

Introduction to Runtime
User’s Guide

Version 3.4

INTRODUCTION TO RUNTIME ... 4

DATAOBJECT ... 4
Field/Section Access ... 5

Accessing a Field in Formula.. 6
Accessing in Platform Specific Code.. 7

Null Value ... 8
Sections ... 9

Accessing Elements of a Section... 10
Meta Data ... 11

SERVICE OBJECTS... 11
Message .. 12
Mapping.. 12
Message Flow ... 13

CONTEXT OBJECT... 14
LookupContext .. 14
TransformContext ... 15

RAW MESSAGE... 17
Message Body ... 18
Message Properties... 19
Message Attachments.. 21
Using Raw Message in Message Flows .. 22
Message Conversion ... 23
Support for Batching... 23

TRANSFORM EXCEPTION .. 25

Introduction to Runtime

This document gives an overview of runtime classes that you would use/encounter.
You would interact with these indirectly using formula code or using the platform
specific language (such as Java). The API or formula functions provided to access the
classes in all these languages are quite similar. Hence in this document, we have
discussed these classes in general and where applicable we have demonstrated the
functionality using formula code. The details provided here should apply, in spirit, to
any of the platform specific language and to the formula language. If you want
details about how to work with the classes discussed here in a particular language
refer to the API.

Class/Entity Description

Data Object Data Object is a hierarchical object representation of a
message.

Raw Message Raw message is an abstraction for an unprocessed
message.

Service Objects Service objects are the runtime representation of the
core entities that you define using the Designer.

Context Object

Helper objects used to access deployed service objects
and to perform an operation with it.

Transform Exception Exception raised while processing (parsing, validation
serialization etc) a message.

DataObject

DataObject is a generic object that encapsulates a hierarchical data structure. It is
structured object representation of a message and its sub-elements.

DataObject contains named fields and sections. Typically, these fields and sections
(structure) are defined using Designer, and the DataObject is the runtime
representation of this structure. During code generation phase, the structure defined
is converted to concrete platform specific class(es). This class implements the
DataObject interface, which provides a generic way of accessing the data structure.
The generated class also has getters and setters, which let you access its fields and
sections directly. You would interact with a DataObject using formula code or using

the platform specific language (such as Java). The API or functions provided to
access the DataObject in all these languages are quite similar.

Fields in the object represent primitive scalar value (like int, string etc) while section
is a collection of sub-elements, which themselves are DataObjects.

At runtime, DataObject has support for the following,

 It allows you to get/set fields it contains, either by name or by index.
 It provides meta-information about the object itself.

See Also:

Field/Section Access
Null Value
Sections
Meta Data

Field/Section Access

Fields and sections are the primary contents of the DataObject. Hence the main
purpose of the DataObject interface is to let you access its fields and sections. As
mentioned earlier, fields are scalars values, while sections are collection of a
composite object.

See Also:

Accessing a Field in Formula

Accessing in Platform Specific Code

Accessing a Field in Formula

There are two ways of accessing the fields/sections in a DataObject. The one you use
depends on whether the type (structure) of the DataObject is known. If the type is
known, you can directly access its fields, using the object.field notation in formula or
using getter/setter methods in platform specific code. If the type is not known, you
need to use the generic interface; that is, get/set the field’s value by its name or
index.

If the type of the object is known (common scenario), the fields are available as
properties which you can access using the dot notation by using its name. For
example to access the field orderDate in a DataObject ‘obj’, use,

obj.orderDate

Care should be taken when the field you access can potentially have a null value (say
if it is optional). If it has a null value, accessing the field will result in a runtime
exception. Hence in such cases, it is important to guard field access with a isNull()
check. That is, before you access the field check that it has a non-null value; if not,
handle it as per your requirement.

If(isNotNull(obj.orderDate), obj.orderDate, today())

Note that, in many cases the DataObject is implicitly available. For instance, in the
mapping screen, the source is implicitly available; hence it need not be referred by
name. You can access its fields directly without any prefix.

orderDate

Here the orderDate refers to field orderDate in the implicitly available object.

The obj.orderdate syntax is typically used within a message flow, where number of
such objects may be declared. In other cases, such as in mapping, validation and
preprocessing, the DataObject ‘obj’ is implicitly available; hence you can directly
access its fields.

If the type of the object is not known, you use the formula functions defined in
‘DataObject’ category to access its fields. This kind of scenario typically occurs in
case of “Dynamic flows” or when you are accessing an object whose structure is not
defined/available in cartridge.

Get<TypeName>(obj, fieldNameOrIndex)

Returns the value of the field indicated by fieldNameOrIndex from the given object.
The return type corresponds to the type name.

For example, to access a field of type int, you would use

GetInt(obj, “myField”)

If the underlying field cannot be converted to the corresponding type by identity
conversion or widening conversion, a runtime exception is raised.

Set<TypeName>(obj, fieldNameOrIndex, value)

Sets the value of the field indicated by fieldNameOrIndex in the given object. The
value should be of the corresponding type.

For example to set a field of type int, you would use

SetInt(obj, “myField”, 10)

If the value specified cannot be converted to the actual type of the field by identity
conversion or widening conversion, a runtime exception is raised.

Formula functions (such secSelectValues) are also available to access the value of a
deeply nested field. Refer to formula functions category “DataObject” and
“Transform” for more details.

See Also:

Accessing in Platform Specific Code
Field/Section Access

Accessing in Platform Specific Code

As in formula, the way you access a field depends on whether the type of the object
is known or not. As you would remember, the data structures defined in Designer
gets converted to platform specific classes. If the type is known you need to cast the
object to appropriate generated class. The generated class provides getter/setter
method to access the fields.

Order order = (Order) internalMessage.createObject();

Date date = Order.getOrderdate();

Like in formula, you should be careful about accessing fields, which can potentially
have a null value. The getter method throws a runtime exception if the field’s value
is null. To avoid this, you need to first check whether it has null value using the
isNull() method.

Unlike in formula, it is very common to use generic field access, even if you know
what the type of object you are dealing with. The main reason is to avoid explicitly
using the generated classes in the client code. If this is the case, or if you do not
know the type of the object, you can always resort to generic access. The DataObject
interface provides number of method to generically get/set a field’s value.

The fields can be referred either by their name of by their index. The name of field is
the name specified in the Designer while defining the structure. If name contains
spaces or special characters you can either use the name as it is (with special
characters) or use a mangled representation of the name. The index is the position
(zero based) of the field in the enclosing structure.

Fields of a DataObject are statically typed. That is, their types are known at Design
time. Hence the runtime representation (Dataobject) enforces type safe
access/modification of field values. For instance, attempt to set the value of field
with incorrect type will result in a runtime exception.

See also:

Accessing a Field in Formula
Field/Section Access

Null Value

Fields support a concept of “null”. Field whose value is not explicitly set is in null
state. Initially when the object is constructed all its fields have a null value. Once a
value is set, it changes to a non-null state. It is also possible to explicitly reset the
value of the field to null, from a valid value.

In Designer, fields can be defined to be optional or mandatory. If a field is defined as
optional, then a “null” value for it is legal and valid. A mandatory field can also
temporarily have a null value, for instance when the enclosing object is constructed.
But before the object is put to use (for instance serialized), the value of all
mandatory fields must be set.

To check whether a field has a null value, you can use the isNull and isNotNull
functions.

if(isNotNull(obj.orderDate)) {

 if(obj.orderDate > today()) {

 //reject the order

 }

}

If the type of the object is not known, you can dynamically check whether the field
has null value;

if(isNotNull(obj, "orderDate")) {

 if(GetDate(obj, "orderDate") > today()) {

 //reject the order

 }

}

IsNull(field)

Returns ‘true’ if the given field has null value. It should be noted that the IsNull()
function should be used only with fields. If you want check whether a section is
empty (no elements) use "Sec.$size == 0" or one of the SecExists functions. The
IsNull() function applied on a section would always return true since the section itself
is never null but it can be without elements.

IsNull(obj, fieldNameOrIndex)

Returns true if the field indicated by fieldNameOrIndex has a null value.

The isNotNull variants are exact opposite of isNull functions.

In platform specific code, you can use the methods isNull functions available in
DataObject interface to check for null valued fields.

Note:

 When the field you access can potentially have a null value (say if it is optional),

it is important to guard field access with a isNotNull() check; otherwise it will lead
to a null value exception. That is, before you access the field, ensure that that it
has a non-null value.

 Sections do not support a concept of null. Sections, as mentioned earlier

represent a collection of DataObjects. A section in a DataObject is never null; it
can be empty. During construction of the enclosing DataObject, the section is
initialized to an empty collection.

See Also:

DataObject

Sections

Section is a collection of sub-elements. As mentioned before, there are two ways of
accessing the sections in a DataObject. The one you use depends on whether the

type (structure) of the DataObject is known. If the type is known you can directly
access its fields, using the object.field notation in formula or using getter/setter
methods in platform specific code. If the type is not known you need to use the
generic interface; that is, get the section collection by its name or index.

If the type of the object is known (common scenario), the fields are available as
properties which you can access using the dot notation by using its name.

def sec = obj.Item;

If the type of the object is not known, you use the formula functions defined in
‘DataObject’ category to access its sections.

def sec = getSection(obj, “item”);

Like fields, sections can be optional or mandatory. A mandatory section should have
at least one child element. Since section represents a collection, if it is marked as
repeating, it can have more that one child element. The cardinality of a section is
indicated by two properties, minOccurs and maxOccurs. These two properties
provide a bound for the number of child elements in the section.

See Also:

Accessing Elements of a Section

Accessing Elements of a Section

In the formula code you can access the elements of a section using an array like
syntax. To get the nth element of the section, use

sec[n] //returns the nth element of the section

The number of elements in the section can be obtained using the $size property or
the secCount function.

sec.$size //returns the number of elements in the section

See Also:

Sections
Meta data

Meta Data

The meta-information about a DataObject is made available at runtime using the
class DataObjectMetaInfo. The DataObjectMetaInfo class can be used to get
information about the types and properties of the fields and sections in a DataObject.

DataObject obj = …

DataObjectMetaInfo metaInfo = obj. getMetaInfo();

int count = metaInfo.getFieldCount();

Similarly there are formula functions in the “DataObject” category to access the
meta-information about an object. These include functions such as GetFieldName(),
GetFieldType() etc.

See Also:

DataObject

Service Objects

Service objects are the runtime representation of the core entities that you define
using the Designer. In Designer you define a Message (External/Internal), Mapping
and a Message flow. These entities are represented at runtime by service interfaces
of the same name.

The following service objects defined in Designer are available at runtime
 Message
 a. External Message
 b. Internal Message
 Message Mapping
 Message Flow

During code generation the Design time entities are converted to platform specific
code. The generated service objects can be accessed at runtime using the
LookupContext.

These service objects can be obtained by name using the LookupContext. The name
you use the same as the one you specified in the Designer. Though all entities are
available, the recommended approach is to use the message flow as façade for other
components. That is, the client program should interact only with the Message flow
component; the message flow itself would invoke or make use of other components
listed above.

Note:

There is no way to use/invoke the service elements directly from formula. You can
use the entities defined in cartridge from message flows.

See Also:

Message
Mapping
Message Flow

Message

Message represents a message processor service object that can be used to parse,
validate and serialize a message. This interface has methods that apply to the raw
and the object representation of the message.

 parse - converts raw message to message object
 serialize- converts message object to raw form
 validate - validates a message object
 create - creates a uninitialized message object.

Each concrete implementation of this interface typically is capable of parsing one
type of message (for e.g. New Order FIX message).
This interface has two variants of the methods for performing an operation. The
former performs the operation and throws an exception in case of errors. The latter,
which has a suffix '2' (as in parse2), accumulates (cascades) the exceptions and
returns a Result object. The Result object is a pair containing the output of the
method and the accumulated exceptions. While the former, returns an output or
throws an exception, the latter, depending on the severity of the exception
encountered during processing, may return an output, exception or both.

There are two major classifications of messages, internal and external. There is an
interface each to represent the two types of the messages,

 InternalMessage
 ExternalMessage

See Also:

Service Objects

Mapping

This MessageMapping interface is used for mapping a source message to a
destination message. The mapping definition should have been defined using the
Designer and deployed in this runtime environment. The primary method in this

interface is the map(DataObject, DataObject, TransformContext) method, which
maps a source message object to a destination message object.

Message Mapping comes in four different flavors,

 External to Internal
 External to External
 Internal to External
 Internal to Internal

Like other service objects, you can get access to a MessageMapping object by
looking up using LookupContext, LookupContext.lookupMessageMapping(String). The
preferred way of using a MessageMapping is through a message flow and not directly
from client applications.

The MessageMapping is responsible for

 Mapping the source message object to destination message object

See Also:

Service Objects

Message Flow

MessageFlow interface represents a executable content designed using the 'Message
Flow' entity in Designer. Message flow is made of activities, which are executed in
the sequence specified in the Designer. The message flow can take one or more
parameters as input and produces one or more outputs. The primary method in this
interface is the run(Object[],TransformContext) method. This method executes the
message flow with the specified parameters and returns the output(s). Note that, it
supports multiple input and parameters and returns multiple output values. The
input/output parameters and there types are defined when you design the Message
flow using the Designer. The values passed to the run method should conform to the
types specified at design time.

There are two variants of this method,

 run(Object[],TransformContext) - returns the output and throws an exception in

case of failure.

 run2(Object[],TransformContext) - returns the output and any exceptions as a
Result object. The output generated is a snapshot of output variables in the
message flow at the time of the exception. This method is useful in a 'Repair' like
application where incorrect input should not treated as fatal.

Both these method support number of ways in which arguments can be passed.

 as an array of objects - values in the array correspond to the parameters

specified during Message flow design. The length of the array must be same the
number of parameters. Null values are allowed as long as it is gracefully handled
in the Message flow that you design. Passing wrong types will lead to
ClassCastException.

 as a DataObject - Use createInputDataObject() to create a DataObject
representing the input parameters.The fields in this object are same as variables
that were marked as 'INPUT' while defining the message flow in Designer. Set the
fields in this object using setField("XXX", value) methods. Using run() with a
DataObject has better type safety compared to Object[] since the incorrectly
typed values will be caught while constructing the DataObject.

 as a InputSource - This is convenience method that can be used if your message
flow takes only a raw message (byte[]) as input parameter.

Though Message flow objects are stateless, it may cache other service elements that
it uses. Hence it may be expensive to create a new instance of the MessageFlow. It is
recommended that you reuse the MessageFlow objects for further processing.

See Also:

Service Objects

Context Object

There are two important context objects, which you would encounter when you are
writing applications that interact with cartridge entities. These are LookupContext
and TransformContext. The former is use for looking up service objects while the
later is used while invoking the methods in the service objects.

LookupContext

The LookupContext provides access to other service objects executing in the runtime
environment. Using the lookup context you can access other generated components
such as message flow, mappings etc.

Obtaining Lookup Context:

The ‘LookupContext’ context can be obtained from the LookupContextFactory as
shown below.

 LookupContext lcxt = LookupContextFactory.getLookupContext();

The Lookup Context that is returned will differ depending on the environment in
which it is obtained. That is why instead of instead of instantiating the Lookup
Context we use LookupContextFactory to obtain it.

 Methods in Lookup Context:

The following are the methods that are most commonly used during transformation.
These are not the complete set of methods available.

lookupMessage(String name)
Looks up a message and returns it. The name
to be looked up should be the name of an
external message or a internal message
defined in Designer.

lookupExternalMessage(String name)
Looks up an external message and returns it.
The name to be looked up should be the name
of the external message defined in Designer.

lookupInternalMessage(String name)
Look up a Internal message (formerly Business
Transaction) and returns it. The name to be
looked up should be the name of the Internal
message defined in Designer.

lookupMessageFlow(String name)
Looks up Message flow and returns it.

The name to be looked up should be the name
of a message flow defined in Designer.

lookupMessageMaping(String name)
Looks up Message Mapping and returns it. The
name to be looked up should be the name of a
mapping defined in Designer.

lookupDataSource(String name)
Looks up a data source. This is mostly used
internally and is not relevant for clients

See Also:

Context Object

TransformContext

It defines the context in which the current transformation occurs. This context object
contains a set of properties (name-value pairs) related to the current transformation.

This object is passed to all the components (message flow, messages etc.) that take
part in processing.

Methods in Transform Context:

The following are the methods that are most commonly used during transformation.
These are not the complete set of methods available.

setProperty(String name, Object value)
This method can be used set any
property related to the current
transformation.

getContextProperty(String name)
Returns the value of the specified
property

Note that TransformContext is an interface. You can use the class
TransformContextImpl, class to create an instance.

You can use the function getContextProperty() to access properties in the
TransformContext object. This formula function can be used in formula code for
mapping, validation, message flow. Specifically, it is not available in places where a
Transformation context does not exist, such as in a function definition.

The context property can typically be used to control the behavior of an entity from
outside. For instance, in case of mapping the only object that is available for
mapping is the input object. If for some reason you want to control the mapping
from outside (call point) we can pass an option (property) using the transform
context. In the mapping rules you can lookup this property’s value and perform the
mapping in a slightly different manner. It is important to note that the activity must
honor (recognize and respond to) the property; otherwise it has no impact.

These properties should be treated as additional configuration options and should not
be used to exchange data values. Since the properties need to be passed by the
caller, the entity should always have a default value which will be used if a property
is not available in the context.

Note that, some activities (like Swift Parse), support some predefined properties.
These properties are documented elsewhere in the help.

Setting the values in Context Property:

There are number of ways to set a property in the TransformContext.

1. Many activities in a message flow have an “Other options” tab which lets you set
the properties in the Transform Context. The values set using the tab will only be
visible to the activity that is invoked and not in the rest of the message flow.

2. Use the setContextProperty function in a custom activity to set/update a context
property. Properties set using this function are available till the message flow
completes and is passed to any activity that is subsequently invoked.

3. The caller of the message flow usually creates the Transform Context object. The
caller can be the hand written client or another message flow. In all cases there
is a way to set the context property before invoking the flow. Properties set by
the caller are available through out the flow and is passed to all activities that are
invoked.

4. An activity such as mapping which can use formula code can itself set the context
property. These properties are available only till the activity terminates; they are
not visible to the invoking flow.

Usage:

 Use the transform context to pass properties from the client to the message flow.

Based on the property value the flow can behave differently. This is particularly
applicable for generic clients, since a hand written client can pass values as
additional arguments to the flow.

 Use the ‘Other options tab’ of an activity in the message flow to pass additional

information to the activity. This additional information can make the activity
behave differently or provide additional data that the activity may need. For
example, if a value is known only at runtime (through other means), but is not
part of the input object, this value can be passed as a property to the mapping
activity. During mapping you can fetch this value from the context and set as an
output field’s value. Since the ‘other Options’ supports formula in value column,
you can easily pass dynamically synthesized values to an activity.

See Also:

Context Object

Raw Message

Raw message is an abstraction for an unprocessed message. Apart from the content
or the body of the message, it supports features such as properties and attachments
that are commonly supported in other message representations.

 Provides a single, unified message API

 Provides an API suitable for creating messages that match the format used by
message providers

In its simplest form raw message just contains the body, which can either be a text
or a stream of bytes. Complex messages may contain typed properties and
attachments.

Raw Messages are composed of the following parts:

 Body – This represents the content or the payload of the message. Two types of

message body are supported, text and a stream of uninterpreted bytes

 Properties - Each message contains a built-in facility for supporting application
defined property values. Properties are name value pairs. Properties provide an
efficient mechanism for supporting application defined message filtering (impl in
future).

 Attachments, which themselves are named raw messages.

See Also:

Message Body
Message Properties
Message Attachments
Using Raw Message in Message Flows
Message Conversion
Support for Batching

Message Body

Raw messages support two types of message body:

 Text - a message containing text or String.

 Bytes - a stream of uninterpreted bytes. This message type is for literally

encoding a body to match an existing message format.

You can access the content of a message from the Designer using formula functions.

Function Description

ToRawMessage(Binary Or String) Converts the given string or binary value
to Raw Message. This is only of the
possible ways of creating a RawMessage.
Typically, the RawMessage is produced

as output by the Serialize activity.

ToText(rawMessage) Returns the text representation of the
message

ToBinary(rawMessage) Returns the binary (bytes) representation
of the message

NewMessage() Creates an empty in-memory raw
message

See Also:

Raw Message

Message Properties

Every raw message has an associated property set. The property set is a collection of
name-value pairs. The property names in the set are unique. The property values are
typed; most basic Designer types are supported (see table below).

Message properties support the following conversion table. The marked cases are
supported. The unmarked cases will fail. The String to primitive conversions may
throw a runtime exception if the primitives are not convertible to String.

A value written as the row type can be read as the column type.

 boolean int long float double String DateTime

boolean X X

int X X X

long X X

float X X X

double X X

String X X X X X X X

DateTime X X

You can access the properties of a message from the Designer using formula
functions.

Function Description

GetProperty(message,

 propertyName,

 defaultValueOpt)

Gets the property indicated by the specified name. If
the specified property is not present, the given default
value is returned.

SetProperty(message,

 propertyName,

 propertyValue)

Sets the property indicated by the specified name

HasProperty(message,

 propertyName)

Returns 'true' if there is a property with the specified
name

RemoveProperty(message,

 propertyName)

Removes the specified property.

ClearProperties(message) Clears all the properties.

GetPropertyNames(message) Returns a list of available properties

GetProperties(message,

propertyPrefix)

Returns a Property Map, which contains all properties
that have the specified prefix. All the functions
discussed here can be applied to this Property Map.

The following code clears all properties that start with
“jms.”.

def jmsProps = raw.GetProperties("jms");

jmsProps.ClearProperties();

Note that the prefix specified should not contain the ‘.’
character.

Identical functions are available in the platform specific language (Java) as well.

Though the property set is essentially flat, for convenience it can be viewed in a
hierarchical manner. This is useful because the property set of a raw message
contains properties obtained from various sources. For instance, in case of JMS
Message, the JMS message properties are mapped to properties in the RawMessage
with a prefix “jms”. Hence if the actual JMS property name is “appSource”, in the raw
message the property name is “jms.appSource”. Similarly the JMS header fields are
again represented as properties but with a different prefix “jmsHeader”. To access
only the JMS properties,

def jmsProps = mes.getProperties("jms");

def appSrc = jmsProps.getProperty("appSource", "");

This is equivalent to,

def appSrc = mes.getProperties("jms.appSource "");

The former is convenient if you are working with number of properties.

The ability to partition the property set into different namespaces is very useful.
Because of this, it can contain message properties, message headers and application
specific properties (say for routing) without interfering with each other. You can
access/modify each property group without disturbing others.

See Also:

Raw Message

Message Attachments

Some type of messages, such as Email, SOAP etc support attachments. Designer
represents each message attachment as another RawMessage and associates it with
the original message.

Function Description

GetAttachment(message,
attachmentName)

Gets the attachment indicated by the
specified name from a Raw Message

SetAttachment(message,
attachmentName, attachedMessage)

Attaches a message indicated by the
specified name to a Raw Message. The
attachment should be a Raw Message.

HasAttachment(message,
attachmentName)

Returns 'true' if there is an attachment
with the specified name in the Raw
Message.

Example:

The following code snippet creates a raw message and adds an attachment to it.

def mes = ToRawMessage("MESSAGE CONTENT");

def attachment = ToRawMessage("ATTACHED MESSAGE CONTENT");

mes.SetAttachment("myAttachment", attachment);

return mes;

See Also:

Raw Message

Using Raw Message in Message Flows

Variables in the message flow can be of type RawMessage. Compared to simple
Binary type, which is usually used to represent the message content, RawMessage
type has the following advantages.

 You can get/set message properties
 You can work with message attachments

Note:

RawMessage type represents a message along with its attributes. The Binary type
represents uninterpreted stream of bytes. Just like other types, you can have Binary
typed fields. It is not necessary the Binary type be always used for representing
messages. Unlike Binary, a RawMessage always represents an entire message. For
this reason, fields of type “RawMessage” in format plugins are not supported (does
not make sense?). So the only place where a RawMessage type makes sense is in
message flows, where you directly handle incoming and outgoing messages.

The activities that accept Binary as input also accept a RawMessage. For example,
the Parse activity accepts a variable of type RawMessage as the source. Similarly,
activities that produce Binary typed output can be made to produce a RawMessage
as output. In both cases, just define the variables of type ‘RawMessage’ and use
them the Parse/Serialize activities.

Along with this, there are also formula functions to convert RawMessage to and from
Binary type. Also, for input parameters of the message, there is an implicit
conversion from Binary to RawMessage and vice versa. That is, if the input
parameter of a flow is of type RawMessage, but the actual value passed is of type
‘Binary’ it is automatically converted to a RawMessage.

It is not necessary to migrate from Binary type to RawMessage to represent an
unparsed message. If you do not have any use for message properties and
attachments you can continue to use Binary types to represent a message. This
addition is fully backwards compatible. It just provides more features; features that
are supported in many message types (such as EMail).

See Also:

Raw Message

Message Conversion

When a message is received from a source (provider), it first is converted to (or
wrapped with) a RawMessage. You can access the payload, properties and the
attachments in the original message using the RawMessage API. You can access this
API in the native platform using the interface RawMessage or using formula functions
available in the “Message Functions” category.

In some cases the provider specific message representation may support more or
different set of features, which are not directly available in case of RawMessage. For
instance, JMSMessage supports a set of predefined headers fields. Since the concept
of header fields is not available in case of RawMessage they are represented as
message properties with a specific prefix (to distinguish it from other message
properties). The general idea is to represent all the attributes of a provider specific
message in a raw message, so that they can be accessed using RawMessage API.
Often, the property set of the RawMessage is used to represent other attributes
which do not have a direct representation. For example, in case of an EMAIL
message, the subject is represented using the property “mail.subject”.

When a raw message is sent out, again it needs to be converted to an external
message representation (such as a Mail message). The payload, properties and
attachments in the RawMessage are converted to a provider specific message
representation. The conversion is the opposite of the conversion process discussed
above.

Make sure that you understand the conversion between a raw message and a
provider specific message. For each type of message, the conversion to and from a
raw message is discussed in detail elsewhere in the help.

See Also:

Raw Message

Support for Batching

The main difference between normal messages and a batched message on the input
side is that the batch messages are huge in size. All messages are abstracted by the
type “RawMessage”. Note that while “Binary” type represents a concrete byte array,
RawMessage is implementation dependent. The length of “Binary” is restricted by the
amount of physical memory, while RawMessage can be backed by a file or some
other source (depending on the implementation); without loading the entire message
into memory. For this reason, it is imperative that you use RawMessages (and not
Binary) when working with batches.

There are number of formula functions which apply to RawMessage all of which
operate efficiently on a huge message. These functions have same name and
semantics as functions that operate on Binary and String data types. These functions
are

Mid(rawIn, index, length).

This function returns a chunk of data from the raw message. The returned chunk is
an array of bytes (Binary type). There two more variants of this function, left and
right, which also allow you to access parts of the message. As long the accessed
chunk is reasonable in size (< 1 MB) these functions work well even with huge
batches. For instance, if the RawMessage size if 300MB and you are accessing
chunks of 1755 bytes (per record), it is safe to use this function. This function is
useful for breaking up a batched message with fixed length records into chunks.

At(rawIn, index)

The At function returns the byte (as int) at the specified index in the message. This
is equivalent to using array access operator rawIn[index].

Again, this is reasonably efficient even for huge messages. If you are using this
function to access to the entire file, byte at a time, there will be slight degradation in
performance, since you would be accessing one byte at a time. Typically, this is
useful for searching for a delimiter in a batch; in such cases, use the findFirst
function instead. If possible avoid using At function to access the entire file. Having
said that, the degradation in performance of accessing a huge file byte at a time is in
most cases acceptable.

findFirst(rawIn, "\r\n", index)

The findFirst function searches for the specified characters or byte in the rawMessage
starting at the specified location. It returns the index at which the sequence is found
or -1 if there is no match. The function is useful for breaking up a batched message
with delimited records. Once you get a match, you can extract the chunk using Mid
function.

These RawMessage functions can be used when the batch needs to be broken up into
chunks manually; that is when the records are delimited or of fixed length. The
format specific parser in these cases operates only on reasonably sized chunks.

Refer to formula functions in the Message category for more details on how to work
with RawMessage in formula. Refer to the API documentation the RawMessage
interface and its implementations for details about using RawMessage from client
code.

See Also:

Raw Message

Transform Exception

It is the exception raised while processing (parsing, validation serialization etc) a
message. Like many other object discussed in this document, this object available
both in formula code and as part runtime API.

TransformException is represented as a first class Normalized Object. Because of
this, you can create/access it fields like any other Normalized Object. Using the
Designer, you can define mappings to and from a TransformException. In the
message flow you can catch exceptions thrown by the activities and take appropriate
corrective actions.
Each Transform exception object provides several pieces of information:

 A string describing the error. This is used as the Java Exception message,

available via the method getMessage.
 An error code and an internal error code
 Severity of the error
 Name of the field in which error occurred (if applicable) or null.
 Id of the field in which error occurred (if applicable) or null.

Note that a TransformException can represent a collection of exceptions. In such
cases the above apply to the values for the first exception. Methods are available to
access other elements of the collection.

See Also:

Introduction to Runtime

