.-"" "5

Zhea
BeA WebLogic Java
Adapter for
Mainframe

Programming Guide

Copyright
Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(2)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent acommitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS 1S’ WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, ORMAKEANY REPRESENTATIONSREGARDING THEUSE, ORTHE
RESULTSOF THE USE, OF THE SOFTWARE ORWRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebL ogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebL ogic, BEA eLink, BEA Manager, BEA WebL ogic Commerce Server, BEA WebL ogic
E-Business Platform, BEA WebL ogic Enterprise, BEA WebL ogic Express, BEA WebL ogic Integration, BEA
WebL ogic Personalization Server, BEA WebL ogic Portal, BEA WebL ogic Process Integrator, BEA WebLogic
Server and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.
BEA WebL ogic Java Adapter for Mainframe Programming Guide

Part Number Date Software Version

N/A January 2002 50

Contents

1. Introduction to Generating Applications

Understanding How WebL ogic JAM Uses DataViews.........ccoevereenereerieneenns 1-2
Understanding How WebL ogic JAM Provides Programmatic Access to Services
1-3
Application Model OVEINVIEWccceeveeieeiene e seens 1-4
Mainframe to WebL ogic Server Application Models..........cccccveneeireenee 1-5
WebL ogic Server to Mainframe Application Models..........cccocvviiinnnne 1-5
Roadmap for WebL ogic JAM Programmingccccevevereeneneseseeseseesenseenens 1-5
2. Generating a Java Application with the eGen Application
Generator
UNderstanding EGENcceiereereeeere ettt nnen 2-1
Working With COBOL COPYDOOKS.........cioiiuirieriirieniesie e 2-4
Obtaining a COBOL COPYDOOK........cccvvieieerienirsienieseneesieseeseseeesseseseesees 2-4
Creating aNew COBOL COPYDOOKcovvereerererennsnseeseenieseeseenens 2-4
Using an Existing COBOL COpybOOK.........cccceerereerireeenerieseeeesene 2-5
Limitations of the €Gen ULtycccceovveeeeniine s 2-6
WIItiNg @n €GEN SCIPL....c.veieeeeeie e e et 2-6
Writing the DataView Section of an eGen SCriptcoveveeeeieeienicnenienn 2-7
Processing eGen Scripts with the eGen Utilityccoceveveecevencere e 2-8
Creating an Environment for Generating and Compiling the Java Code... 2-9
Generating the Java DataView COdecoeiueeenreeienere e 2-9
Special Considerations for Compiling the Java Code..........ccoovvvvviviernne 2-12

3. Basic Programming Techniques

Choosing an eGen Java Application Model ... 31
Generating the Java Application Code..........cccevurereriinienieiinese e 3-2

BEA WebL ogic Java Adapter for Mainframe Programming Guide i

General Form of an @GN SCHIPL.....cccovece e e 33

Writing the Application Section of an eGen SCript.........ccoeveeenrieeceniennn. 33
LISt Of SEIVICES.....ceeireerereeerieieee s 33

List of Application COMPONENES........ccceveveerenerereerereesieeereseeeeeeees 35
Mainframe to WebL ogic Server Application Models..........cccoovivrinienenenenn 37
Generating a Server Enterprise Java Bean-Based Application................... 3-7
Components of an eGen Server EJB SCriptcoeoevrieeienenienenenene 37
GENErated FIlES.......coeieeee e 3-10
Customizing a Server Enterprise Java Bean-Based Application 313
Compiling and DEPIOYIiNGcccceeererereninene e e 3-15

WebL ogic Server to Mainframe Application Models..........ccooeeeinieininnnne 3-15
Generating a Stand-Alone Client Application..........cccceevveveveccenieseennns 3-16
Components of an eGen Stand-Alone Application Script 3-16
GeNErated FIlES.......ooeiee e 3-17
Customizing a Stand-Alone Java Applicationcccoceveecveveneennne, 3-18
Generating a Client Enterprise Java Bean-Based Application................. 321
Components of an eGen Client EJB SCriptccoceoereieenenenieneneenne 321
Generated FlES..... .o 3-23
Customizing an Enterprise Java Bean-Based Application................ 3-26
Compiling and DePIOYiNGcceeererereninere e 3-29
Generating a Servliet AppliCationcccevveecevivie s 3-29
Components of an eGen HTML Page Definition..........c.ccoccveevenenee. 3-30
Components of an eGen Serviet Definitionccccooeveinniencnenee 3-32
Generated FIlES........coveireereee s 3-33
Customizing a Servlet WebLogic JAM Application...........cccceceeuene. 3-33
Supplying Security CredentialS..........cccoeroririneiereneee e 3-34
SECUNLY LEVEIS... .ottt 3-34
Supplying Security Credentialsin aWebL ogic JAM Client Program.....

3-35
WEDLOGIC JAM 10 IMS......oiiiiieciiere ittt 3-36

4. Deploying Applications

Deploying aWebLogic JAM €@GENEIB........ccocevvveneienineee e seeste st 4-1
Renaming Deployment DESCHPLOFScoveiververiereenieie e 4-2
Adding Business Logic to a Generated EJB.........cccccoveeevevcevecicneseseenen, 4-3

BEA WebL ogic Java Adapter for Mainframe Programming Guide

Merging Multiple Deployment DeSCriptorS.......ccuveveeereereeeniesereeseneeseens 4-4
Sample EJB DePlOYMENTccoiiiiiierereee s 4-4
Deploying a WebLogic JAM eGen Servlet (Quick-Start Deployment)............ 4-7

Understanding Programming Flows

Distributed Program Link Programming FIOWS..........cccoeiirininnieincnneee 51
Java Client Request/Response to CICS DPLccoccovvveevvveeneveereereeeeen, 5-2
CICS Request/Response DPL to WebLogic Server EBcccovvvevenenee. 5-3
CICS DPL Asynchronous No Reply to WebL ogic Server Application..... 5-5
Transactional Java Client Request/Responseto CICSDPLcc....... 5-7
Transactional CICS Request/Response DPL to WebL ogic Server EJB .. 5-10

IMS Implicit APPC Programming FIOWS..........ccooniiiininiiine e 5-12
Java Client Request/Response to IMS Transaction Program.................. 5-12

IMS Asynchronous No Reply Transaction Program to Java Server 5-15
Transactional Java Client Request/Response to IMS Transaction Program....

5-17
Common Programming Interface for Communications Programming Flows 5-20
Java Client Request/Response to Host CPI-C.........ccocvovvievvvenenecieeneenens 5-20
Host CPI-C Request/Response to WebLogic Server EJB..........ccocoeueuee. 5-22
Host CPI-C Asynchronous No Reply to Java Serverccococevveeervennnne 5-24
Transactional Java Client Request/Responseto Host CPI-C................... 5-26

Transactional Host CPI-C Request/Response to WebL ogic Server EJB . 5-29

Performing Your Own Data Translation

Why Perform Your Own Data Translation?.........ccceeveveerereererneerneeseseseneeneens 6-1
Using EGenClient DIreCH Ycooe et 6-2
How EgenClient Locates a WebLogic JAM Gatewaycccceeerereerennns 6-3
Using EgenClient to Make a Mainframe Request..........ccocvvveeveveeveneenene 6-4
Trandating Buffers from Javato Mainframe Representation..............cccceuee.. 6-5
MainframeWriter Public INterface ... veieiieeiieececse e 6-5
Using MainframeWriter to Create Data Buffers.........ccocceevvevcvvvvcsieene 6-10
Trandating Buffers from Mainframe Format to Java..........c.ccocevveeeneeeceeeenne, 6-12
MainframeReader Public Interface ... 6-12
Using MainframeReader to Translate Data Buffers..........ccoceevvvvcrvennnne. 6-15

BEA WebL ogic Java Adapter for Mainframe Programming Guide %

Vi

7. Diagnostics

GateWay StAISHICS.....cueeeeeeeiereee s se e et e e e e sneenens 7-1
GALOWAY TIACIING ..t eveteruereertereeseeeeseesee st esee et ebesbesbe bt etesbeseeseensaseeneensssesesaesaens 7-2
Low-Level Client DiagnOStiCS......cieuereeerrerieseseseseseeseeie e eseese e sreeresee s 7-4
LOTT= 010l 0o o] o 7= o: QP 7-5
Client StuD OPEration..........coce e e 7-6
L0 1Y I =t oo P 7-6
VieWing TraCe OULPULooeeeeeeieieeeeee ettt s e e 7-7
APPC API TIaCiNG .ottt st s sae e 7-8
Viewing APPC TraCe OQULPULcccevveeeererereesiese e e ee e e e 7-9

DataView Programming Reference

Field Name Mapping RUIES........cccoiriieeerese e A-2
Field TYPE MaPPDINGS. ..c.veueereeeereereeestesiestesreteseeseeteseesessessessessessesaesreseeneeseenenns A-2
Group Field ACCESSOIS.....ccveiieeeieiereeeereeeesesreete e sre e sie st se e tesaesesneenesseenensesnes A-4
Elementary Field ACCESSOISooiirerereeierie e s e e A-4
ATTaY FIEld ACCESSOIS ...ocveeueceeceeeteseste e e seeee et e e e e e neenesrenes A-5
Fields with REDEFINES ClaUSEScccoovrriirinierisiesieie et sesse e A-6
COBOL DAB TYPESeeieeieitiesiesiieiiesieeseeeessessee e sesseesssessessessseessesseessessessens A-6
Other Access Methods for Generated DataView Classes........cevveereeerennene. A-9
Mainframe Accessto DataView Classes.........cuvreereenieeneeeneseeseseseees A-9
XML Accessto DataView ClasseS........ccvceierieeieeceene et ee e A-11
Hashtable Accessto DataView ClasseS.......coovveevieniinenenniesieeseens A-13
Code for Unloading and Loading Hashtables............cccceevnvvvrienee A-14

Rules for Unloading and Loading Hashtables.............ccccooeninnnnnee. A-14

Name Trandator Interface Facilitycccccccevvevecenievcevnniese e, A-15

Known Limitations of WebL ogic JAM working with COBOL Copybooks.. A-16

eGen Application Generator Reference

SYNOPSIS. ottt ettt h bt b e b et se et et b et b e ae bt b be e nneean B-1
Script Syntax RESEIVEd WOTTS........ccccv i B-2
GENEIAl RUIES ...t et et s re e e s re e e snean B-3
L]0 0 0 PSSRSOt B-3
Results of Running the eGen Application GENEratorcccceeveeeveveeerierennnns B-6

BEA WebL ogic Java Adapter for Mainframe Programming Guide

C. Understanding How WebLogic JAM Uses XML

WHEE IS XML ..ottt C-1

Document Type Definition..........ccoovereieniieieeeeeee e C-2

XML SChEMAL ..o C-3

How WebL0gIiC JAM USES XML ...cvcvvieceiceieece sttt C-3
Index

BEA WebL ogic Java Adapter for Mainframe Programming Guide Vii

Viii BEA WebL ogic Java Adapter for Mainframe Programming Guide

CHAPTER

1

Introduction to

Generating
Applications

Integrating applications that run on the mainframe with applications that run within
BEA WebLogic Server requires solving three significant problems:

Connectivity -- How can applicationsinvoke each other when they are running
on different hosts? WebL ogic JAM provides software components that establish
connections between your WebL ogic and mainframe environments. These
components are described in detail in the BEA WebLogic Java Adapter for
Mainframe Configuration and Administration Guide.

Data Transformation -- Java applications running in WebL ogic Server use Java
numeric representation and character encoding schemes. Applications running in
the mainframe environment use different numeric and character encoding
schemes. In order for applications running in these disparate environments to
communicate, the data that is communicated must be transformed between these
different representations.

Programmatic Access -- Java applications running in WebL ogic Server require
an Application Programming Interface (API) to access applications running in
the mainframe environment. There also must be an API that allows Java
applications to be accessed on behalf of mainframe applications.

WebL ogic JAM provides Java classesthat transform datato and from the native binary
data types of the mainframe. WebLogic JAM provides a software devel opment tool
that allows you to generate Java applications. These generated Java applications
include data trandation code (DataViews) that trandates data between Java and

BEA WebL ogic Java Adapter for Mainframe Programming Guide 1-1

1

Introduction to Generating Applications

mainframe data formats. These generated Java applications also contain the methods
needed to invoke mainframe applications, or to be invoked by mainframe applications,
in conjunction with WebL ogic JAM.

This section discusses the following topics:

m Understanding How WebL ogic JAM Uses DataViews

m Understanding How WebL ogic JAM Provides Programmatic Accessto Services
m Application Model Overview

m Roadmap for WebLogic JAM Programming

Understanding How WebLogic JAM Uses
DataViews

1-2

In order to request services from the mainframe, WebL ogic JAM must know the data
formatsrequired by these services. These dataformatsareusually availableas COBOL
copybooks.

Mainframe data records are represented in WebL ogic JAM by Java DataViews. These
DataViews are generated by the eGen Application Generator (hereafter referred to as
the eGen utility) and provide all of the datatranslation necessary to communicate with
mainframe applications. The eGen utility parsesa COBOL copybook and generates
Java DataView code that captures the data record described in the copybook. (For
more information on the eGen utility, see Understanding eGen.)

Figure 1-1illustrateshow WebL ogic JAM uses DataViews. Thisillustration showsthe
COBOL copybook on the mainframe side, which contains the data formats for the
mainframe services. When arequest is made for a Java service, the datais passed
through the communications components, which are described in more detail in the
BEA WebL ogic Java Adapter for Mainframe Introduction. As part of this process, the
WebLogic JAM Gateway initializes a DataView, performing the proper translation of
the data. The datais utilized by the Java applicationsin the form of the DataView.

When the response is sent back, the WebL ogic JAM Gateway translates the data back
into the copybook format and sends it back to the mainframe.

BEA WebL ogic Java Adapter for Mainframe Programming Guide

Understanding How WebLogic JAM Provides Programmatic Access to Services

Figure1-1 How WebL ogic JAM Uses DataViews

Mainframe Side Java Side

Mainframe Region WeblLogic Application Server

Generated Java Application
COBOL Program

COBOL Copybook

A

Diatatiew

&

Communications Components

Understanding How WebLogic JAM Provides

Programmatic Access to Services

Using WebL ogic JAM, BEA WebL ogic Server applications can make requests for
mainframe services and receive responses to those requests. Applications in which
these types of requests are made are referred to as WebL ogic Server to Mainframe

BEA WebL ogic Java Adapter for Mainframe Programming Guide

1-3

1

Introduction to Generating Applications

Applications. Also, mainframe applications can make requests from Java applications
(EJBs) running in WebL ogic Server and receive responses to those requests.
Applicationsin which these types of requests are made are referred to asMainframe to
WebL ogic Server Applications.

WebL ogic JAM provides an API that allows Java applications running under

WebL ogic Server to invoke services running on the mainframe. All such requests for
mainframe services are made by calling the cal | Ser vi ce() method of the

Egend i ent class. The Java applications generated by the eGen utility contain a
method that callsthecal | Servi ce() method of the Egend i ent class. These
generated applications can accessthecal | Ser vi ce() method by either being
extensions of the Egendl i ent classor having an EgenCl i ent class asamember.
Instead of using the eGen utility to generate application code, you can also write your
own applications that make requests of mainframe services by calling the

cal | Servi ce() method (see Performing Y our Own Data Translation.)

WebLogic JAM provides an API that allows clients running on the mainframe to
invoke services provided by stateless session EJBs running under WebL ogic Server
and receive responses to those requests. EJBsthat can be invoked by WebL ogic JAM
on behalf of mainframe clients extend the EgenSer ver Bean class. The WebL ogic
JAM Gateway callsthe di spat ch() method of the EgenSer ver Bean classwhen a
request ismadefrom amainframe client. The server EJBs generated by the eGen utility
extend the EgenSer ver Bean class. They also provide an implementation of the

di spat ch() method that includes the necessary data transformation, as well as
making a call to the method that actually performs the business logic. Y ou can write
your own EJBs to service mainframe requests by extending the EgenSer ver Bean
class and implementing the di spat ch() method.

WebLogic JAM also provides the ability for mainframe clients to queue messages on
JMSS queues and topics. No coding is necessary for this; it is simply a matter of
configuration (see WebLogic JAM to IMS).

Application Model Overview

1-4

This guide provides four Java application models you can use as guides for creating
your own applications. The following sections give you a brief overview of these
models:

BEA WebL ogic Java Adapter for Mainframe Programming Guide

Roadmap for WebLogic JAM Programming

m Mainframe to WebL ogic Server Application Models
m WebL ogic Server to Mainframe Application Models

Mainframe to WebLogic Server Application Models

In aMainframe to WebL ogic Server application, arequest originates from a
mainframe and is serviced by an EJB invoked by a WebL ogic JAM Gateway.

The following Mainframe to WebL ogic Server application model is discussed in this
guide:

m Generating a Server Enterprise Java Bean-Based Application

WebLogic Server to Mainframe Application Models

In aWebL ogic Server to Mainframe application, a request originates on a WebL ogic
client or server, and is serviced by a mainframe program invoked by the WebL ogic
JAM Gateway in cooperation with the CRM.

Thefollowing WebL ogic Server to Mainframe application model sare discussed in this
guide:

m Generating a Stand-Alone Client Application
m Generating a Client Enterprise Java Bean-Based Application
m Generating a Servlet Application

Roadmap for WebLogic JAM Programming

The steps outlined in Figure 1-2 provide you with a high-level guidelineto al of the
tasks and processes that you must perform to generate applications using WebL ogic

JAM. Y ou can think of these steps as aroadmap to guide you through the process and
to point you to the resources available to help you.

BEA WebL ogic Java Adapter for Mainframe Programming Guide 1-5

1 Introduction to Generating Applications

Figure1-2 Roadmap for JAM Programming

Analyze the application

eblogic Server
to Mainframe?

i g

Decide which modeal to Obtain or create a
use COBOL Copyboak

¥

¥

YWrite eGen script

¥

Run eGen utility to
produce application code

h 4

Customize the application
code

1. Analyze the application and determine if it is Mainframe to WebL ogic Server or
WebL ogic Server to Mainframe. If the application is WebL ogic Server to
Mainframe, decide which model you are going to use (see WebL ogic Server to
Mainframe Application Models for more information).

2. Obtain or create a COBOL copybook (see Obtaining a COBOL Copybook for
more information).

1-6 BEA WebL ogic Java Adapter for Mainframe Programming Guide

Roadmap for WebLogic JAM Programming

3. Write the eGen script. The eGen script has two parts. The first part defines the
DataView. The second part defines the application code (see Writing an eGen
Script for more information).

4. Usethe COBOL copybook and the eGen script as input for the eGen utility. This
produces the DataView and the application code (see Processing eGen Scripts
with the eGen Utility for more information).

5. Customize the application code. This can be done by extending the code to
perform the tasks required for your application (see Basic Programming
Techniques for more information).

BEA WebL ogic Java Adapter for Mainframe Programming Guide 1-7

1 Introduction to Generating Applications

1-8 BEA WebL ogic Java Adapter for Mainframe Programming Guide

CHAPTER

2 Generating a Java

Application with the
eGen Application
Generator

This section discusses the following topics:

m Understanding eGen

m Working With COBOL Copybooks

m Processing eGen Scripts with the eGen Utility

Understanding eGen

The eGen Application Generator, also known as the eGen utility, isinstalled with
WebL ogic JAM. It generates Java applications from a COBOL copybook and a
user-defined script file.

BEA WebL ogic Java Adapter for Mainframe Programming Guide 2-1

2 Generating a Java Application with the eGen Application Generator

The eGen utility generates a Java application by processing a script you create, called
an eGen script. A Java DataView is defined by the first section of the script. This
DataView is used by the application code to provide data access and conversions, as
well asto perform other miscellaneous functions. The actual application codeis
defined by the second section of the script.

Figure 2-1 illustrates how the eGen utility works. Thisillustration shows the eGen
script and COBOL copybook file being used asinput to the eGen utility, and the output
that is generated is the DataView and the Java application. The generated Java
application may be used in avariety of ways. In some cases, it may be used asiis.
However, in most cases, you will need to extend the generated application in some
way, or it may become a member of the actual user-defined application.

2-2 BEA WebL ogic Java Adapter for Mainframe Programming Guide

Understanding eGen

Figure2-1 Understandingthe eGen utility

03 EMP-REC.
eGen script COBOL Copyhook 05 EMP-S3N PIC 9(3)
COMP-3.
05 EMP-LDDE.

07 EMP-AL-ZTREET PIC X(30).
07 EMP-L-CITY PIC Z(20).

07 EMP-AL-3T PIC Z(Z2).
07 EMP-A-ZIP PIC X(9).
05 EMP-NAME

07 EMP-N-LAIT PIC Z(13).
07 EMP-N-FIRST PIC X(15).
07 EMP-N-MI PIC Z(1).

eGen utility

imporc
bea, jam.egenClientBean;

public olass EwmpRecEean
extends egenClientEean
i
public EmpRecBean
i

Generated Generated .
Datatview Application !
}

¥ import EmpRecBean;

User-defined Java public class
L ExtEnpFRecEean
application source

file extends EmpRecBean
i

}

BEA WebL ogic Java Adapter for Mainframe Programming Guide 2-3

2 Generating a Java Application with the eGen Application Generator

Working With COBOL Copybooks

A COBOL CICS or IMS mainframe application typically uses a copybook sourcefile
todefineitsdatalayout. Thisfileisspecifiedin aCOPY directivewithintheLl NKAGE
SECTI ON of the source program for a CICS application, or in the WORKI NG STORAGE
SECTI ONof an IM S program. If the CICS or IM S appli cation does not use a copybook
file, you will have to create one from the data definition contained in the program
source.

Each copybook’s contents are parsed by the eGen utility, producing DataView
sub-classes that provide facilities to:

m Convert COBOL datatypesto and from Java data types. This includes
conversions for mainframe data formats and code pages.

m Convert COBOL data structures to and from Java data structures.

m Convert the provided data structures into other arbitrary formats.

Obtaining a COBOL Copybook

The eGen utility must have a COBOL Copybook to use as input. There are two
methods you can use to obtain this Copybook:

m Creating a New COBOL Copybook
m Using an Existing COBOL Copybook

Creating a New COBOL Copybook

If you are producing a new application on the mainframe or modifying one, then one
or more new copybooks may be required. Y ou should keep in mind the COBOL
features and data types supported by WebL ogic JAM as you create these copybooks
(see eGen Application Generator Reference for more information).

2-4 BEA WebL ogic Java Adapter for Mainframe Programming Guide

Working With COBOL Copybooks

Using an Existing COBOL Copybook

When amainframe application hasan existing DPL or APPC interface, the datafor that
interface is usually described in a COBOL copybook. Before using an existing
COBOL Copybook, verify that theinterface does not use any COBOL features or data

types that WebL ogic JAM does not support (see Limitations of the eGen Utility).

An example COBOL copybook sourcefileis shown in Listing 2-1.

Listing 2-1 Sampleenprec. cpy COBOL Copybook

L2

LU 7 R I L T Y %

10
11
1z
1z
14
13

Declaration of a

nz etp-record#——— record (group)
data item.
04 emp-ssn pic (3 comp-3.
An elementary itern. This is the base
level of the data structure.
04 EMp-NAame.
06 emp-name-last pic x(15).
06 emp-name-first pic x(15).
o0& emp-name-mi pic x.

e

An aggregate item. This is
the intermediate level of
the data structure.

04 emp-addr,
oe emp-addr-street
oe emp-addr-st
o0& emp-addr-zip

* End

piz x(30).
pic x(2).
pic =(9).

BEA WebL ogic Java Adapter for Mainframe Programming Guide

2-5

2 Generating a Java Application with the eGen Application Generator

Limitations of the eGen Utility

The eGen utility is able to translate most COBOL copybook data types and data
clausesinto their Java equivalents; however, it is unable to translate some obsol ete
constructs and floating point data types. For information on COBOL data types that
can be translated by the eGen utility, see DataView Programming Reference. If the
eGen utility is unable to fully support constructs or datatypes, it:

m Treatsthem as al phanumeric data types (if reasonable)
m Ignoresthem (if their support is unimportant to WebL ogic JAM’s operation)
m Reportsthem as errors

If the eGen utility reports constructs or datatypes as errors, you must modify them, so
they can be translated.

Writing an eGen Script

After you have obtained a COBOL Copybook for the mainframe applications, you are
ready to write an eGen script. This eGen script and the COBOL copybook that
describes your data structure will be processed by the eGen utility to generate a
DataView and application code which will serve as the basis for your custom Java
application.

An eGen script has two sections. These are:

m DataView. The DataView section of the script generates Java DataView code
from a COBOL copybook. The class file compiled from the generated code
extends the Java DataView class. Generating DataViewsis discussed in detail in
the remainder of this section.

Note: If the purpose of your eGen script isto generate a DataView for use with
the WebL ogic JAM to IMS EJB, or to launch aWebL ogic Integration
event, you only need to create the DataView section of the script.

m Javaapplication. The Java application section of the script generates the Java
application code. Thisisdiscussed in detail in Basic Programming Techniques.

2-6 BEA WebL ogic Java Adapter for Mainframe Programming Guide

Writing an eGen Script

Writing the DataView Section of an eGen Script

The eGen utility parses a COBOL copybook and generates Java DataView code that
encapsul ates the data record declared in the copybook. It does this by parsing an eGen
script file containing a DataView definition similar to the example shown in

Listing 2-2 (keywords are in bold). The section containing the DataView definitionis
thefirst section of the eGen script. Application codeisgenerated by the second section.

Listing 2-2 Sample DataView Section of an eGen script

generate view exanpl es. Cl CS. out bound. gat eway. Enpl oyeeRecord from
enpr ec. cpy

Analyzing the parts of thisline of code, we seethat gener ateview tellsthe eGen utility
to generate a Java DataView codefile.

exanpl es. Cl CS. out bound. gat eway. Enpl oyeeRecor d tellstheeGen utility to call
the DataView file Enpl oyeeRecor d. j ava. The packageis called

exanpl es. Cl CS. out bound. gat eway. The Enpl oyeeRecor d class defined in

Enpl oyeeRecor d. j ava isasubclass of the DataView class. The phrasef rom

enpr ec. cpy tellsthe eGen utility to form the Enpl oyeeRecor d DataView file from
the COBOL copybook enpr ec. cpy.

Additional gener at e vi ew statements may be added to an eGen script in order to
produce all the DataViews required by your application. Also, additional options may
be specified in the eGen script to change details of the DataView generation. For
exampl e, thefollowing script will generate aDataView classthat uses codepagecp500
for conversionsto and from mainframe format. If the codepage clauseis not specified,
the default codepage of cp037 isused.

Listing 2-3 Sample DataView Section with Codepage Specified

generate vi ew exanpl es. Cl CS. out bound. gat eway. Enpl oyeeRecord from
enprec. cpy codepage cp500

BEA WebL ogic Java Adapter for Mainframe Programming Guide 2-7

Generating a Java Application with the eGen Application Generator

The following script will generate additional output intended to support use of the
DataView classwith XML data:

Listing 2-4 Sample DataView Section Supporting XML

generate view sanpl e. Enpl oyeeRecord from enprec. cpy support xnl

Additional files generated for XML support are listed in Table 2-1.

Table 2-1 Additional Filesfor DataView XML Support.

File Name File Purpose

classname.dtd XML DTD for XML messages accepted and produced by this
DataView.

classname.xsd XML schemafor XML messages accepted and produced by this
DataView.

Processing eGen Scripts with the eGen
Utility

2-8

After you have written your eGen script, you must processit to generate the DataView
and application code. This Java code must then be compiled and deployed. The same
eGen script usually contains both the definitions of the DataView and application code,
and both are produced with a single processing of the script. However, in this
Programming Guide, the script is explained in two steps, so the actual code generated
can be analyzed in greater detail.

BEA WebL ogic Java Adapter for Mainframe Programming Guide

Processing eGen Scripts with the eGen Utility

Creating an Environment for Generating and Compiling
the Java Code

When you process the eGen scripts and compile the generated Java code, you must
have access to the Java classes and applications used in the code generation and
compilation processes. Adding the correct elements to your CLASSPATH and PATH
environment variables provides this access.

For the eGen utility:

m Add<JAM I NSTALL_DIR>\lib\jam jar toyour CLASSPATH.
m Add<JAM | NSTALL_DI R>\ bi n to your PATH.

For compilation:

m Add<JAM I NSTALL_DIR>\lib\jamjar toyour CLASSPATH.
m Add<WS HOVE>\Ii b\ webl ogi c.j ar to your CLASSPATH.

m Add the path of your DataView class filesto your CLASSPATH . You will need
access to these classes when you compile your Java application code.

Notes: UNIX users must use“/” instead of “\” when adding directory paths as
specified above.

Running confi g\ veri fy\ set Veri f yEnv. cnd (on Windows systems) or
config/verify/setVerifyEnv.sh (on UNIX systems) will perform the
above actions necessary for the eGen utility.

Generating the Java DataView Code

For the eGen script named enpr ec. egen shown in Listing 2-2, the following shell
command parses the copybook file named enpr ec. cpy (see Listing 2-1) and
generates the Enpl oyeeRecor d. j ava sourcefile in the current directory:

BEA WebL ogic Java Adapter for Mainframe Programming Guide 2-9

2 Generating a Java Application with the eGen Application Generator

Listing 2-5 Sample Copybook Parse Command

egencobol enprec. egen

If no error or warning messages areissued, the copybook iscompatiblewith WebL ogic
JAM and the source files are created. Note that no application source files are
generated by processing the enpr ec. egen script. Thisis because there are no
application generating commands in this script.

Note: Refer to eGen Application Generator Reference for suggestions on resolving
any problems encountered.

The following example illustrates the resulting generated Java source file,
Enpl oyeeRecor d. j ava with some comments and implementation details removed
for clarity.

2-10 BEA WebLogic Java Adapter for Mainframe Programming Guide

Processing eGen Scripts with the eGen Utility

Listing 2-6 Generated Enpl oyeeRecor d. j ava Source File

f fEmployeeRecord.jara
fiDataview class generated by egencobol emprec.cpy

The package name is defined

package examples.CICS.outbhound.gateway; #—— in the eGen script

Jf Imports

import bea.dmd.DataView.DataView;

The data record is
f**DataView class for EmployeeRecord huffers*f

gncapsulated in a
public final class EmployeeRecord-+ P
extends DataView class that extends the
. Dataiew class

Each class member
/f Code for field “emp-ssn’ *_____/J\rariable corresponds to a
private BigDecimal m_empSsn field in the data record

public BigDecimal getEmpSsni) {...}

lek&- Each data field has

f** DataView subclass for emp-name Group *f accessor functions

public final class EmpHame 3V
extends DataView \ Each aggregate data field has a
{

corresponding nested inner class
that extends the DataView class

Jf Code for field “emp-name-last’
private 3tring m empHamelast:

public void setEmpHameLast{String value) {...}
public String getEmpHamelast() {...}

Each data field within an
aggregate data field has
accessor functions

f, Code for field “emp-name’’ Each COBOL data field name is
private Ewplamed¥ m mnmf———_—# comverted into a Java identifier
. public Emphame3V getﬁmpname() {...}

1

//End EmploveeRecord. java

BEA WebLogic Java Adapter for Mainframe Programming Guide — 2-11

2 Generating a Java Application with the eGen Application Generator

Special Considerations for Compiling the Java Code

Y ou must compile the Java code generated by the eGen utility. However, there are
some special circumstancesto consider. Because the application code is dependent on
the DataView code, you must compile the DataView code and make sure that the
resulting DataView classfilesarein your environment’ s CLASSPATH before compiling
your application code. Y ou must make sure that all of the DataView classfiles can be
referenced by the application code compilation.

For example, the compilation of Enpl oyeeRecor d. j ava resultsin four classfiles:
m Enpl oyeeRecord. cl ass

® Enpl oyeeRecor d$EnpRecor d1V. cl ass

® Enpl oyeeRecor d$EnpRecor d1V$SEnpNane3V. cl ass

® Enpl oyeeRecor d$EnpRecor d1VSEnmpAddr 7V. cl ass

All of these class files are used when compiling your application code.

2-12 BEA WebL ogic Java Adapter for Mainframe Programming Guide

CHAPTER

3 Basic Programming
Techniques

This section discusses the following topics:

m Choosing an eGen Java Application Model

m General Form of an eGen Script

m Mainframe to WebL ogic Server Application Models
m WebLogic Server to Mainframe Application Models
= WebLogic JAM to IMS

Choosing an eGen Java Application Model

There arefour different types or models of Java applications that can be generated by
the eGen utility. These models, which can be classified as either Mainframe to
WebL ogic Server or WebL ogic Server to Mainframe, are described below.

Mainframe to WebL ogic Server (request originates on the mainframe and is serviced
by WebL ogic):

m Server EJB. The server EJB is a Stateless Session EJB that provides a service to
the mainframe.

BEA WebL ogic Java Adapter for Mainframe Programming Guide 31

3

Basic Programming Techniques

WebL ogic Server to Mainframe (request originates on the WebL ogic client or server
and is serviced by the mainframe):

Client Class. The client classis a stand-alone Java class that invokes mainframe
services. This class may be built into your own EJB or utilized in some other
way within your code.

Client EJB. The client EJB is a Stateless Session EJB that invokes mainframe
services. It may be called by a servlet or other client programs. Thisisthe
normal model for building a production application with access to mainframe
services. A servlet that invokes the EJB’s methods may be added for testing or
demonstration purposes.

Servlet Only. The servlet-only application is a servlet that presents a simple form
and invokes mainframe services directly. Thisis the simplest model, but it may
not be suitable for production applications.

Choose one of these four model types to use as the basis for your Java application.
Once you have chosen amodel type, refer to the section from the following list for
instructions on writing the script and implementing the model you have chosen:

Generating a Server Enterprise Java Bean-Based Application
Generating a Stand-Alone Client Application

Generating a Client Enterprise Java Bean-Based Application
Generating a Servlet Application

For all of the applications you generate, you must provide a script file containing
definitions for the application, including the COBOL copybook file name and the
DataView class hames.

Generating the Java Application Code

32

The Java application code can be generated at the same time that you generate the Java
DataView code. To generate Java application code, the eGen script that you process
must contain instructions for generating the Java application along with the
instructions for generating the DataView code.

BEA WebL ogic Java Adapter for Mainframe Programming Guide

General Form of an eGen Script

Referring to the samplefilesinsanpl es\ veri f y\ gat eway\ out bound, thefollowing
command generates Char dat a. j ava and BaseCl i ent . j ava. The DataView fileis
Char dat a. j ava, and the application fileisBaseCl i ent . j ava.

> egencobol based ient.egen

General Form of an eGen Script

As previously stated, most eGen scripts consist of two major sections:
m The DataView section described in Writing an eGen Script.

m The Application section, which defines the Java application code that the eGen
utility isto generate (described in Writing the Application Section of an eGen
Script).

Writing the Application Section of an eGen Script

The application section of an eGen script contains the information about the Java class
files that the eGen utility isto generate for a particular application. The application
section is divided into two distinct subsections, which are actually lists. The two lists
are

m List of Services-- Describes the remote services that are configured for JAM
and are called by the classes that the eGen script defines. Thislist is not present
in the script if the classes to be generated by the eGen utility are all server EJB’s.

m List of Application Components -- Components for which the eGen utility isto
generate the class files. Thislist contains one or more definitions of stand alone
clients, client EJB's, servlets, or server EJB'’s.

List of Services
Scripts that are used to define the application components that the eGen utility isto

generate usually contain alist of one or more service definitions. If the application
componentsareall server or Mainframeto WebL ogic Server EJB’s, thislist of services

BEA WebL ogic Java Adapter for Mainframe Programming Guide 3-3

3 Basic Programming Techniques

isnot present. Thisis because thislist of service definitions describes remote services
configured in JAM; server EJB’s do not call remote services since the requests are
flowing outward from the mainframe.

The general form of a service definition is as follows (keywords are in bold):
servi ce servi cenane accepts inputVi ewnane returns outputVi ewnane

Table 3-1 describes the service definition parameters.

Table 3-1 Service Definition Parameters

Par ameter Definition

servi cenanme Must match the name of aremote service that is defined
inthe WebLogic JAM configuration (see the BEA WebLogic
Java Adapter for Mainframe Configuration and Administration

Guide).

i nput Vi ewnane Thenameof aDataView that will betheinput or request datafor
the service.

out put Vi ewnane The name of the DataView that is the output or response from
the service.

Note: Thei nput Vi ewnane and out put Vi ewnane do not have to be the same;
however, due to the way many applications are written, they often are the
same.

Following is an example of a service definition:
service TOUPPER accepts Chardata returns Chardata

In this exampl e, the service TOUPPER isa configured remote service. Asfar asthe Java
application making the request for a mainframe service through WebL ogic JAM is
concerned, this service accepts asinput a Char dat a DataView. The actual mainframe
server application accepts as input the COBOL copybook which correspondsto a
Char dat a DataView. Asfar asthe Java application is concerned, the output or
response from the mainframe service isa Char dat a DataView.

34 BEA WebL ogic Java Adapter for Mainframe Programming Guide

General Form of an eGen Script

List of Application Components

In order for the eGen utility to generate code for Java applications, the eGen script

must contain alist of one or more definitions of the application componentsthat areto
be generated. Thislist of definitions of application components can contain definitions
of stand-alone clients, client or server EJB’s, and servlets. Thislist of definitions also
contains the definition of any HTML pagesthat are used by serviets defined in thelist.

Note: Thedefinition of an HTML page appearing in thislist by itself will not cause
any code to be generated.

The general form of an application component definition is as follows:

nodel identifier [nbpdel-dependent-paraneters]
{ details }

Table 3-2 describes the application component definition parameters.

Table 3-2 Application Component Definition Parameters

Parameter Definition

nodel Indicates to the eGen utility the type of application component
that isto be generated. The possible values of thisidentifier are:

m client class
client gb
server gjb
serviet
page

identifier Thisis generally the class name (or class name stem for EJB’s)
for the application component that is to be generated. The
identifier includes the package name. For an HTML page, the
identifier is the page name.

BEA WebL ogic Java Adapter for Mainframe Programming Guide 35

3 Basic Programming Techniques

Parameter

Definition

nodel - dependent -
paraneters

These further describe the application component to the
eGen utility and can vary agreat deal depending on the
model. For a stand-alone client, there would be no

model - dependent - par anet er s given. For an EJB
(client or server), the home interface identifier for the
bean must be given. For aservlet, theinitial HTML page
that isto be displayed is given. For an HTML page, the
title of the page is given.

details

These give detail s about the code for the application component.
For a stand-alone client, aswell as an EJB, these details would
include the definitions of class methods that will call services
defined in the script. For a servlet, there usually will not be any
details given. For an HTML page, these details include the
DataView that isto be displayed and any buttons that will be
displayed on the page.

Following is an example of an application component definition:

client ejb sanple. Sanpl ed ient ny.sanpl eBean
{

met hod newEenpl oyee
is service sanpl eCreate

}

The example states the following:

Thisisthe definition for aclient or EJB.

Thecl assnane for thisEJB is Sanpl ed i ent . That is, the eGen utility will
generate filesnamed Sanpl eC i ent . j ava, Sanpl ed i ent Bean. j ava, and
Sanpl eC i ent Hone. j ava.

The package nameissanpl e.

The home interface identifier for thisbean isny. sanpl eBean.

The bean will have a method called newenpl oyee that callsthe sanpl eCreat e
service. Thesanpl eCr eat e serviceis defined elsewhere in thefile.

3-6 BEA WebL ogic Java Adapter for Mainframe Programming Guide

Mainframe to WebLogic Server Application Models

Specific details about the application component definitions for each application
model, aswell asthefilesthat the eGen utility generatesfor each model, are discussed
in the following sections.

Mainframe to WebLogic Server Application
Models

In aMainframe to WebL ogic Server application, arequest originates on a mainframe
and is serviced by an EJB invoked by a WebL ogic JAM Gateway.

Generating a Server Enterprise Java Bean-Based
Application

Thistype of application produces Java classes that comprise an EJB application acting
as aremote server from the viewpoint of the mainframe. The classes process service
reguests originating from the mainframe (remote) system and transfer data records to
and from the mainframe. From the viewpoint of the Java classes, they receive EJB
method requests. From the viewpoint of the mainframe application, it invokes remote
CICSor IMS programs.

Components of an eGen Server EJB Script

The general form of adefinition of aserver (Mainframe to WebL ogic Server) EJB that
appearsin an eGen script is as follows (keywords are in bold):

server ejb classnane ejbregistration transaction
transaction-attribute
{servernet hod}

Table 3-3 describes the server EJB definition keywords and parameters.

BEA WebL ogic Java Adapter for Mainframe Programming Guide 3-7

3 Basic Programming Techniques

Table 3-3 Service EJB Definition Keywords and Parameters

K eywor d/Parameter

Definition

server ejb

Indicates to the eGen utility the type of application component
that isto be generated.

cl assnane

Indicatesthe class name stem for the EJB. For example, if
thecl assnane is Sanpl eSer ver , then the following
files are generated by the eGen utility:

m Sanpl eServer.java

m Sanpl eServer Bean. j ava

m Sanpl eServer Hone. j ava

Note: The package name should be included in the
cl assnane.

ej bregi stration

The name that will be used to register the home interface
for the EJB.

transaction
transacti on-
attribute

Thiskeyword and parameter are optional. They areusedto
managethe level of transaction demarcation. The possible
valuesof thetransaction-attri bute are:

Not Support ed

Requi red

Supports

Requi r esNew

Mandat ory

Never

Note: Ifthetransacti on keyword is not present in the
definition, the default value of the
transaction-attributeisSupports.Fora
detailed explanation of how the WebL ogic Server EJB
container respondstothet ransaction-attri bute
setting, see the section on Transaction Attributesin the
EJB 2.0 Specification.

3-8 BEA WebL ogic Java Adapter for Mainframe Programming Guide

Mainframe to WebLogic Server Application Models

K eywor d/Par ameter

Definition

server et hod

Method that appearsin the EJB implementation (must bein
braces). The general form of aser ver net hod definitionisas
follows (keywords are in bold):

met hod et hodnane (i nput Dat aVi ew) returns
out put Dat aVi ew

Table 3-4 describes the parameters of aser ver et hod
definition.

Table 3-4 Parametersfor the servermethod

Parameter

Definition

met hodnane

The name of the method.

i nput Dat aVi ew

The nameof the DataView that isthetype of theinput parameter
for the method (must bein parenthesis).

out put Dat aVi ew

The name of the DataView that is the type returned from the
method.

Following is an example of a server (Mainframe to WebL ogic Server) EJB definition
that appears in an eGen script:

server ejb sanple. Sanpl eServer my. sanpl eServer

{

met hod newknpl oyee (Enpl oyeeRecord)
returns Enpl oyeeRecord

}

The example states the following:

m Thisisthe definition for a server EJB class. The generated EJB classfiles are
defined in the Generated Files section that follows.

m Theny. sanpl eServer isthe homeinterface identifier for this beanin the
WebL ogic deployment description.

m Thetransaction keywordis not present in this example, so it defaultsto

Supports.

BEA WebL ogic Java Adapter for Mainframe Programming Guide 39

3 Basic Programming Techniques

m The server class method newenpl oyee takesitsinput from the DataView
Enpl oyeeRecor d and writes its output to an Enpl oyeeRecor d output
DataView.

Generated Files
Table 3-5 lists the files generated from the example server (Mainframe to WebL ogic

Server) EJB described in Components of an eGen Server EJB Script. Thesefiles are
described in the sections following the table.

Table 3-5 Sample Script Generated Files

File Content

Sanpl eServer . j ava Source for the EJB remote interface.
Sanpl eSer ver Bean. j ava Source for the EJB implementation.
Sanpl eSer ver Hore. j ava Source for the EJB home interface.

Sanpl eSer ver -j ar. xn Deployment descriptor.

w - Sanpl eSer ver -j ar. xn WebL ogic deployment information.

SampleServer.java Source File

Listing 3-1 shows the partial contents of the generated remote interface
Sanpl eServer . j ava sourcefile.

3-10 BEA WebLogic Java Adapter for Mainframe Programming Guide

Mainframe to WebLogic Server Application Models

Listing 3-1 Sample SampleServer .java Contents

Package name listed
package sample 4" |in the script definition

r

// Imports

import com.hbea.sna.jormgw. gwobject Class name isted in

s / the script definition
public interface SampleServe

tend Oh]
C sxhEnds gw jecm\—__\ Remote interfaces generated by

rdi toh eGen always extend gwObject
1spata

byte[] dispatch(byte[] commarea, Objecst future)
throws RemoteException, UnexpectedException;

' \ First method called by WebLogic JAM in
the EJB. This method is particular to

YWeblLogic JAM.

SampleServerBean.java Source File

Listing 3-2 shows the partia contents of the generated EJB implementation
Sanpl eSer ver Bean. j ava sourcefile.

BEA WebLogic Java Adapter for Mainframe Programming Guide 3-11

3 Basic Programming Techniques

Listing 3-2 Sample SampleServer Bean.java Contents

// Imports

All server EIB
implementations generated by
YWebLogic JAM extend
EgenzenerBean

import com.bea.egen.EgenderverBean; 4 ———_|

public class SampleServerBean
extends EgenderverBean

1
//dispatch
public byte[] dispatehy (byte[] commarea, Object future)
throws IOException
{ elGen alwvays adds this method to
Cen EJB implementation
}
EmployeeRecord newEmployee (EmployeeRecord commarea)
{
return new EmployeeRecord(); Rengﬁomthemgmod
3 specified in the definition in
) the eGen script

SampleServerHome.java Source File

The eGen utility generates a standard home interface class for the server EJB.

SampleServer-jar.xml Source File

The following line from the deployment descriptor file results from the transaction
attribute in the definition in the eGen script.

<trans-attribute>Supports</trans-attribute>

3-12 BEA WebLogic Java Adapter for Mainframe Programming Guide

Mainframe to WebLogic Server Application Models

Asdescribed in Components of an eGen Server EJB Script, this element indicates the
level of transaction demarcation. If thet r ansact i on- at t ri but e isnot presentinthe
definition, the default valueis Suppor t s. So, in this example, the transaction attribute
was nhot listed in the script definition.

wl-SampleServer-jar.xml Source File

The following line from the WebL ogic deployment information file results from the
home interface name in the eGen script.

<j ndi - name>ny. sanpl eServer </ j ndi - nane>

Asdescribed in Components of an eGen Server EJB Script, ny. sanpl eSer ver isthe
home interface identifier for this bean in the WebL ogic deployment description.

Customizing a Server Enterprise Java Bean-Based Application

The generated server enterprise Java bean-based applications are only intended for
customizing, since they perform no real work without customization. This section
describes the way generated server EJB code can be customized.

Thefollowing figureillustratesthe rel ationshi psand inheritance hierarchy between the
WebL ogic JAM classes comprising the application.

BEA WebL ogic Java Adapter for Mainframe Programming Guide 3-13

3 Basic Programming Techniques

Figure3-1 TheWebL ogic JAM Server EJB ClassHierarchy

Jam. jar The eGen script file that
defines the method to be
) generated in the server EJB.
cow.bea jam.egen. EgenServerBean
server ejbh sample.SamplelServe
my.3amplelerver ﬂ\
i
_ method newEmployee (EmployeeRecord)
nhefits returns EmployeeRecord

generates j

extends EgenlerverBean
{

+

class SampleServerBeanﬂﬁ__q_h

The classname is defined in the eGen script
\\\ asSampleSerer . Conseguently, the
generated Java source code containg the
class SampleServerBean.

nherits

Generated Java source code
produced from the eGen script
file. The class inherits the
EgenServerBean base class, and
contains the method specified.

class ExtSamplelerverEean
extends ZamplelerverBean
{

+

Java source code written by the user that
extends the generated class produced from
the eGen script, and which adds member
functions and variables that implement the
business logic of the application.

The generated Java code for aserver EJB application is aclass that inherits the class
EgenSer ver Bean. The EgenSer ver Bean classis provided in the WebL ogic JAM
distribution jar file. This base class provides the basic framework for an EJB. It
provides the required methods for a Stateless Session EJB.

The following listing shows an example Ext Sanpl eSer ver Bean class that extends
the generated Sanpl eSer ver Bean class, providing an implementation of the
newEnpl oyee() method. The example method prints a message indicating that a
newEnpl oyee request has been received.

3-14 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models

Listing 3-3 Sample ExtSampleServer Bean.java Contents

package sanpl e;

public cl ass Ext Sanpl eServer Bean extends Sanpl eServer Bean

{
publ i c Enpl oyeeRecord newEnpl oyee (Enpl oyeeRecord in)
{
System out. println(“New Enmpl oyee: “ +
+i n. get EnpRecor d() . get EnpNane() . get EnpNaneFi rst ()
o
+ in.get EnpRecord(). get Enpnane(). get EnpNaneLast ());
return in;
}
}

Once it has been written, the Ext Sanpl eSer ver Bean class and the other EJB Java
source files must be compiled and deployed in the same manner as other EJBs. Before
deploying, the deployment descriptor must be modified; the gjb-class must be set to
the name of your extended EJB implementation class (see Deploying a WebL ogic
JAM eGen EJB).

Compiling and Deploying

Refer to the WebL ogic Server documentation for more information. The samplefile
provided with WebL ogic Server contains a build script for reference.

WebLogic Server to Mainframe Application
Models

In aWebLogic Server to Mainframe application, a request originates on a WebL ogic
client or server, and is serviced by a mainframe program invoked by the WebL ogic
JAM Gateway in cooperation with the CRM.

BEA WebL ogic Java Adapter for Mainframe Programming Guide 3-15

3 Basic Programming Techniques

Generating a Stand-Alone Client Application

This type of application produces simple Java classes that perform the appropriate
conversions of data records sent between Java and the mainframe and call mainframe
services, but without all of the EJB support methods. These classes are intended to be
lower-level components upon which more complicated applications are built.

Components of an eGen Stand-Alone Application Script

The general form of a definition of a stand-alone client class that appearsin an eGen
script is as follows (keywords are in bold):

client class classnane

{ clientnethods }

Table 3-6 describes the stand-alone client class definition keywords and parameters.

Table 3-6 Sand-Alone Client Class Definition K eywords and Parameters

Keywor d/Parameter

Definition

client class

Indicates to the eGen utility the type of application component
that isto be generated.

cl assnane

Indicates the class name for the client class.

Note: The package name should be included in the
cl assnane.

cl i ent met hods

List of methods that appear in the client class implementation
(must be in braces). These methods are wrappers for calls to
services that are defined in the ser vi ces section of the eGen
script. The general form of the definition for acl i ent met hod
in an eGen script is as follows:

met hod net hodnane is service servicenane

Table 3-7 describes the parameters of acl i ent met hod
definition.

3-16 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models

Table 3-7 Parametersfor the clientmethod

Parameter Definition
nmet hodnane The name of the method.
servi cenane Indicates the remote service for which this method acts as a

wrapper for aWebL ogic JAM call. This service must be defined
in the same eGen script.

Following isan example of astand-aloneclient class definition that appearsin an eGen

script:
client class sanple. Sanpl ed ass
{

met hod newenpl oyee

is service sanpl eCreate
}

The example states the following:
m Thisisthe definition of asimple client class.
m The package nameis sanpl e and Sanpl ed ass isthe class name.

m Thenet hod newEnpl oyee acts as awrapper for aWebLogic JAM call to the
remote service sanpl eCr eat e.

m This service must be defined in the same eGen script as the client class.

Generated Files

Thefilesanpl ed ass. j ava, containing the sourcefor thesanpl e class, isgenerated.

Listing 3-4 shows the partia contents of the Sanpl ed ass. j ava sourcefile.

BEA WebLogic Java Adapter for Mainframe Programming Guide ~ 3-17

3 Basic Programming Techniques

Listing 3-4 Sample SampleClass,java Source File

The package

package sample;4—————— | hame defined in
the elen script.

// Imports

import com.bea.jam. egen.EgenClient;

All stand-alone clients extend the
. EgenClient class. The EgenClient clags is
public class SampleClass the client through which all WebLagic
extends EgenClien JAM serice requests are channeled.

d

public EmployeeRecordynewEmployee (EmployeeRecord commarea)
throws IOException;—~snaException

} Cormes from the definition of the senice
SampleCreate in the eGen script.

Customizing a Stand-Alone Java Application

Thefollowing figureillustratesthe rel ationships and inheritance hierarchy between the
WebL ogic JAM classes comprising the stand-alone java application.

3-18 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models

Figure3-2 TheWebL ogic JAM Client Class Hierarchy

Jam. Jar The eGen script file that
defings the method to be

generated in the client class.

com.bea jam.egen.EgenClient

service sampleCreate accepts EmployeeRecord
returns EmploveeRecord

service sampleRead accepts EmployeeRecord

genertes returns EmployeeRecord

client class sample.SampleClass

i

method newEmployee is service sampleCreate

method readEwployee iz service sawmpleRead
}

nherits

class SampleClient
extends EgenClient
{

}

Generated Java source code produced
from the eGen script file. The class
nherits inherits the EgenClient base class, and
A containg the methods specified.

class ExtlampleClient
extends SampleClient

{

Jawa source code written by the user that
extends the generated class praduced fram
the eGen script, and which adds member
e functions and variables that implement the
} business logic of the application.

The generated Java code for aclient class application is a class that inherits class
Egend i ent . The EgenCl i ent classis provided in the WebL ogic JAM distribution
jam j ar file. Thisbase class provides the basic framework for a client to the
WebLogic JAM Gateway, as well as the required methods for accessing the gateway.

Y our class, which extends or usesthe Sanpl eCl i ent class, smply overrides or cals
these methods to provide additional business logic, modifying the contents of the
DataView. Your class may also add additional methods.

BEA WebLogic Java Adapter for Mainframe Programming Guide ~ 3-19

3 Basic Programming Techniques

The following listing shows an example Ext Sanpl ed ass class that extends the
generated Sanpl eCl i ent class.

Listing 3-5 Sample ExtSampleClient.java Contents

package sanpl e;

public class ExtSanpl ed ient extends Sanpl ed ass

{
/'l createEnpl oyee
/1
publ i ¢ Enpl oyeeRecord newEnpl oyee(Enpl oyeeRecord

commar ea)
throws | OException, snaException

if (!'isSsnvalid(conmarea. get EnpRecord().getEmpSsn()))

{

/1 The SSNis not valid

throw new Error(”Invalid Social Security Nunber:”+
commar ea. get EnpRecor d() . get EmpSsn()) ;

}

return super. neweEnpl oyee(comar ea) ;

}

/1l Private functions

/***

* Validates an SSN fi el d.

*/

private bool ean isSsnValid(Bi gDeci nal ssn)

{ if (ssn.longValue() < 100000000)
/| Cops, appears to be less than 9 digits.
return fal se;

} return (true);

3-20 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models

Once it has been written, the Ext Sanpl eCl i ent class and the other Java source files
must be compiled and placed in your CLASSPATH.

Instead of extending the generated client, you can also write classes that have the
generated client asamember. Thisis an especially useful aternativeif the classyou
write must extend some other class.

Generating a Client Enterprise Java Bean-Based
Application

This type of application produces Java classes that comprise an EJB application. The
class methods are invoked from requests originating from other EJB classes or other

WebL ogic Server client classes and transfer data records to and from the mainframe

(remote system). From the viewpoint of the mainframe, the Java classes act asaremote
CICS or IMS client. From the viewpoint of the WebL ogic Server client classes, they

act asregular EJB classes.

Components of an eGen Client EJB Script

In order to produce an EJB-based application, the script file that defines your
DataViews must be edited to describe both the mainframe services accessed and the
EJB that will access them.

The general form of adefinition of aclient (WebL ogic Server to Mainframe) EJB that

appearsin an eGen script is as follows (keywords are in bold):

client ejb classnane ejbregistration transaction
transaction-attribute

{cli ent net hods}

Table 3-8 describes the client EJB script keywords and parameters.

Table 3-8 Client EJB Script Keywords and Parameters

Keyword/Parameter Definition

client ejb Indicates to the eGen utility the type of application component
that isto be generated.

BEA WebLogic Java Adapter for Mainframe Programming Guide ~ 3-21

3 Basic Programming Techniques

Keywor d/Parameter

Definition

cl assnane

Indicates the class name stem for the EJB. For example, if the
cl assnane isSanpl ed i ent , the following files are
generated by the eGen utility:

m SanpleCient.java
m Sanpl ed i ent Bean. j ava
m Sanpl ed i ent Hone. j ava

Note: The package name should be included in the
cl assnane.

ej bregi stration

The namethat will be used to register the home interface for the
EJB.

transaction
transacti on-
attribute

This keyword and parameter are optional. They indicate the
level of transaction demarcation. The possible values of
transaction-attribute are

= Not Supported
Requi red
Supports
Requi r esNew
Mandat ory
Never

Note: Ifthetransacti on keyword is not present in the
definition, the default value of the
transaction-attributeisSupports.Fora
detailed explanation of how the WebL ogic Server EJB
container responds to the
transaction-attri but e setting, seethe section
on Transaction Attributes in the EJB 2.0 Specification.

cl i ent met hods

List of methods that appear in the EJB implementation. These
methods are wrappersfor callsto remote servicesthat are
defined in the services section of the eGen script. The
genera form of acl i ent net hod definition is asfollows
(keywords are in bold):

met hod nmet hodnane is service servicenane

Table 3-9 describes the parameters of aclient method definition.

3-22 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models

Table 3-9 Client Method Definition Parameters

Parameter Definition
nmet hodnane The name of the method.
servi cename Indicates the remote service for which this method actsas

awrapper for aWebLogic JAM call. This service must be
defined in the same eGen script.

Following is an example of aclient (WebL ogic Server to Mainframe) EJB definition
that appearsin an eGen script:

client ejb sanple.Sanpl eCient my.sanpl eBean

{
net hod newknpl oyee
is service sanpleCreate

}

The example states the following:

m Thislisting defines a Java bean class named Sanpl ed i ent in the package
sanpl e with amethod named newEnpl oyee.

m The method corresponds to service name sanpl eCr eat e.

m The EJB home will be registered in Java Naming and Directory Interface (JNDI)
under the name ny. sanpl eBean.

Generated Files

Table 3-10 lists the files generated from the client (WebL ogic Server to Mainframe)
EJB described in Components of an eGen Client EJB Script. These files are described
in the sections following the table.

Table 3-10 Sample Script Generated Files

File Content
Sanpledient.java Source for the EJB remote interface.
Sanpl ed i entBean.java goyrce for the EJB implementation.

BEA WebL ogic Java Adapter for Mainframe Programming Guide 3-23

3 Basic Programming Techniques

Table 3-10 Sample Script Generated Files

Sanpl ed i ent Hone. j ava Source for the EJB home interface.

Sanpl eC i ent-jar. xm Deployment descriptor.

W - Sanpl eClient-jar.xm \epLogic deployment information.

SampleClient.java Source File

Listing 3-6 shows the partial contents of the generated remote interface
Sanpl ed i ent . j ava source file. Following the listing are descriptions of the
elementsin thisfile.

Listing 3-6 Sample SampleClient.java Contents

Package name listed
package sample 4—"""|in the script definition

13

£/ Imports

import javax.ejb.EJBEObject; Class name fisted

T / the script definition
public interface SampleClien

extends EJEChje
;] Ch*h_i_ Always extends

EJBObject

/f newEmployee
EmployeeRecord newEmployee (EmployeeRecord commarea)
throwzs RemoteExceptilygn, UnexpectedException;

tethod listed in clientrmethods
section of eGen script

3-24 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models

SampleClientBean.java Source File

Listing 3-7 shows the partia contents of the generated EJB implementation
Sanpl ed i ent Bean. j ava source file. Following the listing are descriptions of the
elementsin thisfile.

Listing 3-7 Sample SampleClientBean.java Contents

//Imports

Al client EJB implementations
generated by WeblLogic JAM

import com.hea.jam. egen.EgenClientBean® | :
F] g g ! extend EgenClientBean

public class SampleClientBean
extends EgenclientBean Results from the method

| in the eGen script
// newEmployee

public EmployeeRecord newEmployee [EmployeeRecord commarea)
throws IOException, snaException

{

SampleClientHome.java Source File

The eGen utility generates a standard home interface class for the client EJB.

SampleClient-jar.xml Source File

The following line from the deployment descriptor file results from the transaction
demarcation listed in the definition in the eGen script.

<trans-attribute>Supports</trans-attribute>

BEA WebL ogic Java Adapter for Mainframe Programming Guide 3-25

3 Basic Programming Techniques

As described in Components of an eGen Client EJB Script, this element indicates the
level of transaction demarcation. If thet r ansact i on- at t ri but e isnot presentinthe
definition, the default value is Suppor t s. In this example, the
transaction-attribute wasnot listed in the script definition.

wl-SampleServer-jar.xml Source File

The following line from the WebL ogic deployment information file results from the
Home Interface name in the eGen script.

<j ndi - name>ny. sanpl eBean</j ndi - nane>

As described in Components of an eGen Client EJB Script, ny. sanpl eBean isthe
home interface identifier for this bean in the WebL ogic deployment description.

Note: You can edit the deployment descriptor to change the pool size, etc.

Customizing an Enterprise Java Bean-Based Application

The generated client enterprise Javabean-based applicationsare generally intended for
customizing. Without customization, the only function they performiscommunication
with the mainframe. This section describes the way generated client EJB code can be
customized.

Thefollowing figureillustratesthe rel ationshipsand inheritance hierarchy between the
WebL ogic JAM classes comprising the application.

3-26 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models

Figure3-3 TheWebL ogic JAM Client EJB Class Hierar chy

Jatu. jar

com.bea jam.egen.egenClientbean

The eGen script file that
defines the methods to be
generated in the client EJB.

nherits

class SampleClientBean
extends egenClientBean

{

¥

nherits

class ExtSampleclientEean
extends SamplecClientBean
i

}

generates

service sampleCreate accepts EmployeeRecord
returns EmployeeRecord
service sampleRead accepts EmployeeRecord
returns EmployeeRecord
client ejbh sample. SampleClient sawpleClient
i
method newEmployee is service sampleCreate
method readEmployee is service sampleRead

'

Generated Java source code produced fram

the eGen script file. The class inherits the
EgenClientBean base class, and contains
the methods spacified

Java source code wiitten by the user that
etends the generated class produced from

the eGen script, and which adds member
functions and variables that implement the
buginess logic of the application.

The generated Java code for aclient EJB application is a class that inherits class
egend i ent Bean. Theegend i ent Bean classis provided in the WebL ogic JAM

distribution jar file.

Listing 3-8 illustrates an example Ext Sanpl eCl i ent Bean class that extends the
generated Sanpl eCl i ent Bean class, adding a validation function (i sSsnval i d())
for the enp- ssn (m_enpSsn) field of the DataView Enpl oyeeRecor d class. If the
enp- ssn field isdetermined to beinvalid, an exception occurs. Otherwise, the original
function is called to perform the mainframe operation.

BEA WebLogic Java Adapter for Mainframe Programming Guide ~ 3-27

3 Basic Programming Techniques

Listing 3-8 Example ExtSampleClientBean.java Class

package Sanpl e;
/1 Inmports

i mport java.mat h. Bi gDeci nal ;
i mport java.io. | OException;

i mport com bea. sna.j cr ngw. snaExcepti on;
/1 Local inports

i mport sanpl e. Enpl oyeeRecord;
i mport sanpl e. Sanpl eCl i ent Bean;
/***
* Ext ends t he Sanpl eG ent Bean EJB cl ass, addi ng addi ti onal busi ness
| ogi c.
*/
public cl ass Ext Sanpl ed i ent Bean

ext ends Sanpl eCl i ent Bean

/1 Public functions

/**
* Create a new enpl oyee record.
*/

publ i c Enpl oyeeRecord newEnpl oyee (Enpl oyeeRecord commarea)
throws | OException, snaException

{
if ('isSsnvalid (commarea. get EnpRecord().get EnpSsn()))
{
/1 The SSN is not valid.
throw new Error (“Invalid Social Security Nunber:”
+ comar ea. get EnpRecord(). get EnpSsn());
}
11
/1 Make the renote call.
return super. newenpl oyee(comrarea) ;
}
}

/1l Private Functions

/**

3-28 BEA WebL ogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models

Val i date an SSN field

@eturn
True if the SSNis valid, otherw se false.

private bool ean isSsnValid(final BigDecinal ssn)
{
if (ssn.longVal ue() < 100000000)
{
/] Oops, appears to be less than 9 digits
return fal se;

}

return true;

When it has been written, the Ext Sanpl edl i ent Bean class and the other EJB Java
source files must be compiled and deployed in the same manner as other EJBs. Prior
to deploying, the deployment descriptor must be modified; the ej b- cl ass property
must be set to the name of your extended EJB implementation class (see Deploying a
WebL ogic JAM eGen EJB).

Compiling and Deploying

Refer to the BEA WebL ogic Server documentation for more information. The sample
file provided with WebL ogic Server contains a build script for reference.

Generating a Servlet Application

A WebL ogic JAM servlet application is a Java servlet that executes within BEA
WebL ogic Server. The application is started from aweb browser when the user enters
aURL that is configured to invoke the servlet. The servlet presentsan HTML form
containing data fields and buttons. The buttons can be configured to invoke:

m EJB methods

m Remote gateway services (viathe JAM Gateway)

BEA WebL ogic Java Adapter for Mainframe Programming Guide 3-29

3

Basic Programming Techniques

In general, servlets generated by the eGen utility areintended for testing purposes and
are not easily customized to provide a more aesthetically pleasing interface.

In order to produce a servlet application, create an eGen script file and use the eGen
utility to generate your typed data record (DataView), and Servlet code.

In order to define a servlet application using an eGen script, you must define the
following:

m HTML pages displayed by the servlet
m Theservlet itself

Components of an eGen HTML Page Definition

3-30

The general form of an HTML page that appears in an eGen script is asfollows
(keywords are in bold):

page pagenane title

{ view vi ewnane
buttons {buttonlist}

}
Table 3-11 describes the HTML page definition keywords and parameters.

Table 3-11 HTML Page Definition Keywords and Parameters

Keyword/Parameter Definition

page Indicates to the eGen utility the type of application component
that isto be generated.

pagenamne Indicates the name of the page so it can be referenced by the
servlet and other page definitions in the script.

title Thetitle that will be displayed on the HTML page.

vi ewname Indicatesthe name of the DataView that isto be displayed onthe
page. This DataView must be defined elsewhere in the eGen
script.

BEA WebL ogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models

Keyword/Parameter Definition

buttonli st List of buttons that are displayed on the page. The buttons can
either call EJB methods or remote services that are defined
elsewherein the eGen script. The general form of the definition
for abutton in the buttonlist depends on whether it is aremote
service button or an EJB.

The general syntax for aremote service button in an eGen script is as follows
(keywords are in bol d):

butt onnane service (servicenane) shows pagenane

Table 3-12 describes the remote service button definition keywords and parameters.

Table 3-12 Remote Service Button Definition Keywords and Parameters

Keyword/Parameter Definition

but t onnane The label that appears on the button.
servi cenarne The name of the remote service (must be in parenthesis).
pagenane The page used to display the results.

The general syntax for an EJB button in an eGen script is as follows (keywords arein
bold):

butt onnane ej bmet hod () shows pagenane
Note: Empty parenthesis must follow ej brret hod.

Table 3-13 describes the EJB button definition keywords and parameters.

Table 3-13 EJB Button Definition Keywords and Parameters

Keyword/Parameter Definition

but t onnane The label that appears on the button.

BEA WebLogic Java Adapter for Mainframe Programming Guide ~ 3-31

3

Basic Programming Techniques

Keyword/Parameter Definition

ej bnmet hod The name of the EJB method that is to be called. This method
should be specified in the following form:

packagenamne. EJBcl ass. net hod

pagenane The page used to display the results.

Following is an example of an HTML page that appearsin an eGen script:

page initial “Initial Page”
{
vi ew Enpl oyeeRecord
butt ons
{
“Create”
service (“sanpl eCreate”)
shows ful | Page
}

}

Thislisting definesan HTML page named i ni ti al , with atext titleof I ni ti al
Page, that displays an Enpl oyeeRecor d record object asan HTML form. It also
specifies that the form has a button labeled Cr eat e. When the button is pressed, the
servicesanpl eCr eat e isinvoked and is passed the contents of the browser page asan
Enpl oyeeRecor d object (the fields of which may have been modified by the user).
Afterwards, thef ul | Page pageis used to display the results.

Components of an eGen Servlet Definition

3-32

The general form of a servlet definition that appearsin an eGen script is as follows
(keywords are in bold):

servl et classname shows pagenane

Table 3-14 describes the servlet definition keywords and parameters.

BEA WebL ogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models

Table 3-14 Servlet Definition Keywords and Parameters

Keyword/Parameter Definition

servl et Indicates the type of application component that isto be
generated.
cl assnane Indicates the class name for the servlet.

Note:. The package name should be included in the
cl assnane.

pagenane The name of the page that isinitially displayed by the servlet.
This page must be defined elsewhere in the script.

Following is an example of a servlet definition that appears in an eGen script:
servl et sanpl e. Sanpl eServl et shows initial
The example states the following:

m Thisisthe definition of an application servlet class named Sanpl eSer vl et in
the package sanpl e.

m Theservletisto be displayed inthe HTML page namedi ni ti al .

Generated Files
The eGen servlet definition described in Components of an eGen Servlet Definition
generates a servlet source code file called Sanpl eSer vl et . j ava.

Customizing a Servlet WebLogic JAM Application

The generated Java classes produced for servlet applications are intended for proof of
concept and prototypes. They can be customized in limited ways. It is presumed that
some other development tool will be used to develop a servlet or other user interface
on top of the generated EJBs or client classes.

BEA WebL ogic Java Adapter for Mainframe Programming Guide 3-33

3 Basic Programming Techniques

Supplying Security Credentials

WebL ogic JAM has the capability to accept user |D and password information from a
Java client program, and apply that information to access a secure service on the
mainframe.

Note: When security information is transmitted via the connection between the
WebL ogic JAM Gateway and the CRM, itissent in clear text (not encrypted).
Y ou should not send this information over a network that can be read by
unauthorized parties.

Security Levels

There are three levels of security that are supported by WebL ogic JAM.

m Loca -- No user information from the Java client is required to access a
mainframe service. Use of this security level implies that any user with accessto
execute the Java client program should have access to a mainframe service.

m |dentify -- A user ID specified by the Java client is required to access a
mainframe service. Thisuser ID is passed to the mainframe to verify that itisa
valid user I1D. Use of this security level impliesthat thereis atrusted relationship
between the Java and mainframe environments, since there is no re-verification
of the user's identity in the mainframe environment.

m Verify -- A user ID and password specified by the Java client are required to
access a mainframe service. The password is used to re-verify the user’s identity
in the mainframe environment.

Notes: Refer to the BEA WebLogic Java Adapter for Mainframe Configuration and
Administration Guide for information on setting the security level for aCRM
link and using adefault user ID.

Refer to your mainframe security documentation for more specific
information about establishing and administrating mainframe security.

3-34 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models

Supplying Security Credentials in a WebLogic JAM Client Program

User security information can be supplied in aWebL ogic JAM stand-alone client or
client EJB. There are two methods in the Egend i ent object that support this
operation:

m Egendient.setUserld(String)
This method sets the user ID to the value specified in the St ri ng argument.

B EgenCient.setPassword(String)

This method sets the user password to the value specified inthe St ri ng
argument.

These methods can be called on any sub-class of Egend i ent , such asthe client
classes generated by the eGen utility. The methods are not inserted automatically by
the eGen utility; they must be manually added to the client program source, and should
be called prior to the any callsto Egendl i ent . cal | Servi ce().

The methods set User | D and set Passwor d can be called on any subclass of
Egend i ent Bean, such as the client EJBs generated by the eGen utility.

Egend i ent Bean has methods by the same name that act as wrappers for callsto
methods of the Egendl i ent member of the Egendl i ent Bean class.

Callstothe Egend i ent . set User | d() method within a\WebL ogic JAM client will
override any default user 1D value configured for the CRM link the client is using.

These methods cannot be used with the servlet-only applications, since they do not use
the Egend i ent object directly. Servlet-only applications can make use of the default
user |D to support security level | dentify.

Listing 3-9illustratesaclassthat extendsthe generated EJB implementation to provide
security credentials to the Gateway during these operations.

Listing 3-9 Example of Classwith Security Credentials

/| Ext Sanpl ed i ent Bean. j ava
/1

package sanpl e;
/1 lnports
11

BEA WebL ogic Java Adapter for Mainframe Programming Guide 3-35

3 Basic Programming Techniques

i mport java.io.lOException;
i nport com bea. sna.j cr ngw. snaExcepti on;

/**
* EJB i npl ementation.
*
/
public class Ext Sanpl ed i ent Bean extends Sanpl el i ent Bean
{
protected byte[] call Service(String svc, byte[] input)
throws snaException, | OException
{
set Useri d(“JAMUSER’) ;
set Passwor d(“ JAMPASS") ;
return super.call Service(svc, input);
}
}

/1 END Ext Sanpl eCl i ent Bean. j ava

Note: WebLogic JAM will return an SNANot Aut hor i zed exception if the
credentials are rejected by the mainframe security package.

WebLogic JAM to JMS

WebLogic JAM includes an EJB that has two major functions:
m |nserts request datainto JM S topics or queues

m Converts EBCDIC datainto an ASCII XML document for use with custom
applications

WebLogic JAM to IMSisautility stateless session EJB that uses a DataView
generated by the eGen utility to convert the data. The EJB iscontained inthej am ear
file with a default INDI name of JAMIoJNB.

The general process for thisinsertion and conversion is described in the following
sections.

1. Obtain a COBOL Copybook.

3-36 BEA WebL ogic Java Adapter for Mainframe Programming Guide

WebLogic JAM to JMS

The mainframe client application must have a COBOL record layout (copybook)
to describe the message comprising the request. This layout is used to generate
Java classes that can be used for data transformation. Refer to Obtaining a
COBOL Copybook for more information.

. Generate a DataView with XML Support.

Make sure that your eGen script iswritten to generate DataViews that support
XML, as shown in the following code example:

generate view enpRecData from enprec support xm

For more information on DataViews, refer to Writing the DataView Section of
an eGen Script. For more information on generating the DataView source files,
see Processing eGen Scripts with the eGen Utility. These files can be compiled
for deployment. The schema and DTD can be made available to the XML
application as necessary.

. Compilethe DataView . j ava files (see Creating an Environment for Generating
and Compiling the Java Code).

. Copy the DataView class files created by the eGen utility to a directory in the
WebL ogic Server CLASSPATH.

. Create aJMS Event definition. For specific instructions, refer to the BEA
WebLogic Java Adapter for Mainframe Configuration and Administration Guide.

For an example of how to use the WebL ogic JAM to M S feature, refer to the
BEA WebLogic Java Adapter for Mainframe Samples Guide.

BEA WebLogic Java Adapter for Mainframe Programming Guide ~ 3-37

3 Basic Programming Techniques

3-38 BEA WebL ogic Java Adapter for Mainframe Programming Guide

CHAPTER

4 Deploying
Applications

Deployment is the process of installing servlets and/or EJBs on WebL ogic Server.
Application deployment in WebL ogic Server hasevolved to the J2EE standard for web
application deployment.

Thefollowing information isnot intended to specifically describe how applicationsare
deployed in WebL ogic Server. For specific information, refer to Quick Start
information and detailed documentation for deploying applicationsin the WebL ogic
Server online documentation at:

http://edocs/wW s/ docs61/ qui ckstart/quick_start. htm

http://edocs/wW s/ docs61l/ servl et/ adm n. ht Ml #156888
http://edocs/w s/ docs61/ ej b/ EJB _depl oyover. ht m

This section discusses the following topics:
m Deploying aWebLogic JAM eGen EJB
m Deploying aWebLogic JAM eGen Servlet (Quick-Start Deployment)

Deploying a WebLogic JAM eGen EJB

A WebLogic JAM eGen EJB (client or server) is deployed like any other WebL ogic
EJB. Considerations that are specific to WebLogic JAM are:

m Deployment descriptors generated by the eGen utility need to be renamed.

BEA WebL ogic Java Adapter for Mainframe Programming Guide 4-1

4 Deploying Applications

m |f the EJB isto contain business logic in addition to WebL ogic JAM access
code, a subclass must be created.

m |f multiple EJBs are created, the generated depl oyment descriptors must be
manually merged if the beans are to be deployed in the same . j ar file.

Renaming Deployment Descriptors

The EJB deployment descriptors generated by the eGen utility are named based on the
generated EJB, rather than the using the standard J2EE and WebL ogic filenames. This
isto avoid file naming conflictsif multiple beans are generated in the same directory.
As aresult, these descriptors must be renamed before the EJB is packaged and
deployed. Following are the naming conventions used, where BeanNane is the name
of the generated EJB:

Generated Descriptor Name Deployed Descriptor Name
BeanNane-j ar . xml ej b-jar.xm
w - BeanNane. xni webl ogi c-j ar. xm

For example, consider the following portion of an eGen script:

client ejb Testdient TestdientHone

{
nmet hod newEnpl oyee

is service enpl Create

}

In this script, the descriptions generated would be named Test C i ent - j ar. xm and
w - Testd i ent. xnl respectively.

4-2 BEA WebL ogic Java Adapter for Mainframe Programming Guide

Deploying a WebLogic JAM eGen EJB

Adding Business Logic to a Generated EJB

The EJBs generated by the eGen utility contain the infrastructure for calling
mainframe services and returning the results of those services. If you want to present
adifferent API that performs some business logic before deferring to the generated
service methods, you will need to create a new bean class that sub-classes the
generated code.

If you want to maintain the same remoteinterface generated by the eGen utility but add
business |logic before/after the mainframe call, smply derive anew class from the
generated bean class while retaining the generated home and remote interfaces. For
example, if our generated Test Cl i ent Bean. j ava contains a method named
newEnpl oyee(), you could insert businesslogic as follows:

public class M/Logi cBean extends Test C i entBean

{
publ i ¢ dat aVi ew newknpl oyee(dat avi ew in)
{
/1 perform before business |ogic here
dat aVi ew out = super. newknpl oyee(i n)
/1 perform after business logic here
return(out);
}
}

However, if you want to present a different remote interface in addition to adding
business|ogic, you also need to create new remote and homeinterfacesto support your
new bean.

In either case, be sure to update the generated deployment descriptors to reflect your
new bean classes.

For example, suppose you used the eGen utility to generate an EJB named

Test d i ent Bean, and that bean had been extended asin the above example by abean
class named MyLogi cBean. The eGen utility would have generated a deployment
descriptor with the name Test i ent - j ar . xn . The generated deployment
descriptor would need to be renamed ej b-j ar. xm before deployment. The

ej b- cl ass element’s value should also be changed from Test O i ent Bean to
M/Logi cBean to reflect the new bean class name as in the example below.

<ej b-jar>
<ent erpri se-beans>
<sessi on>
<ej b- name>Test C i ent </ e b- nanme>

BEA WebL ogic Java Adapter for Mainframe Programming Guide 4-3

4 Deploying Applications

<hone>Test d i ent Home</ hone>
<renot e>Test Cl i ent </ r enot e>
<ej b- cl ass>MyLogi cBean</ ej b-cl ass>
<sessi on-type>St at el ess</ sessi on-type>
<transaction-type>Contai ner</transacti on-type>
</ sessi on>
</enterprise-beans>

</ejb-jar>

Merging Multiple Deployment Descriptors

Multiple WebL ogic JAM EJB’s can be generated as part of asingle application. This
can be donein asingle eGen script, or by running the eGen utility multiple timeswith
different scripts. If these beans are to be deployed inasingle . j ar file, the generated
deployment descriptors for each must be merged into asingleej b-j ar. xnl and
webl ogi c-j ar. xm .

Sample EJB Deployment

Following are instructions for the deployment of a sample eGen-created EJB.

1. Build your EJB deployment . j ar file. Listing 4-1 will build the client EJB
deployment . j ar file from the components generated by thet r adeser ver . egen
eGen script and Tr adeRecor d. cpy.

Listing4-1 Script for Building JAM_TradeServer .jar

@em --- Adjust these variables to match your environnent -----------------
set TARGETJAR=JAM TradeServer.j ar

set JAVA HOVE=c:\ bea\j dk131

set W._HOME=c:\ bea\w server6. 1spl

set JAM HOVE=c:\bea\w janb. 0

@em ------ end of Adjustable variables ---------mmommmmmm oo

set JAMJARS=0JAM HOVE% | i b\jam j ar

set CLASSPATH=%AM HOVE% | i b\jam jar; %Q9AM HOVE% | i b\t ool s. j ar;
ON._HOVE% | i b\ webl ogic.jar

set PATH=%AVA_HOVE% bi n; Y% AVA_HOVE% | i b; %PATHY%

4-4 BEA WebL ogic Java Adapter for Mainframe Programming Guide

Deploying a WebLogic JAM eGen EJB

@em Create the build directory, and copy the depl oynent

@em descriptors intoit.

@em You shoul d have already run your egen script so your xm files
@em are already built.

nd build build\ META-| NF

copy TradeServer-jar.xm ejb-jar.xm

copy W -TradeServer-jar.xm webl ogic-ejb-jar.xm
copy *.xm buil d\ META- | NF

@em Conpile ejb classes into the build directory (jar preparation)
javac -d build -classpath %CLASSPATH% *.java

@em Make a standard ejb jar file, including XM. depl oyrment
@em descriptors

cd build
jar cvf std_9%ARGETIJARY% META- | NF sanpl e
cd ..

@em Run ejbc to create the deployable jar file

java -cl asspath %CLASSPATH% - Daebl ogi ¢c. home=%\._HOVE% webl ogi c. ej bc -conpi | er
javac buil d\std 9% ARGETIAR% % ARCETJARY%

2. Deploy the EJB in BEA WebL ogic Server by configuring it asanew EJB in the
WebL ogic Administration Console. Configure this new EJB as follows:

a. Click the EJB icon under Deployments.
The EJB Deployments screen appears (see Figure 4-1).

BEA WebL ogic Java Adapter for Mainframe Programming Guide 4-5

4-6

4 Deploying Applications

Figure4-1 Configuring a New EJB
E

T Weblogic Server Consols - Micrasoft Intemet Explorer provided by MSN

File Edit ¥iew Favoites Tools Help

[_[=]x]

Ecaching Realms
Realms
Flpomsain Lo Filters

&] Applet started

.+ S W 2
Back Fovied Slog FRefiesh Home | Seach Favailes Histow Firk ol Messenger
Address [@] lp://localhost. 7001 console/ domain/indess sp =] @Go H Links >
2 @mydomain . %%
@ 8 gervers mydomain> EJB Deployments Oft= ? ;‘he’a
z
B clusters - -
Piiachines Connected to localh omain: mydomain)1:10 /
g lj[g“'”‘f’”e”‘s B/Configure a new EJB
E!AW””W“S “Plnstall a new EJB
Esn Q
ot Applcations Customize this view
Slstartup & Shutdown —n
o Hgenices Application URI
® Elipec
(=N
Bl
e
gt
Elyinual Hosts
Sluail
ErieTa
a @Swecurity
§ users
Borups
ACLs

b. Click the Configure a new EJB link.

|| %% Local inranet

The EJB Deployments Create screen appears (see Figure 4-2).

BEA WebL ogic Java Adapter for Mainframe Programming Guide

Deploying a WebLogic JAM eGen Servlet (Quick-Start Deployment)

Figure4-2 New EJB Configuration Screen

osoft Internet Explorer provided by MSN

a

Haome:

a & @

Seaich Favaites Histoy

E- m 2
Mai

i Print 0 Messenger

h

8 @ mydomain
Servers
Blciusters
Machines
B Eoeplayments
Applications Configuration honitoring

mydomain> EJB Deployments> create

Connected to localhost:7001 Active Domain: mydomain

EJB
Blvven applications Compilers
S startup & Shutdown
8 Hsenices
Hupac
=N
=R

gﬁfc A Path: [=\beatwijam4 2\examples

& Name: [empalientoean

URI: |empclientbaamar

Blvirtual Hosts
E]Mal\
FileT3
B 8 securiy -
§ users
Bhoroups
ACLs
B Caching Realms
BRealms
¥ Domain Log Filters

v Deployed

&] Done [| 5% Localintranet

c. Enter the name of your EJB in the Namefield, the EJB Deployment . j ar file
in the URI field, and the path to the EJB Deployment . j ar filein the Path
field. Make sure that the Deployed checkbox is checked. Then, click Create.

Your JAM eGen EJB is now deployed.

Deploying a WebLogic JAM eGen Servlet
(Quick-Start Deployment)

The basic JAM eGen servlet is deployed like any other WebL ogic servlet. The
configuration for the eGen servlet is stored in theweb. xm filein an applications
directory associated with adomain. The basic default configuration can befoundinthe
following directory:

BEA WebL ogic Java Adapter for Mainframe Programming Guide 4-7

4 Deploying Applications

4-8

<BEA HOVE>/ <JAM | NSTALL_DI R>/ confi g/ verify/applications/
Def aul t WebApp/ VEEB- | NF/ web. xm

For example, suppose a servlet is generated by executing the eGen utility on a script
containing the following servlet definition:

servl et sanple. Sanpl eServl et shows initial
This produces a servlet classfile named Sanpl eSer vl et in apackage called sanpl e.

For the Sanpl eSer vl et , add the cl asses and sanpl e directories, so the directory
structure looks like the following:

<BEA_HOVE>/ <JAM HOVE>/ confi g/ veri fy/ applications/
Def aul t WebApp/ VEEB- | NF/ cl asses/ sanpl e

The Sanpl eSer vl et and the associated DataView class, which are the result of
compiling the*. j ava files generated by the eGen utility, should be placed in the
sanpl e directory.

Sanpl eSer vl et can be configured with an XML entry (added toweb. xm) similar to
the one shown in Listing 4-2:

Listing4-2 XML Entry to Configurethe SampleServlet Servlet

<web- app>
<servl et >
<servl et - name>
Sanpl eSer vl et
</ servl et - name>
<servl et-cl ass>
sanpl e. Sanpl eSer vl et
</servlet-class>
</servlet>
<servl et - mappi ng>
<servl et - name>
Sanpl eSer vl et
</ servl et - nane>
<url -pattern>
/ Sanmpl eSer vl et/ *
</url-pattern>
</ servl et - mappi ng>
</ web- app>

BEA WebL ogic Java Adapter for Mainframe Programming Guide

Deploying a WebLogic JAM eGen Servlet (Quick-Start Deployment)

Sanpl eSer vl et can then by invoked by entering the following URL in the location
field of your web browser:

http://<host>: <port >/ Sanpl eServl et

If WebL ogic Server is running on your local machine and you used the default port
(7001) when you installed WebL ogic Server, Sanpl eSer vl et can beinvoked by the
following URL :

http://1ocal host: 7001/ Sanpl eSer vl et

BEA WebL ogic Java Adapter for Mainframe Programming Guide 4-9

4 Deploying Applications

4-10 BEA WebLogic Java Adapter for Mainframe Programming Guide

CHAPTER

5 Understanding
Programming Flows

This section illustrates the interaction between WebL ogic Server and mainframe
programs. The following topics are discussed:

m Distributed Program Link Programming Flows
m IMSImplicit APPC Programming Flows

m Common Programming Interface for Communications Programming Flows

Distributed Program Link Programming
Flows

The following examples of DPL programming flows are discussed:

m JavaClient Regquest/Response to CICS DPL

m CICS Reqguest/Response DPL to WebL ogic Server EJB

m CICSDPL Asynchronous No Reply to WebL ogic Server Application
m Transactional Java Client Request/Response to CICS DPL

m Transactional CICS Request/Response DPL to WebL ogic Server EJB

BEA WebL ogic Java Adapter for Mainframe Programming Guide

5 Understanding Programming Flows

Java Client Request/Response to CICS DPL

Figure 5-1 illustrates a Java Client Request/Response to CICS DPL programming
flow.

Figure5-1 Java Client Request/Responseto CICS DPL

WebLogic

Java Client Class

public elass BaseClient extends EgenClient
{

—'puhllc Chardata toupper (Chardata conteares)
throws IOException, snaException

{

byte[] inputBuffer = commarea.toBytedrray(new MainframeWriter());
p byte[] rawResult = calliervice ["TOUPPER", inputBuffer);

Chardata result = new Chardata(new MainframeReader (cawResult)):

return result;

i

CICS @

—riost Mirror Transaction

®[—|P PROGRAM-ID, TQUPCICH.

LINEAGE SECTION.
01 DFHCOMMAREL.
COPY CHARDATA.

4)manipulace O 28]

EXEC CICS RETURN

The following steps describe the Java Client Request/Response to CICS DPL
programming flow.

1. A Javaclient class (such as a stand-alone client, EJB, etc.) makes acall to the
Based i ent . t oupper method with a Char dat a DataView as the parameter.

5-2 BEA WebL ogic Java Adapter for Mainframe Programming Guide

Distributed Program Link Programming Flows

2. Inthet oupper method, acall ismadetothe Egend i ent. cal | Servi ce
method.

Notee TheBased i ent extendsEgend i ent, sotheBased i ent inheritsthe
cal | Servi ce method from EgenCl i ent .

The value of the first parameter is TOUPPER. TOUPPER is the name of the DPL

Servicethat is mapped to the CICS DPL program TOUPC! CS in the WebL ogic
Administrative Console.

Weblogic Server Console - Netscape

File Edit ‘iew Go Communicator Help
;;i@%ﬁadﬁi@s%i
Back Fonwad Reload Haorme Search Metscape Print Security Shap St
' g;%lnstantMessage Irhermet L‘i Lookup L‘i HewhCool RealFlayer
' " Bookmarks ocation: |ame: 30 verifyz2CType2 30 DomaintbodyFrameld=wl_console_frame_ -
; Bookmarks &% L IDwerifyi2CT ypeX 300 bodyFramel d=wl le_f 1007653805740
@ Console ",
5 @reriy JAM > DPL Services a? '"lll‘."a
r/
mSer\fers “
mCIusters
ﬁjnﬂachines
& Elpeployments BCreate a new DPL Service
QAppIications
.
. QEJB Lo Service Name CICS Program
@Web Applications Wenns
8l connectors TOUPPER TOUPCICS il
B startup & Shutdawn
B Hlsenices
& == | pplet navapplet munning = R v

3. The host mirror transaction starts the TOUPCI CS program and passes the contents
of thei nput Buf f er byte array asthe commar ea.

4. The TOUPCI CS program processes the data.

5. The CICS server returns the commar ea. The data is returned from the
Egend i ent . cal | Servi ce method as the byte array r awResul t .

CICS Request/Response DPL to WebLogic Server EJB

Figure 5-2 illustrates a CICS request/response DPL to WebL ogic Server EJB
programming flow.

BEA WebL ogic Java Adapter for Mainframe Programming Guide 5-3

5 Understanding Programming Flows

Figure5-2 CICSRequest/Response DPL to WebL ogic Server EJB

CiCs

HSER TRANIACTION TRCL

@

ROGRAM-ID. TRADCLNT.

EXEC CIC3 LINE

PROGRAM (' TRADIERV')

COMMAREL (TRADE-RECORD)
SYSID (' BELC'
LENGTH(LENGTH OF TRADE-RECORD)
SYNCONRETURN
RESF (REZP-CODE)

END-EXEC

WebLogic

pukblic 2lass TradeServerBean extends EgenServerBean

{
prublic hyte[] dispatchibyte[] commarea, OChject future)

throws snaException, ICException
{
TradeRecord inputBuffer = new TradeRecord(new
MainframeReader (commarea)) 2

P TradeRecord result = buy {inputBuffer)~

return result.toByteldrrayvinew MainframeWriter()): (:>
}

private TradeRecord buy(TradeRecord connsres) -4———
{

[manipulate the data)

Thefollowing steps describe the CI CS request/response DPL to WebL ogic Server EJB

return cormsres;
i
¥

programming flow.

1. The user-entered transaction TRCL invokes the TRADCLNT program.

The EXEC Cl CS LI NK command causes the advertised service TRADSERV to
execute. The SYSI Dvalueis set to the name of the connection associated with

the CRM Logical Unit. The SYNCONTRETURN parameter indicates that the
WebL ogic Server EJB will not be involved in the CICS transaction.

5-4 BEA WebL ogic Java Adapter for Mainframe Programming Guide

Distributed Program Link Programming Flows

2. Inthe WebL ogic Administration Console, the TRADSERV service is mapped to the
JNDI namejam Tr adeSer ver for the Tr adeSer ver EJB. This causesthe
dispatch method of Tr adeSer ver Bean to be invoked.

Fie Edit Yiew Go Communicator Help

%,

e A e Wy

Back Reload Home: Search Metscape Print Security Shop
i ﬁ Ingtant Message 3;-, Internet 4' Lockup 4' MewiCool 5 RealPlayer
¥ év Rorkmarks 2 | nrAtinn: |ZMNHMEZ?Dﬁxamnlas%?ﬁTynﬁZ?nnnmain&hndpFramﬁlH:wl_r:nmnlﬁ_lramﬁ_'l MAFFRATNTAR ﬂ
wgemers = oLl
&lciusters JAM > Experted EJBs ﬂ‘ ? :ch k
(Hmachines s ea
2 Cocployments |
CEJApp\ ications
=less B”Export an EJB

Zlwen Applications
ﬂaloonncctoro

ce]stanup & Shutdown Service Name JINDI Name
2 Haemices TRANSFRY jam. TradrSeruer]
Clioec
Hlams
Ll
ey
= = Document: Done BB B ER WA

3. Thebuy method isinvoked from the di spat ch method.

4. Thebusinesslogicis performed, and the result is returned to the di spat ch
method.

5. Thedataisreturned from the di spat ch method into the COMMAREA.

CICS DPL Asynchronous No Reply to WebLogic Server
Application

Figure 5-3illustrates a CICS DPL asynchronous no reply to Java server programming
flow.

BEA WebL ogic Java Adapter for Mainframe Programming Guide 5-5

5 Understanding Programming Flows

Figure5-3 CICSDPL asynchronous noreply to Java server

cics

TOT

D

ROGRAM-ID. JHMICLNT.

EXEC CICS LINE

PROGRAM (' CTOIMISV")
COMMAREL (TRADE-RECORD |4
S¥SID('BEAC')
LENGTH (LENGTH OF TRADE-RECORD) <:>
SYNCCHNRETURIT
RESP (RESFP—-CODE)

END-EXEC @

WebLogic

GATEWAY

)

JAM.exatnples.. CICS .. EvencTopic

—

The following steps describe the CICS DPL asynchronous no reply to Java server
programming flow.

1. The user-entered transaction CTQJ invokes the JMSCLNT program.

2. The EXECCI CS LI NK command causes the advertised service CTQIMSSV to
execute. The SYSI Dvalueis set to the name of the connection associated with the
CRM Logical Unit. The SYNCONTRETURN parameter indicates that the WebL ogic
Server EJB will not be involved in the CICS transaction.

3. The Gateway sends the message to the IMS Event CTQIMSSV. In the WebL ogic
Administration Console, the CTQIMSSV service name is mapped to the IMS topic
Jam exanpl es. Cl CS. Event Topi c.

5-6 BEA WebL ogic Java Adapter for Mainframe Programming Guide

Distributed Program Link Programming Flows

Eﬁ}ﬁ'—\Vehloglc Server Lonsole - Nelscape
Fle B3t VWeas Lo Lemmunicator Hzlp

4 » 1% . . x4)

Back Reoad Heme Search Metecape Print Security Shuop

u%lmtentMes‘s‘age % Intemet J Laskup j HerCaal ’3;, RealPlayer

£ Buckinaks A Localion, |an=exaimplesi3aM g e 30 exanples 20T ppe 300 unar ibudyFramed=wl_cusuls_faines_ i -
¥ Budkmaks 4 L Iesi3aM ane? 30 lesf2CT ppe300 trloyFramel =l le_l 1008356057327

o,
i’

® Consol2

5 Decamplss JAIA > JMS Events # ? ;’hea
& genre —
Blolusters
Htachinzs
B Upegloyments
F spnlicatiors
S EAL
1+ GEJ'NehApphcatmns
Bl Zonnetars
= ! stamup & Shutdown
B Lserices

= Limae

B Crocte a new JMS Even:

Service Name 1M8S Destination
CTCIMSSY Jal examples.CICS. EventTopic (Topic) ﬁ

= =i ; i M
= =l Diacument: Cane = R

4. Datathat isidentical to the request datais returned in the COMWAREA to JMSCLNT.

Transactional Java Client Request/Response to CICS DPL

Figure 5-4 illustrates a transactional Java client request/response to CICS DPL
programming flow.

BEA WebL ogic Java Adapter for Mainframe Programming Guide 5-7

5 Understanding Programming Flows

Figure5-4 Transactional Java Client Request/Responseto CICS DPL

WeblLogic
public class Client
1

@tx.hegin(] H

haseClient.toupper (commaresa) !

@t:'.;{:cnmmit.(l:
@ ,

public class BaseClient extends EgenClient
1

pridleic Chardats toupper (Chardata commaresa)
throws ICException, sSnaException
{

byte[] inputBuffer = commarea.tobBytelrrayinew

M relriter (1) 2
byte[] rawBesult = callService ("TOUFFER", inputBuffer):
Chardata result = new Chardata(new MainframeReader (rawResult)):

return result;
i

@ 1
cics (3

(iflost Mirror Transaction

®[—|h PROGRAM-TID. TOUPCICH.

LINEALGE SECTICH.
01 DFHCOMMAREL.
COPY CHARDATA.

(manipulate comoarea)

I'."').

EXEC CICS RETUEN

The following steps describe the transactional Java client request/responseto CICS
DPL programming flow.

1. A Javaclient class callsthe begi n method of aUser Tr ansact i on object to start
atransaction.

2. Within the boundaries of that transaction, the Java client class makes acall to the
Based i ent . t oupper method with a Char dat a DataView as the parameter.

3. Inthet oupper method, acall ismadetothe Egend i ent. cal | Servi ce
method.

5-8 BEA WebL ogic Java Adapter for Mainframe Programming Guide

Distributed Program Link Programming Flows

Notee TheBased i ent extendsEgend i ent, sotheBased i ent inheritsthe
cal | Servi ce method from EgenCl i ent .

The value of the first parameter is TOUPPER. TOUPPER is the name of the DPL
Service that is mapped to the CICS DPL program TOUPCI CS in the WebL ogic
Administration Console.

#% Weblogic Server Console - Netscape

File Edit Yiew 0Go Communicator Help

4 3 3 = g4 4 & 9 =

Back Heluu.ad I-Illorﬁe Search Metzcape Print SectLrity 5 h;p

ﬁlnslantMessage f:f Internet _Ii Lookup _Ii NewiCaoal :g: RealFlayer

;f " Bookmarks 4 Location |ame°/;3DvelifyZEETppe%3D DomainfbodyFrameld=w|_conzole_frame_1007E53805740 ﬂ

@ Console i ? ‘_'-”:1
& Dveriy JAM > DPL Services M Z hea
Lo I
2lcisters
Hwizehines

g JDeployments E’Create a new DPL Senice

cEJAppIicali-:-ns
e

Service MName CICS Program
Slwien Applications E

Name

= connestors TOUPPER TOUPCICS (u
Lelstartup & Shutdown
B aanices
= =i Applet mavapplet Lnking - L T (= e B

. The host mirror transaction starts the TOUPCI CS program and passes the contents
of thei nput Buf f er byte array asthe commarea.

. The TOUPCI CS program processes the data.

. The CICS server returns the conmar ea. The datais returned from the
Egend i ent . cal | Servi ce method as the byte array r awResul t .

. The Javaclient class callsthe cornmi t method of the User Tr ansact i on object to
indicate the successful completion of the transaction. This causes the commit of
the WebL ogic managed resources, aswell as the resources held by the Host
Mirror Transaction.

BEA WebL ogic Java Adapter for Mainframe Programming Guide 5-9

5 Understanding Programming Flows

Transactional CICS Request/Response DPL to WebLogic
Server EJB

Figure 5-5illustrates atransactional CICS request/response DPL to WebL ogic Server
EJB programming flow.

Figure5-5 Transactional ClCSRequest/Response DPL to WebL ogic Server EJB

@,— cics

TECL
PROGRAM-ID. TRADCLMNT.

EXEC CICS LINE
PROGRAM (' TRADSERWV')
» COMHMAREL (TRADE-RECCORD)
SYSID('BEAC'
(:) LENGTH (LENGTH OF TRADE-RECORD)
RESF (RESP-CODE)
END-EXEC

[Further processing)

() EXEC CICS SYMCPOINT

EXEC CICS RETUEN

WebLogic

public class TradelServerBean extends EgenServerBean
{

prublic byte[] dispatchibyte[] commaresas, Chject future)
throws snaException, ICException
{

TradeRecord inputBuffer = new TradeRecord(new
MainframeReader [comnarea)) ;

» TradeRecord result = buy({inputBuffer)7T
return result.toBytelrray(new MainframeWriter()]:

) @

private TradeRecord buy(TradeRecord comnaresn) #———
{

manipulate the data)

return commares;

+
+

The following steps describe the transactional CICS request/response DPL to
WebL ogic Server EJB programming flow.

5-10 BEA WebLogic Java Adapter for Mainframe Programming Guide

Distributed Program Link Programming Flows

1. The user-entered transaction TRCL invokes the TRADCLNT program.

2. The EXEC Cl CS LI NK command causes the advertised service TRADSERV to

execute. The SYSI Dvalueis set to the name of the connection associated with the
CRM Logical Unit. When the SYNCONRETURN command is not included in the
EXEC Cl CS LI NK, thisindicates that the WebL ogic Server isinvolved in the CICS

transaction.

In the WebL ogic Administration Console, the TRADSERV service is mapped to
the INDI namej am Tr adeSer ver for the TradeSer ver EJB. This causesthe
dispatch method of Tr adeSer ver Bean to be invoked.

File Edit “iew Go Commumicator Help
2 - L il S - s i
<4 @ 2 1 = ry 3 o 3
Back Reload Home Search Metscape Frint Security Shop

5 Blnstant Message S Intemet | Lockup _ MewiCoo W ReaPlayer

;’»v Rk mark =

£ | arAtine |ZRANamﬁZRDﬁxamnlasz7PT_u|1ﬁZHDDnmain?\-hnrlpFramﬁld:wl_r:nncnlﬁ_lramﬁ_‘l NA77R317N79R ﬂ

cEJApp\ications

Hles B”Export an EJB

:EjWeh Applications
ﬂaloonncctoro

= startup & Shutdown Service Name JINDI Name
B Heewices TRANDSERY jam.TradeSeruer |
Llipec
Elamz
Ll
LY
= =l Documert: Done e WS v

&15ervers B ,e7%,
&lciustars JAM > Exported EJBs d‘ ’ :ch
(Hmachines * e ea

8 Hpeployments - |

3. Thebuy method isinvoked from the dispatch method.

4. Thebusinesslogicis performed, and the result is returned to the di spat ch
method.

5. Thedataisreturned from the di spat ch method into the COMVAREA.

6. If necessary, further processing can be done in TRADCLNT before the EXEC CI CS

SYNCPO NT that ends the transaction.

BEA WebL ogic Java Adapter for Mainframe Programming Guide

511

5 Understanding Programming Flows

IMS Implicit APPC Programming Flows

The following examples of IMS implicit APPC programming flows are discussed:
m Java Client Request/Response to IM S Transaction Program
m IMS Asynchronous No Reply Transaction Program to Java Server

m Transactiona Java Client Request/Response to IMS Transaction Program

Java Client Request/Response to IMS Transaction
Program

Figure 5-6 illustrates a Java Client Request/Response to IM S programming flow.

5-12 BEA WebL ogic Java Adapter for Mainframe Programming Guide

IMS Implicit APPC Programming Flows

Figure5-6 Java Client Request/Responseto |M S Transaction Program

WebLogic

Jawva Client Class

1 public ola=ss BaseClient extends EgenClient
{

L public Chardats toupper (Chardata conmares)
throws IOException, snaException
1

byte[] inputBuffer = commarea.toByteldrrayinew MainframeWriter()):
hpte[] rawResult = callService ("TOUPPER", inputBuffer):
Chardata result = new Chardatainew MainframeReader (rawResult]);

return result;:

}

=
s @
@ p PROGRAN-ID. TOUPIMS.

01 REQUEST-NESSAGE.
05 MESSAGE-HEADER.

@ 05 USER-DATAL
COPY CHARDATA.

@CALL 'CELTDLI' U3ING GU, IOPCE, REQUEST-MEISAGE.
@ (create RESPCHNIE-MEISAGE

®CALL 'CELTDLI' USING ISRT, IOPCE, RESPONSE-MEZSAGE.

The following steps describe the Java Client Request/Response to IM S programming
flow.

1. A Javaclient class (such as astand-alone client, EJB, etc.) makes acall to the
Based i ent . t oupper method with a Char dat a DataView as the parameter.

2. Inthet oupper method, acall ismadetothe Egend i ent. cal | Servi ce
method.

Notee TheBased i ent extendsEgend i ent, sotheBased i ent inheritsthe
cal | Servi ce method from EgenCl i ent .

The value of the first parameter is TOUPPER. TOUPPER is the name of the APPC
Service that is mapped to the IMS transaction TOUPI Ms in the WebL ogic
Administrative Console.

BEA WebL ogic Java Adapter for Mainframe Programming Guide 5-13

5 Understanding Programming Flows

5-14

o

~

: ‘Weblogic Server Conzole - Hetscape
File Edit “iew Go Communicator Help
':‘L-@é%f&@.d@@iﬁé
Back Fowad Reload Home Seach Metzoape Prink Secuty Shop i
v ﬁlnstantMessage Internet ['_‘|' Lookup L‘i MewiCool RealFlaper
v W&'Bookmarks J‘; Lucation:ImeZ3DverifyZ2EType°A3DDomain&bod_l,lFrameld=w|_console_frame_100?889030283 j
@ Console ?%%,
8 @i, JAM > APPC Setvices a? ;"he’a
[/
2 & toener —
Clusters
ﬁjnﬂachines
g DDeponments B/ Create a new APPC Senice
QAppIications
; ;
EEJB o Service Name Transaction
5]Web Applications Program Id
Connactors TOUPPER TOUPIMS il
5 startup & Shutdown
B Egenices
EinRc
[=R=| |Document: Done = a e A

IMS starts the TOUPI MS transaction. This transaction executes the associated
program TOUPI Ms. The contents of thei nput Buf f er byte array are placed on an

| OPCB as request data.

The TOUPI M5 program accesses the request data by performing aget uni que on

the | OPCB.

The TOUPI M5 program processes the data and creates a response message.

The TOUPI M5 program inserts the response data to the | OPCB.

IMS returns the response data back to the requester. The datais returned from the
Egend i ent . cal | Servi ce method asthe byte array r awResul t .

BEA WebL ogic Java Adapter for Mainframe Programming Guide

IMS Implicit APPC Programming Flows

IMS Asynchronous No Reply Transaction Program to
Java Server

Figure 5-7 illustrates an IM S asynchronous no reply transaction program to a Java
server programming flow.

Figure5-7 IMS Asynchronous No Reply Transaction Program to Java Server

<:>[——1ﬂﬂs
ROGRAM-ID. IMETOJIMES.

(:}CALL 'CELTDLI' TU3ING GU, ICOPCE, INPUT-MESSAGE.

(3} (COMPOSE THE REQUEST MESSAGE]
(4)CALL 'CBLTDLI' USING CHNG, ALTPCE, APPC—TRAN-CODE.

(:>CALL 'CELTDLI' U3SING I3RT, ALTPCE, REQUEST-MESSAGE.

<:>CALL 'CELTDLI' TU3ING PURG, ALTPCE.

WebLogic @

GATEWAY

—
—

JAN. exammple=s. INS . Event Topic

The following steps describe the IM S transaction program to asynchronous no reply
Java Server programming flow.

1. IMS startsthe | MSTQINS transaction. This transaction executes the associated
program | MSTQJ VS,

2. Thel MSTQINS program accesses the input data by doing aget uni que on the
| OPCB.

BEA WebL ogic Java Adapter for Mainframe Programming Guide 5-15

5 Understanding Programming Flows

3. Thel MSTQIMS program composes the request message.

4. Thel MSTQIMs program issues a call with the CHNG function code to store the
appropriate logical terminal name in a modifiable alternate PCB.

Note: To use an alternate PCB, you must include a PCB statement in your PSB
(seeListing 5-1).

Listing5-1 IMSPSBGEN for a Modifiable Alternate PCB for theIMS Client

PCB TYPE=TP, MODI FY=YES
PSBGEN PSBNANME=I M5TQJ M5, CMPAT=YES, LANG=COBCL

Note: Thelogica termina name, in this case JAM Ms01, must be mapped to an
LU name and atransaction namein a LU 6.2 Descriptor. In Listing 5-2,
JAMIMS0L1 is mapped to the LU CRMLU and the transaction | TQIMSSV.

Listing5-2 LU 6.2 Descriptor

A JAM MS01 LUNAME=CRMLU TPNAME=I TQOMSSV SYNCLEVEL=N

5. Thel MSTQIMS program issues an insert call with the request message to the
alternate PCB, ALTPCB.

6. Thel MSTQIMS program issues a PURG call to the alternate PCB, ALTPCB, to tell
IMS to send the request message.

7. IMS sends the request message to the indicated LU, the LU configured for the
CRM. The request message is forwarded to the Gateway.

8. The gateway sends the message to the IMS Event | TQIMSSV. | TQIMBSV is the
transaction namein the LU 6.2 descriptor in Listing 5-2. In the WebL ogic
Administration Console, the | TQIMSSV service name is mapped to the IMS topic
JAM exanpl es. | MS. Event Topi c.

5-16 BEA WebLogic Java Adapter for Mainframe Programming Guide

IMS Implicit APPC Programming Flows

%’i—\lhhlngir: Seiver Cnnznle - Netzrape
File Edi View Go Conmunicabor Help

4+ @

Back

Ak
¥

Hel-&ad Fome

a] b

Seach Mescape

Szouriy Shop s

; g%lnstantMessage %‘, Inlerngt JI' Lookus J NewtCoo 51-‘, RealPlayer

,";'Bockma'ks = Location|n=exarr|3\esfé&hName%BDeHaanesZIType%BEDorrain&:lodyFrarreId=w|_mnsde_frame_100?581384235 j

@ Congals 2 :""_‘? -
8 Dewamples JAN > JMS Events ﬁ (¥ hea
2 & e —
&lcwsters
_JJMECHIHES

2 CDeploments B Coeata 2 new M5 Event

ﬁ]AppIicstions

ﬁ;‘fb Applications Ecrvice Name IMS Destination
TOJMS3Y J&M. examples IS, Event Topic {Topic
2 Conneztors - P pic (Topic) ﬁ |
3 tartup & Shutdown B
— -
o= Docunent: Dore e Ty i e

Transactional Java Client Request/Response to IMS
Transaction Program

Figure 5-8illustrates atransactional Javaclient request/responseto an IM Stransaction
programming flow.

BEA WebLogic Java Adapter for Mainframe Programming Guide 5-17

5 Understanding Programming Flows

Figure5-8 Transactional Java Client Request/Responseto an IMS Transaction
Program

WebLogic
public class Client
{

(:}tx.hegin(]:
haseClient.toupper [commarea) ;

(:}é;:commit(]:
(:> } -

public class BaseClient extends EgenClient
{

public Chardata toupper (Chardata conmares
throws IOException, snaException

{

hyte[] inputBuffer = commarea.toBytelrray(nev MainframelWriter()):
pbyte[] rawvResult = calliervice ("TOUPPER", inputBuffer):
Chardata result = new Chardata(new MNainframeReader (rawBResult));
return result; (g
}

}

=
@l M
ROGRAM-ID. TOUPIMS.

01 REQUEST-MESSAGE.
05 MESSAGE-HEADER.

05 USER-DATA.
COPY CHARDATA.

(:)CALL 'CELTDLI' USING GU, IOPCE, REQUEST-MESSAGE.

(:){create RESPONIE-MEZZAGE)

(:)CALL 'CELTDLI' USING ISRT, IOPCE, RESPCNIE-MESSAGE—

The following steps describe the transactional Java client request/responseto IMS
transaction programming flow.

1. A Javaclient class callsthe begi n method of aUser Tr ansact i on object to start
atransaction.

5-18 BEA WebLogic Java Adapter for Mainframe Programming Guide

IMS Implicit APPC Programming Flows

2. Within the boundaries of that transaction, the Java client class makes a cal to the
Based i ent . t oupper method with a Char dat a DataView as the parameter.

method.

Inthet oupper method, acall ismadetothe EgenCl i ent. cal | Servi ce

Note: TheBased i ent extendsEgend i ent, sotheBased i ent inheritsthe
cal | Servi ce method from Egend i ent .

The value of the first parameter is TOUPPER. TOUPPER is the name of the APPC
Servicethat is mapped to the IMS transaction TOUPI Ms in the WebL ogic

Administration Console.

%Wehlngic Server Conzole - Netzcape

=

File Edt “ew Go Communicator Help

® E a2

Back Flel‘;ad Home

o i) s &£ B & LN

Search Metscape Pint Security Sh"op : [|

ﬁlnstanthﬂessage B Irteret | Lookup | MewdCool |5 RealPlayer

&" Bookmarks & Location: |meK3DVElify°/aEETyDEZ3DDumain&bUdmemel d=wl_console_frame_ 1007663030283 j

@ Caonsole

s
e® "

& @verify JAM > APPC Gervices 1* ? z'hea
% lsemvers <
&ciustars
I Mach
o JDz;I;:fngents B Create a new APPC Serice
cE]AppIications
S j;}fﬁ Ppplications service NameTransaction
Program Id
Connectors TOUPPER TOUPIMS]
2l stariup & Shutdown
B L serices
® CLinAc
= (=l Document: Done P I B X
4. IMS starts the TOUPI Ms transaction that executes the associated program

N o

TOUPI Ms. The contents of thei nput Buf f er byte array are placed on an |OPCB

asrequest data.

|OPCB.

The TOUPI M5 program accesses the request data by doing aget uni que on the

The TOUPI M program processes the data and creates a response message.
The TOUPI M5 program inserts the response data to the | OPCB.

IMS returns the response data back to the requester. The datais returned from the

Egend i ent . cal | Servi ce method as the byte array r awResul t .

BEA WebL ogic Java Adapter for Mainframe Programming Guide 5-19

5 Understanding Programming Flows

9. TheJavaclient classcallsthe commi t method of the User Tr ansact i on object to
indicate the successful completion of the transaction. This causes the commit of
the WebL ogic managed resources, as well as the resources managed by IMS.

Common Programming Interface for
Communications Programming Flows

The following examples of CPI-C programming flows are discussed:
m Java Client Request/Response to Host CPI-C

m Host CPI-C Request/Response to WebL ogic Server EJB

m Transactiona Java Client Request/Response to Host CPI-C

m Host CPI-C Asynchronous No Reply to Java Server

m Transactional Host CPI-C Request/Response to WebL ogic Server EJB

Java Client Request/Response to Host CPI-C

Figure 5-9 illustrates a Java client request/response to a host CPI-C programming
flow.

5-20 BEA WebLogic Java Adapter for Mainframe Programming Guide

Common Programming Interface for Communications Programming Flows

Figure5-9 Java Client Request/Responseto Host CPI-C

WebLogic

Java Client Class

public class BaseClient extends EgenClient
{

I ™ public Chardata toupper (Chardatas commarea)
throws IOException, snaException
{
byte[] inputBuffer = commarea.toBytelrrayinew MainframeWriter()):
p byte[] rawResult = callServiece("SINCPIC", inputBuffer):
Chardata result = new Chardatai(new MainframweReader (ravRBesult)):
return result;
i

i

@ Host @

Tt pname=TENCP IC%

—W TOUPCIC PROGRAM
main()

: ®

@ cmaccp (convid, rcode):

crrev (convid, ibuffer, ...)
B|...[process data) ...

Send type=CM 3END AND DEALLOCATE:
7)omsst| ..., ESend:cypE, el

cmsend (convid, ochuffer, ...);

The following steps describe the Java client request/response to host CPI-C
programming flow.

1. A Javaclient class (such as astand-alone client, EJB, etc.) makes acall to the
Based i ent . t oupper method with a Char dat a dataview as the parameter.

2. Inthet oupper method, acall ismadetothe Egend i ent. cal | Service
method.

Notee TheBased i ent extendsEgend i ent, sotheBased i ent inheritsthe
cal | Servi ce method from EgenCl i ent .

The value of the first parameter is SI MPCPI C. SI MPCPI Cis the name of the
APPC Service that is mapped to the CPI-C Transaction Program ID TPNCPI Cin
the WebL ogic Administration Console.

BEA WebLogic Java Adapter for Mainframe Programming Guide 5-21

5 Understanding Programming Flows

p v ‘Weblogic Server Console - Netzcape

File Edit View BEo Communicator Help

- - . i B =
e« 3 4 = g $ o . LN
Back Reload Homs Search Melscaps Frint Segurity Shop ﬁ
é Instant Message f—:f, Internet _Ii Lookup _If N ewiCoal f—é‘, R ealPlayer
gv Bookmarks 4 Location: |AN ame® 30 venify 22CT ppe 30D omainkbodyFramel d=wl_consale_frame_1002090111080 j
@ console i’
8 @very JAM > APPC Services a2 :"he‘a
S lzerers -
&lcusters
Machines .
2 C1Deployments B/ Create a new APPC Senice
® lapyglications
. &
j\iﬁfw applications Service Name Transaction
Progranm 1d
Connectors SIMPCPIC TPNCPIC uf
= £rlstartup & Shutdawn
= Cgerices
= Llpac
CLims
= = Docurment. Dorne e Ry AR R 2

3. The transaction program TPNCPI C invokes the TOUPCPI C program.

4. TOUPCPI C accepts the conversation with the cmaccp cal. The conversation ID
returned in convi d is used for al other requests on this conversation.

5. Thecnr cv request receivesthei nput Buf f er buffer contents for processing.
6. The TOUPCPI C program processes that data.

7. Thecnsst request prepares for the send request by setting the send type to
CM_SEND_AND_DEALLOCATE.

8. Thecmsend request returnsthe obuf f er contents. The datais returned from the
Egend i ent . cal | Servi ce method asthe byte array r awResul t .

Host CPI-C Request/Response to WebLogic Server EJB

Figure 5-10 illustrates a host CPI-C request/response to WebL ogic Server EJB
programming flow.

5-22 BEA WebL ogic Java Adapter for Mainframe Programming Guide

Common Programming Interface for Communications Programming Flows

Figure5-10 Host CPI-C Request/Responseto WebL ogic Server EJB

Host

@l Environment
TRADCFIC PROGRALM
maini)

{
®cminit(convid, "TRADSIDE"™, rcode):;
@cmallc [conwvid, rocode):
Send type=CM SEND AND PREP_TO RECEIVE;

cmsst | ., &3end type, .):
cmsend (convid, obuffer, .):
cmrev (convid, ibuffer, .) a4
®| |L&
WebLogic
public class TradelerverBean extends EgenServerBean
1

prublic bytel] dispatchibyte[] commares, Chject future)
throws snaException, ICException
{
TradeRecord inputBuffer = new TradeRecordnew
MainframweReader (commmarea) | ;
*TradeRecord result = buy(inputBufferyr———
return result.toBytelrray(new Mainframelriter (1] :
} ®©
@ private TradeRecord buy|TradeRecord commmares)-€——————
{

[manipulate the data)

YTELTUrn conmares;

H
H

The following steps describe the host CPI-C request/response to WebL ogic Server
EJB programming flow.

1. The CPI-C application program TRADCPI Cisinvoked using the environment
start-up specifications.

2. The TRADCPI C client requestscmi ni t to establish conversation attributes and
receive a conversation ID that will be used on al other requests on this
conversation. The remote server and service are named in the CPI-C side
information entry TRADSI DE.

3. Thecmal | ¢ request initiates the advertised service TRADSERV. In the WebL ogic
Administration Console, the TRADSERV service is mapped to the INDI name
j am Tr adeSer ver for the Tr adeServer EJB.

BEA WebL ogic Java Adapter for Mainframe Programming Guide 5-23

5 Understanding Programming Flows

X Weblogic Server Console - Netscape

File Edit “iew Go Communicator Help

N e e e T

Back Reload I-Ilonﬁ Search Metscape Print Secuity Shop
&Instant Message 3;-', Internet J Lockup J MewtCool 5 RealPlayer
: ;?V Rnnkmarks £ | nnatine |ZRANamﬁXEDExamnlﬁs%?FT_ur:EX?DI')nmain?vhnrl_uFramP:Ir|=w|_r:nnsnIe_framﬁ_‘l NA7F7RA17N7AR ﬂ
H t5ervers [= %%,
Elciusters JAM = Exported EJBs M ? ;‘h ;
(Hwachines L ea
2 boployments .|
CEJAppIications
== B7Export an EJE

et Applications
GalConncctorc

el Startup & Shutdawn Service Name JINDI Name
B Hseonices TRANSFRY jam. TradrSeruar ﬁ
“lipeC
“lamg
-
T
= =i Document: Done ik H P

4. Thecnsst reguest prepares the next send request by setting the send typeto
CM_SEND_AND_PREP_TO RECEI VE.

5. Thecmsend request immediately sends the contents of the obuf f er to the
dispatch method of Tr adeSer ver Bean in the comar ea byte array and
relinguishes control.

»

. The buy method is messaged from the di spat ch method.

7. Thebusinesslogic is performed, and the result is returned to the di spat ch
method.

8. Thecnr cv request receives the contents of the byte array returned from the
di spat ch method inthei buf f er buffer, and notification that the conversation
has ended with the return code value of CM_DEALLOCATED NORMAL.

Host CPI-C Asynchronous No Reply to Java Server

Figure 5-11 illustrates a Host CPI-C asynchronous no reply to Java server
programming flow.

5-24 BEA WebL ogic Java Adapter for Mainframe Programming Guide

Common Programming Interface for Communications Programming Flows

Figure5-11 Host CPI-C Asynchronous No Reply to Java Server

Host

<:)| Enviromment

MICPIC PROGRAM
main()

1

<:)cminit[convid, FIJMSSIDE™, rcode):
cwallc (convid, roode);

(:)cmsend(convid, chuffer, .):
cwdeal (conwvid, roode) s

i

WeblLogic

- GATEWAY

—

JLM . exawples . CPIC.EventTopic

The following steps describe the Host CPI-C asynchronous no reply to Java server
programming flow.

1

The CPI-C application program JMSCPI C isinvoked using the environment
start-up specifications.

The JMSCPI C client requestscni ni t to establish conversation attributes and
receive a conversation ID that will be used on all other requests on this
conversation. The remote server and service are named in the CPI-C side
information entry JVSSI DE.

Thecmal | ¢ request initiates the advertised service CTQIMBSV.
The cnsend request sends the contents of the obuf f er to the CTQIMBSV service.

Thecndeal request flushes the data and indicates the conversation is finished.
The request message is forwarded to the Gateway.

BEA WebL ogic Java Adapter for Mainframe Programming Guide 5-25

5 Understanding Programming Flows

6. The Gateway sends the message to the IMS Event CTQIMSSV. In the WebL ogic
Administration Console, the CTQIMSSV service name is mapped to the IMS topic
JAM exanpl es. CPI C. Event Topi c.

%Wehluglc Jerver Lonsole - Nelscape
Fle Edt Mew Lo Lommunicato Help

8 0 1 8 e a iy]

Back He\l;ad I-Illonie Search Metscase Print Securiy Sh;;

: .\L%Inetanl Mestage ’% Intemet _If Lookup _If MewtZod i; BealPlayer

é’v Euukinaks 4 Licdlin |dr|=t::-cd|||.|\ux3é34N:n||t3é3Dt::-cdmpl:siZC'lypt?éSDDu||din&|Jud_l,lF|d|||:|d=w|__‘u||:<u|t:_[|d|m:_100327'3252554 j

9 Corsol ot 4
B Jeamples JAIM > JMS Events ﬁ ? :'hefa
B saners —
&2 1sters
Htarhines
B Deglogmets Create a new JMS Svont
Gah\pplicatinns
" gJJE\rJeEb Aoplications Service Name IMS Destination
CEJUonneli?ors CTOIMESY 1M, axarples, CIIC.Evart Tapiz (Topic) ﬁ e
ml‘hl\l'nwnu [ERTITYE PPy j
= = Jocurent: Jone S R A

Transactional Java Client Request/Response to Host
CPI-C

Figure 5-12 illustrates a transactional Java client request/response to a Host CPI-C
programming flow.

5-26 BEA WebL ogic Java Adapter for Mainframe Programming Guide

Common Programming Interface for Communications Programming Flows

Figure5-12 Transactional Java Client Request/Responseto a Host CPI-C

WebLogic
public class Client
{

@tx.begin(] ;

hasellient.toupper (commarea) ;

Tx.commit ()
) }

public class BaseClient extends EgenClient
{

P public Chardata toupper (Chardata comares)
throws ICException, snaException
{

byte[] inputBuffer = commarea.toBytelrray(new MainframelWriter()):;
p byte[] rawBResult = calllervice ("SIMPIPIC", inputBuffpr):
Chardata result = new Chardatainew MainframeReader (rpwResult)):
return result;

i

Host @

[—tpname=TPNcp c
@ —# TOUPCPIC PROGRAM

main() @

{

@ cmaccp (convid, rocode);

cwrowv (convid, ibuffer,)i
-«

@...(process data) ..

cmsst(convid, CH_SEND_J\.ND_PREP_TO_RECEIVE, i
cmsptr (convid, CM PREP TO RECEIVE CONFIERM, .):

cmwsend (convid, obuffer, .):

cwrowv (convid,)
-)
®arremit (rroode)

The following steps describe the transactional Java client request/response to a host
CPI-C programming flow.

1. A Javaclient class callsthe begi n method of aUser Transact i on object to start
atransaction.

BEA WebLogic Java Adapter for Mainframe Programming Guide 5-27

5 Understanding Programming Flows

5-28

2. Within the boundaries of that transaction, the Java client class (stand-alone client,
EJB, etc.) makesacall totheBased i ent . t oupper method with a Char dat a
DataView as the parameter.

3. Inthet oupper method, acall is madetothe Egend i ent. cal | Servi ce
method.

Note: TheBased i ent extendsEgend i ent, sotheBased i ent inheritsthe
cal | Servi ce method from Egend i ent .

The value of the first parameter is SI MPCPI C. SI MPCPI C is the name of the
APPC Service that is mapped to the CPI-C transaction program ID TPNCPI Cin
the WebL ogic Administration Console.

3 Weblogic Server Console - Netscape

File Edt View GEo Commurnicator Help

- - | -, [= P g
4 @ 4 42 = 5 1 LN
Back Fieload Home Search Metscape Frirt Security Shop *

&\nslanlMessage }E:L Internet _i Lookup _i MewkCool f—}f, Fi ealPlayer

{.— Bockmarks & Location: |AName°/°3D verfy%2CT ppe 300 omaindbodyFramel d=wl_console_Frame_ 1002090111020 j

@ console _ eIy
2 Dverity JAM > APPC Services ﬁ ? ; hea
a]zervers 4
alciusters
Machines
= HDeployments
2] ::E!]Applicationa

3] 5 :
Sles Service Name Transaction
Slwioh Applications B i

Sleonnsstors SIMPCPIC TRNCPIC]
el startup & Shutdown
B Cenices
® Llipec
Ll

= | =

B/ Create a new APPC Senice

: SR e e P
Document: Done o S = I L 7 Y%

4. Thetransaction program with thet pname TPNCPI C invokes the TOUPCPI C
program.

5. TOUPCPI C accepts the conversation with the craccp call. The conversation ID
returned in convi d is used for al other requests on this conversation.

6. Thecnr cv request receivesthei nput Buf f er buffer contents for processing.

7. The TOUPCPI C program processes that data.

BEA WebL ogic Java Adapter for Mainframe Programming Guide

Common Programming Interface for Communications Programming Flows

8. Thecnsst and cnspt r prepare the next send request by setting the send type to
CM_SEND_AND_PREP_TO RECEI VE and by setting the prepare-to-receive type to
CM _PREP_TO_RECEI VE_CONFI RM The CONFI RMindicates that the service has
completed successfully.

9. Thecnsend request returns the obuf f er contents. The datais returned from the
Egend i ent . cal | Servi ce method as the byte array r awResul t .

10. The Javaclient class callsthe cormi t method of the User Tr ansact i on object to
indicate the successful completion of the transaction and request the commit of
all updated resources. The cnr cv request receives the conmi t request, and
responds explicitly to the request with the SAA Resource/Recovery commit call
srrcnit. The conversation is ended after the successful commit exchange.

Transactional Host CPI-C Request/Response to WebLogic
Server EJB

Figure 5-13 illustrates a transactional host CPI-C request/response to WebL ogic
Server EJB programming flow.

BEA WebL ogic Java Adapter for Mainframe Programming Guide 5-29

5 Understanding Programming Flows

Figure5-13 Transactional Host CPI-C Request/Responseto WebL ogic Server
EJB

Host

nvironment
TRADCFIC FPROGRAM
main ()

@]

{
®c:m1n1t,(c:onv1d, "TRADSIDE™, rocode):
@cmssl(convid, CH_SYNCPOINT, .):
cmsllc(cnnvld, reode) ;
crsst(., CM SEND AND_FPREP_TO RECEIVE, ..):
cmsend (convid, obuffer, .): @

crorov (convid, ibuffer, 1
cmefmd (conwvid, roode);
@ cmdeal (convid, roode) :

srremic (reode) 2

H

WeblLogic

public class TradeServerBean extends EgenServerBean

i

ppublic bycel] dispatchibyce[] comwvares, Ohjsct future)
throws snaException, IOException

1
TradeRecord inputBuffer = new TradeRecordinew
MainfraweReader (commarea)) ;
pTradeRecord result = buy(inputBufferys
return result.toBytedrrayi(ney MainframeWriter ()] :
’ (@
private TradeRecord bhuy (TradeRecord commares) €————
1

(manipulate the data)

return Commares;

H
H

The following steps describe the transactional host CPI-C request/response to
WebL ogic Server EJB programming flow.

1. The CPI-C application program TRADCPI Cis invoked using the environment
start-up specifications.

2. The TRADCPI C client requestscni ni t to establish conversation attributes and
receive a conversation ID that will be used on all other requests on this
conversation. The remote server and service are named in the CPI-C side
information entry TRADSI DE.

3. Thecmssl setsthe conversation attribute to sync-level 2 with CM_SYNCPQ NT.
This alows the WebL ogic EJB to participate in the transaction.

4. Thecmal | ¢ request initiates the advertised service TRADSERV. In the WebL ogic
Administration Console the TRADSERV service is mapped to the INDI name
j am Tr adeSer ver for the Tr adeSer ver EJB.

5-30 BEA WebLogic Java Adapter for Mainframe Programming Guide

Common Programming Interface for Communications Programming Flows

¥ Weblogic Server Console - Netscape

File Edit “iew Go Commumicator Help

4 & 3 N o 5 5

Back Reload I-Il.ome Search Metscape Frint Security Shop
(ﬁ, Instant Messane 3;-, Interniet J Lookup J MewiCool 533 FiealP layer
" ;’»v Romkmarks £ | nnatinn |ZRANamﬁZRDﬁxamnlasz7PT_u|1ﬁZHDDnmain?\-hnrlpFramﬁld:wl_r:nncnlﬁ_lramﬁ_‘l NM7PR317N79R ﬂ
agemers B LA
&loiusters JAM > Exported EJBs o ? ;‘h /
(HMachines s ea
2 Hocpioyments |
CE!JApp\ ications
=EE WEXEDH zn EJB

:EjWeh Applications
lconneetors

= startup & Shutdown Service Name JINDI Name
2 Heowices TRANSFRY jam. TradrSrArRr ﬁ
Clipec
Clomg
Ll
e
= =1 Document, Done T 2 A

5. Thecnsst request prepares the next send request by setting the send type to
CM_SEND_AND_PREP_TO RECEI VE.

6. Thecnsend request immediately sends the contents of the obuf f er to the
dispatch method of Tr adeSer ver Bean in the conmar ea byte array and
relinquishes control.

7. Thebuy method is messaged from the di spat ch method.

8. Thebusinesslogic is performed, and the result is returned to the di spat ch
method.

9. Thecnr cv request receives the contents of the byte array returned from the
di spat ch method inthei buf f er buffer. The cnr cv receives a confirm request
indicating the conversation should terminate.

10. The client replies positively to the confirm request with cef nd.

11. The TRADCPI C client preparesto free the conversation with the cndeal request.
The conversation in CM_DEALLOCATE_SYNC_LEVEL commitsall updated
resources in the transaction and waits for the SAA resource recovery verb,
srrcmit . After the commit sequence has completed, the conversation terminates.

BEA WebLogic Java Adapter for Mainframe Programming Guide 5-31

5 Understanding Programming Flows

5-32 BEA WebL ogic Java Adapter for Mainframe Programming Guide

CHAPTER

© Performing Your Own
Data Translation

This section discusses the following topics:

m Why Perform Y our Own Data Translation?

m Using EgenClient Directly

m Trangdating Buffers from Javato Mainframe Representation

m Trandating Buffers from Mainframe Format to Java

Why Perform Your Own Data Translation?

The automatic datatrand ation provided by DataViews can usually fill your needs. The
eGen-generated DataViews relieve your application of the burden of translating data
between the mainframe EBCDIC environment and the Java runtime environment. In
addition, native mainframe data types that are not supported in Java (such as packed,
zoned decimal, etc.) are automatically mapped to appropriate Java data types.
However, occasionally you may want to bypass these features and create your own
datatrandlation. Following are some advantages of bypassing the eGen/DataView
infrastructure;

m Unnecessary data translation may be avoided

If the data has been acquired in the appropriate format, it can simply be
transmitted to the mai nframe bypassing the DataView trand ation overhead.

BEA WebL ogic Java Adapter for Mainframe Programming Guide 6-1

6 Performing Your Own Data Translation

m Contents of data buffer may be dynamically determined at runtime

In some cases, this may be preferable to a DataView generated from a copybook
containing numerous REDEFINES representing various record types.

Simpleinterfaces are provided for tranglating data both from and to the mainframe. In
addition, asimplecal | Ser vi ce() method isavailable for making mainframe service
requests.

Using EgenClient Directly

Egend i ent isthe WebLogic JAM class responsible for making service calls from
WebL ogic Server to the mainframe. This classis the foundation of all WebL ogic
Server to Mainframe communication by eGen-created EJB and Servlet objects.
Egend i ent may also be used directly by applications to issue mainframe service
requests. Listing 6-1 shows the public methods available for your use:

Listing 6-1 EgenClient Public Interface

package com bea.jam egen;

i mport java.io.lOException;
i mport com bea. sna.j cr ngw. snaExcepti on;

public class Egend i ent

{
public Egendient();
public Egendient(String serverURL);
public void setServerURL(String serverURL);
public byte[] call Service(String service, byte[] in)
throws snaException, | OException;
public void setUserI D(String userid);
public void setPassword(String password);
}

Table 6-1 lists the definitions of the public interface methods:

6-2 BEA WebL ogic Java Adapter for Mainframe Programming Guide

Using EgenClient Directly

Table 6-1 EgenClient Public Interface Methods

M ethod Description

Egend i ent () The default constructor. Constructing an
Egend i ent class using the default constructor will
search for aj am ur| property containing the
WebL ogic JAM Gateway server URL.

Egend i ent (URL) If theEgend i ent classis provided a URL at
construction, it will be used in place of the search for a
j am url property.

set Ser ver URL(URL) This method may be used to override the URL set at
construction. All service callsfollowing theinvocation
of this method will use the URL provided.

cal | Service(service, in) Thismethod istheworkhorse of the Egend i ent
class. The mainframe service in the WebLogic JAM
configuration named ser vi ce will be called and
passed the buffer provided by thei n parameter. The
response buffer of the service is returned from this
method.

set User | D(useri d) This method sets the User 1D used to access a
mainframe service.

set Passwor d(passwor d) This method sets the password used to access a
mainframe service.

How EgenClient Locates a WebLogic JAM Gateway

The Egend i ent class requires a connection to a WeblL ogic Server running a
WebLogic JAM Gateway to communicate with a mainframe. This connectionis
accomplished viaa URL provided by the caller identifying the server, or cluster of
servers, hosting the WebL ogic JAM Gateway(s). The Egendl i ent class attemptsto
obtain this URL from the following sources (listed in priority order):

1. IftheEgend i ent. set Server URL() method has been called, the URL provided
isused to locate a WebL ogic JAM Gateway.

BEA WebL ogic Java Adapter for Mainframe Programming Guide 6-3

6 Performing Your Own Data Translation

2. If aURL was provided on the Egend i ent constructor, this URL is used to
locate aWebLogic JAM Gateway.

3. Egend i ent checksfor the existence of aj am url system property and, if
present, usesits value asthe URL to locate a WebL ogic JAM gateway.

4, Egend i ent searchesthe CLASSPATH for afilenamedj am properti es. If this
propertiesfileisfound and containsaj am ur | entry, thisvalueis used to locate
aWebLogic JAM Gateway.

5. Egend i ent assumesthat it is running on the same WebL ogic Server asthe
WebL ogic JAM Gateway and attempts to establish alocal connection.

Using EgenClient to Make a Mainframe Request

Listing 6-2 illustrates calling a mainframe service viathe Egend i ent class. This
exampl e assumesthat a properly formatted mainframe buffer is passed as a parameter,
and that the URL of a correctly configured WebL ogic JAM Gateway is set viathe
jamurl property.

Listing 6-2 Mainframe Request Using EgenClient

i mport com bea.j am egen. Egend i ent;
i mport com bea. sna.j crngw. snaExcepti on;
i mport java.io.|OException;

public byte[] get Pur chaseOrder (byte[] poNum
throws | OException

{
try
return(new Egendient().call Service("CGtPO', poNum);
catch (snaException e)
{
t hrow new | CException(e. get Message());
}
}

6-4 BEA WebL ogic Java Adapter for Mainframe Programming Guide

Translating Buffers from Java to Mainframe Representation

The sections that follow provide information on dynamically creating mainframe
buffers and interpreting the responses from mainframe services.

Translating Buffers from Java to Mainframe
Representation

Support for creating buffers for input to a mainframe serviceis provided by the

com bea. base. i 0. Mai nframeW i ter class. Thisclassfunctions similar to a Java
j ava. i o. Dat aQut put St r eamabject. It translates Java data types and all
mainframe-native data types. For numeric datatypes, this translation service provides
aconversion from Java native numeric typesto those avail able on the mainframe. For
string data types, a trandation is performed from UNICODE to EBCDIC by default,
although the output codepage used is configurable.

MainframeWriter Public Interface

Listing 6-3 shows the public methods provided by the Mai nf ramew i t er class.

Listing 6-3 MainframeWriter Class Public Methods

package com bea. base. i o;

public class MinframeWiter
{
public MainframeWiter();
public MainframeWiter(String codepage);
public voi d set Def aul t Codepage(String cp)
public byte[] toByteArray();
public void witeRawbyte[] bytes
throws | OExcepti on;
public void witeFl oat (float val ue)
throws | OExcepti on;
public void witeDoubl e(doubl e val ue)
throws | OExcepti on;
public void wite(char c)

BEA WebL ogic Java Adapter for Mainframe Programming Guide 6-5

6 Performing Your Own Data Translation

publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

publ i

publ i

C

Cc

C

C

Cc

C

C

Cc

C

C

Cc

C

C

Cc

C

C

Cc

Cc

throws | OCException;

void witePadded(String s, char padChar, int |ength)
throws | OExcepti on;

void witel6bit(int value)

throws | OExcepti on;

voi d witel6bitUnsigned(int value)

throws | CException;

void witel6bit(long value, int scale)

throws | OException, ArithneticException;

void witel6bitUnsigned(long value, int scale)
throws | OException, ArithneticException;

void wite32bit(int value)

throws | OExcepti on;

voi d wite32bitUnsigned(long val ue)

throws | OExcepti on;

void wite32bit(long value, int scale)

throws | OException, ArithneticException;

voi d wite32bitUnsigned(long value, int scale)
throws | OException, ArithneticException;

void wite64bit(long val ue)

throws | OExcepti on;

void wite64bitUnsigned(long val ue)

throws | OExcepti on;

voi d wite64bitBi gUnsi gned(Bi gDeci mal val ue)
throws | OExcepti on;

void wite64bit(long value, int scale)

throws | OException, ArithneticException;

void wite64bit(Bi gDeci mal val ue, int scale)
throws | OException, ArithneticException;

voi d wite64bitUnsigned(long value, int scale)
throws | OException, ArithneticException;

voi d wite64bitUnsi gned(Bi gDeci mal value, int scale)
throws | OException, ArithneticException;

voi d witePacked(Bi gDeci mal value, int digits,
int precision, int scale)

throws Arithneti cException, | COException;

voi d witePackedUnsi gned(Bi gDeci mal val ue,

int digits, int precision, int scale)

throws Arithneti cException, | COException;

Following are the definitions of these methods:

6-6 BEA WebL ogic Java Adapter for Mainframe Programming Guide

Translating Buffers from Java to Mainframe Representation

Table 6-2 MainframeWriter Class Public M ethod Definitions

M ethod

Description

Mai nframeWiter()

The default constructor. Constructs a
Mai nf raneW i t er using the default code
page of cp037 (EBCDIC).

Mai nframeWiter(cp)

Constructs aMai nf rameW i t er using the
specified codepage for character field
trandlation.

set Def aul t Codepage(cp)

Set the codepage to be used for all future data
trandations.

toByt eArray()

Returns the trandlated buffer constructed by
writing datato the Mai nf r aneW i t er class
asabyte array.

wr i t eRaw(byt es)

Write araw byte array to the output buffer.

writeFl oat (num

Convert afloating point number from the IEEE
Javafloat datatypeto IBM 4 bytefloating point
format. The equivalent COBOL picture clause
isPI C S9v9 COWP- 1.

wri t eDoubl e(num

Convert afloating point number from the IEEE
Java double data type to IBM 8 byte floating
point format. The equivalent COBOL picture
clauseisPl C S9V9 COWP- 2.

write(c)

Trand ate and write a single character to the
output buffer. The equivalent COBOL picture
clauseisPl C X.

writ ePadded(str, pad,

| en)

Trand ate and write a string to a fixed length
character field. The passed pad character isused
if the length of the passed string is less than

| en. If thelength of the passed string is greater
than| en, itwill betruncatedtol en characters.
The equivalent COBOL picture clauseisPI C
X(1en).

BEA WebL ogic Java Adapter for Mainframe Programming Guide 6-7

6

Performing Your Own Data Translation

6-8

M ethod

Description

writel6bit(num

Writes asigned 16 bit binary integer to the
output buffer. The equivalent COBOL picture
clauseisPl C S9(4) COWP.

writel6bitUnsigned(num

Writes an unsigned 16 bit binary integer to the
output buffer. The equivalent COBOL picture
clauseisPl C 9(4) COWP.

writel6bit(num scale)

Writes asigned 16 hit integer to the output
buffer after moving theimplied decimal point
left by scale digits. For example, the call
writel6bit(100, 1) would result in the value 10
being written. The equivalent COBOL picture
clauseis PIC S9(4) COMP.

writel6bitUnsigned(num
scal e)

Writes an unsigned 16 bit integer to the output
buffer after moving the implied decimal point
left by scal e digits. For example, the call
wri t el6bi t Unsi gned(100, 1) would
result in the value 10 being written. The
equivaent COBOL pictureclauseisPl C 9(4)
COWP.

write32bit(num

Writes asigned 32 hit binary integer to the
output buffer. The equivalent COBOL picture
clauseisPl C S9(8) COWP.

write32bit Unsi gned(num

Writes an unsigned 32 bit binary integer to the
output buffer. The equivalent COBOL picture
clauseisPl C 9(8) COWP.

write3d2bit(num scale)

Writes a signed 32 bit integer to the output
buffer after moving the implied decimal point
left by scal e digits. For example, the call
write32bit(100L, 1) wouldresultinthe
value 10 being written. The equivalent COBOL
picture clauseisPl C S9(8) COVP.

BEA WebL ogic Java Adapter for Mainframe Programming Guide

Translating Buffers from Java to Mainframe Representation

M ethod

Description

write32bitUnsi gned(num
scal e)

Writes an unsigned 32 bit integer to the output
buffer after moving the implied decimal point
left by scal e digits. For example, the call
wr i t e32bi t Unsi gned(100L, 1) would
result in the value 10 being written. The
equivalent COBOL pictureclauseisPI C 9(8)
COVP.

write64bit(num

Writes a signed 64 bit binary integer to the
output buffer. The equivalent COBOL picture
clauseisPl C S9(15) COWP.

wri t e64bi t Unsi gned(num

Writes an unsigned 64 bit binary integer to the
output buffer. The equivalent COBOL picture
clauseisPlI C 9(15) COWP.

write64bit(num scale)

Writes a signed 64 bit integer to the output
buffer after moving the implied decimal point
left by scal e digits. For example, the call
write64bit(100L, 1) wouldresultinthe
value 10 being written. The equivalent COBOL
picture clauseisPl C S9(15) COVP.

wr it e64bi t Unsi gned(num
scal e)

Writes an unsigned 64 bit integer to the output
buffer after moving the implied decimal point
left by scal e digits. For example, the call
wri t e64bi t Unsi gned(100L, 1) would
result in the value 10 being written. The
equivalent COBOL picture clauseisPl C
9(15) COWP.

writePacked(num digits,
prec, scale)

Writes a decimal number asan IBM signed
packed datatype with di gi t s decimal digits
total and pr ec digitsto theright of the decimal
point. Prior to conversion, the number is scaled
totheleft scal e digits. The equivalent
COBOL pictureclauseisPI C

S9(di gits-prec)V9(prec) COW-3.

BEA WebL ogic Java Adapter for Mainframe Programming Guide 6-9

6

Performing Your Own Data Translation

Method Description
wri t ePackedUnsi gned(num Writes adecima number asan IBM unsigned
digits, prec, scale) packed datatype with di gi t s decimal digits

total and pr ec digitsto theright of the decimal
point. Prior to conversion the number is scaled
to theleft scal e digits. The equivaent
COBOL pictureclauseisPI C

9(di gits-prec)V9(prec) COWP-3.

Using MainframeWriter to Create Data Buffers

6-10

Asanexampleof usingthe Mai nf raneW i t er classto createamainframe databuffer,
assume we have a mainframe service which accepts the data record shown in
Listing 6-4:

Listing 6-4 Data Record

01 | NPUT- DATA- REC.

05 FI RST- NAME Pl C X(10).

05 LAST- NAME Pl C X(10).

05 AGE Pl C S9(4) COMP.

05 HOURLY- RATE PI C S9(3)V9(2) COVP-3.

Listing 6-5 shows a Javatest program that creates a buffer matching thisrecord layout
using the Mai nf rameW i t er trandation class:

Listing 6-5 Java Test Program

i mport java. mat h. Bi gDeci mal ;
i nport com bea. base.i o. Mai nframeWiter;

public class MakeBuffer
{

public static void main(String[] args) throws Exception

{

BEA WebL ogic Java Adapter for Mainframe Programming Guide

Translating Buffers from Java to Mainframe Representation

}

Mai nframeWiter nf = new Mai nframeWiter();

nf.writePadded("Edgar", ' ', 10); /1 first nane
nf.writePadded("Jones", ' ', 10); /1 1ast nane
nf.witel6bit(22); /'l age

nf.writePacked(newBi gDeci mal (22.50), 5, 2, 0);// hourlyrate
byte[] buffer = nf.toByteArray();
Systemout. println(getHexString(buffer));

private static String getHexString(byte[] buffer)

{

}

StringBuffer hexStr = new StringBuffer(buffer.length * 2);
for (int i =0; i < buffer.length; ++i)
{

int n=buffer[i] & Oxff;

hexStr. append(hex[n >> 4]);

hexStr. append(hex[n & 0x0f]);

}
return(hexStr.toString());

private static char[] hex =

{
o, 1, 2, '3, 4, 5 e, T,
'8, '9, AN, 'R, 'C, 'D, 'E,F
I

The output of running this sample program is:

(C5848781994040404040D1969585A24040404040001602250C

This buffer breaks down as follows:

FI RST- NAME C5848781994040404040" Edgar" + 5 spaces in EBCD C

LAST- NAMVE D1969585A24040404040" Jones" + 5 spaces in EBCDI C
AGE 0016 22 as 16 bit integer
HOURLY- RATE 02250C 22.50 positive packed nunber

(deci mal point is assuned)

BEA WebLogic Java Adapter for Mainframe Programming Guide ~ 6-11

6 Performing Your Own Data Translation

Translating Buffers from Mainframe Format

to Java

Support for trand ating datareceived from the mainframe to Javadatatypesis provided
by the com bea. base. i 0. Mai nf raneReader class. This class operatesin a manner

similar to aJavaj am i o. Dat al nput St r eam and performs trand ations from
mainframe data types to equivalent types usable by a Java program. Like the

MainframeWriter class, the codepage used for string trand ations may be configured

and defaultsto EBCDIC.

MainframeReader Public Interface

Listing 6-6 shows the public methods provided by the Mai nf r ameReader class.

Listing 6-6 MainframeReader Class Public Methods

package com bea. base. i 0;

public class Mi nfranmeReader

{
public
public
public
public
public
public
public
public

public
public
public
public
public

public
public

Mai nf r ameReader (byte[] buffer);

Mai nf rameReader (byte[] buffer, String codepage);
voi d set Def aul t Codepage(String cp);

byte[] readRaw(i nt count) throws | OException;
float readFloat() throws | OException;

doubl e readDoubl e() throws | OException;

char readChar() throws | COException;

String readPadded(char padChar, int |ength)
throws | OExcepti on;

short readl6bit() throws | OException;

int readl6bitUnsigned() throws | COException;

I ong readl6bit(int scale) throws | OException;
int read32bit() throws | OException;

I ong read32bit(int scale)

throws | OExcepti on;

| ong read32bi t Unsi gned() throws | OExcepti on;

| ong read32bi t Unsi gned(int scale) throws | OExcepti on;

6-12 BEA WebL ogic Java Adapter for Mainframe Programming Guide

Translating Buffers from Mainframe Format to Java

publ i
publ i

publ i
publ i
publ i

publ i

publ i

| ong read64bit() throws | OException;

| ong read64bit Unsi gned()

throws | OExcepti on;

| ong read64bit(int scale)

throws | OExcepti on;

Bi gDeci mal read64bi t Bi gUnsi gned()

t hrows | OExcepti on;

Bi gDeci mal read64bitBi g(int scale)

t hrows | OExcepti on

Bi gDeci mal readPackedUnsi gned(int digits,
int precision, int scale)

throws Arithmeti cException, | CException;
Bi gDeci mal readPacked(int digits,

int precision, int scale)

throws ArithmeticException, | CException;

Following are the definitions of these methods:

Table 6-3 MainframeReader Class Public M ethod Definitions

M ethod

Description

Mai nf r aneReader (buf f er) Constructs a Mai nf r ameReader for the

passed buffer using the default code page of
cp037 (EBCDIC).

Mai nf rameReader (buffer, cp) Constructs a Mai nf r ameReader for the

passed buffer using the specified codepage for
character field translation.

set Def aul t Codepage(cp) Sets the codepage to be used for al future

character translations.

readRaw(count) Read count characters from the buffer without

any tranglation and return them as a byte array.

readFl oat ()

Read a4 byte IBM floating point number and
return it as a Javafloat data type.

r eadDoubl e()

Read an 8 byte IBM floating point number and
return it as a Java double data type.

readChar ()

Read and trand ate a single character.

BEA WebL ogic Java Adapter for Mainframe Programming Guide 6-13

6

Performing Your Own Data Translation

6-14

M ethod

Description

r eadPadded(pad, |en)

Read and trandate afixed length character field
and return it as a Java String. The length of the
fieldispassed as| en and thefield pad character
is passed as pad. Trailing instances of the pad
character are removed before the datais
returned.

readl6bit ()

Read a 16 bit binary integer and returnit asa
Javashort.

read16bi t Unsi gned()

Read an unsigned 16 bit integer and return it asa
Javaint.

readl6bit(scal e)

Read a 16 hit binary integer and scale the value
by 10scale. For example, if thevalue 10isread
viar ead16bi t (1), thereturned value would
be 100.

read32bit ()

Read a 32 hit binary integer and returnitasa
Javaint.

read32bi t (scal e)

Read a 32 bit binary integer and scale the value
by 10scale. For example, if thevalue 10isread
viar ead32bi t (1), the returned value would
be 100.

read32bi t Unsi gned()

Read an unsigned 32 bit integer and return it asa
Javalong.

read32bi t Unsi gned(scal e)

Read an unsigned 32 bit binary integer and scale
the value by 10"scale. For example, if the value
10isread viar ead32bi t (1), the returned
value would be 100.

read64bit ()

Read a 64 hit binary integer and returnit asa
Javalong.

read64bi t Unsi gned()

Read an unsigned 64 bit integer and returnit asa
Javalong.

BEA WebL ogic Java Adapter for Mainframe Programming Guide

Translating Buffers from Mainframe Format to Java

Method Description

read64bi t Unsi gned(scal e) Read an unsigned 64 bit binary integer and scale
the value by 10"scale. For example, if the value
10isread viar ead32bi t (1), thereturned

value would be 100.
read64bi t Bi gUnsi gned() Read an unsigned 64 bit integer and return it asa
JavaBi gDeci mal .
read64bi t Bi g(scal e) Read a signed 64 bit integer and scale the value
by 10"scale. The value isreturned as a Java
Bi gDeci mal .
readPackedUnsi gned(digits, Read an unsigned packed number consisting of
prec, scale) di gi t s numeric digitswith pr ec digitsto the

right of the decimal. The valueis scaled by
10"scale returned as a Java Bi gDeci mal .

readPacked(digits, prec, Read a signed packed number consisting of

scal e) di gi t s numeric digitswith pr ec digitsto the
right of the decimal. The valueis scaled by
10"scale returned as a Java Bi gDeci mal .

Using MainframeReader to Translate Data Buffers

Asan example of using the Mai nf r ameReader , class following is a program that
translates and displays the fields in the mainframe buffer created above. Our input
buffer consists of the binary data:

(C5848781994040404040D1969585A24040404040001602250C

Listing 6-7 shows the sample program used to process this buffer.

Listing 6-7 Sample Program

i mport java. mat h. Bi gDeci nal ;
i nport com bea. base. i 0. Mai nf raneReader ;

public class ShowBuffer

BEA WebL ogic Java Adapter for Mainframe Programming Guide 6-15

6

Performing Your Own Data Translation

6-16

public static void main(String[] args) throws Exception
{
String data =

" C5848781994040404040D1969585A24040404040001602250C";
byte[] buffer = buildBi nary(data);
Mai nf rameReader nf = new Mai nfranmeReader (buffer);

Systemout.println(" First Nane: " + nf.readPadded(’ ', 10));
Systemout.println(" Last Nane: " + nf.readPadded(’ ', 10));
Systemout. println(" Age: " + nf.readl6bit());
Systemout.println("Hourly Rate: " + nf.readPacked(5, 2, 0));
}

private static byte[] buildBinary(String data)

byte[] buffer = new byte[data.length() / 2];

for (int i =0; i < buffer.length; ++i)

{
int neb = hex.indexOf (data.charAt(i * 2));
int Isb = hex.indexOf(data.charAt(i * 2 + 1));
buffer[i] = (byte) (msb << 4 | |sb);

return(buffer);

}

private static final String hex = "0123456789ABCDEF";

When run, the program produces the following output:

First Name: Edgar
Last Nane: Jones
Age: 22

Hourly Rate: 22.50

BEA WebL ogic Java Adapter for Mainframe Programming Guide

CHAPTER

[Diagnostics

This section discusses the following topics:
m Gateway Statistics

m Gateway Tracing

m | ow-Level Client Diagnostics

m CRM Tracing

m APPC API Tracing

Gateway Statistics

Y ou can display the statistics for a Gateway definition using the WebL ogic
Administration Console. For instructions on accessing Gateway statistics, refer to the
BEA WebL ogic Java Adapter for Mainframe Configuration and Administration Guide.
The statistics information displayed for the Gateway islisted in Table 7-1.

Table 7-1 Statistics Categories

Tota Requests Thenumber of requeststhat havereached the gateway. Thismay
belarger than the sum of successes and failuresif some requests
are still being processed.

Total Successes The number of requeststhat have successfully been processed to
completion by the gateway. Application level failures may be
reported as gateway SUCCEeSSes.

BEA WebL ogic Java Adapter for Mainframe Programming Guide 7-1

7 Diagnostics

Average Response Time

The average response time for all successful requests and some
failures. Failures that fail before they are transmitted over the
network do not affect this statistic. Timeouts do not affect this
statistic until alate reply is received.

Total Failures The total number of failures of any kind.

No Response The number of requests that have timed out and have never
received a response of any kind.

Late Response The number of requests that timed out and then received a
response.

Other The number of request that failed other than by timeout.

Gateway Tracing

WebLogic JAM runtime traces are sent to the WebL ogic log as "Debug" messages.
Debug messages are written to each WebL ogic Server'slog file but are not sent to the
administration server. In addition, these messages are only sent to the server’sst dout
if the server’ s configuration has both the L og to Stdout and Debug to Stdout options
selected on the server's Logging/General page.

For instructions on accessing Gateway tracing options, refer to the BEA WebLogic
Java Adapter for Mainframe Configuration and Administration Guide. The user trace
categories displayed for the Gateway are listed in Table 7-2.

Table 7-2 User Trace Categories

User level trace

Produces trace records for the beginning and completion of all
user requests, both to and from the mainframe. The completion
message will indicate the success or failure of the request.

User dump trace

Producestrace recordswith ahexadecimal dump of the user data
associated with all user requestsand replies. Thistracelevel will
also cause the trace records for User level trace to be produced.

Here is an example of atrace for two user requests:

7-2 BEA WebL ogic Java Adapter for Mainframe Programming Guide

Gateway Tracing

<Nov 15, 2001 3:53:06 PM GMI-06: 00> <Debug> <JAML> <[5560199] Begi nni ng of
request: 134217866 service: sanpl eCr eat e>

<Nov 15, 2001 3:53:06 PM GMT-06: 00> <Debug> <JAML> <[5560199] ---- request data
dunp ----

0000: 00 00 00 00 Of d3 81 a2 a3 61 fO 40 40 40 40 40 Last/0

0010: 40 40 40 40 c6 89 99 a2 a3 61 f1 40 40 40 40 40 First/1

0020: 40 40 40 d4 f3 f2 fO fO 40 cl1 95 a8 a2 a3 99 85 M3200 Anystre

0030: 85 a3 40 c3 96 a4 99 a3 40 40 40 40 40 40 40 40 et Court

0040: 40 40 e3 e7 f7 f7 f5 f5 f5 f0 fO fO fO TX775550000

<Nov 15, 2001 3:53:07 PM GMI-06: 00> <Debug> <JAML> <[5560199] End of
request: 134217866>

<Nov 15, 2001 3:53: 07 PM GMI-06: 00> <Debug> <JAML> <[5560199] ---- response data
dunp ----

0000: 00 00 00 00 Of d3 81 a2 a3 61 fO 40 40 40 40 40 Last/0

0010: 40 40 40 40 c6 89 99 a2 a3 61 f1 40 40 40 40 40 First/1

0020: 40 40 40 d4 f3 f2 fO fO 40 c1 95 a8 a2 a3 99 85 M3200 Anystre

0030: 85 a3 40 c3 96 a4 99 a3 40 40 40 40 40 40 40 40 et Court

0040: 40 40 e3 e7 f7 f7 f5 f5 f5 f0 fO fO fO TX775550000

<Nov 15, 2001 3:53:07 PM GMVI-06: 00> <Debug> <JAML> <[5560199] Starting one phase
commi t >

<Nov 15, 2001 3:53: 07 PM GMT-06: 00> <Debug> <JAML> <[5560199] Begi nni ng of
request: 1207959692 servi ce: sanpl eRead>

<Nov 15, 2001 3:53:07 PM GMTI-06: 00> <Debug> <JAML> <[5560199] ---- request data
dunp ----
0000: 00 00 00 00 Of d3 81 a2 a3 61 fO 40 40 40 40 40 Last/0

0010: 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
0020: 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
0030: 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
0040: 40 40 40 40 40 40 40 40 40 40 40 40 40

<Nov 15, 2001 3:53:07 PM GMI-06: 00> <Debug> <JAML> <[5560199] End of
request: 1207959692>

<Nov 15, 2001 3:53:07 PM GVI-06: 00> <Debug> <JAML> <[5560199] ---- response data
dump ----

BEA WebL ogic Java Adapter for Mainframe Programming Guide 7-3

7 Diagnostics

0000: 00 00 OO0 OO0 Of d3 81 a2 a3 61 fO 40 40 40 40 40 Last/0
0010: 40 40 40 40 c6 89 99 a2 a3 61 f1 40 40 40 40 40 First/1
0020: 40 40 40 d4 f3 f2 fO fO 40 c1 95 a8 a2 a3 99 85 MB200 Anystre
0030: 85 a3 40 c3 96 a4 99 a3 40 40 40 40 40 40 40 40 et Court

0040: 40 40 e3 e7 f7 f7 f5 f5 f5 f0O f0O fO fO TX775550000

<Nov 15, 2001 3:53: 07 PM GMI- 06: 00> <Debug> <JAML> <[5560199] Starting one phase
conmi t >

The trace categories listed in Table 7-3 are for use if you find it necessary to contact
BEA Technical Support. They may be used to collect dataabout your system necessary
to resolve problems.

Table 7-3 System Trace Categories

CRMAPI trace Produces trace records showing the messages exchanged
between the Gateway and the CRM.

JAM socket trace Produces trace records showing a hexadecimal dump of the data
exchanged between the Gateway and the CRM.

Configuration trace Producestracerecords showing operationswithinthe WebL ogic
Administration Console and interactions between it and the
Gateway.

Thread level trace Produces trace records showing operations within the Gateway

related to itsinternal threads and subtasks.

Low-Level Client Diagnostics

WebL ogic JAM includes two low-level featuresto support diagnosing problems with
eGen-based client programs. While these facilities are not designed for usein a
production environment, they should be useful during development. Thesefeaturesare
enabled by adding the settings listed in Table 7-4 to the java statement at the end of
your st ar t WebLogi c. cnd file for the BEA WebL ogic Server domain that you are
currently running.

7-4 BEA WebL ogic Java Adapter for Mainframe Programming Guide

Low-Level Client Diagnostics

Table 7-4 Client Diagnostic Settings

bea.jam.client.loopback Set to "true” to bypass the
gateway & simply loop the
reguest bytes back to the client.

beajam.client.stub Set to the full name of aclassto
be used as a gateway stub.

Listing 7-1 providesan examplein bold of the changesthat need to be madetothejava
statement inthe st art WebLogi c. crd file necessary to enable the client diagnostic
loopback feature. Thisfile can be found in the <W.S_HOVE>\ conf i g\ <domai n>
directory. The java statement can be found near the end of thefile.

Listing 7-1 startWebL ogic.cmd L oopback Example

"% AVA HOVE% bi n\j ava" -hotspot -ns64m -nx64m -cl asspath
YCLASSPATHY% - Dwebl ogi c¢. Donmai n=nydonai n

-Dbea.jamclient.| oopback=true -Dwebl ogi c. Name=nyserver

"- Dbea. hone=g: \ bea"

"-D ava. security. policy==g:\bea\w server6. 1sp2/1i b/ webl ogi c. polic
y" - Dwnebl ogi c. managenent . passwor d=9\LS PW/%o webl ogi c. Ser ver

Client Loopback

If the client loopback feature is enabled, all requests receive aresponse that is exactly
equal to the request data. Note that this loopback response is accomplished while the
dataisin mainframe format. If a service accepts one DataView subclass and returns a
different one, a conversion failure in trying to construct the resulting DataView
subclass may occur.

Note: When the client loopback feature is enabled, a Gateway need not be deployed.

BEA WebL ogic Java Adapter for Mainframe Programming Guide 7-5

7 Diagnostics

Client Stub Operation

The client stub operation enables you to replace the gateway with your own class, in
effect providing areplacement for the entire target mainframe. Thisfeatureisvaluable
for testing or proof-of-concept situations where the mainframe connection is not
available.

Y our stub class must:
m Provide a constructor that takes no arguments.
m Beavailable on your CLASSPATH.

m Contain amethod for each service that isto be supported. This method must take
some DataView subclass as its only argument and return a DataView subclass.

CRM Tracing

The CRM has tracing options that can be enabled for advanced debugging of
WebL ogic JAM applications. Refer to the BEA WebLogi c Java Adapter for Mainframe
Configuration and Administration Guide for information about setting trace levels.

OnWindowsNT and Unix systems, tracesarewrittento afilein the directory inwhich
the CRM was started. If the environment variable APPDI Ris set, the trace will be
written to the directory it specifies. The file name will be specified as:

CRM <pi d>. trace. <seq>

Where<pi d>isthe process|D of the CRM process, and <seq> isthe sequence number
of the tracefile, which is always 0.

On MVS systems, traces are written to SYSQUT, which isidentified by TRACE DD
NAME.

7-6 BEA WebL ogic Java Adapter for Mainframe Programming Guide

CRM Tracing

Viewing Trace Output

0000:
0010:
0020:
0030:
0040:
0050:
0060:
0070:
0080:
0090:
00AO:
00BO:

With afew exceptions, each line in the trace output is preceded by atime tag,
identifying the date and time the line was written.

Note: Thetimetaginformation inthe CRM trace should reflect the current system
time. In order to make use of the correct time zone information on Unix and
MVS systems, it isimportant that the TZ environment variable be set
correctly. If this variable is not set correctly on your system, refer to your
system documentation for further information.

After thetimetag, afour-digit number appears, identifying the number of the task that
wrote the line to the trace. This number can be useful when multiple processes are
connected to the CRM.

If the trace level of the CRM is greater than one, a plus sign (+) following the task
number indicatesthat alineinthetraceislevel 1 output. For example, in the sequence:

Tue Cct 09 10:45:10.291 0001 +CRMinitialization conplete --
Nor mel di spat chi ng begins

Tue Cct 09 10:45:10.291 0001 CRMstate transition from
InitializationlnProgress to Reset

ThelineCRMiniti alization conpl et e islevel 1output, and theline CRM st at e
transitionisnot (itislevel 3 output).

When the trace level is set to 3, hex dump information will appear in the trace. These
entries will appear interspersed with other trace statements. An example follows:

----------------- HEXADECI MAL------------------ *------ASCl|-----*
00 B2 63 00 00 56 BE AC 05 00 00 04 00 02 (....c..V........)
00 00 00 00 OO 1C 7E 71 00 00 OO 00 00 96 (......... q......)
00 00 41 30 36 52 65 67 69 6F 6E 00 00 00 (.v..AO6Region...)
00 00 00 00 00 OO OO OO 00 00 00 00 00 00 (.........vuuunnn)
00 00 01 57 45 42 4C 00 43 49 43 53 00 53 (..... VEBL. CI CS. S)
43 52 4D 00 00 00 00 00 OO 00 00 00 00 00 (NACRM)
00 00 00 00 00 OO OO OO OO0 00 00 00 41 30 (.......vvvunn. AO)
49 43 53 00 00 00 00 00 OO OO 00 OO 00 00 (6CICs...........)
00 00 00 00 OO0 OO OO OO OO0 00 00 41 30 36 (.......ouvunn A06)
43 53 00 00 53 4D 53 4E 41 31 30 30 00 4C (CICS..SMSNA100. L)
41 4C 00 00 00 00O 00 00 02 00 00 04 00 02 (OCAL............)

BEA WebL ogic Java Adapter for Mainframe Programming Guide 7-7

7 Diagnostics

These entries consist of offset information in the left column, followed by columns
with the datain hexadecimal format, followed by an ASCII or EBCDIC representation
of the data. The datais read from left to right, top to bottom.

Hex dump information for application data appearsin adightly different format, with
two different representations of the user data. An example follows:

00000 | 12345678 9f 29489 a3884040 40404040| |..... Smith |
00010 | 40404040 d1968895 40404040 40404040| | John |
00020 | 404040d8 f1f2f 3f4 40c59394 40e2a34b| | QL234 Elm St. |
00030 | 40404040 40404040 40404040 40404040| | |
00040 | 4040e3d5 f1f 2f 3f4 5404040 40000000| | TN12345 ... |

The two columns following the hex data contain the user datain “actual” and “native”
representations. In the “actual” representation, the binary datais represented directly
as character data, with unprintable characters appearing asaperiod (.). In the “native”
representation, the binary datais converted to the native character format (EBCDIC or
ASCII), allowing text fields to be viewed directly.

Note: The above example was taken from a CRM trace from an EBCDIC machine,
so the “actual” and “native” columns both contain readabl e text.

APPC API Tracing

The BEA support team might request an APPC API trace for diagnosis of a customer
problem. The mapping of the APPC API traceis BEA internal.

The VTAM APPC API may be captured by enabling the APPC API tracing. The API
trace shows the parameters and val ues passed and returned to the VTAM APPC stack.
The API traceis captured to the GTF tracing facility. The GTF tracing facility must be
active in the mainframe region to capture the API traces.

After capturing the traces, you must format the print using GTF formatting procedures
such as IPCS. The APPC API traceiswrittento GTF as user id '2EA". Y ou may use
this ID tofilter the GTF print to include only the APPC API traces.

Refer to the BEA WebL ogic Java Adapter for Mainframe Configuration and
Administration Guide for information about setting APPC tracing.

7-8 BEA WebL ogic Java Adapter for Mainframe Programming Guide

APPC API Tracing

Viewing APPC Trace Output

The APPC API trace captures the parameters and values used by the CRM to make a
VTAM APPC request. Thetrace will show the APPC verb control block before and

after the request is made. The response to the request will show return codes and

returned v

alues.

The following example of arequest and a response was formatted by using the IBM
provided program | KJEFTO1.

HE{FOIMAT AID FF FID 00 EID EZER
+0000 OOF8Z400 EZCRCLCE CeCEDAF3
+0020 E3404040 000EO0O0 00000000
+0040 C4ESFLIFD C4DIEZFL 40404040
+0060 40404040 40404040 40404040
+0080 40404040 40404040 000040

HE{FORMAT AID FF FID 00 EID EZER
+0000 OOF8Z400 EEZCRCLCE CeCEDAFI
IPCE PRINT LOG FOR USER CER

24190260
Qooooood
40404040
40404040

24150260

E3D7EDEE
oooonaoo
40404040
40404040

E3D7EDEE

E3C1DAES
oooonaoa
40404040
40404040

E3C1DAES

CECADACE
nooonnoo
40404040
40404040

CECADACE

DR4CEEE
Qooonnoa
40404040
40404040

EZD7DEDE

.8, .BEAJOBOL. .E-TP_STARTEDREQUES
T
DYLODISL

.8, .BEAHOBOL. .E-TP_STARTEDRESPON

+0020 EzCECIDT EDDEDE40 40404040
+0040 OO0EQODD 000000OO 0000D000
+0060 C4DIEZFl 40404040 40404040
+0080 40404040 40404040 40404040
+00AD 40404040 000040

40404040
Qooooood
40404040
40404040

40404040
OB311D30
40404040
40404040

40404040
OB31ZE30
40404040
40404040

40404040
nooonnoo
40404040
40404040

40404040
C4ESFLFD
40404040
40404040

EEAP O
................. j..§......0WL0

BEA WebL ogic Java Adapter for Mainframe Programming Guide

7-9

7 Diagnostics

7-10 BEA WebLogic Java Adapter for Mainframe Programming Guide

CHAPTER

A DataView

Programming
Reference

This section provides the rules that allow you to identify what form a generated Java

class takes from a given COBOL copybook processed by the eGen Application

Generator (eGen utility). An understanding of the rules facilitates a programmer’s
ability to correctly code any custom programs that make use of the generated classes.

The eGen utility maps a COBOL copybook into a Java class. The COBOL copybook
contains a data record description. The eGen utility derives the generated Java class

from the com bea. dnd. dat avi ew. Dat aVi ew class (later referred to as Dat aVi ew),
which is provided on your WebL ogic JAM product CD-ROM inthejam j ar file.

This section discusses data mapping rulesin the following topics:

Field Name Mapping Rules

Field Type Mappings

Group Field Accessors
Elementary Field Accessors
Array Field Accessors

Fields with REDEFINES Clauses
COBOL Data Types

Other Access Methods for Generated DataView Classes

BEA WebL ogic Java Adapter for Mainframe Programming Guide

A-1

A DataView Programming Reference

m Known Limitations of WebLogic JAM working with COBOL Copybooks

Y ou should find the COBOL terms in this section easy to understand; however, you
may need to use a COBOL reference book or discuss the terms with a COBOL
programmer. Also, you can process a copybook with the eGen utility and examinethe
generated Java code in order to understand the mapping.

Field Name Mapping Rules

When you process a COBOL copybook containing field names, they are mapped to
Java names by the eGen utility. All alphabetic characters are mapped to lower case,
except in the following two cases.

1. All dashes are removed and the character following the dash is mapped to upper
case.

2. When aprefix is added to the name (as when creating a field accessor function
name), the first character of the base name is mapped to upper case.

Table A-1 lists some mapping examples.

Table A-1 Example Field Name Mapping from COBOL to Java and Accessor

COBOL Field Name JavaBase Name Sample Accessor Name
EMP- REC enpRec set EnpRec
500- REC- CNT 500RecCnt set 500RecCnt

Field Type Mappings

When you process a COBOL copybook, the data types of fields are mapped to Java
data types. The mapping is performed by the eGen utility according to the following
rules:

A-2 BEA WebL ogic Java Adapter for Mainframe Programming Guide

Field Type Mappings

A wonpoPE

o

Groups map to Dat aVi ew subclasses.
All aphanumeric fields are mapped to type St ri ng.
All edited numeric fields are mapped to type St ri ng.

All SI GN SEPARATE, BLANK WHEN ZEROOr JUSTI FI ED RI GHT fieldsare
mapped to type St ri ng.

SI GN | S LEADI NGis not supported.

The types COVP- 1, COVP- 2, COVP- 5, COVP- X, and PROCEDURE- POl NTER fields
are not supported (an error message is generated).

All I NDEX fields are mapped to Javatypei nt .
PO NTER mapsto Javatypei nt .

All numeric fields with any digits to the right of the decimal point are mapped to
type Bi gDeci mal .

10. All covp- 3 (packed) fields are mapped to type Bi gDeci nal .

11. All other numeric fields are mapped as shown in Table A-2.

Table A-2 Numeric Field Mapping

Number of Digits Java Type
<=4 short
>4and<=9 i nt
>9and<=18 | ong

> 18 Bi gDeci mal

BEA WebL ogic Java Adapter for Mainframe Programming Guide A-3

A DataView Programming Reference

Group Field Accessors

Each nested group in a COBOL copybook is mapped to a corresponding Dat aVi ew
subclass. The generated subclasses are nested exactly as the COBOL groupsin the
copybook. In addition, the eGen utility generates a private instance variable of this
classtype and aget accessor.

For example, the following copybook:
10 My- RECORD.
20 MY-GRP.
30 ALNUM FI ELD Pl C X(20).
Produces code similar to the following:

public MG p2V get MG p();
public static class MyG p2V extends DataVi ew

{
}

/1 Class definition

Elementary Field Accessors

Each elementary field is mapped to a private instance variable within the generated
DataView subclass. Accessto thisvariableis accomplished by two accessors that are
generated (set and get).

These accessors have the following forms:
public void setFiel dNane(Fi el dType val ue);
public FieldType getFiel dNane();

Where:

Fi el dType
is described in the Field Type M appings section.

Fi el dNane
is described in the Field Name Mapping Rules section.

A-4 BEA WebL ogic Java Adapter for Mainframe Programming Guide

Array Field Accessors

For exampl e, the following copybook:

10 MY- RECORD.
20 NUMERI G- FI ELD Pl C S9(5).
20 ALNUM FI ELD Pl C X(20).
Produces the accessors:

public void setNurericField(int val ue);
public int getNunericField();
public void set Al nunField(String val ue);
public String getA nuntiel d();

Array Field Accessors

Array fields are handled according to the field accessor rules described in Group Field
Accessors and Elementary Field Accessors, with the addition that each accessor takes
an additional i nt argument that specifies which array entry isto be accessed, for

example:
public void set Fi el dNare(i nt index, FieldType val ue);
public FieldType get Fi el dNane(i nt index);

Array fields specified with the DEPENDI NG ON clause are handled the same as
fixed-size arrays with the following special rules:

1. The accessors may be used to get or set any instance up to the maximum array
index.

2. The controlling (DEPENDI NG ON) variable is evaluated when the DataView is
converted to or from an external format, such as amainframe format. The eGen
utility converts only the array elements with subscripts less than the controlling
value.

BEA WebL ogic Java Adapter for Mainframe Programming Guide A-5

A DataView Programming Reference

Fields with REDEFINES Clauses

COBOL

Fieldsthat participatein a REDEFI NES set are handled as a unit. A private byt e[]
variableis declared to hold the underlying mainframe data, as well as a private

Dat aVi ew variable. Each of the redefined fields has an accessor or accessors. These
accessors take more CPU overhead than the normal accessors because they perform
conversions to and from the underlying byt e[] data.

For exampl e the copybook:

10 MY- RECORD.
20 | NPUT- DATA.
30 | NPUT- A PI C X(4).
30 | NPUT-B PIC X(4).
20 OUTPUT- DATA REDEFI NES | NPUT- DATA PIC X(8).

Produces Java code similar to the following:

private byte[] mredef23;

private DataView mredef 23DV,

public InputDataV getlnputData();

public String getQutputData();

public void set Qut put Data(String val ue);
public static class |nputDataV extends DataView

{

/1l Class definition.

}

Data Types

This section summarizes the COBOL data types supported by WebL ogic JAM
software. Table A-3 liststhe COBOL data item definitions recognized by the eGen
utility. Table A-4 lists the syntactical features and data types recognized by the eGen
utility. If a COBOL feature is unsupported and it is not listed as ignored in the table,
an error message is generated.

A-6 BEA WebL ogic Java Adapter for Mainframe Programming Guide

COBOL Data Types

Table A-3 Major COBOL Features

COBOL Feature Support
IDENTIFICATION DIVISION Unsupported
ENVIRONMENT DIVISION Unsupported

DATA DIVISION

Partialy Supported

WORKING-STORAGE SECTION

Partially Supported

Data record definition Supported

PROCEDURE DIVISION Unsupported

COPY Unsupported

COPY REPLACING Unsupported

EJECT, SKIP1, SKIP2, SKIP3 Supported
Table A-4 COBOL Data Types

COBOL Type Java Type

COMP, COMP-4, BINARY (integer)

Short/Int/Long

COMP, COMP-4, BINARY (fixed) BigDecimal
COMP-3, PACKED-DECIMAL BigDecimal
COMP-5 Unsupported
COMP-X Unsupported
DI SPLAY nurneri c (zoned) BigDecimal
BLANK WHEN ZERO(zoned) String

SIGN IS LEADING (zoned) Unsupported
SI GN | S LEADI NG SEPARATE (zoned) String
SIGN | S TRAI LI NG(zoned) String

BEA WebL ogic Java Adapter for Mainframe Programming Guide A-7

A DataView Programming Reference

Table A-4 COBOL Data Types

COBOL Type Java Type

SIGN |'S TRAI LI NG SEPARATE (zoned) String

edited numeric String

COwP-1, COWP-2 (float) Unsupported

edited float numeric String

DI SPLAY (al phanuneri c) String

edited alphanumeric String

INDEX Int

POINTER Int
PROCEDURE-POINTER Unsupported
JUSTIFIED RIGHT Unsupported (ignored)
SYNCHRONIZED Unsupported (ignored)
REDEFINES Supported

66 RENAMES Unsupported

66 RENAMES THRU Unsupported

77 level Supported

88 level (condition) Unsupported (ignored)
group record Inner Class

OCCURS (fi xed array) Array

OCCURS DEPENDI NG(vari abl e-1ength array) Array

OCCURS INDEXED BY Unsupported (ignored)

OCCURSKEY IS Unsupported (ignored)

A-8 BEA WebL ogic Java Adapter for Mainframe Programming Guide

Other Access Methods for Generated DataView Classes

Other Access Methods for Generated
DataView Classes

WebLogic JAM allows you to access DataView classes through several methods as
described in the following sections:

m Mainframe Access to DataView Classes
m XML Accessto DataView Classes

m Hashtable Access to DataView Classes

Mainframe Access to DataView Classes

This section describes how mainframe format data may be moved into and out of
DataView classes. The eGen Application Generator writes this code for you, so this
information is provided as reference.

Mainframe format data may be extracted from aDataView classthrough the use of the
Mai nf rameW it er class. Listing A-1 shows a sample of code that may be used to
perform the extraction.

Listing A-1 Sample Code for Extracting Mainframe Format Data from a
DataView Class

i mport com bea. base.i 0. Mai nframeWiter;
i mport com bea. dnd. dat avi ew. Dat aVi ew,

/**

* Get mainframe format data froma DataView into a byte[].
*/

byt e[] get Mai nfraneDat a(Dat aVi ew dv)

{

try
{

BEA WebL ogic Java Adapter for Mainframe Programming Guide A-9

A DataView Programming Reference

Mai nframeWiter mwv = new Mai nframeWiter();

/] To override the DataView s codepage, change the
/| above constructor call to sonething |ike:

/1 ...new Mai nframeWiter("cpl234");

return dv.toByteArray(nmw);
}

catch (java.io.| OException e)

/1 Some conversion failure occurred...

If you want to override the codepage provided when the DataView was generated, you
may provide another codepage asa St ri ng argument to the Mai nframeW i t er
constructor, as shown in the comment in Listing A-2.

Loading mainframe datainto aDataView isasimilar process, in this case requiring the
use of the Mai nf r aneReader class. Listing A-2 shows a sample of code that may be
used to perform the load.

Listing A-2 Sample Codefor Loading Mainframe Data into a DataView Class

i nport com bea. base. i 0. Mai nf ranmeReader ;
i mport com bea. dnd. dat avi ew. Dat aVi ew,

/**

* Put a byte[] containing mainframe fornmat data into a DataVi ew.
*/

MyDat aVi ew put Mai nf raneDat a(byte[] buffer)

{

Mai nf ramreReader nr = new Mi nfraneReader (buffer);

/1l To override the DataView s codepage, change the above
/1 constructor call to something like:

/1 ..new Mai nframeReader ("cpl234", buffer);

MyDat aVi ew dv;

A-10 BEA WebL ogic Java Adapter for Mainframe Programming Guide

Other Access Methods for Generated DataView Classes

try.

/'l Construct a new DataView with the mai nfrane dat a.
dv = new MyDataViewm nr);

/1 O, toload a pre-existing DataVi eww th mai nfrane dat a.
/1 dv.mainframeLoad(nr);

}

catch (java.io.| CException e)

/1 Some conversion failure occurred.

}

return dyv;

XML Access to DataView Classes

Facilities are provided to move XML datainto and out of DataView classes. These
operations are performed through the use of the Xn Loader and Xm Unl oader
classes.

Xm Loader isused to load XML datainto a DataView.
Xm Unl oader isused to unload datafrom a DataView into XML.

If the eGen script used to produce the DataView specifies the "support xml"
option, then both aDTD and an XML/Schema that describe the XML format for
this DataView are produced.

Listing A-3 shows an example of the code used to load XML datainto a DataView.

Listing A-3 Sample Codefor Loading XML Datainto a DataView

i nport com bea. dnd. dat avi ew. Dat aVi ew;
i mport com bea. dnd. dat avi ew. Xnml Loader ;

void | oadXm Data(String xm, DataView dv)

BEA WebLogic Java Adapter for Mainframe Programming Guide A-11

A DataView Programming Reference

Xm Loader x| = new Xml Loader ();
try
{
/1 Load the xml. Note that the xml argunent may be either

// a String or a org.w3c.dom El ement obj ect.
xI.load(xm, dv);

catch (Exception e)

/1l Some conversion error occurred.

Listing A-4 shows an example of the code used to unload a DataView into XML.

Listing A-4 Sample Code for Unloading a DataView into XML

i nport com bea. dnd. dat avi ew. Dat aVi ew;
i mport com bea. dnd. dat avi ew. Xnl Unl oader;

String unl oadXnl Dat a(Dat aVi ew dv)

{
Xm Unl oader xu = new Xnl Unl oader () ;
try
{
String xm = xu.unl oad(dv);
return xm;
catch (Exception e)
/1 Some conversion error occurred.
}
}

A-12 BEA WebL ogic Java Adapter for Mainframe Programming Guide

Other Access Methods for Generated DataView Classes

Hashtable Access to DataView Classes

WebLogic JAM also provides facilities to load and unload DataView objects using
Hashtabl e objects. Hashtabl e objects are most often used to move data from one
DataView to another similar DataView.

When DataView fields are moved into Hashtables, each field is given akey that isa
string reflecting the location of the field within the original copybook data structure.
Listing A-5 shows a sample of a COBOL Copybook.

Listing A-5 Sample emprec.cpy COBOL Copybook

1 K e e e e e e m m e mmm———— - =
2 * enprec. cpy

3 * An enpl oyee record.

4 L
5

6 02 enp-record.

7

8 04 enp- ssn pic 9(9) conp-3.
9

10 04 enp- narme.

11 06 enp- nane- | ast pi ¢ x(15).

12 06 enp-name-first pic x(15).

13 06 enp- nanme- m pi c X.

14

15 04 enp- addr .

16 06 enp- addr - street pic x(30).

17 06 enp- addr - st pic x(2).

18 06 enp- addr-zi p pic x(9).

19

20 * End

The fields for the COBOL Copybook in Listing A-5 are stored into a Hashtable as
shownin Table A-5.

BEA WebL ogic Java Adapter for Mainframe Programming Guide A-13

A DataView Programming Reference

Table A-5 COBOL Copybook Hashtable

Key String Content Type

empRecord.empSsn BigDecimal

empRecord.empName.empNameL ast String

empRecord.empName.empNameFirst String

empRecord.empName.empNameMi String

empRecord.empAddr.empAddrStreet String

empRecord.empAddr.empAddrSt String

empRecord.empAddr.empAddrZip String

Code for Unloading and Loading Hashtables
Following is an example of the code used to unload a DataView into a Hashtable.
Hasht abl e ht = new Hasht abl eUnl oader (). unl oad(dv);

Following is an example of the code used to load a Hashtable into an existing
DataView.

new Hasht abl eLoader (). | oad(dv);

Rules for Unloading and Loading Hashtables

The basic rules of Hashtable unloading are:
m All dataelementsin the DataView are placed into the Hashtable.

m Each dataitem is stored as an object of its Javatype. Elements of
i nt/short/| ong typeare converted to | nt eger/ Short/ Long.

m Arraysare mentioned at the appropriate level in the key as an index enclosed in
“[","]" pairs. For instance, if empAddr was an array, then one key into the
Hashtable might be enpRecor d. enpAddr [2] . enpAddr St r eet .

A-14 BEA WebL ogic Java Adapter for Mainframe Programming Guide

Other Access Methods for Generated DataView Classes

The basic rules of Hashtable loading are:

m All dataelementsin the DataView attempt to acquire a value from the
Hashtable. If no matching key exists, the element retains its original value.

m Hashtable members of the wrong typeresult in ad assCast Except i on being
thrown.

Name Translator Interface Facility

A nametrandator interface facility is available to provide Hashtable name mappings.
Both Hasht abl eLoader and Hasht abl eUnl oader provideaconstructor that accepts
an argument of typecom bea. dmd. dat avi ew. NameTr ansl at or . Table A-6 liststhe
descriptions of the public interface methods that must be implemented.

Table A-6 Name Trandlator Interface

Method Description

translate(String input) This method received a St r i ng object as an input
parameter and returnsa St r i ng object.

Y ou can write classes that implement this interface for your application. These
implementations are used to trandlate the key strings before the Hashtable is accessed.

Following are some useful implementations that are included in the WebL ogic JAM

library:
Class Constructor Purpose
NameFl attener() Reduces the key to the portion following the

final period character.

PrefixChanger(String old, String add) Removes an old prefix & adds anew one.

PrefixChanger(String ol d) Removes a prefix.

The Hasht abl eLoader , Hasht abl eUnl oader, and the various name translator
classes are included in the "com.bea.dmd.dataview" package.

BEA WebL ogic Java Adapter for Mainframe Programming Guide A-15

A DataView Programming Reference

Known Limitations of WebLogic JAM
working with COBOL Copybooks

Following are some of the known limitations of this version of the WebL ogic JAM
product.

m Continuation lines are not recognized in COBOL copybooks. Thisisonly a
problem for long character literals occurring within VALUES clauses. Comment
out the relevant clause to fix the problem.

m COBOL copybooks with array (table) dataitems having an OCCURS DEPENDI NG
ON clause must be structured so that the depending-on counter dataitem is not
contained within the same group data item as the one containing the array.

m USAGE clauses on group dataitemsin COBOL copybooks are not properly
propagated to their subordinated member dataitems.

A-16 BEA WebL ogic Java Adapter for Mainframe Programming Guide

CHAPTER

B

eGen Application
Generator Reference

This section contains reference pages for the WebL ogic JAM eGen Application
Generator (eGen utility). Thisinformation includes the rules for writing the script file
that controls the code generator.

Synopsis

The eGen utility maps a COBOL copybook into a Java class.
Invoke the utility with the following command:

java com bea.j am egen. EgenCobol scriptfile
where:

java
isthe name of the Javavirtual machine executableinthe Java Devel opment Kit
(JDK).

com bea. j am egen. EgenCabol
isthe full class name of the eGen utility.

scriptfile
isthe script file that controlsthe eGen utility. Y ou must write this script file on
an application-by-application basis. (See Listing B-1 for an example).

BEA WebL ogic Java Adapter for Mainframe Programming Guide B-1

B eGen Application Generator Reference

If the WebL ogic JAM installation bin directory has been added to your path, the eGen
utility may also be invoked with the following command:

egencobol scriptfile

ListingB-1 Exampleof scriptfile. egen

exanpl e scri pt
#

vi ew deno. Cust onDat aVi ew from enprec. cpy
servi ce denpServi ce accepts CustonDataVi ew returns CustonDataVi ew

page denoPage "Denop Page"

{
vi ew denvo. Cust onDat aVi ew
butt ons
{
"Try It" service(denpService) shows denpPage
}
}

servl et denp. DenpServl et shows denpPage

Script Syntax Reserved Words

The reserved words shown below must be used as specified in the Grammar section.

Note: A reserved word can be used asan identifier if it isenclosed in either single or
double quotation marks (refer to General Rules).

accepts buttons cl ass client codepage ejb

from generate group is net hod page

B-2 BEA WebL ogic Java Adapter for Mainframe Programming Guide

General Rules

reset returns server service servl et shows

support Vi ew transaction xnl

General Rules

m The'# character and all following characters on the same line are a comment.
Usethe* # character to specify commented text.

m The character sequence“//” and al following characters on the sameline are a
comment. Usethe“//” charactersto specify commented text.

m The character sequence“/ *” and all following characters until the occurrence of
the sequence* */” areacomment. Usethe“/*" charactersto specify
commented text that extends beyond one line.

m White space (including new lines) is not significant, except when it is used to
separate tokens. White space includes new lines, carriage returns, tabs, spaces,
etc.

m Any sequence of letters, digits, underscores, or periodsis aword.
m Any word that does not match areserved word is an identifier.

m Any sequence of charactersistreated as an identifier if it isenclosed in either
single or double quotes. This allows the use of reserved words and sequences
that contain spaces.

Grammar

The eGen script grammar uses amodified Backus-Naur Form (BNF) syntax, whichis
used in many industry-standard software reference guides. BNF syntax specifiesa
context-free grammar. Reserved words are shown in bold. Comments are in italics
preceded by a dash (—).

BEA WebL ogic Java Adapter for Mainframe Programming Guide B-3

B eGen Application Generator Reference

script:
definition | script definition

full definition:
generate definition | definition

definition:
vi ewdef | servicedef | servletdef | ejbdef | classdef
pagedef

vi ewdef :
vi ew vi ewnanme from copybook | viewdf viewrodifier

vi ewnodi fi er:
codepage codepagenane | support xml

servi cedef :
service servi cenanme accepts full Vi ewnane returns full Vi ewnane

servl et def:
servl et classnane shows pagenane

ej bdef:
clientejb | serverejb

clientejb:
client ejb classnanme ej bspec { clientnethods }

serverejb:
server ejb classnane ej bspec { servernethoddef }

cl assdef :
client class classnane { clientnethods }

ej bspec:
ejbregistration | ejbregistration transacti ondef

transacti ondef:
transaction [Not Supported | Required | Supports
Requi resNew | Mandatory | Never]

pagedef :
page pagenane title { view viewnane buttons { buttonlist } }

buttonlist:
buttondef | buttonlist buttondef

but t ondef :
servicebutton | ejbbutton

B-4 BEA WebL ogic Java Adapter for Mainframe Programming Guide

Grammar

cl i ent met hods:
clientnmet hoddef | clientnethods clientnethoddef

cli ent met hoddef :
net hod net hodnane i s servi cenane

server met hoddef :
met hod net hodnane (fullvi ewnane) returns fullviewnane

servi cebutton:
butt onnane service (servicenanme) shows pagenane

ej bbutton
butt onnane ej bmethod () shows pagenane

Vi ewnane:
cl assnane

full Vi ewnane:
vi ewnane | vi ewname [codepagenane]

copybook:
identifier
—Anidentifier that names a file containing a COBOL data definition.

servi cenane:
identifier
—Anidentifier that matches a resource definition in your j cr mgw. cf g file

pagenane:
identifier
—Anidentifier that names a page definition.

codepagenane
identifier
—The name of a codepage to be used for character translation to/from
mainframe data formats. This must be a codepage supported by the JDK being
used.

nmet hodnane
identifier
—The name to be given to a generated Java method.
cl assnane:
identifier
—Anidentifier that names a Java class, including any package name.

BEA WebL ogic Java Adapter for Mainframe Programming Guide B-5

B

eGen Application Generator Reference

ej bregistration

identifier
—The name that will be used to register the home interface for an EJB.

title:

identifier
—Thetitle to be placed into the HTML generated for a page.

but t onnane:

identifier
—A button name that will be used in the HTML generated for a page.

ej bnmet hod

identifier
—An EJB classname and method specification that should ook like this:
package. ej bcl ass. net hod
or
ej bcl ass. net hod

Results of Running the eGen Application
Generator

B-6

m The specified COBOL copybook is parsed for each DataView definition

(described in DataView Programming Reference) and a Java source file for the
specified DataView classis generated in the current directory.

If XML support was requested, then the following files are also produced:
e vi ewnane.dtd -DTD file

e vi ewname.xsd - XML Schemafile

For each servlet definition, a Java source file is generated in the current directory
for the specified class.

For each client class definition, a Java source file is generated in the current
directory for the specified class.

BEA WebL ogic Java Adapter for Mainframe Programming Guide

Results of Running the eGen Application Generator

m For each EJB definition, three Java source files, a WebL ogic deployment
information file, and a deployment descriptor text file are generated in the
current directory. The names of the generated files are listed in below.

Name of File Purpose

cl assnanmeHone. j ava EJB Home Interface

cl assnanmeBean. j ava EJB Implementation class
cl assnane. j ava EJB Remote Interface

cl assname-j ar.xm EJB Deployment descriptor
w - cl assnane-j ar. xm WebL ogic Deployment Info

BEA WebL ogic Java Adapter for Mainframe Programming Guide B-7

B eGen Application Generator Reference

B-8 BEA WebL ogic Java Adapter for Mainframe Programming Guide

CHAPTER

C Understanding How

WebLogic JAM Uses
XML

BEA WebL ogic Java Adapter for Mainframe (WebL ogic JAM) uses the capabilities
of XML to exchange data between different applications and operating systems.
Understanding basic XML termswill help you to understand WebL ogic JAM’s XML
capabilities and how they are used.

This section discusses the following topics:
m WhatisXML?

e Document Type Definition

e DTD Generated from eGen Application Generator (emprec.dtd)
m How WebLogic JAM Uses XML

What is XML?

Extensible Markup Language, or XML, isatext format for exchanging data between
different systems. It allows datato be described in asimple, standard, text-only format.
Since the datais presented in a standard form, applications on disparate systems can
interpret the data using simple text parsing tools, instead of having to interpret datain
proprietary binary formats.

BEA WebL ogic Java Adapter for Mainframe Programming Guide C-1

C Understanding How WebLogic JAM Uses XML

XML documents come in two varieties: data and metadata.

m XML Data Document

Data records can be converted into XML documents, which can then be
transmitted to other applications. The XML data documents contain asingle
top-level entity (or tag) that represents the entire data record. Fields within the
record are represented by other subordinate entities nested within the top-level
entity. Each entity has a unique tag name, which corresponds to afield within
the original data record. Each entity has content, which is the actual data value
of the field. Entities may also have attributes, which are values attached to the
entities that augment the normal content values. The XML data document file
name ends with a.xml extension.

See Listing C-2 for an example XML data document.
m XML Metadata

Every XML document consists of atop-level entity, which in turn may be
composed of subordinate entities. The structure of these entities, which included
their tag names, the order in which they occur, the type and length of their
content values, and their allowed attribute values, is described by a metadata
definition. Metadata definitions can take the form of XML documents
themselves. There are two standard formats for XML metadata documents: XML
Document Type Definition (DTD) and XML Schema.

Document Type Definition

A Document Type Definition, or DTD, defines the legal building blocks of an XML
document. It defines the document structure with alist of legal elements (tags). While
XML provides an application independent way of sharing data, the DTD provides a
common definition for interchanging data.

Y our application can use a standard DTD to verify that data that you receive from the
outside world isvalid. You can also use aDTD to verify your own data.

The XML DTD file name ends with a .dtd extension.

See Listing C-3 for an example XML DTD document.

C-2 BEA WebL ogic Java Adapter for Mainframe Programming Guide

How WebLogic JAM Uses XML

XML Schema

A schema specifies the structure of an XML document and constraints on its content.
While XML isthe meta-language that providesthe rulesfor defining tag languages, an
XML Schema document is aformal specification of the grammar for a particular tag
language. The schema defines the elements that can appear within the document and
the attributes that can be associated with an element. It al so definesthe structure of the
document: which elements are child elements of others, the sequence in which the
child elements can appear, and the number of child elements. It defines whether an
element is empty or can include text. The schema can a so define default values for
attributes.

XML Schemais more precise than DTD, providing more descriptive information
about each XML element. It islikely that XML Schemawill eventually replace XML
DTD as the dominant standard metadata format.

A schemais useful for validating the document content to determine whether a
document isavalid instance of the grammar expressed by that schemaand for
describing your grammar for use by others.

The XML Schema file name ends with a .xsd extension.

See Listing C-4 for an example XML Schema document.

How WebLogic JAM Uses XML

TheWebL ogic JAM eGen Application Generator providesthe ability to generate both
XML Schemaand XML DTD (Document Type Definition) documents for agiven
COBOL copybook record definition. The WebL ogic JAM runtime environment
providesthe capability of converting datarecordsinto XML datadocuments formatted
according to their corresponding schemaor DTD definitions.

The following listings show examples of the XML files generated by the eGen utility
from the COBOL Copybook for an employee information record.

Listing C-1 shows an example of an employee information record from a COBOL
Copybook. The eGen utility generatesan XML Schemaand aDTD from the employee
information record. Listing C-2 shows the corresponding XML document that

BEA WebL ogic Java Adapter for Mainframe Programming Guide C-3

C Understanding How WebLogic JAM Uses XML

conformsto the XML Schemaand DTD generated from the employee record
information, Listing C-3 shows the corresponding DTD, and Listing C-4 shows the
corresponding XML Schema.

ListingC-1 COBOL Copybook for Employee Information Record (emprec.cpy)

enpr ec. cpy
Enpl oyee record.

L I

@#)$ld: enprec.cpy,v 1.2 1999/11/12 01:16:41 $

02 enp-record.

04 enp-ssn pic 9(9) conp-3.
04 enp-nane.

06 enp-nane-| ast pi ¢ x(15).

06 enp-name-first pi ¢ x(15).

06 enp- name-m pi c X.
04 enp-addr.

06 enp-addr-street pi ¢ x(30).

06 enp-addr-st pic x(2).

06 enp-addr-zip pic x(9).

* End

Listing C-2 Example XML Document that Conformstoa DTD and XML
Schema Generated from the eGen Application Generator (emprec.xml)

<enpr ec>
<enpRecor d>
<enpSsn>660337645</ enpSsn>
<enmpName>
<enpNanelLast >Doe</ enpNaneLast >
<enpNaneFi r st >John</ enpNaneFi r st >
<enpNameM >P</ enpNaneM >
</ enpNane>
<enpAddr >
<enpAddr St reet >3235 Possum Park Ln. </ enpAddr Street >
<enpAddr St >TX</ enpAddr St >
<enpAddr Zi p>758050000</ enpAddr Zi p>

C-4 BEA WebL ogic Java Adapter for Mainframe Programming Guide

How WebLogic JAM Uses XML

</ enpAddr >
</ enpRecor d>
</ enprec>

Listing C-3 DTD Generated from eGen Application Generator (emprec.dtd)

<l--
| DID enprec 1.0

I

I Definition: enprec

I Version: 1.0

I Source: ../ synbol / enpr ec. cpy

I Gener at ed: 2000- 09- 27T19: 18: 25. 084Z
I Created: 2000- 09- 27T19: 18: 24. 9372
I Modified: 1999- 11- 12T01: 16: 41. 000Z
I

>

<! ELEMENT enprec
(enmpRecord)>

<I ATTLI ST enprec
dat e CDATA #DEFAULT "unknown" >
<l-- format="ccyy-mm ddThh: nm ss. nm" -->

<! ATTLI ST enprec
ver si on CDATA #DEFAULT "1.0">

<l-- enpRecord -->
<! ELEMENT enmpRecord
(enmpSsn ,
enpNane
enpAddr) >

<!'-- enpRecord. enpSsn -->
<I ELEMENT enpSsn
(#PCDATA) >

<!-- enpRecord. enpNane -->

<! ELEMENT enpNane

(enpNaneLast ,
enpNaneFirst ,
enpNameM) >

<!-- enpRecord. enpNane. enpNaneLast -->

BEA WebL ogic Java Adapter for Mainframe Programming Guide

C-5

C Understanding How WebLogic JAM Uses XML

<I ELEMENT enpNanelLast
(#PCDATA) >

<!-- empRecord. enpNane. enpNaneFi rst -->
<! ELEMENT enpNaneFi r st
(#PCDATA) >

<!-- enmpRecord. enpNane. enpNaneM - ->
<! ELEMENT enpNaneM
(#PCDATA) >

<!-- enpRecord. enpAddr -->
<! ELEMENT enpAddr
(enpAddr Street ,
enpAddr St
enpAddr Zip)>

<!-- enmpRecord. enpAddr . enpAddr Street -->
<! ELEMENT enpAddr Str eet
(#PCDATA) >

<l-- enmpRecord. enpAddr. enpAddr St -->
<! ELEMENT enpAddr St
(#PCDATA) >

<!-- enpRecord. enpAddr. enpAddrZip -->
<! ELEMENT enpAddr Zi p
(#PCDATA) >

<l-- End -->

Listing C-4 XML Schema Generated from eGen Application Generator
(emprec.xsd)

<?xm version="1.0"7?>
<schenma
xm ns: xsd="htt p://ww. w3. or g/ 1999/ XM_Schena" >

<xsd: annot ati on>
<xsd: docunent ati on>

Schema: enpr ec

Ver si on: 1.0

Sour ce: ../ synbol / enpr ec. cpy
Gener at ed: 2000- 09- 27T19: 19: 42. 857Z
Cr eat ed: 2000- 09-27T19: 19: 43. 708Z

C-6 BEA WebL ogic Java Adapter for Mainframe Programming Guide

How WebLogic JAM Uses XML

Modi fi ed: 1999-11-12T01: 16: 41. 000Z
</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: el enent nane="enprec">
<xsd: conpl exType>

<xsd:attribute nane="date"
type="xsd:tinelnstant"/>

<xsd:attribute nanme="version"
type="xsd: string"
use="defaul t"
val ue="1.0"/>

<xsd: el enent name="enpRecord">
<xsd: conpl exType>

<xsd: el enent nane="enpSsn" >
<xsd: si npl eType base="xsd:i nteger">
<xsd: preci si on val ue="9"/>
<xsd: m nl ncl usi ve val ue="0">
</ xsd: si npl eType>
<l-- <%icture value="9(9)"/> -->
</ xsd: el ement >

<xsd: el ement nane="enpNane" >
<xsd: conpl exType>

<xsd: el enent nane="enpNaneLast"
type="xsd: string"
| engt h="15"/>
<I-- <%icture value="x(15)"/> -->

<xsd: el enent nane="enpNaneFi rst"
type="xsd: string"
| engt h="15"/>
<l-- <%icture value="x(15)"/> -->

<xsd: el ement nanme="enpNanmeM "
type="xsd: string"
| engt h="1"/>
<I-- <%icture value="x"/> -->

</ xsd: conpl exType>
</ xsd: el enent > <! --"enpNane"- - >

<xsd: el ement nane="enpAddr" >
<xsd: conpl exType>

BEA WebL ogic Java Adapter for Mainframe Programming Guide C-7

C Understanding How WebLogic JAM Uses XML

<xsd: el ement nane="enpAddr Street"
type="xsd: string"
| engt h="30"/>
<l-- <Y%icture value="x(30)"/> -->

<xsd: el enent nanme="enpAddr St"
type="xsd: string"
| engt h="2"/>
<l-- <Yicture value="x(2)"/> -->

<xsd: el ement nane="enpAddr Zi p"
type="xsd: string"
| engt h="9"/>
<l-- <Y%icture value="x(9)"/> -->

</ xsd: conpl exType>
</ xsd: el ement > <!--"enpAddr"-->

</ xsd: conpl exType>
</ xsd: el enent > <!--"enpRecord"-->
</ xsd: conpl exType>

</ xsd: el enent> <!--"enprec"-->

</ schema>

C-8 BEA WebL ogic Java Adapter for Mainframe Programming Guide

Index

A
accessors A-4
alphanumeric field
rules for mapping A-3
Application models
inbound 3-1, 3-7
outbound 3-2, 3-15
array field
rules for mapping A-5

B
BigDecimal
rules for mapping to A-3
BLANK WHEN ZERO field
rules for mapping A-3

C

CLASSPATH 3-21
Client loopback 7-5
Client stub operation 7-6
COBOL copybook
creating 2-4
existing 2-5
LINKAGE SECTION 2-4
obtaining 2-4
processing by eGen Application
Generator B-6
rules for mapping into a Java class A-1
rules for mapping REDEFINES A-6

sample 2-5
COBOL datatypes
syntax features and data types supported
by eGen Application Generator
A-6
context-free grammar
rules for eGen script B-3

D

DataView 2-6
Deployment
quick start 4-7
sample 4-4
Deployment descriptors
merging 4-4
renaming 4-2

E

edited numeric field
rules for mapping A-3
eGen Application Generator
rules for generating code A-1
rules for writing script file B-1
eGen script
application section 3-3
components of client EJB 3-21
components of HTML page definition 3-
30
components of server EJB 3-7
components of servlet definition 3-32

BEA WebL ogic Java Adapter for Mainframe Programming Guide -1

components of stand-alone client 3-16
DataView section 2-7
genera form 3-3
processing 2-8
writing 2-6
eGenClient
locating Gateways 6-3
making mainframe requests 6-4
using directly for trandlation 6-2
EJB
Home Interface class generated by eGen
Application Generator B-7
Implementation class generated by eGen
Application Generator B-7
Remote Interface class generated by
eGen Application Generator B-
7
EJB application
customizing 3-13, 3-26, 3-33
deploying 4-1
elementary field
rules for mapping A-4

F

field name
rules for mapping into Java name A-2

G
group field

nested, rules for mapping A-4
groups

rules for mapping A-3

Inbound application models 1-5, 3-1, 3-7
INDEX field
rules for mapping A-3

J
jar file
jam_11.jar file on product CDOROM A-1
Java application
customizing a client EJB application 3-
26
customizing a server EJB application 3-
13

customizing servlet-only 3-33
Java application code 3-2
Java application models 3-1
Java code

compiling 2-9
Java data types

converting to COBOL data types 2-4
Java Development Kit (JDK) B-1
JMS 3-36
JUSTIFIED RIGHT field

rules for mapping A-3

M

MainframeReader
public interface 6-12
tranglating data buffers 6-15
MainframeWriter
creating data buffers 6-10
public interface 6-5

N

numeric field
rules for mapping A-3

o]
Outbound application models 3-2, 3-15

R
REDEFINES clause

[-2 BEA WebL ogic Java Adapter for Mainframe Programming Guide

rules for mapping A-6

S
Security
configuring in client program 3-35
identify 3-34
local 3-34
verify 3-34
Servlet
deploying 4-1
SIGN ISTRAILING field
rules for mapping A-3

X

XML
DTD C-2
Schema C-2
varieties C-2
What XML isC-3

BEA WebL ogic Java Adapter for Mainframe Programming Guide

-3

-4 BEA WebL ogic Java Adapter for Mainframe Programming Guide

	Restricted Rights Legend
	Trademarks or Service Marks
	1 Introduction to Generating Applications
	Understanding How WebLogic JAM Uses DataViews
	Understanding How WebLogic JAM Provides Programmatic Access to Services
	Application Model Overview
	Mainframe to WebLogic Server Application Models
	WebLogic Server to Mainframe Application Models

	Roadmap for WebLogic JAM Programming

	2 Generating a Java Application with the eGen Application Generator
	Understanding eGen
	Working With COBOL Copybooks
	Obtaining a COBOL Copybook
	Creating a New COBOL Copybook
	Using an Existing COBOL Copybook

	Limitations of the eGen Utility

	Writing an eGen Script
	Writing the DataView Section of an eGen Script

	Processing eGen Scripts with the eGen Utility
	Creating an Environment for Generating and Compiling the Java Code
	Generating the Java DataView Code
	Special Considerations for Compiling the Java Code

	3 Basic Programming Techniques
	Choosing an eGen Java Application Model
	Generating the Java Application Code

	General Form of an eGen Script
	Writing the Application Section of an eGen Script
	List of Services
	List of Application Components

	Mainframe to WebLogic Server Application Models
	Generating a Server Enterprise Java Bean-Based Application
	Components of an eGen Server EJB Script
	Generated Files
	SampleServer.java Source File
	SampleServerBean.java Source File
	SampleServerHome.java Source File
	SampleServer-jar.xml Source File
	wl-SampleServer-jar.xml Source File

	Customizing a Server Enterprise Java Bean-Based Application
	Compiling and Deploying

	WebLogic Server to Mainframe Application Models
	Generating a Stand-Alone Client Application
	Components of an eGen Stand-Alone Application Script
	Generated Files
	Customizing a Stand-Alone Java Application

	Generating a Client Enterprise Java Bean-Based Application
	Components of an eGen Client EJB Script
	Generated Files
	SampleClient.java Source File
	SampleClientBean.java Source File
	SampleClientHome.java Source File
	SampleClient-jar.xml Source File
	wl-SampleServer-jar.xml Source File

	Customizing an Enterprise Java Bean-Based Application
	Compiling and Deploying

	Generating a Servlet Application
	Components of an eGen HTML Page Definition
	Components of an eGen Servlet Definition
	Generated Files
	Customizing a Servlet WebLogic JAM Application

	Supplying Security Credentials
	Security Levels
	Supplying Security Credentials in a WebLogic JAM Client Program

	WebLogic JAM to JMS

	4 Deploying Applications
	Deploying a WebLogic JAM eGen EJB
	Renaming Deployment Descriptors
	Adding Business Logic to a Generated EJB
	Merging Multiple Deployment Descriptors
	Sample EJB Deployment

	Deploying a WebLogic JAM eGen Servlet (Quick-Start Deployment)

	5 Understanding Programming Flows
	Distributed Program Link Programming Flows
	Java Client Request/Response to CICS DPL
	CICS Request/Response DPL to WebLogic Server EJB
	CICS DPL Asynchronous No Reply to WebLogic Server Application
	Transactional Java Client Request/Response to CICS DPL
	Transactional CICS Request/Response DPL to WebLogic Server EJB

	IMS Implicit APPC Programming Flows
	Java Client Request/Response to IMS Transaction Program
	IMS Asynchronous No Reply Transaction Program to Java Server
	Transactional Java Client Request/Response to IMS Transaction Program

	Common Programming Interface for Communications Programming Flows
	Java Client Request/Response to Host CPI-C
	Host CPI-C Request/Response to WebLogic Server EJB
	Host CPI-C Asynchronous No Reply to Java Server
	Transactional Java Client Request/Response to Host CPI-C
	Transactional Host CPI-C Request/Response to WebLogic Server EJB

	6 Performing Your Own Data Translation
	Why Perform Your Own Data Translation?
	Using EgenClient Directly
	How EgenClient Locates a WebLogic JAM Gateway
	Using EgenClient to Make a Mainframe Request

	Translating Buffers from Java to Mainframe Representation
	MainframeWriter Public Interface
	Using MainframeWriter to Create Data Buffers

	Translating Buffers from Mainframe Format to Java
	MainframeReader Public Interface
	Using MainframeReader to Translate Data Buffers

	7 Diagnostics
	Gateway Statistics
	Gateway Tracing
	Low-Level Client Diagnostics
	Client Loopback
	Client Stub Operation

	CRM Tracing
	Viewing Trace Output

	APPC API Tracing
	Viewing APPC Trace Output

	Field Name Mapping Rules
	Field Type Mappings
	Group Field Accessors
	Elementary Field Accessors
	Array Field Accessors
	Fields with REDEFINES Clauses
	COBOL Data Types
	Other Access Methods for Generated DataView Classes
	Mainframe Access to DataView Classes
	XML Access to DataView Classes
	Hashtable Access to DataView Classes
	Code for Unloading and Loading Hashtables
	Rules for Unloading and Loading Hashtables
	Name Translator Interface Facility

	Known Limitations of WebLogic JAM working with COBOL Copybooks
	Synopsis
	Script Syntax Reserved Words
	General Rules
	Grammar
	Results of Running the eGen Application Generator
	What is XML?
	Document Type Definition
	XML Schema

	How WebLogic JAM Uses XML

	Index

