
BEA
 WebLogic Java
Adapter for
Mainframe™

Samples Guide
Release 5.1
Document Date: August 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of
the BEA Systems License Agreement and may be used or copied only in accordance with the
terms of that agreement. It is against the law to copy the software except as specifically allowed
in the agreement. This document may not, in whole or in part, be copied photocopied,
reproduced, translated, or reduced to any electronic medium or machine readable form without
prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the
BEA Systems License Agreement and in subparagraph (c)(1) of the Commercial Computer
Software-Restricted Rights Clause at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013, subparagraph (d) of the
Commercial Computer Software--Licensing clause at NASA FAR supplement 16-52.227-86; or
their equivalent.

Information in this document is subject to change without notice and does not represent a
commitment on the part of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE
PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING WITHOUT
LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT,
GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA
Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic
Commerce Server, BEA WebLogic E-Business Platform, BEA WebLogic Enterprise, BEA
WebLogic Express, BEA WebLogic Integration, BEA WebLogic Personalization Server, BEA
WebLogic Portal, BEA WebLogic Process Integrator, BEA WebLogic Server and How
Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

BEA WebLogic Java Adapter for Mainframe Samples Guide

Part Number Date Software Version

N/A August 2002 5.1
BEA WebLogic Java Adapter for Mainframe Samples Guide iii

iv BEA WebLogic Java Adapter for Mainframe Samples Guide

Contents

1. BEA WebLogic Java Adapter for Mainframe Samples
Overview

About the WebLogic JAM Samples.. 1-1
Verification Samples .. 1-2
Programming Samples ... 1-2

About the Samples User .. 1-4
How to Use the Samples.. 1-4

Java Sample Code .. 1-5
Mainframe Sample Code.. 1-5
Preconfigured WebLogic Server Domains .. 1-6

Before You Run the Samples .. 1-6

2. Using the IMS Samples
About the IMS Samples... 2-1

IMS Application to WebLogic Server JMS Topic..................................... 2-1
Java Client to IMS Sample Application... 2-2
Transactional Sample from WebLogic Server to IMS............................... 2-2

Roadmap for the Samples.. 2-3
Using the Samples ... 2-4

Preparing to Use the IMS Samples .. 2-5
Step 1: Start the CRM ... 2-5
Step 2: Update the WebLogic JAM Configuration File 2-9
Step 3: Start the examples Domain ... 2-9
Step 4: Configure the WebLogic JAM Gateway 2-9

Using the IMS Application to WebLogic Server JMS Topic 2-17
How the Sample Works .. 2-17
Setting Up the Sample... 2-21
BEA WebLogic Java Adapter for Mainframe Samples Guide v

Running the Sample .. 2-24
Using the Java Client to IMS Sample Application................................... 2-25

Understanding How the Sample Works .. 2-25
Setting Up the Sample .. 2-28
Running the Sample .. 2-31

Using the Transactional Sample from WebLogic Server to IMS 2-31
Understanding How the Sample Works .. 2-31
Setting Up Sample .. 2-35
Running the Sample .. 2-38

3. Using the CICS Samples
About the CICS Samples ... 3-1

CICS Application to WebLogic Server Sample EJB 3-1
Java Client to CICS Sample Application ... 3-2
Transactional Sample from WebLogic Server to CICS 3-2

Roadmap for the Samples.. 3-3
Using the Samples ... 3-4

Preparing to Use the CICS Samples... 3-4
Step 1: Start the CRM ... 3-5
Step 2: Update the WebLogic JAM Configuration File...................... 3-8
Step 3: Start the examples Domain ... 3-8
Step 4: Configure the WebLogic JAM Gateway 3-8

Using the CICS Application to WebLogic Server Sample EJB............... 3-16
Understanding How the Sample Works .. 3-16
Setting Up the Sample... 3-20
Running the Sample .. 3-24

Using the Java Client to CICS Sample Application................................. 3-25
Understanding How the Sample Works .. 3-25
Setting Up the Sample... 3-29
Running the Sample .. 3-32

Using the Transactional Sample from WebLogic Server to CICS........... 3-33
Understanding How the Sample Works .. 3-33
Setting Up the Sample... 3-37
Running the Sample .. 3-42
vi BEA WebLogic Java Adapter for Mainframe Samples Guide

4. Using the Explicit APPC Sample
About the Explicit APPC Sample.. 4-1

Batch MVS COBOL Client to WebLogic EJB Sample............................. 4-2
Roadmap for the Sample ... 4-2
Using the Sample... 4-3

Preparing to Use the Explicit APPC Sample ... 4-3
Step 1: Start the CRM ... 4-3
Step 2: Set Logical Unit VTAM Definitions 4-7
Step 3: Update the WebLogic JAM Configuration File 4-7
Step 4: Start the examples Domain ... 4-8
Step 5: Configure the WebLogic JAM Gateway 4-8

Using the Batch MVS COBOL Client to WebLogic EJB Sample 4-15
Understanding How the Sample Works.. 4-15
Setting Up the Sample... 4-20
Running the Sample .. 4-23

Index
BEA WebLogic Java Adapter for Mainframe Samples Guide vii

viii BEA WebLogic Java Adapter for Mainframe Samples Guide

CHAPTER
1 BEA WebLogic Java
Adapter for Mainframe
Samples Overview

BEA WebLogic Java Adapter for Mainframe (WebLogic JAM) is designed to
integrate applications running in a WebLogic Server environment with applications
running in a mainframe environment. WebLogic JAM includes complete samples that
are installed as part of the product installation. These samples are provided to
demonstrate how WebLogic JAM integrates WebLogic and mainframe applications.
This guide explains how to run the samples that are included with WebLogic JAM.

The following topics are described in this section:

About the WebLogic JAM Samples

How to Use the Samples

About the WebLogic JAM Samples

The samples included with WebLogic JAM allow you to see different capabilities of
WebLogic JAM. The samples are much less complex than any standard production
application and are not intended to be guides to application programming.
BEA WebLogic Java Adapter for Mainframe Samples Guide 1-1

1 BEA WebLogic Java Adapter for Mainframe Samples Overview
Samples have been included as a part of the WebLogic JAM software to:

Verify that the product was installed correctly

Demonstrate the way WebLogic JAM integrates WebLogic and mainframe
applications

Samples are designed to run "out of the box" with minimal modification. Most tasks
are preconfigured or configured during installation by the installer program. You are
required to only enter configuration that applies to your specific environment.

Two types of samples are installed when you install WebLogic JAM:

Verification Samples

Programming Samples

Verification Samples

WebLogic JAM provides two installation verification samples, one for an IMS region
and one for a CICS region. These samples allow you to verify the success of the
WebLogic JAM installation as well as demonstrate WebLogic JAM integration in a
WebLogic and mainframe environment. These samples are described in the BEA
WebLogic Java Adapter for Mainframe Installation Guide.

Programming Samples

The samples that are categorized as programming samples demonstrate how
WebLogic JAM can be used with your system.
1-2 BEA WebLogic Java Adapter for Mainframe Samples Guide

About the WebLogic JAM Samples
IMS Samples

IMS Application to WebLogic Server Sample JMS Topic

This sample demonstrates making an asynchronous call through WebLogic
JAM from IMS to a Java application running under WebLogic Server.

Java Client to IMS Sample Application

This sample demonstrates a Java client calling remote services located in an
IMS region.

Transactional Sample from WebLogic Server to IMS

This sample demonstrates how a Java client makes calls to remote services
located in an IMS region. The service calls that alter the data on the
mainframe occur within the boundaries of two-phase commit transactions.

CICS Samples

CICS Application to WebLogic Server Sample EJBs

This sample demonstrates the functional capability provided by WebLogic
JAM to invoke the services of an EJB (Enterprise Java Bean) deployed in a
WebLogic Server from a CICS client.

Java Client to CICS Sample Application

This sample demonstrates the invoking of CICS services from requests that
originate from a Java client.

Transactional Sample from WebLogic Server to CICS

This sample demonstrates making calls to remote services located in a CICS
region from a Java client. The service calls that alter data on the mainframe
occur within the boundaries of two-phase commit transactions.

Explicit APPC Sample

Batch MVS COBOL Client to WebLogic EJB Sample

The purpose of this sample is to demonstrate the functional capability of
invoking the services of an EJB (Enterprise Java Bean) deployed in a
WebLogic Server from the mainframe environment, specifically from a batch
MVS client using explicit APPC.
BEA WebLogic Java Adapter for Mainframe Samples Guide 1-3

1 BEA WebLogic Java Adapter for Mainframe Samples Overview
About the Samples User

The samples are provided to demonstrate various capabilities and functions of
WebLogic JAM. Samples users typically fulfill one of the following roles:

Systems Programmer

Mainframe Application Programmer

Java Application Programmer

For a description of user roles, see the BEA WebLogic Java Adapter for Mainframe
Home Page.

How to Use the Samples

While the WebLogic JAM samples contain precompiled source for the Java portion of
the sample, you may choose to generate and compile source. Depending on your skill
level, experience, and time-constraints, you may choose to work with the Java portion
of the samples in the following ways:

Run the sample

Because of the contents shipped with the samples, in most cases, you can simply
run the sample with minimal configuration to run on your system. The sample
will use the supplied .class files.

Compile source and run the sample

Each sample provides build scripts that allow you to compile the source. This
option allows you to see how the source is compiled and run the sample.

Generate source, compile, and run the sample

Each sample provides eGen scripts. This option allows you to use the eGen
Application Code Generator to generate the source. You can then run the build
scripts. By using this option, you can see how the eGen utility generates source
and run the sample.
1-4 BEA WebLogic Java Adapter for Mainframe Samples Guide

How to Use the Samples
In general, each of the samples include:

Java Files

Java .class files

Java source

eGen scripts

Build scripts

Preconfigured WebLogic Server domain

Mainframe Files

Mainframe source

Sample JCL

IMS or CICS sample configurations

Java Sample Code

The philosophy of keeping the samples simple is demonstrated in the Java segments of
the samples. For samples with Java clients and mainframe servers, stand-alone client
classes are used instead of using client EJBs because the standalone clients are simpler
to code, understand, deploy, and include in your applications. The servlets that can be
generated by the eGen Application Code Generator are not used because you may have
difficulty enhancing them to improve their presentation or functionality.

Mainframe Sample Code

Mainframe sample programs are minimal, but are sophisticated enough to demonstrate
the features of WebLogic JAM. Mainframe samples are designed to take advantage of
the "least common denominator" of IMS or CICS features that you might have
available. For example, some of the IMS samples interact with the installation
verification transaction, IVTNO, that is shipped with IMS. CICS samples use
Temporary Storage (TS) queues and VSAM files to imitate the behavior of databases,
rather than assume you have a database installed.
BEA WebLogic Java Adapter for Mainframe Samples Guide 1-5

1 BEA WebLogic Java Adapter for Mainframe Samples Overview
Note: JCL to compile the mainframe sample programs is included as examples to
provide completeness. The sample JCL may not conform to your standards or
installations. It may need to be modified or replaced to meet your needs.

Program definitions and other configuration for your CICS or IMS region may
require coordination with your IMS or CICS system programmer.

Preconfigured WebLogic Server Domains

The WebLogic JAM installation includes a directory named config. This config
directory contains subdirectories for two preconfigured WebLogic Server domains.
These WebLogic Server domains are:

verify

WebLogic Server domain that is set up for running the installation verification

examples

WebLogic Server domain that is set up for examples of WebLogic JAM running
with WebLogic Server and mainframe applications

Before You Run the Samples

Before you run the samples, the following tasks must be completed:

1. Install WebLogic Server.

For information about installing WebLogic Server, see the BEA WebLogic
Server documentation.

2. Install WebLogic JAM.

For information about installing WebLogic JAM, see the BEA WebLogic Java
Adapter for Mainframe Installation Guide.

3. Define the Logical Unit (LU) for the CRM and vary it active.

For information about defining the Logical Unit for the CRM, see the BEA
WebLogic Java Adapter for Mainframe Configuration and Administration Guide.
1-6 BEA WebLogic Java Adapter for Mainframe Samples Guide

Before You Run the Samples
4. If using IMS, verify that the APPC communication to IMS is active.

For information about APPC communication with WebLogic JAM, see the BEA
WebLogic Java Adapter for Mainframe Configuration and Administration Guide.

5. If using CICS, the connection must be defined to the CICS region.

For information about CICS connection when using WebLogic JAM, see the
BEA WebLogic Java Adapter for Mainframe Configuration and Administration
Guide.

After these tasks have been completed, determine which of the samples you want to
run and refer to the corresponding section:

Using the IMS Samples

Using the CICS Samples

Using the Explicit APPC Sample
BEA WebLogic Java Adapter for Mainframe Samples Guide 1-7

1 BEA WebLogic Java Adapter for Mainframe Samples Overview
1-8 BEA WebLogic Java Adapter for Mainframe Samples Guide

CHAPTER
2 Using the IMS Samples

The IMS samples demonstrate how BEA WebLogic Java Adapter for Mainframe
(WebLogic JAM) integrates WebLogic applications with IMS applications on a
mainframe. This section provides the following information:

About the IMS Samples

Roadmap for the Samples

Using the Samples

About the IMS Samples

The following section provides a brief overview of each of the IMS samples described
in this guide. A detailed description of how each sample works and instructions for
running each sample are provided in the “Using the Samples” section.

IMS Application to WebLogic Server JMS Topic

This sample demonstrates an asynchronous call through WebLogic JAM from IMS to
a Java application running under WebLogic Server. In this sample, the supplied IMS
client uses implicit APPC to make a request of a service advertised by the WebLogic
JAM Gateway. This service takes all request data and places it on a JMS topic. The
Gateway uses a DataView to convert the request data to XML before it is placed on the
JMS topic. A topic receiver class is shipped with this sample so you can view the
messages as they are placed on the JMS topic.
BEA WebLogic Java Adapter for Mainframe Samples Guide 2-1

2 Using the IMS Samples
This sample highlights WebLogic JAM support of JMS that allows mainframe client
programs to insert messages onto JMS queues or topics. In this sample, a COBOL
copybook is created to use with the eGen Application Code Generator by examining
the record layout for the IMS client application.

The WebLogic JAM Gateway uses DataView classes to translate the data received
from the mainframe into XML. To accomplish this translation, the Gateway must be
able to load the necessary DataView class; the necessary DataView class must be in
the CLASSPATH set in the WebLogic Server startup script.

Java Client to IMS Sample Application

This sample demonstrates a Java client calling remote services located in an IMS
application. The Java client receives a command and a record name from you. You
enter one of the following commands: add, display, update, or delete. You may enter
a host address and port if the gateway is running on a different machine. Depending on
the command, the client may prompt you for additional information. The client then
makes a service call to the installation verification transaction, IVTNO, that is shipped
with IMS. The result displays.

IVTNO was chosen for a back-end application to this sample because IMS users will
already have it installed or can easily do so. If you want to run this sample and IVTNO
is not installed in your IMS region, coordinate the installation with your IMS system
programmer. The use of IVTNO as a back-end application also illustrates how
WebLogic JAM facilitates the integration of Java application with legacy applications
without change to the legacy application. In this sample, COBOL copybooks are
created to use with the eGen Application Code Generator by examining the record
layout for the IMS application instead of using pre-existing copybooks. The record
definitions are in the IMS sample program, DFSIVA1.

Transactional Sample from WebLogic Server to IMS

This sample demonstrates how a Java client makes calls to remote services located in
an IMS application. The service calls that alter the data on the mainframe occur within
the boundaries of two-phase commit transactions. The sample contains a transaction
that is distributed over resources managed by WebLogic Server and resources located
on the mainframe. This transaction uses a service call to add a record to the IVTNO
2-2 BEA WebLogic Java Adapter for Mainframe Samples Guide

Roadmap for the Samples
database. The key to the record is inserted on a JMS queue within the boundaries of
the same transaction as the service call to create the record. The queuing of the record
key and the creation of the record in IMS will either be committed or rolled back
together depending on the command line option you set.

The installation verification transaction, IVTNO, (shipped with IMS) was chosen for a
back-end application to this sample because IMS users will already have it installed or
can easily do so. If you want to run this sample and IVTNO is not installed in your IMS
region, coordinate the installation with your IMS system programmer. The use of
IVTNO also illustrates how WebLogic JAM facilitates the integration of Java
applications with legacy applications with no change to the legacy application. In this
sample, COBOL copybooks are created to use with the eGen utility by examining the
record layout for the IMS application instead of using pre-existing copybooks. The
record definitions are in the IMS sample program DFSIVA1.

Roadmap for the Samples

To run the IMS samples, follow the roadmap listed below. General tasks for all of the
IMS samples include:

1. Verify prerequisite tasks.

For a listing of prerequisite tasks, see the “Before You Run the Samples”
section.

2. Prepare to use the IMS sample.

a. Start the CRM.

b. Update the WebLogic JAM configuration file.

c. Start the examples domain.

d. Configure the WebLogic JAM Gateway.
BEA WebLogic Java Adapter for Mainframe Samples Guide 2-3

2 Using the IMS Samples
Specific tasks for each sample include:

1. Set up the sample.

a. Enable services.

b. Set the environment.

c. Generate and build source (optional).

d. Complete mainframe tasks.

2. Run the sample.

Using the Samples

After you have completed the tasks described in the “Before You Run the Samples”
section, you are ready to use the sample. Information about how to use the IMS
samples is presented in the following sections:

Preparing to Use the IMS Samples

Using the IMS Application to WebLogic Server JMS Topic

Understanding How the Sample Works

Setting up the Sample

Running the Sample

Using the Java Client to IMS Sample Application

Understanding How the Sample Works

Setting up the Sample

Running the Sample

Using the Transactional Sample from WebLogic Server to IMS

Understanding How the Sample Works

Setting up the Sample

Running the Sample
2-4 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
Preparing to Use the IMS Samples

The following steps are common to all the IMS samples. These steps only need to be
performed once for all IMS samples.

Step 1: Start the CRM

Before starting the WebLogic JAM Gateway, start the CRM. The CRM must be
configured with certain parameter values at startup. These parameter values include:

The address of the machine on which the CRM is running

The port on which the CRM listens

The name the Gateway will use to refer to the CRM

For running the samples, you must set the machine address and port. The values that
you set for the machine address and port when the CRM is started, must agree with the
values that you set for the CRM in the WebLogic Administration Console for the
samples CRM. The name of the CRM that is preconfigured for running all of the
samples is CRM1. Use this name when the CRM is started to run any of the samples.

The way you start the CRM depends on whether the CRM will be started under a Unix
or MVS system. On Unix, start the CRM using a shell script. On MVS, start the CRM
using JCL.

Starting the CRM on z/OS or OS/390 Unix

On z/OS or OS/390 Unix, you may use a script to start the CRM. Scripts are installed
with the Gateway in the <BEA_HOME>/<JAM_INSTALL_DIR>/samples/crm/unix
directory. The script, crm.env, appends the necessary values to your environment
variables. The script, startcrm.sh, starts the CRM. To use these scripts, complete the
following steps:

1. FTP the following two scripts to the directory from which the CRM will run:
crm.env

startcrm.sh

2. Edit crm.env. Supply the correct values for the APPDIR and CRMDIR variables.
APPDIR is the directory from which the CRM will run. CRMDIR is the CRM
installation directory.
BEA WebLogic Java Adapter for Mainframe Samples Guide 2-5

2 Using the IMS Samples
3. Edit startcrm.sh. To use a different port than the default port, 7101, change the
port number. However, if you change the port number, make sure to change it in
the corresponding field in the WebLogic Administration Console CRM1 pane.
You do not need to change the address because the script will run on the machine
where the CRM is installed.

Note: BEA recommends that you do not change the CRM name from CRM1.
This name for the CRM is preconfigured for all of the samples.

4. Execute the startcrm.sh script:

. ./startcrm.sh

Compare Figure 2-1 with the script in Listing 2-1. Notice how the parameters in the
script correspond to the fields in the WebLogic Administration Console. The script
illustrates the values for startcrm.sh script parameters for running the samples.

Note: The port number is 7101. You can change the port number; however, if the
port number is changed make sure to change it in the corresponding field in
the Gateway configuration CRM1 pane of the WebLogic Administration
Console.
2-6 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
Figure 2-1 Fields for the CRM

Listing 2-1 Command to Run the CRM

$CRMDIR/bin/CRM //127.0.0.1:7101 CRM1 < /dev/null > std.out
2>std.err &

Starting the CRM on z/OS or OS/390 MVS

On z/OS or OS/390 MVS, start the CRM by submitting the CRMSTART JCL that is
installed with the CRM. The CRMSTART JCL must be modified for your environment.
For information about modifying the CRMSTART JCL, see the BEA WebLogic Java
Adapter for Mainframe Configuration and Administration Guide.
BEA WebLogic Java Adapter for Mainframe Samples Guide 2-7

2 Using the IMS Samples
As you modify the CRMSTART JCL, make sure that you note the following parameters
in the value of the STARTCMD parameter in the JCL. These parameters correspond to
fields in the WebLogic Administration Console. These values must be the same in the
JCL and in the WebLogic Administration Console.

The machine address where the CRM will run

The port number on which the CRM will listen

The name by which the Gateway will refer to the CRM

Compare Figure 2-1 with the JCL in Listing 2-2. Notice how the parameters in the JCL
correspond to the fields in the WebLogic Administration Console. The JCL illustrates
the values for STARTCMD parameters for running the samples.

The machine where the CRM will run is myhost in this sample. You must
replace myhost with the hostname or IP address of your mainframe to allow
IP-based communication from the Windows or Unix machine where WebLogic
Server is running. You may verify this parameter with the ping command on
Windows or Unix.

The port number is 7101. You can change the port number; however, if you
change the port number, make sure to change it in the corresponding field in the
Gateway configuration CRM1 pane of the WebLogic Administration Console.

Note: BEA recommends that you do not change the CRM name from CRM1,
because this name for the CRM is preconfigured for all of the samples.

Listing 2-2 The STARTCMD parameter in the CRMSTART JCL

// SET STARTCMD='"//myhost:7101" CRM1'
2-8 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
Step 2: Update the WebLogic JAM Configuration File

On the machine where the Gateway is installed, update the WebLogic JAM
configuration file from the command prompt by completing the following steps:

1. Locate the jamconfig_IMS.xml file under the following directory:

<BEA_HOME>/<JAM_INSTALL_DIR>/config/examples

2. Copy jamconfig_IMS.xml to jamconfig.xml.

Step 3: Start the examples Domain

From the command prompt, execute the following command from the examples
directory to start the examples domain:

For Microsoft Windows:

startExamplesServer.cmd

For Unix:

. ./startExamplesServer.sh

Step 4: Configure the WebLogic JAM Gateway

Most configuration tasks are preconfigured or completed during the installation
process by the installer program. For additional information about configuring
WebLogic JAM, see the BEA WebLogic Java Adapter for Mainframe Configuration
and Administration Guide. However, you must make the following configuration
changes for the IMS samples to run on your system. These changes can be made in the
WebLogic Administration Console in the following way.

1. From your browser, open the WebLogic Administration Console using the
following address:

http://hostname:7001/console

In this address, the following definitions apply:

hostname is the address of the machine where WebLogic Server is running.

7001 is the port for WebLogic Server that has been configured for the examples
domain.
BEA WebLogic Java Adapter for Mainframe Samples Guide 2-9

2 Using the IMS Samples
2. When prompted, supply the following user and password information:

user: system

This user name cannot be changed.

password: security

 To change the password, see the BEA WebLogic Server documentation.

The WebLogic Administration Console displays.
2-10 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
3. To configure the CRM to the WebLogic JAM Gateway, complete the following
steps:

a. In the left pane, click on Java Adapter for Mainframe → JAM Components
→ CRMs. In the right pane, click CRM1. On the General tab, set the
following fields to correspond with your system. Click Apply. When the CRM
is active, Status turns from red to green.

.

Field Field Description

Listen Address The address of the machine where the CRM is installed and
running. This address must match the address set in the CRM
startup JCL or script.
BEA WebLogic Java Adapter for Mainframe Samples Guide 2-11

2 Using the IMS Samples
b. To configure the IMS region, click Java Adapter for Mainframe → Regions
→ IMS Regions in the left pane. In the right pane, click VS10IMS. Enter the
Logical Unit name that supplies your IMS control region with APPC
communication. You will find this name with the DISPLAY APPC operator
command in IMS. Do not enter the Logical Unit name for APPLID of the IMS
control region. This APPLID does not support APPC communication. If your
IMS control region does not currently support APPC communication, you will

Listen Port The port for the CRM. This entry must match the port set in the
CRM startup JCL or script.

Logical Unit The name of the Logical Unit defined for the CRM.

Stack Type The stack type.

Field Field Description
2-12 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
need to set up this communication in APPC/MVS. Then activate the
communication within IMS using the START APPC Operator command. Click
Apply to set the Logical Unit.

Note: This Logical Unit is not the same as the Logical Unit for the CRM in (3a).
BEA WebLogic Java Adapter for Mainframe Samples Guide 2-13

2 Using the IMS Samples
c. Click IMS Regions at the top of the right pane. In the new window, click
CRM1toIMS. On the Links tab, check Deployed and click Apply.
2-14 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
d. In the left pane, click Gateways. Click JAM5.1 in the right pane. On the
General tab, check Deployed and click Apply.
BEA WebLogic Java Adapter for Mainframe Samples Guide 2-15

2 Using the IMS Samples
4. To start the Gateway, select the Administration tab → Start/Stop tab. Click
Start to start the Gateway.

If the Gateway is running, Status changes to green in the WebLogic
Administration Console and the following message appears in the WebLogic
Server log:

“JAM Gateway ready for use. Current link status: up(1).”

You have completed the general steps required to prepare your system to run the IMS
samples. Select the IMS sample you want to run and follow the steps in that section to
set up and run that sample.
2-16 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
Using the IMS Application to WebLogic Server JMS Topic

After completing the steps in the “Preparing to Use the IMS Samples” section, you are
ready to set up and run the IMS Sample Application to WebLogic Server JMS topic.

How the Sample Works

This sample illustrates making an asynchronous call through WebLogic JAM from an
IMS client to a Java application running under WebLogic Server. In this sample, the
supplied IMS client uses implicit APPC to make a request of a service advertised by
the WebLogic JAM Gateway. This service takes all request data and places it on a JMS
topic. The Gateway uses a DataView to convert the request data to XML before it is
placed on the JMS topic.

Understanding the Sample Configuration

The client IMS program, IMSTOJMS, is defined to the IMS region in the same way any
program is defined to an IMS region. No special considerations are required for use as
a client making requests through WebLogic JAM.

The message inserted by IMSTOJMS on the IMS message queue is sent to WebLogic
JAM. To accomplish this task, an IMS LU 6.2 descriptor must be created that maps the
LTERM name that is passed to the program IMSTOJMS to the Logical Unit defined for
the CRM and a transaction name. In this sample, the LTERM name is JAMIMS01. This
is mapped in the sample IMS LU 6.2 descriptor DFS62DTI to the Logical Unit CRMLU.
The transaction name is ITOJMSSV.

The CRMLU must be changed to the Logical Unit that was defined for the CRM.
ITOJMSSV is the name of a JMSEvent in the WebLogic JAM configuration. The
attributes of the ITOJMSSV JMSEvent in the WebLogic JAM configuration describe
the JMS topic where the message will be queued and give the name of the DataView
used to translate the message to XML. In this sample, the DataView is named
Chardata.

Because the WebLogic JAM Gateway uses the Chardata DataView to translate the
mainframe data to XML before placing it on the JMS topic, the Chardata.class file
must be in the WebLogic Server CLASSPATH. A directory named dataviews is located
under the <BEA_HOME>/<JAM_INSTALL_DIR>/config/examples/clientclasses
directory and the Chardata.class is compiled into the
<BEA_HOME>/<JAM_INSTALL_DIR>/config/examples/clientclasses/
BEA WebLogic Java Adapter for Mainframe Samples Guide 2-17

2 Using the IMS Samples
dataviews/examples/IMS/inbound/gateway directory. The dataview directory
is in the CLASSPATH set in the WebLogic Server startup script for the examples
domain. The SUPPORTS XML directive is also included in the definition of the
chardata.java in the eGen script chardata.egen.

Understanding the Sample Programming

The programming for this sample is described in the following sections.

WebLogic Application

Two classes compose the WebLogic side of this sample application:

Chardata

TopicReceive

Chardata is a DataView class that is generated by the eGen Application Code
Generator. The data member in the Chardata.class corresponds to the data field in
the CHARDATA copybook. The Chardata.class is responsible for all data translation
between the mainframe format of the data and the Java format of the data. The
WebLogic JAM Gateway uses this class to translate the mainframe data to XML.

The TopicReceive class allows you to view the messages as they are placed on the
JMS topic. TopicReceive should be started before running the IMS client.
TopicReceive establishes a connection to the JMS topic, receives messages placed
on the topic by WebLogic JAM that have been sent by the IMS client, and then reports
the messages to you. TopicReceive shuts down when a "quit" message is sent.

IMS Program

IMSTOJMS is a simple COBOL IMS client program that makes an asynchronous,
no-response request by placing the request on the IMS message queue. IMSTOJMS
receives an LTERM name and a string input from you. It issues a change call to change
its output destination to the specified LTERM. Then it inserts the input string to this
destination. Because the IMS LU 6.2 descriptor has been created and associated with
the LTERM name, the message is sent to the CRM and then on to the WebLogic JAM
Gateway. No special considerations are required in this program as a result of being
used as a client making requests of a Java server through WebLogic JAM.
2-18 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
Sample Files

The files for the WebLogic side of the sample are installed in the following directory:

<BEA_HOME>/<JAM_INSTALL_DIR>/samples/examples/IMS/inbound/gateway

The following table lists the sample files and their purpose:

Table 2-1 Files for the WebLogic Application

The files for the IMS side of the sample are installed in the following directory:

<BEA_HOME>/<JAM_INSTALL_DIR>/samples/examples/IMS/inbound/
mainframe/source

File Name File Purpose

chardata.cpy COBOL copybook that defines the structure of the string mainframe data.

chardata.egen eGen script that generates the Chardata.java DataView class.

Chardata.java DataView class that corresponds to the chardata.cpy COBOL
copybook.

TopicReceive.java Class that implements MessageListener interface used to monitor the
JMS topic for incoming messages.

build.cmd Script that builds the Chardata and TopicReceive classes. The built
class files are under the
<BEA_HOME>\<JAM_INSTALL_DIR>\config\examples\
clientclasses\examples\IMS\inbound\gateway directory.

build.sh Unix script that builds the Chardata and TopicReceive classes. The
built class files are under the
<BEA_HOME>/<JAM_INSTALL_DIR>/config/examples/
clientclasses/examples/IMS/inbound/gateway directory.
BEA WebLogic Java Adapter for Mainframe Samples Guide 2-19

2 Using the IMS Samples
The following table lists the sample files and their purpose:

Table 2-2 Files for the IMS Application

File Name File Purpose

COMPIMSC JCL that compiles and links the IMSTOJMS program.

IMSINDEF Contains sample IMS stage 1 input and PSBGEN for the IMS configuration
of the IMSTOJMS program.

DFS62DTI IMS LU 6.2 descriptor that maps LTERM name to Logical Unit and remote
transaction name.

 IMSTOJMS IMS client program that receives LTERM name and string from the user
and queues request data on IMS message queue.
2-20 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
Setting Up the Sample

To set up the IMS application to WebLogic Server JMS topic, complete the following
steps.

Step 1: Enable the Service

To enable the JMS Event, click Java Adapter for Mainframe → Exports→JMS
Events in the left pane. Click ITOJMSSV. Check Local Service Enabled and click
Apply to enable the Local Service.
BEA WebLogic Java Adapter for Mainframe Samples Guide 2-21

2 Using the IMS Samples
Step 2: Set the Environment

Set the environment by executing the setExamplesEnv command. From a command
prompt, change to the <BEA_HOME>/<JAM_INSTALL_DIR>/config/examples
directory and execute the command that corresponds to your system:

For Microsoft Windows:

setExamplesEnv.cmd

For Unix:

. ./setExamplesEnv.sh

The following message will display:

“Your environment has been set.”

Step 3: Generate and Build Source (Optional)

The WebLogic JAM samples provide generated source. The samples also provide
classes to run the samples. If you want to see how the source is generated and the
classes are built, change to the
<BEA_HOME>/<JAM_INSTALL_DIR>/samples/examples/IMS/inbound/gateway
directory and complete the following steps.

Warning: Using the following options will overwrite files that are installed with the
WebLogic JAM samples.

Run the build.cmd (.sh) script to build the TopicReceive.class and the
Chardata.class. The TopicReceive.class is put in the
<BEA_HOME>/<JAM_INSTALL_DIR>/config/clientclasses/examples/IMS/

inbound/gateway directory. The Chardata.class file is put in the
<BEA_HOME>/<JAM_INSTALL_DIR>/config/clientclasses/dataview/exam

ples/IMS/inbound/gateway directory.

Run egencobol to use the eGen Application Code Generator on
chardata.egen to generate Chardata.java.

This option will generate the source. To compile the source, use the previous
option to run the build.cmd (sh) script.

For information about running the eGen Application Code Generator, see the
BEA WebLogic Java Adapter for Mainframe Programming Guide.
2-22 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
Step 4: Run the TopicReceive Program

On the machine where the Gateway is installed, run the TopicReceiver program that
listens on the JMS topic for incoming messages from IMS. At the command prompt,
type:

java examples.IMS.inbound.gateway.TopicReceive
"t3://hostname:port"

In this statement, the following definitions apply:

hostname is the address of the machine where WebLogic Server is running.

port is the port for WebLogic Server.

For example, if TopicReceive is run on the same machine as WebLogic Server
examples domain, the statement is:

java
examples.IMS.inbound.gateway.TopicReceive“t3://localhost:7001”

Step 5: Complete Mainframe Tasks

On the machine with the IMS region:

1. Create a Partitioned Data Set (PDS) to store the source and JCL for this sample.

2. From the machine where the Gateway was installed, FTP the following files from
the <BEA_HOME>/<JAM_INSTALL_DIR>/samples/examples/IMS/inbound/
mainframe/source directory to the PDS that you created:

IMSTOJMS

IMSINDEF

DFS62DTI

COMPIMSC

3. In the COMPIMSC JCL, make the following changes:

Change the JOB statement.

Change YOURHLQ.SOURCE to the PDS you created.

Change YOUR.PGMLIB to a PGMLIB for your IMS region.
BEA WebLogic Java Adapter for Mainframe Samples Guide 2-23

2 Using the IMS Samples
Change YOUR.PROCLIB to the location of CBLTDLI (usually IMS.PROCLIB).

Change YOUR.RESLIB to the proper value.

Change RESLIB to SDFSRESL if you are using a newer IMS version. Refer to
CBLTDLI in your PGMLIB to determine which library name your version uses.
Make sure that if your IMS version requires this change, that you make the
change to both the DD name and the library name.

4. Submit the COMPIMSC JCL. Make sure that all condition codes are 0.

5. Define the program IMSTOJMS to the IMS region. IMSINDEF contains sample
IMS stage 1 and PSBGEN input. See your IMS systems programmer for
assistance.

6. Define the LTERM. DFS62DTI contains sample definition for an APPC LTERM. See
your IMS systems programmer for assistance.

Change the Logical Unit name to match the Logical Unit configured for the
CRM in Step 4 of the “Preparing to Use the IMS Samples” section.

If you change the LTERM name, make sure to change it at the command
prompt when you run the sample. See the “Running the Sample” section.

Do not change the TPNAME. It is configured to match the name of the
JMSEVENT in the WebLogic JAM configuration.

Running the Sample

To run the sample, complete the following steps:

1. Log in to the IMS region.

2. Type the following command in the IMS terminal:

 IMSTOJMS JAMIMS01 hello (or any other string)

The string will be displayed in the XML that is printed in the shell where the
TopicReceive is running.

Note: JAMIMS01 is the LTERM name in the LU6.2 descriptor DFS62DTI. If you
changed the LTERM name in the “Step 5: Complete Mainframe Tasks”
2-24 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
section, you must enter that LTERM name at the command prompt instead
of JAMIMS01.

To shut down the TopicReceive, type the following command in the IMS terminal:

IMSTOJMS JAMIMS01 quit

Using the Java Client to IMS Sample Application

After completing the steps in the “Preparing to Use the IMS Samples” section, you are
ready to set up and run the Java client to IMS sample application.

Understanding How the Sample Works

This sample demonstrates requests from a Java client through WebLogic JAM to a
remote service provided by an IMS application. The back-end application for this
sample is the installation verification transaction, IVTNO, that is shipped with IMS.
IVTNO is a non-conversational installation verification transaction that uses an OSAM
database. This sample illustrates how Java applications may integrate with legacy IMS
applications without modification to the IMS programs or configuration.

Understanding the Sample Configuration

No special configuration is required for this simple sample. The Java client calls the
service, doIVTNO. The doIVTNO is an APPC service that is mapped to the IMS
transaction, IVTNO. IVTNO is defined to IMS in the usual way. No special
considerations are required for use with a Java client making requests through
WebLogic JAM.

Understanding the Sample Programming

The programming for this sample is described in the following sections.

WebLogic Application

Four classes compose the WebLogic side of this sample application:

IvtnoInRecord

IvtnoOutRecord
BEA WebLogic Java Adapter for Mainframe Samples Guide 2-25

2 Using the IMS Samples
BaseClient

Client

IvtnoInRecord and IvtnoOutRecord are DataView classes that are generated by the
eGen Application Code Generator. The data members in these classes correspond to
the data fields in the ivtno-in.cpy and ivtno-out.cpy copybooks. These
copybooks match the input and output record layouts for the IVTNO transaction. These
layouts are found in the IMS program DFSIVA1. IvtnoInRecord and
IvtnoOutRecord are responsible for all data translation between the mainframe
format of the data and the Java format of the data.

The BaseClient class that is generated by the eGen Application Code Generator is an
extension of the EgenClient class. The callIVTNO method of BaseClient is a
wrapper for calls to the callService method of the EgenClient class with doIVTNO
as the service parameter in the call.

The Client class is the actual user interface. The Client class has a BaseClient
member. The Client class receives a command and employee last name as command
line parameters. The command must be one of the following: add, display, update,
or delete. You may also enter an address and a port number if the WebLogic JAM
Gateway is running on a different machine or the corresponding instance of WebLogic
Server is listening on a different port than 7001. The URL is set in the BaseClient
member. In the Client class, an IvtnoInRecord DataView is initialized with the
input data. Depending on the command that you input, either the
doDisplayOrDelete, doAdd, or doUpdate method is called. These methods, defined
in the Client class, are wrappers for the callIVTNO method of BaseClient. The
difference in the methods occur in the value set for the command as well as other fields
of the input IvtnoInRecord. The returned IvtnoOutRecord DataView displays.

IMS Program

No IMS programs or configuration files are shipped with this sample because the
sample uses the installation verification transaction, IVTNO, that is shipped with IMS.

Sample Files

The files for the WebLogic side of the sample are installed in the following directory:

<BEA_HOME>/<JAM_INSTALL_DIR>/samples/examples/IMS/outbound/
gateway
2-26 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
The following table lists the sample files in this directory and their purpose:

Table 2-3 Files for the WebLogic Application

File Name File Purpose

ivtno-in.cpy COBOL copybook that defines the structure of the input data for the
IVTNO transaction.

ivtno-out.cpy COBOL copybook that defines the structure of the output data from the
IVTNO transaction.

ivtno.egen eGen script that generates the IvtnoInRecord.java and
IvtnoOutRecord.java DataView classes.

IvtnoInRecord.java DataView class that corresponds to the ivtno-in.cpy COBOL
copybook.

IvtnoOutRecord.java DataView class that corresponds to the ivtno-out.cpy COBOL
copybook.

baseClient.egen eGen script that generates the IvtnoInRecord.java and
IvtnoOutRecord.java DataView classes and the
BaseClient.java EgenClient class.

BaseClient.java Java class that extends EgenClient class that calls the IVTNO service.

Client.java The user interface client class that receives a command and record name
from the user, prompts the user for additional information, if necessary,
and displays the result of the IVTNO service to the user. It invokes the
IVTNO service by calling the callService method of its BaseClient
member.

build.cmd Script that builds the IvtnoInRecord, IvtnoOutRecord,
BaseClient and Client classes. The built class files are under the
<BEA_HOME>\<JAM_INSTALL_DIR>\config\examples\
clientclasses\examples\IMS\outbound\gateway directory.

build.sh Unix script that builds the IvtnoInRecord, IvtnoOutRecord,
BaseClient and Client classes. The built class files are under the
<BEA_HOME>/<JAM_INSTALL_DIR>/config/examples/
clientclasses/examples/IMS/outbound/gateway directory.
BEA WebLogic Java Adapter for Mainframe Samples Guide 2-27

2 Using the IMS Samples
Setting Up the Sample

To set up the Java client to IMS sample application, complete the following steps.

Note: This sample requires that IVTNO is installed and working in the IMS region
before this sample is run. IVTNO should have been installed with the IBM IMS
distribution. For information about IVTNO, see your IMS documentation.
2-28 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
Step 1: Enable the Service

To enable the APPC service, click Java Adapter for Mainframe
→Services→APPC Services in the left pane. In the right pane, click doIVTNO under
Service Name. Check Enabled and click Apply.

Step 2: Set the Environment

On the machine from which the sample client is run, set the environment by
performing the following step.

Note: This machine does not have to be the machine on which the Gateway is
running, but WebLogic JAM must be installed.
BEA WebLogic Java Adapter for Mainframe Samples Guide 2-29

2 Using the IMS Samples
From a command prompt, change to the
<BEA_HOME>/<JAM_INSTALL_DIR>/config/examples and execute the
following command to set the environment:

For Microsoft Windows:

setExamplesEnv.cmd

For Unix:

. ./setExamplesEnv.sh

The following message will display:

“Your environment has been set.”

Step 3: Generate and Build Source (Optional)

The WebLogic JAM samples provide generated source. The samples also provide
classes to run the samples. If you want to see how the source is generated and the
classes are built, change to the
<BEA_HOME>/<JAM_INSTALL_DIR>/samples/examples/IMS/outbound/

gateway directory and complete the following steps.

Warning: Using the following options will overwrite files that are installed with the
WebLogic JAM samples.

Run the build.cmd (.sh) script to build the client classes and put them in the
<BEA_HOME>/<JAM_INSTALL_DIR>/config/examples/clientclasses/
examples/IMS/outbound/gateway directory.

Run egencobol to use the eGen Application Code Generator on:

ivtno.egen to generate IvtnoInRecord.java and
IvtnoOutRecord.java.

baseClient.egen to generate BaseClient.java, IvtnoInRecord.java,
and IvtnoOutRecord.java.

This option will generate the source. To compile the source, use the previous
option to run the build.cmd (sh) script.

For information about running the eGen Application Code Generator, see the
BEA WebLogic Java Adapter for Mainframe Programming Guide.
2-30 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
Running the Sample

To run the sample, type the following command at the command prompt:

java examples.IMS.outbound.gateway.Client [-m hostname] [-p port]
-c command -n name

In this command, the following definitions apply:

The first pair of command line switches are optional, and represent the
hostname and port for a remote machine on which the WebLogic JAM
Gateway is running in WebLogic Server. If you are running the client on the
same machine as the Gateway and the WebLogic Server port is 7001, then these
options are not required.

The second pair of command line switches are mandatory. The command must
be one of the following:

display

add

delete

update

name is the last name of the person that is the key to the record.

The following command is an example of a command that you might enter:

java examples.IMS.outbound.gateway.Client -c display -n LAST1

Using the Transactional Sample from WebLogic Server to
IMS

After completing the steps in the “Preparing to Use the IMS Samples” section, you are
ready to set up and run the transactional sample from WebLogic Server to IMS.

Understanding How the Sample Works

This sample demonstrates transactional requests made to an IMS application from a
Java client through WebLogic JAM. This sample highlights client-initiated
transactions that are distributed between an IMS-managed resource and a WebLogic
BEA WebLogic Java Adapter for Mainframe Samples Guide 2-31

2 Using the IMS Samples
Server-managed resource, a JMS queue. The back-end application for this sample is
the IMS transaction, IVTNO. IVTNO is an IMS non-conversational installation
verification transaction that uses an OSAM database. This sample illustrates how Java
applications may be integrated with legacy IMS applications without modification to
the IMS programs or configuration.

Understanding the Sample Configuration

No special configuration is required for this simple sample. The Java client calls the
service doIVTNO. doIVTNO is an APPC service that is mapped to the IMS transaction,
IVTNO. IVTNO is defined to IMS in the usual way and requires no special
considerations to be used with a Java client making requests through WebLogic JAM.

Understanding the Sample Programming

The programming for this sample is described in the following sections.

WebLogic Application

Four classes compose the WebLogic side of this sample application:

IvtnoInRecord

IvtnoOutRecord

BaseClient

Client

IvtnoInRecord and IvtnoOutRecord are DataView classes that are generated by the
eGen Application Code Generator. The data members in these classes correspond to
the data fields in the ivtno-in.cpy and ivtno-out.cpy copybooks. These
copybooks match the input and output record layouts for the IVTNO transaction. These
layouts are in the IMS program, DFSIVA1. IvtnoInRecord and IvtnoOutRecord are
responsible for all data translation between the mainframe format of the data and the
Java format of the data.

The BaseClient class that is generated by the eGen Application Code Generator is an
extension of the EgenClient class. The callIVTNO method of BaseClient is a
wrapper for calls to the callService method of the EgenClient class with doIVTNO
as the service parameter in the call.
2-32 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
The Client class is the actual user interface. The Client class has a BaseClient
member. It has three optional command line parameters. You may enter an address and
a port number if the WebLogic JAM Gateway is running on a different machine or the
corresponding instance of WebLogic Server is listening on a different port than 7001.
The URL is set in the BaseClient member. You may also enter a command line
option that indicates that the distributed transaction in this sample should roll back. If
this command line option is not used, the distributed transaction is committed.

doDisplayOrDelete, doAdd, and doUpdate methods are defined in the Client
class. These methods are wrappers for the callIVTNO method of BaseClient. The
difference in the methods occurs in the value set for the command as well as other
fields of the input IvtnoInRecord.

The Client class first performs a check to make sure that the sample starts in a
consistent state. The record that will be added to the OSAM database later is deleted
by making a call to the doDisplayOrDelete method. The Client clears the JMS
queue and then initiates the distributed transaction. The Client adds the record to the
OSAM database using IVTNO by calling the doAdd method. The Client queues the
record key on the JMS queue. Depending on your input, the Client then commits or
rolls back the transaction. The Client class verifies the result by attempting to display
the record from the OSAM database and the key from the JMS queue. Calling the
doDisplayOrDelete method does the reading of the record from the OSAM record
through IVTNO.

IMS Program

No IMS programs or configuration files are shipped with this sample because the
sample uses the installation verification transaction, IVTNO, that is shipped with IMS.

Sample Files

The files for the WebLogic side of the sample are installed in the following directory:

<BEA_HOME>/<JAM_INSTALL_DIR>/samples/examples/transactional/IMS/
outbound/gateway
BEA WebLogic Java Adapter for Mainframe Samples Guide 2-33

2 Using the IMS Samples
The following table lists the sample files in this directory and their purpose:

Table 2-4 Files for the WebLogic Application

File Name File Purpose

ivtno-in.cpy COBOL copybook that defines the structure of the input data for the
IVTNO transaction.

ivtno-out.cpy COBOL copybook that defines the structure of the output data from the
IVTNO transaction.

ivtno.egen eGen script that generates the IvtnoInRecord.java and
IvtnoOutRecord.java DataView classes.

IvtnoInRecord.java DataView class that corresponds to the ivtno-in.cpy COBOL
copybook.

IvtnoOutRecord.java DataView class that corresponds to the ivtno-out.cpy COBOL
copybook.

baseClient.egen eGen script that generates the IvtnoInRecord.java and
IvtnoOutRecord.java DataView classes and the
BaseClient.java EgenClient class.

BaseClient.java Java class that extends EgenClient class that calls the IVTNO service.

Client.java The user interface client class that receives a command line option to roll
back or commit from the user. All invocations of the IVTNO transaction
that it makes are made by calling the callService method of its
BaseClient member. First, it deletes a record and clears the JMS queue.
Then, it initiates a transaction. Within the boundaries of that transaction, it
adds the record and queues the key to the record on the JMS queue. It then
commits or rolls back the previous operations based on the command line
option. It then verifies the operation by attempting to read the record and
check the contents of the JMS queue.

build.cmd Script that builds the IvtnoInRecord, IvtnoOutRecord,
BaseClient and Client classes. The built class files are under the
<BEA_HOME>\<JAM_INSTALL_DIR>\config\examples\
clientclasses\examples\transactional\IMS\outbound\
gateway directory.
2-34 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
Setting Up Sample

To set up the transactional sample from WebLogic Server to IMS, complete the
following steps.

Note: The IMS installation verification sample (shipped with IMS), IVTNO, must be
installed and working in the IMS region before running the sample.

build.sh Unix script that builds the IvtnoInRecord, IvtnoOutRecord,
BaseClient and Client classes. The built class files are under the
<BEA_HOME>/<JAM_INSTALL_DIR>/config/examples/
clientclasses/examples/transactional/IMS/outbound/
gateway directory.

File Name File Purpose
BEA WebLogic Java Adapter for Mainframe Samples Guide 2-35

2 Using the IMS Samples
Step 1: Enable the Service

To enable the APPC service, click Java Adapter for Mainframe →
Services→APPC Services in the left pane. In the right pane, click doIVTNO. Check
Enabled and click Apply.

Step 2: Set the Environment

On the machine from which the sample client is to be run, set the environment by
performing the following step.

Note: This machine does not have to be the machine on which the Gateway is
running, but WebLogic JAM must be installed.
2-36 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
From a command prompt, change to the
<BEA_HOME>/<JAM_INSTALL_DIR>/config/examples directory and execute
the following command to set the environment:

For Microsoft Windows:

setExamplesEnv.cmd

For Unix:

. ./setExamplesEnv.sh

The following message will display:

“Your environment has been set.”

Step 3: Generate and Build Source (Optional)

The WebLogic JAM samples provide generated source. The samples also provide
classes to run the samples. If you want to see how the source is generated and the
classes are built, change to the
<BEA_HOME>/<JAM_INSTALL_DIR>/samples/examples/transactional/IMS/

outbound/gateway directory and complete the following steps.

Warning: Using the following options will overwrite files that are installed with the
WebLogic JAM samples.

Run the build.cmd (.sh) script to build the client classes and put them in the
<BEA_HOME>/<JAM_INSTALL_DIR>/config/examples/clientclasses/
examples/transactional/IMS/outbound/gateway directory.

Run egencobol to use the eGen Application Code Generator on:

ivtno.egen to generate IvtnoInRecord.java and
IvtnoOutRecord.java

baseClient.egen to generate BaseClient.java, IvtnoInRecord.java,
and IvtnoOutRecord.java

This option will generate the source. To compile the source, use the previous
option to run the build.cmd (sh) script.

For information about running the eGen Application Code Generator, see the
BEA WebLogic Java Adapter for Mainframe Programming Guide.
BEA WebLogic Java Adapter for Mainframe Samples Guide 2-37

2 Using the IMS Samples
Running the Sample

To run the sample, type the following command at the command prompt:

java examples.transactional.IMS.outbound.gateway.Client
[-m hostname] [-p port] [-r]

In this command, the following definitions apply:

The first pair of command line switches are optional, and represent the
hostname and port for a remote machine on which the WebLogic JAM
Gateway is running in WebLogic Server. If you are running the client on the
same machine as the Gateway and the WebLogic Server port is 7001, then these
options are not required.

The third command line switch, which is also optional, indicates whether a
rollback will be done or not. If -r is present at the command prompt, then the
creation of the record on the database will be rolled back.

The following command is an example of a command that you might enter:

 java examples.transactional.IMS.outbound.gateway.Client -r
2-38 BEA WebLogic Java Adapter for Mainframe Samples Guide

CHAPTER
3 Using the CICS Samples

The CICS samples demonstrate how BEA WebLogic Java Adapter for Mainframe
(WebLogic JAM) integrates the WebLogic applications with CICS applications. This
section provides the following information:

About the CICS Samples

Roadmap for the Samples

Using the Samples

About the CICS Samples

The following section provides a brief overview of each of the CICS samples described
in this guide. A detailed description of how each sample works and instructions for
running each sample are provided in the “Using the Samples” section.

CICS Application to WebLogic Server Sample EJB

This sample demonstrates the functional capability provided by WebLogic JAM to
invoke the services of an Enterprise Java Bean (EJB) deployed with WebLogic Server
from a CICS client. The server EJB is similar to the Trader bean that is shipped with
WebLogic Server. The COBOL CICS client program makes a series of requests to the
EJB to buy shares of stock.

As in the WebLogic Server sample, the EJB will check the number of shares requested
against a preconfigured trading limit to decide if the requested number of shares can
be purchase. If the number of shares is too high, then it will actually buy the limit
BEA WebLogic Java Adapter for Mainframe Samples Guide 3-1

3 Using the CICS Samples
instead. A record of each sale is entered into the WebLogic Server log. The bean will
return to the client the actual number of shares purchased as well as the stock symbol.
The CICS client will report the result to the screen.

Java Client to CICS Sample Application

This sample illustrates the invoking of CICS services from requests that originate from
a Java client. Four COBOL CICS programs are provided. These programs create, read,
update, and delete records from a simulated database. These programs simulate a
database through the use of Temporary Storage (TS) queues. Employee records are
stored in the database by creating a TS queue with a name that is the first eight
characters of the employee's name. The use of TS queues to simulate a database
requires no configuration in the CICS region other than the definition of the programs.

The Java client receives a command and a record name from you. The command is one
of the following: add, display, update, or delete. You may choose to enter a host
address and port if the gateway is running on another machine. Depending on the
command, the client may prompt you for additional information. The client then makes
a service call to one of the provided CICS COBOL programs. The result displays.

Transactional Sample from WebLogic Server to CICS

This sample illustrates making calls to remote services located in a CICS region from
a Java client. The service calls that alter data on the mainframe occur within the
boundaries of two-phase commit transactions. The sample contains a transaction that
is distributed over resources managed by WebLogic Server and resources managed by
CICS. This transaction uses a service call to add a record to a VSAM file. The key to
the record is inserted on a JMS queue within the boundaries of the same transaction as
a service call to create the record. The queuing of the record key and the creation of the
record in VSAM will either be committed or rolled back together depending on the
command line option you set.

Four COBOL CICS programs are provided. These programs create, read, update, and
delete records from the VSAM file. Employee records are stored in the VSAM file
using the employee's social security number as a key. The VSAM file is used as the
recoverable resource in CICS because it is relatively easy to create and configure and
CICS users will have VSAM.
3-2 BEA WebLogic Java Adapter for Mainframe Samples Guide

Roadmap for the Samples
Roadmap for the Samples

To run the CICS samples, follow the roadmap listed below. General tasks for all of the
CICS samples include:

1. Verify prerequisite tasks.

For a listing of prerequisite tasks, see the “Before You Run the Samples”
section.

2. Prepare to use the CICS sample.

a. Start the CRM.

b. Update the WebLogic JAM configuration file.

c. Start the examples domain.

d. Configure the WebLogic JAM Gateway.

Specific tasks for each sample include:

1. Set up the sample.

a. Enable services.

b. Set the environment.

c. Generate and build source (optional).

d. Complete mainframe tasks.

2. Run the sample.
BEA WebLogic Java Adapter for Mainframe Samples Guide 3-3

3 Using the CICS Samples
Using the Samples

After you have completed the tasks described in the “Before You Run the Samples”
section, you are ready to use the sample. Information about how to use the CICS
samples is presented in the following sections:

Preparing to Use the CICS Samples

Using the CICS Application to WebLogic Server Sample EJB

Understanding How the Sample Works

Setting up the Sample

Running the Sample

Using the Java Client to CICS Sample Application

Understanding How the Sample Works

Setting up the Sample

Running the Sample

Using the Transactional Sample from WebLogic Server to CICS

Understanding How the Sample Works

Setting up the Sample

Running the Sample

Preparing to Use the CICS Samples

The following steps are common to all the CICS samples. These steps only need to be
performed once for all CICS samples.
3-4 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
Step 1: Start the CRM

Before starting the WebLogic JAM Gateway, start the CRM. The CRM must be
configured with certain parameter values at startup. These parameter values include:

The address of the machine on which the CRM is running

The port on which the CRM listens

The name the Gateway will use to refer to the CRM

For running the samples, you must set the machine address and port. The values that
you set for the machine address and port when the CRM is started, must agree with the
values that you set for the CRM in the WebLogic Administration Console for the
samples CRM. The name of the CRM that is preconfigured for running all of the
samples is CRM1. Use this name when the CRM is started to run any of the samples.

The way you start the CRM depends on whether the CRM will be started under a Unix
or MVS system. On Unix, start the CRM using a shell script. On MVS, start the CRM
using JCL.

Starting the CRM on z/OS or OS/390 Unix

On z/OS or OS/390 Unix, you may use a script to start the CRM. Scripts are installed
with the Gateway in the <BEA_HOME>/<JAM_INSTALL_DIR>/samples/crm/unix
directory. The script, crm.env, appends the necessary values to your environment
variables. The script, startcrm.sh, starts the CRM. To use these scripts, complete the
following steps:

1. FTP the following two scripts to the directory from which the CRM will run:

crm.env

startcrm.sh

2. Edit crm.env. Supply the correct values for the APPDIR and CRMDIR variables.
APPDIR is the directory from which the CRM will run. CRMDIR is the CRM
installation directory.

3. Edit startcrm.sh. To use a different port than the default port, 7101, change the
port number. However, if you change the port number, make sure to change it in
the corresponding field in the WebLogic Administration Console CRM1 pane.
You do not need to change the address because the script will run on the machine
where the CRM is installed.
BEA WebLogic Java Adapter for Mainframe Samples Guide 3-5

3 Using the CICS Samples
Note: BEA recommends that you do not change the CRM name from CRM1.
This name for the CRM is preconfigured for all of the samples.

4. Execute the startcrm.sh script:

. ./startcrm.sh

Compare Figure 3-1 with the script in Listing 3-1. Notice how the parameters in the
script correspond to the fields in the WebLogic Administration Console. The script
illustrates the values for startcrm.sh script parameters for running the samples.

Note: The port number is 7101. You can change the port number; however, if the
port number is changed make sure to change it in the corresponding field in
the Gateway configuration CRM1 pane of the WebLogic Administration
Console.

Figure 3-1 Fields for the CRM
3-6 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
Listing 3-1 Command to Run the CRM

$CRMDIR/bin/CRM //127.0.0.1:7101 CRM1 < /Dev/null > std.out
2>std.err &

Starting the CRM on z/OS or OS/390 MVS

On z/OS or OS/390 MVS, start the CRM by submitting the CRMSTART JCL that is
installed with the CRM. The CRMSTART JCL must be modified for your environment.
For information about modifying the CRMSTART JCL, see the BEA WebLogic Java
Adapter for Mainframe Configuration and Administration Guide.

As you modify the CRMSTART JCL, make sure that you note the following parameters
in the value of the STARTCMD parameter in the JCL. These parameters correspond to
fields in the WebLogic Administration Console. These values must be the same in the
JCL and in the WebLogic Administration Console.

The machine address where the CRM will run

The port number on which the CRM will listen

The name by which the Gateway will refer to the CRM

Compare Figure 3-1 with the JCL in Listing 3-2. Notice how the parameters in the JCL
correspond to the fields in the WebLogic Administration Console. The JCL illustrates
the values for STARTCMD parameters for running the samples.

The machine where the CRM will run is myhost in this sample. You must
replace myhost with the hostname or IP address of your mainframe to allow
IP-based communication from the Windows or Unix machine where WebLogic
Server is running. You may verify this parameter with the ping command on
Windows or Unix.

The port number is 7101. You can change the port number; however, if you
change the port number, make sure to change it in the corresponding field in the
Gateway configuration CRM1 pane of the WebLogic Administration Console.

Note: BEA recommends that you do not change the CRM name from CRM1,
because this name for the CRM is preconfigured for all of the samples.
BEA WebLogic Java Adapter for Mainframe Samples Guide 3-7

3 Using the CICS Samples
Listing 3-2 The STARTCMD parameter in the CRMSTART JCL

// SET STARTCMD='"//myhost:7101" CRM1'

Step 2: Update the WebLogic JAM Configuration File

On the machine where the Gateway is located, update the WebLogic JAM
configuration file from the command prompt by completing the following steps:

1. Locate the jamconfig_CICS.xml file under the following directory:

<BEA_HOME>\<JAM_INSTALL_DIR>\config\examples

2. Copy jamconfig_CICS.xml to jamconfig.xml.

Step 3: Start the examples Domain

From the command prompt, execute the following command from the same directory
to start the examples domain:

For Microsoft Windows:

startExamplesServer.cmd

For Unix:

. ./startExamplesServer.sh

Step 4: Configure the WebLogic JAM Gateway

Most configuration tasks are preconfigured or were completed during the installation
process by the installer program. For additional information about configuring
WebLogic JAM, see the BEA WebLogic Java Adapter for Mainframe Configuration
and Administration Guide. Make the following configuration changes for the CICS
Sample to run on your system. These changes can be made in the WebLogic
Administration Console in the following way.
3-8 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
1. From your browser, open the WebLogic Administration Console using the
following address:

http://hostname:7001/console

In this address, the following definitions apply:

hostname is the address of the machine where WebLogic Server is running.

7001 is the port for WebLogic Server that has been configured for the examples
domain.

2. When prompted, supply the following user and password information:

user: system

This user name cannot be changed.

password: security

 To change the password, see the BEA WebLogic Server documentation.
BEA WebLogic Java Adapter for Mainframe Samples Guide 3-9

3 Using the CICS Samples
The WebLogic Administration Console displays.

3. To configure the CRM to the WebLogic JAM Gateway, complete the following
steps:

a. In the left pane, click on Java Adapter for Mainframe → JAM Components
→ CRMs. In the right pane, click CRM1. On the General tab, set the
following fields to correspond with your system. Click Apply. When the CRM
is active, Status turns from red to green.
3-10 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
.

Field Field Description

Listen Address The address of the machine where the CRM is installed and
running. This address must match the address set in the CRM
startup JCL or script.

Listen Port The port for the CRM. This entry must match the port set in the
CRM startup JCL or script.

Logical Unit The name of the Logical Unit defined for the CRM.

Stack Type The stack type.
BEA WebLogic Java Adapter for Mainframe Samples Guide 3-11

3 Using the CICS Samples
b. To configure the CICS Region, click Java Adapter for Mainframe →
Regions → CICS Regions in the left pane. In the right pane, click on CICS3
and enter the name of the Logical Unit. Click Apply to set the Logical Unit.

Note: This Logical Unit is the ACBNAME in the VTAM Logical Unit definition or the
VTAM APPLID of the region. This Logical Unit is not the same as the Logical
Unit for the CRM in (3a).
3-12 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
c. Click CICS Regions at the top of the pane. Click CRM1CICS3. In the new
window, click CRM1CICS3. On the Links tab, check Deployed and click
Apply.
BEA WebLogic Java Adapter for Mainframe Samples Guide 3-13

3 Using the CICS Samples
d. In the left pane, click JAM Components→Gateways. Click JAM5.1 in the
right pane. On the General tab, check Deployed. Click Apply.
3-14 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
4. To start the WebLogic JAM Gateway, select the Administration tab →
Start/Stop tab. Click Start to start the Gateway.

If the Gateway is running, Status changes to green in the WebLogic
Administration Console and the following message is recorded in the WebLogic
Server log:

“JAM Gateway ready for use. Current link status: up(1).”

You have completed the general steps required to prepare your system to run the CICS
samples. Select the CICS sample you want to run and follow the steps in that section
to set up and run that sample.
BEA WebLogic Java Adapter for Mainframe Samples Guide 3-15

3 Using the CICS Samples
Using the CICS Application to WebLogic Server Sample
EJB

After completing the steps in the “Preparing to Use the CICS Samples” section, you
are ready to set up and run the CICS application to WebLogic Server sample EJB.

Understanding How the Sample Works

This sample demonstrates the functional capability of WebLogic JAM to invoke the
services of an EJB deployed in WebLogic Server from a CICS client. The server EJB
is similar to the stateless session Trader bean that is shipped with WebLogic Server as
an example. The COBOL CICS client program makes a series of requests to the EJB
to buy shares of stock.

Understanding the Sample Configuration

The CICS COBOL client program TRADCLNT is defined to CICS in the standard way
any program is defined to CICS. No changes are necessary to use this program as a
client making requests through WebLogic JAM. TRADCLNT does a Distributed
Program Link (DPL) to the remote service TRADSERV. TRADSERV is defined to the
CICS region in the standard manner for defining remote services to a CICS region;
however, the REMOTESYSTEM parameter in the definition must be set to the name of the
connection defined to the CICS region for the CRM. The REMOTENAME in the definition
of TRADSERV is also set to TRADSERV.

In the WebLogic JAM configuration, TRADSERV is the name of an EJBExport that is
mapped to the JNDI name jam.TradeServer. jam.TradeServer is the value of the
JNDI-name element in the WebLogic deployment descriptor
weblogic-ejb-jar.xml for the TradeServer EJB.

The eGen Application Code Generator generates deployment descriptors when it
generates the code for EJBs. However, to avoid name collisions that can occur when
multiple EJBs are generated from a single eGen script, generated deployment
descriptors are always given names that contain the stem name of the EJB that is being
generated. In this sample, the generated deployment descriptors are named
TradeServer-jar.xml and wl-TradeServer-jar.xml. Before these deployment
descriptors can be used for an actual deployment in WebLogic Server, they have to be
renamed ejb-jar.xml and weblogic-ejb-jar.xml. Because the generated EJB
3-16 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
TradeServerBean is extended in this sample, the value of the ejb-class element in
ejb-jar.xml must also be manually changed to the name of the extension class that
contains the business logic, ExtTradeServerBean.

Understanding the Sample Programming

The programming for this sample is described in the following sections.

WebLogic Application

Five classes compose the WebLogic side of this sample application:

TradeRecord

TradeServer

TradeServerBean

TradeServerHome

ExtTradeServerBean

TradeRecord is a DataView class, generated by the eGen Application Code
Generator. The data members in the TradeRecord class correspond to the data fields
in the TRADRCRD copybook. The TradeRecord class is responsible for all data
translation between the mainframe format of the data and the Java format of the data.

TradeServer, TradeServerBean, and TradeServerHome classes are generated by
the eGen Application Code Generator. TradeServer is a remote interface that
contains the definition of a single method: dispatch. dispatch is the essential
method for server EJBs that are used in WebLogic JAM applications. This method is
messaged by the Gateway when a mainframe client makes a request of the
corresponding service. TradeServerHome is a standard home interface for a stateless
session bean. It contains the definition of a create method that returns a
TradeServer object to the caller. TradeServerBean extends EgenServerBean.
TradeServerBean contains the implementation of the dispatch method that is a
wrapper for the buy method. The implementation of the buy method that is given in
TradeServerBean does not perform actual business logic. As it is defined in the eGen
script that generates TradeServerBean, the buy method only receives a
TradeRecord object and returns a TradeRecord object. To actually do any business
logic, the TradeServerBean must be extended and the buy method overwritten.
BEA WebLogic Java Adapter for Mainframe Samples Guide 3-17

3 Using the CICS Samples
The extension of the TradeServerBean class that is included with this sample is
called ExtTradeServerBean. ExtTradeServerBean contains an implementation of
the buy method containing the business logic. The number of shares that are requested
is compared to a predefined limit. If the number of shares is greater than this limit, then
the number of shares is reset to the limit. The purchase of the shares is recorded in the
WebLogic Server log.

CICS Program

The program TRADCLNT is a simple COBOL CICS client program that creates several
TRADRCRD records and does a DPL to the remote service TRADSERV for each record.
Each one of the records represents a request to purchase some stock. No special
considerations are required in this program as a result of linking through WebLogic
JAM to a service offered by an EJB deployed in WebLogic Server.

Sample Files

The files for the WebLogic JAM side of the sample are installed in the following
directory:

<BEA_HOME>/<JAM_INSTALL_DIR>/samples/examples/CICS/inbound/
gateway

The following table lists the sample files and their purpose:

Table 3-1 Files for the WebLogic Application

File Name File Purpose

TradeRecord.cpy COBOL copybook that defines the structure of the mainframe data.

tradeserver.egen eGen script that generates the TradeRecord.java DataView class,
the TradeServer.java, TradeServerBean.java,
TradeServerHome.java bean classes, and the
TradeServer-jar.xml and wl-TradeServer-jar.xml
deployment descriptors.

TradeRecord.java DataView class that corresponds to the TradeRecord.cpy COBOL
copybook.

TradeServer.java EJB remote interface generated by the eGen utility.

TradeServerBean.java EJB generated by the eGen utility.
3-18 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
 The files for CICS side of the sample are installed in the following directory:

<BEA_HOME>/<JAM_INSTALL_DIR>/samples/examples/CICS/inbound/
mainframe/source

TradeServerHome.java EJB home interface generated by the eGen utility.

ExtTradeServerBean.java EJB that extends TradeServerBean. The business logic of servicing
the requests from the mainframe is implemented in this class.

build.cmd Script that builds the TradeRecord, TradeServer,
TradeServerBean, TradeServerHome, and
ExtTradeServerBean classes. It assembles the classes along with the
necessary deployment descriptors into a .jar file. The resulting
JAM_TradeServer.jar file is under the
<BEA_HOME>\<JAM_INSTALL_DIR>\config\examples\
applications\examples\CICS\inbound\gateway directory.

build.sh Unix script that builds the TradeRecord, TradeServer,
TradeServerBean, TradeServerHome, and
ExtTradeServerBean classes. It assembles the classes along with the
necessary deployment descriptors into a .jar file. The resulting
JAM_TradeServer.jar file is under the
<BEA_HOME>/<JAM_INSTALL_DIR>/config/examples/
applications/examples/CICS/inbound/gateway directory.

TradeServer-jar.xml Deployment descriptor generated by tradeserver.egen.

wl-TradeServer-jar.xml WebLogic deployment descriptor generated by tradeserver.egen.

ejb-jar.xml TradeServer-jar.xml deployment descriptor that has been modified
and renamed for inclusion in the JAM_TradeServer.jar.

weblogic-ejb-jar.xml wl-TradeServer-jar.xml WebLogic deployment descriptor
renamed for inclusion in the JAM_TradeServer.jar.

File Name File Purpose
BEA WebLogic Java Adapter for Mainframe Samples Guide 3-19

3 Using the CICS Samples
The following table lists the sample files and their purpose:

Table 3-2 Files for CICS Application

Setting Up the Sample

To set up the CICS application to WebLogic Server sample EJB, complete the
following steps.

File Name File Purpose

TRADRCRD COBOL copybook that defines the structure of the mainframe data.

CMPPROC Procedure used to compile and link the CICS programs.

COMPTRCL JCL that executes the CMPROC for the program TRADCLNT.

CSDUPDTR RDO cards to define TRADCLNT and the service TRADSERV to the CICS
region.

CSDUTRCL JCL that executes CSDUPDTR.

TRADCLNT CICS client program that makes requests to purchase several stocks to the
TRADSERV service. This service is mapped to the buy method of the
ExtTradeServerBean by WebLogic JAM.
3-20 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
Step 1: Enable the Service

To enable the Exported EJB, click Java Adapter for Mainframe →
Exports→ExportedEJBs in the left pane. In the right pane, click TRADSERV.
Check Local Service Enabled. Click Apply to enable the Local Service.
BEA WebLogic Java Adapter for Mainframe Samples Guide 3-21

3 Using the CICS Samples
Step 2: Set the Environment

On the machine where the Gateway is installed, set the environment by completing the
following step:

From a command prompt, change to the
<BEA_HOME>/<JAM_INSTALL_DIR>/config/examples and execute the
following command to set the environment:

For Microsoft Windows:

setExamplesEnv.cmd

For Unix:

. ./setExamplesEnv.sh

The following message will display:

“Your environment has been set.”

Step 3: Generate and Build Source (Optional)

The WebLogic JAM samples provide generated source. The samples also provide
classes to run the samples. If you want to see how the source is generated and the
classes are built, change to the
<BEA_HOME>/<JAM_INSTALL_DIR>/samples/examples/CICS/inbound/

gateway directory and complete the following steps.

Warning: Using the following options will overwrite files that are installed with the
WebLogic JAM samples.

Run the build.cmd (.sh) script to build the bean classes and put them in the
JAM_TradeServer.jar at
<BEA_HOME>/<JAM_INSTALL_DIR>/config/examples/applications.

Run egencobol to use the eGen Application Code Generator on
tradeserver.egen to generate the code for the TradeServer bean and it
deployment descriptors.

This option will generate the source. To compile the source, use the previous
option to run the build.cmd (sh) script.

For information about running the eGen Application Code Generator, see the
BEA WebLogic Java Adapter for Mainframe Programming Guide.
3-22 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
Step 4: Complete Mainframe Tasks

On the machine with the CICS region:

1. Create a Partitioned Data Set (PDS) to store the source and JCL for this sample.

2. From the machine where the Gateway was installed, FTP the following files from
the <BEA_HOME>/<JAM_INSTALL_DIR>/samples/examples/CICS/inbound/
mainframe/source directory into the PDS that you created:

CMPPROC

COMPTRCL

CSDUPDTR

CSDUTRCL

TRADCLNT

TRADRCRD

3. In the procedure CMPPROC, do not set LNKLIB, PDSSRC, and PROG. These settings
are supplied by the COMPTRCL JCL that will exec COMPROC. Do set INDEX,
COMPHLQ, COMPHL2. You may need to change OUTC and the unit of WORK.

4. In the COMPTRCL JCL, make the following changes:

Change the JOB statement.

Change the JCLLIB ORDER and the PDSSRC to the PDS you created.

Change the LNKLIB to a LOADLIB for your CICS region.

5. Submit the COMPTRCL JCL. Make sure that the condition code is 0.

6. In the RDO script CSDUTRCL, make the following changes:

Change the name of the LIST to a valid list name for your CICS region.

Change the value of REMOTESYSTEM to the connection defined for the CRM.

If you change the GROUP name, make sure you change it everywhere.
BEA WebLogic Java Adapter for Mainframe Samples Guide 3-23

3 Using the CICS Samples
7. In the CSDUPDTR JCL, make the necessary changes to these statements:
JOB

STEPLIB

DFHCSD

SYSIN DSN

8. Submit the CSDUPDTR JCL.

You may get a warning on the DELETE step, because the program TRADCLNT
probably was not defined before. The condition code should not be more than 4.

9. Log on to your CICS region.

10. Install the WebLogic JAM sample.

To install the WebLogic JAM sample, type the following command at the
command prompt:

 CEDA INSTALL GROUP(JAMEXMPL)

11. Verify the CICS sample program.

To verify the CICS sample program, type the following command at the
command prompt:

CEMT INQUIRE PROG(TRADCLNT)

Running the Sample

To run the sample, type the following command at the command prompt:

TRCL

TRCL is the transaction that is defined to the CICS region to execute the TRADCLNT
program. You will see the buys being processed in the WebLogic Server log. The
CICS terminal will report success or failure.
3-24 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
Using the Java Client to CICS Sample Application

After completing the steps in the “Preparing to Use the CICS Samples” section, you
are ready to set up and run the Java client to CICS sample application.

Understanding How the Sample Works

This sample demonstrates requests from a Java client through WebLogic JAM to a
remote service provided by a CICS application.

Understanding the Sample Configuration

This simple sample requires no special configuration. The Java client calls one of the
services: sampleCreate, sampleRead, sampleUpdate, or sampleDelete. These
DPL services are mapped to the CICS programs: DPLDEMOC, DPLDEMOR, DPLDEMOU,
and DPLDEMOD. These programs are defined to CICS in the standard way any program
is defined to CICS. No special considerations are necessary for using this program with
a Java client making requests through WebLogic JAM.

Understanding the Sample Programming

The programming for this sample is described in the following sections.

WebLogic Application

Three classes compose the WebLogic side of this sample application:

EmployeeRecord

BaseClient

 Client

EmployeeRecord is a DataView class that is generated by the eGen Application Code
Generator. The data members in the EmployeeRecord class correspond to the data
fields in the EMPREC copybook. The EmployeeRecord class is responsible for all data
translation between the mainframe format of the data and the Java format of the data.
BEA WebLogic Java Adapter for Mainframe Samples Guide 3-25

3 Using the CICS Samples
The BaseClient class that is generated by the eGen Application Code Generator is an
extension of the EgenClient class. The newEmployee, readEmployee,
upDateEmployee, and deleteEmployee methods of BaseClient are wrappers for
calls to the callService method of the EgenClient class with sampleCreate,
sampleRead, sampleUpdate, or sampleDelete, as service parameters in the call.

The Client class is the actual user interface. The Client class has a BaseClient
member. The Client class receives a command and employee last name as command
line parameters. The command must be one of the following: add, display, update,
or delete. You may also enter an address and a port number if the WebLogic JAM
Gateway is running on a different machine or the corresponding instance of WebLogic
Server is listening on a different port than 7001. The URL is set in the BaseClient
member. In the Client class an EmployeeRecord DataView is initialized with the
input data. Depending on the command that you input, the doAdd, doDisplay,
doUpdate, or doDelete method is called. These methods that are defined in the
Client class are wrappers for the newEmployee, readEmployee, upDateEmployee,
and deleteEmployee methods of BaseClient. The EmployeeRecord DataView
that is returned as a result of the operation is displayed to you.

CICS Programs

Four CICS COBOL programs are included with this sample:

DPLDEMOC

DPLDEMOR

DPLDEMOU

 DPLDEMOD

These programs imitate the four basic operations for database records: insert, read,
update, and delete. Temporary Storage (TS) queues are used in this sample to simulate
a database. For example, to imitate the operation of inserting a record in a table in a
database, a TS queue is created with a key that is the first eight characters of the last
name field in the data. To read the record, the TS queue is read. These programs are
simple but ordinary CICS COBOL server programs that are linked to and passed a
COMMAREA. The necessary TS queue operation is done using the data record in the
COMMAREA. The structure of the data in the COMMAREA is given in the copybook EMPREC.
No special considerations are required in this program as a result of being used in an
application with a Java client making requests through WebLogic JAM.
3-26 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
Sample Files

The files for the WebLogic JAM side of the sample are installed in the following
directory:

<BEA_HOME>/<JAM_INSTALL_DIR>/samples/examples/CICS/outbound/
gateway

The following table lists the sample files and their purpose:

Table 3-3 Files for WebLogic JAM Application

File Name File Purpose

emprec.cpy COBOL copybook that defines the structure of the mainframe employee
record.

emprec.egen eGen script that generates the EmployeeRecord.java DataView class.

EmployeeRecord.java DataView class that corresponds to the emprec.cpy COBOL copybook.

baseClient.egen eGen script that generates the EmployeeRecord.java DataView class
and the BaseClient.java EgenClient class.

BaseClient.java Java class that extends EgenClient class that calls the various
mainframe services.

Client.java The user interface client class that receives a command and record name
from the user, prompts the user for additional information if necessary, and
displays the result of the mainframe service calls to the user. It invokes the
mainframe services by calling the callService method of its
BaseClient member.

build.cmd Script that builds the EmployeeRecord, BaseClient, and Client
classes. The built class files are under the
<BEA_HOME>\<JAM_INSTALL_DIR>\config\examples\
clientclasses\examples\CICS\outbound\gateway
directory.

build.sh Unix script that builds the EmployeeRecord, BaseClient, and
Client classes. The built class files are under the
<BEA_HOME>/<JAM_INSTALL_DIR>/config/examples/
clientclasses/examples/CICS/outbound/gateway
directory.
BEA WebLogic Java Adapter for Mainframe Samples Guide 3-27

3 Using the CICS Samples
The files for CICS side of the sample are installed in the following directory:

<BEA_HOME>/<JAM_INSTALL_DIR>/samples/examples/CICS/outbound/mainf
rame/source

The following table lists the sample files and their purpose:

Table 3-4 Files for CICS Application

File Name File Purpose

EMPREC COBOL copybook that defines the structure of the employee record data.

DPLDEMOC CICS server program that imitates the insertion of a record on a database
by creating a TS queue.

DPLDEMOR CICS server program that imitates the reading of a record on a database by
reading a TS queue.

DPLDEMOU CICS server program that imitates the update of a record on a database by
updating a TS queue.

DPLDEMOD CICS server program that imitates the deletion of a record on a database
by deleting a TS queue.

CMPPROC Procedure used to compile and link the CICS programs.

COMPCRUD JCL that executes the CMPROC for the programs DPLDEMOC, DPLDEMOR,
DPLDEMOU, and DPLDEMOD.

CSDUCRUD RDO cards to define DPLDEMOC, DPLDEMOR, DPLDEMOU, and
DPLDEMOD to the CICS region.

CSDUPDCO JCL that executes CSDUCRUD.
3-28 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
Setting Up the Sample

To set up the Java client to CICS sample application, complete the following steps.

Step 1: Enable the Services

To enable the DPL Services, click Java Adapter for Mainframe →
Services→DPLService in the left pane. Click sampleCreate. Check Enabled and
click Apply to enable the Local Service.

Repeat this process for each of the following DPL services:

sampleRead

sampleUpdate

sampleDelete
BEA WebLogic Java Adapter for Mainframe Samples Guide 3-29

3 Using the CICS Samples
Step 2: Set the Environment

On the machine where the Gateway is installed, set the environment by completing the
following step:

From a command prompt, change to the
<BEA_HOME>/<JAM_INSTALL_DIR>/config/examples directory and execute
the following command to set the environment:

For Microsoft Windows:

setExamplesEnv.cmd

For Unix:

. ./setExamplesEnv.sh

The following message displays:

“Your environment has been set.”

Step 3: Generate and Build Source (Optional)

The WebLogic JAM samples provide generated source. The samples also provide
classes to run the samples. If you want to see how the source is generated and the
classes are built, change to the
<BEA_HOME>/<JAM_INSTALL_DIR>/samples/examples/CICS/outbound/

gateway directory and complete the following steps.

Warning: Using the following options will overwrite files that are installed with the
WebLogic JAM samples.

Run the build.cmd (.sh) script to build the client classes and put them in the
<BEA_HOME>/<JAM_INSTALL_DIR>/config/examples/clientclasses/

examples/CICS/outbound/gateway directory.

Run egencobol to use the eGen Application Code Generator on:

emprec.egen to generate EmployeeRecord.java

baseClient.egen to generate BaseClient.java and
EmployeeRecord.java

This option will generate the source. To compile the source, use the previous
option to run the build.cmd (sh)script.
3-30 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
For information about running the eGen Application Code Generator, see the
BEA WebLogic Java Adapter for Mainframe Programming Guide.

Step 4: Complete Mainframe Tasks

On the machine with the CICS region:

1. Create a Partitioned Data Set (PDS) to store the source and JCL for this sample.

2. From the machine where the Gateway was installed, FTP the following files from
the <BEA_HOME>/<JAM_INSTALL_DIR>/samples/examples/CICS/outbound/
mainframe/source directory into the PDS that you created:

EMPREC

DPLDEMOC

DPLDEMOR

DPLDEMOU

DPLDEMOD

CMPPROC

COMPCRUD

CSDUCRUD

CSDUPDCO

3. In the procedure CMPPROC, do not set LNKLIB, PDSSRC, and PROG. The values are
supplied by the COMPCRUD JCL that will execute COMPROC. Do set INDEX,
COMPHLQ, and COMPHL2. You may need to change OUTC and the unit of WORK.

4. In the COMPCRUD JCL, make the following changes:

Change the JOB statement.

Change the JCLLIB ORDER and the source to the PDS you created.

Change the LOADLIB to a load lib for your CICS region.

5. Submit the COMPCRUD JCL. Make sure that the condition code is 0.

6. In the RDO script, CSDUCRUD, make the following changes:

Change the name of the LIST to a valid list name for your CICS region.

You can also change the GROUP name, but make sure you change it
everywhere.
BEA WebLogic Java Adapter for Mainframe Samples Guide 3-31

3 Using the CICS Samples
7. In the CSDUPDCO JCL, make the following changes:

Change the JOB statement.

Change the STEPLIB.

Change the DFHCSD.

Change the SYSIN DSN.

8. Submit the CSDUPDCO JCL.

You may get a warning on the DELETE step, because the programs probably were
not defined before. The condition code should not be higher than 4.

9. Log on to your CICS region.

10. Install the WebLogic JAM sample.

To install the WebLogic JAM sample, type the following command at the
command prompt:

CEDA INSTALL GROUP(JAMEXMPL)

11. Verify the CICS sample programs.

To verify the CICS sample programs, type the following command at the
command prompt:

CEMT INQUIRE PROG(DPLDEMOC)

Repeat for DPLDEMOR, DPLDEMOU, and DPLDEMOD.

Running the Sample

To run the sample, type the following command at the command prompt:

java examples.CICS.outbound.gateway.Client [-m hostname] [-p port]
-c 'command' -n 'name'

In this command, the following definitions apply:

The first pair of command line switches are optional and represent the hostname
and port for a remote machine on which the WebLogic JAM Gateway is
running in WebLogic Server. If you are running the client on the same machine
as the Gateway and the WebLogic Server port is 7001, these options are not
required.
3-32 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
The second pair of command line switches are mandatory.

command must be one of the following: display, add, delete, update.

name is the last name of the person that is the key to the record.

The following command is an example of a command that you might enter:

java examples.CICS.outbound.gateway.Client -c add -n Wilson

Note: Your CICS administrator may want to delete any TS queues that remain after
running this sample.

Using the Transactional Sample from WebLogic Server to
CICS

After completing the steps in the “Preparing to Use the CICS Samples” section, you
are ready to set up and run the transactional sample from WebLogic Server to CICS.

Understanding How the Sample Works

This sample demonstrates transactional requests made to a CICS application from a
Java client through WebLogic JAM. This sample highlights client-initiated
transactions that are distributed between a CICS-managed resource, a VSAM file, and
a WebLogic Server-managed resource, a JMS queue.

Understanding the Sample Configuration

This simple sample requires no special configuration. The Java client calls one of the
services: sampleCreateT, sampleReadT, sampleUpdateT, or sampleDeleteT.
These DPL services are mapped to the CICS programs: DPLDEMVC, DPLDEMVR,
DPLDEMVU, and DPLDEMVD. These programs are defined to CICS in the standard way
any program is defined to CICS. The VSAM file used in this sample is created and
defined in the standard manner. No special considerations need to be made for use with
a Java client making requests through WebLogic JAM.
BEA WebLogic Java Adapter for Mainframe Samples Guide 3-33

3 Using the CICS Samples
Understanding the Sample Programming

The programming for this sample is described in the following sections.

WebLogic Application

Three classes make up the WebLogic side of this sample application:

EmployeeRecord

BaseClient

Client

EmployeeRecord is a DataView class that is generated by the eGen Application Code
Generator. The data members in the EmployeeRecord class correspond to the data
fields in the EMPREC copybook. The EmployeeRecord class is responsible for all data
translation between the mainframe format of the data and the Java format of the data.

The BaseClient class that is generated by the eGen Application Code Generator is an
extension of the EgenClient class. The newEmployee, readEmployee,
upDateEmployee, and deleteEmployee methods of BaseClient are wrappers for
calls to the callService method of the EgenClient class with sampleCreateT,
sampleReadT, sampleUpdateT, or sampleDeleteT, as service parameters in the call.

The Client class is the actual user interface. The Client class has a BaseClient
member. It uses three optional command line parameters. You may enter an address
and a port number if the WebLogic JAM Gateway is running on a different machine
or the corresponding instance of WebLogic Server is listening on a different port than
7001. The URL is set in the BaseClient member. You may also enter a command line
option that indicates that the distributed transaction in this sample should be rolled
back. If this command line option is not used, the distributed transaction will be
committed.

The Client class first performs a check to make sure that the sample starts in a
consistent state. The record that will later be added to the VSAM file is deleted by
making a call to the deleteEmployee method of the BaseClient member. The
Client then clears the JMS queue and then initiates the distributed transaction. The
Client adds the record to the VSAM file by calling the newEmployee method of the
BaseClient member. The Client queues the record key on the JMS queue.
Depending on your input, the Client commits or rolls back the transaction. The
Client class verifies the result by attempting to display the record from VSAM file
and the key from the JMS queue. Calling the readEmployee method of the
BaseClient member results in the reading of the record from the VSAM file.
3-34 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
CICS Programs

Four CICS COBOL programs are included with this sample:

DPLDEMVC

DPLDEMVR

DPLDEMVU

DPLDEMVD

These programs imitate the four basic operations that can be done with records in a
database: insert, read, update, and delete. A VSAM file is used in this sample in place
of a database. A VSAM file is used as the recoverable resource in CICS because it is
relatively easy to create and configure. For example, to imitate the operation of
inserting a record in a table in a database a record is created in the VSAM file with a
key that is the social security number field in the data. These programs are simple but
ordinary CICS COBOL server programs that are linked to and passed a COMMAREA. The
necessary VSAM file operation is done using the data record in the COMMAREA. The
structure of the data in the COMMAREA is given in the copybook EMPREC. No special
considerations are required in this program as a result of being used in an application
with a Java client making requests through WebLogic JAM.

Sample Files

The files for the WebLogic JAM side of the sample are installed in the following
directory:

<BEA_HOME>/<JAM_INSTALL_DIR>/samples/examples/transactional/CICS/
outbound/gateway

The following table lists the sample files and their purpose:

Table 3-5 Files for WebLogic JAM Application

File Name File Purpose

emprec.cpy COBOL copybook that defines the structure of the mainframe employee
record.

emprec.egen eGen script that generates the EmployeeRecord.java DataView
class.

EmployeeRecord.java DataView class that corresponds to the emprec.cpy COBOL copybook.
BEA WebLogic Java Adapter for Mainframe Samples Guide 3-35

3 Using the CICS Samples
The files for CICS side of the sample are installed in the following directory:

<BEA_HOME>/<JAM_INSTALL_DIR>/samples/examples/transactional/CICS/
outbound/mainframe/source

The following table lists the samples files and their purpose:

Table 3-6 Files for CICS Application

baseClient.egen eGen script that generates the EmployeeRecord.java DataView class
and the BaseClient.java EgenClient class.

BaseClient.java Java class that extends EgenClient class that calls the various
mainframe services.

Client.java The user interface client class. It receives a command line option to roll
back or commit from the user. All invocations of the mainframe services
that it makes are made by calling the callService method of its
BaseClient member. First, it deletes a record and clears the JMS queue.
Then, it initiates a transaction. Within the boundaries of that transaction, it
adds the record and queues the key to the record on the JMS queue. It then
commits or rolls back the previous operations based on the command line
option. It then verifies the operation by attempting to read the record and
checking the contents of the JMS queue.

build.cmd Script that builds the EmployeeRecord, BaseClient, and Client
classes. The built class files are under the
<BEA_HOME>\<JAM_INSTALL_DIR>\config\examples\
clientclasses\examples\transactional\CICS\outbound
\gateway directory.

build.sh Unix script that builds the EmployeeRecord, BaseClient, and
Client classes. The built class files are under the
<BEA_HOME>/<JAM_INSTALL_DIR>/config/examples/
clientclasses/examples/transactional/CICS/outbound
/gateway directory.

File Name File Purpose

File Name File Purpose

EMPREC COBOL copybook that defines the structure of the employee record data.

DPLDEMVC CICS server program that inserts a record in a VSAM file.
3-36 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
Setting Up the Sample

To set up the transactional sample from WebLogic Server to CICS, complete the
following steps.

DPLDEMVR CICS server program that reads a record in a VSAM file.

DPLDEMVU CICS server program that updates a record in a VSAM file.

DPLDEMVD CICS server program that deletes a record in a VSAM file.

CMPPROC Procedure used to compile and link the CICS programs.

COMPILEV JCL that executes the CMPROC for the programs DPLDEMVC, DPLDEMVR,
DPLDEMVU, and DPLDEMVD.

JVSAMRDO RDO cards to define DPLDEMVC, DPLDEMVR, DPLDEMVU, and
DPLDEMVD programs and the BEAJAMTV VSAM file to the CICS region.

CSDUPDCT JCL that executes JVSAMRDO.

JAMVSAMC Delete/Define cards for the VSAM file.

BLDVSAM JCL that invokes IDCAMS for JAMVSAMC.

File Name File Purpose
BEA WebLogic Java Adapter for Mainframe Samples Guide 3-37

3 Using the CICS Samples
Step 1: Enable the Services

To enable the DPL services, click Java Adapter for Mainframe →
Services→DPLService in the left pane. Click sampleCreateT. Check Enabled and
click Apply to enable the Local Service.

Repeat this step for each of the services:

sampleReadT

sampleUpdateT

sampleDeleteT
3-38 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
Step 2: Set the Environment

On the machine where the Gateway is installed, set the environment by completing the
following step:

From a command prompt, change to the
<BEA_HOME>/<JAM_INSTALL_DIR>/config/examples directory and execute
the following command to set the environment:

For Microsoft Windows:

setExamplesEnv.cmd

For Unix:

. ./setExamplesEnv.sh

The following message will display:

“Your environment has been set.”

Step 3: Generate and Build Source (Optional)

The WebLogic JAM samples provide generated source. The samples also provide
classes to run the samples. If you want to see how the source is generated and the
classes are built, change to the
<BEA_HOME>/<JAM_INSTALL_DIR>/samples/examples/transactional/CICS/

outbound/gateway directory and complete the following steps.

Warning: Using the following options will overwrite files that are installed with the
WebLogic JAM samples.

Run the build.cmd (.sh) script to build the client classes and put them in the
<BEA_HOME>/<JAM_INSTALL_DIR>/config/examples/clientclasses/

transactional/CICS/outbound/gateway directory.

Run egencobol to use the eGen Application Code Generator on:

emprec.egen to generate EmployeeRecord.java

baseClient.egen to generate BaseClient.java and
EmployeeRecord.java

This option will generate the source. To compile the source, use the previous
option to run the build.cmd (sh)script.
BEA WebLogic Java Adapter for Mainframe Samples Guide 3-39

3 Using the CICS Samples
For information about running the eGen Application Code Generator, see the
BEA WebLogic Java Adapter for Mainframe Programming Guide.

Step 4: Complete Mainframe Tasks

On the machine with the CICS region:

1. Create a Partitioned Data Set (PDS) to store the source and JCL for this sample.

2. From the machine where the Gateway was installed, FTP the following files from
the <BEA_HOME>/<JAM_INSTALL_DIR>/samples/examples/transactional/
CICS/outbound/mainframe/source directory into the PDS that you created:

EMPREC

DPLDEMVC

DPLDEMVR

DPLDEMVU

DPLDEMVD

CMPPROC

COMPILEV

JVSAMRDO

CSDUPDCT

JAMVSAMC

BLDVSAM

3. In the procedure CMPPROC, do not set LNKLIB, PDSSRC, and PROG. The values are
supplied by the COMPILEV JCL that will execute COMPROC. Do set INDEX,
COMPHLQ, and COMPHL2. You may need to change OUTC and the unit of WORK.

4. In the COMPILEV JCL, make the following changes:

Change the JOB statement.

Change the JCLLIB ORDER and the SOURCE to the PDS you created.

Change the LOADLIB to a load lib for your CICS region.

5. Submit the COMPILEV JCL. Make sure that the condition code is 0.
3-40 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Samples
6. In the JAMVSAMC member, make the following changes:

Change all occurrences of YOURHLQ.JAM.VSAMFILE to the name you choose
for the VSAM file used in this sample.

Change YOURVOL to an appropriate volume ID.

7. In the BLDVSAM JCL, make the following changes:

Change the JOB statement.

Change YOURHLQ.JAM.WORKFILE to the PDS you created in (1).

8. Submit the BLDVSAM JCL. Verify the results. One data set should be created with
no extension, one data set created with DATA as the extension, and one data set
with the INDEX extension.

Note: A condition code of 8 is acceptable on the DELETE step; however, the
condition code should be 0 on the DEFINE step.

9. In the RDO script, JVSAMRDO, make the following changes:

Change the name of the LIST to a valid list name for your CICS region.

You can also change the GROUP name, but make sure it is changed
everywhere.

In the DEFINE statement for the VSAM file BEAJAMTV, change the DSNAME to
match the name for the VSAM file set in JAMVSAMC.The value to which
YOURHLQ.JAM.VSAMFILE is changed must be the same in both JVSAMRDO
and JAMVSAMC.

10. In the CSDUPDCT JCL, make the following changes:

Change the JOB statement.

Change the STEPLIB.

Change the DFHCSD.

Change the SYSIN DSN.

11. Submit the CSDUPDCT JCL.

You may get a warning on the DELETE steps, because the programs and file were
not previously defined. Make sure the condition code is not higher than 4.

12. Log on to your CICS region.
BEA WebLogic Java Adapter for Mainframe Samples Guide 3-41

3 Using the CICS Samples
13. Install the WebLogic JAM sample.

To install the WebLogic JAM sample, type the following command at the
command prompt:

CEDA INSTALL GROUP(JAMEXMPL)

14. Verify the CICS sample programs.

To verify the CICS sample programs, type the following command at the
command prompt:

CEMT INQUIRE PROG(DPLDEMVC)

Repeat for DPLDEMVR, DPLDEMVU, and DPLDEMVD.

Also make sure that the VSAM file is open:

CEMT INQUIRE FILE(BEAJAMTV)

Running the Sample

To run the sample, type the following command at the command prompt:

java examples.transactional.CICS.outbound.gateway.Client [-m
hostname] [-p port] [-r]

In this command, the following definitions apply:

The first pair of command line switches are optional, and represent the
hostname and port for a remote machine on which the WebLogic JAM
Gateway is running in WebLogic Server. If you are running the client on the
same machine as the Gateway and the WebLogic Server port is 7001, then these
options are not required.

The third command line switch, which is also optional, indicates whether a
rollback will be done or not. If -r is present at the command prompt, the
creation of the record on the database will be rolled back.

The following command is an example of a command that you might enter:

java examples.transactional.CICS.outbound.gateway.Client -r
3-42 BEA WebLogic Java Adapter for Mainframe Samples Guide

CHAPTER
4 Using the Explicit APPC
Sample

The explicit APPC sample demonstrates how BEA WebLogic Java Adapter for
Mainframe (WebLogic JAM) integrates the WebLogic applications with batch MVS
COBOL applications. This section provides the following information:

About the Explicit APPC Sample

Roadmap for the Sample

Using the Sample

About the Explicit APPC Sample

The following section provides an overview of the explicit APPC sample: Batch MVS
COBOL Client to WebLogic EJB Sample. A detailed description of how the sample
works and instructions for running the sample are provided in the “Using the Sample”
section.
BEA WebLogic Java Adapter for Mainframe Samples Guide 4-1

4 Using the Explicit APPC Sample
Batch MVS COBOL Client to WebLogic EJB Sample

This sample demonstrates the functional capability of BEA WebLogic Java Adapter
for Mainframe (WebLogic JAM) to invoke the services of an Enterprise Java Bean
(EJB) deployed with WebLogic Server from a mainframe application, specifically a
batch MVS client using explicit APPC. This invocation is facilitated by the EJB API
assembler interface that is delivered as part of this sample.

The MVS COBOL client receives a string of text as input. In this sample, the business
function of the EJB is to convert the string of text to uppercase and return the result to
the client. The string displays in the WebLogic Server log by the EJB before and after
conversion. The client displays the result on the system output device.

Roadmap for the Sample

To run the explicit APPC sample, follow the roadmap listed below:

1. Verify prerequisite tasks.

For a listing of prerequisite tasks, see the “Before You Run the Samples”
section.

2. Prepare to use the explicit APPC sample.

a. Start the CRM.

b. Set Logical Unit VTAM definitions.

c. Update the WebLogic JAM Configuration File

d. Start the examples domain

e. Configure the WebLogic JAM Gateway

3. Set up the Sample

a. Configure Services

b. Set the Environment
4-2 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Sample
c. Generate and Build Source (Optional)

d. Complete Mainframe Tasks

4. Run the Sample

Using the Sample

After you have completed the tasks described in the “Before You Run the Samples”
section, you are ready to use the explicit APPC sample. Information about how to use
the explicit APPC sample is presented in the following sections:

Preparing to Use the Explicit APPC Sample

Using the Batch MVS COBOL Client to WebLogic EJB Sample

Understanding How the Sample Works

Setting up the Sample

Running the Sample

Preparing to Use the Explicit APPC Sample

To use the Explicit APPC Sample, you must complete the following steps.

Step 1: Start the CRM

Before starting the WebLogic JAM Gateway, start the CRM. The CRM must be
configured with certain parameter values at startup. These parameter values include:

The address of the machine on which the CRM is running

The port on which the CRM listens

The name the Gateway will use to refer to the CRM
BEA WebLogic Java Adapter for Mainframe Samples Guide 4-3

4 Using the Explicit APPC Sample
For running the samples, you must set the machine address and port. The values that
you set for the machine address and port when the CRM is started, must agree with the
values that you set for the CRM in the WebLogic Administration Console for the
samples CRM. The name of the CRM that is preconfigured for running all of the
samples is CRM1. Use this name when the CRM is started to run any of the samples.

The way you start the CRM depends on whether the CRM will be started under a Unix
or MVS system. On Unix, start the CRM using a shell script. On MVS, start the CRM
using JCL.

Starting the CRM on z/OS or OS/390 Unix

On z/OS or OS/390 Unix, you may use a script to start the CRM. Scripts are installed
with the Gateway in the <BEA_HOME>/<JAM_INSTALL_DIR>/samples/crm/unix
directory. The script, crm.env, appends the necessary values to your environment
variables. The script, startcrm.sh, starts the CRM. To use these scripts, complete the
following steps:

1. FTP the following two scripts to the directory from which the CRM will run:

crm.env

startcrm.sh

2. Edit crm.env. Supply the correct values for the APPDIR and CRMDIR variables.
APPDIR is the directory from which the CRM will run. CRMDIR is the CRM
installation directory.

3. Edit startcrm.sh. To use a different port than the default port, 7101, change the
port number. However, if you change the port number, make sure to change it in
the corresponding field in the WebLogic Administration Console CRM1 pane.
You do not need to change the address because the script will run on the machine
where the CRM is installed.

Note: BEA recommends that you do not change the CRM name from CRM1.
This name for the CRM is preconfigured for all of the samples.

4. Execute the startcrm.sh script:

. ./startcrm.sh

Compare Figure 4-1 with the script in Listing 4-1. Notice how the parameters in the
script correspond to the fields in the WebLogic Administration Console. The script
illustrates the values for startcrm.sh script parameters for running the samples.
4-4 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Sample
Note: The port number is 7101. You can change the port number; however, if the
port number is changed make sure to change it in the corresponding field in
the Gateway configuration CRM1 pane of the WebLogic Administration
Console.

Figure 4-1 Fields for the CRM

Listing 4-1 Command to Run the CRM

$CRMDIR/bin/CRM //127.0.0.1:7101 CRM1 < /dev/null > std.out
2>std.err &
BEA WebLogic Java Adapter for Mainframe Samples Guide 4-5

4 Using the Explicit APPC Sample
Starting the CRM on z/OS or OS/390 MVS

On z/OS or OS/390 MVS, start the CRM by submitting the CRMSTART JCL that is
installed with the CRM. The CRMSTART JCL must be modified for your environment.
For information about modifying the CRMSTART JCL, see the BEA WebLogic Java
Adapter for Mainframe Configuration and Administration Guide.

As you modify the CRMSTART JCL, make sure that you note the following parameters
in the value of the STARTCMD parameter in the JCL. These parameters correspond to
fields in the WebLogic Administration Console. These values must be the same in the
JCL and in the WebLogic Administration Console.

The machine address where the CRM will run

The port number on which the CRM will listen

The name by which the Gateway will refer to the CRM

Compare Figure 4-1 with the JCL in Listing 4-2. Notice how the parameters in the JCL
correspond to the fields in the WebLogic Administration Console. The JCL illustrates
the values for STARTCMD parameters for running the samples.

The machine where the CRM will run is myhost in this sample. You must
replace myhost with the hostname or IP address of your mainframe to allow
IP-based communication from the Windows or Unix machine where WebLogic
Server is running. You may verify this parameter with the ping command on
Windows or Unix.

The port number is 7101. You can change the port number; however, if you
change the port number, make sure to change it in the corresponding field in the
Gateway configuration CRM1 pane of the WebLogic Administration Console.

Note: BEA recommends that you do not change the CRM name from CRM1,
because this name for the CRM is preconfigured for all of the samples.

Listing 4-2 The STARTCMD parameter in the CRMSTART JCL

// SET STARTCMD='"//myhost:7101" CRM1'
4-6 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Sample
Step 2: Set Logical Unit VTAM Definitions

This sample uses a Batch MVS client and requires a partner Logical Unit to be defined.
Extra steps are required to make the necessary VTAM definitions for this sample. For
information about Logical Unit definition and VTAM definition, see the BEA
WebLogic Java Adapter for Mainframe Configuration and Administration Guide. In
addition to defining an Logical Unit for the CRM to use, complete the following steps.
The file VTAMDEFINITION in the
<BEA_HOME>/<JAM_INSTALL_DIR>/samples/examples/explicitAPPC/

mainframe/source directory contains examples of the necessary VTAM definitions
and configuration. See your VTAM specialist for assistance.

1. Define a VTAM APPC Logical Unit to be used by the EJBAPI interface. The
EJBAPI establishes an APPC conversation with the CRM. It must have access to
an Logical Unit for this purpose.

2. Configure APPC to use the new Logical Unit. You must add an LUADD statement
to the APPCPMxx PARMLIB member. See the example in VTAMDEFINITION.

The EJBAPI does not set the name of the Logical Unit it uses, but relies on the
default APPC Logical Unit. As a result, the LUADD statement that is added to the
APPCMxx PARMLIB member should be the last in the member with the BASE
attribute. Also, the ACBNAME must match the ACBNAME for the Logical Unit
defined for the EJBAPI interface.

3. Define an APPC SYMDEST. Use the APPC administration facility to define the
SYMDEST. See VTAMDEFINITION for an example.

The Partner LU must match the Logical Unit defined for the CRM. The TP
Name must be the name configured for the EJB in the WebLogic JAM
configuration. For this example, the name is TOUPPER.

Step 3: Update the WebLogic JAM Configuration File

On the machine where the Gateway is installed, update the WebLogic JAM
configuration file from the command prompt by completing the following steps:

1. Locate the jamconfig_BATCH.xml file under the following directory:

<BEA_HOME>/<JAM_INSTALL_DIR>/config/examples

2. Copy jamconfig_BATCH.xml to jamconfig.xml.
BEA WebLogic Java Adapter for Mainframe Samples Guide 4-7

4 Using the Explicit APPC Sample
Step 4: Start the examples Domain

From the command prompt, execute the following command from the same directory
to start the examples domain:

For Microsoft Windows:

startExamplesServer.cmd

For Unix:

. ./startExamplesServer.sh

Step 5: Configure the WebLogic JAM Gateway

Most configuration tasks were preconfigured or were completed during the installation
process by the installer program. For additional information about configuring
WebLogic JAM, see the BEA WebLogic Java Adapter for Mainframe Configuration
and Administration Guide. Make the following configuration changes for the IMS
Installation Verification Sample to run on your system. These changes can be made in
the WebLogic Administration Console in the following way.

1. From your browser, open the WebLogic Administration Console using the
following address:

http://hostname:7001/console

In this address, the following definitions apply:

hostname is the address of the machine where WebLogic Server is running.

7001 is the port for WebLogic Server that has been configured for the examples
domain.

2. When prompted, supply the following user and password information:

user: system

This user name cannot be changed.

password: security

 To change the password, see the BEA WebLogic Server documentation.
4-8 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Sample
The WebLogic Administration Console displays.

3. To configure the CRM to the WebLogic JAM Gateway, complete the following
steps:

a. In the left pane, click on Java Adapter for Mainframe → JAM Components
→ CRMs. In the right pane, click CRM1. On the General tab, set the
following fields to correspond with your system. Click Apply. When the CRM
is active, Status turns from red to green.
BEA WebLogic Java Adapter for Mainframe Samples Guide 4-9

4 Using the Explicit APPC Sample
Field Field Description

Listen Address The address of the machine where the CRM is installed and
running. This address must match the address set in the CRM
startup JCL or script.

Listen Port The port for the CRM. This entry must match the port set in the
CRM startup JCL or script.

Logical Unit The name of the Logical Unit defined for the CRM.

Stack Type The stack type.
4-10 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Sample
b. To configure the Batch region, click Java Adapter for Mainframe → Regions
→ BATCH Regions in the left pane. In the right pane, click on Batch1 and
enter the name of the Logical Unit that you set in Step 2. Click Apply to set the
Logical Unit.

Note: This Logical Unit is not the Logical Unit for the CRM in (3a).
BEA WebLogic Java Adapter for Mainframe Samples Guide 4-11

4 Using the Explicit APPC Sample
c. Click Batch Regions at the top of the pane. In the new window, click
CRM1Batch. On the Links tab, check Deployed and click Apply.
4-12 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Sample
d. In the left pane, click Gateways. Click JAM5.1 in the right pane. On the
General tab, check Deployed and click Apply.
BEA WebLogic Java Adapter for Mainframe Samples Guide 4-13

4 Using the Explicit APPC Sample
4. To start the WebLogic JAM Gateway, select the Administration tab →
Start/Stop tab. Click Start to start the Gateway.

If the Gateway is running, Status changes to green in the WebLogic
Administration Console and the following message appears in the WebLogic
Server log:

“JAM Gateway ready for use. Current link status: up(1).”
4-14 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Sample
Using the Batch MVS COBOL Client to WebLogic EJB
Sample

After completing the steps in the “Preparing to Use the Explicit APPC Sample”
section, you are ready to set up and run the explicit APPC sample: batch MVS COBOL
client to WebLogic EJB sample.

Understanding How the Sample Works

This sample demonstrates the functional capability of WebLogic JAM to invoke a
service offered by an EJB deployed in WebLogic Server from a mainframe
application, specifically a batch MVS COBOL client using explicit APPC. This
invocation is facilitated by the EJBAPI assembler interface that is delivered as part of
the sample.

Understanding the Sample Configuration

When using WebLogic JAM to integrate with CICS or IMS applications, you must
define an Logical Unit for the CRM. This sample consists of a batch program using
explicit APPC and requires a partner Logical Unit to be defined. A partner Logical
Unit must be defined for use by the EJBAPI. Note that the EJBAPI does not set the
name of the Logical Unit that it uses. It relies on the default APPC Logical Unit.
Therefore, the LUADD statement that is added to the APPCPMxx PARMLIB member,
corresponding to the Logical Unit defined for the EJBAPI interface to use, must be the
last in the member with the BASE attribute.

The EJBAPI also makes use of a symbolic destination or SYMDEST to establish an
APPC conversation with the CRM. The Partner LU in the SYMDEST must be the
Logical Unit defined for the CRM. The TP Name must be the name of the EJBExport
element in the WebLogic JAM configuration, in this case TOUPPER.

In the WebLogic JAM configuration, an EJBExport element is defined with the name
that matches the TP Name in the SYMDEST for the EJBAPI, TOUPPER. The JNDI-name
attribute of this EJBExport element jam.ToupperServer is the value of the
JNDI-name element in the WebLogic deployment descriptor
weblogic-ejb-jar.xml for the ToupperServer EJB.
BEA WebLogic Java Adapter for Mainframe Samples Guide 4-15

4 Using the Explicit APPC Sample
The eGen Application Code Generator generates deployment descriptors when it
generates the code for EJBs. However, to avoid name collisions that can occur when
multiple EJBs are generated from a single eGen script, generated deployment
descriptors are always given names that contain the stem name of the EJB that is being
generated. In this sample, the generated deployment descriptors are named
ToupperServer-jar.xml and wl-ToupperServer-jar.xml. Before these
deployment descriptors can be used for an actual deployment in WebLogic Server,
they have to be renamed ejb-jar.xml and weblogic-ejb-jar.xml. Because the
generated EJB ToupperServerBean is extended in this sample, the value of the
ejb-class element in ejb-jar.xml must also be manually changed to the name of
the extension class that contains the business logic, ExtToupperServerBean.

Understanding the Sample Programming

The programming for this sample is described in the following sections.

WebLogic Application

Five classes compose the WebLogic side of this sample application:

Chardata

ToupperServer

ToupperServerBean

ToupperServerHome

ExtToupperServerBean

Chardata is a DataView class that is generated by the eGen Application Code
Generator. The data member in the Chardata class corresponds to the data field in the
CHARDATA copybook. The Chardata class is responsible for all data translation
between the mainframe format of the data and the Java format of the data

ToupperServer, ToupperServerBean, and ToupperServerHome classes are
generated by the eGen Application Code Generator. ToupperServer is a remote
interface that contains the definition of a single method, dispatch. dispatch is the
essential method for server EJBs that are used in WebLogic JAM applications. This
method is messaged by the Gateway when a mainframe client makes a request of the
corresponding service. ToupperServerHome is a standard home interface for a
stateless session bean. It contains the definition of a create method that returns a
ToupperServer object to the caller. ToupperServerBean extends
EgenServerBean. ToupperServerBean contains an implementation of the
4-16 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Sample
dispatch method that is a wrapper for the toupper method. The implementation of
the toupper method that is given in ToupperServerBean does not perform actual
business logic. As it is defined in the eGen script that generates ToupperServerBean,
the toupper method only receives a Chardata object and returns a Chardata object.
To actually do any business logic, the ToupperServerBean must be extended and the
toupper method overwritten.

The extension of the ToupperServerBean class that is included with this sample is
called ExtToupperServerBean. ExtToupperServerBean contains an
implementation of the toupper method containing the business logic. The string data
member in the received Chardata object is written to the WebLogic log. The string is
converted to uppercase, and the resulting string is written to the WebLogic Server log
and returned to the client.

MVS Program

WLCLIENT is a simple COBOL batch client program that makes a synchronous request
of a service offered by an EJB deployed in WebLogic Server by calling the EJBAPI
assembler interface. The request consists of the string, “This is a string of text.” The
EJB will convert the string to uppercase and return it to the client. The response string
that is returned to WLCLIENT is displayed in SYSOUT.

EJBAPI is an assembler interface that is called for use by programs to invoke the
services of an EJB deployed in a WebLogic Server instance. EJBAPI establishes an
APPC conversation with the CRM. The EJBAPI sends the request data to the CRM that
then forwards the information to the WebLogic JAM Gateway. The EJBAPI issues a
receive to retrieve the response data.

Sample Files

The files for the WebLogic JAM side of the are installed in the following directory:

<BEA_HOME>/<JAM_INSTALL_DIR>/samples/examples/explicitAPPC/
gateway
BEA WebLogic Java Adapter for Mainframe Samples Guide 4-17

4 Using the Explicit APPC Sample
The following table lists the samples files and their purpose:

Table 4-1 Files for the WebLogic JAM Application

File Name File Purpose

chardata.cpy COBOL copybook that defines the structure of the string mainframe data.

chardata.egen eGen script that generates the Chardata.java DataView class.

Chardata.java DataView class that corresponds to the chardata.cpy COBOL
copybook.

toupperServer.egen eGen script that generates the Chardata.java DataView class, the
ToupperServer.java, ToupperServerBean.java,
ToupperServerHome.java bean classes, and the
ToupperServer-jar.xml and wl-ToupperServer-jar.xml
deployment descriptors.

ToupperServer.java EJB remote interface generated by the eGen utility.

ToupperServerBean.java EJB generated by the eGen utility.

ToupperServerHome.java EJB home interface generated by the eGen utility.

ExtToupperServerBean.java EJB that extends ToupperServerBean. The business logic of servicing
the requests from the mainframe is actually implemented in this class.

build.cmd Script that builds the Chardata, ToupperServer,
ToupperServerBean, ToupperServerHome, and
ExtToupperServerBean classes. It assembles the classes along with
the necessary deployment descriptors to a .jar file. The resulting
JAM_ToupperServer.jar file is in the
<BEA_HOME>\<JAM_INSTALL_DIR>\config\examples\
applications\examples\explicitAPPC\gateway directory.

build.sh Unix script that builds the Chardata, ToupperServer,
ToupperServerBean, ToupperServerHome, and
ExtToupperServerBean classes. It assembles the classes along with
the necessary deployment descriptors to a .jar file. The resulting
JAM_ToupperServer.jar file is in the
<BEA_HOME>/<JAM_INSTALL_DIR>/config/examples/
applications/examples/explicitAPPC/gateway directory.

ToupperServer-jar.xml Deployment descriptor generated by toupperServer.egen.
4-18 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Sample
The files for the mainframe side of the sample are installed in the following directory:

<BEA_HOME>/<JAM_INSTALL_DIR>/samples/examples/explicitAPPC/
mainframe/source

The following table lists the samples files and their purpose:

Table 4-2 Files for Mainframe Application

wl-ToupperServer-jar.xml WebLogic deployment descriptor generated by toupperServer.egen.

ejb-jar.xml ToupperServer-jar.xml deployment descriptor that has been
modified and renamed for inclusion in the JAM_ToupperServer.jar.

weblogic-ejb-jar.xml wl-ToupperServer-jar.xml WebLogic deployment descriptor
renamed for inclusion in the JAM_ToupperServer.jar.

File Name File Purpose

File Name File Purpose

ASEJBAPI JCL that assembles the WebLogic EJB API interface module EJBAPI.

CLCLIENT JCL to compile and link the batch client WLCLIENT.

EXCLIENT JCL to execute the batch client WLCLIENT.

EJBAPI The WebLogic EJB API interface module.

VTAMDEFINITION Contains sample Logical Unit definitions, a sample SIDEINFO definition,
and a sample SYMDEST definition.

WLCLIENT MVS batch COBOL client that makes a request to a service provided by
an EJB through WebLogic JAM to convert a string to uppercase. The
response is displayed in SYSOUT.
BEA WebLogic Java Adapter for Mainframe Samples Guide 4-19

4 Using the Explicit APPC Sample
Setting Up the Sample

To set up the batch MVS COBOL client to WebLogic EJB sample, complete the
following steps.

Step 1: Enable the Service

To enable the Exported EJB, click Java Adapter for Mainframe →
Exports→ExportedEJBs in the left pane. Click TOUPPER. Check Local Service
Enabled. Click Apply to enable the Local Service.
4-20 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Sample
Step 2: Set the Environment

On the machine where the Gateway is installed, set the environment in the following
way:

From a command prompt, change to the
<BEA_HOME>/<JAM_INSTALL_DIR>/config/examples and execute the
following command to set the environment:

For Microsoft Windows:

setExamplesEnv.cmd

For Unix:

. ./setExamplesEnv.sh

The following message will display:

“Your environment has been set.”

Step 3: Generate and Build Source (Optional)

The WebLogic JAM samples provide generated source. The samples also provide
classes to run the samples. If you want to see how the source is generated and the
classes are built, change to the
<BEA_HOME>/<JAM_INSTALL_DIR>/samples/examples/explicitAPPC/

gateway directory and complete the following steps.

Warning: Using the following options will overwrite files that are installed with the
WebLogic JAM samples.

Run the build.cmd (.sh) script to build the bean classes and put them in the
JAM_ToupperServer.jar.

Run egencobol to use the eGen Application Code Generator on
toupperServer.egen to generate the code for the ToupperServer bean and its
deployment descriptors.

This option will generate the source. To compile the source, use the previous
option to run the build.cmd (sh) script.

For information about running the eGen Application Code Generator, see the
BEA WebLogic Java Adapter for Mainframe Programming Guide.
BEA WebLogic Java Adapter for Mainframe Samples Guide 4-21

4 Using the Explicit APPC Sample
Step 4: Complete Mainframe Tasks

On the machine where the batch client is to run:

1. Allocate a Partitioned Data Set (PDS) that will store the source and JCL for the
sample. Allocate a PDS for the objects that are created for this sample. Both of
these PDSs should be allocated with Record Format: FB and Record Length: 80.

2. Allocate a PDS for the executable that is built in this sample. This PDS should be
allocated with Record Format: U and Record Length: 0.

3. From the machine where the Gateway was installed, FTP the following files from
the <BEA_HOME>/<JAM_INSTALL_DIR>/samples/examples/explicitAPPC/
mainframe/source directory in to the source PDS that you created:

ASEJBAPI

CLCLIENT

EJBAPI

EXCLIENT

WLCLIENT

4. In the ASEJBAPI JCL, make the following changes:

Change the JOB statement.

Change the YOURHLQ.OBJECT to the PDS that you allocated for objects.

Change the YOURHLQ.SOURCE to the PDS that you allocated for source.

5. Submit the ASEJBAPI JCL. Make sure that the condition code is 0.

6. In the CLCLIENT JCL, make the following changes:

Change the JOB statement.

Change the YOURHLQ.OBJECT to the PDS that you allocated for objects.

Change the YOURHLQ.SOURCE to the PDS that you allocated for source.

Change the YOURHLQ.LOAD to the PDS that you allocated for executables.

Change STEPLIB, SYSLIB, CSSLIB, if necessary.

7. Submit the CLCLIENT JCL. Make sure that all the condition codes are 0.
4-22 BEA WebLogic Java Adapter for Mainframe Samples Guide

Using the Sample
8. In the EXCLIENT JCL, make the following changes:

Change the JOB statement.

Change the YOURHLQ.LOAD to the PDS that you allocated for executables.

Do not submit this JCL until you are ready to run the client.

Running the Sample

To run the sample, submit the EXCLIENT JCL. Make sure that the condition code is 0.

You will see the request string in the WebLogic Server log before and after the
conversion to uppercase. The converted string will also be displayed in SYSOUT.
BEA WebLogic Java Adapter for Mainframe Samples Guide 4-23

4 Using the Explicit APPC Sample
4-24 BEA WebLogic Java Adapter for Mainframe Samples Guide

Index

C
Communications Resource Manager

see CRM 2-5, 3-5, 4-3
CRM

starting 2-5, 3-5, 4-3

D
domains

examples
starting 2-9, 3-8, 4-8

preconfigured 1-6
WebLogic Server 1-6

E
eGen Application Code Generator 1-4, 1-5,

2-2, 2-3, 2-18, 2-19, 2-22, 2-26, 2-
27, 2-30, 2-32, 2-34, 2-37, 3-16, 3-
17, 3-18, 3-22, 3-25, 3-27, 3-30, 3-
34, 3-35, 3-39, 4-16, 4-18, 4-21

J
java client 2-2, 2-28
JMS topic 2-1, 2-17

L
logical unit VTAM definitions

setting 4-5, 4-7

S
sample code

java 1-5
mainframe 1-5

samples
CICS

configuration 3-16, 3-25, 3-33
files 3-18, 3-27, 3-35
programming 3-17, 3-25, 3-34
running 3-24, 3-32, 3-42
setting up 3-20, 3-29, 3-37
transactional 3-33

explicit APPC
configuration 4-15
files 4-17
programming 4-16
running 4-23
setting up 4-20

for CICS 1-3
for explicit APPC 1-3
for IMS 1-3, 2-1
IMS

configuration 2-17, 2-25, 2-32
files 2-19, 2-26, 2-33
preparing to use 2-2
programming 2-18, 2-32
running 2-24, 2-31, 2-38
setting up 2-21, 2-28, 2-35
transactional 2-31
understanding 2-25, 2-31

prerequisites 1-6
BEA WebLogic Java Adapter for Mainframe Installation Guide I-1

type
programming 1-2
verification 1-2

users 1-4
using 1-4

T
transactional sample 2-2, 2-31

U
users 1-4

W
WebLogic JAM

configuration file 2-9
updating 3-8, 4-7

gateway
configuring 2-9, 3-8, 4-8

sample types 1-2
samples 1-1

WebLogic Server
JMS topic 2-17
BEA WebLogic Java Adapter for Mainframe Installation Guide I-2

	WebLogic Java Adapter for Mainframe™
	Samples Guide
	Release 5.1
	Document Date: August 2002
	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	1. BEA WebLogic Java Adapter for Mainframe Samples Overview
	2. Using the IMS Samples
	3. Using the CICS Samples
	4. Using the Explicit APPC Sample
	Index

	1 BEA WebLogic Java Adapter for Mainframe Samples Overview
	About the WebLogic JAM Samples
	Verification Samples
	Programming Samples

	About the Samples User
	How to Use the Samples
	Java Sample Code
	Mainframe Sample Code
	Preconfigured WebLogic Server Domains

	Before You Run the Samples
	1. Install WebLogic Server.
	2. Install WebLogic JAM.
	3. Define the Logical Unit (LU) for the CRM and vary it active.
	4. If using IMS, verify that the APPC communication to IMS is active.
	5. If using CICS, the connection must be defined to the CICS region.

	2 Using the IMS Samples
	About the IMS Samples
	IMS Application to WebLogic Server JMS Topic
	Java Client to IMS Sample Application
	Transactional Sample from WebLogic Server to IMS

	Roadmap for the Samples
	1. Verify prerequisite tasks.
	2. Prepare to use the IMS sample.
	a. Start the CRM.
	b. Update the WebLogic JAM configuration file.
	c. Start the examples domain.
	d. Configure the WebLogic JAM Gateway.
	1. Set up the sample.

	a. Enable services.
	b. Set the environment.
	c. Generate and build source (optional).
	d. Complete mainframe tasks.
	2. Run the sample.

	Using the Samples
	Preparing to Use the IMS Samples
	Step 1: Start the CRM
	Starting the CRM on z/OS or OS/390 Unix
	1. FTP the following two scripts to the directory from which the CRM will run:
	2. Edit crm.env. Supply the correct values for the APPDIR and CRMDIR variables. APPDIR is the dir...
	3. Edit startcrm.sh. To use a different port than the default port, 7101, change the port number....
	4. Execute the startcrm.sh script:
	Figure 2�1 Fields for the CRM
	Listing 2-1 Command to Run the CRM

	Starting the CRM on z/OS or OS/390 MVS
	Listing 2-2 The STARTCMD parameter in the CRMSTART JCL

	Step 2: Update the WebLogic JAM Configuration File
	1. Locate the jamconfig_IMS.xml file under the following directory:
	<BEA_HOME>/<JAM_INSTALL_DIR>/config/examples
	2. Copy jamconfig_IMS.xml to jamconfig.xml.

	Step 3: Start the examples Domain
	Step 4: Configure the WebLogic JAM Gateway
	1. From your browser, open the WebLogic Administration Console using the following address:
	http://hostname:7001/console
	2. When prompted, supply the following user and password information:
	3. To configure the CRM to the WebLogic JAM Gateway, complete the following steps:

	a. In the left pane, click on Java Adapter for Mainframe Æ JAM Components Æ CRMs. In the right pa...
	b. To configure the IMS region, click Java Adapter for Mainframe Æ Regions Æ IMS Regions in the l...
	c. Click IMS Regions at the top of the right pane. In the new window, click CRM1toIMS. On the Lin...
	d. In the left pane, click Gateways. Click JAM5.1 in the right pane. On the General tab, check De...
	4. To start the Gateway, select the Administration tab Æ Start/Stop tab. Click Start to start the...

	Using the IMS Application to WebLogic Server JMS Topic
	How the Sample Works
	Understanding the Sample Configuration
	Understanding the Sample Programming
	WebLogic Application
	IMS Program

	Sample Files
	Table 2�1 Files for the WebLogic Application
	Table 2�2 Files for the IMS Application

	Setting Up the Sample
	Step 1: Enable the Service
	Step 2: Set the Environment
	Step 3: Generate and Build Source (Optional)
	Step 4: Run the TopicReceive Program
	Step 5: Complete Mainframe Tasks
	1. Create a Partitioned Data Set (PDS) to store the source and JCL for this sample.
	2. From the machine where the Gateway was installed, FTP the following files from the <BEA_HOME>/...
	3. In the COMPIMSC JCL, make the following changes:
	4. Submit the COMPIMSC JCL. Make sure that all condition codes are 0.
	5. Define the program IMSTOJMS to the IMS region. IMSINDEF contains sample IMS stage 1 and PSBGEN...
	6. Define the LTERM. DFS62DTI contains sample definition for an APPC LTERM. See your IMS systems ...

	Running the Sample
	1. Log in to the IMS region.
	2. Type the following command in the IMS terminal:
	IMSTOJMS JAMIMS01 quit

	Using the Java Client to IMS Sample Application
	Understanding How the Sample Works
	Understanding the Sample Configuration
	Understanding the Sample Programming
	WebLogic Application
	IMS Program

	Sample Files
	Table 2�3 Files for the WebLogic Application

	Setting Up the Sample
	Step 1: Enable the Service
	Step 2: Set the Environment
	Step 3: Generate and Build Source (Optional)

	Running the Sample

	Using the Transactional Sample from WebLogic Server to IMS
	Understanding How the Sample Works
	Understanding the Sample Configuration
	Understanding the Sample Programming
	WebLogic Application
	IMS Program

	Sample Files
	Table 2�4 Files for the WebLogic Application

	Setting Up Sample
	Step 1: Enable the Service
	Step 2: Set the Environment
	Step 3: Generate and Build Source (Optional)

	Running the Sample

	3 Using the CICS Samples
	About the CICS Samples
	CICS Application to WebLogic Server Sample EJB
	Java Client to CICS Sample Application
	Transactional Sample from WebLogic Server to CICS

	Roadmap for the Samples
	1. Verify prerequisite tasks.
	2. Prepare to use the CICS sample.
	a. Start the CRM.
	b. Update the WebLogic JAM configuration file.
	c. Start the examples domain.
	d. Configure the WebLogic JAM Gateway.
	1. Set up the sample.
	a. Enable services.

	b. Set the environment.
	c. Generate and build source (optional).
	d. Complete mainframe tasks.
	2. Run the sample.

	Using the Samples
	Preparing to Use the CICS Samples
	Step 1: Start the CRM
	Starting the CRM on z/OS or OS/390 Unix
	1. FTP the following two scripts to the directory from which the CRM will run:
	2. Edit crm.env. Supply the correct values for the APPDIR and CRMDIR variables. APPDIR is the dir...
	3. Edit startcrm.sh. To use a different port than the default port, 7101, change the port number....
	4. Execute the startcrm.sh script:
	Figure 3�1 Fields for the CRM
	Listing 3-1 Command to Run the CRM

	Starting the CRM on z/OS or OS/390 MVS
	Listing 3-2 The STARTCMD parameter in the CRMSTART JCL

	Step 2: Update the WebLogic JAM Configuration File
	1. Locate the jamconfig_CICS.xml file under the following directory:
	2. Copy jamconfig_CICS.xml to jamconfig.xml.

	Step 3: Start the examples Domain
	Step 4: Configure the WebLogic JAM Gateway
	1. From your browser, open the WebLogic Administration Console using the following address:
	2. When prompted, supply the following user and password information:
	3. To configure the CRM to the WebLogic JAM Gateway, complete the following steps:
	a. In the left pane, click on Java Adapter for Mainframe Æ JAM Components Æ CRMs. In the right pa...
	b. To configure the CICS Region, click Java Adapter for Mainframe Æ Regions Æ CICS Regions in the...
	c. Click CICS Regions at the top of the pane. Click CRM1CICS3. In the new window, click CRM1CICS3...
	d. In the left pane, click JAM ComponentsÆGateways. Click JAM5.1 in the right pane. On the Genera...
	4. To start the WebLogic JAM Gateway, select the Administration tab Æ Start/Stop tab. Click Start...

	Using the CICS Application to WebLogic Server Sample EJB
	Understanding How the Sample Works
	Understanding the Sample Configuration
	Understanding the Sample Programming
	WebLogic Application
	CICS Program

	Sample Files
	Table 3�1 Files for the WebLogic Application
	Table 3�2 Files for CICS Application

	Setting Up the Sample
	Step 1: Enable the Service
	Step 2: Set the Environment
	Step 3: Generate and Build Source (Optional)
	Step 4: Complete Mainframe Tasks
	1. Create a Partitioned Data Set (PDS) to store the source and JCL for this sample.
	2. From the machine where the Gateway was installed, FTP the following files from the <BEA_HOME>/...
	3. In the procedure CMPPROC, do not set LNKLIB, PDSSRC, and PROG. These settings are supplied by ...
	4. In the COMPTRCL JCL, make the following changes:
	5. Submit the COMPTRCL JCL. Make sure that the condition code is 0.
	6. In the RDO script CSDUTRCL, make the following changes:
	7. In the CSDUPDTR JCL, make the necessary changes to these statements:
	8. Submit the CSDUPDTR JCL.
	9. Log on to your CICS region.
	10. Install the WebLogic JAM sample.
	11. Verify the CICS sample program.

	Running the Sample

	Using the Java Client to CICS Sample Application
	Understanding How the Sample Works
	Understanding the Sample Configuration
	Understanding the Sample Programming
	WebLogic Application
	CICS Programs

	Sample Files
	Table 3�3 Files for WebLogic JAM Application
	Table 3�4 Files for CICS Application

	Setting Up the Sample
	Step 1: Enable the Services
	Step 2: Set the Environment
	Step 3: Generate and Build Source (Optional)
	Step 4: Complete Mainframe Tasks
	1. Create a Partitioned Data Set (PDS) to store the source and JCL for this sample.
	2. From the machine where the Gateway was installed, FTP the following files from the <BEA_HOME>/...
	3. In the procedure CMPPROC, do not set LNKLIB, PDSSRC, and PROG. The values are supplied by the ...
	4. In the COMPCRUD JCL, make the following changes:
	5. Submit the COMPCRUD JCL. Make sure that the condition code is 0.
	6. In the RDO script, CSDUCRUD, make the following changes:
	7. In the CSDUPDCO JCL, make the following changes:
	8. Submit the CSDUPDCO JCL.
	9. Log on to your CICS region.
	10. Install the WebLogic JAM sample.
	11. Verify the CICS sample programs.

	Running the Sample

	Using the Transactional Sample from WebLogic Server to CICS
	Understanding How the Sample Works
	Understanding the Sample Configuration
	Understanding the Sample Programming
	WebLogic Application
	CICS Programs

	Sample Files
	Table 3�5 Files for WebLogic JAM Application
	Table 3�6 Files for CICS Application

	Setting Up the Sample
	Step 1: Enable the Services
	Step 2: Set the Environment
	Step 3: Generate and Build Source (Optional)
	Step 4: Complete Mainframe Tasks
	1. Create a Partitioned Data Set (PDS) to store the source and JCL for this sample.
	2. From the machine where the Gateway was installed, FTP the following files from the <BEA_HOME>/...
	3. In the procedure CMPPROC, do not set LNKLIB, PDSSRC, and PROG. The values are supplied by the ...
	4. In the COMPILEV JCL, make the following changes:
	5. Submit the COMPILEV JCL. Make sure that the condition code is 0.
	6. In the JAMVSAMC member, make the following changes:
	7. In the BLDVSAM JCL, make the following changes:
	8. Submit the BLDVSAM JCL. Verify the results. One data set should be created with no extension, ...
	9. In the RDO script, JVSAMRDO, make the following changes:
	10. In the CSDUPDCT JCL, make the following changes:
	11. Submit the CSDUPDCT JCL.
	12. Log on to your CICS region.
	13. Install the WebLogic JAM sample.
	14. Verify the CICS sample programs.

	Running the Sample

	4 Using the Explicit APPC Sample
	The explicit APPC sample demonstrates how BEA WebLogic Java Adapter for Mainframe (WebLogic JAM) ...
	About the Explicit APPC Sample

	The following section provides an overview of the explicit APPC sample: Batch MVS COBOL Client to...
	Batch MVS COBOL Client to WebLogic EJB Sample

	This sample demonstrates the functional capability of BEA WebLogic Java Adapter for Mainframe (We...
	The MVS COBOL client receives a string of text as input. In this sample, the business function of...
	Roadmap for the Sample

	To run the explicit APPC sample, follow the roadmap listed below:
	1. Verify prerequisite tasks.
	2. Prepare to use the explicit APPC sample.
	a. Start the CRM.
	b. Set Logical Unit VTAM definitions.
	c. Update the WebLogic JAM Configuration File
	d. Start the examples domain
	e. Configure the WebLogic JAM Gateway
	3. Set up the Sample
	a. Configure Services
	b. Set the Environment
	c. Generate and Build Source (Optional)
	d. Complete Mainframe Tasks
	4. Run the Sample
	Using the Sample

	After you have completed the tasks described in the “Before You Run the Samples” section, you are...
	Preparing to Use the Explicit APPC Sample

	To use the Explicit APPC Sample, you must complete the following steps.
	Step 1: Start the CRM

	Before starting the WebLogic JAM Gateway, start the CRM. The CRM must be configured with certain ...
	For running the samples, you must set the machine address and port. The values that you set for t...
	The way you start the CRM depends on whether the CRM will be started under a Unix or MVS system. ...
	Starting the CRM on z/OS or OS/390 Unix

	On z/OS or OS/390 Unix, you may use a script to start the CRM. Scripts are installed with the Gat...
	1. FTP the following two scripts to the directory from which the CRM will run:
	2. Edit crm.env. Supply the correct values for the APPDIR and CRMDIR variables. APPDIR is the dir...
	3. Edit startcrm.sh. To use a different port than the default port, 7101, change the port number....
	4. Execute the startcrm.sh script:

	Compare Figure 4-1 with the script in Listing 4-1. Notice how the parameters in the script corres...
	Figure 4�1 Fields for the CRM
	Listing 4-1 Command to Run the CRM
	Starting the CRM on z/OS or OS/390 MVS

	On z/OS or OS/390 MVS, start the CRM by submitting the CRMSTART JCL that is installed with the CR...
	As you modify the CRMSTART JCL, make sure that you note the following parameters in the value of ...
	Compare Figure 4-1 with the JCL in Listing 4-2. Notice how the parameters in the JCL correspond t...
	Listing 4-2 The STARTCMD parameter in the CRMSTART JCL
	Step 2: Set Logical Unit VTAM Definitions

	This sample uses a Batch MVS client and requires a partner Logical Unit to be defined. Extra step...
	1. Define a VTAM APPC Logical Unit to be used by the EJBAPI interface. The EJBAPI establishes an ...
	2. Configure APPC to use the new Logical Unit. You must add an LUADD statement to the APPCPMxx PA...
	3. Define an APPC SYMDEST. Use the APPC administration facility to define the SYMDEST. See VTAMDE...
	Step 3: Update the WebLogic JAM Configuration File

	On the machine where the Gateway is installed, update the WebLogic JAM configuration file from th...
	1. Locate the jamconfig_BATCH.xml file under the following directory:
	2. Copy jamconfig_BATCH.xml to jamconfig.xml.
	Step 4: Start the examples Domain

	From the command prompt, execute the following command from the same directory to start the examp...
	Step 5: Configure the WebLogic JAM Gateway

	Most configuration tasks were preconfigured or were completed during the installation process by ...
	1. From your browser, open the WebLogic Administration Console using the following address:
	2. When prompted, supply the following user and password information:
	3. To configure the CRM to the WebLogic JAM Gateway, complete the following steps:
	a. In the left pane, click on Java Adapter for Mainframe Æ JAM Components Æ CRMs. In the right pa...
	b. To configure the Batch region, click Java Adapter for Mainframe Æ Regions Æ BATCH Regions in t...
	c. Click Batch Regions at the top of the pane. In the new window, click CRM1Batch. On the Links t...
	d. In the left pane, click Gateways. Click JAM5.1 in the right pane. On the General tab, check De...
	4. To start the WebLogic JAM Gateway, select the Administration tab Æ Start/Stop tab. Click Start...
	Using the Batch MVS COBOL Client to WebLogic EJB Sample

	After completing the steps in the “Preparing to Use the Explicit APPC Sample” section, you are re...
	Understanding How the Sample Works

	This sample demonstrates the functional capability of WebLogic JAM to invoke a service offered by...
	Understanding the Sample Configuration

	When using WebLogic JAM to integrate with CICS or IMS applications, you must define an Logical Un...
	The EJBAPI also makes use of a symbolic destination or SYMDEST to establish an APPC conversation ...
	In the WebLogic JAM configuration, an EJBExport element is defined with the name that matches the...
	The eGen Application Code Generator generates deployment descriptors when it generates the code f...
	Understanding the Sample Programming

	The programming for this sample is described in the following sections.
	WebLogic Application

	Five classes compose the WebLogic side of this sample application:
	Chardata is a DataView class that is generated by the eGen Application Code Generator. The data m...
	ToupperServer, ToupperServerBean, and ToupperServerHome classes are generated by the eGen Applica...
	The extension of the ToupperServerBean class that is included with this sample is called ExtToupp...
	MVS Program

	WLCLIENT is a simple COBOL batch client program that makes a synchronous request of a service off...
	EJBAPI is an assembler interface that is called for use by programs to invoke the services of an ...
	Sample Files

	The files for the WebLogic JAM side of the are installed in the following directory:
	The following table lists the samples files and their purpose:
	Table 4�1 Files for the WebLogic JAM Application

	The files for the mainframe side of the sample are installed in the following directory:
	The following table lists the samples files and their purpose:
	Table 4�2 Files for Mainframe Application
	Setting Up the Sample

	To set up the batch MVS COBOL client to WebLogic EJB sample, complete the following steps.
	Step 1: Enable the Service

	To enable the Exported EJB, click Java Adapter for Mainframe Æ ExportsÆExportedEJBs in the left p...
	Step 2: Set the Environment

	On the machine where the Gateway is installed, set the environment in the following way:
	Step 3: Generate and Build Source (Optional)

	The WebLogic JAM samples provide generated source. The samples also provide classes to run the sa...
	Step 4: Complete Mainframe Tasks

	On the machine where the batch client is to run:
	1. Allocate a Partitioned Data Set (PDS) that will store the source and JCL for the sample. Alloc...
	2. Allocate a PDS for the executable that is built in this sample. This PDS should be allocated w...
	3. From the machine where the Gateway was installed, FTP the following files from the <BEA_HOME>/...
	4. In the ASEJBAPI JCL, make the following changes:
	5. Submit the ASEJBAPI JCL. Make sure that the condition code is 0.
	6. In the CLCLIENT JCL, make the following changes:
	7. Submit the CLCLIENT JCL. Make sure that all the condition codes are 0.
	8. In the EXCLIENT JCL, make the following changes:
	Running the Sample

	To run the sample, submit the EXCLIENT JCL. Make sure that the condition code is 0.
	You will see the request string in the WebLogic Server log before and after the conversion to upp...
	Index
	C
	D
	E
	J
	L
	S
	T
	U
	W

