Universal Format Plug-in

User’s Guide

Version 3.4

UNIVERSAL ... 4

TERMINOLOGY ..ottt ettt sttt st saeseeteneenesbeneenees 4
CREATING A UNIVERSAL FORMAT ..ottt 6
CREATING A UNIVERSAL FORMAT BASED ON AN EXISTING UNIVERSAL FORMAT 6
CREATING AN EMPTY UNIVERSAL MESSAGE FORMATcooviiiiiinieisesiesieenieseeeseesee e 8
UNIVERSAL EXTERNAL MESSAGE Ul....ccoooiiiiiiece e 10
EXTERNAL FORMAT ...ttt sttt nn s 11
UNIVERSAL FORMAT OPTIONS ...ccttitieiieieeieeiesieesieesieesieesseessesssesssessssssssssesssesssesssesses 12
GENEIAl SELLINGS....ccveiieeiiiieii et b e re e b e sa e resaeans 12
Default Settings for Text Encoded Fieldsccooviviiiiiiiiii i 13
Default Settings for Binary Encoded Fieldscccooeviiiiiiiiicic e, 20
Default Delimiter SEIINGS......ccoviiriiiiiiieeee e 20
ENTERING A UNIVERSAL MESSAGEc.vtiiitiiiiiiiiiieestie sttt ettt 24
Adding Fields and Specifying Propertiesccccovvveieieie i i 25
Adding a Fixed Length fieldcccooiiiiiiiiiii s 30
Adding a Length Preceded Field...........cccooviiiiiiiiiccc e 32
Adding a Delimited fIeld ... 36
ENCOTING TYPES ..ttt bbbt 39
Adding Fillers and Specifying Properties.......c.cccieiveieeievese s 49
Adding a Sequence type section and specifying propertiescccocvvevvvvivsiveivarinnnens 52
Adding a Fixed INStanCes SEQUENCEcvceeieiieiieitecteeeeee et sre e e sreeneas 54
Adding a Variable INStanCces SEQUENCE.........ccvreiiiiieeieerie e 55
Adding a Discriminated SEQUENCEccereririrerieire et 60
Adding a Choice Type Section and Specifying Properties..........ccccccocvvvieeivsiveriennens 67
Adding an All type Section and Specifying Propertiesccocvveveierierieiesnsinnieennens 75

A simple illustration of using All type SECLION...........cccovevieieie i 80
REMOVING A FIELD/SECTION....c.uiuiitiitereeristesieestesiesessesteeesessesseseseessesessessessesessessesessenes 81
UNIVERSAL PLUG-IN PEEK FORMULA FUNCTIONS......ccoooviiireireseeeeee, 82
SAVE SELECTION AS TEMPLATE / ADD TEMPLATEccccoieiiiierecereeeeens 83
SAVE AS TEMPLATE .ttt ittttttesteesteesteateastesstessaesteesteesbeebeasbeanbeaseesbeesbeesbeesbeenbeansesseesseenes 83
AADD TEMPLATE 1.vivtettitetese st ste e e stesee e stestesaesessesaesessessessasesaessesessessesessessessesessessnsessenses 84
SAVING A UNIVERSAL MESSAGE FORMAToccoieivecise et 85
EXPORTING A UNIVERSAL MESSAGE FORMATcuiuiiiiiieienisiesieie e siee st seene s 87
IMPORTING A UNIVERSAL MESSAGE FORMATouviviitiiiietestesieesteseesssesesaesessesaesessesens 89
IMPORTING COBOL COPY BOOK STRUCTUREc.ccoeiieiieeese e 90

APPENDIX ... 95

Universal

Universal format is a powerful flat file parser/writer that handles fixed width,
delimited and tagged messages. This format can be used in modeling complex
messages. It supports different types of fields such as fixed length fields, variable
length fields, delimited fields, tagged fields and filler fields. It also supports different
types of encoding for fields such as Text, Binary and Packed Decimal.

See Also:

Terminology
Creating a Universal Format

Universal External Message Ul

External Format

Universal Plug-in Peek Formula Functions
Save Selection As Template / Add Template
Saving a Universal Message Format
APPENDIX

Terminology
Section

A section is a group of related information made up of one or more fields and/or sub-
sections that are collectively referred to as child elements. The name of a section
should be unique at a given level, i.e., there cannot be duplicate sections at the
same level in the hierarchy. The Universal format supports creation of three types of
Sections:

1. Sequence
2. Choice
3. Al

Usage of the term ‘section’ in the context of Universal refers to any of these three
possibilities.

Sequence

Sequence indicates that child elements may occur in specified order. There cannot
be duplicate sequences (sequences with same name) at the same level.

Note:

The entire message format (consisting of Header, Data and Trailer sections) that you
design using the Designer is a sequence, i.e. the data should appear in that order.

For e.g., the incoming/outgoing message cannot have Trailer data in the beginning
followed by Header data. Likewise, the fields/sections added at the root level under
the Header/Data/Trailer sections also form a sequence.

Choice

Choice indicates that only one child element may occur. In a Choice, all child
elements have the same starting position. Identification of choice in an incoming
message is based on uniqueness of each choice. Choice is similar to C language
Union or COBOL Redefines, in the sense that only one of the child elements can
occur. Choices may be padded to be of the same length. In a Choice section, all
child elements except one must be either self-discriminating (For e.g. tagged) or
should have explicit discriminator.

All

All indicates that child elements may occur in any order. It can be called an
Unordered Section.

Field

A data field or simply a field represents a single item of information.

Filler

This is a special field. It is basically used to reserve some empty bytes in the
message format for filling the same with data whenever necessary in the future. A
Filler field cannot be mapped and will not appear in mapping and validation screens.
Filler fields are exempt from name uniqueness. A Filler field is always of type String.

Template

Whole or part of a Universal message format can be saved as a template in some
location and can be added in any other Universal message format.

See Also:

Universal
Creating a Universal Format

Creating a Universal Format

A Universal message format can be created in the Designer either from

Existing Universal message format, or
Empty message format

When using an existing format, the set of sequences, fields, fillers, choices are
available for the newly created format. The user has the option of using the format
as it is or change the mandatory elements or add new elements as per his
requirements. The existing Universal formats are available as XML files in the
location <installation dir>\config\Universal\messages

When using an empty message format, the user has to add the section, field, filler,
etc. as per the message specification. This happens when the format has to be
entered the first time, after which the format can be saved and used to build other
formats using the first option.

See Also:

Creating a Universal Format based on an existing Universal format
Creating an empty Universal message Format

Saving a Universal Message Format

Universal External Message Ul

External Format

Creating a Universal Format Based on an
Existing Universal Format

1. Right-click the Cartridge node in the Designer and select the ‘New External
Message’ menu item from the context menu to create a Universal external
format.

2. In the ‘New External Message’ dialog that appears select ‘Universal’ from the
‘External Message’ list box and enter the message name in the ‘Name’ text field.
Click OK.

| MNew External Message : il

Marme |Order

+9

Parse T
External Message |Universal

\ Univarsal
)
wvalidate Universal forrnat is powerful flat file parsarfwriter that handles fixed width,

delirnited and tagged messages,

LA

Serialize

DK || Cancel || BHelp |

3. In the ‘New Universal Message Format’ dialog that appears, select an existing
format based on which the new format is to be created.

I New Universal Message Format il
Existing Formnats Forrmat Mame
3 Universal Message Formats |H1 |
é)_'.j IsT Detailed Marne
J-P—f__'.l Orders |x1 |
53 WL
f,",'] Categaory
f,"::l e |IST'\Orders |
[A
. Drescription
(e =
B3 v3

@] Report

l::l Create ermnpty message format

@ Create based on selected format

(o134 || Cancel || aHelp |

4. As soon as you select an existing format, ‘Create based on selected format’ radio
button gets automatically checked. Click OK.

5. The new format is created in the Designer as shown below.

B Explorer Ax External Format - Universal [Order] =

e - h " §§ r" d |/Data rTrailer |
2 Equity Order Long Form r) o
@1 Et:UEmal-Uni-guersal [Order] @ WO $ e = ﬁ @ G =D
t = [Estarnal Format l:“ Field Name [[Type || Dascription
@ Walidation Rules =i Sequence

< Entering Firm String 4 bytes alpha
4 Branch Code Alphas String 4 bytes alpha
4 Branch Sequence Mumber Integer 5 bytes numeric
4 Lot Indicator Integer 1 byte nurneric
()? POSS DUPE Indicator Integer 1 byte alphafnurneric

|/ Dccurrence |/Tag |/Posilion r Delimiter |

@ Fixed Instances i variable Instances) Discriminated

Count Count Field l:lzl Discrirninator l:l
Min Qccurs |0 : Min Qccurs i) :
Max Ocours |1 : Max Occurs 1 :

6. Note that the Design Element Ul tool bar buttons in the figure are enabled
thereby allowing the user to modify the format.

7. As seen in the above picture, three child nodes viz. ‘External Format’,
‘Validation Rules’ and ‘Mapping Rules’ with corresponding User Interface are
created for a Universal External message format.

See Also:

Creating an empty Universal message Format
Saving a Universal Message Format

Creating an Empty Universal Message Format

1. Right-click the Cartridge node in the Designer and select the ‘New External
Message’ menu item from the context menu to create a Universal external
format.

2. In the ‘New External Message’ dialog that appears select ‘Universal’ from the
‘External Message’ list box and enter the message name in the ‘Name’ text field.
Click OK.

: MNew External Message

Marme |Order |
+8
Parze
External Message | Universal o |
@) Univarsal
Validate Universal forrnat is powerful flat file parsarfwriter that handles fixed width,

delirnited and tagged messages,

o

Serialize

DK || Cancel || BHelp |

3. In the ‘New Universal Message Format’ dialog that appears, ‘Create empty
message format’ radio button is selected by default. Click OK.

I New Universal Message Format il

Existing Formnats Forrmat Mame

= |Universal Message Furrnaisl | |
é"_'l LU Detailed Name

| |
Categary

| |

Crescription

@ Create empty meszage format

) Create bazed on selected format

(o134 || Cancel || aHelp |

4. An empty message format is created as shown below.

Egs Explorer Al | External Format - Universal [Order]

e e . 2
@ " h =§ |/ Header rData rTrailer |
Equity Order Long Form r . .3 3
ot “ue 1 i o e iy

f%)—@ External - Universal [Order] @ Wl Ill = ‘% = e ﬁ @ S Ly

|: = [Etarnal Format I:H Field Name || Type || Description |

@ Walidation Rules
Properties

5. In the Explorer window, the newly created Universal Message format is displayed
with three child nodes viz., External Format, Validation Rules and Mapping Rules.

See Also:

Creating a Universal Format based on an existing Universal format
Saving a Universal Message Format

Universal External Message Ul

After a universal external message has been created the following properties can be
specified in the External Message Ul.

External Format Name

Version

Standard Name: This refers to the actual message name.
Standard Version

Detailed Name

Description

External - Universal [Equity Report]

Format Details

External Format |Llni-.'ersa| |

Marme |Equitl,l Report |

Wersion |1.I:I

Standard Details

Marme |A? |

Wersion | |

Detailed Marme |0rt Long Form (expanded arder +Misc Text 3F.F4)|

Crescription

See Also:

External Format
Creating a Universal Format
Saving a Universal Message Format

External Format

The External Format User Interface is similar for Universal — Input / Output message
formats. A Universal message consists of Header, Data and Trailer segments. The
Header and Trailer segments are optional. The Header, Data and Trailer segments
are represented by three tabs in the External Format Ul. The same set of tool bars
(properties for fields / sections) are available in the External Format Ul under each of
these three sections as shown below:

Bl fFduwm@BE G Lleoas S

See Also:

Universal Format Options
Entering a Universal message
Creating a Universal Format

Universal Format Options

Before you start entering the actual message format, the Designer allows you to
specify the default settings, which can be used with the fields and sections of the
format. This setting is optional and is just for convenience. You can later change
the properties as per your choice. Unless you explicitly set the field level properties,
the format level default will be used.

Click on the ‘Format Options’ button () in the ‘External Format UI’ toolbar to bring
up the ‘Universal Format Options’ dialog box that can be used for specifying the four
format level options described below.

See Also:

General Settings

Default Settings for Text Encoded Fields
Default Settings for Binary Encoded Fields
Default Delimiter Settings

Entering a Universal message

General Settings

The ‘General’ tab of the ‘Universal Format Options’ dialog box is used to specify
general settings described below. These property settings are applicable only for
fields.

The ‘Default Encoding (For Numerals)’ list box is used to specify the default
encoding to be used for fields of humeric data type such as Integer, Long, Float
and Double. The user can select any one of the following encodings from the list

box:
1. Text
2. Binary

3. Packed Decimal

i;'l Universal Format Options 5[

|/Genera| |/Text Encoding r Binary Encoding |/ Delimiter |

Default Encoding (For Murmerals) ||Text %:

Text

Default Field Type Binary

Packed Decimal

Ok, || Cancel || gHelp |

The ‘Default Field Type’ list box is used to specify the field type to be used for
fields by default. This is applicable for fields of all data types. The user can select
between Fixed Length and Delimited field types.

é'l Universal Format Options il

rGeneral I/Text Encoding r Binary Encoding |/ Delimiter |

Default Encoding (Far Murmerals) |Text hd |
Default Field Type Fixed Length -
Fixed Length %
Dealimited
(o134 | | Cancel | | a Help |

Note that some of the combinations like ‘Binary’ or ‘Packed Decimal’ selected in
‘Default Encoding (For Numerals)’ list box and ‘Delimited’ selected in ‘Default Field
Type’ list box are not meaningful. You will get a validation error in such cases if not
set right at field level.

See Also:

Default Settings for Text Encoded Fields
Default Settings for Binary Encoded Fields
Default Delimiter Settings

Entering a Universal message

Default Settings for Text Encoded Fields

The ‘Text Encoding’ tab of the ‘Universal Format Options’ dialog box can be used to
specify the default settings to be used with Text encoded fields of different data
types. This property is applicable only for fields. If the corresponding value at the

field level is set to ‘Default’, the field inherits values set at the format level. You can
override these attributes at the field level by specifying a value other than ‘Default’.

As can be seen in the picture given below, the data types are listed on the left side of
the ‘Universal Format Options’ dialog when ‘Text Encoding’ tab is selected. On
selecting a particular data type, the options specific to that data type are shown on
the right side of the dialog. These options have to be specified for each data type.

{;:'I Universal Format Options il

r General r Text Encoding r Binary Encoding r Delimiter |
BigDecimal - BigDecirnal COptions
Biglnteger w
Binary Justification | Left - |
Boolean
Characker Terminator | |" |
Dateonly
DateTime Padding | Space - |
Couble
Float — Decirmal Paint | Dot hd |
ISODate i
Text Encading | | - |

| (]34 || Cancel || aHelp |

The Justification list box is used to specify the default justification to be used
during output transformation when the value of the field is less than its specified
width. The user can select between Left and Right justifications.

; Universal Format Options il

r General r Text Encoding r Binary Encoding r Delimiter |

CateTirme] String Qptions
Double |
Float Justification ||Left -
ISCDate
I50DateTime [: Left [%
3 Termminator Right
I50Time
Int
meger Padding Space il
Long
Strin
. 2 — Trirm Trirn Both Ends hd
Tirmadnly il
Text Encading | il

Ok, Cancel a Help

For e.g., consider a Universal Output Message format containing an integer field
of fixed length 5, which is Right justified, and Padding option selected as ‘Zeros’.
If value of the source field in the Input Message is “23”, on message
transformation, the value of this target field would be “00023".

Note:

There is a relationship between the ‘Justification’ and ‘Padding’ properties in case
of numeric fields of data types Integer, Long and Biglnteger. If Justification for a
field of one of the above types is selected as ‘Left’, then the user should
compulsorily select ‘Space’ as padding option form the Padding list box. On the
other hand, if Justification for the fields of the above mentioned types are
selected as ‘Right’, then either ‘Space’ or ‘Zeros’ padding can be given.

The Terminator combo box is used to specify the default terminator to be used
to indicate the end of the field value. For e.g., if a field is of fixed length 10 and
if you give terminator as, say comma (,) then, the value of the field that is
available till comma is encountered, will be taken as the actual value and the rest
of the values after comma would be ignored. Terminator should be a single
character (can be alphabet, numeric or special character; typically the NULL
character) and can be specified for Fixed Length, Length Preceded and Delimited
fields. In case of delimited fields, make sure that the Terminator does not
conflict with the Delimiter. Refer APPENDIX to find out the various escape
sequences that can be specified for a Terminator. (The difference between a
Terminator and a Delimiter is that while the ‘Delimiter’ denotes the end of the
field width, the ‘Terminator’ denotes the end of the field value.)

; Universal Format Options il

rGeneral rText Encoding r Binary Encoding r Delimiter |

DrateTime - Integer Options
Double

Float Justification | Right i |
ISCODate

150D ateTime
I50Time
Integer

Termninator | -

MULL Character
Padding Zaeros h

Long
String

Timelnly

Text Encoding | | hd |

| (o134 || Cancel || aHelp |

Note:

The NULL Character terminator given in the combo box would be helpful in case
the user wants to enter a “C” structure as a message format.

The Padding list box (applicable for all data types except Date) is used to specify
the default padding to be used to fill the balance width when the value of the field
width is less than its pre-specified width. For fields of data types String and
Boolean, only one padding option is supported namely ‘Space’. For fields of
Integer, Float, Double, Long, Biglnteger and BigDecimal data type, two padding
options are supported namely ‘Space’ and ‘Zeros’. However, if fields of Integer,
Long and Biglnteger data type are left-justified, ‘Zeros’ padding should not be
specified as noted above.

i;'l Universal Format Dptions x|
r General r Text Encoding r Binary Encoding r Delimiter |
DrateTime - Integer Options
Double |
Float Justification | Right - |
ISCDate
ISODateTime RO | |,r |
I50Time
Int
mheger Padding Zaros il
Long
String SppaEs %
Timelnly EEtes
Text Encoding | | il |
| (o134 || Cancel || aHelp |

The Trim listbox (applicable only for string and Character data type) is used to
specify if the value of the Text encoded field has to be trimmed during input
transformation (ignore padding, if any in the field) or not and how it has to be
trimmed. The user can select between the four options available namely Do Not
Trim, Trim Both Ends, Trim Left and Trim Right. This property can be used for
Fixed Length, Length Preceded as well as Delimited Fields. For e.g. consider a
Fixed Length string field of length 10. Let its value in the input message be

“ AB 7 (padding of 4 spaces given at both ends). Then the actual value of the
field on parsing depends on the Trim option chosen as shown in the following
table:

S.No. | Trim Option Chosen | Actual value on parsing

1 Do Not Trim “ AB 7"
2 Trim Both Ends “AB”
3 Trim Left “AB 7

4 Trim Right “ AB”

: Universal Format Options il
rGeneral rText Encoding r Binary Encoding r Delimiter |
DateTirne - String Options
Double |
Float Justification | Left i |
ISCDate
150D ateTirme Termninator | |v |
I50Time
Int
mieger Padding | Space hd |
Long
Strin
. 2 Trirn |Trirn Both Ends
Timelnly
Do Mot Trim
Text Encading | Trirn Both Ends :Izl
Trirn Left
Trirn Right
| Ok | | Cancel | | a Help |

The Decimal Point listbox (applicable only for Float, Double and BigDecimal data
types) is used to specify the character to be used to denote a decimal point. The
user can select between the three options available namely Dot, Comma and
None. If the option None is selected, then the decimal point need not be given in
the input message (implied) and the real and fractional part of the field are
determined by the specified format.

j.'_ } Universal Format Options il

r General |/ Text Encoding r Binary Encoding |/ Delimiter

CrateTime - Float Options
Double |
Flaat Justification | Left hd |
I5C0Date
I1SODataTima e | | = |
I5CTime
Int
meeger Padding |Space 5 |
Long
Strin
) 9 Dacimal Point |D0t
TirmeCnly
Lot
Text Encoding | Comirma E
Mane
| Ok | | Cancel | | a Help |

The ‘True Value’ and ‘False Value’ text fields (applicable only for Boolean data
type) are used to specify the values corresponding to Boolean values true and

false. This property is mandatory. Note that by default 1 is used for representing
true and O is used for representing false. If any of these text fields is left
empty, it will result in validation error.

:;'I Universal Format Options il

r General |/ Text Encoding r Binary Encoding |/ Delimiter

BigDecimal Boolean Options

Biglnteger

Binary Justification | Left - |
Boaolean

Character Tetrninatar | |" |
DateOnly

DateTirme FPadding | Space A |
Dauble

Float True Value |1 |
I5C0Date

ISODateTime u Falze walua |D |
ISOTime el

Text Encoding | | hd |

| Ok || Cancel || aHelp |

The Formats list box (applicable only for Binary data type) is used to select
between the binary formats ‘Hex’ and ‘Base64’.

r General r Text Encoding r Binary Encoding r Delimiter

Bighecimal Binary Sptions

BigInteger

Binary Justification | Left hd |

Boolaan
Character
DateCnly
DateTime
Double

Flaat
ISCDate
ISCDateTime
ISCTime

Terminator | |‘r |

Forrmats Hex -

Hex
Bazetd

[4]

Text Encoding | | - |

| Ok || Cancel || aHelp |

The ‘Text Encoding’ combo box is used to specify the character encoding to be
used while processing text encoded fields in the message. The default character
encoding used for text-encoded fields is ‘US-ASCII’.

See Also:

General Settings

Default Settings for Binary Encoded Fields
Default Delimiter Settings

Entering a Universal message

Default Settings for Binary Encoded Fields

The Binary Encoding tab of the ‘Universal Format Options’ dialog box can be used
to set the default endian for a Binary Encoded field, i.e. the byte order specific to the
Microprocessor.

The Endian listbox is used to specify the Endian to be used for a Binary Encoded
field. The user can select between the two options available namely Little Endian

and Big Endian.

i;'l Universal Format Options 5[

|/Genera| |/Text Encoding r Binary Encoding |/ Delimiter |

Endian Big Endian ™
Little Endian
Big Endian

(o134 Cancel a Help

See Also:

General Settings

Default Settings for Text Encoded Fields
Default Delimiter Settings

Entering a Universal message

Default Delimiter Settings
Header / Data / Trailer Delimiter
Message is a sequence of Header, Data and Trailer. As discussed earlier, Header and

Trailer may be optional. When Header and Trailer fields are specified in the message
format, and if a new-line has to separate the Header from Data or the Data from the

Trailer, it has to be explicitly specified as \r\n in “Delimiter” combo box. (If no fields
are specified in Header or Trailer segments of the External Format Ul, then the first
and last records should be treated as belonging to the message body)

The Delimiter combo box provided under Header Delimiter, Data Delimiter and
Trailer Delimiter is used to specify the delimiter to be used for Header, Data and
Trailer segments. These are not the default but the actual values. That is why in the
corresponding “Universal Format Options” Ul, you don’t find the word “Default”
mentioned when these delimiter combo-boxes are referred.

Note:

If you specify a delimiter for, say Header, then the value of any of the fields in the
Header should not contain the specified delimiter, the delimited sections and the
delimited fields included in the Header should not have the same delimiter as that of
the Header, because the parser assumes that the Header ends when the delimiter is
encountered.

Record Delimiter

The Delimiter combo box provided under Default Record Delimiter is used to
specify how Records (Sections) are separated from each other or how different
instances of a record may be separated from one another. The default delimiter you
specify here is used, provided you haven’t overridden it at section level. Records
may be delimited by “\n” or “\r\n” or any other specified literal. Special characters
are represented as “\#xH”, where H represents a hex number which is a Unicode
number. For example, the form feed character (Unicode #xC) can be represented by
"\#xC". The line feed character (Unicode #xA) can be represented as "\#xA".
Delimiter is optional for records. Refer APPENDIX to find out the various escape
sequences that can be specified for a Delimiter.

Note:

If you specify a delimiter for a section, then the value of any of the fields in the
section should not contain the specified delimiter and the delimited fields included in
that section should not have the same delimiter as that of the section, because the
parser assumes that the section ends when the delimiter is encountered.

Field Delimiter

The Delimiter combo box provided under Default Field Delimiter is used to specify
the default delimiter to be used to separate Fields within the Section. The field
delimiter is used for delimited fields alone, i.e. only if you have selected the Field
Type as Delimited. This attribute can be overridden at the field or section level. (If
a delimiter is set at field level, that is used, if not, the default set at the section level
is used, if not, one at the format level is used).

Note:

1. The last field in a section is terminated by section delimiter and field delimiter is
omitted. The last section added at root level (not followed by any other
field/section) in the Header/Data/Trailer is terminated by Header/Data/Trailer
delimiter, if any specified and section delimiter is omitted, i.e., section delimiter
need not be given for the same in the message.

2. A delimiter can be of any length and can be a combination of both alphanumeric
and special character.

Quote
The Quote combo box provided under Default Field Delimiter is used to specify the

escape sequence to be used in case the delimiter character/s is/are to be included in
the value of the field. Refer Quote under Adding a Delimited field for more details.

Ignore Trailing Fields

Ignore Trailing Fields checkbox can be checked if the optional trailing fields of a
delimited Header / Data / Trailer / Section (Record) are to be ignored. This
property is used for convenience to avoid giving empty field values (spaces) in case
the optional trailing fields are of null value. If “Ignore Trailing Fields” check box is
not checked, wherever the optional trailing field is of null value, empty field values
(spaces) should compulsorily be given for optional field, which has null value. It is to
be noted that this option is applicable and is of use only if the following are satisfied:

The section should be a delimited one.

The trailing fields are set as optional, are of null value and no default value given
for the same. (The trailing fields may be of Fixed Length, Length Preceded or
Delimited)

Note

There is a difference in the application of default settings to the message format
when specified under the “General” tab and under the other tabs of the “Universal
Format Options” window.

When we set various default settings available under the tab “General”, they are
applied as well as displayed as selected, to any field added subsequently, and not
applied to the fields which were added before giving the default settings using
the Format Options feature.

For e.g. consider an integer field with name A added in the External Format with
the Encoding under the “General” property chosen as Text. Go to the “Universal
Format Options” window and under Default Encoding (For Numerals) list box of
the “General” tab, select Binary. Now add another field of integer type with name

B in the External Format. You would find the option Binary automatically selected
for field B in the Encoding list box under the “General” tab in the Properties
panel, while the Text encoding selected for field A remains as such.

In case of default settings selected under other tabs viz., “Text Encoding, “Binary
Encoding” and “Delimiter”, they are not displayed as selected, but displayed as
“Default” in the corresponding place and also, the value in “Default” is inherited
even by the previously added fields whenever a change is made subsequently
using the “Format Options” feature.

For e.g., before adding any field in the External Format, go to the “Universal
Format Options” window and under the tab “Delimiter”, select Default Field
Delimiter as comma (,) and Quote as double-quotes (). Now add a string field in
the External Format and select Field Type as “Delimited”. Under the Delimiter
and Quote combo-boxes, you would find “Default” selected automatically (Note
that though you had selected comma in the Format Options window, it is not
displayed as such, but only displayed as Default, meaning thereby that the value
of Default can be changed again using the Format Options feature). Here the
“Default” selected in the Delimiter combo box would mean comma while the
“Default” selected in the Quote combo box would mean a quote. This can be
easily verified by giving data, say “abcde,fgh”, in the Simulator tool. On parsing
you would get the value of the field as abcde,fgh. Now go to the “Universal
Format Options” window and select Default Field Delimiter as semi-colon (;) and
Quote as single-quote (‘). Now in the External Format, the meaning of “Default”
selected in the Delimiter and Quote combo boxes would have changed as set
under Format Options, this again can be verified by giving the same input data as
above in the Simulator tool, where, on parsing you get some undesired output.

If you give input data as ‘abcde;fgh’; on parsing you would get the desired
output namely abcde;fgh.

Universal Format Options il

r General r Text Encoding r Binary Encoding r Delimiter |

Header Delimitar

Dalimiter | | - | [[] 1qnore Trailing Fields

Data Delimiter

Delirniter |\r\n'} | - | [1gnare Trailing Fields

Trailer Delimiter

Delimiter | | - | [[] 1anore Trailing Fields

Default Record Delirmiter

Delimiter |\r'\n: | - | [[] 1anore Trailing Fields

Cefault Field Delimiter

Delimiter | |v |
Cuote | | - |
| (o134 || Cancel || aHelp |
See Also:

General Settings

Default Settings for Text Encoded Fields
Default Settings for Binary Encoded Fields
Entering a Universal message

Entering a Universal Message

A message can be entered using Universal Format by adding various combinations of
Fields, Fillers, Sequences, Choices and All.

See Also:

Adding Fields and specifying properties

Adding Fillers and specifying properties

Adding a Sequence type section and specifying properties
Adding a Choice type Section and specifying properties
Adding an All type Section and specifying properties
Universal Format Options

Adding Fields and Specifying Properties

Universal Format supports adding fields of any of the thirteen data types viz. String,
Integer, Character, Float, Double, DateTime, Long, Boolean, Binary, BigDecimal,
Biglnteger, TimeOnly and DateOnly. A wide range of properties can be specified for a

field as discussed below:

To add a field in the Universal - External Format Ul

1. Click the Add New Field button E in the Universal - External Format UlI.

2. A new row (field) is added in the External Format Ul with default name ‘New
Field’ and default type set as ‘String’ as shown below.

External Format - Universal [Order]

rHeader rData rTrailer |

B FSumEB ¢ I e

|—]| Field Name ;l Alias || Type |!_ Descrpton “

1
+“ Mew Field 5tring e | |
Character t

Date2nly
DateTime
Double
Flaat
Integer

Long

String

|/ General |/ Position |/ Field Type |/Tag |/ Text Encoding |

Required [w] Encoding |Text v |

Default Walus |]
L —

You can change the field name as per your requirement (A field should not have
the name as “FILLER”) by double-clicking on the column under “Field Name” and
selecting any of the data types from the list box, which is enabled when you click
the Type column cell of the added row. Note that the message format is shown
in the table at the top, and a panel at the bottom shows the properties of the row

selected in the table. The properties panel dynamically changes as the row
selected in the table changes.

3. Under the column Alias, you can specify the alias (substitute name) to be used
for the field when specifying a Validation/Mapping formula involving that field.
This property is optional. (If a field is assigned an alias, the qualified name of
that field is replaced with its newly assigned alias in all the places it is used).
This column is hidden by default when a Universal message format is created and
can be viewed by right-clicking the Table heading in the External Format Ul and
checking the Alias check-box in the context menu as shown in the picture added
below.

4. Under the column Description, you can mention any description for the added
field. This property is also optional.

Note:

If you right-click the heading column of the table in the External Format Ul, you get
a context menu to hide columns of the table and also set properties for the table as
shown in the following picture:

External Format - Universal [Order]

(Header rData rTrailer |

Hm L SR § I e
Field Name Alias Type Descrption
T%Size calumn tao fit
Row Height]

[0 Hide 'Field Harme'
¥ Fiald Marmne

¥ alias

™ Tupe

™ Description

Specifying Properties for a Field

The field properties panel has five tabs,

Property Tab | Usage

General Can specify the general properties of the field. Here you
also set the encoding to be used for the field

Position Displays the position of the field in the message, data
and its length

Field Type Can select the type of the field viz., Fixed length, Length
preceded or Delimited.

Tag Can specify the tag and separator for the field

Encoding This tab changes based on the encoding selected in the
General tab. As the name implies, displays encoding
specific attributes of the field.

General tab:

Under this tab, the properties that can be specified for a selected field are discussed
as under:

(Genaral r Position r Field Type rTag r Text Encoding |

Required [w] Encoding

Default Walue

Required check box is used to specify if the selected field is mandatory or not.

Default Value text-box is used to specify the default value of the field if any.
This property is optional. Refer APPENDIX to find out the various escape
sequences that can be used while specifying the Default Value.

Encoding list-box is used to specify the required encoding for the selected field.
If the selected field is of String, Character, Date/Time, Biglnteger or BigDecimal
data type, the Encoding list-box has only one element viz., Text. However, if
the selected field is of numeric data type (Integer, Float, Double or Long), the
Encoding list-box has three elements (as shown in the following picture) viz.,
‘Text’, ‘Binary’ and ‘Packed Decimal’. Note that the name of the ‘Encoding’ tab
changes dynamically based on the encoding chosen in the ‘General’ tab,

i.e., if the current encoding chosen is Text and if we change it by selecting
‘Packed Decimal’ from the ‘Encoding’ list box, then the name of Encoding tab
changes from ‘Text Encoding’ to ‘Packed Decimal Encoding’.

|/ General |/ Position |/ Field Type |/Tag |/ Text Encoding |

Requirad [] Encoding |[[Text il
Text

Default Walue :
Binary

Packed Decirnal

If the data type of the selected field is ‘Binary’ or ‘Boolean’, the Encoding list-box
displays two elements representing the two different encodings applicable viz.,
Text and Binary.

If the selected field is of Date/Time data type, its pattern can be specified in the
‘Format’ combo box that is displayed as shown in the following picture. This
property is mandatory.

(General r Position r Field Type rTag r Text Encoding |

Required

Default Value

[w] Encoding | Text ot

yyyyMMdd] | w

Format
wyyyMMdd %
MM dd wywy
ddf M puyy
HH:mrmis=
Note:
The date/time pattern to be specified is case-sensitive and the valid usage is as
under:
yyyy oryy | year
MM month
dd days
HH hour
mm minutes
ss seconds
SSS milli seconds

Position tab:

Under this tab, the position of the selected field and its length are displayed. The
position counting starts from zero. The values displayed under this tab are read-only
and they change dynamically according to the position of the selected field. This
property is generally of use if the message entered has fixed length fields. Under
this tab, the following properties are displayed for a selected field:

Position in Message which is determined by the position of the selected field in
the Message, i.e. including Header.

Position in Data (if the selected field is in the Data section) which is determined
by the position of the selected field in the Data. Note that if there is no Header
at all for the message format, then this value and the value against Position in
Message would be one and the same.

Length which is determined by the length of the field specified under the Field
Type tab. This is applicable only in case of Fixed Length fields.

(General |/ Position |/ Field Type rTag r Text Encoding |

Field Position

Poszition in Message =]
Position in Data &
Length ak

Note that the value specified for Length includes the length of the Tag if any
specified for the field. For e.g., if a field is of fixed length 5 with Tag as “ABC”,
then its length would be displayed here as 8 and not as 5.

If the selected field is a sub-field under a section (Sequence / Choice / All) then
an additional information Position in Section would be displayed as shown in
the following picture.

|/ General |/ Position |/ Field Type |/Tag |/ Text Encoding |

Fizld Pasition

Position in Meszage 1z
Pozition in Data 12
Pozition in section &
Length g

If the selected field is in the Header section, then instead of Position in Data, it
would read as Position in Header as shown in the following picture.

r General r Position r Field Type rTag r Text Encoding |

Fizld Pasition

Position in Message 1
Paszition in Header 1
Length 5

Similarly, if the selected field is in the Trailer section User Interface, then instead
of Position in Data, it would read as Position in Trailer as shown in the following
picture.

r General |/ Position |/ Field Type rTag r Text Encoding

Field Position

Position in Message is
Paosition in Trailer al
Length 5

Field Type tab:

The plug-in supports three field types viz., Fixed Length Field, Length Preceded Field
and Delimited Field. Under the Field Type tab, you can choose the required type of
the field by checking the radio button against the desired field type.

See Also:
Adding a Fixed Length field

Adding a Length Preceded field
Adding a Delimited field

Adding a Fixed Length field

If the user wants the length of a particular field to be always of a pre-specified value
(fixed), he can do so by checking the Fixed Length radio-button under the

Field Type tab with the required field selected in the table under the External
Format User Interface. If the field type for a field is selected as Fixed Length, the
required length of that field should be given in the Length textbox displayed.

(General r Position r Field Type rTag r Text Encoding |

@ Fixed Length) Length Preceded) Delimited

Length |3 Length Field I:[Delimiter |[Default
Quote Default

Min Length

Max Langth

The following points are worth noting while specifying the length for a selected field:

Length should be a positive integer. (Note that the Length textbox is designed to
reject non-numeric values.)

It is understood that length of character field should compulsorily be given as 1,
otherwise, an error is generated during validation.

In case of a Date field, the specified length should be greater than or equal to the
length determined by the selected Format, i.e, if you have selected the Format

for the Date field as say, yyyyMMdd (length = 8) then you should specify the
length of the field to be >= 8 only. Otherwise, you would get error on parsing.
If the length is specified to be >8, then, padding has to be given.

In case of a Boolean field, the length is determined by the True and False Values
given under the Text Encoding tab. If True and False values are not given, then
the values given at Format Options are taken by default. If True and False
values are given, then Length is determined by the maximum of those values.
For e.g., if you have given True Value as TRUE and False Value as FALSE
(maximum length being 5) you have to compulsorily specify the Length to be 5,
otherwise, you would get error on validation.

In case of a Text Encoded field of Float, Double or BigDecimal data type, the
value if any (specifying format for a Text Encoded field is not mandatory) given in
Format textbox under the ‘Text Encoding’ tab will determine the length of the
field. For e.qg., if for field of type Float, you have given the value of Format under
the Text Encoding tab as 4.3 (meaning 4 digits before decimal and 3 digits after
decimal), then you should specify the Length to be 8 (including the decimal point
which represents one byte).

For a Fixed Length Binary Encoded field of Integer, Long, Float or Double data
type, the following convention should be followed while specifying the length,
otherwise, you would get error on validation:

Data Valid Length
Type

Integer 1,2o0r4
Long 1,2,40r8
Float 4

Double 8

For a Fixed Length Packed Decimal Encoded field of Integer, Long, Float or
Double data type, the Format/Digit specified under the Packed Decimal Encoding
tab would determine the length of the field as described in the following table:

Data Valid Format/Digit Valid Length
Type

Intege 0<=N<=10 (N+1)/2 (rounded off)

r (N-# of digits)

Long 0<=N<=19 (N+1)/2 (rounded off)

Float M.N (M+N+1)/2 (rounded off)

(M - # of digits

before decimal,

N - # of digits
after decimal)

Doubl M.N (M+N+1)/2 (rounded off)
(M - # of digits

before decimal,

N - # of digits
after decimal)

(The Designer will validate if the specified length is valid as per the above
specification and if not, would throw error on validation)

For e.g., for a Fixed Length Packed Decimal field of type integer, if you have
given the value for Digits as, say, 8 in the Digits/Format textbox, then the Length
should be given as (8+1)/2 = 4.5, rounded off = 5. In case of a field of type
Double, if you have given the value for Format as, say, 7.3 (meaning 7 digits
before decimal and 3 digits after decimal) then the length should be given as
(7+3+1)/2 = 5.5, rounded off = 6. (Note that in case of Packed Decimal
Encoding, the decimal point is not stored and hence need not be taken into
account while specifying the length unlike in the case of a Text Encoded field)

Note:

To make a Fixed Length field optional, it is not enough that you uncheck the
Required check box under the General tab, because, you still have to give empty
field values (spaces). To make it truly optional, you can add a tag for that field,
provided the start value of the subsequent field is not the same as the tag value.

See Also:

Adding a Length Preceded field
Adding a Delimited field

Adding a Length Preceded Field

A Length Preceded field is a variable length field. If the user wants the length of a
field to be determined during run-time based on the value of another field of integer
type (set as count field) in the message that can be done by checking the Length

Preceded radio-button under the Field Type tab. Note that for a Length
Preceded field, only Text Encoding is supported and Filler fields cannot be of
length preceded type.

|/ General r Position r Field Type rTag r Text Encoding |

) Fixed Length @) Length Preceded) Delimited

Length |0 Length Field V Delirmiter [Default
Min Length Quote Default

Max Langth

Length Field

The required count field which is to determine the length of the selected field during
run-time is to be selected in the Length Field combo-box. At runtime this field
specifies the length/size of the Length Preceded Field it applies to. The following
points need to be noted while specifying the count field.

1. The count field should be of integer type.
2. It should precede the field for which it is set as a count.

3. The length field and the ‘Length Preceded’ field must be siblings, i.e., they should
have same parent. For e.g., for a sub-field added under a section, you cannot
mention as length field, a field that is appearing above that section. However,
the above constraint can be overcome by using a formula (use of formula feature
is described below) along with the length field. For e.g., for a ‘Length Preceded’
sub-field added under a sequence A, you can specify the formula SIZE + 1 in the
‘Length Field’ combo-box, where SIZE is a field appearing above its parent
sequence A and thus not a sibling.

Note:

When the message is outbound, the Length Field is automatically set to the length of
the Length Preceded field it applies to (provided you have simply selected an integer
field as the Length Field without using any formula) i.e. you need not provide a
mapping for this field. For e.g., in a Universal output message format, let F1 be a
‘Length Preceded’ string field with length field SIZE of fixed length 5. In output
mapping, only F1 needs to be mapped. During runtime, if we set the value of F1 as
“AB”, then the value of the SIZE field is automatically generated as 00002 (padding
set as zero). However, if you have used a formula in the ‘Length Field’ combo-box, it
becomes your responsibility during mapping or some other phase to ensure that the
value of the length field and the length of the ‘Length Preceded’ field are consistent.

Min Length

This optional attribute specifies minimum length of the Length Preceded field. The
actual length (which is greater than or equal to min length) will be determined by the
Length Field.

Max Length
This optional attribute specifies maximum length of the Length Preceded field. The
actual length (which is less than or equal to max length) will be determined by the
Length Field.

Note:

If Min Length and/or Max Length properties are set, then the value given for the
count field during run-time must be in conformity with the minimum & maximum
length set, otherwise, the message would not be parsed. For e.g., let us suppose
that Min Length for the Length Preceded field is set as 3 and value of count field
given in the incoming message be 2. In this case, the message would not be parsed
as the Min Length condition is violated.

Salient Features of a Length Preceded field

A Length Preceded field is used not only in the context as noted above; it has other
interesting possibilities as given below.

Using Formula feature (Access preceding field)

Though the combo-box is named ‘Length Field’, you need not actually specify a
field there. Note that when the cursor is in this combo-box, the Edit Formula icon
is enabled in the toolbar and Edit Formula hyperlink is displayed in the Status
Bar, meaning that you can specify a formula in that combo-box. The formula
should return an integer value representing the length of the field.

For e.g., if you want the length of the field to be 2 times the value of the SIZE
field, then you can specify the same in the ‘Length Field’ combo-box using the
formula SIZE * 2.

(General r Position r Field Type rTag r Text Encoding |

) Fixed Length @ Length Preceded 1 Delimited

Length |0 Length Field |SIZE* 2 |w Delimiter |Default
Quote Default

Min Length

Max Length

Length Preceded field as a Fixed Length field

By specifying the required length for the field in the Length Field combo-box, you
can make the Length Preceded field to act as a simple Fixed Length field. For
e.g., if the field is to be of fixed length, say 5, just type 5 in the Length Field
combo-box. (A better way of doing this is to make it a Fixed Length field)

|/ General |/ Position |/ Field Type |/Tag |/ Text Encoding |

) Fixed Lenath ® Length Preceded) Delimited

Length |0 Length Field "’ Delirniter |Default
Min Length Quote Default

Max Length

Length Preceded field as a Delimited field (Peek the rest of the message)

A Length Preceded field can be made to act as a Delimited field also. For e.g.,
suppose you want to delimit the value of the field marked as Length Preceded
type by a delimiter, say, comma, then you can specify the same in the Length
Field combo-box using the formula:

FindFirst (PeekRest(), ",")

PeekRest() function returns a string, which contains the rest of the characters in
the current record. (Refer Universal Plug-in Peek Formula Functions). FindFirst
function returns the index of first occurrence of comma in the string returned by
PeekRest(). Suppose the string returned is “ABCDE,FGHI”, then FindFirst
function will return the index as 5 (indexing starts from zero), thus, the length is
set as 5 and the next five characters from the current position, i.e., “ABCDE” will
be taken as the value of that field. The problem that would arise while using the
above formula is, though you have delimited the field by the specified delimiter,
the delimiter is not ignored, but is taken as the start value of the subsequent
field. To overcome this problem, you have to add a Fixed Value Filler with value
as that of the delimiter.

To parse Swift fields (Variable Length & Optional) using Length Preceded
field of Universal

In a Length Preceded Field, we can use formula to peek at the input to decide on
the length of the field, thus supporting Variable Length fields.

We can also use a formula that would return O to indicate that the field can be
missing, thus allowing us to support truly Optional fields. (Note that if a FIXED
length field is marked as optional, it just means that the field can have null
value; the input should still contain required number of characters (as spaces).
The truly optional fields that we are talking about will simply be missing in input.)

The above two types of fields are very common in Swift input.
Example
(code)(ref) 3n[4!a]

Here code is a variable length field, which can have maximum of three digits,
while ref is an optional field (as it is specified in square brackets).

Consider the formula function MatchFormat(value, format) that returns the
number of characters that matched (O if there is no match)
For e.g., MatchFormat(“78AAAA..”, “3n”) returns 2.

Using this formula in the context of a length preceded field, you can make it
parse swift fields as noted below.

MatchFormat(PeekRest(), “3n”)

returns the number of numeric characters (max of 3) that immediately follow the
input.

Using this, we can effectively discriminate fields based on the swift char set.
Obviously this is not limited to parsing swift input. We can use any other pattern
language (such as Regex) to find the presence of a field. Since formula functions
are (in theory) extensible we can use this as an escape mechanism to parse
complex inputs.

Thus, we can call a Length Preceded field as a superset of Fixed Length and
Delimited fields, as the other two field types turn out to be special cases that can be
Preceded Field, the parser can d&ﬁérﬁi&éﬁ;} béélziﬁtbitihieir{eésiaigiei, 7n;c;sit7c7aisés,
which cannot be addressed by either, delimited or fixed length fields can be
implemented using Length Preceded field.

See Also:

Adding a Fixed Length field
Adding a Delimited field

Adding a Delimited field

As the name itself indicates, if you want the value of the field to end at a specific
point, say, where a comma is encountered (ignoring that comma), then you can do
so by checking the Delimited radio-button under the Field Type tab. Note that for a
Delimited field, only ‘Text Encoding’ is supported.

Comment [M1]: Since this more
than simply ‘Length Preceded’
should we consider changing the
name.

r General r Position r Field Type rTag r Text Encoding |

) Fixed Lenath) Length Praceded ™ Delirited

Length (O Length Field I:l - Delimiter |, -
Quote " -

Min Langth

Max Langth

Delimiter

The required Field Delimiter is to be specified in this combo-box. If you have already
specified the Field Delimiter using the Format Options feature, then you would find
the word ‘Default’ automatically selected in this combo-box, which can be changed at
field level. A delimiter can be of any length and can be a combination of both
alphanumeric and special character. If a delimiter is set at field level, that is used, if
not, the default set at the section level is used, if not, one set at the format level is
used.

Quote

The Quote combo box provided under Default Field Delimiter is used to specify the
escape sequence to be used in case the delimiter character/s is/are to be included in
the value of the field. For e.g. let us consider a delimited integer field (non-null)
with delimiter specified as 1. Suppose you want to give value for the field as 12345.
If you don’t give escape sequence, the field would be considered as having NULL
value, as the delimiter (1) is encountered in the first position itself. You can
overcome this difficulty by giving an escape sequence, say “ under the Quote combo
box. Now the value of the field should be given as “12345”1 meaning that the 1
encountered in the data should be taken as its actual value and not as the delimiter.
Note that the Quote given should be a single character (alphabet, numeric or special
character) and should not be the same as the delimiter.

Tag tab:

Tag is a prefix that is added to the field or section in messages for easy identification
(during parsing). The field value starts after the tag ends. A separator can optionally
separate the tag and the field value. Note that in case of sections, the tag is a prefix
for every instance of the section. Tagged fields are often used in the context of ‘All’
type sections (unordered sections), where presence of the field must be ascertained
before parsing it.

(General r Position r Field Type rTag r Text Encoding

Tag 1

Separatar |=

Tag

You can specify the required tag in the Tag textbox. A tag can be of any length, can
contain both alphanumeric and special character. Remember that a tag, in most
cases, should be unique when specified for fields at the same level. If not, the
message may not be parsed correctly (though the Designer does not check for
uniqueness of tag during validation). If Tag is specified for a field in Input Message
Format, while giving value for the field, Tag should compulsorily precede the value.
In case of Output Message Format, Tag will be automatically written as a prefix of
the value.

Separator

You can specify the required separator in the Separator textbox. This property is
optional.

For e.g., if you want a field A to be identified by the tag, say 1 and the tag and the
field value to be separated by a separator, say = then you should specify 1 in the
Tag textbox and = in Separator textbox. In the message, if a field is encountered
with value “1=ABCD” then the value “ABCD” would be assigned to the field A. Note
that for a delimited field, the tag or the separator should not be the same as the
specified delimiter.

Encoding tab

The name of this tab dynamically changes to Text Encoding, Binary Encoding or
Packed Decimal Encoding as per the Encoding option set for the selected field. All the
three encoding types (Text, Binary and Packed Decimal) are applicable for fields of
Integer, Long, Float and Double data type. For Binary and Boolean fields, both Binary
Encoding and Text Encoding are applicable. For all other data types, only Text
Encoding is applicable.

See Also:

Adding a Fixed Length field
Adding a Length Preceded field

Encoding Types

Three types of encoding are supported in Universal, Text Encoding, Binary Encoding
and Packed Decimal Encoding. A field should have one of the three types of
encoding.

Text Encoding

The various properties that can be set for a Text Encoded field dynamically changes
in the properties pane depending on the data type of the selected field.

Text Encoded String field

If the selected Text Encoded field is of String data type, the properties that can be
specified under the ‘Text Encoding’ tab are as shown in the following picture.

(General r Position r Field Type rTag r Text Encoding |

Justification Default h g
Terminator |De'Fau|t : -
Padding Default -
Trirn Cafault -

These properties have already been elaborated upon in the Format Options section.
Text Encoded Character field

If the selected Text Encoded field is of Character data type, the properties that can
be specified under the ‘Text Encoding’ tab are as shown in the following picture.

(General r Position r Field Type rTag r Text Encoding |

Justification Cafault -
Terminator |De'Fau|t : -
Padding Default h g
Trirn Default -

These properties are the same as for a String field. These properties have already
been elaborated upon in the Format Options section.

Text Encoded Integer field

If the selected Text Encoded field is of Integer data type, the properties that can be
specified under the ‘Text Encoding’ tab are as shown in the following picture.

r General r Position r Field Type |/Tag |/ Text Encoding |

Justification | Default -
Terrninator |Default -
Padding Default b4

Note that except for the Trim property, all other properties are same as that for a
string field, however for a numeric data type, two padding options namely Zeros
(applies only if field is right justified) and Space are available. To learn about the
connection between Justification and Padding properties for an integer field, see Note
under Format Options section (Justification).

Text Encoded Biglnteger field

The properties that can be specified for a Text Encoded BiglInteger field are same as
that of an Integer field.

Text Encoded Long field

The properties that can be specified for a Text Encoded Long field are same as that
of an Integer field.

Text Encoded Float field

If the selected Text Encoded field is of Float data type, the properties that can be
specified under the ‘Text Encoding’ tab are as shown in the following picture.

|/ General r Position r Field Type rTag r Text Encoding |

Justification | Default - | Forrnat
Terminator Default - | Exp Rep]
Padding | Default - |

Decirmal Paint | Default - |

Decimal Point

Decimal Point property has already been dealt with in Format Options section.
See Decimal Point in that section.

Format

You can specify the required format of the field in the Format textbox as M.N
where M represents # of digits before decimal and N represents # of digits after
decimal. For e.g. if Format is specified as 3.2, it would mean that there should be
3 digits before the decimal point and 2 digits after. Note that the dot specified in
the format M.N has nothing to do with the Decimal Point selected, i.e., even if
you have chosen the Decimal Point to be Comma (,) in the Format you should
give as M.N only. Specifying the Format is optional for a Text Encoded float field
unlike a Packed Decimal Encoded field, however, if the Decimal Point option is
selected as None, then the Format should compulsorily be given, because, the
real and fractional parts of the field could not be distinguished otherwise.

For a Fixed Length field, if Format is specified, then Length should match the
Format and if Decimal Point is selected as None, then you need not include the
decimal point in the length. The following table would clearly explain this:

Format Decimal Point Length
0.1 Dot 2

0.1 None 1

1.0 Dot 2

1.0 None 1

5.3 Dot 9

4.2 Comma 7

3.3 None 6 (Not 7)

For a Delimited field, the Delimiter and the Decimal Point should not be the
same. If given so, then Delimiter overrides the Decimal Point and the data would
not be parsed.

Exp Rep

If you want to allow exponential representation for the float field, you can check
this check box. Note that this property should not be set to true if Decimal Point
is selected as None. For e.g., if you have set this property to be true, you can
give the value for a float field as 1.5e4 to represent 15000.0

Text Encoded Double field

The properties that can be specified for a Text Encoded Double field are same as that
of a Float field.

Text Encoded BigDecimal field

The properties that can be specified for a Text Encoded BigDecimal field are same as
that of a Float field.

Text Encoded DateOnly field

If the selected Text Encoded field is of DateOnly data type, the properties that can
be specified under the Text Encoding tab are as shown in the following picture.

(General |/ Position |/ Field Type rTag r Text Encoding |

Justification | Default |

Terrninator |Default - |

These properties viz., Justification and Terminator have already been dealt in detail
in Format Options section.

Text Encoded DateTime field

The properties that can be specified for a Text Encoded DateTime field are same as
that of a DateOnly field.

Text Encoded TimeOnly field

The properties that can be specified for a Text Encoded TimeOnly field are same as
that of a DateOnly field.

Text Encoded Boolean field

If the selected Text Encoded field is of Boolean data type, the properties that can be
specified under the ‘Text Encoding' tab are as shown in the following picture.

|/ General r Position r Field Type rTag r Text Encoding

Justification | Default - True Walue

] False Wal
Terminataor |Default e et | S
Padding Default |

The properties viz., Justification and Terminator have already been dealt with in
detail in Format Options section.

The ‘True Value’ and ‘False Value’ text-boxes are used to specify the true and false
values to be set for a Boolean field. This property is mandatory. In case of a Boolean
field of Fixed Length type, the Length is determined by the True and False Values
given under the Text Encoding tab. If True and False values are not given, then the
values given at Format Options are taken by default. If True and False values are
given, then Length is determined by the maximum of those values. For e.g., if you
have given True Value as TRUE and False Value as FALSE (maximum length being 5)
you have to compulsorily specify the Length to be 5, otherwise, the Designer would
throw error message on validation.

Text Encoded Binary field

If the selected Text Encoded field is of Binary data type, the properties that can be
specified under the ‘Text Encoding’ tab are as shown in the following picture.

(General |/ Position |/ Field Type |/Tag |/ Text Encoding |

Justification | Default -
Terminator |Default -
Farrnats Cefault -

The properties viz., Justification and Terminator have already been dealt in detail in
Format Options section.

Formats

A Text encoded Binary field can be specified one of two formats — ‘Base64’ or
‘Hex’. The field value should correspond to the specified format.

Binary Encoding

This Encoding is used to store quantities in binary format. Binary uses either Word (4
bytes), Half-word (2 bytes) or Double-word (8 bytes), based on precision. Half-word

can store 2% to (2'%-1) or 2'¢, depending upon whether the number is signed or
unsigned.

Field Type supported - Fixed Length and Length Preceded.

Data Types supported - Integer, Long, Float, Double, Binary and Boolean.

Note:

The Designer does not allow a binary encoded field to be set as optional, i.e., for
a binary encoded field, you should not uncheck the Required check-box under the
General tab.

A Section cannot have delimiter if a field in the section is binary encoded.
Binary Encoded Integer or Long field
If the selected Binary Encoded field is of data type Integer or Long, the properties

that can be specified under the Binary Encoding tab are as shown in the following
picture.

rl;eneral rPDsiﬁDn rField Type [Tag [Binary Encoding|

Endian Default b

Unsigned []

Endian

The Endian listbox is used to specify the Endian type (which represents the byte
order specific to the Microprocessor) to be used for the Binary Encoded field. The
user can select between the two options available namely Little Endian and Big
Endian.

Unsigned

‘Unsigned’ indicates whether the input/output should be treated as unsigned. This is
applicable only for Integer and Long fields and not applicable for Float and Double
fields.

Note that the following restriction should be applied while specifying the Length
under the Field Type tab, otherwise, the Designer would throw error on validation:

Data Type Valid Length

Integer 1,2o0r4

Long 1,2,40r8

The following limitation is present while specifying unsigned types. Integer fields
cannot be specified as ‘unsigned’. If you specify an integer field as unsigned it will
result in validation error.

This is because the integer type in Designer is signed integer. Designer, like Java,
does not have an ‘unsigned int’ type. If you have specified the type as integer,
unsigned with four bytes, the upper half of the range you have chosen will overflow if
it is represented as ‘Integer’. Solutions to this limitation would be

Using Long with unsigned option.
Using Integer if you are sure about the range.

Binary Encoded Float or Double field
If the selected Binary Encoded field is of data type Float or Double, the only property

that can be specified under the Binary Encoding tab is Endian (explained above)
as shown in the following picture.

rGeneral rmilion |/Fie|d Type [Tag | Binary Encodingl
Endian Default -

Float - IEEE 32 bit representation
Double - IEEE 64 bit representation

Note that the following restriction should be applied while specifying the length,
otherwise, the Designer would throw error on validation:

Data Type Valid Length

Float 4

Double 8

Binary Encoded Binary field

For a ‘Binary Encoded’ field of Binary data type, no encoding options can be
specified. The field value is represented as raw bytes.

Binary Encoded Boolean field

If the selected Binary Encoded field is of Boolean data type, the only property that
can be specified under the Binary Encoding tab is Endian. The user can select
between the two options available namely ‘Little Endian’ and ‘Big Endian’.

Please note that a Binary Encoded field of Boolean data type can be used only with
‘Fixed Length’ field type and its length should be 1. The byte value of O (zero)
represents false and anything other than zero represents true.

Packed Decimal Encoding

In this type of Encoding, each digit O through 9 is represented in 4 bits. Hence 2
digits are packed into each byte. Rightmost 4 bits of the number store sign: “F” for
unsigned, “D” for minus and “C” for plus. Packed-decimal numbers may have up to
18 digits. The byte length is equal to (N+1)/2 rounded up, where N is the number of
digits in the value with one added for sign.

E.g.:

564.22 is stored as |56]|42|2F| (each slot represents 1 byte). (-564.22) is stored as
|56]42|2D|. Note that the decimal point is not stored.

Field Type supported - Fixed Length

Data Types supported - Integer, Long, Float and Double

For a Packed Decimal Encoded field, the property that has to be specified under the
Packed Decimal Encoding tab is as shown in the following picture:

rl;eneral rPDsiﬁDn rField Type [Tag [Packed Decimal Encoding |

Digits/Format l:l

Digits/Format

In this textbox, the Digits (applicable for Integer and Long data types) or the Format
(applicable for Float and Double data types) has to be specified. This is a mandatory
property and would determine the length of the field.

Note:

The Designer does not allow a packed decimal encoded field to be set as optional,
i.e., for a packed decimal encoded field, you should not uncheck the Required check-
box under the General tab.

Packed Decimal Encoded Integer or Long field
For a field of this type, you should compulsorily specify the required number of

Digits (N) in the Digits/Format textbox, which would determine the length of the
field as per the formula described in the following table:

Data Type Digits Valid Length

(Valid N) (N) (N+1)/2
(rounded off)

Integer 0] 1

(0<=N<=10)

Integer 1 1

Integer 5 3

Integer 10 6

Long 0 1

(0<=N<=19)

Long 8 5

Long 12 7

Long 18 10

Long 19 10

While specifying the Length under the Field Type tab, the above restriction has to be
applied, else, the Designer would throw error message on validation.

Packed Decimal Encoded Float or Double field

For a field of this type, you should compulsorily specify the required Format (M.N)
where M denotes # of digits before decimal point and N denotes # of digits after
decimal point, in the Digits/Format textbox, which would determine the length of the
field as per the formula described in the following table:

Data Type Digits Valid Length
(M.N) (M+N+1)/2
(rounded off)

Float / Double 0.0 1
Float / Double 0.1 1
Float / Double 3.1 3
Float / Double 5.3 5
Float / Double 10.5 8

While specifying the Length under the Field Type tab, the above restriction has to be
applied, else, the Designer would throw error message on validation. (Note that in
case of Packed Decimal Encoding, the decimal point is not stored and hence the
Designer does not take that into account while determining the length of the field
unlike the case of a Text Encoded field where the decimal point is taken into account
while determining the length except where it is set as None.)

See Also:

Adding Fillers and specifying properties

Adding a Sequence type section and specifying properties
Adding a Choice type Section and specifying properties
Adding an All type Section and specifying properties
Universal Format Options

Adding Fillers and specifying properties

A Filler is a special field. It is basically used to skip over an area in the message
(which may be used later to accommodate fields without changing the length of the
message). It acts as a tool for message evolution.

Attributes of a Filler field

A Filler field is always of String data type.
Length Preceded field type not supported for fillers.

A Filler field cannot be mapped and will not appear in mapping and validation
screens. It also does not have a runtime representation.

Filler fields are exempt from name uniqueness, i.e., you can have more than one
Filler field with the same name.
To add a Filler in the Universal - External Format Ul

1. Click the Add Filler button [iiil in the Universal - External Format Ul.

2. A new row (Filler) is added in the External Format Ul with default name ‘FILLER’
as shown below.

External Format - Universal [Order] i

rHeader rData rTrailer |

o O e § I i

I:“ Field Name || Type || Description
fiil FILLER String

|/ General |/ Position |/ Field Type |/Tag |/ Text Encoding |

Required [w] Encoding |Text hd |

You can change the field name as per your requirement by double-clicking on the
column under “Field Name”. The default type namely “String” which is generated
cannot be modified because, a FILLER field can be of type String only.

Specifying properties for a Filler

The properties panel that appears in the bottom pane of the Ul when a Filler is
selected is identical to that of a normal field (which is explained in detail in 4.2.1)
except that under the General tab, instead of Default Value textbox, which appears
for a field, Fixed Value textbox appears as shown in the above picture.

Fixed Value

This property is optional and can be used if the user wants to specify a fixed value
for the Filler instead of just giving spaces (applicable for Input Message) or wants the
Filler field to contain a pre-specified Fixed Value instead of spaces (applicable for
Output Message)

For a Fixed Length Filler, if a Fixed Value is specified under the General tab, its
width should match the specified Length. Otherwise, the Designer would throw
validation error. For e.g., let the Length given for a Fixed Value FILLER be 5.
Then if a Fixed Value is specified for that FILLER under the General tab, it should
be in the form, say, “ABCDE” (Width = 5).

If a Fixed Value Filler is added in a Universal Input Message format, during
parsing, the Designer would validate if the value in the message matches the
specified Fixed Value and would skip over that many characters.
If a Fixed Value Filler is added in a Universal Output Message format, during
runtime, the Designer automatically assigns the specified Fixed Value to the
value of the Filler.
Escape sequence is supported while specifying the Fixed Value. For e.g., you can
use a filler for giving Carriage Return & Line Feed by specifying \r\n in the Fixed
Value textbox (Length to be given as 2). Refer APPENDIX to find out the various
escape sequences that can be used while specifying the Fixed Value.
Properties applicable for a Filler field
General Tab

Required check box is used to specify if the selected filler is mandatory or not.

Fixed Value property is explained above.

In Encoding list box, only Text Encoding would be applicable and would be
selected by default.

Position Tab
Same as explained for a normal field. Refer ‘Position’ tab explained in 4.2.1.
Field Type Tab

For a Fixed Length Filler (similar to that of a Fixed Length field explained in
4.2.1) the value of Length should match the width of Fixed Value, if given.

Length Preceded Filler not supported.

For a Delimited Filler added in a Universal External Format, the Filler (empty
spaces or Fixed Value) should end with specified delimiter.

Tag Tab

Same as explained for a normal field. Refer ‘Tag’ tab explained in 4.2.1.

Text Encoding Tab

The properties appearing under this tab are not applicable for a Filler field.
Usage of a Filler

A Fixed Value Filler added as the first element of a Section acts as a tag for that
section.

A Fixed Value Filler added as the first child element of a section or at a fixed
location (preceded by fixed length fields) can be used for detecting the presence
of a discriminated section (instead of specifying a formula).

See Also:

Adding Fields and specifying properties

Adding a Sequence type section and specifying properties
Adding a Choice type Section and specifying properties
Adding an All type Section and specifying properties
Universal Format Options

Adding a Sequence type section and specifying
properties

A Sequence is a group of related information. A Sequence can have as its child
elements another Sequence / Field / Filler / Choice / All. As the name itself
indicates, in a Sequence, all the child elements should occur in the specified order,
i.e. a Sequence can be called as an ordered section.

To add a Sequence in the Universal - External Format Ul

1. Click the Add Sequence button (1 in the Universal - External Format UI.

2. A new row (Sequence) is added in the External Format Ul with default name ‘New
Section’ and default type set as ‘Section’ as shown below.

I External Format - Universal [EMPTY] [~
Header [Data |Trailer ‘

HwmDFSumE § L
Field Name Type Description
|'_i Mew Section Section

rDccurrem:e Tag [Position rDelimiber

(@) Fixed Instances i Wariable Instances) Discrirninated
Count Count Field ‘ Discriminator | |
Min Cecurs ‘ | | Min Cecurs | | |

Max Occurs ‘ | | Max Ocours | | |

You can change the Sequence name as per your requirement by double-clicking
on the column under “Field Name”. Note that there cannot be duplicate
sequences (sequences with same name) at the same level.

3. Under the column Alias (which is hidden in the above picture), you can specify
the alias (substitute name) to be used for the Sequence when specifying a
Validation/Mapping formula involving that Sequence. This property is optional.
(If a Sequence is assigned an alias, the qualified nhame of that Sequence is
replaced with its newly assigned alias in all the places it is used.)

4. Under the column Description, you can mention any description for the added
Sequence. This property is also optional.

Specifying properties for a Sequence

The Sequence properties panel has four tabs,

Property Tab Usage

Occurrence Can specify the number of times the sequence occurs in
the message & find out the presence of an optional
sequence

Tag Can specify the tag and separator for the sequence

Position Displays the position of the sequence in the message,
data and its length

Delimiter Can specify the Delimiter for the sequence as well as the
Default Field Delimiter (for the fields added under it)

Note:

The above properties are equally applicable to any Section, viz., Sequence / Choice /

All.

Occurrence tab:

This property is somewhat similar to the Field Type tab of a field. Universal plug-in
supports creating three types of sequences viz., Fixed Instances sequence, Variable
Instances sequence and Discriminated sequence. Under the Occurrence tab, you
can choose the required type of the sequence by checking the corresponding radio
button. (Note that this property is common for any Section — Sequence/Choice/All)

See Also:

Adding a Fixed Instances sequence

Adding a Variable Instances sequence

Adding a Discriminated sequence

Adding a Choice type Section and specifying properties
Adding an All type Section and specifying properties

Adding a Fixed Instances Sequence

If the user wants a particular sequence in the message to always occur a specific
number of times, that can be done by checking the Fixed Instances radio-button
under the Occurrence tab with the required sequence selected in the table under
the External Format User Interface. If the Occurrence property for a sequence is
selected as Fixed Instances, the required number of occurrences for that sequence
should be specified in the Count textbox displayed.

rl:lcyn_urrence Tag | Position rDelimiber

@ Fixed Instances) Wariable Instances 1 Discriminated
Count Count Field | | Discriminator | |
Min Cccurs | | | Min Cccurs | | |
Max Ococurs | | | Maw Ooours | | |
Count

In this textbox, you have to enter an integer value specifying the required number of
instances for the sequence. On the outbound side, a runtime exception is generated
if the instances created do not match the specified number. (This is metadata only —
doesn’t appear in the message.)

Note:

You can create a non-repeating sequence by giving value of count as 1.

You can create a repeating sequence that repeats exactly 5 times, by giving
value of count as 5.

See Also:

Adding a Sequence type section and specifying properties

Adding a Variable Instances Sequence

If the user wants the number of occurrences of a sequence to be determined during
run-time based on the value of another field of integer type (set as count field) in the
message, that can be done by checking the Variable Instances radio-button under
the Field Type tab.

rl:lccurrence Tag [Position I/Delimiber

) Fixed Instances @ Variable Instances) Discrirminated
Caunt I:I Caunt Fizld |SecCount Iv Dizcrirninatar | |
Min Occurs |D | - | Min Qcours | | |
Max Qocurs |Unb0unded | - | Mawx Cocurs | | |
Count Field

The required count field which is to determine the number of occurrences of the
selected sequence during runtime is to be selected in the Count Field combo-box.
This has to be a pre-defined field in the message of Integer type. At runtime this
field specifies the cardinality of the repeating sequence it applies to.

The following points need to be noted while specifying the count field.
1. The Count Field should be a mandatory field of integer type.
2. It should precede the sequence for which it is set as a count.

3. The Count Field and the Variable Instances section must be siblings, i.e., they
should have same parent. For e.g., for a sub-sequence B added under a
sequence A, you can’t specify as Count Field, a field that is appearing above the
parent sequence A. However, the above constraint can be overcome by using a
formula (Use of Formula feature is described below) along with the count field.
For e.g., for the sub-sequence B, you can specify the formula COUNT + 1 in the
Count Field combo-box (where COUNT is a field appearing above its parent
sequence A and thus not a sibling)

4. Depending upon location of the Count Field within the message definition,
different behavior is possible as noted below:

Fixed instances of child section

ParentCount Integer counter field
ChildCount Integer counter field

Parent Section Repeating depending upon
ParentCount

Child Section Repeating depending upon Childcount
Provided formula is used as per (iii)

In this case, every instance of Parent Section will have exactly the same number of
instances of Child Section.

For e.g., consider the following Universal Input message structure:

rHeader rData rTrailer |

il Fdeam@E I e
Field Name Type
< ParentCount Integer
4 ChildCount Integer
-_q* ParentSection Saection
-_q* Childsection Section
4 Field String

Let the specification for the above message be as under:

ParentCount Fixed Length field of Length 1
ChildCount Fixed Length field of Length 1
ParentSection Variable Instances sequence with

Count Field as ParentCount

ChildSection Variable Instances sequence with
Count Field as (ChildCount + 1)

(Formula is used)

Field Length Preceded Field with
Length as (ChildCount + 1)

During runtime, let the values of the Count Fields be as under:

ParentCount 2
ChildCount = 3

Now, the sequence ParentSection should appear exactly 2 times and for each
occurrence of ParentSection, the sub-sequence ChildSection should appear exactly 4

times (Fixed instances of child section) and the length of Field should be 4.

Variable instances of child section

ParentCount Integer counter field

Parent Section Repeating depending upon ParentCount
ChildCount Integer counter field

Child Section Repeating depending upon ChildCount

In this case, every instance of Parent Section could have a different number of
instances of Child Section. The number of instances of Child Section in a particular
instance of Parent Section depends upon ChildCount specified in that instance of
Parent Section.

For e.g., consider the following Universal Input message structure:

rHeader |/Data rTrailer | g

R T Pl
Field Name Type
W ParentCount Integer
f_q* ParentSection Section
4 ChildCount Integer
»_1* childSection Saction

< Field String

Let the specification for the above message be as under:

ParentCount Fixed Length field of Length 1

ParentSection Variable Instances sequence with Count
Field as ParentCount

ChildCount Fixed Length field of Length 1

ChildSection Variable Instances sequence with Count
Field as ParentSection.ChildCount

Field Fixed Length Field with Length 1

During runtime, let the values of the Count Fields be as under:

ParentCount = 2
For 1% Instance of ParentCount, ChildCount = 2
For 2™ Instance of Parentcount, ChildCount = 3

Now, the sequence ParentSection should appear exactly 2 times and for the first
instance of ParentSection, the sub-sequence ChildSection should appear exactly 2
times and for the second instance of ParentSection, the sub-sequence ChildCount
should appear exactly 3 times. (Variable instances of child section)

(Note that the term Section is used instead of Sequence because, this property is
applicable to any section, be it Sequence/Choice/All.)

Note:

When the message is outbound, the Count Field is automatically set to the
cardinality of the Variable Instances sequence it applies to (provided you have simply
selected an integer field as the Count Field without using any formula) i.e. you need
not provide a mapping for this field. For e.g., in a Universal Output Message format,
let S be a Variable Instances sequence with Count Field COUNT of delimited type
with delimiter as comma. In Output Mapping, only the sequence S needs to be
mapped. During runtime, suppose we get the number of occurrences of S as 3, then
the value of COUNT is automatically generated as 3,

However, if you have used a formula in the Count Field combo-box, it becomes your
responsibility during mapping or some other phase to ensure that the value of the
Count Field and the number of occurrences of the Variable Instances sequence are
consistent.

Min Occurs

This optional attribute specifies minimum number of occurrences of the Variable
Instances sequence. The actual number of occurrences (which is greater than or
equal to this value) will be determined by the Count Field.

Max Occurs

This optional attribute specifies maximum number of occurrences of the Variable
Instances sequence. The actual number of occurrences (which is less than or equal
to this value) will be determined by the Count Field.

Note:

If Min Occurs and/or Max Occurs properties are set for a sequence, then the value
given for the count field during runtime must be in conformity with the minimum &
maximum occurrences set, otherwise, the message would not be parsed. For e.g.,
let us suppose that Min Occurs property for the Variable Instances sequence is set as
3 and value of count field given in the incoming message be 2. In this case, the
message would not be parsed as the Min Occurs condition is violated.

Salient Features of a Variable Instances sequence

A Variable Instances sequence is used not only in the context as noted above; it has
other interesting possibilities as given below.

Using Formula feature

Though the combo-box is named Count Field, you need not actually specify just
a field there. Note that when the cursor is in this combo-box, the Edit Formula
icon is enabled in the toolbar and Edit Formula hyperlink is displayed in the
Status Bar, meaning thereby that you can specify a formula here. The Formula
should return an integer value representing the number of occurrences of the
sequence. Since the formula can peek at the input to decide on the number of
occurrences, variable instances sequences are effectively supported.

For e.g., if you want the number of occurrences of a sequence to be the sum of
three preceding integer fields, say C1, C2 & C3, then you can specify the same in
the Count Field combo-box using the formula: C1+C2+C3.

r%currence Tag [Position rDelimiterl

() Fixed Instances (8 Variable Instances) Discriminated
Count l:l Count Field [c1+C2+83 [*] | pisciminator | |
Min Ocours |1 |v | Min Ocours | | |

Max Ccours |Unb0unded |v | Max Ccours | | |

Variable Instances Sequence as a Fixed Instances Sequence

By specifying the required number of occurrences for the field in the Count Field
combo-box, you can make the Variable Instances Sequence to act as a simple
Fixed Instances Sequence, provided the values given in Min Occurs and Max
Occurs combo-boxes are consistent. For e.g., if a Sequence is to occur a fixed
number of times, say 5, just type 5 in the Count Field combo-box.

rl:lccurrence Tag [Position rDelimiber|

() Fixed Instances {®) Variable Instances (") Discriminated

Count l:l Count Field |5 |L| Dizcriminator | |
Min Ccours |D |v | Min Cccurs | | |
Max Qoours |2 |v | Max Qcours | | |

To add an Optional Sequence using Variable Instances property

We can also use a formula that would return O to indicate that the sequence can
be missing, thus allowing us to add Optional sequences.

rl:lccurrence Tag [Position rDelimiberl

() Fixed Instances (W) Variable Instances (") Discrirninatad

Count I:I Count Field |I\c (wal(a)=2, 0,1) |L| Discriminatar | |
Min Ccours |D | - | Min Ccours | | |
Max Cccurs |Unboundad | - | Max Occurs | | |

In the above formula, we have set the sequence to be optional based on the
value of an integer field A.

See Also:

Adding a Sequence type section and specifying properties

Adding a Discriminated sequence

Using this property, you can add optional sequences and repeating sequences whose
count is not known. Discriminated sequences (sections) are sections, which are
optional and/or repeating, but the number of occurrences is not known at design
time, nor is it specified in the message. The presence of the section has to be
determined by looking at the input (peeking the message etc.).

rDccurrence Tag [Position rDelimiber

() Fixed Instances) variable Instances (®) Dizcriminated

Count I:I Count Fizld | |_| Dizcrirninatar |Deek(1) =="M" || Paek(l) == "F" |
Min Ocours | | | Min Cccurs |D |v |
Mawx Occurs | | | Mas Qeocurs |Unbounded |v |

Discriminator

You have to specify the required Discriminator in this textbox. The Discriminator
specified should be a Boolean formula (should return true or false value), which can
make use of all the preceding fields and can also peek at the rest of the
record/message and return true if it detects the presence of a sequence (section)
instance in the input. (Note that when the cursor is in this textbox, the Edit Formula
icon is enabled in the toolbar and Edit Formula hyperlink is displayed in the Status
Bar)

For e.g., consider an untagged sequence without any Fixed Value Filler added to it.
Suppose the first field in the sequence is of Fixed Length 1 that can have only “M” or
“F” as its value, then the occurrence of the sequence can be found out using the
following formula as the Discriminator:

Peek(1) == “M” || Peek(1l) == “F”

Peek(1) returns 1 character from the current parser location. (Refer Universal Plug-
in Peek Formula Functions).

While specifying such a Discriminator formula, the user has to make sure that the
Discriminator does not result in any other conflicts (For e.g. the message structure
having a subsequent field with tag “M” or “F”). The Designer or run-time does not
check these conflicts. It is the responsibility of the user or the message Designer to
ensure that these conflicts are taken care of.

Min Occurs

This optional attribute specifies minimum number of occurrences of the
Discriminated sequence. The actual number of occurrences (which is greater than or
equal to this value) will be determined by the Discriminator.

Max Occurs

This optional attribute specifies maximum number of occurrences of the
Discriminated sequence. The actual number of occurrences (which is less than or
equal to this value) will be determined by the Discriminator.

Note:

If Min Occurs and/or Max Occurs properties are set for a sequence, then the number
of occurrences of the sequence as detected by the Discriminator during runtime must

be in conformity with the minimum & maximum occurrences set, otherwise, the
message would not be parsed. For e.g., let us suppose that Min Occurs property for
the Discriminated sequence is set as 3 and the specified Discriminator detects only 2
occurrences of the sequence in the incoming message. In this case, the message
would not be parsed, as the Min Occurs condition is violated.

The following points are worth noting while adding a Discriminated Sequence:

If the Discriminated sequence is tagged, then you need not specify a
Discriminator formula as the tag acts as an explicit discriminator.

If the Discriminated sequence has a Fixed Value Filler added as the first child
element or at a fixed location (preceded by fixed length fields) then you need not
specify a Discriminator formula.

Tag tab:

Tag is a prefix that is added to the sequence (section) in messages for easy
identification (during parsing). The sequence (section) starts after the tag ends. A
separator can optionally separate the tag and the sequence. If a tag is specified,
then it acts as a prefix for every instance of the sequence (section) in case of a
repeating sequence. In case of a Discriminated sequence (section) a tag can act as
an explicit discriminator and you need not enter a discriminator formula. Tag would
be of great help while adding an All type section (unordered section).

rDccurrence Tag | Position rDelimiterl

Taa sE< |

Separator |: |

Tag

You can specify the required tag in the Tag textbox. A tag can be of any length, can
contain both alphanumeric and special character. Remember that a tag name should
be unique when specified for sections at the same level. If not, the message would
not be parsed. If Tag is specified for a section in Input Message Format, while giving
data, you should prefix each occurrence of the section with the specified tag. In case
of Output Message Format, Tag will be automatically written as a prefix for every
occurrence of the section.

Separator

You can specify the required separator in the Separator textbox. This property is
optional.

For e.g., if you want a Section S to be identified by the tag, say SEC and the tag and
the Section value to be separated by a separator, say colon (:) then you should

specify SEC in the Tag textbox and : in Separator textbox. In the message, if a
Section were encountered starting with “SEC:” then the parser would recognize it as
section S. Note that for a delimited section, the tag or the separator should not be
the same as the specified delimiter.

Position tab:

Under this tab, the position of the selected sequence (section) and its length are
displayed. The position counting starts from zero. The values displayed under this
tab are read-only and they change dynamically according to the position of the
selected section. This property is generally of use if the message entered is of
ASCII-Fixed format. Under this tab, the following properties are displayed for a
selected section:

Position in Message which is determined by the position of the selected section
in the Message, i.e. including Header.

Position in Data which is determined by the position of the selected section in
the Data. Note that if there is no Header at all for the message format, then this
value and the value against Position in Message would be one and the same.

Length which is determined by the length of the section, which in turn is
determined by the length of its child elements. This value is meaningful only if
all the child elements of the section are of fixed length.

(l:lccurrence Tag | Position rDeIimiherl

Fizld Pasitian

Position in Message 5
Position in Data 3
Length 2

If the selected section is a sub-section under a section (Sequence / Choice / All)
then an additional property Position in Section would be displayed as shown in
the following picture.

(Dccurrence Tag | Position rDelimiber

Field Paositian

Position in Message
Position in Data

Position in section

LA R)

Length

If the selected section is in the Header section User Interface, then instead of
Position in Data, it would read as Position in Header as shown in the following
picture.

rDccurrence Tag | Position rDelimiter|

Field Position

Position in Message a
Paoszition in Header u]
Length 1

Similarly, if the selected section is in the Trailer section User Interface, then
instead of Position in Data, it would read as Position in Trailer as shown in the
following picture.

(l:lccurrence Tag | Position rDeIimiterl

Fizld Pasitian

Position in Message 2

o

Position in Trailer

Length 2

Delimiter tab:

Under this tab, you can specify the Delimiter to be applied for the selected section as
well as the Default Field Delimiter and Quote, if any, for the sub-fields added under
that section.

rDccurrence Tag | Position rDelimiter|

Celirniter

) | - | [Z] 1anare Trailing Fields

Default Field Delimiter

Delirmiter |; |'v |

Quote |" |V |

Delimiter (Section)

The Delimiter combo box displayed under the Delimiter tab is used to specify how
the selected Section (Sequence / Choice / All) is to be separated from the
subsequent field / section and how different instances of the section have to be
separated from one another in case of repeating sections. Sections may be delimited
by “\n” or “\r\n” or any other specified literal. Special characters are represented as
“N\#xH”, where H represents a hex number which is a Unicode number. For example,
the form feed character (Unicode #xC) can be represented by "\#xC". The line feed
character (Unicode #xA) can be represented as "\#xA". This property is optional.

Note:

A delimiter can be of any length and can be a combination of both alphanumeric
and special character.

If a Delimiter is set at Section level, it is used. If not, one set at Format Level is
used (Provided you have selected “Default” from the Delimiter combo-box under
the Delimiter tab).

If different Delimiters are set at Section level and Format level, the Delimiter set
at Section level overrides the one set at Format level.

For e.g., let the Delimiter specified at Section level be Comma (,) and the one
specified at Format Level be semi-colon (;). While giving data, only if you use
Comma to delimit the section, the message would be parsed and the message
would not be parsed if you use semi-colon to delimit the section.

If the Header/Data/Trailer ends with a section added at the root level (not a sub-
section), then it is delimited by the Header/Data/Trailer delimiter if any, specified
at the Format Level, i.e., in the Input Message, you need not give the section
delimiter for the last section.

If a section has a delimiter, then the value of the fields added under it should not
contain the delimiter’s character sequence. For e.g., if a section is delimited by
\r\n, then the fields under it cannot have this combination of characters.

Ignore Trailing Fields

This checkbox can be checked if the optional trailing fields of a delimited Section
are to be ignored. This property is used to avoid giving empty field values (spaces)
in case the optional trailing fields are of null value. If “Ignore Trailing Fields” check
box is not checked, wherever the optional trailing field is of null value, padding
should compulsorily be given for the same. It is to be noted that this option is
applicable and is of use only if the following are satisfied:

The section should be a delimited one.

The trailing fields are set as optional, are of null value and no default value given
for the same. (The trailing fields may be of Fixed Length, Length Preceded or
Delimited)

Default Field Delimiter

Here you can specify the default delimiter to be used for the delimited fields, if any,
added within the Section under consideration. The field delimiter specified here is
not applicable for Fixed Length or Length Preceded fields added within the section.

Note:

A field delimiter can be of any length and can be a combination of both
alphanumeric and special character.

The default field delimiter set at section level is applied only if there is no
delimiter selected at field level (“Default” selected at field level). The delimiter
specified at field level overrides the default field delimiter specified at section
level and the default field delimiter specified at section level overrides the one
specified at Format level, i.e., if a Delimiter is set at Field level, that is used, if
not, one set at Section Level is used (Provided you have selected “Default” from
the Delimiter combo-box under the Field Type tab) or else, one set at the Format
Level is used.

The default field delimiter specified here should not be the same as the section
delimiter. Otherwise, the message would not be parsed.

The last field (delimited type) in a section is terminated by the section delimiter,
if any specified and in the Input Message; you need not give the delimiter for
such a field.

Quote

The Quote combo box provided under Default Field Delimiter is used to specify the
escape sequence to be used in case the field delimiter character/s is/are to be
included in the value of the field. Refer Quote explained in the section “Adding a
Delimited field” for more details.

See Also:

Adding a Sequence type section and specifying properties

Adding a Choice Type Section and Specifying Properties

In a Choice section, only one of the child elements may occur in the message. So, if
you want only one of the child elements of a section to appear in input/output based
on some identification, you can make use of a Choice section (i.e. why it is named as
“Choice”). A Choice can have as its child elements another Choice / Field / Filler /
Sequence / All. In a Choice, all child elements have the same starting position as
only one of them may occur. There cannot be duplicate Choices (Choices with same
name) at the same level. In a Choice section, all child elements except one must be
either self-discriminating (for e.g. tagged) or should have explicit discriminator to
uniquely identify them.

To add a Choice section in the Universal - External Format Ul

1. Click the Add Choice button = in the Universal - External Format Ul.

2. A new row (Choice) is added in the External Format Ul with default name ‘New
Choice and default type set as ‘Section’ as shown below.

I External Format - Universal [EMPTY]
Header [Data [Trailer |

EREEE T R
Field Name Type Descripton
i3 MNew Choice Section

rl:lccurrence Tag [Position rDeIimiter rDiscriminahDr rl:hoice Filler |

(@) Fixed Instances (") variable Instances) Discriminated

Count Count Field | |_| Dizcriminator |
Min Crocurs | | | Min Sceurs | |
Max Ccours | | | Max Coours | |

You can change the Choice name as per your requirement by double-clicking on
the column under “Field Name”. Note that there cannot be duplicate Choices
(Choices with same name) at the same level.

Under the column Alias (which is hidden in the above picture), you can specify
the alias name (substitute name) to be used for the Choice when specifying a
Validation/Mapping formula involving that Choice. This property is optional. (If a
Choice is assigned an alias name, the qualified name of that Choice is replaced
with its newly assigned alias name in all the places it is used.)

Under the column Description, you can mention any description for the added
Choice. This property is also optional.

Specifying properties for a Choice

The Choice properties panel has six tabs,

Property Tab Usage

Occurrence Can specify the number of times the Choice occurs in the
message & find out the presence of an optional choice

Tag Can specify the tag and separator for the Choice

Position Displays the position of the Choice in the message, data
and its length

Delimiter Can specify the Delimiter for the Choice as well as the
Default Field Delimiter (for the fields added under it)

Discriminator Can specify the Discriminator for the child elements of
the Choice

Choice Filler Can make all the child elements to be of equal length by
padding

Occurrence tab:

This property is equally applicable for any section. Refer ‘Occurrence’ tab explained
above under Chapter 4.2.3.

Tag tab:

This property is equally applicable for any section. Refer ‘Tag’ tab explained above
under Chapter 4.2.3.

Position tab:

This property is equally applicable for any section. Refer ‘Position’ tab explained
above under Chapter 4.2.3.

Delimiter tab:

This property is equally applicable for any section. Refer ‘Delimiter’ tab explained
above under Chapter 4.2.3.

Discriminator tab:

Under this tab, you can specify the Discriminator that can be used to uniquely
identify each of the child elements of a Choice section. (Discriminating the child
elements becomes necessary as only one of them can occur). Note that this
Discriminator has nothing to do with the Discriminator that is displayed under the
Occurrence tab. (That Discriminator is used to detect the presence of an optional
section while this Discriminator is used to identify the child elements of the Choice)

rDccurrence Tag [Position rDelimiter rDiscriminabm- rEhuice Filler |

Field DiscHiminator
& Fi | [T
@ F2
@ F3

As seen in the above picture, under the Discriminator tab, the child elements of the
selected Choice are automatically listed under the column Field and against each
child element, you can enter the required Discriminator under Discriminator
column. The Discriminator specified should be a Boolean formula (should return true
or false value), which can make use of all the preceding fields and can also peek at
the rest of the record/message and return true if it detects the presence of the
corresponding child element in the input. (Note that when the cursor is in a cell
under the Discriminator column, the formula icon is displayed in that cell, “Edit
Formula” icon is enabled in the toolbar and Edit Formula hyperlink is displayed in the
Status Bar). The various types of Discriminator that can be specified are listed
below:

Types of Discriminator (Choice Section)

Discriminate based on the value of one or more preceding fields

You can set a field or more than one field as Discriminator field(s) and give
Discriminator formula for the child elements of the Choice based on the value of the

field(s). The field(s) must have unique values to represent each of the choices. The
field(s) should necessarily appear before the point where decision has to be made.

E.g. 1. — Based on one preceding field
Consider the following message structure.

rHeader |/Data rTrailer |

R T T 8 ¢
Field Name Type
& F Integer
iT C1 Saction
{}? F1 String
& Fz String
& F3 String

Here, we can use the integer field F as a Discriminator field and based on its value,
specify Discriminator for the child elements F1 and F2 (We are not specifying
Discriminator for F3 as at most one child element of a choice need not have
Discriminator) for the Choice C1 as shown below:

rDccurrence Tag [Position rDelimiter rDiscriminah:u- rchuice Filler |

Field Discriminator

< F1
& FZ

& Fx [}\j

MR

Here, if the value of the field F is 1, then the child element F1 should appear in input.
If its value is 2, then the child element F2 should appear. Else, child element F3
should appear.

Note:

The conditions are executed in the order of the child elements and one that
matches first will be used. It is your responsibility to ensure that there are not
conflicts.

You can also choose to specify a discriminator for all the fields (instead of
skipping one). In this case, if all the conditions fail, an exception is raised.

E.g. 2. — Based on more than one preceding field
Consider the following message structure.

rHeader |/Data rTrailer |

R T T 8 4=
Field Manme Type
W A Integer
W B Integer
L Integer
E} Cc1i Section
ST FL String
{}? F2 String
& F3 String

Here, we can make use of all the three preceding integer fields A, B and C (A & B of
Fixed Length 1 & C of Fixed Length 2) as Discriminator fields and based on their
value, specify Discriminator for the child elements F1 and F2 for the Choice C1 as
shown below:

|/Elccurrence Tag | Positdon |/De|irniter |/Di5criminalnr |/l3huice Filler |

Field Discriminator
@ F1 < < At+B
i F2 Co==A+R
@ F3

Here, if the value of the field C is less than the sum of the values of the fields A and
B, then the child element F1 should appear in input. If the value of C is equal to the
sum of the values of A and B, then the child element F2 should appear. Else, child
element F3 should appear. (A =1, B =3, C = 02, implies F1 should appear; A =4, B
= 6, C = 10 implies F2 should appear; Else F3 should appear)

Discriminate by peeking into the message
By using the Universal Plug-in specific peek functions, the user can write a

Discriminator formula that looks at the rest of the input message/enclosing record to
ascertain the presence of the child element.

E.g. Consider the following message structure:

rHeader |/Data rTrailer |

A omil e mE g 0o
Field Name Type
W F Integer
iF C1 Section
& FL String
o' Fz String
o F3 String

Let F1, F2 & F3 be Fixed Length fields of Length 1. Here, we can make use of the
peek function to discriminate the child elements as shown below:

|/Elccurrence Tag | Position rDelimimDiscﬁminaMr |/l3hoice Filler |

Field Discriminator
& F1 Peek(1] == "a"
& F2 Peek(1) == "B"
@ F3

Peek(1) returns 1 character from the current parser location. (Refer Universal Plug-
in Peek Formula Functions). So, if the character returned is “A”, the child element F1
should appear in the input. If it is “B”, then the child element F2 should appear.
Else, the child element F3 should appear.

Note:

Discriminator formulae are used only during parsing. They have no role to play on
the output side.

Automatic Discrimination
If each of the child elements of the Choice (except one) has the following attributes
specified, then that would act as an automatic discrimination and you need not
specify a Discriminator formula for the child elements in that case.

Is either tagged (or)

Has a Fixed value filler added to it at a fixed location, i.e. as the topmost field or

preceded by fixed length fields (applicable in the case where the child element is
a section) (or)

Is of Discriminated type (Occurrence marked as Discriminated) with Discriminator
formula specified under the ‘Discriminated’ property under the ‘Occurrence’ tab.
(applicable in the case where the child element is a section)

(From the above it is evident that the child elements of a Choice can be specified
with different types of discriminators. For e.g., let there be four child elements for a
Choice. You can specify a Tag for one child element, add a fixed value filler for one
(applicable if the child element is a section), mark one child element as
Discriminated (applicable if the child element is a section) and specify a
Discriminator formula under the ‘Discriminated’ property under the ‘Occurrence’ tab
and leave one child element without specifying any discriminator.)

Choice Filler tab:
Pad child elements to equal length

The child elements of a Choice can be padded to be of the same length by checking
the "Pad to equal length’ check box available under this tab.

rDccurrence Tag [Position rDelimiter rDiscriminabm- rl:huice Filler |

[¥] Pad to equal length

This property is applicable only if the length of all the child elements can be
determined at design time itself, i.e., if the child elements are fields/fillers, they
should be of fixed length and if they are sections, they should have only fixed length
fields / fillers added under them. If the above constraints are not satisfied, the
Designer would throw error message on validation.

For e.g., let there be a Choice ‘C’ with child elements as fields F1, F2 and F3 of Fixed
Length and data type string with the following specification:

Field Length | Tag

F1 3 A
F2 5 ABCD
F3 7

If you set the Pad to equal length property to be true for the Choice C, then all the
child elements would be automatically assigned the same length based on the length
of the child element, which has the maximum length (including the length of the

tag). In this case, lengths of the fields are: F1 : 3+1 =4; F2 : 5+4 =9; F3 : 7. So,

all child elements would be assigned the maximum length, which is 9. While giving
data, you have to ensure that you have given the appropriate padding. Let us
suppose that the child element F1 occurs in the Choice. Then its value should be
somewhat like “Aabc “ (Space Padding given to fill the remaining 5 bytes)

See Also:

Adding a Sequence type section and specifying properties
Adding an All type Section and specifying properties

Adding an All type Section and specifying properties

In an ‘All’ type section, the child elements may occur in any order unlike a Sequence
where they occur in the specified order. It can be called as an Unordered Section.
In an ‘All' type section, the order of occurrence of the child elements is not
determined during design time, but only during run time, based on the discriminator
specified for the child elements. Hence, in an ‘All’ type section, all child elements
must compulsorily have a Discriminator (either tag or Fixed Value filler added in
case of sections or Discriminator formula specified), unlike a Choice section where
there can be atmost one child element without Discriminator.

To add an All type section in the Universal - External Format Ul

1. Click the Add All (unordered section) button % in the Universal - External
Format Ul.

2. A new row (All) is added in the External Format Ul with default name ‘New All’
and default type set as ‘Section’ as shown below.

External Format - Universal [EMPTY]

Header [Data Trailerl

B dmmi §
Field Name Type Descripton
$ New All Section

rl:lccurrence Tag [Position rDeIimiter rDiscriminatDr

(@ Fixed Instances) Wariable Instances () Discriminated

Count Count Field | |_| Dizcriminator | |
Min Crccurs | | | Min Crccurs | | |
Max Ocours | | | Max Ocours | | |

You can change the name of the section as per your requirement by double-
clicking on the column under “Field Name”. Note that there cannot be duplicate
‘All’ type sections (‘All’ type sections with same name) at the same level.

Under the column Alias (which is hidden in the above picture), you can specify
the alias name (substitute name) to be used for the ‘All’ type section when
specifying a Validation/Mapping formula involving that section. This property is
optional. (If an ‘All’ type section is assigned an alias name, the qualified name of
that section is replaced with its newly assigned alias name in all the places it is
used.)

Under the column Description, you can mention any description for the added
section. This property is also optional.

Specifying properties for an ‘All’ type section

The properties panel for an

‘All’ type section has five tabs,

Property Tab

Usage

Occurrence Can specify the number of times the ‘All’ type section
occurs & find out the presence of an optional ‘All’ section

Tag Can specify the tag and separator for the ‘All’ section

Position Displays the position of the ‘All’ section in the message,
data and its length

Delimiter Can specify the Delimiter for the ‘All’ section as well as

the Default Field Delimiter (for the fields added under it)

Discriminator

Can specify the Discriminator for the child elements of
the ‘All’ section

Occurrence tab:

This property is equally applicable for any section. Refer ‘Occurrence’ tab explained

above under Chapter 4.2.3.

Tag tab:

This property is equally applicable for any section. Refer ‘Tag’ tab explained above

under Chapter 4.2.3.

Position tab:

This property is equally applicable for any section. Refer ‘Position’ tab explained

above under Chapter 4.2.3.

Delimiter tab:

This property is equally applicable for any section. Refer ‘Delimiter’ tab explained

above under Chapter 4.2.3.

Discriminator tab:

Under this tab, you can specify the Discriminator that can be used to uniquely
identify each of the child elements of an ‘All’ type section. (Discriminating the child
elements of an ‘All’ type section becomes necessary to uniquely identify them as

they can occur in any order). Note that this Discriminator has nothing to do with the
Discriminator that is displayed under the Occurrence tab. (That Discriminator is used
to detect the presence of an optional section while this Discriminator is used to
uniquely identify the child elements of the ‘All’ type section)

|/Elccurrence Tag | Position |/De|irniter |/Di5criminal3m- |/l3hoice Filler |

Field Discriminator
& Fi | [F
i F2
& Fa2

As seen in the above picture, under the Discriminator tab, the child elements of the
selected ‘All’ type section are automatically listed under the column Field and
against each child element, you can enter the required Discriminator under
Discriminator column. The Discriminator specified should be a Boolean formula
(should return true or false value), which can make use of all the preceding fields
and can also peek at the rest of the record/message and return true if it detects the
presence of the corresponding child element in the input. (Note that when the cursor
is in a cell under the Discriminator column, the formula icon is displayed in that cell,
“Edit Formula” icon is enabled in the toolbar and “Edit Formula” hyperlink is
displayed in the Status Bar). The types of Discriminator that can be specified for the
child elements of an ‘All’ type section is as explained below.

Types of Discriminator (All section)
1. Automatic Discrimination
If each of the child elements of the ‘All’ type section has any of the following
attributes specified, then that would act as an automatic discrimination and you need
not specify a Discriminator formula for the child elements in that case.
Is either tagged (or)
Has a Fixed value filler added to it at a fixed location, i.e. as the topmost field or
preceded by fixed length fields (applicable in the case where the child element is
a section) (or)
Is of Discriminated type (Occurrence marked as Discriminated) with Discriminator

formula specified under the ‘Discriminated’ property under the ‘Occurrence’ tab.
(applicable in the case where the child element is a section)

(From the above it is evident that the child elements of an ‘All’ type section can
be specified different types of discriminators. For e.g., let there be three child
elements for an ‘All’ type section. You can specify a Tag for one child element,
add a fixed value filler for one (applicable if the child element is a section) and
mark one child element as Discriminated (applicable if the child element is a
section) and specify a Discriminator formula under the ‘Discriminated’ property
under the ‘Occurrence’ tab)

2. Discriminate by peeking into the message
By using the Universal Plug-in specific peek functions, the user can write a
Discriminator formula that looks at the rest of the input message/enclosing record to

ascertain the presence of the child element.

E.g. Consider the following message structure:

rHeader |/Data rTrailer |

HuwCy Fdum@ o 0 e
Field Name Type
3% Al All
W F1 String
& F2 String
W F3 String

Let F1, F2 & F3 be Fixed Length fields of Length 1. Here, we can make use of the
peek function to discriminate the child elements as shown below:

rDccurrence Tag | Position rDelimiter rDiscriminabm-l

Field DiscHminator
& F1 Peak(1]=="a"
& Fz Peak(1]=="p"
& F3 Peak(l]=="C"

Peek(1) returns 1 character from the current parser location. (Refer Universal Plug-
in Peek Formula Functions). So, if the character returned is “A”, then the parser
recognizes it as child element F1. If it is “B”, then the parser recognizes it as child
element F2. If itis “C”, then the parser recognizes it as child element F3.

3. Discriminate based on the value of one or more preceding fields

Specifying a discriminator formula for the child elements based on the value of
preceding fields is rare and uncommon. This is not simple as we saw in the case of a
‘Choice’ section, because, here more than one child element can occur and hence
you cannot discriminate simply based on the single value of a preceding field.

See Also:

Adding a Sequence type section and specifying properties
Adding a Choice type Section and specifying properties

A simple illustration of using All type section
Consider the following message sample:
Name=Dev;Age=25;A/c=Savings;

Let the specification for the message format be as under:

Section Repeating for 5 times
Field Types Delimited (Mandatory)
Delimiter Semi-colon

Tagged (Yes/No) Yes
Ordered/Unordered Unordered

We can represent the above format by adding an ‘All’ type section and adding three
fields as its child elements as shown below:

rHeader rData rTrailer |

i i O =
Field Name

A all

< MAME String
& AGE String
@ ASC String

The specification and properties for the message format can be entered as under:

Under the Occurrence tab for the ‘All’ section ‘A’, check Fixed Instances radio
button and give Count as 5.

For all the three fields viz., NAME, AGE & A/C, under the General tab, check the
Required check box.

For all the three fields, under the Field Type tab, check the Delimited radio-
button and specify the Delimiter as ; (semi-colon)
Under the Tag tab, specify the tag for the fields as under:

Field Tag

NAME | Name=

AGE Age=

A/C A/c=

To enter a Fix message format using an All type section

In a Fix message format, the fields/sections added are in the form of Name-Value
pairs, i.e., they should compulsorily have a tag and they can appear in any order.
Hence, you can represent a Fix message format using Universal Plug-in by adding an
‘All’ type section as the topmost element and adding the Fix message format with its
fields/sections as the child elements of the ‘All’ type section and giving tag for all the
child elements.

See Also:

Adding an All type Section and specifying properties
Entering a Universal message
Removing a Field/Section

Removing a Field/Section

o]
L}

Select the field(s)/section(s) that is to be removed. Click the button in the

toolbar. The following dialog will be displayed.

Delete Selection?

e Do vou want to delete the selected elerment(=1?

ez Mo

Select ‘Yes’ to delete the selected elements.

You can also select the field(s)/section(s) to be removed and press the ‘Delete’ key.
The Delete Selection dialog will be displayed. Click ‘Yes’ to delete the selected
elements.

See Also:

Adding Fields and specifying properties

Adding Fillers and specifying properties

Adding a Sequence type section and specifying properties

Adding a Choice type Section and specifying properties

Adding an All type Section and specifying properties

Universal Plug-in Peek Formula Functions

Universal Plug-in Peek formula functions are available in the input side of the
Universal format plug-in. They are used to peek at the input and decide on how the
parsing should proceed. All functions are applied relative to the current parser
location. Along with these functions that depend on unparsed input, you can directly
refer to fields that have already been parsed (fields above the field for which you are

specifying the formula).

Function

Description

Peek(int start, int length)

Returns ‘length' characters as string from the
location specified by 'start’, relative to current
parser location.

Peek(int length)

Returns ‘length' characters from the current
parser location.

PeekRest()

Returns the rest of the characters in the current
record

IsNext(String str)

Matches the next available input (during parsing)
with the string 'str' and returns true if it starts
with the specified string. This is equivalent to

Peek(Length(str)) == str

You can use them as part of,

Discriminator formula for sections

Field discriminators of a Choice/All type section

Length preceded field formula

Variable instances section count formula

The ability to perform context dependent parsing (as in peek functions) is a
distinguishing feature of Universal plug-in.

See Also:

Adding a Choice type Section and specifying properties
Adding an All type Section and specifying properties
Adding a Sequence type section and specifying properties
Adding Fields and specifying properties

Save Selection As Template /7 Add
Template

Whole or part of a Universal message format can be saved as a template in some
location and can be added in any other Universal message format.

See Also:

Save As Template

Add Template
Saving a Universal Message Format

Save As Template

To save some portion of a Universal Message format as a template, select the

required portion and click the Save Selection as Template button ™ in the
Universal - External Format Ul.

External Format - Universal [UHIVIn]

rHeader |/Data rTrailer |

AW F duMEE T L e
o FL Field Nam‘ISaue Selection As Ter:uplate |Type
W@ F2 String
5 51 Sequence
w F1 String
4w Fz String
W F= String
i 52 Sequence
& F4 String
w FS String

i F& String

In the Export Selection As Template window that appears, specify the required
location and file name for storing the template and click ‘Save’ button. The selection
will be saved in the given location as a template file. Note that if you select only
some of the child elements of a section and save the selection as template, by
default, the whole section is saved as template.

r::'l Export Selection As Template

X

Loak in: 3 ternplate v| %E E:::

15T

File name: |T1 | Save

Files of type: |A|I Filas [*,*) Vl | Cancel |

See Also:

Add Template
Saving a Universal Message Format

Add Template

To add a template (saved in some location) in a Universal Message format, select the
location in the table of the Ul where the template is to be added and click the Add

™

Template button B3 in the Universal - External Format Ul.

In the Select Template File window that appears, select the required template
from the required location and click ‘Open’ button. The selected template will be

added in the Universal message format.

Select Template File . x|
Look in:] template hd | EE E::
st
O
File marme: |T1
Open seleded file 2o
Files of typa: |A|| Filas [*.%)

See Also:

Save As Template

Saving a Universal Message Format

A Universal message format once fully entered in Designer can be saved in a default
standard location so that it is available for creating other formats based on it.

1. To save an entered Universal message format in the standard location, right-click
the Universal format node in the Explorer and choose the context menu Save
Universal Message Format.

| Exprorer N [, _universal§

TEMPLATE

¢-® 1

Input Forrmat
—@ Internal Format
_ Freezesig Rules Transfaormatior
—CE} Events Management
P—@ Input - Universal [UnivIni] Bt
(= Exte Copy ctil-C
&) valid
= Ctrl-wf
G Map
D~ (3 Input - | £23 Import ... Ctrl-|
3 Exte| BRd Export... Ctil-E
&) valid 7 Delete
G Map
#) validate Ctil-L
Save Universal Messzage Format
I

2. The Save Universal Message Format dialog appears. Enter the Format
Name, Detailed Name, Category and Description, if any for the format. The
category entered can be an existing one, or a new category. Click OK. (You can

also overwrite any of the Existing Formats with the current one by selecting the
same from the Existing Formats panel.)

Save Universal Message Format X|
Exizting Formats Format Marme
4 Universal Message Formats |UniuIn1 |
é‘_l IST Detsilad Name
|Eq|_|';'tl,l Crdear |
Category
|IST\Orders| |
Description

3. The Universal message format is saved as XML file in the location <installation
dir>\config\Universal\messages in the given Format Name.

4. Universal Formats saved this way are available for creating formats in future.
Refer Creating a Universal Format based on an existing Universal format

See Also:

Creating an empty Universal message Format
Exporting a Universal Message Format
Importing a Universal Message Format

Save Selection As Template / Add Template

Exporting a Universal Message Format

Universal message format can also be saved using the usual export method, allowing
to save the message in XML format.

1. To save a Universal format, right-click the Universal format node in the Explorer
and choose the context menu Export....

omorer R (1o univerd
TEMPLATE
b
Input Formr
—@ Internal Farmat
— P i Feul
Facessing ule= Transform.
—% Events Management
(P—@ Input - Universal [UnivIni] Dimecrindine
e E Copy Ctri-C
Pasta Crl-wf
& (34 1npy £23 Irmport ... Cirl-|
L = g| B Export ... % Ctrl-E
— @ X Delete
L (—
#] validate Chrl-L

Save Universal Message Format

2. In the Export dialog that appears, select the location to save the exported file.
Select the file type in the Files of type listbox and enter a name to save the file
in the File name text field. Click Save button.

Note:
You also have the option of exporting the file (in the format you have chosen) to
the Clipboard by clicking the ‘Export to Clipboard’ button in the dialog. If you
want to simultaneously open the exported file, you can check the ‘Open
Exported File’ checkbox.

ElExport X

v [SCEELE

File namea: |UniuIn1

Filzs of type: | HML File (=)

[Vl open Exportad File Export to Clipboard

3. The Universal message format is saved in the specified location with the file
name mentioned.

See Also:

Importing a Universal Message Format
Importing COBOL copy book structure

Importing a Universal Message Format

Universal message format saved using the export method, can be imported in any
other Universal message format.

1. To import a Universal format, right-click the Universal format node (where you

want to import a message) in the Explorer and choose the context menu
Import....

| Explorer R
TEMPLATE
¢

é Internal Format

Processing Rules

% Events Management

@ Input - Universal [UnivIni]

Input Format

Transformation

Drescription

@ Input - Universal [UnivInz]

(7 Exta Copy Ctrl-C:
&) vali
2 Paste Cirl-w
G Ma
E23 Irnport 1% -l
Fed Export ... Ctrl-E
x Delete
A validate Ctrl-L

Save Universal Message Format

2. In the Import dialog that appears, select the file to be imported. Click Open
button.

Lok in: ‘ﬂtemp
D UnivInd,xml
File narma: |UniuIn1.me
Open selected file a0
Filez of type: | AWML File [xml)

The selected message format in the file is imported in the current node.

See Also:

Exporting a Universal Message Format
Importing COBOL copy book structure

Importing COBOL copy book structure

To import a COBOL copy book structure right click the ‘External Format’ node and
select ‘Import’ menu item.

2= 104 External - Universal |Employee]

|: Externa Copy -
) validati

@ Extermnal -

£

Tl

E28 Irmport . Ctl+Shift-I
Externa =

&) validst Erd Export ... Ctl+shift-E

3

=] validate Ctrl-L

In the ‘Import’ dialog that appears select ‘CBL File’ as file type to be displayed.
Select the file that needs to be imported. The CBL will be imported as Universal
message.

When a copybook with multiple top-level items is imported, all of them are imported
as separate sections. User may have to delete sections that are not needed.

The manner in each item in the .CBL file is imported is discussed below.
COBOL Copy Book to Universal Mapping

Fields

The data type of the field is set based on the picture character settings.
PIC X — String

PIC 9 — Integer

PIC 9(13)V9(2) — Double

If COMP-3 clause is specified for an item then the encoding of the field is set as
‘Packed Decimal’.

If COMP-1, COMP-2 or COMP-5 clause is specified for an item, then the encoding of
the field is set as ‘Binary’.

If the ‘"VALUE’ clause is specified then the value is set as the default value for the
field.

If ‘SIGN SEPARATE’ clause is specified in a picture character setting for an item, the
length of the field will be the length specified in the picture setting + an additional

digit for the sign character.

If the item name is FILLER then it is created as a FILLER field.

CBL Item Universal Field

PIC-TEST-1 PIC X. String field of length 1

PIC-TEST-3 PIC X(3). String field of length 3

20 PIC-TEST-4 PIC S9. Integer field of length 1

SALARY PIC 9(5)V(2). Double field of length 7. The format of

the field is 5.2. The decimal point option
is none (i.e.) field does not have any
decimal point.

SALARY PIC 9(5)V(2) Double field of length 8. Format of the
field is set as 6.2. The additional length is
because the sign character is treated as
separate.

SIGN LEADING SEPARATE.

VALUE-TEST-5 PIC XXXXX VALUE The field created is of type ‘String’ and

"HELLO". has default value ‘HELLO’.

CLIENT1 PIC 9(03) COMP-3. The field created is of type Integer with
Packed Decimal encoding. The actual
length of the field (Digits/Formats) is 3.

The length of the field (in bytes) in the
message is 2 (digits+1/2. 3+1/2).

CLIENT2 PIC 9(03) COMP-1. The field created is of type Integer with
Binary encoding. The length of field is 3.

CLIENT2 PIC 9(03) COMP-2. The field created is of type Integer with
Binary encoding. The length of field is 3.

CLIENT2 PIC 9(03) COMP-5. The field created is of type Integer with
Binary encoding. The length of field is 3.

FILLER PIC X(60) Field created is of type ‘FILLER’ of length
60.

Sections:

If a Copybook item has OCCURS clause or does not have PIC mentioned in it the
entry is represented as section in the Universal Message. The entries within are
imported as fields/sub-sections.

If the OCCURS clause is not mentioned and the entry does not have PIC mentioned
then it is created as fixed instance section with value 1.

If the OCCURS clause is specified without ‘DEPENDING ON'’ clause the entry is
created as a fixed instance section with instance value set as the value specified in
the OCCURS CLAUSE.

If the OCCURS clause is specified with ‘DEPENDING ON’ clause the entry is created
as a ‘Variable Instances’ section. The ‘Count Field’ for the section is the field specified
in the DEPENDING ON clause. The min/max occurs are set based on the values
specified in the OCCURS clause.

CBL Item Universal Section

02 TRANSACTION-REFERENCE- Fixed instance section with instance
NUMBER. value 1.

02 STATEMENTLINE OCCURS 100 Fixed instance section with instance
TIMES. value 100.

02 OPENING-BALANCE-COUNT OCCURS
0 TO 100 TIMES

DEPENDING ON STATEMENT-
NUMBER-COUNT.

Variable instances section with count
field as ‘STATEMENT-NUMBER-COUNT".
Min occurs is 0 and max occurs is 100.

02 STATEMENT-NUMBER OCCURS 0 TO
100 TIMES

DEPENDING ON STATEMENT-
NUMBER-COUNT.

03 STATEMENT-NUMBER PIC 9(5).

03 OPENING-BALANCE OCCURS 1
TO 20 TIMES

DEPENDING ON OPENING-BALANCE-
COUNT.

04 D-C-MARK PIC X(1).

A repeating section Statement Number is
created. It has a field Statement number
and a repeating inner section Opening
Balance.

Note:

Any comment specified in the copybook source is set as the section item’s

description while importing.

While importing the copybook source, columns excluding 6-72 are excluded.
Contents in columns 1-5 and beyond column 72 in the copybook file are not

imported.

A copybook source is shown and the Universal representation of the source is shown

below
Copybook Source:

01 STATEMENT-MESSAGE.

02 TRANSACT ION-REFERENCE-NUMBER
02 ACCOUNT-IDENTIFICATION

02 STATEMENT-NUMBER.
03 STATEMENT-NUMBER
03 SEQUENCE-NUMBER
02 OPENING-BALANCE.
03 D-C-MARK
03 DATE-FLD
03 CURRENCY
03 AMOUNT
* STATEMENT LINE
02 STATEMENTLINE.

PIC X(1).
PIC 9(6).
PIC X(3).
PIC 9(13)V9(2).

PIC X(16).
PIC X(35).

PIC 9(5).
PIC 9(5).

03 VALUE-DATE PIC X(6).
03 ENTRY-DATE PIC 9(4).
03 DEBIT-CREDIT-MARK PIC X(2).

* FUNDS CODE FOR STATEMENT
03 FUNDS-CODE PIC X(1).
03 AMOUNT PIC 9(13)V9(2).
03 TRANSACTION-TYPE-IDENTIFICATIO PIC X(4).
03 REFERENCE-FOR-THE-ACCOUNT-OWNE ~ PIC X(16).
03 ACCOUNT-SERVICING-INSTITUTIONC PIC X(16).
03 SUPPLEMENTARY-DETAILS PIC X(34).

Universal Representation:

rHeader rData rTrailer |

ou

How O e el

I:H Field Mame ” Type || Description

&° TRANSACTION-REFERENCE-NUMBER String

& ACCOUNT-IDENTIFICATION String

=4 STATEMENT-NUMEER Sequence
&7 STATEMEMT-MUMBEER Integer
¥ SEQUEMCE-NUMBER Integer

— OPENIMG-BALAMCE Sequence
&F D-C-MARK String
&7 DATE-FLD Integsr
& CURRENGY String
&7 AMaOUNT Double

=y STATEMENTLINE Sequence * STATEMEMT LIME
& WALUE-DATE String
7 ENTR-DATE e e—
&7 DERIT-CREDIT-MARK String
&F FUNDS-CODE String * FUNDS CODE FOR STATEMENT
& AMOUNT Double
&F TRANSACTION-TYPE-IDENTIFICATIO String
&7 REFERENCE-FOR-THE-ACCOUNT-OWHE String
&7 ACCOUNT-SERVICING-INSTITUTIONGC String
&7 SUPPLEMENTARY-DETAILS String

See Also:

Exporting a Universal Message Format
Importing a Universal Message Format

APPENDIX

The following table lists the Escape sequences in strings that are applicable while
specifying values for the following:

Delimiter
Terminator
Default Value
Fixed Value
Tag

aOprwODNPE

Escape Sequence Remark

\n = ASCII 13

\r

\t

\b

\f

\\

\#X To represent
Hexa-Decimal
character

See Also:

Creating a Universal Format
Universal Format Options

Entering a Universal message
Saving a Universal Message Format

