charts appear on the JRockit Management Console to show specified information about BEA
JRockit.

Set t ing Up the Console

Using BEA JRockit SDK 4-15

To change scale on any of the chart, select the desired scale unit (seconds, minutes or
hours) to the right of the chart (Figure 4-17) to be changed.

Figure 4-17Range Selection Radio Buttons

To hide a chart click the vertical tab at the left of the diagram you want to hide. When the
diagram is hidden, the tab appears horizontally (Figure 4-18).

Figure 4-18Hiding a Chart

To show the diagram again, click the horizontal tab again.

Using the Settings File
When you exit the JRockit Management Console, your settings are automatically saved in a file
called consolesettings.xml. This file is located in the folder:

<user home directory>\ManagementConsole

The exact path to the user home directory will vary on different platforms. On Windows it is
usually something like \Documents and Settings\<username>; for example:

C:\Documents and Settings\jsmith\ManagementConsole

If no settings file exists in this directory it will be automatically created the next time the
Management Console is closed.

Chart Displayed

Chart Hidden

Click this tab to
display/hide the chart.

Using the BEA JRock i t Management Conso le

4-16 Using BEA JRockit SDK

Warning: Do not edit this file by hand! Doing so can make it unusable and may cause the
Management Console to crash on startup.

If you are experiencing problems with the settings file, you can always delete it and let the
Management Console create a new one for you.

Using the Console
The JRockit Management Console monitors different “aspects” of BEA JRockit JVM. An aspect
is data that can be measured; for example, used heap size or VM uptime.

Information Tabs
Information tabs are pages containing details about different areas of the monitored BEA JRockit
JVM. Display a tab by clicking it or by accessing the View menu. This section describes the tabs
available on the JRockit Management Console.

Overview Tab
The Overview tab (Figure 4-19) shows an overview of selected connections. To select more than
one connection, select the folder containing the connections you want to view. They will appear
simultaneously. The page is divided into a “dashboard” with gauges in the upper part and charts
in the lower part.

Us ing the Console

Using BEA JRockit SDK 4-17

Figure 4-19Overview Tab

The Used Memory gauge shows the percentage of occupied physical memory on the
computer.

The Used Heap gauge shows the percentage of occupied Java heap memory in the VM.

The CPU Load bar shows the usage rate of the processor - or the average processor load
on a multi-processor machine.

The Heap Usage chart shows the percentage of used Java heap over time.

The CPU Usage chart shows the average usage rate of the processor(s) over time.

Memory Tab
The Memory tab (Figure 4-20) shows information about the memory status of the system, as
shown.

Using the BEA JRock i t Management Conso le

4-18 Using BEA JRockit SDK

Figure 4-20Memory Tab

The Used Memory gauge shows the percentage of machine memory in use.

The Used Heap gauge shows the percentage of occupied Java heap.

The Heap Usage chart shows the percentage of occupied heap over time.

The Time in GC chart shows the average time spent on garbage collection over time. This
chart is only updated when running BEA JRockit JVM with the Parallel garbage collector,
and an actual garbage collection occurs.

At the bottom of the page the following text information is displayed (in kilobytes):

Used Heap shows the occupied heap space.

Free Heap shows the free heap space.

Total Heap shows the heap size.

Used Memory shows the amount of occupied physical memory.

Us ing the Console

Using BEA JRockit SDK 4-19

Free Memory shows the amount of free physical memory.

Total Memory shows the total physical memory size.

Memory Tab Functionality
You can manipulate certain memory aspects of the JVM from the Memory Tab. These aspects
are described in Table 4-1

.

Processor Tab
The Processor tab (Figure 4-21) shows information about the processor status of the system.

Table 4-1 Memory Tab Functionality

Function Procedure

Manipulating the Heap
Size

You can manipulate the heap size in any of the following ways:
• To reset the size of your heap, enter a numeric value in the New heap

size field and click Suggest heap size. The size set here, expressed in
megabytes, represents the current heap size, not the maximum heap
size.

• To make the current size the maximum heap size, click lock heap size.

Please refer to Setting the Heap Size for heap size requirements.

Changing the Nursery Size If you are running a generational garbage collector, you can reset the
nursery size by typing a new value in New nursery size and click Suggest
nursery size.

Note: If you are not running a generational collector, these fields will
appear disabled.

Please refer to Setting the Size of the Nursery for nursery size
requirements.

Exiting on Out of Memory
Errors

If you want to exit the JVM when you encounter an Out of memory (OOM)
error, select Exit on OOM.

Using the BEA JRock i t Management Conso le

4-20 Using BEA JRockit SDK

Figure 4-21Processor Tab

The CPU Load bar shows the average processor load as a percentage. The overall load is
displayed in green while the load of the JVM process(es) is displayed in yellow.

The CPU Usage chart shows the average processor load as a percentage over time.

At the bottom of the page the following text information is displayed:

Number of Processors shows the number of processors.

CPU Load shows the overall processor load as a percentage.

JVM Process Load shows the load of the BEA JRockit JVM process(es), expressed as a
percentage.

System Tab
The System tab (Figure 4-22) shows various information about the system status.

Us ing the Console

Using BEA JRockit SDK 4-21

Figure 4-22System Tab

Garbage Collection System shows which garbage collector BEA JRockit JVM is running.
If you are using a dynamic garbage collector (-Xgcprio), this value will change when the
garbage collector changes. For more information on the dynamic garbage collector, please
refer to “Running the Dynamic Garbage Collector.”

JRockit has been running for shows how long BEA JRockit JVM has been running.

Management Console has been connected for shows how long the currently displayed
connection has been connected.

Total number of running threads shows the number of active threads at any given time
in the application run.

Process Affinity contains buttons that correspond to processors. It displays a green icon if
BEA JRockit JVM is running on this processor and a red icon if it is not. By selecting a
button, the BEA JRockit JVM process can be bound to one or more processors. The VM
might be released from such a connection by deselecting the button again. This is only a
suggested affinity: the operating system might not follow the suggestion. Changing the
process affinity is a feature that is only available when monitoring a VM instance running
on the Windows platform. The Process Affinity display is only activated when the
Management Console is in the Developer mode, described in Setting the Operation Mode.

Using the BEA JRock i t Management Conso le

4-22 Using BEA JRockit SDK

System Properties shows the Java System Properties loaded in the VM.

Notification Tab
Use the Notification tab (Figure 4-23) to define alerts that notify users when certain events occur.
You can create your own notification rules based on different triggers, with optional constraints,
that alert you with a prescribed notification. This section describes how to create these rules.

Creating Custom Actions and Constraints
After starting the Management Console for the first time, a file named consolesettings.xml
will be created in the \ManagementConsole directory in your <user_home> directory. Among
the contents of this file are the entries for the default actions and constraints. You can
programatically create custom notification actions and constraints, which are also stored in this
file. Once added, these actions and constraints will appear on the Notifications tab of the
Management Console. For complete information on creating custom notification actions and
constraints, see “Adding Custom Notification Actions and Constraints.”

Figure 4-23Notification Tab (No Rules Defined)

A notification trigger can be a certain event, for example, that the connection to BEA JRockit
JVM was lost, or that an aspect reaches a certain value, for example, the used memory reaches

Us ing the Console

Using BEA JRockit SDK 4-23

95%. A notification constraint can limit when a rule is triggered for example by not sending alerts
at night or on certain dates.

The notification action is how the alert is communicated to the user. It can be one of the
following:

E-mail shows an e-mail when the notification is sent to the specified address by using the
specified SMTP server.

System out action displays the notification in the command window where you started the
JRockit Management Console.

Application alert displays the notification in an alert dialog in the Management Console.

Log to file logs the notification to the specified file.

Creating a New Rule
Rules determine when and how to issue a notification. To create a new rule, do the following:

1. Click New Rule.

The Name your rule dialog box appears (Figure 4-24):

Figure 4-24Name Your Rule Dialog Box

2. Enter the name of the new rule in Rule name: and click Next.

Using the BEA JRock i t Management Conso le

4-24 Using BEA JRockit SDK

The Select trigger dialog box appears (Figure 4-25):

Figure 4-25Select Trigger Dialog Box

3. Select a trigger (the individual triggers are described in the right panel).

4. Enter a threshold in the text box below the trigger list, if required (Figure 4-26; this box will
be marked either Min value or Max value, depending on the type of trigger selected.

Figure 4-26Trigger Threshold and Options Text Boxes

5. Select further options under the Option tab. For example, in Figure 4-26, you need to select
what kind of aspect value change will trigger the notification:

Options tab
opened

Us ing the Console

Using BEA JRockit SDK 4-25

– on trigger, which triggers the notification when the aspect reaches the trigger value
from a lower value (for example, if the trigger is 80 and the aspect value moves up
from 75).

– on recovery, which triggers the notification when the aspect reaches the trigger value
from a higher value (for example, if the trigger is 80 and the aspect value moves down
from 85).

6. Click Next.

The Select Action dialog box appears (Figure 4-27):

Figure 4-27Select Action Dialog Box

7. Select an action and enter settings data, if required.

8. If necessary, add a constraint to the rule (this step is optional; if you don’t want to add a
constraint, go to step 8):

a. Click Next.

The Select Constraint dialog box appears (Figure 4-28):

Using the BEA JRock i t Management Conso le

4-26 Using BEA JRockit SDK

Figure 4-28Select Constraint Dialog Box

b. Select a constraint and click Add.

The constraint name will appear in the add list, as shown in Figure 4-29.

Figure 4-29Constraint Added

c. Enter constraint settings in the text fields under the list of constraints (Figure 4-29).

9. Click Finish.

The new rule appears in the All available rules list on the Notification tab, as shown in
Figure 4-30.

Constraint settings;
Day of week
selected.

Us ing the Console

Using BEA JRockit SDK 4-27

Figure 4-30New Rule in List

10. Add the rule to your connection as described in Add a Rule to BEA JRockit JVM.

Editing a Rule
To edit a rule, do the following:

1. In the Available rules list, select the rule to be edited and click Edit Rule.

2. Check the name of the rule, edit it, if necessary, and click Next.

3. Check the trigger and trigger settings, edit them, if necessary, and click Next.

4. Check the action and the action settings and edit them if necessary.

5. To continue editing the rule, the do the following (optional; if you don’t want to add a
constraint, go to step 6):

a. Click Next.

b. Check the constraints and the constraint settings. Edit them, if necessary.

6. To finish the editing a rule, click Finish.

Add a Rule to BEA JRockit JVM
To add a rule to BEA JRockit JVM, do the following:

1. Select the rule to be added in the Available rules list.

2. Click Add to JRockit.

The rule appears in the Active rules for this connection list, as shown in Figure 4-31.

Using the BEA JRock i t Management Conso le

4-28 Using BEA JRockit SDK

Figure 4-31Rule Added to Active rules for This Connection List

Remove a Rule from BEA JRockit JVM
To remove a rule from BEA JRockit JVM, do the following:

1. Select the rule to be removed in the Active rules for this connection list.

2. Click Remove from JRockit.

The rule will now be removed from the Active rules for this connection list.

Remove a Rule
To remove a rule from the Available rules list, do the following:

1. Select the rule to be removed.

2. Click Remove Rule.

A removal confirmation dialog box appears.

3. Click Yes

4. The rule disappears from the Available rules list.

View Historical Data
The historical data window displays a chart where historical data for an aspect can be viewed.
This is useful for observing trends over time and, for example, finding when a server running with
BEA JRockit JVM has its peak loads.

To open this window, do the following:

1. Select the connection for which you want to view data.

2. Open the View menu and select View Historical Data.

3. Select the aspect for which you want to view historical data, as shown in Figure 4-32.

Us ing the Console

Using BEA JRockit SDK 4-29

Figure 4-32View Menu with Historical Data Submenu Open

Historical data for the selected aspect appears (Figure 4-33).

Using the BEA JRock i t Management Conso le

4-30 Using BEA JRockit SDK

Figure 4-33Historical Data (CPU Load Selected)

4. Navigate through time either by using the arrows or changing the start time in the Chart
display settings.

To be able to observe historical data, aspect data from BEA JRockit JVM must first have been
persisted, that is, written to file. See Setting Other Preferences to enable or disable persistence.
The following aspects are possible to persist, and thus display, historical data for:

Used heap (as a percentage)

CPU load (as a percentage)

Average time spent garbage collecting (as a percentage)

As soon as data has been created by a connected connection, it is available for historical
observation.

Using Advanced Features of the Console
This section describes the more advanced features of the Management Console. Some of these
are only available when running in the Developer mode, described in Setting the Operation Mode.

Us ing the Console

Using BEA JRockit SDK 4-31

View Thread Stack Dump
The stack dump contains a list of all running threads in BEA JRockit JVM with a method call
stack trace for each thread.

To view the thread stack dump, open the Tool menu and select View Thread Stack Dump. A
dialog box containing the stack dump appears (Figure 4-34).

Figure 4-34Thread Stack Dump

Method Profiling Tab
Note: You must be in the developer operation mode before you can perform the tasks described

in this section. For more information on entering the developer operation mode, see
Setting the Operation Mode.

The Method Profiler tab allows the developer to monitor method execution in a non-intrusive
way. The Method Profiler can provide information about the average time spent in selected
methods and the number of times methods are invoked.

Method Templates are collections of methods that can be re-used on different connections. There
is a Default template, but the user may also create new templates.

Using the BEA JRock i t Management Conso le

4-32 Using BEA JRockit SDK

Adding a Method to a Template
To add a method to a template, do the following:

1. Select the template to be modified from the Select template list.

2. Click Add Method.

The Enter class name dialog box appears (Figure 4-35).

Figure 4-35Enter Class Name Dialog Box

3. Enter a fully qualified class name, for example, java.util.Vector, in the text field and
click Next.

The Select method dialog box appears (Figure 4-36):

Us ing the Console

Using BEA JRockit SDK 4-33

Figure 4-36Select Method Dialog Box

4. Select the methods to be added to the template and press Finish.

The method name will appear on the Method profiling information list, as shown in
Figure 4-37.

Figure 4-37Method Profiling Information List with Method Added

Removing a Method from a Template
To remove a method from a template, do the following:

1. From the Select template list, select the template you want to modify.

Using the BEA JRock i t Management Conso le

4-34 Using BEA JRockit SDK

2. From the Method Profiling Information list, select the method(s) to be removed from the
template.

3. Click Remove Method.

Creating a New Template
To create a new template, do the following:

1. Click New template.

The New template dialog box appears (Figure 4-38).

Figure 4-38New Template Dialog Box

2. Enter a name for the new template in the text field.

3. Click OK.

Removing a Template
To remove a template, do the following:

1. From the Select template list select the template to be removed.

2. Click Remove.

A confirmation dialog box appears.

3. Click Yes.

Starting and Stopping Method Profiling
To start the method profiling, do the following:

1. From the Select template list, select the template to be started.

2. Click Start/Stop.

Us ing the Console

Using BEA JRockit SDK 4-35

If you select Start, numbers in the Invocation count cells for each method begin to
increment as method calls are made. If you select Stop, this activity will cease.

Method Profiling Settings
You can switch between using qualified method names or short names in the method profiling
table.

To enable invocation count, select the Invocation count checkbox at the bottom of the
page.

To enable timing, select the Timing checkbox at the bottom of the page.

Exception Counting Tab
The Exception Count tab (Figure 4-39) shows exceptions thrown in BEA JRockit JVM. It counts
the number of exceptions of a certain type thrown.

Using the BEA JRock i t Management Conso le

4-36 Using BEA JRockit SDK

Figure 4-39Exception Counting Tab

Add an Exception
To add an exception to observe, do the following:

1. Enter the fully qualified name of the exception into the text field at the top of the page, e.g.,
“java.io.IOException”.

2. Choose whether or not all subclasses of that exception should be included in the count by
selecting or deselecting the Include subclasses checkbox.

3. Click Add. You can only add subclasses of java.lang.Throwable which are loaded in
BEA JRockit JVM and you can only add exceptions while connected.

The exception should now be displayed in the table.

Creat ing a JRA Recording

Using BEA JRockit SDK 4-37

Starting, Stopping, and Removing an Exception Count
To start the exception count, click Start. The results should now appear next to the name of the
exception being counted. Similarly, to stop the exception count, click Stop.

To remove an exception from the count, select the exception to be removed and click Remove.

Creating a JRA Recording
The BEA JRockit Runtime Analyzer (JRA) is an internal tool used by the BEA JRockit
development team to analyze runtime performance of BEA JRockit and Java applications
running on it. This tool provides information on internals in BEA JRockit that are useful to the
development team and BEA JRockit in general.

One part of the JRA runs inside the JVM, recording information about it and the Java application
currently running. This tool is launched from the Management Console, as described in the
following procedure. The recorded information is saved to a file which you can view in the
analyzer tool, as described in “Using the BEA JRockit Runtime Analyzer.”

To make a recording, use this procedure:

Note: Before you can make a recording, you need to be working in the Developer mode, as
described in “Setting the Operation Mode.”

1. Open the Plugins menu and select Make a JRA recording.

The JRA Recording dialog box appears (Figure 4-40).

Figure 4-40 JRA Recording Dialog Box

2. Type a descriptive name for the recording in the Filename field. This will be the name by
which the file is saved.

Using the BEA JRock i t Management Conso le

4-38 Using BEA JRockit SDK

Optionally, you can also select

– The duration of the recording (in seconds)

– Whether or not to use native samples.

3. Click Start recording.

The JRA Recording Progress box appears (Figure 4-41).

Figure 4-41JRA Recording Progress Box

4. When the recording is complete, click Done.

To view the recording, use the analyzer tool, as described in “Using the BEA JRockit Runtime
Analyzer.”

Closing the Console
To close the JRockit Management Console and disconnect all connections, open the Connection
menu and select Exit. Clicking X in the top right corner of the window will also close the JRockit
Management Console.

Star t ing and Runni ng the Conso le in the Headl ess Mode

Using BEA JRockit SDK 4-39

Starting and Running the Console in the Headless Mode
You can run the Management Console, its notification subsystem, and the user actions without
using a GUI. This function is referred to running the console in a “headless” mode and can greatly
reduce the amount of system overhead required to run BEA JRockit.

Running a Headless Management Console
To run the Console in the headless mode, start the console as you normally would (see “Start the
JRockit Management Console” for details) but add the -headless command-line option; for
example:
java -jar ManagementConsole.jar -headless

You can control the console’s behavior by using the command-line options described in
Table 4-2.

As it runs, the JVM statistics normally associated with the Management Console can be written
to file. The file to which statistics are written will be automatically created, but only if you choose
to save, or “persist” data. It will be created in a directory of your choosing.

You can control which JVM statistics are persisted by specifying them in an XML settings file.
The settings file is also created automatically, when you exit the application when it is running in
GUI mode. By default, it will be created in the <user_home>/.ManagementConsole directory.
You can specify another file at another location by using the -settings command-line option.

Controlling the Console with Command-line Options
You can use one of the command-line options listed in Table 4-2to control the behavior of the
headless Management Console.

Note: These options are not specific to running the Console in the headless mode; they are also
valid when running it with a GUI.

Table 4-2 Headless Management Console Command-line Options

Option Description

-headless Starts the console in the headless mode (won't
load GUI related classes).

Using the BEA JRock i t Management Conso le

4-40 Using BEA JRockit SDK

For example:

java -jar ManagementConsole.jar -headless -settings
 C:\Headless\consolesettings.xml -connectall -autoconnect -uptime 3600
 -useraction ctrlbreak 30 60

This example

Starts the management console in headless mode (-headless).

Reads the specified settings file (-settings C:\Headless\consolesettings.xml).

Tries to connect to all previously specified JVMs (-connectall).

-settings <settings file> Starts the console using the specified settings
file. If you are starting in the GUI mode and this
file doesn't exist, it will be created when you
close the application.

-connectall Makes all connections available in the settings
file (that is, previously added by using the GUI).

-connect <connection 1> <connection 2>
<...>

Connects to the named connections available in
the settings file previously added by using the
GUI.

-autoconnect Automatically connects to any JVM running the
management server with JDP turned on.

-uptime <time in seconds> Runs the Console for the specified amount of
time, and then automatically shut it down.

-jrockitmode Starts the Console in the JRockit Mode (only
makes sense in GUI mode).

-useraction <name> <delay in seconds>
<period (optional)>

Runs the named user action after the specified
delay. If no period has been specified, the action
will be run once. If the period has been specified
it will be run every <period (optional)>
seconds.

-version Prints the version of the ManagementConsole
and then exits.

Table 4-2 Headless Management Console Command-line Options

Star t ing and Runni ng the Conso le in the Headl ess Mode

Using BEA JRockit SDK 4-41

Actively searches for new connections using JDP (-autoconnect).

After running 30 seconds, it will start issuing control breaks to all connected JVMs every
minute (-useraction ctrlbreak 30 60).

After an hour it will automatically shut down (-uptime 3600).

All notification rules that have been previously added to specific connections will be active.

Using the BEA JRock i t Management Conso le

4-42 Using BEA JRockit SDK

Using BEA JRockit SDK 5-1

C H A P T E R 5

Using the BEA JRockit Memory Leak
Detector

The BEA JRockit Memory Leak Detector is a tool to detect memory leaks within Java
applications running on BEA JRockit. A memory leak means application code holding on to
memory which is not actually used by the application any more. The BEA JRockit Memory Leak
Detector is a real-time profiling tool that gives information about what type of objects are
allocated, how many, of what size and how they relate to each other. Unlike other similar tools,
there is no need to create full heap dumps to be analyzed at a later stage. The data presented is
fetched directly from the running JVM and the JVM can continue to run with a relatively small
overhead. When the analysis is done, the tool can be disconnected, and the JVM will run at full
speed again. This makes the tool viable for use in a production type environment.

The purpose of this tool is to display memory leaking object types and provide help to track the
source of the problem. Another purpose of this tool is to help the developer by increased
understanding and knowledge to avoid similar programming errors in future projects.

Note: To access the full version of the BEA JRockit Memory Leak Detector, JRockit JRockit
1.4.2_05 or higher is required.

This product is provided “as-is,” without any expressed or implied warranties or support by BEA
Systems, Inc. This product, which may or may not become an officially supported product from BEA
Systems, may contain errors and/or inaccuracies. Use of this product is left solely upon the discretion of
the user without any endorsement from BEA Systems. The Memory Leak Detector functionality may or
may not be available in future BEA JRockit versions. Questions and problems may be reported via online
BEA JRockit newsgroups at http://newsgroups.bea.com.

Using the BEA JRock i t Memory Leak De tec to r

5-2 Using BEA JRockit SDK

This section describes the BEA JRockit Memory Leak Detector (from now on referred to as
Memory Leak Detector) and how to use it to detect memory leaks. It includes information on the
following subjects:

Starting the Memory Leak Detector

Using the Memory Leak Detector

Help Us Improve BEA JRockit

BEA JRockit Support for the Memory Leak Detector

Frequently Asked Questions

Known Issues

Starting the Memory Leak Detector
To start the Memory Leak Detector you need to start the BEA JRockit Management Console (as
from BEA JRockit 1.4.2_05):

1. Start your Java application with BEA JRockit as usual, but add the -Xmanagement option to
the command line.

2. Start the Management Console and connect to the BEA JRockit you just started. (See Start
the JRockit Management Console for details on how to do this.)

3. Click on the tab named MemLeak Detector.

Figure 5-1 displays the content of this tab.

Sta r t ing the Memory Leak De tec to r

Using BEA JRockit SDK 5-3

Figure 5-1 MemLeak Detector Tab in the BEA JRockit Management Console

4. Click Enable memleak system. This automatically starts the trend analysis, which causes
information about different object types to be displayed in the Trend analysis table.

In Table 5-1 you can find detailed explanations of what each column stands for. When
starting the memory leak data collection you also get a message from JRockit that the
“ManagementServer started trend analysis”.

Table 5-1 Column Descriptions

Column Title Description

Type The type of object

Growth How much memory (in bytes) is allocated for this type of object per second.

% of heap How large percentage of the heap is occupied by this type of object.

 Size What size in kB does that percentage correspond to.

#instances How many objects of this type is currently referenced.

Using the BEA JRock i t Memory Leak De tec to r

5-4 Using BEA JRockit SDK

Using the Memory Leak Detector
This section describes how to use the Memory Leak Detector. You will find the following topics:

Overview of the Memory Leak Detection Process

Getting Started

Memory Leak Detection

An Example of How to Find a Real Memory Leak

Overview of the Memory Leak Detection Process
The memory leak detection process consists of three phases:

1. trend analysis

2. studying object type relations

3. instance investigation

Trend analysis means to observe continuously updated object type related information and try to
discover object types with suspicious memory growth. These object types should then be studied
in the next phase of the memory leak detection process. The information in the trend analysis
table will be updated each time a garbage collection is performed.

Studying object type relations means repeatedly following reference paths between object types,
i.e. classes. The goal is to find interesting connections between growing object types and what
types of objects points to them. Finding the object type guilty of the unusual memory growth will
lead to the third and final phase of the memory leak detection process.

Instance investigation consists of finding an instance of abnormal memory size or holding an
abnormal amount of references and then inspect that instance. When inspecting an instance,
values will be displayed, e.g. field names, field types, and field values. These values will
hopefully lead you to the correct place for the error in the application code, i.e. where that
particular instance of that particular object type is allocated, modified, or removed—depending
on what the situation implies. Minimizing the problem areas to the ones connected to the
suspected instance will most likely lead you on the right track to finding the actual problem
causing the memory leak and fix it.

Using the Memory Leak De tec to r

Using BEA JRockit SDK 5-5

Getting Started
To analyze an application you need to start the Memory Leak Detector (see Starting the Memory
Leak Detector).

1. Click Enable memleak system to start the continuous update of profiling data, the result
should look something like Figure 5-2.

Figure 5-2 Memory Leak System Enabled

The growth values marked in red show the object types that grow more than 100 bytes/sec.
The areas marked in yellow indicate object types that grow between 10 and 100 bytes/sec.
Object types that grow less than that are white.

2. Click Freeze to stop the continuous update of the data. By doing so you enable the
possibility to analyze the data displayed.

If you want the table to start collecting data again, click Continuous update.

Note: The trend analysis will be reset to zero when starting continuous update, i.e. once you
click Continuous update, the frozen data is lost.

Using the BEA JRock i t Memory Leak De tec to r

5-6 Using BEA JRockit SDK

Memory Leak Detection
The following sections will guide you on how to use the Memory Leak Detector to help you with
the memory leak detection process.

1. Click Freeze to stop the continuous update of the memory leak data collection.

The JRockit process announces that the “ManagementServer stopped trend analysis”.

2. Mark any object type you find interesting. Probably one with a high growth value (most
likely marked red or yellow).

3. Right-click on the selection.

A menu appears, see Figure 5-3.

Figure 5-3 Marking Suspect Object Type

4. Select Show types pointing to this type.

The Referring Types Window appears that displays a list of the object types pointing to
that particular type of object, see Figure 5-4.

Using the Memory Leak De tec to r

Using BEA JRockit SDK 5-7

Figure 5-4 Referring Types Window: Investigating Suspicious Object Types

5. Mark an object type you wish to study and right-click, the different action alternatives
appear, see Figure 5-5.

Figure 5-5 Available Action Alternatives

6. Select the option you wish to study.

Show types pointing to this type alternative (see how to in section 4.).

Show largest array of this type if the selected object type happens to be an array.
This function lists the ten largest array instances of this type in the Largest Arrays
Window, see Figure 5-6.

Show instances of this type pointing to <TYPE>. This alternative lists—if it is not
too large—all instances of the selected object type pointing to objects of type
TYPE in the Referring Instances Window, see Figure 5-7.

Using the BEA JRock i t Memory Leak De tec to r

5-8 Using BEA JRockit SDK

Figure 5-6 Largest Array Window: Looking at the Largest Array Instances

7. Follow the suspicious instances in Figure 5-6 by selecting and right-clicking the selection
and choosing Show instances pointing to this array.

In the new Referring Instances Window that appears, see Figure 5-7, you can see static
fields and how many thread roots are referring to the instance in question.

Figure 5-7 Referring Instances Window: Instances Pointing to an Array Instance.

8. Select a referring instance and right-click.

9. Click Inspect. The Inspection Window appears, see Figure 5-8.

When inspecting an instance you get all necessary data to hopefully track the particular
instance in the application code. You get the field names, their types, and their values.

Using the Memory Leak De tec to r

Using BEA JRockit SDK 5-9

Trying to map these values to the code will help you discover the source of the memory
leak.

Figure 5-8 Inspection Window: Inspecting an Instance

In some cases the lists that is displayed may be very long. In those cases you will be notified and
informed about the consequences of displaying such a list, see Figure 5-9.

Figure 5-9 Trying to display a very long list

An Example of How to Find a Real Memory Leak
Below follows an example of how to find a memory leak by narrowing down the search space.
Once the search space is narrowed down, you will hopefully find the exact problem area and then
be able to solve the problem by changing you application.

After starting the Memory Leak Detector, choose to investigate the object type that grows the
most and which is not expected to grow, considering the design and the purpose of the

Using the BEA JRock i t Memory Leak De tec to r

5-10 Using BEA JRockit SDK

application. In this example it turns out to be the DemoObject object type (Figure 5-10). Select
the row corresponding to the suspected object type, right-click on it and choose the menu option
Show types pointing to this type.

Figure 5-10 Trend Analysis Gave the Object Type DemoObject

A Referring Types Window (Figure 5-4) appears displaying the one object type pointing to the
DemoObject. It turns out to be HashTable$Entry. To pursue this suspected memory leak path,
select the corresponding row, right-click on the selection, and choose Show types pointing to this
type once again.

In the new Referring Types Window that appears, note the two object types pointing to the
previous object type. One is HashTable$Entry[] and the other is HashTable$Entry. Notice that
the number of references from the HashTable$Entry[] type is much larger than expected and
choose to investigate this array type further. Select the row corresponding to the array type,
right-click the selection, and choose Show types pointing to this type. By selecting this option,
you find that the object type HashTable is pointing to the array in the new Referring Types
Window that appeared.

Return to the previous window and select the suspected array type again. Right-click on the
selection, but this time choose Show largest arrays of this type. A Largest Array Window
(Figure 5-6) appears with a list of the ten largest instances of this array, with the largest listed on
top. This information tells you that it is one single array instance being responsible for the large
memory occupation.

Instead of choosing the other alternative: Show instances of this type pointing to <TYPE>, where
TYPE in this case is HashTable$Entry the new window that appears presents a warning for a large
amount of references maybe causing the connection to the JRockit process to be lost. This means
that the HashTable$Entry[] consumes unexpected amounts of memory and is holding on to an
enormous amount of references to HashTable$Entry.

Return to the Largest Array Window. Select and right-click the suspected alternative, i.e. the
instance occupying the largest amount of memory. Select Show instances pointing to this array.
A Referring Instances Window (Figure 5-7) appears with a list of instances pointing to the array.
It is a HashTable instance (Figure 5-11).

Help Us Improve BEA JRocki t

Using BEA JRockit SDK 5-11

Figure 5-11 Studying Object Type Relations Resulted In the Following Schedule

The Inspection Window (Figure 5-8) appears. In that window you can see different field names,
their types, and their values (Figure 5-12). Pretty soon you will probably be able to map these
fields and values to a certain point in the application code.

Figure 5-12 Instance Inspection Helps Mapping the Problem to Corresponding Code

From this example, you can draw the conclusion that somewhere you add HashTable$Entry
instances into the HashTable$Entry[] which is kept alive by a HashTable. You can also read that
your application never seems to remove them, since the memory occupied by these type of
objects is continuously growing. To confirm the beliefs, investigate the code thoroughly at the
place where the instance field info has taken you.

The source of the confirmed memory leak turned out to be in a place in the code where, after
HashTable$Entry objects are added to the HashTable$Entry[] in a HashTable. The application
removed all of the HashTabe$Entry objects except one; it missed the last instance due to an
off-by-one error (a very common error causing memory leaks of this sort).

Help Us Improve BEA JRockit
The Memory Leak Detector provides an easy way to capture information about object type
allocation statistics. It is designed to help developers to easier find memory leaks and to better
understand critical points of program engineering.

If you have any suggestions relevant for this purpose on how to improve this tool or information
on how it is most commonly used in development environments, we would be grateful to receive
your input. This information would contribute to our understanding on how to best further
improve this tool in the future.

Please, send an email with feedback and your ideas on how to use it to:

jrockit-improve@bea.com

Using the BEA JRock i t Memory Leak De tec to r

5-12 Using BEA JRockit SDK

How will BEA Systems Use This Feedback
The feedback will be considered by the development team designing the Memory Leak Detector.
We will look at collected ideas and improve the tools of BEA JRockit to make them even easier
to use. Our goal with the development of this tool is to simplify the difficult task of finding
memory leaks in the future and help the developer work more efficiently.

BEA JRockit is already providing a lot of appreciated manageability tools, and to stay
appreciated and to keep a close dialogue with developers using Java Runtime Environments,
BEA Systems is always trying to find ways to improve BEA JRockit. This is one of the ways.

BEA JRockit Support for the Memory Leak Detector
Only more recent versions of BEA JRockit fully support the Memory Leak Detector: BEA
JRockit 1.4.2_05.

Frequently Asked Questions
Following are some questions we have frequently been asked about the Memory Leak Detector:

Does BEA Systems Guarantee the Accuracy of this tool’s output?

Does the Memory Leak Detector Cause Any Overhead?

What Kind of Support is Available for the Memory Leak Detector?

Is There a Forum Where I can Discuss the Memory Leak Detector?

Does BEA Systems Guarantee the Accuracy of this tool’s
output?
Since this is not a supported product, we cannot make any guarantees about the correctness of the
data we show or the stability of the product when using the Memory Leak Detector.

Does the Memory Leak Detector Cause Any Overhead?
During the first phase of the memory leak detection process the data presented is continuously
updated; however, the overhead during this phase is very small. During the second and third
phase the only overhead that will be caused is some additional garbage collections which in most
cases is negligible. Overall, there is practically no overhead and it should not affect the speed or
results of your application.

Known I ssues

Using BEA JRockit SDK 5-13

What Kind of Support is Available for the Memory Leak
Detector?
The Memory Leak Detector functionality is currently being provided as-is for your convenience
and to help with memory leak detection and is not supported by BEA Support.

Is There a Forum Where I can Discuss the Memory Leak
Detector?
If you have any questions you are welcome to share them in the BEA JRockit general interest
newsgroup, which is monitored by our engineering team. To access the newsgroup, go to:

http://newsgroups.bea.com

Known Issues
Sometimes static fields and the number of thread roots are not correctly displayed in the window
displaying instances referring to an other instance. This can be helped by starting the memory
leak detection process one again (i.e. unfreezing and freezing the memory leak system).
However, if there is data displayed, it is the correct values.

Using the BEA JRock i t Memory Leak De tec to r

5-14 Using BEA JRockit SDK

Known I ssues

Using BEA JRockit SDK 5-15

Using the BEA JRock i t Memory Leak De tec to r

5-16 Using BEA JRockit SDK

Using BEA JRockit SDK 6-1

C H A P T E R 6

Code Caching with BEA JRockit

Code caching—or code persistence—is the process of storing generated machine code to disk for
retrieval when that code is required in a subsequent instance of the JVM. Since cached code is
already generated, the time that code generation would require on subsequent startups is lessened
and—usually—execution time is reduced. Persisting code should not be mistaken for
hibernation, which means storing not only code but also objects and the entire heap.

This section describes how BEA JRockit’s code caching feature works and shows you how to run
it. It includes information on the following subjects:

Why Is Code Caching Helpful?

What is the Cache?

How to Use Code Caching

How Code Caching Works

Code caching is being introduced as an experimental feature in this version of BEA JRockit. In a future
release of BEA JRockit, this feature is planned to be supported when used only with BEA WebLogic
Server. For all other Java applications, it is provided “as-is” without any expressed or implied warranties
or support by BEA Systems, Inc. and might contain errors and/or inaccuracies. Use of this feature with
all other Java applications other than WebLogic Server is left solely to the discretion of the user without
any endorsement from BEA Systems. Questions and problems may be reported via online BEA JRockit
1.4.2 newsgroups at http://newsgroups.bea.com.

Code Cach ing wi th BEA JRock i t

6-2 Using BEA JRockit SDK

Error Recovery

Cleaning Up the Cache

Why Is Code Caching Helpful?
Startup time is a concern to many people, especially during development. For a typical run of the
javac compiler, code generation in the JVM represents a majority of the startup time. By using
code caching, startup time—and thus execution time—can be improved significantly.

What is the Cache?
The “cache” is a directory in your file system that stores previously generated code. The cache is
shared among all instances of BEA JRockit that are started on the machine. The directory itself
is comprised of a number of different files. The cache is logically divided into parts. Each part
consists of a code file (with a .code file extension) and the index file (with a .ndx extension).
Each part is numbered and the number is the same for the code and index file. Thus you will find
pairs of files called, for example, 1.code and 1.ndx.

How to Use Code Caching
When BEA JRockit is started with code caching enabled, JIT-ed code is written to the cache. The
next time you run BEA JRockit, it reads this file and instantiates any necessary cached methods
as compiled code, rather than as bytecode that would require compilation.

This section describes how to use code caching by running these functions:

Enabling Code Caching

Specifying a Cache Name

Code Caching in the Read/Write Mode

Code Caching in the Read-only Mode

Other Code Caching Arguments

Using Code Caching to Improve Performance

Setting the Verbosity Level

Enabling Code Caching by Using an Environment Variable

How to Use Code Caching

Using BEA JRockit SDK 6-3

Enabling Code Caching
Enable code caching by using the -XXcodecache command line option with the appropriate
arguments, as needed; for example:

-XXcodecache:[dir=directory],[readonly],[clobber]

Specifying a Cache Name
By default, the cached code is written to a per-user directory referred to as the “cache.” The
default locations are as follows (on windows the exact path name is different on different locales):

Windows:
C:\Documents and Settings\username>\Local Settings\Application Data\JRockit

CodeCache\

Linux:
/tmp/<username>_jrockit_codecache/

To use a different cache directory, use the -XXcodecache:dir= command to specify the new
cache name:

-XXcodecache:dir=/path/to/myCacheDirectory

For information on the cache directory, please refer to How Code Caching Works.

Code Caching in the Read/Write Mode
By default, code caching runs in read/write mode. This means that when BEA JRockit encounters
a new method, it first checks the cache to see if a compiled version of the method is available in
the cache. If so, that version is read into memory and used. If the method is not available from
the cache, it is generated and then stored to cache.

Code Caching in the Read-only Mode
You can also instruct BEA JRockit to read the cache but not write newly compiled code to it. This
is helpful, for example, when you have deployed your application in a production environment
and want to ensure nothing changes in the working cache. Using readonly will prevent any
updating. A typical command line invoking readonly might look like this:

-XXcodecache:file=myCacheFile,readonly

Code Cach ing wi th BEA JRock i t

6-4 Using BEA JRockit SDK

Other Code Caching Arguments
Table 6-1 list additional code caching arguments that you can use along with dir= and
readonly.

Using Code Caching to Improve Performance
The simplest way of using code caching to improve the startup time performance of an
application is to run the application once to build an initial cache, then to rerun the same
application; for example:

java -XXcodecache HelloWorld.

This will create the cache and add to that cache any compiled methods.

java -XXcodecache HelloWorld

This will use the previously created cache and thus run faster since no code will need to be
compiled.

Setting the Verbosity Level
You can use the option -Xverbose:[codecache,codecache2] to set verbosity mode for status
messages. codecache will print basic information about the cache as well as information about
methods that could not be saved or loaded. Verbose level 2 (codecache2) will print more
detailed messages about each method as it is being saved or loaded.

Table 6-1 Other Code Caching Arguments

Argument Description

clobber Unconditionally overwrites code cache. This option is useful to force the
recreation of a cache from scratch. Otherwise, by default the VM will
attempt to append to an existing cache. This option is overridden by the
readonly option.

exitonerror Exit BEA JRockit when a code caching error occurs. By default BEA
JRockit will recover from an error in the code cache by disabling the
cache.

How Code Cach ing Works

Using BEA JRockit SDK 6-5

Enabling Code Caching by Using an Environment Variable
Instead of enabling code caching on each command line, you can set the environment variable
JR_CODECACHE to enable code caching for all invocations of BEA JRockit. The value of the
environment variable should be the same as the arguments to -XXcodecache. Since empty
environment variables are not supported by all operating system, it is possible to set the variable
to the value enable if all you want is the default options.

For example:

set JR_CODECACHE=enable

set JR_CODECACHE=ro,dir=/path/to/myCodeCache

How Code Caching Works
This section describes how code caching works. It includes descriptions of the following
functionality:

What Happens When Code Caching Runs

Dealing with Code Changes

Dealing with Cache Cleanup

Removing Obsolete Methods

Cache File Validity

What Happens When Code Caching Runs
When you start a Java program with code caching enabled, BEA JRockit access the cache
directory and either opens an existing cache file or creates a new empty file. As new methods are
generated, they are written to one of these files (if it is an existing file, the information is
appended to the existing information). Finally, during shutdown, a new cache index is created and
the cache directory is closed. If a fatal error occurred that would result in the creation of an invalid
cache, the corrupted cache is automatically removed.

A code cache is not only application specific, but also application usage specific. This is because
methods can be generated differently depending on class initialization order, static initializers,
assertion status, and other conditions which may change if the application is run differently.
Generally, as long as use of the application does not change significantly, these assumptions—
which are checked when a method is loaded—will remain valid. If not, some of the methods
stored in the cache will become invalid and will have to be regenerated. The newly generated

Code Cach ing wi th BEA JRock i t

6-6 Using BEA JRockit SDK

methods are appended to the cache and override the previous definitions, which will still remain
in the cache but are inaccessible.

Dealing with Code Changes
The codecache functionality will prevent cached code that is no longer valid from being used by
the JVM. If changes are made to the class files after the code is stored to the cache, the code
caching system prevents that stored code from being retrieved during subsequent runs. Many
methods have dependencies to other classes and methods because of in-lining and other
optimizations; these dependencies must also be stored and if they are no longer valid at retrieval
time the stored method cannot be used.

To ensure that changed code is not retrieved, BEA JRockit stores classes based on the secure
checksum (MD5 version) of the class bytes. This information is used as the index for a class
when BEA JRockit looks up stored methods. Classes that have been changed are detected by a
change in checksum, and any stored methods which depend on the old version of the class will
be invalidated and will have to regenerated. A dependency check is run when loading a method
to determine if the method has any dependencies on classes that have been invalidated.

Dealing with Cache Cleanup
This version of BEA JRockit has no provision for cleaning up the cache. It is therefore a good
practice to occasionally delete the cache and recreate it by rerunning the application. This is also
true if the application is being currently developed, in which case classes will be recompiled
causing cached methods to be replaced. For more information, please refer to Cleaning Up the
Cache.

Removing Obsolete Methods
Once the application development cycle has completed and the application usage has stabilized,
it is probably a good idea to regenerate the cache to remove obsolete methods. Following that,
the best way to deploy the application would be to run the application at install time and generate
a cache, then subsequently run the application with this cache in read only mode as suggested
previously. This will prevent new methods from being added to the cache, and allow the
application cache to be shared.

Er ro r Recovery

Using BEA JRockit SDK 6-7

Cache File Validity
The cache generated is very dependent on machine-specific factors as well as some JVM options.
If any of these constraints are not satisfied when loading a cache, it is considered invalid. When
the cache is invalid and you are running code caching in the read-only mode, the JVM code
caching is disabled. If you are running it in the read/write mode, an attempt will be made to
overwrite the cache. In this version of code caching, the file is dependent on machine architecture
and operating system type.

Error Recovery
When code caching is enabled, BEA JRockit will always attempt to recover from a serious error
specific to code caching. Examples of such errors are running out of memory, invalid code cache
format, I/O errors while reading or writing from the cache. In these cases, the VM will continue
running the application but code caching will be disabled and an error message will be displayed
on the screen.

On the other hand, being unable to store or load an individual method because loading or saving
constraints have changed is not considered an error and code caching will continue without
saving or loading that particular method. If no verbosity is chosen, nothing will be reported.
-Xverbose:codecache will result in messages about specific methods that could not be saved
or loaded.

Cleaning Up the Cache
Currently, BEA JRockit does not perform any sort of cache cleanup. This means that any unused
classes and methods will continue to persist in the cache even if they are never used again. This
is helpful if you later decide to use a previous version of a class as it might still be in the cache.
But to clean up a cache in this version of BEA JRockit, you will have to rebuild it when you have
finished developing the application.

Code Cach ing wi th BEA JRock i t

6-8 Using BEA JRockit SDK

Using BEA JRockit SDK 7-1

C H A P T E R 7

Using BEA JRockit JVM with Other
WebLogic Applications

The configuration options described elsewhere in this user guide can be set to optimize BEA
JRockit JVM performance with both BEA WebLogic Server and BEA WebLogic Workshop.
This chapter defines these optimal settings and discussed how to use the JVM with these
applications. It includes information on the following subjects:

Using BEA JRockit JVM with BEA WebLogic Server

Configuring JRockit for BEA WebLogic Workshop

Using BEA JRockit JVM with BEA WebLogic Server
BEA JRockit JVM is certified for use with BEA WebLogic Server. This section includes
information on the following subjects:

Certified Versions

Verifying that BEA JRockit is Your JVM

Starting JRockit from the Node Manager

Enabling the Management Server from the Node Manager

Tuning BEA JRockit for WebLogic Server

Setting Options by Using the Node Manager

Monitoring BEA JRockit JVM from WebLogic Server

Switching to BEA JRockit JVM in WebLogic Server

Using BEA JRock i t J VM wi th Othe r WebLog ic Appl i ca t ions

7-2 Using BEA JRockit SDK

Switching VMs When WebLogic Server is Running as a Service

Certified Versions
For details on certified and supported platform combinations of WebLogic Server with BEA
JRockit 8.0, please refer to the following Web pages:

http://www.bea.com/products/weblogic/server/

or

http://www.bea.com/products/weblogic/jrockit/

Verifying that BEA JRockit is Your JVM
BEA JRockit is the default production JVM shipped with WebLogic Server, although you can
use another VM, such as Sun Microsystem’s HotSpot JVM as a development VM. To ensure that
BEA JRockit is the JVM running with your instance of WebLogic Server, at the command line,
type:

java -version

If BEA JRockit is running, the system will respond:

java version "1.4.2_04"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.2_04-b05)
BEA JRockit(TM) 1.4.2_04 JVM (build ari-29212-20040415-1348-win-ia32,
Native Threads, GC strategy: parallel)

Note: This example assumes you are using the native thread method (the default) and
generational concurrent garbage collector (default when maximum heap size is larger
than 128 MB).

Starting JRockit from the Node Manager
If you are starting BEA JRockit JVM from the WLS Node Manager, you need to enter the
fully-qualifying path, as shown above, in the Java Home field on the Remote Start Page; for
example:

\bea\jrockit81_141\bin\java

Enabling the Management Server from the Node Manager
You can enable the management server from the WLS Node Manager by doing the following:

http://www.bea.com/products/weblogic/server/
http://www.bea.com/products/weblogic/jrockit/

Usi ng BEA JRock i t JVM wi th BEA WebLog ic Se rve r

Using BEA JRockit SDK 7-3

1. Start the Node Manager as described in Starting Node Manager with Commands or Scripts
and navigate to the Remote Start page.

2. Ensure that you have specified an absolute pathname to BEA JRockit JVM’s top-level
directory in the Java Home field

3. In Arguments, type -Xmanagement.

For more information on using the Node Manager, please refer to the Overview of Node Manager
in Configuring and Managing WebLogic Server.

Setting Options by Using the Node Manager
If you started the server or cluster of servers with the Node Manager and specified an absolute
pathname to BEA JRockit JVM’s top-level directory in the Java Home field on the Node
Manager’s Remote Start page, you can set any option from this page, too. Simply enter the option
and any arguments in the Arguments field.

For more information on using the Node Manager, please refer to the Overview of Node Manager
in Configuring and Managing WebLogic Server.

Tuning BEA JRockit for WebLogic Server
To use the BEA JRockit JVM instead of the Sun JVM, you need to increases the initial heap size
to 64 MB (-Xms:64m)and the maximum heap size to at least 200 MB (-Xmx:200m). In addition,
the following defaults are used:

-Xnativethreads

-Xallocationtype:local

These settings are normally used for initial development. If you want to improve BEA JRockit
performance, you can try one of the following, bearing in mind that all applications are different
and you need to verify which settings give the best performance in each case:

Increase the heap initial and maximum size (-Xms and -Xmx).

Change the garbage collector to single spaced concurrent (-Xgc:singlecon) or parallel
(-Xgc:parallel). Note that if you select parallel as your garbage collector, the -Xns
setting will have no affect on processing (see Setting the Size of the Nursery).

For more information on tuning BEA JRockit, please refer to Tuning BEA JRockit JVM.

Using BEA JRock i t J VM wi th Othe r WebLog ic Appl i ca t ions

7-4 Using BEA JRockit SDK

Monitoring BEA JRockit JVM from WebLogic Server
If you run WebLogic Server with BEA JRockit JVM, you can use the WebLogic Server
Administration Console to view runtime data about the VM and the memory and processors on
the computer hosting it.

To monitor BEA JRockit JVM, do the following:

1. Start WebLogic Server with BEA JRockit JVM as the VM.

2. In the left pane of the Administration Console, expand the Servers folder.

3. Click a server that is using the BEA JRockit JVM.

4. In the right pane, click the Monitoring tab. Then click the JRockit tab.

The JRockit tab displays monitoring information.

Table 7-1 BEA JRockit Attributes Monitored by the WebLogic Server Administration Console

Attribute Description

Total Nursery Size Indicates the amount (in bytes) of memory that is currently allocated to the nursery.
The nursery is the area of the Java heap where objects are initially allocated. Instead
of garbage collecting the entire heap, generational garbage collectors focus on the
nursery. Because most objects die young, most of the time it is sufficient to garbage
collect only the nursery and not the entire heap. If you are not using a generational
garbage collector, the nursery size is 0.

Max Heap Size Indicates the maximum amount of memory (in bytes) that the VM can allocate for
its Java heap. This number is fixed at startup time of the VM, typically by the -Xmx
option.

Gc Algorithm Indicates the type of garbage collector that BEA JRockit JVM is using.

Total Garbage
Collection Count

Indicates the number of garbage collection runs that have occurred since the VM was
started.

GCHandles Compaction Indicates whether the VM's garbage collector compacts the Java heap. Usually the
heap is scattered throughout available memory. A garbage collector that compacts
the heap defragments the memory space in addition to deleting unused objects.

Values:
• true
• false

Usi ng BEA JRock i t JVM wi th BEA WebLog ic Se rve r

Using BEA JRockit SDK 7-5

Concurrent Indicates whether JRockit's garbage collector runs in a separate Java thread
concurrently with other Java threads.

Values:
• true
• false

Generational Indicates whether JRockit's garbage collector uses a nursery space. Instead of
garbage collecting the entire heap, generational garbage collectors focus on the
nursery. Because most objects die young, most of the time it is sufficient to garbage
collect only the nursery and not the entire heap.

Values:
• true
• false

Incremental Indicates whether JRockit's garbage collector collects only a small portion of the
heap during each old collection (incremental) or collects the whole heap during each
collection (non-incremental).

Values:
• true
• false

Parallel Indicates whether the JRockit's garbage collector is able to run in parallel on multiple
processors if multiple processors are available.

Values:
• true
• false

Number Of Processors Displays the number of processors on JRockit's host computer. If this is not a
Symetric Multi Processor (SMP) system, the value will be 1.

Total Number Of
Threads

Indicates the number of Java threads (daemon and non-daemon) that are currently
running on JRockit across all processors.

Number Of Daemon
Threads

Indicates the number of daemon Java threads currently running on JRockit across all
processors.

Table 7-1 BEA JRockit Attributes Monitored by the WebLogic Server Administration Console

Attribute Description

Using BEA JRock i t J VM wi th Othe r WebLog ic Appl i ca t ions

7-6 Using BEA JRockit SDK

To view additional data about BEA JRockit, such as how long it spends in a specific method, use
the BEA JRockit Management Console, as described in Using the BEA JRockit JVM
Management Console.

Switching to BEA JRockit JVM in WebLogic Server
When you switch to BEA JRockit JVM in WebLogic Server, any changes to the VM and start-up
setting, should be handled by the WLS Configuration Wizard. Additionally, if any
installation-wide scripts must be updated due to the switch, these will also be handled by the WLS
Configuration Wizard.

Among information that needs to be changed when switching to BEA JRockit JVM are:

The value for the JAVA_HOME variable needs to be changed to the absolute pathname to the
top BEA directory; for example, c:\bea\jrockit81.

You can also change the JAVA_HOME variable from the Node Manager’s Remote Start page
by entering the absolute pathname in the Java Home field.

Change the value of the JAVA_VENDOR variable to BEA.

You will also need to restart any servers that are currently running.

For complete details on switching to BEA JRockit JVM from another JVM, please refer to
Migrating to BEA JRockit. For more information on using the Configuration Wizard when
switching to BEA JRockit, please refer to Changing the JVM that Runs Servers.

Switching VMs When WebLogic Server is Running as a Service
To switch the virtual machine when WebLogic Server is running as a service, do the following:

1. Stop the service.

2. Start regedit and find the service keys corresponding to your service
(HKEY_LOCAL_MACHINE/SYSTEM/ControlSet001/Services/{ServiceName}).

3. In the Parameters folder, change the value of the key JavaHome from the default VM to
your BEA JRockit SDK directory.

4. Here you can also alter the arguments sent to the VM by editing the values of the key
CmdLine.

5. Restart the service.

Conf igur ing JRocki t fo r BEA WebLogi c Workshop

Using BEA JRockit SDK 7-7

Configuring JRockit for BEA WebLogic Workshop
If you are running JRockit with BEA WebLogic Workshop, we recommend that you use the same
configuration parameters specified for WebLogic Server in Tuning BEA JRockit for WebLogic
Server.

Using BEA JRock i t J VM wi th Othe r WebLog ic Appl i ca t ions

7-8 Using BEA JRockit SDK

Using BEA JRockit SDK A-1

A P P E N D I X A

Adding Custom Notification Actions
and Constraints

After starting the BEA JRockit JVM Management Console for the first time, a file named
consolesettings.xml will be created in the \ManagementConsole directory in your home
directory. Among other entries, this file contains the deployment entries for the default actions
and constraints. You can create custom notification actions and constraints for the Management
Console, which are also stored in this file. Once added, these actions and constraints will appear
on the Notifications tab of the Management Console.

This appendix includes information on the following subjects:

Locating consolesettings.xml

Creating a Custom Action

Creating and Implementing an Action: Example

Creating a Custom Constraint

Locating consolesettings.xml
The consolesettings.xml file is located in your home directory, under the
\ManagementConsole folder. If you are using Windows, the path should be:

C:\Documents and Settings\<user_name>\ManagementConsole

(where <user_name> is the user name under which you are running the Management Console)

If you are using Linux, the path will normally be:

/home/<user_name>/ManagementConsole

Add ing Custom Not i f i ca t ion Ac t ions and Const ra in ts

A-2 Using BEA JRockit SDK

(where <user_name> is the user name under which you are running Management Console)

Creating a Custom Action
The following procedure walks you through the steps necessary to create and implement a custom
action. In this procedure, you will be creating a print action.

1. Add the ManagementConsole.jar to your build path.

You can find this .jar in the <jrockit_home>/console directory.

2. Create a subclass of AbstractNotificationAction. This class will receive the
NotificationEvents.

3. Implement handleNotificationEvent:

public void handleNotificationEvent(NotificationEvent event)

You can also override the exportToXml and initializeFromXml methods to store your
action settings to XML.

4. Create a subclass of AbstractNotificationActionEditor to create the graphical editor
used to edit the settings. If you have no editable settings for your action, you can just use
the com.jrockit.console.notification.ui.NotificationActionEditorEmpty.

5. Implement the abstract methods:

protected void storeToObject(Describable object);

protected void initializeEditor(Describable object);

6. Edit the consolesettings.xml file to include your new action under the
<registry_entry> element.

7. Add your new classes in the classpath.

8. Run the console.

The new action will be available in the new rule dialog box in the notification section of the
Management Console (see Notification Tab).

Creating and Implementing an Action: Example
This section shows a real-life example of how an action is created and implemented. Once
implemented, a text field where you can enter a parameter will appear on the Notification tab.

Creat ing and Imp lement ing an Ac t ion : Example

Using BEA JRockit SDK A-3

The step numbers that appear in headings below refer to the steps in the procedures under
Creating a Custom Action.

Note: This example assumes that ManagementConsole.jar has been added to the build path
(Step 1).

Create the Action (Step 2)
First, we create a subclass of AbstractNotificationAction, as shown in Listing A-1. This
class will receive the NotificationEvents.

Listing A-1 Building the Parameterized Action

package com.example.actions;

import org.w3c.dom.Element;

import com.jrockit.console.notification.*;

import com.jrockit.console.util.XmlToolkit;

/**

 * Test class showing how to build a parameterized action.

 *

 * @author Marcus Hirt

 */

public class MyTestAction extends AbstractNotificationAction

{

 private final static String TEST_SETTING = "test_param";

 public final static String DEFAULT_VALUE = "default value";

 private String m_parameter = DEFAULT_VALUE;

 /**

 * @see com.jrockit.console.notification.NotificationAction#

 * handleNotificationEvent(NotificationEvent)

 */

 public void handleNotificationEvent(NotificationEvent event)

 {

 System.out.println("===MyTestAction with param: " +

 getParameter() + "======");

Add ing Custom Not i f i ca t ion Ac t ions and Const ra in ts

A-4 Using BEA JRockit SDK

 System.out.println(NotificationToolkit.prettyPrint(event));

 }

 /**

 * @see com.jrockit.console.util.XmlEnabled#exportToXml

 * (Element)

 */

 public void exportToXml(Element node)

 {

 XmlToolkit.setSetting(node, TEST_SETTING, m_parameter);

 }

 /**

 * @see com.jrockit.console.util.XmlEnabled#initializeFromXml

 * (Element)

 */

 public void initializeFromXml(Element node)

 {

 m_parameter = XmlToolkit.getSetting(node, TEST_SETTING,

 DEFAULT_VALUE);

 }

 /**

 * Returns the parameter.

 *

 * @return some parameter.

 */

 public String getParameter()

 {

 return m_parameter;

 }

 /**

 * Sets the parameter.

 *

 * @param parameter the value to set the parameter to.

 */

 public void setParameter(String parameter)

Creat ing and Imp lement ing an Ac t ion : Example

Using BEA JRockit SDK A-5

 {

 m_parameter = parameter;

 }

}

Implementing handleNotificationEvent() (Step 3)
While creating the subclass of AbstractNotificationAction created, we implemented
handleNotificationEvent(), as shown in Listing A-2. This method acts on the incoming event.

Listing A-2 Implementing handleNotificationEvent

public class MyTestAction extends AbstractNotificationAction

{

 private final static String TEST_SETTING = "test_param";

 public final static String DEFAULT_VALUE = "default value";

 private String m_parameter = DEFAULT_VALUE;

 /**

 * @see com.jrockit.console.notification.NotificationAction#

 * handleNotificationEvent(NotificationEvent)

 */

 public void handleNotificationEvent(NotificationEvent event)
 {

Creating the Action Editor (Step 4)
Next, we create a subclass of AbstractNotificationActionEditor to create the graphical
editor used to edit the settings. Listing A-3 shows how this is done.

Listing A-3 Creating the Action Editor

package com.example.actions;

Add ing Custom Not i f i ca t ion Ac t ions and Const ra in ts

A-6 Using BEA JRockit SDK

import java.awt.*;

import javax.swing.*;

import com.jrockit.console.notification.Describable;

import com.jrockit.console.notification.ui.AbstractNotification

 ActionEditor;

/**

* Simple test editor. Displays a text field where you can enter a

* parameter.

* (Note that you'd get better layout results using a GridbagLayout.)

*

* @author Marcus Hirt

*/

public class MyTestActionEditor extends AbstractNotificationActionEditor

{

 private JTextField m_parameterField = new

 JTextField(MyTestAction.DEFAULT_VALUE);

 /**

 * Constructor for MyTestActionEditor.

 */

 public MyTestActionEditor()

 {

 super();

 setName("MyTestAction settings");

 add(new JLabel("Param:"), BorderLayout.WEST);

 add(m_parameterField, BorderLayout.CENTER);

 setMinimumSize(new Dimension(140,0));

 }

 /**

 * @see com.jrockit.console.notification.ui.Abstract

 * Editor#initializeEditor(com.jrockit.console.notification.

 * Describable)

 */

 protected void initializeEditor(Describable action)

 {

 m_parameterField.setText(((MyTestAction) action).

 getParameter());

Creat ing and Imp lement ing an Ac t ion : Example

Using BEA JRockit SDK A-7

 }

 /**

 * @see com.jrockit.console.notification.ui.AbstractEditor#

 * storeToObject(com.jrockit.console.notification.Describable)

 */

 protected void storeToObject(Describable action)

 {

 ((MyTestAction)action).setParameter(m_parameterField.

 getText());

 }

}

Implementing the Abstract Methods (Step 5)
When we created the action editor above, we implemented the abstract methods
initializeEditor() and storeToObject(), as shown in Table A-4.

Listing A-4 Implementing the Abstract Methods

 */
 protected void initializeEditor(Describable action)

 {

 m_parameterField.setText(((MyTestAction) action).

 getParameter());

 }

 /**

 * @see com.jrockit.console.notification.ui.AbstractEditor#

 * storeToObject(com.jrockit.console.notification.Describable)

 */

 protected void storeToObject(Describable action)

 {

 ((MyTestAction)action).setParameter(m_parameterField.

 getText());

 }

Add ing Custom Not i f i ca t ion Ac t ions and Const ra in ts

A-8 Using BEA JRockit SDK

Adding the New Action to the Deployment Entries (Step 6)
Before the action and editor can appear on the Management Console, you need to add it to the
deployment entries in consolesettings.xml, under the <registry_entry> element, as
shown in Listing A-5.

Listing A-5 Adding the New Action to the Deployment Entries

<registry_entry>

 <entry_class>

 com.company.actions.MyTestAction

 </entry_class>

 <entry_name>

 Test action

 </entry_name>

 <entry_description>

 Test action, dynamically added.

 </entry_description>

 <entry_editor_class>

 com.company.actions.MyTestActionEditor

 </entry_editor_class>

</registry_entry>

Displaying the New Action Editor (Steps 7 and 8)
Finally, add the new classes to your classpath and start the console. When you navigate to the
Notifications tab, you’ll see the new editor on the tab.

Creating a Custom Constraint
Create custom constraints by using the same procedure described in Creating a Custom Action,
except that you must implement:

boolean validate(NotificationEvent event)

instead of:

void handleNotificationEvent(NotificationEvent event)

Creat ing a Custom Const ra in t

Using BEA JRockit SDK A-9

as shown in Listing A-6:

Listing A-6 Code Change for Creating a Customer Constraint

public class MyTestAction extends AbstractNotificationAction

{

 private final static String TEST_SETTING = "test_param";

 public final static String DEFAULT_VALUE = "default value";

 private String m_parameter = DEFAULT_VALUE;

 /**

 * @see com.jrockit.console.notification.NotificationAction#

 * handleNotificationEvent(NotificationEvent)

 */

 boolean validate(NotificationEvent event)
 {

Add ing Custom Not i f i ca t ion Ac t ions and Const ra in ts

A-10 Using BEA JRockit SDK

Using BEA JRockit SDK B-1

A P P E N D I X B

Using the Java Plugin

Popular web browsers, such as Netscape Navigator and Microsoft Internet Explorer, come with
a default JRE, under which applets and Java beans are run, already installed. If you want to run
applets under BEA JRockit JRE, you can implement the Java plug-in that ships with this product.

Available only on IA32 implementations, the BEA JRockit Java plug-in extends the functionality
of your web browser, allowing applets and Java beans run under it rather than its default JRE. The
Java Plug-in is part of the BEA JRockit JRE and is installed when the JRE is installed on a
computer. It works with both Netscape and Internet Explorer.

This section includes information on the following subjects:

Supported Operating Systems and Browsers

Installing the Plugin

Implementing the Plugin

Plugin Reference

Using the Java Plug in

B-2 Using BEA JRockit SDK

Supported Operating Systems and Browsers
Table B-1 lists the operating systems and browsers supported by the BEA JRockit Java plug-in.

Installing the Plugin
The Java plugin is installed automatically for Win32 machines when you install BEA JRockit
JRE, as described in “Installing the JRE.” For Linux32 machines, you can install it as described
in either of these documents from Sun Microsystems:

Manual Installation/Registration of Java Plug-in—Linux (manual installation and
registration)

Control Panel Script Options for Plug-in Registration (automatic installation and
registration)

Note on Installing the BEA JRockit Plugin and Sun Plugin
If you installing the Sun JRE after installing the BEA JRockit JRE, the Sun JRE will become the
default Java Plugin on the system. If this happens, you should uninstall and reinstall the BEA
JRockit JRE again.

Table B-1 Java-in Plugin O/S and Browser

Operating System
Support

For a list of supported operating systems, see the list of supported AI32 platforms at BEA
JRockit 1.4.2 SDK Platform Support.

Browser Support Netscape 4.7.x, 6.2.2, 7

Mozilla 1.2.1, 1.3, 1.4, 1.4.1

Internet Explorer 5.5 (SP2+), 6.x

For information on the latest browser support see:

http://java.sun.com/j2se/1.4.2/system-configurations.html

Note: Netscape 4.79 will only run applets that are specifically tagged to be run by
1.4.2_04. You can find examples of these applets in the linux32 and win32 demos
available in demo/plugin/applet/* at:

http://edocs.bea.com/wljrockit/docs142/demo_src.html.

Download either jrockit-j2sdk1.4.2_04-win32-demo.zip or
jrockit-j2sdk1.4.2_04-linux32-demo.zip (depending upon your
operating system) and extract the necessary demos.

Imp lement ing the P l ug in

Using BEA JRockit SDK B-3

Implementing the Plugin
You can implement the BEA JRockit Java plug-in the same way you would implement a similar
product from Sun Microsystems; that is, by using one of these two different methods:

Including the conventional APPLET tag in a web page, as described in “Using the
Conventional APPLET Tag.”

Replacing the APPLET tag with the OBJECT tag for Internet Explorer or by replacing the
APPLET tag with the EMBED tag for Netscape 4. Be aware that the OBJECT and
EMBED tags must conform to a special format as described in the Sun Microsystems
document, “Using OBJECT, EMBED and APPLET Tags in Java Plug-in.”

Plugin Reference
Generally, once the plug-in is installed, its behavior will be transparent and require little, if any,
user intervention. However, there are many other related topics that you may want to understand.
Sun Microsystems provides helpful information on their Java Plugin that is helpful to BEA
JRockit Java plug-in users. You can find this information at:

http://java.sun.com/products/plugin/reference/docs/index.html

Detailed information of particular interest to developers can be found in Sun Microsystems’ Java
Plug-in 1.4.2 Developer Guide. This document contains such information as

How proxy configuration works in Java Plugin.

What protocols does the Java Plugin support.

Discussions on cookie support and caching.

Behavior of Java Plugin and how set options via the Java Plugin Control Panel.

How to deploy the Java Plugin on the Internet, within an intranet, via Java Server Pages,
and so on.

Plugin security, including RSA signed applet verification.

Java Plugin debugging support for applets.

Supporting multiple JREs in the same environment, Java-to-JavaScript communication,
how to persist applets across browser sessions, and other advance topics.

Using the Java Plug in

B-4 Using BEA JRockit SDK

Using BEA JRockit SDK C-1

A P P E N D I X C

Tracing Thread Activity With Stack
Dumps

Stack dumps, or “stack traces,” reveal information about an application’s thread activity that can
help you diagnose problems and better optimize application and JVM performance; for example,
stack dumps can show the occurrence of “deadlock” conditions, which can seriously impact
application performance.

Stack dumps usually occur when certain errors are thrown. You can also create a stack dump by
invoking a control break (usually by pressing Ctrl-Break or Ctrl-\; or SIGQUIT on Linux).
This section provides information on working with stack dumps. It includes information on these
subjects:

Monitoring Information in Stack Dumps

Detecting Deadlocks

Monitoring Information in Stack Dumps
When printing stack traces with Control-Break, BEA JRockit also shows the status of active
locks (monitors). For each thread, BEA JRockit prints the following information if the thread is
in a waiting state:

If the thread is trying to take a lock (to enter a synchronized block), but the lock is already held
by another thread, this is indicated at the top of the stack trace, as “Blocked trying to get lock”.

If the thread is waiting on a notification on a lock (by calling Object.wait()), this is indicated
at the top of the stack trace as “Waiting for notification”.

Trac ing Thread Act iv i t y W i th S tack Dumps

C-2 Using BEA JRockit SDK

If the thread has taken any locks, this is shown in the stack trace. After a line in the stack trace
describing a function call is a list of the locks taken by the thread in that function. This is
described as ^-- Holding lock (where the ^-- serves as a reminder that the lock is taken in
the function written above the line with the lock).

Caution: The lines with the lock information might not always be correct, due to compiler
optimizations. This means two things:

If a thread, in the same function, takes first lock A and then lock B, the order in which they
are printed is unspecified.

Sometimes, if a thread, in method foo() calls method bar(), and takes a lock A in bar(),
the lock might be printed as being taken in foo().

Normally, this shouldn't be a problem. The order of the lock lines should never move much from
their correct position. Also, lock lines will never be missing—you can be assured that all locks
taken by a thread are shown in the stack dump.

The semantics for waiting (for notification) on an object in Java is somewhat complex. First you
must take the lock for the object, and then you call wait() on that object. In the wait method, the
lock is released before the thread actually goes to sleep waiting for a notification. When it
receives a notification, wait re-takes the lock before returning. So, if a thread has taken a lock,
and is waiting (for notification) on that lock, the line in the stack trace that describes when the
lock was taken is not shown as “Holding lock,” but as “Lock released while waiting.”

All locks are described as Classname@0xLockID[LockType]; for example:

java/lang/Object@0x105BDCC0[thin lock]

Where:

Classname@0xLockID describe the object the to which the lock belongs. The classname is
an exact description, the fully qualified class name of the object. LockID, on the other
hand, is a temporary ID which is only valid for a single thread stack dump. That is, you
can trust that if a thread A holds a lock java/lang/Object@0x105BDCC0, and a thread B
is waiting for a lock java/lang/Object@0x105BDCC0, in a single thread stack dump, then
it is the same lock. If you do any subsequent stack dumps however, LockID is not
comparable and, even if a thread holds the same lock, it might have a different LockID
and, conversely, the same LockID does not guarantee that it holds the same lock.

LockType describes the kind of BEA JRockit internal lock type the lock is. Currently,
three kinds of locks exist:

Detec t i ng Dead locks

Using BEA JRockit SDK C-3

– fat locks: locks with a history of contention, or that have been waited on (for
notification).

– thin locks: locks that have no contention (several threads trying to take the lock
simultaneously).

– recursive locks: locks occur when a thread takes a lock it already holds.

Listing C-7 shows an example of what a stack trace for a single thread can look like.

Listing C-7 Example: Stack Trace for a Single Thread

"Open T1" prio=5 id=0x680 tid=0x128 waiting
 -- Waiting for notification on: java/lang/Object@0x1060FFC8[fat lock]
 at jrockit/vm/Threads.waitForSignalWithTimeout(Native Method)@0x411E39C0
 at jrockit/vm/Locks.wait(Locks.java:1563)@0x411E3BE5
 at java/lang/Thread.sleep(Thread.java:244)@0x41211045
 ^-- Lock released while waiting: java/lang/Object@0x1060FFC8[fat lock]
 at test/Deadlock.loopForever(Deadlock.java:67)@0x412304FC
 at test/Deadlock$LockerThread.run(Deadlock.java:57)@0x4123042E
 ^-- Holding lock: java/lang/Object@0x105BDCC0[recursive]
 ^-- Holding lock: java/lang/Object@0x105BDCC0[thin lock]
 at java/lang/Thread.startThreadFromVM(Thread.java:1690)@0x411E5F73
 --- End of stack trace

Detecting Deadlocks
After the normal stack dumps, BEA JRockit performs a deadlock detection. This is done by
finding “lock chains” in the Java application. If a lock chain is found to be circular, the application
is considered caught in a deadlock.

What is a “Lock Chain”?
Although they appear somewhat complex, lock chains are fairly straightforward; they can be
defined as follows:

Threads A and B form a lock chain if Thread A holds a lock that Thread B is trying to
take. If A is not trying to take a lock, then the lock chain is “open.”

If A->B is a lock chain, and B->C is a lock chain, then A->B->C is a more complete lock
chain.

Trac ing Thread Act iv i t y W i th S tack Dumps

C-4 Using BEA JRockit SDK

If a Thread D doesn’t exist, meaning lock chain C->D doesn’t exist, then A->B->C is a
complete and open lock chain.

Lock Chain Types
BEA JRockit analyzes the threads and forms complete lock chains. There are three possible kinds
of lock chains: Open, Deadlock and Closed lock chains.

Open Chains
Open lock chains represent a straight dependency, as described in What is a “Lock Chain”?.
Thread A is waiting for B which is waiting for C, and so on.

Deadlock Chains
Deadlock (circular) chains are similar to an open lock chain, except that the first element is
waiting for the last element, in the simplest case: A is waiting for B, which is waiting for A. Note
that a deadlocked chain has no head. BEA JRockit selects an arbitrary thread to display as the first
element in the chain.

Closed Chains
Closed chains are like open chains, but the first element in the chain is waiting for a lock in
another chain. This other chain may be open, deadlocked or closed. If the other chain is
deadlocked, then the closed chain is also deadlocked. Note that the division between a closed
chain and the other chain is arbitrary.

Closed chains arise whenever two different threads are blocked trying to take the same lock; for
example: Thread A holds lock Lock A while Thread B is waiting for Lock A; Thread C is also
waiting for Lock A. BEA JRockit will interpret this in one of the following ways:

B > A as an open lock chain.

C > A as a closed lock chain.

C > A as an open lock chain.

B > A as a closed lock chain.

The only item you might find of interest is if you have a deadlocked lockchain. This can never be
resolved, and the application will be stuck waiting indefinitely. Also, if you have long (but open)
lock chains, your application might be spending unnecessary time waiting for locks.

Using BEA JRockit SDK D-1

A P P E N D I X D

Using Web Start with BEA JRockit

This version of BEA JRockit includes an implementation of Java Web Start, a tool that allows
you to start Java applications with a single click in your browser. With Web Start, you can
download and launch applications directly from the browser and avoid complex and
time-consuming installation procedures. Any Java application can be started by using Web Start.

This section includes information on the following subjects:

What You Can Do with Web Start

Web Start Security

Installing and Launching Web Start

Comprehensive Web Start Documentation

What You Can Do with Web Start
With Java Web Start, you launch applications simply by clicking on a Web page link. If the
application is not present on your computer, Java Web Start automatically downloads all
necessary files. It then caches the files on your computer so the application is always ready to be
relaunched anytime you want—either from an icon on your desktop or from the browser link.
And no matter which method you use to launch the application, the most current version of the
application is always presented to you.

Using Web S ta r t w i th BEA JRock i t

D-2 Using BEA JRockit SDK

Web Start Security
Java Web Start includes the security features of the Java platform to ensure the integrity of your
data and files. It also enables you to use the latest Java 2 technology with any browser.

Installing and Launching Web Start
Java Web Start is installed as part of the public JRE installation (see Installing the BEA JRockit
1.4.2 JRE).

Windows Implementations
Upon installation, a new icon will appear on your desktop (Figure D-1) and a new selection will
appear on your Start menu, under Programs.

Figure D-1 Java Web Start Icon

Use either of these to launch Java Web Start (you can also launch it from the command line by
typing:

<jre_home>/javaws/javaws

(where <jre_home> is you JRE home directory; for example:

C:/jrockit-j2sdk1.4.2_03/jre).

Linux Implementations
The Linux installation does not change with Web Start added; however you can only launch Web
Start from the command line. Do so by entering the command:

<jre_home>/javaws/javaws

Note: JPackage RPMs will install Java Web Start and you can start by using the same command
used for other Linux implementations.

Comprehensive Web Star t Documenta t i on

Using BEA JRockit SDK D-3

Comprehensive Web Start Documentation
Java Web Start is a Sun Microsystems product and the BEA JRockit implementation is no
different than Sun’s. Please refer to the following documents for more complete information on
using this feature:

Java Web Start Developers Section:

http://java.sun.com/products/javawebstart/developers.html

Java Web Start API Specification:

http://java.sun.com/products/javawebstart/reference/api/index.html

Code Samples and Applications:

http://java.sun.com/products/javawebstart/reference/codesamples/index.html

Technical Articles & Tips:

http://java.sun.com/products/javawebstart/reference/techart/index.html

FAQs:

http://java.sun.com/products/javawebstart/faq.html

Using Web S ta r t w i th BEA JRock i t

D-4 Using BEA JRockit SDK

Using BEA JRockit SDK Index-1

Index

A
Administrator mode 4-10
aspect 4-16
aspect value change 4-24

add constraint 4-26
on trigger 4-25

C
client-side JVM 2-3
command line options

-classpath 2-4
-Client 2-3
-D 2-4
-Djrockit.managementserver.maxconnect

4-4
-Djrockit.managementserver.port 4-4
-help 2-4
-Server 2-3
-showversion 2-4
-verbose 2-4
-version 2-4
-X 2-4
-Xallocationtype 7-3
-Xgcpause 3-8
-Xmanagement 4-2
-Xnativethreads 7-3
-Xnoop 2-5
-Xstrictfp 2-5
-Xverbose 2-5
-Xverify 2-5

command-line option 2-10
configuration options 7-1

consolesettings.xml 4-15
CPU Load bar 4-20
CPU Usage chart 4-20
CTRL_LOGOFF_EVENT 2-10

D
dead objects 3-3
Developer Mode 4-10

E
extended options

-Xnohup 2-10

G
garbage collection 2-3, 7-4

choosing 3-6
concurrent

generational concurrent 3-6, 3-7
single spaced concurrent 3-5, 3-6, 3-7

dynamic 3-4
generational 3-2
old generation 3-2
parallel 3-6, 3-7
pauses 3-5, 3-6
single-spaced 3-2
young generation 3-2

garbage collector 3-5
unified 2-3
unsupported 3-5

Index-2 Using BEA JRockit SDK

H
heap 7-4

size 3-4, 3-5

I
Information tabs

Overview tab 4-16

J
Java heap memory 4-17
Java thread 3-3, 3-5, 3-6, 3-8, 7-5
java.lang.System 2-4

M
Management Console 4-1, 4-16

adding an exception 4-36
Administrator mode 4-6
advanced features

Exception Count tab 4-35
Method Profiler tab 4-31
method templates 4-31

changing the number of connections 4-4
command buttons 4-6
connecting a connection to JRockit 4-8
connection browser 4-5, 4-6
connection node 4-6
CPU Load 4-20
CPU Load bar 4-17
CPU Usage chart 4-17
customizing 4-13

charts 4-14
gauges and bars 4-14
settings file 4-15

dash board 4-16
disconnecting a connection from JRockit 4-8
enabling console settings 4-10
enabling the management server 4-2
Exception Count 4-10

Free Heap 4-18
Free Memory 4-19
Garbage Collection System 4-21
Heap Usage chart 4-17, 4-18
hiding a disconnected connection 4-10
information tabs 4-16

Memory tab 4-17
Notification tab 4-22, 4-26
Processor tab 4-19
System tab 4-20

JRockit Uptime 4-21
JVM Process Load 4-20
Method Profiler 4-10
new connection 4-7
Number of Processors 4-20
parts of 4-4
Process Affinity 4-21
removing a connection 4-10
removing a folder 4-10
renaming a connection 4-9
renaming a folder 4-9
setting the operation mode 4-10
setting the port 4-4
setting up 4-6
starting 4-2
starting, stopping, and removing an

exception count 4-37
status bar 4-6
System Properties 4-22
tabbed interface 4-5
thread stack dump 4-31

viewing 4-31
Time in GC chart 4-18
Total Heap 4-18
Total Memory 4-19
Used Heap 4-18
Used Heap gauge 4-17, 4-18
Used Memory 4-18
Used Memory gauge 4-18
Used Memory guage 4-17

management console

Using BEA JRockit SDK Index-3

Developer mode 4-6
Memory Throughput 3-4
memory throughput 3-4, 3-6
Method Profiling

Method Profiling Information List 4-33
settings 4-35
starting and stopping 4-34

Method Templates 4-31
adding a method 4-32
creating a new template 4-34
Method Profiling Information List 4-33
removing 4-34
removing a method 4-33

N
notification action 4-23

Application alert 4-23
creating a new rule 4-23
editing a rule 4-27
E-mail 4-23
Log to file 4-23
System out 4-23

notification constraint 4-23
notification trigger 4-22
nursery 7-4, 7-5

O
object allocation 3-9
operation mode 4-6, 4-10, 4-11

Developer mode 4-10

P
Pause Time 3-4
performance optimization 7-1
persistence value log 4-13
Processor tab

CPU Load 4-20
CPU Usage 4-20

product version 2-4

R
Red Hat AS 2-11

using 2-11

S
server-side JVM 2-3
SIGHUP 2-10
Symetric Multi Processor (SMP) system, 7-5
system property, Java 2-4

T
thread stack dump

viewing 4-31
thread system

thread allocation
local 3-9

thread-local object 3-9

U
unified garbage collector 2-3

V
verbose output 2-2, 2-4

W
WebLogic Server 7-1, 7-6

Administration Console 7-4
Concurrent 7-5
Gc Algorithm 7-4
GCHandles Compaction 7-4
Generational 7-5
Incremental 7-5
Max Heap Size 7-4
Number Of Daemon Thread 7-5
Number Of Processors 7-5
Parallel 7-5
Total Garbage Collection Count 7-4

Index-4 Using BEA JRockit SDK

Total Number Of Threads 7-5
Total Nursery Size 7-4

configuring JRockit for 7-3
WebLogic Workshop 7-1, 7-7

X
-Xnohup 2-10

	Introduction
	What’s In the User Guide?
	Finding Additional Information
	BEA JRockit Support
	Supported Platforms
	Tuning BEA JRockit
	Documentation

	Starting and Configuring BEA JRockit JVM
	Before Starting BEA JRockit
	Starting BEA JRockit
	Sample Start-up Command

	Configuring BEA JRockit
	Using Standard Options
	Setting the JVM Type
	Setting General Information
	Providing Information to the User

	Using Non-standard Options
	Setting Behavioral Options
	Displaying Logging Information
	Including a Timestamp with Logging Information
	Protecting Systems by Using the Security Manager
	Preventing BEA JRockit JVM (When Run as a Service) from Shutting Down After Receiving a Logoff Event

	Special Instructions for Linux Users
	Enabling Core Dumps on Red Hat AS
	Overriding NPTL

	Using the BEA JRockit Memory Management System
	The Mark-and-Sweep Collection Model
	Garbage Collector Permutations
	Generational
	Single-spaced
	Concurrent
	Parallel

	Running the Dynamic Garbage Collector
	Using Static Garbage Collection Methods
	Using Backward-compatible Garbage Collectors
	Pros and Cons
	Garbage Collector Selection Matrix

	Setting the Default Garbage Collector

	Overriding Garbage Collectors
	Viewing Garbage Collection Activity
	Thread-local Allocation

	Using the BEA JRockit Management Console
	Console Overhead
	Starting the Console
	Enable the Management Server
	Attaching a Management Client

	Start the JRockit Management Console
	Starting the Management Server with a Security Manager

	Set the Port
	Change the Number of Connections

	Parts of the Console
	Setting Up the Console
	Making Connections
	Creating a New Folder
	Creating a New Connection
	Connecting a Connection to BEA JRockit JVM
	Disconnecting a Connection from BEA JRockit JVM
	Renaming a Connection or Folder
	Removing a Connection or Folder
	Hiding Disconnected Connections

	Enabling Console Settings
	Setting the Operation Mode
	Setting Other Preferences
	Customizing the Display
	Using the Settings File

	Using the Console
	Information Tabs
	Overview Tab
	Memory Tab
	Processor Tab
	System Tab
	Notification Tab

	View Historical Data
	Using Advanced Features of the Console
	View Thread Stack Dump
	Method Profiling Tab
	Exception Counting Tab

	Creating a JRA Recording
	Closing the Console
	Starting and Running the Console in the Headless Mode
	Running a Headless Management Console
	Controlling the Console with Command-line Options

	Starting the Memory Leak Detector
	Using the Memory Leak Detector
	Help Us Improve BEA JRockit
	BEA JRockit Support for the Memory Leak Detector
	Frequently Asked Questions
	Known Issues
	Code Caching with BEA JRockit
	Why Is Code Caching Helpful?
	What is the Cache?
	How to Use Code Caching
	Enabling Code Caching
	Specifying a Cache Name
	Code Caching in the Read/Write Mode
	Code Caching in the Read-only Mode
	Other Code Caching Arguments
	Using Code Caching to Improve Performance
	Setting the Verbosity Level
	Enabling Code Caching by Using an Environment Variable

	How Code Caching Works
	What Happens When Code Caching Runs
	Dealing with Code Changes
	Dealing with Cache Cleanup
	Removing Obsolete Methods
	Cache File Validity

	Error Recovery
	Cleaning Up the Cache

	Using BEA JRockit JVM with Other WebLogic Applications
	Using BEA JRockit JVM with BEA WebLogic Server
	Certified Versions
	Verifying that BEA JRockit is Your JVM
	Starting JRockit from the Node Manager
	Enabling the Management Server from the Node Manager
	Setting Options by Using the Node Manager
	Tuning BEA JRockit for WebLogic Server
	Monitoring BEA JRockit JVM from WebLogic Server
	Switching to BEA JRockit JVM in WebLogic Server
	Switching VMs When WebLogic Server is Running as a Service

	Configuring JRockit for BEA WebLogic Workshop

	Adding Custom Notification Actions and Constraints
	Locating consolesettings.xml
	Creating a Custom Action
	Creating and Implementing an Action: Example
	Create the Action (Step 2)
	Implementing handleNotificationEvent() (Step 3)
	Creating the Action Editor (Step 4)
	Implementing the Abstract Methods (Step 5)
	Adding the New Action to the Deployment Entries (Step 6)
	Displaying the New Action Editor (Steps 7 and 8)

	Creating a Custom Constraint

	Using the Java Plugin
	Supported Operating Systems and Browsers
	Installing the Plugin
	Note on Installing the BEA JRockit Plugin and Sun Plugin

	Implementing the Plugin
	Plugin Reference

	Tracing Thread Activity With Stack Dumps
	Monitoring Information in Stack Dumps
	Detecting Deadlocks
	What is a “Lock Chain”?
	Lock Chain Types
	Open Chains
	Deadlock Chains
	Closed Chains

	Using Web Start with BEA JRockit
	What You Can Do with Web Start
	Web Start Security
	Installing and Launching Web Start
	Windows Implementations
	Linux Implementations

	Comprehensive Web Start Documentation

	Index

