
BEA JRockit™ SDK

Tuning BEA JRockit JVM

Version 1.4.2
July 2005

Copyright
Copyright © 2004 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic
Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Tuning WebLogic JRockit JVM iii

Contents

Introduction to Tuning BEA JRockit JVM
How BEA JRockit is Tuned . 1-1

JVM Tuning Terminology. 1-1

What You’ll Find in Tuning BEA JRockit JVM . 1-2

Tuning BEA JRockit JVM
Setting the Heap Size. 2-2

Setting the Initial and Minimum Heap Size . 2-2

Default . 2-2

Setting the Maximum Heap Size . 2-2

Encountering OutOfMemory Errors . 2-2

Default . 2-3

Setting the Size of the Nursery. 2-3

Default . 2-3

Heap Sizing Guidelines . 2-3

Defining When a Memory Space will be Cleared . 2-4

Default . 2-5

Setting the Thread Stack Size . 2-5

Minimum Thread Size . 2-5

Default . 2-5

Basic Tuning Tips and Techniques
Determine What You Want to Tune For . 3-1

iv Tuning WebLogic JRockit JVM

Set the Heap Size. 3-2

Tune the JVM . 3-2

Tuning for High Responsiveness . 3-2

Tuning for High Performance . 3-3

Other Tuning Tips . 3-3

Analyze the Performance by Using the JRA . 3-3

Analyze Garbage Collection and Pause Times . 3-3

Use -Xgcreport . 3-3

Use -Xverbose:memory . 3-5

Disable Lock Optimization if Your Application is Slow . 3-5

Analyzing and Improving Application Performance
Alternate Methods of Analysis . 4-1

Step 1: Find the Hotpaths . 4-2

Find the Bottleneck Methods . 4-2

Cluster the Bottleneck Methods Together into Hotpaths . 4-3

Step 2: Prioritize the Hotpaths . 4-3

Step 3: Fix the Hotpath . 4-3

Step 4: Repeat Steps 1-3 . 4-4

Index

Tuning BEA JRockit JVM 1-1

C H A P T E R 1

Introduction to Tuning BEA JRockit JVM

BEA JRockit JVM automatically adapts to its underlying hardware and to the application running
on it. You might wonder, why would anyone need to tune the JVM? The answer is that there are
some things BEA JRockit JVM cannot know about your system. For example, how much
memory do you want the JVM to use? You probably don’t want the JVM to use most of the
available memory. Or, how long should the maximum pauses be, to work best within the
tolerances of your application? This guide will help answer those questions.

This Introduction includes information on the following subjects:

How BEA JRockit is Tuned

JVM Tuning Terminology

What You’ll Find in Tuning BEA JRockit JVM

How BEA JRockit is Tuned
BEA JRockit JVM has a number of non-standard startup parameters, called -X options, that allow
you to better tune the JVM for your specific application. This guide documents the different
startup parameters and what you need to know about setting them to be able to tune the JVM to
ensure optimal performance for your application.

JVM Tuning Terminology
Before continuing, there are some terms you should understand. You may already be familiar
with some of the terms, especially if you have read any other documents about garbage collectors.

In t roduc t i on to Tuning BEA JRock i t J VM

1-2 Tuning BEA JRockit JVM

Garbage collector
The garbage collector is the key to effectively managing BEA JRockit’s memory system,
which is the ultimate goal of JVM tuning. Garbage collection is the process of clearing
dead objects from the heap, thus releasing that space for new objects.

Memory throughput
Memory throughput measures the time between when an object is no longer referenced
and the time that it’s reclaimed and returned as free memory. The higher the memory
throughput the shorter is the time between the two events. Moreover, the higher the
memory throughput the smaller the heap you will need.

Pause time
Garbage collector pause time is the length of time that the garbage collector stops all Java
threads during a garbage collection. The longer the pause, the more unresponsive your
system will be. The worst pause time and the average pause time are the two most
interesting values you can use for tuning the system.

Thread-local allocation
Thread-local allocation removes object allocation contention and reduces the need to
synchronize between thread performing allocations on the heap. It also gives increased
cache performance on a multi-CPU system, because it reduces the risk of two threads
running on different CPUs having to access the same memory pages at the same time.

Thread-local allocation is not the same thing as thread-local objects, but many people tend
to confuse the two terms. Thread-local allocation does not determine whether the objects
can be accessed from a single thread only (that is, thread-local objects); thread-local
allocation means that the thread has an area of its own where no other thread will create
new objects. The objects that the thread creates in that area may still be reached from other
threads.

What You’ll Find in Tuning BEA JRockit JVM
This guide is divided into three sections:

Tuning BEA JRockit JVM describes the basic tuning parameters for the JVM. The
instructions in this section describe default and optimal heap and nursery settings and how
to use them to tune the JVM.

Basic Tuning Tips and Techniques contains some helpful hints for maximizing system
performance by tuning BEA JRockit to provide either optimal memory throughput or
minimal garbage collection pause times.

What You’ l l F ind in Tuni ng BEA JRock i t JVM

Tuning BEA JRockit JVM 1-3

Analyzing and Improving Application Performance shows you how to you can improve
application performance by uncovering “hotpaths,” or bottlenecks in processing, and either
working around them or eliminating them completely.

In t roduc t i on to Tuning BEA JRock i t J VM

1-4 Tuning BEA JRockit JVM

Tuning BEA JRockit JVM 2-1

C H A P T E R 2

Tuning BEA JRockit JVM

Have you ever seen strange pauses in your application that you haven’t been able to explain?
Have you seen one or all CPUs pegged on 100% utilization and all the others on 0% and still very
few transactions in your system? If you answered yes to either of these two questions, your
application might have been suffering from the effects of a poorly performing garbage collector.
Some fairly simple tuning of the memory management system can improve performance
dramatically for many applications.

To provide the optimal out-of-the-box experience, BEA JRockit JVM comes with default values
that adapt automatically to the specific platform on which you are running BEA JRockit JVM.
Tuning BEA JRockit JVM is accomplished by using non-standard—or -X—command line
options that you enter at startup. -X options are exclusive to BEA JRockit JVM. Use them to set
the behavior of BEA JRockit JVM to better suit the needs of your Java applications.

This section describes how to use these options to tune BEA JRockit. It includes information on
the following subjects:

Setting the Heap Size

Defining When a Memory Space will be Cleared

Setting the Thread Stack Size

Note: If BEA JRockit behaves in some unexpected way, please consult the BEA JRockit
Developers FAQ. If that doesn't solve your problem, please send an e-mail to
support@bea.com

Tun ing BEA JRocki t JVM

2-2 Tuning BEA JRockit JVM

Setting the Heap Size
System performance is greatly influenced by the size of the Java heap available to the JVM. This
section describes the command line options you use to define the initial and maximum heap sizes
and the size of any nursery that might be required by generational garbage collectors. It also
includes key guidelines for help you determine the optimal heap size for your BEA JRockit
implementation.

Setting the Initial and Minimum Heap Size
-Xms<size>

-Xms sets the initial and minimum size of the heap. For this, we recommend that you set it to the
same size as the maximum heap size; for example:
-java -Xgcprio:throughput -Xmx:64m -Xms:64m myClass

Default
-server mode: 25% of the amount of free physical memory in the system, up to 64 MB and a
minimum of 8 MB.

-client mode: 25% of the amount of free physical memory in the system, up to 16 MB and a
minimum of 8 MB.

Setting the Maximum Heap Size
-Xmx:<size>

-Xmx sets the maximum size of the heap. Use the following guidelines to determine this value:

On IA32 the maximum possible heap size is about 1.8 GB (which is the largest contiguous
address space the O/S will give a process).

Because IA64 machines have a larger address space, the 1.8 GB limit does not apply.

Typically, for any platform you don't want to use a larger maximum heap size setting than
75% of the available physical memory. This is because you need to leave some memory
space available for internal usage in the JVM.

Encountering OutOfMemory Errors
If you encounter OutOfMemory errors, you should increase the maximum heap size according to
the guidelines listed above.

Set t ing the Heap S i ze

Tuning BEA JRockit JVM 2-3

Default
-server and -client modes: The default value is the lesser of 75% of the total physical
memory up to 1536 MB.

Setting the Size of the Nursery
-Xns:<size>

-Xns sets the size of the young generation (nursery) in generational garbage collectors.
Optimally, you should try to make the nursery as large as possible while still keeping the garbage
collection-pause times acceptably low. This is particularly important if you are creating a lot of
temporary objects.

Note: To display pause times, include the option-Xgcpause when you start BEA JRockit JVM.

The maximum size of a nursery cannot exceed 95% of the maximum heap size.

Default
-server mode: the default nursery size is 10 MB per CPU; for example, the default for a ten
CPU system would be 100 MB.

-client mode: the default nursery size is 2 MB.

Additionally, the default nursery will never exceed 25% of maximum heap size, unless you use
-Xns to explicitly set it to something larger.

Heap Sizing Guidelines
The following guidelines offer some hints on how best to size a heap to achieve optimal
performance. Be aware that these guidelines are mainly valid for the -server (default) start-up
option (see “Setting the Default Garbage Collector”).

To get a fixed heap size—for example, if you want a controlled environment—set -Xms
and -Xmx to the same value.

To improve start-up performance, set -Xms to at least the approximate amount of live data.
You can set -Xms to as much as twice the minimum amount of live data without disturbing
automatic heap resizing. If -Xmx isn't set, or is set too low, frequent garbage collections can
slow startup until BEA JRockit has grown the heap.

Tun ing BEA JRocki t JVM

2-4 Tuning BEA JRockit JVM

To avoid paging, do not set -Xmx higher than the amount of available physical memory in
the system. Also, you must account for of the memory usage of other applications intended
to run simultaneously with the JVM, as these will impact memory availability.

If the amount of free memory in the system varies widely, you might not want to set -Xmx
at all. This will prevent BEA JRockit from growing the heap when there is too little
memory in the system. Be aware that this will throw an OutOfMemoryError if object
allocation fails with the current heap size and the heap cannot grow without causing
paging.

Paging might occur even if -Xmx isn't set. BEA JRockit will not shrink the heap if more
than half the heap is filled with live data. Thus, BEA JRockit might not always be able to
shrink the heap if the amount of free memory is reduced after JRockit has been started; for
example, when another application is started.

Setting a low maximum heap (-Xmx) compared to the amount of live data can affect
performance by forcing BEA JRockit to perform frequent garbage collections. If you
anticipate a “tight” heap (that is, the amount of live objects is close to the size of the heap)
and the application allocates many short lived objects, we suggest you use a generational
garbage collector (-Xgc:gencon) instead of a single-spaced garbage collector
(-Xgc:singlecon and -Xgc:parallel).

Defining When a Memory Space will be Cleared
-Xcleartype:<gc|local|alloc>

-Xcleartype defines when the memory space occupied by an object that has been garbage
collected will be cleared. When clearing is actually performed is specified by the selected
parameter, as described in Table 2-1.

Table 2-1 -Xcleartype Parameters

Use this parameter... To clear space...

gc During the garbage collection

local When a thread-local area is allocated

alloc

This is the preferred option if the objects allocated
are very large (1 to 2 kilobytes). The alloc
parameter is currently not available on IA64
systems.

When that space is allocated for a new object

Set t ing the Th read Stack S i ze

Tuning BEA JRockit JVM 2-5

The preferable options are either alloc or local.

Default
If the clear type is not set, the default is alloc on IA32 systems and gc on IA64 systems.

Setting the Thread Stack Size
-Xss<size>[k|K][m|M]

-Xss<size>[k|K] [m|M] sets the thread stack size in kilobytes.

Minimum Thread Size
Minimum thread stack size is 16 kilobytes. If -Xss is set below the minimum value, thread stack
size will default to the minimum value automatically.

Default
If the thread stack size has not been set the default value depends on the platform on which BEA
JRockit is running. Table 2-2 shows these defaults:

Table 2-2 Default Head Stack Sizes

O/S 32-bit Default 64-bit Default

Windows 64 kB 320 kB

Linux 128 kB 1 mB

Tun ing BEA JRocki t JVM

2-6 Tuning BEA JRockit JVM

Tuning BEA JRockit JVM 3-1

C H A P T E R 3

Basic Tuning Tips and Techniques

When you install BEA JRockit JVM, it includes a host of default start-up options that ensure a
satisfactory out-of-the-box experience; however, often, these options might not provide your
application with the optimal performance you should experience with BEA JRockit JVM.
Therefore, BEA JRockit JVM comes with numerous alternative options and algorithms to suit
different applications. This section describes some of these options and some basic tuning
techniques you can use at startup. It includes information on the following subjects:

Determine What You Want to Tune For

Set the Heap Size

Tune the JVM

Other Tuning Tips

Note: The tuning settings discussed in this section refer to standard and non-standard tuning
options which are not thoroughly described in the present context. For more information
on these options, please refer to Tuning BEA JRockit JVM.

Determine What You Want to Tune For
Before you start BEA JRockit JVM, you need to determine these two factors:

How much of your machine memory do you want BEA JRockit JVM to use?

What do you want from BEA JRockit JVM, the highest possible responsiveness or the
highest possible performance?

Bas ic Tun ing T ips and Techn iques

3-2 Tuning BEA JRockit JVM

Once you’ve answered these questions, use the information provided below to tune BEA JRockit
JVM to achieve those goals.

Set the Heap Size
Generally, you want to set the maximum heap size as high as possible, but not so high that it
causes page-faults for the application or for some other application on the same computer. Heap
sizing is accomplished by using the -Xms (minimum heap size) and -Xmx (maximum heap size)
options. For details on these options and guidelines for sizing the heap, please refer to “Setting
the Heap Size” in Tuning BEA JRockit JVM.

Tune the JVM
As mentioned above, you need to consider how you want BEA JRockit to perform: for the highest
possible responsiveness or the highest possible performance? This section describes how to tune
for either type of performance.

Tuning for High Responsiveness
If you want the highest responsiveness from your application and guarantee minimal pause times,
do the following:

Select a garbage collector that suits your application best:

– Use the unified garbage collector and set -Xgcprio:pausetime.

OR

– If you want to use a fixed garbage collector, select the Generational Concurrent garbage
collector (-Xgc:gencon).

Set the initial (-Xms) and maximum (-Xmx) heap sizes, as described in Set the Heap Size.
If you’re using a fixed, generational concurrent garbage collector, a larger heap reduces the
frequency of garbage collection and will allow collection at less intrusive points. This will
prevent longer pauses.

Set the size of the nursery (-Xns).

If you are creating a lot of temporary objects you should have a large nursery. Larger
nurseries usually result in slightly longer pauses, so, while you should try to make the
nursery as large as possible, don’t make it so large that pause times are unacceptable. You
can see the nursery pause times in BEA JRockit JVM by starting the JVM with
-Xgcpause.

Other Tun ing T i ps

Tuning BEA JRockit JVM 3-3

Tuning for High Performance
If you want the highest possible performance BEA JRockit can provide, you will want to optimize
memory thoughput. Set these tuning options at startup:

Select a garbage collector that suits your application best:

– Select the unified garbage collector with the throughput priority specified
(-Xgcprio:throughput)

OR

– Select the Parallel garbage collector. A parallel garbage collector doesn’t use a nursery,
so you don’t need to set -Xns.

Set the largest initial (-Xms) and maximum (-Xmx) heap sizes that your machine can
tolerate, as described in Set the Heap Size.

Other Tuning Tips
This section describes other practices you can employ to improve BEA JRockit JVM
performance.

Analyze the Performance by Using the JRA
The JRockit Runtime Analyzer (JRA) is a great way to look at the performance of JRockit. The
JRA records what happens in your system in runtime and then saves the findings in a file that can
be analyzed through a separate JRA tool. The recording contains information about, for example,
memory usage, Java heap content, and hot methods. For information on how to use the JRA, see:

Using the JRockit Runtime Analyzer

Analyze Garbage Collection and Pause Times
Analyzing garbage collection and pause times together will give you a good idea of how well
your application is performing while running with BEA JRockit JVM.

Use -Xgcreport
Use the option -Xgcreport to generate and end-of-run report that shows the garbage collection
statistics. You can use this report to determine if you’re using the most effective garbage collector
for your application. As shown in Listing 3-1, the -Xgcreport shows a detailed profile of

Bas ic Tun ing T ips and Techn iques

3-4 Tuning BEA JRockit JVM

collections on both the nursery and the old generation (in this case, the garbage collector was
generational).

Listing 3-1 -Xgcreport Output: Generational Garbage Collector

[memory]

[memory] Memory usage report

[memory]

[memory] young collections

[memory] number of collections = 201

[memory] total promoted = 395672 (size 11807976)

[memory] max promoted = 3797 (size 113720)

[memory] total GC time = 5.994 s

[memory] mean GC time = 29.819 ms

[memory] maximum GC Pauses = 48.175 , 54.541, 81.423 ms

[memory]

[memory] old collections

[memory] number of collections = 24

[memory] total promoted = 0 (size 0)

[memory] max promoted = 0 (size 0)

[memory] total GC time = 4.083 s (pause 1.812 s)

[memory] mean GC time = 170.125 ms (pause 75.498 ms)

[memory] maximum GC Pauses = 0.489 , 2.213, 99.671 ms

[memory]

[memory] number of concurrent mark phases = 7

[memory] number of parallel mark phases = 17

[memory] number of concurrent sweep phases = 8

[memory] number of parallel sweep phases = 16

By using this report, you can determine where performance is being impacted during garbage
collection. For example, you might determine that pause times are too long change from a static
garbage collector to a dynamic one that attempts to minimize pause time by setting
-Xgcprio:pausetime.

For more information on using -Xgcreport, see “Viewing Garbage Collection Activity” in
Using the BEA JRockit Memory Management System

Other Tun ing T i ps

Tuning BEA JRockit JVM 3-5

Use -Xverbose:memory
Use the option -Xverbose:memory to display the pause times for every garbage collection
during a run. Note that this option is used mainly for debugging purposes as it creates a lot of
output to the console. For information on using -Xverbose, please refer to “Displaying Logging
Information” in Starting and Configuring BEA JRockit JVM.

Disable Lock Optimization if Your Application is Slow
If your application consists of a fairly small active portion (less than a couple of 100 lines of code
being accessed more than 80% of the time) and the application is heavily mutlithreaded with
multiple threads accessing the active portion, you may be able to speed up your application by
specifying -XXdisablefatspin. This option disables a lock optimization in JRockit.

Bas ic Tun ing T ips and Techn iques

3-6 Tuning BEA JRockit JVM

Tuning BEA JRockit JVM 4-1

C H A P T E R 4

Analyzing and Improving Application
Performance

This section describes how you can improve application performance by uncovering “hotpaths,”
or bottlenecks in processing, and either working around those hotpaths or eliminating them
completely.

Analyzing and improving your application is a four-step process:

Step 1: Find the Hotpaths

Step 2: Prioritize the Hotpaths

Step 3: Fix the Hotpath

Step 4: Repeat Steps 1-3

Alternate Methods of Analysis
The method presented here differs somewhat from the normal use of Java profilers you might
have encountered. The reason for the difference is to provide a more accurate picture of what the
application is doing. All kinds of profiling are intrusive, and thus change the behaviour of the
application you are observing. This causes you to look at data that is not really representative of
the application's behaviour.

One way to minimize the impact of profiling is to collect less data (use sampling instead of
callgraph analysis), but then this data may not tell you enough to find problems. Therefore, you
should can then combine the exact data with information taken during a more instrusive run. This
will give you a better picture of what the application is doing. To do this, follow these steps:

Ana l y z ing and Improv ing App l i ca t i on Per f ormance

4-2 Tuning BEA JRockit JVM

First collect sampling data to find out where in the application we are spending too much
time.

Next, combine this information with callgraph data to find out how we came to that
location.

Note: While this method provides a good way to find out accurate profiles of your application,
a more thorough analysis might still be needed.

Step 1: Find the Hotpaths
Finding Hotpaths is a two-step process:

Find the Bottleneck Methods

Cluster the Bottleneck Methods Together into Hotpaths

Find the Bottleneck Methods
As their name implies, bottleneck methods are those methods that require excessive time and
processing resources to execute. These bottlenecks can greatly affect system performance and
need to be identified. To find bottleneck methods, do the following:

Use the Intel VTune profiling tool with JRockit to analyze performance. VTune uses
features on the processor to gather information about which code the processor is currently
executing. This is done after a fixed number of either clock ticks (wall clock time) or after
a fixed number of instructions retired (actual instructions executed in the processor).
VTune then uses this data together with symbol information from Java code to present
information about where the application spends most of its time.

Note: You should use VTune only in the “sampling” mode, not the “call-graph” mode.

For more information on how to use VTune, please refer to the appropriate vendor
documentation at:
http://www.intel.com/software/products/vtune/

Use the Java Virtual Machine Profiling Interface (JVMPI). JVMPI is a two-way function
call interface between the Java virtual machine and an in-process profiler agent. On one
hand, the VM notifies the profiler agent of various events, corresponding to, for example,
heap allocation, thread start, and so on. Concurrently, the profiler agent issues controls and
requests for more information through the JVMPI.

– From inside VTune, start this interface by setting the -Xrunjavaperf option:

Step 2 : P r i o r i t i ze the Hotpaths

Tuning BEA JRockit JVM 4-3

-Xrunjavaperf

– To reduce the profiler overhead, use the -Xjvmpi option:

-Xjvmpi:allocs=off,monitors=off,entryexit=off.

For a list of recommended -Xjvmpi settings, please refer to Table 4.1 in Profiling and
Debugging with BEA JRockit

Cluster the Bottleneck Methods Together into Hotpaths
To cluster the bottleneck methods together into hotpaths, do the following:

1. Run your favorite profiler, such as OptimizeIt or JProbe.

2. Review the call-traces produced by it.

3. Combine these call-traces with the bottleneck methods discovered in Find the Bottleneck
Methods, above. This combination of bottleneck methods and call-traces will identify your
hotpaths.

Step 2: Prioritize the Hotpaths
To prioritize the hotpaths, do the following:

1. Sum all of the time spent in each hotpath to compute a total hotpath time.

2. Remove all individual hotpaths that represent less than a prescribed percentage of the total
hotpath time; for example, a good initial percentage might be 5%. This is the hotpath
threshold.

3. Ignore any hotpath that falls below the hotpath threshold. Any hotpath time above the
threshold should be optimized.

Step 3: Fix the Hotpath
You need to rely on your own judgement and knowledge of the application to fix hotpaths. Once
you’ve identified and prioritized the hotpaths, look at each one and decide if the code is really
needed or if you can make some simple changes, perhaps to the coding or to an algorithm, to
avoid it or eliminate it as a hotpath. If you determine that you cannot remove the hotpath, what
can you do to make it faster? Rewrite the code so it’s more efficient?

Also, are you sure that anything you do will actually improve performance. Any optimization you
attempt should at least double performance of the hotpath or your efforts might be wasted. For

Ana l y z ing and Improv ing App l i ca t i on Per f ormance

4-4 Tuning BEA JRockit JVM

example, a performance increase of 5% or a hotpath that takes only 5% of the time is only going
to improve performance .25%.

Step 4: Repeat Steps 1-3
Continue repeating the optimization process until you attain the desired system performance.

Tuning BEA JRockit JVM 1-1

Index

C
command line options

-Xcleartype 2-4
-Xgcpause 2-3, 3-2
-Xms 2-2
-Xmx 2-2
-Xns 2-3
-Xss 2-5

D
default values, thread system 2-1

G
garbage collection

concurrent
generational concurrent 2-3

young generation 2-3
garbage collector 2-1

H
heap

size 2-2
Hotpath 4-2
hotpath 1-3, 4-3

threshold 4-3
total hotpath time 4-3

I
IA32 2-5
IA64 2-5

IA64, limitations 2-4

J
JRockit Runtime Analyzer 3-3
JVMPI 4-2, 4-3

N
nursery 2-3

P
profiler agent 4-2

S
starting JRockit 2-1
Support 2-1

T
thread system

default values 2-1

1-2 Tuning BEA JRockit JVM

	Introduction to Tuning BEA JRockit JVM
	How BEA JRockit is Tuned
	JVM Tuning Terminology
	What You’ll Find in Tuning BEA JRockit JVM

	Tuning BEA JRockit JVM
	Setting the Heap Size
	Setting the Initial and Minimum Heap Size
	Default

	Setting the Maximum Heap Size
	Encountering OutOfMemory Errors
	Default

	Setting the Size of the Nursery
	Default

	Heap Sizing Guidelines

	Defining When a Memory Space will be Cleared
	Default

	Setting the Thread Stack Size
	Minimum Thread Size
	Default

	Basic Tuning Tips and Techniques
	Determine What You Want to Tune For
	Set the Heap Size
	Tune the JVM
	Tuning for High Responsiveness
	Tuning for High Performance

	Other Tuning Tips
	Analyze the Performance by Using the JRA
	Analyze Garbage Collection and Pause Times
	Use -Xgcreport
	Use -Xverbose:memory

	Disable Lock Optimization if Your Application is Slow

	Analyzing and Improving Application Performance
	Alternate Methods of Analysis
	Step 1: Find the Hotpaths
	Find the Bottleneck Methods
	Cluster the Bottleneck Methods Together into Hotpaths

	Step 2: Prioritize the Hotpaths
	Step 3: Fix the Hotpath
	Step 4: Repeat Steps 1-3

	Index

