

Java Clients – Tutorial
Version 3.4

WRITING JAVA CLIENTS.. 4

USING SERVICE OBJECTS DEFINED IN DESIGNER.. 5

LOOKUPCONTEXT.. 6
TRANSFORMCONTEXT ... 7
GENERAL STEPS FOR PERFORMING A TRANSFORMATION... 8

MESSAGE FLOW CLIENT ... 9

Create Lookup Context ... 10
Create TransformContext ... 10
Setting Properties in TransformContext ... 10
Lookup Message Flow .. 11
Execute the Message flow ... 11

RUN METHOD OVERLOADS.. 14

EXTERNAL MESSAGE CLIENT ... 16

Create Lookup Context ... 16
Create TransformContext ... 17
Set Properties in TransformContext ... 17
Lookup External Message... 17
Parse the Raw Message .. 17
Update Field in External Object... 18
Serialize the External Object to CSV.. 18

CLIENT CONTROLLED PROCESSING... 20

Create Lookup Context ... 21
Create TransformContext ... 21
Parse Raw Message .. 21
Map External Messages.. 22
Serialize the External Object .. 22
Extract field value from External Object .. 23

REQUIRED JARS.. 24

Writing Java Clients

You can write Java clients that interact with cartridge entities deployed in a runtime
environment. This tutorial helps you get started with writing Java clients that use the
entities designed using Designer. Even though these samples are based on Simple
Runtime environment, the clients for other Java runtime environments EJB and
Allegro Server are similar to these clients.

Samples

a. Message Flow

Illustrates invoking a Message flow from a Java
client.

Sample is under ‘<installation
dir>\docs\Java\Clients\MessageFlow’ directory.

b. External Message

Illustrates directly using the parse and write method
of an External message.

Sample is under ‘<installation
dir>\docs\Java\Clients\ExternalMessage’ directory.

c. Client Controlled

 Processing

This sample is similar to a) except that we perform
all the activities of the message flow from the client
itself. That is we don’t use a Message flow here, but
let the client coordinate the processing.

Sample is under ‘<installation
dir>\docs\Java\Clients\ClientControlled’ directory.

Though it is possible to access all artifacts that you designed in the Designer from
Java client, we recommend that you use Message flow as a façade for other
components. More specifically the examples b) and c) are just for demonstration
purposes; if possible try to wrap your components with a Message flow and access it
from your client. This way you need to learn about just the MessageFlow interface.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

For more information on the classes and interfaces used refer to the API
documentation.

Please refer to the sample under the ‘<installation
dir>\docs\Java\DeploymentAndConfiguration\EJB’ directory for a sample application
that illustrates deploying an application under EJB runtime environment.

Please refer to the sample under the ‘<installation
dir>\docs\Java\DeploymentAndConfiguration\SimpleRuntime’ directory for a sample
application that illustrates deploying an application under Simple Runtime.

Please refer to the sample under the ‘<installation
dir>\runtime\java\RepairReferenceImpl’ directory for a sample application that
illustrates how to use WebForm tags for interacting with cartridge entities deployed
in the runtime environment from a JSP.

caveat:

 The focus of this tutorial is on writing Java client programs and not on designing

messages or message flows. For more information on design time aspects refer
to Designer.doc or MessageFlow.doc.

 It also assumes that you have generated code for the cartridge and deployed it in

the runtime environment of your choice (Simple/Allegro/ EJB). The clients that
are discussed here are independent of the target runtime. This tutorial focuses on
writing a client program which uses the deployed entities and not on how to
deploy the generated code in a specific runtime/server.

See Also:

Using Service Objects defined in Designer
Required Jars

Using Service Objects defined in Designer

The following service objects defined in Designer are available at runtime

 External Message
 Internal Message
 Message Flow
 Message Mapping

During code generation the service objects are converted to platform specific code.
The generated service objects can be accessed at runtime using the LookupContext.
These service objects can be obtained using the LookupContext. The recommended
approach is to use the message flow as façade for other components. That is, the

client program should interact only with the Message flow component. The message
flow itself would invoke or make use of other components listed above.

See Also:

LookupContext
TransformContext
General Steps for Performing a Transformation
Writing Java Clients

LookupContext

The LookupContext provides access to other service objects executing in the runtime
environment. Using the lookup context you can access other generated components
such as input format, business transaction etc.

Obtaining Lookup Context:

The ‘LookupContext’ context can be obtained from the LookupContextFactory as
shown below.

LookupContext lcxt = LookupContextFactory.getLookupContext();

The Lookup Context that is returned will differ depending on the environment in
which it is obtained. That is why instead of instead of instantiating the Lookup
Context we use LookupContextFactory to obtain it.

Methods in Lookup Context:

The following are the methods that are most commonly used during transformation.
These are not the complete set of methods available.

lookupMessage(String name) Looks up a message and returns it. The
name to be looked up should be the
name of an external message or a
internal message defined in Designer.

lookupExternalMessage(String name) Looks up an external message and
returns it. The name to be looked up
should be the name of the external
message defined in Designer.

lookupInternalMessage(String name) Look up a Internal message (formerly
Business Transaction) and returns it. The
name to be looked up should be the
name of the Internal message defined in

Designer.

lookupMessageFlow(String name) Looks up Message flow and returns it.

The name to be looked up should be the
name of a message flow defined in
Designer.

lookupMessageMaping(String name) Looks up Message Mapping and returns
it. The name to be looked up should be
the name of a mapping defined in
Designer.

lookupDataSource(String name) Looks up a data source. This is mostly
used internally and is not relevant for
clients

See Also:

Using Service Objects defined in Designer

TransformContext

Defines the context in which the current transformation occurs. This context object
contains a set of properties (name-value pairs) related to the current transformation.
This object is passed to all the components (input format, business transaction, etc.)
that take part in processing.

Methods in Transform Context:

The following are the methods that are most commonly used during transformation.
These are not the complete set of methods available.

setProperty(String prop, Object value) This method can be used set any
property related to the current
transformation.

Note that TransformContext is an interface. You can use the class
TransformContextImpl, class to create an instance.

See Also:

Using Service Objects defined in Designer

General Steps for Performing a Transformation

1. Create lookup context. The lookup context provides access to other components

executing in the runtime environment.

2. Create transform context. This defines the context in which the transformation

occurs.

3. Set relevant properties in TransformContext. In most cases you wouldn’t need to

set any properties.

4. Lookup the service object you are interested in. It can be an external message, a

message flow etc. The names of the external message or message flow to be
looked up should be defined in the cartridge.

5. Invoke the key method in service object you looked up in the previous step. This

method depends on the service object and the operation you want to perform. In
case of MessageFlow you would use the run method. In case of an
ExternalMessage you would invoke the parse or write method.

These steps apply all type of clients and can be performed irrespective of whether
you are using simple runtime, or whether your application is deployed in Allegro
server or EJB.

See Also:

Using Service Objects defined in Designer

Message Flow Client

This sample illustrates looking up and invoking a message flow from a Java client.

Assumptions:

 The section assumes that you already have a cartridge and have defined a

message flow in it. For details of how to compose a message definition and
design a message flow refer to Designer.doc or MessageFlow.doc under
<installation dir>\docs\Designer folder.

 It also assumes that you have generated code for the cartridge and deployed it in

the runtime environment of your choice (Simple/Allegro/ EJB). This section
focuses on writing a client program which uses the deployed entities.

For illustration purposes we use the MessageFlow cartridge which has a
PurchaseOrderFlow defined in it. This sample is under the folder ‘<installation
dir>\docs\Java\Clients\MessageFlow’.

The message flow in the sample cartridge takes a Order CSV as input and extracts
the billing information from it and returns Bill Info in CSV form as output.

For illustration purposes it also computes the total amount in the order and returns it
also as the output.

The input and output variables of the message flow are as shown below.

The following steps have to be performed for invoking a Message flow.

1. Create Lookup Context
2. Create TransformContext
3. Setting Properties in TransformContext
4. Lookup Message Flow
5. Execute the Message flow

Create Lookup Context

LookupContext lcxt = LookupContextFactory.getLookupContext();

The Lookup Context provides access to other components executing in the runtime
environment. For more information regarding Lookup Context please refer
LookupContext.

Create TransformContext

TransformContext defines the context in which the transformation occurs. This
context is passed to all the activities of the message flow. For more information
regarding Transform Context please refer TransformContext.

TransformContext tcxt = new TransformContextImpl();

Setting Properties in TransformContext

The properties of the TransformContext are used to pass additional options to the
Message flow and its activities. As of now very few properties are supported; the
TransformContext is mainly there to facilitate future enhancements. In this example
we don’t need to set any properties.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

See Also:

Message Flow Client

Lookup Message Flow

A message flow with this name should have been defined in the cartridge.

MessageFlow messageFlow = lcxt.lookupMessageFlow(“PurchaseOrderFlow”);

If the message flow to be looked up is not deployed or the name specified is
incorrect it will result in javax.naming.NamingException.

See Also:

Message Flow Client

Execute the Message flow

The Message flow interface provides a generic run method which executes the
message flow.

 Object[] run(Object[] messageFlowArgs, TransformContext cxt)

The run method takes an object[] as parameter and returns a Object[] as output.
Note that the actual parameters and return values of a Message Flow are defined by
the user who designs a message flow. This generic signature accommodates any
number of input parameters and return values.

Consider PurchaseOrderFlow which has the following variables (as shown in the
picture)

The input variables are,

 OrderIn (Binary – raw message)

The output variables are,

Formatted: Bullets and Numbering

 BillingInfoOut (Binary – raw message)
 TotalAmount. (Double)

When we call the run method, we need to pass a raw message as input (byte[]) and
we will get a transformed raw message as output along with another output of type
double.

1. Construct the input Object[]. We know that the message flow takes one

argument as input. Get the raw message from some source (say file) and create
a Object[] of length 1, as given below.

 byte[] orderIn = new FileInputSource(fileName).getAsBytes();

 Object[] messageFlowArgs = new Object[] { orderIn };

2. Execute the message flow by invoking the run method.

 Object[] output = messageFlow.run(messageFlowArgs, tcxt);

3. We know that the message flow returns two outputs. The outputs are in the
returned Object[] at the appropriate index (same order as defined in Message
flow design). Extract the outputs and use them.

 byte[] billingInfoOut = (byte[])output[0];

 Double totalAmount = (Double)output[1];

Note that the order of the output in the array is same as that of the output variables
specified during Message Flow design.

Source Code:

import com.tplus.transform.runtime.*;

import java.io.IOException;

public class Main {

 public static void main(String[] args) {

 String fileName = "data.txt";

 if(args.length > 0) {

 fileName = args[0];

 }

 try {

 // Get the lookup context for the current environment

 LookupContext lcxt = LookupContextFactory.getLookupContext();

 // Lookup purchase order message flow

 MessageFlow messageFlow =

 lcxt.lookupMessageFlow("PurchaseOrderFlow");

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

 //Create a TransformContext. We have no special properties

 TransformContext cxt = new TransformContextImpl();

 //Prepare the input for the message flow

 //The message flow defined in the cartridge takes

 //only a raw message as input

 byte[] orderIn = new FileInputSource(fileName).getAsBytes();

 Object[] messageFlowArgs = new Object[] { orderIn };

 // Execute the message flow.

 Object[] output = messageFlow.run(messageFlowArgs, cxt);

 // Extract the outputs

 byte[] billingInfoOut = (byte[])output[0];

 Double totalAmount = (Double)output[1];

 System.out.println("BillingInfoOut:");

 System.out.write(rawOut);

 System.out.println("TotalAmount: " + totalAmount);

 }

 catch(TransformException e) {

 System.err.println(e.toXMLString());

 }

 catch(javax.naming.NamingException e) {

 e.printStackTrace();

 }

 catch(java.io.IOException e) {

 e.printStackTrace();

 }

}

See Also:

run method overloads
Message Flow Client

run method overloads

The MessageFlow interface provides two of variants of the run method.

 run - returns the output and throws an exception in case of failure.

 run2 - returns the output and any exceptions as a Result object. The output

generated is a snapshot of output variables in the message flow at the time of
the exception. This method is useful in a 'Repair' like application where incorrect
input should not treated as fatal. This method is for advanced users and this
document does not discuss it in detail.

For each variant it provides number of overloaded run methods. These overloads are
for the convenience of the client and are functionally equivalent. The general idea of
invoking the message flow remains the same.

One such overloaded run method has the following signature,

DataObject run(DataObject input, TransformContext cxt);

Note that the first argument and the return value has changed from Object[] to a
DataObject. This method is equivalent in functionality to the one described earlier.
Since DataObjects are type safe objects, this method has better type safety
compared to the one that uses Object[].

The DataObject that you pass as input, should be created using the
createInputDataObject() in the MessageFlow interface.

1. Construct the input Object[]. We know that the message flow takes one

argument as input.

 Get the raw message from some source (say file)
 create a DataObject using the createInputDataObject
 Set input paramter’s value

 byte[] orderIn = new FileInputSource(fileName).getAsBytes();

 DataObject inputDataObj = messageFlow.createInputDataObject();

 inputDataObj.setField("OrderIn", orderIn);

2. Execute the message flow by invoking the run method.

 Result result = messageFlow.run(inputDataObj, cxt);

Formatted: Bullets and Numbering

3. Extract the output from the Result object.

 DataObject outputDataObj = (DataObject)result.getOutput();

4. We know that the message flow returns two outputs. The outputs are in the
returned DataObject. Extract the outputs using the names specified in the
Designer.

 byte[] billingInfoOut =

 (byte[])outputDataObj.getField("BillingInfoOut");

 Double totalAmount = (Double)outputDataObj.getField("TotalAmount");

public class Main {

 public static void main(String[] args) {

 // …. as in previous sample

 // Prepare the input for the message flow

 // The message flow defined in the cartridge takes

 //only a raw message as input

 DataObject inputDataObj = messageFlow.createInputDataObject();

 inputDataObj.setField("OrderIn",

 new FileInputSource(fileName).getAsBytes());

 // Execute the message flow

 Result result = messageFlow.run2(inputDataObj, cxt);

 // Extract the output

 DataObject outputDataObj = (DataObject)result.getOutput();

 if (outputDataObj != null) {

 byte[] billingInfoOut =

 (byte[])outputDataObj.getField("BillingInfoOut");

 Double totalAmount =

 (Double)outputDataObj.getField("TotalAmount");

 // Write output

 if(billingInfoOut != null) {

 System.out.println("BillingInfoOut:");

 System.out.write(billingInfoOut);

 }

 if (totalAmount != null) {

 System.out.println("TotalAmount: " + totalAmount);

 }

 }

 // Write exception

Formatted: Bullets and Numbering

 if (result.hasException()) {

 java.util.List exceptions = result.getExceptions();

 StringBuffer errors = new StringBuffer();

 for (int i = 0; i < exceptions.size(); ++i) {

 errors.append(((ExceptionObject)

 exceptions.get(i)).toXMLString());

 }

 System.out.println("Exceptions:");

 System.out.println(errors);

 }

 } // handle exceptions

See Also:

Message Flow Client

External Message Client

This section illustrates using an ExternalMessage object to parse a raw message,
modify it, and serialize it back to raw message.

The sample cartridge is under the folder ‘<installation
dir>\docs\Java\Clients\ExternalMessage’.

 Parse the Order CSV.
 Change the order date in the Order object to today.
 Write back the order object as CSV.

The following steps have to be performed for using an External Message.

1. Create Lookup Context
2. Create TransformContext
3. Set Properties in TransformContext
4. Lookup External Message
5. Parse the raw message
6. Update Field in External Object
7. Serialize the External Object to CSV

Create Lookup Context

LookupContext lcxt = LookupContextFactory.getLookupContext();

The Lookup Context provides access to other components executing in the runtime
environment. For more information regarding Lookup Context please refer
LookupContext. We will use this to lookup the external message.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Create TransformContext

TransformContext defines the context in which the transformation occurs. This
context is passed to all the components (input format, business transaction, trigger
etc.)

TransformContext tcxt = new TransformContextImpl();

For more information regarding Transform Context please refer TransformContext

Set Properties in TransformContext

The properties of the TransformContext are used to pass additional options to the
Message flow and its activities. As of now very few properties are supported the
TransformContext is mainly there to facilitate future enhancements. In this example
we don’t need to set any properties.

See Also:

External Message Client

Lookup External Message

An external message with this name has been defined in the cartridge.

ExternalMessage orderMessage = lcxt.lookupExternalMessage(“Order”);

If this external message is not deployed or the name specified is incorrect it will
result in javax.naming.NamingException.

See Also:

External Message Client

Parse the Raw Message

The external message interface has a parse method that parses a raw message and
returns its object representation.

DataObject parse(InputSource source, TransformContext cxt)

The parse method takes an InputSource as parameter. There are number of concrete
implementations of InputSource such as FileInputSource, ByteArrayInputSource etc.

FileInputSource inputSource = new FileInputSource(fileName);

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

DataObject orderObject = orderMessage.parse(inputSource, cxt);

Here, we use the FileInputSource to read contents of a file and pass it to the parse
method, which returns an ExternalObject. The structure of the ExternalMessage was
defined in the Designer.

See Also:

External Message Client

Update Field in External Object

In this example we will change the order date in the order to today’s date. The field
we want to change is in the Header part of the External Object.

DataObject headerPart = orderObject.getHeader();

headerPart.setField (“orderDate”, new Date());

See Also:

External Message Client

Serialize the External Object to CSV

To serialize the ExternalObject we need to use the serialize method in the
ExternalMessage interface.

byte[] serialize(DataObject obj, TransformContext cxt)

The serialize method takes the external object as parameter and returns the
serialized (in this case as CSV) data as output.

byte[] output = (byte[])orderMessage.serialize(orderObject, cxt);

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Note:

There is another variant of parse and write methods, parse2 and write2. The primary
difference is that the latter continue to process even if there are errors. Also they
may return the output, exceptions encountered or both.

For an easy way of creating a custom message flow client please refer the section
‘New File from Template’ in Designer Guide documentation.

Source Code:

import com.tplus.transform.runtime.*;

import java.io.IOException;

import com.tplus.transform.runtime.formula.DateFunctions;

public class Main {

 public static void main(String[] args) {

 com.tplus.transform.util.LoggingUtil.enableLogging("log.xml");

 String fileName = "data.txt";

 if(args.length > 0) {

 fileName = args[0];

 }

 try {

 // Get the lookup context for the current environment

 LookupContext lcxt = LookupContextFactory.getLookupContext();

 // Lookup order message (defined in the cartridge).

 ExternalMessage orderMessage =

 lcxt.lookupExternalMessage("Order");

 // Create a TransformContext.

 TransformContext cxt = new TransformContextImpl();

 //Prepare the input message to be parsed

 FileInputSource inputSource = new FileInputSource(fileName);

 // Invoke the parse() method on the Order message object.

 ExternalObject orderObject =

 (ExternalObject)orderMessage.parse(inputSource, cxt);

 //Modify the orderDate field with the current date value.

 orderObject.getHeader().setField("orderDate", new java.util.Date());

 //Write the modified Order message object.

 byte[] output = orderMessage.serialize(orderObject, cxt);

 System.out.println("Modified Order:");

 System.out.write(output);

 }

 catch(TransformException e)

 {

 System.err.println(e.toXMLString());

 }

 catch(javax.naming.NamingException e)

 {

 e.printStackTrace();

 }

 catch(java.io.IOException e)

 {

 e.printStackTrace();

 }

 }

}

See Also:

External Message Client

Client Controlled Processing

In this sample the client code invokes number of service elements one after the
other, passing output of one to the next. That is, we execute all the activities that
are typically used as part of a message flow from the client itself. We don’t use a
message flow here, but let the client coordinate the processing.

This sample is functionally same as sample a) where an Order CSV was transformed
to Billing Info CSV. The main difference is that we don’t use a message flow here but
let the client wire the activities.

As mentioned earlier, this approach is not recommended. Prefer a message flow
façade if possible.

The sample cartridge and source are under the folder ‘<installation
dir>\docs\Java\Clients\ClientControlled’.

The following steps have to be performed for using Client Controlled Processing.

1. Create Lookup Context
2. Create TransformContext
3. Parse Raw Message
4. Map External Messages
5. Serialize the External Object

6. Extract field value from External Object

Create Lookup Context

LookupContext lcxt = LookupContextFactory.getLookupContext();

The Lookup Context provides access to other components executing in the runtime
environment. For more information regarding Lookup Context please refer
LookupContext.

Create TransformContext

TransformContext defines the context in which the transformation occurs. This
context is passed to all the activities of the message flow. For more information
regarding Transform Context please refer TransformContext

TransformContext tcxt = new TransformContextImpl();

The properties of the TransformContext are used to pass additional options to
activities. As of now very few properties are supported; the TransformContext is
mainly there to facilitate future enhancements. In this example we don’t need to set
any properties.

Parse Raw Message

 First we look up the order external message.

 ExternalMessage orderMessage = lcxt.lookupExternalMessage("Order");

 The external message interface has a parse method that parses a raw message

and returns its object representation.

 DataObject parse(InputSource source, TransformContext cxt)

 The parse method takes an InputSource as parameter. There are number of

concrete implementations of InputSource such as FileInputSource,
ByteArrayInputSource etc.

 FileInputSource inputSource = new FileInputSource(fileName);

 DataObject orderObject = orderMessage.parse(inputSource, cxt);

Here, we use the FileInputSource to read contents of a file and pass it to the parse
method, which returns an ExternalObject. The structure of the ExternalMessage was
defined in the Designer.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

See Also:

Client Controlled Processing

Map External Messages

Here we map/transform a Purchase order object to a Billing Info object using the
mapping defined in the cartridge.

 First, we lookup the Message Mapping component as shown below.

 MessageMapping mapping = lcxt.lookupMessageMapping("OrderToBillingInfo");

 The MessageMapping interface has a map method with the following signature.

 void map(DataObject src, DataObject dest, TransformContext cxt)

It maps from a source object to an uninitialized destination object.
We have thesource object ready, the one we got by invoking the parse method.
We need a raw destination object; that is, an object of type BillingInfo.

 We create an uninitialized destination object by looking up BillingInfo external

message and creating a raw instance.

 ExternalMessage billingInfoMessage =

 cxt.lookupExternalMessage("BillingInfo");

 DataObject billingInfoObject= billingInfoMessage.createObject();

 Then we map the source object to the destination object.

 mapping.map(orderObject, billingInfoObject, cxt);

See Also:

Client Controlled Processing

Serialize the External Object

We then serialize the Billing Info object (obtained from mapping) to raw form. We
use the serialize method in the ExternalMessage interface for this purpose.

byte[] rawOut = billingInfoMessage.serialize(billingInfoObject, cxt);

See Also:

Client Controlled Processing

Formatted: Bullets and Numbering

Extract field value from External Object

Let’s say that we want to get the total value (price) of the Purchase order in the
client code. We have added this information to the trailer of the Billing info during
mapping. We can extract this value from the billingInfoObject as shown below.

DataObject trailer = billingInfoObject.getTrailer();

Double totalAmount = (Double)trailer.getField(“TotalAmount”);

Source Code:

import com.tplus.transform.runtime.*;

import java.io.IOException;

public class Main {

 public static void main(String[] args) {

 com.tplus.transform.util.LoggingUtil.enableLogging("log.xml");

 String fileName = "data.txt";

 if(args.length > 0) {

 fileName = args[0];

 }

 try {

 // Get the lookup context for the current environment

 LookupContext lcxt = LookupContextFactory.getLookupContext();

 // Create a TransformContext.

 TransformContext cxt = new TransformContextImpl();

 // Lookup order message (defined in the cartridge)

 ExternalMessage orderMessage =

 lcxt.lookupExternalMessage("Order");

 //Prepare the input message to be parsed

 FileInputSource inputSource = new FileInputSource(fileName);

 // Parse the input message and create the 'Order' object.

 DataObject orderObject = orderMessage.parse(inputSource, cxt);

 // Lookup 'OrderToBillingInfo' mapping

 MessageMapping mapping =

 lcxt.lookupMessageMapping("OrderToBillingInfo");

 // Lookup 'BillingInfo' external message

 ExternalMessage billingInfoMessage =

 lcxt.lookupExternalMessage("BillingInfo");

Formatted: Bullets and Numbering

 // Create 'BillingInfo' object

 ExternalObject billingInfoObject =

 (ExternalObject)billingInfoMessage.createObject();

 // Map 'Order' object to 'BillingInfo' object

 mapping.map(orderObject, billingInfoObject, cxt);

 // Write the 'BillingInfo' object

 byte[] rawOut = billingInfoMessage.serialize(

 billingInfoObject, cxt);

 System.out.println("Output Message:");

 System.out.write(rawOut);

 // Retrieve and write 'TotalAmount'

 DataObject trailer = billingInfoObject.getTrailer();

 Double totalAmount = (Double)trailer.getField("TotalAmount");

 System.out.println("TotalAmount: " + totalAmount);

 }

 // handle exception …

 catch(TransformException e) {

 System.err.println(e.toXMLString());

 }

 catch(javax.naming.NamingException e) {

 e.printStackTrace();

 }

 catch(java.rmi.RemoteException e) {

 e.printStackTrace();

 }

 catch(java.io.IOException e) {

 e.printStackTrace();

 }

 }

}

See Also:

Client Controlled Processing

Required Jars

Given below is the list of libraries that are required when deploying the application
under Simple Runtime. Please refer to ‘<Designer

Home>\docs\Java\Volante-Jars.html’ for details of Runtime Jars and their
dependencies.

 cp.jar

 simplert.jar

 hsqldb.jar or the file that contains the JDBC driver class for connecting to your

database, if required.

 the Jar files generated for your cartridge(s).

 the Jar files specified in the ‘Manifest Entries’ code generation property of the

cartridge.

 Plug-in runtime Jar files (such as swiftrt.jar) corresponding to the plug-ins used

in the cartridge and the Jar files specified in their manifest entries (such as
swiftresources.jar in case of swiftrt.jar).

 transformrt.jar, generaltutils.jar and sqlutils.jar (to be used with all runtime

applications).

 commons-logging.jar and log4j.jar required for logging. If you are using JDK1.4

or above and would like to use JDK logging instead of log4j, log4j.jar is not
needed.

 j2ee.jar and resourcemanager.jar specified in the manifest entry of simplert.jar.

 xml-apis.jar and xercesImpl.jar specified in the manifest entry of cp.jar (not

needed if you are using JRE1.4 or above).

 jakarta-regexp.jar if your cartridge uses regex formula functions. Also needed if

you use XML plug-in with pattern facets.

See Also:

Writing Java Clients

