

Tools Guide

Version 3.5

TOOLS... 3

DESIGNER TOOLS... 3
DATAGEN .. 4
FLATTEN .. 5
MAPPER ... 6
TESTSWIFT .. 8
EXPORT.. 10
DUMPMESSAGES ... 11
CODEGEN .. 11
BUILDING CARTRIDGES WITH ANT .. 12
CARTRIDGE PUBLISHER ... 14
SCHEMA2CAR .. 15
JAVASIMULATOR ... 15
TEMPLATE ... 16
CSV EXPORT ... 16

SQL TOOLS.. 17
SCHEMA GENERATOR .. 18
SQL GENERATOR .. 20
EXECUTE SQL ... 21
SQL CONSOLE ... 22

Tools

Designer comes with a set of utilities for the convenience of the user. The available
tools are,

 Designer Tools
 SQL Tools

Designer Tools

This section explains the various Designer utilities available. These include some
utilities, which are specific for testing SWIFT formats only.

The batch files for the tools assume that you are working on Windows NT platform
(NT4, 2000, XP or 2003).

The utilities that are supported are

 DataGen
 Flatten
 Mapper
 TestSwift
 Export
 DumpMessages
 CodeGen
 Building Cartridges with Ant
 Cartridge Publisher
 Schema2car
 JavaSimulator
 Template
 CSV Export
 SQL Tools

See Also:

Tools

DataGen

This utility generates test data as .dat files for swift message formats.

Syntax

datagen [options] {format} {no of testcases } [random seed]

 (or)

datagen [options] {cartridge!format} {no of testcases } [random seed]

Where

 Options

-input Generate swift sample with input header
-output Generate swift sample with output header (default option)

 format is the swift message format for which .dat files have to be generated.

 cartridge!format is the name of cartridge file(.car) along with the name of the

swift format in the cartridge file for which .dat files have to be generated. The
format is necessary because a cartridge may contain multiple swift formats. The
cartridge name and the format name should be separated by ‘!’ symbol.

 no of testcases specifies the number of .dat files to be generated.

 random seed is the optional random seed value. Specify the same random seed to

generate the same set of test cases.

Note

Please note that if the format for which data has to be generated has network
validation rules, the data generated will not always conform to the rules. However
the data generated will conform to code validation rules that have been specified in
the format.

Output Directories

 If ‘format’ option is specified then the .dat files will be generated in the directory

from where this utility is run.

 If ‘cartridge!format’ option is specified then the .dat files will be generated in the

directory where the cartridge file is present.

Examples

datagen MT543 100
datagen MyCar.car!MyFormat 100
datagen –input MT543 100

Please refer Designer Tools for the list of other utilities that are available.

Flatten

This utility generates an XML file to represent the internal message format
corresponding to the swift format specified as argument or the swift format in a
cartridge in case a cartridge is specified as argument.

This generated file is flattened (i.e.) the inner fields in the format are represented by
combining the section names and the field names.

It also generates XML files for input format mapping and output format mapping.
These files can be imported to a cartridge containing input and output formats for
which these XML files have been generated. This minimizes the task of entering the
normalized object fields manually as well as input and output mapping.

Flattening Rules:

Non-repeating sections are removed (flattened) and all its fields are moved to the
parent format. This applies to both top-level and nested sections.

If a section to be flattened is optional, all its child fields are made optional (in the
flattened structure).

Syntax

flatten {format} [-noheadertrailer] [-input|-output]

 (or)

flatten {cartridge!format} [-noheadertrailer]

Where

 Format is the swift message format for which is to be flattened.

 cartridge!format is the name of cartridge file(.car) along with the name of the

swift format in the cartridge file which is to be flattened. The format is necessary
because a cartridge may contain multiple swift formats. The cartridge name and
the format name should be separated by ‘!’ symbol.

 If noheadertrailer option is specified the flattened XML files will not contain

header/trailer fields. By default the flattened XML files will contain header/trailer
fields.

 If input option is specified then the flattened XML files will contain input header

fields.

 If output option is specified then the flattened XML files will contain output

header fields. This is the default option.

Note:

 If -input|-output options are not given by default the generated XML files will
contain output header fields.

 Please note that the –input and –output options need not be specified when you

are flattening a format in a cartridge. The flatten utility will generate the XML files
based on the type of header selected for the format that is to be flattened.

Output Directories

 If ‘format’ option is specified then the XML files for the normalized object and

input/output mapping will be generated in the directory from where this utility is
run.

 If ‘cartridge!format’ option is specified then the xml files for the normalized

object and input/output mapping will be generated in the directory where the
cartridge file is present.

Examples

flatten MT543
flatten MyCar.car!MyFormat
flatten MT543 –input
flatten MT543 -noheadertrailer

Please refer Designer Tools for the list of other utilities that are available.

Mapper

This is similar to ‘Flatten’ utility, but the generated XML files are not flattened.(i.e)
sections in the swift message format are represented in the generated XML files.

These files can be imported to a cartridge containing input and output formats for
which these XML files have been generated. This minimizes the task of entering the
normalized object fields manually as well as input and output mapping.

Syntax

mapper {format} [-noheadertrailer] [-input|-output]

 (or)

mapper {cartridge!format} [-noheadertrailer]

Where

 Format is the name of the swift message format for which XML files for the

normalized object and for input/output mapping have to be generated.

 Cartridge!format is the name of cartridge file(.car) along with the name of the

swift format in the cartridge file for which XML files have to be generated for the
normalized object and input/output mapping. The format is necessary because a
cartridge may contain multiple swift formats. The cartridge name and the format
name should be separated by ‘!’ symbol.

 If noheadertrailer option is specified, the generated XML files will not contain

header/trailer fields. By default the generated XML files will contain header/trailer
fields.

 If input option is specified then the generated XML files will contain input

header fields.

 If output option is specified then the generated XML files will contain output

header fields. This is the default option.

Note:

If -input|-output options are not given by default the generated XML files will
contain output header fields.

Please note that the –input and –output options need not be specified when you are
generating XML files for format in a cartridge. The mapper utility will generate the
XML files based on the type of header selected for the format for which XML files are
to be generated.

Output Directories

 If ‘format’ option is specified then the XML files for the normalized object and

input/output mapping will be generated in the directory from where this utility is
run.

 If ‘cartridge!format’ option is specified then the XML files for the normalized

object and input/output mapping will be generated in the directory where the
cartridge file is present.

Examples

mapper MT543
mapper MyCar.car!MyFormat
mapper MT543 –noheadertrailer
mapper MT543 -input

Please refer Designer Tools for the list of other utilities that are available.

TestSwift

This utility is an automated test runner used for testing swift runtime.

WORKING:

1. Using the information in the format (xml file) given as argument it generates the

parser class for it. The parser parses the input and converts it to internal object
structure.

2. It also generates an output writer that converts the internal object back to swift

data file.

3. It then generates test cases (again based on the format), loads them using the

parser and writes it back with different name using the writer.

4. It then compares the input data file with the output generated and ensures that

they are the same.

If it encounters a problem during parsing, writing or during comparison, the error will
be logged to the console and processing will continue. Finally the number of
testcases completed and the number of failures among them will be displayed in the
console.

Syntax

testswift {format | cartridge} {#testcases | testcasefile/dir}

[-input | -output] [-nodiff] [-validate] [-ignorenvr] [-seed random seed]

Where

 format is the name of the swift message format that is to be tested. It can be one

of the known swift formats.

 cartridge should be of the form cartridgeFileName!formatName. The name of the

cartridge file(.car) along with the name of the swift format in the cartridge file
that is to be tested should be given. The format is necessary because a cartridge
may contain multiple swift formats. The cartridge name and the format name
should be separated by ‘!’ symbol.

 #testcases specifies the number of test cases to be generated and used.

 testcasefile specifies the test case file or a directory containing testcases.

 [-input | -output] - The header type to be used while testing the format.By

default the header type is Output.

 [-validate] - If this option is specified then the validations specified for the

format/cartridge will be applied during the testswift process.

 -nodiff is an optional argument that specifies whether the input test file and the

generated output file should be checked for any difference between them.

 -validate is an optional argument. If this is specified then any validations (code

as well as network) that have been specified for the format will be applied to the
test process. If the data does not conform to validations specified error would
be thrown. Otherwise the validations specified will be ignored. In such cases if
the data contains some validation errors it will be ignored.

 -ignorenvr is an optional argument. If this is specified, network validations that
have been specified in the format will be ignored. Only the code validations will
be applied to the test process. In such cases even if the data does not conform to
network validations no error will be thrown.

 random seed is the optional random seed value. This enables you to exactly
reproduce a generated test set.

Output Directories

 If ‘format’ option is specified then the .dat files and the swift data file will be

generated in the directory from where this utility is run.

 If ‘cartridge!format’ option is specified then the .dat files and the swift data file

will be generated in the directory where the cartridge file is present.

However in both cases the parser class and the output writer class will always be
generated in the directory ‘work’ which will be created in the directory from where
this utility is run.

Examples

testswift MT543 100 -nodiff
testswift MT543 MT543Test.dat
testswift MyCar.car!MT543In /usr/swiftdata/MT543 –validate
testswift MyCar.car!MT543In /usr/swiftdata/MT543 –validate –ignorenvr

Please refer Designer Tools for the list of other utilities that are available.

Export

This is a utility for exporting a message (internal/external) in a cartridge to some
external representation (xml).

Syntax

 export cartridge!format type [filename]

Where

 Cartridge!format is the name of the cartridge file(.car) along with the name of

the format in the cartridge file that is to be exported. The format is necessary
because a cartridge may contain multiple formats. The cartridge name and the
format name should be separated by ‘!’ symbol.

 type is the type in which the format is to be exported (‘xml’).

 filename is the name of the file to which the format is to be exported. This is an

optional property.

Examples

export MyCar.car!MyFormat xml

Please refer Designer Tools for the list of other utilities that are available.

DumpMessages

This is a utility for dumping the structure of a cartridge. The cartridge name, internal
message name and names of Input/Output formats will be dumped in a hierarchical
structure similar to a tree.

Syntax

 dumpmessages cartridge

Where

 cartridge is the name of the cartridge file(.car) whose structure is to be dumped.

Examples

dumpmessages MyCar.car

Please refer Designer Tools for the list of other utilities that are available.

CodeGen

This utility generates code for one or more cartridge files in Java platform.

Syntax

 codegen -platform=xxx cartridgefiles ...

where

 xxx in -platform=xxx should be java.

 cartridgefiles is the name of the cartridge file(s) for which code has to be

generated. If multiple cartridges are specified they must be separated by ‘space’.

 The cartridge file name must be a fully qualified file name. Otherwise the

cartridge should be present in the same directory from where this utility is being
executed.

Examples

 codegen “-platform=java” c:/carts/mycart.car(to generate code for a single

cartridge)

Please refer Building Cartridges with Ant for information on the Ant task that can be
used for cartridge generation from the Ant build script.

Please refer Designer Tools for the list of other utilities that are available.

Building Cartridges with Ant

If you are using the Ant tool to build your application, you can include cartridge
generation as part of the build process by using the Ant task CGTask bundled with
Designer.

Description

The Ant task CGTask can be used to generate a cartridge into platform specific code.
The supported platform is Java.

Parameters

Attribute Description Required

Platform The platform in which to generate the cartridge. The
supported platform value is Java.

Yes

Cartridge The path of the cartridge file to be generated. Yes

Home The path to the Designer home directory. Yes

Example

Given below is the content of the build.xml file under the ‘<installation
dir>\docs\Designer\CodeGenerator’ directory. This is used to generate
PurchaseOrder.car cartridge (under the ‘CodeGenerator\Cartridges\PurchaseOrder’
directory) in Java platform. The build.xml is explained below.

<?xml version="1.0" standalone="yes"?>

<project basedir="." default="compile">

 <property name="designer.home" value="../../.." />

 <property name="build.dir" value="${basedir}" />

 <property name="cart.dir" value="${basedir}/Cartridges" />

 <!--=== -->

 <!-- Define the code generator task -->

 <!-- == -->

 <path id="classpath">

 <fileset dir="${designer.home}/lib" includes="*.jar" />

 </path>

 <taskdef name="CGTask"

 classname="com.tplus.transform.design.ui.CGTask">

 <classpath refid="classpath" />

 </taskdef>

 <!-- == -->

 <!-- Builds the cartridge (using the task above) -->

 <!-- == -->

 <target name="compile" description="Compile cartridge">

 <echo message="Building the cartridge..." />

 <CGTask platform="Java"

 cartridge="${cart.dir}/PurchaseOrder/PurchaseOrder.

car"

 home="${designer.home}" />

 </target>

</project>

Explantion

 In the build.xml file, the following define the properties designer.home,

build.dir and cart.dir.

 <property name="designer.home" value="<installation dir>" />

 <property name="build.dir" value="${basedir}" />

 <property name="cart.dir" value="${basedir}/Cartridges" />

Note that designer.home refers to the Designer installation directory and
changes from machine to machine. Hence, build XML file needs to updated on
each machine. To avoid this, consider using build properties file supported by
ANT to externize designer.home property from build.xml.

 The following defines the classpath for all the JAR files under the
‘<designer.home>/lib’ directory. The classpath will be used by the CGTask.

 <path id="classpath">

 <fileset dir="${designer.home}/lib" includes="*.jar" />

 </path>

 The following defines the CGTask with the classpath defined above.

<taskdef name="CGTask"

 classname="com.tplus.transform.design.ui.CGTask">

 <classpath refid="classpath" />

</taskdef>

 The following defines the compile target. It invokes the CGTask defined above

to generate the ‘<cart.dir>/PurchaseOrder/PurchaseOrder.car’ cartridge in Java
platform. Note that the paltform code is generated under the Cartridge directory.
For example, in case of Java code generation, a directory named ‘java’ is created
under the same directory as that of the cartridge and the generated JAR files and
other files are found under that ‘java’ directory. From the ANT script you can
copy the generated JAR files into the application directory or any other directory
as required.

<CGTask platform="Java"

 cartridge="${cart.dir}/PurchaseOrder/PurchaseOrder.car"

 home="${designer.home}"/>

Please refer CodeGen for information on utility that generates code for one or more
cartridge files.

Please refer Designer Tools for the list of other utilities that are available.

Cartridge Publisher

This utility publishes a cartridge in HTML format. Note that the cartridge should have
been saved in XML format.

Syntax

 cartridgepublisher cartridgefilename [outputdirectory]

where

 cartridgefile is the name of the cartridge for which documentation has to be

generated.

 outputdirectory is the name of the directory where the cartridge is to be

published. This property is optional. If this is not specified the cartridge will be
published in the directory where the cartridge is present under ‘docs’ directory.

Examples

 cartridgepublisher C:\MyCarts\MyCart.car

 cartridgepublisher C:\MyCarts\MyCart.car C:\MyCarts\docs

Please refer Designer Tools for the list of other utilities that are available.

Schema2car

This utility is used to create a cartridge with XML format based on a schema.

Syntax

 schema2car [options] schemafile

where

 schemafile is the name of the schema based on which the XML format is to be

created.

 options should be of the form -root rootElementName where ‘rootElementName’ is

the name of the root element in the schema. This property is optional.

Examples

 schema2car po.xsd

Please refer Designer Tools for the list of other utilities that are available.

JavaSimulator

This utility is used to start simulator as a standalone application. You need not start
designer to work in this Simulator.

You can deploy directories directly in the java simulator.

Syntax

 JavaSimulator

Please refer Designer Tools for the list of other utilities that are available.

Template

This utility uses velocity to generate an output file based on an input template file.

Syntax

 template templateFileName outputFileName [inputparam1 inputparam2]

where

 templateFileName is the name of the file based on which the output file is to be

generated.

 outputFileName is the name of the output file to be generated.

 inputparam1 inputparam2 are parameters that can be applied to the input

template file. These parameters are optional and should be specified only if the
input template file needs any input values.

Examples

 template jndi.properties jndi.properties "APPNAME=Transform"

 template run.bat execute.bat

Please refer Designer Tools for the list of other utilities that are available.

Please refer the section ‘New File from Template’ in Designer Guide documentation
for the available templates based on which files can be created.

CSV Export

This utility is used for exporting internal/external message formats and message
mappings as CSV. In case of external message formats, CSV export is now
supported only for the following plug-ins: ASCII Delimited, ASCII Fixed, Universal
and XML.

Syntax

exportcsv cartridge format filename

exportcsv -settings

where

 cartridge is the name of the cartridge file.

 format is the name of the internal/external message whose ‘Internal/External

Format’ design element has to be exported or it is the name of the message
mapping whose ‘Mapping Rules’ design element has to be exported.

 filename is the name of the file to which the format has to be exported.

 the second syntax launches the ‘Configure CSV Reports’ dialog and it allows the

user to customize CSV export. In particular, it allows the user to select the design
element properties to be included in the generated CSV Report.

Examples

 exportcsv MyCar.car MyFormat mymessage.csv

Please refer Designer Tools for the list of other utilities that are available.

SQL Tools

This section explains the various SQL tools available.

The batch files for the tools assume that you are working on Windows NT platform
(NT4, 2000, XP or 2003)

The utilities that are supported are

 Schema Generator
 SQL Generator
 Execute SQL
 SQL Console
 Designer Tools
 Tools

Schema Generator

The ‘Schema Generator’ can be used to generate db independent XML schema files
as well as db specific SQL schema files for the tables in a data source.

Steps to Generate a Schema

1. Select the Schema Generator menu item from the Tools menu.

2. In the “Select Table(s) From Database” dialog that appears, specify the db

connection properties and then select the Tables button.

3. In case of Oracle this step brings the “Select Schema” dialog. Once the required

catalog and schema are selected, click the OK button to populate tables from the
specified data source.

4. Specify the tables whose schema needs to be inserted by selecting the check box

besides the corresponding table.

5. Select the Include Dependent Tables check box, if you want the dependent

tables of the selected tables should also be inserted and select the Next button.
(In case of a table having its dependent tables, the entire tree of tables is
inserted with their parent and child relationships intact.)

6. In the Output File dialog box, specify the Schema type in the Dialect combo box

and the location of the output file to be generated in the Output File text box and
select Finish.

Please refer SQL tools for list of other available SQL tools.

SQL Generator

The ‘SQL Generator’ can be used to generate db specific SQL commands for the
given XML schema file, which is a db independent way of specifying SQL commands.

Steps to Convert an XML Schema to an SQL Schema

1. Select the SQL Generator menu item from the Tools menu.

2. In the Schema2SQL dialog box that appears specify the following details and

select OK.

3. In the Input Schema File text box, specify the XML scheme file that needs to be

converted to db specific SQL schema.

4. In the Dialect combo box, select the db for which you want to generate the SQL

schema.

5. In the Output File text box, specify the location of the SQL Schema file to be

generated.

Please refer SQL tools for list of other available SQL tools.

Execute SQL

This tool executes a set of SQL commands against the specified data source, based
on the given schema file. This tool supports both XML schema files and
SQL schema files.

Steps in Executing a Schema

1. Select the Execute SQL menu item from the Tools menu.

2. In the Connection Information dialog box that appears specify the db

connection details and select the Next button.

3. In the Select SQL Schema dialog that appears, specify the SQL schema file to

be executed in the Input File Name text box.

Please refer SQL tools for list of other available SQL tools.

SQL Console

This tool can be used to execute SQL commands against the specified data source
just like Oracle SQL*Plus.

Steps to launch the SQL Console

1. Select the SQL Console menu item from the Tools menu.

2. In the Connection Information dialog box specify the db connection details and

select the OK button to bring the console on screen.

You can use the cls command to clear the console and use the up arrow to select a
command from the command history.

Please refer SQL tools for list of other available SQL tools.

	Tools
	Designer Tools
	DataGen
	Flatten
	Mapper
	TestSwift
	Export
	DumpMessages
	CodeGen
	Building Cartridges with Ant
	Description
	Parameters
	Example
	Explantion

	Cartridge Publisher
	Schema2car
	JavaSimulator
	Template
	CSV Export
	SQL Tools
	Schema Generator
	Steps to Generate a Schema

	SQL Generator
	Steps to Convert an XML Schema to an SQL Schema

	Execute SQL
	Steps in Executing a Schema

	SQL Console
	Steps to launch the SQL Console

