ORACLE' | Zbea

Financial Message Designer for
AqualLogic Service Bus

User’s Guide

Version 3.5

-

ORACLE' | Zbea

FINANCIAL MESSAGE DESIGNER FOR BEA AQUALOGIC SERVICEBUScccoovevenee. 11
DESIGNER USER INTERFAGCE ...ttt ettt ettt ettt ettt e ettt s ettt e e st e e e searen e s sabaeas 11
1Y O =Y = S 12
[[T Y/ 1= O 13
Lo T A =T T 14
SBANCH IMIBINU ...ttt ettt sttt e s sttt e e ettt e e s eateeessabeeesaabeesesabeeeeseabeeesastaesesbeeaessrbenesas 14
YT A 1= A LU R 15

L TO L1 Lo Y, L1 1U ITTURRTTRRTTRR 15

I T0] LY, =T 1 RO 16
R0 T (=T LU RO 17

L L TR Lo (oYY =TT R 18
LAV A A T3 1o [0V 2R 18
HEID MBNU ..ttt st e st et e e b e et e e st e st et e s besbeebeeteeseesbese e besbesbestaaneeneeeens 19
10T = - = S 19
G0 = = 20
FAN - Lo T T a0 T L0 T TS 23
(D11 L= (=T N[0T [T 25

L T T I 0] = = TR 25
OPEIN FIE .ttt bbbt bbbt bbb et 26
EXPIOIE S ROOT ...t et bbbttt e bbbttt 26

File EXPIOTEr FIITEIS.. ..ottt bbbt 26
GETTING STARTED PANE ...ttt e e s e e s s e bbb e e e s e e s s e bbb b e e e e e e s s e sabbbaaeeaseeeses 28
DESIGN ELEMENT UL PANE .11iiiiiiiiiiitiiiie ettt ettt e e st s et s e e s e sttt bbb e e e s e s s saabb bt e e s s e s s sabbbbaeeeesssasnrees 28
I 1= 7R 29
0] 0T TSRS 31
IVIESSAGE WINDOWvvieeitiiieietieeseteeeesetteeesestessesabaeessesseeesastessesabaeessssbeessassessesaseeeesssseessansessesbeneessrreneaas 32
ERRORS WINDOW.......tttieeitiee e ettt e s eteee e s et e e e e eates s e sabaeessebbeesssaaesesabaeeesbbeeesassessesabeeeessbeeesantessesnbaneessrbenenas 34
SEARCH RESULTS WINDOW ..veiiiititieittie e sttt e e etee e e ettee e s stbeeesasbaessssaeaesssbessssssaesesassasesssbenesssbesesaseesesssrenas 38
JUMP TO LOCALION ...ttt bbbttt b ettt sb etk sb ettt sb e eb e b neere s 39

VIBW AS HT ML ..ottt ettt e e ettt e s bt e e e et b e e s st et e e sbaeeesabbesessabaaeesbbeessasbeeesares 40

R LU LT =X 2 TSP 40
Rl D Y = ST 40
CHANGE LOG WINDOW.....cciiittiiiiie ettt e e e s sttt e e e e e st bbbt e s e e e e s s et b et e e e s e e s s eab bbb b e e s e s s s e bbb b bessesssesabbbaaeeasseases 40
ELEMENT HEADINGciiiiiitttiit it e it ittt e e et e it et e e e e s s st b e e e e e e e e s s ab bbb e e e e e et s s b bbb e e esesssaabbabaeesesssabbbbanesesssasnrres 41
DESIGNER SETTINGS ...ciiiiitttiitieeiiiiitbrtteeesssiiatbssteesesssasbbssssssesssasbbasasesesssasbbabesesesssasbbabaessesssasbbbbanssesssassrrres 42
L=l =N o T S ORI 43
LT =5 (] N = = 43
(O N = I 15] RSSO 44
(O W Nl OF- 23 1| 5T = 44
OPENING A CARTRIDGEciiittteiiieeeteiittettee e e s s sebbatteesessseabbetesesesssab b et eeeseessasb bt beeesesssesabtbaessesssesstbanesasssaies 48
OPENING AN EXTERNAL IMESSAGE CATALOG. .. .uutiiiiieiiiititiiieie s s siiitreetsesssesattesssesssssssssasssesssesssbesssesssains 51
SAVING A CARTRIDGE ..ciiiiiiiittteiiiee e e e st bttt e ee e s s sttt e esessses b b et esesesssabb e b eeeseessasbbebeessesssassbtbeessesssesbbbanssasssaes 52
VALIDATING A CARTRIDGE ...iiiiiiiiititiiees e et ieibttie st e s st esbbbbaessesssasabsbasesesssssabbaassasesssbbbabaeesesssasbbbbenesesssasbrrns 54
CLOSING A CARTRIDGEccoiitttiiiie e et e ittt e e e e s e s bbbt e e s e s s s bbbt a s e e e s s s e b b et e e e s e s s sas bbb b aaeseessebbbbbaeeesssessbbbaaesaseseses 54
ADDING ITEMS TO CARTRIDGE.......utttiiiiiiiiiiiitiiie e e et s eitbbb et s e e st e sb b b et e s e e s s s st b et e s aeesssabbbabaeesesssasbbbbeeesesssasbrrns 55
CARTRIDGE PROPERTIESciiuttttiieeiiiiittbeeteee e st iibbsseee s e st saabbabessse et saabbebaesseessa bbb b e eeseesseabbbeeaeesssesabtbanaseseaases 57
(07N 28 1] [n 1= ooy 1 [0] N T OO 58
L O T 0]={SJ P R ORI 58

Ao (o T gl I W o] (o T PSSR 59

L]
2%

ORACLE | Zhea

[1= oy T g I W o[T SR 59
IMIESSAGE ...ttt ettt b e bbbt bt R e bt Re bt bbb bbbt e 60
INTERNAL IMESSAGEviiutiiuiietiestiesteestee sttt sttt s bt ettt es e st e skt e sbe e sbe et e e st e eaeeebe e bt enbees e et b e sbeenbeesbeenneaneesnes 60
Creating an INtErNal MESSAGEcviiiiiiiier bbbt et 61
Defining an Internal Message FOMMALcccooiiiiiiiiieiee e 63
Ao [0 T aTo W =] o OSSR 63
FIEIA PrOPEITIES. ...ttt bbbt bt ettt et e b e bt bt st eeneene e e ennas 65

[[0 [0 T 0T 01T o Y2 USRS 65

o Lo (UL =0 I S (] o =1 Y2 USSR 65
Do) - LU LY LU T=N o 0T o T-] o YU 66
=Yoo i o o] o S 66
Ao (o T gl I TS =Tt 4 T o PSSR 67
SECLION PIOPEITIES ...ttt ettt bbbt bbb bbbt et e ebe b et 68
IMIN OCCUIS PIOPEITY ...ttt b et b bbb 68

MEX OCCUIS PIOPEITYevieiieieeie sttt ettt bbb r et 70
Platform SPeCIfiC ALTTDULESeiuieiieee e et bbb 71
Platform Specific Attributes of @ FIeld ... 72
Column Name ALFTOULE ... bbbttt 72

SQL TYPE ALTIDULEc.veiiciecec ettt r et e e e et b e st e besneereenes 74

LeNQth ALTIDULE. ... s re et e e e 75

NOE NUIT ALEFIDULE ...ttt bbbttt 75
Primary KeY AIIDULEooe it sne e enae e nes 75

AULO GENErate AIDULE ..ot 76
FOreign Key AHDULE. ..ottt 76

XML PIAtFOrM IO ittt neas 77
1= [0 A A 01U 1TSS 77
Platform Specific Attributes 0f @ SECTIONcviiiiiiiic s 78
Table Name AIDULE ..o bbb 79
SCNEMA ALIFIDULE ...t bbbttt e 79
Platform FOrmMat PrOPEITIESc.oiiiiieiiiiiei ettt e bbbt ee s 79
Arranging Fields of an Internal Message FOMALcccoeviieieiienie s 81
Deleting Fields of an Internal Message FOrMAL...........ccoviieiieiiie i 82
Importing Internal Message Field Structure from EXternal SOUICEScccocvvivrivivsivsieeiereeneieinens 83
Steps to Import Field Structure From Database TableS.........cccovvviviiviiieieeicie e 83
Steps to Import Field Structure from an XML Schema File...........cccoovvivviviiieeincce e 86
Steps to Import Field Structure from a DTD File.....cccoov oo 88
Specifying Properties for Multiple FieldS/SECtIONSccoviiiiiiiiiiicce e 89
INtErNal MESSAGE PrOCESSING.....c.vitiiieieteiteieie sttt ettt sttt et r et nbe et 90
AdAING ProCessing RUIEoouiiiii ettt bbbt n 90
Renaming Processing RUIES NOGE........c..oouiiiiiiiiii e e 91
ProcesSing RUIES UL ..ot bbbttt sb e bbb ene e 92
CUSTOM MESSAGE PIOCESSING .. veuverveiveeieiieetieiiesiesteste s e steeteeseeeetestestestesresseanseseeseesbestestesresseeseessenseses 93
Processing an Internal Message Field.........cccooe i 94
CUSEOM FIEld PrOCESSING ...veivveiieieeieiiecie ittt e ettt sttt st e et et r et e besaeste e eneesnenns 94

Field Processing FOIMUIAcoiiiiiiicec et 95
Deleting an INtErNal IMESSAQE.eiiieieereeeeieiesteste e ste et se e et e e st e s tesseaseeseenseseeseestesaesnesreaneeneeseens 96
AddING PersiStENCE DESIGNET.....c..iiviiieitieeeeeiereeser e st stese e s e e ese et esbesresreareesee e eneeseeseeseesaesneeneeneees 97
EXTERNAL IMIESSAGEeetiiieiiit ittt sttt ettt ettt st ste e te st sbe e sbe e bt e bt e st e esbesbeesbeenbeesbeaseeaneeaneesneenbeenbeans 98
Creating an External MeSSage NOUEc.ooiiiiriiiiiiiie et 100
Defining an External Message FOMMAL...........ccciiiiiiiiiieieiee e 102
Convert External To INtErNal IMESSAQE.c..oovirierieiiiieie ettt st sbe e 103

Creating @ StaNdard IMESSAQEcouereiieieieie ettt ettt bbb e st s e e b e sbesbesbesbeabeabe e e eneeneens 109

ORACLE' | Zbea

VALIDATION RULES ..ottt sme ettt nn e m e ane e en e n e e nr e nreennees 111
AAAING VAIIHALION. ...t bbbt b et b e 112
Renaming Validation RUIES NOGE..........cceiiiiiiiicii et 113
Validation RUIES Uloouiiiiicicce ettt ettt st sre e na e neas 113
Adding a Validation RUIE ..ot 116

Adding a Validation Rule using Field-wise Validations VIEWc.ccociriinininieninenceeeeee 117

F N o] o] 11T ¢TSSV URTURURURTPN 120
Field Selection EXPrESSIONceiiciiieiieiiesieseste e e eeee st et steste e ste e e e eesrestesbesbesreanneseesrenes 120
Adding a Validation Rule using All Validations VIEW...........cccoviiieiisiiiincie e 121
FOrmMUIa ValIationS........cviiieiie ettt sttt b e s 125
(T To L Y 11 To - o oS 126
EXact Length Validation...........ccvcveiiieiiiise et st nnenes 126
Minimum Length Validation ..ot 126
Maximum Length Validationccoeieiiiiiiieee e 126
RANGE ValIALIONSoviiiiiiiiici bbb bbb 127
Exclusive Range Validationcccoioiiiie e 127
INClusive RANGE Validation.ccoe it e 127
Exclusive Lower Bounded Range Validation.............cccooiiiiiiininiciiie e 129
Inclusive Lower Bounded Range Validation...........c.cccoceiiiiieiiecieiieie et 129
Exclusive Upper Bounded Range Validationcccooeieiiiineniecieicne e 129
Inclusive Upper Bounded Range Validationccccceiiiiiieiiecieicne et 130
Validation for ACCEPLaDIE ValUES........cvoviieriir e 130
Pattern ValidAtIONScviiiiieiiiieree bbb bbbt 131
SWIFT FOrmats Validationc.cccoiiiiiiniiiiiese e 133
Validation for Missing Field ValUEcoooiriiiiiiii s 134
Validations Based on Aggregate FUNCLIONS.........coviiiiiiiieiiereese s 137
Checking for the Occurrence 0f & SECLIONcviiiiiiiiie s 137
Checking for the Occurrence Of @ FIeld.........ccooo i 138
Checking for the Occurrence of a Field ValUe ... 142
Fields AcCesSIDIE iN & FOIMUIAc.ooiiiiieee e 144
Invocation of Validation RUIESccciiiiiiiiciiee e 146
WORKING WITH MESSAGE - OVERVIEWctitiiiiiieeiteesteesteesessre s stee e sseasne s ssessmessneesneensesnnesseessesssens 152
L0100 T OSSOSO 152
FREIAS LLESE ...ttt bbb et b e et sb ettt b et b et a et et b e b 153
0 L= LTI U= PSS 153
AAING @ FIEIAISECLION ...ttt 154
FIeld/SECtioN PrOPEITIESc.iiviiiieiece ettt et ettt 156
CArTINALITY.....cviecice bbbt 156
Default ValUg PrOPEITYceeeiieiieiiese ettt ettt sttt bbb b eneas 157
o] g 1T U (0] 1< TR P TP PR OPPTOPTUPTURRIO 157
REMOVING @ FIEIA/SECLION ..ottt et bbb 157
Arranging Fields iN @ IMESSAQEccciveiuiiiieereieeiese st e ettt be st e tesreera e e et e ste st e sbesbearaeeenes 158
Y L= TSSOSO 159
SPeCiTYiNg an ALIAS NAMEccueiviii it be s resre e e e e e e enes 160
ALIaS NAME SUDSHIEULIONcviiiiiiiiec bbb 160
Valid Alias Name SUDSTIEULIONS.......ccvoviiieiieeeie e 162
Invalid Alias Name SUDSLIULIONScoiiiiiiieiee e 162
ALIAS NAME RUIES ...ttt st e s e et sbeseestesreene e e et es 163
Items Supporting Alias Name SUBSEITULIONccoiiiiiiiiii e 164
Tracing Messages in a Cartridge to @ Standard............ccocooeiiiiiininnn e 165
MESSAGE MAPPING ..ottt ettt etk bbbttt sttt bt 166

CREATING A IMESSAGE IMAPPINGcoiiittiiiiie ettt s ettt e e e e s s s bbb e e e s e e s s e bbb b e e s e s s s e sab bbb e e e e s e s s sabbbabaeesas 167

L]
2%

ORACLE | Zhea

MAPPING RULES UL ..ottt ekttt 169
AddiNg 8 MapPINg RUIEoiiiiii bbb bbbt 172
Adding a One-to-One Mapping RUIEccoiiiiiiiiie s 174
Adding a Formula Mapping RUIEcoiiiiiii s 175

LGNS (ol 1Y F=T o] o 1o To PSP URURURURORRRRN 175
SOUICE FIEIU IMAPPING ..ottt bbbt bbb b e bbbt e e bt e e neeneennen 177
IMAPPING FIIET ...ttt bbbt bttt et e b e bbbt st e bt et e st ene e e nnas 178
FIELD IMAPPINGttt sttt sttt ettt nb et he e bt e bt e Rt e m b e es b e es b e nb e e nb e e nbeenne e e e enneenes 179
Top Level Field to TOp LeVel FIeld........covoiiiiece ettt 181
Nested Field t0 TOP LEVEI FIlU.......c.cv o st 183
Nested Field of a Repeating Section to Top Level Field..........ccccovvviiveiecieic e, 183
Nested Field of a Non-repeating Mandatory Section to Top-Level Field..........cc.ccoovvveveiiieiennns 184
Nested Field of a Non-repeating Optional Section to Top-Level Field..........cccccoovvivviiinieniienns 186
Top-Level Field 10 NeSted FIeld ..o e 187
Top Level Field to Field of a Section without Mapping...........ccoecviereiininniineseneeseseese s 187

Top Level Field to Field of a Section with Mapping.........cccccooeriieiininiiie e 188
Nested Field 10 NeSted FIeldov i e 190
Optional FIeld MapPINGcoviieeiiieie et bbbttt sbe bbb sbe e enee e 191
Mapping involving Fields of Optional SECLIONSccccveiieiieieicie e 193
Merging Fields of SibliNg SECHIONS..........cci i 195
Merging Fields of Repeating Sibling SECLIONScccoviiciiiiiic e 196
Merging Fields of Repeating and Non-Repeating Sibling Sectionsc.ccocvvvvviviiveievcnccncneniens 199
SECTION IMIAPPING ...ttt sttt ettt eh ekt h et et ne bbbt b st b e e bt e b e b bt e bt e b et e s e et b e s bt sb e ettt en e nen s 201
Top-Level Section t0 NEStEA SECHION.......civiieie ettt 202
Nested Section t0 TOP-LEVE] SECLION.........ccuiiriiiiiieere e 204
Nested Section t0 NEStEA SECLION...........ciiiiiiiie et sttt 207
Optional SECtION MAPPING ... cuiiviieirteieir et bbb bbb b b e 210
SECtioN FOrMUIA MAPPING -...eeueiiiie ittt ettt bbbttt e be bbb bt st e neenne e 211
MULTI-SOURCE IMAPPING ...ttt ettt sttt stt ettt ettt stee s be e bt e sbease e ee s he e sae e abe e bt ambees b e ebbe st e e nbeenbeenbeanneannesnes 212
Create @ New MUlti-SOUICE MapPINgcoeiueieiiaieieeie ettt et e e sbe e 213
INVOKING MUIti SOUICE MaPPING ..ecvvevveiiiitisie ettt sttt r e e e sa et s tesreereeneesae e eneas 216
FORMULA ...ttt ettt et ettt e et et et e e b et et e a4 e st e Re et e st ese e b et e teebe s e se st e s e ete s b et ete st ene e 218
ENTERING A FORMULA . ..ottt ittt ettt sttt h ke bt s e e bbbt b bt e b e e e b et bt e bt enn e e nen 218
EDITING A FORMULA . ..ottt ittt h bt e bbbt b bt e b et b et b et e bt ene e e nen 226
REFORMAT FORMULA ..ottt ittt sttt bbbt h e bbbt b e bt b e e e st r ettt enn e e nes 230
EDIT FORMULA DIALOGcettitiitie ittt sttt sttt ettt tee st teeste et seesseesaeesbeebeenbeesbesbbesbeenbeesbeenbeaneeaneesnes 231
SYNEAX HIGNTIGNTING ..t 233
Auto Completion Of FUNCION NAMES.........coiiiiiiiieiii e e 233
QUICK FUNCLION NBIP ..ttt b ettt sb bbb e e e nnn 234
Code Reformater (Formula BEAULITIEE)ooi it e 235
Formula Validation (Automatic Error Checking)ccoocooeiiiiiiiiieice e 236
[0 U] =T - OSSOSO 237
(o Tor= 1 {100 A=V AT L o] [PPSR 238
FOrmula Edit OPErations..........ccciviieieiieieieite e se e eete e et e e st te e s te e s e e e e st e e saestestesaeatesneeneeseeneas 239
FUNCTION DEFINTTION.octitiietiteiiee sttt sttt st sttt st sa sttt st s te b s etesseneans 241
DEFINING A FUNCTION ...ttt sttt sttt bkt h e e b b bbbt b e e e e b e b ar bt neenn e e nnen 242
FUNCLION DEFINILION Ul ..o et 244

A F= o L USRSV PPURI 244

LOF (=0 o] YT O P U TP PP PSORPTN 244
DESCHIPLION ...cvtee ettt bbb bbbkt b bbbt b e 245

e L1 10 [<]] £SO 245

U T 1Y/ 2RSSR 246
(O0 T [T OO 246
COPY/PASIE SUPPOITciiitieeieet ettt bt b et b bbbt bbbt bbb bbb s bt ns 248
INVOKING FUNCLIONS ...ttt bbb bbb 249
WORKING WITH FUNCTIONS.......utiiciitiiee s iteee e ettt e ettt e e e sttt e e et e e e e ate e e s sabeeeaastaeeesabeeesaabeeasanteesessseeesasraeaans 251
SIMPIE FUNCHION ...ttt bbbt e bbb e b e bt st e e e nee e 251
TeSEING the TUNCHION ..ceeeiiei bbb bbbt e s 253
TESHING thE DOAY ... e e be b e re e e 253
Test by iNVOKING the TUNCHION ..o et 254
Parameterized fFUNCLIONScviitieitieie ettt ettt b e b et e st e st e s beesbeesbesabesabesbeeebeeabeenbeans 255
HOW TEWOTKS?...c vttt ettt sttt et ettt e et e et e e beebeesbesaaesbeesbeesbeebesabesnsesbeebeenbeans 258

TOKEN DASEA TUNCLIONS ...ttt ettt et e be b st s be e sbeesbeenbesabesbsesbaesbaesbes 259
RESQOURRGCES......oo ottt ettt ettt s b e s b e et be et e s ae e s he e e be e ebe et e aabeeabeabbeebeebaesbeesbeebesntesneeanes 261
RESOURCE ITEM ...ttt ittt ettt ettt ettt e e ettt e et e e s st e e e et e e e e bbe e e e sab e e e e e bbeeeaateeeesabeeaeaatbesesantaeeesaseeas 263
SIMPIE CONSTANT......ceieectie et bbbt b bbb bbb bbbt et 263
LEST TYPE CONSTANT ...ttt ettt b et bbbt b et e b e sb ekt sbe b e bt e b et e st eneenneneas 264
LTS F Lo T TP O U PR PR PR TR 265
INEEINALIONATIZALIONcvvii ettt ettt e e e e st e e e ab e e stbe e sabeestbeesabeesabeesaneesaras 267
[0 Toz | 1= PSP 267
RESOURGCE GROUP........utiiieiitiit e e ettt e e sitte e e s st e e e aatee e e sate e e s s tbeeeeasteeeeaaseeeeessbeeeeastbeeeaseeeeessseeaeastbeeesnnseeeesnnenas 269
WORKING WITH RESOURCESutiiitiiie sttt e e eite e e ettee e s stteeeesstee e e sateeessabaeeeasteeeesnsseeesssbeeesanteseesnnneesssnenenns 270
AGUING RESOUICESvevveeeitesiee e etee e ettt te et e et e st e beeteeseesees e saesbeseesaeaseeneenaese e testeareareaneenaeeenees 270
AQAING RESOUICTE GIOUP ..euvvveieieiieieiestestesteeteeseest e teseestesseaseesaeseestessessesseaseeseenseseeseessesseaseaseensasensennses 271
Adding a Constant RESOUICE ITEMccuviiiiciciece e sre e e e seenes 271
Adding a SIMPIE CONSEANT.......cviiiiiiere e e 272
Adding a List TYPE CONSLANT........ccuiriiiieieie et 272
ACAING 8 MESSAGE. ...ttt ettt b bbbt b b st b bbbt b et ettt n e 273
Deleting RESOUICE TTBIMSttt ettt b e e bbbt et e neene e e e 274
Arranging RESOUICE TTBMS ...ttt bbbt bbb e e e e e 274
CUSTOMIZING LOCAIES. ...ttt ettt bbbt bt ettt se e b e b b sbe e enee e 274

W Ao (o Tl I I Lo [PPSR 275

L LoV T T T I Tor: | PSS 275
Entering Locale Specific Message Pattern.........cccvivcviieieiire st 276
USING A RESOURCEcitteitetitee sttt siteestesssteesstesssteesssesateessbeeasteesssesateesssesateesssesateeassessteesnseesseesrens 276
CARTRIDGE REFERENCES.ccii ittt ettt sttt st st bt e eba et e et e st e s baesbeesbe s saesneeans 277
REFERENCE LINKS ..cittieeiittee e ettt ettt e sttt e ettt e e ettt e e s s tbe e e e anbae e e ebtee e e sabeeeeeabbeeeesteeessabeeaeabbeeeeantaeeesnreeas 278
PARTITIONING YOUR APPLICATION ...uviiiiittieeeitieeeeitteeesitteeesaitteeesesseesssabeeessessesesassesessssesessassesesasesessnsees 280
SINGIE CAITIIAGE ...ttt b bbb bbbt bbbttt b et ns 280
Multiple Interdependent Cartridgesooeiiie e e 281
Multiple INdependent Cartridges.o eeierireiieee et e sb et e s 281
BUILD PROCESS. ... eeiiiitiie ettt ettt sttt e e ettt e et e e e s st e e e aabb e e e e ate e e e sabeeeeeabbeeeaataeeesabaeaestbeeeeantaeeesasenas 283
EXECUTING CARTRIDGE WITH REFERENCEScuiiiiiutiieiiitteeeiitteeesitteeessiteeesstneesssssesesssssssssssssssssssnsessnsnns 284
Y10 (o RPN 284
N\ YL =N S o oV (o] 1 TSSO 284
SIMPIE RUNLIME ... sttt sae s besreene e s e e e eneennens 284

Lo ST T=T < SRS 284

BEST PRACTICES ...tte ittt iteeitee st e et e st e st e st e st e e teesate e s ste e e st e e e s teeeabe e s ateeaateeeateeenbeeestaeenbeesnteeanbeesnreennreean 285
ADDING CARTRIDGE REFERENCEueiiiitieeeitteeeeetteeesitbeeeesitteeesesseeesssbeeesateesesassesssssbeeesansessesassesesssreneans 287
REFRESHING CARTRIDGE REFERENCE0ceciiititieiitteeesiteeesaitteeesesteeessseeesaattesesassesssssseeesssssesesasesessnsens 288
REMOVING CARTRIDGE REFERENCEciitviteiitieieiitteeesitteeesaitteeesesseesssabeeessatsesesassesssssseesssassesesassesessnsens 289

FIXING BROKEN REFERENCEScciiittttiiiieiiieittttttsessseibtbasssessssssbbasssesesssasbbasasssesssasbbbassseessasssbbasssesssains 290

-

ORACLE' | Zbea

CODE GENERATION ..ottt sttt sttt te st esesbestesesbesaetaabesaesaabesseseabesaesasbeseesessessesesseseasens 291
CODE GENERATION SETTINGS DIALOG ...ttt ettt sttt ettt sttt snes 291
Java/EJB Code Generation Settings DIialog.........ccveriiiriiiiiiiiiieses s 292
General Tah (JAVA/EIB)covoiieiiiieieie ettt bbbttt 293
JAVA COMPIIEE ...ttt bbbttt e e et bbbt bt et e et e e e nennas 293
LOfa] gl o1 =T Q@] o] o] - SO POT UV URUPRRN 293
Additional Class Path (GIODal)ccoiiiiiii e 294
Additional Class Path (Cartridge)........ccceuviieiiieiiiiiie st 294

Code Generation Tab (JAVA/EIB)c.ccviiiiiiiiiii ettt 294
JaVa PaCKage NAIMEoouiiiiee ettt e st st aeere e e nee e enes 295

=T N = 0 TS 295

T AT (= B =TSRSS 296

MaX ClaSS LENGLNiiiiiie b 296

-1t B 10 10 o - USSP 296

UNIQUE KBY TaDIE.....ciee bbb 296

Adding EXLErnal JAVA CIASSES........cuiiiiiiiiirieitieieie ettt bbbt en 297
Language Bindings Tab (JAVA/EIB)coiiiiiiieiieeee e 300
External Sources Tab (JAVA/EIB)c.cciiiiiiie ettt 301
Adding External Java SOUICE FIlES.........coiiiiiiiiiiciciece st 302

W Ao [0 T lo T =T (o 1= PSSR 304
Target Platform Tab (JAVA/EIB)cceiuieiiiiie ettt st sttt sre st tn e e 305
Generate Jar FOr ALSBcocv o nen 306
ENLErprise JAVA BEANcecviieicicc ettt 306

Generate EJB ApPlcation (EAR).......coiiiiiiise ettt eae e 306

SN S o =V o] 1 USSP OPRORPO 307
AdItIoNal MOAUIESooiieiece e et st be e s be e sre e ens 307
RESOUICE RETEIENCES.....cvviiieeite ettt st e re e s sae e s be e s beebe e beereestnesres 308

BiNAING SEIVET RESOUICTES.cvitiitiiteiiiatieiete ettt sttt et e et esbesbe bt be bt e se e e e besbeebesbeebeebeeneebe e e eneees 308

o Y {0 SRRSO 310

IMBKE UTTHTILY ...ttt bbbttt bbb bbb 310

Y LI @ o] (o] 4SS 310
SELECTING THE DEFAULT PLATFORMttiiiiiiiitiiis st ies st tes sttt bae s baaabee s sbsasnbeessbaesnnnes e 311
GENERATING A CARTRIDGEevveteeiteeiteeaeaseesseesseesssasteassessesssassseessessssssssssessssesseensesssessssssesssesssesssesnsesnes 312
DEPLOYING A CARTRIDGE ... cteuttiuteiteesueesttestteseestessesssassseesseesseasssssesssessssesseesseesseassesssessesssesssesssesssesnsesnes 312
SIIMULATOR .ottt sttt st e bt e te e b et et e e b e e e b e ebe e et e ebe e ebeebe e ebesbe e eteabeseereabeseareas 313
SIMULATOR USER INTERFACEcecittteitteitttesteesiteesiaee sttt essaeesssaessseessseeasseessseeasseesssessssessssessnsessssesssesssnes 315
SIMUIAEOT MEBNU BAKcviiieiie ettt sttt sttt e et e s e st e e s teesbaesbeesteeneesaeesaeenbeenteens 315
FHIE IMIBNU. ...ttt ettt et st te e st e e be et e easeeaeesbe e beenbeesbesteesraesreas 317

Lo T Y =TT RSOSSN 317

R T Y =T o T SRS 317

OPLIONS IMBNU ...t s e bttt b e e et e s et e b e sbe s bt besbe et e e neeneennens 317

B ICEE 8 1Y =] L PRSP TPPPPP 318

B0 0] F31 1Y/ =Y T PSS 318

HEIP IMIBNU ..ottt ettt e b e et e et et et e st e tesbeeteeneeneees 319
RS0 P (T T = -V SRS 319
L] 0L T USSR 320

L@ 11U L= T T SRS 322
SIMUIALOr MESSAgE WINTOWc.veuiiiiieiiiiiitiieit ettt bbbt 323
TFACE WINUOW......ctiiii ettt ettt et e et e e rb e st e s te e s beesbeeabesaeesbeeebeeabeenbeenbestsestaestens 324
LOQg OF SQL STALEIMENTS ..ottt ettt b et sb e e sbenrene s 325
TESTING WITH SIMULATOR . utttittteisteeatesateeastesstaaassesastesasssssstesassesstesansesssssssnsessssssassessssssasssnsssssenenses 325

Simulator INPUE-OULPUL OPLIONScueeiiiieie ettt bbbt eenee e 327

-

ORACLE' | Zbea

RUNNING TESE DALA SEL......veeiieite ittt sttt reese e e e e e bestesaesreaneeneeneeneees 330
Configuring SIMUIALOr (JAVA/EIB)c.oiviiriiiiirieiei ettt 332
STMUIALOT OPTIONS. ...ttt bbbttt bbb bbbttt b bt b et ens 333
GENEIAte TrACE IMESSAGESveviritiiti ettt ettt et b e bttt n et er et 334
CaSCAE EXCEPLIONSeviieeiie ettt sttt ettt bbbttt sb e b e bt bt bt et e e e e e b e sbesbe st e e neene e e ennas 334
MISCELLANEOUS FEATURESeiiutiittiittiatiantteteastesstesteesteesteesteasseseesaeesaseabeabeanbeas b e sbbesbeesbeenbeesbeanneennesnns 335
Syntax Highlighting (DaLA)coeieiiiiiieieee e s b bbb nnn 335
Viewing of Non-printable CharaCters ... 336

R TcT: Lol £ I0=) SO 337
Compare INPUL aNd OULPUL.........oiiiiiiie sttt sae et e et e e et e besbesresneeneesnens 338
AddiNg OULPUL ChAaNNEISoveieeceicce ettt ra e e e e eenreenaeeenes 340
AN (o I @0 g1 o] [=1 1 o] o SRS 341
o] oL A=Y (=Tt AT o PSR 341
BINAIY MOUE ...ttt bbb ekt h e bbbt ekt b b et e e b et et e be e et e sbe et 342
PERSISTENCE IN SIMULATOR (JAVA/EJIB)oitiiiiiiiiietinteeest ettt 343
DEFINING DAL SOUFCEScouiinee ettt ettt bbbt b e bt et e et et e e e b e b sbeebesseeneenennas 343
ReSOUrCe REfErENCE IMAPPING -....oviiiiteite ittt et bbbttt sbe bt bbb ne e e 344
Creating SCRBMAottt bbbttt sb e b b e b sbe e enee e 347
INVOKING QUETIES . .euviiectieteet ettt e ettt e te st e te s te et e e e et e e st e s tesbeebeese e st e tesaesbesbeebesreaneeneeseenrs 348
Testing a Cartridge With Persistence SUPPOIT.......cccciiiiii i 350
TEST DATA GENERATIONctiuttitttsteesteesteesseessesseesseesteeste e st asseasessmesaseeseasseasseaseenbeenbeesbeennesnnesneesneenneannenns 351
Defining Data Generation SPeCIfiCatiONccccieviiieiiiiecce e 352
(=) T T a0 LA TSP 354
V=] TS - PSSR 355
EXBMPIES ..ottt e bbbt bbb 357

VL] ¢ N T =T 00 ST STOPUPTRI 358
GENETALING 8 TESE CASE ...ttt b ettt bbbt b b bbbt bbb bbb bbb e bt ns 359
Generating TESE DAA SELc.oiiiiiiiiiiee ettt bttt b et sb e sb b bt et ne 359
Entering Test Data for INternal MESSAQES.coiiiiieiiiie et 361
FREQUENTLY ASKED QUESTIONS.eiutttitttiteesteeaiesassesssessssessssessssessssessssessssessssessssssssessssessnsessssessnsens 362
DEBUGGING ..ottt sttt s bt et s bt et e st e et st e s e et et e seete st e se e be st et ete s b et ete st eneaes 364
DEBUG WINDOWetiiiie ittt sttt ettt es st e st et e be e nb e e et e e e she e she e bt e Rt e m s e es e ar b e nb e e nbeenbeenneenneennennes 365
BREAKPOINTS ...t ttteteeteette sttt stk e bbbkt h s e bkt h e eb bt e b e e e b e b e e b e e bt bt e b e e e e b e e b eb e e bt e bt enn e e enrn 367
Ao o LT T =] =T 14 oo | SRR 367
DEleting BreaKPOINt.cviieiieieeseee et et e et st ne s e e e e see st e beaaeereeneeneereaneeneennenen 369
Enable/Disable BreakpOiNt............coviiiiiiiiiiierieieste ettt b e b e sneneene 370
STEP IMODES ... ettt ittt ekttt ettt et e b e te e teese e she e sbe e bt e bt e st e e b b e eE e e s he e s be e ee e Rt e eheeebe e bt en b e es b e ebbenbeenbeenbeebeaneennes 370
SEEP IO . et r et 371

] (=] O Y] OO U U R U R OUPTOTRTOTPTUPTURTIO 371

K] (=] O 11 O T OO P TP U PO TRTUTPTUPTURTRO 371
FRAMESttt ettt b bt ekt ekt e h e e e E e oo ke e eEe e Rt ARt SR et eRE e eRe e R e eR b e eR b e R b e b e e nEeenEeenneeneenneeaes 372
Frame VariablesSooo oottt s b ettt b ettt 373
Function Definition Variablesccoviiiiieic e 373
Message Mapping Variables ..o et 375
External message VariablEScviviviieiierere s et 377
Validation RUIES VAriADIEScoiiiiiiecirese et 378

WV ATCHES. ..ttt stttk b ek bbbt h et b bRt b bRt et e bR e Rt bt e b e e b e e e e e e e e Rt bt en e e b e e enrenen 380
AAING WALCNES ...t bbbt b bbbt b e bbbt nb et 381
DEIELING WALCNES........cviieiiite ettt b e bbb et b ettt bbb b et 382
DEBUGGING FROM SIMULATOR .. .eittiittisttestieteesiesstesteesieesteesteassesseesseesaeesseensesnsesssesssestesssesssesssesnessnsesses 383

EXECUTING CARTRIDGE ENTITIES ...t 384

-

ORACLE' | Zbea

Listing Cartridge ENtIIES......ccvcieiiieieceeeeee et 385
EXECULING IMEBSSATES. ... eveiteeeteete ettt sttt sttt b ettt b e ekt b etk b etk s btk eb et ekt e b e e ekt nbe e ebeabe et 386
Executing MeSSage MaPPINGSoveiiiiiirieieteri ettt b et sb e et b et ebe e b b neene 386
Performance MEASUIEIMENT.ciiiiiieieitese ettt sbe et se et e testesbesbesbesreeneeneeeeneeneenes 387
IMUTET TRFEAA TESTING ...ttt bbbt ettt se e b e bbbt e be e et ene e e nnas 388
Executing MUlItiple SAmMPIES ..o bbb 389

WORKING WITH CARTRIDGE DESIGNERccoiiiiriiiiiriecnie s 390
TABLES ...ttt etttk h bR R R R e R R e AR R e SR e e Re SR e e AR £ e R R e eR R e e R e e Ee e nRe e ne e e eRe e nRe e reenean 392
Rearranging Columns 0f @ TADIEc.cooiiiiiiic e e 392
Showing/Hiding Columns 0f @ TabDIE.........ccoveiiiiiic e 393
Zebra Highlighting in TaDIESoov i 393

QLI o] AN U (o3 o 1= L o SR 394
Controlling ROW Height in TaDIESc.ciiiiiiiie s 395

SINGIE LN, ...ttt b bbbt 396

AULO FITROWI(S) vttt ettt bbbttt b bbbt 398

AULO Fit ROW ON SEIECTION ...ttt nn 398

AULO FIt ROW ON BT ...t bbbt se e bbbt e e e 399

] (oI | SRS S S 399

AULO FIt CellS N COIUMN ..o 399
N oF= Vg0 1L @o] | =T -SSR 400
ToOItips fOr Table EIEMENTS.......cc.oiiie et r e b reera e e nes 401
Viewing Table @S HTIML PAQE.......ccccviiiieiice sttt sttt sttt ra e e nenees 402
Comment/Annotation SUPPOIt iN TADIES.......cvcveieiiece e 403

AdAING @ COMMENL.....c.uiiiiiie ittt e sresre e e esee e e teseestestesseeraeneeneennens 404

Editing @ COMIMENT ..ottt ettt bbb et sbennene s 405

REMOVING @ COMMENT ...ttt ettt ettt b et b e bbb sn et nrene s 406

VIEWING @ COMITIENL.cuiiiiiitiiieiiite ettt ettt b ettt be e 406

Moving Between Comments in @ TabIe ... 407

IMOUNT DIRECTORY ...ttt ittt sttt sttt ettt es st e st e be e s be e sbe e et e e e ehe e ehe e bt 2 bt embeas b e eb b e nbeesbeenbeenbeanneennesnes 407
MOUNEING @ DIFECLOTY ...ttt bbbttt b e bbbt bt et e et e st e e e eneennennas 409
Working With @ MouNted DIrECIOIYccviieiiie ettt r e e 409
Editing and Saving @ FIlEcci i e 410
(O3 g L] 1o = T =T (o] YRR 410
(O3 =T L] 1o = T - SRS 412
Y ToTU a1 T (=Tod (o] 20 o Lo Ui o] PSS 412

NEW FILE FROM TEMPLATE ...euttiitititittestteste bt estesteesteesteesteesteesteaseesseesaeesbe e bt enbeasbessbesbeesbeesbeeseeaneeaneesnes 413
Creating a New File from Templatecooiiiiiic s 413

NAVIGATION FEATUREScettittiit ittt sttt sttt sttesteesteesteesteaseesseesseesaeesbeebeenbeasbensbesbeesbeesbeeseeaneeaneennes 415
Moving Between Recently Visited EIEBMENTSccooiiiiiiiiiiieee s 415
Moving from a Field to its Validation RUIE ... 416
Moving from a Field to its Mapping RUIE..........ccoiiiiiiie s 417
Moving from a Field to its Mapping USAQE.......c.ccvciuiiiieierie ettt 418
Moving from a Field t0 its USAge ITEMScceiiiieieicie e s 419
Moving Back to @ Field Definitioncccoiiiiiieiicicice st 420
Moving Between Source and Destination Fields in Mapping Rules Ul.........cccccoovvoviiviivcicvcncnevenn, 422

D TP TP T PRPRTURPROPTN 424
Comparing Two NOdes in the Cartridgecccvvviveieiiieeree et re e enee e 424
ComParing TWO CaArtridgES.coveueivirieieitiieeieett ettt sb bbbt bbbt eb bt e 425
DiIffErNCING VIBW ...ttt bbbttt bbbttt 426
DIffEFBNCES PANE ...ttt sttt et et e et e st e s besbesteaneen e reaneeneeneeneen 427
EXPOITING S HTIML ...ttt e bbbttt et b e bt bbb e e e 427

CARTRIDGE PUBLISHER.......ciitttttitii e e ieiit bttt e e s e st at e s e e s s s sab bbb e e e e e e s s ab bbb e e e s e e s s e bbb b b e e s e e s s ssabbbbaesesesssabbbabaeesas 430

-

ORACLE' | Zbea

Generating HTML REPOIS........ccviieiirieiierieeeie et e et e et tesnaesee e enaeseesaestesneeneeneeneeneens 432
Cartridge PUDIISNEr SEIHINGSc.eiviiiiiiiiite bbb 433
Adding Properties to the Generated REPOIT............cooviiiiiiiiesee e 436
Removing Properties from Generated REPOIt..........ccoreiiiiieiinenee e 437
Arranging Properties of the Generated REPOIcoueiiiiiiiieiiie e 437
CARTRIDGE READ-ONLY IMODE......cttiitiiiiiiiiite sttt ettt sttt ste st e e she e sbeeebe et e s e sb e e sbeesbeesbeene e snes 437
VERIFY INTEGRITY w..ttiutiittett ettt eteestee st e bt et e e he e s bt e e bt e bt e s bt eh b e eh e e e b e ekt e e ke e ke e me e ehe e e he e bt e b e enbeenbenbbenbeeneeas 438
EXPORT/IMPORT A DESIGN ELEMENT ...c.viiiitiieiiitiiieiisie ettt sttt st neeneans 439
EXporting a DeSign EIEMENT..........ooi it 440
IMporting @ DeSIGN EIBMENT.........cciiiiiiiie et et re b re e ra e e ees 441
COPY /P ASTE ..ttt ettt sttt ettt ettt bbbt s bt s bt bR bt R £t E R R R bR R bbb bRt b b n et b n e 443
Copy/Paste a DeSign EIBMENTcooviiee et nnens 443
COoPY @ DESIGN EIBMENT ..ottt 443

Paste 8 DeSigN EIEMENT ..o 443
COPY/PASIE FIEIUS. ...ttt bbbt b bbb nn s 444
LO70])V 1= [0 TSRV ROR R 444

PASTE FIBIUS ...ttt bbbttt bbb bt n e n s 445

Paste Fields in the FOrmM of XIML ..o e 445

Paste Fields in the FOrM 0f CSV ... 446

Copy Name/QUAlIfIE NAMEcc.iiiiiieiecie et re e et et e s resbesbeeneere e s eneeseens 446
VALIDATING DESIGN ELEMENTS......ttitiiiteeitieiteste sttt st sre e e sseesteesteenmeesne s e ssessneesneenneennesnnesseesreenreas 447
FIND USAGE ...ttt ittt sttt bbbtk bbbk e bt b e R bt b e b e e e b bbbt been e nnn 450
FIND e e R R Rt R e E e R R ne s 451
FINA N UL bbb bbbt b et bbb bbbt 452
FING NEXE ottt e e et e et e et e st e e be et e e beesbesaaesteesbeesbeeabeentesnsesbeenbeenreans 453

T T I Ta I - 11 DSOS 453
INCREMENTAL SEARCHtieutietttatiesttesteesteesteaste st steesaeesbeebeesbe et e sbeesbeesbeesbeeseeameesseeabeenbeenbeenbeanbesbeesbeenteas 456
DRAG AND DROP ...ttt ittt ettt sttt ettt es e te e s be e s be e sbe e bt e et she e ehe e abe e bt ambeas b e eb b e st e e nbeenbeenbeanneenneenes 457
Drag and Drop a Cartridge File ... 457

Drag and Drop @ Data File..........cooiiiiiie e 458

VERSION SUPPORT .iiiiiiiittttiitie et iiittbetteessssiabbastseesssiabbbasseeeesssa b baaeeaeesssaabbabaeeseessaabbbbaeeseessaabbbbeesseessasreres 458

-

ORACLE' | Zbea

Financial Message Designer for BEA
Aqualogic Service Bus

Financial Message Designer for BEA Aqualogic Service Bus is an integrated
environment used for creating and managing a cartridge, which is a model that
captures message formats, message mappings. Once a cartridge design is
completed, it can be generated into platform specific code and deployed into
Runtime. Once deployed, the Runtime becomes capable of performing the
transformations defined by that cartridge.

See Also:

Designer User Interface

Cartridge

Message
Message Mapping

Formula

Function Definition
Resources

Code Generation
Simulator

Debugging
Working With Cartridge Designer

Designer User Interface

The Designer user interface consists of a set of windows, menus and tools for
developing and managing cartridges. It can be used to create, open, update, build
and deploy cartridges.

The Designer main window is shown below.

Lo
ORACLE | £bea

EIMT524.car [C:\WINDOWS' Desktop]

File EAW Search piew Build Tools: Run Window
o0 |. alk |4
@ a p .
= | -
-y EE i:t L Header] Data | :
i @ 1HE -
= MTS2 4 = . a
- e YEEIERIREEIE
| (5 Extarnal - SWIFT [MT524
B I:,. Eternal Format | Field Hame || Type || Enabled |
S Swift 5 " G | I
2 @Ualidatiun Rules [Defz = " piisy snanal NS
o 2 z0¢ Swift Field Refererce |
: i SEME Quzlifier Sender's R
T s Refer,,, String C Format
5323@ Swift Field Funckion of
Iﬂl \} Fur_ldi?n_ .Str.ing. - G Format
IEI [»]
@l Repeating —l | Enabled ” Option | Format ” |
@/ M 4116 (Qu
Optional :l
I« e D
Cartridge saved. 4 13M of 16M||i
@ 7 B
1. Menu Bar
2. Tool Bar
3. Explorer
4. Element Heading
5. Design Element Ul Pane
6. Speed Bar
7. Status Bar
8. Properties
Menu Bar

The Menu bar in Designer is shown below.

File Edit Search Wiew Build Tools Run Source Control Window Help

-

ORACLE' | Zbea

See Also:

File Menu
Edit Menu
Search Menu
View Menu
Build Menu
Tools Menu
Run Menu
Window Menu

Help Menu
Tool Bar

File Menu

New Cartridge (Ctrl+N)

Open Cartridge
(Ctrl+0)

Open External Message
Catalog

Save (Ctrl+S)

Save As

Creates a new cartridge.

Opens an existing cartridge in a new Designer
window. This allows opening multiple cartridges in a
Designer session.

Opens the catalog for all the external messages in
read only mode.

Saves the current cartridge.

Creates a copy of the current cartridge or saves the
newly created cartridge.

Closes the currently open cartridge without closing
Designer.

Allows the user to set the option to reopen last file on
startup and to switch between the different color
schemes viz., Blue, Green, Gray, Kunststoff and
Windows Look & Feel and to choose the required font
& size.

Displays a list of the most recently used cartridges.

Exits Designer.

]

ORACLE' | Zbea

See Also:

Menu Bar
Tool Bar

Edit Menu
Copy (Ctrl+C)
Paste (Ctrl+V)
Import (Ctrl+Shift+1)
Export (Ctrl+Shift+E)

Back (Ctri+Alt+Left)

Next (Ctrl+Alt+Right)

Reformat Formula (Alt+F8)

See Also:

Menu Bar
Tool Bar

Search Menu

Copies the current design element definition
into clipboard as XML.

Pastes the copied design element definition to
the current design element.

Imports the definition of a design element from
the selected file.

Exports the definition of a design element into
a file.

Takes you to the last design element you have
visited before selecting the current design
element.

Takes you to the design element that you have
visited before selecting the Back action.

Auto formats formulas in the current node/all
nodes in the cartridge.

Find (Ctrl+F) Displays the Find dialog box, which is used to search
for an item in the currently selected design element
based on the specified search criteria.

Find Next (F3) Resumes the recent search operation.

Find in Path Displays the Find in Path dialog box, which is used
to search for design elements that contain the search

-

ORACLE' | Zbea

text in one of the search items specified in that dialog
box.

Incremental Search Displays the Search for pop up to quickly search

(Ctri+1) occurrence of text in the current location

See Also:

Menu Bar

Tool Bar

View Menu
Status Bar (Alt+4) Hides or displays the status bar.
Tool Bar (Alt+5) Hides or displays the main window Tool Bar.
Element Heading Hides or displays the Element heading bar.
Start (Alt+0) Hides or displays the Start window
Explorer (Alt+1) Hides or displays the Explorer window.
File Explorer Hides or displays the File Explorer window
Message (Alt+2) Hides or displays the Message window.
Errors (Alt+3) Hides or displays the Errors window.

Search Results (Alt+6) Hides or displays the Search Results
window.

Change Log (Alt+7) Hides or displays the Change Log window

Debug (Alt+8) Hides or displays the Debug window

See Also:

Menu Bar
Tool Bar

Build Menu

Validate (Ctrl+L) Invokes the validation operation for the current

-

ORACLE' | Zbea

Validate All
(Ctrl+T)

Generate
Cartridge (F7)

Code Generation
Settings

Select Default
Platform ...

Java/EJB >
Generate Cartridge
(Java/EJB)

Java/EJB > Code
Generation
Settings (Java/EJB)

See Also:

Menu Bar
Tool Bar

Tools Menu

Diff Cartridges

Cartridge Publisher

Deployer

SQL Tools

design element.

Invokes the validation operation for all design
elements of the cartridge.

Invokes cartridge generation in the default platform.

Displays the Code Generation Settings dialog
corresponding to the default platform.

Select platform (Java/EJB).

It first invokes the validation operation for all design
elements of the current cartridge. It then generates
the cartridge into Java/EJB components based on the
current code generation settings.

Displays the Java/EJB Code Generation Settings
dialog box that allows you to specify the information
used in generating the Java/EJB components. It
allows you to specify component names, bind the
reference class names with the concrete Java classes
and specify references from one component to other
component(s).

Used for comparing two cartridges

Generates HTML docs for the cartridge and its child
design elements into the specified directory.

Used to deploy/undeploy the generated components
under the platform specific Runtime.

Displays a submenu of database tools.

-

ORACLE' | Zbea

SQL Tools >
Schema Generator

SQL Tools > SQL
Generator

SQL Tools >
Execute SQL

SQL Tools > SQL
Console

XML Tools > DTD
Generator

See Also:

Menu Bar
Tool Bar

Run Menu

Simulator (F5)

Toggle Breakpoint... (F9)

Step Over (F10)

Step Into (F11)

Step Out (Shift+F11)

This can be used to generate db independent XML
schema files as well as db specific SQL schema files
for the tables in a data source.

This can be used to generate db specific SQL
commands for the given XML schema file, which is a
db independent way of specifying SQL commands.

This tool executes a set of SQL commands against the
specified data source, based on the given schema file.
This tool supports both XML schema files and

SQL schema files.

This tool can be used to execute SQL commands
against the specified data source just like Oracle
SQL*Plus.

Generates a DTD file from the structure of an XML
file.

Launches Simulator corresponding to the default
platform

Adds a new Breakpoint or Deletes an existing
Breakpoint

Runs the current statement as a unit and steps
to the next statement

Runs the current statement, steps Into any sub
functions in it and then advances to the next
statement

It advances past the remainder of the code to
be executed in the current location and then
advances to the statement immediately
following the one that called the current location

-

ORACLE' | Zbea

View Debug Window (Alt+8) Hides or Displays the Debug window

See Also:

Menu Bar
Tool Bar

Window Menu

New Window Opens a new Designer window
(Ctrl+W)

<Cartridge window Activates the selected cartridge window (brings the
name> cartridge to front).

<Simulator window Activates the selected simulator window.
name=>

See Also:

Menu Bar
Tool Bar

New Window
Designer provides an easy way for opening new designer window and navigating to
other open designer and simulator windows using New Window feature. When we

select New Window menu item from Window menu bar, a new Designer window will
open.

Window | Help

Mew Window

ExportImport car
Untited

Selecting the cartridge name from the list will navigate to the corresponding
cartridge ie, the particular Cartridge gets activated (brought to front). When you
open Designer for the first time, ‘Untitled’ will appear as sub Menu in Window Menu,
when the cartridge is saved, Untitled will be replaced by the cartridge name. When
you double click a cartridge from Windows Explorer the cartridge opens in a new
instance of Designer and Cartridge name will appear as sub Menu in Window Menu.

-

ORACLE' | Zbea

Window | Help

Mew Window

ExportImport.car

E ExportImmport car - Simulator

As you can see the window menu lists all cartridges and simulator windows that are

currently open.

See Also:

Menu Bar
Tool Bar

Help Menu

Designer
Java Runtime Help

Version Info

About Designer

See Also:

Menu Bar
Tool Bar

Tool Bar

Opens the help document for Designer

Opens the help document for Java Runtime
Displays Designer version and Plug-in versions. It
also displays versions of Simulator and Code

Generator.

Displays the version, build and copyright
information about Designer.

The tool bar contains the following icons for accessing frequently used operations.

o

The Back button takes you to the last design element you
have visited before selecting the current design element.

The Next button takes you to the design element that you
have visited before selecting the Back action.

Creates a new cartridge.

]

ORACLE' | Zbea

il

1404

JavafEIR W

@

s

See Also:

Menu Bar

Explorer

Opens an existing cartridge.

Opens Repository client
Saves the current cartridge.

Initializes the search operation.

Allows searching for an item in the currently selected
design element based on the search text.

Resumes the recent search operation.

Displays the Edit Formula (F4) dialog box that helps in
specifying a formula by providing easy access to the
formula functions and data fields.

Invokes the validation operation for all design elements of
the cartridge.

Invokes cartridge generation in the default platform.

Displays the Code Generation Settings dialog corresponding
to the default platform.

Allows selecting the default platform

Launches Simulator corresponding to the default platform.

Displays the CHM for Designer

Shows the Help Tracker icon and opens the Help file for the
selected Ul

The Explorer window displays the contents of a cartridge in the form of a tree
structure. It displays the cartridge design element and all of its child elements such
as internal/external message, persistence designer, mapping and so on. The tree

-

L F
. d g
ORACLE | %bea
structure coupled with expand/collapse functionality makes moving between various
design elements intuitive.
The Explorer window is shown below.

Be Explorer - x|

PersistInColumns And Queries

J'P— <> Inwoice

—@ Internal Format

— &) validation Rules [Default]

&= ﬂ Persistence Designer

(P—@ External - ASCII Delimited [Inwoice

— ~=] External Format

— @) walidation Rulez [Default]
- @ Mapping [InvoiceC5¥ToInvoice]
|—<"'.-._> Mapping Rulas

The user can show/hide the Explorer window either by selecting the Explorer menu
item of the View menu or by clicking on the Explorer button on the Speed Bar.

When the Explorer window is open, it can be closed by clicking on the Close button
present in the right corner of its title bar.

The ‘Auto Hide’ mode (‘Pinned’ mode) of the Explorer window can be enabled or
disabled, by toggling the ‘Auto Hide’ button present in its title bar. When the ‘Auto
Hide’ mode is enabled (indicated by the w icon), the Explorer window hides itself
when it loses focus. When the ‘Auto Hide’ mode is disabled (indicated by the % icon),
the Explorer window remains visible even when it loses focus.

Clicking on the Copy icon present in the Explorer window toolbar copies the
definition of the selected element into clipboard. See the Copy/Paste a Design
Element section for more information.

Clicking on the Paste icon & present in the Explorer window toolbar imports the
recently copied design element definition. See the Copy/Paste section for more
information.

The Move Node @ drop down menu pops up a menu as shown below and the items
present in it can be used to rearrange the position of the design element nodes in
the Explorer tree. See the Arranging Nodes section for more information.

-

ORACLE | #bea

q}MDUEUp%
n

c.'._]; Maove Dow

= Move Right

e

The New Item ' drop down menu pops up a separate menu and the items present
in it can be used to create new folders, internal/external messages, mappings,
Resources and function definitions.

Select ‘Mount Directory’ menu item from the ‘New Item’ drop down in Explorer
toolbar, to mount one or more file system directories so that you can manage

external cartridge resources such as sources files, XML, DTD, etc. from within

Designer.

Clicking on the Simulator = 4 tool icon launches Simulator in default platform. The
design element selected in Explorer at the time of launching Simulator is
automatically selected for execution.

The icons present in Explorer tree convey the type of design element.

&) Cartridge

O Internal Message

S

Internal Format

Processing Rules

a Persistence Designer
Database Table Design
] Queries

¢ Database Mapping

[External Message

External Format

Validation Rules

(&

-

ORACLE' | Zbea

%+ Mapping Rules
WebForms Designer
WebForm
& Reference
= Folder

See Also:

Arranging Nodes
Delete Node
Designer User Interface

Arranging Nodes

The Move Node @ drop down menu present in the Explorer toolbar pops up a
separate menu as shown below and the items present in it can be used to rearrange
the position of the design element nodes in the Explorer tree. This is especially useful
in cartridges making use of Folder nodes to organize other design element nodes.

@MD”EUPD‘S

';'_1; Mave Down

= Maove Right

Once the required design element node is selected, the user can click on these items
to rearrange the position of that node within the Explorer tree. Nodes can even be
arranged by selecting multiple design elements.

ORACLE

-

Zhea

Eg Explorer

Arran
— &% =e

@ (2 Ex

~—

b

%

&

= Move Left
s

I: %) Validation Rules [Default]
- I Multiple Nodes
<> Inwoice Out

<> InwoiceIn

Qx|

vited [Mult

@ Mapping [MultpleSourceToIn

To select multiple design element nodes, hold the ctrl key and select the design
elements whose positions have to be rearranged.

The following table describes the icons used to arrange the nodes of the Explorer

tree.

Icon

Purpose

Description

.:’l}

Move Up

This moves the selected node up by one position within
the same Folder/cartridge node. This icon is disabled
when the top of that Folder/cartridge node is reached.

Move Down

This moves the selected node down by one position
within the same Folder/cartridge node. This icon is
disabled when the bottom of that Folder/cartridge node
is reached.

.:i::.

Move Left

This promotes the selected node by one level in the
explorer tree hierarchy. This means that the selected
node is promoted to the same level that of its previous
parent node.

The node is positioned at the bottom of the new
parent node.

Move Right

This demotes the selected node by one level in the
explorer tree hierarchy. This icon is enabled only when
the selected node is positioned immediately after a
Folder node, which is at the same level. Clicking on
this icon makes the selected node a child of that Folder

iy

S
ORACLE | %hea

node. The node is positioned at the bottom of that
Folder node.

See Also:

Explorer
Folders

Delete Node

To remove any node from the cartridge right click the node and select ‘Delete’ menu
item. ‘Confirm Delete’ dialog will be displayed.

Confirm Delete

e Are you sure vou want to delete 'MTS543Meszage’ from 'MTS43'7

Click ‘Yes’ to delete the selected node.

See Also:

Explorer
File Explorer

The File Explorer displays files in the file system as a tree. Double clicking a file
opens it using the associated application. Double clicking a cartridge opens it in
Designer.

1. Select the ‘View Menu’.

2. Select ‘File Explorer’ menu item. The ‘File Explorer’ is displayed.

2%

ORACLE | %bea

File Explorer
|C i

i)

BﬁcrubatS

I5) ADOBEARP
¥ Bant
[h bim
[h docs
I ik
=| LIZEMSE.dom
=| LICEMSE.zax

5] LICEMSE. xercas

5=) ant-1.4.1 —
B CarmpuUuware
E Ernail-Zrdpartylibs
I Intellid-IDEA-4.0
Chizsdki. 4.z 10
Bjakar‘ta-ant-l.ﬁ
Chidki.z.a
Ejikes
BJLangGen
E My Diocurnents
E Program Files
I RECYCLED
E FepairReferencelrmpl
E FepositorpSeruer
E revathi
E Shared
&~ Istyle

L]

Open File

Select a file in the File Explorer. Right Click and select ‘Open File’ menu. The selected
file is opened in windows explorer.

Explore as Root

Select a directory in the File Explorer. Right Click and select ‘Explore as Root’ menu.
The selected directory is set as the root directory for the file explorer.

File Explorer Filters

The file explorer filter can be used to filter the files that are displayed in the explorer.
Select the filter button in the explorer toolbar. The following dialog will be displayed.

iy

S
ORACLE | %hea

&1 Filters

) Show files with extension

|dncjjaua;jar; car;dat;htrl; gifizipijpg:. = sd:htm; |

i Hide files with extension

|Exe; osdlljaripechiidbiclass;cabisax;objrdorminchimap;

| fal's || Cancel |

To hide files with a certain extension select ‘Hide files with extension’ option button
and add the file extension (e.g. xml) to be ignored in the text box. Press ok. The files
with the specified extension will not be displayed in the explorer.

To show only files with a certain extension select the ‘Show files with extension’
option button and add the extension in the text field. Only files with the specified
extension will be displayed in the explorer.

If multiple extensions are specified they should be separated by ‘;’ character.

See Also:

Designer User Interface

2%

ORACLE | %hea

Getting Started Pane

Open

Mew Cartridge
& Cpen Cartridge
& Open Repositary Client

Recent '@

MTSZ24, car
Purchazedrder car
BatchPersistAnd Quary. car
PurchaszeOrder car

MT950, car

See Also

Details

MT324.car

Last Saved: 1 hour back
Author i REWATHI

Properties ©Change Log

This pane provides convenient links to get started. The recently accessed cartridges
names are displayed. Clicking the name opens the cartridge. Links for creating a new
cartridge or opening a cartridge that is not in the recent file list are also provided in
this pane. Link to Help Index is provided.

See Also:

Designer User Interface

Design Element Ul Pane

When a design element node is selected in the Explorer pane, the user interface of
the corresponding design element is displayed in this pane. It usually consists of a
toolbar that can be used in defining/updating that design element. The

iy

S
ORACLE | %hea

Internal/External message design element Ul contains ‘Tree View’ and ‘Properties’
buttons in tool bar.

See Also:

Designer User Interface
Tree View

Properties

Tree View

The Tree View helps user to view the table contents of a message in a tree structure.

The button * |E " when enabled, displays the tree structure for the fields/section in
the table.

All operations like adding a field/section, deleting a field/section etc., related to a
message can be performed in the Tree structure.

For an internal message the root node name in the Tree structure is the name of the
internal message and child nodes are the ‘fields’ or ‘sections’. For an external
message, the tree view depends on the layer selected. The root node in a tree
structure is ‘Header’ for a Header layer, ‘Data’ for a Data layer and ‘Trailer’ for a
Trailer layer and child nodes are the fields’ or ‘sections’.

Consider the following Internal message with fields and a section with sub fields.

Intarmal Format - [SimpleForm] @

HCE S ¢ 80 ¢ |[B
I:H Enterprise Element || Type || Hidden || Description |
& InvoiceDate DateTirne] Cate of Invoice
& CliertID String [
o Item Section 0
& TtemID String Il
L Gt Inteqer] Quantity of Itern
& Price Couble] Price of Itern

The ‘Toggle Tree View’ icon that is present in the tool bar when enabled * |E ’
displays the corresponding tree structure for the field/section in table view.

]

ORACLE' | Zbea

& InvoiceDate

DateTime

i ClientID

String

ItemnlID
.
String
C3

_ Item L W Oty

Section Integer
W Price
Double

The field/section that was highlighted in the table structure appears as selected in
the corresponding tree structure. In a tree structure, the name of the field/section or
its data type is editable. Any section with sub fields is collapsible in the tree
structure. The occurrence property of a field or a section in table view can also be

viewed in the tree structure.

i InwoiceDate

DateTime

i ClientID
String

(3
1 Item =
Section

In the above diagram, the section ‘Item’ appears with the occurrence property
‘Mandatory, Repeating’. Right clicking inside the tree structure displays a pop up with
context menu items Show Annotation and Show Type.

SimpleForm [-

-

ORACLE' | Zbea

H‘}E Expand F
DE Collapse F
Copy ... P
Options F Show Annotation
e Show Type
Pazte
Find]

Show Annotation menu item when selected shows the description of all the
fields/section and hides the description when selected again. The Show Type menu
item is selected by default. The ‘Show Type’ menu item when toggled hides the data
type of all the fields/section in the UI.

W InvoiceDate

DateTime

Doate of Invaice

4 ClientID

String
w ItemnID

SimpleForm [String
= W Qty

iy Item — Integer

ELEELIE Quantity of Itemn
4 Price
Couble

Frice of Itam

See Also:

Properties

Properties

The ‘Properties’ button ‘==’ enables the user to show or hide the ‘Properties’ window.

The ‘Properties’ button is ‘On‘ by default, click to toggle it. Enabling it would
display the Properties window in the bottom of the Designer Ul.

When the Properties window is open, clicking on the close button in its title bar can
close it.

2%

ORACLE | %bea

Right clicking in the title bar of Properties window, displays a pop up with check box
‘Properties’. Deselecting the ‘Properties’ check box would hide the Properties window
from the Designer UI.

Internal Format - [SimplaForm] ‘

HOE S § e EE
I:H Enterprise Element || Type || Hidden || Descrption |
& InuvoiceDate CateTirme] Cate of Invoice
& ClientlD String []
r_‘-? Item Section [
& ItemID String []
& Oy Integer] Quantity of Tterm
4 Price Double [Price of Iterm

x| Properties

Min Qcours |1 |Y |

¥ Properties

Max ocurs |3 |Y | Platform Specific Attributesz

As can be seen in the above picture, the properties window consists of properties
corresponding to the Field/Section selected in the message.

See Also:

Field Properties
Section Properties
Design Element Ul Pane

Message Window

The Message window displays messages generated during validation and code
generation as shown below.

x|/ validating cartridge elernents...
Generating Cartridge ...
| Senerating Java files

E‘ Cormpiling generated files

“javac" "-classpath" "DiWolantellib\runtimel siaccanonicalrtjar; 0Waolantellibh runtimmel = milrtjar;

] DN

2%

ORACLE' | %hea

When the Message window displays a list of error messages as shown in the
following picture, the user can double click on a particular error message to display
the corresponding design element user interface. The selected error message is also
displayed in the status bar.

Validation Rules [Default] - SWIFT [MT543]*

rHeader |/Data |/T|=ai|er |

| | Validation

FieldExistzInAtLeastOnal)

q [2,2] Syntax error at token 'IsInt'. Formula errar in validation '"K22' for field 'A' |

9 ci-az SecExistsInAtMostOne(E E3, "124, ANTO")
£ C1-a3 FieldExistsInAtMostOnea(E.E2, "194, CHAR")
6 ci-ad SecExistsInAtMostOne(E,ES 194, COUN")
) c1-a5 SecExiztzInAtMostone(E E2, "194, DEAL"Y)
9 ci-ns SecExistsInAtMostone(E E3, "1928,EXEC")
£ c1-a7 SecExiztzInAtMostOne(E.E2, "194, ISDIM)

- Rl by fnlx

6 ci-As SecExistsInAtMostOne(E E3, "198, LEVY™)

[x| swift.MTS 43, Default: arror DF1200: [2,3] Syntax error at token 'IsInt', Formula error in valida
[l zwift. MTS43, Default: error DF1200: [1,27] Syntax errar at token "' Formula error in validatio

g: 2 errorl=) during validation,
n
"
W

z

I3

As can be seen in the above picture, moving the mouse pointer over the
error icon 2 displays the corresponding error message as tool tip.

The user can show/hide the Message window either by selecting the Message menu
item of the View menu or by clicking on the Message button on the Speed Bar.

When the Message window is open, it can be closed by clicking on the Close button
present in its title bar.

The Auto Hide mode (Pinned mode) of the Message window can be enabled or
disabled, by toggling the Auto Hide button present in its title bar. When Auto Hide
mode is enabled (indicated by the + icon), the Message window hides itself when it
loses focus. When Auto Hide mode is disabled (indicated by the % icon), the Message
window remains visible even when it loses focus.

Right clicking inside the Message window displays a popup menu with two items,
Clear and Copy. While the Clear menu item clears the content of the Message

2%

ORACLE | %hea
window, the Copy menu item copies the selected text of the Message window to the
clipboard.

See Also:

Designer User Interface

Errors Window

When a design element is validated, validation errors and warnings are listed in the
Errors window. New errrors are added to this list whenever new error/warning/info
occur. A task is removed from this list only when the corresponding
error/warning/info is rectified.

In the following picture, the Errors window (the bottom pane) is shown with an error
selected.

Intemal Format - [ejbjar]

I:H Enterprise Element || Type || Hidden || Description
=y ejbbody Sedtion

r_‘-,]* ejb-jar Section

{}? description String
4 display-name Integer
0? zrnall-ican String
0? large-icon String
=y enterprise-beans Section
_'i‘c SeSSi0n Sedction
i entity Saction
_'|? assembly -descHptor |Section

I O R

0? ajb-cliamt-jar String

|:| II' | Description | | Hode | | Location | | Property
i If a field is mandatory then External Forrmmat - ASCL., Records.name Crefault walud &=
e

& Mandatory sedcion Mapping Rules - Masz=... ejbbody.ejb-jar.... Mapping
£ Mare (Mew Function) does Mew Funcktion
£ Return type rmismatch in Mew Function
@) The default value for field ejbjar - [ejbjar] ejbbady. ejb-jar.... Default Vwalug -

[Erors]
= o &

s o]

N

In the Errors window, the Description column displays the error message. The
description appears in multiple lines.

2%

ORACLE' | %hea

[=] @ |:| II' | DescHption | | Hode | | Location | | Property |
a = £ Formula not specified for validation Default - [int] El Formula
L jr“l If a field iz mandatory then default External Formmat - FIX.,., BeginString Default Yalue
i value specified for it will be ignored.
o Field 'BeginString' is mandatory and
£X jr“l If a field is mandatory then default External Forrnat - FIX... M=sgType Default Yalue
value specified for it will be ignored.
Field 'MzgType' iz mandatary and

As can be seen in the picture given below, if you move the mouse pointer over
the Node value of an error/warning/info, it turns into a hyperlink. If clicked, it
takes you to the item causing the validation error such as a field/section, a
validation rule or a mapping rule.

[=] @ |:| II‘ | DescHpbon | | Node | | Location | | Property |
ik jrj If = field is mandatory then |Extgrnal Formmat - ASCIT .. Recerds.name Default v, | &)

o v Mandatory section Ma i ibad Mg
: External Format - ASCII Delimited [Delimit] i
ak € Marme (Mew Function] does MNew—===== |
"jrj £ Return type mizrmatch in Mew Function

it € The default value for field ejbjar - [eibjar] ejbbody. ejb-j... Default ...

% Unused variable 'varl' Mzaflow warl

L«

A tool tip is also displayed when the mouse pointer is moved over the value in
the Node column of an error/warning/info.

The Node column displays the name of the design element node that contains the
item causing the error/warning/info.

The Location column displays the name of the item causing the
error/warning/info.

Errors that correspond to the same design element as that of the currently
selected task are identified by the Tasks in active node icon af displayed in the
first column.

A tool tip appears when mouse pointer is moved over the tool bar icons in the
Errors window.

The tool tip shows the total number of errors/warning/info listed in the Errors
window.

2%

ORACLE | %hea

@ |:| |I| | Description | | Code | | Mode | | Pr
ij a tield iz mandatory then wternal Forrmat - o Detau
*-\.r‘II'F field dat th Ext | F t - ASCI Defaul
_E? /0y Mandatory zecion CF2001 Mapping Rules - Mess,.. Mappi -
,'_4; ; rme [Mew Function) doeas CM1002 Mew Function
rrars -
y £ Feturn type mizmatch in CM1102 Mew Function
Comin
4 [»]

Clicking on the ‘Errors’ icon would hide all the errors listed in the Errors window
and only warnings and info will be listed.

[=] @ |:| II‘ | Descrpton | | Code | | Node | | Property |
o /My Mandatory section DF2001 Mapping Rules - Mess,,, Mapping

o M Unused variable 'varl’ Mzgflaw

Y jr“l If a field iz mandatory then External Format - ASCI,, Default Walue

i

Clicking on it again would list all the errors in the Errors window. In the same
way warnings and info could also be hidden. By selecting the tool bar icons in the
Errors window error/warning/info can be shown or hidden.

Error codes corresponding to the errors/warnings can be displayed by selecting
the Code menu item from the short-cut menu displayed when right-clicking inside
the column title row.

Size colurnn to fit

FRow Height b

[J Hide 'Drescription’

¥ 1
o]

™ Dezcription
0 code

M Mode %

™ Location

¥ Property

The following picture shows the Errors table with error code column.

2%

ORACLE | %bea

[2] @ |:| II' | Description | | Code | | Hode | | Property |
q_i,.-;’ If a field iz mandatory then External Format - ASCIL., Default Value
3 My Mandatory section DF2001 Mapping Rules - Mess... Mapping
il € Marme (Mew Function] does DH10032 Mew Function
,j‘-...;' £ Return type misrmatch in DM110Z2 Mew Function
il £ The default value for field DF100S ejbjar - [ejbjar] Default Yalue
M Unused wariable 'varl' M=gflow

The Open Location button present in the Errors tool bar when clicked, takes you
to the item causing the validation error such as a field/section, a validation rule
or a mapping rule.

Cpen Location
value
Field '
&t i) I a fil
value
Field '

e b

The Open Location menu item can also be selected from the short cut menu of
Errors window.

? @ |:| |I| | Description | | Mode

€3 Formmula not specified for ualidj.LLn.n_D_eF:-uH- - limt]
3 @l j“_,l If a field iz mmandatory then d @ Open anat|?\|\-|

't value specified for it will be ign ,ﬁ Tabla Auta Fbli‘ﬁmat
o Field 'BeginString’ iz rnandator
] Fiow Height 4
L @l J‘J If a field is mmandatory then d :lI c

value specified for it will be ign & view As HTML

Field 'M=sgTupe' iz rmandatary

Another useful feature while working with the Errors table is generating an HTML
page for it. The HTML page is a sort of quick view of the current table information.
The structure of the generated HTML page will be similar to the current appearance
of the table. If you have hidden a column or reordered the columns, it will be
reflected in the generated HTML page.

-

ORACLE | #bea

[=] @ 1 Description Node Location Property
a 3 Forrmula not specified for validation Defanlt - Tint] E1l Farrmula

a et ‘jr"‘l If a field is rmandatory then d “pen Location

i value zpecified faor it will be ign 'ﬂTable Auta Farmat
- Field 'BeginString' is mandatar
:E Foow Height ¥

. BeginString Default Yalue

*-:!r";I af ‘jI‘J If a field iz mandatory then de

value specified for it will be ign & view As HTIL
Field 'M=sgType' is mandatory == g

. MzgType Default Yalue

To generate the HTML page, select the View As HTML menu item from the short-cut
menu of the Errors table, as shown in the above picture. Right-clicking anywhere
inside the table, with the exception of the column title row, displays the short-cut
menu.

See Also:

Designer User Interface

Search Results Window

The items that match the criteria specified while performing ‘Find In Path’ or ‘Fin
Usage’ operations are listed in the Search Results auxiliary window as shown below.

[=] MNoda Location . Property Yalue

= External Forrnat - FIX [Ordard1IM] FutSettDate2 Description ©an be used with CrdTy... |&
External Format - CMS/FCS [CMSE,., Reference_,.. Description Sequence nurmber assig... -
E Mapping Rules - FIX [Crderd1IM] Header. CFT... Mapping LeftStr{Formathate(Tim. .. —
ﬁ Body, ZFT_T... Mapping FormatDate(Today(]."H...

E Mapping Rules - CMS/FCE [CM&EI]... Body, CFT_T... Mapping FormatDate(Today(1."H... [+

The window displays the search results in four columns

Node. The node where a match for the search has occurred. The node type (e.g.
External Format - FIX) and the node name (Order41IN) are displayed.

Location. Displays the name of the matched item.
Property. Displays the matched attribute of the item. (E.g. Name, Description)

Value. Displays the matched text. If for e.g. the match has occurred for a field in
its description property, the value of the description is displayed in this column.

To navigate to the location where the match has occurred, move mouse over the
Node column. A hyperlink is displayed. Click it to navigate to the location.

2%

ORACLE | %bea

Jump To Location

To navigate to the location where the match has occurred the user can also select

the row in the search results table, right click it and select ‘Jump to Location’ menu
item.

(| |:| | Node | | Location | | Property | | ¥alue
[]

f—j External Format —=saIe T TrTs241 Dozzibls uplicate Meszss,...

Dezcription Added by the systern to any ..
£ - Jurnp to Location
a f-j Extarnal Format r. 4 Header.Mes,.. Marme Mezsage Input Reference
a .
[“:'j Extarnal Format ﬁ TablT‘E Auto Format 2eference Marne Meszsage Reference
= . .
£ ‘:'j External Farrnat :E Row Height 4 ler.Message ... Mame Mezsage User Reference
]
% f'j External Format !e\,riew fs HTML POOL Description Pool Reference

-

ORACLE' | Zbea

View As HTML
To view the search results in the HTML format right click the search results window

and select ‘View As HTML’ menu item. The search results are displayed in HTML
form.

See Also:

Find in Path
Find Usage

Status Bar

The status bar displays status of the current operation. It also displays the
error/warning message currently selected in the Message window.

The status bar is shown below.

';:': Generating Cartridge ...

See Also:

Designer User Interface

Speed Bar

Speed Bar displays buttons corresponding to auxiliary windows. The user can
show/hide an auxiliary window by toggling the corresponding button.

See Also:

Designer User Interface

Change Log Window

This feature allows the user to maintain a change log of a Cartridge. To edit/view the
‘Change Log’ window, click on the Change Log link displayed in the ‘Getting Started’
pane of Designer when a Cartridge is open.

iy

S
ORACLE | %hea

(5]

Dretails

BatchSerialize.car

Last Saved: 59 minutes bac
Author i Krizh

Properties Change Log

To add a log entry, click on the ‘Add Change Log Entry’ tool icon E7] displayed on the
left of the ‘Change Log’ window. Once a new row is added to the ‘Change Log’
window, you can edit the content each column. To remove a log entry, select the row
to be removed in the ‘Change Log’ window and then click on the ‘Remove Change
Log Entry’ tool icon |=.

[=] 5 |:| | Date | | A.uthurl | Status | | DescHpton | | Node |
e J @ Thu Jan 25 09:39:42.., Krish Completed Cormpleted Cartridge design, BatchSerialize
e

~ &l Thu Jan 25 09:42:44... Bala To Do Testing. BatchSerialize
=]

1=

m

=

!

See Also:

Designer User Interface

Element Heading

It is the title bar of the Design Element Ul pane. It displays the type and name of the
current design element.

See Also:

Designer User Interface

iy

S
ORACLE | %hea

Designer Settings

Designer settings that can be specified are
Option to reopen last file on startup and to
Color schemes viz., Blue, Green, Gray, Plastic Look & Feel and Windows Look &
Feel
Required font & size for all text in designer and
Required font & size for codes in designer.
1. Click on the File menu.

2. Select the Settings menu item.

The Settings dialog box appears.

£l Settings (Requires restart)

|/ General |/ Colors & Fonts |

[¢] [Fecpen last file an startup

| o] 4 || Cancel || Help

You can specify the designer settings in this dialog.

Note:

The designer must be restarted after making changes to this dialog for the changes
to take effect.

See Also:

Designer User Interface

-

ORACLE' | Zbea

Recent File List

The recent file list provided by Designer gives easy access to the recently opened
cartridges.

Selecting the File = Recent menu item displays a submenu consisting of the most
recently used cartridges. The user can select one to open the corresponding
cartridge. The shortcut key Ctrl-J can be used to open the most recently used
cartridge.

See Also:

Tables

Navigation Features

Diff

Cartridge Publisher
Cartridge Read-Only Mode
Verify Integrity
Export/Import a Design Element
Copy/Paste

Validating Design Elements
Find

Drag and Drop

Exiting Designer

Follow the steps given below to exit Designer.
1. Click on the File menu.

2. Select the ‘Exit’ menu item.

3. The save cartridge dialog is displayed.

Save Cartndge? Ed
Q Would you like to save 'D:\Program Files\Dezignet\MTS24, car'?

Wes Mo Cancel

-

ORACLE' | Zbea

4. Press ‘Yes' to save the cartridge and exit the designer. If you do not want to save
the cartridge press ‘No’. The cartridge will not be saved and designer will be
exited. Press ‘Cancel’ if you do not want to exit designer.

See Also:

Designer User Interface

Cartridge

A cartridge is a model that captures,
Format definitions of internal and external messages
Transformations between internal and external messages
The workflow that defines the behavior of the runtime application on receiving a
new message.

Cartridge is saved as a file with car extension.

See Also:

Creating a Cartridge
Opening a Cartridge
Saving a Cartridge
Validating a Cartridge
Closing a Cartridge
Cartridge References
Designer User Interface
Message

Message Mapping
Formula

Function Definition
Code Generation
Simulator

Working With Cartridge Designer

Creating a Cartridge
Follow the steps given below to create a new cartridge.
1. Click on the File menu.

2. Select the New Cartridge menu item.
The New Cartridge dialog box appears.

iy

S
ORACLE | %hea

£ Mew Cartridge

0 Enter Cartridge Marme
|New0rder{ |

(o] 4 Cancel

3. Enter the name of the cartridge and click the OK button.

4. The cartridge design element node appears at the root of the explorer pane. The
cartridge design element Ul is shown in the following picture.

TaskWindow

Cartridge Details

Cartridge Mame |New0rder |

Wersion |1.EI |

Version Info ...

5. Change the version number of the cartridge in the Version text box, if required.

6. Enter the description of the cartridge in the Description text area. This along with
the version number helps in identifying a cartridge.

7. In the Description drop down list select HTML to enter description as HTML. This
feature will be more useful when capturing specification from other file formats
(*.doc,*.txt,*.pdf, etc.,).

8. When clicked on the Description text area the formatting tool bar appears.

2%

ORACLE | %bea

9.

10.

NewOrder

Cartridge Detailz

Cartridge Mame |NewOrder |

Wersion |1.EI |

Dascription .ﬂ.ﬂ.ﬁ %E EE 535 @A &

Version Info ...

Formatting options include the standard text formatting options of bold, underline
and italics.

Text can be bolded by selecting the text and either clicking on the ‘Bold’ button
or using Ctrl+B.

Text can be underlined by selecting the text and either clcking on the ‘Underline’
button or by using Ctrl+U

Text can be italicized by selecting the text and either ‘italic’ button or by using
Ctri+I.

Bold, underline, and italics can be used in any combination.

Contents in the text area could be formatted as bulleted or numbered lists. To
add bullets to a text, select the text and click the appropriate button.

r“g

ORACLE | Zhea

Crescription E] -f_] Q ;E EE i] :] ﬂ 'ﬁ\'l A &

Bold ftakic Underline
Bold italic
Bold undedine ftaiic underiine Bolditalic underfine

Font

#® BULLETED

Centeralign
Rightalign
StylePlain
StyleBold
Stple falic Font color

Back Ground colo

11. Text can be aligned to the left/right/center of text area. To align a text, select the
content to be aligned and click the appriopriate buttons.

12.To change the fore color of a text select the text and click the ‘Foreground’ icon
in the formatting tool bar. In the ‘Select Color’ dialog select the desired color and

click Ok.

ti:'l Select Color 5'

[Swatches | HSB [RGB |

Preview

n - . Sarmple Text Sarmple Text
H=l]

Sample Text Sample Text

| (]’ || Cancel || Reset |

13. To change the Font/Font style/Font size for a selected text click the Font icon
present in the formatting tool bar. In the ‘Select Font’ dialog select the desired
Font/Font style/Font size and click Ok.

2%

ORACLE | %bea

&) Select Font x|
Font: Font Style: Size:
|Mnnnspaced | |F‘|ain | |12 |
Monozpaced a| |Plain iz -
Monotype Corsiva Bald 14
Maonotype Sorts Italic 16
Mews Gothic MT Bold Italic is
OCR A Extended 20
Palatino Linotype B 2z
SansSerif 24
Serif . 25 -
Surmhal Ml 20]
abcABC123

]34 | | Cancel

14.To change the background color for a selected text, select the text and click the
Background icon. Select the desired background color from the ‘Select Color’
dialog and click Ok.

See Also:

Cartridge

Opening a Cartridge

Opening An External Message Catalog
Saving a Cartridge

Validating a Cartridge

Cartridge References

Opening a Cartridge

Follow the steps given below to open an existing cartridge.
1. Click on the File menu.

2. Select the Open Cartridge menu item.

3. The Open Cartridge dialog box appears.

8.

iy

S
ORACLE | %hea

& Dpen Cartridge

Laok In: | [Inventory 7 |E||@||§||EE"E:|

[CusternClasses

[sarnple

D Inventary,.car

File Marme: |Inl.lentnr',l.car |

Filaz of Type: |CAR File [.car) b |

| ClpRan || Cancel |

| Cpen selacted file

[Jopen as read-anly

Navigate to the directory that contains the cartridge file and select it.

Select the Open as read-only check box if the cartridge has to be opened as
read-only.

Click the Open button.
If the cartridge contains cartridge references and if there are broken references,

for each broken reference, it will display the ‘Cartridge Reference Error' message
box and asks you whether you wish to fix it.

Cartridge Reference Error ﬂ

Unable to locate reference cartridge at E:\Testappi\MappingstallMappings. car
Would vou like to a provide an alternate location?

If you select the Yes button, it will show you the ‘Resolve Cartridge Reference’
dialog.

2%

ORACLE | %bea

l;;'l Resolve Cartridge Reference

Look In:

Lﬁ Main

ISHENENE

[sample

D MezsagesAndFlows. car

File Marne:

Files of Tepe: | Cartridge Files (*.car)

- |

Open || Cancel |

9. Navigate to the directory that contains the cartridge corresponding to the broken
link and select it.

10. Click the Open button. When all the broken references are fixed, the main

cartridge will be opened in the Designer window.

The cartridge is opened in the same frame if it does not have a cartridge already
open. If a cartridge is already opened in the current frame, the new cartridge is
opened is a new frame.

See the section Cartridge Read-Only Mode for more information on opening a
cartridge in read-only mode.

When you save the cartridge, Designer will save the new locations selected for the

broken references.

See Also:

Cartridge

Creating a Cartridge

Opening An External Message Catalog

Saving a Cartridge

Validating a Cartridge

Cartridge References

-

ORACLE' | Zbea

Opening An External Message Catalog

Follow the steps given below to open the external message catalog.
1. Click on the File menu.

2. Select the ‘Open External Message Catalog’ menu item.

Fil= | Edit Search Wiew Build Tool

Mew Cartridge
= Cpen Cartridge

& Cpen External Meszage Catalog

= Cpen Repository Client

H Save

_ Save As
Close
__J?} Settings ...

Recant

3 Exit

3. The message catalog opens in a new designer window with all the messages
listed in the Explorer pane.

2%

ORACLE | %bea

Ex Explorer o=

BR e.im.»

External Format - SWIFT [MT950]

|/Header |/Data |/Trailer |

External Message Catalog ; .
(= % EBloomberg 1-3 E" ﬁ @ ‘{::‘"3 = Lg g+ -
o % SIAC Canonical [Field Name || Type || Descriptios
® % EDI @ 20 Swift Field Transaction Referanc
® % CMS/FCS @ 25 Swift Field Account Identification
& % FIx @ 28C Swift Field Staternent Mumberfs
& % Reuters @ &0a Swift Field |2pening Balance
; % SWIFT @ 61 Swift Field Staternent Line
0 % Cash Management & Custom @ E23 Swift Field |Closing Balance (Boa
é)_% MT950 @ &d Swift Field |Closing Awvailable Bal
(% xtemal Format|]

% Walidation Rules [Defa

(=) % Customer Payments & Cheqy Fepeating |:| | Option || Format || Speci
(s % Securities Markets 16x [Referand
5 % Berfen Cptional O

(=) % System

@@= % Universal
[E

[»]

[»]

Note that the catalog opens in a non-editable mode. The messages appear with a
lock icon overlaid on top of the nodes. The lock indicates that the messages cannot
be modified.

See Also:

Cartridge
Creating a Cartridge

Saving a Cartridge
Validating a Cartridge
Cartridge References

Saving a Cartridge

Follow the steps given below to save a newly created cartridge or to save changes
made to a cartridge.

1. Select the File menu.
2. Select the Save menu item.

3. If the cartridge is new, the Save Cartridge As dialog box appears.

-

ORACLE' | Zbea

é;'l Save Cartridge 'PurchaseOrder’ As
Look int [Purchaseorder - E @ I:-'l' EE E::
File marne: |F‘urcha5e0rder | Save
Filas of typea: |CAR Fila [.car] b | | Cancel

4. Change to the directory under which you want to save the cartridge file.

5. Enter a name for the cartridge file in the File name text box and click the Save
button.

Note:

Designer prompts the user to save the current cartridge when the user tries to
create a new cartridge or tries to open another cartridge. The user is also
prompted to save the current cartridge, when the user exits Designer.

If the cartridge is already saved in a file, selecting the File > Save menu item
simply updates that cartridge file.

Use the File > Save As menu item to save the current cartridge in a different file
from that of the original cartridge file.

See Also:

Cartridge
Creating a Cartridge

Opening a Cartridge

Opening An External Message Catalog
Validating a Cartridge

Cartridge References

-

ORACLE' | Zbea

Validating a Cartridge

A cartridge is a model that captures message definitions, transformations . This
model is later converted to platform specific executable code. For this to be possible,
the cartridge model should adhere to some basic rules. These rules enforce certain
constraints in the model so that processing of this model does not result in errors.
For instance, the name of a field cannot be empty. If this rule is violated it would be
difficult to convert the cartridge model to platform specific code.

Select the Validate All menu item from the Build menu to validate the cartridge
design element and all of its child elements.

Validating the cartridge ensures that there are no errors that would make the code
generation fail.

You can also validate individual elements by selecting the ‘Validate’ menu item from
the short-cut menu that appears when right-clicking that element in the Explorer
window.

Note

The cartridge is automatically validated before code generation.

See Also:

Validating Design Elements

Cartridge

Creating a Cartridge

Opening a Cartridge

Opening An External Message Catalog
Saving a Cartridge

Cartridge References

Closing a Cartridge
1. Select the File menu.
2. Select the Close menu item.

3. Save Cartridge dialog appears as shown below.

-

ORACLE' | Zbea

Save Cartridge?
@ Wwould you like to save 'D:hPragram Files\Designet\MTS524, car'?

Wes Mo Cancel

4. Press ‘Yes' to save and the cartridge and exit. If you don’'t want to save the
cartridge then press ‘No’. The cartridge will be closed without being saved. If you
don’'t want to close the cartridge press ‘Cancel’.

See Also:

Creating a Cartridge

Opening a Cartridge

Opening An External Message Catalog
Saving a Cartridge

Validating a Cartridge

Adding Items to Cartridge

The items that can be added to a cartridge are

Message
Message Mapping

Function Definition
Resources

Cartridge References
Folders

To add an item to Cartridge select the cartridge node, right click and select the ‘Add
Item’ menu item

2%

ORACLE | %bea

MT A

nY] Add Ttern bk
il @
|: % Mew Referznce ...

Verify Integrity

Path]
Properies
Capy Chrl-C
Paszte Chrl -y
E3 Import ... Ctrl+5hift-1
Eed Expart ... Ctrl+5hift-E
) validate crl-L

Select the item that you want to add.

You can also select the cartridge and click on the ‘New Item’ button in the cartridge
explorer toolbar to add items to the cartridge.

Ex Explorer

fb—@ External - SWIFT [MT524]

|:f'j External Format
%) walidation Rulez [Default]

To add a ‘Reference’ to cartridge, right click the cartridge node and select ‘New
Reference’ menu item to add a new reference to the cartridge.

i Add Tte]
(O

@ Mew Reference ... %_
Werify Integrity
- path »
Praperties
‘P‘E B2 copy Ctrl-C
Paste Chrl =W
£43 Import ... Ctrl+Shift-1
Frd Excpart ... Ctrl+Shift-E

A validate Ctrl-L

-

ORACLE' | Zbea

See Also:

Creating a Cartridge

Opening a Cartridge

Opening An External Message Catalog
Saving a Cartridge

Validating a Cartridge

Closing a Cartridge

Cartridge Properties

Cartridge Location

Cartridge Properties

The general properties of a cartridge like ‘Author’, ‘Subject’, comments about the
cartridge etc. can be viewed and edited in the cartridge properties dialog. Right click
the cartridge node and select ‘Properties’ from the context menu.

éﬂ Cartridge Properties

General

Title SWIFT

Subjec SWIFT |UI TEST
Authar REVATHI
Coarmpany

Departrnent

Cormmments

Additional Info

Client Id

Creation time Thu Qct 25 11:05: 26 IST 2004
Laszt zaved by revathi

Last save tirme Tue Sep 04 14:14:10 IST 2007
Fevision nurmber 2z

Ok Cancel ﬂ Help

-

ORACLE' | Zbea

See Also:

Adding Items In Cartridge
Creating a Cartridge
Opening An External Message Catalog

Cartridge Location

One of the common use cases is to go to the Cartridge directory. The user may want
to use the deployed Jars, run the command line version, back up the cartridge etc. It
may be irritating to the user to locate the cartridge directory by using the explorer,
particularly when the cartridge is deep inside some nested directory. The ‘Path’ menu
provides two sub menus that let you open cartridge in explorer and to copy the
cartridge path to clipboard.

1. Right click the cartridge node and select ‘Path’ menu.

2. Select ‘Open Containing Folder’. The folder in which the cartridge is located is
opened in explorer.

3. To locate the cartridge in ‘File Explorer, select ‘Locate in File Explorer’ menu item
under ‘Path’ menu. The ‘File Explorer’ window will be displayed with the cartridge
selected.

4. To copy the path of the cartridge select ‘Copy Path’ menu item under ‘Path’
menu. The path of the cartridge will be copied to clipboard. You can then paste
the path in Explorer to locate the folder of the cartridge.

See Also:

Explorer
File Explorer

Folders

Folders are just a convenient way of grouping related design elements. Folders do
not have any other significance and has no runtime representation.

See Also:

Adding a Folder
Deleting a Folder

e
ORACLE | %hea

Adding a Folder
A folder can be added as a child of the cartridge node or another folder.
Follow the steps given below to create a new folder node.
1. In the Explorer window, select a cartridge node or a folder node.
2. Select the New Folder menu item from the sho_x(i—cut menu that appears when

you right-click the node or from the New Item i drop down menu present in

the Explorer toolbar.

3. The Folder dialog box appears.

é;'l Folder

Enter Folder Marme
|Messag|25 |

(o] 4 Cancel

4. Enter a name for the new folder.

5. Click the OK button to create the new folder.

See Also:

Deleting a Folder

Deleting a Folder
1. Right click on the ‘Folder’ element and select ‘Delete’ menu item.

2. Click ‘OK’ in the delete dialog that appears to delete the folder.

Note:

When a folder is deleted, the design elements that are added under it will also be
deleted.

See Also:
Adding a Folder

-

ORACLE' | Zbea

Message

Designer supports two types of messages:

1. Internal Message
2. External Message

While an internal message is defined by the enterprise for a particular processing, an
external message is defined outside the enterprise. Once the transformation between
an internal message and an external message is defined, the enterprise is able to
process that external message.

See Also:

Designer User Interface
Cartridge

Message Mapping

Formula

Function Definition

Code Generation

Simulator

Working With Cartridge Designer

Internal Message

An internal message is a message standardized for use by the enterprise for a
particular processing. In Designer, an internal message with its associated
processing is represented by an internal message design element.

The internal message design element consists of two child elements:
1. Internal Format
2. Validation Rules

Here, the Internal Format design element is used for defining the internal
message structure consisting of data fields and data sections.

The Validation Rules design element is used to check the conformance of data
to the business rules. The validation rules node appears with name ‘Default’.

During cartridge generation, a component is generated for an internal message. This
component is later deployed under Runtime. Once an internal message component is
deployed, a client can look it up by using its name for processing the internal
message represented by it.

-

ORACLE' | Zbea

See Also:

Creating an Internal Message

Defining an Internal Message Format

Internal Message Processing

Internal Message Validation Rules

Deleting an Internal Message

Adding Persistence Designer

External Message

Validation Rules

Alias
Tracing Messages in a Cartridge to a Standard

Message

Creating an Internal Message

Follow the steps given below to add an internal message element to the current

cartridge.

1. Select the cartridge design element.

2. Select the New Internal Message from the ‘Add Item’ drop down list present in
the Explorer toolbar.

3. The New Internal Message dialog box appears.

é;'l Mew Internal Message
Q Enter Internal Message Mame
|PurchaseOrder{ |
o] 4 Cancel

4. Enter a name for the internal message and click the OK button.

5. In the explorer pane, a new internal message node with the specified name is
created under the cartridge node with its primary child nodes — Internal Format
and Validation Rules.

6. Enter the internal message details in the internal message design element Ul

shown below. Apart from the version and usage information, which are entered in
the Version and Description text fields respectively, the user can also enter

2%

ORACLE | %bea

information in the Standard Details section that is used in tracing the internal
message.

PurchaseOrder @

Internal Message Detailz

Internal Message |Purchase0rder |

Wersion |1.I:I

Standard Details

Marme | |

Warsion | |

Detailed Marne | |

Creszcription

See the Tracing Messages in a Cartridge to a Standard section for more information.

-

ORACLE | #bea

See Also:

Defining an Internal Message Format
Internal Message Processing
Deleting an Internal Message

Adding Persistence Designer

Internal Message

Defining an Internal Message Format

The Internal Format Ul helps in defining the internal message structure by providing
facility for adding its constituent fields and sections.

See Also:

Adding a Field
Field Properties

Adding a Section

Section Properties

Platform Specific Attributes

Arranging Fields of an Internal Message Format
Deleting Fields of an Internal Message Format
Importing Field Structure from External Sources
Specifying Properties for Multiple Fields/Sections
Creating an Internal Message

Internal Message Processing

Internal Message Validation Rules

Deleting an Internal Message

Adding Persistence Designer

Internal Message

Adding a Field

A data field or simply a field represents a single item of information.

Follow the steps given below to add a new field to the internal message format.
1. Select the Internal Format design element in the explorer pane.

2. The Internal Format Ul is shown in the Design Element Ul pane.

3. Click on the Add New Field button LE in the toolbar at the top of the
Internal Format UL.

2%

ORACLE | %bea

4. A new row appears in the internal format table and its Enterprise Element column
is selected by default. If you have selected a row before clicking on the Add New
Field button, the new row is inserted immediately after the selected row.

Intermal Format - [Invoice] ‘
CE KRN
Element || Type || Hidden ” Description |
CateTime]
& ClientID String [
rjj" Item Section]
& TtemlID String [
| < Mew Field String |
@ Oty Integer D
4 Price Couble]
x| Properties
Mot Mull [w]
Default Value | |
Max Length |1IIIIII | | Platform Specific Attributes

5. Type in a name for the new field.
6. Type in the alias name of the new field in the Alias column, if required.
7. The Alias column is hidden by default. Select the Alias menu item from the

short-cut menu that appears when you right-click on the header row of the
internal format table.

Size column to fit

Row Height b
[0 Hide 'Type'

¥ Enterprise Element

0 Alias
M Type %

¥ Hidden
¥ Description

8. See the section Alias for more information on using the alias names.

-

ORACLE' | Zbea

9. Select the data type of the new field from the list of supported data types
(Bighecimal, Biglnteger, Binary, Boolean, Character, DateOnly, DateTime,
Double, Float, ISODate, ISODateTime, ISOTime, Integer, Long, String and
TimeOnly) that appears in the Type column.

10. Type in the description of the new field in the Description column, if required.

11. Specify the field properties. See the section Specifying the Field Properties for
more information.

12. Specify the database related properties of that field by clicking on the Platform
Specific Attributes button in the Properties panel. See the section Specifying
the Platform Specific Attributes for more information.

See Also:

Field Properties
Adding a Section

Field Properties
Hidden Property

Set the hidden property of a field by selecting or deselecting the check box that
appears in the Hidden column of the internal format table. A hidden field cannot be
used in mapping. This means that an input mapping cannot be specified for a hidden
field and it cannot be used in an output mapping. So a hidden field is not shown in
the Mapping Rules Ul. But, a hidden field can be used in processing of an internal
message.

See the Mappings section for more information on the types of mappings. See the
Internal Message Processing and Internal Message validation section for more
information on processing/validating an internal message.

Required Property

Set the required property of a field by selecting/deselecting the Not Null check box
in the Properties panel that appears at the bottom of the Internal Format Ul. If a
required field is not assigned a value even after internal message processing is over,
an error is generated indicating the failure of the not null check. Designer indicates
an optional field by displaying the ? indicator symbol besides the field icon. No
indicator symbol is displayed in case of mandatory fields. In the following picture all
fields except the lastname field are mandatory.

]

ORACLE' | Zbea

Enterprise Element
@ Security_ID

 firstmame
&7 lastname
i age

“ gender

4 joindate

4 designation
i zalary

Default Value Property

A default value can be specified for a field in the Default Value text box of the
Properties panel. The default value is assigned to that field only if it is not assigned
a value during input mapping. The default value is overwritten if a value is assigned
to that field during the internal message processing, which is performed next.

See the Message Mapping section for more information on the types of mappings.
See the Internal Message Processing section for more information on processing an
internal message.

The following points should be noted while assigning a default value for a field.
The data type of the value should match the data type of the field.
The default value for a DateOnly type field should be in the format yyyyMMdd.

While specifying the default value for a String type field, the string value should
not be enclosed in double quotes.

An expression cannot be used to specify a default value.
Length Property
This property is applicable only for a String type field. This is used to specify the
maximum number of characters allowed for that field value. This property is used in

XSD export, db schema generation and webforms generation. But validation is not
done for the length of the internal message fields when using NOXML as input.

See Also:

Defining an Internal Message Format

2%
ORACLE | %hea
Adding a Section
A data section or simply a section is a set of related fields. A section also has the
property of repeating. It means that the entire set of constituent fields can occur a
number of times. For these reasons, a section can be thought of as an array of

elements, where each element consists of all constituent fields.

For creating a section with its constituent fields, the user should first create a section
and then add its constituent fields.

Follow the steps given below to add a new section to the internal message format.
1. Select the internal format design element in the explorer pane.

2. The Internal Format Ul is shown in the Design Element Ul pane.

3. Click on the Add New Section button m in the Internal Format Ul toolbar.

4. A new row appears in the internal format table and its Enterprise Element column
is selected by default. If you have selected a row before clicking on the Add New
Section button, the new row is inserted right after the selected row.

Intermal Format - [Inwvoice] ‘
|| Alias || Type || Hidden || Description |
CateTirme]
¢ ClientID String]
,j‘ Iten Section [
& IternID String [
@ Mew Field String]
A ity Integer]
4 Price Couble]
| rj* Hew Section Section]
x| Properies
Min Ceocurs |EI |"’ |
Max Ocours |Llnl:u:n_|nc|ed | - | Platfarrn Specific Attributes

-

ORACLE' | Zbea

5. Type in a name for the new section.
6. Type in the alias name of the new section in the Alias column, if required.
7. The Alias column is hidden by default. Select the Alias menu item from the

short-cut menu that appears when you right-click on the header row of the
internal format table.

Size colurmn to fit
Fow Height b
[J Hide 'Type'

¥ Enterprise Element
O alias

¥ Tope L‘\:S

¥ Hidden

™ Description

8. See the section Alias for more information on using the alias names.
9. Type in the description of the new section in the Description column.
10. Specify the section properties in the Properties panel that appears at the

bottom of the Internal Format Ul. See the section Section Properties for more
information.

11. Specify the database related properties of that section by clicking on the
Platform Specific Attributes button in the Properties panel. See the section
Platform Specific Attributes for more information.

See Also:

Section Properties
Adding a Field

Section Properties
The section properties specify its repeating and optional attributes.

Min Occurs Property

-

ORACLE' | Zbea

This property specifies the minimum number of occurrences for a section. A ‘Min
Occurs’ value of 0 means that this section is optional (there can be no occurrences
for this section in the message).

-

ORACLE' | Zbea

Max Occurs Property

This property specifies the maximum number of occurrences for a section. A ‘Max
Occurs’ value of 1 means that this section is non-repeating (there can be only one
occurrence for this section in the message) and a value more than one means that
this section is repeating. The special value for this property ‘Unbounded’ means that
there can be any number of occurrences for this section.

The table given below describes the repeating and optional characteristics of a

section indicated by its ‘Min Occurs’ and ‘Max Occurs’ values. It also shows the
corresponding cardinal indicator displayed by the Designer for each type of section.

Section Properties

Min Max Cardinal Description

Occurs Occurs Indicator

0 Unbounded * The section is optional and
repeating.

0 1 ? The section is optional and

non-repeating.

1 Unbounded + The section is non-optional
and repeating.

1 1 No The section is non-optional
indicator and non-repeating.

These cardinal indicators, which comply with XML convention, are shown beside the
section icons as shown in the following picture.

o SWIFT MT564 HEADER INFORMATION

W SWIFT Header Text

& SWIFT Electronic Address

& RIAM OID

&% SWIFT Link Internal Ref ID

[] SWIFTMT564 GENERAL INFORMATION

(] SWIFT MT564 UNDERLYING SECURITIES

[] SWIFTMT564 CORPORATE ACTION DETAILS
Cff SWIFT MTS64 ADDITIONAL INFORMATION

-

ORACLE' | Zbea

See Also:

Defining an Internal Message Format

Platform Specific Attributes

It is often required to persist an internal message in a database. In Designer, this
can be done by adding a persistence designer to the internal message.The internal
format definition is used in creating the persistence designer. A section in the
internal format is represented by a database table and a field is represented by a
corresponding database field.

The platform specific attributes of an internal message field/section determine the
database properties of the corresponding database field/table.

During cartridge generation, Designer generates a schema file based on these
platform specific attributes. This schema file can later be used to generate database
specific SQL command files, using the SQL Generator tool.

See Also:

Platform Specific Attributes of a Field
Platform Specific Attributes of a Section

iy

S
ORACLE | %bea

Platform Specific Attributes of a Field

The platform specific attributes specified for an internal message field determine the
attributes of the corresponding database column.

To view the Platform Attributes dialog either click the ‘Platform Properties’ button
present in the internal format tool bar or select the menu item ‘Platform Properties’
from the Platform Properties drop down list.

g+ -
g“ Flatforr F'rcgr‘ties

g+ Platform Fo

at Properties

The Platform Attributes dialog box for a field is shown below.

£ Platform Attributes (New Field)

|’ Database |/xML rAth-ihutes |

Calurmn Narme |ORDER_ID |
SOL Twpe |VARCHAR - |
Length 22 |
Mot Mull [w]
Prirmary Key D
Auto Generate |:|
Fareign key E
Foreign Key Table |ORDERS |
Faoreign Key Colurmn |ORDER_ID |

| (al}4 || Cancel || aHelp |

Column Name Attribute

-

ORACLE' | Zbea

The value of this attribute becomes the name of the corresponding database field.
Designer generates an initial value for this field from the field name, based on
general database field name conventions. For example, space characters in the
original field name are replaced by an underscore character. But it can be changed

based on database and application specific requirements, such as limiting the length
of the name.

-

ORACLE' | Zbea

SQL Type Attribute

This determines the type of the corresponding database field. The SQL Type list box
shows a set of SQL types based on the data type of the internal message field. The
Designer data types and their corresponding SQL types are shown below. The user
has to select one of the SQL types based on the underlying database platform and
application requirements.

Designer Type | Corresponding SQL Types

BigDecimal DECIMAL

BigInteger BIGINT

Binary VARBINARY
LONGVARBINARY
BINARY
BLOB

Boolean BIT

Character CHAR

DateOnly DATE

DateTime DATE
TIME
TIMESTAMP

Double DOUBLE
DECIMAL
NUMERIC

Float REAL
FLOAT

Integer SMALLINT

-

ORACLE' | Zbea

INTEGER
TINYINT

Long BIGINT

String VARCHAR
LONGVARCHAR

TimeOnly TIME

Length Attribute
This attribute depends on the Designer type of the field.

For a String type field, it specifies the maximum number of characters allowed for
the corresponding field value.

For Integer, Long and Biglnteger type fields, it specifies the maximum number of
digits allowed for the corresponding field value.

For Float, Double and BigDecimal type fields, the user needs to specify both the
entire length of the corresponding field value and the length of its decimal part, as

required in the Number type of Oracle.

For a Binary type field, it specifies the maximum number of bytes allowed for the
corresponding field value.

This attribute is not applicable for Character, Boolean and all forms of date/time
fields.

Not Null Attribute

This attribute determines the Not Null property of the corresponding data field. If set
to true, a value should always be present for the corresponding data field.

Primary Key Attribute

Setting this attribute to true makes the corresponding data field the primary key
column and automatically sets the Not Null attribute to true.

iy

27
ORACLE | %hea
Auto Generate Attribute
This attribute is applicable only if the primary key attribute of the corresponding field
is set to true. Runtime takes care of generating the primary key value if this attribute

is set to true.

The persistence designer uses a unique key generator based on a unique key
generation table.

See the Adding Persistence Designer section for information on using the persistence
designer to persist internal messages.

Foreign Key Attribute
The Foreign Key Table and Foreign Key Column text boxes, shown when this
attribute is set to true, are used to specify the table and its column referred to by the

database column corresponding to this field.

Select the XML tab to customize the platform attributes of the field.

E]l Platform Attributes (Order) __;::;3_ x|

[Database [ML |/Ath-ihutes |

AML Marme |Order |

Mode Tepe |e|ernent -

]34 || Cancel || aHelp |

iy

S
ORACLE | %hea

XML Platform Info

Each message, internal or external has an XML representation. For internal messages
XML is only physical or external representiation. External messages support both
their native form (such as SWIFT, FIX) as well as an XML representation.

The XML platform info allows you to cusotmize the XML representation of a message.
Customizing the values in XML tab serves for the following purpose.

Ability to customize whether the field should be represented as an Element,
Attribute or Value in XML.

Ability to change the XML name of the field, which can be different from the field
name.

:i;'l Platform Attributes {Order} ﬂ

rDatabaEE erL I’Ath-ibutes |

AML Mame |Order |

Mode Type |element -

element
attribute

value

(o],4 || Cancel || BHElp |

Field Attributes

iy

S
ORACLE | %hea

Each field in a mesage can have a set of properties or attributes associated with it.
These attributes are simple name-value pairs. In case of XML plugin, when a
message is constructed by importing an XSD the plugin adds the xmIType of each
element as an attribute of the field. You can also manually add, remove or modifiy
the attributes defined.

Select the Attributes tab to customize the platform attributes of the field.

é;'l Platform Attributes {Orders)

[Database | XML |* Attibutes |

IR AR

|:|| Property Name || ¥alue
“mlType BIC

| a1 || Cancel || QHeIp |

The main purpose of these field attributes is to apply an operation on multiple fields
based on its attribute. As of now, the ‘Applies to’ column in validation supports this
idea using which you can apply the same validation to all fields which has a filed
attribvute value.

For instance, if you want to apply a validation to all fields with xmIType=BIC, you
can specify this in the “Applies To” column.

Platform Specific Attributes of a Section

iy

S
ORACLE | %hea

The platform specific attributes specified for an internal message section are used in
defining the corresponding database table.

The platform attributes dialog for a section is shown below.

é;'l Platform Attributes {Mew Section}

rDatahase |/HML r.n.th-ihutes |

Table Marme |Order_1d |

Scherna | |

| (s34 || Cancel || aHelp |

Table Name Attribute

The value of this attribute becomes the name of the database table corresponding to
the currently selected section.

Schema Attribute

This attribute specifies the database schema under which the table corresponding to
the currently selected section needs to be created.

See Also:

Defining an Internal Message Format

Platform Format Properties

The Platform Format Properties dialog enables to change the root tag and the target
namespace.

2%

ORACLE | %bea

:;'I Platform Properties x|

Marmespace

Target Narmespace |htt|:u:H‘JD|ante.cu:um |

Root Elerment

Tag intftargetnarmespacet III

(o] 4 || Cancel

Follow the steps below to change the root element tag.

1. Click the ellipsis button.
2. Platform Attributes dialog appears.

:;'I Platform Attributes (Internalmessage)) El

(Database [XML | Attributes |

AML Marme |Interna|message

Mode Type |e|ement -

(o],4 || Cancel || BHElp |

3. Enter the root tag value in the XML name text box. In the parsed xml the default
root tag would be replaced with the new tag.

For instance if the root tag for an internal message is ‘int’, the parsed xml would be
as,

-

ORACLE' | Zbea

<?xml version="1.0" encoding="UTF-8"7?>
<int>

<Orders>0rd12</0Orders>
</int>

The parsed xml if the root tag is changed to ‘internalmessage’ is,
<?xml version="1.0" encoding="UTF-8"7?>
<internalmessage>

<0rders>0rd12</0Orders>
</internalmessage>

Note:

In an external message the tag for root, header, data and trailer elements can be
changed.

See Also:

Defining an Internal Message Format

Arranging Fields of an Internal Message Format

The icons with arrow images in the Internal Format Ul toolbar can be used to
rearrange the position of the fields of an internal message format.

Once the required fields are selected, the user can click on these icons to arrange the
position of these fields within the internal message format. Use the selection column
(the empty column at the left) to select a field. To select a set of continuous fields,
select the first field in the set and then SHIFT-click on the last field. Use
CTRL-clicking to select a non-continuous field. CTRL-clicking on a selected field
deselects it.

The following table describes the icons used to arrange the fields of an internal
message format:

Ico Purpose Description

ﬂ' Move Selection Up This moves the selected field(s) up by one position
within the same level of internal message format
(within the same section or within the top level). This

-

ORACLE' | Zbea

icon is disabled when the top of that level is reached.

'1\1 Move Selection
Down

This moves the selected field(s) down by one position
within the same level of internal message format
(within the same section or within the top level). This
icon is disabled when the bottom of that level is
reached.

Move Selection Left

This promotes the selected field(s) by one level in the
internal message format hierarchy. This means that
the selected fields are moved to the same level of their
previous parent.

&2 | Move Selection
Right

This demotes the selected field(s) by one level in the
internal message format hierarchy. This icon is enabled
only when the selected fields are positioned
immediately after a section, which is at the same level
of the selected field(s). Clicking on this icon makes the
selected fields children of that section. The fields are
positioned at the bottom of that section.

See Also:

Defining an Internal Message Format

Deleting Fields of an Internal Message Format

Follow the steps given below to remove a set of fields from the internal message

format at once.

1. Select the fields/sections to be removed.

2. SHIFT-click in the selection column to select a set of continuous fields and
CTRL-click in the selection column to select any non-continuous field without
affecting the current selection.

3. Click on the Remove Selected Field(s) icon ﬁ

Note

If a section is removed, all of its constituent fields are also removed.

-

ORACLE' | Zbea

See Also:

Defining an Internal Message Format

Importing Internal Message Field Structure from External
Sources

-,
™

The Import Field Structure icon i available in the Internal Format Ul helps in
defining the internal message format by importing field structure from database
tables, XML schema files and DTD files.

See Also:

Steps to Import Field Structure From Database Tables
Steps to Import Field Structure from an XML Schema File
Steps to Import Field Structure from a DTD File

Steps to Import Field Structure From Database Tables

Follow the steps given below to import the internal format structure from tables of
the specified data source.

1. Click on the Import Field Structure button in the toolbar at the top of the
Internal Format Ul.
The Import Options dialog is shown.

-

ORACLE' | Zbea

&)l Import Dptions X]

Irmport Fram

i® Irmport table info by connecting to database
i1 Import table info stored in an %ML file

i1 Import field structure from OTD

Cptions
i Replace exizting fields with importad fizlds

i1 Insert imported fields

| | Mext P | | Cancel | | aHelp |

2. Select the Import table info by connecting to database option in the Import From
section.

3. In the Options section, specify whether you want to keep or replace the existing
fields and click on the Next button.
The Select Table(s) From Database dialog box is shown.

iy

o
ORACLE | %hea

ri:'l Select Table[z] From Databaze

Data Saurce |h5q| e |

Driver Class |u:-rg.hsq|d|:u.jdbcDri'.ler |

Connection URL |jdbc:h5q|db:hsql:.n".n"lu:ucalh-:ust |

Username |sa |

Paszword | |

Custorn Properties | ” |

| Tables |
[¥] IMWOICE
[] 1TEM
[[] UMIQUEKEYEENTAELE
[#] Include dependent tables
4 Back | Finish | | Cancel | | @ Halp |

4. From the Data Source drop down list box choose the database platform to be
connected.

5. In the Driver Class, Connection URL, Username and Password text boxes
specify the values used in connecting to the database.

6. To specify database specific properties use the Custom Properties item.
Clicking on the ellipsis button brings up a Properties dialog box that can be used
to specify the name and value of each custom property.

-

ORACLE' | Zbea

E%Pmperties E
| Property HName | Yalue
name hzqgl
dialact hzql
| (]34 | | Cancel |

7. Now click on the Tables button. Designer connects to the specified data source
and populates tables available in that data source.

8. Select the check boxes beside the tables to be imported.

9. Select the Include dependent tables check box to import the tables related to
the selected tables.

10. Click on the Finish button to start importing the field structure.

See Also:

Importing Internal Message Field Structure from External Sources

Steps to Import Field Structure from an XML Schema File

Follow the steps given below to import the internal format structure from table
information available in an XML schema file.

1. Click on the Import Field Structure button in the toolbar at the top of the
Internal Format Ul.
The Import Options dialog is shown.

2. Select the Import table info stored in an XML file option in the Import From
section.

-

ORACLE | 4bea
3. In the Options section, specify whether you want to keep or replace the existing
fields and click on the Next button.
4. The Select Tables Stored in XML dialog is shown.
EI Selected Table[s] Stored In XML

Scherma File |(Cartridges\Batched\BatchPersistandQueryyjava o

Tables
[¥] ©rderim
[¢#]|Irclude dependent tables
4 Back Finish Cancel a Help

5. In the Schema File text box, specify the XML file from which the field structured
needs to be imported. Clicking on the ellipsis button besides the Schema File
text box brings up the Open dialog box that can be used to select the required
XML schema file.

6. Now click on the Tables button. Designer populates table information available in
the XML schema file.

7. Select the check boxes beside the tables to be imported.

8. Select the Include dependent tables check box to import the tables related to
the selected tables.

9. Click on the Finish button to start importing the field structure.

See Also:

Importing Internal Message Field Structure from External Sources

-

ORACLE' | Zbea

Steps to Import Field Structure from a DTD File
Follow the steps given below to import the internal format structure from a DTD file.
1. Click on the Import Field Structure button in the toolbar at the top of the
Internal Format Ul.
The Import Options dialog is shown.

2. Select the Import field structure from DTD option in the Import From section.

3. In the Options section, specify whether you want to keep or replace the existing
fields and click on the Next button.

4. The DTD Import dialog box is shown.

EIDTD Import Ed

Specify the DTD file fram which the field structure is to be imported.

Fress the Finish button to impart field structure ar press the Back
button to select another impart option.

CTC Mame |Cihydocshdid,ejb-jar dtd ” |

4 Back | Finish | | Cancel | | aHelp |

5. In the DTD Name text box, specify the name of the DTD file from which the field
structure needs to be imported. Clicking the ellipsis button besides the DTD
Name text box brings up the Open dialog box that can be used to select the
required DTD file.

6. Click on the Finish button to start importing the field structure.

See Also:

Importing Internal Message Field Structure from External Sources

ORACLE

Specifying Properties for Multiple Fields/Sections

If there is a large number of fields/sections in an internal format, specifying
properties individually for each field/section might become time consuming. Designer
makes this process easier by allowing the user to specify the common properties for

-

. F.
' g
zhea

a set of fields/sections at once.

Follow the steps given below to specify properties shared by a set of fields/sections.

1. Select the fields/sections, which share the same properties.

2. SHIFT-click in the selection column to select a set of continuous fields and
CTRL-click in the selection column to select any non-continuous field without

affecting the current selection.

3. Click on the Set properties for selected fields icon %.5.
The Multi Selection Options dialog box is shown.

EI Multi Selection Options

Type

Field Mullable

Field Hidden

Default Value

Length

Min Cccurs

Max ococurs

Select Type =

|Select Mew Yalue |

|Se|ect Mew Yalua |

|Se|ect Mew ‘Jalue| -
|Se|ect Mew "-.-falue| -

Zet the data type of selected fields.

et all zelected fields as nullable §
non-nullakble.

et all zelected fields as hidden 7
nat-hidden.

Set the default value for all zelected
fields.

Zet the maximum length for all selected
field=s(only far String types).
et the minitnum occurences of the all

zelected sections.

Set the maximum occurences of the all
zelected sections.

| (o] 4 || Cancel |

-

ORACLE' | Zbea

4. Specify the field properties shared by the selected fields by using the items
available in top section of the dialog box.

5. Specify the section properties shared by the selected sections by using the items
available in the bottom section of the dialog box.

6. Click on the OK button to apply the specified properties to the selected fields.
See Also:

Importing Internal Message Field Structure from External Sources

Internal Message Processing

The Internal message Processing Rules is used for enriching the Internal message
data. When an Internal message is added it appears with child nodes ‘Internal
Format’ and ‘Validation Rules’.

Processing rules node can be added by right clicking the Internal message node and
selecting ‘Processing’ menu item under ‘Add’ menu.

The Processing Rules Ul shown when you select the Processing Rules node of the
Internal message node is used to specify the Processing Rules.

See Also:

Processing Rules Ul

Adding Processing Rule

Renaming a Processing Rules Node
Creating an Internal Message
Defining an Internal Message Format
Internal Message Validation Rules
Deleting an Internal Message

Adding Persistence Designer

Internal Message

Adding Processing Rule
1. Right click the Internal Message node and select ‘Add’ menu.

2. Select ‘Processing’. ‘New Processing Rules’ window appears. Enter the name of
the ‘Processing Rules’ node to be added.

-

ORACLE' | Zbea

Mew Proceszing Rules
Marme
F‘urchasel
(o] 4 Cancel

3. The Processing rules node with name “Purchase” gets added as the child node of
the Internal message node as shown below.

PurchaseOrder

é)—o Purchase Order
% Internal Format
%) validation Rulez [Default]
Processing Rules [Purchase]

As you can see from the above diagram, the Processing Rules node ‘Purchase’ is
added below the validation rules node.

Note:

The Processing rules node can be deleted by right clicking the Processing rules
node and selecting the context menu item “Delete”.

Multiple Processing Rules nodes can be added to an Internal message by right
clicking the Internal message node and selecting the ‘Processing’ menu item in
the ‘Add’ menu.

See Also:

Renaming Processing Rules Node
Processing Rules Ul
Custom Message Processing

Renaming Processing Rules Node
1. Select the ‘Processing Rules’ node to be renamed.
2. Right click the Processing Rules node and select the menu Rename.

3. The ‘Rename’ window appears as follows.

2%

ORACLE | %bea

Enter Mew Mame
|F'un:hase |

| (o] .4 || Cancel |

4. Enter the new name for the Processing Rules node.

5. The processing rules node gets renamed with the new name.

See Also:

Adding Processing Rule
Processing Rules Ul
Custom Message Processing

Processing Rules Ul

The Processing Rules Ul is used to specify the rules for enriching the Internal
message data.

Processing Rules [Purchase] - [PurchaseOrder]
Custorn Processing | | "f'_:‘-.
I:“ Enterprise Element || Alias || Type || Formula || Custom

&° orderDate 1520 ate

] shipTo Section

] billTo Sedion

<}? cormment String

= items Section

_r item Section

See the section Moving from a Field to its Usage Items for information on quickly
moving from a field definition to its processing rule.

See the section Moving Back to a Field Definition for information on quickly moving
from a field processing rule to the field definition.

iy

S
ORACLE | %hea

See Also:

Custom Message Processing
Processing an Internal Message Field
Internal Message Validation Rules

Custom Message Processing

The processing of the entire internal message can be customized through the
IProcessing interface. All the user needs to do is define a class that implements this
interface and then specify its reference name in the Custom Processing text box in
the Processing Ul. See the section Defining Processing Classes in the
DefiningCustomClasses.doc file for information about a processing class.

Please refer New File from Template for easily creating a custom processing class.

Follow the steps given below to specify a Custom Processing class for an internal
message.

1. Specify the reference name of the custom processing class in the
Custom Processing text box in the Processing Rules Ul.

Processing Rules [Purchase] - [PurchaseOrder]
Custorn Proceszing |Increment5a| | "f_,"-.
I:“ Enterprise Element ” Alias || Type || Formula || Custonm
ﬂ & orderDate ISCDate

] shipTo Sedion

] billTe Section

0? cornrment String

= items Section

_r itenn Section

2. Add comments on the custom processing in the Comment dialog box, which is
displayed when you click on the Add Comment & button.

]

ORACLE' | Zbea

) Comment

Coarmrent

o] 4 Cancel ﬂ Help

3. Bind the reference name to the actual class name using the Language Bindings
tab of the corresponding Code Generation Settings dialog.

See the Code Generation section for more information.

Processing an Internal Message Field

Processing of an internal message field can be specified either using a formula or
using a custom class.

Custom Field Processing

The processing of an internal message field can be customized through the
IFieldProcessing interface. All the user needs to do is to write a class that
implements this interface and provide its reference name in the Custom column of
the field to be processed. See the section Defining Processing Classes in the
DefiningCustomClasses.doc file for information about a field processing class.

Please refer New File from Template for easily creating a custom field processing
class.

Follow the steps given below to specify a Custom Processing class for an internal
message field.

1. In the Processing Rules Ul table, select the row corresponding to the internal
message field for which processing needs to be specified.

2. Specify the reference name of the custom field processing class in the Custom
column.

3. Optionally add your comments on the custom field processing.

iy

S
ORACLE | %hea

Comments can be added in the Comment pane, which is displayed when you click
on the Insert Comment menu item of the short-cut menu that appears when you
click inside the table. See the section Comment/Annotation Support in Tables for
more information.

Field Processing Formula

Follow the steps given below to specify the processing formula for an internal
message field.

1. In the Processing Rules Ul table, select the row corresponding to the internal
message field for which the processing formula needs to be specified.

2. Specify the formula to be processed in the Formula column.

3. Pressing the F4 key or clicking the Edit Formula icon .# brings up the Edit
Formula dialog box that can be used in defining the formula.

Processing Rules [Purchase] - [PurchaseOrder]

Custorn Proceszing | | '-f'_,"n.
I:“ Enterprise Element || Alias || Type || Formula || Custol
. o orderDate 150D ste -
+— =hipTo Section
2 . s
& country String Upper(zhipTo.country’ -
& narme String
4 street gtring -
-

[[»]

4. See the Formula section for more information on specifying a formula.

5. Optionally add your comments on the custom field processing.

6. Comments can be added in the Comment pane, which is displayed when you click
on the Insert Comment menu item of the short-cut menu, that appears when you
click inside the table. See the section Comment/Annotation Support in Tables for
more information.

The following points should be noted while specifying a formula:

The type of the formula (type of its return value) should match the data type of
the field for which it is specified.

-

ORACLE' | Zbea

The other fields that can be accessed in the formula specified for an internal
message field depends on its position in the internal message structure.

See the section Fields Accessible in a Formula for more information on fields
accessible from the field for which a formula is being specified. See the Formula
section for more information on specifying a formula.

While specifying processing for an internal message field, you can easily move to the
definition of that field in the Internal Format UI.

This can be done by clicking on the Go To Field Definition menu item from the
short-cut menu that appears when you right-click on the corresponding row.

See the section Moving Back to a Field Definition for more information.

Note:

Specifying both a formula and a custom class for field processing generates an error
during validation of the Processing Rules node.

Deleting an Internal Message

Follow the steps given below to remove an internal message node from a cartridge.
1. In the Explorer pane, right-click on the internal message node to be removed.

2. Select the Delete menu item from the popup menu that appears.
A Confirm Delete message box is shown.

3. Click on the Yes button to remove the internal message from the cartridge.
4. Click on the No button to cancel the delete operation itself.

Note
The user needs to save the cartridge to permanently remove the internal message
from that cartridge.

See Also:

Creating an Internal Message
Defining an Internal Message Format
Internal Message Processing

-

ORACLE' | Zbea

Internal Message Validation Rules
Adding Persistence Designer
Internal Message

Adding Persistence Designer

Designer provides an easy way for persisting internal messages. It requires the
completion of the following operations.

1. Adding the persistence designer to the corresponding internal message element.

2. Executing the database schema file (which is generated from the persistence
designer definition during cartridge generation) in the underlying database.

3. Adding a Persist activity (which refers to that internal message)
Follow the steps given below to add the persistence designer to an internal message
element.

1. Select the internal message element to which the persistence designer needs to
be added.

2. Select the Add Persistence Designer menu item from the popup menu that
appears when you right-click the internal message element.

2%

ORACLE' | %hea

Explorer o x|

Purchase Order
@~ (i External - XML [PurchaseOrderXML]

@ Internal Faor ﬂ Add Persistence Designer
Processing Verify Integrity
O @ Mapping [Purch

B Add webForms Designer
(=) @ Mapping [Purch

Copy Ctil-C
Paste Crl-wf

E43 Import ... Ctel-1

Erd Expart ... Ctrl-E

X Delate

A validate Ctrl-L

The Persistence Designer node is added to the internal message element. The
platform specific properties defined for the internal message elements are used in
creating the persistence designer. See the section Platform Specific Attributes for
more information. See PersistenceDesigner.doc for more information on persistence
designer.

Note

The popup menu of an internal message node displays the Add Persistence
Designer menu item only when it does not have one already.

See Also:

Creating an Internal Message
Defining an Internal Message Format
Internal Message Processing
Deleting an Internal Message
Internal Message

External Message

An external message is a message defined outside the enterprise very often by a
standards group such as SWIFT that follows into/out of the Runtime of the
enterprise. In Designer, an external message with its associated validations is
represented by an external message design element.

-

ORACLE' | Zbea

When you define a new External Message, you are defining the following:

the structure of the message
parser, to parse the message
writer, to serialize the message
validator, to validate the message

The following points should be noted when using an external message element:

The same external message format can be used to represent both input/output
messages (unlike the input/output elements of the old model).

Unlike the input/output elements, the external message element does not include
the mapping node. The mapping from/to an external message has to be defined
using the Mapping node. See the Message Mapping section for information on the
types of message mappings and how to define them.

An external message consists of two child elements:

1. External Format
2. Validation Rules

The External Format element is used for defining the external message structure.
Usually external messages consist of header, data and trailer sections. While the
header and trailer sections provide additional information about the message itself
(such as the date of sending the message, the size of the message, and so on), the
data/record section contains the actual message data. The message data might be a
single record or a set of records (in case of a batch).

The Validation Rules element is used for specifying validation rules to be applied on
the external message fields.

See Also:

Creating an External Message Node

Defining an External Message Format

Convert External To Internal Message
Creating a Standard Message

Internal Message

Validation Rules

Alias

Tracing Messages in a Cartridge to a Standard
Message

-

ORACLE' | Zbea

Creating an External Message Node

Follow the steps given below to create a new external message design element:

1.

2.

w

»

o

Select the cartridge node or a folder node in the Explorer pane. Right click and
select ‘New External Message’ menu item under the menu ‘Add Item’.

The New External Message dialog will be displayed.

EI New External Mezzage

Marme MT250

Lx]
Parze
\ External Massage | SWIFT b
SWIFT
)
WValidate A standard for international financial comrmunications, that is

uzed by zeveral thouszand banks and other financial institutions
worldwide, It covers custorner payments, fund transfers, foreign

T exchange trading, securities/derivatives trading. For maoare
L] inforrmation refer to http S fwww, swift. corn
Serialize

(o] 4 Cancel a Help

Specify the name of the external message in the Transformation Name text
box.

This is the name, which is later used for looking up the component generated for
this external message.

Select the external message format type from the External Message drop down
list box.

Designer currently supports common message formats such as FIX, SWIFT and
so on. Please note that your Designer installation may not contain support for all
message formats supported by Designer. What is available to you depends on
your license agreement with Oracle Corporation.

Click on the OK button.

-

ORACLE' | Zbea

For most of the message formats, another dialog box is presented to the user as
shown below. In this dialog box, the standard messages are organized into
different categories. The user can search for a standard message by typing text
into the Find Message text box and clicking the Find button.

[:E;'I Mew Swift Mezsage Format

Find Meszage Farmat Mame
as0| Find | |[MT950
Exizting Faorrmats Wersion

|

&~ § Cash Management & Custoner *| SRaG 2003

— U MTI00 Cetailed Mame
— [MTI1i0 Staternent Meszage
— F MT935

= Category
— \r MT940 Caszh Management & Customer Status
— [MTa41

2 Crescription
= ir MT242

o This message type iz sent by an account
— U MT330 zervicing institution o an account owner,
— ' MT2&0 e

- It iz uzed to transmit detailad
—ir MT951

d information about all entries, whether or
— F MT9&Z not caused by a S.W.L.F.T. message,
2 booked to the account

— f mMTIsz
— [MTos4 MOTE:
| 2 mTass Please do not disable the validation
- 'DC-FIX'. It provides fix for the parsing
— [MT2EE problern in field &1,
— [MT9e7
— ' MT230 —
- -
L[[»]
Meszsage Creation Options
{:} Create emnpty rmessage format
W Create based on selected format
4 Mext P Cancel 9 Help

Designer creates the external message element when the user selects one of the
standard messages as shown in the following picture. Alternatively the user can
choose to create an empty message format that can be used in defining a new
message format.

iy

o
ORACLE | #hea

MT950

i{} MT950
(2 External - SWIFT [MT950]
|:" External Format
@Ualidatinn Fulas

See Also:

External Message

Defining an External Message Format
Convert External To Internal Message
External Message Validation Rules
Creating a Standard Message

Defining an External Message Format

Defining the field format of an external message depends on the selected message
format. For some formats such as ASCII and XML, the user needs to create new
fields and sections as done for defining a new internal message format. See the
section Defining an Internal Message Format for more information.

The user can customize the external message format by enabling/disabling the
optional fields by selecting/deselecting the Enabled check box from the External
Format Ul. This feature is supported in formats such as FIX and SWIFT that allow the
user to select a standard message and in XML format that allows the user to define
the message format by importing a Schema (DTD or W3C XSD). The disabled fields
are not shown in the mapping/validation rules Ul.

2%

ORACLE | %hea

%
J

External Format - FIX [ExecutionOut]

rHeader |/Data |/Trai|er |

HOUE T 4 e
Field Hame Alias |Data Type Enabled Descrpbon

& DrderID String Orderll is required to be unig... |*
0? SecondaryOrderID String [¥] Can be uzed to provide order i... _
<>? ClordID String [#] Fequired for executions again...
0? QrigClordID String [¥] Conditionally required for resp...
<>? ClientIC: String [#] Used far firrn identification in t..
0? ExecBrakear String [¥] Uzed far firmn identification in t...
rj* ContraBrokers Seckion [#] Murnber of ContraBrokers repe...

W ContraBroker String First field in repeating group.

&7 ContraTrader String [#] Identifies the trader (e.g9. "ba...

0? ContraTradedty Double [¥] Guantity traded with the Contr... [+

Field Properties

Fequired FIX Tag |3? |
Default walue | FIx Type | String - |
See Also:

External Message

Creating an External Message Node
Convert External To Internal Message
Creating a Standard Message

Convert External To Internal Message

Designer provides an easy way for converting an External Message to Internal
Message with Input and Output Mapping.

1. Right click the External Message node and select Add > Convert To Internal
Message menu item from the context menu.

2. ‘Conversion Options’ dialog will appear as shown below.

3.

2%

ORACLE | %hea

£ Convetrsion Dptions x|

Internal Message Marne [ProcessIM |

Cptions

[] Flatten Mezzage
[#¥] 1nclude Header & Trailer fields

[] create zedcion for Header, Data and Trailer

Mappings=s

E Fenerate Input Mapping

D Generate Dutput Mapping

| QK || Cancel || GHelp |

Internal message name (i.e IM appended with external message name) will
appear by default. You can modify the internal message name by editing the
value in ‘Internal Messsage Name’ Text box.

When ‘Flatten Message’ Check box is selected, all non-repeating mandatory
sections and its fields in external message will be flattened in the internal
message. The field names in internal message are represented by combining the
section names and field names in external message.

For example, consider an external message with section ‘Records’ and sub fields
‘ProductName’, ‘ProductID’ and ‘Quantity’.

| Field Hame || Type |
i+ Records Sequence

% ProductMame String

& ProductID String

& Quantity String

The message format when flattened, fields under ‘Records’ section are converted
to Top level fields in internal message as shown below.

| Enterprise Element || Type |
4 Records_ProductMarne | String

& Records_ProductID String
& Records_Quantity String

-

ORACLE' | Zbea

The occurrence of the fields in internal message are mandatory since the section
is mandatory in external message. If a section is optional in external message, all
its child fields are made optional in the flattened Internal message.

In case of repeating section (optional repeating or mandatory repeating), fields
are not flattened in the generated internal message and section structure in
external message is retained in internal message as shown below.

Enterprise Element Type
._,"* Records Section
& ProdudtMame String
4 ProductID String
& Quantity String
_,T Order Section
& OrderDate String
& OrderCode String

When ‘Flatten Message’ Check box is not selected , fields will not be flattened and
the section/field structure in the external messages will be retained in the
converted internal message as shown below.

Enterprise Element Type
._,4* Records Section
& ProdudtMame String
4 ProductID String
= Order Section
4 Orderbate String
& OrderCade String
H Invoice Seckion
& InvaiveMo String
_,f Report Section
& Value String

Header and Trailer fields of external message can be incuded/excluded in the
Internal message by selecting/deselecting the ‘Include Header & Trailer fields’
checkbox in the dialog.

When this check box is selected, Header and Trailer fields of external message
will be included in the internal message as shown below.

-

ORACLE' | Zbea

Enterprise Element Type
& HDR_InwaiceID String
4 Records_ProductMarne (String
& Records_ProductID String
4% Records_Quantity String
& TRL_Comment String

‘HDR__InvoicelD’ denotes the field in Header section, ‘TRL_comment’ denotes the
field in Trailer section and rest of the fields are fields of Data section.

When ‘Create section for Header, Data and Trailer’ Check box is selected ,
Header, Data and Trailer fields of external message will be created under
optional sections ‘Header’, ‘Data’ and ‘Trailer’ in Internal Message.

Enterprise Element Type
_-4? Header Section

& HOR_InvaiceID String
_,f Data Section

& Records_ProductM... String
4 Records_ProductID: String
& Records_Quantity String
_-4? Trailer Section
& TRL_Cormment String

Mapping can be generated along with Internal Message by selecting ‘Generated
Input Mapping’ or ‘Generate Output Mapping’ check box in the dialog.

When ‘Generated Input Mapping’ check box is selected , Input mapping node will
be generated with External message field (Source) mapped to internal message
fields (Destination) as shown below.

2%

ORACLE | %bea

ProcessIM (Internal]l <- Process [External) .
I:H Enterprise Element || Mapping || Source Fields
% Records_ProductMame 4 Records,Productiame FroductMarne
4 FRecards_ProductID + Records ProductID ProductIl
4 Records_CQuantity H Records, Quantity Quantity

ﬁ Map

External Format

Header |/Dat,a |/Trai|er |

Field Hame || Type ” Target Fields
+ Records Sequence
& ProductMarne String Fecords_ProductMame
& ProductID String Records_ProductID
& Quantity String Fecords_Quantity

When ‘Generate Output Mapping’ check box is selected , Output mapping node
will be generated with internal message fields (Source) mapped to external
message fields (Destination) as shown below.

Process (Externall <- ProcessIM (Internal)

> Ve

| Header rData rTrailer |

I:l | Field Hame | |

y Records

Mapping | | Source Fields |

4 ProductMarme + Records_ProductMarne Fecards_ProductMarme

i ProductID +H Records_ProductID Fecords_ProductID
4 Quantity +H Records_Quantity Fecards_CQuantity
&

Internal Format o
| Enterprise Element || Type || Target Field
4 Records_ProductMarme String ProductMarme
& Records ProduckID String ProductIC:
& Records_Quantity String Quantity

The options provided in the ‘Conversion Options’ dialog helps user to generate
Internal Message with various combinations by selecting/deselecting the
corresponding checkbox.

For example , following check boxes should be selected to generate flattened
internal message with header fields, trailer fields , input mapping and output
mapping.

2%

ORACLE | %bea

:i, Conversion Options il

Internal Message Mare |[ProcessIM |

Cptions

[¥#] Flatten Meszage
[¥] Include Header & Trailer fields

[] ¢reate section for Header, Data and Trailer

Mappings

E HFenerate Input Mapping

E |Generate Cutput Mappingl

| fal's || Cancel || aHelp |

Internal Message , Input mapping and output mapping nodes will be added as a
child node of the cartridge node as shown below.

Process Order
Jp—@ External - Universal [Process]
|:"‘ External Format

@ Validation Rules [Default]
(P—@ ProcessIt
‘ Internal Farmat
%) walidation Rulez [Default]

0 @ Mapping [ProcessToProcessIkM]
L'{"n} Mapping Rules

@ Mapping [ProcessIMToProcess]
L'{"n} Mapping Rules

Where node with name ‘ProcessIM’ denotes the flattened Internal message,
‘ProcessToProcessIM’ mapping node represents the Input mapping and
‘ProcessIMToProcess’ mapping node represents the Output mapping.

See Also:

External Message
Creating an External Message Node
Defining an External Message Format

-

ORACLE' | Zbea

Creating a Standard Message
Validation Rules

Creating a Standard Message

Designer also allows for creating a new standard message format for most of the
supported message formats.

Please note that your Designer installation may not contain support for all message
formats supported by Designer. What is available to you depends on your license
agreement with Oracle Corporation.

For defining a new standard message, the user needs to do the following:

Create an empty external message format. See the Creating an External Message
Node section for information on creating an empty message format.

Define the external message structure and associated validation rules. See the
Defining an External Message Format section for information on defining the
external message structure. See the External Message Validation Rules section
for information on specifying validation rules for external messages.

Export the new message to the message repository of Designer.

In case of a SWIFT external message, it can be exported to the message repository
by selecting the Save SWIFT Message Format menu item from the popup menu that
appears when you right-click the message node.

2%

ORACLE | %bea

By Explorer o x|
Cash Management & Customer Status
ré)—@ External - SWIFT [MT050]

|: 4 Add b
{

Verify Integrity

s
-

Fimd Uzage
B2 copy Ctrl-C
Pazte Chrl-w
43 Irmport ... Ctrl+Shift-1
el Excport .., Ctrl+Shift-E
W+ Delete
validate Ctrl-L

Save Swift Messagwnrmat

This brings up the Save SWIFT Message Format dialog shown below.

:;'I Save Swift Message Format

Find Meszage Farrmat Mame

| || Find | MT950 |

Exizting Forrmats Wersion

@] Cash Management & Customer § |5F"~G 2003 |

&=] cCollections % Cash Letters Detailed Mame

(&=] Customer Payments & Cheques |Statement Message |

(= Documentary Credits & Guarant
- ¥ Category

& . . e
m mermdEl) (e o GEmsizs |Cash Managerment & CSustorner Status |

=] Securities Markets

: Crescription
=] Service
Thiz rmeszage type is sent by an FY

=] System account serwvicing institution to an

(&=] Trawvellers Cheques gccount awner,

©=] Treasury Markets Foreign Excha It iz uzed to tranzrmit detailed

=] Treasury Markets Precious Meta| |information about all entries,

whether or not caused by 2

(=) Ti Markets Syndicat
] Treasury Marke E S.W.I.F.T. meszage, booked to the

1 | | "l account. E

| o134 || Cancel || aHelp |

-

ORACLE' | Zbea

Here, you enter the message format name, its category and other details. Clicking on
the OK button saves the message format.

See Also:

External Message

Creating an External Message Node
Defining an External Message Format
Convert External To Internal Message
External Message Validation Rules

Validation Rules

A validation rule is used to check the conformance of data to the business rules. Like
field level and record level validations (validations based on more than one field) that
can be applied for an RDBMS table, Designer supports validations for a particular
message element and also validations based on multiple message elements.

When an External/Internal message is added, it appears with corresponding ‘External
Format’ or ‘Internal Format’ node and ‘Validation Rules’ node. When a message is
added the Validation rules node appears with the name ‘Default’.

The Validation Rules Ul shown when you select the Validation Rules child node of the
message is used to specify the validations.

¥alidation Rules
@ External - ASCII Delimited [Delinited]

|: External Format
&) validation Rules [Default]
O Emp
@ Internal Farrmat
@Ualidation Rules [Cefault]

By right clicking the message node and selecting ‘Validation’ menu item from ‘Add
menu, multiple validation rules can be added.

Validation rules can be specified using the following:

1. Formula

2. Custom class

A formula validation rule should be a Boolean expression. While a return value of
true indicates the conformance of the data to the business rules, a false value
indicates the non-conformance of the data to the business rules.

-

ORACLE' | Zbea

While a formula can be used to specify a simple validation rule, a custom class can
be used to incorporate a validation rule that is more involved.

Designer allows specification of validation rules for internal message and external
message design elements. The components generated for these design elements
include the validation rules specified for them, which are later invoked during
runtime.

See Also:

Adding Validation

Renaming Validation Rules Node
Validation Rules Ul

Formula Validations

Fields Accessible in a Formula
Invocation of Validation Rules
Internal Message

External Message

Alias

Tracing Messages in a Cartridge to a Standard
Message

Adding Validation

1. Right click the External/Internal Message node and select ‘Add’ menu.

2. Select ‘Validation’. ‘New validation’ window appears. Enter the name of the
‘Validation Rules’ node to be added.

Mew Yalidation

Marme
Agevalidation

O Cancel

3. The ‘Validation rules’ node gets added as the last child node of the External
Message node as shown below.

¥alidation Rules
@ External - ASCII Delimited [Delimited]
< External Farrmat
@Ualidation Rulas [Cefault]
@Ualidatinn Fule:z [Agevalidation]

-

ORACLE' | Zbea

As you can see from the above diagram, the Validation rules ‘AgeValidation’
appears below the default Validation Rules node.

See Also:

Renaming Validation Rules Node
Validation Rules Ul

External Message

Internal Message

Renaming Validation Rules Node
4. Select the ‘Validation Rules’ node to be renamed.
5. Right click the validation rules node and select the menu ‘Rename’.

6. The ‘Rename’ window appears as follows.

Rename
Enter Mew Mame
Agevalidatinnl

a]'4 Cancel

7. Enter the name as to be changed.

Note:

Please note that the ‘Default’ validation rules node cannot be renamed or deleted.

See Also:

Validation Rules Ul

External Message

Internal Message

Renaming Processing Rules Node

Validation Rules Ul

The Validation Rules Ul of an External/Internal message supports the following
views.

View that shows field-wise validations.

2%
ORACLE | %hea
View that shows all validations.
The functionality of Validation Rules Ul for an External message and an Internal
message are the same except that, in an Internal message Validation Rules Ul, there

are no ‘Header’, ‘Data’ and ‘Trailer’ sections.

The view that shows field-wise validations for an External message is shown below:

Validation Rules [Default] - ASCII Delimited [Emp] @

|/Header |/Data |/Trailer |

| Field Hame || Alias || Type || Descrpton
& age Integer
& gender Character
4 joindate | DataTirne
0? experience Float
&7 nyalificatinn String

N

These validations are applied for every non-null

ig .J' ﬁ @ occurence of the field Yoindate' in the zection

'Records’
|:|| Mame || ¥alidation || Action Me
& E1 Recards.joindate < today() "Inwalid joindate’ value " + FormatDate($wal

As can be seen in the above diagram, the field-wise validations view is divided into
two tables: while the top table (message format table) displays the constituent fields
of the message format, the bottom table (field validations table) displays the
validation rule(s) corresponding to the currently selected field in the top table.

The view that shows all validations for an External message is given below:

iy

S
ORACLE | %bea

Validation Rules [Default] - ASCII Delimited [Emp]

&

|/Header |/Data |/Trailer |

He® g d
|:|| Mame || ¥alidation || Applies To ||

& E1L Recards.joindate < today() Recards.joindate "Tnvalid 'joindate’ value "

0 Ez In(Records, sportsman,™",'MN") Records.spartsman "Inyalid value '™ + Record

& ez Recards.age == 25 2& Recor Records age

It shows only the field validations table. But it contains the Applies To column in
addition to the columns found in the field validations table of the field-wise
validations view.

You can easily switch between these two views by clicking on either the
Show All Validations button or the Show Validations Field-wise button
that is shown depending on the current view.

Validation rules can be entered using both views. While the field-wise validations
view is convenient for entering field specific validation rules, the all field validations
view is convenient for entering validation rules that involve multiple message
elements.

See the section Moving from a Field to its Validation Rule for information on quickly
moving from a field definition to its validation rule.

See the section Moving Back to a Field Definition for information on quickly moving
from a field validation rule to the field definition.

See Also:

Adding a Validation Rule
Formula Validations

Fields Accessible in a Formula
Invocation of Validation Rules

-

ORACLE' | Zbea

Adding a Validation Rule

Usually a validation rule is specified (or applied) for a field/section. The field/section
to which a validation rule is applied determines the invocation of that validation rule.
It also determines the field(s)/section(s) that can be accessed in that validation rule.

See Also:

Adding a Validation Rule using Field-wise Validations View
Adding a Validation Rule using All Validations View
Validation Rules Ul

Formula Validations

Fields Accessible in a Formula

Invocation of Validation Rules

-

ORACLE' | Zbea

Adding a Validation Rule using Field-wise Validations View

1.

Select the desired field/section in the message format table.

Either click on the Add New Formula Validation button La or Add New Custom

Validation button " in the field validations table based on the type of the

validation rule to be specified.
A new row is added to the field validations table.
Change the validation rule name generated by Designer, if required.

Based on the type of validation rule specified in the previous step, specify either
a formula or a custom field validation class reference in the Validation column.

See the section Defining Validation Classes in the DefiningCustomClasses.doc
file for more information on defining validation classes.

Please refer New File from Template for easily creating a custom validation class.

Pressing the F4 shortcut key from within the Validation column displays the Edit
Formula J dialog box. See the section Edit Formula Dialog for information on
using the Edit Formula dialog in specifying a formula.

See the Fields Accessible in a Formula section for information on the fields that
can be used in a formula. See the Invocation of Validation Rules section for
considerations involving invocation of validation rules.

If you have specified a custom field validation class reference name, you have to
bind it to the actual class name using the Language Bindings tab of the
corresponding Code Generation Settings dialog. See the Code Generation
Settings section for more information.

In the Action Message column, specify the message to be displayed when the
validation rule fails.

It can either be a simple string or an expression that evaluates to a string. The
expression can access the fields of the data format to which it belongs just like a
formula for a field. Pressing the F4 shortcut key from within the Action Message
column displays the Edit Formula ./ dialog box. See the Edit Formula Dialog
section for information on using the Edit Formula dialog in specifying a formula.

2%

ORACLE' | %hea

6. In the Error Code column, specify the value used in setting the ErrorCode field
of TransformException that is generated when the validation fails.

In the validation rules table appearing in Validation Rules Ul and Business
Exceptions section of Processing Rules Ul, the ‘Error Code’ column is hidden by
default, which can be added to the table by right-clicking the table header and
selecting the Error Code menu item from the context menu as shown in the
following picture.

VYalidation Rules - S\WIFT [MT950] &)

|/Header |/Data |/Trailer |

i e 8 ¢

Mame Validation Apolies To Acton Message

f"'- i ci-1 StartzWith($walue, Left(f Size column tao fit b "The first two charact
0 c1-2 Startzwith($walue, Left(f Row Height P | "The first two charact
f"‘- £ Fed-a fcode = FEL. Tranzaction| [Hide "Validation' . "when the first char:
. 6 Fei-B In(CharAt(F&1.Transactid B yame .. "subfield 6, Transact
f"-. & Fei-c If(StarksWwith(FE1. Tranza| [Errar Code o "when formats ME e
'f_"'-. & Fel1-D IsDatelFormmathrate(Tods [Enabled % e fwalue + " is not val
. 49 DC-FI% $dc = Fel.Debit_Credit K [Type

¥ validation

¥ applies To

[0 severity

[0 cascade Errars

¥ Action Meszage

[0 cornrment

7. As shown in the following picture, in the Severity column, select a severity type
from the drop down list displayed when selecting that column.

-

ORACLE' | Zbea

%)
rHeader |/Data |/T|-ailer|
= o ¥ ¢ I

Mame Validation Severity || Cascade Errors

"i"'-, i Ci-1 Startswith{ $value, Left{Fe0a[0]. Currency, 211 error

ﬁ'_‘-. @ ci1-2 StartzWwith($walue, Left(F&0a[0]. Currency, 210 error
"i"‘-. §# Fel-a $code = FEL. Transaction_Type_Identification_Ce error
ﬁ'_‘-. € Fel1-B In(Charat(Fel. Transaction_Type_Identification_r errar
"i"‘-. {J‘ Fel-< Ifi{Startswith(F&l, Transaction_Type_Identificatic errar
ﬁ'_‘-. €? Fel-D IsDate(FormatDate(Today(], "we"1 4+ FE1.Entry_[errar

#y 69 Do-FIx $dc = Fel.Debit_Credit_Mark; arror ¥
fatal

arrar
warn %

El & & Bl &l & E]

The severity type specified here would be set as the ‘severity’ of the exception
that is generated in case of validation failure. This is purely for informative
purposes and it is not interpreted anywhere else.

The ‘Severity’ column is also hidden by default, which can be added to the table
by right-clicking the table header and selecting the Severity menu item from the
context menu.

If a validation is marked as cascadable (default) by selecting the check box in the
Cascade Errors column, exceptions are accumulated and subsequent validations
are also executed. If a validation rule is non-cascadable, then the validation
aborts immediately and the remaining validation rules are not executed. In both
cases the validation activity terminates with an exception; the difference is in
when it stops.

The Cascade Errors column is also hidden by default, which can be added to the
table by right-clicking the table header and selecting the corresponding menu
item from the context menu.

If a validation rule is disabled, it will not be invoked during runtime. This can be
done by deselecting the check box in the Enabled column of the corresponding
validation rule as shown in the following picture.

iy

o
ORACLE | #hea

Yalidation Rules - S\WIFT [MT950] &)

rHeader |/Data |/T|=ai|er |

HeBG I

Manme Enabled Error Code Validation Applies To
6 c11 [¥] =27 StartzWith($walue, Left(FE0a[0]. Cu 622, Currancy
rf‘_“; 0 c1-z [#] C27 StartswWith($value, Left(FE0a[0]. Cu &4, Currency
"?_"'-. i Fe1i-A [#] Tis $code = FE1l. Transackion_Type_Idei &1. Transaction...
rf‘_“; i Fel-B [¥] TS2 In(Charst(FEL. Transaction_Type_Id &1, Transaction...
'.f:},, f; F&1l-iC (= TS53 If{ StarksWith(FEL1l. Transaction_Type &1.Transaction...
.6 Fe1-D [¥] T30 IsDate(FormatDate(Today(), "ye") - &1.Entry_Date
. @ Doc-FIx [¥] DC-FIX $dc = Fe1.Debit_cradit_Mark; 61

[

BE

The Enabled column is also hidden by default, which can be added to the table
by right-clicking the table header and selecting the corresponding menu item
from the context menu.

Applies To

In the ‘Applies To’ column of the validation rule, you can specify the field to which
this validation applicable. You can specify one of the following,

1. Leave this column empty. The validation applies to message as whole and not to
any particular field.

2. Select a field using the combo or enter a field’s qualified name.

3. Instead of specifying a field name, use a field selection expression to apply this
validation to all fields that matches the expression. The syntax of the field
selection expression is described below.

Field Selection Expression

Often, you want to apply the same validation to number of fields. For example, in
SWIFT MX validations you need to apply a validation to all fields with xmIType BIC.
Designer supports “field selection expression” using which you can select a group of
fields satisfying condition, and the validation will be applied to all fields in this group.

Each field has associated with number of attributes. Some of these are implicit such
as ‘name’ and ‘designerType’. Users are also allowed to define their own attributes as
associate it with the fields of a message. Also, if the message is imported from an

-

ORACLE' | Zbea

external schema, the plugin may associate additional information available in the
schema as attributes of a field. For instance, the XML plugin adds the xmIType
attribute to a field. All these attributes, implict and explict can be used in the field
selection expression. The syntax is,

attributeName=attributeValue [&] attributeName=attributeValue ..]

That is, you can specify multiple attribute name value pairs which are either
conjuncted (&) or disjuncted (]). The attributeValue can use wildcard syntax
containing asterisk (*) and question mark. For convenience, the ‘name’ attribute of a

field can referred to directly (without name=value syntax).

The following are valid expressions

Expression Meaning

xmIType=BICldentifier Selects all fields that have an xmIType attribute with value
“BlCldentifier”.

*_party Selects all second level fields (since only a single * is used)

with that have a name ‘party’. Note that since the criteria
applies to the name attribute it has been left out. You can
also use, name=>*.party. This selects A.party, B.party but
not party and A.C.party.

**_party Selects fields/sections at all levels (since double ** is
used) with that have a name ‘party’. This selects A.party,
B.party and also party and A.C.party.

xmIType=CountryCode & Uses conjunction to select all fields with attribute
designerType=String xmlType=countryCode and with Designer type ‘String’.
Fields with other Designer types are excluded.

See Also:

Adding a Validation Rule using All Validations View
Adding a Validation Rule

Adding a Validation Rule using All Validations View

1. Either click on the Add New Formula V_alidation button La or the

Add New Custom Validation button “# in the field validations table based on
the type of the validation rule to be specified.

2. Change the validation rule name generated by Designer, if required.

-

ORACLE' | Zbea

3. Based on the type of validation rule specified in the previous step, specify either
a formula or a custom field validation class reference in the Validation column.

Pressing the F4 shortcut key from within the Validation column displays the Edit
Formula .# dialog box. See the Edit Formula Dialog section for information on
using the Edit Formula dialog in specifying a formula.

See the Fields Accessible in a Formula section for information on the fields that
can be used in a formula. See the Invocation of Validation Rules section for
considerations involving invocation of validation rules.

If you have specified a custom field validation class reference name, you have to
bind it to the actual class name using the Language Bindings tab of the
corresponding Code Generation Settings dialog. See the Code Generation
Settings section for more information.

See the section Defining Validation Classes in the DefiningCustomClasses.doc file
for more information.

Please refer New File from Template for easily creating a custom validation class.

4. Specify the field to which the validation rule needs to be applied by selecting a
field from the Applies To combo box.

1 i [1
g e T 4
Manie Yalidation Applies To Action Message

& E1 In(Haader, CFT_... ader. CFT_SIACMsgTypa| w |Header. cFT_siacmsg...

? Ez In{Header, CFT_... [y Header |*Header, CFT_M=gSubT...

) Ez In(Body, CFT_Ex... CFT_Canonicalversit==s o 4o, CFT_Exchanges..,

CFT_BodylLength
CFT_SIACM=gType
CFT_Ms=gSubType
CFT_M=gCrigin
CFT_Mszghest
CFT_MszgSeqha -

LR T R e N

Please note that Designer automatically deduces the ‘Applies To’ field based on
the field/section used in the formula. In case of a formula involving multiple
fields/sections, the ‘Applies To’ field is the common ancestor of those
fields/sections.

5. In the Action Message column, specify the message to be displayed when the
validation rule fails.

iy

o
ORACLE | #hea

It can either be a simple string or an expression that evaluates to a string. The
expression can access the fields of the data format to which it belongs just like a
formula for a field. Pressing the F4 shortcut key from within the Action Message
column displays the Edit Formula .# dialog box. See the Edit Formula Dialog
section for information on using the Edit Formula dialog in specifying a formula.

6. In the Error Code column, specify the value used in setting the ErrorCode field
of TransformException that is generated when the validation fails.

In the validation rules table appearing in Validation Rules Ul and Business
Exceptions section of Processing Rules Ul, the ‘Error Code’ column is hidden by
default, which can be added to the table by right-clicking the table header and
selecting the Error Code menu item from the context menu as shown in the
following picture.

Yalidation Rules - S\WIFT [MT950] @)

|/Header |/Data |/Trai|er |

i e g 1

Mame Yalidation Apolies To Action Message

"f_""-. 6 ci1-1 Startzwith(fwalue, Left(f Size column to fit b "The first two charact
0 ci-2 StartzWwith{$value, Left{f Row Height P | "The first two charact
f“- £ Fel-A $code = FE1l.Transackion) [0 Hide "Validation' . "when the first char:
f""- & Fel-B In(Charat(FELl. Transactio W yame . "Subfield &, Transact
6F Fei-c If(Startswith(F&1,Transa . "when formats N3l
= [J Errar Code

"?_"‘-. i Fel-D IsDatelFaorrnathiate(Tods [Eqabled % = $walue + " iz not val

#. € pc-Fix $dc = FE1.Debit_credit N [0 Type

M walidation

¥ applies To

[0 Severity

[0 Cascade Errors
¥ pAction Meszage

[J Comment

7. As shown in the following picture, in the Severity column, select a severity type
from the drop down list displayed when selecting that column.

-

ORACLE' | Zbea

%)
rHeader |/Data |/T|-ailer|
= o ¥ ¢ I

Mame Validation Severity || Cascade Errors

"i"'-, i Ci-1 Startswith{ $value, Left{Fe0a[0]. Currency, 211 error

ﬁ'_‘-. @ ci1-2 StartzWwith($walue, Left(F&0a[0]. Currency, 210 error
"i"‘-. §# Fel-a $code = FEL. Transaction_Type_Identification_Ce error
ﬁ'_‘-. € Fel1-B In(Charat(Fel. Transaction_Type_Identification_r errar
"i"‘-. {J‘ Fel-< Ifi{Startswith(F&l, Transaction_Type_Identificatic errar
ﬁ'_‘-. €? Fel-D IsDate(FormatDate(Today(], "we"1 4+ FE1.Entry_[errar

#y 69 Do-FIx $dc = Fel.Debit_Credit_Mark; arror ¥
fatal

arrar
warn %

El & & Bl &l & E]

The severity type specified here would be set as the ‘severity’ of the exception
that is generated in case of validation failure. This is purely for informative
purposes and it is not interpreted anywhere else.

The ‘Severity’ column is also hidden by default, which can be added to the table
by right-clicking the table header and selecting the Severity menu item from the
context menu.

If a validation is marked as cascadable (default) by selecting the check box in the
Cascade Errors column, exceptions are accumulated and subsequent validations
are also executed. If a validation rule is non-cascadable, then the validation
aborts immediately and the remaining validation rules are not executed. In both
cases the validation activity terminates with an exception; the difference is in
when it stops.

The Cascade Errors column is also hidden by default, which can be added to the
table by right-clicking the table header and selecting the corresponding menu
item from the context menu.

If a validation rule is disabled, it will not be invoked during runtime. This can be
done by deselecting the check box in the Enabled column of the corresponding
validation rule as shown in the following picture.

iy

S
ORACLE | %hea

Yalidation Rules - S\WIFT [MT950]

rHeader |/Data |/T|=ai|er |

H-e@&EG I

Mane Enabled Error Code
6 ci-1 ¥ cz7
@ ci-2 W c27
6 Fe1-a ¥ Tis
0 Fe1-e W Ts3
& @ Fe1-c EEE
.6 Fe1-D ¥ Tso
9 po-FIx [¥] DC-FIN

%)

Validation Applies To
StartswWith($walue, Left{FE0a[0], Cu 623, Currency
StartzWith($walue, Left(FE0a[0]. Cu &4, Currency
$code = FE1l. Transackion_Type_Idei &1. Transaction...
In(Charat(FEl. Transaction_Twpe_Id &1.Transactian...
If{ StarksWith(FEL1l. Transaction_Type &1.Transaction...
IzDate(FormatDate(Today (), "vv"] - &1, Entry_Doate
$dc = FEL1.Debit_Credit_Mark; &1

BE

The Enabled column is also hidden by default, which can be added to the table by
right-clicking the table header and selecting the corresponding menu item from

the context menu.

See Also:

[

Adding a Validation Rule using Field-wise Validations View

Adding a Validation Rule

Formula Validations

The formula feature provided by Designer is quite powerful that most of the

validations can be represented by a corresponding formula. It requires nothing less
than programming effort to understand the nuances of writing formulae. But once
understood, it makes specifying validations easier. The following sections illustrate

some of the common validations that can be specified by using formula.

See Also:

Length Validations

Range Validations

Validation for Acceptable Values

Pattern Validations

SWIFT Formats Validation

Validation for Missing Field Value
Validations Based on Aggregate Functions
Validation Rules Ul

Adding a Validation Rule

Fields Accessible in a Formula

-

ORACLE' | Zbea

Invocation of Validation Rules

Length Validations

Length validations are used to check whether the number of characters in the value
of a string field matches the required length.

Exact Length Validation

This validation is used to check whether the number of characters in the value of a
string field is equal to a particular length.

Example

Suppose you want to validate the value of the ‘clientld’ field in the ‘Trade’ section to
ensure that its length is exactly 10. This can be specified by the following formula:

Length(Trade.clientld) == 10

The following formula is same as the above if the ‘Applies To’ column of the row
corresponding to the validation rule is ‘Trade.clientld’.

Length($value) == 10

Here, the ‘$value’ variable represents the value of the current field, i.e. the field
specified in the ‘Applies To’ column of the row corresponding to this validation rule.

Minimum Length Validation

This validation is used to check whether the number of characters in the value of a
string field is greater than or equals to a particular length.

Example

Suppose you want to validate the value of the ‘clientld’ field in the ‘Trade’ section to
ensure that its length is at least 10 (equals to 10 or greater than 10). This can be
specified by the following formula:

Length(Trade.clientld) >= 10

Maximum Length Validation

This validation is used to check whether the number of characters in the value of a
string field is less than or equals to a particular length.

-

ORACLE' | Zbea

Example

Suppose you want to validate the value of the ‘clientld’ field in the ‘Trade’ section to
ensure that its length is at most 10 (equals to 10 or less than 10). This can be
specified by the following formula:

Length(Trade.clientld) <= 10

See Also:

Formula Validations

Range Validations

Range validations can be used to check whether the value of a numeric/date field
satisfies the lower and upper bounds of a range.

Exclusive Range Validation

This validation is used to check whether the field value is greater than the lower
bound and less than the upper bound of a range (excluding the lower and upper
bounds of the range) of acceptable values.

Example 1

Suppose you want to validate the value of the ‘SellerDaysCount’ field in the
‘AdditionalOrderInformation’ section to ensure that it is above 0 and below 60. This
can be specified by the following formula:

AdditionalOrderiInformation.SellerDaysCount > 0 &&
AdditionalOrderInformation.SellerDaysCount < 60

Inclusive Range Validation

This validation is used to check, in a range of acceptable values, whether the field
value is

greater than or equal to the lower bound of that range, and

less than or equal to the upper bound of that range.

Example

Suppose you want to validate the value of the ‘SellerDaysCount’ field in the
‘AdditionalOrderinformation’ section to ensure that it is greater than or equals to O
and it is less than or equals to 60. This can be specified by the following formula:

-

ORACLE' | Zbea

AdditionalOrderiInformation.SellerDaysCount >= 0 &&
AdditionalOrderInformation.SellerDaysCount <= 60

Note that the above formula can be simplified as given below if the ‘Applies To’
column of the row corresponding to the validation rule is specified as
‘AdditionalOrderInformation.SellerDaysCount’.

Between($value, 0, 60)

Example 2

Suppose you want to validate the value of the ‘InvoiceDate’ field to ensure that it lies
between May 1, 2003 and April 30, 2004 (including May 1, 2003 and April 30, 2004).
This can be specified by the following formula:

Between(lnvoiceDate, Date(2003, 05, 01), Date(2004, 04, 30))

-

ORACLE' | Zbea

Exclusive Lower Bounded Range Validation

This validation is used to check, in a range with a lower limit and unbounded upper
limit, whether the value of a numeric/date field is greater than the lower limit.

Example

Suppose you want to validate the value of the ‘SellerDaysCount’ field in the
‘AdditionalOrderinformation’ section to ensure that it is anything above 0. This can
be specified by the following formula:

AdditionalOrderiInformation.SellerDaysCount > 0
Inclusive Lower Bounded Range Validation

This validation is used to check, in a range with a lower limit and unbounded upper
limit, whether the value of a numeric/date field is greater than or equal to the lower
limit.

Example

Suppose you want to validate the value of the ‘SellerDaysCount’ field in the
‘AdditionalOrderinformation’ section to ensure that either it is equals to O or it is
anything above 0. This can be specified by the following formula:

AdditionalOrderiInformation.SellerDaysCount >= 0
Exclusive Upper Bounded Range Validation

This validation is used to check, in a range with unbounded lower limit and an upper
limit, whether the value of a numeric/date field is less than the upper limit.

Example

Suppose you want to validate the value of the ‘SellerDaysCount’ field in the
‘AdditionalOrderinformation’ section to ensure that it is anything below 60. This can
be specified by the following formula:

AdditionalOrderiInformation.SellerDaysCount < 60

-

ORACLE' | Zbea

Inclusive Upper Bounded Range Validation

This validation is used to check, in a range with unbounded lower limit and an upper
limit, whether the value of a numeric/date field is less than or equal to the upper
limit.

Example

Suppose you want to validate the value of the ‘SellerDaysCount’ field in the
‘AdditionalOrderinformation’ section to ensure that either it is equals to 60 or it is
anything below 60. This can be specified by the following formula:

AdditionalOrderiInformation.SellerDaysCount <= 60

See Also:

Formula Validations
Validation for Acceptable Values

This validation is used to check whether the field value is acceptable by comparing it
against a list of acceptable values.

Example 1

Suppose you want to validate the value of the ‘BranchCode’ field to ensure that it is
one of the acceptable values "YYY", "ZZZ", "QQQ" and "ZYX". This can be specified
by the following formula:

In(BranchCode, "YYY", "ZZZ", "QQQ", "ZYX')

Example 2

Suppose you want to validate the value of the ‘Year’ field to ensure that it is one of
the acceptable values - 1990, 2000, and 2010. This can be specified by the following
formula:

In(Year, 1990, 2000, 2010)

Example 3

Suppose you want to validate the value of the ‘InvoiceDate’ field to ensure that it is
one of the acceptable dates — May 1, 2004 and May 8, 2004. This can be specified by
the following formula:

In(InvoiceDate, Date(2004, 5, 1), Date(2004, 5, 8))

-

ORACLE' | Zbea

See Also:

Formula Validations

Pattern Validations

This validation is used to check whether the value of a string field conforms to the
exact sequence of characters that are acceptable.

Example

Suppose you want to validate the value of the ‘SecuritylD’ field to ensure the
following pattern:

Its first three characters are digits,
followed by a hyphen,
followed by three uppercase/lowercase letters,
followed by a hyphen and
its last three characters are uppercase/lowercase letters or digits.
This can be specified by the following formula:
Matches(""\\d{3}-[a-zA-Z]{3}-(\\d| [a-zA-Z]D{3}$"", SecuritylD)
Here, the predefined class \d is used to match a digit character. Thus the
sub-expression \d{3}%} (it is prefixed with the escape character \) matches
exactly three digits.
The hyphen character matches the same in the given value.
The [a-zA-Z] character class with ranges matches any lowercase/uppercase
letter. Thus the sub-expression [a-zA-Z]{3} matches exactly three

lowercase/uppercase letters.

The character | is the logical OR operator. Thus the sub-expression \d|[a-zA-Z]
matches either a digit or a letter.

The characters ™ and $ take care of matching at the beginning and end of the
value, respectively.

2%

ORACLE | %bea

See Also:

Formula Validations

-

ORACLE' | Zbea

SWIFT Formats Validation

This validation is used to check whether the field value conforms to the exact
sequence of characters specified by the SWIFT format.

Example

The format of the ‘Identification of Security’ field is given as ‘ISIN1lel2!c’. This
means that the value should consist of

The character sequence ‘ISIN’ at the beginning
Followed by a space (as denoted by the SWIFT format character ‘e’) and

Exactly twelve (denoted by the SWIFT format character ‘1) uppercase
letters/digits (as denoted by the SWIFT format character ‘c’) at the end.

The VerifyFormat() function can be used to validate values against formats based on
SWIFT format characters. Thus the ‘Identification of Security’ field can be validated
using the following formula:

$secld = B_F35B.1dentification_Of Security;
(Equal (Left($secld, 5), "ISIN ™) &&
VerifyFormat(RightStr($secld, "ISIN '), "12Ic™))

Here, the assignment statement at the beginning of the formula assigns the
value of the ‘ldentification of Security’ field (in the ‘B.F35B’ section) to the
variable $secld. This variable is then used in the formula to access the value of
the ‘lIdentification of Security’ field.

The first five characters at the start of the value is extracted using the Left()
function and compared against the string “ISIN ” for equality.

The substring that appears after the string “ISIN ” is extracted using the
RightStr() function and it is verified against the SWIFT format 12!c.

See Also:

Formula Validations

-

ORACLE' | Zbea

Validation for Missing Field Value

The functions described in the following table help in specifying validations based on
missing field values.

Function Description

IsNotNull Returns ‘true’ if the value of the specified field is not missing.
IsNull Returns ‘true’ if the value of the specified field is indeed missing.
Note

The IsNull() and IsNotNull() functions should be used only with fields. If you want to
check whether a section is empty, (no elements) use "Sec.$size == 0" or one of the
SecExists functions.

The IsNull() function applied on a section would always return true since the section
itself is never null but it can be without elements.

Example

Consider the following message structure:

Field Name Data Type
=5 streetside_Information Section
i StreetSide_Info String

i Additional_StreetSide_Inforrnation_Indicator Character
a Additional_StreetSide_Information Section
i Additional_StreetSide_Info String

It consists of two non-repeating and optional sections — ‘StreetSide_Information’ and
‘Additional_StreetSide_Information’. While the ‘StreetSide_Info’ field in the
‘StreetSide_ Information’ section is mandatory, the

‘Additional_StreetSide_ Information_ Indicator’ in the same section is optional. The
‘Additional_StreetSide_Info’ field in the ‘Additional_StreetSide Information’ section is
mandatory.

Now consider the validation requirement:

If the ‘Additional_StreetSide_Information_Indicator’ field in the
‘StreetSide_ Information’ section is present, the
‘Additional_StreetSide_ Information’ section should be present in the message.

-

ORACLE' | Zbea

Otherwise, the ‘Additional_StreetSide_Information’ section should not be present
in the message.

The presence of the ‘Additional_StreetSide Information_Indicator’ field in the
‘StreetSide_Information’ section can be determined by the following formula:

IsNotNul I (StreetSide_Information._Additional_StreetSide_Information_Indicator)

Here, the IsNotNull() function will return ‘true’, if the
‘Additional_StreetSide_Information_Indicator* field in the only element of the
‘StreetSide_ Information’ section (as it is a non-repeating section) is not missing
(contains a value).

The presence of the ‘Additional_StreetSide Information’ section can be determined
by the following formula:

Additional_StreetSide_Information.$size '= 0

The above formula will return ‘true’ if the number of elements in the
‘Additional_StreetSide_Information’ section is not zero, i.e. if the
‘Additional_StreetSide_Information’ section exists (present) in the message.

Thus, the formula representing the entire validation rule can be written as given
below and it can be applied to the ‘Additional_StreetSide Information_ Indicator’
field.

IT(IsNotNul I (StreetSide_Information.Additional_StreetSide_Information_Indicator),
Additional_StreetSide_Information.$size 1= 0,
Additional_StreetSide_Information.$size ==

This will validate the presence of the ‘Additional_StreetSide_Information’ section if
the ‘Additional_StreetSide Information_Indicator’ field is present in the
‘StreetSide_Information’ section. But it will not validate the presence of the
‘Additional_StreetSide_Information’ section if the

‘Additional_StreetSide Information_Indicator’ field is missing in the
‘StreetSide_Information’ section. It is because the validation is not at all invoked
when the ‘Additional_StreetSide_Information_Indicator’ field is missing (is null).

If the above validation is entered at the field level (as in the screen capture given
below), the explanation that appears at the top of the validation rules panel makes it
clear that this validation is not applied if the
‘Additional_StreetSide_Information_Indicator’ field is null.

-

ORACLE' | Zbea

Field Name Data Type Descripton
= Data Section
a StreetSide_Information Section
W StreetSide_Info String
4 Additional_StreetSide_Information_Indicator Character
a Additional_S$treetSide_Informiation Secktion
w Additional_StreetSide_Info String
)) _ These validations are applied for every non-null occurence of the field
@ [! ‘Additional_Streetzide_Information_Indicator’ in the section =
"StreetSide_Information’.
Ma...|| Type Yalidation Applies To
EL For.. | Additional_StreetSide_Information. $size == 0| |StreetSide_Inforrnation. addi...

This validation can be promoted to the ‘StreetSide_Information’ section (i.e. apply
this validation to that section) to ensure that it gets invoked even when the
‘Additional_StreetSide_Information_ Indicator’ field is null.

Even then the validation will not work properly, as it will not be invoked if the
‘StreetSide_ Information’ section itself is missing. Thus, this validation needs to be
specified at the parent level of the ‘StreetSide_Information’ section, i.e. at the
message format level. This implies that the ‘Applies To’ column corresponding to the
row containing this validation should be empty.

The validation formula also needs to be changed as given below:

I1f(StreetSide_Information.$size !'= 0 &&

IsNotNul I (StreetSide_Information[0].Additional _StreetSide_Information_Indicator),
Additional_StreetSide_Information.$size 1= 0,
Additional_StreetSide_Information.$size == 0

As the ‘StreetSide_Information’ section is an optional section, its presence need to
be checked by using the following formula:

StreetSide_Information.$size !'= 0

As the validation rule is specified at the message format level, only the top-level
fields (‘StreetSide_Information’ and ‘Additional_StreetSide_Information’ sections)
can be directly accessed in the formula. Thus, to access the

‘Additional_StreetSide_ Information_ Indicator’ field in the only element (if the
previous condition is true, there must be an element in the ‘StreetSide_Information’

-

ORACLE' | Zbea

section and as this section is non-repeating it can have only one element) of the
‘StreetSide_ Information’ section, it is specified along with the index O.

See Also:

Formula Validations
Validations Based on Aggregate Functions

Checking for the Occurrence of a Section

The SecExistsXXX() functions help in checking whether there is the required number
of parent section elements with an occurrence of the specified nested section, as
described in the following table:

Function Description

SecExistsInAtLeastOne Helps in checking whether the specified nested section
occurs in at least one element (one or more elements) of
the specified parent section.

SecExistsInAtMostOne Helps in checking whether the specified nested section
occurs in at most one element (zero or one element) of
the specified parent section.

SecExistsInOne Helps in checking whether the specified nested section
occurs in exactly one element of the specified parent
section.

SecExistsInAll Helps in checking whether the specified nested section

occurs in all elements of the specified parent section.

Example

Consider the following network validation rule specified for the SWIFT message
MT 564.

If Exchange Rate is present (Field :92B::EXCH), the corresponding Resulting Amount
(Field :19A::RESU) must be present in the same (sub)sequence. If the Exchange

Rate is not present, the Resulting Amount is not allowed (Error code(s): E62).

This check applies to subsequence E2.

Subsequence E2 Subsequence E2
if field: 92B::EXCH is... then field :19A::RESU is...
Present Mandatory

Not present Not allowed

-

ORACLE' | Zbea

The phrase “the same (sub)sequence” conveys that this validation should be carried
out for each instance of subsequence E2 as it occurs. So the ‘Applies To’ column
must be ‘E.E2’.

As per the SWIFT specification, the SWIFT field ‘92B’ has a single format option —
option B. The format option B consists of the SWIFT qualifier ‘EXCH’ and the SWIFT
subfields — ‘First Currency Code’, ‘Second Currency Code’ and ‘Rate’.

In Designer, a section represents the SWIFT field ‘92B’ and its sub-section

represents the qualifier ‘EXCH’. The qualifier section consists of fields representing
the SWIFT subfields.

Whether ‘Exchange Rate’ (Section 92B::EXCH) is present in the current instance of
subsequence E.E2 can be determined by the following formula:

SecExistsInAtLeastOne(E.E2.F92B, "EXCH"™)

This returns ‘true’ if an EXCH element occurs (exists) in at least one element of the
F92B section (representing SWIFT field 92B) contained in the current E2 element.
Anyhow there cannot be more than one F92B element, as the F92B section is
non-repeating.

Likewise the presence of ‘Resulting Amount’ (Section :19A::RESU) in the current
instance of subsequence E.E2 can be determined the following formula:

SecExistsInAtLeastOne(E.E2.F19A, "RESU™)

As the presence of the ‘Exchange Rate’ should be matched by the presence of the
‘Resulting Amount’, the complete formula is as follows:

SecExistsInAtLeastOne(E.E2.F92B, "EXCH"™) ==
SecExistsInAtLeastOne(E.E2.F19A, "RESU™)

The ‘equals to’ operator ensures that the outcome of these two conditions is same
(either true or false).

Checking for the Occurrence of a Field

The FieldExistsXXX() functions help in checking whether there is the required number
of section elements with an occurrence of the specified field, as described in the
following table:

Function Description

-

ORACLE' | Zbea

FieldExistsInAtLeastOne Helps in checking whether the specified field occurs in at
least one element (one or more elements) of the
specified section.

FieldExistsInAtMostOne Helps in checking whether the specified field occurs in at
most one element (zero or one element) of the specified
section.

FieldExistsInOne Helps in checking whether the specified field occurs in
exactly one element of the specified section.

FieldExistsInAll Helps in checking whether the specified field occurs in all
elements of the specified section.

Example

Consider the following network validation rule specified for the SWIFT message
MT 564.

In each occurrence of sequence E, if field :22F::CAOP//OTHR is present, then in the
same occurrence of sequence E field :70E::ADTX is mandatory (Error code(s): E79).

In each occurrence of Sequence E In the same occurrence of Sequence E
if field :22F::CAOP//0OTHR is...(**) then field :70E::ADTX is...

Present Mandatory

Not present Optional

(*) if the Data Source Scheme is present in field :22F::CAOP//OTHR then the
conditional rule does not apply.

The phrase “each occurrence of sequence E” conveys that this validation should be
invoked for each element of the section E (representing sequence E) as it occurs. So
the ‘Applies To’ column must be ‘E’.

As per the SWIFT specification, the SWIFT field ‘22F’ has a single format option —
option F. The format option F consists of a SWIFT qualifier and two SWIFT subfields —
‘Data Source Scheme’ and ‘Indicator’. As per the specification, the SWIFT qualifier
can be one of the following - ‘CAOP’, ‘DISF’, ‘OFFE’ and ‘OPTE’.

In Designer, a section represents the SWIFT field ‘22F and each qualifier is
represented by its own sub-section. Each qualifier section consists of the
‘Data Source Scheme’ and ‘Indicator’ fields representing the SWIFT subfields.

-

ORACLE' | Zbea

The SWIFT specification also specifies ‘OTHR’ as one of the codes (among others) to
be contained by the SWIFT subfield ‘Indicator’ when the SWIFT qualifier is ‘CAOP’
and the ‘Data Source Scheme’ field is not present. Thus, to check for the presence of
the field ‘:22F::CAOP//OTHR’, we need to check whether the value of the field
‘Indicator’ in the qualifier section ‘CAOP’ is indeed ‘OTHR’ and the field ‘Data Source
Scheme’ does not exist in that section. The following formula can be used to check
whether the value of the field ‘Indicator’ in the qualifier section ‘CAOP’ (all elements
of the section) is indeed ‘OTHR’:

FieldvalueExistsInAII (E.F22F, "CAOP.Indicator™, "OTHR™)

This returns ‘true’ if the ‘CAOP.Indicator’ field with value ‘OTHR’ occurs (exists) in all
elements of the F22F section contained in the current instance of the sequence E.
See the section Checking for the Occurrence of a Field Value for more information.

Anyhow there cannot be more than one F22F element. Even though the F22F section
is shown as repeating (to conform to SWIFT which does not treat Qualifiers as
independent fields but as part of the field), internally Designer treats it as
non-repeating. As per Designer’s definition of sections, there will be only one
instance of F22F, and that instance contains one or more of the qualifiers.

The following formula can be used to check the absence of the ‘Data Source Scheme’
field in the qualifier section ‘CAOP’:

IFieldExistsInAtleastOne(E.F22F, "CAOP.Data_Source_Scheme'™)

This returns ‘true’ if the ‘CAOP.Data_Source_Scheme’ field does not occur in any
element of the F22F section contained in the current instance of the sequence E.

The presence of field :70E::ADTX (represented by the qualifier section 70E.ADTX) in
the same occurrence of sequence E can be determined the following formula:

SecExistsInAtleastOne(E.F70E, "ADTX™)

This returns ‘true’ if an ADTX element occurs (exists) in at least one element of the
F70E section contained in the current instance of sequence E. See the section
Checking for the Occurrence of a Section for more information.

As we need to check for the presence of the qualifier section E.70E.ADTX only when
the value of the field ‘Indicator’ in the qualifier section ‘CAOP’ is ‘OTHR’ and the field
‘Data Source Scheme’ does not exist, the complete formula is as follows:

-

ORACLE | #bea

ITf(FieldvValueExistsInAll (E.F22F, "CAOP.Indicator™, "OTHR"™) &&
TFieldExistsInAtleastOne(E.F22F, "CAOP.Data_Source_Scheme'™),
SecExistsInAtleastOne(E.F70E, "ADTX"),
true)

-

ORACLE' | Zbea

Checking for the Occurrence of a Field Value

The FieldValueExistsXXX() functions help in checking whether there is the required
number of section elements with an occurrence of the specified field with the
specified value, as described in the following table:

Function Description

FieldValueExistsinAtLeastOne Helps in checking whether the specified field with the
specified value occurs in at least one element (one or
more elements) of the specified section.

FieldValueExistsInAll Helps in checking whether the specified field with the
specified value occurs in all elements of the specified
section.

Example

Consider the following network validation rule specified for the SWIFT message
MT 564.

If the safekeeping accounts are not provided, ie, if field :97C::SAFE//GENR is
present in any occurrence of subsequence B2, then:

subsequence B2 Account Information must not be repeated in the message
the Balance of Securities, ie, field 93a, must not be present in subsequence B2
Account Information.

subsequence E1 Securities Movement must not be present

subsequence E2 Cash Movement must not be present (Error code(s): E94).

In subsequence B2 then and in and

if field subsequence B2 | subsequence B2 | subsequences

:97C::SAFE//GENR is... | is Mandatory field 93a is ... El and E2
and ... are ...

Present Not Repetitive Not allowed Not allowed

min-Max = 1-1

Not present Repetitive Optional Optional and

min-Max = 1-n Repetitive

min-Max = 0-n

-

ORACLE' | Zbea

The phrase “any occurrence of subsequence B2” means that all subsequence B2
instances that occur in an instance of sequence B should be taken into account for
this validation. It also means that this validation should be carried out for each
instance of the sequence B as it occurs. So the ‘Applies To’ column must be ‘B’.

As per the SWIFT specification, the SWIFT field ‘97a’ has two format options — A and
C. While the format option A consists of the SWIFT qualifier ‘SAFE’ and the

‘Account Number’ subfield, the format option C consists of the SWIFT qualifier ‘SAFE’
and the ‘Account Code’ subfield.

In Designer, a section represents the SWIFT field ‘97a’ and its subsection represents
the qualifier ‘SAFE’. The qualifier section, in turn, consists of ‘Account Number’ and
‘Account Code’ fields representing the subfields specified by the format options.

The SWIFT specification also specifies that ‘GENR’ is the mandatory code for the
‘Account Code’ subfield. Thus, to check the presence of the field :97C::SAFE//GENR,
we need to check whether the value of the ‘Account Code’ field in the qualifier
section ‘SAFE’ is indeed ‘GENR’.

FieldvalueExistsInAtleastOne(B.B2, "97a.SAFE.Account_Code'™, "GENR™)

This returns ‘true’ if the ‘97a.SAFE.Account Code’ field with value ‘GENR’ occurs
(exists) in at least one element of the B2 section contained in the current instance of
the sequence B.

Note that if the field (second argument) is specified in the nested format (as in this
case), the FieldvalueExistsInAtleastOne() function will iterate through each element
of the outermost section for processing. While processing an element of the
outermost section, it will also iterate through each element of its immediate nested
section, if any, and continues in that order.

In our case both the sections — ‘97a’ and ‘SAFE’, are non-repeating. So there can be
only one element for both the outermost section ‘97a’ and its nested section ‘SAFE’.

The presence of the B2 subsequence with exactly one instance can be determined by
the following formula:

B.B2.$size == 1

The $size variable when invoked on a section returns the number of elements in that
section. As the above formula invokes it on the ‘B.B2’ section, it returns the number
of elements in it.

-

ORACLE' | Zbea

The success of the previous condition (B.B2.$size == 1) means that there is exactly
one instance for the B2 subsequence. So, to check the absence of the ‘93a’ section
(as it is not allowed as per the rule) in the subsequence B2, we need to check that
there is no 93a element in the only element (with index 0) of the B2 subsequence.
This can be done by the following formula:

B.B2[0]-F93a.%size ==
The absence of the ‘E1’ subsequence can be determined by the following formula:
1SecExistsInAtleastOne(E, "E1')

This returns ‘true’ if there is no instance for the ‘E1’ section taking into account all
instances of the ‘E’ section.

Likewise, the absence of the ‘E2’ subsequence can be determined by the following
formula:

1SecExistsinAtleastOne(E, "E2')

The complete formula representing the given SWIFT network validation rule is as
follows:

IT(FieldvalueExistsInAtleastOne(B.B2, '"97a.SAFE._Account_Code", "GENR™),
B.B2.$size == 1 && B.B2[0].F93a.%size == 0 &&
1SecExistsinAtleastOne(E, "E1'") && !SecExistsInAtleastOne(E, "E2'),
true)

We need to check for all the above conditions only when the field

:97C::SAFE//GENR is present. If it is not present, none of the conditions need to be
checked except the mandatory requirement of subsequence B2. This is automatically
taken care of by Designer as part of section validation.

See Also:

Formula Validations
Fields Accessible in a Formula

A formula validation rule is specified (applied) for a field to validate the value that
occurs for that field in the given message.

A field/section accessed in a formula should be either at the same level of the
‘Applies To’ field or at the top level of the ‘Applies To’ field.

-

ORACLE' | Zbea

Consider the following message structure.

& Cormpany
4 eMailaddrezs
aRﬂgiDn
4% RegionMame
£ Branch
4 BranchMarne
aﬁaleslnﬁn
& rear
a MonthlySales
4 Month
& Sales
a Quartedy Sales
W Quarter
& Sales
i Mailaddress

The following list explains accessible fields based on the above message structure.

If a validation rule is specified for the top-level field Company, it can access the
other top-level fields eMailAddress, Region (not its nested fields) and
MailAddress. This is allowed because these fields are at the same level of the
Company field. This is also true for the validation rules specified for the other
top-level fields.

If a validation rule is specified for the RegionName field, which is a nested field
of the Region section, it can access the Branch section (which is at the same
level of the RegionName field) and its top-level fields (Company,
eMailAddress, Region and MailAddress).

See Also:

Validation Rules Ul

Adding a Validation Rule
Formula Validations
Invocation of Validation Rules

iy

S
ORACLE | %hea

Invocation of Validation Rules

Invocation of a validation rule (either formula or a custom class) involves the
following considerations:

The validation rules are executed in ‘Applies To’ field order. The validation rule(s)
associated with fields are executed in the order in which fields are defined. In the
diagram below, validations for ‘Company’ is executed first followed by
‘emailAddress’. Then validations for section ‘Region’ and its children are
executed. This is done for every instance of the Region section (and its
subsections) before it moves on to next top-level field.

All validations that are not associated with a field (Applies To field is null) are
executed before validations associated with a field is executed.

You can safely assume that, before executing the validation for a field, all
validations associated with fields above it (in message definition order) have
been executed.

Note that, this is not necessarily the order in which validation rules themselves
are defined. Because of this, it is important not to have dependencies in the
validation rules.

Validation Rules [Default] - [CompanyDetails] @
1 CompanyDetails Section E
T e —— String
s eMailtddrezs String
£ Region Section
& Region Marme String
=y Branch Sedion

4 Branch Mame String

=y s5ales Info Section
<} Year String
r) g {L These validations are applied if the field S
@ 4 ‘ ﬁ 'Company' is not null
I:H Manme || Validation || Action Message |
& E1 Company=="ARBC" "Campany narme should always be ABC"

A validation rule specified for a field is invoked for every non-null occurrence of
that field in the given message. The position of the field in the data

2%

ORACLE | %bea

format/message structure (whether it is a top-level field or a nested field) also
affects the invocation of a field validation rule.

Consider the following example in which a validation rule is specified for a
top-level field.

VYalidation Rules [Default] - [CompanyDetails]

Enterprise Element Type | DescHpbon

] CompanyDetails Section =
& Campany |String
& eMailaddrezs String
4 Region Section

& Region Mame String
3 Branch Section

i Branch Mame String
£3 Sales Info Section

W Tear String -

@ _J ﬁ @ Theze validations are applied if the field

'‘Campany' is not null,

I:H Manme || Yalidation || Action Message |

& E1 Company=="ABC" "Zormpany name should always be ARBC"

Here, the validation rule is specified for the top-level field Company. As a
top-level field occurs only once in the actual message, this validation rule is
evaluated at most once for a particular message or not even invoked. This is
because the validation rule is invoked only if the field value is not null. If the field
value is null, the validation rule is not even invoked for that particular message.
The explanation given at the top of the validation rule table makes this behavior
clear.

2%

ORACLE | %bea

Consider the following example in which a validation rule is specified for a nested
field.

| vaiidation Rules [Default] - [internal Farmati< B
] Internal Format Sedion o]
& Company String
W eMailaddrezz String
3 Region Section
W RegionMame String
=3 Branch Section
4 BranchMare String
=3 SalesInfo Section
W rear Integer —
L Secion il
Theze validations are applied for every non-null
@ .J ﬁ @ occurence of the field 'RpepginnName' in?the seckion
'Region'.
|:|| Manme || Type || ¥alidation
£# E2 Forrula In(Region.RegionMarme,"East","Weszt","Horth","South") E
LHE : 4

Here, a validation rule is specified for RegionName, which is a nested field of
the repeating section Region. The explanation given at the top of the Validation
Rule panel makes it clear that this validation rule is invoked for every non-null
occurrence of the RegionName field in the Region section. This means that if
there are four Region elements and the RegionName field occurs in all of them,
then this validation rule is invoked four times (once for each of the four
elements).

A validation rule specified for a section is invoked for every occurrence of that
section. Similar to field validation rules, the position of the section in the data
format/message structure (whether it is a top-level section or a nested section)
also affects the invocation of a section validation rule.

2%

ORACLE | %bea

Consider the following example in which a validation rule is specified for a
top-level section.

Validation Rules [Default] - [Intemal Format]*

Enterprise Element | Type DescHpbton

] Intermnal Format Section
& Company String
& eMaildddreszz String
i+ Region Sedction

& RegionMarme String
=4 Branch Section
% BranchMame String
3 SalesInfo Section

W rear Integer
£ monthlySales Section

These validations are applied for every elerment

E ...J' ﬁ .{], in the section [collection] 'Region'. ou can

access fields in thizs zection and its ancestor,

:“ Mame || Type || Yalidation || Action Message |

§# E2 Formula Region. fsize== "Sales info should be given for all four Regi

1

Here, the validation rule is specified for the top-level repeating section Region.
The explanation given at the top of the Validation Rule panel makes it clear that
this validation rule is invoked for every element of the Region section. As a
top-level section, the Region section itself can occur only once in the entire
message (but it could contain many elements, as it is a repeating section). So if
there are four Region elements, then this validation rule is invoked four times
(once for each of the four Region elements).

2%

ORACLE | %bea

Consider the following example in which a validation rule is specified for a nested
section.

Validation Rules [Default] - [Intemal Format]*

Enterprise Element | Type | DescHpton

& rear Integer ol
iy MonthlySales Section
& Month String
& Sales Double
3 Quartedy Sales Section
& Quarter String
4w Sales String
& Mail Address String

I

Thesze validations are applied for every elermeant

E & ﬁ @ in the section (collection]
] 'Region.Branch. SalezInfo. MonthlySales', You can
acces: fieldz in this zection and its ancestar,
|:|| Mame || Type || ¥alidation
€ E4 Formula IFI:ISNDtNUII(RegiDn.Branch.SalesInfn.MnnthlySales.MDntE

4

Here, a validation rule is specified for the repeating section MonthlySales, which
is a nested section of the repeating section SalesInfo. The explanation given at
the top of the Validation Rule panel makes it clear that this validation rule is
invoked for every element in the Region.Branch.Saleslnfo.MonthlySales
section. This means that if there are 12 MonthlySales elements in a particular
element of the SalesInfo section (which in turn depends on the occurrence of
the Region.Branch section), this validation rule is invoked 12 times during the
processing of that particular element of the SalesInfo section.

When a validation rule involves multiple fields/sections, its invocation is based on
the common ancestor of the fields/sections referred.

2%

ORACLE | %bea

Consider the following example in which a validation rule is specified based on
two sections.

Yalidation Rules [Default] - [Intemal Format]*

Enterprise Element | Type | DescHpton

y Branch |Sectin:n =
& BranchMame String
=y salesInfo Section
& ear Intager
= Monthlysales Section
& Maonth String
W Sales Couble
=y Quarterly 5ales Section
W Quarter String

"1E D

Theze validation= are applied for every elermmant
E '? ﬁ {L in the section [collection) 'Region.Branch'. aou
] can access fields in this section and its
ancestar,

I:HNamE” Type || VYalidation

&# ES Formula SecExistsInAtLeastOnel(Region.Branch, SalesInfo,"MonthlySales
= "

The above picture shows only a part of the validation. The entire validation is
given below:

SecExistsInAtleastOne(Region.Branch.SalesInfo, "MonthlySales'™) ==
SecExistsInAtleastOne(Region.Branch.SalesInfo, "QuarterlySales™)

Here, Region.Branch is the applies-to field as it is the common ancestor of the
sections referred. So this rule is invoked for each Region.Branch instance.

See Also:

Validation Rules Ul

Adding a Validation Rule
Formula Validations

Fields Accessible in a Formula

-

ORACLE' | Zbea

Working with Message - Overview

Once a message has been created, field/section can be added to it in the Message
Format Ul. The Message Format Ul is composed of ‘Toolbar’, ‘FieldsList’ and
‘PropertiesPanel’.

Toolbar

i &3 e=E

The tool bar contains the following icons.

You can use these icons to add a field/section to the
message,

Add field/section

E, D icons.

Remove

field/section E
icon

Arrange
field/section

4 &=

icons.

Toggle Tree view
I:: icon
Properties icon

Format Option

ﬁ icon

You can use this icon to remove a field/section from the
message.

You can use the arrange icons to move field/section
up/down/left/right in a message.

You can use the Tree View icon to view the Table contents
of a message in a tree structure.

The ‘Properties’ icon can be used to show or hide the
‘Properties’ window.

This icon is used to display the format options that are
specific to each format. This button will not be always
present in a tool bar. Only messages for which format
options can be specified will have this button.

Note:

These are the most common icons that are present in toolbar of all messages. The
toolbar may also contain other buttons, which are format specific.

-

ORACLE' | Zbea

Fields List
Field Name Alias Type DescHpton
._,4* Records Section
& firstmame String
{}? laztnare String Last Marme OFf Employes
& =alary Double
{}? designation String

The fields list table displays the fields/section that have been added to the message.
The columns in the table are

Name of the field/section. The name specified should be

Name . . . L
unique (i.e.) no other field/section in the same level should
have the same name. This

Alias Alias name for the field/section.

Type The data type of the field.

o Description for the field/section.
Description
Note:

Depending on the format the table may have additional columns.
Properties Panel

In addition to name/type etc. specified in the fields list table other properties can be
specified in the field/section properties panel.

Field Properties

Required [w]

Default Yalue [20010228

Faormat |',",",",'Mr'-'1dd -

The cardinality for the field and its default value can be specified in the field
properties panel. In case of ‘Date’ fields the date format can be specified in the field
properties panel. In section properties panel the cardinality can be specified.

-

ORACLE' | Zbea

Note:

Depending on the message format additional properties will be displayed in the
properties panel.

See Also:

Adding a Field/Section

Field/Section Properties

Removing a Field/Section

Arranging Fields In A Message

Alias

Tracing Messages in a Cartridge to a Standard

Adding a Field/Section

Follow the steps given below to add a new field/section to the internal message
format.

1. Select the Message design element in the explorer pane.

The Message Ul is shown in the Design Element Ul pane.

2. Click on the Add New Field button LE in the toolbar to add a field or the Add

New Section button (] to add a section in the Message Ul toolbar.

3. A new row appears in the message format table and its ‘Name’ column is selected
by default. If you have selected a row before clicking on the Add New Field
button, the new row is inserted immediately after the selected row.

2%

ORACLE | %bea

% | 12
| | Type | | Descripton
Section
4 firstmame String
0? laztnare String Last name of Emploves
4 age Integer
i gender Character
& joindate CateTirme
| & Mew Field String e
{}? experience Flaat
{>? qualification String |
Ml
N (']

x| Field Praperties

Required [w]

Default Yalue |

Properties

4. Type in a name for the new field/section.
5. Type in the alias name of the new field in the Alias column, if required.
6. The Alias column is hidden by default. Select the Alias menu item from the

short-cut menu that appears when you right-click on the header row of the
message format table.

Size column to fit

Row Height »
[0 Hide 'Type'

M Enterprise Elernent
0 alias

¥ Tope %

™ Hidden
¥ Description

7. See the section Alias for more information on using the alias names.

-

ORACLE' | Zbea

8. Select the data type of the new field from the list of supported data types that
appears in the Type column. The supported data types list is format specific and
is not the same for all formats.

9. Type in the description of the new field in the Description column, if required.

10. Specify the field/section properties. See the section Specifying the Field/Section
Properties for more information.

See Also:

Field/Section Properties
Removing a Field/Section
Arranging Fields In A Message

Field/Section Properties

After a field/section has been added properties for it can be specified in the
properties panel that is displayed at the bottom of the message when the
field/section is selected.

Cardinality

In the field/section Properties panel that appears at the bottom of the Message
Format Ul, cardinality properties like ‘required’, ‘min occurs’, ‘max occurs’ can be
specified. Designer indicates an optional field by displaying the ? indicator symbol
besides the field icon. No indicator symbol is displayed in case of mandatory fields.
In case of sections the cardinality is indicated as shown by the following table

Section Properties

Cardinal Description

Min Max Indicator P

Occurs Occurs

0 Unbounded * The section is optional and
repeating.

0 1 ? The section is optional and
non-repeating.

1 Unbounded + The section is non-optional

and repeating.

-

ORACLE' | Zbea

1 1 No The section is non-optional
indicator and non-repeating.

Default Value Property

A default value can be specified for a field in the Default Value text box of the
Properties panel. The default value is assigned to that field only if it is not assigned
a value during input mapping. The default value is overwritten if a value is assigned
to that field during the internal message processing, which is performed next.

The following points should be noted while assigning a default value for a field.
The data type of the value should match the data type of the field.

While specifying the default value for a String type field, the string value should
not be enclosed in double quotes.

An expression cannot be used to specify a default value.

Note:

There may also be other properties in the field/section properties panel that are
specific to a particular format.

Format Property

In case of a field of type ‘Date’ the format for the field can be specified in the
properties panel. A list of pre defined date formats will be listed from which the user
can select a format. The user can also specify a new date format for the field.

See Also:
Adding a Field/Section

Removing a Field/Section
Arranging Fields In A Message

Removing a Field/Section

Follow the steps given below to remove a set of fields/sections from the message
format.

1. Select the fields/sections to be removed.

-

ORACLE' | Zbea

SHIFT-click in the selection column to select a set of continuous fields and
CTRL-click in the selection column to select any non-continuous field without
affecting the current selection.

2. Click on the Remove Selected Field(s) icon E

Note:

If a section is removed, all of its constituent fields are also removed.
See Also:
Adding a Field/Section

Field/Section Properties
Arranging Fields In a Message

Arranging Fields in a Message

The icons with arrow images in the Message Format Ul toolbar can be used to
rearrange the position of the fields of a message format.

Once the required fields are selected, the user can click on these icons to arrange the
position of these fields within the internal message format. Use the selection column
(the empty column at the left) to select a field. To select a set of continuous fields,
select the first field in the set and then SHIFT-click on the last field. Use
CTRL-clicking to select a non-continuous field. CTRL-clicking on a selected field
deselects it.

The following table describes the icons used to arrange the fields of an internal
message format:

Icon Purpose Description

ﬂ' Move Selection Up This moves the selected field(s) up by one position
within the same level of message format (within the
same section or within the top level). This icon is
disabled when the top of that level is reached.

u Move Selection This moves the selected field(s) down by one position
Down within the same level of message format (within the
same section or within the top level). This icon is
disabled when the bottom of that level is reached.

Move Selection Left | This promotes the selected field(s) by one level in the
message format hierarchy. This means that the
selected fields are moved to the same level of their

-

ORACLE' | Zbea

previous parent.

= Move Selection This demotes the selected field(s) by one level in the
Right message format hierarchy. This icon is enabled only
when the selected fields are positioned immediately
after a section, which is at the same level of the
selected field(s). Clicking on this icon makes the
selected fields children of that section. The fields are
positioned at the bottom of that section.

See Also:

Adding a Field/Section
Field/Section Properties
Removing a Field/Section

Alias

An alias name is a substitute for the fully qualified name of a field. Designer supports
alias names for the following:

1. Fields/Sections of Internal Message
2. Fields/Sections of External Message

Once an internal/external field is assigned an alias name, it can be used wherever
you would have used its qualified name, for example, in places like
validation/mapping formula. If an internal/external field is assigned an alias name,
the qualified name of that field is replaced with its newly assigned alias name in all
the places it is used. Even changing/removing the alias name of an internal/external
field reflects in all the places of its usage.

See Also:

Specifying an Alias Name

Alias Name Substitution

Alias Name Rules

Items Supporting Alias Name Substitution
Internal Message

External Message

Validation Rules

Tracing Messages in a Cartridge to a Standard

Message

2%

ORACLE | %bea

Specifying an Alias Name

An internal field/section can be assigned an alias name using the ‘Alias Name’
column of the ‘Internal Format’ table, as shown in the following figure.

Internal Format - [Netting] ‘

HOBES M § e BB
I:H Enterprise Element || Alias || Type || Hidden || Descrp
@ Cormpany String [=
4 eMailaddress MailTd String]
3 Region Seckion [
4 RegionMare String [
3 Branch Seckion [
4 BranchMarne String]
= SalesInfo Section [
4 Year Integer] Eal
= Monthlysales Section [
4 Maonth String]
4 Sales Couble [E
"Ik [v

Likewise an external field/section can be assigned an alias name using the
‘Alias Name’ column of the table in the corresponding External Format Ul.

See Also:

Alias Name Substitution

Alias Name Rules

Items Supporting Alias Name Substitution
Alias

Alias Name Substitution

Alias name is a substitute for the fully qualified name of a field. Hence, wherever you
had earlier used a fully qualified hame you can now replace it with its alias name.

Consider the following message structure:

]

ORACLE' | Zbea

Field Name
-_q* GoodsIssuetote
@ MO
% ReceivedDate
& IzsuedDate
W FromDept
& ToDept
-_q* Product
@ ID
W RequestedOty
& Issuedty

To validate whether the ‘RequestedQty’ is greater than zero, the validation formula
would be something like:

GoodslssueNote.Product.RequestedQty > 0O

Now, if the ‘GoodslssueNote’ field is assigned an alias name ‘GIN’, the above formula
would become:

GIN.Product.RequestedQty > 0O

Now, if the ‘Product’ field is assigned an alias name ‘Item’ in addition to the alias
name assigned for ‘GoodslssueNote’, the above formula would become:

Item_RequestedQty > O
Note that once the ‘Product’ field is assigned an alias name, the alias name of the
‘GoodslssueNote’ field becomes insignificant as the alias name stands for

‘GoodslssueNote.Product’.

Now, if the alias name of the ‘Product’ field is removed, the formula would again
become:

GIN.Product.RequestedQty > 0O

The following table lists both valid and invalid substitution of alias names for the
qualified names of fields.

No | Qualified Substitute
Name

-

ORACLE' | Zbea

1 A.B.C Calias

2 A.B.C Balias.C

3 A.B.C Aalias.B.C

4 A.B A.Balias (lllegal)

5 A.B.C Aalias.B.Calias (illegal)
6 A.B.C Balias.Calias (lllegal)

Valid Alias Name Substitutions

1. If the ‘GoodslssueNote.Product.RequestedQty’ field is assigned an alias name
‘ReqQty’, then the formula

GoodslssueNote.Product.RequestedQty > 0
could be written as given below:
RegQty > 0O

2. If the ‘GoodslssueNote.Product’ section is assigned an alias name ‘lItem’, the
formula

GoodslssueNote.Product.RequestedQty > 0
Could be written as given below:
Item.RequestedQty > 0O
3. If the ‘GoodslssueNote’ section is assigned an alias name ‘GIN’, the formula
GoodslIssueNote.Product.RequestedQty > 0O

Could be written as given below:
GIN.Product.RequestedQty > 0O

Invalid Alias Name Substitutions

If the ‘GoodslssueNote.Product’ section is assigned an alias name ‘Item’, then the
qualified name ‘GoodslssueNote.Product’ cannot be replaced as

-

ORACLE' | Zbea

‘GoodslssueNote.ltem’. This is because the alias name ‘Item’ stand for
‘GoodslssueNote.Product’ that includes the ‘GoodslssueNote’ field. Thus the
‘GoodslssueNote’ field should not be used again. The same is true for the other
invalid alias name substitutions listed in the alias name substitution table.

See Also:

Specifying an Alias Name

Alias Name Rules

Items Supporting Alias Name Substitution
Alias

Alias Name Rules
1. The alias name for all the fields in a format should be unique.

This means that if one of the fields in a format is assigned an alias name, say
‘Broker’, then another field of that format cannot be assigned the same name.

2. Alias name for any field in format should not be same as the name of a top-level
field.

This means that if one of the top-level fields in a format is named, say ‘Broker’,
then it cannot be used as an alias name for any other field in that format. It is OK
for an alias name to clash with the name of a nested field, since this does not
result in any conflict.

3. Alias name should be an identifier with the pattern [a-z_A-Z][a-z_A-Z0-9]*.
The following is a list of valid alias hames:

requestedQty
GIN
_Product_ID
Addressl

The following is a list of invalid alias names:
Product-I1D

1Address
#Hdollar

See Also:

Specifying an Alias Name

-

ORACLE' | Zbea

Alias Name Substitution

Items Supporting Alias Name Substitution

Alias

Items Supporting Alias Name Substitution

Alias names can be used in the following places instead of the qualified nhame of the
corresponding field:

1.

5.

6.

Internal message processing formula (i.e. formula specified in “Processing Rules -
> Formula” column)

Internal message validation formula (i.e. formula specified in the
“Validation Rules” Ul of the corresponding internal message)

External message validation formula (i.e. formula specified in the
“Validation Rules” Ul of the corresponding external message)

One-to-one/formula-mapping rules of external messages specified in the
“Mapping Rules” Ul of the corresponding external message.

Validation rules of the internal message mapping node.

One-to-one/formula-mapping rules of the internal message mapping node.

Note that when you use the ‘Edit Formula’ dialog in defining a formula, if you select a
field/section that is already assigned an alias name, only its alias name, not the
qualified field name, will appear in the formula editor, as shown in the following
figure:

-

ORACLE | #bea

é‘l Edit Formula

|/Data r{?’l Formula Functons

il

Lot

Field Name Alias Type
N A Swift Sequence =
o3 20C Swift Field
iy SEME Gualifier
& Reference Ref String E2
] 236G Swift Field
7 R |
T 98a Swift Field -
[a]

-

[]

[b

| (a4 | | Cancel |

lLn 1, col 4

See Also:

Specifying an Alias Name
Alias Name Substitution
Alias Name Rules

Alias

Tracing Messages in a Cartridge to a Standard

When an internal/external message is added to the cartridge, the information about
the standard on which it is based on can be maintained by providing information in
the Standard Details section of the internal/external message Ul.

-

ORACLE | #bea

External - FIX [FIX41_R123DC] e

Forrmat Details
External Format |FIX
Marme FI€41 R1230C

Wersion 1.0

Standard Details

Marme Business Message Rejeck
Wersion 4.3
Detailed Marme

Meszsage Type |

This additional information can be used to trace back the message instance in the
cartridge to the standard (for instance during integrity verification). For this reason
these fields should be edited with utmost care. In fact editing for these fields is
allowed so that users can fill up the standard details themselves for existing
cartridges.

See Also:

Internal Message
External Message
Validation Rules
Alias

Message

Message Mapping

Message mapping is the definition of transforming a message (source message) to
another message (target message). In Designer, message mapping can be defined
using a custom mapping class and/or mapping rules. If a message mapping is
defined using both mapping rules and the custom mapping class, the mapping rules
are evaluated before the custom mapping class is invoked.

A mapping rule specifies how a source message field/section is transformed into a
target message field/section.

While the section mapping rule (also called as ‘section mapping’) determines the
number of elements to be created for the target section, the field mapping rule (also

-

ORACLE' | Zbea

called as ‘field mapping’) determines how a target field is evaluated from source
field/fields.

Note:

A field cannot be mapped to a section and vice versa.

Based on the type of source and target messages, the message mappings supported
by Designer can be categorized as follows:

Input Mapping

Output Mapping

Internal Message Mapping
External Message Mapping

PONPE

Here, input mapping is the mapping defined from an external message to an
internal message.

Output mapping is the mapping defined from an internal message to an external
message.

Internal message mapping is the mapping defined from an internal message to
another internal message.

External message mapping is the mapping defined from an external message to
another external message.

See Also:

Creating a Message Mapping
Mapping Rules Ul

Field Mapping

Section Mapping
Multi-Source Mapping
Designer User Interface

Cartridge

Message
Formula

Function Definition

Code Generation

Simulator

Working With Cartridge Designer

Creating a Message Mapping

-

L F
. d g
ORACLE | %hea
Follow the steps given below to create a new mapping node that can be used to
define the transformation between two message formats.

1. In the Explorer pane, right-click on the cartridge node or a Folder node to which
the new message mapping node needs to be added.

2. Select the New Mapping menu item from the popup menu that appears.

3. The Message Mapping dialog box is shown.

El Message Mapping

Message Mapping

Select source and destination messages

Cestination Mezsage

<> PurchazeCrder b

Source Meszage

4% PurchasedrdersML -

| (o] 4 || Cancel |

4. Select the destination message format from the Destination Message drop down
list box.

5. Select the source message format from the Source Message drop down list box.
6. Click on the OK button.

7. The Mapping node is created as shown below.

iy

S
ORACLE | %hea

Qx|

PurchaseOrder
@ Purchase Order
@ External - XML [Purchase OrderXmML]

@ Mapping [Purchase OrderXMLToPurchase Order]
L{"n} Mapping Rules

See the section for information on specifying the mapping between two messages.

See Also:

Mapping Rules Ul
Field Mapping
Section Mapping
Message Mapping
Multi-Source Mapping

Mapping Rules Ul

Defining the mapping from the source message format to the target message format
can be done using the Mapping Rules Ul shown below.

2%

ORACLE | %bea

Mapping Rules - MessageMapping [Purchase OrderXHMLToPurchase Order]* g,

PurchaseOrder (Internal] <- PurchaseOrderXML (Extzrnal] - T
I:H Enterprise Element || Type || Mapping ” Source Fields |

i Status String

I ;

|¢' CrderD ate |5t”'"9 ¥ Ifi1sMatMulll arderDate).seti ToD orderbate

] ShipTo Section 4 pchipTo pzhipTa

] billTo Section |4+ phillTo phillTo

% cornment String +H cormment cormmment

Cf item Section 4 jtems.itemn T

& oo

External Format ®

Header |/Data rTrailer |

Field Name | | Type | | DescrHpton | | Target Fields |
=7 orderbate ISOD ate OrderDate
1 pshipTo Section ShipTo
] phbillTe Section billTa
{}? commment String cormmment
] ittems Section

In the Mapping Rules Ul shown above, the target message format is displayed in the
table at the top of the Ul and the source message format is displayed in the table at
the bottom.

The source message format table at the bottom of the Mapping Rules Ul can be
hidden by clicking on the ’Close’ button x as shown below.

iy

';"
ORACLE | %hea

Mapping Rules - MessageMapping [PurchaseOrderXHLToP by,

PurchaseOrder (Internsl) <- PurchaseOrderXML (External) p- 57

I:H Enterprise Elementll Type || Mapping || Source Fields |
4 Status String
&7 OrderDate String €9 If(IsMotMull(orderDate) orderbate
] ShipTo Section 4+ pzhipTo pzhipTo
[billTo Section 4 phillTa phillTa
O? cormrment String +H carmment cormment
_ritem Section 4+ jkams.iterm itern

| |S|‘|nl.-.l Source Fnrmatl
T T

The hidden source message format table can be viewed again by clicking on the
‘Show Source Format’ button.

While the Map button is used in specifying one-to-one mapping rules between the
source and target fields, the Custom Mapping button is used in specifying a custom
mapping class.

The mapping filter at the top right of mapping screen helps user to hide fields that
are not used in mapping.

The following table describes sections, which explain how to quickly move between
items of Mapping Rules Ul and other related items.

Section Description

Moving from a Field to its Mapping Rule This section shows you how to quickly
move from a field definition to its
mapping rule.

Moving from a Field to its Mapping This section explains how to quickly
Usage move from a field definition to its

-

ORACLE' | Zbea

Moving Back to a Field Definition

Moving Between Source and Destination

Fields in Mapping Rules Ul

See Also:

Adding a Mapping Rule
Custom Mapping
Source Field Mapping
Mapping Filter

Field Mapping
Section Mapping

Creating a Message Mapping
Message Mapping
Multi-Source Mapping

Adding a Mapping Rule

mapping usage, i.e. mapping rule in
which this field is used as the source
field.

This section describes how to quickly
move from a field mapping rule to the
field definition.

This section describes how to quickly
move between source and target fields of
a mapping rule.

There are two types of mapping rules as given below:

1. One-to-One Mapping Rule
2. Formula Mapping Rule

In a one-to-one mapping rule, a target field/section is mapped to a source

field/section.

In a formula mapping rule, a target field/section is assigned a formula involving one
or more source fields/sections. The formula can also involve fields/sections from the

target message format.

See Also:

Adding a One-to-One Mapping Rule
Adding a Formula Mapping Rule
Custom Mapping

Source Field Mapping

Mapping Filter

iy

';"
ORACLE | %hea

Field Mapping

Section Mapping

Creating a Message Mapping
Mapping Rules Ul

Message Mapping

2%

ORACLE | %bea

Adding a One-to-One Mapping Rule
Follow the steps given below to specify a one-to-one mapping rule:
1. Select the Mapping Rules child node of the Mapping node.

The Mapping Rules Ul appears in the Design Element Ul pane. See the

Mapping Rules Ul section for more information. It consists of two tables: the top
table representing the target message format and the bottom table representing
the source message format.

Mapping Rules - MessageMapping [Purchase OrderXMLTaPu] ¥

PurchaseOrder (Internsl) <- PurchaseOrder®ML (External] 7

I:H Enterprise Element || Type || Mapping || Source Fields |
4 Status String
&7 OrderDate ISO0ate 4 poorderDate POorderbate
1 ShipTo Section
] billTo Section
% comment String
_'r item Section

f vor

External Format 4
Header r Data |/Trailer |
Field Hame || Type || Description || Target Fields |
= poorderbate [50Date OrderDate B
4 pshipTo Section
:? country String _
{} name String
{} street gtring n
£% city String =

2. In the target message format table at the top of the Ul, select the target
field/section to be mapped.

3. In the source message format table at the bottom of the Ul, select the source
message field/section.

4. Click on the Map button to finish mapping.

-

ORACLE' | Zbea

Please note that the one-to-one mappings are indicated by the ** icon. See the Field
Mapping and Section Mapping sections for more information on field/section mapping
rules.

See Also:
Adding a Formula Mapping Rule
Adding a Mapping Rule

Adding a Formula Mapping Rule
Follow the steps given below to specify a formula mapping rule:
1. Select the Mapping Rules child node of the Mapping node.

2. In the target message format table at the top of the Ul, double click on the
Mapping column of the target message field/section for which mapping needs to
be specified.

3. Specify the mapping formula.

Pressing the F4 key or clicking the Edit Formula icon .# brings up the Edit
Formula dialog box that can be used in defining the formula. See the Edit
Formula Dialog section for more information on using the Edit Formula dialog for
specifying a formula

Please note that the formula mappings are indicated by the @ jcon. See the Field
Mapping and Section Mapping sections for more information on field/section
mapping rules.

See Also:
Adding a One-to-One Mapping Rule
Adding a Mapping Rule

Custom Mapping

The mapping process can be customized, by providing the mapping class that
implements the mapping interface corresponding to the type of mapping.

See the section Defining Mapping Classes in the DefiningCustomClasses.doc for
information about writing a mapping class and plugging it into an input/output
format.

Please refer New File from Template for easily creating a custom mapping class.

-

ORACLE' | Zbea

Follow the steps given below to specify a custom message mapping class:
1. Select the Mapping Rules child node of the Mapping node.

2. Click on the Custom Mapping icon o 4 present in the destination format Ul.

The Custom Mapping dialog box is shown.

é:'l Cusztom Mapping

Custorn Mapping Class
CustormInternalMapping

Cormrent

o] 4 Cancel ﬂ Help

3. Specify the reference name of the custom class in the Custom Mapping Class
text box.

4. Type in your comment in the Comment text area.

5. Click on the OK button to finish.

6. Bind the custom class reference name to the actual class nhame using the
Language Bindings tab of the corresponding Code Generation Settings

dialog.

See the Code Generation section for more information.

See Also:

Adding a Mapping Rule
Source Field Mapping
Mapping Filter

Field Mapping
Section Mapping

Creating a Message Mapping
Mapping Rules Ul
Message Mapping

-

ORACLE' | Zbea

Source Field Mapping

When mapping is done, Designer automatically sets the source fields for the mapped
field in the Source Fields column. But the user can add/remove source fields for a
mapping, using the Source Fields dialog. When error occurs in any one of the source
fields specified, the mapped field would be highlighted.

Follow the steps given below to update the source fields list of a mapped field:

1. Select the mapping for a field. Click on the ‘Source Fields’ column. The column
will appear as shown below.

Mapping Rules - MessageMapping [Purchase OrderXHLTo Pu gy ¥

PurchaseOrder (Internal] <- PurchaseOrderXML (External) -9 T
Enterprise Element Type Mapping Source Fields
i Status String
<>? OrderDate ISODate §@ TaDate(FOorderDate)P Oorderbate "
1 shipTo Section %
3 billTo Section
&7 cornment String
_Titem Section

ﬁ Map

2. Click the ellipsis button displayed in the ‘Source Fields’ column. The
Source Fields dialog for managing source fields will be displayed.

é:'l Source Fields

HE* 49
Field
FoorderDatel il
W PCorderCate
4 comment
(n],4 Cancel aHelp

3. You can add source fields by clicking on the Add button and selecting the
required field from the list of fields displayed or by typing the field name.

-

ORACLE' | Zbea

4. Likewise you can remove a source field specified for a mapped field by selecting
the field to be removed and then clicking on the Remove button.

5. Clicking on the Reset button will clear the extra source fields added by the user
from the list of source fields.

See Also:

Adding a Mapping Rule
Custom Mapping
Mapping Filter

Field Mapping
Section Mapping

Creating a Message Mapping
Mapping Rules Ul
Message Mapping

Mapping Filter

The mapping filter helps user to hide fields that are not used in mapping. A small
toolbar at the top right of mapping screen lets you control the filter. The tool bar is
shown below

\.__f

The filter is off by default, click " to toggle it. Enabling it would hide fields that not
relevant. What fields are relevant is controlled by the Filtering options you set.

You can specify the filter options by clicking the button. When the button is
clicked the following dialog is displayed.

é:'l Filter Options

Alwavs Include

[#]|Fields with camment

[¥] Fields with source field mapping

[¥] Mandatary fizlds

[J &l fields under a section with mapping

[[] siblings of fields with mapping

(o] 4 Cancel a Help

-

ORACLE' | Zbea

The options provided in the dialog help to display fields that are relevant to the user.
One option that is not shown in the dialog is ‘Show fields with mapping’. This option
is always true (hence it is not an option). This is because there will not be a case
where a user would not be interested in fields with mappings.

Note:

The filter is not very effective when you are starting to enter the mappings. It
may hide fields for which you want to specify a mapping. One useful idea would
be to add a comment to such fields and use the options to display all fields with
comments. Filtering is extremely useful for viewing completed or semi-completed
mappings.

When you toggle the filter the current selection is not lost (if it is not filtered

out), it is shown at exactly the same place in the screen. This is really useful,
when you are entering mappings, since you can quickly toggle between these two
modes without losing the current location.

When you are in filtered mode, you should be careful about fields that you see under
a section. The section may actually have more fields than what you see. This can be
bit confusing at times.

When a field has a mapping, all its ancestor sections are also made visible.

See Also:

Adding a Mapping Rule
Custom Mapping

Source Field Mapping

Field Mapping

Section Mapping

Creating a Message Mapping
Mapping Rules Ul

Message Mapping

Field Mapping
Field mappings can be generally categorized as:

1. One-to-One Mapping Rule
2. Formula Mapping Rule

-

ORACLE' | Zbea

One-to-One Mapping Rule

In a one-to-one mapping rule, a target field is mapped to a source field.

When a target message field is mapped to a source message field, the value of the
source field is assigned to the target field. But field mapping considerations such as
the level of the source and target fields and the repeating/optional property of their
corresponding sections make it more involved, as explained in the following sections.

Formula Mapping Rule

In a formula mapping rule, a target field is assigned a formula involving one or more
source fields. The formula can also include fields from the same data format as that
of the target field. The only constraint is that the field from the same target data
format should have occurred before this field. In the formula, use the syntax
self.Field to access the field from the same target data format. Pressing the F4 key
or clicking the Edit Formula icon # from within the Mapping column of the
Mapping Rules Ul brings up the Edit Formula dialog box that can be used in
defining the formula. See the Edit Formula Dialog section for more information on
using the Edit Formula dialog for specifying a formula.

In a mapping formula, to test the occurrence of an optional field value, use the
IsNull() or IsNotNull() functions. To set the null value for an optional field, use the
SetNull() function. A sample mapping formula using these functions is given below.

If(IsNotNull (Additional_Order_Information.Do_not_Reduce_or_Increase),
set(Additional_Order_Information.Do_not_Reduce_or_Increase),
sethNull)

)

Here, if the value of the

Additional_Order_Information.Do_not Reduce_or_Increase source field is
not null, its value is set to the target field for which this formula is specified.
Otherwise, the null value is assigned to the target field.

In a mapping formula, to test whether an optional section is empty (there are no
occurrences of that section), use the size operator as shown in the following

expression.

Additional_Order_Information.$size == 0

This expression will evaluate to true if there are no elements in the
Additional_Order_Information optional section.

iy

o
ORACLE | #hea

Note

Mapping from a section to a field or from a field to a section is not allowed.

See Also:

Top Level Field to Top Level Field
Nested Field to Top Level Field
Top-Level Field to Nested Field
Nested Field to Nested Field
Optional Field Mapping

Mapping involving Fields of Optional Sections
Merqging Fields of Sibling Sections
Section Mapping

Creating a Message Mapping
Mapping Rules Ul

Message Mapping

Multi-Source Mapping

Top Level Field to Top Level Field

Source Data Format Target Data Format Mapping Allowed
Top-Level Field Top-Level Field Yes
Example

Consider the mapping ‘EmployeeToEmployeeDetails’ defined in

ToplLevelFieldToToplLevelField.car. The mapping rules specified for the target format

fields ‘EmployeeName’ and ‘EmployeelD’ are examples of this case.

Target Data Format Source Data Format
Field Hame Type Field Hame Type
{% EmployeaMare String % Mame String
{} EmployesID String {} 1D String
Mapping
Field Name Type Mapping
{% Employeedame String +H Marme

LY
&
{% EmployeeIl String = ID

iy

o
ORACLE | %hea

Pseudocode

destObj .EmployeeName = srcObj.Name;
destObj .EmployeelD = srcObj.ID;

-

ORACLE' | Zbea

Explanation

The value retrieved from the ‘Name’ field of the source data object is set to the
‘EmployeeName’ field of the target data object. It works the same for the
‘EmployeelD’ field.

See Also:

Nested Field to Top Level Field

Top-Level Field to Nested Field

Nested Field to Nested Field

Optional Field Mapping

Mapping involving Fields of Optional Sections
Merqging Fields of Sibling Sections

Field Mapping

Nested Field to Top Level Field

This can be further categorized into:

Nested Field of a Repeating Section to Top Level Field

Nested Field of a Non-repeating Mandatory Section to Top-Level Field
Nested Field of a Non-repeating Optional Section to Top-Level Field

Nested Field of a Repeating Section to Top Level Field

Source Data Format Target Data Format Mapping Allowed
Nested Field of a Top-Level Field No. But, a top-level field
repeating section can be mapped to a field

of a particular section
element, using index.

Note

A top-level field can be directly mapped to a nested field of a non-repeating section.
See the section Nested Field of a Non-repeating Mandatory Section to Top-Level Field
for more details.

Example

Consider the mapping ‘EmployeeToEmployeeDetails’ defined in
RepeatingSectionFieldToToplLevelField.car. The mapping rules specified for the
target data format fields ‘TaskID’ and ‘TaskDescription’ are examples of this case.

-

ORACLE' | Zbea

Target Data Format Source Data Format
Field Name Type Field Name Type
{} EmployeeMame Strimg {3} Mame String
+ .
£} TaskID String i Task Section
{} TaskDescription String {} ID String
{} Desc String
Mapping
Field Name Type Mapping
£} EmployeeMame String + Mame
{3 TaskID String §# Tazk[0O].ID
{} TaskDezcription String (@ Tazk[0].Desc
Pseudocode

destObj.TaskID = srcObj.Task[0].ID;
destObj .TaskDescription = srcObj.Task[0].Desc;

Explanation

Suppose there are two elements in the ‘Task’ section of the source data format.
Then, there are two ‘ID’ values; one in element one (index 0) and another in
element two (index 1). Using the index, we can assign either the value at index O or
at index 1. The pseudocode assigns the value at index 0.

This approach is often useful when you know that the section is non-repeating and
non-optional (size = 1).

Note

Mappings defined using the indexes are formula mappings.

See Also:

Nested Field to Top Level Field

Nested Field of a Non-repeating Mandatory Section to
Top-Level Field

Source Data Format Target Data Format Mapping Allowed

-

ORACLE' | Zbea

Nested Field of a Top-Level Field Yes
non-repeating
mandatory section

Example

Consider the mapping ‘EmployeeToEmployeeDetails’ defined in
NonReptMandatorySecFieldToToplLevelField.car. The mapping rules specified for the
target data format fields ‘DepartmentID’ and ‘DepartmentLocation’ are examples of
this case.

Target Data Format Source Data Format
Field Name Type Field Hame Type
{} EmployeeMame String {} Mame String
{% DepartrentID String =y Dept Section
{} Departmentlocation String £} 1D String
{} Loc String
Mapping
Field Hame Type Mapping
{% Employeeiame String +H Mame
{% DepartrnentID String e Dept, ID
{} Departrmentlocation String 4+ Dept.Loc
Pseudocode

destObj .DepartmentID = srcObj.Dept[0].1D;
destObj .DepartmentLocation = srcObj.Dept[0].Loc;

Explanation

As the ‘Dept’ section in the source data object is a non-repeating mandatory section,
it would contain exactly one element. So the generated code assumes index O to
access the ‘Dept’ section. So the value of the ‘ID’ field in the first element of the
‘Dept’ section (index 0) is assigned to the ‘DepartmentlID’ field of the target data
object. Likewise, the value of the ‘Loc’ source field is assigned to the
‘DepartmentLocation’ target field.

See Also:

Nested Field to Top Level Field

-

ORACLE' | Zbea

Nested Field of a Non-repeating Optional Section to
Top-Level Field

Source Data Format Target Data Format Mapping Allowed
Nested Field of a Top-Level Field Yes
non-repeating optional
section
Example

Consider the mapping ‘EmployeeToEmployeeDetails’ defined in
NonReptOptionalSecFieldToTopLevelField.car. The mapping rules specified for the
target data format fields ‘Location’ and ‘CityName’ are examples of this case.

Target Data Format Source Data Format
Field Hame Type Field Hame Type
{} EmployesMame String {3 Mame String
{}? Location String _,‘? Address Sackion
{}? CitpMarme String % Loc String
£} City String
Mapping
Field Name Type Mapping
£% Employeedarme String + Mame
{}? Location String 4 Address. Loc
{}? CityMarne String - Address, Sity
Pseudocode

it (srcObj.Address.getElementCount() > 0) {
destObj .Location = srcObj.Address[0].Loc;

¥

it (srcObj.Address.getElementCount() > 0) {
destObj .CityName = srcObj.Address[0].City;

}

Explanation

As the ‘Address’ section of the source data object is an optional non-repeating
section, it would contain zero or one element. So the generated code first checks for
the presence of the ‘Address’ element before assigning the value of ‘Loc’ field to the
‘Location’ target field. Index O is assumed to access the ‘Address’ section, as it is a

-

ORACLE' | Zbea

non-repeating section. The mapping for the ‘CityName’ target field is handled in the
similar way.

See Also:

Top Level Field to Top Level Field

Top-Level Field to Nested Field

Nested Field to Nested Field

Optional Field Mapping

Mapping involving Fields of Optional Sections
Merqging Fields of Sibling Sections

Field Mapping

Top-Level Field to Nested Field

This can be further categorized into:

Top Level Field to Field of a Section without Mapping
Top Level Field to Field of a Section with Mapping

Top Level Field to Field of a Section without Mapping

Source Data Format Target Data Format Mapping Allowed

Top-Level Field Nested Field Yes

This case assumes that there is no section mapping from any source section
to the target section containing the nested field.

Example

Consider the mapping ‘EmployeeToEmployeeDetails’ defined in
ToplLevelFieldToFieldofUnmappedSection.car. The mapping rules specified for the
nested fields ‘ID’ and ‘Loc’ of the ‘Dept’ section of the target data format are
examples of this case.

Target Data Format Source Data Format

]

ORACLE' | Zbea

Field Hame Type Field Hame
{3} Mare String {} EmployesMarne
_-T Dept Section % DepartrmentID
{} ID String {3} Departrnentlocation
{} Loc String
Mapping
Field Hame Type Mapping
£% Mame String + EmployeeMare
4 Dept Section
{} ID String 4+ DepartrnentID
{} Loc String i+ Departrnentlocation
Pseudocode

Dept dept = new Dept();

dept.ID = srcObj.DepartmentlD;
dept.Loc = srcObj.DepartmentLocation;
destObj .Dept.add(dept);

Explanation

Since there is only a single value to store, only a single element is created for the
‘Dept’ section of the target data object (note that any number of elements can be
created for a repeating section). The value of the ‘DepartmentlID’ source field is
assigned to the ‘ID’ field of the newly created ‘Dept’ element. Likewise, the value of

Type
String

String
String

the ‘DepartmentLocation’ source field is assigned to the ‘Loc’ field of that ‘Dept’

element. At last, the newly created ‘Dept’ element is added to the ‘Dept’ section.

Top Level Field to Field of a Section with Mapping

Source Data Format

Target Data Format

Mapping Allowed

Top-Level Field

Nested Field

Yes

In this case, there is a section mapping from a source section to the target

section containing the nested field.

-

ORACLE' | Zbea

Example

Consider the mapping ‘EmployeeToEmployeeDetails’ defined in
ToplevelFieldToFieldofMappedSection.car. The mapping rules that were specified for
the nested field ‘ID’ of the ‘Dept’ section are examples of this case.

Target Data Format Source Data Format
Field Name Type Field Hame Type
{} Mame String {} EmployesMame String
 Dept Section {% DepartrmentID String
{3} ID String 3 Departmentlocation Section
{} Loc gtring {} Street String
{} ity String
Mapping
Field Hame Type Mapping
£} Marne String ++ Employeedame
=y Dept Section
{} i String i DepartrentID
{} Laoc String i Departrnentlocation, City
Pseudocode

for (int i=0; 1 < srcObj.DepartmentLocation.length; ++i) {
Dept dept = new Dept();
dept.ID = srcObj.DepartmentiD;
dept.Loc = srcObj.DepartmentLocation[i]-City;
destObj .Dept.add(dept);

Explanation

Since there is an implicit mapping from the ‘DepartmentLocation’ section of the
source data object to the ‘Dept’ section of the target data object (see Section
Mapping for more information), for every element of the ‘DepartmentLocation’
section, the corresponding ‘Dept’ element is created.

The ‘City’ field value of a ‘DepartmentLocation’ element is assigned to the ‘Loc’ field
of the corresponding ‘Dept’ element. The value of ‘DepartmentlID’ source field is
assigned to the ‘ID’ field of each newly created element of the ‘Dept’ section
(denormalized).

iy

o
ORACLE | #hea

See Also:

Top Level Field to Top Level Field

Nested Field to Top Level Field

Nested Field to Nested Field

Optional Field Mapping

Mapping involving Fields of Optional Sections
Merqging Fields of Sibling Sections

Field Mapping

Nested Field to Nested Field

Source Data Format Target Data Format Mapping Allowed
Nested Field Nested Field Yes
Example

Consider the mapping ‘EmployeeToEmployeeDetails’ defined in
NestedFieldToNestedField.car. The mapping rules specified for the ‘TasklD’ and
‘TaskDescription’ nested fields of the ‘Responsibility’ section of the target data format
are examples of this type.

Target Data Format Source Data Format
Field Hame Type Field Hame Type
{% Employeadame String {} Mame String
_-;]" Responsibility Seckion _\li'. Task Seckion
{% TaskID String {} ID String
{} TazkDescriptian String {} Desc String
Mapping
Field Hame Type Mapping
{} Employesdame String +H Marne
3 Responsibility Section

TaskID String 4+ Task.ID

{

LY
&
{} TaskDezcription String 4+ Tazk.Desc

-

ORACLE' | Zbea

Pseudocode

for (int i=0; i< srcObj.Task.length; i++) {
Responsibility responsibility = new Responsibility();
responsibility.TaskID = srcObj.Task[i]-1ID;
responsibility.TaskDescription = srcObj.Task[i]-Desc;
destObj .Responsibility.add(responsibility);

Explanation

For every element of the ‘Task’ section in the source data object, the corresponding
element is created for the ‘Responsibility’ section of the target data object. Suppose
there are two elements in the ‘Task’ section. The same numbers of ‘Responsibility’
elements (two) are created. Then, the ‘ID’ and ‘Desc’ field values of a ‘Task’ element
are respectively assigned to the ‘TaskID’ and ‘TaskDescription’ fields of the
corresponding ‘Responsibility’ element.

Note:

Even though there is no explicit mapping from the ‘Task’ section of the source
data format to the ‘Responsibility’ section of the target data format, it is
assumed. Since the mapping between the ‘ID’ and ‘TaskID’ fields is the deepest
mapping between these two sections, the mapping between these sections is
automatically assumed. See Section Mapping for more information.

Section level mapping between two sections results in the same number of
elements in both sections.

See Also:

Top Level Field to Top Level Field

Nested Field to Top Level Field

Top-Level Field to Nested Field

Optional Field Mapping

Mapping involving Fields of Optional Sections
Merqging Fields of Sibling Sections

Field Mapping

Optional Field Mapping

Consider the mapping ‘EmployeeToEmployeeDetails’ defined in
OptionalFieldMapping.car. The mapping rule specified for the ‘EmployeeName’ field of
the target data format is an example of this type.

-

ORACLE' | Zbea

Target Data Format Source Data Format
Field Name Type Field Hame Type
{} Employeedame String £% FirstMame String
{}? LastMame String
Mapping
Field Hame Type Mapping

{% EmployeeMarne String {# FirstMarne + If(IsMotMull(LastMame], " " + LastMamea, "")

Explanation

The value of ‘EmployeeName’ target field is the concatenation of the values of source
fields ‘FirstName’ and ‘LastName’. For this requirement, we tend to write the
mapping formula as given below:

FirstName + " " + LastName

But, this would result in the following warning message during validation.

Optional field 'LastName' is accessed without an isNotNull() guard.

But, if you ignore this warning message and proceed with cartridge generation and
deployment, at runtime submitting an input message without the optional ‘LastName’
field would result in ‘TransformNullValueException’ with the following error message:

Attempt to access field 'LastName" with null value

The reason is that the code generator will not add guard check automatically for the
optional field, as it is used in formula mapping. Thus, when an optional field is used
in a formula mapping, it is the user’s responsibility to add guard check as shown
below:

FirstName + If(IsNotNull(LastName), ™ " + LastName, ")

See Also:

Top Level Field to Top Level Field

Nested Field to Top Level Field

Top-Level Field to Nested Field

Nested Field to Nested Field

Mapping involving Fields of Optional Sections
Merqging Fields of Sibling Sections

-
ORACLE | 4bea
Field Mapping
Mapping involving Fields of Optional Sections
Consider the mapping ‘OrderinfoToOrder’ defined in

FieldsofOptionalSectionsMapping.car. The mapping rule specified for the ‘OrderQty’
field of the target data format is an example of this type.

Target Data Format Source Data Format

| Enterprise Element || Type | | Field Hame || Type
& OrderlD String {} 2rderID String
W OrderType String {} OrderType String
& Crderdty Integer _-.‘? Cancel_with_Lleaves_Quantity Sechtion
{} Leavedriaz String

{} Leaves_Quantity Integer

_-4? Basic_Order_Data Sedion

% TQuantity Integer

Explanation

Here, the mapping requirement is as follows: if the ‘LeaveOrWas’ field of the optional
section ‘Cancel_with_Leaves_ Quantity’ is present and its value is "WAS", the value of
‘Leaves_Quantity’ field of that section should be set to the target field ‘OrderQty’;
otherwise, the value of the ‘Quantity’ field of the optional section ‘Basic_Order_Data’
should be set to that target field.

Consider the mapping formula given below for the above mapping requirement.

iT(IsNotNull(Cancel_with_Leaves Quantity.LeaveOrWas)) {
if(Cancel_with_Leaves_Quantity.LeaveOrWas == "WAS™) {
Set(Cancel_with_Leaves_Quantity.Leaves_Quantity);

}

else {
Set(Basic_Order_Data.Quantity);

The mapping is expected to execute even if only one of the sections
‘Cancel_with_Leaves_Quantity’ and ‘Basic_Order_Data’ sections is present. But the
above mapping will work only if both these sections are present in the message, as
explained below.

-

ORACLE' | Zbea

This mapping accesses fields inside two sections directly;

‘Cancel_with_lLeaves Quantity’ and ‘Basic_Order_Data’. Whenever fields of a
non-repeating optional section are accessed directly without indices, then the
Designer adds a guard. The Designer assumes that mapping is required only if at
least an element exists in all the optional sections whose fields are accessed. For
example, consider the simple mapping given below.

Set(Basic_Order_Data.Quantity + 10);

This mapping is executed only if ‘Basic_Order_Data’ section has an element. That is
the above mapping gets translated to,

if(Basic_Order_Data.$size > 0) {
Set(Basic_Order_Data[0].Quantity + 10);

Note that it has to access the ‘Quantity’ field from the first element; hence it ensures
that such an element exists. Without the automatic guard, many of normal looking
mappings will fail, with runtime exception.

This logic is applied to all the sections that are accessed directly. Hence the formula
that is being considered gets converted to,

if(Cancel_with_Leaves_Quantity.$size > 0 && Basic_Order_Data.$size > 0)) {
if(IsNotNull(Cancel_with_Leaves_Quantity[0].LeaveOrWas)) {
if(Cancel_with_Leaves_Quantity[0].LeaveOrWas == "WAS"™) {
Set(Cancel_with_Leaves_Quantity[0].-Leaves_Quantity);

}

else {
Set(Basic_Order_Data[0] -Quantity);

This explains why the mapping is never executed when only one of the
‘Cancel_with_Leaves_ Quantity’ and ‘Basic_Order_Data’ sections is present in the
source message. The guard code (added for the entire mapping) prevents it from
getting executed if the section elements are missing. So it would be a good idea to
use explicit indices when accessing elements from multiple sections.

-

ORACLE' | Zbea

Mapping
|Enterp|-ise E|...|| Type || Mapping
s CQrderlD String 4 OrderlD

& OrderType String 4+ OrderType
{}? Orderdty Integer (@ if(Cancel_with_Leaves Quantity, fsize = 01 4

ifiCancel_with_Leaves_Quantity[0].Leavedrwas == "WwAas"’
Set(Cancel_with_Leaves_Quantity[0].Leaves_Quantity);
T
T
else |
if(Basic_Crder_Cata, fsizce = 0] {
Set(Basic_Order_Datal[0], Quantity];
T
T

The mapping formula given below uses explicit indices and it will work as expected.

if(Cancel_with_Leaves_Quantity.$size > 0) {
if(Cancel_with_Leaves_Quantity[0].LeaveOrWas == "WAS"™) {
Set(Cancel_with_Leaves_Quantity[0].Leaves_Quantity);

}

}

else {
if(Basic_Order_Data.$size > 0) {

Set(Basic_Order_Data[0] -Quantity);

}

}

See Also:

Top Level Field to Top Level Field
Nested Field to Top Level Field
Top-Level Field to Nested Field
Nested Field to Nested Field
Optional Field Mapping

Merqging Fields of Sibling Sections

Field Mapping

Merging Fields of Sibling Sections

This can be further categorized into:

Merging Fields of Repeating Sibling Sections
Merging Fields of Repeating and Non-Repeating Sibling Sections

-

ORACLE' | Zbea

Merging Fields of Repeating Sibling Sections

Source Data Format Target Data Format Mapping Allowed

Fields of sibling sections | Fields of a single section | No. But can be achieved

(where the sibling using a special syntax of
sections are repeating mapping explained
sections) below. For this to work,

the number of elements
in the sibling sections
should be same.

Note:

Mapping from the fields of sibling sections to the fields of a target section is allowed,
if only one of the sibling sections is a repeating section and others are non-repeating
sections. See _Merging Fields of Repeating and Non-Repeating Sibling Sections for
more details.

Sibling sections are sections that are children of the same parent section. They can
also be top-level sections that are unrelated with each other.

Example

Consider the mapping ‘CourseToCourseDetails’ defined in
MergingRepeatingSiblingSecFields.car. The mapping rules specified for the fields of
the ‘Subjectinfo’ section of the target data format illustrate this case.

Target Data Format Source Data Format
Field HName Type Field Hame Type
{} CourzeMame String {} Marme String
“+ subjectInfo Section “ subject Section
{} SubjectCode Etring {} Marne gtring
{} PrescribedBook String {} Code String
 Book Section
{} Mame String
£} Authaor String

In this case, an attempt is made to map the fields of ‘Subject’ and ‘Book’ sections
(which are top-level sibling sections) of the source data format to the fields of the
‘Subjectinfo’ section of the target data format. The simple and usual way of mapping
would be:

-

ORACLE' | Zbea

Target Fields Source Fields

Subjectinfo.SubjectCode Subject.Code

Subjectinfo.PrescribedBook | Book.Name

But the above mapping is not allowed.

Why the above mapping is not allowed?

The generated code for the above mapping would be similar to:

for(int i=0; 1 < srcObj.Subject.length; i++) {
SubjectInfo subjectInfo = new Subjectinfo();
subjectInfo.SubjectCode = srcObj.Subject[i].Code;
//cannot iterate srcObj.Book elements

}

The mapping of the field ‘Code’ of the first sibling section ‘Subject’ causes a loop to
iterate the elements of that section to get the field values, in the generated code.
There is no possible way to iterate the elements of ‘Book’ section within that loop (of
‘Subject’ section). Because of this constraint mapping of such unrelated sibling
sections is not allowed.

How the mapping can be done?

The obvious solution to this problem is to use the same loop of ‘Subject’ section to
iterate ‘Book’ section elements as well, i.e. use the same index of ‘Subject’ element
to get the corresponding ‘Book’ element field values. But this brings in another
constraint that ‘Subject’ and ‘Book’ sections should have the same number of
elements. The generated code then, will look similar to:

Pseudocode

for(int 1=0; i < srcObj.Subject.length; i++) {
SubjectiInfo subjectinfo = new Subjectinfo();
subjectinfo.SubjectCode = srcObj.Subject[i].Code;
subjectInfo.PrescribedBook = srcObj.Book[i]-Name;
destObj .Subjectinfo.add(subjectinfo);

Note the same index ‘i’ is used to access the corresponding elements of ‘Subject’ and
‘Book* elements.

-

ORACLE' | Zbea

What happens when the humber of elements in the sibling sections is
different?

Suppose there are 3 ‘Subject’ elements and 2 ‘Book’ elements in the source
message. The above mapping would create two ‘Subjectinfo’ elements based on the
first two elements (with index 0 and 1) of ‘Subject’ and ‘Book’ sections. As the third
element is available only in ‘Subject’ section but not in ‘Book’ section (‘Book’ section
has only two elements), it would result in runtime error. Hence during runtime, the
sibling sections ‘Subject’ and ‘Book’ should have the same number of elements.

Mapping in Designer

The solution for this mapping is to use the same index to access the corresponding
elements of the sibling sections ‘Subject’ and ‘Book’, as mentioned above. The
mapping for the ‘PrescribedBook’ field of the ‘Subjectinfo’ section of the target data
format shows how to use the $index variable to obtain the index of the element
being processed (see figure below).

Mapping
Field Name Type Mapping
£} CourzeMarne String H-Mame
4 subjectInfo Section
{3} SubjectCode String i+ Subject. Code
{} PrescibedBook String (# Book[Subject. findex].Mame

As per the above mapping, for each element of the ‘Subject’ section in the source
data object, a corresponding ‘Subjectinfo’ element is created in the target data
object (note that section level mapping between two sections results in the same
number of elements in both sections). Then the value of the ‘Code’ field of the
‘Subject’ element is assigned to the ‘SubjectCode’ field of the corresponding
‘Subjectinfo’ element.

The index of the current ‘Subject’ element can be obtained using $index as shown
below:
Subject.$index

This $index variable is used to access the value of ‘Name’ field of the ‘Book’ element
(whose index is same as that of the current ‘Subject’ element) and it is assigned to
the ‘PrescribedBook’ field of the ‘Subjectinfo’ element.

-

ORACLE' | Zbea

See Also:

Merging Fields of Sibling Sections

Merging Fields of Repeating and Non-Repeating Sibling
Sections

Source Data Format Target Data Format Mapping Allowed

Fields of sibling sections | Fields of a single section Yes
(where only one of the
sibling sections is a
repeating section and
others are
non-repeating sections)

Sibling sections are sections that are children of the same parent section. They can
also be top-level sections that are unrelated with each other.

Example

Consider the mapping ‘CourseToCourseDetails’ defined in
JustOneofSiblingSectionslsRepeating.car. The mapping rules specified for the fields
of the ‘Subjectinfo’ section of the target message format illustrate this case.

In this case, an attempt is made to map the fields of ‘Subject’ and ‘CoachingCenter’
sections (which are top-level sibling sections) of the source data format to the fields
of the ‘Subjectinfo’ section of the target data format. While the first sibling section
‘Subject’ is a repeating section, the second sibling section ‘CoachingCenter’ is a
non-repeating section.

-

ORACLE' | Zbea

Target Data Format Source Data Format
Field Name Type Field Name Type
{} CourzeMame String £% Mame String
_-T SubjectInfo Section _."" subject Section
{} SubjectCode String £% Marne String
{} CoachingCenterCode |String £} Code String
=3 CoachingCenter Section
{3 Code String
£} Addrezs String
Mapping
Field Hame Type Mapping
{3} CourzeMarme String - Mame
_: SubjectInfo Section
{3} SubjectCode String + Subject. Code
{% CoachingCenterZode Hiring 4+ CoachingCentar, Code
Pseudocode

for(int 1=0; i < srcObj. Subject.length; i++) {
SubjectiInfo subjectinfo = new Subjectinfo();
subjectinfo.SubjectCode = srcObj.Subject[i].Code;
subjectInfo.CoachingCenterCode = srcObj.CoachingCenter[0].Code;
destObj .Subjectinfo.add(subjectinfo);

Explanation

For each element in the source section ‘Subject’, the corresponding ‘Subjectinfo’
element is created and the value of the ‘Code’ field of a ‘Subject’ element is assigned
to the ‘SubjectCode’ field of the corresponding ‘Subjectinfo’ element. The value of
‘Code’ field in the only element of the ‘CoachingCenter’ section is assigned to the
‘CoachingCenterCode’ field of each element created for the target section
‘Subjectinfo’.

See Also:

Top Level Field to Top Level Field
Nested Field to Top Level Field
Top-Level Field to Nested Field
Nested Field to Nested Field

-

ORACLE' | Zbea

Optional Field Mapping
Mapping involving Fields of Optional Sections

Field Mapping

Section Mapping

Normally, designer figures out section mapping automatically by looking at field
mapping. It uses section mapping to create the correct number of section elements
in the output. The user can map sections if a section has no fields, but has
subsections (in this case designer cannot figure out how many elements need to be
created). If the user does not provide a section mapping, it creates just one element.

There is no harm in mapping sections even if the fields have mapping. Designer
ensures that the section mapping is consistent with the field mappings (extra
validation).

It is important to remember that field mapping is necessary (if the field is needed at
the output) even when section mapping is provided.

How is section mapping determined?

A section, SecOut, in the output is mapped to a section, Secln, in the input if,
the two sections are explicitly mapped by the user,

a field in the output section is mapped to a field in the input section and no other
field in SecOut is mapped to a field belonging to a descendent section of Secln.
That is the mapping for an output section is determined by the deepest mapping
of its fields.

The following restrictions apply.

The section mapping determined by each of the fields of the output section must
be in the same hierarchy (they should have parent—child-child-... relationship).
The actual mapping is the deepest section in the hierarchy. This is why mapping
to fields of sibling sections in the input is not allowed (Case 8A).

The user specified mapping for a section couldn’'t be weaker than the mapping
determined by its fields. This means that if the deepest mapping determined by
the fields of the section SecOut is Secln, then it is an error to explicitly map
SecOut to a parent section of (or a section unrelated to) Secln. It is acceptable to
map it to a child of Secln.

iy

o
ORACLE | %hea

See Also:
Top-Level Section to Nested Section

Nested Section to Top-Level Section

Nested Section to Nested Section
Optional Section Mapping
Section Formula Mapping

Field Mapping

Creating a Message Mapping
Mapping Rules Ul

Message Mapping

Multi-Source Mapping

Top-Level Section to Nested Section

Source Data Format Target Data Format

Mapping Allowed

Top-Level Section Nested Section

Yes

Example

Consider the mapping ‘SalesToSalesDetails’ defined in
TopLevelSectionToNestedSection.car. The mapping specified for the ‘Productinfo’

nested section of the ‘YearlySales’ target data format section is an example of this

case.
Target Data Format
Field Hame Type
_\li'. YeaySales Section
{} salesvear Integer
_\li'. ProductInfo Zection
_-r Brand Info Section

{} BrandMarme String
{} Salesgty Integer

Source Data Format

Field Name

£} wear

‘ _-? Product

! _\li‘ Brand

¥
%
&

Marme

Qty

Type
Integer

Section
Section
String

Integer

]

ORACLE' | Zbea

Mapping
Field Hame Type Mapping
_: YearySales Sedion
£} galesvear Integer +HTear
_: ProductInfo Sackion + Product
_,T BrandInfo Sectian ++ Product, Brand
{% BrandMarne String i+ Product, Brand. Mame
{3} Salesgty Integer ++ Product, Brand, Gty
Pseudocode

for(int j=0; j < srcObj.Product.length; ++j) {
Productinfo productinfo = new Productinfo();
for(int k=0; k < srcObj.Product.Brand.length; ++k) {
BrandInfo brandInfo = new BrandInfo();
brandInfo.BrandName = srcObj.Product[j]-Brand[k] -Name;
brandInfo.SalesQty = srcObj.Product[j]-Brand[k].-Qty;
productinfo.BrandInfo.add(brandInfo);

}
destObj .Productinfo.add(productinfo);

Explanation

Suppose there are two ‘Product’ elements in the input object and there are two
‘Brand’ elements in the first ‘Product’ element and one ‘Brand’ element in the
second. Note that section level mapping between two sections results in the same
number of elements in both sections. So, two ‘Productinfo’ elements are created in
the only element of the ‘YearlySales’ section (This is because of the mapping from
the top-level field ‘Year’ in source data format to the nested field ‘SalesYear’ in target
data format). For further details, refer to the section Top Level Field To Field of a
Section Without Mapping. The mapping of the ‘Brandinfo’ section of the target data
format to the ‘Brand’ section of the source data format results in the same number of
‘BrandInfo’ elements to be created in a ‘Productinfo’ element as that of the
corresponding ‘Product’ element. So, two ‘BrandInfo’ elements are created for the
first ‘Productinfo’ element of the target data object and one ‘BrandInfo’ element is
created for the second ‘Productinfo’ element (same as in the input).

0%

ORACLE | #bea

See Also:

Nested Section to Top-Level Section
Nested Section to Nested Section
Optional Section Mapping

Section Formula Mapping

Section Mapping

Nested Section to Top-Level Section

Source Data Format Target Data Format Mapping Allowed
Nested Section Top-Level Section Yes
Example

Consider the mapping ‘SalesToSalesDetails’ defined in
NestedSectionToTopLevelSection.car. The mapping specified for the ‘Productinfo’
target section is an example of this case.

Target Data Format Source Data Format
Field Name Type Field Hame Type
_-r TearlySales Section £} Year Integer
£} Salesyear Integer o Product Section
_-r ProductInfo Section _.'i" Brand Section
4 BrandInfo Section £} Mame String
{} BrandMame String £% oty Integer
£} Salesgty Integer
Mapping
Field Name Type Mapping
£} Salesvear Integer §@ YearlySalez[0]. vear
_\li'. ProductInfo Section +rearlvSales, Product
_.? BrandInfo Section + TearlySales, Product. Brand
{% BrandHame String +rearlvSales. Product. Brand. Mame
£} Salesgty Integer 4 TearlySales, Produck Brand, gty

-

ORACLE' | Zbea

Pseudocode

for(int 1=0; i1 < srcObj.YearlySales.length; ++i) {
for(int j=0; j < srcObj.YearlySales._Product.length; ++j) {
Productinfo productinfo = new Productinfo();
for(int k=0; k < srcObj.YearlySales._Product.Brand.length; ++k) {
Brandinfo brandInfo = new BrandInfo();
brandInfo.BrandName = srcObj.YearlySales[i].Product[j]-Brand[k].Name;
brandInfo.SalesQty = srcObj.YearlySales[i].-Product[j]-Brand[k]-Qty;
productinfo.BrandInfo.add(brandinfo);
¥
destObj .Productinfo.add(productinfo);
}
3

Explanation

Suppose there is a single ‘YearlySales’ element in the source data object that
contains two ‘Product’ elements with two ‘Brand’ elements in the first ‘Product’

element and one ‘Brand’ element in the second. Since the ‘Productinfo’ section of the

target data format is mapped to the ‘Product’ source section, for every ‘Product’

element within every ‘YearlySales’ element, the corresponding ‘Productinfo’ element

is created in the target data object. In our case, two ‘Productinfo’ elements are
created in the target data object. The mapping of the ‘BrandInfo’ target section to

the ‘Brand’ source section, results in the same number of ‘BrandInfo’ elements to be
created in a ‘Productinfo’ element as that of the corresponding ‘Product’ element. So
there will be two ‘BrandInfo’ elements in the first ‘Productinfo’ element of the target

data object and one ‘Brandinfo’ element in the second ‘Productinfo’ element.

Consider the following input:

-

ORACLE' | Zbea

<?xml version="1.0" encoding="UTF-8"7?>
<IDOCTYPE Sales SYSTEM "'Sales.dtd">
<Sales>
<YearlySales>
<Year>2003</Year>
<Product>
<Brand>
<Name>HP</Name>
<Qty>1000</Qty>
</Brand>
<Brand>
<Name>Phi l ips</Name>
<Qty>1500</Qty>
</Brand>
</Product>
<Product>
<Brand>
<Name>BPL</Name>
<Qty>1200</Qty>
</Brand>
</Product>
</YearlySales>
</Sales>

-

ORACLE' | Zbea

The output in this case (when the sections are mapped) is as follows:

<?xml version="1.0" encoding="UTF-8"7?>
<IDOCTYPE SalesDetails SYSTEM "SalesDetails.dtd">
<SalesDetails>
<SalesYear>2003</SalesYear>
<ProductInfo>
<BrandInfo>
<BrandName>HP</BrandName>
<SalesQty>1000</SalesQty>
</BrandInfo>
<BrandInfo>
<BrandName>Phi l ips</BrandName>
<SalesQty>1500</SalesQty>
</BrandInfo>
</Productinfo>
<ProductInfo>
<BrandInfo>
<BrandName>BPL</BrandName>
<SalesQty>1200</SalesQty>
</BrandInfo>
</Productinfo>
</SalesDetails>

See Also:

Top-Level Section to Nested Section
Nested Section to Nested Section
Optional Section Mapping

Section Formula Mapping

Section Mapping

Nested Section to Nested Section

Consider the mapping ‘SalesToSalesDetails’ defined in
NestedSectionToNestedSection.car. This is same as same as Nested Section to
Top-Level Section example but with a difference that there is no mapping for the
‘Productinfo’ output section as shown in the figure given below:

]

ORACLE' | Zbea

Mapping
Field Name Type Mapping

£} Salesvear Integer @ TearlySales[0].vear

_~T ProductInfo Section

_I BrandInfo Section + TearlySales. Product. Brand

{% BrandMame String ++ rearlySales. Product. Brand.Hame
{3 Salesgty Integer 4 TearlySales, Produck Brand. Oty

Pseudocode

Productinfo productinfo = new ProductInfo(); //Note the placement of this stmt
for(int 1=0; i1 < srcObj.YearlySales.length; ++i) {
for(int j=0; j < srcObj.YearlySales._Product.length; ++j) {
for(int k=0; k < srcObj.YearlySales.Product.Brand.length; ++k) {
BrandInfo brandInfo = new Brandinfo();
brandInfo.BrandName = srcObj.YearlySales[i]-Product[j]-Brand[k].-Name;
brandInfo.SalesQty = srcObj.YearlySales[i].Product[j]-Brand[k].-Qty;
productinfo.BrandInfo.add(brandinfo);
}
¥

}
destObj .Productinfo.add(productinfo);

Explanation

Since there is no mapping for the ‘Productinfo’ section of the target data format,
only one ‘Productinfo’ element is created in the target data object, for all ‘Product
elements that occur within the ‘YearlySales’ section of the source data object. The
mapping of ‘BrandInfo’ section of the target data object is handled as in Nested
Section to Top-Level Section.

Source Data Object:

No. of No. of No. of
‘YearlySales’ ‘Product’ ‘Brand’
elements elements elements
2
2
2 3
1 4

-

ORACLE' | Zbea

Target Data Object:

No. of No. of
‘Productinfo’ | ‘BrandInfo’
elements elements
1 9

The output in this case (for the input in Nested Section to Top-Level Section) is as
follows:

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE SalesDetails SYSTEM "SalesDetails.dtd">
<SalesDetails>
<SalesYear>2003</SalesYear>
<Productinfo>
<BrandInfo>
<BrandName>HP</BrandName>
<SalesQty>1000</SalesQty>
</BrandInfo>
<BrandInfo>
<BrandName>Phi l i ps</BrandName>
<SalesQty>1500</SalesQty>
</BrandInfo>
<BrandInfo>
<BrandName>BPL</BrandName>
<SalesQty>1200</SalesQty>
</BrandInfo>
</Productinfo>
</SalesDetails>

Though section mapping is not a must, it is done implicitly when the fields are
mapped. But in certain cases like this, section mapping needs to be done to get the
output in the required format.

See Also:

Top-Level Section to Nested Section
Nested Section to Top-Level Section
Optional Section Mapping

Section Formula Mapping

Section Mapping

-

ORACLE' | Zbea

Optional Section Mapping

Consider the mapping ‘PayrollIXMLToPayroll’ defined in OptionalSectionMapping.car.
The mapping rule specified for the ‘Deduction’ field of the target data format is an
example of this case.

Target Data Format Source Data Format
Enterprise Element Type Field Hame Type
_: PayDetails Section _;r Employee Section
& EmplD String {} 10 String
& BaszicPay Double {} Basic Double
<}? Allowance Double {}? HR.2 Integer
0? Deductian Double _,4? Deductions Section
{} PF Integer
£} IT Integer
Mapping
Enterprise Ele... Type Mapping

_~T PayDetails Section
3 ErmplD String 4 Emnplovee,ID
4 BazicPay Double ¢ Emplovees Basic
0? Allowance Double €3 If{IsMotMull(Emplayee. HRA,

<}? Deduction Deouble §@ IfiEmploves.Deductions. $size = 0,
Set((Ernployes.Deductions[0].PF f 100.0) * Employees, Basic +
[Ermployees, Deductions[0].IT / 100,07 *
Employes.Basicl)

Explanation

To calculate the value of the ‘Deduction’ target field based on the values (given in
percentage of basic pay) of ‘PF’ and ‘IT’ fields of the optional source section
‘Deductions’, we tend to write the mapping formula as given below:

(Employee.Deductions[0].-PF / 100.0) * Employee.Basic +
(Employee._Deductions[0]-IT /7 100.0) * Employee.Basic

But, this would result in FieldNotFoundException with the following error message
during runtime if the ‘Deductions’ section is missing in the input (which is valid as it
is an optional section).

-

ORACLE' | Zbea

Error accessing element of section 'Employee.Deductions’. Section index out
of bounds, size = '0", index accessed = '0".

When the user uses a field from an optional section in a formula, to avoid runtime
exception, the code generator adds guard code around optional section as explained
in Nested Field of a Non-repeating Optional Section to Top-Level Field. However, if
the user specifies an index (in this case 0), then it is the user's responsibility to
specify the guard and code generator will not add guard check automatically. Thus,
the above mapping rule should be written as shown below. Here
Employee.Deductions.$size returns the number of elements in the
‘Employee.Deductions’ section.

1f(Employee.Deductions.$size > 0,
Set((Employee.Deductions[0].PF /7 100.0) * Employee.Basic +
(Employee .Deductions[0].IT /7 100.0) *
Employee.Basic))

See Also:

Section Mapping

Section Formula Mapping

Consider the SectionFormulaMapping.car cartridge. Here the mapping requirement is
that the input fields F1, F2 and F3 (see the pictures given below) need to be mapped
to the field ‘FId’ of the internal message section ‘Sec’ as shown below:

F1 -> Sec[O0].Fid
F2 -> Sec[1].FId
F3 -> Sec[2].FId

Here, all the source fields are optional. In the destination we need to create as many
elements of ‘Sec’ as required.

Target Data Format (NO Fields) Source Data Format(Input Fields)

Enterprize Element Type Field Hame Type
- sec Section (¥ FL String
<& Fld String {Y F2 String
(Y F3 String

This cannot be achieved by using normal mapping at it requires control over creation
of the target section elements as well as assignment of values to the fields of the
target section elements created.

-

ORACLE' | Zbea

This can be achieved by specifying a mapping formula for the section ‘Sec’ as shown
in the following picture.

Input Mapping

Enterprise Element Type Mapping
- Sec Section 3 iF(IsNatNulllFL)) {
def alrn = SectddElernantisalf. Sac):
elrm.Fld = F1;
+

iF(IzMotMulllF27) £
def alrn = SectddElernantisalf. Sac):
elrm.Fld = F2;

+

iF(IzMotMulllF27) £
def alrn = SectddElernantisalf. Sac):
elm.Fld = F3;

& Flid String

Note that this formula does not return anything. This is taken as a clue that user has
taken charge of the section mapping. Also, note that there is no mapping for the field
‘Fid’.

The formula creates section elements based on the occurrences of fields F1, F2, and
F3 and sets the value of sub field ‘FId’. For instance, if field F2 is missing, then only
two elements are created.

If the target format has other fields/sections, the user can provide a mapping for
them. The only restriction is that the user cannot provide a mapping for
fields/sections under this section (for which a void returning formula has been
specified).

See Also:

Top-Level Section to Nested Section
Nested Section to Top-Level Section
Nested Section to Nested Section
Optional Section Mapping

Section Mapping

Multi-Source Mapping

This feature allows you to,

-

ORACLE' | Zbea

map multiple source messages to a destination message

map multiple instances of a message to a destination message

map source messages augmented by additional scalar values to a destination
message.

You can use any combination of the above. For instance, you can use multiple
instances of a message along with a single instance of another message and a scalar
value as input for the mapping.

See Also:

Create a new Multi-source mapping
Invoking Multi Source Mapping
Creating a Message Mapping
Mapping Rules Ul

Field Mapping

Section Mapping

Message Mapping

Create a New Multi-Source Mapping

Follow the steps given below to create a new mapping node that can be used to
define the transformation between multiple source messages and a destination
message.

1. In the explorer pane, right-click on the cartridge node or a Folder node to which
the new message mapping node needs to be added (same as for message to
message mapping).

2. Select the New Mapping menu item from the popup menu that appears. The
Message Mapping dialog box is displayed.

2%

ORACLE' | %hea

Message Mapping

Message Mapping

Selact zource and destination messages. If vou plan to usze rultiple
input meszages or wvalues, select 'Multiple Source Meszages'
checkbo:,

Crestination

Mezsage |+£ Invoicedut Y|

Saurce

Mezzage |+i~ |

Multiple Source Messages

Ok,][Cancel][i Help]

Select the Destination message. Instead of selecting the source message select
the “Multiple Source Messages” check box. You can later specify the source
messages to be used in mapping node.

Mapping node will be created. The mapping rules Ul has two parts, the
“Destination message” at the top and the “Source message” at the bottom. A
toolbar is available above source table which lets you add source messages.

2%

ORACLE | %hea

Mapping Rules - MessageMapping [MultiSourceTo Invoice Out] 4, M

Invoice0ut (External) <- MultipleSource

o Ve

Header| Data |Trai|er

Field Hame Type

f_q* Records Section
i CustormerMare String
 ItemID String
@ Oy Intager
% Price Double
4 Cost Double

Mapping

invoiceln. Data.Records

custormer,Mame

Hr
Hr
+ jrwoiceln. Data.Records, IternID
+ jnvoiceln.Data, Records, Oty

Hr

invoiceln. Data.Records, Price

€ costFactor * self. Records, Gty * 5

o

HEE® | § 8B ®
Field Hame Type Required ' Repeating
3 invoiceIn Inwoiceln]
] Header CrataChject
] Data DataObject
] Trailer CrataChject
3 customer CustormerInfo]
W Mame String
i Address String
i costFactor Integer

Toolbar to specify
input for mapping

5. To add a new source message, click on “Add New Message” tool item. Enter a
name for the message and select OK. Repeat this procedure for all the source

messages

| New Message Yariable

Mezsage |¢ir Invoiceln

Meszage Variable Marmea | inwaiceln

Ok,][Cancel][i@ Help]

6. You can also add fields or scalar values as input for the mapping. These can be
used to provide additional information to mapper, which is not available in the
source messages. For instance, if the mapping involves currency conversion, then
exchange rate can be passed to the mapper as an additional piece of information

-

ORACLE' | Zbea

(not available in the source message).

7. For input messages, you can specify a variable as “Repeating”. This allows you to
pass multiple instances of a message as input. Using this option you can map
multiple instances of a message to a single destination message (similar to
batching).

8. Map fields from the source to destination. You can do this by selecting the source
and destination field and clicking the “Map” button or you can provide a formula
next to the destination field.

One important difference between Multi source mapping and single message
mapping is that field names of the source message(s) is qualified and includes
the name of the source message variable. For example to refer to a field in the
invoice source message you would use, invoiceln.Data.Records.ltemID. Here
invoiceln is the name of the variable used for the source message.

See Also:

Invoking Multi Source Mapping
Multi-Source Mapping
Message Mapping

Invoking Multi Source Mapping

1. Select the mapping to be invoked from Message Mapping drop down list. If the
mapping to be invoked takes multiple inputs, an Input Variables table is
displayed as shown. This lists the parameters for the mapping as defined in the
Mapping node. The “Multi Input Mapping” checkbox is shown as selected in this
case (it is disabled since you cannot change this property here).

The Properties dialog for Map activity is as shown below.

2%

ORACLE' | %hea

=) Mapping Properties

General | Colors & Font| Message Mapping | Options

Mapping
Meszage Mapping: [MultiSourceTolnvoiceCut b
Inputf Sutput
Parameter Hame Type Yalue
_] invoiceIn Invoicaln inwoiceln
[customer CustarmerInfo custarner
& costFactar Integer 12.5
Cestination YWariable:|invaiceSut * 4@ InvoiceCQut
Cutput Mode
@ Always create destination object
) Reuse destination object

Ok, H Cancel][i@ Help]

2. Specify input for mapping by filling the value column.

3. In case where name of mapping is not known at design time use a formula to
specify the mapping name. If the mapping takes multiple input, select “Multi
Input” checkbox. Since the mapping being invoked is not known at design time
you need to fill up the table by adding parameters to the table and also provide a
value for each parameter.

Note:

Executing Multi source mapping directly from command line (using execute.bat)
is not supported. Executing multi source mapping from simulator is supported.

Limitation:

Merging instances of two difference source sections to a single destination section is
difficult. The solution is to write custom formula at section level to merge the
instances of the two unrelated sections. This limitation is particularly obvious in

-

ORACLE' | Zbea

multi-source mapping where it may be common to merge instances of sections in
different input messages to a single destination section.

See Also:

Create a New Multi-Source Mapping
Multi-Source Mapping
Message Mapping

Formula

A formula is an expression that evaluates to a value. A formula expression can refer
to one or more data items depending on the context in which they are used. The
value returned by a formula expression is used for setting/validating fields. These
formula expressions have Java like expression syntax and can access a number of
predefined functions available in Designer.

See Also:

Entering a Formula
Editing a Formula
Reformat Formula

Edit Formula Dialog
Designer User Interface
Cartridge

Message

Message Mapping
Function Definition
Code Generation
Simulator

Working With Cartridge Designer

Entering a Formula

A formula can include one or more functions and has to be specified in the

Formula text box. The users need not type the formula directly. Instead, they can
choose the required function(s) from the Function name list box of the Edit
Formula dialog box. See the section Edit Formula Dialog for more information. Let’s
consider an example to understand the usage of this dialog.

In this example, the condition that we will be assuming is that the first character of
the input data for a particular field should not be a ”/". The following steps have to
be performed to validate data to suit the above condition.

-

ORACLE' | Zbea

a) The first character from the left of the input data has to be extracted.
b) This character should be checked to see that it is not equal to “/”.
The above condition can be verified using the following formula:
NotEqual (Left(A.F20C.SEME.Reference, 1), "/™)
In the above formula,

A.F20C.SEME.Reference is the data field under consideration.

The function Left(A.F20C.SEME.Reference, 1) extracts the first character from
the left.

The NotEqual function checks if the extracted character is not equal to “/”.

Let’s now go through the steps involved in specifying the above formula in the
Formula text box.

1. Double click inside the Formula text box. Now pressing the F4 key or clicking
the Edit Formula icon ./ brings up the Edit Formula dialog box that can be
used in defining the formula.

2. NotEqual is a logical function. Therefore, in the Formula Functions tab of the
Edit Formula dialog, select Logical item from the Function category list box.

-

ORACLE' | Zbea

é:'l Edit Formula

|/Data r{;‘,l Formula Functons

Function category: Function nare:

Conversion = LeszEqual =
Database | | LeszEqual

Crate Time e MatEqual

Forrnat I~ MotEqual | |
General MotEqual L
Lagical - MatEqual -
) HotEqual(str1, str2)

Feturns true if strl not equals str2, returns falze otherwise,
The Cormpatison iz case-zensitive,

il

[a]

~

3]

| (a1 | | Cance| |
ln 1, col 1

3. The functions under the Logical category will be displayed in the Function
name list box. In the figure shown above only a few of the functions are
currently visible. Use the scroll bar in this box to view the remaining functions.
You can double-click on a function name to select it. Otherwise, click on the
function name and then click on the Insert button that is present below this box.
Now select the NotEqual function for this example. The current state of the Edit
Formula dialog box is shown below.

-

ORACLE' | Zbea

é:'l Edit Formula

|/Data r{;‘,l Formula Functons

Function category: Function nare:

Conversion = LeszEqual =
Database | | LeszEqual

Crate Time e MatEqual

Forrnat I~ MotEqual | |
General MotEqual L
Lagical - MatEqual -
) HotEqual(str1, str2)

Feturns true if strl not equals str2, returns falze otherwise,
The Cormpatison iz case-zensitive,

MaotEqual
str | | | Finish
strz | |
Returns true it strl not equals str2, returns falze
otherwise. The Cormparison is case-sensitive, t_*.«-' Help
| (134 | | Cancel |
ln 1, col 1

4. Now, the bottom panel of the Edit Formula dialog displays another section and
the name of this section is the same as the selected function (in our case it is
NotEqual). The fields in this section correspond to the inputs that need to be
specified for the function. In this example, the first value for the NotEqual
function is another function, which is the Left function.

5. Place the cursor in the vall field to indicate the insertion point. The function Left
falls under the Text category. So, first select the Text category and then the
Left function as indicated in steps 2 and 3 of this procedure. The bottom panel of
the Edit Formula dialog will now be different as shown in the following figure. As
you can see, the inputs that need to be provided for the Left function are
displayed.

-

ORACLE' | Zbea

é:'l Edit Formula

|/Data r{;‘,l Formula Functons

Function category: Function name:

General * IsalphaUpperdum

Logical IzMurm

Math Left
RegEx Leftstr
Swift Length
Text Lower
Lpad
Il - Mid

Transform

F
-
@) Left(str, num_chars)

Returns the leftinost, specified no.of characters from a text string

Left

st | | | Finizh
nurn_chars | |

Returnz the leftmost, specified no.of characters fram atext string

l‘_},l Help

| o] 4 | | Cancel |

6. The first input of the Left function is the string from which the leftmost character
has to be extracted. In our case it is the A.F20C.SEME.Reference field. To
select this field instead of typing it, first make sure that the text cursor is in the
str text box and then click on the Data tab.

7. The current state of the Edit Formula dialog box is shown below.

-

ORACLE | #bea

é‘l Edit Formula

|/Data r{?’l Formula Functons

Field Hame Alias Type
N A Swift Sequence
£y 20C Swift Field [
iy SEME Cualifier
< Referance String [E2]
] 236G Swift Field
CY 98a Swift Field =

Left

str | | | Finish
nurn_chars | |

Returns the leftrmost, specified no,of charactars from a
text string w Help

| (a4 | | Cancel |

ln 1, col 1

8. In the Fields list displayed in the top panel of the dialog, double-click on the
Reference field or select it and click the Insert button. The field will appear in
the str field in the bottom panel and the details of this field will be displayed
besides the Insert button.

9. As only one character needs to be extracted from the left of the Reference field,
specify 1 as the input for the num_chars field as in the following figure.

2%

ORACLE | #bea

é‘l Edit Formula

|/Data r{?’l Formula Functons

Field Hame Alias Type
N A Swift Sequence
= 20C Swift Field
iy SEME Cualifier
< Referance String
] 236G Swift Field
CT 98a Swift Field
Inzert

Left

-
str A F20C, SEME. Referance | EEREE

nurn_chars |1| |

Cancel
Returns the leftrmost, specified no,of charactars from a

text string w Help

| (a4 | | Cancel |

lLn 1, col 2

10. Having specified the inputs for the Left function, click the Finish button. Clicking
the Cancel button takes the user to the previous screen that displays the input
parameters of the NotEqual function. The following figure shows the current
state of the Edit Formula dialog box.

-

ORACLE' | Zbea

é:'l Edit Formula

|/Data rﬂ}.’l Formula Functons

Field Hame Alias Type
N A Swift Sequence
= 20C Swift Field
iy SEME Cualifier
< Referance String
] 236G Swift Field
CT 98a Swift Field
MaotEqual

stri |LeFtI:A. F20<, SEME. Reference, 1]

|
str2 |"."'"| |

Returns true it strl not equals str2, returns falze
otherwise. The Cormparison is case-sensitive,

| (a4 | | Cancel |

lLn 1, col 4

11. As the extracted character needs to be compared with a “/”, specify “/” (with the
quotation marks) in the val2 text box. Having specified both the inputs for the
NotEqual function, click the Finish button.

12. As in the following figure, the completed formula appears in the Formula text
box. The OK button at the bottom of the Edit Formula dialog enables the user
to quit this dialog after inserting the formula into the text field from where the
dialog box is invoked. Alternatively, the Cancel button allows the user to quit the
dialog without inserting the formula.

-

ORACLE' | Zbea

é:'l Edit Formula

|/Data r{;‘,l Formula Functons

il

HDtEq‘ualLeftI:A.FZDE.SEHE.Reference, 13, ",-“':II

Field Hame Alias Type
N A Swift Sequence
= 20C Swift Field
iy SEME Cualifier
< Referance String [E2]
] 236G Swift Field
3 I __|
T 98a Swift Field -
[a]

-

[b

| (a4 | | Cancel |

lLn 1, cal 48

See Also:

Editing a Formula
Edit Formula Dialog
Formula

Editing a Formula

The users may find the necessity to edit a previously specified formula. The required
changes can be made very easily. Let us consider the same example as given in the
Entering a Formula section. Let us now see how the changes in the formula should
be made if you want to extract the first two characters of the input string and check
that they are not “--". To extract the first two characters, we need to edit the Left
function. To check that these extracted characters are not “--”, the NotEqual
function should be edited.

1. Let us first edit the Left function definition. In the Formula text box wherein the
complete formula is displayed, click on any of the parameters associated with the

-

ORACLE' | Zbea

Left function. The signature of the Left function is displayed at the bottom of the
Edit Formula dialog box. See the section Edit Formula Dialog for more
information.

2. Click on the hyperlink shown at the bottom of the dialog when the text cursor is
moved into the Left function signature.

é:'l Edit Formula

|/Dat.a r{y Formula Functions

Field Hame Alias Type
=y A Switt Sequence
= 20C Switt Field
=y SEME Qualifier
& Referance String K
1 23G Swift Field
CY 98a Swift Field =
NotEqual{Left (& FZ0C. SEME. Reference, 1f|, /") -

-

&l [»]

KIE
er Left(str,_ nurn chars] | o] | | Cancel |

|Ln 1, cal 15

3. In the Edit Formula screen that displays the input parameters of the Left
function, replace the value 1 in the num_chars field with 2.

-

ORACLE | #bea

é‘l Edit Formula

|/Data r{?’l Formula Functons

Field Hame Alias Type
N A Swift Sequence
= 20C Swift Field
iy SEME Cualifier
< Referance String [E2]
] 236G Swift Field
CY 98a Swift Field =

Left

str A F20C, SEME. Referance | EEREE
nurn_chars |2| |

Returns the leftrmost, specified no,of charactars from a
text string

@) Halp

| (a4 | | Cancel |

lLn 1, col 2

Clicking the Finish button will update the Left function part of the formula.

Similarly select any of the parameters associated with the NotEqual function and
click on the hyperlink displayed.

In the Edit Formula screen that displays the input parameters of the NotEqual
function, replace “/” with “--“ in the var2 text box.

Click on the Finish button to view the modified formula as in the following figure.

2%

ORACLE | #bea

é‘l Edit Formula

|/Data r{?’l Formula Functons

Field Hame Alias Type
N A Swift Sequence
= 20C Swift Field
iy SEME Cualifier
< Referance String [E2]
] 236G Swift Field
CY 98a Swift Field =
MaotEqual
strl |Left(A F20C,SEME. Reference, 2) | =R
strz |"--|" |

Returns true it strl not equals str2, returns falze
otherwise. The Cormparison is case-sensitive,

@) Halp

| (a4 | | Cancel |

[lLn 1, col 4

8. Click the OK button to accept the changes made to the formula. Clicking the
Cancel button will retain the original formula without any changes.

Note:

The function help displayed in the status bar of the application window is also a
hyperlink. Clicking on it will also launch this dialog.

See Also:

Entering a Formula
Edit Formula Dialog
Formula

-

ORACLE' | Zbea

Reformat Formula

The ‘Reformat Formula’ dialog can be used to auto-format the formula code. If a
formula is typed with unwanted spaces or lines, it can be beautified using this
feature.

1. Select ‘Reformat Formula’ menu item under ‘Edit’ menu. The Reformat Formula
dialog is displayed.

&) Reformat Formula

W Current Hode
[¢] Include child nades

i1 &l nodes in cartridge

o] 4 Cancel a Help

2. If you want to format formula present only in the current node select the ‘Current
Node’ option button. If you want to format all formula present in the current node
and its child nodes select the ‘Include child nodes’ check box.

3. If you want to reformat all formula entered in the cartridge, select ‘All nodes in
cartridge’ option.

See Also:

Editing a Formula
Edit Formula Dialog

-
ORACLE | %hea
Edit Formula Dialog
The Edit Formula dialog helps in entering/editing formulas, checking the
correctness of a formula and testing it. This dialog can be popped up using the Edit
Formula .7 button in the main window toolbar or using the shortcut key F4, when

the focus is in the formula text box. The Edit Formula dialog is shown below.

é:'l Edit Formula

|/Dat.a |/{i:,l Formula Functions

a®

Field Hame Alias Type

=y A Switt Sequence =
3 20C Swift Fizld

=y SEME Qualifier
& Referance String K

1 23G Swift Field
CY 98a Swift Field =

[a]

-

[BEE | »]

| [a]74 | | Cancel |

ltn 1, col 1

In the above picture, the Data tab is currently active. The top panel of the dialog
displays the Fields list.

The bottom panel of the dialog displays the formula editor. In the formula editor, the
user can directly type the required formula that might result in errors like syntax
error, misspelled parameter name, etc. To avoid these common errors, it is
recommended to insert data fields and functions used in the formula from the tabs of
the Edit Formula dialog.

-

ORACLE' | Zbea

The Formula Functions tab lists the supported functions as shown in the following
figure. These functions are categorized based on their functionality. The Function
category list box displays the different function categories. The user can click on
any item in this box to select a specific category. The functions falling under the
selected category will be displayed in the Function name list box. In the following
figure, the functions in the Arithmetic category are displayed. On selecting any
function, the syntax and usage of the function will be displayed below the list boxes.

&) Edit Formula Validation

|/ Data |/ &#) Formula Functions |

Function category: Function nare:

All = Drecr =
Fecently Used E Divide E
Aggregate Civide

Arithrnetic Drivide

Binary u Incr u
@) Divide(numericl, numericz) [overloaded] s
Divides nurmericl by nurneric? (nlfn2). You can also use the §

operator instead,

QP

1

Lm 1,<all

(n] 4 Cancel a Help

A splitter separates the top panel and bottom panel containing the formula editor.
You can adjust the size, as you want. Line number would appear for the codes
besides the code pane. The dialog size and the position of the splitter are now sticky
(for the session). Any adjustments you make are retained the next time the dialog is
shown.

See Also:

Syntax Highlighting
Auto Completion

iy

o
ORACLE | #hea

Quick Function help

Code Reformater (Formula Beautifier)
Formula Validation (Automatic Error Checking)
Formula Tester

Locating Variable

Incremental Search

Formula Edit Operations

Entering a Formula

Editing a Formula

Formula

Syntax Highlighting

In the formula editor of the Edit Formula dialog, the formula functions and string
literal(s) of a formula are colored differently as shown in the following picture.

a

I83tcarcsWich{fwralue, "/REJT/") && E
I3tartsWith ($wvalue, "/RETH/") 44
FindFirst{Swvalue, "% rin RBREIT/") == -1 &4
FindFirst (fwalue, "Yrins/RETH/") == -1

(4]

4] | »]

See Also:

Auto Completion

Quick Function help

Code Reformater (Formula Beautifier)
Formula Validation (Automatic Error Checking)
Formula Tester

Locating Variable

Edit Formula Dialog

Auto Completion of Function Names

The Edit Formula dialog makes entering formula easier by supporting auto
completion of function names in the formula editor.

Follow the Steps given below to auto complete function names while entering a
formula in the formula editor:

-

ORACLE | #bea

QP

1 T'Fl'qpr'l
SecAddColumn(zection, colurmnMarme, critarial

SecAddElernentsection, objOpt)
SecAvglsection, fieldMarme)

SecCount(sec, secMarmeOpt) L
Sechistindlsectionl)

SecElmisection, index)

SecExists(zec, secMarna)
SecExistzInAll(zec, secMarme, inSaclameOpt)
SecExistsInAtleastOnelsec, secarme)

[4]

SecExistzInAtMostOnel(sac, secarme)

Sec AddColumnisection, columnMName, cHtera) Help
Category: Transform
[Betaladd: a column to the section.

1. Type in part of the function name.
2. Press Ctrl + Space.

3. A list box pops up with possible choices. Select the one you want and press Enter
or ‘("

See Also:

Syntax Highlighting

Quick Function help

Code Reformater (Formula Beautifier)
Formula Validation (Automatic Error Checking)
Formula Tester

Locating Variable

Edit Formula Dialog

Quick Function help

In the formula editor while entering a formula that involves functions, help for a
function can be displayed without leaving the editor by pressing the Ctrl button and
hovering the mouse pointer over the function name.

iy

S
ORACLE | %hea

a®

I=sMotPullls FEba_Acccuunt:I

e

Is MotHull(field)
Returns 'true' if the given field hasz a non-null value,

(4]

| k|

|a [

See Also:

Syntax Highlighting

Auto Completion

Code Reformater (Formula Beautifier)
Formula Validation (Automatic Error Checking)
Formula Tester

Locating Variable

Edit Formula Dialog

Code Reformater (Formula Beautifier)

The ‘Reformat Code’ button in the formula editor toolbar of the Edit Formula dialog
can be used to auto-format the formula code. If a formula is typed with unwanted
spaces or lines, it can be beautified using this feature. For example, consider the
following formula:

a®

findex= FindFirsc{ S$value, "yrin/INS/"); [
If{ StartsWith{ $walue, "/INS/"}, $index == -1,
Tt Findex = -1,
FindFirst | $1.ralu.e, "hwrhnSINES", findex + 7y == -1,
true:lll;l
T :
T =

[]

NEE

iy

o
ORACLE | %hea

To format the above formula (remove unwanted spaces and lines) click the
‘Reformat Code’ button in the formula editor toolbar. The formula will be
automatically formatted as shown below:

findex = FindFirst (Swvalue, "“r 0 INSS");:
Ifi{StarcsWithi{Sralus, " INZ/ /"1,

[»]

findex == -1,

Tfizindex = -1,
FindFirst(Sralue, "“rin INZ/", findex + 71 == -1,
true)) ;| i

(4]

[4]:

|]

See Also:

Syntax Highlighting

Auto Completion

Quick Function help

Formula Validation (Automatic Error Checking)
Formula Tester

Locating Variable

Edit Formula Dialog

Formula Validation (Automatic Error Checking)

While entering a formula in the formula editor of the Edit Formula dialog, the
syntax and correctness of the formula are checked as it is typed. The offending code
is underlined (in red) and error message is displayed in the status bar as shown in
the following picture.

a®
jindex = FindFirst ($walue, "“riwn/INS7"):
If{StcartsWith($ralue, "JINS /"),
findex == -1,
Tfizindex = -1,
FindFistkSvalue, "t INES, fdindex + 07 == -1
true));

]

[«]

iy

o
ORACLE | %hea

See Also:

Syntax Highlighting

Auto Completion

Quick Function help

Code Reformater (Formula Beautifier)
Formula Tester

Locating Variable

Edit Formula Dialog

Formula Tester

This feature can be used to test a formula in isolation.

o

$indexndFirsti$1ralue, "yrin INS S
Ifi{StartsMithi{Svralue, "/SINZ /"1,
findex == -1,
Tfizindex = -1,
FindFirst(Swalue, "“rin/IN3s", findex + 71 == -1
true)) ;I

e

-

[4]

[4]:

| ¢

On clicking the ‘Test’ button in the formula editor, the Test Formula dialog is
displayed as shown in the following picture. The user will be prompted for the value
of all the input variables used in the formula. The formula is executed and the
output(s) are displayed.

-

ORACLE' | Zbea

é:'l Teszt Formula

Formula Tester

Enter values in the input field(s). The formnula is executed and output f
valuel(=) are set as you type, If vour formula uses set) function it ray have X
roultiple output values,

Input

7Z.Marrative_-_Structured_Formnat (String) |INS|

Cutput

Feturn Value (boolean) |true

Error

Claze

In some cases where sections and arrays indexes are used, this feature does not
work well.

See Also:

Syntax Highlighting

Auto Completion

Quick Function help

Code Reformater (Formula Beautifier)
Formula Validation (Automatic Error Checking)
Locating Variable

Edit Formula Dialog

Locating Variable

To locate the definition of a variable used in the formula, move the mouse pointer
over that variable with the CTRL key pressed. A hyper link is shown (similar to
functions) as can be seen in the following picture. Clicking on it will take you to the
definition of that variable. If it refers to a field, the field is selected in the Field list in
the top panel of the Edit Formula dialog.

iy

o
ORACLE | #hea

ti:'l Edit Formula

|/Data r{?) Formula Functhons

Field Mame Alias Type

CF 55A Swift Field -

Cf 56A Swift Field
O 57A Swift Fizld —
3 59a Swift Field B
el . J—
W Account String -

[

IT=NotMull (F59a shoccount)

String F3%a.Account
A, Mo Letter Farmats

-

|4 | [y

A Tstotnulltfisld) | ok | | cancel |

lLn 1, cal 22

See Also:

Syntax Highlighting

Auto Completion

Quick Function help

Code Reformater (Formula Beautifier)
Formula Validation (Automatic Error Checking)
Formula Tester

Edit Formula Dialog

Formula Edit Operations

Several edit operations can be performed on the formula entered in the formula text
area. Select the text entered or a portion of the text and right click. A popup menu is
displayed as shown below

iy

S
ORACLE | %hea

IfIsI-Iull (A F17N_.Indicator),

null, & cut [:%
Tf(Ecqual (A F17N. Indicator, "N"), Copy
"Gross Bettlement" Copy as HTML

, "Net Bettlement"))

dEh Find
i} Find Mext

Select the ‘Cut’ menu to remove the selected text.
Select the ‘Copy’ menu to copy the selected text.

Select ‘Copy as HTML’ menu to copy the selected text using HTML syntax. It can
be saved into an HTML file.

Select the ‘Paste’ menu to paste any content present in the clipboard into the
text area.

To search for particular text in the formula select the ‘Find’ menu. The Find
dialog is displayed.

Find what [Het Settlernent |

Search Cptions
[#] Match Casze
[] Match woard

D Fegular Expreszsion

| (]’ || Cancel

Specify the text to search for in the ‘Find What’ text field. You can also specify
search options. Press OK. If a match occurs the text will be highlighted as shown
below

-

ORACLE' | Zbea

T£(I=sHullia F17M_Indicator),
null,
ITf({Equal (4 F17H. Indicator,"N"),
"Gross Settlement”
, "MNet Settlementl'):l

Select the ‘Find Next’ menu if you need to search for the text again.

See Also:

Syntax Highlighting

Auto Completion

Quick Function help

Code Reformater (Formula Beautifier)
Formula Validation (Automatic Error Checking)
Formula Tester

Edit Formula Dialog

Function Definition

Designer supports defining functions in the Formula language. The functions are
defined in a Cartridge and are available globally in the cartridge. Once defined, a
function can be used in formula code from anywhere in the cartridge.

Like functions in other languages, during definition you need to specify the
parameters, return type and provide a body for the function. The body of the
function should be in formula code. The parameters and return value should be of
the specified type. During definition you can choose to use an ‘Any’ for parameters
and return type which makes the functions behave like generic functions, applicable
to multiple types.

See Also:

Defining a Function

Function Definition Properties
Invoking Functions

Working with Functions
Simple Function
Parameterized functions

2%

ORACLE' | %hea

Token based functions
Testing the function
Formula

Edit Formula Dialog
Designer User Interface
Cartridge

Message
Message Mapping

Formula

Code Generation

Simulator

Working With Cartridge Designer

Defining a Function

To create a new function,

1. Right click the cartridge node, select ‘Add Item-> New Function’ as shown below.

Bg Explorer

FunctionDefinitonCart

Cartridge Details
T‘:l add Ttem * [T Mew Falder ... A

@ B R S @ Mew Internal Message ...

;] 4@ Mew External Message ...
Verify Integrity -

R Mew Mapping ...

FunctionDefinition

Path]
; @ Add Macros 3
Properies
{9 Mew Function
Et_“\ —Amn [t Y l:‘.h

2. A new function definition will be added.

2%

ORACLE | %bea

E&s Explorer o] Function - [MNew Function]
B & -t

|/Genera| rtode |
FunctionDefinibonCart

CE)—[E Function Definiions

|_ Function Mame |New Function |
@

Category ‘Llser Cefined | - |

Marne & Description

Crescription

Signature
Parareters

T &

|:|| Parameter Name || Type || DescHpbon

Signature String Mew Function(]

3. The function definition by default will be added under a folder ‘Function
Definitions’. Any function definition you add will be added under this folder.

4. You can also add a function definition by right clicking on the ‘Function
Definitions’ folder and selecting ‘New Function’ item.

= rai
FunctionDefinitionCart
f#’—@ Function Definitions -
|_ €) Mew Funct fﬁ Mew Function o
) 9
En:\p',' CtrI-Ch‘
Chrl-W
B4 Irmport ... Chrl-1
Fel Export ... Chrl-E
> Delete
A validate Crl-L

Note:

A function definition defined in a cartridge can be accessed only within that cartridge.
It cannot be accessed from elsewhere.

-

ORACLE' | Zbea

See Also:

Function Definition Ul
Invoking Functions
Working with Functions
Copy/Paste Support

Function Definition Ul

After creating a function definition you can specify properties for it. The properties
that can be specified for a function definition are

Name

Category
Description
Parameters

Return Type
Code

See Also:

Defining a Function
Working with Functions

Name

The name of the function definition. The function should be accessed using this
name. This is a mandatory property. The name should conform to identifier rules.

Function Mame |ConcatFieldvalues

See Also:

Category
Description
Parameters

Return Type
Code

Category
The category of the function definition. The ‘User Defined’ category is selected by

default. You can select any other category from the drop down list. In the ‘Edit
Formula’ dialog the function will be listed under the specified category.

-

ORACLE' | Zbea

Catagory |L|ser Defined -

Description

Description for the function definition. This is not mandatory. When a function
definition is selected in the functions list box the description specified here will be
displayed.

Cescription

concatenates two values and returns the concatenated value

See Also:

Name
Parameters

Return Type
Code

Parameters

The parameters for the function. A function can have multiple parameters or no
parameter. Parameters are not mandatory for a function.

Properties of a parameter are

Name: Each parameter name should be unique.
Description: Description of the parameter. This is not mandatory.
Type: The parameter type. All the supported Designer types can be specified as
parameters. Along with those types four new types can be specified.
Any
Token
Section
Message

Pararmetars

HeE gl
Parameter Hame Type DescHpton
4 Baszic Couble
W HRA Couble
4 Bonus Couble

-

ORACLE' | Zbea

See Also:

Name
Category
Description

Return Type
Code

Return Type

The return type of the function. The type can be any of the supported designer
types. Five new types are also supported as return types.

Any
Token
Section
Message
Void

Return Type | Double e

See Also:

Name

Category

Description
Parameters

Code
Code
The actual operation that the function performs should be specified here.

You can choose to implement the operation of the function using either the formula
language or the platform specific code.

2%

ORACLE | %bea

Function - [CalculateSalary] L)

|/Genera| rEDdE |

M Mative Function, If checked the function is implermented using platform specfic code,
otherwise formnula code should be provided.

Mative Clazs

Mative Class Ref [CalculateSalary

To implement the function using platform specific code, you have to select the
‘Native Function’ check box and specify a reference name in the ‘Native Class Ref’
text field. The reference name should be bound to the platform specific class (that
contains function implementation) using the ‘Language Bindings’ tab of the ‘Code
Generation Settings’ dialog. The custom class must implement the IInvokable
interface. See APl documentation for more details.

Please refer New File from Template for easily creating a native function
implementation class.

Function - [CalculateSalary] L)

|/Genera| rEDdE |

0 Mative Function, If checked the function is implermented using platform specfic code,
otherwise formnula code should be provided.

Code

return Basic + HREL + Bonus;

To implement the function using the formula language, you have to deselect the
‘Native Function’ check box (by default it is deselected) and specify the
implemenation code in the Code text area.

You can click the 4 button or press ‘F4’ in the Code text area to view the ‘Edit
Formula’ dialog.

2%

ORACLE | %bea

t;'l Edit Formula El

r Parameters r {i) Formula Functions |

| Field Hame ” Alias || Type
4 Basic Double
& HRA Double
4 Bonusz Double

a®

return Basic + HRA + Bonus;

ILm 1, Col 28

(a] 4 || Cancel || gHelp |

You can access all parameters that are defined for the function in the formula dialog.

Please note that the value returned by the function should correspond to the return
type. If the return type is ‘String’ the function should return a String value. If the
return type is ‘Void’ the function should not return any thing.

See Also:

Name

Category
Description
Parameters

Return Type
Formula

Edit Formula Dialog

Copy/Paste Support

Copy/Paste operations are supported for a function definition. Right click the function
definition

-

ORACLE | #bea

FunctionDefinitionCart
fb— |z Function Definitions 1
L {# Concat

Copy Ctel-C
Paszte Crl-w

E*3 Impart ... Cirl-I
el Excport ... Cirl-E

> Delete

e

Walidate Ctrl-L

Select the ‘Copy’ menu item. The function definition will be copied. You can then
paste it elsewhere.

Function definitions can also be exported/imported as XML files.

See Also:

Defining a Function
Working with Functions
Invoking Functions

Invoking Functions

You can access the function definitions in all places where formula support is
provided (e.g. validation rules). Please note that a function definition can be
accessed only within the cartridge where it has been defined. It cannot be accessed
from outside the cartridge.

In the Edit formula dialog in ‘Formula Functions’ tab category ‘Functions’ will be
present. When you select it, only those function definitions that have been added in
the cartridge will be displayed in the functions list box. You can select a function
definition from the ones available.

2%

ORACLE | %bea

&) Edit Formula

|/ Data |/ ‘3} Formula Functons

Function category: Function name:
All | | ConcatFieldvalues
Fecently Usead b SurmFieldvalues
Functions |
-
@) ConcatFieldvalues(Paramil, Paramz) _In_;;t“]
Concatenates two values and returns the
concatenated value

a B

ConcatFieldWalues (F1dl, FldZ)=="F1dlFldz"

I

L]

4] []

Hj{,j ConcatFieldYalues(Paraml, Param2z)

L e e

| o] 4 || Cancel || Help |

When a function definition is selected in the functions list box the description of the

function that is specified while defining it will be displayed. The signature of the
function will also be displayed.

Note:

The help links for the user defined function definitions will not work.

See Also:

Defining a Function
Working with Functions
Edit Formula Dialog

-

ORACLE' | Zbea

Working with Functions

In this section we consider specific cases and illustrate various possibilities in
creating functions. There are three major classifications of functions. The
classifications are based on the parameter type used while defining the function.

Simple Functions Functions whose parameters and return types are all of
known type

Parameterized functions Functions with at least one parameter of type ‘Any’
(unspecified).

Token based functions Functions with at least one parameter of type ‘Token’.

See Also:

Testing the function
Defining a Function
Invoking Functions

Simple Function

Lets us assume that you want to create ‘min’ function, which returns the minimum of
two integers. The function will take two parameters of type Integer and return the
lesser of the two, again an Integer.

1. Create a new Function and set its hame to ‘min’.

2. Change the Return Type to ‘Integer’

3. Add two Parameters ‘vall’ and ‘val2’ and set their type as Integer.

4. Enter a description of the function.

2%

ORACLE | %bea

D

rﬁeneral rﬁude |

Marme & Description

Function Marme |rnin |

Categary |Llser Defined | - |

Description

Feturns the minimur of two values

Signature

Return Type | Integer - |

Parametears

I:H Parameter Hame || Type || DescHpton
W wall Integer
W walz Integer

Signature Integer min(Integer vall, Integer valZ2)

5. In the code area enter the body of the function.
vall < val2 ? vall : val2

You can also use an explicit return statement. If not it will use the value of the last
top level expression in the body of the method.

In case of complex formula you can use the Edit Formula Dialog to enter the text.
The main advantage of the dialog is that it provides immediate error feedback and
has basic testing capabilities.

This function can be invoked from others locations in the cartridge where you are
allowed to enter a formula. The newly added function appears in the function list in
Edit Formula Dialog like any other predefined function.

See Also:

Parameterized functions
Token based functions

-

ORACLE' | Zbea

Testing the function
Defining a Function
Formula

Testing the function

There are two ways you can test this newly created function. You can test the code
that forms the body of the function or you can invoke the function from elsewhere in
the cartridge and check whether it returns correct values.

See Also:

Testing the body
Test by invoking the function

Testing the body

1. To quickly test implementation of the above function, place the cursor in the
Function code area (in the Function Definition Ul) and Click F4. The Edit formula
dialog pops up.

& |®
1 IsWotHull (PlorderDate)

2. Click the ‘Test’ button in the toolbar. The Test Formula dialog is displayed.

-

ORACLE' | Zbea

é:'l Test Formula

Formula Tester

Enter values in the input field(z), The formula iz exeacutad f
and output waluels) are zet az you type. If vour formula X
uzes set() function it may have multiple output values,

Input

vall [String) |abe

valz [String) deﬂ

Cutput

Return Walue [String) |abcdef

Error

Claze a Help

3. There will be a text field for each parameter to enter the input for function. Enter
some integer values for the two parameters. The result is immediately computed
and displayed in the ‘Return’ text field.

Here we are directly testing the body of the function; we do not actually invoke it.

See Also

Test by invoking the function
Edit Formula Dialog

Test by invoking the function

The other way of testing this function, is to invoke it from some other location in the
cartridge where formula is supported.

To do that, create a new dummy function definition. We will use the body of the
function to invoke the ‘min’ function and test whether it works. It is also possible to

-

ORACLE' | Zbea

test it from any other location where formula is supported by following the procedure
below.

1. To test min function, place the cursor in the Function code area (of the dummy
function) and Click F4. The Edit formula dialog pops up.

2. Enter the code ‘min(10, 12)’ in the code area. Here we are calling the min
function we created earlier. Unlike the previous case, here we are actually trying
to invoke the function and testing it from outside.

a @

min(ld, 12)

3. Click the ‘Test’ button in the toolbar. The ‘Test Formula’ dialog is displayed. Since
we are not using any variables in the test code, it does not prompt for any
arguments and displays the output/return value.

Input

Sutput

Return Walue [int) |10

These two ways of testing appear very similar and one gets the impression that one
of them is redundant. While the former is easy to do (because you don’t have to
create a dummy call point), the latter is more versatile. In particular, when we use
parameterized functions, you cannot test it using the former approach, since types of
the parameters are not known.

See Also:

Testing the body
Edit Formula Dialog

Parameterized functions

The min function we wrote is specific to Integer type. It takes two Integer
parameters and returns an Integer as result. If you follow this approach, you need to

-

ORACLE | 4bea
define a min function for each type you want to support or need. It would be nice if

we can generalize the same function to support all types.

vall < val2 ? vall : val2

If you look at the body of the function, it looks like it would work for any type that
supports a less than operator. Since this operator is supported for all basic types
(String, Double etc), the same body should work for all basic types. The only
problem is that we are asked to specify the parameter type and the return type when
we define the function.

Designer provides a way to “generify” this function definition. The trick is to not
commit to a specific parameter/return type. In the ‘Return Type’ and ‘Parameter
Type’ combo boxes, there is type called ‘Any’. If you chose this type, your function is
not tied to a particular return type or parameter type respectively.

Lets try to parameterize the min function and make it work for all basic types.

1. Change the Return type of the min function to ‘Any’.

2. Change the type of the parameters vall and val2 to ‘Any’.

3. Since the body is not tied to a type we don’t have to change it.

2%

ORACLE | %bea

rcan e

rGeneraI rtude |

Marme & Description

Function Marme |rnin |

Catagory |L|5er Cefined | - |

Ce=scription

Feturns the minimur of two values

Signature

R.eturn Type |An',l il |

R

Parametars

|:|| Parameter Name || Type | | Descripton
G wall Ay
w walz Any

Signature Any minlAny vall, Any val2)

Now this function operates on two unspecified types and returns an unspecified type.
Unlike C++ templates there is no way to specify (constrain) that parameter types
should be same and the return type will be same as the parameter type.

Let us try to use this function and see how it works. Since the types are unspecified
it is not possible to test just the body of the function. You need to invoke this
function from elsewhere and check whether it works. When you invoke it with actual
values, the types of the arguments are known. Using this information, it will
synthesize a function definition with the known parameter types.

As before use a dummy function definition to test this function. Enter the code
min(""SEME™, "ALTE™). We expect it to return the lesser of the two strings.

a D

Iminl:"SEHE", "ALTE") -

4] I3

-

ORACLE' | Zbea

Use the Test dialog to verify this. Now change the code to min(12.5, 12.4) and again
test it. You can see how the same function works for all the types that support the
less than operator.

What would happen if you try to use it on a type that does not support it, for
instance the boolean type; or if you mix incompatible types. Lets try it with an
Integer and a String.

[1,1] Error invoking formula function Any minlAny vall, Any val2), Nested errori[1,1] None of the
ovetloads match Lezs(int, String). Type incompatibility for logical operator "', Expected type is nurmeric

Even as you type, the incorrect function call is underlined and the tool tip shows the
error message. To do this, it has to replace the ‘Any’ parameter types with the
invoked argument types (Integer & String) and check whether the body of the
function ‘min’ is valid. So, errors if any, will actually occur in the body of the invoked
(min) function. The error message shows the error at the call point as well as the
error that occurred in the body of the invoked function (as nested error). You need
this nested error information, if you have also written the actual function and want to
fix its body. If you are interested in just using the function, you can ignore the
nested error and treat the invocation as invalid.

How it works?

Parameterized functions work very similar to template functions in C++. During code
generation, these functions are “instantiated” based on usage. By instantiation, we
mean that a method with the specific parameter and return types is generated. For
instance, if the min function is invoked from two different places in the Cartridge
with parameters of type Integer and String, then two overloads of the min method is
generated in the chosen language.

If the min function is not used at all, code for it is never generated. This applies to
non-parameterized functions as well; code is generated only for those functions that
you use elsewhere in the cartridge. This feature can be very useful if you build a
library of functions. Since you do not pay for what you don’t use, you can include the
full library and not worry about code bloat. For the two usages of min, the following
code is generated.

public static String min(String _vall, String _val2) {
return (TextFunctions.less(_vall, _val2) ? _ vall: _ val2);

}

public static int min(int _ vall, int _ val2) {

-

ORACLE' | Zbea

return ((_vall< _val2) ? _vall: _val2);

}

In more complicated cases, the generated method name itself may be different for
different instantiations of a function.

See Also:

Simple Function

Token based Functions
Testing the function
Formula

Token based functions

Generic function definitions let you create functions like min, which work on multiple
types. But most of the functions you normally need that work on primitive types, are
already bundled with the Designer Distribution. After exhausting such possibilities,
you may wonder whether type parameterization is really useful. The real problems
relate to usage of sections and its fields. For instance, you may have a piece of code
that is used in number of places in say, mapping, except that the section and field
names are different. Let us try and write a function secSumDoublel, which returns
the sum of a double field in all the elements of a section.

Let us first implement a non-generic version.

Define a function secSumbDoublel, with return type ‘Double’ and two parameters,
‘section’ of type Section and ‘fieldName’ of type String. The goal is to find the sum of
the specified field in all elements of the section.

We have chosen the type ‘Section’ which means that a generic section object is
passed to this method. In the body of the function you cannot directly access the
fields of its elements; you need to use dynamic access, since the type of the section
is not known. This function is not a generic function and only one copy of it is ever
generated. This is the signature of this function.

Double secSumbDoublel(Section section, String fieldname)
The body is as follows,

def sum = 0.0;
foreach($elm in section) {
if(YisNull($elm, FieldName)) {
sum += getDouble($elm, FieldName);

-

ORACLE' | Zbea

}
}

return sum;
You can invoke this function as,
secSumDoublel(mySec, “myField”)

As mentioned earlier, this is not specific to a section, but will work with any section
as long the specified field is available. We have achieved this without using
parameterized functions (Any type); but the cost is paid at runtime. Though, at call
point, we know that the section has a field with the specified name, we don’t directly
access the field in the body, and instead we dynamically access it. Dynamic access
has a cost associated with it.

The first step in generifying a function is to change the type of some of its
parameters (whose type varies) to ‘Any’. Since we want it work for specific section
type, change the type of the section parameter to ‘Any’. What about the fieldName?
Should that be changed to ‘Any’ as well? fieldName is always going to be a string,
but we will pass different values for it. For the time being let us retain it as String
and look at the modified body.

def sum = 0.0;
foreach($elm in section) {
if(isNull($elm.fieldName)) {
sum += $elm.fieldName;

}

return sum;

The main change is how the field is accessed from the element. Earlier we had used
dynamic access; now we are using dot notation. This is much more efficient than
earlier implementation.

But this does not work. We have used the notation $elm.fieldName to access a field.
But fieldName is a variable (parameter) of type ‘String’. When you use
$elm.fieldName it would actually expect a field with name ‘fiel[dName’ to be present
in the element. It will not use the value of the variable fieldName that you passed
while invoking this function.

This is an important use case. If such a thing is not possible you have to resort only
to dynamic access when you are working with sections and elements of sections. To
support this case, there is type called ‘Token’. If you select this type for a parameter,

-

ORACLE' | Zbea

its value at invocation point is substituted for each occurrence in the body of the
method. For instance if you invoke this function

secSumDouble2(mySec, “myField”)

Then all occurrences of the token ‘fieldName’ are changed to ‘myField’ in the body of
the function.

def sum = 0.0;
foreach($elm in section) {
if(YisNull($elm.myField)) {
sum += $elm.myField;
}
}

return sum;

The invocation of this function is similar to what you would have done for a String
Parameter, secSumbDouble2(mySec, “myField”). The only restriction is that value
passed should be literal and not a variable or other type of expressions. This is
needed because the passed value has to replace the parameter name at design time
in the function body.

This function is “instantiated” for every distinct section-fieldname pair. For instance,
if you make two calls secSumDouble2(mySec, “myField”) and
secSumDouble2(mySec, “myAnotherField™), two copies of this function are
generated. But if you again call secSumbDouble2(mySec, “myField”) from elsewhere a
new copy is not generated. That is, the ‘Token’ type parameters, like ‘Any’ type
participate in the instantiation of the function. A change in Token value will result a
new copy being generated. In case of ‘Any’ typed parameter, a change in the
argument type (not its value) will result in a new copy being generated.

See Also:

Simple Function
Parameterized functions
Testing the function
Formula

Resources

The Resources design element allows you to separate constant values and locale
specific messages from rest of the cartridge. In general, the Resources node allows
defining name/value pairs called resource items. A resource item is used to represent
either a constant or a message. When it is used to represent a constant, it behaves

-

ORACLE' | Zbea

very much like a #define in C++ or a constant (public static final) in Java. When it is
used to represent text messages, it resembles a resource bundle in Java or a RC in
Windows development environment.

Separating or externalizing constants to a separate node/location has the following
benefits:

The constant now has a meaningful name and description. This improves
readability.

Your formula code is not littered with magic string/numbers; instead you use the
name of resource item, which in general should be self-descriptive.

If a constant is to be used in multiple places, it is easy to manage its value at a
single location. For instance, if the constant’s value is redefined (say in the spec),
it is easier to change it.

Externalizing messages to a separate node/location has the following benefits:
Resources node supports locale specific messages. You can provide the resource

item’s value for each locale you are interested in. This is the first step in
internationalizing your cartridge.

Since the messages are listed in one place, a translator can easily localize, or
translate into different languages.

All the user visible messages in your cartridge are listed together in one location.
Even if you do not intend to support multiple locales, separating the messages
can improve readability and documentation of your cartridge.

You can access a resource item by name in your formula code. At runtime or during
code generation, the resource item name is substituted with its value. In case of a
resource item representing a message, the appropriate value, based on the current
locale during runtime, is used. In case of a resource item representing a constant,
the resource name is replaced with its value during code generation. The value is
substituted either directly at the usage point, or is converted to a platform specific
constant and referred.

See Also:

Resource Item
Resource Group
Working with Resources
Using a Resource

-

ORACLE' | Zbea

Resource Item

The Resources node allows you to define name/value pairs called resource items.
The name of the item must conform to regular field name rules (no dots etc).
Resource items are statically typed; all the Designer types are supported. The ‘value’
of the item should be of the specified type; that is, it should be possible to convert
the value specified to the type of the item.

A resource item is used to represent either a constant value or a message. Designer
supports the following resource items of the following types:

1. Simple Constants
2. List Type Constants

3. Messages

Simple Constant

Constants typically are magic numbers or strings, which have a business meaning.
For instance, the character ‘N’ may be used to represent ‘New Order’. These cryptic
values appear in the input/output messages and are usually used as shorthand for
the actual meaning. While processing a message, it is often required to interpret
these values in the message. The following code, checks whether the status of the
order is filled, and sets the destination field’s value accordingly.

If(OrdStatus == '2', 0, Tolnt(LeavesQty))

From the code it is not obvious what the magic character ‘2’ means. What this value
means is described elsewhere in the description of the field OrdStatus

Valid values for OrdStatus:

0 = New

1 = Partially filled

2 = Filled

3 = Done for day

4 = Canceled

E = Pending Replace (e.g. result of Order Cancel/Replace Request)

Though this information is available elsewhere, it does not make the formula code
easier to read. You need to consult this description every time you read this piece of
code. Also, since the same magic value needs to be used in number of such code
fragments, it is possible to make a mistake and enter a wrong value.

-

ORACLE' | Zbea

The suggested approach is to externalize these magic values to the resource node
and refer to it by a descriptive name in the formula.

If(OrdStatus == ORDER_STATUS_FILLED, 0, Tolnt(LeavesQty))

Resource Hame Type VYalue
4 ORDER_STATUS_MEW Character 0

& ORDER_STATUS_PARTIALLY_FILLED Character 1
& ORDER_STATUS_FILLED Character 2
& ORDER_STATUS_DOME_FOR_DAY Character 3

Now it is possible to manage these values from a single location. A business analyst
can quickly check whether the values used are correct and can change it if the
business meaning of a constant changes.

Note:

Resource items of this type (constants) are typically not assigned locale specific
values; the value is specified only for the default locale.

See Also:

Adding a Simple Constant
Using a Resource

List Type Constant

A resource item of this type associates a set of values to a resource name. Typically
a resource item of this type is used to group related business constants into a single
entity. For example, the resource name COUNTRIES might be used to represent a list
of ISO country code values. This can then be used in an expression like In(Country,
COUNTRIES). In the picture given below, there are two list type constants:
CURRENCIES and ALLOWED_TYPES.

Resource Hame Type List ' ¥alue
i CURREMCIES String ADP, ARS, AUD, BDT, BGL, BSM, BHD, BIF,
BEMD, BOB, BRL, BWP, CAD, CHF, CLF, CLP,
CHY, COP, CRC, CYP, CZK, DJIF, DEK, D20,

% ALLOWED_T¥FES Integer 1.2,3.4

Like a simple constant, the list type constant is accessed by name in a formula. The
value is of list/collection type. You can iterate through the value of list using the
foreach construct or use array operator to access a specific element. More
commonly, you would use it as a parameter to the In() function to check whether a
value is in the list.

-

ORACLE' | Zbea

During definition, a comma should separate the constants in the list. The comma-
separated values are trimmed at both ends and hence you can leave leading/trailing
spaces or you can break it up into number of lines if the list is long.

Note:

Like simple constants, resource items of this type are typically not assigned locale
specific values.

See Also:
Adding a List Type Constant
Using a Resource

Messages

A resource item of this type is used for externalizing error messages or user visible

texts. A message resource item is provided multiple values, one for each locale you
want to support. At runtime, the value whose locale best matches the current locale
is used.

Resources contain locale-specific objects. When you want to access a locale-specific
resource item, a String object for example, you can load it from Resources that is
appropriate for the current user's locale. In this way, the designer of the cartridge
can write formula code that is largely independent of the user’s locale isolating most,
if not all, of the locale-specific information in Resources.

This allows designers to develop cartridges that can:

be easily localized, or translated, into different languages
handle multiple locales at once
be easily modified later to support even more locales

Typically resource items of this type are used in action message of validation rules,
though it can also be used in any formula code. The action message in Designer
defines the message associated with the exception that is thrown when a validation
fails. Since this exception’s message is likely to be user visible, it needs to be
presented in a language and format that the user understands. Designher has good
support for this technique of externalizing locale specific resource, internationalizing
them by supporting multiple locales and presenting them in localized form at
runtime.

-

ORACLE' | Zbea

In many cases these messages are interspersed with values that are available only
at runtime. For example, if you want to specify an action message that indicates an
error in price value for a specified currency, it will be as follows:

"The amount value " + price + " for the currency " + currency + " has more than the
expected number of digits"

Instead of one message string, we now have three parts. In general, it is not a good
idea to internationalize such fragments for two reasons.

You have to externalize more number of strings (3 instead of 1)

In another language, you may express the message completely differently. It
does not make sense to translate the fragments.

The Format() function provides a means to produce concatenated messages in
language-neutral way. Use this to construct messages to be displayed for end users.
The Format() function takes a set of parameters, formats them and then inserts the
formatted strings into the pattern at the appropriate places.

Format(INVALID_PRICE, currency, price);
Here the message pattern INVALID_PRICE is defined as a resource as given below:

The amount value {1} for the currency {0} has more than the expected number
of digits

H T T 4 @ ill |Chinese [China) v

Resource Name Type Walue
% INWALID_PRICE String TR T SR R ST, T YRRHAE, FOYsEl
4 CURRENCIES String

The message contains placeholders (zero based number), the value for which will be
provided at runtime. The placeholders are substituted with the parameters provided
to the Format() function. The placeholder {0} is substituted with first parameter
(after the pattern), {1} with the second and so on.

The support for externalizing messages from the formula, along with simplicity of
Format() function makes it easy to internationalize user visible error messages.

-

ORACLE | #bea

2] =7l wersion="1.0" encoding="UTF&" 7=
L | <TransformException=
<Type=TransformException<Type>
“Messagex TR T2 I ME ECEEET12 257, 2—YRRFHER. 7OV 4k
“Mlessage=
<ErorCode=E1</ErmorCode>
<S5 everity=ermarl S averity>=
<Cascadablextrue</Cascadablex
<FieldMame=Frice</FieldMame=
=FieldID=Price=/FieldID=
<iTransfarmE=ception>

See Also:

Adding a Message

Customizing Locales

Entering Locale Specific Message Pattern

Internationalization

Internationalization is the process of designing an application so that it can be
adapted to various languages and regions without engineering changes. Sometimes
the term internationalization is abbreviated as i18n, because there are 18 letters
between the first "i"" and the last "n."

An internationalized program has the following characteristics:

With the addition of localization data, the same executable can run in multiple
locales.

Textual elements, such as status messages and error messages, are not hard
coded in the program. Instead they are stored outside and retrieved dynamically.

Culturally-dependent data, such as dates and currencies, appear in formats that
conform to the end user's region and language.

It can be localized quickly.

See Also:
Messages

Locales

On the Designer platform, a locale is an identifier for a particular combination of
language and region and its variant. The runtime has a concept of default locale. This
locale is derived based on the configuration of the operating system in which it is
running. You can also customize it by starting the runtime with the appropriate

-

ORACLE' | Zbea

command line arguments. For instance, to change the default locale, in case of Java
runtime, you can start the VM with the following additional properties.

Java —Duser . language=fr —Duser.country=cn —Duser.variant=Quebec ..
The above command sets the default locale to French Canadian.

The language code and the country code used are 1SO defined two letter codes.

As mentioned earlier, when you localize a message, the message that is used at the
runtime is based on the default locale. If a message value is not specified for the
default locale, it tries to use the message specified by stripping off the variant
(French Canadian). If it still can’t find a message, it strips off the country part and
uses the message defined for the language (French). If it again fails, it uses the
message defined for the ‘Default’ locale. That is, for a resource item representing a
message, the appropriate value is searched in the following order of locale:

1. Language + Country + Variant
2. Language + Country

3. Language

4. Default

See Also:

Internationalization

-

ORACLE' | Zbea

Resource Group

Often you would find that you want to define a set of related constants. For example,
you may want to define the valid values for ‘Order Status’ as a separate set of
constants.

Valid values for OrdStatus:

0 = New
1 = Partially filled
2 = Filled

3 = Done for day
4 = Canceled

E = Pending Replace (e.g. result of Order Cancel/Replace Request)

You need to come up with names for these constants. To avoid name clashes, it is
very common to prefix the constant’s name with group’s name. So the constant’s
name would be ORDER_STATUS_NEW etc. Since this is a very common case,
Designer supports a way to categorize such constants under a group. The group
should have a unique name and each of the constants under it should have unique
name within the group. It is okay for constants within the group to have the same as
a top level constant or a constant under a different group.

Thus the main benefit of groups is that you get a different namespace to define your
constants. In that sense they are similar to enums in Java and C++. The other
benefit is that while viewing the constants in Resource Ul, you can easily skip over
groups of constants that you are not interested in (by collapsing the group).

_-.‘* ORDER_STATUS Section
& Mew Character 0
& Partially filled Characker 1
4 Filled Character 2
4 Done for day Character 3
4 Canceled Character 4

To access a constant defined under a group you need to use the dot notation. In
above example, you should use ORDER_STATUS.New.

See Also:

Adding Resource Group

2%

ORACLE | %bea

Resource Item
Using a Resource

Working with Resources

This first step in using Resources is to create the Resources node. The Resources Ul
shown below is used to manage locales and resource items including locale specific
messages.

2

@D{r @ uj_||DeFau|t ""’|

I:H Resource Mame ” Type || List || Value || Descrption |
& MEW _ORDER Character D The arder received iz a
@ CAMCEL_ORDER Character O |c This is a cancel order,
& ORDER_TYPES Character W M.C Allowed order types,
& InwalidorderTypatMsg String [1Inwalid erder type L0k,

After creating the Resources node, you can add, edit and remove resource groups
and resource items. You can also add/remove locales supported in the cartridge and
localize your messages.

See Also:

Adding Resources

Adding Resource Group

Adding a Constant Resource Item
Deleting Resource Items

Arranging Resource Items

Customizing Locales

Entering Locale Specific Message Pattern

Adding Resources
Follow the steps given below to create the Resources node:
1. Select the cartridge node.

2. Select the Add Item > Add Resources menu item from its shortcut menu.

iy

S
ORACLE | %bea

E, Purchase O—t
® i1 add Ttern b () Mew Folder ...
@ Purcha
@ Extermnd @ New Referance ... @ Mew Internal Mez=zage ...
£ 49 Mew External Message ...
|: | Exte Werify Integrity
& vali Path R i Mew Mapping ...
. @ Add Rerources
Properies
= £# Mew Function

The Resources design element will be added as a child node of the cartridge node.

See Also:

Working with Resources
Using a Resource

Adding Resource Group

Follow the steps given below to add a new resource group:

1. Click on the m icon in the Resources Ul toolbar.
A new row is added in the Resources table for the resource group.

Resources @

‘@ D ﬁ @ uj_||DefauIt v|

|:||_Resuurce Name || Type || List || ¥alue || Descripton |
[Myaroup | section

2. Enter the name of the resource group in the ‘Resource Name’ column.
3. Enter the description of the resource group in the ‘Description’ column.

Once you have added a resource group, you can easily add new resource items to

that group by first selecting the resource group row and then clicking on the @ icon.

See Also:

Adding a Simple Constant
Adding a List Type Constant
Adding a Message

Adding a Constant Resource Item

-

ORACLE' | Zbea

Designer supports two types of constant resource items: simple constants and list
type constants. The following sections explain the steps required to add resource
items of these types.

Adding a Simple Constant

Follow the steps given below to add a new simple constant resource item:

1.

7.

Select the ‘Default’ item from the ‘Active Locale’ drop down list in the
Resources Ul toolbar, if it is not already selected.

Click on the La icon in the Resources Ul.
Enter the name of the resource item in the ‘Resource Name’ column.

Select the Designer type of the resource item from the drop down list displayed
in the ‘Type’ column.

Specify the value associated with that resource name in the ‘Value’ column.

It should be noted that the value should correspond to the type of the resource
item. Otherwise an error is thrown during validation.

Enter the description of the resource in the ‘Description’ column.

Adding a List Type Constant

Follow the steps given below to add a new list type resource item:

1.

Select the ‘Default’ item from the ‘Active Locale’ drop down list in the
Resources Ul toolbar, if it is not already selected.

Click on the LE icon in the Resources Ul.
Enter the name of the resource item in the ‘Resource Name’ column.

Select the Designer type of the resource item from the drop down list displayed
in the ‘Type’ column.

Select the ‘List’ check box.

Specify the set of values associated with that resource name in ‘Value’ column.

-

ORACLE' | Zbea

7. The Comma character should be used to separate values in the list. It should be
noted that each value should correspond to the type of the resource item.
Otherwise an error is thrown during validation.

8. Enter the description of the resource in the ‘Description’ column.

See Also:

Adding a Message
Using a Resource

Adding a Message

A message resource item is used for externalizing error messages or user visible
texts. Once added, a message can be localized for the locales supported in the
cartridge.

Follow the steps given below to add a new message type resource item:

1. Select the ‘Default’ item from the ‘Active Locale’ drop down list in the
Resources Ul toolbar, if it is not already selected.

2. Click on the LE icon in the Resources Ul.
3. Enter the name of the resource item in the ‘Resource Name’ column.

4. Select the ‘String’ as the Designer type of the resource item from the drop down
list displayed in the ‘Type’ column.

5. Enter the message pattern associated with that resource name in ‘Value’ column.

6. Enter the description of the resource in the ‘Description’ column.

See Also:

Customizing Locales

Entering Locale Specific Message Pattern
Adding a Simple Constant

Adding a List Type Constant

Using a Resource

-

ORACLE' | Zbea

Deleting Resource Items
Follow the steps given below to remove a set of resource items.
1. Select the items to be removed.
SHIFT-click in the selection column to select a set of continuous fields and

CTRL-click in the selection column to select any non-continuous field without
affecting the current selection.

2. Click on the ﬁ icon to remove the selected items.

See Also:

Working with Resources

Arranging Resource Items
Follow the steps given below to rearrange a set of resource items.
1. Select the items to be rearranged.
SHIFT-click in the selection column to select a set of continuous fields and

CTRL-click in the selection column to select any non-continuous field without
affecting the current selection.

Click on the Move Selection Up ﬂ icon to move the selected items up by one row
or the Move Selection Down 3 icon to move the selected items down by one row.

See Also:

Working with Resources

Customizing Locales

The user can add/remove locales supported in a cartridge by using the ‘Available
Locales’ dialog. At runtime, the best possible locale is used for displaying the
messages. Once a locale is added, the user can then proceed with localizing
messages in that locale.

-
ORACLE | 4bea
Adding a Locale
Follow the steps given below to add a new locale:

1. Click on the ‘Customize Locales’ icon il present in the Resource Ul toolbar.

The ‘Available Locales’ dialog is displayed.

EI Available Locales
t] __] Language:
Chinesze [(China) e -
Chinese [(Taiwan]
English Country:
Taiwan -
Variant:
(o],4 Cancel

2. Select the language to be supported by from the corresponding drop down list.

3. Select the country to be supported by from the corresponding drop down list, if
required.

4. Enter a variant in the corresponding text box, if required.

5. Now click on the ‘Add Locale’ tool icon [+ to add that locale to the supported
locales list.

Removing Locales

Follow the steps given below to remove a set of locales from the supported locales
list.

1. Click on the ‘Customize Locales’ icon il present in the Resource Ul toolbar.The
‘Available Locales’ dialog is displayed.

2. Select the locales to be removed.

iy

P
. L4 g
ORACLE | %hea
3. SHIFT-click to select a set of continuous items and CTRL-click to select any
non-continuous item without affecting the current selection.

4. Click on the = icon to remove the selected locales.

See Also:

Adding a Message
Entering Locale Specific Message Pattern

Entering Locale Specific Message Pattern

Once a message is added using the ‘Default’ locale, the display text to be used for
other locales supported in cartridge can be entered using the ‘Edit Values’ dialog
displayed by first selecting the message to be localized in the Resources table and

then clicking on the @ icon in the Resources Ul toolbar.

€ Edit Values - INVALID_PRICE

Locale Walue

The amount value 0% for the curency {1} has more than the expeacted nu
English
English [United States)
Chinese [China] TR T RS S G ERE D, - TRREAE. FOdSEd

£ >

ok ” Cancel ” @ Help]

The names of locales supported in that cartridge are listed in the ‘Locale’ column and
the first row displays the display text entered for the ‘Default’ locale. Now the
translator can enter the display text for the other locales in the corresponding rows
of the ‘Value’ column.

See Also:

Messages
Customizing Locales

Using a Resource

Using a Resource

Once a resource item is defined in the Resources Ul, it is available globally. This
means that it can be used from any design element of the cartridge just by using the

-

ORACLE' | Zbea

name of the resource item. As mentioned before the resource name is substituted
with its value wherever it is used.

To use a resource item, for e.g. in a formula, you can select it from the ‘Resources’
tab of the ‘Edit Formula’ dialog and then click on the ‘Insert’ button. If you move the
mouse cursor over the resource name when the CTRL key is depressed, a tool tip will
pop up as shown below with its value and description.

é:'l Edit Formula

|/ Order |/ Resources |/ {i‘) Formula Functions

Field Name Type
& MEW _ORDER Character
& CAMCEL_CORDER Character
& ORDER_TYPES Character
4% InvalidOrderTypeMsg String
Inzert
OrdType == NEW ORDER

char NEW_ORDER = N
The order received iz a new order,

Lm 1, <ol 21

(n]}4 Cancel 9 Help

In the example shown in the above picture, the resource NEW_ORDER is of character
type and it represents the value ‘N’.

See Also:

Working with Resources

Cartridge References

-

ORACLE' | Zbea

In a team environment or in large projects you may want to partition your project
into number of cartridges. For instance, messages can be composed in one (or more)
cartridge, mappings in another. The goals are,

Partitioning the application into number of cartridges, facilitates a team of
developers/analysts to work on the same project. Each person can work on a
separate cartridge, containing a subset of the project.

The cartridges used can be shared across projects. For instance, message
definitions in a project may be useful in some other project as well. You can
separate these messages into a separate cartridge and reference the cartridge in
multiple projects.

When you breakup a project into number of cartridges, you need a way to refer to
one cartridge from another. For instance, to work on mapping, you need the
message definitions; if messages are defined in a separate cartridge, you need a way
to refer to these message definitions from the cartridge in which the mappings are
defined.

Cartridge references allow you to define a reference from one cartridge to another
cartridge so that the entities defined in the referenced cartridge are accessible from
the main cartridge. The entities include message definitions, mappings, function
definitions and resource definitions.

Note

When a cartridge is included in another cartridge, it is marked as read-only. You
cannot edit the entities in the referenced cartridge.

The entities defined in the referenced cartridge are accessible in the main
cartridge. For instance, you can refer to a mapping defined in the included
cartridge

See Also:

Reference Links

Partitioning Your Application
Build Process

Best Practices

Adding Cartridge Reference
Removing Cartridge Reference

Reference Links

-

ORACLE' | Zbea

When you add a cartridge as a reference, Designer records the location of reference
relative to the main cartridge. The contents of the cartridge are not copied into the
main cartridge. The referenced cartridge is displayed as a node under a “References”
folder. You can view the referenced cartridge by expanding this node. The referenced
cartridge is marked as read-only and you cannot modify the entities defined in it.

References have the following implications,

Since Designer stores the relative location of the references, it is important that the
cartridges are located under a common root folder. It is not recommended to have a
cartridge under C:\mycartridges\myapp and refer to another cartridge under
C:\globalcarts\. Such a configuration will tie you to one machine.

When you open the main cartridge, the referenced cartridge must be available at
the same relative location. Otherwise the main cartridge will fail to open.

Concurrent modifications to the referenced cartridges are not immediately visible
in the main cartridge (when it is open). You need to close the main cartridge and
reopen to view the updated reference.

Referenced cartridges are not editable from the main cartridge; this applies even
to its code generation settings. When you build the main cartridge, the
referenced cartridges are built with the default or the saved code generation
settings.

When you add a reference to a cartridge, the cartridges referred to by the

reference are also treated as references to the main cartridge. That is, the

entities available in the indirect references are also available from the main
cartridge.

Cyclic references are not supported. That is, you cannot have a cartridge
referring to itself directly or indirectly. For instance, the cycle, A -> B -> C -> A
is not supported. Though cycles are not allowed, it is okay to refer to the same
cartridge multiple times indirectly.

A.car
|->B->C
|->D->C

In the above case, the Cartridge C is indirectly referenced from A twice. This is
allowed and in many cases is unavoidable. Though C is available twice, the entities

defined in C are included just once.

Designer uses the absolute path of a cartridge to recognize that the cartridges are

-

ORACLE' | Zbea

the same. In the above case, if you had made multiple copies of C.car and included
them separately in B.car and D.car, it would have been treated as a different
cartridge, leading to name collisions and type incompatibilities.

See Also:
Adding Cartridge Reference

Removing Cartridge Reference
Cartridge References

Partitioning Your Application

The way you partition your application has an impact on the way your development
efforts and build process function in a team environment.

There are three main models to consider for partitioning solutions and projects.
1. Single Cartridge

2. Multiple interdependent cartridges
3. Multiple independent cartridges

See Also:

Cartridge References

Single Cartridge

All the entities in the project are defined a single cartridge. The cartridge is self-
contained and has everything it needs to build and execute it. The cartridge, for all
purposes, represents the application.

Advantages

The single cartridge model offers the following advantages:

1. Managing the cartridge in source control, building the cartridge, etc. is all very
simple.

2. ltis ideal for simple projects.
Disadvantages

1. The entities defined in the cartridge cannot be easily reused in another project.
You can copy and paste entities across cartridge, but that may lead to

-

ORACLE | 4bea
maintenance problems.
2. It is difficult for more than one person to work on the application at the same

time. It is possible to diff and merge concurrent changes in the cartridge, but it is
not recommended.

See Also:

Partitioning Your Application

Multiple Interdependent Cartridges

The entities in the project are defined in more than one cartridge. The higher-level
cartridges, which define mappings, depend on cartridges that provide definitions for
the messages and functions. Typically, there is a main cartridge that defines the
application’s main entry point. This cartridge directly or indirectly references all the
cartridges in the application. Building the main cartridge is sufficient to build the
entire application.

Advantages
The multiple interdependent cartridges model offers the following advantages:

1. Referenced cartridges, which contain message definitions, function definitions can
be shared across multiple applications.

2. It is possible for a team of developers/analysts to work on the application. Each
person can work independently on a part of the application, by separating it into
a cartridge.

See Also:

Partitioning Your Application

Multiple Independent Cartridges

The entities in the project are defined in more than one cartridge. These cartridges
are essentially independent of each other. It is possible that some of these cartridges
depend on other cartridges; but they do not depend on each other. That is, there is
no main cartridge, which directly or indirectly references all other cartridge.

To build the application, you need to build all the top-level cartridges separately. The
application now contains all the assemblies of the top-level cartridges and their
dependencies. If these top-level cartridges depend on the same lower level cartridge,

-

ORACLE | 4bea
you need to ensure that assembly of the lower level cartridge is included just once in
the final application.
Advantages

There are no particular advantages in this model. It is similar to multiple
interdependent cartridges model.

-

ORACLE' | Zbea

Disadvantages

The build process is more complicated. You can solve this problem by defining a
main cartridge, which simply references all the top-level cartridges. This would make
similar to multiple interdependent cartridges.

See Also:

Partitioning Your Application

Build Process

When you build a cartridge, all other cartridges added as references to it are
automatically built (if needed). This includes direct and indirect references.

1.

It first computes the set of all cartridges that need to be built. It does this by
starting from the main cartridge and adding its references to a set and so on. If a
cartridge is referenced multiple times directly/indirectly, it occurs just once in the
set.

The build order is identified by using the cartridge dependency information.
Since cyclic dependency between cartridges is not supported, it always leads to a
predictable and safe build order.

The cartridges with a dependency (references) are built only after the references
are built. All the cartridges (including references) are built in exactly the way
they would have been built separately. The outputs produced are also identical.
For instance if the main cartridge reference to cartridge Al, Al is built as part of
the build process of main, and the platform specific assemblies generated for A1
are identical to the case where Al is built separately. Just like the Main.car
references Al.car, Main.assembly will also depend on (refer to) Al.assembly.
That is, dependency relationship between the assemblies will be similar (if not
identical) to the dependency relation between the cartridges.

Main.car -> Main.assembly
Al.car -> Al.assembly
A2.car -> A2.assembly

As an optimization, if the referenced cartridges have already been built and are
up to date, the build process, excludes it from the current build. This can lead to
considerable saving in time.

-

ORACLE' | Zbea

Note:

We have used the term “assembly” to refer to a platform specific package of classes
that we generate. It is Jar in case of Java.

See Also:

Partitioning Your Application
Cartridge References

Executing Cartridge with References

When you build cartridges that refer to other cartridges, it results in number of
assemblies; one for the main cartridge and one each for the referenced cartridges.
This section explains how to execute the generated assemblies in various platforms.

Simulator

You don’t have to do anything special to execute the main cartridge in the Simulator.
When you start the Simulator, it automatically deploys all the assemblies of the main
cartridge as well as the dependent assemblies that were generated while building the
referenced cartridges. In effect, the entities displayed in the Simulator’s drop down
include all the entities that are contained in the main as well as those in referenced
cartridges. This behavior is identical to having a cartridge that is a union of all
cartridges directly or indirectly referenced (contains all the entities defined in the
referenced cartridges). This behavior is the same in the Simulator of all the
platforms.

Java/EJB Platform
Simple Runtime

Add all the Jars that were generated during the build process, including those for the
referenced cartridges in the classpath.

EJB Server

Deploy all the Jars that were generated including those for the referenced cartridges.
All the Jars should be specified as EJB module in the application.xml file. They should
all be available in the application directory.

In the code generation settings, you have an option to generate EAR file. If you have
selected this option, the generated EAR would automatically include all the generated

-

ORACLE' | Zbea

jars (including for references). It will also include dependent runtime libraries that
are used by the generated Jars. In short, the EJB Jar includes all required
dependencies and is ready to be deployed.

See Also:

Cartridge References

Best Practices

1. Each cartridge should always be in a directory of its own. The code generator
creates a working directory under the cartridge directory (such as java), to
generate source files and build to it. Having multiple cartridges in a single
directory would mean that this code generator directory would be shared. This
can lead to a situation where generated files of the second cartridge overwrite
some of the files of the first.

2. If your application contains multiple cartridges, keep all of them under (not
directly) an application folder. Since cartridges point to each other by their
relative location, it would be safe to xcopy (or zip) the entire application folder,
say, to another machine.

AppFolder
I
|--- CarlFolder
I I
| |--- Carl.car
I
|--- Car2Folder

| |--- Car2.car

Other nested configurations are also possible; the key is to have a root folder,
which contains everything. It is not recommended to have a cartridge under
C:\mycartridges\myapp and refer to another cartridge under C:\globalcarts\.
Such a configuration will tie you to one machine.

This directory structure is very important if you want to maintain your cartridges
under source control.

3. The cartridge name should preferably be same as the cartridge file name. By
“name of cartridge” we always mean the name you have specified in the
cartridge and not its file name. It is a good idea to keep these names the same to

-

ORACLE' | Zbea

avoid confusion.

Do not define messages/mappings with same name, either in the same cartridge
or in cartridges that are likely to be used in the same application. At runtime,
these entities can be looked up from a global LookupContext. This means that
any conflict in names can be disastrous. Designer detects such name collisions in
the same cartridge or in referenced cartridges during validation. But, since you
can assemble an application from multiple cartridges, it is your responsibility to
name them uniquely. One solution is to avoid using generic names like
‘NewOrder’; instead use a qualified name like “FIX41NewOrder”.

For applications that require internationalization, it is a good idea to define the
localized messages as resource in a separate cartridge and refer to it from all
other cartridges. That way it becomes simple to add a new language/locale
without changing several application cartridges.

If you have number of functions that are shared by many cartridges, then it is a
good idea to separate the functions into a separate function library cartridge.

Do not define more than one function with same name and same number of
parameters and with similar or conflicting parameter types. For instance defining
functions f(int) and f(Any) can lead to ambiguities. Note that, currently Designer
does not detect this ambiguity and binds to one of these functions.

Unit & Integration testing. The primary goal of unit testing is to take the smallest
piece of testable software in the application, isolate it from the remainder of the
code, and determine whether it behaves exactly as you expect. Each unit is
tested separately before integrating them into modules to test the combined
functionality. In case of Designer, the units are the messages and mappings.
Make sure that you test each message definition separately before you define a
mapping for it. It is possible to test a message definition (in the Simulator as well
as from command line) by passing raw input (say in the form of a file). Record
the outputs of such tests and make sure that output remains consistent after you
make changes to the message definition or upgrade to a new version of Designer.
This same approach must be followed for mappings. Any change in the output
points to a regression in the definition.

Integration testing identifies problems that occur when units are combined. By
using a test plan that requires you to test each unit and ensure the viability of
each before combining units, you know that any errors discovered when
combining units are likely related to the integration itself. This method reduces
the number of possibilities to a far simpler level of analysis.

iy

o
ORACLE | #hea

See Also:

Partitioning Your Application
Adding Cartridge Reference
Removing Cartridge Reference

Adding Cartridge Reference

To add a reference, right-click the Cartridge node and select ‘New Reference’ menu
item from the short-cut menu that appears.

1 Add Ttemn »

@ Mew Refarence ... %
Verify Intagrity
@0 Path b
Properties
Q—E Enpy Crl-C
Paste Chpl-w
E43 Import ... Crl+Shift-T
Fed Export ... Ctrl+Shift-E
A validate Ctrl-L

A file open dialog is displayed where you can select the cartridge file to be included.

é‘l Add Reference

Laak in: [Inuoice w E @

kA
FrF
FrF
i
3 3

[custarmClasses

9 sample

D Invoice, car

Fila narme: |In'.'c|ice.car | | Open

Files of type: |CAR File [.car) - | | Cancel

iy

S
ORACLE | %hea

The selected cartridge is added under a ‘References’ folder as shown below.

Explorer

$ -1 -
Purchase Order
J'P— @ References
b @ fnvercatard

f%)— % Inwoice
% Internal Forrnat
% Proceszzing Rules

% Events Management

% Persistence Designer

% WebForms Designer

5 @ External - ¥ML [Purchase OrderXtML]

@ PurchaseOrder

@ Mapping [Purchase OrderXMLToPurchase Order]
@ Mapping [Purchase OrderTo Purchase OrderXML]

Note that read only nodes are shown with a lock icon overlaid on top of the nodes
icon. The lock indicates that it cannot be modified.

See Also:

Refreshing Cartridge Reference
Removing Cartridge Reference
Best Practices

Cartridge References

Refreshing Cartridge Reference

The ‘Refresh References’ menu item when selected, updates the main cartridge for
the changes made in the reference cartridge. To update a change made in the
reference cartridge, right click the references node and select ‘Refresh References’
menu item.

-

ORACLE | #bea

ExportImport

@ Mew Referance ...

tj';)_ % @ Refreghﬁeferences

Copy Chrl-C
Paste Chrl-y
o[Exte £ Import ... Ctrl+5hife-1
|: 0 B Expart Ctrl+shift-E
@ > Delete

@ () Exte

A validate Ctrl-L

You can refresh a referenced cartridge by following the steps below.
1. Open the reference cartridge and make the changes and save.

2. Open the main cartridge, right click the ‘References’ node and select ‘Refresh
references’ menu item.

The changes made in the reference cartridge will be updated in the main cartridge.
Selecting the ‘Refresh References’ menu item does not affect the mapping or any of
the referenced cartridge nodes usage in the main cartridge.

See Also:

Removing Cartridge Reference
Best Practices
Cartridge References

Removing Cartridge Reference

You can delete top-level references by following the steps given below.

1. Right Click the cartridge node of the top-level reference to be deleted and select
‘Delete’ menu item.

2. Click ‘Yes’ in the delete message box that appears to remove the cartridge
reference.

See Also:

Adding Cartridge Reference
Best Practices
Cartridge References

iy

S
ORACLE | %hea

Fixing Broken References

When you open a cartridge with broken references, Designer allows you to fix them.

Follow the steps given below to fix broken references in the cartridge being opened.

1. For each broken reference, Designer will display the ‘Cartridge Reference Error’
message box and ask you whether you wish to fix it.

Cartridge Reference Error

e Unable to locate reference cartridge at E:hProgram Filesh CustomInputMapping.car.

would vou like to provide an alternate location?

2. If you select the Yes button, it will show you the ‘Resolve Cartridge Reference’
dialog.

EI Resolve Cartridge Reference x|
Look In: |jr'-'1ain - |‘E||@||E§||EE"E:|
[sarnple

D MezsagesAndFlaws. car

File Marne: | |

Filez of Type: | Cartridge Filas (*.car) - |

Jpen || Cancel |

3. Navigate to the directory that contains the cartridge corresponding to the broken
link and select it.

-
ORACLE" | %hea
4. Click the Open button.

5. When all the broken links are fixed, the main cartridge will be opened in the
Designer window.

When you save the cartridge, Designer will save the new locations selected for the
broken references.

See Also:

Best Practices
Cartridge References

Code Generation

Once a cartridge design is completed, it can be generated into platform specific code
based on the specified code generation settings. Currently Designer supports code
generation in Java/EJB platform. The generated code is bundled into components as
specified in the code generation settings. These components can then be deployed
under platform specific Runtime. Once deployed, the Runtime becomes capable of
performing transformations defined by that cartridge.

Note

Your Designer installation may not contain support for all these platforms. What is
available to you depends on your license agreement with Oracle Corporation.

See Also:

Selecting the Default Platform
Designer User Interface

Cartridge

Message

Message Mapping

Formula

Function Definition

Resources

Cartridge References

Simulator

Working With Cartridge Designer

Code Generation Settings Dialog

-

ORACLE' | Zbea

The ‘Code Generation Settings’ dialog allows you to specify the information used in
generating the platform specific components. This dialog for the default platform can
be invoked by selecting the Build > Code Generation Settings menu item or by
clicking on the Code Generation Settings button % in the main window toolbar.

See the section Java/EJB Code Generation Settings Dialog for information on settings
used for generating Java/EJB components.

Java/EJB Code Generation Settings Dialog

The settings to be used for generating Java/EJB components is categorized into the
following tabs:

General Tab

Code Generation Tab
Language Bindings Tab
External Sources Tab
Target Platform Tab

Each tab consists of a set of related settings. You should select a tab and then
change the settings given in that tab as required. When finished, click on the OK
button to accept the changes made to the settings. Clicking on the Cancel button will
reject the changes made. Please note that you should save the cartridge to
permanently save the changes.

See Also:

Generating a Cartridge
Deploying a Cartridge
Code Generation

-

ORACLE' | Zbea

General Tab (JavaZEJB)

This tab allows you to specify compilation settings that are not specific to the
cartridge but to the current instance of Designer.

é;'l JavasEJB Code Generation Settings

r General |/ Code Generaton |/ Language Bindings |/ External Sources |/ Target Platform |

General Compilation Setlings

These settings are used to compile and build the generated lava files. The settings are
not specific to the Cartridge but to thiz instance of Volante Designer, Selact 'Dafault’ ta
uze internal Java compiler (recomrmendead].

Java Carmpilar

|Defau|t -

Cormpiler Cptions

|-J-me256m -

Additional Clazs Path (Glabal)
|${iaua.hnme}f|ib!r‘t.jar -

Additional Clazz Path [(Cartridge)

[pebug Infa

(a4 Cancel E} Help

Java Compiler

Here you specify the Java compiler to be used for compiling the Java source files,
both the generated and the external Java files.

Select the ‘Default’ option to use the internal Java compiler (recommended).
Compiler Options

This is used to specify the extra compiler options.

-

ORACLE' | Zbea

Additional Class Path (Global)

Occasionally you may need to specify additional classpath to compile your external
sources, during code generation. This is needed if your source files depend on some
other custom or third party Jars. This option is available at global level (Designer
instance) and also on a per cartridge basis. This classpath setting is applicable for all
cartridges. The other classpath setting ‘Additional Class Path (Cartridge)’ is
applicable only for the cartridge in which it is specified.

Please note that specifying Jar files in the ‘Additional Class Path’ setting makes them
available only to Designer, but not to the runtime. See the Additional Modules
section for adding a Jar file as a library file of the generated EAR file.

Additional Class Path (Cartridge)

This is used to specify the path of the Jar files to be included in the classpath during
compilation of the Java source files. This classpath setting is applicable only for the
cartridge in which it is specified. The other classpath setting ‘Additional Class Path
(Global)’ is applicable for all cartridges.

Please note that specifying Jar files in the ‘Additional Class Path’ setting makes them
available only to Designer, but not to the runtime. See the Additional Modules
section for adding a Jar file as a library file of the generated EAR file.

For both the classpaths you can use the following path macros,

${designer.nome} — refers to the Designer’'s home path

${cartridge.home} — refers to cartridge’s directory

${java-system-property} — you can use any of the Java’s System property such as
java.home

e.g ${cartridge.home}\lib\myapp.jar

See Also:

Code Generation Tab

Language Bindings Tab

External Sources Tab

Target Platform Tab

Code Generation Settings Dialog

Code Generation Tab (Java/EJB)

-

ORACLE' | Zbea

This tab allows you to specify settings related to the generated components.

é;'l Java/EJB Code Generation Settings

|/ General |/ Code Generaton |/ Language Bindings |/ External Sources r Target Platform |

Code Generaton

Settings for each node

Code Generation Settings Far: Caode Generation Setting=
Invoice Property Mame ¥alue
Q InvoiceBT Max Clasz Length 150
@ Exterral - Universal [Involcermsg] Java Packaga Mama corm.transformn. cartridga. 26c

@ Mapping [InvoiceMsgTolnvoiceBT]

External Classes

(o],4 Cancel a Help

The left pane of this dialog displays design elements of the cartridge in a tree
structure and the right pane displays a list of properties corresponding to the design
element selected on the left pane. The properties displayed for a design element
differ based on its type.

Please note that if the cartridge contains references, the referenced cartridges and
their child elements are displayed in the tree structure on the left pane. Selecting a
design element of a referenced cartridge will display its properties on the right pane,
but they are read only. So you cannot change the properties of a referenced
cartridge from the main cartridge that references to it. The cartridge used as a
reference should be opened separately to make changes to its code generation
settings.

Java Package Name

Here you specify the Java package name to be used for the generated Java source
files.

Jar Name

This property is displayed only for the design elements such as messages, message
mappings and persistence designer, which will be generated into components. It is
used to specify the name of the Jar file into which the component generated for the
current design element will be bundled.

-

ORACLE' | Zbea

Please note that you can specify the same Jar name for multiple design elements or
use a different Jar name for each of the design elements. In case of using the same
Jar name for multiple design elements, the components generated for these design
elements will be bundled into a single Jar file.

By default, this property is set as ‘%c.jar’. Here, %c represents the cartridge name;
that is, the name of the root design element in the cartridge. This is just a sensible
default and you can always change the Jar name of each component as required.

Manifest Entries

This property is displayed only for the design elements, which will be generated into
components. Here you specify Jar files to be included in the runtime class path of the
generated component.

Please note that Jar file names specified in this property are used in generating the
manifest file of the generated component and it does not make the Jar files available
to the runtime. See the Additional Modules section for adding a Jar file as a library
file of the generated EAR file.

Max Class Length

This is a cartridge level setting that applies to all the design elements of the
cartridge. It allows you to specify the maximum length of the generated Java class
names. The name of classes exceeding this limit will be mangled to a shorter name.

The default value of this property is 150 and the upper limit is 255.
Data Source

This property is displayed only for the design elements, which will be generated into
components. Here you specify the data source reference name used in the
corresponding design element. The reference name should be bound to the actual
server resource. See the section Resource References for more information on
specifying server specific bindings.

Unique Key Table

This property is specific to persistence designer design element. It is used to specify
the name of the table that will be used for generating unique key values.

-

ORACLE' | Zbea

:EIJava!EJB Code Generation Settings

Language Bindings r External Sources I/ Target Platform

General |/ Code Generation |

Code Generation

Settings for each node

Code Generstion Settings For: i | Gede Generation Settings
Inuoice Property Name value
é)_@ Referancas Data Source tranzformdb

fb_ MaszsagesandMappings Unique Key Table |UniquekeySenTable

<> InvoiceBT

L n Persistence Designer
@ External - Universal [InvoiceMsg]
@ Mapping [InvoiceMsgTolnvoiceBT]

Extarmal Clazzes

Ok Cancel ﬂ Help

Adding External Java Classes

You can specify external Java class files (not Java source files) to be bundled with
the component generated for a design element by following the steps given below.

You can include external Java classes to the code generation settings of a cartridge
in two other ways:

You can bundle the required Java class files into a Jar file and add it to the
manifest entry of the generated component.

You can add Java source files (instead of Java class files) to the code generation
settings of the cartridge, which will be compiled and the resultant class files will

be bundled with the generated component. See the section Adding External Java
Source Files for more information.

See the section Language Bindings Tab for information on how to bind class name
references used in a cartridge to the actual Java classes.

-
ORACLE | 4bea
Steps to add external Java class files to the code generation settings of a cartridge:
1. Compile the Java source files into Java class files.

It is recommended that the compiled Java class files are available under a child
directory of the cartridge directory.

2. In the ‘Code Generation’ tab of the ‘Java/EJB Code Generation Settings’ dialog,
select the required design element in the tree structure displayed on left pane.

3. Click on the ‘External Classes’ button at the bottom of the right pane.

4. The ‘External Classes’ dialog will be displayed.

é:'l External Clazses

External Classes

Class Files
E:'ClearingDemol custormClasses\ CancelTriggerHandler. class Add
EivClearingDemat custormnClasses\ CrndECSDTriggerHandlar class
Rermowve
EvClearingDemat custarnClaszzses\ CrndMettingTriggerHandler. class
Ei'ClearingDemat custormnClaszses\ECQDTriggerHandler class
EvClearingDemat custarnClaszzes\ReplaceTriggerHandlaer. class

E:"ClearingDemal custormClasses\ MettingTriggerHandler. class

(n],4 Cancel a Help

5. Click on the ‘Add’ button.

6. The file Open dialog will be displayed.

-

ORACLE' | Zbea

£} Open B3
Laok In: | [customnclasses w E @ & |ﬁ@

D CancelTriggerHandler. class D MettingTriggerHandler.class
D CancelTriggerHandlerjava D MettingTriggerHandler.java

D CrndECDTriggerHandlar class D ReplaceTriggerHandler.class
D CrmdECQDTriggerHandlarjava D FeplaceTriggerHandler.java
D CrndMettingTriggerHandler. class

D CrndMettingTriggerHandlerjava

D cormpile.bat

D ESDTriggerHandler.class

D ECQDTriggerHandlerjava

File Marne: MettingTriggerHandler. class

Files of Type: | All Files -

Open Cancel

7. Navigate to the directory that contains the required Java class files and select
them.

8. Click the ‘Open’ button.

The files will be included in the ‘Class Files’ list of the ‘External Classes’ dialog.

Note:

To remove class files from the ‘Class Files’ list, select them from the list and then
click on the ‘Remove’ button of the ‘External Classes’ dialog.

See Also:

General Tab

Language Bindings Tab

External Sources Tab (Java/EJB)
Target Platform Tab

Code Generation Settings Dialog

-

ORACLE' | Zbea

Language Bindings Tab (Java/EJB)

This tab allows you to bind class name references used in a cartridge to actual Java
classes. These classes are used for customizing some processing such as validation
of a field, mapping between two messages, etc. These classes, along with the helper
classes if any, should be included to the code generation settings of the cartridge
before you proceed with code generation and deployment.

You can include external Java classes to the code generation settings of a cartridge
in three ways:

You can specify the Java class files (not Java source files) to be included in the
generated component. See the section Adding External Java Classes for more
information.

You can bundle the required Java class files into a Jar file and add it to the
manifest entry of the generated component.

You can add Java source files (not Java class files) to the code generation
settings of the cartridge, which will be compiled and the resultant class files will
be bundled with the generated component. See the section Adding External Java
Source Files for more information.

Please note that class name references can be specified for the following items:

Validation rule of an internal/external message field
Message mapping of all types

Processing of an internal message

Processing of an internal message field

All the class name references used in the cartridge are listed under the ‘Reference’
column of this tab. For each of these references, you have to specify the actual Java
class name in the ‘Java Class’ column of the corresponding row. By default the
reference name itself is displayed as the Java class name. You have to change it to
the actual Java class name along with the package name prefix.

-

ORACLE' | Zbea

ava/EJB Code Generation Settings

Language Bindings r External Sources r Target Platform

General r Code Generation |

Language Bindings

Here you specify concrete Java clazs bindings for all the extarnal
references vou have made in the cartridge, By default, the
reference narme itself is treated as the Java class name.

Java Language Mappings
Reference Jawa Class

PersistenceTrigger com.tplus.transfarmn, runtimme, PersistenceTrigger

RouterTrigger corm.tplus transfarm. runtirne, RouterTrigger
SurmmaryCale SurmmaryCale
(a4 Cancel a Help
See Also:

General Tab

Code Generation Tab

External Sources Tab

Target Platform Tab

Code Generation Settings Dialog

External Sources Tab (Java/EJB)

This tab allows you to add external Java source files (not Java class files) to the code
generation settings of a cartridge so that they are compiled and the resultant class
files are bundled with the generated component.

You can also specify a directory containing Java source files so that they are
compiled and the resultant class files are bundled with the generated component.

You can include external Java classes to the code generation settings of a cartridge
in two other ways:

You can specify the Java class files (instead of Java source files) to be included in
the generated component. See the section Adding External Java Classes for more
information.

-

ORACLE' | Zbea

You can bundle the required Java class files into a Jar file and add it to the
manifest entry of the generated component.

See the section Language Bindings Tab for information on how to bind class name
references used in a cartridge to the actual Java classes.

Adding External Java Source Files

Follow the steps given below to add external Java source files to the code generation
settings of a cartridge:

1. In the ‘External Sources’ tab of the ‘Java/EJB Code Generation Settings’ dialog,
click on the *Add Files' L8 button.

The ‘Add Source Files’ dialog will be displayed.

EI Add Source Files

Look In: | [custormnclaszes w E @ ca EE E:::

D CancelTriggerHandlerjava

D CrndECSDTriggerHandlarjava
D CrndMettingTriggerHandlerjava
D ECDTriggerHandlarjava

D MettingTriggerHandlerjava

D ReplaceTriggerHandlar.java

File Marme: ReplaceTriggerHandlerjava

Filez of Type: |[Jawa Source Files (*.java) 4

Open Cancel

2. Navigate to the directory that contains the required Java source files and select
them.

3. Itis recommended that the Java source files are available under a child directory
of the cartridge.

4. Click the ‘Open’ button.

2%

ORACLE | %bea

5. The files will be included to the external source files list.

El.lava!E.lB Code Generation Settings

Language Bindings |/ External Sources |/ Target Platformn

General I/ Code Generation |

External Sources

Specify a list of external zaurce files [java extenszions only), Theze files
will be cormpiled along with the generated source files, vou can alzo mark
one or more of these files as 'Main', in which case batch file(s) are
generated to execute them,

]

| Main ” Mame || Path
] CancelTriggerHandlerjava Ei'ClearingDermaolcustormiClasses
] CrndECDTriggerHandlar.java E:'ClearingDermalcustormiClassas
] CrndMettingTriggerHandlerjava B\ ClearingDarmol custormClasses
] ECDTriggerHandlerjava E:ClearingDemotcustornClasses
] MettingTriggerHandlerjava Ei'ClearingDermaolcustormiClasses
] ReplaceTriggerHandlerjava E:'ClearingDermalcustormiClassas

(a4 || Cancel || aHelp |

6. Select the ‘Main’ check box for one or more source files to mark them as
application class files.

For each file marked as an application class file, a batch file that invokes the
corresponding application class will be generated.

-

ORACLE' | Zbea

Adding Directories

You can add a directory to the code generation settings of a cartridge so that the
source/resource files under that directory are included in the code generation
process. In case of source files, they are compiled and the class files are bundled
with the generated components. In case of resource file, they are simply bundled
with the generated components.

Follow the steps given below to add directories containing source/resource files to
the code generation settings of a cartridge:

1. In the ‘External Sources’ tab of the ‘Java/EJB Code Generation Settings’ dialog,
click on the *Add Files' L8 button.

2. The ‘Add Source Files’ dialog will be displayed.

::E;'I Add Source Files/Directories

Look It | [CustornClaszses b E @ ;] EE|E::

1 Jawaske
File Mame: Javasrc
Filas of Type: |[Java Source Files (*.java) b

Open Cancel
3. Navigate to the directory that contains the required source/resource files and
select it.

4. It is recommended that the source/resource files are available under a child
directory of the cartridge.

5. Click the ‘Open’ button.

The directory will be included to the external sources list.

2%

ORACLE | %bea

éll Java,/EJB Code Generation Settings 5'

r General r Code Generation r Language Bindings r External Sources r Target Platform |

External Sources

Specify a list of external zaurce files (Jjava extenszions only) or directories, Thesze files
will be compiled along with the generated source files, vou can also mark one or more
of these filez as 'Main', in which case batch file(s] are generated to execute therm.

MHame | | Path

IE:"LCu5tu:urnInunke\@ustumclagseﬂjal.lasrc

(] || Cancel || aHelp |

Note:
To remove files/directories from the external sources list, select them from the list
and then click on the ‘Remove Selected Files’ E button.

See Also:

General Tab

Code Generation Tab

Language Bindings Tab

Target Platform Tab

Code Generation Settings Dialog

Target Platform Tab (Java/Z/EJB)

This tab allows you to specify the target server platforms for the generated
components. You can also specify server specific deployment information for the
generated EJB components. It also provides options for generating EJB application
(EAR) and for adding additional modules to the generated EAR.

2%

ORACLE | %hea

t;'l Java/EJB Code Generation Settings i x|

|/ General |/ Code Generation |/ Language Bindings |/ Extermnal Sources |/ Target Platform |_

Target Platforms

You can generate code far any or all of the platfarms below, The generated jars can run
under all the selected platfarms. Select the appropriate checkboxies).

Generate Jar for Service Bus
weblogic Event Server
Enterprize Java Beans

Generate EIR Application [EAR]

EJB Interface
EJB Platforms

Local
wteblogic
Fernote
Additional Modules Resource References
(o4 | | Cancel || 9 Help |

Generate Jar for ALSB

Select this check box, if you require a merged jar (that includes cartridge Jar(s),
referenced cartridge Jar(s) and required standard Jars) for deployment under ALSB.

Enterprise Java Bean

Select this check box, if you intend to deploy the generated components into
application servers. Selecting this option will generate EJB components.

Generate EJB Application (EAR)

Select this check box, if you want to generate an EJB application by bundling the
generated components and the modules specified in the Additional Modules dialog.

-

ORACLE' | Zbea

EJB Platforms

This allows you to generate server specific deployment descriptors for the generated
EJB components so that you can straight away deploy them in the server. Select a
check box corresponding to a server so that the generated EJB component is bundled
with the deployment descriptor for that server platform.

Additional Modules

The ‘Additional Modules’ dialog displayed when clicking on the ‘Additional Modules’
link is used for packaging additional modules (in addition to the generated EJB
components) into the generated EAR. You can add web, EJB, application client and
library modules and the corresponding tags are generated in the application
deployment descriptor (application.xml) of the generated EAR.

Follow the steps given below to add a module to the list of additional modules to be
packaged into the generated EAR.

1. In the ‘Target Platform’ tab of the ‘Java/EJB Code Generation Settings’ dialog,
click on the ‘Additional Modules’ link.

2. The ‘Additional Modules’ dialog will be displayed.

E)l Additional Modules

B

Hame Path Type Property
swiftresources.jar E:'Repairappirmodules JawA LIB
swittrt.jar EVRepairdppirmodules Java_LIB
=il jar E:'Repairappirmodules JawA LIB
webformrepair.war E'Repairtppirmodules WAR webformrepair
MTZ04.jar E:'"Repairapptrmodules EJR

PurchaszeOrdar.jar E'Repairbdppimodules EJB
UserManagernentjar E:YRepairdppirmodules EJB

(o] 4 Cancel ﬂ Help

3. Click on the button La

The File Open dialog will be displayed.

-

ORACLE | %bea
4. Navigate to the directory that contains the required module file and select the
file.
5. Click the ‘Open’ button.
The module file will be included to the additional modules list.

6. Select the type of the module from the drop down list displayed in the ‘Type’
column.

7. If you have added a web module, you can specify the context root of the web
application in the ‘Property’ column.

Note:
To remove module files from the additional modules list, select them from the list
and then click on the E button.

Resource References

The ‘Resource References’ dialog displayed when clicking on the ‘Resource
References’ link is used to bind the resource reference names used in the cartridge
to server specific resource names. See the Binding Server Resources section for
more information.

See Also:

General Tab

Code Generation Tab

Language Bindings Tab

External Sources Tab

Code Generation Settings Dialog

Binding Server Resources

Entities defined in a cartridge refer to server resources. These references are
specified in the ejb-jar.xml file during code generation. Before or during deployment,
you need to map these resource references to server specific resource names. This
procedure has the following limitations,

The mapping/binding tools are server specific. Worse still, the open source
servers do not provide such a tool (or it is very bad). You have to manually edit
the deployment descriptor XML (which is zipped in ejb jar, which in turn is zipped
in an EAR).

-

ORACLE | 4bea
Mapping is error prone, because servers do not properly report errors when you
miss a mapping.

It is repetitive. Whenever you make a change to the cartridge and rebuild, the
mappings are lost and you start all over again.

This feature enables providing this information in Cartridge itself. Though this
information is specific to the server instance and should ideally be part of
deployment process, it is very convenient to make it part of the build process for the
following reasons:

You can specify resource mapping independently for each server supported.

The resource mapping information is saved along with cartridge and converted to
server specific deployment descriptors every time you build.

You do not have to learn about the deployment descriptors of each server. The
configuration screen is simple and same for all the servers.

To specify the bindings,

Select the ‘Target Platform’ tab in the code generation settings dialog.

Click on the ‘Resource References’ link. The dialog shown below is displayed. All
the resources that are referenced from the cartridge are displayed. You need to
fill the last column (Binding), for each of the servers you are interested in.

E;'I Resource Aeferences

Resource Mapping

Specify the zerver bindings for the resources that are accessed from the
cartridge, These settings are optional and can be averridden during deployment.

rﬁemnimu rJBuss |/Driun rWEbLugic rWEhSPher\e |

Entity Type Reference Binding
ReadProperiesFlawMDBE Saource Queue queueflbossQueuaeRegln

(o] 4 Cancel a Help

-

ORACLE' | Zbea

Note:

This feature helps in the process of binding Cartridge references to server
resources. It does not help you in creating those resources (e.g DataSource) in
the server. You have to create the resources as you normally do; using server
specific tools.

You can always change the bindings you specified in the Cartridge later during
deployment using server specific procedure. That is, this feature can simply be
used to specify some defaults, which you override later.

See Also:

Code Generation Settings Dialog
Selecting the Default Platform
Generating a Cartridge
Deploying a Cartridge

Platform

Here you specify the target platform for generated components. Currently the
supported platforms are Microsoft Visual C++ 6.0 under Windows, Microsoft Visual
C++ 2003 under Windows, HP, Linux and Tandem.

Make Utility

Here you specify the utility (for e.g. nmake under Windows) to be used for the build
process. You can select the utility from the file Open dialog that is displayed when
clicking on the ellipsis button.

If you are using nmake utility under Windows, make sure that the vcvars32.bat file is
executed before invoking the nmake utility.

Make Options

Here you specify the extra options to be passed on to the make utility.

See Also:
Code Generation Settings Dialog

-

ORACLE | #bea

Selecting the Default Platform

If you are going to work on a single platform/language, you can set the same as the
default platform by selecting “Select Default Platform...” menu item from the Build
menu. If you have set a Default Platform, then you can use the shortcut key F7 for
generating the cartridge and the shortcut key F5 invoking Simulator.

File Edit Search Wiew Eui|d|IDD|S Fun Source Control Help

O = = k % Walidate Crl-L
) validate All CHrl-T
ﬂ;: Generate Cartridge (JavafEIR) F7

MT52 4 75 Code Generation Settings (Javal/EIR] ...
@ External - SWII Selact Default Platfarm ...
Q Company Detai Java/EIR k

In the Default Platform dialog box that appears, you can check the radio-button.

Automatically, the selected platform is set as default in the Build menu as seen in
the following picture.

File Edit Search Wiew guildl Tools Run Source Contro Help

N = = # validate Stl-L Javafere w [@) [}?
%) validate All Cirl-T

B Explorer

£
$ - &
ReadIMSPrope
L % ReadProper Select Default Platform ...

ﬁﬂgenerate Cartridge [JavalEJR) F7
_. Code Generation Settings (JavafEIB) ...

B2 1: Explorer

‘Properties

JauvalEJIR]

™

Now, you can use the short-cut key F7 to generate cartridge and the short-cut key
F5 to open Simulator.

| Grenerate Cartridge (JTava/EIE) F7 | |s.31.3.;1-, Default Platfarm

Walidate A1l CeltT} @ W 0 [joyopere v

1404

pnde Generation Settings (JavaEIH) . | |J ava/BEIB Bimulator F5

-

ORACLE' | Zbea

You can also use the ‘Select Default Platform’ drop down list available in the main
window toolbar to select the default platform. Other common functionalities that can
be easily accessed from the main window toolbar include validating the cartridge,
generating the cartridge, invoking the Code Generation Settings dialog and invoking
the Simulator application.

See Also:

Code Generation Settings Dialog
Binding Server Resources
Generating a Cartridge
Deploying a Cartridge

Code Generation

Generating a Cartridge

. . . . i T
The Build > Generate Cartridge menu item or the Generate Cartridge button i in
the main window toolbar can be used for generating platform specific components
representing the transformations modeled by a cartridge.

See Also:

Code Generation Settings Dialog
Binding Server Resources
Selecting the Default Platform
Deploying a Cartridge

Code Generation

Deploying a Cartridge

Once a cartridge is generated for a specific platform, the generated components can
be deployed under the corresponding Runtime. Once deployed, the Runtime becomes
capable of performing transformations defined by that cartridge.

Selecting the Tools = Deployer menu item brings up a submenu that displays
platform specific Runtime. Selecting one of them brings up the platform specific
Deploy/Undeploy dialog box that can be used to deploy the newly generated

components and/or undeploy previously deployed components.

See Also:

Code Generation Settings Dialog
Binding Server Resources
Selecting the Default Platform
Generating a Cartridge

-

ORACLE' | Zbea

Code Generation

Simulator

The Cartridge Simulator application allows to test the internal/external message,
message mapping generated for a cartridge easily without the additional overheads
of starting the application servers, deploying the bean jars into the application
servers. It can also be used to test persistence and querying of internal messages
using different database servers. See the section Testing a Cartridge with Persistence
Support for more information.

Designer provides the Simulator application for the following platform: Java/EJB. The
Simulator for the current platform can be invoked from the Run menu of Designer as
shown in the following picture. The Designer main window toolbar also contains an
icon for easy access of the Simulator application.

Foun | Source Control Help

;5 JavafEJE Simulator FS

'&Tnggle Breakpoint ... F%

@‘Jiew Debug Window Alt-2

As Simulator is integrated with Designer, cartridges can be tested directly from
Designer itself. The advantage is that, it is enough to launch Simulator only once,
making it easier to test the cartridges then and there whenever a change is made.

Note

To launch Simulator in a platform supported by Designer, the following steps should
be fulfilled:
Create a new cartridge or open an existing cartridge in Designer.
Generate code for the cartridge in that platform implementation.
Configuring Simulator. This is not needed unless you want to change the default
settings of Simulator.

The features described in this document apply to Java Simulator. Where it is
applicable to a particular platform, it is explicitly mentioned.

See Also:

Simulator User Interface
Testing with Simulator

iy

';"
ORACLE | %hea

Miscellaneous Features
Persistence in Simulator (Java/EJB)

Test Data Generation
Frequently Asked Questions

2%

ORACLE' | %hea

Simulator User Interface

The simulator Ul by default looks like the one shown below.

FA ModifyMessageTest.car [C:AProgram Files\Wolante948Aug1 3\Cartridges\MessageFlow\.. \ModifyMe. .. [lj[=]

File Edit Wiew Option Test Toal: Help SIMULARTOR

= T ‘:-} = Crelimit i ‘ B ®|[ﬁparse and Walidate "’|
Scott,l000,35,10000ck <Prml rersion="1.0" shcoding="UTF-8" 2>
<External0bhject:-
<Header >
~fHeader>-
-Data-
~Records:-
~Hame>3cott=fHame-
<EmpId-=-1000-</EmpId-
<Juge=3 5 fhge>=
<Sal>10000</5al> -
| Input l Query | Default
=]
]
u
o
n
W
n
3

IlLn 1, Call

The components of Simulator Ul are listed below.
Menu Bar
Tool Bar

Input Pane

Output Pane
Message Window

Trace Window

Simulator Menu Bar

The Simulator menu bar is shown below and it provides all actions related to
Simulator.

File Edit “iew ©Options Test Tools Help

2%

ORACLE | %bea

-

ORACLE' | Zbea

File Menu
Open Input From File ... Opens an input data file into the Input pane.
selecting this menu item opens the data file into
the currently selected text area corresponding to
a ‘Binary’ type input variable.
Save Input ... Saves the content of the Input pane into a file.
Save Output ... Saves the content of the OQutput pane into a file.
Recent Input Files Displays a list of the most recently used files.
Exit Closes the current Simulator window.
Edit Menu

Find (Ctrl+F) Displays the Find dialog, which is used to search for
the specified text in the Input/Output pane.

Find Next (F3) Resumes the search operation.
Clear Input Clears the content of Input pane.

Clear Output Clears the content of Qutput pane.

View Menu

Message (Alt+2) Toggles display of the Message window.

Trace (Alt+3) Toggles display of the Trace window.

Options Menu

Cascade Exceptions Enables/disables cascading of exceptions when
executing an external message.

Enable Tracing Enables/disables generation of trace messages when
executing a mapping.

-

ORACLE' | Zbea

Test Menu
Generate Test Case Generates a single test case for the selected
internal/external message in the Input pane of
Simulator.

Generate Test Data Set Generates a set of test data files for the selected
internal/external message in the specified directory.

Run Test Data Set Allows the user to execute test data files stored in the
specified directory.

Define DataGen Spec Allows the user to define data generation specification
for the elements of the required data format. Test
cases can be generated based on that specification.

Tools Menu

Submit (F5) Starts processing of the input based on the currently
selected message mapping or message.

Redeploy Cartridge Redeploys the jars generated for the currently open
cartridge. This has to be done whenever the cartridge is
modified and code is generated. This also needs to be
done whenever you change the data source reference

mapping.

Diff Input/Output Allows the user to compare the contents in Input and
Output panes.

Resource Mapping Allows the user to map the data source reference name
used in a cartridge to one of the data sources configured
in Simulator and thereby allows the user to connect to
different database servers.

Allows the user to create schema based on the database
table design of a Persistence Designer.

Create Schema

Data Entry Allows the user to generate an internal message test case
just by entering data for the fields of that internal
message without worrying about XML syntax.

ORACLE

Help Menu

Contents

About Simulator ...

See Also:

]

Zhea

This is a link to the Simulator help.

Displays the version and copyright information about
Simulator.

Simulator User Interface

Simulator Tool Bar

The tool bar contains the following icons for accessing frequently used operations.

(h

A

e

u:_ﬂ;:

= MTSZ24 -

» (F5)

Opens an input data file into the Input pane.
Saves the content of the Input pane into a file.

Displays the Find dialog, which is used to search for
the specified text in the Input/Output pane.

Clears the content of both Input and Output panes.

Redeploys the jars generated for the currently open
cartridge. This has to be done whenever the cartridge
is modified and code is generated. This also needs to
be done whenever you change the data source
reference mapping.

The user can select the message, message mapping or
to be executed from the ‘Select Message to execute’
drop down list. It lists all the internal/external
messages, message mappings available in the
cartridge.

The Submit button starts processing the input based
on the currently selected message mapping or
message.

The Debug button starts debugging for the currently
selected message mapping or message.

-

ORACLE' | Zbea

) Parse hd The drop down list with output options is displayed
only when an internal/external message is selected for
execution. The user can select one of the output

options: ‘Parse’, ‘Parse and Validate’ or ‘Parse and
Write’

See Also:

Simulator User Interface
Simulator Input-Output Options

Input Pane

The Input pane has two tabs - Input and Query. The Input tab is where the data is
fed either by typing directly or by opening a data file using the File = Open Input
from File... menu item. The Query tab is used to execute queries that interact with
the database directly. Refer Invoking Queries to know more about Query tab.

The Input pane is laid out as a form with text field and/or text area input elements
based on the type of the corresponding input variable. For a simple type input
variable, a text box is shown to accept the input and for a ‘Binary’ type input
variable, a text area is shown to accept the input.

salary (2000

inputdata
EAFFLCr
TP ce
Zhor
LS000ce

Llnput LQuenr |

The Input pane shown in the above picture that accepts two input arguments:
‘salary’ and ‘inputdata’. While the ‘salary’ input variable is of ‘Integer’ type, the
‘inputdata’ variable is of ‘Binary’ type. To enter input into a text area (corresponding
to a ‘Binary’ type input variable) by opening a data file, first select that input area

and then open the input data file by using the File = Open Input from File... menu
item.

iy

S
ORACLE | %hea

The shortcut menu of the Input pane allows the user to cut (Ctrl+X), copy (Ctrl+C)
and paste (Ctrl+V) its content. The Copy as HTML menu item creates a copy of the
content currently selected in the Input pane using HTML syntax and it can be saved
into an HTML file. The Find and Find Next menu items allow to search for text
within the Input pane.

<2xm] version="1i.0" epcoding="UTF-3"7=0r
<purchaselrder orderDate="19299-10-20">cr
<gshipTo country="US">-cr
<name>ilice 3mith<fnames-cr
<=treet’- to-cr
<city=C it
<state: “opY
<zip>1234 F2) Copy as HTML
<fshipTo>=cr
<hillTo count 4% Find

~name-de s
“street-

dEl Find Hext

Show Line Mumbers

<city>Cam

L]

e
Llnput LQuenr |

I

The Show Line Numbers menu item when selected displays the content of input
pane with line numbers.

2%

ORACLE | %hea

1 22xm] version="1.0" encoding="TITF-8"2r[*]
2 <purchaseOrder orderDate="1999-10-20">cr|
3 <shipTo country="U5">=cr

4 <mame=ilice Smith<fnamescr

3 <street>]23 Manle Street<istreet]::
6 <citysCal o Cut u
7 <gtate- Copy

8 <zip=l23 Copy as HTML

9 <fshipToxcr Paste

10 <hillTo cound 4 Find

H “mame-de A Find Mext

1z <street: ia

12 <city=Cal Hide Line Mumbers

L]

I

Llnput LQuenr |

The Hide Line Numbers menu item when selected removes the line numbers from
the input pane.

See Also:

Simulator User Interface
Invoking Queries

Output Pane

The Output pane has a Default tab to which the output generated by executing a
message or message mapping is written by default. When multiple output variables
is executed, a separate tab is created in the Output pane to write the value of each
output variable as shown in the following picture.

CLNTOl,Z0050515,ITMOL,11,100.50,01105. 50, ITH0Z,15,500.00,07500.00,

[Default l Raw Outl LRawDutZ LExceptiunMessage

iy

S
ORACLE | %hea

The user can close a particular output tab or all the output tabs except the Default
tab by selecting the corresponding menu item from the shortcut menu as shown in
the following picture.

CLNTOl,Z0050515,ITMOL,11,100.50,01105. 50, ITHO0Z,15,500_00,07500.00,

Add Qutput Channel

Close All
[pefault l RawOutl | ~|qca Raw%utl nMessage

The user can add new output channels apart from the default one of the Output
pane.

The Output pane also allows the user to cut (Ctrl+X), copy (Ctrl+C) and paste
(Ctrl+V) its content. The Copy as HTML menu item creates a copy of the content
currently selected in the Output pane using HTML syntax and it can be saved into an
HTML file. The Find and Find Next menu items allow you to search for text within
the Output pane. The Show Line Numbers menu item when selected displays the
content of output pane with line numbers. When the content of output pane is
present with line numbers, the Hide Line Numbers menu item can be selected to
remove the line numbers.

See Also:

Simulator User Interface

Simulator Message Window

The Message window displays any error generated on executing the input data. The
user can toggle the display of the Message window either by selecting the View >
Message menu item or by pressing the shortcut key Alt-2.

[x][=7=ml verzsion="1.0" encoding="UTF-8" ?=

|| =TransfarmException>
<Type=TransformException</Type>
<Message>Field 'Price' cannot be null. <fMessage=
<ErrorCode>SRT129</ErrorZode=
<Severityrfatal<fSeverity=
=Cascadable=true=fCaszcadable=
<FieldMarmne=Itern. Price</FieldMamea>

</TransformException>

-

ORACLE' | Zbea

The user can copy the content of the Message window by first selecting the content
and then selecting the ‘Copy’ menu item from the shortcut menu.

[2]| =7xml verzion="1.0" encoding="UTF-8" 7=
Q| =TransformException=
=TypexTransformException<,/Typa>

<Meszage>Field 'Price' cannot be null, <fM =
<ErrorCode=SRT129</ErrorZoda> Copy
=Severity>fatal<fSeverity> Clear%
=i ascadable=true=fCaszcadable=

<FieldMarme=Itern, Price</FicldMarme=>
=/ TransformException=

Message

The ‘Clear’ menu item of the shortcut menu clears the current content of the
Message window.

See Also:

Simulator User Interface

Trace Window

The Trace window allows the user to view the trace messages generated during the
execution. The user can toggle the display of the Trace window either by selecting
the View > Trace menu item or by pressing the shortcut key Alt-3.

[x] [volante.runtirme. message. InvaiceIn] - parse? Invoiceln

O |[volante.runtime.meszage. Invaoiceln] - validate? Invoiceln
[wolante. runtime.validation. InvoiceIn] - Yalidation Rule E1
[valante. runtirme, validation, InvaiceIn] - Validation Rule E1
[valante.runtime. mapping. InvaicelnTolnvoiceCut] - mapping InvoicelnTolnvaiceDut
[wolante. runtime.mapping. InvaiceInTolnvoiceDut] - Executing mapping for ClientID
[valante.runtirme. mapping. InvaicelnTolnvoiceQut] - Executing rnapping for InvoiceDate
[valante.runtime. mapping. InvoicelnTolnvoiceCut] - Executing mapping for Records[0]. IternID
[wolante. runtime.mapping. InvaiceInTolnvoiceut] - Executing mapping for Records[0]. Gty
[valante.runtime. mapping.InvaicelnTolnvoiceCut] - Executing mapping for Records[0]. Price
[valante.runtimme. mapping. InvaicelnTolnvoiceCut] - Executing mapping for Records[0]. Cost
[valante.runtime.mapping. InvoicelnTolnvoiceCut] - Executing rnapping for Records[1]. TtermID
[valante.runtime.mapping.InvoicelnTolnvoiceCut] - Executing rapping for Records[1]. Gty
[woelante.runtime.mapping. InvaiceInTolnvoiceut] - Executing mapping for Records[1].Price
[valante. runtirme. mapping. InvaicelnTolnvoiceQut] - Executing rnapping for Records[1]. Cost

The shortcut menu of the Trace window provides for copying and clearing of its
content.

See Also:

Simulator User Interface

-

ORACLE' | Zbea

Log of SQL Statements

SQL statements that are executed at runtime are logged in the “runtime.log” present
in the log directory of Designer home. For e.g. while executing a query, addition or
removal of records from/into a database, are logged in the ‘runtime.log’. This can
also be viewed in the simulator ‘Trace’ window as follows.

[wolante.runtime, persistence, InvoicePM] - [datasource=transforrndb]Executing insert into Itern (Invoice_FK, IternID, Qty, Price]
[wolante.runtime. messageflow. PersistInCalurnnsFlaw] - Executing activity PersiztInColurmnzFlow, Serializel(Serialize Invaice]
[wolante. rurtime. message. Invoice] - serialize Invoice

[wolante.rurtime. messageflow. PersistInCalurnnsFlaw] - Executing activity PersistInColurmnzFlow, Stopl(Stop)
[wolante.runtime.messageflow, PersiztInColumnzFlow] - Mezsage Flow PerzistInColumnsFlow completed

[wolante, rurtimetrn] - Cormmiting transaction Transaction [Sloballd=Revathiff0]

[wolante.runtime, persistence. InvaicePM] - [datasource=transfarmmdb]Executing SELECT Invaice.Inwoice_PK.Inwoice InvaiceDate,]
[volante. runtime, persistence, InvoicePM] - [datasource=transforrndb]Executing SELECT Inwoice, Invoice_PK,Invoice InvoiceDate,]

See Also:

Testing with Simulator

Testing with Simulator

Follow the steps below to test an entity defined in a cartridge using the Simulator.
These steps apply for testing messages, mappings

1. Create or open the cartridge and generate code for it.
2. Launch Simulator from the Build menu.

The Simulator in turn starts the Server and the database server. (These servers
are launched when Simulator is started for the first time after Designer is started.
These servers are shutdown only when Designer is stopped.) The settings of
these servers can be configured using the Simulator configuration file. See the
section Configuring Simulator for further information. On successful launching of
these servers, Simulator displays all message mappings and messages in the
cartridge.

-

ORACLE | #bea

= | ey o ‘=;‘T} o UpdateSalary - ;I_;
Loup EENIEEE

KAFEL,7777,25,5000,

zalary (5000

inputdata
EAFEL 7777,25, 5000

L Input L Query | I L Default Luutpuh:lata |

3. Select the message or message mapping to be executed.

4. In case of a message, select the processing that needs to be done. This can be
one of ‘Parse’, ‘Parse and Validate’ and ‘Parse and Write’.

5. Enter the data into the Input pane or open an input test file using the File >
Open Input from File menu item.

In case you have multiple inputs, the Input pane is laid out as a form with text
field and/or text area input elements based on the type of the corresponding
input variable. For a simple type input variable, a text box is used to accept the
input and for a ‘Binary’ type input variable, a text area is used to accept the
input. To enter input into a text area by opening a data file, first select that input
area and then open the input data file by using the File = Open Input from
File... menu item.

6. Click the Submit button to start execution.

7. The output of the transformation and/or errors generated is displayed in the
Output pane and the Message window respectively.

8. If the input/output contains binary data you can use the Binary Viewer to view
data in hex binary.

Note

Once Simulator is launched and if any change is made in the opened cartridge or
another cartridge is opened, generate code and redeploy the cartridge to update
Simulator.

For each cartridge that you opened, you can open a Simulator window to test
that cartridge independently. A Simulator instance is attached to corresponding

-

ORACLE' | Zbea

Designer window. Closing the Designer window also closes the associated
Simulator Window.

See Also:
Simulator Input-Output Options

Simulator User Interface
Cartridge Simulator

Simulator Input-Output Options

The following table shows the possible transformations that can be done using
Simulator and related notes in each case.

Input Output Transformation Comments
External Parse - Input is format specific.
Message

Output is an XML representation
of the Input.

No validation takes place.

External Parse and - Input is format specific.

Message Validate
Output is an XML representation

of the Input.

The validations specified in the
Validation Rules node of the
external message are carried
out.

External Parse and Write - Input is format specific.

Message
Output is format specific.

The validations specified in the
Validation Rules node of the
external message are carried
out.

Internal Parse - Input should be an XML
Message representation of NO.

Output is an XML representation

ORACLE

Internal
Message

Internal
Message

-

Zhea

NOXMLOut

Output Message

NO -> Output

of the NO.

Requires some trigger (router)
at Internal Message.

Input should be an XML
representation of NO.

Output is an XML representation
of NO.

Processing (including
validations) specified in
processing rules are carried out.

Requires some trigger (router)
at Internal Message.

Input should be an XML
representation of NO.

Output is format specific.

Processing (including
validations) specified in
Processing Rules node and
output validations are carried
out.

-

ORACLE' | Zbea

Input/Output for 2.x features (deprecated)

Input Message Parse -

Input Message = NOXMLOut Input-=>NO
Input Message Output Message Input -> NO
NO -> Output
See Also:

Testing with Simulator

Input is format specific.

Output is an XML representation
of the Input.

No validation/processing takes
place.

Requires some trigger (router)
at Internal Message.

Input is format specific.

Output is an XML representation
of NO.

Input validations and processing
(including validations) specified
in Processing Rules node are
carried out.

Requires some trigger (router)
at Internal Message.

Input is format specific.
Output is format specific.

Input message validations,
processing of internal message,
internal message validations
and output message validations
are carried out.

-

ORACLE' | Zbea

Running Test Data Set

The Run Test Data Set dialog allows the user to execute test data files stored in the
specified directory.

Follow the steps given below to execute a set of test data files.
1. Select the Test > Run Test Data Set menu item.
The Run Test Data Set dialog will be shown.

FABun Test Data Set
Fun Fram Direckory CiYProgram Files\Designer

Include SubDirectorias [

Dat File Pattarn *,. dat

Verbosze [#]

Save Dutput E

Dutput Directary CiYProgram Files\Designer output
Stop On Errar lj

Save Error IE

Errar Diractary D:YProgram Files\Designed errar

Mo of Test Cases to execute

i Al

i Maximum Of |50 Test Cases

O Cancel g Help

2. In the Run From Directory field, specify the root directory that contains the test
data files to be executed.

-

ORACLE' | Zbea

10.

11.

12.

You can click on the ellipsis button to bring up the ‘File Open’ dialog box and
select the required directory.

Select the Include SubDirectories check box, if you want the subdirectories
under the test root directory to be included in the test run.

In the Dat File Pattern field, specify the pattern of the file names to be included
in the test run.

Select the Verbose check box, if you want the success or failure message needs
to be displayed in the Message window as soon as a file is run.

Select the Save Output check box, if you want to save the output of the files
that have passed.

Select the directory into which the output files should be saved.

If the Save Output check box is selected, the ellipsis button besides the Output
Directory field is enabled so that you can select the output directory.

It should be noted that if the test data set contains subdirectories, the same
subdirectory structure will be created under the specified output diectory and the
output of the valid files under the subdirectories will be saved under the
corresponding subdirectories.

Select the Stop On Error check box, if you want to stop the test run as soon as
the failure of a test file.

Select the Save Error check box, if you want to save the error message of the
files that have failed.

Select the directory into which the error files should be saved.

If the Save Error check box is selected, the ellipsis button besisdes the Error
Directory field is enabled so that you can select the error directory.

It should be noted that if the test data set contains subdirectories, the same
subdirectory structure will be created under the specified error diectory and the
error message of the invalid files under the subdirectories will be saved under the
corresponding subdirectories.

In the No of Test Cases to execute section, select the All option to run all test
files. On the other hand, you can specify the maximum number of test cases to
be executed in the corresponding text field.

-

ORACLE' | Zbea

13. If you have opted to run the maximum number of test cases, you can select
between whether to select test files in random order or to select test files in the
normal file order by selecting the appropriate option button.

14.Click on the OK button to start running the test data files. The following progress
message box will be displayed.
FA Executing Test cazes ._.

Executing B SwiftData\MTS98\MTS98-mst2005_all-(0). dat

| |

29 of 110, 0 errar(s]

15. You can click on the Cancel button on this message box to abruptly stop running
the test data set.

See Also:

Defining Data Generation Specification
Generating a Test Case

Generating Test Data Set

Entering Test Data for Internal Messages
Testing with Simulator

Configuring Simulator (Java/EJB)

The simulator.xml file under the <installation dir>\config\simulator directory is
used to configure the Java/EJB Simulator.

Given below is the sample content of simulator.xml file:

]

ORACLE' | Zbea

<?xml version="1.0"?>
<simulator>
<server port='1606"
datasources="${designer.home}/config/simulator/data-sources.xml” />
<launch name="hsqldb" application="java" wait="false" shutdown=""true'>
<arg value="-classpath" />
<arg value="${designer.home}/lib/ext/hsqldb.jar"” />
<arg value="org.hsqldb.Server" />
<arg value="-port" />
<arg value="1608" />
<arg value='"-database" />
<arg value=""${designer._home}/config/simulator/database/db" />
</launch>
</simulator>
Here, the ‘server’ tag is used to define the settings of Server that Simulator
launches.
The ‘port’ attribute of the ‘server’ tag specifies the port to be used by Server.
The ‘datasources’ attribute of the ‘server’ tag specifies the file that contains the
definitions of the data sources to be used by Server.
The ‘launch’ tag is used to specify the applications to be launched for Simulator.
These applications are launched when Simulator is started for the first time.
Here, it is used to specify the HSQL database server to be launched when
Simulator is started.
The *application’ attribute of the ‘launch’ tag specifies the command to be
executed.
The ‘arg’ tag represents the argument/option to be passed to that command. Its
‘value’ attribute specifies the actual value. Each option should be specified in a
separate ‘arg’ tag and should be in the correct order.

See Also:

Testing with Simulator

Simulator Options

The Cascade Exceptions and Enable Tracing menu items available under the Options
menu of Simulator provide features that help in testing and debugging of cartridges.

See Also:

Testing with Simulator

-

ORACLE' | Zbea

Generate Trace Messages

The user can enable generation of trace messages during execution by checking the
Options > Enable Tracing menu item. You can then view the trace messages in
the Trace window by selecting the View -> Trace menu item. The Trace window
displays the execution log or trace.

[x|| [volante runtirne k] - Starting new transaction Transaction [Globalld=Revathiff 28]

o [volante.runtime.rmessageflow.serialize] - Message Flow serialize started
[volante.runtime.messageflow.serialize] - Executing activity serialize, Startl(Start)
[valante.runtimme.messageflow.serialize] - Executing activity serialize.Parsel(Parzel)
[valante.runtime. message.delimit] - parse delimit
[wolante. runtime.messageflow.serialize] - Executing activity serialize.Serializel(Serialize)
[volante.runtimme.message. delimit] - serialize delimit

ﬁ [valante.runtimme.messageflow.serialize] - Executing activity serialize.ParseZ(Parzaz)

Right clicking inside the ‘Trace’ window displays a pop up with menu items Clear,
Copy and Go to Definition. The ‘Clear’ menu item when selected, clears the
content in the ‘Trace’ window and the ‘Copy’ menu item when selected copies the
selected text.

Selecting ‘Go To Definition’” menu from any line in ‘Trace’ window, navigates to the
location (an activity in an Internal/External message or a mapping) specified in the
line. For example, consider selecting ‘Go To Definition’ menu from the following line.

See Also:

Testing with Simulator

Cascade Exceptions

The user can enable cascading of exceptions during execution of an external
message by checking the Options > Cascade Exceptions menu item. When this
option is enabled, Simulator will proceed with processing the external message even
when there are exceptions. These exceptions are listed in the Message window.
When this option is disabled by unchecking the Options > Cascade Exceptions
menu item, the Simulator will stop processing the external message as soon as it
comes across an exception.

See Also:

Testing with Simulator

-

ORACLE' | Zbea

Miscellaneous Features

These features make working with Simulator more easier/interactive.

Feature Description
Syntax Highlighting The test data files are syntax highlighted in
Simulator.
Viewing of Non-printable Non-printable (binary) characters are shown as #
Characters followed by its code value.
Search Text This feature allows you to search for a specific text

in the Input/Output pane.

Compare Input and Output This feature allows you to compare the contents in
Input and Output pane.

Adding Output Channels This feature allows you to add a new output
channel to the Output pane.

Auto Completion This feature allows you to search for a message to
be executed.

Recent Selection This feature allows you to view the recently
executed messages.

Binary Mode This feature allows you to view contents of Input
file and generated output in binary mode

Syntax Highlighting (Data)

In Simulator, the test data files are syntax highlighted. This works for SWIFT, XML
FIX . For example, in case of SWIFT, Tags and Qualifiers are displayed in different
colors as could be seen from the following picture.

iy

o
ORACLE | %hea

{l:FDlBCITITHHAKKXDDlZDDDlZS}{Z:DlDDDE4DDlD{
t16R: GENLCor

TZ0C: SEMEFfFEEIvGldOEpd por
TG WARY o

SSESC: i PREDFF323107262401020r
S99 i SETTFF31l1lcr
93E: i TOSEfFZSdcor

93 :TOREFFZ30cr
:BBBzzTDDEIISDé;r

t16R: LINECr

1A LINEFFUPCor

SEOC: i POOLFFDIS0ac?NNDRG SHcor
t168: LINECr

t16R: LINECr

The ‘cr’ at the end of the line is visible. The ‘If’ is not shown because the line feed
results in the next character moving to the next line (hence need not be shown
explicitly, to avoid noise).

See Also:

Testing with Simulator

Viewing of Non-printable Characters

Non-printable (binary) characters are shown as # followed by its code value.

$178§1E8CH25E, FOFOF0S
fHel10g0gz048 20482041

To type a non-printable character, type the ASCII number (e.g 25) with CTRL
pressed. CTRL key should be released only after you complete the number.

You can type a character by giving its code value with CTRL pressed. CTRL key
should be released only after you complete the number. For eg., to type ‘A’ you
have to press CTRL and type 65.

See Also:

Testing with Simulator

-

ORACLE' | Zbea

Search Text

To search for a specific text in the Input/Output pane, refer the following steps:

1. Keep the cursor in the required pane (Input/Output).
2. Select Edit > Find menu item.
The Find dialog is shown.

FAFind
Find what |LIMK
Search Options
[] Match caze
[#] Match ward

D Fegular Expression

el 4 % Cancel

3. Type the required text in the ‘Find What’ text box.

4. Select the required search options.
Match Case
You can select this option if you want to do case-sensitive search.
Match Word
You can select this option if you want to search for an exact word. For eg., if
you want to search for a word, say, “SEC”. If you have not selected this
option, then the word “SECTION” if found will also be highlighted as it has
“SEC” in it.
Regular Expression
You can also give Regular Expression in the “Find What” text box.

5. Click the OK button to start searching for the specified text.

6. If found, the specified text will be highlighted as shown in the following picture.

2%

ORACLE' | %hea

[1:FOlPASOBEEOAXC{OZ30023803 {2 05100200041023L
:16R: GENLCr

cZ20C: i SEMEFFfO1Z43cr

236 REGTFCODUcr

:16R: LINECr
:lSB::LINRFleSABC.891lf3456?89123456?8912:r
CZ0C: POOLFFPoylk S9Z17f43cr

:1e3: LINEcC:

:16R: STATcr

28D : RERCF FPACECE

:16R: RERSCcr

:24B: : PACKFAZC4ESGEFTOGOC

t1e3: REASCE

t1le3:8TATCr

1163 GENLcr
—H{SI{HMAC-FS1lC44 53 {CHE ECO055B5ZB40{ THG- 1}

7. Select Edit = Find Next menu item to search for the next occurrence of the
specified text.

For this, you can alternately use the shortcut key F3 or the Find Next menu
item from the shortcut menu of the Input/Output pane.

See Also:

Testing with Simulator

Compare Input and Output

You can compare the contents in Input and Output pane using the Tools >
Diff Input/Output menu item.

TDDH| Help
[subrmit FS

-=:—} Redeploy Cartridge

Ditf InpukfSutput DS
Reszource Mapping

Create Schema

Crata Entry

In the following picture there is a difference between the contents in the ‘inputdata
text area of the Input pane and Output pane in the 4" line.

iy

S
ORACLE | %hea

Sk W2 2

= é"u? ModifySalaryFlow * | [

FAFELCr
sahrylSDDD 9777

ZE
inputdata =

2000cx
EaFFEAcr
Ao
ZEcr
EOodcr

-Llnput LQuew |

LDefault Lnutputdata |

When you select Tools > Diff Input/Output menu item, you will get a window
where the difference is highlighted as shown below.

£ Diff - Input/0utput

If the contents in the Input and Output panes are identical, you will get a message

dialog as under:

FAMessage

e Mo differences found
O é

See Also:

Testing with Simulator

-

ORACLE' | Zbea

Adding Output Channels

In some cases, an application might have multiple channels of output, or the user
might have to send output through a particular channel (not the default one). In
such cases, an error message similar to the one given below will be shown during
execution.

<TransformException>

<Type>TransformException</Type>

<Message>Unexpected error</Message>

<Severity>1</Severity>

<Cascadable>false</Cascadable>

<Error-Phase>Internal Message</Error-Phase>

<StackTrace>

null
Type=TransformException, Message=Unable to lookup RMI output device
"SecondOut®, ErrorCode=null, Severity=1, Cascadable=false

In this case, the output is sent through the output channel (output.device)
‘SecondOut’, but Simulator is not configured to receive it. Hence the error.

The user can add new output channels apart from the default one.

Follow the steps given below to add an Output Channel. The terms output channel
and output device are used interchangeably. They refer to the same entity.

1. Right click besides the Default tab in the Output pane to popup the shortcut
menu with the Add Output Channel menu item.

Output

—LMI Add Cutput Channel l_

2. Select that menu item to bring the New Channel dialog.

3. Enter the output device name in the Channel Name text box and click OK.

-

ORACLE' | Zbea

Mew Channel
Channel Mame
device, GRNCut:ML

(a].4 Cancel

A new tab with the given channel name appears in the Qutput pane of Simulator as
shown below. Now if the input is given and the Submit button is clicked, the above
error disappears and the corresponding output appears in the newly added output
channel.

See Also:

Testing with Simulator

Auto Completion

‘Select Message to execute’ combo lists all the internal/external messages, mappings
available in the cartridge. User can select the message, mapping to be executed.
‘Select Message to execute’ combo is editable.

Auto completion provides an easy way to select the messages, mappings to be
executed when there are more nodes in the cartridge.

Also, the matching is case insensitive.

See Also:

Testing with Simulator

Recent Selection

Simulator provides an option to view recently executed messages, mappings

Recently executed messages, mappings will be highlighted with a different
background in the ‘Select Messages to execute’ Combo box as shown below.

Note:

Recent selection is restricted up to five. Only last five executed messages, mappings
will be highlighted.

iy

S
ORACLE | %hea

See Also:

Testing with Simulator

Binary Mode

Simulator provides an option to view the input and output in Binary mode. This is
useful if the input/output uses non-text data.

To view input/output in Binary mode,

1. Right click on the editor and select “Binary Mode” from the context menu.
Alternatively you can press F4 to switch modes.

#170#150C#2550, #0#0#0# 1 M RadonCdan NSO ALI0AMIOA4S 0]

£ cut
Copy
Capy as HTML

L Paste

i Find
del Find Mext

t Show Line Mumbers

Binary Mode F4

2. The mode switches to binary as shown below.

oooooood B2 SE 43 FF ZC 00 00 00 &80 3F CD CC CC CC CC DC .. .C.%0.uu
Q0000010 SE 40 43 65 6C 6C 6F 00 CC CC CC CC E1 74 14 AF ~[Hello...... Bo o
ooooooz=a 47 E1 00 40 5% aF 72 aC a4 00 CC CC CC CC G..[@World.....

The Binary mode viewer has three blocks. The left most block displays the file

offset in hex. The central block displays the file’s context as hex binary. The right

most block displays the file’s contents as text. In this block non-printable
characters are displayed as dot.

3. To toggle back to text mode, right click and select “Text Mode” from the context

menu or press F4.

-

ORACLE' | Zbea

Persistence in Simulator (JavaZ/EJB)

Simulator allows to test persistence and querying of internal messages using
different database servers by providing for mapping the data source reference name
used in a cartridge to one of the data sources configured in Simulator.

For testing persistence support in Simulator, the user needs to

1. Define the data sources to be available in Simulator.

2. Map the data source reference name used in a cartridge to one of the data
sources available in Simulator.

3. Create the database schema.

Defining Data Sources

To connect to a database server from Simulator, configure the data source in the
datasource.xml file under the <installation dir>\config\database directory as
shown in the following example. This is the same configuration that is used by the
SQL Tools (such as Create schema). Using these tools you can change the
connection parameters such as url and the changes will be reflected in the
Simulator’s data sources when you redeploy the application in Simulator.

<?xml version="1.0"?>
<data-sources default-data-source="simulatordb' >
<data-source
connection-driver="oracle.jdbc.driver.OracleDriver"
url="jdbc:oracle:thin:©200.200.200.10:1521:0orcl"
username="krishnan"
password="krishnan"
class=""com.volante.component.server . jdbc.ManagedJDBCDriverConnectionPool""
dialect="oracle"
location=""oracledb"
name=""oracledb"
/>

</data-sources>

In the above configuration, each <data-source> tag defines a connection to a
separate database server.

-

ORACLE' | Zbea

The following table describes the connection attributes used in the <data-source>
tag.

Class Name of the connection pool class. Always use
com.volante.component.server.jdbc.ManagedJDBCDriverCon
nectionPool

name Name of the data source.

location Name of the server resource.

connection- | JDBC driver class. The driver Jars should have been placed in
driver <installdir=/lib/ext.

url URL to be passed to the driver.

username User name to be used to get a connection to the database.

password Password to connect to the database (for the specified username).

See Also:

Resource Reference Mapping
Testing a Cartridge with Persistence Support

Resource Reference Mapping

By mapping the data source reference name used in a cartridge to one of the data
sources configured in Simulator, the user can connect to the database server
identified by that data source configuration.

This section assumes that invoicedb is defined as the data source reference name
using the ‘Java/EJB Code Generation Settings’ dialog as shown in the following
picture.

-

ORACLE' | Zbea

é;'l JavafEJB Code Generation Settings

r General |/ Code Generaton |/ Language Bindings |/ External Sources |/ Target Platform |

Code Generaton

Settings for each node

Code Generation Settings For: Code Generation Settings
PersistInColurmn=sandCueries Property MName Value
<;> IRwEiEs Data Source Invoicedh
L ﬂ Persistence Designer Unique Key Table UniquekeyGenTable

@ External - ASCII Delimited [Invaic
@ Mapping [InvoiceCSWTolnvoice]

Extarnal Classes

(]34 Cancel ﬂ Help

Follow the steps given below to map the data source reference to one of the
Simulator data sources.

1. Select the Tools > Resource Mapping menu item from the Simulator menu
bar. The ‘Resource Reference Mapping’ dialog is shown.

2. Click on the LE icon to add a new row, if required.

3. Enter/edit the data source reference name used in the cartridge in the ‘Data
source’ column.

-

ORACLE' | Zbea

FA Rezource Reference Mapping
Data source Server Reference
|in'.'n:icedb| zimulatordb
(a4 Cancel a Help

4. Now select the data source to be connected (for persistence and querying of
internal messages) from the ‘Server Reference’ drop down list.

FAResource Reference Mapping
EI=IR AR
Data source Server Reference
invoicedb simulatordb w

oracledb
rmyzsqldb %
h=qgldb
dbzdhb
simulatordb
rmzzqldb

(al}4 Cancel a Help

5. Click on the OK button to complete data source reference mapping.

6. Click OK to close the message box that prompts you to redeploy the cartridge.

ORACLE' | Zbea
Meszage

e You need to redeploy for the mapping to take effect

Ok

A
7. Click on the ‘Redeploy Cartridge’ icon <" in the Simulator toolbar to start
redeploying the cartridge.

See Also:

Defining Data Sources
Testing a Cartridge with Persistence Support

Creating Schema

To persist internal messages, the schema should have been created. The XML and
the SQL schema files are automatically generated during code generation under
<Cartridge directory>\java directory, if the cartridge has a Persistence
Designer node added. The schema should be created afresh whenever any change
is made to the database table design.

Follow the steps given below to create schema based on the database table design of
a Persistence Designer.

1. Select Tools > Create Schema menu item in Simulator.

2. In the ‘Connection Information’ dialog that appears, select the required data
source.

3. Other fields required for making the database connection are populated from the
Simulator data source configuration. Modify them as required and click the Next
button.

-

ORACLE' | Zbea

FA Connection Information
Cata Source simmulatordb b
Driver Class org.hsqldb.jdbchriver
Connection URL jdbecihzgldbihzqlifflocalhost: 1605
Uzernare za
Passward

Cusztorn Properties |hsglilocation=simulatordb;name=simulatardt

4 Mext [Cancel 9 Help

4. In the ‘Select SQL Schema’ dialog that appears, select the schema file to be
executed and click the Finish button. This dialog automatically populates the
schema file available under the cartridge's code generation directory, which is the
required schema file under the normal circumstances.

FASelect SOL Schema

Specifythe SGL Schema file that is to be executed in the nput
File texthiox.

Press the Finish button to execute the selected schema or
press Back button to reenter connection information.

Input File Hame |Cartridges\Batched\BatchPearsistandQuel ...

4 Back Finish Cancel @ Help

The schema file gets executed. The message window shows the SQL statements
executed.

See Also:

Testing a Cartridge with Persistence Support

Invoking Queries

The Query tab in the Input pane of Simulator is used to invoke queries defined in
the currently deployed cartridge.

iy

o
ORACLE | %hea

outp

Internal Message |In'.'c|ice - | | Execute |
Queries |Epl,'C|ient "’l | Celate |
Pararnetars
Mame Type | Yalue |
Id String CLMT1
Cutput
“ZInvaice> -

=<InvoiceDate=20020326</InvaiceDate>
=ClientID=CLNT1=/ ClientID =

=Iterm>

<ltermnID=ITM1</TternID>

= Oy 5 Qhy =
<Price>100,0=</Price>

Ell

| Input l Query &Default

Follow the steps given below to invoke a query:

1. Select the internal message available in the cartridge from the Internal
Message combo box.

2. Select the query to be executed from the Queries combo box.

3. The combo lists the queries defined already using Designer. It also includes a
query named ‘All’ that returns all internal message records.

4. In case of a query with parameters, specify parameter values to be passed to the
query. In the above figure, the value CLNT1 is provided for the parameter ‘Id’.

5. Click on the Execute button to execute the query.

6. The query result is displayed in the Output text area.

Note:

Records matching a query can be deleted by clicking the Delete button.

See Also:

Testing a Cartridge with Persistence Support

-

ORACLE' | Zbea

Testing a Cartridge with Persistence Support

The following steps should be followed to test a cartridge having persistence support.
1. In the cartridge, add Persistence Designer and design the database tables.

2. Add queries if needed.

3. Specify the data source to be used for persistence in Java Code Generation
Settings dialog.

é;'l Java/EJB Code Generation Settings

|/ General |/ Code Generaton |/ Language Bindings |/ External Sources |/ Target Platform |

Code Generation

Settings for each node

Code Generation Settings For: Code Generation Settings
PersistinColurmnzAnd Queries Property Mame Yalue
(JP_Q Inuoice Crata Source Inl.lnicedl:-l

L ﬂ Parsistance Designer Unique kKey Table UniquekeySenTable

—@ External - ASCII Delimited [Invais
—@ Mapping [InvoiceCSWTolnvoica]
— 5% PersistInColurmnsFlow

— 5@ QueriesFlow

— 5% DynaQueriesFlow

Extarnal Classes

e

fal's Cancel ﬂ Help

4. Generate code for the cartridge.

5. Launch Simulator or just click the Redeploy Cartridge button in Simulator
toolbar if it is already launched.

Map to the required Simulator data source.

6. If the data source mapped to is other than the default data source (simulatordb
is started by default), make sure the database server is running.

-

ORACLE' | Zbea

7. Create the schema to persist the internal messages.

8. Select the message or message mapping to be executed.

9. In case of a message, select the processing that needs to be done. This can be
one of ‘Parse’, ‘Parse and Validate’ and ‘Parse and Write’.

10. Enter the data into the Input pane or open an input test file using the File >
Open Input from File menu item.
In case you have multiple inputs, the Input pane is laid out as a form with text
field and/or text area input elements based on the type of the corresponding
input variable. For a simple type input variable, a text box is used to accept the
input and for a ‘Binary’ type input variable, a text area is used to accept the
input. To enter input into a text area by opening a data file, first select that input
area and then open the input data file by using the File > Open Input from
File... menu item.

11. Click the Submit button to start transformation.

12. The output of the transformation and/or errors generated is displayed in the
Output and the Message pane respectively.
To verify that the records corresponding to the internal message are inserted into
the database, use the Query tab of the Input pane. Refer Invoking Queries to
know about how to invoke queries in Simulator.

See Also:

Cartridge Simulator

Test Data Generation

The test data generation utility helps the user to generate test cases for various data
formats (Currently only the internal formats of internal messages and external
formats of SWIFT and XML are supported). This feature is now made available as
part of Simulator.

The user can generate a single test case shown in the Input pane of Simulator. There
is also an option to generate a set of test data files in the directory specified by the
user.

In case of SWIFT, the generated test cases are based on the SWIFT format
specification. The format specification for SWIFT has information about the type

-

ORACLE' | Zbea

(character set) as well as the maximum or exact length of each field. So the
generated test cases are reasonably useful.

Unlike SWIFT, the other formats (XML, Internal Format etc) are weakly specified. For
instance, in case of XML format, a field of type String is unconstrained. To constrain
the values generated for the field, the user is allowed to specify a pattern. The
values generated for the field will conform to this pattern. See the section Defining
Patterns for further information. The pattern syntax is similar to the Regular
expression syntax supported by JDK1.4. But instead of matching a string against the
pattern, a random string is generated to conform to that pattern.

The first step in test data generation is defining the data generation specification
(optional). For this the user is shown a dialog based on the selected data format. The
dialog allows the user to define data generation specifications for the elements of the
data format.

In case of simple fields, the specification is a pattern. See the section Defining
Patterns for further information.

In case of sections, the specification is the minimum and maximum occurrences of
the section (currently not implemented).

Normally, once data generation specification is provided, the user can proceed with
the actual data generation. It is possible to directly proceed to data generation
without providing data generation specification. In this case, data generation is
based on random values depending on the corresponding data type.

See Also:

Defining Data Generation Specification
Generating a Test Case

Generating Test Data Set

Running Test Data Set

Entering Test Data for Internal Messages
Testing with Simulator

Defining Data Generation Specification

Follow the steps given below to define data generation specification for the elements
of the required data format.

1. Open and generate the cartridge that contains the data format for which you
want to generate test cases.

-

ORACLE' | Zbea

Start Simulator.
Select the internal/external message for which you want to generate test cases.

If you select an internal message design element, you can generate test cases for
the selected internal format. Similarly, if the selected design element is an
external message, test cases can be generated for its external format. Currently
only the internal formats of internal messages and external formats of XML
external messages are supported.

From the Simulator menu bar, select the Test > Define DataGen Spec menu
item. The Data Generation Specification dialog is displayed as shown below.

FA Data Generation Specification

Element Name Type
& InvaiceDate DateTirme
 ClientID String
~ Ttem Saction
4 IternID String
& Oty Integer
4 Price Couble

Field Specification

Pattern |[vn]{7k [An]L22

Walidate Claze

Select the field/section for which you want to specify data generation pattern.

Specify the data generation pattern for the currently selected field/section in the
Pattern text field of the Field Specification section. See the section Defining
Patterns for further information.

Once you have completed defining data generation specification, click on the
Validate button to verify the validity of patterns specified.

-

ORACLE' | Zbea

9. Click on the Close button to close the dialog.
Note:

When cartridge is saved, the patterns specified for the fields in the ‘Data Generation
Specification’ dialog is also saved.

See Also:

Generating a Test Case

Generating Test Data Set

Running Test Data Set

Entering Test Data for Internal Messages
Testing with Simulator

Defining Patterns

In the Pattern text field of the Data Generation Specification dialog, the user can
specify either a single pattern or a list of patterns. If the user specifies a list of
patterns, one of them is randomly selected for data generation. In case of a list, a
comma should separate each pattern.

The following points should be noted when defining a pattern.
A pattern can be a value itself.
A pattern can be a regular expression.
Be careful when you use a regular expression so that it generates a value of the
correct data type. Otherwise, it results in error during data generation rather
than during specification. Refer to the Pattern Grammar section for further
details.
Except for String and Boolean data types, a pattern can also be a range.
A pattern can also be empty. Two consecutive commas stand for an empty
pattern. An empty pattern generates a null value.

The following is a list of valid pattern specifications:

String
SD199401, \:a{4}y(//\:n{3})?, , \:x{7}
Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec

Integer
1970-1979, 2000, 2003

Long
75[\:n]{33}, 85000, 100000-150000

-

ORACLE' | Zbea

Double
123456.789-123456.799, 999999.999, [\:n]{7}.[123]1{2}

Float
10000.50-20000.25, 35000.00, 50000.00, 100[\:n]{3}.[123]{2}

Character
a-z, 1-5, {, L, \:a

Date
1900121[0123], 1995120[\:n&&[™0]], 20011201-20011210

Note:

We have extended the Regex syntax to easily support SWIFT character set.
Predefined character classes in the pattern syntax represent SWIFT character sets.

\:x refers to X char set
\:a refers to A char set

\:n refers to Numeric char set

Pattern Syntax

Character classes

[abc] a, b, or ¢ (simple class)
["abc] Any character except a, b, or ¢ (negation)
[a-zA-Z] a through z or A through Z, inclusive (range)

[a-d[m-p]] a through d, or m through p: [a-dm-p] (union)
[a-z&&[def]] d, e, or f (intersection)
[a-z&&[™bc]] a through z, except for b and c: [ad-z] (subtraction)

[a-z&&[™m-p]] a through z, and not m through p: [a-lg-z](subtraction)

Predefined character classes

\d A digit: [0-9]

-

ORACLE' | Zbea

\D A non-digit: [™0-9]

\s A whitespace character: [\t\n\xOB\f\r]
\S A non-whitespace character: [™M\s]

\w A word character: [a-zA-Z_0-9]

\W A non-word character: ["™\w]

SWIFT character classes

\:n SWIFT numeric character: [0-9]
\:a SWIFT charset A

\:c SWIFT charset C

\:x SWIFT X charset

\:y SWIFT Y charset

\:z SWIFT Z charset

\:h Hex char

Logical operators
XY X followed by Y
X|]Y Either X or Y

(X) X, as a capturing group

Cardinality

X? X, once or not at all
xX* X, zero or more times
X+ X, one or more times

X{n} X, exactly n times

-

ORACLE' | Zbea

X(n,} X, at least n times

X{n,m} X, at least n but not more than m times

Examples
Pattern Generated Value
Abcd abcd
a? Oorl‘'a
a* O or more a’s
a+ 1 or more a’s
a{3} aaa
a{3,5} aaa or aaaa or aaaaa
a[bcd] ab or ac or ad
\:n One numeric character
\:a{3} Three alpha characters
[abc[def]] One character among ‘abcdef ‘(union)
[abc&&[bed]] One character among ‘bc’ intersection
Ab{2} abb (the cardinality applies to the last entity)
(ab){2} abab (ab is grouped)
alb aorb
a|b{2} a or bb
(a|b){2} aa, bb, ab or ba
[\:n&&[™0]] Numeric character except zero
\:x{16} Equivalent to 16!x

-

ORACLE' | Zbea

\:x{0,16} Equivalent to 16x

\:a{4}(//\:n{3})? | Equivalent to 4!a[//3!n]

See Also:

Defining Data Generation Specification

Pattern Grammar
Character -> SimpleCharacter | CharacterClassProd
SimpleCharacter -> any character (0-128)

CharacterClassProd -> StartBrac [Hat] CharacterClass EndBrac

CharacterClass -> PredefinedClass | UserdefinedClass | IntersectionClass |
UnionClass

IntersectionClass -> CharacterClass && CharacterClassProd

UnionClass -> CharacterClass CharacterClassProd

UserDefinedClass -> SimpleCharacter*

PredefinedClass -=> Colon PredefinedClassChar

PredefinedClassChar ->a|n| x|y | z]h

CharacterGroup -> (CharacterSequence)

CharacterOR -> CharacterSequence | CharacterSequence

RepeatedCharSequence -> CharacterSequence | CharacterSequence * |
CharacterSequence ? | CharacterSequence + |
CharacterSequence {n} | CharacterSequence {n,} |
CharacterSequence {n,m}

CharacterSequencelList -> CharacterSequence CharacterSequence

CharacterSequence -> Character

CharacterSequence -> RepeatedCharSequence

]

ORACLE' | Zbea

CharacterSequence -> CharacterGroup
CharacterSequence -> CharacterOR

CharacterSequence -> CharacterSequencelist

See Also:

Defining Data Generation Specification

Generating a Test Case

Follow the steps given below to generate a single test case in the Input pane of
Simulator.

1. Open and generate the cartridge that contains the data format for which you
want to generate test cases, if you have not done so before.

2. Start Simulator, if you have not done so before.

3. Select the internal/external message for which you want to generate a test case.

4. Make sure that you have defined data generation specification for that design
element. Otherwise, the generated test case is based on random values

depending on the data type of the corresponding element. See the section
Defining Data Generation Specification for further information.

5. From the Simulator menu bar, select the Test > Generate Test Case menu
item to generate a test case.

See Also:

Defining Data Generation Specification
Generating Test Data Set

Running Test Data Set

Entering Test Data for Internal Messages
Testing with Simulator

Generating Test Data Set

Follow the steps given below to generate a set of test data files in the directory
specified by the user.

-

ORACLE | 4bea
1. Open and generate the cartridge that contains the data format for which you
want to generate test cases, if you have not done so before.
2. Start Simulator, if you have not done so before.
3. Select the internal/external message for which you want to generate a test case.
4. Make sure that you have defined data generation specification for that design
element. Otherwise, the generated test cases are based on random values

depending on the data type of the corresponding element. See the section
Defining Data Generation Specification for further information.

5. From the Simulator menu bar, select the Test > Generate Test Data Set menu
item. The ‘Generate Test Data Set’ dialog is displayed.

F Generate Test Data Set

Generate In Directory (i Prograr Files\Volante94280g130 C:
Test Data Count a0

Generation Seed

Ok Cancel ﬂ Help

6. In the Generate in Directory text field, specify the directory where the
generated test data files will be written.

7. In the Test Data Count text field, specify the number of data files to be
generated.

8. In the Generation Seed text field, specify the random seed to be used in data
generation. If not specified, the default value is used.

9. Click on the OK button to start generation.

See Also:

Defining Data Generation Specification
Generating a Test Case

Running Test Data Set

Entering Test Data for Internal Messages
Testing with Simulator

-
ORACLE | %hea
Entering Test Data for Internal Messages
The user can generate an internal message test case just by entering data for the
fields of that internal message without worrying about XML syntax by using the ‘Data

Entry’ tool provided in Simulator.

Follow the steps given below to generate an internal message by using the ‘Data
Entry’ tool.

1. Select the internal message for which you want to generate a test case.
2. Select the Tools > Data Entry menu item.

3. The data entry dialog appears with internal message name as the title.

FA Invoice
InvoiceDate (20000101 *
ClientID CLIEMTZ #
Iterm®

4 A cusalts,
= %

ItermnID |ITEMZ *
Qe 55 *
Price 2434 #

[al04 Cance|

4. Enter values for the fields. Fields indicated by * are mandatory.

5. Nested fields within a section are grouped under the section name. In the above
figure, fields ‘ItemID’, ‘Qty’ and ‘Price’ are grouped under section ‘Item’.

Add more elements of any repeating section, if required.

6. For repeating sections, when the cursor is placed inside the section group, a
button panel appears. The button panel has buttons for adding an element of the
repeating section, deleting an element and moving back and forth between the
elements of the section.

-

ORACLE' | Zbea

7. Click OK after entering all the required values.

The generated test case is written to the Input pane of Simulator.

See Also:

Defining Data Generation Specification
Generating a Test Case

Generating Test Data Set

Running Test Data Set

Testing with Simulator

Frequently Asked Questions

1. When I press the Submit button, no output or error is produced?

Check whether you have added router or some other trigger to your internal
message.

2. 1 get a runtime error that the output device is not found similar to the one given
below.

<TransformException>

<Type>TransformException</Type>

<Message>Unexpected error</Message>

<Severity>1</Severity>

<Cascadable>false</Cascadable>

<Error-Phase>Internal Message</Error-Phase>

<StackTrace>

null
Type=TransformException, Message=Unable to lookup RMI output device
"device.GRNOutXML", ErrorCode=null, Severity=1, Cascadable=false

Your application attempts to write to a different output channel. You need to add
an output channel in Simulator.

3. My application uses external jars (libraries). How do | test with Simulator?

Copy the external Jars to the directory in which jars were generated by the code
generator. Simulator will automatically load the dependent jars referenced using
manifest classpath. Remember to refer to these jars in the manifest classpath of
the generated jars using Java Code Generation Settings dialog. A sample is
shown below.

iy

o
ORACLE | %hea

:_'EE;E]Java Code Generation Settings

|/Genera| |/[:ude Generation rLanguagE Binding= |/Target Platform |

Code Seneration Settings For: Code Generation Settings
GRMandGIN Property Name | VYalue
Java Package Marme|cor.transform.goodsrec, ..

@ GoodsReceivedMote
I—@ output - XML [GRHOUEEML]
@ GoodsIssuediote

Jar Mame GRMCOutsML.jar

Manifest Entrias transformrtjar xmiljar

| External Classes

| (o] 4 || Cancel |

I get the error message “Error generating Unique key”.

Verify that you have created UniqueKeyGenTable in the datasource referred in
the cartridge. See the PersistenceDesigner.doc for further information.

I get the error message “Table not found”.

If the table mentioned in the error is other than UniqueKeyGenTable, verify that
you have created the schema used in the current cartridge. Refer
Creating Schema to know how to create the schema.

How do | use database other than Simulator database?

Configure the datasource for Simulator.

Add the database driver jars to <installation dir>\lib\ext directory.
Create the schemas in the database you intend to use.

See Testing a Cartridge with Persistence Support for more details.

I have added a Persistence Designer but nothing is saved in the database. No
error is reported.

Verify if you have added the Persistence Trigger.

I have made changes in the cartridge. But these changes are not reflected in
Simulator.

-

ORACLE' | Zbea

Make sure that you have generated code and redeployed the cartridge. Redeploy
the cartridge using the Redeploy Cartridge button or the Tools > Redeploy
Cartridge menu item in Simulator.

9. 1 get the error message “Input Parsing Error”.

Make sure that your input data corresponds to the message or message mapping
selected for execution.

10. 1 have defined only the internal/external message in the cartridge. How do | test
it?

Select the internal/external message for execution.
Select the ‘Parse’ from the Output Options drop down list.
Click Submit button. The parsed structure is displayed in the Output pane.

For external messages, two additional options are populated in the Output
Options drop down list — ‘Parse and Validate’ and ‘Parse and Write’. The former
dumps an XML structure of the parsed input while the latter dumps the output in
the plug-in format. In case of the ‘Parse and Validate’ option, the input message
is parsed and validations specified for that message are carried out. In case of
the ‘Parse and Write’ option, apart from parsing and writing of the message,
validations are carried out on the parsed input object and on the output object
before writing the output.

See Also:

Simulator

Debugging

The process of locating and fixing errors in your application is known as debugging.
It includes breakpoints, watch expressions, and the ability to step through
code/model one statement or one procedure at a time and display the values of
variables and properties

To understand how debugging is useful, consider the kinds of errors that can occur
Runtime errors These occur while the application is running when a statement
attempts an operation that is impossible to carry out. An example of this is division

by zero.

Logic errors These occur when an application doesn't perform the way it was
intended. An application can have syntactically valid code, run without performing

-

ORACLE' | Zbea

any invalid operations, and yet produce incorrect results. Only by testing the
application and analyzing results can you verify that the application is performing
correctly.

These kinds of error can be reduced using debugging.

Debugger requires some additional information to be available at runtime so that the
execution state can be inspected. The Java Code generator has an option to generate

this additional information. The ‘Debug Info’ check box present in the ‘Build=>»Code
Generation Settings’ dialog, should be enabled before generating code for the
cartridge. For details on how to enable this option and to run a cartridge under the
debugger refer to the section Debugging from simulator.

See Also:

Debug Window

Break Points

Step modes

Frames

Watches

Debugging From Simulator

Debug Window

To view the ‘Debug’ window, click on the ‘View Debug window’ menu in ‘Run menu’.

x| f] |/ aﬁ Breakpoints |/] Frames r@ Watches |
0
jﬂ Enabled Mode Location
» 3
L

[N

Debug

u

[# ‘Go’ button when clicked, moves to the location of Breakpoint in Execution. If
there is no Breakpoint set, the button when clicked completes Debugging.

(1) ‘Show Null Fields’ button when clicked, hides the fields with null value i.e.,when

this button is enabled ‘' ', fields without any value are not listed in the

-

ORACLE' | Zbea

‘Frames’ tab.

'L ‘Step Into’ button when clicked, runs the next executable location (an activity
in a line of code in functions, a validation rule or a mapping) and steps into
procedures.

N ‘Step Over’ button when clicked, runs the next executable location (an activity

in a line of code in functions, a validation rule or a mapping)
without stepping into procedures.

&% ‘Step Out’ button when clicked, runs the remainder of the current execution and
breaks at the next line of execution.

[@ ‘Stop’ button when clicked, terminates the debugging session.

In the ‘Breakpoints’ tab, the user can add/remove break points for a location (an
activity in a line of code in functions, a validation rule or a mapping) in the cartridge.

In the ‘Frames’ tab, the user can view the values of all variables during debugging.

In the ‘Watches’ tab, the user can monitor the value of any variable, property,
object, or expression when the code is executed.

When the Message window is open, it can be closed by clicking on the Close button
present in its title bar.

The Auto Hide mode (Pinned mode) of the Message Window can be enabled or
disabled, by toggling the Auto Hide button present in its title bar. When Auto Hide
mode is enabled (indicated by the + icon), the Message Window hides itself when it
loses focus. When Auto Hide mode is disabled (indicated by the % icon), the Message
window remains visible even when it loses focus.

See Also:

Break Points

Step modes

Frames

Watches

Debugging From Simulator

-

ORACLE' | Zbea

Breakpoints

A breakpoint is a location (an activity in line of code in functions, a validation rule or
a mapping) at which Designer automatically suspends execution.

While running under the debugger, a breakpoint will stop your code on the line of
code that will be executed next. Once execution has stopped, you can investigate
your code/model and the variables in the enclosing context to get a better
understanding of the execution context.

Note:

To navigate to the location for which Breakpoint is created, the user can also select a
row in the Breakpoints tab, right click it and select ‘Jump to Location’ menu item.

E‘f | |/ ag Breakpoints |/ Frames r@ Watches |

j r Enabled Mode Locaton
"
—= | -] C=] External Forrmat - ML [Purcham=cedawenan 1 oedach b
] 5 Jurnp to Location
-] @ Purchazedrder - [Purchaseor
‘e [#] #9) Default - XML [PurchazeCrder ﬁ Ukl fuse Ferrmes
o & :E Fow Height b
o]
] = A& view As HTML

To view the Breakpoints in the HTML format right click inside the Breakpoints tab and
select ‘View As HTML’ menu item. The search results are displayed in HTML form.

See Also:

Adding Breakpoint
Deleting Breakpoint
Enable/Disable Breakpoint
Step modes

Frames

Watches

Adding Breakpoint

You can set Breakpoints in Designer for,

Mapping

Function Definitions
External Message
Internal Message

2%
ORACLE | %hea
Validation
In the Ul select the location (line of code in functions, a validation rule or a mapping)
for which Breakpoint is to be added. In case of mapping the location can be a ‘row’ in

the mapping table (destination).

From the ‘Run menu’ in menu bar select ‘Toggle Breakpoint'.

Fun | Source Control Help

Eb JavafEJR Sirnulator F5S

@ Toggle Breakpaint ... F9

LB Step Cuer Fi0
"& Step Into Fii
& Step Qut Shift-F11

@‘Jiew Debug wWindow Alt-2

The selected activity appears with the breakpoint icon

Pee
Parse Order

In Mapping, the selected row appears with the breakpoint icon as follows

Mapping Rules - MessageMapping [OrderToOrderCost] g,
OrderCost (External) <- Order (External) & 7
| Header |/Data |/Trai|E|- |
I:“ Field Name || Type || Mapping || Source Fields |
f__'.i* Records Section Records
& OrderlD String +H Records,Orderin DrderlD
% Symbol String + Records,Symbal Symbol
7

@ Oty Intager H Records. Gty Qty

P & Cost Integer ¥ Records.gty*100 Sty

The added breakpoints are also listed in the ‘Breakpoints’ tab of ‘Debug’ window.

-

ORACLE' | Zbea

(@g Breakpoints |/ Frames r-@ Watches |

| Enabled Node Location
;] ‘7 External Format - ML [PurchasedrdersML] crderbate
_j [@ Purchaszelrder - [Purchaselrdear] Mew Field

[#]) Default - XML [PurchazeCrdarkmL] E1l

Breakpoints can also be added by selecting the location (an activity in a line of code
in functions, a validation rule or a mapping) and pressing F9 or by clicking ‘Add
Breakpoints’ icon * in the Breakpoints tab of Debug window.

You can navigate to the breakpoint location by clicking on the hyperlink in the
“Node” column.

Note:

When a cartridge is saved, the breakpoints added are also automatically saved.

See Also:

Break Points
Deleting Breakpoint
Enable/Disable Breakpoint

Deleting Breakpoint

Follow the steps given below to delete a Breakpoint using ‘Toggle Breakpoint’ menu.
1. Select the location with Breakpoint.

2. Press F9 or the ‘Toggle Breakpoint’ menu in ‘Run menu’.

Follow the steps given below to delete a Breakpoint using ‘Delete Selected
Breakpoint(s)’ icon.

1. In the ‘BreakPoints’ tab of Debug window, select the location for which
Breakpoint is to be removed.

2. Click the ‘Delete Selected Breakpoint(s)’ iconl=.

See Also:

Break Points

-

ORACLE' | Zbea

Adding Breakpoint
Enable/Disable Breakpoint

Enable/Disable Breakpoint

When you uncheck the ‘Enabled’ column in Breakpoints tab, the Designer would not
suspend the execution even if the location has a breakpoint.

(ag Breakpoints |/ Frames r-@ Watches |

.i] Enabled Hode Location
) IE £~ External Format - ML [PurchazedrderiiML] orderDate
=] @ PurchaseQrder - [PurchazeCrder] Mew Field

[&) Default - XML [PurchazeOrdariML] El

In the above figure breakpoint has been disabled for mapping of Records.Cost. So
execution will not be suspended for the mapping and will proceed to the next
mapping code to be executed.

Note:

If the Enabled column of a Breakpoint is unchecked, the Breakpoint icon in the
corresponding Location appears as faded.

@ Breakpoint ‘Enabled’ state

@ Breakpoint ‘Disabled’ state

See Also:

Break Points

Adding Breakpoint
Deleting Breakpoint
Debug Window

Debugging From Simulator

Step modes

You can use the three step modes to start execution of a location (activity in case of
validation rule or mapping) or to continue execution after it has stopped at a

breakpoint. The three available modes are Step Into, Step Over and Step Out. Using
any of these modes to step through code does not take the code out of break mode.

-

ORACLE' | Zbea

Step Into

Executes till the next executable location (activity, validation rule or mapping). If the
current location has child steps (for example mapping activity) control descends into
it. When you use Step Into to step through code one statement at a time, Designer
temporarily switches to run time, runs the current statement, and advances to the
next statement.

Click the *' &’ button in the Debug window to step into the next location. You can also
use the short key ‘F11'.

See Also:

Step Over

Step Out
Debug Window

Step Over

Step Over is similar to Step Into, except when the current location (activity,
validation rule or mapping) to be executed is a compound location (function call,
mapping activity etc). Unlike Step Into, which steps into the called procedure, Step
Over runs it as a unit and then steps to the next statement in the current node.

For e.q. if a function that is being debugged contains a call to another function, and
Step Over is done, then the called function is executed as a single unit, without
stepping into it.

Click the b’ button in the Debug window to step over the next location. You can
also use the short key ‘F10’.

See Also:

Step Into

Step Out
Debug Window

Step Out

Step Out advances past the remainder of the code to be executed in the current
node. The remaining code in the current location is executed as a single unit. It then
advances to the statement immediately following the one that called the current
location.

-

ORACLE' | Zbea

Click the ‘&™ button in the Debug window to step out after the current location is
executed. You can also use the short key ‘Shift+F11’.

See Also:

Step Into

Step Over
Debug Window

Frames

This window provides a snapshot view of the values of all variables when debugging
is being done. The Frames tab has a combo, which displays the call stack at the point
where execution has paused. Each element in combo represents a stack frame; you
switch to a frame by selecting it from the combo.

r;jg Breakpoints |/] Frames rﬁ:‘o Watches |

[Zrder]validateE2 bt

[Order]validate:EZ
[SelectOrdersFlaw]run:validatedl

=
i_l Cata
] Trailer

The variables (local and instance) that are associated with a stack frame are
displayed as a tree.

Note:

Right clicking inside the Variables tree displays a popup menu with items, Copy
Name, Copy Qualified Name and Copy Value. While Copy Name menu item
copies the name of the selected variable, the Copy Qualified Name menu item
copies the name with its qualified path. For e.g. for the variable ‘OrderlID’, the name
is “OrderID” when copied using ‘Copy Name’ menu item and the name is
“messageObj.Data.Records.[0].OrderID” when copied using ‘Copy Qualified Name’
menu item.

Copy Value menu item copies the value of the selected variable.

If the variable is a ‘Section or a ‘Message variable’, the Copy Value menu item copies
the value in XML format.

See Also:

Break Points

-

ORACLE' | Zbea

Watches

Frame Variables

The variables displayed in the window depend on the entity (External message,
mapping, validation, function definition) that is being debugged.

Function Definition Variables

In case of Function Definition, the values of the input parameters are displayed as
name value pairs. Any other local variable defined in the function definition is also
displayed.

The combo box in the ‘Frames’ tab displays the line number of code currently
executed in debugging.

Code

1 def sec = new3ectioni);

2 o foreach(def elm in Orders)

3 if{eln.getitring("3ynbol™) == Symbaol) {
4 gec. SechddElenent(elm) ;

3 '

B 4

T return sec:

The above function takes variables ‘Orders’ and ‘Symbol’. A local variable ‘sec’ has
been defined in it. Looping is done through each element of Orders and if the
‘symbol’ of an element matches the ‘Symbol’ value passed, it is added to the ‘sec’
variable.

In the above Function Definition code, the second line of code is being executed in
Debugging. The combo box in the ‘Frames’ tab appears with the current
location(Code in Function Definition) of debugging.

[Functions]SelectOrders: SalectOrdars: 2 b

As mentioned above, the value in the combo box is of the form
“[Functions]<Function Name=>:<Function Name>:<Line Number In Formula>". For
e.g. in “[Functions]SelectOrders:SelectOrders:2”, ‘SelectOrders’ is the Function
definition name and ‘2’ is the next line number of code to be executed.

-

ORACLE | #bea

The input arguments ‘Orders’ and ‘Symbol’ are also displayed in the ‘Frames’ tab.
The ‘sec’ variable is currently empty. The corresponding Debug window appears as

follows.

rag Breakpoints |/ [5] Frames rQ Watches |
[Functions]SelectOrders i SelectOrders: 2

] Crders

@ Svrnbol = #v2

iy zec

When debugging is completed for the above-mentioned code, the variable ‘sec’ is

displayed along with its values.

r 83 Breakpoints r [F] Frames réb-"“ Watches |

[Functions]SelectOrders: SelectOrders: 7

] Crders
@ Symbol = BY2
i [gec
& Orderll = CROOO01
& Syrmnbol = ®¥¥Z
& Gty = 1000
& Cost = 100000

r ag Ereakpoints |/ Frames rég* Watches
[Functionsz]SelectOrders: SelectOrders: 2

] Crders
@ Symbol = BY2
1 =ec

= [l
& OrderiD = ORDOOL

& Syrmbol = ARC
& Qiy = 1000
@ Cost = 100000

It can be seen that ‘sec’ has been populated from Orders. There is also a local
variable ‘elm’ which represents a particular element in Orders. This variable is also
displayed. While debugging if any exception occurs in the formula code, the
debugging session is terminated and the corresponding action message is displayed

in the ‘Message’ pane of Simulator.

Note:

The arrow mark & highlights the current location (activity in case of validation rule

or mapping) of debugging.

See Also:

External message Variables
Validation Rules Variables
Debug Window

Debugging From Simulator

iy

S
ORACLE | %bea

Message Mapping Variables

When debugging a ‘Mapping’, the source mapping object and the destination-
mapping object are displayed as variables ‘Source’ and ‘Destination’ in the ‘Frames’
tab. For example, consider the following mapping.

Mapping Rules - MessageMapping [OrderToOrderCost] (4

OrderCost (Externall <- Oprder (External) . "ﬁ'
| Header |/Data |/Trailer |
I:“ Field Hame || Type || Mapping ” Source Fields |
rj* Records Section

% OrderlD String +H Records, OrderID CrderlD

=3 & Syrmbaol String *+ Records. Syrnbol Syrnbol
2

W Oty Integer +H Records, Qty Qty

i @ Cost Integer 9 def cost=Records. Qty*100; Sy
& e

External Forrnat ®

Header |/Data |/Trailer |

Field Hame || Type || Descripton ” Target Fields |
r_‘-,]2+c Records Section
i OrderID String Crderll
4 Swrmbaol String Sermboal
g oty Integer Cost, Oty

When the above mapping is debugged, the combo box in the ‘Frames’ tab appears
with the current location (Mapping) of debugging.

[CrderToCrderCost]mapiRecards, OrderID - |

The value in the combo box is of the form “[<Mapping Name>]map:<Mapping Field
Name=". For e.g. in “[OrderToOrderCost]map:Records.OrderID”, ‘OrderToOrderCost’
is the name of mapping and ‘Records.OrderID’ represents the field currently
debugged. The source format and Destination format initially appears as follows.

r ag Breakpoints |/ [E] Frames |’Q~ Watches |

[OrderTodrderCast]map: Operation Enter

H Source

4] Destination

2%

ORACLE' | %hea

The ‘Source’ variable displays the source format that is to be mapped. The fields in

the source format are displayed as nhame=value pairs, where ‘name’ is the field
name. The variable ‘Destination’ is initially empty.

‘Source’ format before Debugging ‘Destination’ format before

Debugging
|/ 62 Breakpoints |/ Frames r@- Watches
[OrderTodrderCost]map: Records, OrderlD

r ag Breakpoints |/ =] Frames r@- Watches |
[CrderTodrderCaost]map: Cperation Enter

] [Source] Source
] Header <] Destination
£ Crata] Header
fé)—r_'q Recards £y Data
& OrderlD = ORDOOL |—r_'q Fecords
& Syrnbol = ARC Trailer
-

& Gty = 1000
] Trailer
=] Destination

As the mapping proceeds, the Destination variable is listed with values that have

been mapped. If the mapping code has any local variable defined in it, it is also
displayed.

‘Source’ format after Debugging ‘Destination’ format after Debugging

r ag Breakpoints r @ Frames r@- Watches | r 63 Breakpoints |/ @ Frames r@ Watches |

[CrderTodrderCost]map: Operation Enter [OrderTodrderCost]map:Records, Cost: 2
] [Fource =] Source
] Header] Drestination
= Crata 1 Header
‘%)-r_'q Fecords =g Data
& OrderlD = ORDOOL (E)—r_‘q Fecords
4 Symbol = ABC 4 OrderlD = CRDOO1L
& Oby = 1000 W Symbol = ABC
] Trailer @ Oty = 1000
o] Destination) Trailer
@ cost = 100000

The ‘Destination’ format is filled with records after Debugging.

-

ORACLE' | Zbea

In the mapping for Records.Cost a local variable ‘cost’ has been defined. The value of
this variable is calculated based on Record.Qty and set as the value for Records.Cost.

As can be seen from the above diagram, the local variable ‘cost’ is also listed during

debugging. When debugging if any error occurs in mapping, the debugging session is
terminated without any output and the corresponding action message is displayed in
the ‘Message’ pane of Simulator.

See Also:

Function Definition Variables
External message Variables
Validation Rules Variables
Step modes

Debug Window

Debugging From Simulator

External message Variables

When an external message is being debugged, a variable ‘input’ is displayed which
contains the value of the raw input. If there are multiple records in the input they
are displayed as a single string.

The ‘Frames’ tab appears with a combo box containing the value of current
location(Message) of debugging.

[Zrder]parse:Opearation Enter b

As can be seen from the above diagram, the value in the combo box is of the form
“[<Message Name=>]parse:Operation <Mode>". For e.g. in “[Order]parse: Operation
Enter”, ‘Order’ is the External message name and ‘Operation Enter’ represents that
debugging is about to start for the external message.

A variable ‘messageObj’ is displayed which is initially null. This variable is used to
display the processed output.

r'ag Breakpoints || 5] Frames | for Watches |

[Order]parse: Operation Entar

@ input = ORDO0L,ARC,1000CORDOOZ, %2, 2000

@ messageChj = null

iy

S
ORACLE | %bea

As the message is processed the ‘messageObj’ is populated with values of fields that
have been processed. The values are displayed as nhame=value pairs, where ‘name’
is the field name.

|/ ﬂg Breakpoints |/ 5] Frames r@ Watches |

[Crder]serialize: Operation Enter

=] rnessageChi

1 Header

i Data

(E)—rj Fecards
& Orderll = CRDOOL
& Symnbaol = ARC
W Oy = 1000

1 Trailer

When debugging if parsing error occurs and the debugging session is terminated.
The corresponding action message is displayed in the ‘Message’ pane of Simulator.

See Also:

Function Definition Variables
Message Mapping Variables
Validation Rules Variables
Step modes

Debug Window

Debugging From Simulator

Validation Rules Variables

The message object variable that is being validated is displayed. If any validation has
any variable defined in it, it is also displayed. For example consider the following
Validation Rules.

Validation Rules [Default] - ASCII Delimited [Order] @)

|/Header |/Data |/Trai|er |

3 e ¥ ¢ 4

I:“ Hane ” ¥alidation ” Applies To || Action Message |
o &9 E1 Recards, OrderID 1= "" Records. OrderID
& EZ2 def syrmbolli="ARC"; Records. Syrnbol "Syrmbol should be ARC ar

? Ez Records, Qty>=25 Records, Gty

-

ORACLE' | Zbea

The validation for the fields in the External message is defined. When debugging the
above validation, in the frames window the currently debugged location (validation)
is displayed in the combo box.

[Order]ualidate:E1:1 -

As can be seen from the above diagram, the value in the combo box is of the form
“[<Message Name=>]validate:<Validation Name>:<Line Number of Formula>". For
e.g. in “[order]validate:E1:1”, ‘Order’ is the message name, ‘E1’ is the name of
validation and ‘1’ represents the line number of code in validation ‘E1’ that is to be
executed next.

A variable ‘messageobj’ appears in the ‘Frames’ tab which contains all the parsed
input.

('ag Breakpoints |/ Frames r@ Watches |
[Order]ualidate:E1
=] rnessageChi
1 Header
iy Data
(#)—-_1 Records
4 Orderll = ORDOOL
& Symnbaol = ARC
W Oy = 1000

i Teoiloe

As debugging continues, the variables defined in the validation rules are also
displayed in the ‘Frames’ tab along with the messageobj variable.

(33 Breakpoints |/ Frames r@ Watches |
[Order]validate:E2:3
=] rnessageChj
1 Header
iy Data
(J_;)-_l Records
] Trailer
@ symboll = ARC
@ symbolz = ¥v2

The variables ‘symboll’ and ‘symbol2’ that was defined in the formula of validation
E2 are also listed. When debugging, if the validation set for the field fails, debugging

-

ORACLE' | Zbea

stops and the corresponding action message is displayed in the ‘Message’ pane of
Simulator.

See Also:

Function Definition Variables
External message Variables
Step modes

Debug Window

Debugging From Simulator

Watches

Watch expressions let you monitor the value of any variable defined in a location (an
activity in a line of code in functions, a validation rule or a mapping), during
debugging.

Right clicking inside the ‘Watches’ tab displays a popup menu with items Copy
Name, Copy Qualified Name, Copy Value, New Watch, Remove Watch and
Remove All Watches.

J-',I%I f | |/ aﬁ Breakpoints r [%] Frames régo Watches |

I-;' Copy Marme

- '_5 Caopy Qualified Hame
l:g Copy Value
& Mew Watch

g'l @ Femove Watch

E Remove All Watches

While Copy Name menu item copies the name of the watch expression, the Copy
Qualified Name menu item copies the name with its qualified path. For e.g. for the
variable ‘OrderID’, the name is “OrderID” when copied using ‘Copy Name’ menu item
and the name is “Destination.Data.Records.[0].OrderID” when copied using ‘Copy
Qualified Name’ menu item.

Copy Value menu item copies the value of the expression.

If the expression is a ‘Section’ or a ‘Message variable’, the Copy Value menu item
copies the value in XML format.

See Also:
Adding Watches

-

ORACLE' | Zbea

Deleting Watches
Break Points
Frames

Adding Watches

Watch expressions can be added in ‘Watches’ tab of Debug window by right clicking
inside the ‘Watches’ tab and selecting New Watch menu item.

Select the New Watch menu item. The ‘New Watch’ dialog box appears. The name
of the variable whose value needs to be monitored should be entered.

Mew Watch

Emter Watch Expression
Cestination

(a] 4 Cancel

The expression is added in the Watches tab. Initially when the watch expression is
created, value is not assigned. For e.g. consider the ‘Destination’ object created for a
Mapping node and a local variable ‘Cost’ defined in the same Mapping. When
expressions are added for these, they appear as shown below.

|/ 63 Breakpoints |/ [F] Frames |/1§;'c Watches |
@ CDestination =
@ cost=

When debugging, initially the value of expressions in the Watches tab are assigned
to null.

|/ 63 Breakpoints |/ [5] Frames |/1§;'c Watches |
@ Destination = null

@ cost = null

As debugging is proceeded for the mapping node, the expressions in the ‘Watches’
tab are assigned values when, values for the corresponding variables are assigned in
the ‘Frames’ tab.

-

ORACLE' | Zbea

('ag Breakpoints |/ Frames r@ Watches | rag Breakpoints r Frames r@ Watches

[OrderTodrdarCost]mapiRecords, Cost: 2 =] Destination
<] Destination] Header
] Header =y Data
£y [ata f#)—_q Recards
f#)—f_q Fecords 4% CrderID = OROO01
4 OrderlD = CRDOO01 4% Sumbol = ABRC
& Symbol = ABC & Gty = 1000
4 Oty = 1000] Trailer
] Trailer @ cost= 100000

@ cost= 100000

In the above figure it can be seen that the expression Destination has changed to a
message variable. The expressions ‘Destination’ and ‘cost’ that were previously
assigned null values are now assigned with values when the corresponding variables
are assigned with values in the ‘Frames’ tab.

Note:

Please note that when an expression added in the watches tab a variable of the same
name should have been defined in a location (an activity, line of code in functions, a
validation rule or a mapping). Otherwise, the expression remains empty even after
debugging.

For e.qg. if a variable ‘Cost’ has been defined in a mapping and a expression named
‘Costl’ has been added, while debugging the mapping the expression will not be
populated with values. In this case an watch expression of name ‘Costl’ needs to be
created to monitor the value.

See Also:

Watches
Deleting Watches

Deleting Watches

Watch expressions can be removed by selecting the menu items Remove Watch
and Remove All Watches.

While ‘Remove Watch’ menu item removes the selected expression, the ‘Remove All
Watches’ menu item removes all the expressions in the ‘Watches’ tab.

2%

ORACLE | #bea

See Also:

Watches

Adding Watches

Frames

Debugging From Simulator

Debugging From Simulator

The ‘Debug Info’ check box present in the ‘Build<»Code Generation Settings’ dialog,
should be enabled before generating code for the cartridge.

é Java/EJB Code Generation Settings

Language Bindings |/ External Sources |/ Target Platformn

General I/ Code Generation |

General Compilation Settings

Theze settings are used to compile and build the generated Java filas,
The zettings are not specific to the Cartridge but to thiz instance of
Wolante Designer, Seledt 'Default’ to use internal Java coampiler
[recormmeandad].

Java Compilar

|De'Fau|t -

Cormpiler Optionsz

|-J-Hm><256m -

Additional Class Path (Glabal)
|$-ﬁaua.hnme},-"|ib,-"r‘t.jar; -

Additional Claszs Path (Cartridge)

[#¥] Debug Infa

(o] 4 Cancel a Help

Please note that, enabling the ‘Debug Info’ check box is cartridge dependent. For
each cartridge this option has to be separately selected.

1. Start simulator.

-

ORACLE' | Zbea

2. In the input combo box select the entity (external message/mapping) that needs
to be debugged.

3. Enter input values in the ‘Input’ pane.
4. Select the ‘Debug’ button.
5. The focus is transferred to the ‘Debug’ window in the cartridge

6. Click the ‘Step Into’ button in the ‘Debug’ window to run the next executable
location (activity in case of validation rule or mapping).

7. Click the ‘Step Over’ button, to run the next executable location without stepping
into functions.

8. Click the ‘Step Out’ button to step out after the execution of current location.

9. If a Breakpoint is set in a location, click the ‘Go’ button to move to the location of
‘Breakpoint’.

If there are multiple breakpoints, clicking the ‘Go’ button again takes you to the
next location of Breakpoint. When there are no more breakpoints, and ‘Go’ button
is clicked, debugging is completed and output is displayed in Simulator.

10. Click the ‘Stop’ button to terminate the debugging session.

Note:

Output is generated in the ‘Output’ pane of simulator only if the debugging session is
completed normally. If the debugging session is terminated using ‘Stop’ button or if
the session terminates due to an exception, no output is generated and the
corresponding action message is displayed in the ‘Message’ pane of simulator.

See Also:

Debugging
Debug Window

Frames
Watches

Executing Cartridge Entities

-

ORACLE' | Zbea

Utility to execute messages and message mappings defined in a cartridge. This utility
is automatically created in the generated ‘java’ directory when code is generated for
a cartridge in JAVA.

Syntax

execute [options] name inputparaml inputparam2

Where
options
-perf[:count] Runs performance test (default count = 10000)
-threads[:count] Runs multi thread test (default count = 5)
-nocascade Stops the execution when an error occurs. Default is to run

in cascade mode
For messages

-parse - Parse the input file (-p)
-validate - Validates parsed object (-v)
-write - Writes the object (-w)

Default option while processing messages is -p -v —w

name is the name of the external message/message mapping that is to be
executed.

inputparaml inputparam?2 is the list of input parameters.

Listing Cartridge Entities

Once code has been generated for a cartridge, you can view the entities that are
present in the cartridge. Run ‘execute.bat’ without specifying any argument.

The list of messages/mappings defined in the cartridge will be displayed.

Messages:
execute NonBatchASCIIl inputfile
execute BatchASCI1 inputfile
Message Mappings:
execute NonBatchASCII1ToBatchASCIIl inputfile

-

ORACLE' | Zbea

See Also:

Executing Messages
Executing Message Mappings
Performance measurement
Multi Thread testing
Executing multiple samples
Simulator

Executing Messages

In some cases the user may want to execute the message alone, to test it as a
separate entity. Execute utility can be used to test only a message.

When a message is executed using execute utility, by default the data is parsed,
validated, serialized and the serialized output is dumped.

The argument to the external message should be a file containing the input data.
execute <messagename> datal.txt
execute <messagename> datal.txt —p

execute <messagename> datal.txt —p -v

The options that can be specified while executing messages are

-parse - Parse the input file (-p)
-validate - Validates parsed object (-v)
-write - Writes the object (-w)

If none of the options are specified, then the default is to parse, validate and write
the input data.

Note:

The name of the message to be executed is case sensitive. The name should be
given as defined in the cartridge.

See Also:

Executing Message Mappings
Performance measurement
Multi Thread testing
Executing multiple samples

Executing Message Mappings

-

ORACLE' | Zbea

In some cases the user may want to execute the message mapping alone, to test it
as a separate entity. Execute utility can be used to test only a message mapping.

When a message mapping is executed, the input data will be parsed, validated and
mapped to the destination message. The destination message is then validated and
serialized. The output dumped is the serialized destination message.

The argument to the message mapping should be a file containing the input data.

execute <messagemappingname> datal.txt

Note:

The name of the message mapping to be executed is case sensitive. The name
should be given as defined in the cartridge.

See Also:

Executing Messages
Performance measurement
Multi Thread testing
Executing multiple samples

Performance Measurement

By default the transformation is performed once when execute utility is run. The user
would want to measure the transformation performance when multiple runs are
executed. To measure the performance of a message/mapping the ‘—perf’ option
should be used.

If no number is specified after the —perf option, by default the count will be 10000.
The processing will be done once, and then the performance measurement will start.
Only the output for the first run is dumped. The output generated during
performance measurement is not dumped.

During performance testing, we need to measure performance after it has reached a
stable state. So Hotspot compiler is warmed up before the actual performance
testing is done.

execute —perf:5000 <message/mapping name> inputparaml...
The transformation is done 5000 times.

execute —perf <message/mapping name> inputparaml...
The transformation is done 10000 times.

-

ORACLE' | Zbea

The number of transformations per second and the time taken (in milli secs) to
process each message will be dumped.

————— Performance Testing ---—---
Milli secs/message = 0.0875
Transformations/sec = 11428.57142857143

See Also:

Executing Messages
Executing Message Mappings
Multi Thread testing
Executing multiple samples

Multi Thread Testing

The user may want to test the performance of message/mapping in a multi-
threading environment to check if the performance scales when multiple threads are
executed.

Multithreaded testing can be done by using the ‘—threads’ option. If the count is not
specified after the ‘-threads’ by default 5 threads will be executed. If a value is
specified after the ‘-threads’ option then that many number of threads will be
executed.

By default for each thread the transformation will be performed 10000 times. If the
‘—perf’ option is specified along with the —threads option, the transformation will be
performed based on the -perf count.

execute message/mapping —threads
5 threads will be executed, with transformation being done 10000 times for each
thread.

execute message/mapping —threads:10
10 threads will be executed, with transformation being done 10000 times for each
thread.

execute message/mapping —threads:10 —perf:1000
10 threads will be executed, with transformation being done 1000 times for each
thread.

-

ORACLE' | Zbea

The output dumped will contain the total time taken for processing, time taken to
process a single message, transformations per thread per second and overall
transformations per second.

————— Multi thread testing -----—-
Number of threads = 5

Number of iterations per thread = 10000
Total time taken = 2062ms

Milli secs/message = 0.2062

Overall Transformations/sec = 4849.66
Transformations/sec per thread= 969.93

See Also:

Executing Messages
Executing Message Mappings
Performance measurement
Executing multiple samples

Executing Multiple Samples

During regression testing, you may want to test multiple samples in one shot. In
such cases, to execute multiple samples, the parameters can be specified one after
the as command line arguments.

execute message/mapping datal.txt data2.txt

Two files datal.txt and data2.txt will be executed.

Wildcard characters can also be given while specifying the filename. Files that match
the pattern specified will be processed.

execute message/mapping *.txt

All files with extension ‘.txt’ will be executed. This support is present only in execute
utility.

execute message/mapping f*.txt

All files whose name start with ‘f and have extension ‘.txt’ will be executed. This
support is present only in execute utility.

-

ORACLE' | Zbea

When multiple files are executed, output for each file will be generated in the order
they are specified. When each sample is executed a text ‘Executing sample <count>’
will be dumped.

e - < <0OUtput For First sample>
——————— Executing sample 2 - ——————-———————————————
v - . <OUtpUt For second sample>

See Also:

Executing Messages
Executing Message Mappings
Performance measurement
Multi Thread testing

Working With Cartridge Designer

This section covers the features that make working with Designer more
easier/interactive.

The following table describes the topics covered under this section.

Topic Description
Tables It explains how to manipulate tables in Designer.

Mount Directory By allowing mounting of one or more file system directories,
Designer supports management of external cartridge resources
along with the cartridge.

Navigation It explains how to quickly move between Designer elements.
Features

Diff It explains how to diff two design elements or two cartridges.
Cartridge It explains how to generate HTML docs for the cartridge and its
Publisher child design elements.

Cartridge Read- It explains how to view a cartridge in read only mode.

Only Mode

Verify Integrity It explains how to verify the integrity of a message or messages in
the cartridge.

ORACLE

Export/Import a
Design Element

Copy/Paste

Validating
Design
Elements

Delete Node

Find Usage

Find

Incremental
Search

Drag and Drop

Recent File List

Exiting Designer

Version Support

See Also:

]

Zhea

It explains how to export/import a design element in different
formats such as XML, HTML, DTD.

It shows the easy way for creating copies of design elements and
fields.

It explains how to validate a design element or all design elements
in a cartridge.

It explains how to remove a node from the cartridge.

It explains how the user can find the usages of a design element in
a cartridge.

It explains how the user can search for an item of interest in a
design element based on the text contained in it.

It explains how the user can quickly search for occurrences of text
in text area elements, tables and formula editor that appear in
Designer and Simulator.

It shows the easy way for opening cartridge and data files.
It shows the easy way for accessing the recently opened cartridges.
It explains how to exit designer.

It explains the version support provided by Designer.

Designer User Interface

Cartridge

Message
Message Mapping

Formula

Function Definition

Resources
Code Generation
Simulator

iy

o
ORACLE | %hea

Tables

This section explains how to manipulate tables in Designer. The table contents of a
message can also be viewed in tree structure.

See Also:

Rearranging Columns of a Table
Showing/Hiding Columns of a Table
Zebra Highlighting in Tables

Table Auto Formatting

Controlling Row Height in Tables
Tooltips for Table Elements

Viewing Table as HTML Page
Comment/Annotation Support in Tables
Expand/Collapse

Incremental Search

Rearranging Columns of a Table

The user can easily rearrange the columns of a table by dragging a column title and
dropping it at the required location.

Enterprise Element Mapping Type Source Fields
W Security_ID i HDMy Sacurity ID tring HOFR._SecurityID
s firstname 4+ firstmarme tring firstnarne
<}? lastnarne + lastnarme trimg lastnarme i
& age i+ age ateger age [
& gender 4+ gender haracter gender =
See Also:

Showing/Hiding Columns of a Table
Zebra Highlighting in Tables

Table Auto Formatting

Controlling Row Height in Tables
Tooltips for Table Elements

Viewing Table as HTML Page
Comment/Annotation Support in Tables
Incremental Search

-

ORACLE' | Zbea

Showing/Hiding Columns of a Table

Right-clicking a column title brings up a short-cut menu, which displays the actual
columns of the table as menu items. Selecting the check box besides a menu item
shows the corresponding column. Whereas deselecting the check box besides a
menu item hides the corresponding column. As hiding a column is a common
requirement, a menu item to hide the current column is also included in the
short-cut menu.

HE 4§ L

Mame Type Handler Condition
El OM_MEW _MESSAGE CrndMettingTrigge Size to fit hand,"METTIMG"]

EZ OM_MEW_MESSAGE <CmdEODTriggerHs Hide 'Handler' hand,"ECD")

=

¥ Harme

M Type

¥ Handler
¥ Condition

[J Properties

See Also:

Rearranging Columns of a Table

Zebra Highlighting in Tables

Table Auto Formatting

Controlling Row Height in Tables
Tooltips for Table Elements

Viewing Table as HTML Page
Comment/Annotation Support in Tables
Incremental Search

Zebra Highlighting in Tables

In the table, adjacent rows are colored differently to distinguish a row from its
preceding and succeeding row as shown in the following picture.

0? Sequence Mumber Integer] C Formmat

£y Opening Balance Section D
% OFC Mark String] M, F Farrmats
& OpenBalbate Cate] M, F Formats
& Currency String] M, F Forrnats

0%

ORACLE' | %hea

See Also:

Rearranging Columns of a Table
Showing/Hiding Columns of a Table
Table Auto Formatting

Controlling Row Height in Tables
Tooltips for Table Elements

Viewing Table as HTML Page
Comment/Annotation Support in Tables
Incremental Search

Table Auto Formatting

Right-click on any row in the table and select “Table Auto Format” from the context
menu as shown in the following picture.

VYalidation Rules - S\WIFT [MT950] &)

rHeader |/Data |/T|-ai|er |

HeB4T I

Mame Validation
ﬁ & ci-1 =TSR TH B S Left(Fe0a[0]. Currency, 27
E=
'f_"". i ci-z Copy Left(FEDa[0]. Currency, 2)]

Paste

L6 Fet-a
'f_"'.. §# Fei-p %Table Auta Farmmat o nsaction_Tepe_Identification_Code, 0], 'S,
'f_,"'- & Fei-c :E Row Height %

. 6 Fei-D
*\ €9 Do-FI

action_Type_Identification_<Code;

ransaction_Type_Identification_Code, "H") ||
!ﬁview £z HTML e[Tadaw(), "vu"l + FE1.Entry_Date, "vuMMdd")

edit_Mark;
Eﬁ Edit Cormment

'f_"'-. Show Comment
E Delete Comment
tﬂ Mext Comment

ta Prewious Cormment

All the rows and columns in the table are resized (best fit) based on content as
shown in the following picture.

ORACLE

Validation Rules - S\WIFT [MT950]

iy

27%
zhea

rHeader |/Data |/Trai|er |
, 62
=H @ T &
Mane Yalidation
'.t}, i c1-1 StartsWithi($walue, Left(Fa0al0]. Currency, 21
9 iz Startswith($wvalue, Left(FE0a[0]. Currency, 2])
'-f_F'"-, §# Fel-a tcode = FEL Transaction_Type_Identification_Code;
If(Startswith($code, "5"),
IfiIsInt(Right($cade, 31),
Between(Tolnt(Right($code, 311, 100, 2997,
false),
true);
't"'-. §# Fel-B In{ChardtiFél, Transaction_Type_Identification_<Code, 07, 'S',
INI_. IFIJ
'f'_}. {f FEl-C If(StarkswWith(FEl. Transaction_Tvpe_Identification_Code, "H") ||
StartzWith(FE1l. Tranzaction_Tupe_Identification_Code, -
B =D
See Also:

Rearranging Columns of a Table

Showing/Hiding Columns of a Table

Zebra Highlighting in Tables

Controlling Row Height in Tables

Tooltips for Table Elements

Viewing Table as HTML Page

Comment/Annotation Support in Tables

Incremental Search

Controlling Row Height in Tables

Right-click on a row in the table and select the “Row Height” menu item from the
context menu as shown in the following picture.

@

2%

ORACLE' | %hea

Yalidation Rules - S\WIFT [MT950]

rHeader |/Data |/T|=ai|er |

HeB®W4H 4

§

Mame Validation
V69 o1l statsWithi$walue, Left(FE0a[0] Currency, 2))
"t"". 0 c1-z Copy Left{F&0al0], Currency, 211
't"-. i@ Fel-A faction_Type_Identification_Code;
'f‘_“x i Fel-pB @Table Auto Format nsaction_Type_Identification_Code, 00, 'S,
! F Fe1-c :lI Row Height P | cingle Line | Code, "M ||
. @ Fe1-D B view A= T Auto Fit Rowls) e, "yyMMdd")

. oo-FI
e @ [J Auto Fit Row on selection

[0 Auto Fit Row on edit

@ Edit Cormrment

'f"-. Show Comment

& Delete Cormment
3 Mewt Carnment

ta Previous Comment

You can resize the selected row / all rows in the table using any of the four options
(explained below) in the context menu, which appears when you select the “Row
Height” menu item.

Single Line

If this option is selected, the height of the selected row/rows is set to a single line.

2%

ORACLE | %hea

The following picture shows the rows before selecting the ‘Single Line’ menu item.

Validation Rules - SWIFT [MT3950] &)

rHeader |/Data |/Trailer |

H-e® T J

Manie Validation
'it'g, i# Fel-a fcode = FE1. Transaction_Tuwpe_Identification_Code:
Ifi StartsWith(fcode, "S").
IfiI=Int(Right($cade, 271,
Between(Tolnt[Right{$fcode, 211, 100, 2997,
false),
tue;
{# FE1l-B In(Charat(F&1l. Tranzaction_Type_Identification_Caode, 0, 'S',
i 17 Copy | |
G Felc If{ Starts With(F&1, Transaction_Typ T
StartsWith(FEL1. Transaction_Ty
npny, % Table Auto Farrnat
Single Line %]I Raw Height k
Auto Fit Rowl(s) Eﬁ"ufiew Az HTML I’ |
— ’ -

0%

ORACLE | #bea

The following picture shows the rows after selecting the ‘Single Line’ menu item.

Validation Rules - SWIFT [MT3950] @
rHeader |/Data |/Trai|er |

H-e® T I

Mame VYalidation
f‘_‘_\, §9 Feil-a tcode = FEL Transaction_Type_Identification_Code; [
| 6 Fe1-p In(CharAt{F61, Trans action_Type_Identification_Code, 0), 'S',
6 Fol-c Ifi StartsWith(F&1. Transaction_Type_Identification_Code, "H"] ||
: Starts'With(F&E1. Transaction_Twpe_Identification_Code,
",

In(Right(F&E1. Tranzaction_Type_Identification_Cade, 27,
"BOE", "BRF", "CHG", "CHK", "CLR", "CMI", "CMMN", "CMS",
YCMTY, "CmzE", "Col", oM, "DCR", "DDT", "DIWV", "ECK",
"EQaM, "FEX", "INT", "LBX", "LDP", "MSC", "RTI", "SEC",
"STO!, "TCE", "TRF", "WwDA"),

trua) i
'f_"'-. i@ Fel-D IzDate(ForrmatDate(Taday(), "vu") + F&1.Entry_Date, "yyMMdd")
'T‘-. £ DC-FIH $dc = F&1.Debit_Credit_Mark;
tshouldFix = Length($dc) == 2 22 In($dc, "RO", "RC"] 22 __

IzMulllFEL1,Funds Codel: il

Auto Fit Row(s)

If this option is selected, the height of the selected row/s is set based on the height
of the cell in that row which has the maximum height.

Mame Yalidation
§# c1-1 If ($walue == FZ2A[0]. Currency,
F26.%zize == 0,
F36.%zize > 0

[)
Auto Fit Row on selection

If this check box is checked, any row in the table is automatically resized on
selection to appropriate height (multiple lines if required). When you move the
selection to another row, the original height is restored. This is useful for viewing
formula.

-

ORACLE' | Zbea

Auto Fit Row on edit

If this check box is checked, any row in the table is automatically resized to
appropriate height when you start editing the same. Unlike “Auto Fit Row on
selection”, the original height is not restored when you navigate to some other row.

You can also set the required row height setting to all the rows and cells added in the
table by right-clicking the Column Header and selecting “Row Height” from the
context menu as shown in the following picture:

Enterprise Element == DescHpton
5 Grmfld Strir Size column to fit
4 FirstMarme St Row Height P oeuto %
& LastMarne stig Hide Twpe’ Auta Fi# cells in colurmin
£ EmpMo Ctri] ¥ Enterprize Element
s Gender St I Alias
& JoinDate Strif M Type
i Designation Sitrin ¥ Hidden
& Salary Shrin M Dezcription
Auto Fit

If this option is selected, the height of all rows are automatically best fit based on
the height of the cell in the corresponding row which has the maximum height. This
is same as “Auto Fit Row(s)” seen above, but is applied to all rows instead of the
selected row alone.

Manwe Validation Applis
i cie If (F71F.$size = 0 || F71G.$size = 0,
F23B. $size = 0,
tue
]
o ci7 If (In($walue, "TELI", "PHOI"), ZRE. Instruction
FS&a. tsize = 0,
tue
]
& cis If (In($walue, "TELE", "PHON"], ZRE. Instruction
FS57a.tsize = 0,
tue
]
i c19 fwvalue == F224[0].Currency F1G, Currency

Auto Fit cells in column

iy

o
ORACLE | #hea

If this option is selected for a column, say “Name”, then the height of all the rows in
the table is set based on the height of the corresponding cell, which appears under
the column “Name”.

Manme Validation
i c1-1 If ($walue == F22A[0]. Currency,
i c1-z F23B.$size = 0
ﬁ 6 o2 $rnir = "
See Also:

Rearranging Columns of a Table
Showing/Hiding Columns of a Table
Zebra Highlighting in Tables

Table Auto Formatting

Tooltips for Table Elements

Viewing Table as HTML Page
Comment/Annotation Support in Tables
Incremental Search

Expand/Collapse

Consider a table where the sections are collapsed

Enterprise Element Type Hidden Descripton
4 InwvoiceDate CateTirme (=
& ClientID String]
T item Section [

To expand sections right click the table and select ‘All Sections’ menu item under
‘Expand’ menu as shown below.

Enterprise Element Type Hidden
4w InvoiceDate o Expand y| Al Sections
& ClientID —

- B= Collapse b
1 Ttem]
Copy

Paste

Find]

ﬁ Table Auto Format
:l{ Raow Height r

@ view As HTML

iy

';"
ORACLE | %bea

The table now appears as shown below

I:H Enterprise Element || Type || Hidden || Description
4 InwaoiceDate DateTime]
& ClientIn String [
_ritem Section]

To collapse sections right click the table and select ‘All Sections’ menu item under

‘Collapse’ menu as shown below.

|:|| Enterprise Element || Type || Hidden ||
4 InwaiceDate __DiateTime |
& ClientID = Expand 3 | —
‘__\li'. Itermn ':'E Collapse b Allﬁectiml'n_g.
& ItemID Copy =
@ Oty |
4 Price 7

ﬁ Table Auto Format
:l{ Row Height r

B View As HTML

The table now appears as shown below

I:H Enterprise Element || Type || Hidden || Description
l:l 4 Invoicelate CateTirme]

4 ClientID String]

CF 1tem Section]
See Also:

Rearranging Columns of a Table
Showing/Hiding Columns of a Table
Zebra Highlighting in Tables

Table Auto Formatting

Controlling Row Height in Tables
Viewing Table as HTML Page
Comment/Annotation Support in Tables
Incremental Search

Tooltips for Table Elements

-

ORACLE | #bea

ToolTip for fields/sections added in the table show most of the properties set for the
same as shown in the following picture.

0? Sequence_Number

ea &0 ¥ Field Sequence_Number
W D
Marme : Sequence_MNumber
¥ Pt parent L 2EC
g cuf Type ! Imteger
Cocurrence ¢+ Optional
L Options B &
i Far| Format L 5n
See Also:

Rearranging Columns of a Table
Showing/Hiding Columns of a Table
Zebra Highlighting in Tables

Table Auto Formatting

Controlling Row Height in Tables
Viewing Table as HTML Page
Comment/Annotation Support in Tables
Incremental Search

Viewing Table as HTML Page

Selecting the View As HTML menu item from the short-cut menu that appears by
right-clicking in the empty column of a table generates an HTML page containing the
table information.

Enterprise Element Data type Mapping Source Fields
& Security_ID String H- HDR_SecurityID HOR._SecurityID
S fleckonre, S +H firstmame firstmarme

B= Collapse]

+ lastname lastnarme

H‘}E Expand] o ooe o

ﬁ Insert Comrent ter + gender gender

tﬂ Mext Commment + joindate joindate

ta Previous Comment + dezignation designation

& view Az HTML h + zalary zalary

The HTML page is a sort of quick view of the current table information. The structure
of the generated HTML page will be similar to the table. If you have hidden a column
or reordered the columns, it will be reflected in the generated HTML page.

-

ORACLE' | Zbea

See Also:

Rearranging Columns of a Table
Showing/Hiding Columns of a Table
Zebra Highlighting in Tables

Table Auto Formatting

Controlling Row Height in Tables
Tooltips for Table Elements
Comment/Annotation Support in Tables
Incremental Search

Comment/Annotation Support in Tables

Mapping/validation formulas can easily be created, but very difficult to
maintain/understand. Comments will make that easy.

Given below is the list of items for which the user can add comments. It also
describes where it can be specified for the corresponding item.

Mapping — For mapping rules comments can be added against each target field in
the left margin. For custom mapping, the comment can go into the window that
pops up when the Custom Mapping button is clicked.

Validation — For both external and internal message validation rules, the
comment can be specified in the left margin of the corresponding validation rule.

Enrichment — For processing of a field, a comment can be added in the left
margin. For “Custom Processing”, it is specified using the Comment dialog that
pops up when clicking the Add Comment button.

See Also:

Adding a Comment

Editing a Comment

Removing a Comment

Viewing a Comment

Moving Between Comments in a Table
Rearranging Columns of a Table
Showing/Hiding Columns of a Table
Zebra Highlighting in Tables

Table Auto Formatting

Controlling Row Height in Tables
Tooltips for Table Elements
Viewing Table as HTML Page
Incremental Search

-

ORACLE' | Zbea

Adding a Comment
Follow the steps given below to add a comment for a table row.

1. In the table, right-click on the first column (empty column) of the row
corresponding to the required field.

This brings up the short-cut menu as shown in the following picture.

Enterprise Element Alias Type Formula
ﬁcl? Cerritu T String Left{itam, productiame,
5 Bpeae d Section
= collapse » Er—
COpY] String
'@ Table Auto Forrnat String
:lI Fow Height b String
String

@ view Az HTML : _
Bighecimal

ﬁ Insert Comment Saction
ta Mext Cormment String
ta Frevious Commment Section

2. Now select the Insert Comment menu item from the short-cut menu.

This brings up the comment/annotation pane as shown below.

Enterprise Element @ Alias Data type Formula
4 Security ID String Lettifirstnare, 31 + vear(joindatz]..
Krishnan:

Security ID is composed of first name, join date and last name 'Fields.l

& designation String
& zalary Double

3. Enter the comment in the annotation pane and click outside that window or just
press the Esc button to close it to finish entering the comment.

See Also:

Editing a Comment

-

ORACLE' | Zbea

Removing a Comment
Viewing a Comment
Moving Between Comments in a Table

Editing a Comment
Follow the steps given below to edit an existing comment.

1. In the table, right-click on the first column (empty column) of the row
corresponding to the field containing the comment to be edited.

This brings up the short-cut menu as shown in the following picture.

Enterprise Element Alias Type Formula
2) .
"f.,"& 7 SecurityID String Leftiitern. productdarme,
G‘E Expand ¥ Section
:E Collapse] String
Copy ... » String
String
% Table Auto Forrmat
String
:lI F.ow Height ¥
String

) View As HTML BigDecimal

@ Edit Cormrment Section
f}. Sth},Comment String
& Celete Comment Section

ta Mext Comment

ta Previous Commment

2. Select the Edit Comment menu item from the short-cut menu.
This brings up the comment/annotation pane.

3. Modify the comment in the annotation pane and click outside that window or just
press the Esc button to close it to finish editing the comment.

See Also:

Adding a Comment

Removing a Comment

Viewing a Comment

Moving Between Comments in a Table

]
L r
. d g
ORACLE | %bea
Removing a Comment
Follow the steps given below to remove an existing comment.

1. In the table, right-click on the first column (empty column) of the row
corresponding to the field containing the comment to be removed.

This brings up the short-cut menu as shown in the following picture.

Enterprise Element Alias Type Formula
e 2 . .
s & SecurityID String Left(itern. productMarne,
P2 Expand » Section
== collapse » String
Copy ... » String
String
ﬁ Table Auto Format
String
:lI FRow Height]
String
.@ Wiew Az HTML BigDecimal
@ Edit Comment Section
:f‘_':'\ Show Comment gtring
¥4 Delete Comment Section

ta Mext CoPnrent

ta Pravious Comment

2. Select the Delete Comment menu item from the short-cut menu to remove the
comment.

See Also:

Adding a Comment

Editing a Comment

Viewing a Comment

Moving Between Comments in a Table

Viewing a Comment

Moving the mouse cursor over the comment icon displayed in the empty column
shows the comment. The comment disappears if you move away the mouse cursor.
You can also display a comment by selecting the Show Comment menu item of the
short-cut menu that appears when you right-click the empty column. But the
comment pane should be closed by clicking outside the comment pane or by pressing
the Esc button.

-

ORACLE' | Zbea

See Also:

Adding a Comment

Editing a Comment

Removing a Comment

Moving Between Comments in a Table

Moving Between Comments in a Table

The user can easily move between the comments of a table by selecting the
Next Comment and Previous Comment menu items of the short-cut menu that is
displayed by right-clicking the empty column of a table.

Enterprise Element Alias Type Formula
7) .
"t"ﬁ L7 SecurityID String Left(itern. productMarne,
¥= Expand b Sedtion
EE Collapse] String
Copy ... » String
String
% Table Auto Format
String
:lI F.ow Height ¥
Strimg
@ View As HTML Bighecimal
2 Edit Cornment Section
'-f:fx Show Comment gtring
E Delete Comment Section

tﬂ Mext Comment

ta Previous Commment

See Also:

Adding a Comment
Editing a Comment
Removing a Comment
Viewing a Comment

Mount Directory

Cartridge uses external resources such as source files, XML, DTD, etc. By allowing
mounting of one or more file system directories, Designer supports management of
these resources along with the cartridge. Designer also supports viewing, editing and
creation of these resources

ORACLE

-

“hea

Usually you mount directories containing resources related to the current cartridge
so that you can manage a cartridge and its resources from within Designer. It is

recommended that the mount directories are present under the cartridge directory.

When you save a cartridge, the mounted directory locations are saved in it. When
you reopen a cartridge, the mounted directories are shown in Explorer along with
cartridge design elements.

EE Explorer Rx| I Custom InputMapping.java®

RER $-ta-

PurchaseOrder

I custom

i@ External - XML [PurchaseDrde

L @ CustomInputMappingjava

4]

[»]

import com. tplus. transform. runtime, handler. *;
import com. tplus. transform. runtime, *;

import java.util.*;

public class CustonInputMapping implements TInputMap

public CustonInputMappingi) !

public void map(InputObject input, NormalizedOhb]

try !
Datalbjectliection inltemfec = input.getl
Datalbjectiection nfltembec = nf.getiect

if(inltendec.getElenentCount() > 0]
double totalCost = 0.0;

for(int i = 0;i < inTtem%ec.getElene

Datalbject inltenElm =
Jtring itemID =

{

inTtenied

[Btring) inItem.EJ:

9

(4]]

[»]

NOTE:

Saving a cartridge is not tied with saving the constituent files/directories of
mounted directories. In fact changes made to a constituent file of a mounted
directory is saved as soon as the focus is changed to some other item of

cartridge.

Please also note that the source/resource files of a mounted directory are not

included in the code generation process. For these files to be included in the code
generation process, they have to be specified in the code generation settings of

the Cartridge.

See Also:

Mounting a Directory

-

ORACLE' | Zbea

Working with a Mounted Directory
Editing and Saving a File

Creating a Directory

Creating a File

Working With Cartridge Designer
New File from Template

Mounting a Directory

Follow the steps given below to mount a directory:

1. Select ‘Mount Directory’ menu item from the ‘New Item’ drop down in Explorer
toolbar.

%. T:I d e b () Mew Folder ...

% Mew Reference ... <> Mew Internal Message ...

. . 4@ Mew External Message ...
Verify Integrity

“H Mew Mapping ...

Path]
. @ Add Resources
Properties
i £? Mew Function
Copy Ctrl-C
Mount Director
B paste el = !

The ‘Select Directory’ file open dialog box is shown.
2. Select a directory and click on the Open button.

The selected directory along with its top-level children is shown in Explorer.
Save the cartridge, if you want the mounted directory location is saved with the

cartridge so that when you reopen cartridge, the mounted directory is also shown in
Explorer along with cartridge design elements.

See Also:

Mount Directory

Working with a Mounted Directory

When you mount a directory, the constituent files and sub-directories are displayed
in Explorer in a tree view. Please note that not all the files under the mounted
directory are shown; only files with some extension (file types commonly used with a
Cartridge) are shown.

-

ORACLE' | Zbea

When you select a mounted directory or its sub-directory in Explorer, the top-level
children of that directory are displayed in the detail pane. When you hover the
mouse pointer over the name of a child item, it displays a hyperlink and clicking it
will take you to that child item.

T D

) D¢ Program Files', Designertjava
Mame Size Date Modified

‘h 240 bytes Tue Sep 04 16:14:50 IST 2007

You can expand/collapse the mounted directory and its sub-directory nodes. In fact
when you collapse and then expand a directory node, the content of that directory is
refreshed. This means that if a file/directory is newly created under that directory
(using another application), it will be included in the tree view.

See Also:

Mount Directory

Editing and Saving a File

When you select a file node in Explorer, the content of that file is shown in detail
pane. The content is shown with syntax highlight for some file types such as JAVA,
XML, etc. The status bar at the bottom of the detail pane shows the current line and
column.

To edit a file, simply select it in Explorer and change its content shown in detail
page. As soon as you change the focus to some other node in Explorer, the file gets
saved.

Please note that saving the file is not tied with saving a cartridge. The file is saved
when the file node loses focus irrespective of whether the cartridge is saved or not.

See Also:

Mount Directory

Creating a Directory

iy

S
ORACLE | %bea

You can create a new directory under the mounted directory or one of its constituent
directories by following the steps given below. The new directory location is relative
to the selected directory.

1. Select the directory node in Explorer under which you want to create a new
directory.

2. Select the ‘New Folder’ menu item from its shortcut menu.

By Explorer x|
@ 2-i-h
MT524
(3 External - SWIFT [MT524]
|:"-' External Format
@ Validation Rules [Default]

BL@ Enp',l Chrl -
B rsste Chrl-w
> Delete
) validate Chrl-L

Mew Falder
Mew FE
Mew File frorm Ternplate b

Open Containing Folder

The ‘New Folder’ message box is shown.
3. Enter the name of the folder to be created and click OK.

The folder with the specified name is created directly under the selected
directory.

See Also:

Mount Directory
Creating a File

Creating a Directory
Mount Directory Location

-
ORACLE | %hea
Creating a File
You can create a new file under the mounted directory or one of its constituent
directories by following the steps given below. The new file location is relative to the
selected directory.
1. Select the directory node in Explorer under which you want to create a new file.
2. Select the ‘New File’ menu item from its shortcut menu.
The ‘New File’ message box is shown.

3. Enter the name of the file to be created with its extension and click OK.

The file with the specified name is created directly under the selected directory.

See Also:

Mount Directory
New File from Template
Mount Directory Location

Mount Directory Location

One of the common use cases is to go to the location of Mounted directory. The user
may want to create a file, delete a file, make changes in a file etc. It may be
irritating to the user to locate the Mounted directory by using the explorer,
particularly when the Mounted directory is located deep inside some nested
directory. The ‘Open Containing Folder’ menu lest you to open Mounted directory in
explorer.

1. Right click the Mounted directory node.

2. Select ‘Open Containing Folder’ menu from the context menu.

-

ORACLE' | Zbea

PurchaseOrder
@ External - XML [Purchase Order]
|2 cust
L@ @
> Delete

validate Ctrl-L

Mew Folder
Mew Fila

Mew File frarmn Template]

Open Containing Folder

The folder in which Mounted directory is located will be opened in explorer.

See Also:

Mount Directory
New File from Template

New File from Template

One of the things users occasionally would want is how to write client, custom
extension classes etc. The ‘New File From Template’ feature allows the user to create
source files from template. Source files can typically be created for handler classes,
clients etc from predefined templates. The files can be created for Java. This feature
is available only when a directory has been mounted in the cartridge.

The templates are stored under ‘config\filetemplates’ directory. The templates for
Java are under ‘config\filetemplates\Java’. They are customizable. The templates are
shown as menus when the user selects a ‘Mount Directory’ folder and selects ‘New
File from Template’ menu.

See Also:

Creating a New File from Template
Mount Directory
External Sources Tab (Java/EJB)

Creating a New File from Template

-

ORACLE' | Zbea

1. Right click the ‘Mount directory’ folder under which you need to create a file and
select ‘New File from Template’ menu item. Select either ‘Java’ the platform in
which the template is to be generated.

MT524

i:@ External - SWIFT [MT524]
I 2 Be

> Delete

#] validate Crl-L

Mew Falder

Mew File

Mew File frorm Termplate b

Open Containing Folder

The types of template that are supported will be displayed. Select the template
for which you need to create a template file. Based on the selected template a
dialog will appear which will prompt you to specify parameters for the template
file to be generated. This dialog will vary depending on the template that is
selected.

2. If ‘FieldVvalidation’ menu item is selected the following dialog will be displayed.

é:'l Mew File from template - Field¥alidation

PACKAGE MAME |

MAME

(]34 Cancel ﬂ Help

3. Specify the package in which the client is to be generated.

4. Specify the name of the client.

-

ORACLE' | Zbea

é;'l Mew File from template - Field¥ alidation

PACKEASE MAME |corm,purchasze

MAME PurchazeClient

]34 Cancel ﬂ Help

A client file ‘PurchaseClient.java’ will be created under the mount directory.

See Also:

File Templates
External Sources Tab (Java/EJB)

Navigation Features

These features help in quick movement between elements of a cartridge which
otherwise require the Explorer window.

See Also:

Moving Between Recently Visited Elements

Moving from a Field to its Validation Rule

Moving from a Field to its Mapping Rule

Moving from a Field to its Mapping Usage

Moving from a Field to its Usage Items

Moving Back to a Field Definition

Moving Between Source and Destination Fields in Mapping Rules Ul
Working With Cartridge Designer

Moving Between Recently Visited Elements

The Back menu item of the Edit menu takes to the last design element the user has
visited before selecting the current design element.

Whereas, the Next menu item of the Edit menu takes to the design element that
the user has visited before selecting the Back action.

2%

ORACLE | %bea

See Also:

Moving from a Field to its Validation Rule

Moving from a Field to its Mapping Rule

Moving from a Field to its Mapping Usage

Moving from a Field to its Usage Items

Moving Back to a Field Definition

Moving Between Source and Destination Fields in Mapping Rules Ul
Navigation Features

Moving from a Field to its Validation Rule

The user can quickly move from a field definition in the Format Ul to its validation
rules. This can be done by selecting the Find > Validation menu item from the
short-cut menu that appears when you right-click in the row corresponding to the
required field.

Internal Format - [PurchaseOrder] ‘

Sten §f 4 e B
|:|| Enterprise Element || Type || Hidden || Desci
o orderfate Datednl]
3 shipT4 H‘}é Expand]]
7 billTo EE Collapze]]
&7 comnm] Copy ., k [
jitem Copy [
% Paste
NE Find B [Usages _|=|’
x| Froperis ﬁ Table Auto Format o) ez ien
Mot Mull :lI Row Height » “H? Mappings™To
A Mappings Usage

Default é Wiew Az HTML T

Platformn Specific Attribu, ..

Properbes

2%

ORACLE | %bea

See Also:

Moving Between Recently Visited Elements

Moving from a Field to its Mapping Rule

Moving from a Field to its Mapping Usage

Moving from a Field to its Usage Items

Moving Back to a Field Definition

Moving Between Source and Destination Fields in Mapping Rules Ul
Navigation Features

Moving from a Field to its Mapping Rule

The user can quickly move from a field definition in the Format Ul to its mapping
rule, i.e. to the mapping rule in which this field is the target field. This can be done
by selecting the Find > Mappings To menu item from the short-cut menu that
appears when you right-click in the row corresponding to the required field.

Internal Format - [PurchaseOrder] l ‘
“EE R
|:|| Enterprise Element || Type || Hidden || Desci
o orderfate DateCnl]
3 shipT4 H‘}é Expand]]
7 billTo EE Collapse]]
<>? CarnrT CopY k [
—ritem Copy [
Paste
Find B] Usages _lg
x| Froperis ﬁ Table Auto Format vl Eliginen
Mot Mull T Rew Height p| W Map%gi Ta
E Default| &8 view Az HTML ||<H> Mappings Usage
E_ | Platformn Specific Attribu, ..
£

2%

ORACLE | %bea

See Also:

Moving Between Recently Visited Elements

Moving from a Field to its Validation Rule

Moving from a Field to its Mapping Usage

Moving from a Field to its Usage Items

Moving Back to a Field Definition

Moving Between Source and Destination Fields in Mapping Rules Ul

Navigation Features

Moving from a Field to its Mapping Usage

The user can quickly move from a field definition in the Format Ul to its mapping
usage, i.e. to the mapping rule in which this field is used as the source field. This can
be done by selecting the Find = Mappings Usage menu item from the short-cut
menu that appears when you right-click in the row corresponding to the required

field.

Intermal Format - [PurchaseOrder]

Properties

|:|| Enterprise Element || Type || Hidden || Desci
&° orderfiate CateSnl [
(] shipTd d}% Expand b 0
[billTo Z= Collapse] O
0? COrm Copy ... » O
_ritem cCopy D
[Paste
4|§ Find) f",’] Usages b
=l Fropertis ﬁ Table Auto Farmat @ Walidation
Mot Mull :l{ Rusw Mgl » “H? Mappings To
Default| @ view As HTML |'<}D Mappingﬁggage

Platforrn Specific Attribu, ..

2%

ORACLE | %bea

See Also:

Moving Between Recently Visited Elements

Moving from a Field to its Validation Rule

Moving from a Field to its Mapping Rule

Moving from a Field to its Usage Items

Moving Back to a Field Definition

Moving Between Source and Destination Fields in Mapping Rules Ul

Navigation Features

Moving from a Field to its Usage Items

The user can quickly move from a field definition in the Format Ul to its usage items
such as validation rules, mapping rules and processing rules. This can be done in two
steps. First select the Find > Usages menu item from the short-cut menu that
appears when you right-click in the row corresponding to the required field.

Internal Format - [PurchaseOrder] ‘

HCI B S 74 e (B
|:|| Enterprise Element || Type || Hidden || Descl
o Drderrlaiﬁg_ Cratednl]
[shipTe = Expand 3 O
O billTo| = <ollapse »]
<>? o COpY . b]
_ritem copy [
1 Paste
1 | = Find 3

ﬁ Table Auto Format
:lI Row Height

B View As HTML

= Usages .
) Valihinn

“H* Mappings To

“H* Mappings Usage

[Propertis
Mot Mull

n Cefault

£

]

=N

£

(=8

Platformn Specific Attribu, ..

Next move to the required item by clicking the hyperlink displayed when you hover
the mouse pointer over the items shown in the Search Results pane.

2%

ORACLE' | %hea

=] £ Node Location Property Yalue

. Praceszsing Rules - [Purchazedrder] orderDate Processing Rule ordarDate

a Processing Rules - [Purchazedrder] EZ Applies To orderCate

E Processing Rules - [Purchaszedrder] E4 Validation Rule itern.shipDate == o...

E Databaserﬁdapping CrderDate Mapping orderCate

r.u-&‘ Mapping ez - MessageMapping [P... orderDate Mapping IffisMotMulllorderlra. ..
See Also:

Moving Between Recently Visited Elements

Moving from a Field to its Validation Rule

Moving from a Field to its Mapping Rule

Moving from a Field to its Mapping Usage

Moving Back to a Field Definition

Moving Between Source and Destination Fields in Mapping Rules Ul
Navigation Features

Moving Back to a Field Definition

The user can quickly move back to a field definition in the Format Ul from its usage
items such as validation rules, mapping rules and processing rules. This can be done
by selecting the Go To Field Definition menu item from the short-cut menu that
appears when you right-click in the row corresponding to the required field.

Processing Rules - [PurchaseOrder]

r Pre-Processing |/ Business Exceplions |/ Post-Processing |

Enterprise Element Alias Type DescHpton
] Internal Format Sedion
4 Status String
¥ arderDate — Ciatacinly
o=
) = Collapse]
1 shipTo 8= ri
=E d J
7 billTo i sl n
& cormment |) Go Tao Field Definition
_f iterm M Table Auto Farrnat K
v _ am :lI Fow Height F |z are applied if the N
@ @ Ram iz not null,
A& view As HTML
MHame Action Message
{) EZ orderDate <= Today() "The field 'arderlrate’ should be less th

iy

S
ORACLE | %hea

The same can also done by moving the mouse pointer over the required field when
the CTRL key is depressed and clicking the hyperlink displayed as shown in the
following picture.

Enterprise Element Alias Type Descrpbon
_1 Intermal Format Section
& Status String
<}? DateCnly
hi T\ﬂ_n) n
—l shipTo “ Fiald orderDate
] billTo n
5 Type i DateOnly
@ comment| gecurrence ; Optional
_T item Seckion
See Also:

Moving Between Recently Visited Elements

Moving from a Field to its Validation Rule

Moving from a Field to its Mapping Rule

Moving from a Field to its Mapping Usage

Moving from a Field to its Usage Items

Moving Between Source and Destination Fields in Mapping Rules Ul
Navigation Features

2%

ORACLE' | %hea

Moving Between Source and Destination Fields in
Mapping Rules Ul

To move to the source field corresponding to a target field, select the Locate
Source menu item from the short-cut menu that appears when you right-click on
the target field row as shown in the picture given below.

Mapping Rules - XML [InvinXML] =

INTERMAL FORMAT 4 EXTERNAL FORMAT

Enterprise Element |Data type Mapping Source Fields
i InwoiceDated o= Invoicelate
= Collapse b
 ClientID = ClientICr
= ﬂ‘:; Expand bk
=] Itenn
& TternlD ﬁ Insert Comment TtermID
»
& Oty Ld Mext Commment Ty
<& Price ta Previous Cormment Briaz

B View As HTML

=] Go To Field Cefinition

ﬁ H- Locate So Fg:e —|
"L'l

External Format (Input)

|/Header |/Data |/Trai|er |
Field Hame || Alias || Data type | Descrpton | Target Fields

5 Ttem Section
i IternID String ItermID
L) T Integer Ortw

4 Price Couble Price

2%

ORACLE | %bea

Likewise to move to the target field corresponding to a source field, select the
Locate Destination menu item from the short-cut menu that appears when you
right-click on the source field row as shown in the picture given below.

Mapping Rules - XML [InvinXML] A=

INTERMAL FORMAT 4= EXTERMAL FORMAT

Enterprise Element |Data type

Mapping Source Fields

4 InvaoiceDate Crate He InvoiceDate Inwvoicelate
i ClientID String +H ClientID ClientID
o Ttem Section
i IternID String +Hr Itern, ItermlID ItermnID
@ Oty Integer e Ttern, Gty Oty
W Price Couble e Itern, Price Price
ﬁ Map . Custaorn Mapping

External Format (Input)

|/Header |/Data |/Trai|er |

Field Name Alias Data type | Description||Target Fields

4 InwoiceDate

0

Invoicebate

ClientID

b
»

: E Collapse
W ClientID {:_E Expand
A view As HTML
=1 Ga Tao Field Definition
H Locate Destination %_
See Also:

Moving Between Recently Visited Elements

Moving from a Field to its Validation Rule

Moving from a Field to its Mapping Rule

Moving from a Field to its Mapping Usage

Moving from a Field to its Usage ltems

Moving Back to a Field Definition

Navigation Features

-

ORACLE' | Zbea

Diff

This section explains how to diff two design elements or two cartridges.
Designer supports the following diff operations.

Comparing Two Nodes in the Cartridge
Comparing Two Cartridges

See Also:

Differencing View
Differences Pane
Exporting as HTML
Cartridge Publisher
Cartridge Read-Only Mode
Verify Integrity

Comparing Two Nodes in the Cartridge

Designer provides support for comparing two nodes in the cartridge. The only
restriction is that the two nodes should be of the same type. For instance it does not
make sense to compare FIX message’s field structure with that of SWIFT.

Select two nodes in the explorer (exactly two).
Right click and select ‘Diff’ from the context menu.

The first selected node and its children are compared with the second and the
Diff view is displayed as a separate frame.

See Also:

Comparing Two Cartridges
Differencing View
Differences Pane
Exporting as HTML

Diff

-

ORACLE' | Zbea

Comparing Two Cartridges

Designer also provides support for comparing two cartridges. The active (currently
opened) cartridge can be one of the two cartridges that are compared.

From the Tools menu select ‘Diff Cartridges’ menu item.

Select the first and the second cartridge files. You can also choose to use the
active cartridge (the one that is open or selected in the explorer) as either the
first or the second cartridge.

Click OK. The two cartridges are compared and the diff view is displayed in a
separate frame

EI Compare Cartridges E3

Compare Cartridges
Select the cartridges to be compared

First cartridge

W Active Cartridge

) Selected Cartridge: |D:\Frogram FilesiDesigned MTS24, car

Second cartridge

1 Active Cartridge

@ Selected Cartridge: |D:\Program Files\Designef\MTS24, car

Ok, Cancel g Healp

An interesting use of Differencing is in upgrading messages in the cartridge. For
example, if a cartridge uses FIX4.1 message and the user wants to upgrade it to the
next version (4.2), this process can be made easier by comparing them and pointing
out the differences (field deleted etc). This will be particularly useful in case of
internal message upgrades (when EIM changes).

See Also:

Comparing Two Nodes in the Cartridge
Differencing View

Differences Pane

Exporting as HTML

iy

S
ORACLE | %hea

Diff

Differencing View
The diff view is a tri-pane with the bottom pane displaying the list of differences.

The top left pane represents the first node/cartridge and the top right pane
represents the second.

Initially the Explorer View of the first and second entities is displayed. Double
clicking a node opens a new tab, with the detail view of the selected node
displayed (next to each other). Number of such detail views can be opened in
tabs.

To close a detail view tab, right click on the tab and select close (or Close All).
This does not work for explorer tab (for obvious reasons).

Clicking on a node in one of the explorer view will result in synchronizing the
other explorer view (the corresponding node is selected). This synchronization
also works for fields in the Detail views.

BRE Diff - MT524. car vs MT524. cai

[8 Explorer

MT524 MTS24
#—Lﬁ. External - SWIFT [MTS524] - (£ Extornal - SWIFT [MT524]
5 External Format [External Format
— &) validstion Rules [Default] %) validation Rules [Default]

- '?J Validation Rulas [valid]

[x] Hode /Location | ! Properly Difference
14 = External Format - SWIFT [MT524])
AD o
= Default - SWIFT [MT524] %]
El £ validation Rule gy
0 rermoval, 0 additionz, 2 modificstions | 2 remouval, 0 saddition=, 0 modifications

Butniraty of nodes affected [Bummary of Changes|

iy

S
ORACLE | %hea

See Also:

Comparing Two Nodes in the Cartridge
Comparing Two Cartridges

Differences Pane

Exporting as HTML

Diff

Differences Pane

It is the bottom pane that displays the list of differences.

When you are viewing the explorer, the differences are grouped based on the
node as shown as tree. Use the context menu to expand / collapse the tree.

2] I:l | Mode /Location | IIl | Property | | Difference |
. =] External Format - SWIFT [MT524] G
AD £ -
2 Default - SWIFT [MT524] (%]
£ Ed £) [validation Rule g4
[=]
|0 rermoval, 0 additions, 2 modifications| 2 rermoval, 0 additionsz, 0 modifications

Clicking on a node/location (hyper link) will take you to that location. If required
it may open a ‘Detail View comparison’ in a new tab.

The property column indicates the property that has changed. If the node or the
field itself has been deleted or added this column will be empty.

See Also:

Comparing Two Nodes in the Cartridge
Comparing Two Cartridges
Differencing View

Exporting as HTML

Diff

Exporting as HTML

The ‘Export As HTML’ feature of the Diff List Table (bottom pane) can be used to
generate HTML reports.

Follow the steps given below to generate HTML report:

2%

ORACLE | %bea

Expand all the nodes in the Diff list by selecting ‘Expand All’ from the context
menu.

Right click and select ‘View As HTML'.

E‘I:H Mode /Location ||I|| Property || Difference
q‘ -
=l External Format - SWIFT [MT524] 0 Jurnp to Location
A Cre=sc R
0 Expand All SheRSegquence A
AL23G 0 -
Caollapse All
P Q -
= Default - SWIFT [MT524] (%) ## Table Auto Format
22 & valid :lI Fow Height 3

& view As HTML
L3

The generated HTML report appears as follows.

L Node/Location ! | Property

=
“IExternal Format - SWIFT [MT524] @ null
W oa ¢y Description General FrfotrrmatemSequence A
¥ 8,236 O |-
¢ aD o -
“@pefault - SWIFT [MT524] % null
@ Ez &y Validation Rule EZ

Colors and Icon

Color | Icon | Explanation

Red X] Node or field deleted from the first

Green | @ Node or field added to the second

Blue o Property of a node or field has been modified

2%

ORACLE | %bea

Tool Tip

Taking the mouse over the ‘Diff Icon’ at a location will popup a tool tip that shows
the differences at the location. This tool tip is also displayed in ‘Difference’ column of
the Diff List (bottom pane).

BE Diff - MT524_car ve MT524._car [_ O] x|
r_@ Explorer |/ (7] SWIFT [MT524] |

Extermnal Format - SWIFT [MT524]* S External Format - SWIFT [MT524] =

|/ Header |/ Data |/Trai|er | . |/ Header |/ Data |/T|-ai|E|- |
BE PR tle=|ma-BR| T Je=
I:H Field Hame ” Type I:H Field Hame || Type || Enabled |
A Swift Sequence | & G] A Swift Sequence
=D Swift Sequence B Swift Sequence
Description modified) ield _|? C Swift Sequence
General %ﬁe&lnfurmatfffl »

[»] i [»]
[x]
Repeating [| Caode |GENL FRepeating [| Code [SEML
. Optional | " Optional |
a a
£ £
] a
=4 =1
g £
=} =}
[x] I:l | Node /Location | IIl | Property | |
] I G Crescription General Sequerss
A D & -

| 11 rernowal, 0 additionz, 1 rmodifications

We have used Microsoft Word’s ‘Compare Documents’ and ‘Track changes’
convention to display the differences. The old value is struck out (in red) and the
new value is underlined (in green).

See Also:

Comparing Two Nodes in the Cartridge
Comparing Two Cartridges
Differencing View

Differences Pane

Diff

-

ORACLE' | Zbea

Cartridge Publisher

The ‘Cartridge Publisher’ tool is used to generate HTML docs for the cartridge and its
child design elements into the specified directory.

The docs are generated as multiple files with an index.html and an explorer as
shown below.

4 Index - Microsoft Internet Explorer

J File Edit “iew Favortezs Toolz Help |

J Address @ D:%Program Filez\D esignerdochindes. html j f‘) Go
=¥ External Format -

Header Fields

@ yalidatior
=1 java Field Hame | Type || Description No
@
. el Baszic section || The Basic Header is given in Block 1
Purchase Header 1 of a SWIFT message and is the

only header that appears an all
messages. The Basic Header
pravides the fundamental reference
for any particular message and is
almost always automatically built
by the CBT. The Basic Header has
the same format for both input and
output messages. However, the
information contained in the Basic
Header is relative to the sender
when the message is input but
relative to the receiver when the

same message is output. =
K | K | b

The explorer displays the contents of a cartridge in the form of a tree structure just
like the Explorer window in Designer. The * icon represents an expandable node
with child items and you can click on it to expand the node. Likewise, the '= icon
represents an already expanded node and you can click on it to collapse the node.
Clicking on the hyperlink of a node loads the corresponding details page on the left
window.

In case of design elements with simple properties, the details page displays those
properties as shown below.

iy

S
ORACLE | %hea

External Message : Order

Mame : Order

Description : This messaqge is sent by a client
for ardering items.

Standard : XML
Yersion : 1.0
Standard Name : Order
Standard : Purchase Order

Detailed Name

In case of design elements for which a list of items needs to be displayed, the details
page displays a summary table listing all the items involved and separate details
table for each of those items. Each item displayed in the summary table is provided
with a link and the user can click on it to view the details table of the item. It should
be noted that the item properties displayed in these tables are configurable.

A sample summary table of an ‘Internal Format’ details page is shown below. The
fields and sections of the internal format are listed in this table. The user can click on
the hyperlink provided in the right-most column or the ‘Name’ column to move to the
details page of the corresponding field. The user can also click on the folder icon
displayed next to the section name to expand/collapse it.

| Name | Type | Description |
R

1 Datednly
2 = itemb[\b Section
3 o parthum String
4 o quantity BigInteger

A sample details table of an ‘Internal Format’ details page is shown below. It is the
details table corresponding to the ‘quantity’ field. It lists the field properties that
have been chosen for the HTML report. It also contains links to parent section of the
field and the validation rule applied for that field. The user can click on these links to
view the details table of those items. In general hyperlinks are provided wherever it
makes sense.

iy

S
ORACLE | %hea

4. Field : quantity

Mame : quantity
Parent Section :
Type : Ei{gtpnteger
Optional : false
Min Occurs @ 1
Max Occurs : 1
validations : EZ
Hidden Field : false

See Also:

Generating HTML Reports
Cartridge Publisher Settings
Working With Cartridge Designer

Generating HTML Reports

Follow the steps given below to generate HTML docs for the current cartridge:
1. Change the ‘Cartridge Publisher’ settings, if required.

2. From the Tool's menu, select ‘Cartridge Publisher’ menu item.

3. The ‘Cartridge Publisher’ dialog will be displayed.

-

ORACLE' | Zbea

Ejl Cartridge Publisher

Generate HTML Docs
Select the output directary

Crestination Directory

E:"PurchaseOrde dac

[¥] open generated documentation in browser

(o],4 Cancel 9 Help

4. In the ‘Destination Directory’ text box, enter the directory in which the docs
(HTML files) should be generated.

5. Alternatively you can click on the ellipsis button next to the text box to bring up
the ‘File Open’ dialog and select the directory.

6. Select the ‘Open generated documentation in browser’ check box, to immediately
open HTML docs after generation.

7. Click OK to start generation of HTML docs.

See Also:

Cartridge Publisher Settings

Cartridge Publisher Settings

The ‘Configure HTML Reports’ dialog displayed when selecting the Tools > ‘Cartridge
Publisher Settings’ menu item allows the user to configure HTML docs generation. In
particular, it allows the user to select the design element properties to be included in
the generated HTML docs. The ‘Configure HTML Reports’ dialog is shown below.

-

ORACLE' | Zbea

EI Cartridge Publisher Settingz [HTML Reportz]

AsCIIDelimitedFieldsFormat Surmnrmmary Table

ASCIIFixedFieldsFormat

BloormbergFieldsFormat Auailable Added
Cartridge Marne
Catabase Table Design Tepe

Event Managernent Deszcription

ExternalMessage
FI# Fields
FIXExternalMezsage
FieldwalidationRules

Cetails Table

Available Added
FolderElernent Harme n
Function CDefinition P arent Secticun
InputFormat tlias
Internal Format [S =
InternalMeszage
Mapping Rules Forrnat Options
Mezzage
Message Mapping Available Added

Mount Directary Celimiter
MormnalizedObjedtMappingFormat
MormnalizedObjectvalidationRulas

CutputFormat

L]

Persistence Designer

(o] 4 Cancel ﬂ Help

The list box on the right side of the dialog box lists the different types of design
element items that can be configured. On selecting a design element item from this
list, the current configuration for the selected design element appears on the left side
of the dialog box.

In case of design elements with simple properties, the corresponding page displays
those properties in the details table of that design element. Examples of this type of
design elements include Cartridge, Internal/External Message, and so on.
Configuration of these design elements involves properties to be included for the
details table as shown in the following picture.

-

ORACLE' | Zbea

EI Cartridge Publizher Settings [HTML Reportz]

ASCIIDelimitedFieldsFormat | & [Details Table
ASCIIFixedFieldsFormat

Catridge Awailable Added
Database Table Design Wersion

Event Management Description

ExternalMessage Marme
FIX Fields
FIXExternalMezzage
FieldwalidationRules
FolderElernent
Function Definition
InputFormat

L]

Internal Format

(a],4 Cancel 9 Help

In case of design elements for which a list of items needs to be displayed, the
corresponding page displays a summary table listing all the items involved and
separate details table for each of those items. Examples of this type of design
elements include ‘Internal Format’ of internal messages, ‘External Format’ of external
messages of all type, and so on. Configuration of these design elements involves
properties to be included for the summary table and details table as shown in the
following picture.

-

ORACLE' | Zbea

EI Cartridge Publisher Settings [HTML Reports]

ASCIIDelimitedFieldzsFormat
ASCIIFixedFieldsFormat

Surnrmary Table

BlaormbergFieldsFarmat A ailable Added
Cartridge Crescription Marme
Database Table Design Type

Event Managerment Add

ExternalMeszage
FIX Fields
FIXExternalMeszsage
FieldvalidationRules
FolderElernent

Function Definition Datails Table

InputFormat
Internal Format Auzilable Added @
InternalMeszage Optional [] Mame
Mapping Rules Min Sccurs|: Parent Section
Meszage Max Occur : Aliaz
Mes=sage Mapping Description Type
Maunt Directory Validatinnsé Flermae Default walue
MorrnalizedObjedMappingFormat Hidden Fie[_] Max Length
MorrnalizedObjecvalidationRulas - ol
QutputFormoat - nﬂ n
Persistence Designer el

Ok Cance| a Help

Adding Properties to the Generated Report

The user can specify a design element property to appear in the generated report by
following the steps given below.

1. In the ‘Available’ list of the summary/details table, select the properties that
should appear in the generated report.

Use SHIFT-click to select a set of continuous properties and CTRL-click to select
any non-continuous properties without affecting the current selection.

2. Click on the ‘Add’ button.

The selected properties will be moved from the ‘Available’ list of the
summary/details table to the ‘Added’ list and these properties will be included in
the generated report.

-
ORACLE | %hea
Removing Properties from Generated Report

The user can specify a design element property not to appear in the generated report
by following the steps given below.

1. In the ‘Added’ list of the summary/details table, select the properties that should
not appear in the generated report.

Use SHIFT-click to select a set of continuous properties and CTRL-click to select
any non-continuous properties without affecting the current selection.

2. Click on the ‘Remove’ button.
The selected properties will be moved from the ‘Added’ list of the
summary/details table to the ‘Available’ list and they will be excluded in the
generated report.

Arranging Properties of the Generated Report

The user can specify the position of the design element properties in the generated
report by following the steps given below.

1. In the ‘Added’ list of the summary/details table, select the properties to be
repositioned.

Use SHIFT-click to select a set of continuous properties and CTRL-click to select
any non-continuous properties without affecting the current selection.

2. Click on the Up icon % to move the selected items up by one position or the
Down icon % to move the selected items down by one position.

In the generated report, the design element properties will be shown in the
specified order.

See Also:

Generating HTML Reports

Cartridge Read-Only Mode

Designer provides support for viewing cartridge in read-only mode. When a cartridge
is opened in the read-only mode, in all the Ul (detail view), the fields are made
non-editable, so that the user is not allowed to make changes to it.

2%

ORACLE' | %hea

] '_ Open Cartridge

Look In: [Inventary b |E||@|||___9||EE"E::|

[CusternClasses

[sarnple

D Inventary,.car

File Marme: |Inl.lentnr',l.car |

Filaz of Type: |CAR File [.car) b4 |

| Open | Cancel |

|Open selecked Filel

[¥] open as read-anly

As can be seen in the following picture, the read only nodes are shown with a lock
icon overlaid on top of the node icons. The lock indicates that it cannot be modified.

Explorer

% Purchase Order
JP—% External - XML [Purchase OrderX L]

- :E% External Forrmat
— % Validation Rules
(P—% Purchase Order

—% Internal Forrnat
—% Proceszing Rules
l): q% Persistence Designer

% WebForms Designer
0 % Mapping [Purchase OrderXhMLTo Purchase Order]
['{}:{%‘ Mapping Rules

% Mapping [Purchase OrderToPurchase OrderXMML]

See Also:

Working With Cartridge Designer

Verify Integrity

This feature (is implemented based on) leverages the following new features.

-

ORACLE' | Zbea

1. Tracing messages in cartridge to standard
2. Differencing

To verify the integrity of a message or messages in the cartridge,

1. Right click the cartridge node or a message node (internal/external) in the
explorer.

2. From the context menu select ‘Verify Integrity’. The integrity of all the messages
under the selected node is verified and the integrity violations are displayed in
the diff view (separate frame).

How it works?

1. For each internal/external message node under the selected node it tries to load
the corresponding standard message from the message catalog. If the message
node is not based on a standard or if the standard message could not be loaded,
a violation is reported (to make sure that the user knows about this). Note that in
case of internal messages, it does at present pick up the standard (EIM) from the
Repository.

2. The message in the cartridge is compared with the standard message (using the
differencing feature). The list of differences is filtered and changes that are
allowed are removed from the list (for instance, in case of FIX it is OK to add user
defined fields, as long as the tag is greater than 5000).

3. A virtual tree of all the standard messages used is constructed. In the diff view
this tree is the reference (left view) against which the messages in the cartridge
(right view) are compared.

4. The integrity violations are displayed in the bottom pane.

See Also:

Diff
Working With Cartridge Designer

Export/Import a Design Element

Designer provides for exporting/importing a design element in different formats such
as XML, HTML, DTD, XSD etc. depending on its type. XML and HTML formats are
supported for all types of design elements. XSD format is supported for external
message and internal message. Other formats are supported only for specific types

-

ORACLE' | Zbea

of design elements. Please note that the HTML format is supported only to export
design elements.

Unlike the validation operation, an export/import operation invoked on a design
element automatically includes its child elements. For example, the export operation
invoked on an external message not only exports the external message design
element but also its External Format and Validation Rules child elements.

See Also:

Exporting a Design Element
Importing a Design Element

Copy/Paste
Cartridge Publisher

Exporting a Design Element

The export operation saves the definition of the selected design element in the
specified format.

Follow the steps given below to export the definition of a design element into a file.

1. In the Explorer pane, select the design element to be exported.

2. Invoke the Export command E=I either from the Edit menu or from the popup
menu of that design element. The shortcut key Ctrl+Shift+E can also be used to

invoke the Export command.

The Export dialog box is shown.

-

ORACLE' | Zbea

Save In: 9 Purchazeorder S E @ I:j' ﬁ%::

File Marne: PurchaseCrder

Filez of Tepe: [#ML File (*.xml) bt
Fave Cancel

[[] open Exparted File Export to Clipboard

3. Select the destination directory and type-in the target file name in the File Name
text box.

4. Select the required format from the Files of Type drop-down list box.

5. If the exported file needs be opened immediately after its creation, select the
Open Exported File check box.

6. Click on the Save button to start the export operation.

Alternatively you can select the required format and click on the Export to
Clipboard button to export the design element to the clipboard, ready for pasting
elsewhere.

See Also:

Importing a Design Element
Export/Import a Design Element

Copy/Paste

Importing a Design Element

The import operation recreates a design element based on its definition found in the
import file. Note that the import operation replaces the definition of the current
design element with the imported design element. This means that the current
definition of the design element is lost when the import operation is completed.

-

ORACLE' | Zbea

Follow the steps given below to import the design element definition found in a file
(usually a previously exported file).

1. In the Explorer pane, select the design element into which the design element
definition needs to be imported. Note that the type of the selected design
element should match the type of design element definition found in the file.

2. Select the Import command £ either from the Edit menu or from the popup
menu of the selected design element. The shortcut key Ctrl+Shift+1 can also be

used for invoking the import operation.

The Import dialog box is shown.

E]Impult E
Look In: 9 Purchazeorder 7 E @ I:j' |ﬁ|@

D Purchaszadrdar. xml

File Marne: Purchasedrder, xml

Filez of Tepe: [#ML File (*.xml) -

Jpen Cancel

3. Select the type of file to be imported from the Files of Type drop down list box.

4. Navigate to the directory that contains the file to be imported and select the
required file. Now the file name appears in the File Name text box.

5. Click on the Open button to start the import operation.

Note

-

ORACLE' | Zbea

The user needs to save the cartridge to permanently save the imported design
element definition.

See Also:

Exporting a Design Element
Export/Import a Design Element

Copy/Paste

Copy/Paste

Designer provides an easy way for creating copies of design elements and fields
through the platform independent copy/paste feature. When the copy operation is
invoked on a design element or on a field, its definition is exported in XML format
and copied into the clipboard as pure text. This makes the copy/paste operation
platform independent.

See Also:

Copy/Paste a Design Element
Copy/Paste Fields
Export/Import a Design Element

Copy/Paste a Design Element

Designer allows copying a design element and pasting it into another design
element. When the paste operation is invoked on a design element other than
cartridge and Folder nodes, it replaces the definition of the current design element
with the imported design element. When the paste operation is invoked on a
cartridge or Folder design element, it creates a new copy of the design element.
Copy a Design Element

Given below are the steps for creating a copy of a design element.

1. Select the design element in the Explorer window.

2. Select the Edit = Copy (CtrlI-C) menu item.

This copies the definition of the design element including its child design elements to
the clipboard, ready for pasting elsewhere.

Paste a Design Element

-

ORACLE' | Zbea

When the paste operation is invoked on a design element other than cartridge and
Folder nodes, the definition of the copied design element in XML format is imported
into it. Note that the paste operation replaces the definition of the current design
element with the imported design element. This means that the current definition of
the design element is lost when the paste operation is completed.

When the paste operation is invoked on a cartridge or Folder design element, it
creates a new copy of the design element.

Given below are the steps for pasting a design element whose definition in the form
of XML format is already copied into the clipboard. See the sections Copy a Design
Element and Exporting a Design Element for copying a design element definition to
the clipboard.

1. In the Explorer pane, select the cartridge design element or the internal message
design element into which the copied element needs to be pasted. Make sure that
the selected design element is the same type as that of the copied design
element. Otherwise, a Paste Error dialog will be shown to indicate the error.

2. Select the Edit = Paste (Ctrl-V) menu item to complete the paste operation.

See Also:

Copy/Paste Fields

Copy/Paste
Export/Import a Design Element

Copy/Paste Fields

Designer allows copy/paste of fields between message formats of the same type as
well as between message formats of different types. When you copy/paste fields
between message formats of same type, all of the field properties are copied
properly. On the other hand when you copy/paste fields between message formats of
different type, only the information that is common to all formats is copied.

Copy Fields

Given below are the steps for creating a copy of fields. It should be noted that
copying a section includes its constituent fields.

1. Select the internal/external message design element in the Explorer window.

2. In the message format Ul, select the field(s) to be copied.

-

ORACLE' | Zbea

3. Select the Copy (Ctrl-C) menu item from the short-cut menu that is displayed
when you right-click the mouse.

Field Hame Type Enabled Descriptdon

N A Swift Sequence Genearal

@ z0 _ Swift Field Feference

@ 23 Tz Collapse ’ Function of the

@ a5 ¥Z Expand 4 [Cate/Time

@ S9E Copy b [#] Murmber Count

_I* Al i [¥] Linkages
i = hste Trade Details
_r C Fimancial
_|? (5] Find g [#] Repo Details
[JE ﬁ Table Auta Format Settlernent Details
_I* F :lI Row Height] [#] Other Parties

B View As HTML

Paste Fields
Designer allows pasting of fields in the form of XML and CSV.
Paste Fields in the Form of XML

Given below are the steps for pasting the fields, which were copied as given in the
Copy Fields section.

1. Select the internal/external message design element in the Explorer window.

2. In the message format Ul, select the field after which you want to paste the
copied fields.

3. Select the Paste (Ctrl-V) menu item from the short-cut menu to complete the
operation.

-

ORACLE' | Zbea

Paste Fields in the Form of CSV

To paste fields in the form of CSV, the fields must be specified as shown in the
following example.

InvoiceDate,DateTime
ClientlD,String
ItemlD,String

Qty, Integer
Price,Double

The following points should be noted in the above CSV:
Here, each line represents a field.

On each line, the first value represents the name of the field and the second
value represents the Designer type of that field.

The field name and field type values are separated by a comma

Once you prepare the fields in the form of CSV as shown above, you can copy it and
paste it in the internal/external format Ul to create fields.

See Also:

Copy/Paste a Design Element

Copy/Paste
Export/Import a Design Element

Copy Name/Qualified Name

Consider the following table.

Enterprize Element Type Hidden Descripton
& InwoiceDate CateTirme |
& ClientID String [
~{ Ttem Saction]

o TtermID String Il

W Oty Integer |

Right clicking from a field or section displays the sub menu items Name and
Qualified Name under the menu ‘Copy’.

]

ORACLE' | Zbea

4]

E Expand b
DE Collapse ¢
COpY ... p| Mame
Copy Qualified Mame

Paste
Find ¢

'@ Table Auto Forrmat
:lI Fow Height b

@ Wiew As HTML

While Name menu item copies the name of the selected field/section, the Qualified
Name menu item copies the name with its qualified path. For e.g. for the sub field
‘Qty’, the copied name is “Qty” when copied using ‘Name’ menu item and the copied
name is “ltem.Qty” when copied using ‘Qualified Name’ menu item.

See Also:

Copy/Paste a Design Element
Copy/Paste Fields

Validating Design Elements

The Validate command & can be invoked on a design element either using the
Build > Validate menu item or from its popup menu. The validation operation
invoked on a design element validates only that design element; it does not validate
its child elements, if any. For example, the validation operation invoked on an
external message design element does not validate its External Format, and
Validation Rules child elements.

Note

Selecting the Build = Validate All menu item validates the entire cartridge. It
invokes the validation operation on all design elements of the cartridge.

The following table lists the validations carried out on each type of design element.

Design
g Validations
Element
Cartridge Verifies whether the names of design elements defined in a
cartridge are unique.

-

ORACLE | 4bea
Internal Verifies the following:
Message

1. whether its transformation name conforms to the
identifier rules such as the identifier not using the space
character, not starting with a numeric character and so
on.

2. whether the internal message name is unique.

Internal Format

Verifies whether the default values specified for normalized
fields are valid.

Processing The following validations are carried out for processing rules:
Rules
1. whether the data type of the specified formula matches
with the data type of the field.
2. whether the fields used in the processing formula are
accessible.
3. whether only one of a processing class or a processing
formula is specified for an internal message field.
Validations specified for the Validation Rules element are also
carried out.
External Verifies the following:
Message
1. whether its transformation name conforms to the
identifier rules such as the identifier not using the space
character, not starting with a numeric character and so
on.
2. whether the message name is unique.
External Validations are specific to the message standard used.
Format

The fields of the external format are validated.
A data field validation includes the following:

1. whether the specified default value is valid (default value
data type conforms to the field type).

-

L F
. d g
ORACLE | %bea
A section validation includes the following:
1. whether the min occurs value is not larger than the max
occurs value.
2. whether the constituent field names are unique.
Validation Verifies the following:
Rules

1. whether rule names are specified for all validation rules.

2. whether a custom class reference is provided for a
Custom Class validation rule.

3. whether a formula is specified for a Formula validation
rule.

4. whether the specified ‘Applies To’ field is a valid field
found in the corresponding data format.

5. whether the fields used in a formula are accessible.

6. whether the action message is a string value.

-

ORACLE' | Zbea

Mapping Rules | Verifies whether the mapping between a source field and a
target field is acceptable. For example, one-to-one mapping
between a top-level field and a nested field in a repeating
section is unacceptable.

Resources Verifies the following:
1. Whether constituent Resource names are unique.

1. Whether the Resource name is valid. For example,
Resource names having ‘.’ Character is invalid.

3. Whether Value specified for all Resources.

Function Verifies the following:

Definition

1. whether function name confirms to identifier rules (no
spaces, should not start with numeric values, etc.)

2. whether code specified for function, when function is
implemented using ‘formula code’

3. whether formula code contains error
4. whether there is any return type mismatch

5. whether ‘Native Function’ reference specified when
function is implemented using ‘Platform Specific Code’.

See Also:

Validating a Cartridge
Working With Cartridge Designer

Find Usage

The user can use this feature to find the usages of a design element defined in a
cartridge. For e.g. if an external format has been defined in cartridge he can use this
feature to find if this message has been used elsewhere in the cartridge (i.e.) in
mapping etc.

1. Right click the design element for which you want to find the usage. Select ‘Find
Usage’ menu item.

."""ﬁ-

ORACLE | #bea

MTS 43
@ — I-5 External Formal
xternal -

<> e Werify Integrity
t@ Internal Find Us«t%e
Processin E‘:‘F"r' Crl-C
(i3] Mapping [M1 Crl-y

In the above figure ‘Find Usage’ is done for external message ‘MT543Message’.

2. If there are any usages for the element they will be listed in the search results

window.
[=] £ Mode Location Property
. MTSd43MessageToMTS43IM Source Messsage
MTS42Flow MTS4320h0) Variable
MTS543Flow Parze Marne

The external message has been used in mapping. This is listed in the search
results windows. Clicking on the link in the window will navigate to the item
where the external message has been used.

See Also:

Search Results Window

Find

The user can search for an item of interest in a design element based on the text
contained in it. Designer provides the search feature through its Find #d1, Find Next
and Find in Path # commands. For example, within an internal message format,
the user can search for fields/sections containing the text ‘Time’ as part of its name
or description. This search operation will find fields with names such as ‘DateofBirth’,
‘JoinDate’, ‘SalaryDate’ and so on.

See Also:

Find in Ul

Find in Path
Incremental Search
Navigation Features

-

ORACLE' | Zbea

Find in Ul

Follow the steps given below to search for fields/sections of an internal message
format whose names contain the text ‘Date’.

1. Select the Internal Format design element in the explorer pane.

2. Select the Search > Find (Ctrl-F) menu item.
The Find dialog box is shown.

Find What |Dats] |

Search Criteria Cirection

[] Match caze i Up

[Mateh ward @ Down

Search In Ignore

[¥l Harme [[] optianal Fields
[] escription [] misabled Fields

[¥] Search Caollapsed Fields

| (o] 4 || Cancel |

3. In the Find What text box type the search text ‘Date’.

4. Specify other search parameters as required.
Select the Match Case check box in the Search Criteria section to find only
the text that has the same pattern of upper and lower case as the text

specified in the Find What text box.

Select the Match Word check box in the Search Criteria section to search
for occurrences that are whole words and not part of a larger word.

Specify the direction to search starting from the current field/section by
selecting either the Up or Down radio button in the Direction section.

Select the Name check box in the Search In section to search the names of
fields/sections.

-

ORACLE' | Zbea

Select the Description check box in the Search In section to search the
descriptions of fields/sections.

Select the Optional Fields check box in the Ignore section to ignore
optional fields/sections from the search operation.

Select the Disabled Fields check box in the Ignore section to ignore
disabled fields/sections form the search operation.

Select the Search Collapsed Fields check box so that the collapsed fields
are also taken into account in the search operation.

5. Click on the OK button to start the search operation.

Find Next

Use the Search > Find Next (F3) menu item to resume the search operation. The
search text that was last entered is again searched for. The search settings that were
specified earlier are again used in the search process.

See Also:

Find in Path
Find

Find in Path

While the Find and Find Next commands allow the user to search for matching
items one by one in a particular node, the Find in Path command can be used to list
matching items of all nodes in the Find auxiliary window that appears at the bottom
of Designer.

Follow the steps given below to search in the entire cartridge for items whose name
or description contains the text ‘date’.

1. Select the Search > Find in Path menu item.
The Find dialog box is shown.

-

ORACLE' | Zbea

&) Find in Path

Find what [date|

Search Options Ignore
[] Match caze [] @ptianal Fields
] Match word [misabled Fields

D Fegular Expression

Scope

i whole Project
i1 Selected element and children

i1 Selected elament only

Search In Search Alsa In
[#] Mame [#] Farmula
E Crescription @ Tag
[alias Hame [#] Cefault walue
[comment [¥#] others
[a]34 Cancel ﬂ Help

2. In the Find What text box type the search text ‘date’.

3. Select the ‘Whole Project’ option in the Scope section to search for the given text
in all nodes of the cartridge.

The ‘Selected element and children’ option searches for the given text in the
currently selected node and its children. For example, if an input format node is
currently selected, the search is carried out in the output format node and its
child nodes such as external format node, validation rules node and mapping
rules node.

The ‘Selected element only’ option searches for the given text only in the
currently selected node. For example, if an input format node is currently
selected, the search is carried out only in the output format node. Its child nodes
are not included in the search.

4. Specify other search parameters as required.

-

ORACLE' | Zbea

Select the Match Case check box in the Search Options section to find only
the text that has the same pattern of upper and lower case as the text
specified in the Find What text box.

Select the Match Word check box in the Search Options section to search
for occurrences that are whole words and not part of a larger word.

Select the Regular Expression check box in the Search Options section to
search for occurrences based on the regular expression specified in the
‘Find What’ text box.

Select the Optional Fields check box in the Ignore section to ignore
optional fields/sections from the search operation.

Select the Disabled Fields check box in the Ignore section to ignore
disabled fields/sections form the search operation.

Select the Name check box in the Search In section to search the names of
items.

Select the Description check box in the Search In section to search the
descriptions of items.

Select the Alias Name check box in the Search In section to search the alias
names of fields/sections.

Select the Comment check box in the Search In section to search the
comments entered for items.

Select the Formula check box in the Search Also In section to search within
formula entered for mapping rules, validation rules, processing rules.

Select the Tag check box in the Search Also In section to search within field
tag values in formats such as FIX.

Select the Default Value check box in the Search Also In section to search
the default value entered for fields.

The Others option in the Search Also In section searches for other
attributes of an item that depends on the current node.

For example, in case of the events management node, the search is done in
the event handler class name and event handler properties.

-

ORACLE' | Zbea

5. Click on the OK button to start the search operation.

The items that match the criteria are listed in the Search Results auxiliary
window shown below.

[=] Node Location £ Property Yalue

= Extarnal Format - FIX [Orderd1IM] FutSettDatez Description Can be used with OrdTy...
= External Forrnat - CMS/FCS [CMSE... Reference_... Description Seguence number azszig...
E Mapping Rules - FIX [Orderd1IN] Header CFT... Mapping LettStrForrmatDatal(Tim. ..
E Body, CFT_T... Mapping FormatDate(Today(),"H..
E Mapping Rulas - CMS/FCS [CM&E]... Body, ZFT_T... Mapping ForrmatDate(Todav(]."H...

Here, the Node column displays the name of the design element node.
The Location column displays the name of the matched item.

The Property column displays the matched attribute of the item.

The Value column displays the matched text.

As can be seen in the above picture moving the mouse pointer over the node name
displays an hyperlink that takes the user to the corresponding item.

See Also:

Find in Ul
Find

Incremental Search

In Designer and Simulator, the user can quickly search for occurrences of text in
items like text area elements, tables and formula editor by following the steps given
below.

1. Select the item to be searched by clicking in it.

In case of a table, select the column to be searched by clicking a value in that
column.

Select the Search > Incremental Search menu item or press the shortcut key
CTRL+I (press CTRL+Shift+1 for case sensitive search).

[»

4]

iy

S
ORACLE | %hea

2. Type in the search text in the ‘Search for:’ popup as shown in the following
picture.

Cartridge Details

Carttidge Narme |New0rder |

Wersion |1.I:I |

[search for: order |

The new order message type is used by institutions wishing to
elactronically subrnit securities and forex orders to a broker for execution.

[»

Orders can be submitted with special handling instructions and execution
instructions, Handling instructions refer to how the braker should handle
the order on itz trading floar (see HandlInst field). Execution instructions

L]

Version Info ...

3. The matching text will be highlighted. If there is no match, the search text will
turn red as in [Search for: pin |

4. Press the Up and Down arrow keys to move to other matching occurrences of
text, if any.

See Also:

Find in Ul
Find in Path
Working With Cartridge Designer

Drag and Drop

Designer provides an easy way for opening cartridge and data files by supporting the
drag and drop feature.

Drag and Drop a Cartridge File
The user can open a cartridge by dragging and dropping a cartridge file (with the

.car extension) into the title bar of the main window of Designer. If the dropped file
is not a cartridge file, it displays the message dialog indicating the error.

-

ORACLE' | Zbea

Drag and Drop a Data File

The user can open a data file by dragging and dropping it into the title bar of
Simulator or the text area of the input pane.

See Also:

Working With Cartridge Designer

Version Support

Designer provides version support through its design elements. Both core design
elements (such as cartridge) and design elements supported by plug-ins (such as
external message node) contain version information. When a cartridge is saved, the
design elements of that cartridge are stored along with their version information. To
successfully open a cartridge file, the version of Designer and its plug-ins should not
be earlier than their corresponding design elements stored in that file.

To find out the version of Designer and its plug-ins, select the Help > Version Info
menu item. It displays the Version Info dialog, which contains the version

information.

To find out the version of a design element of a cartridge, just click on the
Version Info button in the design element Ul of the corresponding design element.

Follow the steps given below to find out the version of an external message.
1. Select the external message node in the Explorer pane.

The External Message Ul appears in the Design Element Ul pane as shown below.

iy

S
ORACLE | %hea

External - XML [PurchaseOrderxXML] @

Forrmat Details

Extermal Format |HML |

Mame |F‘urchaEeOrderHML |

Wersion |1.EI

Standard Details

Marme | |

Wersion | |

Cetailed Mame | |

Cescription

Wersion Infa Q |

2. Click on the Version Info button at the bottom of the External Message Ul.
The Version Info dialog for the selected input format is displayed as shown
below.

[i;'l Yerzion Info PurchazeOrder<ML

Wersion [in cartridge file) |2.EI.EI Beta |

Current Plug-in Yersion |2.III.I:I Beta |

Claze

Here, the version of the input format design element stored in the cartridge file
is 1.0.0 and the version of the XML Format Plug-in installed with Designer is
1.6.0.

Note
In the above example, the version of the XML Format Plug-in is later than the

version of the input format design element stored in the cartridge file. If the user
chooses to save this cartridge, the XML input format currently opened in Designer

-

ORACLE | %bea
will be saved with the latest XML Format Plug-in. So the version of XML input format
design element would also be changed from 1.0.0 to 1.6.0.

See Also:

Working With Cartridge Designer

	
	Financial Message Designer for BEA AquaLogic Service Bus
	Designer User Interface
	Menu Bar
	File Menu
	Edit Menu
	Search Menu
	View Menu
	Build Menu
	Tools Menu
	Run Menu
	Window Menu
	New Window

	Help Menu

	Tool Bar
	Explorer
	Arranging Nodes
	Delete Node

	File Explorer
	Open File
	Explore as Root
	File Explorer Filters

	Getting Started Pane
	Design Element UI Pane
	Tree View
	Properties

	Message Window
	Errors Window
	Search Results Window
	Jump To Location
	View As HTML

	Status Bar
	Speed Bar
	Change Log Window
	Element Heading
	Designer Settings
	Recent File List
	Exiting Designer
	Cartridge
	Creating a Cartridge
	Opening a Cartridge
	Opening An External Message Catalog
	Saving a Cartridge
	Validating a Cartridge
	Closing a Cartridge
	Adding Items to Cartridge
	Cartridge Properties
	Cartridge Location
	Folders
	Adding a Folder
	Deleting a Folder

	Message
	Internal Message
	Creating an Internal Message
	Defining an Internal Message Format
	Adding a Field
	Field Properties
	Hidden Property
	Required Property
	Default Value Property
	Length Property

	Adding a Section
	Section Properties
	Min Occurs Property
	 Max Occurs Property

	
	Platform Specific Attributes
	Platform Specific Attributes of a Field
	Column Name Attribute
	 SQL Type Attribute
	Length Attribute
	Not Null Attribute
	Primary Key Attribute
	Auto Generate Attribute
	Foreign Key Attribute

	XML Platform Info
	Field Attributes
	Platform Specific Attributes of a Section
	Table Name Attribute
	Schema Attribute

	Platform Format Properties
	Arranging Fields of an Internal Message Format
	Deleting Fields of an Internal Message Format
	Importing Internal Message Field Structure from External Sources
	Steps to Import Field Structure From Database Tables
	Steps to Import Field Structure from an XML Schema File
	Steps to Import Field Structure from a DTD File
	Specifying Properties for Multiple Fields/Sections

	Internal Message Processing
	Adding Processing Rule
	Renaming Processing Rules Node
	Processing Rules UI
	Custom Message Processing
	Processing an Internal Message Field
	Custom Field Processing
	Field Processing Formula

	Deleting an Internal Message
	Adding Persistence Designer

	External Message
	Creating an External Message Node
	Defining an External Message Format
	Convert External To Internal Message
	Creating a Standard Message

	Validation Rules
	Adding Validation
	Renaming Validation Rules Node
	Validation Rules UI
	Adding a Validation Rule
	Adding a Validation Rule using Field wise Validations View
	Applies To
	Field Selection Expression

	Adding a Validation Rule using All Validations View

	Formula Validations
	Length Validations
	Exact Length Validation
	Minimum Length Validation
	Maximum Length Validation

	Range Validations
	Exclusive Range Validation
	Inclusive Range Validation
	Exclusive Lower Bounded Range Validation
	Inclusive Lower Bounded Range Validation
	Exclusive Upper Bounded Range Validation
	Inclusive Upper Bounded Range Validation

	Validation for Acceptable Values
	Pattern Validations
	SWIFT Formats Validation
	Validation for Missing Field Value
	Validations Based on Aggregate Functions
	Checking for the Occurrence of a Section
	Checking for the Occurrence of a Field

	
	Checking for the Occurrence of a Field Value

	Fields Accessible in a Formula
	Invocation of Validation Rules

	Working with Message - Overview
	Toolbar
	Fields List
	Properties Panel
	Adding a Field/Section
	Field/Section Properties
	Cardinality
	Default Value Property
	Format Property

	Removing a Field/Section
	Arranging Fields in a Message
	Alias
	Specifying an Alias Name
	Alias Name Substitution
	Valid Alias Name Substitutions
	Invalid Alias Name Substitutions

	Alias Name Rules
	Items Supporting Alias Name Substitution

	Tracing Messages in a Cartridge to a Standard

	Message Mapping
	Creating a Message Mapping
	Mapping Rules UI
	Adding a Mapping Rule
	Adding a One-to One Mapping Rule
	Adding a Formula Mapping Rule

	Custom Mapping
	Source Field Mapping
	Mapping Filter

	Field Mapping
	Top Level Field to Top Level Field
	Nested Field to Top Level Field
	Nested Field of a Repeating Section to Top Level Field
	Nested Field of a Non repeating Mandatory Section to Top Level Field
	Nested Field of a Non repeating Optional Section to Top Level Field

	Top-Level Field to Nested Field
	Top Level Field to Field of a Section without Mapping
	Top Level Field to Field of a Section with Mapping

	Nested Field to Nested Field
	Optional Field Mapping
	Attempt to access field 'LastName' with null value

	Mapping involving Fields of Optional Sections
	Merging Fields of Sibling Sections
	Merging Fields of Repeating Sibling Sections
	How the mapping can be done?

	Merging Fields of Repeating and Non-Repeating Sibling Sections

	Section Mapping
	Top Level Section to Nested Section
	Nested Section to Top Level Section
	Nested Section to Nested Section
	Optional Section Mapping
	Section Formula Mapping

	Multi-Source Mapping
	Create a New Multi-Source Mapping
	Invoking Multi Source Mapping

	Formula
	Entering a Formula
	Editing a Formula
	Reformat Formula
	Edit Formula Dialog
	Syntax Highlighting
	Auto Completion of Function Names
	Quick Function help
	Code Reformater (Formula Beautifier)
	Formula Validation (Automatic Error Checking)
	Formula Tester
	Locating Variable
	Formula Edit Operations

	Function Definition
	Defining a Function
	Function Definition UI
	Name
	Category
	Description
	Parameters
	Return Type
	Code

	Copy/Paste Support
	Invoking Functions

	Working with Functions
	Simple Function
	Testing the function
	Testing the body
	Test by invoking the function

	Parameterized functions
	How it works?

	Token based functions

	Resources
	Resource Item
	Simple Constant
	List Type Constant
	Messages
	Internationalization
	Locales

	Resource Group
	Working with Resources
	Adding Resources
	Adding Resource Group
	Adding a Constant Resource Item
	Adding a Simple Constant
	Adding a List Type Constant

	Adding a Message
	Deleting Resource Items
	Arranging Resource Items
	Customizing Locales
	 Adding a Locale
	Removing Locales

	Entering Locale Specific Message Pattern

	Using a Resource

	Cartridge References
	Reference Links
	Partitioning Your Application
	Single Cartridge
	Multiple Interdependent Cartridges
	Multiple Independent Cartridges

	Build Process
	Executing Cartridge with References
	
	Simulator
	Java/EJB Platform
	Simple Runtime
	EJB Server

	Best Practices
	Adding Cartridge Reference
	Refreshing Cartridge Reference
	Removing Cartridge Reference
	Fixing Broken References

	Code Generation
	Code Generation Settings Dialog
	Java/EJB Code Generation Settings Dialog
	General Tab (Java/EJB)
	Java Compiler
	Compiler Options
	Additional Class Path (Global)
	Additional Class Path (Cartridge)

	Code Generation Tab (Java/EJB)
	Java Package Name
	Jar Name
	Manifest Entries
	Max Class Length
	Data Source
	Unique Key Table

	Adding External Java Classes

	Language Bindings Tab (Java/EJB)
	External Sources Tab (Java/EJB)
	Adding External Java Source Files
	Adding Directories

	Target Platform Tab (Java/EJB)
	Generate Jar for ALSB
	Enterprise Java Bean
	Generate EJB Application (EAR)
	EJB Platforms
	Additional Modules
	Resource References

	Binding Server Resources
	Platform
	Make Utility
	Make Options

	Selecting the Default Platform
	Generating a Cartridge
	Deploying a Cartridge

	Simulator
	Simulator User Interface
	Simulator Menu Bar
	 File Menu
	Edit Menu
	View Menu
	Options Menu
	Test Menu
	Tools Menu
	 Help Menu

	Simulator Tool Bar
	Input Pane
	Output Pane
	Simulator Message Window
	Trace Window
	Log of SQL Statements

	Testing with Simulator
	Simulator Input-Output Options
	Running Test Data Set
	Configuring Simulator (Java/EJB)
	Simulator Options
	Generate Trace Messages
	Cascade Exceptions

	Miscellaneous Features
	Syntax Highlighting (Data)
	Viewing of Non-printable Characters
	Search Text
	Compare Input and Output
	Adding Output Channels
	Auto Completion
	Recent Selection
	Binary Mode

	Persistence in Simulator (Java/EJB)
	Defining Data Sources
	Resource Reference Mapping
	Creating Schema
	Invoking Queries
	Testing a Cartridge with Persistence Support

	Test Data Generation
	Defining Data Generation Specification
	Defining Patterns
	Pattern Syntax
	Examples

	Pattern Grammar

	Generating a Test Case
	Generating Test Data Set
	Entering Test Data for Internal Messages

	Frequently Asked Questions

	Debugging
	Debug Window
	Breakpoints
	Adding Breakpoint
	Deleting Breakpoint
	Enable/Disable Breakpoint

	Step modes
	Step Into
	Step Over
	Step Out

	Frames
	Frame Variables
	Function Definition Variables
	Message Mapping Variables
	External message Variables
	Validation Rules Variables

	Watches
	Adding Watches
	Deleting Watches

	Debugging From Simulator

	Executing Cartridge Entities
	Listing Cartridge Entities
	
	Executing Messages
	Executing Message Mappings
	Performance Measurement
	Multi Thread Testing
	Executing Multiple Samples

	Working With Cartridge Designer
	Tables
	Rearranging Columns of a Table
	Showing/Hiding Columns of a Table
	Zebra Highlighting in Tables
	Table Auto Formatting
	Controlling Row Height in Tables
	Single Line
	Auto Fit Row(s)
	Auto Fit Row on selection
	Auto Fit Row on edit
	Auto Fit
	Auto Fit cells in column

	Expand/Collapse
	Tooltips for Table Elements
	Viewing Table as HTML Page
	Comment/Annotation Support in Tables
	Adding a Comment
	Editing a Comment
	Removing a Comment
	Viewing a Comment
	Moving Between Comments in a Table

	Mount Directory
	Mounting a Directory
	Working with a Mounted Directory
	Editing and Saving a File
	Creating a Directory
	Creating a File
	Mount Directory Location

	New File from Template
	Creating a New File from Template

	Navigation Features
	Moving Between Recently Visited Elements
	Moving from a Field to its Validation Rule
	Moving from a Field to its Mapping Rule
	Moving from a Field to its Mapping Usage
	Moving from a Field to its Usage Items
	Moving Back to a Field Definition
	Moving Between Source and Destination Fields in Mapping Rules UI

	Diff
	Comparing Two Nodes in the Cartridge
	Comparing Two Cartridges
	Differencing View
	Differences Pane
	Exporting as HTML

	Cartridge Publisher
	Generating HTML Reports
	Cartridge Publisher Settings
	Adding Properties to the Generated Report
	 Removing Properties from Generated Report
	Arranging Properties of the Generated Report

	Cartridge Read-Only Mode
	Verify Integrity
	Export/Import a Design Element
	Exporting a Design Element
	Importing a Design Element

	Copy/Paste
	Copy/Paste a Design Element
	Copy a Design Element
	Paste a Design Element

	Copy/Paste Fields
	Copy Fields
	Paste Fields
	Paste Fields in the Form of XML
	Paste Fields in the Form of CSV

	Copy Name/Qualified Name

	Validating Design Elements
	Find Usage
	Find
	Find in UI
	Find Next

	Find in Path

	Incremental Search
	Drag and Drop
	Drag and Drop a Cartridge File
	Drag and Drop a Data File

	Version Support

