‘."

.,
S’ 7
L/

BEA WebLogic Java
Adapter for
Mainframe-

Programming Guide

Release 5.1
Document Date: August 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
E-Business Platform, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Portal, BEA WebLogic Process Integrator, BEA WebLogic
Server and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

BEA WebLogic Java Adapter for Mainframe Programming Guide

Part Number Date Software Version

N/A August 2002 5.1

Contents

1. Introduction to Generating Applications
Understanding How WebLogic JAM Uses DataViewscccccceveeeerveeennenne. 1-2
Understanding How WebLogic JAM Provides Programmatic Access to Services
1-3
Application Model OVEIVIEWccueevieeiieriienieeieeseeeieesieesveenteeseeesseesseesenees 1-4
Mainframe to WebLogic Server Application Models..........ccooceevvreenrnnen. 1-5
WebLogic Server to Mainframe Application Models..........ccccvevvvriennnnen. 1-5
Roadmap for WebLogic JAM Programmingccceceeeverveeneeneesineeneenenens 1-5
2. Generating a Java Application with the eGen Application
Generator
Understanding @Gencoueiuieieriieiiiieieee ettt 2-1
Working With COBOL CopybOOKScoevveureieiiininiriienieeeecreieceiceeie e 2-4
Obtaining a COBOL COPYDOOK.......ccccvieieiieiieiieieieiiesieeiereeevesieeveneens 2-4
Creating a New COBOL Copybookccceevievieniiiiienienieeiieeieenns 2-4
Using an Existing COBOL CopybooKk........ccccceeueeereneneneninencnene. 2-5
Limitations of the eGen Uityccoccvevvieieriiiienecieeciee e 2-6
Writing an €Gen SCIPL.....c.eeuerieiieeiee et 2-6
Writing the DataView Section of an eGen SCript.......ccccoevveveverencnenennee 2-7
Processing eGen Scripts with the eGen Utilityccooevveviereenieniecieeieieene, 2-8
Creating an Environment for Generating and Compiling the Java Code... 2-9
Generating the Java DataView Codeccccocevvemenininenenencieiicnceenen 2-9
Special Considerations for Compiling the Java Code............cccevvrvennennen. 2-12
3. Basic Programming Techniques

Choosing an eGen Java Application Modelccoooeiiiiiniiiieiieeeee 3-1
Generating the Java Application Code...........cceevverievieniecienieiereeieseenens 3-2

BEA WebLogic Java Adapter for Mainframe Programming Guide iii

iv

General Form of an €Gen SCript........ccoevevviieieiieeeeeseeeee e 33

Writing the Application Section of an eGen Script.......c.cccceevererinenennene 3-3
LSt Of STVICES ...eeviiuiiiieiiieiiee e 33

List of Application COMPONENLSecveevereeeriiriieiesieereeeieneeieeieeeens 3-5
Mainframe to WebLogic Server Application Modelscceeevievienveceennnnen. 3-7
Generating a Server Enterprise Java Bean-Based Application 3-7
Components of an eGen Server EJB Scriptcccoeveevieiiiiniiiineene 3-7
Generated Files.......cocoviviiiniiniiiiiiiicc e 3-10
Customizing a Server Enterprise Java Bean-Based Application 3-13
Compiling and Deployingcccoeeevieierenieieniee e 3-15
WebLogic Server to Mainframe Application Modelscccccevvvervrreirnnnne. 3-15
Generating a Stand-Alone Client Application.........c.ccceveevveereeecieereennnens 3-16
Components of an eGen Stand-Alone Application Script 3-16
Generated Files.......ocoviviiiniiniiiiiiicce e 3-17
Customizing a Stand-Alone Java Applicationccceeeeeeeveereenenens 3-18
Generating a Client Enterprise Java Bean-Based Application................. 3-21
Components of an eGen Client EJB Script........ccoocvvevevvecieneeiennne. 3-21
Generated Files.......oooiiiiiiiiiiiiiiecce e 3-23
Customizing an Enterprise Java Bean-Based Application................ 3-26
Compiling and Deployingcceecvervireierierienienieie e 3-29
Generating a Servlet AppliCationccceeeeveeriieecieecierieeie e 3-29
Components of an eGen HTML Page Definition...........cccceeeeeeneenne. 3-30
Components of an eGen Servlet Definitionccccceeeeeerenencnnennee 3-32
Generated Files.......oooioiiiiiiiiiiiecee e 3-33
Customizing a Servlet WebLogic JAM Application............c.c.c........ 3-33
Supplying Security Credentialsccecvevievieririieneiieeeiese e 3-34
SeCUTILY LEVEIS..uuiiiiieiiiiie ettt 3-34
Supplying Security Credentials in a WebLogic JAM Client Program.....

3-35
WebLogic JAM tO JMSoiiiieiicece ettt 3-36

4. Deploying Applications

Deploying a WebLogic JAM eGen EJB.......ccoocoiiiiiiiiiiiieeeeeeeeee e 4-1
Renaming Deployment DESCIIPLOrSc.eevveiereerieriieierieiesieeie e 4-2
Adding Business Logic to a Generated EJB..........ccccoeveviiieniincieniieieis 4-3

BEA WebLogic Java Adapter for Mainframe Programming Guide

Merging Multiple Deployment Descriptorsc.ceeeereererieereeneeneneenen. 4-4
Sample EJB Deploymentc.ccvecueriecieniieiieneeiesieeee e seeeeee e see s 4-4
Deploying a WebLogic JAM eGen Servlet (Quick-Start Deployment)............ 4-5

Understanding Programming Flows

Distributed Program Link Programming FIOWS..........cccccovvevincieninieeeiee, 5-1
Java Client Request/Response to CICS DPL..........cccccvvieiieieiieieieeenen, 5-2
CICS Request/Response DPL to WebLogic Server EJIB.........cccccocceoenee 5-3
CICS DPL Asynchronous No Reply to WebLogic Server Application..... 5-5
Transactional Java Client Request/Response to CICS DPL 5-7
Transactional CICS Request/Response DPL to WebLogic Server EJB .. 5-10

IMS Implicit APPC Programming FIOWS..........ccccceviriiinieiienieieeiee e 5-12
Java Client Request/Response to IMS Transaction Program................... 5-12
IMS Asynchronous No Reply Transaction Program to Java Server........ 5-15
Transactional Java Client Request/Response to IMS Transaction Program....

5-17

Common Programming Interface for Communications Programming Flows 5-20
Java Client Request/Response to Host CPI-C...........cccevveeeciienvenieenenne. 5-20
Host CPI-C Request/Response to WebLogic Server EJB........................ 5-22
Host CPI-C Asynchronous No Reply to Java Server..........cccocveevvevvennenee. 5-24
Transactional Java Client Request/Response to Host CPI-C................... 5-26

Transactional Host CPI-C Request/Response to WebLogic Server EJB. 5-29

Performing Your Own Data Translation

Why Perform Your Own Data Translation?..........ccccceeevevierciienieniieenieeieenenne 6-1
Using EgenClient Directlycccoviiiieiieiiiieiesieeee e 6-2
How EgenClient Locates a WebLogic JAM Gateway.........c.cceeevvrevenennenn 6-3
Using EgenClient to Make a Mainframe Request...........ccccoovveeniniencnnen. 6-4
Translating Buffers from Java to Mainframe Representation...............cccc.c....... 6-5
MainframeWriter Public Interfacecocooeveneinninininincceeceee, 6-5
Using MainframeWriter to Create Data Buffers...........cccceeeveecienciencnenns 6-10
Translating Buffers from Mainframe Format to Java...........cccoeoeviniennncnee. 6-12
MainframeReader Public Interfacecocooeveieenininienencciceecens 6-12
Using MainframeReader to Translate Data Buffers...........c.cccocoveevieenenns 6-15

BEA WebLogic Java Adapter for Mainframe Programming Guide v

vi

7.

Diagnostics

GatEWAY STATISTICS . ..eeveetetieieetieieet ettt sttt ee ettt e e e seeeneesneeaesneas 7-1
GAtEWAY TTACING. .. .eeuveeieeieiieieseeeterieste sttt et et e ete e e steaesseesesseensesseensenseens 7-2
Low-Level Client DiagnostiCsceouereeruiriirieieeieniieieneeeenie e 7-4
Client Loopbackcceouieiiieeeee e e 7-5
Client Stub OPErationcceeieeuieierierierieeieieseeseesseeeesseeeesseessesseenaeenes 7-6
CRM TTACINE ..nvtieitieeiieeieectie et etteeteesaee et eseeesaeeteessbeeseessseensaenssesnsaesssaesseenens 7-6
Viewing Trace OULPULccceeivieiirieieeiieee et 7-7
W o O o 0 T3 =SSR 7-8
Viewing APPC Trace OULPUL.......cceeevueerieiiiierieeiiereeeie e eve e sve e 7-9

DataView Programming Reference

Field Name Mapping RUIESccccciviriirieiieieiceee et A-2
Field TYPe MapPingsScceeveriieieriieieieeieieseessesreesesseesesseessessesssesseessessessnes A-2
Group FIield ACCESSOTS. .. .cciiiiiieiieiieeteeeie et este et stee e seesbeesseesebeessaeeseenes A-4
Elementary Field ACCESSOTSccvevvieieiiieieiieiesieeteeie ettt A-4
ATTaY Field ACCESSOTS .uvviiiiiieniiiiieiiciieieeieere ettt st besae e ssaessesseens A-5
Fields with REDEFINES Clausescccceevieiiieiieeiieiieeieesiee e esieesereeveeneee e A-6
COBOL Data TYPES ..cuveeveeiiiiieiiniieieniteienieetese ettt ettt st A-6
Other Access Methods for Generated DataView Classes........cccccoevvevvervennenen. A-9
Mainframe Access to DataView Classes........ccceecverieeiieenieecieesieenveenieenns A-9
XML Access to DataView Classes.........ccvevverreriienierierieeienieeieieeeeneeenns A-11
Hashtable Access to DataView Classescccccveveeeerieeieneneenieeeenienenn A-13
Code for Unloading and Loading Hashtablesc.cccccovvennne. A-14

Rules for Unloading and Loading Hashtables...............cccccevvveinnnnns A-14

Name Translator Interface Facilitycccccevvveviivienienieecieienns A-15

Known Limitations of WebLogic JAM working with COBOL Copybooks.. A-16

eGen Application Generator Reference

SYNOPSIS ..ivvenreeereteeiesieeteeteete st erteeteebe st e beeseessessaesseessessaessesseessenssensesseensessnes B-1
Script Syntax Reserved WOordsoccveeeeeiiienienie e B-2
GENETAl RUIESooovviieiiieiic ettt ettt ebe e s eaeeree e B-3
GITAMMAT ..ttt ettt ettt ettt ettt e e saeeaeenbeenees B-3
Results of Running the eGen Application Generatorcccveeeveecreerveeeneenns B-6

BEA WebLogic Java Adapter for Mainframe Programming Guide

C. Understanding How WebLogic JAM Uses XML

WHhAL 18 XIML? ...ttt sttt s e ae st nesseesense s C-1
Document Type Definition.........cccccveevirienieieenieeieiecieieeeee e C-2
XML SCHEMAeeevieiieeiiiecee ettt ettt e e e et eesaeesbeessbeenaeensnen C-3
How WebLogic JAM Uses XML......cccoooiiiieiinieierieeee e C-3

D. RMI Access to the WebLogic JAM Gateway
JAM Deployed Configuration FEature............ccevvevieniieienieeenieieieeie e D-1
GatewayBootStrap ODJECLc.eevvieiiieriiiiiereeeie ettt eve e D-3
DeployedGateway ODJECtcc.eevereieeierieeierie ettt D-6
DeployedCRM ObBJECt.....ccvevieiieiieeieiiiieieieereeieeie e esseseeeneas D-11
DeployedLink ObJect......c.covveeiiiriierieeiiecieeie et D-12
DeployedService ODJECtc.vvcveriiecierieiereeieeeeee e D-13
ACtiVItyCounts ODJEC......ccvivuirriirieiieieieiierte st eeereeeeeee e eeas D-15
DeployedSession ODJECtcccveiieeriierieiiiereeeie e esve e D-17
Sample JAM Administration UtIlityccceeveeieriiriienenieieeeseeeee e D-22

Index

BEA WebLogic Java Adapter for Mainframe Programming Guide vii

viii BEA WebLogic Java Adapter for Mainframe Programming Guide

CHAPTER

1

Introduction to

Generating
Applications

Integrating applications that run on the mainframe with applications that run within
BEA WebLogic Server requires solving three significant problems:

Connectivity -- How can applications invoke each other when they are running
on different hosts? WebLogic JAM provides software components that establish
connections between your WebLogic and mainframe environments. These
components are described in detail in the BEA WebLogic Java Adapter for
Mainframe Configuration and Administration Guide.

Data Transformation -- Java applications running in WebLogic Server use Java
numeric representation and character encoding schemes. Applications running in
the mainframe environment use different numeric and character encoding
schemes. In order for applications running in these disparate environments to
communicate, the data that is communicated must be transformed between these
different representations.

Programmatic Access -- Java applications running in WebLogic Server require
an Application Programming Interface (API) to access applications running in
the mainframe environment. There also must be an API that allows Java
applications to be accessed on behalf of mainframe applications.

WebLogic JAM provides Java classes that transform data to and from the native binary
data types of the mainframe. WebLogic JAM provides a software development tool
that allows you to generate Java applications. These generated Java applications
include data translation code (DataViews) that translates data between Java and

BEA WebLogic Java Adapter for Mainframe Programming Guide 1-1

1

Introduction to Generating Applications

mainframe data formats. These generated Java applications also contain the methods
needed to invoke mainframe applications, or to be invoked by mainframe applications,
in conjunction with WebLogic JAM.

This section discusses the following topics:

m Understanding How WebLogic JAM Uses DataViews

m Understanding How WebLogic JAM Provides Programmatic Access to Services
m Application Model Overview

m Roadmap for WebLogic JAM Programming

Understanding How WebLogic JAM Uses
DataViews

1-2

In order to request services from the mainframe, WebLogic JAM must know the data
formats required by these services. These data formats are usually available as COBOL
copybooks.

Mainframe data records are represented in WebLogic JAM by Java DataViews. These
DataViews are generated by the eGen Application Generator (hereafter referred to as
the eGen utility) and provide all of the data translation necessary to communicate with
mainframe applications. The eGen utility parses a COBOL copybook and generates
Java DataView code that captures the data record described in the copybook. (For
more information on the eGen utility, see Understanding eGen.)

Figure 1-1 illustrates how WebLogic JAM uses DataViews. This illustration shows the
COBOL copybook on the mainframe side, which contains the data formats for the
mainframe services. When a request is made for a Java service, the data is passed
through the communications components, which are described in more detail in the
BEA WebLogic Java Adapter for Mainframe Introduction. As part of this process, the
WebLogic JAM Gateway initializes a DataView, performing the proper translation of
the data. The data is utilized by the Java applications in the form of the DataView.

When the response is sent back, the WebLogic JAM Gateway translates the data back
into the copybook format and sends it back to the mainframe.

BEA WebLogic Java Adapter for Mainframe Programming Guide

Understanding How WebLogic JAM Provides Programmatic Access to Services

Figure 1-1 How WebLogic JAM Uses DataViews

Mainframe Side Java Side

Weblogic Application Server

Mainframe Region
Generated Java Application

COBOL Program

COBOL Copybook

~

Datatiew

&

Communications Components

Understanding How WebLogic JAM Provide
Programmatic Access to Services

S

Using WebLogic JAM, BEA WebLogic Server applications can make requests for
mainframe services and receive responses to those requests. Applications in which

these types of requests are made are referred to as WebLogic Server to Mainframe

BEA WebLogic Java Adapter for Mainframe Programming Guide

1-3

1

Introduction to Generating Applications

Applications. Also, mainframe applications can make requests from Java applications
(EJBs) running in WebLogic Server and receive responses to those requests.
Applications in which these types of requests are made are referred to as Mainframe to
WebLogic Server Applications.

WebLogic JAM provides an API that allows Java applications running under
WebLogic Server to invoke services running on the mainframe. All such requests for
mainframe services are made by calling the cal | Ser vi ce() method of the

Egendl i ent class. The Java applications generated by the eGen utility contain a
method that calls the cal | Ser vi ce() method of the Egend i ent class. These
generated applications can access the cal | Ser vi ce() method by either being
extensions of the Egend i ent class or having an Egend i ent class as a member.
Instead of using the eGen utility to generate application code, you can also write your
own applications that make requests of mainframe services by calling the

cal | Servi ce() method (see Performing Your Own Data Translation.)

WebLogic JAM provides an API that allows clients running on the mainframe to
invoke services provided by stateless session EJBs running under WebLogic Server
and receive responses to those requests. EJBs that can be invoked by WebLogic JAM
on behalf of mainframe clients extend the EgenSer ver Bean class. The WebLogic
JAM Gateway calls the di spat ch() method of the EgenSer ver Bean class when a
request is made from a mainframe client. The server EJBs generated by the eGen utility
extend the EgenSer ver Bean class. They also provide an implementation of the

di spat ch() method that includes the necessary data transformation, as well as
making a call to the method that actually performs the business logic. You can write
your own EJBs to service mainframe requests by extending the EgenSer ver Bean
class and implementing the di spat ch() method.

WebLogic JAM also provides the ability for mainframe clients to queue messages on
JMS queues and topics. No coding is necessary for this; it is simply a matter of
configuration (see WebLogic JAM to JMS).

Application Model Overview

1-4

This guide provides four Java application models you can use as guides for creating
your own applications. The following sections give you a brief overview of these
models:

BEA WebLogic Java Adapter for Mainframe Programming Guide

Roadmap for WebLogic JAM Programming

m Mainframe to WebLogic Server Application Models

m WebLogic Server to Mainframe Application Models

Mainframe to WebLogic Server Application Models

In a Mainframe to WebLogic Server application, a request originates from a
mainframe and is serviced by an EJB invoked by a WebLogic JAM Gateway.

The following Mainframe to WebLogic Server application model is discussed in this
guide:

m Generating a Server Enterprise Java Bean-Based Application

WebLogic Server to Mainframe Application Models

In a WebLogic Server to Mainframe application, a request originates on a WebLogic
client or server, and is serviced by a mainframe program invoked by the WebLogic
JAM Gateway in cooperation with the CRM.

The following WebLogic Server to Mainframe application models are discussed in this
guide:

m Generating a Stand-Alone Client Application
m Generating a Client Enterprise Java Bean-Based Application

m Generating a Servlet Application

Roadmap for WebLogic JAM Programming

The steps outlined in Figure 1-2 provide you with a high-level guideline to all of the

tasks and processes that you must perform to generate applications using WebLogic

JAM. You can think of these steps as a roadmap to guide you through the process and
to point you to the resources available to help you.

BEA WebLogic Java Adapter for Mainframe Programming Guide 1-5

1 Iintroduction to Generating Applications

1.

Figure 1-2 Roadmap for JAM Programming

Analyze the application

Yes———— AfjeblLogic Server M
I to Mainframe?
Decide which model ta .| Obtain ar create a
use 7| COBOL Copybook

¥

YWrite eGen script

h J

Run eGen utility to
produce application code

h J

Customize the application
code

Analyze the application and determine if it is Mainframe to WebLogic Server or
WebLogic Server to Mainframe. If the application is WebLogic Server to
Mainframe, decide which model you are going to use (see WebLogic Server to
Mainframe Application Models for more information).

2. Obtain or create a COBOL copybook (see Obtaining a COBOL Copybook for

more information).

1-6 BEA WebLogic Java Adapter for Mainframe Programming Guide

Roadmap for WebLogic JAM Programming

3. Write the eGen script. The eGen script has two parts. The first part defines the
DataView. The second part defines the application code (see Writing an eGen
Script for more information).

4. Use the COBOL copybook and the eGen script as input for the eGen utility. This
produces the DataView and the application code (see Processing eGen Scripts
with the eGen Utility for more information).

5. Customize the application code. This can be done by extending the code to
perform the tasks required for your application (see Basic Programming
Techniques for more information).

BEA WebLogic Java Adapter for Mainframe Programming Guide 1-7

1 Iintroduction to Generating Applications

1-8 BEA WebLogic Java Adapter for Mainframe Programming Guide

CHAPTER

2 Generating a Java

Application with the
eGen Application
Generator

This section discusses the following topics:
m Understanding eGen
m Working With COBOL Copybooks

m Processing eGen Scripts with the eGen Utility

Understanding eGen

The eGen Application Generator, also known as the eGen utility, is installed with
WebLogic JAM. It generates Java applications from a COBOL copybook and a
user-defined script file.

BEA WebLogic Java Adapter for Mainframe Programming Guide 2-1

2 Generating a Java Application with the eGen Application Generator

The eGen utility generates a Java application by processing a script you create, called
an eGen script. A Java DataView is defined by the first section of the script. This
DataView is used by the application code to provide data access and conversions, as
well as to perform other miscellaneous functions. The actual application code is
defined by the second section of the script.

Figure 2-1 illustrates how the eGen utility works. This illustration shows the eGen
script and COBOL copybook file being used as input to the eGen utility, and the output
that is generated is the DataView and the Java application. The generated Java
application may be used in a variety of ways. In some cases, it may be used as is.
However, in most cases, you will need to extend the generated application in some
way, or it may become a member of the actual user-defined application.

2-2 BEA WebLogic Java Adapter for Mainframe Programming Guide

Understanding eGen

Figure 2-1 Understanding the eGen utility

eGen script COBOL Copybook
eGen utility
L ¥
Generated Generated
DataView Application

03 EMP-REC.

05 EMP-35N PIC 9(9
COMP-3.

05 EMP-ADDE.

07 EMP-AL-3TREET FPIC Xi30).
07 EMP-L-CITY FIC Ziz0).

07 EMP-AL-3T FIC Xi2).
07 EMP-A-ZIP PIC Xi(9).
05 EMP-NAME

07 EMP-N-LAST FIC Zil15).
07 EMP-N-FIRST FPIC Xi15).
07 ENP-N-HI FIC Zil).

importc
bea. jam.egenClientBean;

public class EwmpRecEean
extends egenClientEean
i
public EmpRecBean
i

User-defined Java
application source
file

import EmpRecBean;

public class
ExtEmpRecEean

extends EnmpRecBean
i

BEA WebLogic Java Adapter for Mainframe Programming Guide 2-3

2 Generating a Java Application with the eGen Application Generator

Working With COBOL Copybooks

A COBOL CICS or IMS mainframe application typically uses a copybook source file
to define its data layout. This file is specified in a COPY directive within the LI NKAGE
SECTI ON of the source program for a CICS application, or in the WORKI NG STORAGE
SECTI ON of an IMS program. If the CICS or IMS application does not use a copybook
file, you will have to create one from the data definition contained in the program
source.

Each copybook’s contents are parsed by the eGen utility, producing DataView
sub-classes that provide facilities to:

m Convert COBOL data types to and from Java data types. This includes
conversions for mainframe data formats and code pages.

m Convert COBOL data structures to and from Java data structures.

m Convert the provided data structures into other arbitrary formats.

Obtaining a COBOL Copybook

The eGen utility must have a COBOL Copybook to use as input. There are two
methods you can use to obtain this Copybook:

m Creating a New COBOL Copybook
m Using an Existing COBOL Copybook

Creating a New COBOL Copybook

2-4

If you are producing a new application on the mainframe or modifying one, then one
or more new copybooks may be required. You should keep in mind the COBOL
features and data types supported by WebLogic JAM as you create these copybooks
(see eGen Application Generator Reference for more information).

BEA WebLogic Java Adapter for Mainframe Programming Guide

Working With COBOL Copybooks

Using an Existing COBOL Copybook

When a mainframe application has an existing DPL or APPC interface, the data for that
interface is usually described in a COBOL copybook. Before using an existing
COBOL Copybook, verify that the interface does not use any COBOL features or data
types that WebLogic JAM does not support (see Limitations of the eGen Utility).

An example COBOL copybook source file is shown in Listing 2-1.

Listing 2-1 Sample enprec. cpy COBOL Copybook

SN

Wooo -1y otn ol

10
11
12
13
14
13

Declaration of a

0z emp-record#———— record (group)
data item.
04 emp-ssn pic 9(9) comp-3.
An elementary item. This is the base
level of the data structure.
04 B nAaNe .
06 erp-name-last pic x(15).
o0& emp-name-first pic x(15).
o0& emp-name-mi pic .
An aggregate item. This is
‘f/_,-f-’ the intermediate level of
04 emp-addr? the data structure.
06 emp-addr-street plc x(30).
06 exp-addr-st pic x(2).
o0& emp-addr-zip pic =(9).
* End

BEA WebLogic Java Adapter for

Mainframe Programming Guide 2-5

2 Generating a Java Application with the eGen Application Generator

Limitations of the eGen Utility

The eGen utility is able to translate most COBOL copybook data types and data
clauses into their Java equivalents; however, it is unable to translate some obsolete
constructs and floating point data types. For information on COBOL data types that
can be translated by the eGen utility, see DataView Programming Reference. If the
eGen utility is unable to fully support constructs or data types, it:

m Treats them as alphanumeric data types (if reasonable)
m Ignores them (if their support is unimportant to WebLogic JAM’s operation)
m Reports them as errors

If the eGen utility reports constructs or data types as errors, you must modify them, so
they can be translated.

Writing an eGen Script

After you have obtained a COBOL Copybook for the mainframe applications, you are
ready to write an eGen script. This eGen script and the COBOL copybook that
describes your data structure will be processed by the eGen utility to generate a
DataView and application code which will serve as the basis for your custom Java
application.

An eGen script has two sections. These are:

m DataView. The DataView section of the script generates Java DataView code
from a COBOL copybook. The class file compiled from the generated code
extends the Java DataView class. Generating DataViews is discussed in detail in
the remainder of this section.

Note: If the purpose of your eGen script is to generate a DataView for use with
the WebLogic JAM to JMS EJB, or to launch a WebLogic Integration
event, you only need to create the DataView section of the script.

m Java application. The Java application section of the script generates the Java
application code. This is discussed in detail in Basic Programming Techniques.

2-6 BEA WebLogic Java Adapter for Mainframe Programming Guide

Writing an eGen Script

Writing the DataView Section of an eGen Script

The eGen utility parses a COBOL copybook and generates Java DataView code that

encapsulates the data record declared in the copybook. It does this by parsing an eGen
script file containing a DataView definition similar to the example shown in

Listing 2-2 (keywords are in bold). The section containing the DataView definition is
the first section of the eGen script. Application code is generated by the second section.

Listing 2-2 Sample DataView Section of an eGen script

generate view exanpl es. Cl CS. out bound. gat eway. Enpl oyeeRecord from
enpr ec. cpy

Analyzing the parts of this line of code, we see that generate view tells the eGen utility
to generate a Java DataView code file.

exanpl es. Cl CS. out bound. gat eway. Enpl oyeeRecor d tells the eGen utility to call
the DataView file Enpl oyeeRecor d. j ava. The package is called

exanpl es. Cl CS. out bound. gat eway. The Enpl oyeeRecor d class defined in

Enpl oyeeRecor d. j ava is a subclass of the DataView class. The phrase f r om

enpr ec. cpy tells the eGen utility to form the Enpl oyeeRecor d DataView file from
the COBOL copybook enpr ec. cpy.

Additional gener at e vi ew statements may be added to an eGen script in order to
produce all the DataViews required by your application. Also, additional options may
be specified in the eGen script to change details of the DataView generation. For
example, the following script will generate a DataView class that uses codepage cp500
for conversions to and from mainframe format. If the codepage clause is not specified,
the default codepage of cp037 is used.

Listing 2-3 Sample DataView Section with Codepage Specified

generate view exanpl es. Cl CS. out bound. gat eway. Enpl oyeeRecord from
enprec. cpy codepage cp500

BEA WebLogic Java Adapter for Mainframe Programming Guide 2-7

2 Generating a Java Application with the eGen Application Generator

The following script will generate additional output intended to support use of the
DataView class with XML data:

Listing 2-4 Sample DataView Section Supporting XML

generate vi ew sanpl e. Enpl oyeeRecord from enprec. cpy support xml

Additional files generated for XML support are listed in Table 2-1.

Table 2-1 Additional Files for DataView XML Support.

File Name File Purpose

classname.dtd XML DTD for XML messages accepted and produced by this
DataView.

classname.xsd XML schema for XML messages accepted and produced by this
DataView.

Processing eGen Scripts with the eGen
Utility

After you have written your eGen script, you must process it to generate the DataView
and application code. This Java code must then be compiled and deployed. The same
eGen script usually contains both the definitions of the DataView and application code,
and both are produced with a single processing of the script. However, in this
Programming Guide, the script is explained in two steps, so the actual code generated
can be analyzed in greater detail.

2-8 BEA WebLogic Java Adapter for Mainframe Programming Guide

Processing eGen Scripts with the eGen Utility

Creating an Environment for Generating and Compiling
the Java Code

When you process the eGen scripts and compile the generated Java code, you must
have access to the Java classes and applications used in the code generation and
compilation processes. Adding the correct elements to your CLASSPATH and PATH
environment variables provides this access.

For the eGen utility:

m Add <JAM I NSTALL_DIR>\1ib\jamj ar to your CLASSPATH.
m Add <JAM I NSTALL_DI R>\ bi n to your PATH.

For compilation:

m Add <JAM I NSTALL_DIR>\1ib\jamj ar to your CLASSPATH.
m Add <W.S_HOMVE>\i b\ webl ogi c. j ar to your CLASSPATH.

m Add the path of your DataView class files to your CLASSPATH. You will need
access to these classes when you compile your Java application code.

Notes: UNIX users must use “/” instead of “\” when adding directory paths as
specified above.

Running confi g\ veri fy\ set Veri f yEnv. cnd (on Windows systems) or

config/verifyl/setVerifyEnv. sh (on UNIX systems) will perform the
above actions necessary for the eGen utility.

Generating the Java DataView Code

For the eGen script named enpr ec. egen shown in Listing 2-2, the following shell
command parses the copybook file named enpr ec. cpy (see Listing 2-1) and
generates the Enpl oyeeRecor d. j ava source file in the current directory:

BEA WebLogic Java Adapter for Mainframe Programming Guide 2-9

2 Generating a Java Application with the eGen Application Generator

Listing 2-5 Sample Copybook Parse Command

egencobol enprec. egen

If no error or warning messages are issued, the copybook is compatible with WebLogic
JAM and the source files are created. Note that no application source files are
generated by processing the enpr ec. egen script. This is because there are no
application generating commands in this script.

Note: Refer to eGen Application Generator Reference for suggestions on resolving
any problems encountered.

The following example illustrates the resulting generated Java source file,
Enpl oyeeRecor d. j ava with some comments and implementation details removed
for clarity.

2-10 BEA WebLogic Java Adapter for Mainframe Programming Guide

Processing eGen Scripts with the eGen Utility

Listing 2-6 Generated Enpl oyeeRecor d. j ava Source File

ffEmployeeRecord.java
fiDataview class generated by egencohol emprec.cpy

The package narme is defined

package examples.CICS.outhound.gateway: —— in the £Gen script

J/ Inpores

import bea.dmd.DataView.DataView;

The data recard is
F**DataV¥iew class for EmployveeRecord hufferskf

encapsulated in a
public final class EmploveeRecord-+ P

extends DataView class that_ gxtends the
; Dataview class

Each class member
/i Code for field “emp-ssn” F__________f\tariahle corresponds to a
private BigDecimal m_empSsn; field in the data record

public BigDecimal getEmpSsni) {...}

“ﬁ\m\n_ Each data field has

J** DataView subclass for emp-name Group *f accessor functions

public final class EmpHame3V
inal elass Bl \ Each aggregate data field has a
1

corresponding nested inner class
that extends the DataView class

Jf Code for field “emp-name-last’’
private 3tring m empHamelast:

public void setEmpNameLast({String value) {...}
public String getEmpHamelast{) {...}

Each data field within an
aggregate data field has
accessor functions

// Code for field “emp-name” Each COBOL data field name is
private EmpMameiV m mnm#——fﬂ_ﬁ_ﬁ converted into a Java identifier
. public Emphname3V getﬁnmname() [

//End EwployeeRecord. java

BEA WebLogic Java Adapter for Mainframe Programming Guide 2-11

2 Generating a Java Application with the eGen Application Generator

Special Considerations for Compiling the Java Code

You must compile the Java code generated by the eGen utility. However, there are
some special circumstances to consider. Because the application code is dependent on
the DataView code, you must compile the DataView code and make sure that the
resulting DataView class files are in your environment’s CLASSPATH before compiling
your application code. You must make sure that all of the DataView class files can be
referenced by the application code compilation.

For example, the compilation of Enpl oyeeRecor d. j ava results in four class files:
m Enpl oyeeRecord. cl ass

® Enpl oyeeRecor d$EnpRecor d1V. cl ass

m Enpl oyeeRecor d$EnpRecor d1VSEmpNane3V. cl ass

m Enpl oyeeRecor d$EnpRecor d1VSEnpAddr 7V. cl ass

All of these class files are used when compiling your application code.

2-12 BEA WebLogic Java Adapter for Mainframe Programming Guide

CHAPTER

3 Basic Programming
Techniques

This section discusses the following topics:

Choosing an eGen Java Application Model

General Form of an eGen Script

Mainframe to WebLogic Server Application Models
WebLogic Server to Mainframe Application Models

WebLogic JAM to IMS

Choosing an eGen Java Application Model

There are four different types or models of Java applications that can be generated by
the eGen utility. These models, which can be classified as either Mainframe to
WebLogic Server or WebLogic Server to Mainframe, are described below.

Mainframe to WebLogic Server (request originates on the mainframe and is serviced
by WebLogic):

Server EJB. The server EJB is a Stateless Session EJB that provides a service to
the mainframe.

BEA WebLogic Java Adapter for Mainframe Programming Guide 31

3 Basic Programming Techniques

WebLogic Server to Mainframe (request originates on the WebLogic client or server
and is serviced by the mainframe):

m Client Class. The client class is a stand-alone Java class that invokes mainframe
services. This class may be built into your own EJB or utilized in some other
way within your code.

m Client EJB. The client EJB is a Stateless Session EJB that invokes mainframe
services. It may be called by a servlet or other client programs. This is the
normal model for building a production application with access to mainframe
services. A servlet that invokes the EJB’s methods may be added for testing or
demonstration purposes.

m Servlet Only. The servlet-only application is a servlet that presents a simple form
and invokes mainframe services directly. This is the simplest model, but it may
not be suitable for production applications.

Choose one of these four model types to use as the basis for your Java application.
Once you have chosen a model type, refer to the section from the following list for
instructions on writing the script and implementing the model you have chosen:

m Generating a Server Enterprise Java Bean-Based Application
m Generating a Stand-Alone Client Application

m Generating a Client Enterprise Java Bean-Based Application
m Generating a Servlet Application

For all of the applications you generate, you must provide a script file containing
definitions for the application, including the COBOL copybook file name and the
DataView class names.

Generating the Java Application Code

The Java application code can be generated at the same time that you generate the Java
DataView code. To generate Java application code, the eGen script that you process
must contain instructions for generating the Java application along with the
instructions for generating the DataView code.

3-2 BEA WebLogic Java Adapter for Mainframe Programming Guide

General Form of an eGen Script

Referring to the sample files in sanpl es\ veri f y\ gat eway\ out bound, the following
command generates Char dat a. j ava and Based i ent . j ava. The DataView file is
Char dat a. j ava, and the application file is BaseCl i ent . j ava.

> egencobol basedient.egen

General Form of an eGen Script

As previously stated, most eGen scripts consist of two major sections:
m The DataView section described in Writing an eGen Script.

m The Application section, which defines the Java application code that the eGen
utility is to generate (described in Writing the Application Section of an eGen
Script).

Writing the Application Section of an eGen Script

The application section of an eGen script contains the information about the Java class
files that the eGen utility is to generate for a particular application. The application
section is divided into two distinct subsections, which are actually lists. The two lists
are:

m List of Services -- Describes the remote services that are configured for JAM
and are called by the classes that the eGen script defines. This list is not present
in the script if the classes to be generated by the eGen utility are all server EJB's.

m List of Application Components -- Components for which the eGen utility is to
generate the class files. This list contains one or more definitions of stand alone
clients, client EJB's, servlets, or server EJB's.

List of Services

Scripts that are used to define the application components that the eGen utility is to
generate usually contain a list of one or more service definitions. If the application
components are all server or Mainframe to WebLogic Server EJB's, this list of services

BEA WebLogic Java Adapter for Mainframe Programming Guide 33

3 Basic Programming Techniques

is not present. This is because this list of service definitions describes remote services
configured in JAM; server EJB's do not call remote services since the requests are
flowing outward from the mainframe.

The general form of a service definition is as follows (keywords are in bold):
servi ce servi cenane accepts inputVi ewnane returns output Vi ewnane

Table 3-1 describes the service definition parameters.

Table 3-1 Service Definition Parameters

Parameter Definition

servi cename Must match the name of a remote service that is defined
in the WebLogic JAM configuration (see the BE4A WebLogic
Java Adapter for Mainframe Configuration and Administration
Guide).

i nput Vi ewnane The name of a DataView that will be the input or request data for
the service.

out put Vi ewnane The name of the DataView that is the output or response from
the service.

Note: The i nput Vi ewnane and out put Vi ewnane do not have to be the same;
however, due to the way many applications are written, they often are the
same.

Following is an example of a service definition:
servi ce TOUPPER accepts Chardata returns Chardata

In this example, the service TOUPPER s a configured remote service. As far as the Java
application making the request for a mainframe service through WebLogic JAM is
concerned, this service accepts as input a Char dat a DataView. The actual mainframe
server application accepts as input the COBOL copybook which corresponds to a
Char dat a DataView. As far as the Java application is concerned, the output or
response from the mainframe service is a Char dat a DataView.

34 BEA WebLogic Java Adapter for Mainframe Programming Guide

General Form of an eGen Script

List of Application Components

In order for the eGen utility to generate code for Java applications, the eGen script

must contain a list of one or more definitions of the application components that are to
be generated. This list of definitions of application components can contain definitions
of stand-alone clients, client or server EJB's, and servlets. This list of definitions also
contains the definition of any HTML pages that are used by servlets defined in the list.

Note: The definition of an HTML page appearing in this list by itself will not cause
any code to be generated.

The general form of an application component definition is as follows:

nodel identifier [nopdel-dependent-paraneters]
{ details }

Table 3-2 describes the application component definition parameters.

Table 3-2 Application Component Definition Parameters

Parameter Definition

nodel Indicates to the eGen utility the type of application component
that is to be generated. The possible values of this identifier are:

m client class

m client ejb
m server ejb
m servlet
m page
identifier This is generally the class name (or class name stem for EJB's)

for the application component that is to be generated. The
identifier includes the package name. For an HTML page, the
identifier is the page name.

BEA WebLogic Java Adapter for Mainframe Programming Guide 3-5

3 Basic Programming Techniques

Parameter

Definition

nodel - dependent -
par anmet er s

These further describe the application component to the
eGen utility and can vary a great deal depending on the
model. For a stand-alone client, there would be no

model - dependent - par anet er s given. For an EJB
(client or server), the home interface identifier for the
bean must be given. For a servlet, the initial HTML page
that is to be displayed is given. For an HTML page, the
title of the page is given.

details

These give details about the code for the application component.
For a stand-alone client, as well as an EJB, these details would
include the definitions of class methods that will call services
defined in the script. For a servlet, there usually will not be any
details given. For an HTML page, these details include the
DataView that is to be displayed and any buttons that will be
displayed on the page.

Following is an example of an application component definition:

client ejb sanple. Sanpl edient ny.sanpl eBean
{

met hod newEnpl oyee
is service sanpl eCreate

}

The example states the following:

This is the definition for a client or EJB.

The cl assnane for this EJB is Sanpl eCl i ent . That is, the eGen utility will
generate files named Sanpl eCl i ent. j ava, Sanpl ed i ent Bean. j ava, and
Sanpl ed i ent Hone. j ava.

The package name is sanpl e.

The home interface identifier for this bean is ny. sanpl eBean.

The bean will have a method called newEnpl oyee that calls the sanpl eCr eat e
service. The sanpl eCr eat e service is defined elsewhere in the file.

3-6 BEA WebLogic Java Adapter for Mainframe Programming Guide

Mainframe to WebLogic Server Application Models

Specific details about the application component definitions for each application
model, as well as the files that the eGen utility generates for each model, are discussed
in the following sections.

Mainframe to WebLogic Server Application
Models

In a Mainframe to WebLogic Server application, a request originates on a mainframe
and is serviced by an EJB invoked by a WebLogic JAM Gateway.

Generating a Server Enterprise Java Bean-Based
Application

This type of application produces Java classes that comprise an EJB application acting
as a remote server from the viewpoint of the mainframe. The classes process service
requests originating from the mainframe (remote) system and transfer data records to
and from the mainframe. From the viewpoint of the Java classes, they receive EJB
method requests. From the viewpoint of the mainframe application, it invokes remote
CICS or IMS programs.

Components of an eGen Server EJB Script

The general form of a definition of a server (Mainframe to WebLogic Server) EJB that

appears in an eGen script is as follows (keywords are in bold):

server ejb classnane ejbregistration transaction
transaction-attribute

{server et hod}

Table 3-3 describes the server EJB definition keywords and parameters.

BEA WebLogic Java Adapter for Mainframe Programming Guide 3-7

3 Basic Programming Techniques

Table 3-3 Service EJB Definition Keywords and Parameters

Keyword/Parameter Definition

server ej b Indicates to the eGen utility the type of application component
that is to be generated.

cl assnane Indicates the class name stem for the EJB. For example, if
the cl assnane is Sanpl eSer ver, then the following
files are generated by the eGen utility:

m Sanpl eServer.java
m Sanpl eServer Bean. j ava
m Sanpl eServer Hone. j ava

Note: The package name should be included in the
cl assnane.

ej bregi stration The name that will be used to register the home interface
for the EJB.

transaction This keyword and parameter are optional. They are used to
transacti on- manage the level of transaction demarcation. The possible
attribute values of the t ransacti on-attri but e are:

Not Support ed
Requi red
Supports
Requi r esNew
Mandat ory
Never

Note: Ifthetransacti on keyword is not present in the
definition, the default value of the
transaction-attributeisSupports. Fora
detailed explanation of how the WebLogic Server EJB
container respondstothet ransacti on-attri bute
setting, see the section on Transaction Attributes in the
EJB 2.0 Specification.

3-8 BEA WebLogic Java Adapter for Mainframe Programming Guide

Mainframe to WebLogic Server Application Models

Keyword/Parameter

Definition

server net hod

Method that appears in the EJB implementation (must be in
braces). The general form of a ser ver met hod definition is as
follows (keywords are in bold):

met hod met hodname (i nput DataVi ew) returns
out put Dat aVi ew

Table 3-4 describes the parameters of a ser ver met hod
definition.

Table 3-4 Parameters for the servermethod

Parameter

Definition

nmet hodnane

The name of the method.

i nput Dat aVi ew

The name of the DataView that is the type of the input parameter
for the method (must be in parenthesis).

out put Dat aVi ew

The name of the DataView that is the type returned from the
method.

Following is an example of a server (Mainframe to WebLogic Server) EJB definition
that appears in an eGen script:

server ejb sanpl e. Sanpl eServer ny. sanpl eServer

{

nmet hod newknpl oyee (Enpl oyeeRecord)
returns Enpl oyeeRecord

}

The example states the following:

m This is the definition for a server EJB class. The generated EJB class files are
defined in the Generated Files section that follows.

m The ny. sanpl eSer ver is the home interface identifier for this bean in the
WebLogic deployment description.

m The transacti on keyword is not present in this example, so it defaults to

Supports.

BEA WebLogic Java Adapter for Mainframe Programming Guide 39

3 Basic Programming Techniques

m The server class method newEnpl oyee takes its input from the DataView
Enpl oyeeRecor d and writes its output to an Enpl oyeeRecor d output
DataView.

Generated Files

Table 3-5 lists the files generated from the example server (Mainframe to WebLogic
Server) EJB described in Components of an eGen Server EJB Script. These files are
described in the sections following the table.

Table 3-5 Sample Script Generated Files

File Content

Sanpl eServer. java Source for the EJB remote interface.
Sanpl eSer ver Bean. j ava Source for the EJB implementation.
Sanpl eSer ver Hone. j ava Source for the EJB home interface.
Sanpl eServer -j ar . xm Deployment descriptor.

W - Sanpl eServer-j ar. xm WebLogic deployment information.

SampleServer.java Source File

Listing 3-1 shows the partial contents of the generated remote interface
Sanpl eSer ver. j ava source file.

3-10 BEA WebLogic Java Adapter for Mainframe Programming Guide

Mainframe to WebLogic Server Application Models

Listing 3-1 Sample SampleServer.java Contents

Package name listed
package sample 4" |in the scrigt definition

r

/4 Imports

import com.bea.sna.jcrmgw. gwOb]ect Class name stad n

Tt / the script definition
public interface SampleServe

extends guihiec
[J] m\ Remote interfaces generated by

rdi teh elGen always extend gwObject
1spate

byte[] dispatch(byte[] commarea, Object future)
throws RemoteException, UnexpectedException;

' \ First method called by WeblLogic JAM in
the EJB. This method is particular to

WeblLogic JAM.

SampleServerBean.java Source File

Listing 3-2 shows the partial contents of the generated EJB implementation
Sanpl eSer ver Bean. j ava source file.

BEA WebLogic Java Adapter for Mainframe Programming Guide 3-11

3 Basic Programming Techniques

Listing 3-2 Sample SampleServerBean.java Contents

// Imports

import com.bea.egen.EgenderverBean4—— —_

public class SampleServerBean
extends EgenferverBean

All server EJB
implementations generated by
YWeblLogic JAM extend
EgenserverBean

{hyte[] commarea, Object future)

eGen always adds this method to
EJB implementation

Results from the method
specified in the definition in
the eGen script

{
//dispatch
public hyte[] dispatc
throws IOException
{
}
EmployeeRecord newEmployee (EmployeeRecord commarea)
i
return new EmployeeRecord();
}
¥

SampleServerHome.java Source File

The eGen utility generates a standard home interface class for the server EJB.

SampleServer-jar.xml Source File

The following line from the deployment descriptor file results from the transaction

attribute in the definition in the eGen script.

<trans-attribute>Supports</trans-attribute>

3-12 BEA WebLogic Java Adapter for Mainframe Programming Guide

Mainframe to WebLogic Server Application Models

As described in Components of an eGen Server EJB Script, this element indicates the
level of transaction demarcation. If the t r ansact i on-at t ri but e is not present in the
definition, the default value is Suppor t s. So, in this example, the transaction attribute
was not listed in the script definition.

wl-SampleServer-jar.xml Source File

The following line from the WebLogic deployment information file results from the
home interface name in the eGen script.

<j ndi - nane>ny. sanpl eSer ver </ j ndi - name>

As described in Components of an eGen Server EJB Script, nmy. sanpl eSer ver is the
home interface identifier for this bean in the WebLogic deployment description.

Customizing a Server Enterprise Java Bean-Based Application

The generated server enterprise Java bean-based applications are only intended for
customizing, since they perform no real work without customization. This section
describes the way generated server EJB code can be customized.

The following figure illustrates the relationships and inheritance hierarchy between the
WebLogic JAM classes comprising the application.

BEA WebLogic Java Adapter for Mainframe Programming Guide 3-13

3 Basic Programming Techniques

Figure 3-1 The WebLogic JAM Server EJB Class Hierarchy

Jam. jar The eGen script file that
defines the method to be
) generated in the server EJB.
com.bea jam.egen.EgenServerBean
server eijh sample.Sawplelerve
my. 3amp leServer ﬁ\
i
) method newEmployee [EmployeeRecord)
nherits returns EmployeeRecord

generates }

extends EgenServerBean

{

}

class SampleServerBeaniﬁ__q_h

The classname is defined in the eGen script
i\‘_‘ asSampleServer . Consequently, the
generated Java source code containg the
class SampleServerBean.

nherits

Generated Java source code
produced fram the eGen script
file. The class inherits the
EgenSernerBean base class, and
contains the method specified.

class Extl3ampleferverBean
extends SamplelerverBean

{

}

Java source code written by the user that
extends the generated class produced from
the eGen script, and which adds member
functions and variables that implement the
business logic of the application.

The generated Java code for a server EJB application is a class that inherits the class
EgenSer ver Bean. The EgenSer ver Bean class is provided in the WebLogic JAM
distribution jar file. This base class provides the basic framework for an EJB. It
provides the required methods for a Stateless Session EJB.

The following listing shows an example Ext Sanpl eSer ver Bean class that extends
the generated Sanpl eSer ver Bean class, providing an implementation of the
newEnpl oyee() method. The example method prints a message indicating that a
newEnpl oyee request has been received.

3-14 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models

Listing 3-3 Sample ExtSampleServerBean.java Contents

package sanpl e;

public cl ass Ext Sanpl eServer Bean extends Sanpl eServer Bean

{
publ i c Enpl oyeeRecord newEnpl oyee (Enpl oyeeRecord in)
{
System out. println(“New Enpl oyee: “ +
+i n. get EnpRecord() . get EnpNane() . get EnpNaneFi r st ()
b a
+ in.get EnpRecord(). get Enpnane() . get EnpNanelLast ());
return in;
}
}

Once it has been written, the Ext Sanpl eSer ver Bean class and the other EJB Java
source files must be compiled and deployed in the same manner as other EJBs. Before
deploying, the deployment descriptor must be modified; the ejb-class must be set to
the name of your extended EJB implementation class (see Deploying a WebLogic
JAM eGen EJB).

Compiling and Deploying

Refer to the WebLogic Server documentation for more information. The sample file
provided with WebLogic Server contains a build script for reference.

WebLogic Server to Mainframe Application
Models

In a WebLogic Server to Mainframe application, a request originates on a WebLogic
client or server, and is serviced by a mainframe program invoked by the WebLogic
JAM Gateway in cooperation with the CRM.

BEA WebLogic Java Adapter for Mainframe Programming Guide 3-15

3 Basic Programming Techniques

Generating a Stand-Alone Client Application

This type of application produces simple Java classes that perform the appropriate
conversions of data records sent between Java and the mainframe and call mainframe
services, but without all of the EJB support methods. These classes are intended to be
lower-level components upon which more complicated applications are built.

Components of an eGen Stand-Alone Application Script

The general form of a definition of a stand-alone client class that appears in an eGen
script is as follows (keywords are in bold):

client class classnane
{ clientnmethods }

Table 3-6 describes the stand-alone client class definition keywords and parameters.

Table 3-6 Stand-Alone Client Class Definition Keywords and Parameters

Keyword/Parameter Definition

client class Indicates to the eGen utility the type of application component
that is to be generated.

cl assnane Indicates the class name for the client class.

Note: The package name should be included in the
cl assnane.

cl i ent met hods List of methods that appear in the client class implementation
(must be in braces). These methods are wrappers for calls to
services that are defined in the Ser vi ces section of the eGen
script. The general form of the definition fora cl i ent met hod
in an eGen script is as follows:

nmet hod net hodnane i s service servicenane

Table 3-7 describes the parameters of a cl i ent met hod
definition.

3-16 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models

Table 3-7 Parameters for the clientmethod

Parameter Definition
met hodnane The name of the method.
servi cenane Indicates the remote service for which this method acts as a

wrapper for a WebLogic JAM call. This service must be defined
in the same eGen script.

Following is an example of a stand-alone client class definition that appears in an eGen
script:

client class sanple. Sanpl ed ass

{
nmet hod newknpl oyee

is service sanpl eCreate

}

The example states the following:
m This is the definition of a simple client class.
m The package name is sanpl e and Sanpl ed ass is the class name.

m The net hod newEnpl oyee acts as a wrapper for a WebLogic JAM call to the
remote service sanpl eCr eat e.

m This service must be defined in the same eGen script as the client class.

Generated Files

The file Sanpl ed ass. j ava, containing the source for the sanpl e class, is generated.

Listing 3-4 shows the partial contents of the Sanpl ed ass. j ava source file.

BEA WebLogic Java Adapter for Mainframe Programming Guide 3-17

3 Basic Programming Techniques

Listing 3-4 Sample SampleClass.java Source File

The package

package sample;4————— | nhame defined in
the eGen script.

[/ Imports

import com.bea.jam. egen.Egenclient;

All stand-alone clients extend the
. EgenClient class. The EgenClient class is
public class SampleClass the client through which all WehLagic
extends EgenClien JAM senice requests are channeled.

{
public EmployesRecordwnewEmployee (EmployesRecord commarea)

throws IOException;—~snaException

} Comes fram the definition of the service
SampleCreate in the eGen script.

Customizing a Stand-Alone Java Application

The following figure illustrates the relationships and inheritance hierarchy between the
WebLogic JAM classes comprising the stand-alone java application.

3-18 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models

Figure 3-2 The WebLogic JAM Client Class Hierarchy

Jam. jar The eGen script file that
defines the method to be
generated in the client class

com.bea jam.egen.EgenClient

service sampleCreate accepts EwployeeRecord
returns EwployesRecord

zervice sampleRead accepts EmployeeRecord
returns EmployeeRecord

nherits gensrates elient class sample.SampleClass

e — i

method newEwmployee is service sampleCreate

wethod readEmployes 1= service sampleRead

)

class SampleClient
extends EgenClient
{

}

Gengarated Java source code produced

fram the eGen script file. The class
nherits inherits the EgenClient base class, and

FANE containg the methods specified.

clazss Ext3ampleClient
extends SampleClient

{

Java source code written by the user that
extends the generated class produced fram
the eGen script, and which adds member
functions and variables that implament the
business logic of the application.

}

The generated Java code for a client class application is a class that inherits class
Egend i ent. The Egend i ent class is provided in the WebLogic JAM distribution
jamj ar file. This base class provides the basic framework for a client to the
WebLogic JAM Gateway, as well as the required methods for accessing the gateway.

Your class, which extends or uses the Sanpl eCl i ent class, simply overrides or calls
these methods to provide additional business logic, modifying the contents of the
DataView. Your class may also add additional methods.

BEA WebLogic Java Adapter for Mainframe Programming Guide 3-19

3 Basic Programming Techniques

3-20

The following listing shows an example Ext Sanpl eCl ass class that extends the
generated Sanpl ed i ent class.

Listing 3-5 Sample ExtSampleClient.java Contents

package sanpl e;

public class ExtSanpl edient extends Sanpl ed ass

{

/'l creat eEnpl oyee

I

publ i ¢ Enpl oyeeRecord newEnpl oyee(Enpl oyeeRecord
comrar ea)

throws | OException, snaException

if (!isSsnValid(conmarea. get EnpRecord().get EnpSsn()))
{

/1 The SSN is not valid

throw new Error(”lnvalid Social Security Nunmber:”+

commar ea. get EnpRecord() . get EnpSsn()) ;
}

return super. neweEnpl oyee(conmmarea) ;

}

/1l Private functions

/***

* Val i dates an SSN field.

*/

private bool ean isSsnValid(Bi gDeci nal ssn)

{ if (ssn.longVal ue() < 100000000)
/1 Oops, appears to be less than 9 digits.
return false;

} 1eturn (true);

BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models

Once it has been written, the Ext Sanpl ed i ent class and the other Java source files
must be compiled and placed in your CLASSPATH.

Instead of extending the generated client, you can also write classes that have the
generated client as a member. This is an especially useful alternative if the class you
write must extend some other class.

Generating a Client Enterprise Java Bean-Based
Application

This type of application produces Java classes that comprise an EJB application. The
class methods are invoked from requests originating from other EJB classes or other

WebLogic Server client classes and transfer data records to and from the mainframe

(remote system). From the viewpoint of the mainframe, the Java classes act as a remote
CICS or IMS client. From the viewpoint of the WebLogic Server client classes, they
act as regular EJB classes.

Components of an eGen Client EJB Script

In order to produce an EJB-based application, the script file that defines your
DataViews must be edited to describe both the mainframe services accessed and the
EJB that will access them.

The general form of a definition of a client (WebLogic Server to Mainframe) EJB that

appears in an eGen script is as follows (keywords are in bold):

client ejb classnanme ejbregistration transaction
transaction-attribute

{cli ent net hods}

Table 3-8 describes the client EJB script keywords and parameters.

Table 3-8 Client EJB Script Keywords and Parameters

Keyword/Parameter Definition

client ejb Indicates to the eGen utility the type of application component
that is to be generated.

BEA WebLogic Java Adapter for Mainframe Programming Guide = 3-21

3 Basic Programming Techniques

Keyword/Parameter

Definition

cl assnane

Indicates the class name stem for the EJB. For example, if the
cl assnane is Sanpl ed i ent, the following files are
generated by the eGen utility:

m Sanpledient.java
m Sanpl eC i ent Bean. j ava
m Sanpl ed i ent Hone. j ava

Note: The package name should be included in the
cl assnane.

ej bregi stration

The name that will be used to register the home interface for the
EJB.

transaction
transacti on-
attribute

This keyword and parameter are optional. They indicate the
level of transaction demarcation. The possible values of
transaction-attri bute are:

= Not Support ed
Requi red
Supports
Requi r esNew
Mandat ory
Never

Note: Ifthetransacti on keyword is not present in the
definition, the default value of the
transaction-attributeis Supports. Fora
detailed explanation of how the WebLogic Server EJB
container responds to the
transaction-attri but e setting, see the section
on Transaction Attributes in the EJB 2.0 Specification.

cl i ent met hods

List of methods that appear in the EJB implementation. These
methods are wrappers for calls to remote services that are
defined in the services section of the eGen script. The
general form of a cl i ent met hod definition is as follows
(keywords are in bold):

met hod net hodnanme is service servicenane

Table 3-9 describes the parameters of a client method definition.

3-22 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models

Table 3-9 Client Method Definition Parameters

Parameter Definition
met hodnane The name of the method.
servi cenamne Indicates the remote service for which this method acts as

a wrapper for a WebLogic JAM call. This service must be
defined in the same eGen script.

Following is an example of a client (WebLogic Server to Mainframe) EJB definition
that appears in an eGen script:
client ejb sanple.Sanpl eCient mny.sanpl eBean
{
net hod newEnpl oyee
is service sanpl eCreate

}

The example states the following:

m This listing defines a Java bean class named Sanpl eCl i ent in the package
sanpl e with a method named newEnpl oyee.

m The method corresponds to service name sanpl eCr eat e.

m The EJB home will be registered in Java Naming and Directory Interface (JNDI)
under the name nmy. sanpl eBean.

Generated Files
Table 3-10 lists the files generated from the client (WebLogic Server to Mainframe)

EJB described in Components of an eGen Client EJB Script. These files are described
in the sections following the table.

Table 3-10 Sample Script Generated Files

File Content

Sanpl edient.java Source for the EJB remote interface.

Sanpl eCl i ent Bean. j ava Source for the EJB implementation.

BEA WebLogic Java Adapter for Mainframe Programming Guide 3-23

3 Basic Programming Techniques

Table 3-10 Sample Script Generated Files

Sanpl eQ i ent Hone. j ava Source for the EJB home interface.

Sanpl ed i ent-jar. xm Deployment descriptor.

w - Sanpl edient-jar.xm webLogic deployment information.

SampleClient.java Source File
Listing 3-6 shows the partial contents of the generated remote interface

Sanpl ed i ent . j ava source file. Following the listing are descriptions of the
elements in this file.

Listing 3-6 Sample SampleClient.java Contents

Fackage name listed
package sample 4—"""_|in the script definition

v

Jf Imports

import javax.ejb.EJECbject; Class name listed in

T / the script definition
public interface SampleClien

tends EJECh]
{ extends]ecﬂ—m__ﬁ Always extends

EJBObject

// newEnployee

EmployeeRecord newEmployee (EmployeeRecord commarea)
throws RemoteExceptlyn, UnexpectedException;

tethod listed in clientmethods
section of eGen script

3-24 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models

SampleClientBean.java Source File
Listing 3-7 shows the partial contents of the generated EJB implementation

Sanpl ed i ent Bean. j ava source file. Following the listing are descriptions of the
elements in this file.

Listing 3-7 Sample SampleClientBean.java Contents

//Inports

Al client EJB implemertations
generated by WebLogic JAM

import com.hea.jam. egen,BgenClientBean® | X
F] ? 7 ! extend EgenClientBean

public class SampleClientBean
extends EgenclientBean Results from the methad

{ in the eGGen script
// newEmployee

public EmployeeRecord newEmployee [EmployeeRecord commarea)
throws IOException, snaException

{

SampleClientHome.java Source File

The eGen utility generates a standard home interface class for the client EJB.

SampleClient-jar.xml Source File

The following line from the deployment descriptor file results from the transaction
demarcation listed in the definition in the eGen script.

<trans-attribute>Supports</trans-attribute>

BEA WebLogic Java Adapter for Mainframe Programming Guide 3-25

3 Basic Programming Techniques

As described in Components of an eGen Client EJB Script, this element indicates the
level of transaction demarcation. If the t r ansact i on- at t ri but e is not present in the
definition, the default value is Suppor t s. In this example, the

transaction-attri but e was not listed in the script definition.

wl-SampleServer-jar.xml Source File

The following line from the WebLogic deployment information file results from the
Home Interface name in the eGen script.

<j ndi - name>ny. sanpl eBean</j ndi - nane>

As described in Components of an eGen Client EJB Script, ny. sanpl eBean is the
home interface identifier for this bean in the WebLogic deployment description.

Note: You can edit the deployment descriptor to change the pool size, etc.

Customizing an Enterprise Java Bean-Based Application

3-26

The generated client enterprise Java bean-based applications are generally intended for
customizing. Without customization, the only function they perform is communication
with the mainframe. This section describes the way generated client EJB code can be
customized.

The following figure illustrates the relationships and inheritance hierarchy between the
WebLogic JAM classes comprising the application.

BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models

Figure 3-3 The WebLogic JAM Client EJB Class Hierarchy

Jam. jar

com.hea jam.egen.egenClientBean

The eGen script file that
defines the methods to be
generated in the client EIB

nherits

generates

class SampleClientBean
extends egenClientBean

{

}

nherits

class ExtlamplecClientEBean
extends SampleClientBean
i

}

service sampleCreate accepts EwmployeeRecord
returns EmployeeRecord
service sampleRead accepts EmployeeRecord
returns EmployesRecord
client ejb sample.3ampleClient sampleClient
i
method newEmployee is service sampleCreate
method readEmployee is service sampleRead

'

Generated Java source code produced from

the eGen script file. The class inherts the
EgenClientBean base class, and contains
the methods specified.

Java source code written by the user that
extends the generated class produced from

the eGen script, and which adds member
functions and variables that implement the
business logic of the application.

The generated Java code for a client EJB application is a class that inherits class
egend i ent Bean. The egenCl i ent Bean class is provided in the WebLogic JAM

distribution jar file.

Listing 3-8 illustrates an example Ext Sanpl ed i ent Bean class that extends the
generated Sanpl ed i ent Bean class, adding a validation function (i sSsnVal i d())
for the enp- ssn (m_enpSsn) field of the DataView Enpl oyeeRecor d class. If the
enp- ssn field is determined to be invalid, an exception occurs. Otherwise, the original
function is called to perform the mainframe operation.

BEA WebLogic Java Adapter for Mainframe Programming Guide = 3-27

3 Basic Programming Techniques

Listing 3-8 Example ExtSampleClientBean.java Class

package Sanpl e;
/1 lmports

i mport java. math. Bi gDeci mal ;
i mport java.io.|OException;

i mport com bea. sna.j cr ngw. snaExcepti on;
/1 Local inports

i mport sanpl e. Enpl oyeeRecor d;
i mport sanpl e. Sanpl eCl i ent Bean;
/***
* Ext ends t he Sanpl eG ent Bean EJB cl ass, addi ng addi tional business
| ogi c.
*/
public class ExtSanpl ed i ent Bean

extends Sanpl ed i ent Bean

/1 Public functions

/~k***
* Create a new enpl oyee record.
*/

publ i c Enpl oyeeRecord newEnpl oyee (Enpl oyeeRecord conmarea)
throws | OException, snaException

{
if (lisSsnvalid (comrarea. get EnpRecord() . get EmpSsn()))
{
/1 The SSN is not valid.
throw new Error (“Invalid Social Security Nunber:”
+ conmar ea. get EnpRecord() . get EmpSsn());
}
I
/1 Make the renote call.
return super. newknpl oyee(comarea) ;
}
}

/1l Private Functions

/**

3-28 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models

Val i date an SSN field

*

*

* @eturn
* True if the SSN is valid, otherw se fal se.
*/

private bool ean isSsnValid(final BigDecinml ssn)

{
if (ssn.longValue() < 100000000)
{
/1 Qops, appears to be less than 9 digits
return fal se;
}
return true;
}
}

When it has been written, the Ext Sanpl eCl i ent Bean class and the other EJB Java
source files must be compiled and deployed in the same manner as other EJBs. Prior
to deploying, the deployment descriptor must be modified; the ej b- cl ass property
must be set to the name of your extended EJB implementation class (see Deploying a
WebLogic JAM eGen EJB).

Compiling and Deploying

Refer to the BEA WebLogic Server documentation for more information. The sample
file provided with WebLogic Server contains a build script for reference.

Generating a Servlet Application

A WebLogic JAM servlet application is a Java servlet that executes within BEA
WebLogic Server. The application is started from a web browser when the user enters
a URL that is configured to invoke the servlet. The servlet presents an HTML form
containing data fields and buttons. The buttons can be configured to invoke:

m EJB methods

m Remote gateway services (via the JAM Gateway)

BEA WebLogic Java Adapter for Mainframe Programming Guide = 3-29

3 Basic Programming Techniques

In general, servlets generated by the eGen utility are intended for testing purposes and
are not easily customized to provide a more aesthetically pleasing interface.

In order to produce a servlet application, create an eGen script file and use the eGen
utility to generate your typed data record (DataView), and Servlet code.

In order to define a servlet application using an eGen script, you must define the
following:

m HTML pages displayed by the servlet

m The servlet itself

Components of an eGen HTML Page Definition

The general form of an HTML page that appears in an eGen script is as follows
(keywords are in bold):

page pagenane title

{ view viewnane

buttons {buttonlist}
}

Table 3-11 describes the HTML page definition keywords and parameters.

Table 3-11 HTML Page Definition Keywords and Parameters

Keyword/Parameter Definition

page Indicates to the eGen utility the type of application component
that is to be generated.

pagenane Indicates the name of the page so it can be referenced by the
servlet and other page definitions in the script.

title The title that will be displayed on the HTML page.

Vi ewnane Indicates the name of the DataView that is to be displayed on the
page. This DataView must be defined elsewhere in the eGen
script.

3-30 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models

Keyword/Parameter Definition

buttonli st List of buttons that are displayed on the page. The buttons can
either call EJB methods or remote services that are defined
elsewhere in the eGen script. The general form of the definition
for a button in the buttonlist depends on whether it is a remote
service button or an EJB.

The general syntax for a remote service button in an eGen script is as follows
(keywords are in bold):

buttonnanme servi ce (servicenane) shows pagename

Table 3-12 describes the remote service button definition keywords and parameters.

Table 3-12 Remote Service Button Definition Keywords and Parameters

Keyword/Parameter Definition

but t onnare The label that appears on the button.
servi cename The name of the remote service (must be in parenthesis).
pagenane The page used to display the results.

The general syntax for an EJB button in an eGen script is as follows (keywords are in
bold):

butt onnane ej bnet hod () shows pagenane
Note: Empty parenthesis must follow ej bret hod.
Table 3-13 describes the EJB button definition keywords and parameters.

Table 3-13 EJB Button Definition Keywords and Parameters

Keyword/Parameter Definition

but t onnane The label that appears on the button.

BEA WebLogic Java Adapter for Mainframe Programming Guide 3-31

3 Basic Programming Techniques

Keyword/Parameter Definition

ej bnet hod The name of the EJB method that is to be called. This method
should be specified in the following form:

packagenane. EJBcl ass. et hod

pagenane The page used to display the results.

Following is an example of an HTML page that appears in an eGen script:

page initial “lnitial Page”
{
vi ew Enpl oyeeRecord
buttons
{
“Create”
service (“sanpleCreate”)
shows ful | Page
}

}

This listing defines an HTML page named i ni ti al , with a text title of | ni ti al
Page, that displays an Enpl oyeeRecor d record object as an HTML form. It also
specifies that the form has a button labeled Cr eat e. When the button is pressed, the
service sanpl eCr eat e is invoked and is passed the contents of the browser page as an
Enpl oyeeRecor d object (the fields of which may have been modified by the user).
Afterwards, the f ul | Page page is used to display the results.

Components of an eGen Servlet Definition

The general form of a servlet definition that appears in an eGen script is as follows
(keywords are in bold):

servl et classnane shows pagenane

Table 3-14 describes the servlet definition keywords and parameters.

3-32 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models

Table 3-14 Servlet Definition Keywords and Parameters

Keyword/Parameter Definition

servl et Indicates the type of application component that is to be
generated.
cl assname Indicates the class name for the servlet.

Note: The package name should be included in the
cl assnane.

pagenane The name of the page that is initially displayed by the servlet.
This page must be defined elsewhere in the script.

Following is an example of a servlet definition that appears in an eGen script:
servl et sanpl e. Sanpl eServl et shows initial

The example states the following:

m This is the definition of an application servlet class named Sanpl eSer vl et in
the package sanpl e.

m The servlet is to be displayed in the HTML page named i ni ti al .

Generated Files

The eGen servlet definition described in Components of an eGen Servlet Definition
generates a servlet source code file called Sanpl eSer vl et . j ava.

Customizing a Servlet WebLogic JAM Application

The generated Java classes produced for servlet applications are intended for proof of
concept and prototypes. They can be customized in limited ways. It is presumed that
some other development tool will be used to develop a servlet or other user interface
on top of the generated EJBs or client classes.

BEA WebLogic Java Adapter for Mainframe Programming Guide 3-33

3 Basic Programming Techniques

Supplying Security Credentials

WebLogic JAM has the capability to accept user ID and password information from a
Java client program, and apply that information to access a secure service on the
mainframe.

Note: When security information is transmitted via the connection between the
WebLogic JAM Gateway and the CRM, it is sent in clear text (not encrypted).
You should not send this information over a network that can be read by
unauthorized parties.

Security Levels

There are three levels of security that are supported by WebLogic JAM.

m Local -- No user information from the Java client is required to access a
mainframe service. Use of this security level implies that any user with access to
execute the Java client program should have access to a mainframe service.

m Identify -- A user ID specified by the Java client is required to access a
mainframe service. This user ID is passed to the mainframe to verify that it is a
valid user ID. Use of this security level implies that there is a trusted relationship
between the Java and mainframe environments, since there is no re-verification
of the user's identity in the mainframe environment.

m Verify -- A user ID and password specified by the Java client are required to
access a mainframe service. The password is used to re-verify the user's identity
in the mainframe environment.

Notes: Refer to the BEA WebLogic Java Adapter for Mainframe Configuration and
Administration Guide for information on setting the security level fora CRM
link and using a default user ID.

Refer to your mainframe security documentation for more specific
information about establishing and administrating mainframe security.

3-34 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models

Supplying Security Credentials in a WebLogic JAM Client Program

User security information can be supplied in a WebLogic JAM stand-alone client or
client EJB. There are two methods in the EgenCl i ent object that support this
operation:

m Egendient.setUserld(String)
This method sets the user ID to the value specified in the St ri ng argument.

m Egendient. set Password(String)

This method sets the user password to the value specified in the St ri ng
argument.

These methods can be called on any sub-class of Egend i ent , such as the client
classes generated by the eGen utility. The methods are not inserted automatically by
the eGen utility; they must be manually added to the client program source, and should
be called prior to the any calls to EgenCl i ent . cal | Servi ce().

The methods set User | Dand set Passwor d can be called on any subclass of
Egend i ent Bean, such as the client EJBs generated by the eGen utility.

Egend i ent Bean has methods by the same name that act as wrappers for calls to
methods of the EgenCl i ent member of the EgenCl i ent Bean class.

Calls to the Egend i ent . set User | d() method within a WebLogic JAM client will
override any default user ID value configured for the CRM link the client is using.

These methods cannot be used with the servlet-only applications, since they do not use
the Egendl i ent object directly. Servlet-only applications can make use of the default
user ID to support security level Identify.

Listing 3-9 illustrates a class that extends the generated EJB implementation to provide
security credentials to the Gateway during these operations.

Listing 3-9 Example of Class with Security Credentials

/| Ext Sanpl ed i ent Bean. j ava
I

package sanpl e;
/'l Imports
/1

BEA WebLogic Java Adapter for Mainframe Programming Guide 3-35

3 Basic Programming Techniques

i mport java.io. | OException;
i mport com bea. sna.j cr ngw. snaExcepti on;

/**
* EJB i npl ement ati on.
*/
public class ExtSanpl ed i ent Bean extends Sanpl eCl i ent Bean
{
protected byte[] call Service(String svc, byte[] input)
throws snaException, | OException
{
set Useri d(“JAMJUSER’) ;
set Passwor d(“ JAMPASS") ;
return super.call Service(svc, input);
}
}

/1 END Ext Sanpl ed i ent Bean. j ava

Note: WebLogic JAM will return an SNANot Aut hor i zed exception if the
credentials are rejected by the mainframe security package.

WebLogic JAM to JMS

WebLogic JAM includes an EJB that has two major functions:
m Inserts request data into JMS topics or queues

m Converts EBCDIC data into an ASCII XML document for use with custom
applications

WebLogic JAM to JMS is a utility stateless session EJB that uses a DataView
generated by the eGen utility to convert the data. The EJB is contained in the j am ear
file with a default JNDI name of JAMT0oJ V5.

The general process for this insertion and conversion is described in the following
sections.

1. Obtain a COBOL Copybook.

3-36 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic JAM to JMS

The mainframe client application must have a COBOL record layout (copybook)
to describe the message comprising the request. This layout is used to generate
Java classes that can be used for data transformation. Refer to Obtaining a
COBOL Copybook for more information.

. Generate a DataView with XML Support.

Make sure that your eGen script is written to generate DataViews that support
XML, as shown in the following code example:

generate view enpRecData from enprec support xnm

For more information on DataViews, refer to Writing the DataView Section of
an eGen Script. For more information on generating the DataView source files,
see Processing eGen Scripts with the eGen Utility. These files can be compiled
for deployment. The schema and DTD can be made available to the XML
application as necessary.

. Compile the DataView . j ava files (see Creating an Environment for Generating
and Compiling the Java Code).

. Copy the DataView class files created by the eGen utility to a directory in the
WebLogic Server CLASSPATH.

. Create a JMS Event definition. For specific instructions, refer to the BEA
WebLogic Java Adapter for Mainframe Configuration and Administration Guide.

For an example of how to use the WebLogic JAM to JMS feature, refer to the
BEA WebLogic Java Adapter for Mainframe Samples Guide.

BEA WebLogic Java Adapter for Mainframe Programming Guide 3-37

3 Basic Programming Techniques

3-38 BEA WebLogic Java Adapter for Mainframe Programming Guide

CHAPTER

4 Deploying
Applications

Deployment is the process of installing servlets and/or EJBs on WebLogic Server.
Application deployment in WebLogic Server has evolved to the J2EE standard for web
application deployment.

The following information is not intended to specifically describe how applications are
deployed in WebLogic Server. For specific information, refer to Quick Start
information and detailed documentation for deploying applications in the WebLogic
Server online documentation at:

http://edocs/wW s/ docs70/ qui ckstart/quick_start. htm
http://edocs/wW s/ docs70/ servl et/ adm n. ht n
http://edocs/w s/ docs70/ depl oynent . ht i

This section discusses the following topics:

m Deploying a WebLogic JAM eGen EJB

m Deploying a WebLogic JAM eGen Servlet (Quick-Start Deployment)

Deploying a WebLogic JAM eGen EJB

A WebLogic JAM eGen EJB (client or server) is deployed like any other WebLogic
EJB. Considerations that are specific to WebLogic JAM are:

m Deployment descriptors generated by the eGen utility need to be renamed.

BEA WebLogic Java Adapter for Mainframe Programming Guide 4-1

4 Deploying Applications

m Ifthe EJB is to contain business logic in addition to WebLogic JAM access
code, a subclass must be created.

m If multiple EJBs are created, the generated deployment descriptors must be
manually merged if the beans are to be deployed in the same . j ar file.

Renaming Deployment Descriptors

The EJB deployment descriptors generated by the eGen utility are named based on the
generated EJB, rather than the using the standard J2EE and WebLogic file names. This
is to avoid file naming conflicts if multiple beans are generated in the same directory.
As aresult, these descriptors must be renamed before the EJB is packaged and

deployed. Following are the naming conventions used, where BeanName is the name

of the generated EJB:
Generated Descriptor Name Deployed Descriptor Name
BeanNane-j ar. xm ej b-jar.xm
w - BeanNarne. xni webl ogi c-j ar. xm

For example, consider the following portion of an eGen script:

client ejb Testdient TestdientHone

{
met hod newEnpl oyee

is service enpl Create

}

In this script, the descriptions generated would be named Test Cl i ent -j ar. xnl and
w - Test O i ent. xnml respectively.

4-2 BEA WebLogic Java Adapter for Mainframe Programming Guide

Deploying a WebLogic JAM eGen EJB

Adding Business Logic to a Generated EJB

The EJBs generated by the eGen utility contain the infrastructure for calling
mainframe services and returning the results of those services. If you want to present
a different API that performs some business logic before deferring to the generated
service methods, you will need to create a new bean class that sub-classes the
generated code.

If you want to maintain the same remote interface generated by the eGen utility but add
business logic before/after the mainframe call, simply derive a new class from the
generated bean class while retaining the generated home and remote interfaces. For
example, if our generated Test Cl i ent Bean. j ava contains a method named
newEnpl oyee(), you could insert business logic as follows:

public class MyLogi cBean extends TestC i ent Bean

{
publ i c dataVi ew newEnpl oyee(dat aVi ew i n)
{
/1 perform before business logic here
dat aVi ew out = super. newknpl oyee(in);
/1 performafter business |logic here
return(out);
}
}

However, if you want to present a different remote interface in addition to adding
business logic, you also need to create new remote and home interfaces to support your
new bean.

In either case, be sure to update the generated deployment descriptors to reflect your
new bean classes.

For example, suppose you used the eGen utility to generate an EJB named

Test O i ent Bean, and that bean had been extended as in the above example by a bean
class named MyLogi cBean. The eGen utility would have generated a deployment
descriptor with the name Test Ol i ent -j ar. xnl . The generated deployment
descriptor would need to be renamed ej b-j ar. xm before deployment. The

ej b- cl ass element's value should also be changed from Test O i ent Bean to
M/Logi cBean to reflect the new bean class name as in the example below.

<ej b-jar>
<ent er pri se- beans>
<sessi on>
<ej b- name>Test d i ent </ ej b- nane>

BEA WebLogic Java Adapter for Mainframe Programming Guide 4-3

4 Deploying Applications

<hone>Test C i ent Home</ home>
<renot e>Test Cl i ent </ r enot e>
<ej b- cl ass>MyLogi cBean</ ej b-cl ass>
<sessi on-type>St at el ess</ sessi on-type>
<transacti on-type>Cont ai ner</transacti on-type>
</ sessi on>
</ enterprise-beans>

</ ejb-jar>

Merging Multiple Deployment Descriptors

Multiple WebLogic JAM EJB's can be generated as part of a single application. This
can be done in a single eGen script, or by running the eGen utility multiple times with
different scripts. If these beans are to be deployed in a single . j ar file, the generated
deployment descriptors for each must be merged into a single ej b-j ar. xnl and
webl ogi c-j ar. xm .

Sample EJB Deployment

Following are instructions for the deployment of a sample eGen-created EJB.

1. Build your EJB deployment . j ar file. Listing 4-1 will build the client EJB
deployment . j ar file from the components generated by the t r adeser ver . egen
eGen script and Tr adeRecor d. cpy.

Listing 4-1 Script for Building JAM_TradeServer.jar

@em --- Adjust these variables to match your environment -----------------
set TARCGETJAR=JAM TradeServer.j ar

set JAVA HOVE=c:\ bea\jdk131_02

set W._HOMVE=c:\ bea\w server 700

set JAM HOVE=c:\bea\w janb. 1

@em ------ end of Adjustable variables ------------mmmm

set JAMJARS=%JAM HOVE% | i b\ jam j ar

set CLASSPATH=%AM HOVE% | i b\jam jar; %QAM HOVE% | i b\t ool s. j ar;
ON._HOVE% | i b\ webl ogic.jar

set PATH=%AVA_HOVE% bi n; %d AVA_HOVE% | i b; %PATHY%

4-4 BEA WebLogic Java Adapter for Mainframe Programming Guide

Deploying a WebLogic JAM eGen Servlet (Quick-Start Deployment)

@em Create the build directory, and copy the depl oynent

@em descriptors into it.

@em You should have already run your egen script so your xm files
@em are already built.

md buil d buil d\ META- | NF

copy TradeServer-jar.xm ejb-jar.xn

copy W -TradeServer-jar.xm webl ogic-ejb-jar.xm
copy *.xm buil d\ META- 1 NF

@em Conpile ejb classes into the build directory (jar preparation)
javac -d build -classpath UCLASSPATH% *.java

@em Mke a standard ejb jar file, including XM. depl oynent
@em descriptors

cd build
jar cvf std_%ARCETJAR% META- | NF sanpl e
cd ..

@em Run ejbc to create the deployable jar file

java -cl asspath %CLASSPATHY% - Daebl ogi ¢c. home=%\L_HOVE% webl ogi c. ej bc -conpi | er
javac buil d\std_%TARGETIAR% YdARGETIARY%

2. Deploy the EJB in BEA WebLogic Server by configuring it as a new EJB in the
WebLogic Administration Console.

Deploying a WebLogic JAM eGen Servlet
(Quick-Start Deployment)

The basic JAM eGen servlet is deployed like any other WebLogic servlet. The
configuration for the eGen servlet is stored in the web. xm file in an applications
directory associated with a domain. The basic default configuration can be found in the
following directory:

<BEA HOVE>/ <JAM | NSTALL_DI R>/ confi g/ veri fy/applications/
Def aul t WebApp/ VEEB- | NF/ web. xm

BEA WebLogic Java Adapter for Mainframe Programming Guide 4-5

4 Deploying Applications

For example, suppose a servlet is generated by executing the eGen utility on a script
containing the following servlet definition:

servl et sanpl e. Sanpl eServl et shows initial
This produces a servlet class file named Sanpl eSer vl et in a package called sanpl e.

For the Sanpl eSer vl et , add the cl asses and sanpl e directories, so the directory
structure looks like the following:

<BEA HOVE>/ <JAM HOVE>/ confi g/ veri fy/ applications/
Def aul t WebApp/ VEEB- | NF/ cl asses/ sanpl e

The Sanpl eSer vl et and the associated DataView class, which are the result of
compiling the *. j ava files generated by the eGen utility, should be placed in the
sanpl e directory.

Sanpl eSer vl et can be configured with an XML entry (added to web. xn) similar to
the one shown in Listing 4-2:

Listing 4-2 XML Entry to Configure the SampleServlet Servlet

<web- app>
<servl et>
<servl et - name>
Sanpl eSer vl et
</ servl et - nanme>
<servl et-cl ass>
sanpl e. Sanpl eSer vl et
</servlet-class>
</ servl et>
<servl et - mappi ng>
<servl et - name>
Sanpl eSer vl et
</ servl et - nane>
<url -pattern>
/ Sanpl eServl et/ *
</url -pattern>
</ servl et - mappi ng>
</ web- app>

Sanpl eSer vl et can then by invoked by entering the following URL in the location
field of your web browser:

4-6 BEA WebLogic Java Adapter for Mainframe Programming Guide

Deploying a WebLogic JAM eGen Servlet (Quick-Start Deployment)

http://<host>: <port >/ Sanpl eSer vl et

If WebLogic Server is running on your local machine and you used the default port
(7001) when you installed WebLogic Server, Sanpl eSer vl et can be invoked by the
following URL:

http://1ocal host: 7001/ Sanpl eSer vl et

BEA WebLogic Java Adapter for Mainframe Programming Guide 4-7

4 Deploying Applications

4-8 BEA WebLogic Java Adapter for Mainframe Programming Guide

CHAPTER

S Understanding
Programming Flows

This section illustrates the interaction between WebLogic Server and mainframe
programs. The following topics are discussed:

m Distributed Program Link Programming Flows
m IMS Implicit APPC Programming Flows

m Common Programming Interface for Communications Programming Flows

Distributed Program Link Programming
Flows

The following examples of DPL programming flows are discussed:

m Java Client Request/Response to CICS DPL

m CICS Request/Response DPL to WebLogic Server EJB

m CICS DPL Asynchronous No Reply to WebLogic Server Application
m Transactional Java Client Request/Response to CICS DPL

m Transactional CICS Request/Response DPL to WebLogic Server EJB

BEA WebLogic Java Adapter for Mainframe Programming Guide

5-1

S understanding Programming Flows

Java Client Request/Response to CICS DPL

Figure 5-1 illustrates a Java Client Request/Response to CICS DPL programming
flow.

Figure 5-1 Java Client Request/Response to CICS DPL

WebLogic

Jawva Client Class

public elass BaseClient extends EgenClient
{

—"puhlic Chardata toupper [(Chardatas commares)
throws IOException, snaException

{

byte[] inputBuffer = commarea.toBytelrray(new MainframelWriter()).
p byte[] ravResult = ecall3ervice ("TOURPER", inputBuffer);

Chardata result = new Chardata(new MainframeReader (cawResult));

return result;

}

CICs @

—rilost Mirror Transaction

@[—h PROGRAM-ID, TOUPCICE.

LINEAGE SECTICH.
01 DFHCOMMAREL.
COPY CHARDATL.

4}manipulate COnares)

EXEC CIC3 RETURN

The following steps describe the Java Client Request/Response to CICS DPL
programming flow.

1. A Java client class (such as a stand-alone client, EJB, etc.) makes a call to the
Based i ent . t oupper method with a Char dat a DataView as the parameter.

5-2 BEA WebLogic Java Adapter for Mainframe Programming Guide

Distributed Program Link Programming Flows

2. Inthet oupper method, a call is made to the Egend i ent . cal | Servi ce
method.

Note: The Based i ent extends Egend i ent, so the Based i ent inherits the
cal | Servi ce method from Egend i ent .

The value of the first parameter is TOUPPER. TOUPPER is the name of the DPL
Service that is mapped to the CICS DPL program TOUPCI CS in the WebLogic

Administrative Console.

Elstartup & Shutdawn
= Eservices
Elucom
Elupsc
= Elums
Elconnection Factories
ETemplates
ElDestination Keys
M stores Service Name CICS Program Hame
Elpistributed Destination sampleCreate DPLDEMOC
sampleCreateT DPLDEMVC
TOUPPER TOUPCICS

g e
Z bea

JAM> DPL Services =

E”Create a new DPL Service

EEE

Elservers
Elmessaning Bridae
Elmar
@ e
Elsmmr
ElwiLEc
ElwiebLogic Tuxedo Cannect
Euait
Evirtual Hosts
Elwail
EIFileT3
Elsecurity
campatibility Security
Domain Log Filters
ElTasks
= @ Java adapter far Mainframe
& regions
Eluam Components
B8 8dservices
DPL Services
@ APPC Services
= &) Exports
Exported EJBs I
" IMS Events =T |
=] [[|25 Local intranet w

3. The host mirror transaction starts the TOUPCl CS program and passes the contents
of the i nput Buf f er byte array as the commar ea.

4. The TOUPCI CS program processes the data.

5. The CICS server returns the conmar ea. The data is returned from the
Egend i ent . cal | Servi ce method as the byte array r awResul t .

CICS Request/Response DPL to WebLogic Server EJB

Figure 5-2 illustrates a CICS request/response DPL to WebLogic Server EJB
programming flow.

BEA WebLogic Java Adapter for Mainframe Programming Guide 5-3

S understanding Programming Flows

Figure 5-2 CICS Request/Response DPL to WebLogic Server EJB

cics

0

HSER TRANSACTION TRCL

ROGRAMN-ID. TRADCLHNT.

EXEC CIC3 LINK

PROGEAM (' TRADSERV')

» COMMAREL (TRADE-RECCORIN
SY3ID('BEAC')
LEMGTH (LENGTH OF TRADE-RECORD)
SYNCONRETURN
RE3F (RE3F-CODE)

END-EXEC

WeblLogic

public elass TradelServerEeah extends EgenSerwverBean
1
ppublic hyte[] dispatchibyte[] commarea, Cbject future)

throws snaException, IOException
{
TradeRecord inputBuffer = new TradeRecordinew
MainframeReader (commarea) | 2

P IradeRecord result = buy {inputBuffer)”

return result.toByteldrray(new MainframelWriteri()): (:>
}

priwvate TradeRecord buy(TradeRecord comnaresn) #———
i

[manipulate the data)

return cormarear

The following steps describe the CICS request/response DPL to WebLogic Server EJB

programming flow.

1. The user-entered transaction TRCL invokes the TRADCLNT program.

The EXEC Cl CS LI NK command causes the advertised service TRADSERV to
execute. The SYSI D value is set to the name of the connection associated with
the CRM Logical Unit. The SYNCONTRETURN parameter indicates that the
WebLogic Server EJB will not be involved in the CICS transaction.

5-4 BEA WebLogic Java Adapter for Mainframe Programming Guide

Distributed Program Link Programming Flows

2. In the WebLogic Administration Console, the TRADSERV service is mapped to the
JNDI name jam Tr adeSer ver for the Tr adeSer ver EJB. This causes the
dispatch method of Tr adeSer ver Bean to be invoked.

Estartup & Shutdown
B Esenices
JCGOM
Supec
= Eams
Elconnection Factories E“Export an EJB
ETemplates
Elpestination Keys
Elstores
Epistributed Destination
Hlservers
Elmessaging Bridge
ChiamL
@ aTa
Elsrmp
ElywiLEc

Z bea

JAM> Exported EJBS '

Service Name JNDI Name
TRADSERVY jam.TradeServer
TOUPPER jam.ToupperServer

E[=]

ElwweblLagic Tuxeda Connect
==
Evirtual Hosts
Elman
[==TE
Clsecurity
P Compatibility Security
Elpomain Log Filters
ClTasks
B &%)ava Adapter far Mainfrarme
&l regions
BduamM Components
= &l senices
DPL Services
@ aPPC Senices
= &) Exports
=& Exported EJBs =
= UMS Events ==t | =1
&] Done [[[E5 Localintranet =

3. The buy method is invoked from the di spat ch method.

4. The business logic is performed, and the result is returned to the di spat ch
method.

5. The data is returned from the di spat ch method into the COMVAREA.

CICS DPL Asynchronous No Reply to WebLogic Server
Application

Figure 5-3 illustrates a CICS DPL asynchronous no reply to Java server programming
flow.

BEA WebLogic Java Adapter for Mainframe Programming Guide 5-5

S understanding Programming Flows

Figure 5-3 CICS DPL asynchronous no reply to Java server

cics

O] P
ROSELM-TITD. JMICLIIT.

EXEC CIC3 LINMNE
PROGEAM (' CTOJMISEV")
COMMAREL (TRADE-RECORD)
SY¥SID ('BELC')

LEMNGTH (LENGTH OF TRADE-RECORD) <:>
SYHNCONEE TURN
RESP (EESFP—-CODE)

EMD-EXEEC @

WebLogic

GATEWMAY

JAM.examples . CICS .. EventTopic

The following steps describe the CICS DPL asynchronous no reply to Java server
programming flow.

©

1. The user-entered transaction CTQJ invokes the JMSCLNT program.

2. The EXECCI CS LI NK command causes the advertised service CTQIMSSV to
execute. The SYSI D value is set to the name of the connection associated with the
CRM Logical Unit. The SYNCONTRETURN parameter indicates that the WebLogic
Server EJB will not be involved in the CICS transaction.

3. The Gateway sends the message to the JMS Event CTQJIMSSV. In the WebLogic
Administration Console, the CTQIMSSV service name is mapped to the JMS topic
Jam exanpl es. Cl CS. Event Topi c.

5-6 BEA WebLogic Java Adapter for Mainframe Programming Guide

Distributed Program Link Programming Flows

= Elserices
Elucom
Supec
B Eaus
Econnection Factories
ElTemplates
Elpestination Keys
Elstores
HElpistributed Destination
Elservers
Elmessaging Bridge
HML
@ ara
Esrmp
Elwiec
ElweblLagic Tuxeda Cannect
== N
Elvirtual Hosts
==vE
EFileTs
Hlsecurity
Compatibility Security
Domain Log Filters
ElTasks
=1 @® Java Adapter for Mainframe
& Regions
Eluam components
B &l senices
DPL Services
@ APPC Services
B & Exports
=& Exported EJBs
JMS Events

F webLogic Integration ES |

-
e G-
Z hea

B Create a new JMS Event
Service Name
ITOJMS SW

CTCJMSSW

4l

JMS Destination
JAM.examples.IMS.EventTopic
(Topic)
JAM.examples.CICS.EventTopic
(Topic)

(P3|

2]

[=5 Local intranst

2

4. Data that is identical to the request data is returned in the COMVAREA to JMSCLNT.

Figure 5-4 illustrates a transactional Java client request/response to CICS DPL

programming flow.

BEA WebLogic Java Adapter for Mainframe Programming Guide

Transactional Java Client Request/Response to CICS DPL

5-7

S understanding Programming Flows

Figure 5-4 Transactional Java Client Request/Response to CICS DPL

WebLogic
public class Client
1

@tx.begin(]:
baseClient . toupper (Commnares) ;
®t,x.cc|mmit,(]:

) }

public class EasecClient extends EgenClient
1

prrddic Chardats toupper (Chardata cormarea)
throws IOException, snaException
{

byte[] inputBuffer = commares.toBytelrray(new

MaimtMeWriter () 2
byte[] rawResult = call3ervice ("TOUPPER"™, inputBuffer):
Chardata result = new Chardata(new MainfraweReader (rawResult))

return result;
i

cics (3)

—iHost Mirror Transaction

®[—|Iv PROGRAM-ID. TOUPCICS.

LINELAGE SECTION.
01 DFHCOMMAREAL.
COPY CHARDATA.

[manipulate cormoaresa)

i}

EXEC CIC3 RETURN

The following steps describe the transactional Java client request/response to CICS
DPL programming flow.

1. A Java client class calls the begi n method of a User Tr ansact i on object to start
a transaction.

2. Within the boundaries of that transaction, the Java client class makes a call to the
Based i ent . t oupper method with a Char dat a DataView as the parameter.

3. Inthet oupper method, a call is made to the EgenCl i ent . cal | Ser vi ce
method.

5-8 BEA WebLogic Java Adapter for Mainframe Programming Guide

Distributed Program Link Programming Flows

Note: The Based i ent extends Egend i ent, so the Based i ent inherits the
cal | Servi ce method from Egend i ent .

The value of the first parameter is TOUPPER. TOUPPER is the name of the DPL
Service that is mapped to the CICS DPL program TOUPCI CS in the WebLogic
Administration Console.

Elstartup & Shutdawn
8 Eserices
Eucom
Elipec
= Eums
Hcaonnection Factories
ElTemplates
Elpestination Keys
Elstores
Clpistributed Destination sampleCreate DPLDEMOC
Edservers sampleCreateT DPLDEMYC
TOUPPER TOUPCICS

JAM> DPL Services = Zhea
e

E“Create a new DPL Service

Service Name CICS Program Hame

= =8

Emessaging Bridge
Esaur
@ .Ta
Elsrmp
ElwiLec
ElywebLogic Tuxedo Connect
Elon
Elvirtual Hosts
E mait
EFileTs
Hlgecurity
B8 Compatibility Security
Elpomain Log Filters
A Tasks
B @8 Jzva Adapter for Mainfrarme
ElRegions
B 0aM Cormponents
= &l serices
@ DPL Services
@ aPPC Senices
= & Empons
Exported EJBS =
= Jms Events == 121
&1 [| |Z5 Localintranct w7

The host mirror transaction starts the TOUPCl CS program and passes the contents
of the i nput Buf f er byte array as the commarea.

The TOUPCI CS program processes the data.

The CICS server returns the conmar ea. The data is returned from the
Egend i ent. cal | Servi ce method as the byte array r awResul t .

The Java client class calls the commi t method of the User Tr ansact i on object to
indicate the successful completion of the transaction. This causes the commit of
the WebLogic managed resources, as well as the resources held by the Host
Mirror Transaction.

BEA WebLogic Java Adapter for Mainframe Programming Guide 5-9

S understanding Programming Flows

Transactional CICS Request/Response DPL to WebLogic
Server EJB

Figure 5-5 illustrates a transactional CICS request/response DPL to WebLogic Server
EJB programming flow.

Figure 5-5 Transactional CICS Request/Response DPL to WebLogic Server EJB

@,— cics

TECL
PROGERAM-ID. TRADCLNT.

EXEC CICS LINK
PROGEAM (' TRADSERV')
» COMHMAREL (TRADE-RECCORD)
SYIID('BEAC')
(:) LENGTH(LENGTH OF TRADE-RECORD)
RESF (RESF-CCODE)
END-EXEC

[Further processing)
(:)EXEC CICS SYNCPOINT

EXEC CICS RETURN

WebLogic

public class TradeZerverBean extends EgenServerBean
i

prublic byte[] dispatchibyte[] commares, Chject future)
throws snaException, ICException
{

TradeRecord inputBuffer = new TradeRecord(new
MainframeReader [comnarea))

P TradeRecord result = buy(inputBuffer)T
return result.tcoBytelrrayinew MainframelWriter ()] :

) @

private TradeRecord buy(TradeRecord commarea) #———
{

[manipulate the data)

FELUrn commares;

The following steps describe the transactional CICS request/response DPL to
WebLogic Server EJB programming flow.

5-10 BEA WebLogic Java Adapter for Mainframe Programming Guide

Distributed Program Link Programming Flows

1. The user-entered transaction TRCL invokes the TRADCLNT program.

2. The EXEC ClI CS LI NK command causes the advertised service TRADSERV to
execute. The SYSI D value is set to the name of the connection associated with the
CRM Logical Unit. When the SYNCONRETURN command is not included in the
EXEC Cl CS LI NK, this indicates that the WebLogic Server is involved in the CICS
transaction.

In the WebLogic Administration Console, the TRADSERV service is mapped to
the INDI name j am Tr adeSer ver for the Tr adeSer ver EJB. This causes the
dispatch method of Tr adeSer ver Bean to be invoked.

Elstartup & Shutdawn
=2 Elservices
Eucom
[==N]sl=Te]
= Elams
Elconnection Factories B7Export an EJB
ElTemplates

JAM> Exported EJBs

Elpestination Keys .
Clsiores Service Name JNDI Name

Elpistributed Destination TRADSERY jam.TradeSenver
Eservers TOUPPER jam.ToupperServer
ElMessaging Bridge
=P
@ T
Elsrmp
i e
EyweblLogic Tuxedo Gonnect
o
Elvirtual Hosts
= pail
EFileTs
Elsecurity
B2 compatibility Security
Domain Log Filters
ElTasks
B @® Java Adapter for Mainframe
Regions
&JamM Components
= &l genices
DPL Services
@ aPPC Senices
= & Exponts
=2 Exported EJBs -
& ums Events == 11
&1 Done [[|Ex Localintranet =

5=

3. The buy method is invoked from the dispatch method.

4. The business logic is performed, and the result is returned to the di spat ch
method.

5. The data is returned from the di spat ch method into the COMMAREA.

6. If necessary, further processing can be done in TRADCLNT before the EXEC Cl CS
SYNCPO NT that ends the transaction.

BEA WebLogic Java Adapter for Mainframe Programming Guide 5-11

S understanding Programming Flows

IMS Implicit APPC Programming Flows

The following examples of IMS implicit APPC programming flows are discussed:
m Java Client Request/Response to IMS Transaction Program
m IMS Asynchronous No Reply Transaction Program to Java Server

m Transactional Java Client Request/Response to IMS Transaction Program

Java Client Request/Response to IMS Transaction
Program

Figure 5-6 illustrates a Java Client Request/Response to IMS programming flow.

5-12 BEA WebLogic Java Adapter for Mainframe Programming Guide

IMS Implicit APPC Programming Flows

Figure 5-6 Java Client Request/Response to IMS Transaction Program

The following steps describe the Java Client Request/Response to IMS programming

WeblLogic

Jawva Client Class

public class BaseClient extends EgenClient

{

L public Chardata toupper (Chardata commares)
throws I0OException, snaException
{

return result;

H

byte[] inputBuffer = commarea.toByteldrrayinew MainframwelWriter()):
hpere[] rawkResult = callService ("TOUPPER™, inputBuffer):
Chardata result = new Chardatainew MainframeReader (rawvResult)):

a

|:I1Mb"‘
@ p| PROGRAM-ID. TOUPIMS.

01 REQUEST-MESSAGE.
05 NESSAGE-HEADER.

@ 05 USER-DATA

COPY CHARDATA.
@CALL 'CELTDLI' USING GU, IOPCE, REQUEST-MESISAGE.
@ (create RESPONIE-MESSAGE

®CALL 'CELTDLI' USING ISRT, IOPCE, RESPONSE-MESSAGE.

flow.

1.

A Java client class (such as a stand-alone client, EJB, etc.) makes a call to the
BaseC i ent . t oupper method with a Char dat a DataView as the parameter.

In the t oupper method, a call is made to the Egendl i ent . cal | Servi ce

method.

Note: The Based i ent extends Egend i ent, so the Based i ent inherits the

cal | Servi ce method from Egend i ent .

The value of the first parameter is TOUPPER. TOUPPER is the name of the APPC
Service that is mapped to the IMS transaction TOUPI M5 in the WebLogic

Administrative Console.

BEA WebLogic Java Adapter for Mainframe Programming Guide

S understanding Programming Flows

5-14

@ Console — "0
E @ examples JAM:>= APPC Services = ;:he‘a-
Elservers
Hciusters
hachines
Elnetwork Channels B Create a new APPC Service
B EDeployments
Ij.-'\ppl\cenicms
Heis Service Name Transaction Program Id
Elyven annlications dolVTHO IWTNO
Elweh Service Components SIMPCPIC TPHCPIC
Elconnectors TOUPPER TOUPIMS
Estartup & Shutdown
B Elsenices
Eucom
HElupec
Eums
EMessaging Bridge
=
@ uts
Esrmp
ElwiLec
Ij\/’\l’ebLUgm Tuxedo Connect
ot
Elvirtual Hosts
Elptail
EIFieTs
Hlsecurity
E® Compatibility Security
Dormain Log Filters
ElTasks
B 8% jova adapter for Mainfrarme
@Regiﬂns
& aam Compohents
8 &l services
@ DPL Semicas

B
g P APPOsevces iy 5]

&1 =5 Local intranst G

El=]=1

3. IMS starts the TOUPI MS transaction. This transaction executes the associated
program TOUPI M5. The contents of the i nput Buf f er byte array are placed on an
| OPCB as request data.

4. The TOUPI MS program accesses the request data by performing a get uni que on
the | OPCB.

5. The TOUPI Ms program processes the data and creates a response message.
6. The TOUPI MS program inserts the response data to the | OPCB.

7. IMS returns the response data back to the requester. The data is returned from the
Egend i ent . cal | Servi ce method as the byte array r awResul t .

BEA WebLogic Java Adapter for Mainframe Programming Guide

IMS Implicit APPC Programming Flows

IMS Asynchronous No Reply Transaction Program to
Java Server

Figure 5-7 illustrates an IMS asynchronous no reply transaction program to a Java
server programming flow.

Figure 5-7 IMS Asynchronous No Reply Transaction Program to Java Server

<:>(——1ﬂﬂ8
ROGRAM-ID. IMITOJMS.

(:}CALL 'CELTDLI' USING GU, ICOPCE, INPUT-MEZSAGE.

(3} (COMPOSE THE REQUEST MESSAGE)
(A3CaLL 'CBLTDLI' USING CHNG, ALTECE, APEC—TRAN-CODE.
(8}CALL 'CBLTDLI' USING ISRT, ALTPCB, REQUEST-MESSAGE.

(:>CALL 'CELTDLI' TU3ING PURG, ALTFCE.

WeblLogic @

GATEWAY

JAM. examples. IMS . EventTopic

The following steps describe the IMS transaction program to asynchronous no reply
Java Server programming flow.

1. IMS starts the | MSTQINVS transaction. This transaction executes the associated
program | MSTQIMS.

2. The | MSTQJMS program accesses the input data by doing a get uni que on the
| OPCB.

BEA WebLogic Java Adapter for Mainframe Programming Guide 5-15

S understanding Programming Flows

3. The | MSTQIMS program composes the request message.

4. The | MSTQIMS program issues a call with the CHNG function code to store the
appropriate logical terminal name in a modifiable alternate PCB.

Note: To use an alternate PCB, you must include a PCB statement in your PSB
(see Listing 5-1).

Listing 5-1 IMS PSBGEN for a Modifiable Alternate PCB for the IMS Client

PCB TYPE=TP, MODI FY=YES
PSBGEN PSBNANME=I M5STQJ M5, CMPAT=YES, LANG=COBCL

Note: The logical terminal name, in this case JAM M501, must be mapped to an
LU name and a transaction name in a LU 6.2 Descriptor. In Listing 5-2,
JAMIMSO1 is mapped to the LU CRMLU and the transaction | TQJIMSSV.

Listing 5-2 LU 6.2 Descriptor

A JAM MS01 LUNAME=CRMLU TPNAME=I TQOMSSV SYNCLEVEL=N

5. The | MSTQIMS program issues an insert call with the request message to the
alternate PCB, ALTPCB.

6. The | MSTQIMS program issues a PURG call to the alternate PCB, ALTPCB, to tell
IMS to send the request message.

7. IMS sends the request message to the indicated LU, the LU configured for the
CRM. The request message is forwarded to the Gateway.

8. The gateway sends the message to the JMS Event | TQIMSSV. | TQIMSSV is the
transaction name in the LU 6.2 descriptor in Listing 5-2. In the WebLogic
Administration Console, the | TQIMSSV service name is mapped to the JMS topic
JAM exanpl es. | M5. Event Topi c.

5-16 BEA WebLogic Java Adapter for Mainframe Programming Guide

IMS Implicit APPC Programming Flows

=
= Egervices
JS O
Elapec
= Elams
Elconnection Factories
ElTemplates
Elpestination Keys
HEatores

E”Create a new JMS Event

M pistributed Destination Eeplcelatng LS esiliiom
9 sonvors ITOJMSSY .(]TAM._e)xamples.lMS.Eveannpic o
opic]
g?:;igag‘"g Bridas CTCIMSSV JAM.examples.CICS.EventTopic o
@ TA (Topic)
Elsrmp
Elwiec
ElvweblLaogic Tuxeda Connect
== N1
Elvirtual Hosts
nail
ElFileTs
Elsecurity
&2 compatinility Security
Epomain Log Filters
HlTasks
= B® java Adapter for Mainfrarme
&l Regions
&luam components
= &l genices
DPL Services
@ apPC Senices
= & Exports
=% Exported EJBs
JMS Events
= ywenlagic Integration Ex| il 1]

=] =Ly Local intranet o

Transactional Java Client Request/Response to IMS
Transaction Program

Figure 5-8 illustrates a transactional Java client request/response to an IMS transaction
programming flow.

BEA WebLogic Java Adapter for Mainframe Programming Guide 5-17

S understanding Programming Flows

Figure 5-8 Transactional Java Client Request/Response to an IMS Transaction
Program

WebLogic
public class Client
{

(:)tx.begin(]:
hazeClient.toupper (commarea) ;

(:);;:commit(]:
(:> , .

public class BaseClient extends EgenClient
{

public Chardats toupper (Chardata commares
throws IOException, snaException

{

byte[] inputBuffer = commarea.toBytelrray(new MainframeWriter (]);
pbyte[] rawResult = calliervice ("TOUPPER", inputBuffer);
Chardata result = new Chardata(new MainframeReader (rawResult)):
return result; (g
}

=
al M
ROGRAM-TID. TOUPING.

01 REQUEST-MEZSAGE.
05 MESSAGE-HEADER.

05 USER-DATA.
COPY CHARDATA.

(:}CALL 'CELTDLI' USING GU, IOPCE, REQUEST-MEIZAGE.

(:)(create RESPCNIE-HESSAGE

(:)CALL 'CELTDLI' USING ISRT, IOPCE, RESPCNIE-MEISAGE-—

The following steps describe the transactional Java client request/response to IMS
transaction programming flow.

1. A Java client class calls the begi n method of a User Tr ansact i on object to start
a transaction.

5-18 BEA WebLogic Java Adapter for Mainframe Programming Guide

IMS Implicit APPC Programming Flows

Within the boundaries of that transaction, the Java client class makes a call to the
BaseC i ent . t oupper method with a Char dat a DataView as the parameter.

In the t oupper method, a call is made to the Egendl i ent . cal | Servi ce
method.

Note: The BaseC i ent extends EgenCl i ent, so the Based i ent inherits the
cal | Servi ce method from Egendl i ent .

The value of the first parameter is TOUPPER. TOUPPER is the name of the APPC
Service that is mapped to the IMS transaction TOUPI MS in the WebLogic
Administration Console.

B @ cxamples

2 Consale | 22m> aPPC Services
Hgervers
Elciusters
Elmachines
Elrietwork Channels B Create a new APPC Service
= Epeployments
Happlications
[== =15 Service Name Transaction Program Id
Elwveb Applications dol¥THO IWTHO
Eliven Service Components SIMPCPIC TPNCPIC
Hlconnectars TOUPPER TOUPIMS
Elstartup & Shutdown
= Eservices
Elacom
Elupec
Elums
Enessaging Bridge
EdmL
@ aTa
Esnme
Elwiec
ElwwenLogic Tuxedo Connect
Elaon
Elvirntual Hosts
Eail
EFileT2
Elsecurity
E® compatibility Security
Elpomain Log Filters
EdTasks
B @®Java Adapter for Mainframe
&l Regions
Elaam cornponents
= 5dservices
D DFL services

@ aPPC Semices
o= il

268

5 | B |

[®5 Local intranst Z

IMS starts the TOUPI MS transaction that executes the associated program
TOUPI Ms. The contents of the i nput Buf f er byte array are placed on an IOPCB
as request data.

The TOUPI MS program accesses the request data by doing a get uni que on the
IOPCB.

The TOUPI MS program processes the data and creates a response message.
The TOUPI MS program inserts the response data to the IOPCB.

IMS returns the response data back to the requester. The data is returned from the
Egend i ent . cal | Servi ce method as the byte array r awResul t .

BEA WebLogic Java Adapter for Mainframe Programming Guide 5-19

S understanding Programming Flows

9.

The Java client class calls the commi t method of the User Tr ansact i on object to
indicate the successful completion of the transaction. This causes the commit of
the WebLogic managed resources, as well as the resources managed by IMS.

Common Programming Interface for
Communications Programming Flows

The following examples of CPI-C programming flows are discussed:

Java Client Request/Response to Host CPI-C

Host CPI-C Request/Response to WebLogic Server EJB
Host CPI-C Asynchronous No Reply to Java Server
Transactional Java Client Request/Response to Host CPI-C

Transactional Host CPI-C Request/Response to WebLogic Server EJB

Java Client Request/Response to Host CPI-C

Figure 5-9 illustrates a Java client request/response to a host CPI-C programming
flow.

5-20 BEA WebLogic Java Adapter for Mainframe Programming Guide

Common Programming Interface for Communications Programming Flows

Figure 5-9 Java Client Request/Response to Host CPI-C

WebLogic

Java Client Class

public class BaseClient extends EgencClient
{

—"pu.blic Chardata toupper (Chardata commaresa)
throws IOException, snaException
{
byte[] inpuckuffer = commarea.tobytelrrayi(new MainframelWricer()):;
p byre[] ravResult = calliervice("SINCPIC", inpugBuffer)s
Chardata result = new Chardata(new MainframeRegder (ravResult))
return result:;

i

i

@ I_-Iost _ @
@[[t pnowme=TPNCP IO

—{ TOUPCIC PROGRAN
wain()

{ ®

@ cwacep (convid, reode)

crwrov(convid, ibuffer, ...) %
6G)... process data) ...

Send type=CH 3SEND AND DEALLOCATE:
7 lemssti ..., ESend:t,ypE, A

cmsend (convid, obuffer, ...):

The following steps describe the Java client request/response to host CPI-C
programming flow.

1. A Java client class (such as a stand-alone client, EJB, etc.) makes a call to the
BaseCl i ent . t oupper method with a Char dat a dataview as the parameter.

2. Inthet oupper method, a call is made to the Egend i ent . cal | Servi ce
method.

Note: The Based i ent extends Egend i ent, so the Based i ent inherits the
cal | Servi ce method from Egend i ent .

The value of the first parameter is SI MPCPI C. S| MPCPI C is the name of the
APPC Service that is mapped to the CPI-C Transaction Program ID TPNCPI Cin
the WebLogic Administration Console.

BEA WebLogic Java Adapter for Mainframe Programming Guide 5-21

S understanding Programming Flows

Elapplications
== [N
Elwweb applicatians

JAM> APPC Services

Elyeh Service Components
Hlconnectors

Elstartup & Shutdown B Create a new APPC Service

= Eserices

Eljcom . .
Mlope Service Name Transaction Program Id

B ms dolVTNO IVTNO
EAmessaging Bridge SIMPCPIC TPHCPIC
ElenaL
@ Ta
== ST
LES
Elweblogic Tuxedo Cannect
== NS
Elvirtual Hosts
Elmail
EFileT3
Elsecurity
B2 Compatibility Security
ElDamain Log Filters
ElTasks
= @® Java Adapter for Mainframe
#lregions
Eduam components
= 5lservices
DFL Services
@ APPC Services
= & Exports
=& Exported EJBs
= UM Events
2 wwebLogic Integration E o] |

a1 [Z5) Local intranet Z

B

3. The transaction program TPNCPI C invokes the TOUPCPI C program.

4. TOUPCPI C accepts the conversation with the craccp call. The conversation ID
returned in convi d is used for all other requests on this conversation.

5. The cnr cv request receives the i nput Buf f er buffer contents for processing.
6. The TOUPCPI C program processes that data.

7. The cnsst request prepares for the send request by setting the send type to
CM_SEND_AND_DEALLOCATE.

8. The crsend request returns the obuf f er contents. The data is returned from the
Egend i ent . cal | Servi ce method as the byte array r awResul t .

Host CPI-C Request/Response to WebLogic Server EJB

Figure 5-10 illustrates a host CPI-C request/response to WebLogic Server EJB
programming flow.

5-22 BEA WebLogic Java Adapter for Mainframe Programming Guide

Common Programming Interface for Communications Programming Flows

Figure 5-10 Host CPI-C Request/Response to WebLogic Server EJB

Host

®| Environment
TRADCFIC PROGEALAM
maini)

{
®cminit, [conwvid, "TRADSIDE®, rcode):
cmalle (convid, roode))
Send type=CM _SEND AND PREP_TO RECEIVE;
@cmsst(«, &8end_type, .):
cmsend (convid, obuffer, .):
corev (convid, ibuffer, .) =

WeblL ogic
public class TradelferverBean extends EgenferverBean
{

prublic byte[] dispatchibyte[] comnares, Chiject future)
throws snaException, IOException

{
TradeRecord inputBuffer = new TradeRecordinew
MainframeReader (commares)] ;

»TradeRecord result = buy (inputBufferyr——"—
return result.toBytelrray(new MainframeWriteri)):

}

private TradeRecord buy(TradeRecord commares)-€————
{

[manipulate the data)

YELUrn conmares;

r
H

The following steps describe the host CPI-C request/response to WebLogic Server
EJB programming flow.

1. The CPI-C application program TRADCPI Cis invoked using the environment
start-up specifications.

2. The TRADCPI C client requests cni ni t to establish conversation attributes and
receive a conversation ID that will be used on all other requests on this
conversation. The remote server and service are named in the CPI-C side
information entry TRADS| DE.

3. The cmal | ¢ request initiates the advertised service TRADSERV. In the WebLogic
Administration Console, the TRADSERV service is mapped to the JNDI name
j am TradeSer ver for the Tr adeSer ver EJB.

BEA WebLogic Java Adapter for Mainframe Programming Guide = 5-23

S understanding Programming Flows

Elstartup & Shutdown
= Elgervices
Elucom
Slupsc
SR==NIV
Elconnection Factories E“Export an EJB
ElTemplates

Elpestination Keys .
Elstores Service Name JNDI Name

Elpistributed Destination TRADSERV jam.TradeServer
Hseners TOUPPER Jam.ToupperServer
Elmessaging Bridge
Edpmr
@ T
Elsrmp
Elwiec
SlwwebLogic Tuxedo Connect
== NET
Elvirtual Hosts
Sl mail
EFileTs
Elsecurity
B2 compatibility Security
Elpamain Log Filters

JAM> Exported EJBs =

e
Z hea

==

ETasks
=1 @® java adapter for Mainframe
& Rregions
Eduam Components
2 &lservices
@ DPL genices
@ sPPC Services
2 &lExports
Exported EJBs]
= JmMs Events == 121
&1 Done [| [=& Localintranct >

4. The cnsst request prepares the next send request by setting the send type to
CM_SEND_AND_PREP_TO RECEI VE.

5. The cmsend request immediately sends the contents of the obuf f er to the
dispatch method of Tr adeSer ver Bean in the conmar ea byte array and
relinquishes control.

6. The buy method is messaged from the di spat ch method.

7. The business logic is performed, and the result is returned to the di spat ch
method.

8. The cnr cv request receives the contents of the byte array returned from the
di spat ch method in the i buf f er buffer, and notification that the conversation
has ended with the return code value of CM_DEALLOCATED NORMAL.

Host CPI-C Asynchronous No Reply to Java Server

Figure 5-11 illustrates a Host CPI-C asynchronous no reply to Java server
programming flow.

5-24 BEA WebLogic Java Adapter for Mainframe Programming Guide

Common Programming Interface for Communications Programming Flows

Figure 5-11 Host CPI-C Asynchronous No Reply to Java Server

Host

Environment

: MZCPIC PROGRALAM
maini)

i
@cminit [conwvid, "JMISIDE™, rcode):
cialle (convid, rcode):
@cmsend [convid, obuffer, ..):
cmdesl (convid, roode) ;

i

Webl ogic

- GATEWAY

—

JAM . examples . CPIC.EventTopic

The following steps describe the Host CPI-C asynchronous no reply to Java server
programming flow.

1. The CPI-C application program JMSCPI Cis invoked using the environment
start-up specifications.

2. The JMBCPI Cclient requests ci ni t to establish conversation attributes and
receive a conversation ID that will be used on all other requests on this
conversation. The remote server and service are named in the CPI-C side
information entry JVMSSI DE.

3. The cnal | c request initiates the advertised service CTQIMSSV.
4. The cnsend request sends the contents of the obuf f er to the CTQIMSSV service.

5. The cndeal request flushes the data and indicates the conversation is finished.
The request message is forwarded to the Gateway.

BEA WebLogic Java Adapter for Mainframe Programming Guide = 5-25

S understanding Programming Flows

6. The Gateway sends the message to the JMS Event CTQIMSSV. In the WebLogic
Administration Console, the CTQIMSSV service name is mapped to the JMS topic
JAM exanpl es. CPI C. Event Topi c.

Elapplications
EJB
el Applications
Elwweb Service Components
Elconnectors
D Startup & Shutdown B Create a new JMS Event
= Eserices
Eucom
[TS Service Name JMS Destination
Eloms ITOJMSSY .(J_:}M._e)xamples.lMS.Even(Tupil:
- ;) opic
g)":;isag'"g Bridas CTCIMSSW JAM.examples.CICS. EventTopic
@ T (Tepic) .
P A CTOJMSSY JAM.examples.CPIC.EventTopic
ElwiLec (Topia)
ElywweblLogic Tuxedo Connect
Elon
Elvirtual Hosts
= ail
ElFileTs
Elsecurity
Compatibility Security
Elpamain Log Filters
lTasks
=1 @® Java Adapter for Mainframe
ElRegions
Eluam components
= & services
@ pPL Services
@ aFPC Senices
= & Exports
Exported EJBs
= JMS Events
webLogic Integration E[2 |4 151

=] =Ly Local intranet A

== =1

Transactional Java Client Request/Response to Host
CPI-C

Figure 5-12 illustrates a transactional Java client request/response to a Host CPI-C
programming flow.

5-26 BEA WebLogic Java Adapter for Mainframe Programming Guide

Common Programming Interface for Communications Programming Flows

Figure 5-12 Transactional Java Client Request/Response to a Host CPI-C

WebLogic
public class Client
{

@tx.begin(] ;

hasellient.toupper (commarea) ;

tx.commit () ;

public class BaseClient extends EgenClient
{

P public Chardata toupper (Chardata comares)
throws ICException, snaException

{

hbytel]
p byte[] rawBResult = calllervice ("SIMPIPICT,
Chardata result = new Chardatainew MainframeReader (r

return result;

i

®
®

Host

inputBuffer = commarea.toByteldrray(new MainframelWriter()):
inputBuffpr)s
pwResult)) :

Ttpname=TPHCPIC%

@I:—l" TOUPCPIC PROGRAM

main() @
{

@ cmaccp (convid, rocode);

cwrowv (convid, ibuffer,)i
-«

@ [proceas data)

cmsst(convid, CH_SEND_J\.ND_PREP_TO_RECEIVE, i
cmsptr (convid, CM PREP TO RECEIVE CONFIERM, .):

cmwsend (convid, obuffer, .):

cwrowv (convid,)
-)
®arremit (rroode)

The following steps describe the transactional Java client request/response to a host
CPI-C programming flow.
1. A Java client class calls the begi n method of a User Tr ansact i on object to start

a transaction.

BEA WebLogic Java Adapter for Mainframe Programming Guide = 5-27

S understanding Programming Flows

2. Within the boundaries of that transaction, the Java client class (stand-alone client,
EJB, etc.) makes a call to the Based i ent . t oupper method with a Char dat a
DataView as the parameter.

3. Inthet oupper method, a call is made to the Egend i ent . cal | Servi ce
method.

Note: The Based i ent extends Egend i ent, so the Based i ent inherits the
cal | Servi ce method from Egendl i ent .

The value of the first parameter is SI MPCPI C. SI MPCPI Cis the name of the
APPC Service that is mapped to the CPI-C transaction program ID TPNCPI Cin
the WebLogic Administration Console.

-
Sapplications
Heus

Elyveb Applications

JANM> APPC Services '

> hea
Elwieb Service Companents
Elconnectars
E Startup & Shutdown B Create a new APPC Service
= Elservices
JCOmM . B
Euoec Service Name Transaction Program Id
s dolWVTHO IWTNO
Elmessaging Bridge SIMPCPIC TPHNCPIC

S =]

WML
@ T
Elsmmp
Elwiec
ElvvebLogic Tuxedo Gonnect
Elon
Elvirtual Hosts
= wail
EFileTa
Elsecurity
B2 Compatibility Security
Elpormain Log Filters
HTasks
= @® java adapter for Mainframe
Regions
®JaaM Components
8 &l genices
DPL Services
@ AFPC Senices
B & Exports
Exported EJBs
= UMS Events
i webLoaic Intearation E1=| 1) |

4. The transaction program with the t pnane TPNCPI C invokes the TOUPCPI C
program.

5. TOUPCPI C accepts the conversation with the cmaccp call. The conversation ID
returned in convi d is used for all other requests on this conversation.

6. The cnr cv request receives the i nput Buf f er buffer contents for processing.

7. The TOUPCPI C program processes that data.

5-28 BEA WebLogic Java Adapter for Mainframe Programming Guide

Common Programming Interface for Communications Programming Flows

8. The cnsst and cnspt r prepare the next send request by setting the send type to
CM_SEND_AND_PREP_TO_RECEI VE and by setting the prepare-to-receive type to
CM_PREP_TO RECEI VE_CONFI RM The CONFI RMindicates that the service has
completed successfully.

9. The cnsend request returns the obuf f er contents. The data is returned from the
EgenCl i ent . cal | Servi ce method as the byte array r awResul t .

10. The Java client class calls the conmi t method of the User Tr ansact i on object to
indicate the successful completion of the transaction and request the commit of
all updated resources. The cnr cv request receives the conmi t request, and
responds explicitly to the request with the SAA Resource/Recovery commit call
srrcmit. The conversation is ended after the successful commit exchange.

Transactional Host CPI-C Request/Response to WebLogic
Server EJB

Figure 5-13 illustrates a transactional host CPI-C request/response to WebLogic
Server EJB programming flow.

BEA WebLogic Java Adapter for Mainframe Programming Guide = 5-29

S understanding Programming Flows

Figure 5-13 Transactional Host CPI-C Request/Response to WebLogic Server
EJB

Host

@ ,—— Environment

TRADCPIC PROGRAM
waini)

1
@cmlnlt(c\jnvld, "TRADSIDE", recode);
cmssliconvid, CH_SYNCPOINT, ..J:

cmal le(convid, rcoode):

cwsst | ., CM_SEND_AND_PREP_TC_RECEIVE, .):
cmaend (convid, obuffer, .. @

cmrov (convid, ibuffer,) s
: ccfmd (convid, rocode):

cmdeal (convid, roode):

srromwit (roode) ;
1

Weblogic

public class TradeZServerBean extends EgenServerBean
i

ppubrlic byte[] dispatchibyce[] commarea, Chjsctc future)
throws snaException, IOException

{
TradeRecord inputBuffer = new TradeRecord(new
MainframeReader (commares)) ;
pTradeRecord result = buy(inputBuffer>———]
return result.toByteirray(new MainframeWriter ()] :
} (@
private TradeRecord buy|TradeRecord commares) #————
{

{manipulate the data)

return conmares;

+
H

The following steps describe the transactional host CPI-C request/response to
WebLogic Server EJB programming flow.

1. The CPI-C application program TRADCPI C is invoked using the environment
start-up specifications.

2. The TRADCPI C client requests cri ni t to establish conversation attributes and
receive a conversation ID that will be used on all other requests on this
conversation. The remote server and service are named in the CPI-C side
information entry TRADS| DE.

3. The cnssl sets the conversation attribute to sync-level 2 with CM_SYNCPQO NT.
This allows the WebLogic EJB to participate in the transaction.

4. The cnal | ¢ request initiates the advertised service TRADSERV. In the WebLogic
Administration Console the TRADSERV service is mapped to the JNDI name
j am TradeSer ver for the TradeSer ver EJB.

5-30 BEA WebLogic Java Adapter for Mainframe Programming Guide

Common Programming Interface for Communications Programming Flows

Elstartup & Shutdawn
=2 Elservices
Eucom

JAM> Exported EJBs

[==N]sl=Te]
= Elams
Elconnection Factories E”Export an EJB
ElTemplates
Elpestination Keys
Elstores
Epistributed Destination

Service Name JNDI Hame
TRADSERY jam.TradeServer
HEservers TOUPPER jam.ToupperServer
ElMessaging Bridge
=P
@ T
Elsrmp
i e
EyweblLogic Tuxedo Gonnect
o
Elvirtual Hosts
= pail
EFileTs
Elsecurity
B2 compatibility Security
Eloamain Log Filters
ElTasks
B @® Java Adapter for Mainframe
Regions
&JamM Components
= &l genices
DPL Services
D aPPC Services
= & Exponts
Exported EJBs

—
= Jms Events == 11
&1 Done |=5y Local intranet =

5=

5. The cnsst request prepares the next send request by setting the send type to
CM_SEND_AND_PREP_TO_ RECEI VE.

6. The cnsend request immediately sends the contents of the obuf f er to the
dispatch method of Tr adeSer ver Bean in the commar ea byte array and
relinquishes control.

7. The buy method is messaged from the di spat ch method.

8. The business logic is performed, and the result is returned to the di spat ch
method.

9. The cnr cv request receives the contents of the byte array returned from the
di spat ch method in the i buf f er buffer. The cnr cv receives a confirm request
indicating the conversation should terminate.

10. The client replies positively to the confirm request with cref nd.

11. The TRADCPI C client prepares to free the conversation with the cndeal request.
The conversation in CM_DEALLOCATE_SYNC_LEVEL commits all updated
resources in the transaction and waits for the SAA resource recovery verb,
srrcmit. After the commit sequence has completed, the conversation terminates.

BEA WebLogic Java Adapter for Mainframe Programming Guide 5-31

S understanding Programming Flows

5-32 BEA WebLogic Java Adapter for Mainframe Programming Guide

CHAPTER

6 Performing Your Own
Data Translation

This section discusses the following topics:

m Why Perform Your Own Data Translation?

m Using EgenClient Directly

m Translating Buffers from Java to Mainframe Representation

m Translating Buffers from Mainframe Format to Java

Why Perform Your Own Data Translation?

The automatic data translation provided by DataViews can usually fill your needs. The
eGen-generated DataViews relieve your application of the burden of translating data
between the mainframe EBCDIC environment and the Java runtime environment. In
addition, native mainframe data types that are not supported in Java (such as packed,
zoned decimal, etc.) are automatically mapped to appropriate Java data types.
However, occasionally you may want to bypass these features and create your own
data translation. Following are some advantages of bypassing the eGen/DataView
infrastructure:

m Unnecessary data translation may be avoided

If the data has been acquired in the appropriate format, it can simply be
transmitted to the mainframe bypassing the DataView translation overhead.

BEA WebLogic Java Adapter for Mainframe Programming Guide 6-1

6 Performing Your Own Data Translation

m Contents of data buffer may be dynamically determined at runtime

In some cases, this may be preferable to a DataView generated from a copybook
containing numerous REDEFINES representing various record types.

Simple interfaces are provided for translating data both from and to the mainframe. In
addition, a simple cal | Ser vi ce() method is available for making mainframe service
requests.

Using EgenClient Directly

Egend i ent is the WebLogic JAM class responsible for making service calls from
WebLogic Server to the mainframe. This class is the foundation of all WebLogic
Server to Mainframe communication by eGen-created EJB and Servlet objects.
Egend i ent may also be used directly by applications to issue mainframe service
requests. Listing 6-1 shows the public methods available for your use:

Listing 6-1 EgenClient Public Interface

package com bea.jam egen;

i mport java.io. | OException;
i mport com bea. sna.j cr ngw. snaExcepti on;

public class Egend ient

{
public EgenCient();
public Egendient(String serverURL);
public void setServerURL(String serverURL);
public byte[] call Service(String service, byte[] in)
throws snaException, | OException;
public void setUserI D(String userid);
public void setPassword(String password);
}

Table 6-1 lists the definitions of the public interface methods:

6-2 BEA WebLogic Java Adapter for Mainframe Programming Guide

Using EgenClient Directly

Table 6-1 EgenClient Public Interface Methods

Method Description

Egend i ent () The default constructor. Constructing an
Egend i ent class using the default constructor will
search foraj am ur | property containing the
WebLogic JAM Gateway server URL.

Egend i ent (URL) Ifthe Egendl i ent class is provided a URL at
construction, it will be used in place of the search for a
jam url property.

set Server URL(URL) This method may be used to override the URL set at
construction. All service calls following the invocation
of this method will use the URL provided.

cal | Service(service, in) This method is the workhorse of the Egend i ent
class. The mainframe service in the WebLogic JAM
configuration named ser vi ce will be called and
passed the buffer provided by the i n parameter. The
response buffer of the service is returned from this
method.

set User | D(useri d) This method sets the User ID used to access a
mainframe service.

set Passwor d(passwor d) This method sets the password used to access a
mainframe service.

How EgenClient Locates a WebLogic JAM Gateway

The Egendl i ent class requires a connection to a WebLogic Server running a
WebLogic JAM Gateway to communicate with a mainframe. This connection is
accomplished via a URL provided by the caller identifying the server, or cluster of
servers, hosting the WebLogic JAM Gateway(s). The Egendl i ent class attempts to
obtain this URL from the following sources (listed in priority order):

1. Ifthe EgenCl i ent . set Server URL() method has been called, the URL provided
is used to locate a WebLogic JAM Gateway.

BEA WebLogic Java Adapter for Mainframe Programming Guide 6-3

6 Performing Your Own Data Translation

2. Ifa URL was provided on the Egend i ent constructor, this URL is used to
locate a WebLogic JAM Gateway.

3. Egend i ent checks for the existence of a j am ur| system property and, if
present, uses its value as the URL to locate a WebLogic JAM gateway.

4. Egend i ent searches the CLASSPATH for a file named j am properti es. If this
properties file is found and contains a j am ur| entry, this value is used to locate
a WebLogic JAM Gateway.

5. Egend i ent assumes that it is running on the same WebLogic Server as the
WebLogic JAM Gateway and attempts to establish a local connection.

Using EgenClient to Make a Mainframe Request

Listing 6-2 illustrates calling a mainframe service via the Egend i ent class. This
example assumes that a properly formatted mainframe buffer is passed as a parameter,
and that the URL of a correctly configured WebLogic JAM Gateway is set via the
jamurl property.

Listing 6-2 Mainframe Request Using EgenClient

i mport com bea.j am egen. Egend i ent;
i mport com bea. sna.j cr ngw. snaExcepti on;
i mport java.io.|OException;

public byt e[] getPurchaseOrder(byte[] poNum
t hrows | OExcepti on

{
try
{
return(new EgenClient().call Service("GetPO', poNum);
catch (snaException e)
throw new | OExcepti on(e. get Message());
}
}

6-4 BEA WebLogic Java Adapter for Mainframe Programming Guide

Translating Buffers from Java to Mainframe Representation

The sections that follow provide information on dynamically creating mainframe
buffers and interpreting the responses from mainframe services.

Translating Buffers from Java to Mainframe
Representation

Support for creating buffers for input to a mainframe service is provided by the

com bea. base. i 0. Mai nframeW i t er class. This class functions similar to a Java
j ava. i o. Dat aQut put St r eamobject. It translates Java data types and all
mainframe-native data types. For numeric data types, this translation service provides
a conversion from Java native numeric types to those available on the mainframe. For
string data types, a translation is performed from UNICODE to EBCDIC by default,
although the output codepage used is configurable.

MainframeWriter Public Interface

Listing 6-3 shows the public methods provided by the Mai nf rameW i t er class.

Listing 6-3 MainframeWriter Class Public Methods

package com bea. base. i 0;

public class MainframeWiter

{
public MainframeWiter();
public MainframeWiter(String codepage);
public voi d setDefaul t Codepage(String cp)
public byte[] toByteArray();
public void witeRawbyte[] bytes

throws | OExcepti on;

public void witeFl oat(float val ue)
throws | OExcepti on;

public void witeDoubl e(doubl e val ue)
throws | OExcepti on;

public void wite(char c)

BEA WebLogic Java Adapter for Mainframe Programming Guide 6-5

6 Performing Your Own Data Translation

publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

publ i

publ i

throws | OExcepti on;

void witePadded(String s, char padChar, int |ength)
throws | CExcepti on;

void witel6bit(int value)

throws | OCException;

void witel6bitUnsigned(int val ue)

throws | OExcepti on;

void witel6bit(long value, int scale)

throws | CException, ArithmeticException;

void witel6bitUnsigned(long value, int scale)
throws | OException, ArithneticException;

void wite32bit(int value)

throws | OExcepti on;

void wite32bitUnsigned(long val ue)

throws | CExcepti on;

void wite32bit(long value, int scale)

throws | OException, ArithneticException;

void wite32bitUnsigned(long value, int scale)
throws | OException, ArithneticException;

void wite64bit(long val ue)

throws | CExcepti on;

voi d write64bitUnsigned(l ong val ue)

throws | CException;

void wite64bitBi gUnsi gned(Bi gDeci mal val ue)
throws | OExcepti on;

void wite64bit(long value, int scale)

throws | CException, ArithmeticException;

void wite64bit(BigDecimal value, int scale)
throws | OException, ArithneticException;

void wite64bitUnsigned(long value, int scale)
throws | OException, ArithneticException;

void wite64bitUnsi gned(Bi gDeci mal val ue, int scale)
throws | CException, ArithmeticException;

void witePacked(Bi gDeci mal value, int digits,
int precision, int scale)

throws Arithneti cException, | OException;

void witePackedUnsi gned(Bi gDeci mal val ue,

int digits, int precision, int scale)

throws Arithneti cException, | OException;

Following are the definitions of these methods:

6-6 BEA WebLogic Java Adapter for Mainframe Programming Guide

Translating Buffers from Java to Mainframe Representation

Table 6-2 MainframeWriter Class Public Method Definitions

Method

Description

Mai nframeWiter()

The default constructor. Constructs a
Mai nframeW i t er using the default code
page of cp037 (EBCDIC).

Mai nframeWiter(cp)

Constructs a Mai nf rameW i t er using the
specified codepage for character field
translation.

set Def aul t Codepage(cp)

Set the codepage to be used for all future data
translations.

toByt eArray()

Returns the translated buffer constructed by
writing data to the Mai nf raneW i t er class
as a byte array.

wr i t eRaw(byt es)

Write a raw byte array to the output buffer.

writeFl oat (num

Convert a floating point number from the IEEE
Java float data type to IBM 4 byte floating point
format. The equivalent COBOL picture clause
is Pl C S9V9 COwP- 1.

wri t eDoubl e(num

Convert a floating point number from the IEEE
Java double data type to IBM 8 byte floating
point format. The equivalent COBOL picture
clause is Pl C S9V9 COWP- 2.

write(c)

Translate and write a single character to the
output buffer. The equivalent COBOL picture
clauseis PI C X

wri tePadded(str, pad, |en)

Translate and write a string to a fixed length
character field. The passed pad character is used
if the length of the passed string is less than

| en. If the length of the passed string is greater
than| en, it will be truncated to | en characters.
The equivalent COBOL picture clause is Pl C
X(len).

BEA WebLogic Java Adapter for Mainframe Programming Guide 6-7

6 Performing Your Own Data Translation

Method Description

writel6bit(num Writes a signed 16 bit binary integer to the
output buffer. The equivalent COBOL picture
clause is PI C S9(4) COWP.

writel6bitUnsigned(num Writes an unsigned 16 bit binary integer to the
output buffer. The equivalent COBOL picture
clause is PI C 9(4) COWP.

writel6bit(num scale) Writes a signed 16 bit integer to the output
buffer after moving the implied decimal point
left by scale digits. For example, the call
write16bit(100, 1) would result in the value 10
being written. The equivalent COBOL picture
clause is PIC S9(4) COMP.

writel6bitUnsigned(num Writes an unsigned 16 bit integer to the output

scal e) buffer after moving the implied decimal point
left by scal e digits. For example, the call
writel6bitUnsigned(100, 1) would
result in the value 10 being written. The
equivalent COBOL picture clauseis Pl C 9(4)
COWP.

wri te32bit (num Writes a signed 32 bit binary integer to the
output buffer. The equivalent COBOL picture
clause is PI C S9(8) COWP.

wr i t e32bi t Unsi gned(num Writes an unsigned 32 bit binary integer to the
output buffer. The equivalent COBOL picture
clause is PI C 9(8) COWP.

write32bit(num scale) Writes a signed 32 bit integer to the output
buffer after moving the implied decimal point
left by scal e digits. For example, the call
write32bit(100L, 1) would resultin the
value 10 being written. The equivalent COBOL
picture clause is Pl C S9(8) COWP.

6-8 BEA WebLogic Java Adapter for Mainframe Programming Guide

Translating Buffers from Java to Mainframe Representation

Method

Description

wr it e32bit Unsi gned(num
scal e)

Writes an unsigned 32 bit integer to the output
buffer after moving the implied decimal point
left by scal e digits. For example, the call
write32bitUnsigned(100L, 1) would
result in the value 10 being written. The
equivalent COBOL picture clause is Pl C 9(8)
COWVP.

write64bit(num

Writes a signed 64 bit binary integer to the
output buffer. The equivalent COBOL picture
clause is PI C S9(15) COWP.

wri t e64bi t Unsi gned(num

Writes an unsigned 64 bit binary integer to the
output buffer. The equivalent COBOL picture
clause is PI C 9(15) COWP.

write64bit(num scale)

Writes a signed 64 bit integer to the output
buffer after moving the implied decimal point
left by scal e digits. For example, the call
write64bit(100L, 1) would resultin the
value 10 being written. The equivalent COBOL
picture clause is Pl C S9(15) COWP.

wri t e64bi t Unsi gned(num
scal e)

Writes an unsigned 64 bit integer to the output
buffer after moving the implied decimal point
left by scal e digits. For example, the call
writ e64bi t Unsi gned(100L, 1) would
result in the value 10 being written. The
equivalent COBOL picture clause is Pl C
9(15) COwp.

writePacked(num digits,
prec, scale)

Writes a decimal number as an IBM signed
packed data type with di gi t s decimal digits
total and pr ec digits to the right of the decimal
point. Prior to conversion, the number is scaled
to the left scal e digits. The equivalent
COBOL picture clause is PI C
S9(digits-prec)V9(prec) COWP-3.

BEA WebLogic Java Adapter for Mainframe Programming Guide 6-9

6 Performing Your Own Data Translation

Method Description
wri t ePackedUnsi gned(num Writes a decimal number as an IBM unsigned
digits, prec, scale) packed data type with di gi t s decimal digits

total and pr ec digits to the right of the decimal
point. Prior to conversion the number is scaled
to the left scal e digits. The equivalent
COBOL picture clause is PI C
9(digits-prec)V9(prec) COW-3.

Using MainframeWriter to Create Data Buffers

As an example of using the Mai nf raneW i t er class to create a mainframe data buffer,
assume we have a mainframe service which accepts the data record shown in
Listing 6-4:

Listing 6-4 Data Record

01 | NPUT- DATA- REC.

05 FI RST- NAVE Pl C X(10).

05 LAST- NAME Pl C X(10).

05 AGE Pl C S9(4) COWP.

05 HOURLY- RATE Pl C S9(3)V9(2) COVP-3.

Listing 6-5 shows a Java test program that creates a buffer matching this record layout
using the Mai nf raneW i t er translation class:

Listing 6-5 Java Test Program

i mport java. mat h. Bi gDeci mal ;
i nport com bea. base.io. Mai nframeWiter;
public class MakeBuffer
public static void main(String[] args) throws Exception

{

6-10 BEA WebLogic Java Adapter for Mainframe Programming Guide

Translating Buffers from Java to Mainframe Representation

Mai nframeWiter nf = new MainframeWiter();

nf.witePadded("Edgar", ' ', 10); /1 first nane
nf.witePadded("Jones", ' ', 10); /1 |ast name
nf.witel6bit(22); /'l age

nf.witePacked(newBi gDeci mal (22.50), 5, 2, 0);// hourlyrate
byte[] buffer = nf.toByteArray();
System out. println(getHexString(buffer));

}
private static String getHexString(byte[] buffer)
{
StringBuffer hexStr = new StringBuffer(buffer.length * 2);
for (int i =0; i < buffer.length; ++i)
{
int n = buffer[i] & Oxff;
hexStr. append(hex[n >> 4]);
hexStr. append(hex[n & 0x0f]);
}
return(hexStr.toString());
}
private static char[] hex =
{
‘o', '1', 2", '3, "4, '5",'6,'7T,
‘g, '9, A, 'B, 'C, 'D, 'E,'F
H

The output of running this sample program is:
C5848781994040404040D1969585A24040404040001602250C
This buffer breaks down as follows:

Fl RST- NAME C5848781994040404040" Edgar" + 5 spaces in EBCDI C

LAST- NAMVE D1969585A24040404040" Jones" + 5 spaces in EBCDI C
AGE 0016 22 as 16 bit integer
HOURLY- RATE 02250C 22.50 positive packed nunber

(deci mal point is assuned)

BEA WebLogic Java Adapter for Mainframe Programming Guide 6-11

6 Performing Your Own Data Translation

Translating Buffers from Mainframe Format

to Java

Support for translating data received from the mainframe to Java data types is provided
by the com bea. base. i 0. Mai nf r ameReader class. This class operates in a manner

similar to a Java j am i o. Dat al nput St r eam and performs translations from
mainframe data types to equivalent types usable by a Java program. Like the

MainframeWriter class, the codepage used for string translations may be configured

and defaults to EBCDIC.

MainframeReader Public Interface

Listing 6-6 shows the public methods provided by the Mai nf r aneReader class.

Listing 6-6 MainframeReader Class Public Methods

package com bea. base. i 0;

public class MinfranmeReader

{
public
public

public
public
public
public
public

public

public
public
public
public
public
public
public

Mai nf raneReader (byte[] buffer);

Mai nf r ameReader (byte[] buffer, String codepage);
voi d set Def aul t Codepage(String cp);

byte[] readRawm(int count) throws | OException;
float readFl oat() throws |OException;

doubl e readDoubl e() throws | OException;

char readChar() throws | OExcepti on;

String readPadded(char padChar, int |ength)
throws | OExcepti on;

short readl6bit() throws | OException;

int readl6bitUnsigned() throws | COException;

| ong readl6bit(int scale) throws | OException;
int read32bit() throws | OException;

| ong read32bit(int scale)

throws | OExcepti on;

| ong read32bit Unsi gned() throws | OException;

| ong read32bit Unsi gned(int scale) throws | OExcepti on;

6-12 BEA WebLogic Java Adapter for Mainframe Programming Guide

Translating Buffers from Mainframe Format to Java

publ i
publ i

publ i
publ i
publ i

publ i

publ i

Cc

c

c

Cc

Cc

| ong read64bit() throws | OException;

| ong read64bit Unsi gned()

throws | OExcepti on;

| ong read64bit(int scale)

t hrows | OExcepti on;

Bi gDeci mal read64bit Bi gUnsi gned()

throws | OExcepti on;

Bi gDeci mal read64bitBig(int scale)
throws | CException

Bi gDeci mal readPackedUnsi gned(int digits,
int precision, int scale)

throws ArithneticException, | OException;
Bi gDeci mal readPacked(int digits,

int precision, int scale)

throws ArithneticException, | OException;

Following are the definitions of these methods:

Table 6-3 MainframeReader Class Public Method Definitions

Method Description

Mai nf r aneReader (buf f er) Constructs a Mai nf r ameReader for the
passed buffer using the default code page of
cp037 (EBCDIC).

Mai nf rameReader (buffer, cp) Constructs a Mai nf r ameReader for the
passed buffer using the specified codepage for
character field translation.

set Def aul t Codepage(cp) Sets the codepage to be used for all future
character translations.

readRaw(count) Read count characters from the buffer without

any translation and return them as a byte array.

readFl oat ()

Read a 4 byte IBM floating point number and
return it as a Java float data type.

r eadDoubl e()

Read an 8 byte IBM floating point number and
return it as a Java double data type.

readChar ()

Read and translate a single character.

BEA WebLogic Java Adapter for Mainframe Programming Guide 6-13

6 Performing Your Own Data Translation

6-14

Method

Description

readPadded(pad, |en)

Read and translate a fixed length character field
and return it as a Java String. The length of the
field is passed as | en and the field pad character
is passed as pad. Trailing instances of the pad
character are removed before the data is
returned.

readl6bit ()

Read a 16 bit binary integer and return it as a
Java short.

readl6bi t Unsi gned()

Read an unsigned 16 bit integer and return it as a
Java int.

readl6bit (scal e)

Read a 16 bit binary integer and scale the value
by 10”scale. For example, if the value 10 is read
via r ead16bi t (1), the returned value would
be 100.

read32bit ()

Read a 32 bit binary integer and return it as a
Java int.

read32bit (scal e)

Read a 32 bit binary integer and scale the value
by 10”scale. For example, if the value 10 is read
via r ead32bi t (1), the returned value would
be 100.

read32bi t Unsi gned()

Read an unsigned 32 bit integer and return it as a
Java long.

read32bi t Unsi gned(scal e)

Read an unsigned 32 bit binary integer and scale
the value by 10”scale. For example, if the value
10 is read viar ead32bi t (1) , the returned
value would be 100.

read64bit ()

Read a 64 bit binary integer and return it as a
Java long.

read64bi t Unsi gned()

Read an unsigned 64 bit integer and return it as a
Java long.

BEA WebLogic Java Adapter for Mainframe Programming Guide

Translating Buffers from Mainframe Format to Java

Method Description

read64bi t Unsi gned(scal e) Read an unsigned 64 bit binary integer and scale
the value by 10”scale. For example, if the value
10 is read viar ead32bi t (1) , the returned
value would be 100.

read64bi t Bi gUnsi gned() Read an unsigned 64 bit integer and return it as a
Java Bi gDeci nal .

read64bi t Bi g(scal e) Read a signed 64 bit integer and scale the value
by 10”scale. The value is returned as a Java
Bi gDeci nal .

readPackedUnsi gned(digits, Read an unsigned packed number consisting of

prec, scale) di gi t s numeric digits with pr ec digits to the

right of the decimal. The value is scaled by
10”scale returned as a Java Bi gDeci mal .

readPacked(digits, prec, Read a signed packed number consisting of

scal e) di gi t s numeric digits with pr ec digits to the
right of the decimal. The value is scaled by
10”scale returned as a Java Bi gDeci mal .

Using MainframeReader to Translate Data Buffers

As an example of using the Mai nf r aneReader , class following is a program that
translates and displays the fields in the mainframe buffer created above. Our input
buffer consists of the binary data:

C5848781994040404040D1969585A24040404040001602250C

Listing 6-7 shows the sample program used to process this buffer.

Listing 6-7 Sample Program

i nport java. mat h. Bi gDeci nal ;
i mport com bea. base. i 0. Mai nf r aneReader ;

public class ShowBuffer

BEA WebLogic Java Adapter for Mainframe Programming Guide 6-15

6 Performing Your Own Data Translation

6-16

public static void main(String[] args) throws Exception

{
String data =

" (C5848781994040404040D1969585A24040404040001602250C"

byte[] buffer = buil dBi nary(data);

Mai nf raneReader nf = new Mai nframeReader (buffer);
Systemout.println(" First Name: " + nf.readPadded(’
Systemout.println(" Last Nane: " + nf.readPadded('
System out. println(" Age: " + nf.readl6bit());

10));
10));

Systemout.println("Hourly Rate: " + nf.readPacked(5, 2, 0));

}

private static byte[] buildBinary(String data)

{

byte[] buffer = new byte[data.length() / 2];
for (int i =0; i < buffer.length; ++i)

{

int msb =
int Isb =
buffer[i]

return(buffer);

}

private static final String hex = "0123456789ABCDEF";

hex. i ndexO (dat a. char At (i
hex. i ndexOr (dat a. char At (i
= (byte) (msb << 4 | Ish);

* 2+ 1));

When run, the program produces the following output:

Fi rst Name: Edgar
Last Nane: Jones
Age: 22

Hourly Rate: 22.50

BEA WebLogic Java Adapter for Mainframe Programming Guide

CHAPTER

Diagnostics

This section discusses the following topics:
m Gateway Statistics

m Gateway Tracing

m Low-Level Client Diagnostics

m CRM Tracing

m APPC API Tracing

Gateway Statistics

You can display the statistics for a Gateway definition using the WebLogic
Administration Console. For instructions on accessing Gateway statistics, refer to the
BEA WebLogic Java Adapter for Mainframe Configuration and Administration Guide.
The statistics information displayed for the Gateway is listed in Table 7-1.

Table 7-1 Statistics Categories

Total Requests The number of requests that have reached the gateway. This may
be larger than the sum of successes and failures if some requests
are still being processed.

Total Successes The number of requests that have successfully been processed to
completion by the gateway. Application level failures may be
reported as gateway successes.

BEA WebLogic Java Adapter for Mainframe Programming Guide 7-1

7 Diagnostics

Average Response Time

The average response time for all successful requests and some
failures. Failures that fail before they are transmitted over the
network do not affect this statistic. Timeouts do not affect this
statistic until a late reply is received.

Total Failures

The total number of failures of any kind.

No Response

The number of requests that have timed out and have never
received a response of any kind.

Late Response

The number of requests that timed out and then received a
response.

Other

The number of request that failed other than by timeout.

Gateway Tracing

WebLogic JAM runtime traces are sent to the WebLogic log as "Debug" messages.
Debug messages are written to each WebLogic Server's log file but are not sent to the
administration server. In addition, these messages are only sent to the server’s st dout
if the server’s configuration has both the Log to Stdout and Debug to Stdout options
selected on the server's Logging/General page.

For instructions on accessing Gateway tracing options, refer to the BEA WebLogic
Java Adapter for Mainframe Configuration and Administration Guide. The user trace
categories displayed for the Gateway are listed in Table 7-2.

Table 7-2 User Trace Categories

User level trace

Produces trace records for the beginning and completion of all
user requests, both to and from the mainframe. The completion
message will indicate the success or failure of the request.

User dump trace

Produces trace records with a hexadecimal dump of the user data
associated with all user requests and replies. This trace level will
also cause the trace records for User level trace to be produced.

Here is an example of a trace for two user requests:

7-2 BEA WebLogic Java Adapter for Mainframe Programming Guide

Gateway Tracing

<Nov 15, 2001 3:53:06 PM GMI-06: 00> <Debug> <JAML> <[5560199] Begi nni ng of
request: 134217866 service: sanpl eCreat e>

<Nov 15, 2001 3:53:06 PM GMI-06: 00> <Debug> <JAML> <[5560199] ---- request data
dunp ----

0000: 00 00 00 00 Of d3 81 a2 a3 61 fO 40 40 40 40 40 Last/0

0010: 40 40 40 40 c6 89 99 a2 a3 61 f1 40 40 40 40 40 First/1

0020: 40 40 40 d4 f3 f2 fO fO 40 c1l 95 a8 a2 a3 99 85 MB200 Anystre

0030: 85 a3 40 c3 96 a4 99 a3 40 40 40 40 40 40 40 40 et Court

0040: 40 40 e3 e7 f7 f7 f5 f5 f5 f0 fO fO fO TX775550000

<Nov 15, 2001 3:53:07 PM GMI-06: 00> <Debug> <JAML> <[5560199] End of
request: 134217866>

<Nov 15, 2001 3:53: 07 PM GMT-06: 00> <Debug> <JAML> <[5560199] ---- response data
dunp ----

0000: 00 00 00 00 Of d3 81 a2 a3 61 fO 40 40 40 40 40 Last/0

0010: 40 40 40 40 c6 89 99 a2 a3 61 f1 40 40 40 40 40 First/1

0020: 40 40 40 d4 f3 f2 fO fO 40 c1 95 a8 a2 a3 99 85 M3200 Anystre

0030: 85 a3 40 c3 96 a4 99 a3 40 40 40 40 40 40 40 40 et Court

0040: 40 40 e3 e7 f7 f7 f5 f5 f5 f0 fO fO fO TX775550000

<Nov 15, 2001 3:53: 07 PM GMT-06: 00> <Debug> <JAML> <[5560199] Starting one phase
commi t >

<Nov 15, 2001 3:53:07 PM GWIT-06: 00> <Debug> <JAML> <[5560199] Begi nni ng of
request: 1207959692 servi ce: sanpl eRead>

<Nov 15, 2001 3:53:07 PM GMI-06: 00> <Debug> <JAML> <[5560199] ---- request data
dunp ----
0000: 00 00 OO0 00 Of d3 81 a2 a3 61 fO 40 40 40 40 40 Last/0

0010: 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
0020: 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
0030: 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
0040: 40 40 40 40 40 40 40 40 40 40 40 40 40

<Nov 15, 2001 3:53: 07 PM GMT-06: 00> <Debug> <JAML> <[5560199] End of
request: 1207959692>

<Nov 15, 2001 3:53:07 PM GMT-06: 00> <Debug> <JAML> <[5560199] ---- response data
dump ----

BEA WebLogic Java Adapter for Mainframe Programming Guide 7-3

7 Diagnostics

0000: 00 00 OO0 OO0 Of d3 81 a2 a3 61 fO 40 40 40 40 40 Last/0
0010: 40 40 40 40 c6 89 99 a2 a3 61 f1 40 40 40 40 40 First/1
0020: 40 40 40 d4 f3 f2 fO fO 40 c1 95 a8 a2 a3 99 85 MB200 Anystre
0030: 85 a3 40 c3 96 a4 99 a3 40 40 40 40 40 40 40 40 et Court

0040: 40 40 e3 e7 f7 f7 f5 f5 f5 f0 f0O fO fO TX775550000

>

<Nov 15, 2001 3:53:07 PM GMI-06: 00> <Debug> <JAML> <[5560199] Starting one phase

The trace categories listed in Table 7-3 are for use if you find it necessary to contact
BEA Technical Support. They may be used to collect data about your system necessary
to resolve problems.

Table 7-3 System Trace Categories

CRMAPI trace Produces trace records showing the messages exchanged
between the Gateway and the CRM.

JAM socket trace Produces trace records showing a hexadecimal dump of the data
exchanged between the Gateway and the CRM.

Configuration trace Produces trace records showing operations within the WebLogic
Administration Console and interactions between it and the
Gateway.

Thread level trace Produces trace records showing operations within the Gateway

related to its internal threads and subtasks.

Low-Level Client Diagnostics

WebLogic JAM includes two low-level features to support diagnosing problems with
eGen-based client programs. While these facilities are not designed for use in a
production environment, they should be useful during development. These features are
enabled by adding the settings listed in Table 7-4 to the java statement at the end of
your st art WebLogi c. cnd file for the BEA WebLogic Server domain that you are
currently running.

7-4 BEA WebLogic Java Adapter for Mainframe Programming Guide

Low-Level Client Diagnostics

Table 7-4 Client Diagnostic Settings

bea.jam.client.loopback Set to "true" to bypass the
gateway & simply loop the
request bytes back to the client.

bea.jam.client.stub Set to the full name of a class to
be used as a gateway stub.

Listing 7-1 provides an example in bold of the changes that need to be made to the java
statement in the st art WebLogi c¢. cnd file necessary to enable the client diagnostic
loopback feature. This file can be found in the <W.S_HOVE>\ conf i g\ <domai n>
directory. The java statement can be found near the end of the file.

Listing 7-1 startWebLogic.cmd Loopback Example

"% AVA HOVE% bi n\j ava" -hotspot -ns64m -nx64m -cl asspath
YCLASSPATHY - Dwebl ogi c. Donmai n=rmydomai n

-Dbea.jamclient.| oopback=true -Dwebl ogi c. Nane=nyserver

"- Dbea. hone=g: \ bea"

"-D ava. security.policy==9_HOWE server/|ib/webl ogic. policy"
- Dnebl ogi c. managenent . passwor d=9%\.S_PW/t webl ogi c. Server

Client Loopback

If the client loopback feature is enabled, all requests receive a response that is exactly
equal to the request data. Note that this loopback response is accomplished while the
data is in mainframe format. If a service accepts one DataView subclass and returns a
different one, a conversion failure in trying to construct the resulting DataView
subclass may occur.

Note: When the client loopback feature is enabled, a Gateway need not be deployed.

BEA WebLogic Java Adapter for Mainframe Programming Guide 7-5

7 Diagnostics

Client Stub Operation

The client stub operation enables you to replace the gateway with your own class, in
effect providing a replacement for the entire target mainframe. This feature is valuable
for testing or proof-of-concept situations where the mainframe connection is not
available.

Your stub class must:
m Provide a constructor that takes no arguments.
m Be available on your CLASSPATH.

m Contain a method for each service that is to be supported. This method must take
some DataView subclass as its only argument and return a DataView subclass.

CRM Tracing

The CRM has tracing options that can be enabled for advanced debugging of
WebLogic JAM applications. Refer to the BEA WebLogic Java Adapter for Mainframe
Configuration and Administration Guide for information about setting trace levels.

On Windows NT and Unix systems, traces are written to a file in the directory in which
the CRM was started. If the environment variable APPDI Ris set, the trace will be
written to the directory it specifies. The file name will be specified as:

CRM <pi d>. trace. <seq>

Where <pi d> is the process ID of the CRM process, and <seqg> is the sequence number
of the trace file, which is always 0.

On MVS systems, traces are written to SYSOUT, which is identified by TRACE DD
NAME.

7-6 BEA WebLogic Java Adapter for Mainframe Programming Guide

CRM Tracing

Viewing Trace Output

0000:
0010:
0020:
0030:
0040:
0050:
0060:
0070:
0080:
0090:
00AQ:
00BO:

With a few exceptions, each line in the trace output is preceded by a time tag,
identifying the date and time the line was written.

Note: The time tag information in the CRM trace should reflect the current system
time. In order to make use of the correct time zone information on Unix and
MYVS systems, it is important that the TZ environment variable be set
correctly. If this variable is not set correctly on your system, refer to your
system documentation for further information.

After the time tag, a four-digit number appears, identifying the number of the task that
wrote the line to the trace. This number can be useful when multiple processes are
connected to the CRM.

If the trace level of the CRM is greater than one, a plus sign (+) following the task
number indicates that a line in the trace is level 1 output. For example, in the sequence:

Tue Oct 09 10:45:10.291 0001 +CRMinitialization conplete --
Nor mal di spat chi ng begins

Tue Cct 09 10:45:10.291 0001 CRMstate transition from
InitializationlnProgress to Reset

The line CRM i ni ti al i zati on conpl et e is level 1 output, and the line CRM st at e
transition is not (it is level 3 output).

When the trace level is set to 3, hex dump information will appear in the trace. These
entries will appear interspersed with other trace statements. An example follows:

----------------- HEXADECH MAL- - - - = = == =< = === e o %ot ASCl] e - *
00 B2 63 00 00 56 BE AC 05 00 00 04 00 02 (VA)
00 00 00 00 00 1C 7E 71 00 00 00 00 00 96 (.........Q......)

00 00 01 57 45 42 4C 00 43 49 43 53 00 53 (..... WEBL. CI CS. §)
43 52 4D 00 00 00 00 00 OO 00 00 00 00 00 (NACRM)
00 00 00 00 00 OO0 OO OO0 OO OO0 00 00 41 30 (+v''vvvnnnnn AO)
49 43 53 00 00 00 00 00 00 00 00 00 00 OO0 (6CICS...........)
00 00 00 00 OO OO0 OO OO OO0 00 00 41 30 36 (....vvvuuuunn A06)
43 53 00 00 53 4D 53 4E 41 31 30 30 00 4C (CICsS..SMSNAL10O. L)
41 4C 00 00 00 00 00 00 02 00 00 04 00 02 (OCAL............)

BEA WebLogic Java Adapter for Mainframe Programming Guide 7-7

7 Diagnostics

These entries consist of offset information in the left column, followed by columns
with the data in hexadecimal format, followed by an ASCII or EBCDIC representation
of the data. The data is read from left to right, top to bottom.

Hex dump information for application data appears in a slightly different format, with
two different representations of the user data. An example follows:

00000 | 12345678 9f e29489 a3884040 40404040| |..... Smith |
00010 | 40404040 d1968895 40404040 40404040| John [
I

00030 | 40404040 40404040 40404040 40404040

I

00020 | 404040d8 f 1f 2f 3f 4 40c59394 40e2a34b| | Ql234 Elm St.
I

00040 | 4040e3d5 f1f 2f 3f 4 f 5404040 40000000|

I
TN12345 oo

The two columns following the hex data contain the user data in “actual” and “native”
representations. In the “actual” representation, the binary data is represented directly
as character data, with unprintable characters appearing as a period (.). In the “native”
representation, the binary data is converted to the native character format (EBCDIC or
ASCII), allowing text fields to be viewed directly.

Note: The above example was taken from a CRM trace from an EBCDIC machine,
so the “actual” and “native” columns both contain readable text.

APPC API Tracing

The BEA support team might request an APPC API trace for diagnosis of a customer
problem. The mapping of the APPC API trace is BEA internal.

The VTAM APPC API may be captured by enabling the APPC API tracing. The API
trace shows the parameters and values passed and returned to the VTAM APPC stack.
The API trace is captured to the GTF tracing facility. The GTF tracing facility must be
active in the mainframe region to capture the API traces.

After capturing the traces, you must format the print using GTF formatting procedures
such as IPCS. The APPC API trace is written to GTF as user id 2EA'. You may use
this ID to filter the GTF print to include only the APPC API traces.

Refer to the BEA WebLogic Java Adapter for Mainframe Configuration and
Administration Guide for information about setting APPC tracing.

7-8 BEA WebLogic Java Adapter for Mainframe Programming Guide

APPC API Tracing

Viewing APPC Trace Output

The APPC API trace captures the parameters and values used by the CRM to make a
VTAM APPC request. The trace will show the APPC verb control block before and

after the request is made. The response to the request will show return codes and

returned v

alues.

The following example of a request and a response was formatted by using the IBM
provided program | KIEFTOL1.

HE{FOIMAT AID FF FID 00 EID EZER
+0000 OOF8Z400 EZCECLCE CECEDAFD
+0020 E3404040 000E00OO 00000000
+0040 C4ESFLIFD C4DIEZFL 40404040
+0060 40404040 40404040 40404040
+0080 40404040 40404040 000040

HE{FORMAT AID FF FID 00 EID EZER
+0000 OOF8Z400 EECRCLCE CeCEDAF
IPCE PRINT LOG FOR USER CER

BA15DZE0
00o00o00g
40404040
40404040

B415DZe0

B3L7EDEE
00000000
40404040
40404040

B3L7EDEE

B3C1D3E3
Qooooood
40404040
40404040

B3C1D3E3

CEC4DACE
oooonnoo
40404040
40404040

CEC4DACE

DBR4CEEE
oooonooa
40404040
40404040

EZDTDEDE

.8..BEAJOBOL. .K-TP_STARTEDREQUES
N
DVLODIEL

.8. .BRAHOBOL. .E-TP_STARTEDREZPON

+0020 EzCECIDT EDDEDE40 40404040
+0040 OO0EQODD 00000QOO 0000DOOO0
+0060 C4DIEZFl 40404040 40404040
+0080 40404040 40404040 40404040
+00A0 40404040 000040

40404040
00o00o00g
40404040
40404040

40404040
QES11D30
40404040
40404040

40404040
OE312Z30
40404040
40404040

40404040
oooonnoo
40404040
40404040

40404040
C4ESFLEFD
40404040
40404040

SEAP (K

BEA WebLogic Java Adapter for Mainframe Programming Guide

7-9

7 Diagnostics

7-10 BEA WebLogic Java Adapter for Mainframe Programming Guide

APPENDIX

A

DataView

Programming
Reference

This section provides the rules that allow you to identify what form a generated Java

class takes from a given COBOL copybook processed by the eGen Application

Generator (eGen utility). An understanding of the rules facilitates a programmer’s
ability to correctly code any custom programs that make use of the generated classes.

The eGen utility maps a COBOL copybook into a Java class. The COBOL copybook
contains a data record description. The eGen utility derives the generated Java class
from the com bea. dnd. dat avi ew. Dat aVi ew class (later referred to as Dat aVi ew),
which is provided on your WebLogic JAM product CD-ROM in the j am j ar file.

This section discusses data mapping rules in the following topics:

Field Name Mapping Rules

Field Type Mappings

Group Field Accessors
Elementary Field Accessors
Array Field Accessors

Fields with REDEFINES Clauses
COBOL Data Types

Other Access Methods for Generated DataView Classes

BEA WebLogic Java Adapter for Mainframe Programming Guide

A DataView Programming Reference

m Known Limitations of WebLogic JAM working with COBOL Copybooks

You should find the COBOL terms in this section easy to understand; however, you
may need to use a COBOL reference book or discuss the terms with a COBOL
programmer. Also, you can process a copybook with the eGen utility and examine the
generated Java code in order to understand the mapping.

Field Name Mapping Rules

When you process a COBOL copybook containing field names, they are mapped to
Java names by the eGen utility. All alphabetic characters are mapped to lower case,
except in the following two cases.

1. All dashes are removed and the character following the dash is mapped to upper
case.

2. When a prefix is added to the name (as when creating a field accessor function
name), the first character of the base name is mapped to upper case.

Table A-1 lists some mapping examples.

Table A-1 Example Field Name Mapping from COBOL to Java and Accessor

COBOL Field Name Java Base Name Sample Accessor Name

EMP- REC enpRec set EnpRec

500- REC- CNT 500RecCnt set 500RecCnt

Field Type Mappings

When you process a COBOL copybook, the data types of fields are mapped to Java
data types. The mapping is performed by the eGen utility according to the following
rules:

A-2 BEA WebLogic Java Adapter for Mainframe Programming Guide

Field Type Mappings

1. Groups map to Dat aVi ewsubclasses.
2. All alphanumeric fields are mapped to type Stri ng.
3. All edited numeric fields are mapped to type St ri ng.

4. All SI GN SEPARATE, BLANK WHEN ZEROor JUSTI FI ED RI GHT fields are
mapped to type Stri ng.

5. SIGN | S LEADI NGis not supported.

6. The types COVP- 1, COVP- 2, COMP- 5, COMP- X, and PROCEDURE- POl NTER fields
are not supported (an error message is generated).

7. All'| NDEX fields are mapped to Java typei nt .
8. PO NTERmaps to Java typei nt.

9. All numeric fields with any digits to the right of the decimal point are mapped to
type Bi gDeci mal .

10. All cOwP- 3 (packed) fields are mapped to type Bi gDeci mal .

11. All other numeric fields are mapped as shown in Table A-2.

Table A-2 Numeric Field Mapping

Number of Digits Java Type
<=4 short
>4and <=9 i nt

>9and <= 18 | ong

> 18 Bi gDeci nal

BEA WebLogic Java Adapter for Mainframe Programming Guide A-3

A DataView Programming Reference

Group Field Accessors

Each nested group in a COBOL copybook is mapped to a corresponding Dat aVi ew
subclass. The generated subclasses are nested exactly as the COBOL groups in the
copybook. In addition, the eGen utility generates a private instance variable of this
class type and a get accessor.

For example, the following copybook:

10 MY- RECORD.
20 MY-GRP.
30 ALNUM FI ELD PI C X(20).

Produces code similar to the following:

public MG p2V get WG p();
public static class MG p2V extends DataVi ew
{

}

/1 dass definition

Elementary Field Accessors

Each elementary field is mapped to a private instance variable within the generated
DataView subclass. Access to this variable is accomplished by two accessors that are
generated (set and get).

These accessors have the following forms:
public void setFiel dName(Fi el dType val ue);
public FieldType getFiel dNane();

Where:

Fi el dType
is described in the Field Type Mappings section.

Fi el dNane
is described in the Field Name Mapping Rules section.

A-4 BEA WebLogic Java Adapter for Mainframe Programming Guide

Array Field Accessors

For example, the following copybook:

10 My- RECORD.
20 NUMERI G FI ELD PI C S9(5).
20 ALNUM FI ELD PI C X(20).

Produces the accessors:

public void setNunericField(int value);
public int getNurericField();

public void set Al nunfField(String val ue);
public String getAl nuntiel d();

Array Field Accessors

Array fields are handled according to the field accessor rules described in Group Field
Accessors and Elementary Field Accessors, with the addition that each accessor takes
an additional i nt argument that specifies which array entry is to be accessed, for

example:
public void set Fi el dNanme(i nt index, FieldType val ue);
public FieldType get Fi el dNane(int index);

Array fields specified with the DEPENDI NG ON clause are handled the same as
fixed-size arrays with the following special rules:

1. The accessors may be used to get or set any instance up to the maximum array
index.

2. The controlling (DEPENDI NG ON) variable is evaluated when the DataView is
converted to or from an external format, such as a mainframe format. The eGen
utility converts only the array elements with subscripts less than the controlling
value.

BEA WebLogic Java Adapter for Mainframe Programming Guide A-5

A DataView Programming Reference

Fields with REDEFINES Clauses

Fields that participate in a REDEFI NES set are handled as a unit. A private byt e[]
variable is declared to hold the underlying mainframe data, as well as a private

Dat aVi ewvariable. Each of the redefined fields has an accessor or accessors. These
accessors take more CPU overhead than the normal accessors because they perform
conversions to and from the underlying byt e[] data.

For example the copybook:

10 MY- RECORD.
20 | NPUT- DATA.
30 | NPUT- A Pl C X(4).
30 | NPUT-B PIC X(4).
20 OUTPUT- DATA REDEFI NES | NPUT- DATA PIC X(8).

Produces Java code similar to the following:

private byte[] m.redef23;

private DataView mredef 23DV,

public I nputDataV getlnputData();

public String getQutputData();

public void setQutputData(String val ue);
public static class |nputDataV extends DataView

/1 dass definition.

}

COBOL Data Types

This section summarizes the COBOL data types supported by WebLogic JAM
software. Table A-3 lists the COBOL data item definitions recognized by the eGen
utility. Table A-4 lists the syntactical features and data types recognized by the eGen
utility. If a COBOL feature is unsupported and it is not listed as ignored in the table,
an error message is generated.

A-6 BEA WebLogic Java Adapter for Mainframe Programming Guide

COBOL Data Types

Table A-3 Major COBOL Features

COBOL Feature Support
IDENTIFICATION DIVISION Unsupported
ENVIRONMENT DIVISION Unsupported
DATA DIVISION Partially Supported
WORKING-STORAGE SECTION Partially Supported
Data record definition Supported
PROCEDURE DIVISION Unsupported
COPY Unsupported
COPY REPLACING Unsupported
EJECT, SKIP1, SKIP2, SKIP3 Supported
Table A-4 COBOL Data Types
COBOL Type Java Type
COMP, COMP-4, BINARY (integer) Short/Int/Long
COMP, COMP-4, BINARY (fixed) BigDecimal
COMP-3, PACKED-DECIMAL BigDecimal
COMP-5 Unsupported
COMP-X Unsupported
DI SPLAY nuneric (zoned) BigDecimal
BLANK WHEN ZERO(zoned) String
SIGN IS LEADING (zoned) Unsupported
SI GN | S LEADI NG SEPARATE (zoned) String
SIGN IS TRAI LI NG(zoned) String

BEA WebLogic Java Adapter for Mainframe Programming Guide A-T

A DataView Programming Reference

A-8

Table A-4 COBOL Data Types

COBOL Type Java Type

SIGN |'S TRAI LI NG SEPARATE (zoned) String

edited numeric String

COWP-1, COWP-2 (fl oat) Unsupported

edited float numeric String

DI SPLAY (al phanuneri c) String

edited alphanumeric String

INDEX Int

POINTER Int
PROCEDURE-POINTER Unsupported
JUSTIFIED RIGHT Unsupported (ignored)
SYNCHRONIZED Unsupported (ignored)
REDEFINES Supported

66 RENAMES Unsupported

66 RENAMES THRU Unsupported

77 level Supported

88 level (condition) Unsupported (ignored)
group record Inner Class

OCCURS (fi xed array) Array

OCCURS DEPENDI NG(vari abl e-1 ength array) Array

OCCURS INDEXED BY Unsupported (ignored)
OCCURS KEY IS Unsupported (ignored)

BEA WebLogic Java Adapter for Mainframe Programming Guide

Other Access Methods for Generated DataView Classes

Other Access Methods for Generated
DataView Classes

WebLogic JAM allows you to access DataView classes through several methods as
described in the following sections:

m Mainframe Access to DataView Classes
m XML Access to DataView Classes

m Hashtable Access to DataView Classes

Mainframe Access to DataView Classes

This section describes how mainframe format data may be moved into and out of
DataView classes. The eGen Application Generator writes this code for you, so this
information is provided as reference.

Mainframe format data may be extracted from a DataView class through the use of the
Mai nframeW it er class. Listing A-1 shows a sample of code that may be used to
perform the extraction.

Listing A-1 Sample Code for Extracting Mainframe Format Data from a
DataView Class

i mport com bea. base.i o. Mai nfraneWiter;
i mport com bea. dnd. dat avi ew. Dat aVi ew;

/**
* CGet mainfrane format data froma DataView into a byte[].
*/
byt e[] get Mai nfraneDat a(Dat aVi ew dv)
{
try
{

BEA WebLogic Java Adapter for Mainframe Programming Guide A-9

A DataView Programming Reference

Mai nframeWiter nw = new MainframeWiter();
/1 To override the DataView s codepage, change the
/1 above constructor call to sonething |ike:
/1 ...new MainframeWiter("cpl234");
return dv.toByteArray(m);
catch (java.io.| CException e)

/1 Some conversion failure occurred...

If you want to override the codepage provided when the DataView was generated, you
may provide another codepage as a St ri ng argument to the Mai nf raneWi t er
constructor, as shown in the comment in Listing A-2.

Loading mainframe data into a DataView is a similar process, in this case requiring the
use of the Mai nf r ameReader class. Listing A-2 shows a sample of code that may be
used to perform the load.

Listing A-2 Sample Code for Loading Mainframe Data into a DataView Class

i nport com bea. base. i 0. Mai nf raneReader ;
i mport com bea. dnd. dat avi ew. Dat aVi ew;

/**

* Put a byte[] containing nainfrane fornat data into a DataVi ew.
*/

MyDat aVi ew put Mai nf raneDat a(byt e[] buffer)

{

Mai nf rameReader mr = new Mai nfraneReader (buffer);

/1 To override the DataView s codepage, change the above
/1 constructor call to sonmething |ike:

/1 ..new Mai nframeReader ("cpl1234", buffer);

MyDat aVi ew dv;

A-10 BEA WebLogic Java Adapter for Mainframe Programming Guide

Other Access Methods for Generated DataView Classes

try

{
/1l Construct a new DataView with the mai nfrane dat a.
dv = new MyDat aVi em nr);
/1l O, toload a pre-existing DataVi eww th mai nfranme dat a.
/1 dv. mai nfranmeLoad(nr);
}
catch (java.io.| OException e)
/1 Some conversion failure occurred.
}
return dyv;
}

XML Access to DataView Classes

Facilities are provided to move XML data into and out of DataView classes. These
operations are performed through the use of the Xnl Loader and Xm Unl oader
classes.

Xm Loader is used to load XML data into a DataView.
Xm Unl oader is used to unload data from a DataView into XML.

If the eGen script used to produce the DataView specifies the "support xml"
option, then both a DTD and an XML/Schema that describe the XML format for
this DataView are produced.

Listing A-3 shows an example of the code used to load XML data into a DataView.

Listing A-3 Sample Code for Loading XML Data into a DataView

i mport com bea. dnd. dat avi ew. Dat aVi ew,
i mport com bea. dnd. dat avi ew. Xnl Loader ;

voi d | oadXm Data(String xm, DataView dv)

BEA WebLogic Java Adapter for Mainframe Programming Guide A-11

A DataView Programming Reference

{
Xm Loader x| = new Xm Loader ();
try
/1 Load the xml. Note that the xml argunent rmay be either
// a String or a org.w3c.dom El enent object.
xl.load(xm , dv);
catch (Exception e)
/] Some conversion error occurred.
}
}

Listing A-4 shows an example of the code used to unload a DataView into XML.

Listing A-4 Sample Code for Unloading a DataView into XML

i mport com bea. dnd. dat avi ew. Dat aVi ew;
i nport com bea. dnd. dat avi ew. Xn1 Unl oader ;

String unl oadXn Dat a(Dat aVi ew dv)

Xm Unl oader xu = new Xm Unl oader () ;

try
{
String xm = xu.unl oad(dv);

return xm;
catch (Exception e)

/! Some conversion error occurred.

A-12 BEA WebLogic Java Adapter for Mainframe Programming Guide

Other Access Methods for Generated DataView Classes

Hashtable Access to DataView Classes

WebLogic JAM also provides facilities to load and unload DataView objects using
Hashtable objects. Hashtable objects are most often used to move data from one
DataView to another similar DataView.

When DataView fields are moved into Hashtables, each field is given a key that is a
string reflecting the location of the field within the original copybook data structure.
Listing A-5 shows a sample of a COBOL Copybook.

Listing A-5 Sample emprec.cpy COBOL Copybook

1 K e e e e e e e e e e e m e e m e m e e me e me e e e e e e e e e e m - =
2 * enprec. cpy

3 * An enpl oyee record.

4 3
5

6 02 enp-record.

7

8 04 enp-ssn pic 9(9) conp-3.
9

10 04 enp- nane.

11 06 enp- nane- | ast pi ¢ x(15).

12 06 enp-name-first pic x(15).

13 06 enp- name- m pic X.

14

15 04 enp- addr .

16 06 enp- addr-street pic x(30).

17 06 enp- addr - st pic x(2).

18 06 enp- addr - zi p pic x(9).

19

20 * End

The fields for the COBOL Copybook in Listing A-5 are stored into a Hashtable as
shown in Table A-5.

BEA WebLogic Java Adapter for Mainframe Programming Guide A-13

A DataView Programming Reference

Table A-5 COBOL Copybook Hashtable

Key String Content Type
empRecord.empSsn BigDecimal
empRecord.empName.empNameLast String

empRecord.empName.empNameFirst String

empRecord.empName.empNameMi String

empRecord.empAddr.empAddrStreet String

empRecord.empAddr.empAddrSt String

empRecord.empAddr.empAddrZip String

Code for Unloading and Loading Hashtables

Following is an example of the code used to unload a DataView into a Hashtable.

Hasht abl e ht = new Hasht abl eUnl oader (). unl oad(dv);

Following is an example of the code used to load a Hashtable into an existing
DataView.

new Hasht abl eLoader () .1 oad(dv);

Rules for Unloading and Loading Hashtables

A-14

The basic rules of Hashtable unloading are:
m All data elements in the DataView are placed into the Hashtable.

m Each data item is stored as an object of its Java type. Elements of
i nt/short/| ong type are converted to | nt eger/ Short/ Long.

m Arrays are mentioned at the appropriate level in the key as an index enclosed in
"[", "]" pairs. For instance, if empAddr was an array, then one key into the
Hashtable might be enpRecor d. enpAddr [2] . enpAddr St r eet .

BEA WebLogic Java Adapter for Mainframe Programming Guide

Other Access Methods for Generated DataView Classes

The basic rules of Hashtable loading are:

m All data elements in the DataView attempt to acquire a value from the
Hashtable. If no matching key exists, the element retains its original value.

m Hashtable members of the wrong type result in a G assCast Except i on being
thrown.

Name Translator Interface Facility

A name translator interface facility is available to provide Hashtable name mappings.
Both Hasht abl eLoader and Hasht abl eUnl oader provide a constructor that accepts
an argument of type com bea. dnd. dat avi ew. NameTr ans| at or . Table A-6 lists the
descriptions of the public interface methods that must be implemented.

Table A-6 Name Translator Interface

Method Description

translate(String input) This method received a St r i ng object as an input
parameter and returns a St r i ng object.

You can write classes that implement this interface for your application. These
implementations are used to translate the key strings before the Hashtable is accessed.

Following are some useful implementations that are included in the WebLogic JAM

library:
Class Constructor Purpose
NameFlattener() Reduces the key to the portion following the

final period character.

PrefixChanger(String old, String add) Removes an old prefix & adds a new one.

PrefixChanger(String old) Removes a prefix.

The Hasht abl eLoader , Hasht abl eUnl oader, and the various name translator
classes are included in the "com.bea.dmd.dataview" package.

BEA WebLogic Java Adapter for Mainframe Programming Guide A-15

A DataView Programming Reference

Known Limitations of WebLogic JAM
working with COBOL Copybooks

Following are some of the known limitations of this version of the WebLogic JAM
product.

m Continuation lines are not recognized in COBOL copybooks. This is only a
problem for long character literals occurring within VALUES clauses. Comment
out the relevant clause to fix the problem.

m COBOL copybooks with array (table) data items having an OCCURS DEPENDI NG
ON clause must be structured so that the depending-on counter data item is not
contained within the same group data item as the one containing the array.

B USAGE clauses on group data items in COBOL copybooks are not properly
propagated to their subordinated member data items.

A-16 BEA WebLogic Java Adapter for Mainframe Programming Guide

APPENDIX

B

eGen Application
Generator Reference

This section contains reference pages for the WebLogic JAM eGen Application
Generator (eGen utility). This information includes the rules for writing the script file
that controls the code generator.

Synopsis

The eGen utility maps a COBOL copybook into a Java class.

Invoke the utility with the following command:
java com bea.j am egen. EgenCobol scriptfile
where:

j ava
is the name of the Java virtual machine executable in the Java Development Kit
(JDK).

com bea. j am egen. EgenCobol
is the full class name of the eGen utility.

scriptfile
is the script file that controls the eGen utility. You must write this script file on
an application-by-application basis. (See Listing B-1 for an example).

BEA WebLogic Java Adapter for Mainframe Programming Guide B-1

B eGen Application Generator Reference

If the WebLogic JAM installation bin directory has been added to your path, the eGen
utility may also be invoked with the following command:

egencobol scriptfile

Listing B-1 Example of scriptfile.egen

exanpl e scri pt
#

vi ew deno. Cust onDat aVi ew from enprec. cpy
servi ce denpService accepts CustonDataVi ew returns CustonDataVi ew

page denoPage "Deno Page"

{
vi ew denp. Cust onDat aVi ew
buttons
{
"Try It" service(denpService) shows denpPage
}
}

servl et deno. DenpServl et shows denpPage

Script Syntax Reserved Words

The reserved words shown below must be used as specified in the Grammar section.

Note: A reserved word can be used as an identifier if it is enclosed in either single or
double quotation marks (refer to General Rules).

accepts buttons cl ass client codepage ejb

from generate group is nmet hod page

B-2 BEA WebLogic Java Adapter for Mainframe Programming Guide

General Rules

reset returns server service servl et shows

support Vi ew transaction xni

General Rules

m The' # character and all following characters on the same line are a comment.
Use the ‘ #' character to specify commented text.

m The character sequence “/ /" and all following characters on the same line are a
comment. Use the “/ /" characters to specify commented text.

m The character sequence “/ *” and all following characters until the occurrence of
the sequence “ */ " are a comment. Use the “/ *” characters to specify
commented text that extends beyond one line.

m White space (including new lines) is not significant, except when it is used to
separate tokens. White space includes new lines, carriage returns, tabs, spaces,
etc.

m Any sequence of letters, digits, underscores, or periods is a word.
m Any word that does not match a reserved word is an identifier.

®m Any sequence of characters is treated as an identifier if it is enclosed in either
single or double quotes. This allows the use of reserved words and sequences
that contain spaces.

Grammar

The eGen script grammar uses a modified Backus-Naur Form (BNF) syntax, which is
used in many industry-standard software reference guides. BNF syntax specifies a

context-free grammar. Reserved words are shown in bold. Comments are in italics
preceded by a dash (—).

BEA WebLogic Java Adapter for Mainframe Programming Guide B-3

B eGen Application Generator Reference

script:
definition | script definition

fulldefinition:
generate definition | definition

definition:
vi ewdef | servicedef | servletdef | ejbdef | classdef |
pagedef

vi ewdef :
vi ew vi ewnanme from copybook | viewdf viewrodifier

vi ewnodi fier:
codepage codepagenane | support xm

servi cedef :
servi ce servicenanme accepts full Vi ewnane returns full Vi ewnane

servl et def:
servl et classnane shows pagenane

ej bdef :
clientejb | serverejb

clientejb:
client ejb classnane ej bspec { clientnethods }

serverej b:
server ejb classnane ejbspec { servernethoddef }

cl assdef:
client class classnane { clientnethods }

ej bspec:
ejbregistration | ejbregistration transactiondef

transacti ondef:
transaction [Not Supported | Required | Supports |
Requi resNew | Mandatory | Never]

pagedef:
page pagenane title { view viewnane buttons { buttonlist } }

buttonlist:
buttondef | buttonlist buttondef

but t ondef :
servi cebutton | ejbbutton

B-4 BEA WebLogic Java Adapter for Mainframe Programming Guide

Grammar

cl i ent met hods:
clientnmet hoddef | clientnethods clientnethoddef

cli ent met hoddef :
met hod net hodnane is servicenane

server met hoddef :
met hod net hodname (fullviewnane) returns fullvi ewname

servi cebutton:
buttonnanme service (servicenane) shows pagenamne

ej bbut t on:
but t onnanme ej bmethod () shows pagenane

Vi ewnane:
cl assnane

ful | Vi ewnane:
vi ewnanme | vi ewnane [codepagenane |

copybook:
identifier
—An identifier that names a file containing a COBOL data definition.

servi cenarmne:
identifier
—An identifier that matches a resource definition in your j cr mgw. cf g file

pagenane:
identifier
—An identifier that names a page definition.

codepagenane:
identifier
—The name of a codepage to be used for character translation to/from
mainframe data formats. This must be a codepage supported by the JDK being
used.

met hodnane:
identifier
—The name to be given to a generated Java method.
cl assnare:
identifier
—An identifier that names a Java class, including any package name.

BEA WebLogic Java Adapter for Mainframe Programming Guide B-5

B eGen Application Generator Reference

ej bregi stration:

identifier

—The name that will be used to register the home interface for an EJB.
title:

identifier

—The title to be placed into the HTML generated for a page.
but t onnamne:

identifier

—A button name that will be used in the HTML generated for a page.
ej bnet hod:

identifier

—An EJB classname and method specification that should look like this.:

package. ej bcl ass. net hod

or
ej bcl ass. net hod

Results of Running the eGen Application
Generator

m The specified COBOL copybook is parsed for each DataView definition
(described in DataView Programming Reference) and a Java source file for the
specified DataView class is generated in the current directory.

If XML support was requested, then the following files are also produced:
e vi ewnane.dtd - DTD file

e vi ewnane.xsd - XML Schema file

m For each servlet definition, a Java source file is generated in the current directory
for the specified class.

m For each client class definition, a Java source file is generated in the current
directory for the specified class.

B-6 BEA WebLogic Java Adapter for Mainframe Programming Guide

Results of Running the eGen Application Generator

m For each EJB definition, three Java source files, a WebLogic deployment
information file, and a deployment descriptor text file are generated in the
current directory. The names of the generated files are listed in below.

Name of File

Purpose

cl assnanmeHone. j ava

EJB Home Interface

cl assnanmeBean. j ava

EJB Implementation class

cl assnane. j ava

EJB Remote Interface

cl assname-j ar. xm

EJB Deployment descriptor

w - cl assnane-j ar. xm

WebLogic Deployment Info

BEA WebLogic Java Adapter for Mainframe Programming Guide B-7

B eGen Application Generator Reference

B-8 BEA WebLogic Java Adapter for Mainframe Programming Guide

APPENDIX

C Understanding How

WebLogic JAM Uses
XML

BEA WebLogic Java Adapter for Mainframe (WebLogic JAM) uses the capabilities
of XML to exchange data between different applications and operating systems.
Understanding basic XML terms will help you to understand WebLogic JAM’s XML
capabilities and how they are used.

This section discusses the following topics:
m What is XML?
e Document Type Definition
e DTD Generated from eGen Application Generator (emprec.dtd)

m How WebLogic JAM Uses XML

What is XML?

Extensible Markup Language, or XML, is a text format for exchanging data between
different systems. It allows data to be described in a simple, standard, text-only format.
Since the data is presented in a standard form, applications on disparate systems can
interpret the data using simple text parsing tools, instead of having to interpret data in
proprietary binary formats.

BEA WebLogic Java Adapter for Mainframe Programming Guide C-1

C Understanding How WebLogic JAM Uses XML

XML documents come in two varieties: data and metadata.

m XML Data Document

Data records can be converted into XML documents, which can then be
transmitted to other applications. The XML data documents contain a single
top-level entity (or tag) that represents the entire data record. Fields within the
record are represented by other subordinate entities nested within the top-level
entity. Each entity has a unique tag name, which corresponds to a field within
the original data record. Each entity has content, which is the actual data value
of the field. Entities may also have attributes, which are values attached to the
entities that augment the normal content values. The XML data document file
name ends with a .xml extension.

See Listing C-2 for an example XML data document.

m XML Metadata

Every XML document consists of a top-level entity, which in turn may be
composed of subordinate entities. The structure of these entities, which included
their tag names, the order in which they occur, the type and length of their
content values, and their allowed attribute values, is described by a metadata
definition. Metadata definitions can take the form of XML documents
themselves. There are two standard formats for XML metadata documents: XML
Document Type Definition (DTD) and XML Schema.

Document Type Definition

A Document Type Definition, or DTD, defines the legal building blocks of an XML
document. It defines the document structure with a list of legal elements (tags). While
XML provides an application independent way of sharing data, the DTD provides a
common definition for interchanging data.

Your application can use a standard DTD to verify that data that you receive from the
outside world is valid. You can also use a DTD to verify your own data.

The XML DTD file name ends with a .dtd extension.

See Listing C-3 for an example XML DTD document.

C-2 BEA WebLogic Java Adapter for Mainframe Programming Guide

How WebLogic JAM Uses XML

XML Schema

A schema specifies the structure of an XML document and constraints on its content.
While XML is the meta-language that provides the rules for defining tag languages, an
XML Schema document is a formal specification of the grammar for a particular tag
language. The schema defines the elements that can appear within the document and
the attributes that can be associated with an element. It also defines the structure of the
document: which elements are child elements of others, the sequence in which the
child elements can appear, and the number of child elements. It defines whether an
element is empty or can include text. The schema can also define default values for
attributes.

XML Schema is more precise than DTD, providing more descriptive information
about each XML element. It is likely that XML Schema will eventually replace XML
DTD as the dominant standard metadata format.

A schema is useful for validating the document content to determine whether a
document is a valid instance of the grammar expressed by that schema and for
describing your grammar for use by others.

The XML Schema file name ends with a .xsd extension.

See Listing C-4 for an example XML Schema document.

How WebLogic JAM Uses XML

The WebLogic JAM eGen Application Generator provides the ability to generate both
XML Schema and XML DTD (Document Type Definition) documents for a given
COBOL copybook record definition. The WebLogic JAM runtime environment
provides the capability of converting data records into XML data documents formatted
according to their corresponding schema or DTD definitions.

The following listings show examples of the XML files generated by the eGen utility
from the COBOL Copybook for an employee information record.

Listing C-1 shows an example of an employee information record from a COBOL
Copybook. The eGen utility generates an XML Schema and a DTD from the employee
information record. Listing C-2 shows the corresponding XML document that

BEA WebLogic Java Adapter for Mainframe Programming Guide C-3

C Understanding How WebLogic JAM Uses XML

conforms to the XML Schema and DTD generated from the employee record
information, Listing C-3 shows the corresponding DTD, and Listing C-4 shows the
corresponding XML Schema.

Listing C-1 COBOL Copybook for Employee Information Record (emprec.cpy)

K o o o e =
* enprec. cpy
* Enpl oyee record.
*
* @#)$ld: enprec.cpy,v 1.2 1999/11/12 01:16:41 $
02 enp-record.
04 enp-ssn pic 9(9) conp-3.
04 enp- nane.
06 enp-nane-| ast pi c x(15).
06 enp-nane-first pi ¢ x(15).
06 enp-nane-m pic Xx.
04 enp-addr.
06 enp-addr-street pi c x(30).
06 enp-addr- st pic x(2).
06 enp-addr-zip pic x(9).
* End

Listing C-2 Example XML Document that Conforms to a DTD and XML
Schema Generated from the eGen Application Generator (emprec.xml)

<enpr ec>
<enpRecor d>

<enpSsn>660337645</ enpSsn>

<enpName>
<enpNaneLast >Doe</ enpNaneLast >
<enpNaneFi r st >John</ enpNaneFi r st >
<enpNanmeM >P</ enpNameM >

</ enpNanme>

<enpAddr >
<enpAddr St r eet >3235 Possum Park Ln. </ enpAddr Street >
<enpAddr St >TX</ enpAddr St >
<enpAddr Zi p>758050000</ enpAddr Zi p>

C-4 BEA WebLogic Java Adapter for Mainframe Programming Guide

How WebLogic JAM Uses XML

</ enpAddr >
</ empRecor d>
</ enprec>

Listing C-3 DTD Generated from eGen Application Generator (emprec.dtd)

<l--
DTD enprec 1.0

Definition: enprec

|

|

!

I Version: 1.0

! Source: ../ synmbol / enprec. cpy

! Cenerated: 2000- 09- 27T19: 18: 25. 0847
I Created: 2000- 09- 27T19: 18: 24. 9372
I Modifi ed: 1999-11-12T01: 16: 41. 0002
1-->

<! ELEMENT enprec
(empRecord)>

<! ATTLI ST enprec
dat e CDATA #DEFAULT "unknown" >
<l-- format="ccyy-mm ddThh: nm ss. nmiz" -->

<l ATTLI ST enprec
ver si on CDATA #DEFAULT "1.0">

<!-- empRecord -->
<! ELEMENT enpRecord
(enpSsn ,
enpNane
enpAddr) >

<!-- enmpRecord. enpSsn -->
<! ELEMENT enpSsn
(#PCDATA) >

<!-- enmpRecord. enpNane -->
<! ELEMENT enpName
(empNaneLast ,
enpNaneFirst ,
enmpNameM) >

<!-- enpRecord. enpNane. enpNaneLast -->

BEA WebLogic Java Adapter for Mainframe Programming Guide

C-5

C Understanding How WebLogic JAM Uses XML

<! ELEMENT enpNanmeLast
(#PCDATA) >

<I-- enpRecord. enpNane. enpNaneFi rst -->
<! ELEMENT enpNaneFi r st
(#PCDATA) >

<I'-- enpRecord. enpNane. enpNaneM - ->
<! ELEMENT enpNaneM
(#PCDATA) >

<I'-- enpRecord. enpAddr -->
<! ELEMENT enpAddr
(enpAddr Street
enpAddr St
enpAddrZip)>

<I-- enpRecord. enpAddr . enpAddr Street -->
<! ELEMENT enpAddr Street
(#PCDATA) >

<I-- enpRecord. enpAddr . enpAddr St -->
<! ELEMENT enpAddr St
(#PCDATA) >

<I'-- enpRecord. enpAddr. enpAddrZip -->
<! ELEMENT enpAddr Zi p
(#PCDATA) >

<l-- End -->

Listing C-4 XML Schema Generated from eGen Application Generator
(emprec.xsd)

<?xm version="1.0"?>
<schema
xm ns: xsd="htt p: // ww. w3. or g/ 1999/ XM_Schena" >

<xsd: annot ati on>
<xsd: docunent ati on>

Schena: enprec

Ver si on: 1.0

Sour ce: ../ symbol / enpr ec. cpy
Gener at ed: 2000- 09- 27T19: 19: 42. 857Z
Cr eat ed: 2000- 09-27T19: 19: 43. 7082

C-6 BEA WebLogic Java Adapter for Mainframe Programming Guide

How WebLogic JAM Uses XML

Modi fi ed: 1999-11-12T01: 16: 41. 000Z
</ xsd: docunent at i on>
</ xsd: annot ati on>

<xsd: el enent nanme="enprec">
<xsd: conmpl exType>

<xsd:attribute nane="date"
type="xsd:tinmelnstant"/>

<xsd:attribute nane="version"
type="xsd: string"
use="defaul t"
val ue="1.0"/>

<xsd: el enent nane="enpRecord" >
<xsd: conpl exType>

<xsd: el ement nane="enmpSsn">
<xsd: si npl eType base="xsd:integer">
<xsd: preci sion val ue="9"/>
<xsd: m nl ncl usi ve val ue="0">
</ xsd: si nmpl eType>
<l-- <Y%icture value="9(9)"/> -->
</ xsd: el enent >

<xsd: el ement nane="enpNane" >
<xsd: conpl exType>

<xsd: el enent nane="enpNaneLast"
type="xsd: string"
| engt h="15"/>
<l-- <Y%icture value="x(15)"/> -->

<xsd: el enent name="enpNaneFirst"
type="xsd: string"
| engt h="15"/>
<I-- <Yicture value="x(15)"/> -->

<xsd: el enent nane="enpNanmeM "
type="xsd: string"
| engt h="1"/>
<I-- <%icture value="x"/> -->

</ xsd: conpl exType>
</ xsd: el enent > <! --"enpNane"- - >

<xsd: el ement nane="enpAddr" >
<xsd: conpl exType>

BEA WebLogic Java Adapter for Mainframe Programming Guide C-7

C Understanding How WebLogic JAM Uses XML

<xsd: el enent name="enpAddr Street"
type="xsd: string"
| engt h="30"/>
<I-- <U%icture value="x(30)"/> -->

<xsd: el ement nane="enpAddr St"
type="xsd: string"
| engt h="2"/>
<I-- <%icture value="x(2)"/> -->

<xsd: el ement nane="enpAddr Zi p"
type="xsd: string"
| engt h="9"/>
<l-- <%icture value="x(9)"/> -->

</ xsd: conpl exType>
</ xsd: el ement > <!--"enpAddr"-->

</ xsd: conpl exType>
</ xsd: el enent > <! --"enpRecord"-->
</ xsd: conpl exType>

</ xsd: el enent> <!--"enprec"-->

</ schema>

C-8 BEA WebLogic Java Adapter for Mainframe Programming Guide

APPENDIX

D RMI Access to the
WebLogic JAM Gateway

A Remote Method Interface (RMI) configuration subsystem allows you to monitor and
control the WebLogic JAM Gateway by a remote Java application. WebLogic JAM
provides such administrative capabilities through the com bea. j am Adni n utility.
Using the features in the RMI subsystem, referred to as the JAM Deployed
Configuration feature, you can develop your own custom administrative capabilities.

This section discusses the following topics:
m JAM Deployed Configuration Feature

m Sample JAM Administration Utility

JAM Deployed Configuration Feature

The JAM Deployed Configuration feature is comprised of several of RMI-based
interfaces which are advertised in the JNDI tree of a WebLogic Server hosting the
WebLogic JAM Gateway. These objects are constructed, at server boot time, based on
the WebLogic JAM configuration information specified in the Administration Server
of the WebLogic JAM domain. Information about the CRM, Links, and Services is
maintained in the j anconfi g. xn file. Update this file using the WebLogic
Administration Console.

Note: For information about updating the j anconfi g. xm file, refer to the BEA
WebLogic JAM Configuration and Administration Guide.

BEA WebLogic Java Adapter for Mainframe Programming Guide D-1

D RMI Access to the WebLogic JAM Gateway

The following objects are provided for remote gateway access:

m GatewayBootstrap

Primary access point to the Gateway(s) configured for a given WebLogic Server.
This object allows access to Gateways without requiring knowledge of the
Gateway name.

m DeployedGateway

This object provides access to all the remote functionality of the WebLogic JAM
Gateway. It permits statistics to be gathered, starting/stopping the gateway, and
returns information about deployed CRMs, Links, and services. If the Gateway
name is known this object may be obtained directly from JNDI.

The following objects are obtained via the DeployedGateway object and provide
additional information about the configuration and status of WebLogic JAM:

Object Description

DeployedCRM Provides a read-only copy of the CRM configuration
being used by the Gateway.

DeployedLink Provides read-only access to information about a CRM
link.

DeployedService DeployedService contains information about a WebLogic

m DeployedSession JAM service.

(object obtained using DeployedSession is a remote implementation of a

a DeployedService WebLogic JAM session, which may be used to invoke the
Object) associated mainframe service.

Note: While this capability may be useful to customers at
times, it is strongly recommended that the EgenClient
class be used for service invocation.

ActivityCounts Provides count information for the respective

Gateway/service. These counts reflect, for example, the
number of requests processed by the Gateway, average
response time, and number of failures.

These remote objects are arranged in a hierarchy within the WebLogic Server node as
follows:

D-2 BEA WebLogic Java Adapter for Mainframe Programming Guide

JAM Deployed Configuration Feature

Remcte Gateway

Provided by Admini
Server

N
CRM Information
WighLogic JAk
Gatenweay
Link Information }}
stration
I— Service Information
Rl Configuration
Link Information Irtetface
I— Service Information
.

GatewayBootstrap Object

The GatewayBootstrap object is bound into the JNDI tree of each WebLogic Server
hosting a WebLogic JAM Gateway. There is a single GatewayBootstrap object per
WebLogic Server ("pinned" object) and its JINDI name, com bea. j am boot str ap, is
the same on all server instances. This JNDI name is available via the named constant
GatewayBootstrap.JNDI NAME to eliminate literal hardcoding.

The following code listing demonstrates obtaining the GatewayBootstrap object from
a WebLogic Server accessible via the URL t3://dynamo1:7001:

Listing D-1 Obtaining the GatewayBootstrap Object

Properties prop = new Properties();

prop. set Property(Cont ext
webl ogi c. j ndi

prop. set Property(Cont ext.
prop. set Property(Context.
prop. set Property(Cont ext .

. I NI TI AL_CONTEXT_FACTORY,

.W.I ni tial Cont ext Factory. cl ass. get Nane());
PROVI DER_URL, "t3://dynanpl: 7001");
SECURI TY_PRI NCI PAL, "Userld");

SECURI TY_CREDENTI ALS, "Password");

BEA WebLogic Java Adapter for Mainframe Programming Guide D-3

D RMI Access to the WebLogic JAM Gateway

D-4

Context ctx = new Initial Context(prop);
CGat ewayBoot st rap gwBoot ;

gwBoot = (Gat ewayBoot strap)

ct x. | ookup(Gat ewayBoot st rap. JNDI _NAME) ;

This example obtains a JNDI Initial Context to the server in question and then looks
up the GatewayBootstrap object using the predefined constant object name.

Following are the methods offered by the GatewayBootstrap object:

BEA WebLogic Java Adapter for Mainframe Programming Guide

JAM Deployed Configuration Feature

com.bea.jam.cluster.GatewayBootstrap

Implements java.rmi.Remote

JAM Gateway bootstrap class is used to allow the creation and/or retrieval of
Gateways on WebLogic Server nodes. This object is a singleton per WebLogic Server
node and is registered in the JNDI tree as a local (i.e. REPLICATE BINDINGS=false)
object. It is created by the WebLogic JAM server startup task and remains available

for the life of the server.

Methods The following methods are available with the
com bea. j am cl ust er. Gat ewayBoot st r ap object to retrieve Gateway

information:

Method

Description

com.bea.jam.cluster.DeployedGateway
getGateway(String gatewayName)

Returns a WebLogic JAM gateway existing
on the local WebLogic Server node.

m Returns:

a DeployedGateway remote object. Ifthe
gateway does not exist on the local node
a null is returned.

m Throws:

RemoteException if a communication
error is encountered.

com.bea.jam.cluster.DeployedGateway]|]
getGateways()

Returns an array of the WebLogic JAM
Gateways existing on the local WebLogic
Server node.
m Returns:
an array of DeployedGateway remote
objects. If no gateways exist on the local
node an empty array is returned.
m Throws:
RemoteException if a communication
error is encountered.

BEA WebLogic Java Adapter for Mainframe Programming Guide D-5

D RMI Access to the WebLogic JAM Gateway

Fields public static final JNDI_NAME

DeployedGateway Object

The DeployedGateway object is bound into the WebLogic JNDI tree using a name that
is constructed of a literal prefix, Depl oyedGat eway. JNDI _PREFI X, and suffixed by

the name of the WebLogic JAM Gateway represented by the object. For example, the
JNDI name of a WebLogic JAM Gateway named MyJAMwould be:

Depl oyedGat eway. JNDI _PREFI X+" MyJAM' .

The DeployedGateway object for a WebLogic JAM Gateway may be obtained either
from a GatewayBootstrap object or directly via a JNDI lookup.

The following code listing demonstrate three different ways of obtaining a
DeployedGateway object named JAM1 from WebLogic Servert 3: // dynanol: 7001.

m Obtain the DeployedGateway using the GatewayBootstrap object retrieved by
the sample code:

Depl oyedGat eway gw = gwBoot . get Gat eway (" JAML") ;

m Obtain the DeployedGateway using the GatewayBootstrap object retrieved by
the previous sample code. This example assumes JAML is the only gateway
available and retrieves the remote object anonymously:

Depl oyedGat eway gw = gwBoot . get Gat eways()[0];
m Obtain the DeployedGateway directly from the JNDI tree:

Properties prop = new Properties();
prop. set Property(Context.| N TI AL_CONTEXT_FACTCRY,

webl ogi c.j ndi . W.I ni ti al Cont ext Factory. cl ass. get Nane());
prop. set Property(Context.PROVIDER URL, "t3://dynanpl: 7001");
prop. set Property(Cont ext.SECURI TY_PRI NCl PAL, "Userld");
prop. set Property(Cont ext. SECURI TY_CREDENTI ALS, "Password");

Context ctx = new Initial Context(prop);
Depl oyedGat eway gw = (Depl oyedGat eway) ctx. | ookup(
Depl oyedGat eway. JNDI _PREFI X + "JAML");

Following are the methods offered by the DeployedGateway object:

D-6 BEA WebLogic Java Adapter for Mainframe Programming Guide

JAM Deployed Configuration Feature

com.bea.jam.cluster.DeployedGateway

Implements java.rmi.Remote

This is the remote interface for the deployed gateway object. One DeployedGateway
object exists for each configured WebLogic JAM Gateway. The DeployedGateway is
placed in the JNDI tree under the name com.bea.jam.gateway. GatewayName where
GatewayName is the configured name of the Gateway.

Methods The following methods are available with the
com bea. j am cl ust er. Depl oyedGat eway object to retrieve Gateway information:

Method Description

boolean isEnabled() Returns a value indicating if this WebLogic
JAM Gateway is deployed and running.

m Throws:

RemoteException if a communication
error is encountered.

boolean isStarting() Returns a value indicating if this WebLogic
JAM Gateway is starting up.

m Throws:

RemoteException if a communication
error is encountered.

boolean isStopped() Returns a value indicating if this WebLogic
JAM Gateway is stopped.

m Throws:

RemoteException if a communication
error is encountered.

boolean isDeployed() Returns a value indicating if this WebLogic
JAM Gateway is deployed.
java.lang.String getName() Retrieves the name of this Gateway.
m Throws:

RemoteException if a communication
error is encountered.

BEA WebLogic Java Adapter for Mainframe Programming Guide D-7

D RMI Access to the WebLogic JAM Gateway

Method

Description

com.bea.jam.cluster.DeployedCRM getCRM()

Retrieves information on the CRM used by
this Gateway.

m Throws:

RemoteException if a communication
error is encountered.

void setStopWIsOnExit(
boolean wlsStopOnExit)

Returns a boolean value indicating whether to
terminate WebLogic Server if the WebLogic
JAM Gateway shuts down. If set to true,
WebLogic Server will terminate when the
Gateway shuts down.

com.bea.jam.cluster.DeployedLink getLink(String
linkName)

Retrieves a DeployedLink object
representing the requested link on this
Gateway.

m Parameter:
linkName - The name of the link to retrieve.
m Throws:

DeployedException if the linkName is
invalid or does not exist on this Gateway.
RemoteException if a communication error is
encountered.

com.bea.jam.cluster.DeployedLink][] getLinks()

Retrieves an array of DeployedLink objects
representing all the links defined on the
CRM used by this Gateway.

m Throws:

RemoteException if a communication
error is encountered.

D-8 BEA WebLogic Java Adapter for Mainframe Programming Guide

JAM Deployed Configuration Feature

Method

Description

com.bea.jam.cluster.DeployedService getService(
String serviceName)

Retrieves a DeployedService stub for the
named service object.

m Parameter:
serviceName - The name of the service
to retrieve.

m Throws:
DeployedException if the serviceName
is invalid or does not exist on this
Gateway.

RemoteException if a communication
error is encountered.

void deploy(boolean deployed)

Marks this Gateway as being deployed or
undeployed. If an enabled Gateway is
undeployed it will be shut down.

m Parameter:

deployed - true if the Gateway is
deployed and false otherwise.

m Throws:

RemoteException if a communication
error is encountered.

void enableLink(String linkName)

Enables all services being offered by link
linkName.

m Throws:
DeployedException if the named link is
unknown.

RemoteException if a communication
error is encountered.

BEA WebLogic Java Adapter for Mainframe Programming Guide

D-9

D RMI Access to the WebLogic JAM Gateway

Method

Description

void disableLink(String linkName)

Disables all services being offered by link
linkName.

m Parameter:

linkName - The name of the link to be
undeployed.

m Throws:

DeployedException if the named link is
unknown.

RemoteException if a communication
error is encountered.

com.bea.jam.cluster.ActivityCounts
getServiceActivity(String serviceName)

Gets the activity counts for this service.
m Throws:

RemoteException if a communication
error is encountered.

com.bea.jam.cluster.ActivityCounts
getLocalServiceActivity(String serviceName)

Gets the activity counts for this local service.
m Throws:

RemoteException if a communication
error is encountered.

void startup()

Starts this WebLogic JAM Gateway. If the
Gateway is already running, this method
simply returns.
m Throws:
RemoteException if a communication
error is encountered.

void shutdown()

Stops this WebLogic JAM Gateway. If the
Gateway is already stopped, this method
simply returns

m Throws:

RemoteException if a communication
error is encountered.

D-10 BEA WebLogic Java Adapter for Mainframe Programming Guide

JAM Deployed Configuration Feature

Method Description
com.bea.jam.cluster.ActivityCounts|] Gets the activity counts for all services
getGatewayA ctivity() offered by this Gateway.

m Throws:

RemoteException if a communication
error is encountered.

Fields public static final INDI_PREFIX

JNDI prefix used by all DeployedGateway objects.

DeployedCRM Object

The DeployedCRM object is obtained via the DeployedGateway.getCRM() method.
This object is a read-only wrapper providing the information used to configure the
CRM being used by this WebLogic JAM Gateway.

BEA WebLogic Java Adapter for Mainframe Programming Guide = D-11

D RMI Access to the WebLogic JAM Gateway

com.bea.jam.cluster.DeployedCRM

Implements java.io.Serializable

Methods The following methods are available with the com bea. j am cl ust er . Depl oyedCRM

object.

Method Description

boolean isEnabled() Determines if this CRM is enabled.

java.lang.String getName() Retrieves the name of this CRM.

java.lang.String getListenAddress() Retrieves the host NIC address where this
CRM listens for connections.

int getListenPort() Retrieves the host port where this CRM
listens for connections.

java.lang.String getL.U() Retrieves the APPC Logical Unit used for
this CRM.

java.lang.String getStackType() Retrieves the type of stack used by this CRM
for CICS/IMS communication.

DeployedLink Object

The DeployedLink object is obtained via the DeployedGateway.getLink() or
DeployedGateway.getLinks() methods. It is a read-only wrapper providing
information about a particular CRM mainframe link. Following are the methods
offered by this object:

D-12 BEA WebLogic Java Adapter for Mainframe Programming Guide

JAM Deployed Configuration Feature

com.bea.jam.cluster.DeployedLink

Implements java.io.Serializable

This is the interface for the deployed link object. DeployedLink objects are created by
their parent Gateways and are used to the services offered on each Gateway link.

Methods The following methods are available with the
com bea. j am cl ust er. Depl oyedLi nk object.

Method Description

boolean isEnabled() Determines if this link is enabled on any
gateway on the local WLS node.

java.lang.String getName() Retrieve the name of this link.

DeployedService Object

The DeployedService object represents a WebLogic JAM outbound service currently
being offered by a CRM mainframe region link. The DeployedService object may be
obtained via the DeployedGateway.getService() method. It may also be obtained
directly via a JNDI lookup using a literal prefix and the name of the service as a key.
The following code listing demonstrates obtaining the DeployedService object for an
outbound service named NewEmployee.

Properties prop = new Properties();
prop. set Property(Context.|N Tl AL_CONTEXT_FACTORY,

webl ogi c. j ndi . W.I ni ti al Cont ext Factory. cl ass. get Nane());
prop. set Property(Context.PROVIDER URL, "t3://dynanol: 7001");
prop. set Property(Context.SECURI TY_PRI NCI PAL, "Userld");
prop. set Property(Cont ext. SECURI TY_CREDENTI ALS, "Password");

Context ctx = new Initial Context(prop);
Depl oyedServi ce svc = (Depl oyedService) ctx.| ookup(
Depl oyedSer vi ce. JNDI _PREFI X + " Newknpl oyee");

Following are the methods offered by the DeployedService object:

BEA WebLogic Java Adapter for Mainframe Programming Guide D-13

D RMI Access to the WebLogic JAM Gateway

com.bea.jam.cluster.DeployedService

Implements java.rmi.Remote

This is the remote interface for the deployed service object. There is one service object
defined on each WebLogic Server node for each unique service name. The service
object is responsible for the following:

® maintaining information on the local Gateways and links offering the service
m load balancing between the Gateways on a single WebLogic Server

Methods The following methods are available with the
com bea. j am cl ust er. Depl oyedSer vi ce object.

Method Description

boolean isEnabled() Determines if this service is enabled on any
link serviced by a Gateway on the local
WebLogic Server node.
m Throws:

RemoteException if a communication
error is encountered.

void deploy(boolean deployed) Sets the deployment state of this service. If
the service is undeployed while it is enabled
it will be disabled as part of the
undeployment.

= Parameter:

deployed - Pass as true if the service is
deployed and false otherwise.

m Throws:

RemoteException if a communication
error is encountered.

java.lang.String getName() Retrieves the name of this service.
m Throws:

RemoteException if a communication
error is encountered.

D-14 BEA WebLogic Java Adapter for Mainframe Programming Guide

JAM Deployed Configuration Feature

Method

Description

com.bea.jam.cluster.DeployedGateway|]
getGateways()

Retrieves an array of the local Gateways
offering this service.

m Throws:

RemoteException if a communication
error is encountered.

com.bea.jam.cluster.DeployedLink[]
getLinks(String gatewayName)

Retrieves an array of links offering this
service for the specified gateway.

m Parameter:

gatewayName - The name of the
Gateway for which links are to be
returned. If this parameter is passed as
null, all links offering the service on the
local WebLogic Server node will be
returned.

m Throws:

RemoteException if a communication
error is encountered.

com.bea.jam.cluster.DeployedSession getSession()

Returns a session object that may be used to
invoke this service on the mainframe via the
WebLogic JAM Gateway.

m Throws:

RemoteException if a communication
error is encountered.

Fields public static final INDI_PREFIX

JNDI prefix used by all replicated DeployedService objects.

ActivityCounts Object

The ActivityCounts object contains a number of long integer fields representing
various statistics for a WebLogic JAM service. This object may be obtained for a
particular service via the DeployedService.getServiceActivity() or

BEA WebLogic Java Adapter for Mainframe Programming Guide = D-15

D RMI Access to the WebLogic JAM Gateway

DeployedGateway.getLocalServiceActivity() methods. In addition, the ActivityCount
objects for all services offered by a Gateway may be obtained via the
DeployedGateway. getGatewayActivity() method.

Following are the data fields available from the ActivityCounts object:

D-16 BEA WebLogic Java Adapter for Mainframe Programming Guide

JAM Deployed Configuration Feature

com.bea.jam.cluster.ActivityCounts

Constructors

Fields

Implements java.io.Serializable
Statistics container. Holds a set of activity counts.
public ActivityCounts()

public m_requests
The number of requests that have reached the gateway. This may be larger than the sum
of successes and failures if some requests are still being processed.

public m_successes
The number of requests that have successfully been processed to completion by the
gateway. Application level failures may be reported as gateway successes.

public m_failures
The total number of failures of any kind.

public m_timeouts
The number of requests that have timed out.

public m_lateReplies
The number of requests that timed out and then received a response. These will also be
included in m ti meout s.

public m_timedRequestCount
The number of requests accounted for in the m_totalResponseTime field.

public m_totalResponseTime
The sum of the response times for all the requests that have reached the
network.

public m_minResponseTime
The shortest response time registered during this Gateway session.

public m_maxResponseTime
The longest response time registered during this Gateway session.

DeployedSession Object

The DeployedSession object may be obtained via a DeployedService remote object. It
represents a WebLogic JAM session which may be used to invoke the associated
service on the mainframe. Following are the methods offered by this object:

BEA WebLogic Java Adapter for Mainframe Programming Guide D-17

D RMI Access to the WebLogic JAM Gateway

com.bea.jam.cluster.DeployedSession

Implements java.rmi.Remote

This is the remote interface for the deployed session object. This object wraps a
jermSession object allowing remote access via the DeployedService object. This
object is not bound into the JNDI tree and is not clusterable. A DeployedSession object
is obtained by calling the DeployedService.getSession() method.

See Also DeployedService

Methods The following methods are available with the
com bea. j am cl ust er. Depl oyedSessi on object.

Method Description

void setUser(T3User user) Sets the userid and password on the remote
session object. This method is preferred over
setUserid and setPassword as it encrypts the
credential data.
= Parameter:

user - A weblogic.common.T3User
object containing the userid and
password to be used for this WebLogic
JAM session.

m Throws:

RemoteException if a communication
error is encountered.

D-18 BEA WebLogic Java Adapter for Mainframe Programming Guide

JAM Deployed Configuration Feature

Method

Description

void setUserid(String u)

Sets the userid to be used by the WebLogic
JAM session. This method will transmit the
userid in clear text assuming that the remote
session object is not co-located. Setting user
information via the setUser method is
preferred for security reasons.
m Parameter:
u - The userid to be used for the JAM
session.
m Throws:
RemoteException if a communication
error is encountered.
m See Also:

setUser(T3User user)

void setPassword(String p)

Sets the password to be used by the
WebLogic JAM session. This method will
transmit the password in clear text assuming
that the remote session object is not
co-located. Setting user information via the
setUser method is preferred for security
reasons.

m Throws:

RemoteException if a communication
error is encountered.

m See Also:
setUser(T3User user)

void dispatch()

Dispatches the WebLogic JAM service
request to the mainframe.

m Throws:

RemoteException in the event of a
communication error. If an SNA error is
encountered while communicating with
the mainframe an snaException will be
nested in the RemoteException.

BEA WebLogic Java Adapter for Mainframe Programming Guide D-19

D RMI Access to the WebLogic JAM Gateway

Method Description

java.lang.String getServiceName() Returns the name of the service this session
was established to invoke.

m Throws:

RemoteException if a communication
error is encountered.

byte[] getDataBuffer() Retrieves the data buffer returned by a
successful service invocation.

m Throws:

RemoteException if a communication
error is encountered.

boolean setDataBuffer(byte[] buffer) Sets the data buffer to be used as input the
the mainframe service. This method must be
called prior to dispatching the service
request.

= Parameter:

buffer - A byte array containing the
buffer to be used as input to the
mainframe service.

m Returns:

A boolean value indicating if the buffer
was successfully set.

m Throws:

RemoteException if a communication
error is encountered.

D-20 BEA WebLogic Java Adapter for Mainframe Programming Guide

JAM Deployed Configuration Feature

Method

Description

byte[] runService(T3User user, byte[] buffer)

Sets the user/password and data buffer,
dispatches the service call and returns the
response buffer. This method may be used to
reduce the network round trips in running a
remote service.

m Parameter:

user - A weblogic.common.T3User
object containing the userid and
password to be used for this WebLogic
JAM session.

buffer - A byte array containing the
buffer to be used as input to the
mainframe service.

= Returns:
A byte array containing the buffer
returned by the mainframe service.

m Throws:
RemoteException in the event of a
communication error. If an SNA error is
encountered while communicating with
the mainframe an snaException will be
nested in the RemoteException.

void close()

Closes this session object and returns it to
the WebLogic JAM session pool. This
method should be called after dispatching a
service and retrieving the resulting data
buffer to free up resources and allow the
session to be allocated to other users.

m Throws:

RemoteException if a communication
error is encountered.

BEA WebLogic Java Adapter for Mainframe Programming Guide = D-21

D RMI Access to the WebLogic JAM Gateway

Sample JAM Administration Utility

The following code presents a simple command line Java application which uses some
of the RMI interfaces to control/monitor a JAM Gateway. This utility requires the
weblogic.jar and jam.jar files to be listed in the CLASSPATH at runtime. For example,
assuming that this utility was contained in a JAR file named j amadni n. j ar, the
following command line could be used to invoke the program:

set CLASSPATH=$W._HOVE/ | i b/ webl ogi c.jar; $JAM HOVE/ | i b/ jam j ar; j amadni n. j ar
java com bea.jam Adm n stop MyGateway MyUser MyPassword t3://MServer: 7001

/*

*/

This code is offered as a sample application, which may be modified by the customer
to meet their needs. The program, as presented here, is also delivered in the j am j ar

file.

Listing 7-2

Sanpl e conmand |ine adm nistration utility for JAM 5. x

Copyright (c) 2002, BEA Systens, Inc.

All

package com bea.jam

i mport
i mport
i mport
i mport

i mport
i mport
i mport
i mport

/**
This is a sinple command |ine administration utility for the
The supported commands, start/stop/status, allow
for starting/stopping the gateway as well as reporting of

mni mal statistics.

* 0% X * F

D-22

JAM Gat eway.

Ri ghts Reserved

java.util.Properties;

j avax. nam ng. Cont ext ;

j avax. nanmi ng. | ni ti al Cont ext;
j avax. nam ng. Nam ngExcepti on;

com bea.jam cl uster.
com bea.jam cl uster.
com bea.jam cluster.
com bea.jam cl uster.

Acti vi tyCounts;
CGat ewayBoot st rap;
Depl oyedCRM

Depl oyedGat eway;

BEA WebLogic Java Adapter for Mainframe Programming Guide

Sample JAM Administration Utility

* @ersion JAM5.1 (Kiw)

*/
public class Admn
{
public static void main(String[] args) throws Exception
{
if (args.length < 1)
Usage() ;
return;
}
processArgs(args);
String func = args[0];
if ("start".equal sl gnoreCase(func))
start Gateway() ;
return;
}
if ("stop".equal slgnoreCase(func))
{
st opGat eway() ;
return;
}
if ("status".equal sl gnoreCase(func))
{
st at usGat eway() ;
return;
}
System out. println();
Systemout. println("*** Unknown function " + func + " - aborting");
Usage() ;
}
/**
* Start the JAM Gateway. |If the gateway is not currently
* depl oyed we deploy it first so that the startup will not

* be ignored.
*/
private static void startGateway() throws Exception
{
Systemout. println("Connecting to host " + url);
Context ctx = getContext(url, user, psw);
try

{
Depl oyedGat eway gw = get Gat eway(ctx, nane);

BEA WebLogic Java Adapter for Mainframe Programming Guide

D-23

D RMI Access to the WebLogic JAM Gateway

if (!gw isDeployed())
gw. depl oy(true);

gw. startup();
}
finally

ctx.close();

/**

* Stop the JAM Gat eway.

*

/

private static void stopGateway() throws Exception
{

System out. println("Connecting to host " + url);

Context ctx = getContext(url, user, psw;

try

{
Depl oyedGat eway gw = get Gateway(ctx, name);

gw. shut down() ;
}
finally

ctx.close();

* Obtain and display some status information fromthe
* JAM Gateway. The status of the gateway, enabled or

* disabled, is displayed. |f the gateway is enabled
* current activity counts are calcul ated and di spl ayed.
*/

private static void statusGateway() throws Exception
{
System out. println("Connecting to host " + url);
Context ctx = getContext(url, user, psw;
try

{
Depl oyedGat eway gw = get Gat eway(ctx, name);

bool ean enabl ed = gw. i sEnabl ed();

Systemout.println();

Systemout.println("Gateway " + gw.getNane() + " is "
+ (enabled ? "enabled." : "disabled."));

i f (enabl ed)

{
ActivityCounts[] cnts = gw get Gat ewayActivity();

D-24 BEA WebLogic Java Adapter for Mainframe Programming Guide

Sample JAM Administration Utility

E I . . R N N]

~

ActivityCounts tot = new ActivityCounts();

for (int i =0; i <cnts.length; ++i)

{
tot. msuccesses += cnts[i].msuccesses;
tot.mfailures += cnts[i].mfailures;
tot.mtimeouts += cnts[i].mtineouts;

}

System out. println();

System out.println("Gateway statistics:");

System out. println(" Successes: " + tot.msuccesses);
System out. println(" Failures: " + tot.mfailures);
System out. println(" Tinmeouts: " + tot.mtimeouts);

}

finally
{

}

ctx.close();

/**
otain a JNDI Context for the requested (or defaulted)

WebLogic Server. |If a user ID and password are provided
they are passed to the Initial Context for authentication.

@aram url The URL of the WebLogic Server hosting the
JAM Gat eway.

@ar am user The user ID to be passed to WblLogic. My
be null if none.

@aram psw The password to be passed to WebLogic. My
be null if none.

@eturn JNDI Initial Context for the passed URL.

@ hrows Nami ngException if JNDI Context creation fails.

private static Context getContext(String url, String user, String psw)

{

t hrows Nami ngException

Properties prop = new Properties();
prop. set Property(Context.| N Tl AL_CONTEXT_FACTCRY,

webl ogi c.j ndi . W.I ni tial Cont ext Factory. cl ass. get Nanme());
prop. set Property(Context.PROVIDER URL, url);

if (null !'= user)
prop. set Property(Cont ext.SECURI TY_PRI NCl PAL, user);
if (null !'= psw)

prop. set Property(Context.SECURI TY_CREDENTI ALS, psw);

return(new Initial Context(prop));

BEA WebLogic Java Adapter for Mainframe Programming Guide

D-25

D RMI Access to the WebLogic JAM Gateway

/**

* Exami ne command |ine argunments and save passed information

* for use by functional nethods.
*/
private static void processArgs(String[] args)
{
System out. printin();
if (args.length > 1)
{
name = args[1];
System out. print ("CGateway(" + nane + ") ");

}
if (args.length > 2)

user = args[2];
System out. print("User(" + user + ") ");

}
if (args.length > 3)
{
psw = args[3];
System out . print ("Password(**secret**) ");
}

if (args.length > 4)
url = args[4];

Systemout.println("URL(" + url + ")");

}
/**
* Cbtain a renpte gateway object using the passed JNDI
* Context.
*
* @aram ctx The JNDI Context to be used in obtaining
* the renote gateway object.
* @aram nane The name of the gateway to retrieve.
* be passed as null to obtain the first
* gateway defined for the server.
* @eturn Returns a Depl oyedGat eway object representing the
* request ed gat eway.
* @hrows Exception if an error is encountered.
*/

private static Depl oyedGat eway get Gat eway(Context ctx, String nane)

throws Exception

{

D-26 BEA WebLogic Java Adapter for Mainframe Programming Guide

Sample JAM Administration Utility

if (null == name)
{
Gat ewayBoot strap boot = (Gat ewayBootstrap) ctx.| ookup(
Gat ewayBoot strap. JNDI _NAME) ;
Depl oyedGat eway[] gw = boot. get Gat eways() ;
if (gw length > 0)
return(gw 0]);

t hrow new Exception("There are no JAM gat eways defi ned
on this server");

}
return((Depl oyedGat eway) ctx.| ookup(Depl oyedGat eway. JNDI _PREFI X + nane));
}
/**
* Display program usage information.
*/
private static void Usage()
{
Systemout. println();
System out. println("Usage: com bea.jam Adnmi n <function> ");
System out. println("[<name> <user> <password>] [<URL>]");
System out. printIn("function: The function to perform Supported
functions ");
Systemout. println(" are start, stop, status.");
Systemout. println(" start: Start the JAM Gateway");
Systemout. println(" st op: Stop the JAM Gat eway");
Systemout. println(" status: Report the JAM Gateway status");
Systemout.println();
System out. println("nane: The name of the JAM Gateway for the

requested ");

Systemout. println(" function. Default is the 1lst gateway
defined ");

Systemout. println(" on the selected WblLogic Server.");

Systemout. printin();

System out. println("user: The user ID used to authenicate with
WebLogic.");

Systemout. printin();

System out . println("password: The psw used to authenicate with
WebLogic.");

Systemout. printin();

System out . println("URL: The URL for the WS Server hosting the JAM");
Systemout. println(" Gateway. The default is

t3://1ocal host: 7001.");
Systemout. printlin();
}

private static String name = null;

BEA WebLogic Java Adapter for Mainframe Programming Guide = D-27

D RMI Access to the WebLogic JAM Gateway

private static String user = null;

private static String psw = null;

private static String url "t3://1ocal host: 7001";
}

D-28 BEA WebLogic Java Adapter for Mainframe Programming Guide

Index

A

accessors A-4
alphanumeric field
rules for mapping A-3
Application models
inbound 3-1, 3-7
outbound 3-2, 3-15
array field
rules for mapping A-5

BigDecimal
rules for mapping to A-3
BLANK WHEN ZERO field
rules for mapping A-3

C

CLASSPATH 3-21
Client loopback 7-5
Client stub operation 7-6
COBOL copybook
creating 2-4
existing 2-5
LINKAGE SECTION 2-4
obtaining 2-4
processing by eGen Application
Generator B-6
rules for mapping into a Java class A-1
rules for mapping REDEFINES A-6

sample 2-5
COBOL data types
syntax features and data types supported
by eGen Application Generator
A-6
context-free grammar
rules for eGen script B-3

D

DataView 2-6

Deployment
quick start 4-5
sample 4-4

Deployment descriptors
merging 4-4
renaming 4-2

E

edited numeric field
rules for mapping A-3
eGen Application Generator
rules for generating code A-1
rules for writing script file B-1
eGen script
application section 3-3
components of client EJB 3-21
components of HTML page definition 3-
30
components of server EJB 3-7
components of servlet definition 3-32

BEA WebLogic Java Adapter for Mainframe Programming Guide I-1

components of stand-alone client 3-16
DataView section 2-7
general form 3-3
processing 2-8
writing 2-6
eGenClient
locating Gateways 6-3
making mainframe requests 6-4
using directly for translation 6-2
EJB
Home Interface class generated by eGen
Application Generator B-7
Implementation class generated by eGen
Application Generator B-7
Remote Interface class generated by
eGen Application Generator B-
7
EJB application
customizing 3-13, 3-26, 3-33
deploying 4-1
elementary field
rules for mapping A-4

F
field name

rules for mapping into Java name A-2
G

group field

nested, rules for mapping A-4
groups

rules for mapping A-3

Inbound application models 1-5, 3-1, 3-7
INDEX field
rules for mapping A-3

J

jar file
jam_11 jar file on product CDROM A-1
Java application
customizing a client EJB application 3-
26
customizing a server EJB application 3-
13
customizing servlet-only 3-33
Java application code 3-2
Java application models 3-1
Java code
compiling 2-9
Java data types
converting to COBOL data types 2-4
Java Development Kit (JDK) B-1
IMS 3-36
JUSTIFIED RIGHT field
rules for mapping A-3

M

MainframeReader
public interface 6-12
translating data buffers 6-15
MainframeWriter
creating data buffers 6-10
public interface 6-5

N

numeric field
rules for mapping A-3

0
Outbound application models 3-2, 3-15

R
REDEFINES clause

I-2 BEA WebLogic Java Adapter for Mainframe Programming Guide

rules for mapping A-6

S
Security
configuring in client program 3-35
identify 3-34
local 3-34
verify 3-34
Servlet
deploying 4-1
SIGN IS TRAILING field
rules for mapping A-3
X
XML
DTD C-2
Schema C-2

varieties C-2
What XML is C-3

BEA WebLogic Java Adapter for Mainframe Programming Guide

I-3

14 BEA WebLogic Java Adapter for Mainframe Programming Guide

	WebLogic Java Adapter for Mainframe™
	Programming Guide
	Release 5.1
	Document Date: August 2002
	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	1. Introduction to Generating Applications
	2. Generating a Java Application with the eGen Application Generator
	3. Basic Programming Techniques
	4. Deploying Applications
	5. Understanding Programming Flows
	6. Performing Your Own Data Translation
	7. Diagnostics
	A. DataView Programming Reference
	B. eGen Application Generator Reference
	C. Understanding How WebLogic JAM Uses XML
	D. RMI Access to the WebLogic JAM Gateway
	Index

	1 Introduction to Generating Applications
	Understanding How WebLogic JAM Uses DataViews
	Figure 1�1 How WebLogic JAM Uses DataViews

	Understanding How WebLogic JAM Provides Programmatic Access to Services
	Application Model Overview
	Mainframe to WebLogic Server Application Models
	WebLogic Server to Mainframe Application Models

	Roadmap for WebLogic JAM Programming
	Figure 1�2 Roadmap for JAM Programming
	1. Analyze the application and determine if it is Mainframe to WebLogic Server or WebLogic Server...
	2. Obtain or create a COBOL copybook (see Obtaining a COBOL Copybook for more information).
	3. Write the eGen script. The eGen script has two parts. The first part defines the DataView. The...
	4. Use the COBOL copybook and the eGen script as input for the eGen utility. This produces the Da...
	5. Customize the application code. This can be done by extending the code to perform the tasks re...

	2 Generating a Java Application with the eGen Application Generator
	Understanding eGen
	Figure 2�1 Understanding the eGen utility
	Working With COBOL Copybooks
	Obtaining a COBOL Copybook
	Creating a New COBOL Copybook
	Using an Existing COBOL Copybook
	Listing 2-1 Sample emprec.cpy COBOL Copybook

	Limitations of the eGen Utility

	Writing an eGen Script
	Writing the DataView Section of an eGen Script
	Listing 2-2 Sample DataView Section of an eGen script
	generate view examples.CICS.outbound.gateway.EmployeeRecord from emprec.cpy

	Listing 2-3 Sample DataView Section with Codepage Specified
	generate view examples.CICS.outbound.gateway.EmployeeRecord from emprec.cpy codepage cp500

	Listing 2-4 Sample DataView Section Supporting XML
	generate view sample.EmployeeRecord from emprec.cpy support xml
	Table 2�1 Additional Files for DataView XML Support.

	Processing eGen Scripts with the eGen Utility
	Creating an Environment for Generating and Compiling the Java Code
	Notes: UNIX users must use “/” instead of “\” when adding directory paths as specified above.

	Generating the Java DataView Code
	Listing 2-5 Sample Copybook Parse Command
	egencobol emprec.egen

	Listing 2-6 Generated EmployeeRecord.java Source File

	Special Considerations for Compiling the Java Code

	3 Basic Programming Techniques
	Choosing an eGen Java Application Model
	Generating the Java Application Code

	General Form of an eGen Script
	Writing the Application Section of an eGen Script
	List of Services
	Table 3�1 Service Definition Parameters

	List of Application Components
	Table 3�2 Application Component Definition Parameters

	Mainframe to WebLogic Server Application Models
	Generating a Server Enterprise Java Bean-Based Application
	Components of an eGen Server EJB Script
	Table 3�3 Service EJB Definition Keywords and Parameters
	Table 3�4 Parameters for the servermethod

	Generated Files
	Table 3�5 Sample Script Generated Files
	SampleServer.java Source File
	Listing 3-1 Sample SampleServer.java Contents

	SampleServerBean.java Source File
	Listing 3-2 Sample SampleServerBean.java Contents

	SampleServerHome.java Source File
	SampleServer-jar.xml Source File
	wl-SampleServer-jar.xml Source File

	Customizing a Server Enterprise Java Bean-Based Application
	Figure 3�1 The WebLogic JAM Server EJB Class Hierarchy
	Listing 3-3 Sample ExtSampleServerBean.java Contents

	Compiling and Deploying

	WebLogic Server to Mainframe Application Models
	Generating a Stand-Alone Client Application
	Components of an eGen Stand-Alone Application Script
	Table 3�6 Stand-Alone Client Class Definition Keywords and Parameters
	Table 3�7 Parameters for the clientmethod

	Generated Files
	Listing 3-4 Sample SampleClass.java Source File

	Customizing a Stand-Alone Java Application
	Figure 3�2 The WebLogic JAM Client Class Hierarchy
	Listing 3-5 Sample ExtSampleClient.java Contents

	Generating a Client Enterprise Java Bean-Based Application
	Components of an eGen Client EJB Script
	Table 3�8 Client EJB Script Keywords and Parameters
	Table 3�9 Client Method Definition Parameters

	Generated Files
	Table 3�10 Sample Script Generated Files
	SampleClient.java Source File
	Listing 3-6 Sample SampleClient.java Contents

	SampleClientBean.java Source File
	Listing 3-7 Sample SampleClientBean.java Contents

	SampleClientHome.java Source File
	SampleClient-jar.xml Source File
	wl-SampleServer-jar.xml Source File

	Customizing an Enterprise Java Bean-Based Application
	Figure 3�3 The WebLogic JAM Client EJB Class Hierarchy
	Listing 3-8 Example ExtSampleClientBean.java Class

	Compiling and Deploying

	Generating a Servlet Application
	Components of an eGen HTML Page Definition
	Table 3�11 HTML Page Definition Keywords and Parameters
	Table 3�12 Remote Service Button Definition Keywords and Parameters
	Table 3�13 EJB Button Definition Keywords and Parameters

	Components of an eGen Servlet Definition
	Table 3�14 Servlet Definition Keywords and Parameters

	Generated Files
	Customizing a Servlet WebLogic JAM Application

	Supplying Security Credentials
	Security Levels
	Notes: Refer to the BEA WebLogic Java Adapter for Mainframe Configuration and Administration Guid...

	Supplying Security Credentials in a WebLogic JAM Client Program
	Listing 3-9 Example of Class with Security Credentials

	WebLogic JAM to JMS
	1. Obtain a COBOL Copybook.
	2. Generate a DataView with XML Support.
	3. Compile the DataView .java files (see Creating an Environment for Generating and Compiling the...
	4. Copy the DataView class files created by the eGen utility to a directory in the WebLogic Serve...
	5. Create a JMS Event definition. For specific instructions, refer to the BEA WebLogic Java Adapt...

	4 Deploying Applications
	Deploying a WebLogic JAM eGen EJB
	Renaming Deployment Descriptors
	Adding Business Logic to a Generated EJB
	Merging Multiple Deployment Descriptors
	Sample EJB Deployment
	1. Build your EJB deployment .jar file. Listing�4-1 will build the client EJB deployment .jar fil...
	Listing 4-1 Script for Building JAM_TradeServer.jar
	@rem --- Adjust these variables to match your environment ----------------- set TARGETJAR=JAM_Tra...
	set JAMJARS=%JAM_HOME%\lib\jam.jar set CLASSPATH=%JAM_HOME%\lib\jam.jar;%JAM_HOME%\lib\tools.jar;...
	@rem Create the build directory, and copy the deployment @rem descriptors into it. @rem You shoul...
	md build build\META-INF copy TradeServer-jar.xml ejb-jar.xml copy wl-TradeServer-jar.xml weblogic...
	@rem Compile ejb classes into the build directory (jar preparation) javac -d build -classpath %CL...
	@rem Make a standard ejb jar file, including XML deployment @rem descriptors cd build jar cvf std...
	@rem Run ejbc to create the deployable jar file
	java -classpath %CLASSPATH% -Dweblogic.home=%WL_HOME% weblogic.ejbc -compiler javac build\std_%TA...
	2. Deploy the EJB in BEA WebLogic Server by configuring it as a new EJB in the WebLogic Administr...

	Deploying a WebLogic JAM eGen Servlet (Quick-Start Deployment)
	Listing 4-2 XML Entry to Configure the SampleServlet Servlet

	5 Understanding Programming Flows
	Distributed Program Link Programming Flows
	Java Client Request/Response to CICS DPL
	CICS Request/Response DPL to WebLogic Server EJB
	CICS DPL Asynchronous No Reply to WebLogic Server Application
	Transactional Java Client Request/Response to CICS DPL
	Transactional CICS Request/Response DPL to WebLogic Server EJB

	IMS Implicit APPC Programming Flows
	Java Client Request/Response to IMS Transaction Program
	IMS Asynchronous No Reply Transaction Program to Java Server
	Transactional Java Client Request/Response to IMS Transaction Program

	Common Programming Interface for Communications Programming Flows
	Java Client Request/Response to Host CPI-C
	Host CPI-C Request/Response to WebLogic Server EJB
	Host CPI-C Asynchronous No Reply to Java Server
	Transactional Java Client Request/Response to Host CPI-C
	Transactional Host CPI-C Request/Response to WebLogic Server EJB

	6 Performing Your Own Data Translation
	Why Perform Your Own Data Translation?
	Using EgenClient Directly
	Listing 6-1 EgenClient Public Interface
	Table 6�1 EgenClient Public Interface Methods
	How EgenClient Locates a WebLogic JAM Gateway
	1. If the EgenClient.setServerURL() method has been called, the URL provided is used to locate a ...
	2. If a URL was provided on the EgenClient constructor, this URL is used to locate a WebLogic JAM...
	3. EgenClient checks for the existence of a jam.url system property and, if present, uses its val...
	4. EgenClient searches the CLASSPATH for a file named jam.properties. If this properties file is ...
	5. EgenClient assumes that it is running on the same WebLogic Server as the WebLogic JAM Gateway ...

	Using EgenClient to Make a Mainframe Request
	Listing 6-2 Mainframe Request Using EgenClient

	Translating Buffers from Java to Mainframe Representation
	MainframeWriter Public Interface
	Listing 6-3 MainframeWriter Class Public Methods
	Table 6�2 MainframeWriter Class Public Method Definitions

	Using MainframeWriter to Create Data Buffers
	Listing 6-4 Data Record
	Listing 6-5 Java Test Program

	Translating Buffers from Mainframe Format to Java
	MainframeReader Public Interface
	Listing 6-6 MainframeReader Class Public Methods
	Table 6�3 MainframeReader Class Public Method Definitions

	Using MainframeReader to Translate Data Buffers
	Listing 6-7 Sample Program

	7 Diagnostics
	Gateway Statistics
	Table 7�1 Statistics Categories

	Gateway Tracing
	Table 7�2 User Trace Categories
	<Nov 15, 2001 3:53:06 PM GMT-06:00> <Debug> <JAM1> <[5560199] Beginning of request:134217866 serv...
	<Nov 15, 2001 3:53:06 PM GMT-06:00> <Debug> <JAM1> <[5560199] ---- request data dump ----
	0000: 00 00 00 00 0f d3 81 a2 a3 61 f0 40 40 40 40 40Last/0 0010: 40 40 40 40 c6 89 99 a2 a...
	<Nov 15, 2001 3:53:07 PM GMT-06:00> <Debug> <JAM1> <[5560199] End of request:134217866>
	<Nov 15, 2001 3:53:07 PM GMT-06:00> <Debug> <JAM1> <[5560199] ---- response data dump ----
	0000: 00 00 00 00 0f d3 81 a2 a3 61 f0 40 40 40 40 40Last/0 0010: 40 40 40 40 c6 89 99 a2 a...
	<Nov 15, 2001 3:53:07 PM GMT-06:00> <Debug> <JAM1> <[5560199] Starting one phase commit>
	<Nov 15, 2001 3:53:07 PM GMT-06:00> <Debug> <JAM1> <[5560199] Beginning of request:1207959692 ser...
	<Nov 15, 2001 3:53:07 PM GMT-06:00> <Debug> <JAM1> <[5560199] ---- request data dump ----
	0000: 00 00 00 00 0f d3 81 a2 a3 61 f0 40 40 40 40 40Last/0 0010: 40 40 40 40 40 40 40 40 4...
	<Nov 15, 2001 3:53:07 PM GMT-06:00> <Debug> <JAM1> <[5560199] End of request:1207959692>
	<Nov 15, 2001 3:53:07 PM GMT-06:00> <Debug> <JAM1> <[5560199] ---- response data dump ----
	0000: 00 00 00 00 0f d3 81 a2 a3 61 f0 40 40 40 40 40Last/0 0010: 40 40 40 40 c6 89 99 a2 a...
	<Nov 15, 2001 3:53:07 PM GMT-06:00> <Debug> <JAM1> <[5560199] Starting one phase commit>
	Table 7�3 System Trace Categories

	Low-Level Client Diagnostics
	Table 7�4 Client Diagnostic Settings
	Listing 7-1 startWebLogic.cmd Loopback Example
	Client Loopback
	Client Stub Operation

	CRM Tracing
	Viewing Trace Output
	OFFS ----------------- HEXADECIMAL------------------ *------ASCII-----* 0000: 00 00 00 B2 63 00 0...

	APPC API Tracing
	Viewing APPC Trace Output

	A DataView Programming Reference
	Field Name Mapping Rules
	1. All dashes are removed and the character following the dash is mapped to upper case.
	2. When a prefix is added to the name (as when creating a field accessor function name), the firs...
	Table A�1 Example Field Name Mapping from COBOL to Java and Accessor

	Field Type Mappings
	1. Groups map to DataView subclasses.
	2. All alphanumeric fields are mapped to type String.
	3. All edited numeric fields are mapped to type String.
	4. All SIGN SEPARATE, BLANK WHEN ZERO or JUSTIFIED RIGHT fields are mapped to type String.
	5. SIGN IS LEADING is not supported.
	6. The types COMP-1, COMP-2, COMP-5, COMP-X, and PROCEDURE-POINTER fields are not supported (an e...
	7. All INDEX fields are mapped to Java type int.
	8. POINTER maps to Java type int.
	9. All numeric fields with any digits to the right of the decimal point are mapped to type BigDec...
	10. All COMP-3 (packed) fields are mapped to type BigDecimal.
	11. All other numeric fields are mapped as shown in Table�A�2.
	Table A�2 Numeric Field Mapping

	Group Field Accessors
	Elementary Field Accessors
	FieldType
	FieldName

	Array Field Accessors
	1. The accessors may be used to get or set any instance up to the maximum array index.
	2. The controlling (DEPENDING ON) variable is evaluated when the DataView is converted to or from...

	Fields with REDEFINES Clauses
	COBOL Data Types
	Table A�3 Major COBOL Features
	Table A�4 COBOL Data Types

	Other Access Methods for Generated DataView Classes
	Mainframe Access to DataView Classes
	Listing A-1 Sample Code for Extracting Mainframe Format Data from a DataView Class
	Listing A-2 Sample Code for Loading Mainframe Data into a DataView Class

	XML Access to DataView Classes
	Listing A-3 Sample Code for Loading XML Data into a DataView
	Listing A-4 Sample Code for Unloading a DataView into XML

	Hashtable Access to DataView Classes
	Listing A-5 Sample emprec.cpy COBOL Copybook
	Table A�5 COBOL Copybook Hashtable

	Code for Unloading and Loading Hashtables
	Rules for Unloading and Loading Hashtables
	Name Translator Interface Facility
	Table A�6 Name Translator Interface

	Known Limitations of WebLogic JAM working with COBOL Copybooks

	B eGen Application Generator Reference
	This section contains reference pages for the WebLogic JAM eGen Application Generator (eGen utili...
	Synopsis
	The eGen utility maps a COBOL copybook into a Java class.
	Invoke the utility with the following command:
	where:
	java
	com.bea.jam.egen.EgenCobol
	scriptfile
	If the WebLogic JAM installation bin directory has been added to your path, the eGen utility may ...
	Listing B-1 Example of scriptfile.egen

	Script Syntax Reserved Words
	General Rules
	Grammar
	The eGen script grammar uses a modified Backus-Naur Form (BNF) syntax, which is used in many indu...
	script:
	fulldefinition:
	definition:
	viewdef:
	viewmodifier:
	servicedef:
	servletdef:
	ejbdef:
	clientejb:
	serverejb:
	classdef:
	ejbspec:
	transactiondef:
	pagedef:
	buttonlist:
	buttondef:
	clientmethods:
	clientmethoddef:
	servermethoddef: method methodname (fullviewname) returns fullviewname
	servicebutton:
	ejbbutton:
	viewname:
	fullViewname:
	copybook:
	servicename:
	pagename:
	codepagename:
	methodname:
	classname:
	ejbregistration:
	title:
	buttonname:
	ejbmethod:

	Results of Running the eGen Application Generator

	C Understanding How WebLogic JAM Uses XML
	What is XML?
	Document Type Definition
	XML Schema

	How WebLogic JAM Uses XML
	Listing C-1 COBOL Copybook for Employee Information Record (emprec.cpy)
	Listing C-2 Example XML Document that Conforms to a DTD and XML Schema Generated from the eGen Ap...
	Listing C-3 DTD Generated from eGen Application Generator (emprec.dtd)
	Listing C-4 XML Schema Generated from eGen Application Generator (emprec.xsd)

	D RMI Access to the WebLogic JAM Gateway
	JAM Deployed Configuration Feature
	GatewayBootstrap Object
	Listing D-1 Obtaining the GatewayBootstrap Object

	com.bea.jam.cluster.GatewayBootstrap
	Methods
	Fields
	public static final JNDI_NAME

	DeployedGateway Object

	com.bea.jam.cluster.DeployedGateway
	Methods
	Fields
	DeployedCRM Object

	com.bea.jam.cluster.DeployedCRM
	Methods
	DeployedLink Object

	com.bea.jam.cluster.DeployedLink
	Methods
	DeployedService Object

	com.bea.jam.cluster.DeployedService
	Methods
	Fields
	ActivityCounts Object

	com.bea.jam.cluster.ActivityCounts
	Constructors
	Fields
	public m_requests
	public m_successes
	public m_failures
	public m_timeouts
	public m_lateReplies
	public m_timedRequestCount
	public m_totalResponseTime
	public m_minResponseTime
	public m_maxResponseTime

	DeployedSession Object

	com.bea.jam.cluster.DeployedSession
	See Also
	Methods
	Sample JAM Administration Utility
	set CLASSPATH=$WL_HOME/lib/weblogic.jar;$JAM_HOME/lib/jam.jar;jamadmin.jar java com.bea.jam.Admin...
	Listing 7-2

	/* Sample command line administration utility for JAM 5.x Copyright (c) 2002, BEA Systems, Inc. A...
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	M
	N
	O
	R
	S
	X

