

Financial Message Designer for
AquaLogic Service Bus

User’s Guide

Version 3.4

FINANCIAL MESSAGE DESIGNER FOR AQUALOGIC SERVICE BUS....................................... 12

DESIGNER USER INTERFACE ... 12
MENU BAR.. 13

File Menu ... 14
Edit Menu ... 15
Search Menu... 15
View Menu.. 16
Build Menu ... 16
Tools Menu ... 17
Run Menu ... 18
Window Menu... 18

New Window.. 19
Help Menu .. 20

TOOL BAR ... 20
EXPLORER ... 21

Arranging Nodes .. 24
Delete Node .. 25

FILE EXPLORER ... 25
Open File .. 26
Explore as Root .. 26
File Explorer Filters.. 26

GETTING STARTED PANE .. 28
DESIGN ELEMENT UI PANE ... 28

Tree View.. 29
Properties ... 31

MESSAGE WINDOW... 32
TASK WINDOW.. 34
SEARCH RESULTS WINDOW .. 36

Jump To Location... 37
View As HTML.. 38

STATUS BAR.. 38
SPEED BAR.. 38
CHANGE LOG WINDOW... 38
ELEMENT HEADING... 39
DESIGNER SETTINGS ... 40
RECENT FILE LIST ... 41
EXITING DESIGNER ... 41

CARTRIDGE.. 42
CREATING A CARTRIDGE... 42
OPENING A CARTRIDGE... 44
SAVING A CARTRIDGE... 46
VALIDATING A CARTRIDGE ... 47
CLOSING A CARTRIDGE ... 48
ADDING ITEMS TO CARTRIDGE.. 48
CARTRIDGE PROPERTIES ... 50
CARTRIDGE LOCATION.. 51
FOLDERS ... 51

Adding a Folder.. 51
Deleting a Folder .. 52

MESSAGE .. 52

INTERNAL MESSAGE ... 53
Creating an Internal Message .. 54
Defining an Internal Message Format ... 56

Adding a Field .. 56
Field Properties... 58

Hidden Property.. 58
Required Property... 58
Default Value Property ... 59
Length Property .. 59

Adding a Section .. 60
Section Properties ... 61

Min Occurs Property .. 61
Max Occurs Property.. 62

Platform Specific Attributes ... 63
Platform Specific Attributes of a Field ... 64

Column Name Attribute.. 64
SQL Type Attribute... 65
Length Attribute.. 66
Not Null Attribute ... 66
Primary Key Attribute .. 66
Auto Generate Attribute ... 66
Foreign Key Attribute... 67

Platform Specific Attributes of a Section ... 67
Table Name Attribute ... 67
Schema Attribute .. 67

Arranging Fields of an Internal Message Format ... 67
Deleting Fields of an Internal Message Format.. 68
Importing Internal Message Field Structure from External Sources .. 69
Steps to Import Field Structure From Database Tables .. 69
Steps to Import Field Structure from an XML Schema File... 72
Steps to Import Field Structure from a DTD File ... 74
Specifying Properties for Multiple Fields/Sections .. 75

Internal Message Processing.. 76
Adding Processing Rule ... 76
Renaming Processing Rules Node.. 77
Processing Rules UI ... 78
Custom Message Processing .. 78
Processing an Internal Message Field... 79

Custom Field Processing .. 80
Field Processing Formula ... 80

Deleting an Internal Message... 82
Adding Persistence Designer.. 82

EXTERNAL MESSAGE .. 83
Creating an External Message Node.. 85
Defining an External Message Format... 87
Creating a Standard Message .. 88

VALIDATION RULES .. 90
Adding Validation... 92
Renaming Validation Rules Node... 92
Validation Rules UI .. 93
Adding a Validation Rule ... 95

Adding a Validation Rule using Field-wise Validations View ... 96
Adding a Validation Rule using All Validations View.. 99

Formula Validations... 103
Length Validations ... 103

Exact Length Validation... 103
Minimum Length Validation .. 104
Maximum Length Validation ... 104

Range Validations .. 104
Exclusive Range Validation ... 104
Inclusive Range Validation... 105
Exclusive Lower Bounded Range Validation... 106
Inclusive Lower Bounded Range Validation.. 106
Exclusive Upper Bounded Range Validation ... 106
Inclusive Upper Bounded Range Validation .. 107

Validation for Acceptable Values... 107
Pattern Validations ... 108
SWIFT Formats Validation .. 109
Validation for Missing Field Value .. 110
Validations Based on Aggregate Functions.. 113

Checking for the Occurrence of a Section .. 113
Checking for the Occurrence of a Field.. 114
Checking for the Occurrence of a Field Value ... 117

Fields Accessible in a Formula .. 119
Invocation of Validation Rules ... 121

WORKING WITH MESSAGE - OVERVIEW.. 127
Toolbar ... 127
Fields List ... 128
Properties Panel .. 128

Adding a Field/Section ... 129
Field/Section Properties ... 131

Cardinality.. 131
Default Value Property ... 131
Format Property ... 132

Removing a Field/Section... 132
Arranging Fields in a Message .. 133
Alias.. 134

Specifying an Alias Name .. 135
Alias Name Substitution... 135

Valid Alias Name Substitutions.. 137
Invalid Alias Name Substitutions ... 137

Alias Name Rules ... 138
Items Supporting Alias Name Substitution .. 139

Tracing Messages in a Cartridge to a Standard... 140
MESSAGE MAPPING .. 141

CREATING A MESSAGE MAPPING .. 142
MAPPING RULES UI .. 144

Adding a Mapping Rule.. 146
Adding a One-to-One Mapping Rule ... 147
Adding a Formula Mapping Rule ... 148

Custom Mapping .. 148
Source Field Mapping .. 150
Mapping Filter.. 151

FIELD MAPPING... 152
Top Level Field to Top Level Field... 154
Nested Field to Top Level Field.. 155

Nested Field of a Repeating Section to Top Level Field .. 155
Nested Field of a Non-repeating Mandatory Section to Top-Level Field....................................... 156
Nested Field of a Non-repeating Optional Section to Top-Level Field .. 158

Top-Level Field to Nested Field ... 159
Top Level Field to Field of a Section without Mapping... 159
Top Level Field to Field of a Section with Mapping.. 161

Nested Field to Nested Field .. 162
Optional Field Mapping ... 164
Mapping involving Fields of Optional Sections ... 165
Merging Fields of Sibling Sections... 168

Merging Fields of Repeating Sibling Sections ... 168
Merging Fields of Repeating and Non-Repeating Sibling Sections ... 171

SECTION MAPPING .. 173
Top-Level Section to Nested Section... 174
Nested Section to Top-Level Section... 175
Nested Section to Nested Section.. 178
Optional Section Mapping.. 181
Section Formula Mapping .. 182

FORMULA ... 184
ENTERING A FORMULA.. 184
EDITING A FORMULA... 191
REFORMAT FORMULA ... 195
EDIT FORMULA DIALOG.. 196

Syntax Highlighting .. 198
Auto Completion... 198
Quick Function help ... 199
Code Reformater (Formula Beautifier) .. 200
Formula Validation (Automatic Error Checking) .. 201
Formula Tester ... 202
Locating Variable... 203
Formula Edit Operations.. 204

FUNCTION DEFINITION.. 206
DEFINING A FUNCTION.. 207

Function Definition UI ... 209
Name .. 209
Category ... 209
Description ... 210
Parameters .. 210
Return Type.. 211
Code.. 211

Copy/Paste Support .. 213
Invoking Functions ... 214

WORKING WITH FUNCTIONS.. 216
Simple Function.. 216
Testing the function .. 218

Testing the body ... 218
Test by invoking the function... 219

Parameterized functions ... 220
How it works?... 222

Token based functions .. 223
RESOURCES.. 226

RESOURCE ITEM.. 227
Simple Constant.. 227
List Type Constant.. 228
Messages .. 229

Internationalization... 231
Locales.. 231

RESOURCE GROUP... 233
WORKING WITH RESOURCES ... 234

Adding Resources ... 234
Adding Resource Group ... 235
Adding a Constant Resource Item .. 235

Adding a Simple Constant .. 235
Adding a List Type Constant.. 236

Adding a Message... 237
Deleting Resource Items... 238
Arranging Resource Items .. 238
Customizing Locales... 238

Adding a Locale ... 239
Removing Locales .. 239

Entering Locale Specific Message Pattern... 240
USING A RESOURCE... 240

CARTRIDGE REFERENCES.. 241
REFERENCE LINKS .. 242
PARTITIONING YOUR APPLICATION .. 244

Single Cartridge ... 244
Multiple Interdependent Cartridges ... 245
Multiple Independent Cartridges.. 245

BUILD PROCESS... 246
EXECUTING CARTRIDGE WITH REFERENCES ... 247

Simulator .. 247
Java/EJB Platform .. 247

Simple Runtime .. 247
EJB Server .. 247

BEST PRACTICES ... 248
ADDING CARTRIDGE REFERENCE.. 249
REFRESHING CARTRIDGE REFERENCE... 251
REMOVING CARTRIDGE REFERENCE ... 252
FIXING BROKEN REFERENCES ... 252

CODE GENERATION .. 254
CODE GENERATION SETTINGS DIALOG ... 254

Java/EJB Code Generation Settings Dialog... 254
General Tab (Java/EJB).. 255

Java Compiler ... 256
Compiler Options ... 256
Additional Class Path (Global) ... 256
Additional Class Path (Cartridge)... 256

Code Generation Tab (Java/EJB) ... 256
Java Package Name .. 257
Jar Name... 257
Manifest Entries.. 258
Max Class Length... 258
Data Source .. 258
Generate MDB.. 258
Unique Key Table... 259

Adding External Java Classes... 259
Language Bindings Tab (Java/EJB) ... 262
External Sources Tab (Java/EJB) ... 263

Adding External Java Source Files... 264
Adding Directories ... 265

Target Platform Tab (Java/EJB) ... 267
Generate Jar for ALSB ... 268
Enterprise Java Bean .. 268
Generate EJB Application (EAR)... 268
EJB Platforms... 268
Additional Modules .. 268
Resource References... 269

Binding Server Resources... 270
SELECTING THE DEFAULT PLATFORM ... 271
GENERATING A CARTRIDGE .. 273
DEPLOYING A CARTRIDGE... 273

SIMULATOR ... 273
SIMULATOR USER INTERFACE... 275

Simulator Menu Bar ... 275
File Menu.. 276
Edit Menu ... 276
View Menu ... 276
Options Menu ... 276
Test Menu... 277
Tools Menu... 277
Help Menu .. 278

Simulator Tool Bar ... 278
Input Pane .. 279
Output Pane.. 280
Simulator Message Window ... 281
Trace Window... 282

Log Of SQL Statements ... 282
TESTING WITH SIMULATOR ... 283

Simulator Input-Output Options ... 284
Running Test Data Set .. 288
Configuring Simulator (Java/EJB) ... 290
Simulator Options... 291

Generate Trace Messages ... 291
Cascade Exceptions .. 292

MISCELLANEOUS FEATURES ... 292
Syntax Highlighting (Data) .. 293
Viewing of Non-printable Characters .. 294
Search Text ... 294
Compare Input and Output... 295
Adding Output Channels .. 297

PERSISTENCE IN SIMULATOR (JAVA/EJB) ... 298
Defining Data Sources ... 299
Resource Reference Mapping... 302
Creating Schema .. 304
Invoking Queries .. 305
Testing a Cartridge with Persistence Support .. 307

TEST DATA GENERATION.. 308
Defining Data Generation Specification .. 309

Defining Patterns .. 311
Pattern Syntax... 312
Examples .. 313

Pattern Grammar .. 314

Generating a Test Case .. 315
Generating Test Data Set ... 316
Entering Test Data for Internal Messages.. 317

FREQUENTLY ASKED QUESTIONS.. 318
DEBUGGING ... 321

DEBUG WINDOW... 322
BREAKPOINTS ... 323

Adding Breakpoint.. 324
Deleting Breakpoint.. 325
Enable/Disable Breakpoint... 326

STEP MODES .. 327
Step Into.. 327
Step Over .. 327
Step Out .. 328

FRAMES... 328
Frame Variables... 329

Function Definition Variables .. 329
Message Mapping Variables .. 331
External message Variables.. 333
Validation Rules Variables... 335
Message Flow Variables... 336

WATCHES.. 339
Adding Watches .. 340
Deleting Watches.. 341

DEBUGGING FROM SIMULATOR .. 342
EXECUTING CARTRIDGE ENTITIES... 343

Listing Cartridge Entities.. 344
Executing Message Flows .. 345

Specifying IN/OUT scope variables as arguments ... 346
Executing Messages.. 346
Executing Message Mappings .. 347
Performance Measurement... 347
Multi Thread Testing .. 348
Executing Multiple Samples ... 349

Executing multiple samples for Flow with Multiple Arguments.. 350
WORKING WITH CARTRIDGE DESIGNER .. 351

TABLES ... 353
Rearranging Columns of a Table ... 353
Showing/Hiding Columns of a Table.. 354
Zebra Highlighting in Tables ... 354
Table Auto Formatting ... 355
Controlling Row Height in Tables.. 356

Single Line.. 357
Auto Fit Row(s) .. 359
Auto Fit Row on selection .. 359
Auto Fit Row on edit .. 359
Auto Fit... 359
Auto Fit cells in column ... 360

Expand/Collapse... 360
Tooltips for Table Elements.. 362
Viewing Table as HTML Page.. 362
Comment/Annotation Support in Tables... 363

Adding a Comment... 364
Editing a Comment... 365
Removing a Comment .. 366
Viewing a Comment... 367
Moving Between Comments in a Table ... 367

MOUNT DIRECTORY .. 368
Mounting a Directory ... 369
Working with a Mounted Directory.. 370
Editing and Saving a File ... 370
Creating a Directory .. 371
Creating a File ... 371

NEW FILE FROM TEMPLATE .. 372
Creating a New File from Template ... 372

NAVIGATION FEATURES.. 374
Moving Between Recently Visited Elements ... 374
Moving from a Field to its Validation Rule .. 374
Moving from a Field to its Mapping Rule... 375
Moving from a Field to its Mapping Usage.. 376
Moving from a Field to its Usage Items ... 377
Moving Back to a Field Definition ... 378
Moving Between Source and Destination Fields in Mapping Rules UI.. 380

DIFF .. 382
Comparing Two Nodes in the Cartridge .. 382
Comparing Two Cartridges.. 383
Differencing View... 384
Differences Pane .. 385
Exporting as HTML.. 385

CARTRIDGE PUBLISHER... 388
Generating HTML Reports... 390
Cartridge Publisher Settings .. 391

Adding Properties to the Generated Report .. 393
Removing Properties from Generated Report... 394
Arranging Properties of the Generated Report ... 394

CARTRIDGE READ-ONLY MODE.. 394
VERIFY INTEGRITY.. 395
EXPORT/IMPORT A DESIGN ELEMENT ... 396

Exporting a Design Element... 397
Importing a Design Element... 398

COPY/PASTE.. 399
Copy/Paste a Design Element .. 400

Copy a Design Element .. 400
Paste a Design Element .. 400

Copy/Paste Fields... 401
Copy Fields... 401
Paste Fields... 402

Paste Fields in the Form of XML ... 402
Paste Fields in the Form of CSV .. 402

Copy Name/Qualified Name... 403
VALIDATING DESIGN ELEMENTS... 403
FIND USAGE .. 406
FIND .. 407

Find in UI ... 408
Find Next .. 409

Find in Path.. 409
INCREMENTAL SEARCH ... 412

DRAG AND DROP... 413
Drag and Drop a Cartridge File .. 413
Drag and Drop a Data File.. 413

VERSION SUPPORT .. 414

Financial Message Designer for AquaLogic
Service Bus

Financial Message Designer for AquaLogic Service Bus is an integrated environment
used for creating and managing a cartridge, which is a model that captures message
formats, message mappings and message flows. Once a cartridge design is
completed, it can be generated into platform specific code and deployed into
Runtime. Once deployed, the Runtime becomes capable of performing the
transformations defined by that cartridge.

See Also:

Designer User Interface
Cartridge
Message
Message Mapping
Formula
Function Definition
Resources
Code Generation
Simulator
Debugging
Working With Cartridge Designer

Designer User Interface

The Designer user interface consists of a set of windows, menus and tools for
developing and managing cartridges. It can be used to create, open, update, build
and deploy cartridges.

The Designer main window is shown below.

1. Menu Bar
2. Tool Bar
3. Explorer
4. Element Heading
5. Design Element UI Pane
6. Speed Bar
7. Status Bar
8. Properties

Menu Bar

The Menu bar in Designer is shown below.

See Also:

File Menu
Edit Menu
Search Menu
View Menu
Build Menu
Tools Menu
Run Menu
Window Menu
Help Menu
Tool Bar

File Menu

New Cartridge (Ctrl+N) Creates a new cartridge.

Open Cartridge
(Ctrl+O)

Opens an existing cartridge in a new Designer
window. This allows opening multiple cartridges in a
Designer session.

Save (Ctrl+S) Saves the current cartridge.

Save As Creates a copy of the current cartridge or saves the
newly created cartridge.

Close Closes the currently open cartridge without closing
Designer.

Settings Allows the user to set the option to reopen last file on
startup and to switch between the different color
schemes viz., Blue, Green, Gray, Kunststoff and
Windows Look & Feel and to choose the required font
& size.

Recent Displays a list of the most recently used cartridges.

Exit Exits Designer.

See Also:

Menu Bar
Tool Bar

Edit Menu

Copy (Ctrl+C) Copies the current design element definition
into clipboard as XML.

Paste (Ctrl+V) Pastes the copied design element definition to
the current design element.

Import (Ctrl+Shift+I) Imports the definition of a design element from
the selected file.

Export (Ctrl+Shift+E) Exports the definition of a design element into
a file.

Back (Ctrl+Alt+Left) Takes you to the last design element you have
visited before selecting the current design
element.

Next (Ctrl+Alt+Right) Takes you to the design element that you have
visited before selecting the Back action.

Reformat Formula (Alt+F8) Auto formats formulas in the current node/all
nodes in the cartridge.

See Also:

Menu Bar
Tool Bar

Search Menu

Find (Ctrl+F)

Displays the Find dialog box, which is used to search
for an item in the currently selected design element
based on the specified search criteria.

Find Next (F3) Resumes the recent search operation.

Find in Path Displays the Find in Path dialog box, which is used
to search for design elements that contain the search
text in one of the search items specified in that dialog
box.

Incremental Search
(Ctrl+I)

Displays the Search for pop up to quickly search
occurrence of text in the current location

See Also:

Menu Bar
Tool Bar

View Menu

Status Bar (Alt+4) Hides or displays the status bar.

Tool Bar (Alt+5) Hides or displays the main window Tool Bar.

Element Heading Hides or displays the Element heading bar.

Start (Alt+0) Hides or displays the Start window

Explorer (Alt+1) Hides or displays the Explorer window.

File Explorer Hides or displays the File Explorer window

Message (Alt+2) Hides or displays the Message window.

Tasks (Alt+3) Hides or displays the Tasks window.

Search Results (Alt+6) Hides or displays the Search Results
window.

Change Log (Alt+7) Hides or displays the Change Log window

Debug (Alt+8) Hides or displays the Debug window

See Also:

Menu Bar
Tool Bar

Build Menu

Validate (Ctrl+L) Invokes the validation operation for the current
design element.

Validate All
(Ctrl+T)

Invokes the validation operation for all design
elements of the cartridge.

Generate
Cartridge (F7)

Invokes cartridge generation in the default platform.

Code Generation Displays the Code Generation Settings dialog

Settings corresponding to the default platform.

Select Default
Platform …

Select a required platform (Java/EJB) and set it as
default.

Java/EJB >
Generate Cartridge
(Java/EJB)

It first invokes the validation operation for all design
elements of the current cartridge. It then generates
the cartridge into Java/EJB components based on the
current code generation settings.

Java/EJB > Code
Generation
Settings (Java/EJB)

Displays the Java/EJB Code Generation Settings
dialog box that allows you to specify the information
used in generating the Java/EJB components. It
allows you to specify component names, bind the
reference class names with the concrete Java classes
and specify references from one component to other
component(s).

See Also:

Menu Bar
Tool Bar

Tools Menu

Diff Cartridges Used for comparing two cartridges

Cartridge Publisher Generates HTML docs for the cartridge and its child
design elements into the specified directory.

Deployer Used to deploy/undeploy the generated components
under the platform specific Runtime. The supported
Runtime is EJB.

SQL Tools Displays a submenu of database tools.

SQL Tools >
Schema Generator

This can be used to generate db independent XML
schema files as well as db specific SQL schema files
for the tables in a data source.

SQL Tools > SQL
Generator

This can be used to generate db specific SQL
commands for the given XML schema file, which is a
db independent way of specifying SQL commands.

SQL Tools >
Execute SQL

This tool executes a set of SQL commands against the
specified data source, based on the given schema file.

This tool supports both XML schema files and
SQL schema files.

SQL Tools > SQL
Console

This tool can be used to execute SQL commands
against the specified data source just like Oracle
SQL*Plus.

XML Tools > DTD
Generator

Generates a DTD file from the structure of an XML
file.

See Also:

Menu Bar
Tool Bar

Run Menu

Simulator (F5) Launches Simulator corresponding to the default
platform

Toggle Breakpoint… (F9) Adds a new Breakpoint or Deletes an existing
Breakpoint

Step Over (F10) Runs the current statement as a unit and steps
to the next statement

Step Into (F11) Runs the current statement, steps Into any sub
functions in it and then advances to the next
statement

Step Out (Shift+F11) It advances past the remainder of the code to
be executed in the current location and then
advances to the statement immediately
following the one that called the current location

View Debug Window (Alt+8) Hides or Displays the Debug window

See Also:

Menu Bar
Tool Bar

Window Menu

New Window
(Ctrl+W)

Opens a new Designer window

<Cartridge window
name>

Activates the selected cartridge window (brings the
cartridge to front).

<Simulator window
name>

Activates the selected simulator window.

See Also:

Menu Bar
Tool Bar

New Window

Designer provides an easy way for opening new designer window and navigating to
other open designer and simulator windows using New Window feature. When we
select New Window menu item from Window menu bar, a new Designer window will
open.

Selecting the cartridge name from the list will navigate to the corresponding
cartridge ie, the particular Cartridge gets activated (brought to front). When you
open Designer for the first time, ‘Untitled’ will appear as sub Menu in Window Menu,
when the cartridge is saved, Untitled will be replaced by the cartridge name. When
you double click a cartridge from Windows Explorer the cartridge opens in a new
instance of Designer and Cartridge name will appear as sub Menu in Window Menu.

As you can see the window menu lists all cartridges and simulator windows that are
currently open.

See Also:

Menu Bar
Tool Bar

Help Menu

Designer Opens the help document for Designer

Java Runtime Help Opens the help document for Java Runtime

Version Info Displays Designer version and Plug-in versions. It
also displays versions of Simulator and Code
Generator.

About Designer Displays the version, build and copyright
information about Designer.

See Also:

Menu Bar
Tool Bar

Tool Bar

The tool bar contains the following icons for accessing frequently used operations.

 The Back button takes you to the last design element you
have visited before selecting the current design element.

 The Next button takes you to the design element that you
have visited before selecting the Back action.

 Creates a new cartridge.

 Opens an existing cartridge.

 Opens Repository client

 Saves the current cartridge.

 Initializes the search operation.

 Allows searching for an item in the currently selected
design element based on the search text.

 Resumes the recent search operation.

 Displays the Edit Formula (F4) dialog box that helps in
specifying a formula by providing easy access to the
formula functions and data fields.

 Invokes the validation operation for all design elements of
the cartridge.

 Invokes cartridge generation in the default platform.

 Displays the Code Generation Settings dialog corresponding
to the default platform.

Allows selecting the default platform

 Launches Simulator corresponding to the default platform.

 Displays the CHM for Designer

 Shows the Help Tracker icon and opens the Help file for the
selected UI

See Also:

Menu Bar

Explorer

The Explorer window displays the contents of a cartridge in the form of a tree
structure. It displays the cartridge design element and all of its child elements such
as internal/external message, persistence designer, mapping, message flow and so
on. The tree structure coupled with expand/collapse functionality makes moving
between various design elements intuitive.

The Explorer window is shown below.

The user can show/hide the Explorer window either by selecting the Explorer menu
item of the View menu or by clicking on the Explorer button on the Speed Bar.

When the Explorer window is open, it can be closed by clicking on the Close button
present in the right corner of its title bar.

The ‘Auto Hide’ mode (‘Pinned’ mode) of the Explorer window can be enabled or
disabled, by toggling the ‘Auto Hide’ button present in its title bar. When the ‘Auto
Hide’ mode is enabled (indicated by the icon), the Explorer window hides itself
when it loses focus. When the ‘Auto Hide’ mode is disabled (indicated by the icon),
the Explorer window remains visible even when it loses focus.

Clicking on the Copy icon present in the Explorer window toolbar copies the
definition of the selected element into clipboard. See the Copy/Paste a Design
Element section for more information.

Clicking on the Paste icon present in the Explorer window toolbar imports the
recently copied design element definition. See the Copy/Paste section for more
information.

The Move Node drop down menu pops up a menu as shown below and the items
present in it can be used to rearrange the position of the design element nodes in
the Explorer tree. See the Arranging Nodes section for more information.

The New Item drop down menu pops up a separate menu and the items present
in it can be used to create new folders, internal/external messages, mappings,
message flows, Resources and function definitions.

Select ‘Mount Directory’ menu item from the ‘New Item’ drop down in Explorer
toolbar, to mount one or more file system directories so that you can manage
external cartridge resources such as sources files, XML, DTD, etc. from within
Designer.

Clicking on the Simulator tool icon launches Simulator in default platform. The
design element selected in Explorer at the time of launching Simulator is
automatically selected for execution.

The icons present in Explorer tree convey the type of design element.

 Cartridge

 Internal Message

 Internal Format

 Processing Rules

 Persistence Designer

 Database Table Design

 Queries

 Database Mapping

 External Message

 External Format

 Validation Rules

 Mapping Rules

 WebForms Designer

 WebForm

 Message Flow

 Reference

 Folder

See Also:

Arranging Nodes
Delete Node
Designer User Interface

Arranging Nodes

The Move Node drop down menu present in the Explorer toolbar pops up a
separate menu as shown below and the items present in it can be used to rearrange
the position of the design element nodes in the Explorer tree. This is especially useful
in cartridges making use of Folder nodes to organize other design element nodes.

Once the required design element node is selected, the user can click on these items
to rearrange the position of that node within the Explorer tree.

The following table describes the icons used to arrange the nodes of the Explorer
tree.

Icon Purpose Description

 Move Up This moves the selected node up by one position within
the same Folder/cartridge node. This icon is disabled
when the top of that Folder/cartridge node is reached.

 Move Down This moves the selected node down by one position
within the same Folder/cartridge node. This icon is
disabled when the bottom of that Folder/cartridge node
is reached.

 Move Left This promotes the selected node by one level in the
explorer tree hierarchy. This means that the selected
node is promoted to the same level that of its previous
parent node.

 The node is positioned at the bottom of the new
parent node.

 Move Right This demotes the selected node by one level in the
explorer tree hierarchy. This icon is enabled only when
the selected node is positioned immediately after a
Folder node, which is at the same level. Clicking on
this icon makes the selected node a child of that Folder
node. The node is positioned at the bottom of that

Folder node.

See Also:

Explorer
Folders

Delete Node

To remove any node from the cartridge right click the node and select ‘Delete’ menu
item. ‘Confirm Delete’ dialog will be displayed.

Click ‘Yes’ to delete the selected node.

See Also:

Explorer

File Explorer

The File Explorer displays files in the file system as a tree. Double clicking a file
opens it using the associated application. Double clicking a cartridge opens it in
Designer.

1. Select the ‘View Menu’.

2. Select ‘File Explorer’ menu item. The ‘File Explorer’ is displayed.

Open File

Select a file in the File Explorer. Right Click and select ‘Open File’ menu. The selected
file is opened in windows explorer.

Explore as Root

Select a directory in the File Explorer. Right Click and select ‘Explore as Root’ menu.
The selected directory is set as the root directory for the file explorer.

File Explorer Filters

The file explorer filter can be used to filter the files that are displayed in the explorer.
Select the filter button in the explorer toolbar. The following dialog will be displayed.

To hide files with a certain extension select ‘Hide files with extension’ option button
and add the file extension (e.g. xml) to be ignored in the text box. Press ok. The files
with the specified extension will not be displayed in the explorer.

To show only files with a certain extension select the ‘Show files with extension’
option button and add the extension in the text field. Only files with the specified
extension will be displayed in the explorer.

If multiple extensions are specified they should be separated by ‘;’ character.

See Also:

Designer User Interface

Getting Started Pane

This pane provides convenient links to get started. The recently accessed cartridges
names are displayed. Clicking the name opens the cartridge. Links for creating a new
cartridge or opening a cartridge that is not in the recent file list are also provided in
this pane. Link to Help Index is provided.

See Also:

Designer User Interface

Design Element UI Pane

When a design element node is selected in the Explorer pane, the user interface of
the corresponding design element is displayed in this pane. It usually consists of a
toolbar that can be used in defining/updating that design element. The
Internal/External message design element UI contains ‘Tree View’ and ‘Properties’
buttons in tool bar.

See Also:

Designer User Interface
Tree View
Properties

Tree View

The Tree View helps user to view the table contents of a message in a tree structure.

The button ‘ ’ when enabled, displays the tree structure for the fields/section in
the table.

All operations like adding a field/section, deleting a field/section etc., related to a
message can be performed in the Tree structure.

For an internal message the root node name in the Tree structure is the name of the
internal message and child nodes are the ‘fields’ or ‘sections’. For an external
message, the tree view depends on the layer selected. The root node in a tree
structure is ‘Header’ for a Header layer, ‘Data’ for a Data layer and ‘Trailer’ for a
Trailer layer and child nodes are the fields’ or ‘sections’.

Consider the following Internal message with fields and a section with sub fields.

The ‘Toggle Tree View’ icon that is present in the tool bar when enabled ‘ ’
displays the corresponding tree structure for the field/section in table view.

The field/section that was highlighted in the table structure appears as selected in
the corresponding tree structure. In a tree structure, the name of the field/section or
its data type is editable. Any section with sub fields is collapsible in the tree
structure. The occurrence property of a field or a section in table view can also be
viewed in the tree structure.

In the above diagram, the section ‘Item’ appears with the occurrence property
‘Mandatory, Repeating’. Right clicking inside the tree structure displays a pop up with
context menu items Show Annotation and Show Type.

Show Annotation menu item when selected shows the description of all the
fields/section and hides the description when selected again. The Show Type menu
item is selected by default. The ‘Show Type’ menu item when toggled hides the data
type of all the fields/section in the UI.

See Also:

Properties

Properties

The ‘Properties’ button ‘ ’ enables the user to show or hide the ‘Properties’ window.

The ‘Properties’ button is ‘On‘ by default, click to toggle it. Enabling it would
display the Properties window in the bottom of the Designer UI.

When the Properties window is open, clicking on the close button in its title bar can
close it.

Right clicking in the title bar of Properties window, displays a pop up with check box
‘Properties’. Deselecting the ‘Properties’ check box would hide the Properties window
from the Designer UI.

As can be seen in the above picture, the properties window consists of properties
corresponding to the Field/Section selected in the message.

See Also:

Field Properties
Section Properties
Design Element UI Pane

Message Window

The Message window displays messages generated during validation and code
generation as shown below.

When the Message window displays a list of error messages as shown in the
following picture, the user can double click on a particular error message to display
the corresponding design element user interface. The selected error message is also
displayed in the status bar.

As can be seen in the above picture, moving the mouse pointer over the
error icon displays the corresponding error message as tool tip.

The user can show/hide the Message window either by selecting the Message menu
item of the View menu or by clicking on the Message button on the Speed Bar.

When the Message window is open, it can be closed by clicking on the Close button
present in its title bar.

The Auto Hide mode (Pinned mode) of the Message window can be enabled or
disabled, by toggling the Auto Hide button present in its title bar. When Auto Hide
mode is enabled (indicated by the icon), the Message window hides itself when it
loses focus. When Auto Hide mode is disabled (indicated by the icon), the Message
window remains visible even when it loses focus.

Right clicking inside the Message window displays a popup menu with two items,
Clear and Copy. While the Clear menu item clears the content of the Message
window, the Copy menu item copies the selected text of the Message window to the
clipboard.

See Also:

Designer User Interface

Task Window

When a design element is validated, validation errors and warnings are listed as
tasks in the Tasks window. New tasks are added to this list whenever new
errors/warnings occur. A task is removed from this list only when the corresponding
error/warning is rectified.

In the following picture, the Tasks window (the bottom pane) is shown with a task
selected.

 In the Tasks window, the Description column displays the error message.

As can be seen in the picture given below, if you move the mouse pointer over
the description of a task, it turns into a hyperlink. If clicked, it takes you to the
item causing the validation error such as a field/section, a validation rule or a
mapping rule.

 A tool tip with full error message is also displayed when the mouse pointer is

moved over the description of a task.

 The Node column displays the name of the design element node that contains the

item causing the error/warning.

 The Location column displays the name of the item causing the error/warning.

 Tasks that correspond to the same design element as that of the currently

selected task are identified by the Tasks in active node icon displayed in the
first column.

Error codes corresponding to the errors/warnings can be displayed by selecting the
Code menu item from the short-cut menu displayed when right-clicking inside the
column title row.

The following picture shows the Tasks table with error code column.

Another useful feature while working with the Tasks table is generating an HTML
page for it. The HTML page is a sort of quick view of the current table information.
The structure of the generated HTML page will be similar to the current appearance

of the table. If you have hidden a column or reordered the columns, it will be
reflected in the generated HTML page.

To generate the HTML page, select the View As HTML menu item from the short-cut
menu of the Tasks table, as shown in the above picture. Right-clicking anywhere
inside the table, with the exception of the column title row, displays the short-cut
menu.

See Also:

Designer User Interface

Search Results Window

The items that match the criteria specified while performing ‘Find In Path’ or ‘Fin
Usage’ operations are listed in the Search Results auxiliary window as shown below.

The window displays the search results in four columns

 Node. The node where a match for the search has occurred. The node type (e.g.

External Format - FIX) and the node name (Order41IN) are displayed.

 Location. Displays the name of the matched item.

 Property. Displays the matched attribute of the item. (E.g. Name, Description)

 Value. Displays the matched text. If for e.g. the match has occurred for a field in

its description property, the value of the description is displayed in this column.

To navigate to the location where the match has occurred, move mouse over the
Node column. A hyperlink is displayed. Click it to navigate to the location.

Jump To Location

To navigate to the location where the match has occurred the user can also select
the row in the search results table, right click it and select ‘Jump to Location’ menu
item.

View As HTML

To view the search results in the HTML format right click the search results window
and select ‘View As HTML’ menu item. The search results are displayed in HTML
form.

See Also:

Find in Path
Find Usage

Status Bar

The status bar displays status of the current operation. It also displays the
error/warning message currently selected in the Message window.

The status bar is shown below.

See Also:

Designer User Interface

Speed Bar

Speed Bar displays buttons corresponding to auxiliary windows. The user can
show/hide an auxiliary window by toggling the corresponding button.

See Also:

Designer User Interface

Change Log Window

This feature allows the user to maintain a change log of a Cartridge. To edit/view the
‘Change Log’ window, click on the Change Log link displayed in the ‘Getting Started’
pane of Designer when a Cartridge is open.

To add a log entry, click on the ‘Add Change Log Entry’ tool icon displayed on the
left of the ‘Change Log’ window. Once a new row is added to the ‘Change Log’
window, you can edit the content each column. To remove a log entry, select the row
to be removed in the ‘Change Log’ window and then click on the ‘Remove Change
Log Entry’ tool icon .

See Also:

Designer User Interface

Element Heading

It is the title bar of the Design Element UI pane. It displays the type and name of the
current design element.

See Also:

Designer User Interface

Designer Settings

Designer settings that can be specified are

 Option to reopen last file on startup and to
 Color schemes viz., Blue, Green, Gray, Plastic Look & Feel and Windows Look &

Feel
 Required font & size for all text in designer and
 Required font & size for codes in designer.

1. Click on the File menu.

2. Select the Settings menu item.

The Settings dialog box appears.

You can specify the designer settings in this dialog.

Note:

The designer must be restarted after making changes to this dialog for the changes
to take effect.

See Also:

Designer User Interface

Recent File List

The recent file list provided by Designer gives easy access to the recently opened
cartridges.

Selecting the File > Recent menu item displays a submenu consisting of the most
recently used cartridges. The user can select one to open the corresponding
cartridge. The shortcut key Ctrl-J can be used to open the most recently used
cartridge.

See Also:

Tables
Navigation Features
Diff
Cartridge Publisher
Cartridge Read-Only Mode
Verify Integrity
Export/Import a Design Element
Copy/Paste
Validating Design Elements
Find
Drag and Drop

Exiting Designer

Follow the steps given below to exit Designer.

1. Click on the File menu.

2. Select the ‘Exit’ menu item.

3. The save cartridge dialog is displayed.

4. Press ‘Yes’ to save the cartridge and exit the designer. If you do not want to save

the cartridge press ‘No’. The cartridge will not be saved and designer will be
exited. Press ‘Cancel’ if you do not want to exit designer.

See Also:

Designer User Interface

Cartridge

A cartridge is a model that captures,
 Format definitions of internal and external messages
 Transformations between internal and external messages
 The workflow that defines the behavior of the runtime application on receiving a

new message.

Cartridge is saved as a file with car extension.

See Also:

Creating a Cartridge
Opening a Cartridge
Saving a Cartridge
Validating a Cartridge
Closing a Cartridge
Cartridge References
Designer User Interface
Message
Message Mapping
Formula
Function Definition
Code Generation
Simulator
Working With Cartridge Designer

Creating a Cartridge

Follow the steps given below to create a new cartridge.

1. Click on the File menu.

2. Select the New Cartridge menu item.

The New Cartridge dialog box appears.

3. Enter the name of the cartridge and click the OK button.

4. The cartridge design element node appears at the root of the explorer pane. The

cartridge design element UI is shown in the following picture.

5. Change the version number of the cartridge in the Version text box, if required.

6. Enter the description of the cartridge in the Description text area. This along with

the version number helps in identifying a cartridge.

See Also:

Cartridge
Opening a Cartridge
Saving a Cartridge
Validating a Cartridge
Cartridge References

Opening a Cartridge

Follow the steps given below to open an existing cartridge.

1. Click on the File menu.

2. Select the Open Cartridge menu item.

3. The Open Cartridge dialog box appears.

4. Navigate to the directory that contains the cartridge file and select it.

5. Select the Open as read-only check box if the cartridge has to be opened as

read-only.

6. Click the Open button.

7. If the cartridge contains cartridge references and if there are broken references,

for each broken reference, it will display the ‘Cartridge Reference Error' message
box and asks you whether you wish to fix it.

8. If you select the Yes button, it will show you the ‘Resolve Cartridge Reference’

dialog.

9. Navigate to the directory that contains the cartridge corresponding to the broken

link and select it.

10. Click the Open button. When all the broken references are fixed, the main

cartridge will be opened in the Designer window.

The cartridge is opened in the same frame if it does not have a cartridge already
open. If a cartridge is already opened in the current frame, the new cartridge is
opened is a new frame.

See the section Cartridge Read-Only Mode for more information on opening a
cartridge in read-only mode.

When you save the cartridge, Designer will save the new locations selected for the
broken references.

See Also:

Cartridge
Creating a Cartridge
Saving a Cartridge
Validating a Cartridge
Cartridge References

Saving a Cartridge

Follow the steps given below to save a newly created cartridge or to save changes
made to a cartridge.

1. Select the File menu.

2. Select the Save menu item.

3. If the cartridge is new, the Save Cartridge As dialog box appears.

4. Change to the directory under which you want to save the cartridge file.

5. Enter a name for the cartridge file in the File name text box and click the Save

button.

Note:

 Designer prompts the user to save the current cartridge when the user tries to
create a new cartridge or tries to open another cartridge. The user is also
prompted to save the current cartridge, when the user exits Designer.

 If the cartridge is already saved in a file, selecting the File > Save menu item
simply updates that cartridge file.

 Use the File > Save As menu item to save the current cartridge in a different file

from that of the original cartridge file.

See Also:

Cartridge
Creating a Cartridge
Opening a Cartridge
Validating a Cartridge
Cartridge References

Validating a Cartridge

A cartridge is a model that captures message definitions, transformations and
message flows. This model is later converted to platform specific executable code.
For this to be possible, the cartridge model should adhere to some basic rules. These
rules enforce certain constraints in the model so that processing of this model does
not result in errors. For instance, the name of a field cannot be empty. If this rule is
violated it would be difficult to convert the cartridge model to platform specific code.

Select the Validate All menu item from the Build menu to validate the cartridge
design element and all of its child elements.

Validating the cartridge ensures that there are no errors that would make the code
generation fail.

You can also validate individual elements by selecting the ‘Validate’ menu item from
the short-cut menu that appears when right-clicking that element in the Explorer
window.

Note

 The cartridge is automatically validated before code generation.

See Also:

Validating Design Elements
Cartridge
Creating a Cartridge
Opening a Cartridge
Saving a Cartridge
Cartridge References

Closing a Cartridge

1. Select the File menu.

2. Select the Close menu item.

3. Save Cartridge dialog appears as shown below.

4. Press ‘Yes’ to save and the cartridge and exit. If you don’t want to save the

cartridge then press ‘No’. The cartridge will be closed without being saved. If you
don’t want to close the cartridge press ‘Cancel’.

See Also:

Creating a Cartridge
Opening a Cartridge
Saving a Cartridge
Validating a Cartridge

Adding Items to Cartridge

The items that can be added to a cartridge are

Message
Message Mapping
Function Definition
Resources
Cartridge References
Folders

To add an item to Cartridge select the cartridge node, right click and select the ‘Add
Item’ menu item

Select the item that you want to add.

You can also select the cartridge and click on the ‘New Item’ button in the cartridge
explorer toolbar to add items to the cartridge.

To add a ‘Reference’ to cartridge, right click the cartridge node and select ‘New
Reference’ menu item to add a new reference to the cartridge.

See Also:

Creating a Cartridge
Opening a Cartridge
Saving a Cartridge
Validating a Cartridge
Closing a Cartridge
Cartridge Properties
Cartridge Location

Cartridge Properties

The general properties of a cartridge like ‘Author’, ‘Subject’, comments about the
cartridge etc. can be viewed and edited in the cartridge properties dialog. Right click
the cartridge node and select ‘Properties’ from the context menu.

See Also:

Adding Items In Cartridge

Creating a Cartridge

Cartridge Location

One of the common use cases is to go to the Cartridge directory. The user may want
to use the deployed Jars, run the command line version, back up the cartridge etc. It
may be irritating to the user to locate the cartridge directory by using the explorer,
particularly when the cartridge is deep inside some nested directory. The ‘Path’ menu
provides two sub menus that let you open cartridge in explorer and to copy the
cartridge path to clipboard.

1. Right click the cartridge node and select ‘Path’ menu.

2. Select ‘Open Containing Folder’. The folder in which the cartridge is located is

opened in explorer.

3. To locate the cartridge in ‘File Explorer, select ‘Locate in File Explorer’ menu item

under ‘Path’ menu. The ‘File Explorer’ window will be displayed with the cartridge
selected.

4. To copy the path of the cartridge select ‘Copy Path’ menu item under ‘Path’

menu. The path of the cartridge will be copied to clipboard. You can then paste
the path in Explorer to locate the folder of the cartridge.

See Also:

Explorer
File Explorer

Folders

Folders are just a convenient way of grouping related design elements. Folders do
not have any other significance and has no runtime representation.

See Also:

Adding a Folder
Deleting a Folder

Adding a Folder

A folder can be added as a child of the cartridge node or another folder.

Follow the steps given below to create a new folder node.

1. In the Explorer window, select a cartridge node or a folder node.

2. Select the New Folder menu item from the short-cut menu that appears when

you right-click the node or from the New Item drop down menu present in
the Explorer toolbar.

3. The Folder dialog box appears.

4. Enter a name for the new folder.

5. Click the OK button to create the new folder.

See Also:

Deleting a Folder

Deleting a Folder

1. Right click on the ‘Folder’ element and select ‘Delete’ menu item.

2. Click ‘OK’ in the delete dialog that appears to delete the folder.

Note:

When a folder is deleted, the design elements that are added under it will also be
deleted.

See Also:
Adding a Folder

Message

Designer supports two types of messages:

1. Internal Message
2. External Message

While an internal message is defined by the enterprise for a particular processing, an
external message is defined outside the enterprise. Once the transformation between

an internal message and an external message is defined, the enterprise is able to
process that external message.

See Also:

Designer User Interface
Cartridge
Message Mapping
Formula
Function Definition
Code Generation
Simulator
Working With Cartridge Designer

Internal Message

An internal message is a message standardized for use by the enterprise for a
particular processing. In Designer, an internal message with its associated
processing is represented by an internal message design element.

The internal message design element consists of two child elements:
1. Internal Format
2. Validation Rules

 Here, the Internal Format design element is used for defining the internal

message structure consisting of data fields and data sections.

 The Validation Rules design element is used to check the conformance of data

to the business rules. The validation rules node appears with name ‘Default’.

During cartridge generation, a component is generated for an internal message. This
component is later deployed under Runtime. Once an internal message component is
deployed, a client can look it up by using its name for processing the internal
message represented by it.

See Also:

Creating an Internal Message
Defining an Internal Message Format
Internal Message Processing
Internal Message Validation Rules
Deleting an Internal Message
Adding Persistence Designer
External Message
Validation Rules
Alias

Tracing Messages in a Cartridge to a Standard
Message

Creating an Internal Message

Follow the steps given below to add an internal message element to the current
cartridge.

1. Select the cartridge design element.

2. Select the New Internal Message from the ‘Add Item’ drop down list present in

the Explorer toolbar.

3. The New Internal Message dialog box appears.

4. Enter a name for the internal message and click the OK button.

5. In the explorer pane, a new internal message node with the specified name is

created under the cartridge node with its primary child nodes – Internal Format
and Validation Rules.

6. Enter the internal message details in the internal message design element UI

shown below. Apart from the version and usage information, which are entered in
the Version and Description text fields respectively, the user can also enter
information in the Standard Details section that is used in tracing the internal
message.

See the Tracing Messages in a Cartridge to a Standard section for more information.

See Also:

Defining an Internal Message Format
Internal Message Processing
Deleting an Internal Message
Adding Persistence Designer
Internal Message

Defining an Internal Message Format

The Internal Format UI helps in defining the internal message structure by providing
facility for adding its constituent fields and sections.

See Also:

Adding a Field
Field Properties
Adding a Section
Section Properties
Platform Specific Attributes
Arranging Fields of an Internal Message Format
Deleting Fields of an Internal Message Format
Importing Field Structure from External Sources
Specifying Properties for Multiple Fields/Sections
Creating an Internal Message
Internal Message Processing
Internal Message Validation Rules
Deleting an Internal Message
Adding Persistence Designer
Internal Message

Adding a Field

A data field or simply a field represents a single item of information.

Follow the steps given below to add a new field to the internal message format.

1. Select the Internal Format design element in the explorer pane.

2. The Internal Format UI is shown in the Design Element UI pane.

3. Click on the Add New Field button in the toolbar at the top of the
Internal Format UI.

4. A new row appears in the internal format table and its Enterprise Element column
is selected by default. If you have selected a row before clicking on the Add New
Field button, the new row is inserted immediately after the selected row.

5. Type in a name for the new field.

6. Type in the alias name of the new field in the Alias column, if required.

7. The Alias column is hidden by default. Select the Alias menu item from the

short-cut menu that appears when you right-click on the header row of the
internal format table.

8. See the section Alias for more information on using the alias names.

9. Select the data type of the new field from the list of supported data types
(BigDecimal, BigInteger, Binary, Boolean, Character, DateOnly, DateTime,
Double, Float, ISODate, ISODateTime, ISOTime, Integer, Long, String and
TimeOnly) that appears in the Type column.

10. Type in the description of the new field in the Description column, if required.

11. Specify the field properties. See the section Specifying the Field Properties for

more information.

12. Specify the database related properties of that field by clicking on the Platform

Specific Attributes button in the Properties panel. See the section Specifying
the Platform Specific Attributes for more information.

See Also:

Field Properties
Adding a Section

Field Properties

Hidden Property

Set the hidden property of a field by selecting or deselecting the check box that
appears in the Hidden column of the internal format table. A hidden field cannot be
used in mapping. This means that an input mapping cannot be specified for a hidden
field and it cannot be used in an output mapping. So a hidden field is not shown in
the Mapping Rules UI. But, a hidden field can be used in processing of an internal
message.

See the Mappings section for more information on the types of mappings. See the
Internal Message Processing and Internal Message validation section for more
information on processing/validating an internal message.

Required Property

Set the required property of a field by selecting/deselecting the Not Null check box
in the Properties panel that appears at the bottom of the Internal Format UI. If a
required field is not assigned a value even after internal message processing is over,
an error is generated indicating the failure of the not null check. Designer indicates
an optional field by displaying the ? indicator symbol besides the field icon. No
indicator symbol is displayed in case of mandatory fields. In the following picture all
fields except the lastname field are mandatory.

Default Value Property

A default value can be specified for a field in the Default Value text box of the
Properties panel. The default value is assigned to that field only if it is not assigned
a value during input mapping. The default value is overwritten if a value is assigned
to that field during the internal message processing, which is performed next.

See the Message Mapping section for more information on the types of mappings.
See the Internal Message Processing section for more information on processing an
internal message.

The following points should be noted while assigning a default value for a field.

 The data type of the value should match the data type of the field.

 The default value for a DateOnly type field should be in the format yyyyMMdd.

 While specifying the default value for a String type field, the string value should

not be enclosed in double quotes.

 An expression cannot be used to specify a default value.

Length Property

This property is applicable only for a String type field. This is used to specify the
maximum number of characters allowed for that field value. This property is used in
XSD export, db schema generation and webforms generation. But validation is not
done for the length of the internal message fields when using NOXML as input.

See Also:

Defining an Internal Message Format

Adding a Section

A data section or simply a section is a set of related fields. A section also has the
property of repeating. It means that the entire set of constituent fields can occur a
number of times. For these reasons, a section can be thought of as an array of
elements, where each element consists of all constituent fields.

For creating a section with its constituent fields, the user should first create a section
and then add its constituent fields.

Follow the steps given below to add a new section to the internal message format.

1. Select the internal format design element in the explorer pane.

2. The Internal Format UI is shown in the Design Element UI pane.

3. Click on the Add New Section button in the Internal Format UI toolbar.

4. A new row appears in the internal format table and its Enterprise Element column

is selected by default. If you have selected a row before clicking on the Add New
Section button, the new row is inserted right after the selected row.

5. Type in a name for the new section.

6. Type in the alias name of the new section in the Alias column, if required.

7. The Alias column is hidden by default. Select the Alias menu item from the

short-cut menu that appears when you right-click on the header row of the
internal format table.

8. See the section Alias for more information on using the alias names.

9. Type in the description of the new section in the Description column.

10. Specify the section properties in the Properties panel that appears at the

bottom of the Internal Format UI. See the section Section Properties for more
information.

11. Specify the database related properties of that section by clicking on the

Platform Specific Attributes button in the Properties panel. See the section
Platform Specific Attributes for more information.

See Also:

Section Properties
Adding a Field

Section Properties

The section properties specify its repeating and optional attributes.

Min Occurs Property

This property specifies the minimum number of occurrences for a section. A ‘Min
Occurs’ value of 0 means that this section is optional (there can be no occurrences
for this section in the message).

Max Occurs Property

This property specifies the maximum number of occurrences for a section. A ‘Max
Occurs’ value of 1 means that this section is non-repeating (there can be only one
occurrence for this section in the message) and a value more than one means that
this section is repeating. The special value for this property ‘Unbounded’ means that
there can be any number of occurrences for this section.

The table given below describes the repeating and optional characteristics of a
section indicated by its ‘Min Occurs’ and ‘Max Occurs’ values. It also shows the
corresponding cardinal indicator displayed by the Designer for each type of section.

Section Properties

Min
Occurs

Max
Occurs

Cardinal
Indicator

Description

0 Unbounded * The section is optional and
repeating.

0 1 ? The section is optional and
non-repeating.

1 Unbounded + The section is non-optional
and repeating.

1 1 No
indicator

The section is non-optional
and non-repeating.

These cardinal indicators, which comply with XML convention, are shown beside the
section icons as shown in the following picture.

See Also:

Defining an Internal Message Format

Platform Specific Attributes

It is often required to persist an internal message in a database. In Designer, this
can be done by adding a persistence designer to the internal message and adding a
Persist activity (which refers to that internal message) in the corresponding message
flow.

The internal format definition is used in creating the persistence designer. A section
in the internal format is represented by a database table and a field is represented
by a corresponding database field.

The platform specific attributes of an internal message field/section determine the
database properties of the corresponding database field/table.

During cartridge generation, Designer generates a schema file based on these
platform specific attributes. This schema file can later be used to generate database
specific SQL command files, using the SQL Generator tool.

See Also:

Platform Specific Attributes of a Field
Platform Specific Attributes of a Section

Platform Specific Attributes of a Field

The platform specific attributes specified for an internal message field determine the
attributes of the corresponding database column.

The Platform Attributes dialog box for a field is shown below.

Column Name Attribute

The value of this attribute becomes the name of the corresponding database field.
Designer generates an initial value for this field from the field name, based on
general database field name conventions. For example, space characters in the
original field name are replaced by an underscore character. But it can be changed
based on database and application specific requirements, such as limiting the length
of the name.

SQL Type Attribute

This determines the type of the corresponding database field. The SQL Type list box
shows a set of SQL types based on the data type of the internal message field. The
Designer data types and their corresponding SQL types are shown below. The user
has to select one of the SQL types based on the underlying database platform and
application requirements.

Designer Type Corresponding SQL Types

BigDecimal DECIMAL

BigInteger BIGINT

Binary VARBINARY

LONGVARBINARY

BINARY

BLOB

Boolean BIT

Character CHAR

DateOnly DATE

DateTime DATE

TIME

TIMESTAMP

Double DOUBLE

DECIMAL

NUMERIC

Float REAL

FLOAT

Integer SMALLINT

INTEGER

TINYINT

Long BIGINT

String VARCHAR

LONGVARCHAR

TimeOnly TIME

Length Attribute

This attribute depends on the Designer type of the field.

For a String type field, it specifies the maximum number of characters allowed for
the corresponding field value.

For Integer, Long and BigInteger type fields, it specifies the maximum number of
digits allowed for the corresponding field value.

For Float, Double and BigDecimal type fields, the user needs to specify both the
entire length of the corresponding field value and the length of its decimal part, as
required in the Number type of Oracle.

For a Binary type field, it specifies the maximum number of bytes allowed for the
corresponding field value.

This attribute is not applicable for Character, Boolean and all forms of date/time
fields.

Not Null Attribute

This attribute determines the Not Null property of the corresponding data field. If set
to true, a value should always be present for the corresponding data field.

Primary Key Attribute

Setting this attribute to true makes the corresponding data field the primary key
column and automatically sets the Not Null attribute to true.

Auto Generate Attribute

This attribute is applicable only if the primary key attribute of the corresponding field
is set to true. Runtime takes care of generating the primary key value if this attribute
is set to true.

The persistence designer uses a unique key generator based on a unique key
generation table.

See the Adding Persistence Designer section for information on using the persistence
designer to persist internal messages.

Foreign Key Attribute

The Foreign Key Table and Foreign Key Column text boxes, shown when this
attribute is set to true, are used to specify the table and its column referred to by the
database column corresponding to this field.

Platform Specific Attributes of a Section

The platform specific attributes specified for an internal message section are used in
defining the corresponding database table.

Table Name Attribute

The value of this attribute becomes the name of the database table corresponding to
the currently selected section.

Schema Attribute

This attribute specifies the database schema under which the table corresponding to
the currently selected section needs to be created.

See Also:

Defining an Internal Message Format

Arranging Fields of an Internal Message Format

The icons with arrow images in the Internal Format UI toolbar can be used to
rearrange the position of the fields of an internal message format.

Once the required fields are selected, the user can click on these icons to arrange the
position of these fields within the internal message format. Use the selection column
(the empty column at the left) to select a field. To select a set of continuous fields,
select the first field in the set and then SHIFT-click on the last field. Use
CTRL-clicking to select a non-continuous field. CTRL-clicking on a selected field
deselects it.

The following table describes the icons used to arrange the fields of an internal
message format:

Ico
n

Purpose Description

 Move Selection Up This moves the selected field(s) up by one position
within the same level of internal message format
(within the same section or within the top level). This
icon is disabled when the top of that level is reached.

 Move Selection
Down

This moves the selected field(s) down by one position
within the same level of internal message format
(within the same section or within the top level). This
icon is disabled when the bottom of that level is
reached.

 Move Selection Left This promotes the selected field(s) by one level in the
internal message format hierarchy. This means that
the selected fields are moved to the same level of their
previous parent.

 Move Selection
Right

This demotes the selected field(s) by one level in the
internal message format hierarchy. This icon is enabled
only when the selected fields are positioned
immediately after a section, which is at the same level
of the selected field(s). Clicking on this icon makes the
selected fields children of that section. The fields are
positioned at the bottom of that section.

See Also:

Defining an Internal Message Format

Deleting Fields of an Internal Message Format

Follow the steps given below to remove a set of fields from the internal message
format at once.

1. Select the fields/sections to be removed.

2. SHIFT-click in the selection column to select a set of continuous fields and

CTRL-click in the selection column to select any non-continuous field without
affecting the current selection.

3. Click on the Remove Selected Field(s) icon .

Note

 If a section is removed, all of its constituent fields are also removed.

See Also:

Defining an Internal Message Format

Importing Internal Message Field Structure from External
Sources

The Import Field Structure icon available in the Internal Format UI helps in
defining the internal message format by importing field structure from database
tables, XML schema files and DTD files.

See Also:

Steps to Import Field Structure From Database Tables
Steps to Import Field Structure from an XML Schema File
Steps to Import Field Structure from a DTD File

Steps to Import Field Structure From Database Tables

Follow the steps given below to import the internal format structure from tables of
the specified data source.

1. Click on the Import Field Structure button in the toolbar at the top of the

Internal Format UI.
The Import Options dialog is shown.

2. Select the Import table info by connecting to database option in the Import From

section.

3. In the Options section, specify whether you want to keep or replace the existing

fields and click on the Next button.
The Select Table(s) From Database dialog box is shown.

4. From the Data Source drop down list box choose the database platform to be

connected.

5. In the Driver Class, Connection URL, Username and Password text boxes

specify the values used in connecting to the database.

6. To specify database specific properties use the Custom Properties item.

Clicking on the ellipsis button brings up a Properties dialog box that can be used
to specify the name and value of each custom property.

7. Now click on the Tables button. Designer connects to the specified data source

and populates tables available in that data source.

8. Select the check boxes beside the tables to be imported.

9. Select the Include dependent tables check box to import the tables related to

the selected tables.

10. Click on the Finish button to start importing the field structure.

See Also:

Importing Internal Message Field Structure from External Sources

Steps to Import Field Structure from an XML Schema File

Follow the steps given below to import the internal format structure from table
information available in an XML schema file.

1. Click on the Import Field Structure button in the toolbar at the top of the

Internal Format UI.
The Import Options dialog is shown.

2. Select the Import table info stored in an XML file option in the Import From

section.

3. In the Options section, specify whether you want to keep or replace the existing

fields and click on the Next button.

4. The Select Tables Stored in XML dialog is shown.

5. In the Schema File text box, specify the XML file from which the field structured

needs to be imported. Clicking on the ellipsis button besides the Schema File
text box brings up the Open dialog box that can be used to select the required
XML schema file.

6. Now click on the Tables button. Designer populates table information available in

the XML schema file.

7. Select the check boxes beside the tables to be imported.

8. Select the Include dependent tables check box to import the tables related to

the selected tables.

9. Click on the Finish button to start importing the field structure.

See Also:

Importing Internal Message Field Structure from External Sources

Steps to Import Field Structure from a DTD File

Follow the steps given below to import the internal format structure from a DTD file.

1. Click on the Import Field Structure button in the toolbar at the top of the

Internal Format UI.
The Import Options dialog is shown.

2. Select the Import field structure from DTD option in the Import From section.

3. In the Options section, specify whether you want to keep or replace the existing

fields and click on the Next button.

4. The DTD Import dialog box is shown.

5. In the DTD Name text box, specify the name of the DTD file from which the field

structure needs to be imported. Clicking the ellipsis button besides the DTD
Name text box brings up the Open dialog box that can be used to select the
required DTD file.

6. Click on the Finish button to start importing the field structure.

See Also:

Importing Internal Message Field Structure from External Sources

Specifying Properties for Multiple Fields/Sections

If there is a large number of fields/sections in an internal format, specifying
properties individually for each field/section might become time consuming. Designer
makes this process easier by allowing the user to specify the common properties for
a set of fields/sections at once.

Follow the steps given below to specify properties shared by a set of fields/sections.

1. Select the fields/sections, which share the same properties.

2. SHIFT-click in the selection column to select a set of continuous fields and

CTRL-click in the selection column to select any non-continuous field without
affecting the current selection.

3. Click on the Set properties for selected fields icon .

The Multi Selection Options dialog box is shown.

4. Specify the field properties shared by the selected fields by using the items

available in top section of the dialog box.

5. Specify the section properties shared by the selected sections by using the items

available in the bottom section of the dialog box.

6. Click on the OK button to apply the specified properties to the selected fields.

See Also:

Importing Internal Message Field Structure from External Sources

Internal Message Processing

The Internal message Processing Rules is used for enriching the Internal message
data. When an Internal message is added it appears with child nodes ‘Internal
Format’ and ‘Validation Rules’.

Processing rules node can be added by right clicking the Internal message node and
selecting ‘Processing’ menu item under ‘Add’ menu.

The Processing Rules UI shown when you select the Processing Rules node of the
Internal message node is used to specify the Processing Rules.

See Also:

Processing Rules UI
Adding Processing Rule
Renaming a Processing Rules Node
Creating an Internal Message
Defining an Internal Message Format
Internal Message Validation Rules
Deleting an Internal Message
Adding Persistence Designer
Internal Message

Adding Processing Rule

1. Right click the Internal Message node and select ‘Add’ menu.

2. Select ‘Processing’. ‘New Processing Rules’ window appears. Enter the name of

the ‘Processing Rules’ node to be added.

3. The Processing rules node with name “Purchase” gets added as the child node of

the Internal message node as shown below.

As you can see from the above diagram, the Processing Rules node ‘Purchase’ is
added below the validation rules node.

Note:

 The Processing rules node can be deleted by right clicking the Processing rules
node and selecting the context menu item “Delete”.

 Multiple Processing Rules nodes can be added to an Internal message by right

clicking the Internal message node and selecting the ‘Processing’ menu item in
the ‘Add’ menu.

See Also:

Renaming Processing Rules Node
Processing Rules UI
Custom Message Processing

Renaming Processing Rules Node

1. Select the ‘Processing Rules’ node to be renamed.

2. Right click the Processing Rules node and select the menu Rename.

3. The ‘Rename’ window appears as follows.

4. Enter the new name for the Processing Rules node.

5. The processing rules node gets renamed with the new name.

See Also:

Adding Processing Rule
Processing Rules UI
Custom Message Processing

Processing Rules UI

The Processing Rules UI is used to specify the rules for enriching the Internal
message data.

See the section Moving from a Field to its Usage Items for information on quickly
moving from a field definition to its processing rule.

See the section Moving Back to a Field Definition for information on quickly moving
from a field processing rule to the field definition.

See Also:

Custom Message Processing
Processing an Internal Message Field
Internal Message Validation Rules

Custom Message Processing

The processing of the entire internal message can be customized through the
IProcessing interface. All the user needs to do is define a class that implements this
interface and then specify its reference name in the Custom Processing text box in
the Processing UI. See the section Defining Processing Classes in the
DefiningCustomClasses.doc file for information about a processing class.

Please refer New File from Template for easily creating a custom processing class.

Follow the steps given below to specify a Custom Processing class for an internal
message.

1. Specify the reference name of the custom processing class in the

Custom Processing text box in the Processing Rules UI.

2. Add comments on the custom processing in the Comment dialog box, which is

displayed when you click on the Add Comment button.

3. Bind the reference name to the actual class name using the Language Bindings

tab of the corresponding Code Generation Settings dialog.

See the Code Generation section for more information.

Processing an Internal Message Field

Processing of an internal message field can be specified either using a formula or
using a custom class.

Custom Field Processing

The processing of an internal message field can be customized through the
IFieldProcessing interface. All the user needs to do is to write a class that
implements this interface and provide its reference name in the Custom column of
the field to be processed. See the section Defining Processing Classes in the
DefiningCustomClasses.doc file for information about a field processing class.

Please refer New File from Template for easily creating a custom field processing
class.

Follow the steps given below to specify a Custom Processing class for an internal
message field.

1. In the Processing Rules UI table, select the row corresponding to the internal

message field for which processing needs to be specified.

2. Specify the reference name of the custom field processing class in the Custom

column.

3. Optionally add your comments on the custom field processing.

Comments can be added in the Comment pane, which is displayed when you click
on the Insert Comment menu item of the short-cut menu that appears when you
click inside the table. See the section Comment/Annotation Support in Tables for
more information.

Field Processing Formula

Follow the steps given below to specify the processing formula for an internal
message field.

1. In the Processing Rules UI table, select the row corresponding to the internal

message field for which the processing formula needs to be specified.

2. Specify the formula to be processed in the Formula column.

3. Pressing the F4 key or clicking the Edit Formula icon brings up the Edit

Formula dialog box that can be used in defining the formula.

4. See the Formula section for more information on specifying a formula.

5. Optionally add your comments on the custom field processing.

6. Comments can be added in the Comment pane, which is displayed when you click

on the Insert Comment menu item of the short-cut menu, that appears when you
click inside the table. See the section Comment/Annotation Support in Tables for
more information.

The following points should be noted while specifying a formula:

 The type of the formula (type of its return value) should match the data type of

the field for which it is specified.

 The other fields that can be accessed in the formula specified for an internal

message field depends on its position in the internal message structure.

See the section Fields Accessible in a Formula for more information on fields
accessible from the field for which a formula is being specified. See the Formula
section for more information on specifying a formula.

While specifying processing for an internal message field, you can easily move to the
definition of that field in the Internal Format UI.

This can be done by clicking on the Go To Field Definition menu item from the
short-cut menu that appears when you right-click on the corresponding row.

See the section Moving Back to a Field Definition for more information.

Note:

Specifying both a formula and a custom class for field processing generates an error
during validation of the Processing Rules node.

Deleting an Internal Message

Follow the steps given below to remove an internal message node from a cartridge.

1. In the Explorer pane, right-click on the internal message node to be removed.

2. Select the Delete menu item from the popup menu that appears.
 A Confirm Delete message box is shown.

3. Click on the Yes button to remove the internal message from the cartridge.

4. Click on the No button to cancel the delete operation itself.

Note
The user needs to save the cartridge to permanently remove the internal message
from that cartridge.

See Also:

Creating an Internal Message
Defining an Internal Message Format
Internal Message Processing
Internal Message Validation Rules
Adding Persistence Designer
Internal Message

Adding Persistence Designer

Designer provides an easy way for persisting internal messages. It requires the
completion of the following operations.

1. Adding the persistence designer to the corresponding internal message element.

2. Executing the database schema file (which is generated from the persistence

designer definition during cartridge generation) in the underlying database.

3. Adding a Persist activity (which refers to that internal message) in the

corresponding message flow.

Follow the steps given below to add the persistence designer to an internal message
element.

1. Select the internal message element to which the persistence designer needs to

be added.

2. Select the Add Persistence Designer menu item from the popup menu that

appears when you right-click the internal message element.

The Persistence Designer node is added to the internal message element. The
platform specific properties defined for the internal message elements are used in
creating the persistence designer. See the section Platform Specific Attributes for
more information. See PersistenceDesigner.doc for more information on persistence
designer.

Note

The popup menu of an internal message node displays the Add Persistence
Designer menu item only when it does not have one already.

See Also:

Creating an Internal Message
Defining an Internal Message Format
Internal Message Processing
Deleting an Internal Message
Internal Message

External Message

An external message is a message defined outside the enterprise very often by a
standards group such as SWIFT that follows into/out of the Runtime of the

enterprise. In Designer, an external message with its associated validations is
represented by an external message design element.

When you define a new External Message, you are defining the following:

 the structure of the message
 parser, to parse the message
 writer, to serialize the message
 validator, to validate the message

The following points should be noted when using an external message element:

 The same external message format can be used to represent both input/output

messages (unlike the input/output elements of the old model).

 An external message element does not have a built in flow, unlike the input

element of the old model for instance. Each of its processes (parse, write and
validate) has to be explicitly invoked from the message flow.

 Unlike the input/output elements, the external message element does not include

the mapping node. The mapping from/to an external message has to be defined
using the Mapping node and invoked explicitly from the message flow. See the
Message Mapping section for information on the types of message mappings and
how to define them.

An external message consists of two child elements:

1. External Format
2. Validation Rules

The External Format element is used for defining the external message structure.
Usually external messages consist of header, data and trailer sections. While the
header and trailer sections provide additional information about the message itself
(such as the date of sending the message, the size of the message, and so on), the
data/record section contains the actual message data. The message data might be a
single record or a set of records (in case of a batch).

The Validation Rules element is used for specifying validation rules to be applied on
the external message fields.

See Also:

Creating an External Message Node
Defining an External Message Format
Creating a Standard Message
Internal Message

Validation Rules
Alias
Tracing Messages in a Cartridge to a Standard
Message

Creating an External Message Node

Follow the steps given below to create a new external message design element:

1. Select the cartridge node or a folder node in the Explorer pane. Right click and

select ‘New External Message’ menu item under the menu ‘Add Item’.

2. The New External Message dialog will be displayed.

3. Specify the name of the external message in the Transformation Name text

box.

4. This is the name, which is later used for looking up the component generated for

this external message.

5. Select the external message format type from the External Message drop down

list box.

6. Designer currently supports common message formats such as FIX, SWIFT and

so on. Please note that your Designer installation may not contain support for all
message formats supported by Designer.

7. Click on the OK button.

For most of the message formats, another dialog box is presented to the user as
shown below. In this dialog box, the standard messages are organized into
different categories. The user can search for a standard message by typing text
into the Find Message text box and clicking the Find button.

Designer creates the external message element when the user selects one of the
standard messages as shown in the following picture. Alternatively the user can
choose to create an empty message format that can be used in defining a new
message format.

See Also:

External Message
Defining an External Message Format
External Message Validation Rules
Creating a Standard Message

Defining an External Message Format

Defining the field format of an external message depends on the selected message
format. For some formats such as ASCII and XML, the user needs to create new
fields and sections as done for defining a new internal message format. See the
section Defining an Internal Message Format for more information.

The user can customize the external message format by enabling/disabling the
optional fields by selecting/deselecting the Enabled check box from the External
Format UI. This feature is supported in formats such as FIX and SWIFT that allow the
user to select a standard message and in XML format that allows the user to define
the message format by importing a Schema (DTD or W3C XSD). The disabled fields
are not shown in the mapping/validation rules UI.

See Also:

External Message
Creating an External Message Node
External Message Validation Rules
Creating a Standard Message

Creating a Standard Message

Designer also allows for creating a new standard message format for most of the
supported message formats.

Please note that your Designer installation may not contain support for all message
formats supported by Designer.

For defining a new standard message, the user needs to do the following:

 Create an empty external message format. See the Creating an External Message

Node section for information on creating an empty message format.

 Define the external message structure and associated validation rules. See the
Defining an External Message Format section for information on defining the
external message structure. See the External Message Validation Rules section
for information on specifying validation rules for external messages.

 Export the new message to the message repository of Designer.

In case of a SWIFT external message, it can be exported to the message repository
by selecting the Save SWIFT Message Format menu item from the popup menu that
appears when you right-click the message node.

This brings up the Save SWIFT Message Format dialog shown below.

Here, you enter the message format name, its category and other details. Clicking on
the OK button saves the message format.

See Also:

External Message
Creating an External Message Node
Defining an External Message Format
External Message Validation Rules

Validation Rules

A validation rule is used to check the conformance of data to the business rules. Like
field level and record level validations (validations based on more than one field) that
can be applied for an RDBMS table, Designer supports validations for a particular
message element and also validations based on multiple message elements.

When an External/Internal message is added, it appears with corresponding ‘External
Format’ or ‘Internal Format’ node and ‘Validation Rules’ node. When a message is
added the Validation rules node appears with the name ‘Default’.

The Validation Rules UI shown when you select the Validation Rules child node of the
message is used to specify the validations.

By right clicking the message node and selecting ‘Validation’ menu item from ‘Add’
menu, multiple validation rules can be added. The validations that are added can be
invoked through the message flow.

Validation rules can be specified using the following:
1. Formula
2. Custom class

A formula validation rule should be a Boolean expression. While a return value of
true indicates the conformance of the data to the business rules, a false value
indicates the non-conformance of the data to the business rules.

While a formula can be used to specify a simple validation rule, a custom class can
be used to incorporate a validation rule that is more involved.

Designer allows specification of validation rules for internal message and external
message design elements. The components generated for these design elements
include the validation rules specified for them, which are later invoked during
runtime.

See Also:

Adding Validation
Renaming Validation Rules Node
Validation Rules UI
Formula Validations
Fields Accessible in a Formula
Invocation of Validation Rules
Internal Message
External Message
Alias
Tracing Messages in a Cartridge to a Standard
Message

Adding Validation

1. Right click the External/Internal Message node and select ‘Add’ menu.

2. Select ‘Validation’. ‘New validation’ window appears. Enter the name of the

‘Validation Rules’ node to be added.

3. The ‘Validation rules’ node gets added as the last child node of the External

Message node as shown below.

As you can see from the above diagram, the Validation rules ‘AgeValidation’
appears below the default Validation Rules node.

See Also:

Renaming Validation Rules Node
Validation Rules UI
External Message
Internal Message

Renaming Validation Rules Node

1. Select the ‘Validation Rules’ node to be renamed.

2. Right click the validation rules node and select the menu ‘Rename’.

3. The ‘Rename’ window appears as follows.

4. Enter the name as to be changed.

Note:

Please note that the ‘Default’ validation rules node cannot be renamed or deleted.

See Also:

Validation Rules UI
External Message
Internal Message
Renaming Processing Rules Node

Validation Rules UI

The Validation Rules UI of an External/Internal message supports the following
views.

 View that shows field-wise validations.
 View that shows all validations.

The functionality of Validation Rules UI for an External message and an Internal
message are the same except that, in an Internal message Validation Rules UI, there
are no ‘Header’, ‘Data’ and ‘Trailer’ sections.

The view that shows field-wise validations for an External message is shown below:

As can be seen in the above diagram, the field-wise validations view is divided into
two tables: while the top table (message format table) displays the constituent fields
of the message format, the bottom table (field validations table) displays the
validation rule(s) corresponding to the currently selected field in the top table.

The view that shows all validations for an External message is given below:

It shows only the field validations table. But it contains the Applies To column in
addition to the columns found in the field validations table of the field-wise
validations view.

You can easily switch between these two views by clicking on either the

Show All Validations button or the Show Validations Field-wise button
that is shown depending on the current view.

Validation rules can be entered using both views. While the field-wise validations
view is convenient for entering field specific validation rules, the all field validations
view is convenient for entering validation rules that involve multiple message
elements.

See the section Moving from a Field to its Validation Rule for information on quickly
moving from a field definition to its validation rule.

See the section Moving Back to a Field Definition for information on quickly moving
from a field validation rule to the field definition.

See Also:

Adding a Validation Rule
Formula Validations
Fields Accessible in a Formula
Invocation of Validation Rules

Adding a Validation Rule

Usually a validation rule is specified (or applied) for a field/section. The field/section
to which a validation rule is applied determines the invocation of that validation rule.
It also determines the field(s)/section(s) that can be accessed in that validation rule.

See Also:

Adding a Validation Rule using Field-wise Validations View
Adding a Validation Rule using All Validations View
Validation Rules UI
Formula Validations
Fields Accessible in a Formula
Invocation of Validation Rules

Adding a Validation Rule using Field-wise Validations View

1. Select the desired field/section in the message format table.

2. Either click on the Add New Formula Validation button or Add New Custom

Validation button in the field validations table based on the type of the
validation rule to be specified.

A new row is added to the field validations table.

3. Change the validation rule name generated by Designer, if required.

4. Based on the type of validation rule specified in the previous step, specify either

a formula or a custom field validation class reference in the Validation column.

See the section Defining Validation Classes in the DefiningCustomClasses.doc
file for more information on defining validation classes.

Please refer New File from Template for easily creating a custom validation class.

Pressing the F4 shortcut key from within the Validation column displays the Edit
Formula dialog box. See the section Edit Formula Dialog for information on
using the Edit Formula dialog in specifying a formula.

See the Fields Accessible in a Formula section for information on the fields that
can be used in a formula. See the Invocation of Validation Rules section for
considerations involving invocation of validation rules.

If you have specified a custom field validation class reference name, you have to
bind it to the actual class name using the Language Bindings tab of the
corresponding Code Generation Settings dialog. See the Code Generation
Settings section for more information.

5. In the Action Message column, specify the message to be displayed when the
validation rule fails.

It can either be a simple string or an expression that evaluates to a string. The
expression can access the fields of the data format to which it belongs just like a
formula for a field. Pressing the F4 shortcut key from within the Action Message
column displays the Edit Formula dialog box. See the Edit Formula Dialog
section for information on using the Edit Formula dialog in specifying a formula.

6. In the Error Code column, specify the value used in setting the ErrorCode field
of TransformException that is generated when the validation fails.

In the validation rules table appearing in Validation Rules UI and Business
Exceptions section of Processing Rules UI, the ‘Error Code’ column is hidden by
default, which can be added to the table by right-clicking the table header and
selecting the Error Code menu item from the context menu as shown in the
following picture.

7. As shown in the following picture, in the Severity column, select a severity type

from the drop down list displayed when selecting that column.

The severity type specified here would be set as the ‘severity’ of the exception
that is generated in case of validation failure. This is purely for informative
purposes and it is not interpreted anywhere else. It helps the user in handling
exception in the message flow for taking corrective action based on the severity
type.

The ‘Severity’ column is also hidden by default, which can be added to the table
by right-clicking the table header and selecting the Severity menu item from the
context menu.

8. If a validation is marked as cascadable (default) by selecting the check box in the
Cascade Errors column, exceptions are accumulated and subsequent validations
are also executed. If a validation rule is non-cascadable, then the validation
aborts immediately and the remaining validation rules are not executed. In both
cases the validation activity terminates with an exception; the difference is in
when it stops.

The Cascade Errors column is also hidden by default, which can be added to the
table by right-clicking the table header and selecting the corresponding menu
item from the context menu.

9. If a validation rule is disabled, it will not be invoked during runtime. This can be
done by deselecting the check box in the Enabled column of the corresponding
validation rule as shown in the following picture.

The Enabled column is also hidden by default, which can be added to the table
by right-clicking the table header and selecting the corresponding menu item
from the context menu.

See Also:

Adding a Validation Rule using All Validations View
Adding a Validation Rule

Adding a Validation Rule using All Validations View

1. Either click on the Add New Formula Validation button or the

Add New Custom Validation button in the field validations table based on
the type of the validation rule to be specified.

2. Change the validation rule name generated by Designer, if required.

3. Based on the type of validation rule specified in the previous step, specify either

a formula or a custom field validation class reference in the Validation column.

Pressing the F4 shortcut key from within the Validation column displays the Edit
Formula dialog box. See the Edit Formula Dialog section for information on
using the Edit Formula dialog in specifying a formula.

See the Fields Accessible in a Formula section for information on the fields that
can be used in a formula. See the Invocation of Validation Rules section for
considerations involving invocation of validation rules.

If you have specified a custom field validation class reference name, you have to
bind it to the actual class name using the Language Bindings tab of the

corresponding Code Generation Settings dialog. See the Code Generation
Settings section for more information.

See the section Defining Validation Classes in the DefiningCustomClasses.doc file
for more information.

Please refer New File from Template for easily creating a custom validation class.

4. Specify the field to which the validation rule needs to be applied by selecting a
field from the Applies To combo box.

Please note that Designer automatically deduces the ‘Applies To’ field based on
the field/section used in the formula. In case of a formula involving multiple
fields/sections, the ‘Applies To’ field is the common ancestor of those
fields/sections.

5. In the Action Message column, specify the message to be displayed when the
validation rule fails.

It can either be a simple string or an expression that evaluates to a string. The
expression can access the fields of the data format to which it belongs just like a
formula for a field. Pressing the F4 shortcut key from within the Action Message
column displays the Edit Formula dialog box. See the Edit Formula Dialog
section for information on using the Edit Formula dialog in specifying a formula.

6. In the Error Code column, specify the value used in setting the ErrorCode field
of TransformException that is generated when the validation fails.

In the validation rules table appearing in Validation Rules UI and Business
Exceptions section of Processing Rules UI, the ‘Error Code’ column is hidden by
default, which can be added to the table by right-clicking the table header and

selecting the Error Code menu item from the context menu as shown in the
following picture.

7. As shown in the following picture, in the Severity column, select a severity type
from the drop down list displayed when selecting that column.

The severity type specified here would be set as the ‘severity’ of the exception
that is generated in case of validation failure. This is purely for informative
purposes and it is not interpreted anywhere else. It helps the user in handling
exception in the message flow for taking corrective action based on the severity
type.

The ‘Severity’ column is also hidden by default, which can be added to the table
by right-clicking the table header and selecting the Severity menu item from the
context menu.

8. If a validation is marked as cascadable (default) by selecting the check box in the
Cascade Errors column, exceptions are accumulated and subsequent validations
are also executed. If a validation rule is non-cascadable, then the validation
aborts immediately and the remaining validation rules are not executed. In both
cases the validation activity terminates with an exception; the difference is in
when it stops.

The Cascade Errors column is also hidden by default, which can be added to the
table by right-clicking the table header and selecting the corresponding menu
item from the context menu.

9. If a validation rule is disabled, it will not be invoked during runtime. This can be
done by deselecting the check box in the Enabled column of the corresponding
validation rule as shown in the following picture.

The Enabled column is also hidden by default, which can be added to the table by
right-clicking the table header and selecting the corresponding menu item from
the context menu.

See Also:

Adding a Validation Rule using Field-wise Validations View
Adding a Validation Rule

Formula Validations

The formula feature provided by Designer is quite powerful that most of the
validations can be represented by a corresponding formula. It requires nothing less
than programming effort to understand the nuances of writing formulae. But once
understood, it makes specifying validations easier. The following sections illustrate
some of the common validations that can be specified by using formula.

See Also:

Length Validations
Range Validations
Validation for Acceptable Values
Pattern Validations
SWIFT Formats Validation
Validation for Missing Field Value
Validations Based on Aggregate Functions
Validation Rules UI
Adding a Validation Rule
Fields Accessible in a Formula
Invocation of Validation Rules

Length Validations

Length validations are used to check whether the number of characters in the value
of a string field matches the required length.

Exact Length Validation

This validation is used to check whether the number of characters in the value of a
string field is equal to a particular length.

Example

Suppose you want to validate the value of the ‘clientId’ field in the ‘Trade’ section to
ensure that its length is exactly 10. This can be specified by the following formula:

Length(Trade.clientId) == 10

The following formula is same as the above if the ‘Applies To’ column of the row
corresponding to the validation rule is ‘Trade.clientId’.

Length($value) == 10

Here, the ‘$value’ variable represents the value of the current field, i.e. the field
specified in the ‘Applies To’ column of the row corresponding to this validation rule.

Minimum Length Validation

This validation is used to check whether the number of characters in the value of a
string field is greater than or equals to a particular length.

Example

Suppose you want to validate the value of the ‘clientId’ field in the ‘Trade’ section to
ensure that its length is at least 10 (equals to 10 or greater than 10). This can be
specified by the following formula:

Length(Trade.clientId) >= 10

Maximum Length Validation

This validation is used to check whether the number of characters in the value of a
string field is less than or equals to a particular length.

Example

Suppose you want to validate the value of the ‘clientId’ field in the ‘Trade’ section to
ensure that its length is at most 10 (equals to 10 or less than 10). This can be
specified by the following formula:

Length(Trade.clientId) <= 10

See Also:

Formula Validations

Range Validations

Range validations can be used to check whether the value of a numeric/date field
satisfies the lower and upper bounds of a range.

Exclusive Range Validation

This validation is used to check whether the field value is greater than the lower
bound and less than the upper bound of a range (excluding the lower and upper
bounds of the range) of acceptable values.

Example 1

Suppose you want to validate the value of the ‘SellerDaysCount’ field in the
‘AdditionalOrderInformation’ section to ensure that it is above 0 and below 60. This
can be specified by the following formula:

AdditionalOrderInformation.SellerDaysCount > 0 &&

AdditionalOrderInformation.SellerDaysCount < 60

Inclusive Range Validation

This validation is used to check, in a range of acceptable values, whether the field
value is

 greater than or equal to the lower bound of that range, and

 less than or equal to the upper bound of that range.

Example

Suppose you want to validate the value of the ‘SellerDaysCount’ field in the
‘AdditionalOrderInformation’ section to ensure that it is greater than or equals to 0
and it is less than or equals to 60. This can be specified by the following formula:

AdditionalOrderInformation.SellerDaysCount >= 0 &&

AdditionalOrderInformation.SellerDaysCount <= 60

Note that the above formula can be simplified as given below if the ‘Applies To’
column of the row corresponding to the validation rule is specified as
‘AdditionalOrderInformation.SellerDaysCount’.

Between($value, 0, 60)

Example 2

Suppose you want to validate the value of the ‘InvoiceDate’ field to ensure that it lies
between May 1, 2003 and April 30, 2004 (including May 1, 2003 and April 30, 2004).
This can be specified by the following formula:

Between(InvoiceDate, Date(2003, 05, 01), Date(2004, 04, 30))

Exclusive Lower Bounded Range Validation

This validation is used to check, in a range with a lower limit and unbounded upper
limit, whether the value of a numeric/date field is greater than the lower limit.

Example

Suppose you want to validate the value of the ‘SellerDaysCount’ field in the
‘AdditionalOrderInformation’ section to ensure that it is anything above 0. This can
be specified by the following formula:

AdditionalOrderInformation.SellerDaysCount > 0

Inclusive Lower Bounded Range Validation

This validation is used to check, in a range with a lower limit and unbounded upper
limit, whether the value of a numeric/date field is greater than or equal to the lower
limit.

Example

Suppose you want to validate the value of the ‘SellerDaysCount’ field in the
‘AdditionalOrderInformation’ section to ensure that either it is equals to 0 or it is
anything above 0. This can be specified by the following formula:

AdditionalOrderInformation.SellerDaysCount >= 0

Exclusive Upper Bounded Range Validation

This validation is used to check, in a range with unbounded lower limit and an upper
limit, whether the value of a numeric/date field is less than the upper limit.

Example

Suppose you want to validate the value of the ‘SellerDaysCount’ field in the
‘AdditionalOrderInformation’ section to ensure that it is anything below 60. This can
be specified by the following formula:

AdditionalOrderInformation.SellerDaysCount < 60

Inclusive Upper Bounded Range Validation

This validation is used to check, in a range with unbounded lower limit and an upper
limit, whether the value of a numeric/date field is less than or equal to the upper
limit.

Example

Suppose you want to validate the value of the ‘SellerDaysCount’ field in the
‘AdditionalOrderInformation’ section to ensure that either it is equals to 60 or it is
anything below 60. This can be specified by the following formula:

AdditionalOrderInformation.SellerDaysCount <= 60

See Also:

Formula Validations

Validation for Acceptable Values

This validation is used to check whether the field value is acceptable by comparing it
against a list of acceptable values.

Example 1

Suppose you want to validate the value of the ‘BranchCode’ field to ensure that it is
one of the acceptable values "YYY", "ZZZ", "QQQ" and "ZYX". This can be specified
by the following formula:

In(BranchCode, "YYY", "ZZZ", "QQQ", "ZYX")

Example 2

Suppose you want to validate the value of the ‘Year’ field to ensure that it is one of
the acceptable values - 1990, 2000, and 2010. This can be specified by the following
formula:

In(Year, 1990, 2000, 2010)

Example 3

Suppose you want to validate the value of the ‘InvoiceDate’ field to ensure that it is
one of the acceptable dates – May 1, 2004 and May 8, 2004. This can be specified by
the following formula:

In(InvoiceDate, Date(2004, 5, 1), Date(2004, 5, 8))

See Also:

Formula Validations

Pattern Validations

This validation is used to check whether the value of a string field conforms to the
exact sequence of characters that are acceptable.

Example

Suppose you want to validate the value of the ‘SecurityID’ field to ensure the
following pattern:

 Its first three characters are digits,

 followed by a hyphen,

 followed by three uppercase/lowercase letters,

 followed by a hyphen and

 its last three characters are uppercase/lowercase letters or digits.

This can be specified by the following formula:

Matches("^\\d{3}-[a-zA-Z]{3}-(\\d|[a-zA-Z]){3}$", SecurityID)

 Here, the predefined class \d is used to match a digit character. Thus the

sub-expression \d{3} (it is prefixed with the escape character \) matches
exactly three digits.

 The hyphen character matches the same in the given value.

 The [a-zA-Z] character class with ranges matches any lowercase/uppercase

letter. Thus the sub-expression [a-zA-Z]{3} matches exactly three
lowercase/uppercase letters.

 The character | is the logical OR operator. Thus the sub-expression \d|[a-zA-Z]

matches either a digit or a letter.

 The characters ^ and $ take care of matching at the beginning and end of the

value, respectively.

See Also:

Formula Validations

SWIFT Formats Validation

This validation is used to check whether the field value conforms to the exact
sequence of characters specified by the SWIFT format.

Example

The format of the ‘Identification of Security’ field is given as ‘ISIN1!e12!c’. This
means that the value should consist of

 The character sequence ‘ISIN’ at the beginning

 Followed by a space (as denoted by the SWIFT format character ‘e’) and

 Exactly twelve (denoted by the SWIFT format character ‘!’) uppercase

letters/digits (as denoted by the SWIFT format character ‘c’) at the end.

The VerifyFormat() function can be used to validate values against formats based on
SWIFT format characters. Thus the ‘Identification of Security’ field can be validated
using the following formula:

$secId = B.F35B.Identification_Of_Security;

(Equal(Left($secId, 5), "ISIN ") &&

VerifyFormat(RightStr($secId, "ISIN "), "12!c"))

 Here, the assignment statement at the beginning of the formula assigns the

value of the ‘Identification of Security’ field (in the ‘B.F35B’ section) to the
variable $secId. This variable is then used in the formula to access the value of
the ‘Identification of Security’ field.

 The first five characters at the start of the value is extracted using the Left()

function and compared against the string “ISIN ” for equality.

 The substring that appears after the string “ISIN ” is extracted using the

RightStr() function and it is verified against the SWIFT format 12!c.

See Also:

Formula Validations

Validation for Missing Field Value

The functions described in the following table help in specifying validations based on
missing field values.

Function Description

IsNotNull Returns ‘true’ if the value of the specified field is not missing.

IsNull Returns ‘true’ if the value of the specified field is indeed missing.

Note

The IsNull() and IsNotNull() functions should be used only with fields. If you want to
check whether a section is empty, (no elements) use "Sec.$size == 0" or one of the
SecExists functions.

The IsNull() function applied on a section would always return true since the section
itself is never null but it can be without elements.

Example

Consider the following message structure:

It consists of two non-repeating and optional sections – ‘StreetSide_Information’ and
‘Additional_StreetSide_Information’. While the ‘StreetSide_Info’ field in the
‘StreetSide_Information’ section is mandatory, the
‘Additional_StreetSide_Information_Indicator’ in the same section is optional. The
‘Additional_StreetSide_Info’ field in the ‘Additional_StreetSide_Information’ section is
mandatory.

Now consider the validation requirement:

 If the ‘Additional_StreetSide_Information_Indicator’ field in the

‘StreetSide_Information’ section is present, the
‘Additional_StreetSide_Information’ section should be present in the message.

 Otherwise, the ‘Additional_StreetSide_Information’ section should not be present
in the message.

The presence of the ‘Additional_StreetSide_Information_Indicator’ field in the
‘StreetSide_Information’ section can be determined by the following formula:

IsNotNull(StreetSide_Information.Additional_StreetSide_Information_Indicator

)

Here, the IsNotNull() function will return ‘true’, if the
‘Additional_StreetSide_Information_Indicator‘ field in the only element of the
‘StreetSide_Information’ section (as it is a non-repeating section) is not missing
(contains a value).

The presence of the ‘Additional_StreetSide_Information’ section can be determined
by the following formula:

Additional_StreetSide_Information.$size != 0

The above formula will return ‘true’ if the number of elements in the
‘Additional_StreetSide_Information’ section is not zero, i.e. if the
‘Additional_StreetSide_Information’ section exists (present) in the message.

Thus, the formula representing the entire validation rule can be written as given
below and it can be applied to the ‘Additional_StreetSide_Information_Indicator’
field.

If(IsNotNull(StreetSide_Information.Additional_StreetSide_Information_Indicat

or),

 Additional_StreetSide_Information.$size != 0,

 Additional_StreetSide_Information.$size == 0

)

This will validate the presence of the ‘Additional_StreetSide_Information’ section if
the ‘Additional_StreetSide_Information_Indicator’ field is present in the
‘StreetSide_Information’ section. But it will not validate the presence of the
‘Additional_StreetSide_Information’ section if the
‘Additional_StreetSide_Information_Indicator’ field is missing in the
‘StreetSide_Information’ section. It is because the validation is not at all invoked
when the ‘Additional_StreetSide_Information_Indicator’ field is missing (is null).

If the above validation is entered at the field level (as in the screen capture given
below), the explanation that appears at the top of the validation rules panel makes it
clear that this validation is not applied if the
‘Additional_StreetSide_Information_Indicator’ field is null.

This validation can be promoted to the ‘StreetSide_Information’ section (i.e. apply
this validation to that section) to ensure that it gets invoked even when the
‘Additional_StreetSide_Information_Indicator’ field is null.

Even then the validation will not work properly, as it will not be invoked if the
‘StreetSide_Information’ section itself is missing. Thus, this validation needs to be
specified at the parent level of the ‘StreetSide_Information’ section, i.e. at the
message format level. This implies that the ‘Applies To’ column corresponding to the
row containing this validation should be empty.

The validation formula also needs to be changed as given below:

If(StreetSide_Information.$size != 0 &&

IsNotNull(StreetSide_Information[0].Additional_StreetSide_Information_Indicato

r),

 Additional_StreetSide_Information.$size != 0,

 Additional_StreetSide_Information.$size == 0

)

As the ‘StreetSide_Information’ section is an optional section, its presence need to
be checked by using the following formula:

StreetSide_Information.$size != 0

As the validation rule is specified at the message format level, only the top-level
fields (‘StreetSide_Information’ and ‘Additional_StreetSide_Information’ sections)
can be directly accessed in the formula. Thus, to access the
‘Additional_StreetSide_Information_Indicator’ field in the only element (if the
previous condition is true, there must be an element in the ‘StreetSide_Information’
section and as this section is non-repeating it can have only one element) of the
‘StreetSide_Information’ section, it is specified along with the index 0.

See Also:

Formula Validations

Validations Based on Aggregate Functions

Checking for the Occurrence of a Section

The SecExistsXXX() functions help in checking whether there is the required number
of parent section elements with an occurrence of the specified nested section, as
described in the following table:

Function Description
SecExistsInAtLeastOne Helps in checking whether the specified nested section

occurs in at least one element (one or more elements) of
the specified parent section.

SecExistsInAtMostOne Helps in checking whether the specified nested section
occurs in at most one element (zero or one element) of
the specified parent section.

SecExistsInOne Helps in checking whether the specified nested section
occurs in exactly one element of the specified parent
section.

SecExistsInAll Helps in checking whether the specified nested section
occurs in all elements of the specified parent section.

Example

Consider the following network validation rule specified for the SWIFT message
MT 564.

If Exchange Rate is present (Field :92B::EXCH), the corresponding Resulting Amount
(Field :19A::RESU) must be present in the same (sub)sequence. If the Exchange
Rate is not present, the Resulting Amount is not allowed (Error code(s): E62).

This check applies to subsequence E2.

Subsequence E2
if field: 92B::EXCH is...

Subsequence E2
then field :19A::RESU is...

Present Mandatory

Not present Not allowed

The phrase “the same (sub)sequence” conveys that this validation should be carried
out for each instance of subsequence E2 as it occurs. So the ‘Applies To’ column
must be ‘E.E2’.

As per the SWIFT specification, the SWIFT field ‘92B’ has a single format option –
option B. The format option B consists of the SWIFT qualifier ‘EXCH’ and the SWIFT
subfields – ‘First Currency Code’, ‘Second Currency Code’ and ‘Rate’.

In Designer, a section represents the SWIFT field ‘92B’ and its sub-section
represents the qualifier ‘EXCH’. The qualifier section consists of fields representing
the SWIFT subfields.

Whether ‘Exchange Rate’ (Section 92B::EXCH) is present in the current instance of
subsequence E.E2 can be determined by the following formula:

SecExistsInAtLeastOne(E.E2.F92B, "EXCH")

This returns ‘true’ if an EXCH element occurs (exists) in at least one element of the
F92B section (representing SWIFT field 92B) contained in the current E2 element.
Anyhow there cannot be more than one F92B element, as the F92B section is
non-repeating.

Likewise the presence of ‘Resulting Amount’ (Section :19A::RESU) in the current
instance of subsequence E.E2 can be determined the following formula:

SecExistsInAtLeastOne(E.E2.F19A, "RESU")

As the presence of the ‘Exchange Rate’ should be matched by the presence of the
‘Resulting Amount’, the complete formula is as follows:

SecExistsInAtLeastOne(E.E2.F92B, "EXCH") ==

SecExistsInAtLeastOne(E.E2.F19A, "RESU")

The ‘equals to’ operator ensures that the outcome of these two conditions is same
(either true or false).

Checking for the Occurrence of a Field

The FieldExistsXXX() functions help in checking whether there is the required number
of section elements with an occurrence of the specified field, as described in the
following table:

Function Description

FieldExistsInAtLeastOne Helps in checking whether the specified field occurs in at
least one element (one or more elements) of the
specified section.

FieldExistsInAtMostOne Helps in checking whether the specified field occurs in at
most one element (zero or one element) of the specified

section.

FieldExistsInOne Helps in checking whether the specified field occurs in
exactly one element of the specified section.

FieldExistsInAll Helps in checking whether the specified field occurs in all
elements of the specified section.

Example

Consider the following network validation rule specified for the SWIFT message
MT 564.

In each occurrence of sequence E, if field :22F::CAOP//OTHR is present, then in the
same occurrence of sequence E field :70E::ADTX is mandatory (Error code(s): E79).

In each occurrence of Sequence E
if field :22F::CAOP//OTHR is...(*)

In the same occurrence of Sequence E
then field :70E::ADTX is...

Present Mandatory

Not present Optional

(*) if the Data Source Scheme is present in field :22F::CAOP//OTHR then the
conditional rule does not apply.

The phrase “each occurrence of sequence E” conveys that this validation should be
invoked for each element of the section E (representing sequence E) as it occurs. So
the ‘Applies To’ column must be ‘E’.

As per the SWIFT specification, the SWIFT field ‘22F’ has a single format option –
option F. The format option F consists of a SWIFT qualifier and two SWIFT subfields –
‘Data Source Scheme’ and ‘Indicator’. As per the specification, the SWIFT qualifier
can be one of the following - ‘CAOP’, ‘DISF’, ‘OFFE’ and ‘OPTE’.

In Designer, a section represents the SWIFT field ‘22F’ and each qualifier is
represented by its own sub-section. Each qualifier section consists of the
‘Data Source Scheme’ and ‘Indicator’ fields representing the SWIFT subfields.

The SWIFT specification also specifies ‘OTHR’ as one of the codes (among others) to
be contained by the SWIFT subfield ‘Indicator’ when the SWIFT qualifier is ‘CAOP’
and the ‘Data Source Scheme’ field is not present. Thus, to check for the presence of
the field ‘:22F::CAOP//OTHR’, we need to check whether the value of the field
‘Indicator’ in the qualifier section ‘CAOP’ is indeed ‘OTHR’ and the field ‘Data Source
Scheme’ does not exist in that section. The following formula can be used to check

whether the value of the field ‘Indicator’ in the qualifier section ‘CAOP’ (all elements
of the section) is indeed ‘OTHR’:

FieldValueExistsInAll(E.F22F, "CAOP.Indicator", "OTHR")

This returns ‘true’ if the ‘CAOP.Indicator’ field with value ‘OTHR’ occurs (exists) in all
elements of the F22F section contained in the current instance of the sequence E.
See the section Checking for the Occurrence of a Field Value for more information.

Anyhow there cannot be more than one F22F element. Even though the F22F section
is shown as repeating (to conform to SWIFT which does not treat Qualifiers as
independent fields but as part of the field), internally Designer treats it as
non-repeating. As per Designer’s definition of sections, there will be only one
instance of F22F, and that instance contains one or more of the qualifiers.

The following formula can be used to check the absence of the ‘Data Source Scheme’
field in the qualifier section ‘CAOP’:

!FieldExistsInAtleastOne(E.F22F, "CAOP.Data_Source_Scheme")

This returns ‘true’ if the ‘CAOP.Data_Source_Scheme’ field does not occur in any
element of the F22F section contained in the current instance of the sequence E.

The presence of field :70E::ADTX (represented by the qualifier section 70E.ADTX) in
the same occurrence of sequence E can be determined the following formula:

SecExistsInAtleastOne(E.F70E, "ADTX")

This returns ‘true’ if an ADTX element occurs (exists) in at least one element of the
F70E section contained in the current instance of sequence E. See the section
Checking for the Occurrence of a Section for more information.

As we need to check for the presence of the qualifier section E.70E.ADTX only when
the value of the field ‘Indicator’ in the qualifier section ‘CAOP’ is ‘OTHR’ and the field
‘Data Source Scheme’ does not exist, the complete formula is as follows:

If(FieldValueExistsInAll(E.F22F, "CAOP.Indicator", "OTHR") &&

 !FieldExistsInAtleastOne(E.F22F, "CAOP.Data_Source_Scheme"),

 SecExistsInAtleastOne(E.F70E, "ADTX"),

 true)

Checking for the Occurrence of a Field Value

The FieldValueExistsXXX() functions help in checking whether there is the required
number of section elements with an occurrence of the specified field with the
specified value, as described in the following table:

Function Description

FieldValueExistsInAtLeastOne Helps in checking whether the specified field with the
specified value occurs in at least one element (one or
more elements) of the specified section.

FieldValueExistsInAll Helps in checking whether the specified field with the
specified value occurs in all elements of the specified
section.

Example

Consider the following network validation rule specified for the SWIFT message
MT 564.

If the safekeeping accounts are not provided, ie, if field :97C::SAFE//GENR is
present in any occurrence of subsequence B2, then:

 subsequence B2 Account Information must not be repeated in the message
 the Balance of Securities, ie, field 93a, must not be present in subsequence B2

Account Information.
 subsequence E1 Securities Movement must not be present
 subsequence E2 Cash Movement must not be present (Error code(s): E94).

In subsequence B2
if field
:97C::SAFE//GENR is...

then
subsequence B2
is Mandatory
and ...

and in
subsequence B2
field 93a is ...

and
subsequences
E1 and E2
are ...

Present Not Repetitive

min-Max = 1-1

Not allowed Not allowed

Not present Repetitive

min-Max = 1-n

Optional Optional and
Repetitive

min-Max = 0-n

The phrase “any occurrence of subsequence B2” means that all subsequence B2
instances that occur in an instance of sequence B should be taken into account for

this validation. It also means that this validation should be carried out for each
instance of the sequence B as it occurs. So the ‘Applies To’ column must be ‘B’.

As per the SWIFT specification, the SWIFT field ‘97a’ has two format options – A and
C. While the format option A consists of the SWIFT qualifier ‘SAFE’ and the
‘Account Number’ subfield, the format option C consists of the SWIFT qualifier ‘SAFE’
and the ‘Account Code’ subfield.

In Designer, a section represents the SWIFT field ‘97a’ and its subsection represents
the qualifier ‘SAFE’. The qualifier section, in turn, consists of ‘Account Number’ and
‘Account Code’ fields representing the subfields specified by the format options.

The SWIFT specification also specifies that ‘GENR’ is the mandatory code for the
‘Account Code’ subfield. Thus, to check the presence of the field :97C::SAFE//GENR,
we need to check whether the value of the ‘Account Code’ field in the qualifier
section ‘SAFE’ is indeed ‘GENR’.

FieldValueExistsInAtleastOne(B.B2, "97a.SAFE.Account_Code", "GENR")

This returns ‘true’ if the ‘97a.SAFE.Account Code’ field with value ‘GENR’ occurs
(exists) in at least one element of the B2 section contained in the current instance of
the sequence B.

Note that if the field (second argument) is specified in the nested format (as in this
case), the FieldValueExistsInAtleastOne() function will iterate through each element
of the outermost section for processing. While processing an element of the
outermost section, it will also iterate through each element of its immediate nested
section, if any, and continues in that order.

In our case both the sections – ‘97a’ and ‘SAFE’, are non-repeating. So there can be
only one element for both the outermost section ‘97a’ and its nested section ‘SAFE’.

The presence of the B2 subsequence with exactly one instance can be determined by
the following formula:

B.B2.$size == 1

The $size variable when invoked on a section returns the number of elements in that
section. As the above formula invokes it on the ‘B.B2’ section, it returns the number
of elements in it.

The success of the previous condition (B.B2.$size == 1) means that there is exactly
one instance for the B2 subsequence. So, to check the absence of the ‘93a’ section
(as it is not allowed as per the rule) in the subsequence B2, we need to check that
there is no 93a element in the only element (with index 0) of the B2 subsequence.
This can be done by the following formula:

B.B2[0].F93a.$size == 0

The absence of the ‘E1’ subsequence can be determined by the following formula:

!SecExistsInAtleastOne(E, "E1")

This returns ‘true’ if there is no instance for the ‘E1’ section taking into account all
instances of the ‘E’ section.

Likewise, the absence of the ‘E2’ subsequence can be determined by the following
formula:

!SecExistsInAtleastOne(E, "E2")

The complete formula representing the given SWIFT network validation rule is as
follows:

If(FieldValueExistsInAtleastOne(B.B2, "97a.SAFE.Account_Code", "GENR"),

 B.B2.$size == 1 && B.B2[0].F93a.$size == 0 &&

 !SecExistsInAtleastOne(E, "E1") && !SecExistsInAtleastOne(E, "E2"),

 true)

We need to check for all the above conditions only when the field
:97C::SAFE//GENR is present. If it is not present, none of the conditions need to be
checked except the mandatory requirement of subsequence B2. This is automatically
taken care of by Designer as part of section validation.

See Also:

Formula Validations

Fields Accessible in a Formula

A formula validation rule is specified (applied) for a field to validate the value that
occurs for that field in the given message.

A field/section accessed in a formula should be either at the same level of the
‘Applies To’ field or at the top level of the ‘Applies To’ field.

Consider the following message structure.

The following list explains accessible fields based on the above message structure.

 If a validation rule is specified for the top-level field Company, it can access the

other top-level fields eMailAddress, Region (not its nested fields) and
MailAddress. This is allowed because these fields are at the same level of the
Company field. This is also true for the validation rules specified for the other
top-level fields.

 If a validation rule is specified for the RegionName field, which is a nested field

of the Region section, it can access the Branch section (which is at the same
level of the RegionName field) and its top-level fields (Company,
eMailAddress, Region and MailAddress).

See Also:

Validation Rules UI
Adding a Validation Rule
Formula Validations
Invocation of Validation Rules

Invocation of Validation Rules

Invocation of a validation rule (either formula or a custom class) involves the
following considerations:

 The validation rules are executed in ‘Applies To’ field order. The validation rule(s)

associated with fields are executed in the order in which fields are defined. In the
diagram below, validations for ‘Company’ is executed first followed by
‘emailAddress’. Then validations for section ‘Region’ and its children are
executed. This is done for every instance of the Region section (and its
subsections) before it moves on to next top-level field.

All validations that are not associated with a field (Applies To field is null) are
executed before validations associated with a field is executed.

You can safely assume that, before executing the validation for a field, all
validations associated with fields above it (in message definition order) have
been executed.

Note that, this is not necessarily the order in which validation rules themselves
are defined. Because of this, it is important not to have dependencies in the
validation rules.

 A validation rule specified for a field is invoked for every non-null occurrence of

that field in the given message. The position of the field in the data
format/message structure (whether it is a top-level field or a nested field) also
affects the invocation of a field validation rule.

Consider the following example in which a validation rule is specified for a
top-level field.

Here, the validation rule is specified for the top-level field Company. As a
top-level field occurs only once in the actual message, this validation rule is
evaluated at most once for a particular message or not even invoked. This is
because the validation rule is invoked only if the field value is not null. If the field
value is null, the validation rule is not even invoked for that particular message.
The explanation given at the top of the validation rule table makes this behavior
clear.

Consider the following example in which a validation rule is specified for a nested
field.

Here, a validation rule is specified for RegionName, which is a nested field of
the repeating section Region. The explanation given at the top of the Validation
Rule panel makes it clear that this validation rule is invoked for every non-null
occurrence of the RegionName field in the Region section. This means that if
there are four Region elements and the RegionName field occurs in all of them,
then this validation rule is invoked four times (once for each of the four
elements).

 A validation rule specified for a section is invoked for every occurrence of that

section. Similar to field validation rules, the position of the section in the data
format/message structure (whether it is a top-level section or a nested section)
also affects the invocation of a section validation rule.

Consider the following example in which a validation rule is specified for a
top-level section.

Here, the validation rule is specified for the top-level repeating section Region.
The explanation given at the top of the Validation Rule panel makes it clear that
this validation rule is invoked for every element of the Region section. As a
top-level section, the Region section itself can occur only once in the entire
message (but it could contain many elements, as it is a repeating section). So if
there are four Region elements, then this validation rule is invoked four times
(once for each of the four Region elements).

Consider the following example in which a validation rule is specified for a nested
section.

Here, a validation rule is specified for the repeating section MonthlySales, which
is a nested section of the repeating section SalesInfo. The explanation given at
the top of the Validation Rule panel makes it clear that this validation rule is
invoked for every element in the Region.Branch.SalesInfo.MonthlySales
section. This means that if there are 12 MonthlySales elements in a particular
element of the SalesInfo section (which in turn depends on the occurrence of
the Region.Branch section), this validation rule is invoked 12 times during the
processing of that particular element of the SalesInfo section.

 When a validation rule involves multiple fields/sections, its invocation is based on

the common ancestor of the fields/sections referred.

Consider the following example in which a validation rule is specified based on
two sections.

The above picture shows only a part of the validation. The entire validation is
given below:

SecExistsInAtleastOne(Region.Branch.SalesInfo, "MonthlySales") ==

SecExistsInAtleastOne(Region.Branch.SalesInfo, "QuarterlySales")

Here, Region.Branch is the applies-to field as it is the common ancestor of the
sections referred. So this rule is invoked for each Region.Branch instance.

See Also:

Validation Rules UI
Adding a Validation Rule
Formula Validations
Fields Accessible in a Formula

Working with Message - Overview

Once a message has been created, field/section can be added to it in the Message
Format UI. The Message Format UI is composed of ‘Toolbar’, ‘FieldsList’ and
‘PropertiesPanel’.

Toolbar

The tool bar contains the following icons.

Add field/section

, icons.

You can use these icons to add a field/section to the
message,

Remove

field/section
icon

You can use this icon to remove a field/section from the
message.

Arrange
field/section

, , ,
icons.

You can use the arrange icons to move field/section
up/down/left/right in a message.

Toggle Tree view

 icon

You can use the Tree View icon to view the Table contents
of a message in a tree structure.

Properties icon
The ‘Properties’ icon can be used to show or hide the
‘Properties’ window.

Format Option

icon

This icon is used to display the format options that are
specific to each format. This button will not be always
present in a tool bar. Only messages for which format
options can be specified will have this button.

Note:

These are the most common icons that are present in toolbar of all messages. The
toolbar may also contain other buttons, which are format specific.

Fields List

The fields list table displays the fields/section that have been added to the message.
The columns in the table are

Name Name of the field/section. The name specified should be
unique (i.e.) no other field/section in the same level should
have the same name. This

Alias Alias name for the field/section.

Type The data type of the field.

Description Description for the field/section.

Note:

Depending on the format the table may have additional columns.

Properties Panel

In addition to name/type etc. specified in the fields list table other properties can be
specified in the field/section properties panel.

The cardinality for the field and its default value can be specified in the field
properties panel. In case of ‘Date’ fields the date format can be specified in the field
properties panel. In section properties panel the cardinality can be specified.

Note:

Depending on the message format additional properties will be displayed in the
properties panel.

See Also:

Adding a Field/Section
Field/Section Properties
Removing a Field/Section
Arranging Fields In A Message
Alias
Tracing Messages in a Cartridge to a Standard

Adding a Field/Section

Follow the steps given below to add a new field/section to the internal message
format.

1. Select the Message design element in the explorer pane.

The Message UI is shown in the Design Element UI pane.

2. Click on the Add New Field button in the toolbar to add a field or the Add

New Section button to add a section in the Message UI toolbar.

3. A new row appears in the message format table and its ‘Name’ column is selected

by default. If you have selected a row before clicking on the Add New Field
button, the new row is inserted immediately after the selected row.

4. Type in a name for the new field/section.

5. Type in the alias name of the new field in the Alias column, if required.

6. The Alias column is hidden by default. Select the Alias menu item from the

short-cut menu that appears when you right-click on the header row of the
message format table.

7. See the section Alias for more information on using the alias names.

8. Select the data type of the new field from the list of supported data types that

appears in the Type column. The supported data types list is format specific and
is not the same for all formats.

9. Type in the description of the new field in the Description column, if required.

10. Specify the field/section properties. See the section Specifying the Field/Section

Properties for more information.

See Also:

Field/Section Properties
Removing a Field/Section
Arranging Fields In A Message

Field/Section Properties

After a field/section has been added properties for it can be specified in the
properties panel that is displayed at the bottom of the message when the
field/section is selected.

Cardinality

In the field/section Properties panel that appears at the bottom of the Message
Format UI, cardinality properties like ‘required’, ‘min occurs’, ‘max occurs’ can be
specified. Designer indicates an optional field by displaying the ? indicator symbol
besides the field icon. No indicator symbol is displayed in case of mandatory fields.
In case of sections the cardinality is indicated as shown by the following table

Section Properties

Min
Occurs

Max
Occurs

Cardinal
Indicator

Description

0 Unbounded * The section is optional and
repeating.

0 1 ? The section is optional and
non-repeating.

1 Unbounded + The section is non-optional
and repeating.

1 1 No
indicator

The section is non-optional
and non-repeating.

Default Value Property

A default value can be specified for a field in the Default Value text box of the
Properties panel. The default value is assigned to that field only if it is not assigned

a value during input mapping. The default value is overwritten if a value is assigned
to that field during the internal message processing, which is performed next.

The following points should be noted while assigning a default value for a field.

 The data type of the value should match the data type of the field.

 While specifying the default value for a String type field, the string value should

not be enclosed in double quotes.

 An expression cannot be used to specify a default value.

Note:

There may also be other properties in the field/section properties panel that are
specific to a particular format.

Format Property

In case of a field of type ‘Date’ the format for the field can be specified in the
properties panel. A list of pre defined date formats will be listed from which the user
can select a format. The user can also specify a new date format for the field.

See Also:

Adding a Field/Section
Removing a Field/Section
Arranging Fields In A Message

Removing a Field/Section

Follow the steps given below to remove a set of fields/sections from the message
format.

1. Select the fields/sections to be removed.

SHIFT-click in the selection column to select a set of continuous fields and
CTRL-click in the selection column to select any non-continuous field without
affecting the current selection.

2. Click on the Remove Selected Field(s) icon .

Note:

If a section is removed, all of its constituent fields are also removed.

See Also:

Adding a Field/Section
Field/Section Properties

Arranging Fields In A Message

Arranging Fields in a Message

The icons with arrow images in the Message Format UI toolbar can be used to
rearrange the position of the fields of a message format.
Once the required fields are selected, the user can click on these icons to arrange the
position of these fields within the internal message format. Use the selection column
(the empty column at the left) to select a field. To select a set of continuous fields,
select the first field in the set and then SHIFT-click on the last field. Use
CTRL-clicking to select a non-continuous field. CTRL-clicking on a selected field
deselects it.

The following table describes the icons used to arrange the fields of an internal
message format:

Icon Purpose Description

 Move Selection Up This moves the selected field(s) up by one position
within the same level of message format (within the
same section or within the top level). This icon is
disabled when the top of that level is reached.

 Move Selection
Down

This moves the selected field(s) down by one position
within the same level of message format (within the
same section or within the top level). This icon is
disabled when the bottom of that level is reached.

 Move Selection Left This promotes the selected field(s) by one level in the
message format hierarchy. This means that the
selected fields are moved to the same level of their
previous parent.

 Move Selection
Right

This demotes the selected field(s) by one level in the
message format hierarchy. This icon is enabled only
when the selected fields are positioned immediately
after a section, which is at the same level of the
selected field(s). Clicking on this icon makes the
selected fields children of that section. The fields are
positioned at the bottom of that section.

See Also:

Adding a Field/Section
Field/Section Properties

Removing a Field/Section

Alias

An alias name is a substitute for the fully qualified name of a field. Designer supports
alias names for the following:

1. Fields/Sections of Internal Message
2. Fields/Sections of External Message

Once an internal/external field is assigned an alias name, it can be used wherever
you would have used its qualified name, for example, in places like
validation/mapping formula. If an internal/external field is assigned an alias name,
the qualified name of that field is replaced with its newly assigned alias name in all
the places it is used. Even changing/removing the alias name of an internal/external
field reflects in all the places of its usage.

See Also:

Specifying an Alias Name
Alias Name Substitution
Alias Name Rules
Items Supporting Alias Name Substitution
Internal Message
External Message
Validation Rules
Tracing Messages in a Cartridge to a Standard
Message

Specifying an Alias Name

An internal field/section can be assigned an alias name using the ‘Alias Name’
column of the ‘Internal Format’ table, as shown in the following figure.

Likewise an external field/section can be assigned an alias name using the
‘Alias Name’ column of the table in the corresponding External Format UI.

See Also:

Alias Name Substitution
Alias Name Rules
Items Supporting Alias Name Substitution
Alias

Alias Name Substitution

Alias name is a substitute for the fully qualified name of a field. Hence, wherever you
had earlier used a fully qualified name you can now replace it with its alias name.

Consider the following message structure:

To validate whether the ‘RequestedQty’ is greater than zero, the validation formula
would be something like:

GoodsIssueNote.Product.RequestedQty > 0

Now, if the ‘GoodsIssueNote’ field is assigned an alias name ‘GIN’, the above formula
would become:

GIN.Product.RequestedQty > 0

Now, if the ‘Product’ field is assigned an alias name ‘Item’ in addition to the alias
name assigned for ‘GoodsIssueNote’, the above formula would become:

Item.RequestedQty > 0

Note that once the ‘Product’ field is assigned an alias name, the alias name of the
‘GoodsIssueNote’ field becomes insignificant as the alias name stands for
‘GoodsIssueNote.Product’.

Now, if the alias name of the ‘Product’ field is removed, the formula would again
become:

GIN.Product.RequestedQty > 0

The following table lists both valid and invalid substitution of alias names for the
qualified names of fields.

No Qualified
Name

Substitute

1 A.B.C Calias

2 A.B.C Balias.C

3 A.B.C Aalias.B.C

4 A.B A.Balias (Illegal)

5 A.B.C Aalias.B.Calias (illegal)

6 A.B.C Balias.Calias (Illegal)

Valid Alias Name Substitutions

1. If the ‘GoodsIssueNote.Product.RequestedQty’ field is assigned an alias name

‘ReqQty’, then the formula

GoodsIssueNote.Product.RequestedQty > 0

could be written as given below:

ReqQty > 0

2. If the ‘GoodsIssueNote.Product’ section is assigned an alias name ‘Item’, the

formula

GoodsIssueNote.Product.RequestedQty > 0

Could be written as given below:

Item.RequestedQty > 0

3. If the ‘GoodsIssueNote’ section is assigned an alias name ‘GIN’, the formula

GoodsIssueNote.Product.RequestedQty > 0

Could be written as given below:
GIN.Product.RequestedQty > 0

Invalid Alias Name Substitutions

If the ‘GoodsIssueNote.Product’ section is assigned an alias name ‘Item’, then the
qualified name ‘GoodsIssueNote.Product’ cannot be replaced as
‘GoodsIssueNote.Item’. This is because the alias name ‘Item’ stand for
‘GoodsIssueNote.Product’ that includes the ‘GoodsIssueNote’ field. Thus the
‘GoodsIssueNote’ field should not be used again. The same is true for the other
invalid alias name substitutions listed in the alias name substitution table.

See Also:

Specifying an Alias Name
Alias Name Rules
Items Supporting Alias Name Substitution
Alias

Alias Name Rules

1. The alias name for all the fields in a format should be unique.

This means that if one of the fields in a format is assigned an alias name, say
‘Broker’, then another field of that format cannot be assigned the same name.

2. Alias name for any field in format should not be same as the name of a top-level
field.

This means that if one of the top-level fields in a format is named, say ‘Broker’,
then it cannot be used as an alias name for any other field in that format. It is OK
for an alias name to clash with the name of a nested field, since this does not
result in any conflict.

3. Alias name should be an identifier with the pattern [a-z_A-Z][a-z_A-Z0-9]*.

 The following is a list of valid alias names:

 requestedQty
 GIN
 _Product_ID
 Address1

 The following is a list of invalid alias names:

 Product-ID
 1Address
 #dollar

See Also:

Specifying an Alias Name
Alias Name Substitution
Items Supporting Alias Name Substitution
Alias

Items Supporting Alias Name Substitution

Alias names can be used in the following places instead of the qualified name of the
corresponding field:

1. Internal message processing formula (i.e. formula specified in “Processing Rules -

> Formula” column)

2. Internal message validation formula (i.e. formula specified in the

“Validation Rules” UI of the corresponding internal message)

3. External message validation formula (i.e. formula specified in the

“Validation Rules” UI of the corresponding external message)

4. One-to-one/formula-mapping rules of external messages specified in the

“Mapping Rules” UI of the corresponding external message.

5. Validation rules of the internal message mapping node.

6. One-to-one/formula-mapping rules of the internal message mapping node.

Note that when you use the ‘Edit Formula’ dialog in defining a formula, if you select a
field/section that is already assigned an alias name, only its alias name, not the
qualified field name, will appear in the formula editor, as shown in the following
figure:

See Also:

Specifying an Alias Name
Alias Name Substitution
Alias Name Rules
Alias

Tracing Messages in a Cartridge to a Standard

When an internal/external message is added to the cartridge, the information about
the standard on which it is based on can be maintained by providing information in
the Standard Details section of the internal/external message UI.

This additional information can be used to trace back the message instance in the
cartridge to the standard (for instance during integrity verification). For this reason
these fields should be edited with utmost care. In fact editing for these fields is
allowed so that users can fill up the standard details themselves for existing
cartridges.

See Also:

Internal Message
External Message
Validation Rules
Alias
Message

Message Mapping

Message mapping is the definition of transforming a message (source message) to
another message (target message). In Designer, message mapping can be defined
using a custom mapping class and/or mapping rules. If a message mapping is
defined using both mapping rules and the custom mapping class, the mapping rules
are evaluated before the custom mapping class is invoked.

A mapping rule specifies how a source message field/section is transformed into a
target message field/section.

While the section mapping rule (also called as ‘section mapping’) determines the
number of elements to be created for the target section, the field mapping rule (also

called as ‘field mapping’) determines how a target field is evaluated from source
field/fields.

Note:

A field cannot be mapped to a section and vice versa.

Based on the type of source and target messages, the message mappings supported
by Designer can be categorized as follows:

1. Input Mapping
2. Output Mapping
3. Internal Message Mapping
4. External Message Mapping

 Here, input mapping is the mapping defined from an external message to an

internal message.

 Output mapping is the mapping defined from an internal message to an external

message.

 Internal message mapping is the mapping defined from an internal message to

another internal message.

 External message mapping is the mapping defined from an external message to

another external message.

See Also:
Creating a Message Mapping
Mapping Rules UI
Field Mapping
Section Mapping
Designer User Interface
Cartridge
Message
Formula
Function Definition
Code Generation
Simulator
Working With Cartridge Designer

Creating a Message Mapping

Follow the steps given below to create a new mapping node that can be used to
define the transformation between two message formats.

1. In the Explorer pane, right-click on the cartridge node or a Folder node to which
the new message mapping node needs to be added.

2. Select the New Mapping menu item from the popup menu that appears.

3. The Message Mapping dialog box is shown.

4. Select the destination message format from the Destination Message drop down

list box.

5. Select the source message format from the Source Message drop down list box.

6. Click on the OK button.

7. The Mapping node is created as shown below.

See the section for information on specifying the mapping between two messages.

See Also:

Mapping Rules UI
Field Mapping
Section Mapping
Message Mapping

Mapping Rules UI

Defining the mapping from the source message format to the target message format
can be done using the Mapping Rules UI shown below.

In the Mapping Rules UI shown above, the target message format is displayed in the
table at the top of the UI and the source message format is displayed in the table at
the bottom.

The source message format table at the bottom of the Mapping Rules UI can be
hidden by clicking on the ’Close’ button x as shown below.

The hidden source message format table can be viewed again by clicking on the
‘Show Source Format’ button.

While the Map button is used in specifying one-to-one mapping rules between the
source and target fields, the Custom Mapping button is used in specifying a custom
mapping class.

The mapping filter at the top right of mapping screen helps user to hide fields that
are not used in mapping.

The following table describes sections, which explain how to quickly move between
items of Mapping Rules UI and other related items.

Section Description

Moving from a Field to its Mapping Rule This section shows you how to quickly
move from a field definition to its
mapping rule.

Moving from a Field to its Mapping
Usage

This section explains how to quickly
move from a field definition to its
mapping usage, i.e. mapping rule in
which this field is used as the source

field.

Moving Back to a Field Definition This section describes how to quickly
move from a field mapping rule to the
field definition.

Moving Between Source and Destination
Fields in Mapping Rules UI

This section describes how to quickly
move between source and target fields of
a mapping rule.

See Also:
Adding a Mapping Rule
Custom Mapping
Source Field Mapping
Mapping Filter
Field Mapping
Section Mapping
Creating a Message Mapping
Message Mapping

Adding a Mapping Rule

There are two types of mapping rules as given below:

1. One-to-One Mapping Rule
2. Formula Mapping Rule

In a one-to-one mapping rule, a target field/section is mapped to a source
field/section.

In a formula mapping rule, a target field/section is assigned a formula involving one
or more source fields/sections. The formula can also involve fields/sections from the
target message format.

See Also:
Adding a One-to-One Mapping Rule
Adding a Formula Mapping Rule
Custom Mapping
Source Field Mapping
Mapping Filter
Field Mapping
Section Mapping
Creating a Message Mapping
Mapping Rules UI
Message Mapping

Adding a One-to-One Mapping Rule

Follow the steps given below to specify a one-to-one mapping rule:

1. Select the Mapping Rules child node of the Mapping node.

The Mapping Rules UI appears in the Design Element UI pane. See the
Mapping Rules UI section for more information. It consists of two tables: the top
table representing the target message format and the bottom table representing
the source message format.

2. In the target message format table at the top of the UI, select the target

field/section to be mapped.

3. In the source message format table at the bottom of the UI, select the source

message field/section.

4. Click on the Map button to finish mapping.

Please note that the one-to-one mappings are indicated by the icon. See the Field
Mapping and Section Mapping sections for more information on field/section mapping
rules.

See Also:
Adding a Formula Mapping Rule
Adding a Mapping Rule

Adding a Formula Mapping Rule

Follow the steps given below to specify a formula mapping rule:

1. Select the Mapping Rules child node of the Mapping node.

2. In the target message format table at the top of the UI, double click on the

Mapping column of the target message field/section for which mapping needs to
be specified.

3. Specify the mapping formula.

Pressing the F4 key or clicking the Edit Formula icon brings up the Edit
Formula dialog box that can be used in defining the formula. See the Edit
Formula Dialog section for more information on using the Edit Formula dialog for
specifying a formula

Please note that the formula mappings are indicated by the icon. See the Field
Mapping and Section Mapping sections for more information on field/section
mapping rules.

See Also:
Adding a One-to-One Mapping Rule
Adding a Mapping Rule

Custom Mapping

The mapping process can be customized, by providing the mapping class that
implements the mapping interface corresponding to the type of mapping.

See the section Defining Mapping Classes in the DefiningCustomClasses.doc for
information about writing a mapping class and plugging it into an input/output
format.

Please refer New File from Template for easily creating a custom mapping class.

Follow the steps given below to specify a custom message mapping class:

1. Select the Mapping Rules child node of the Mapping node.

2. Click on the Custom Mapping icon ‘ ’ present in the destination format UI.
The Custom Mapping dialog box is shown.

3. Specify the reference name of the custom class in the Custom Mapping Class
text box.

4. Type in your comment in the Comment text area.

5. Click on the OK button to finish.

6. Bind the custom class reference name to the actual class name using the

Language Bindings tab of the corresponding Code Generation Settings
dialog.

See the Code Generation section for more information.

See Also:
Adding a Mapping Rule
Source Field Mapping
Mapping Filter
Field Mapping
Section Mapping
Creating a Message Mapping
Mapping Rules UI
Message Mapping

Source Field Mapping

When mapping is done, Designer automatically sets the source fields for the mapped
field in the Source Fields column. But the user can add/remove source fields for a
mapping, using the Source Fields dialog. When error occurs in any one of the source
fields specified, the mapped field would be highlighted.

Follow the steps given below to update the source fields list of a mapped field:

1. Select the mapping for a field. Click on the ‘Source Fields’ column. The column

will appear as shown below.

2. Click the ellipsis button displayed in the ‘Source Fields’ column. The

Source Fields dialog for managing source fields will be displayed.

3. You can add source fields by clicking on the Add button and selecting the

required field from the list of fields displayed or by typing the field name.

4. Likewise you can remove a source field specified for a mapped field by selecting
the field to be removed and then clicking on the Remove button.

5. Clicking on the Reset button will clear the extra source fields added by the user

from the list of source fields.

See Also:
Adding a Mapping Rule
Custom Mapping
Mapping Filter
Field Mapping
Section Mapping
Creating a Message Mapping
Mapping Rules UI
Message Mapping

Mapping Filter

The mapping filter helps user to hide fields that are not used in mapping. A small
toolbar at the top right of mapping screen lets you control the filter. The tool bar is
shown below

The filter is off by default, click to toggle it. Enabling it would hide fields that not
relevant. What fields are relevant is controlled by the Filtering options you set.

You can specify the filter options by clicking the button. When the button is
clicked the following dialog is displayed.

The options provided in the dialog help to display fields that are relevant to the user.
One option that is not shown in the dialog is ‘Show fields with mapping’. This option

is always true (hence it is not an option). This is because there will not be a case
where a user would not be interested in fields with mappings.

Note:

 The filter is not very effective when you are starting to enter the mappings. It

may hide fields for which you want to specify a mapping. One useful idea would
be to add a comment to such fields and use the options to display all fields with
comments. Filtering is extremely useful for viewing completed or semi-completed
mappings.

 When you toggle the filter the current selection is not lost (if it is not filtered

out), it is shown at exactly the same place in the screen. This is really useful,
when you are entering mappings, since you can quickly toggle between these two
modes without losing the current location.

When you are in filtered mode, you should be careful about fields that you see under
a section. The section may actually have more fields than what you see. This can be
bit confusing at times.

 When a field has a mapping, all its ancestor sections are also made visible.

See Also:

Adding a Mapping Rule
Custom Mapping
Source Field Mapping
Field Mapping
Section Mapping
Creating a Message Mapping
Mapping Rules UI
Message Mapping

Field Mapping

Field mappings can be generally categorized as:

1. One-to-One Mapping Rule
2. Formula Mapping Rule

One-to-One Mapping Rule

In a one-to-one mapping rule, a target field is mapped to a source field.

When a target message field is mapped to a source message field, the value of the
source field is assigned to the target field. But field mapping considerations such as
the level of the source and target fields and the repeating/optional property of their
corresponding sections make it more involved, as explained in the following sections.

Formula Mapping Rule

In a formula mapping rule, a target field is assigned a formula involving one or more
source fields. The formula can also include fields from the same data format as that
of the target field. The only constraint is that the field from the same target data
format should have occurred before this field. In the formula, use the syntax
self.Field to access the field from the same target data format. Pressing the F4 key
or clicking the Edit Formula icon from within the Mapping column of the
Mapping Rules UI brings up the Edit Formula dialog box that can be used in
defining the formula. See the Edit Formula Dialog section for more information on
using the Edit Formula dialog for specifying a formula.

In a mapping formula, to test the occurrence of an optional field value, use the
IsNull() or IsNotNull() functions. To set the null value for an optional field, use the
SetNull() function. A sample mapping formula using these functions is given below.

If(IsNotNull(Additional_Order_Information.Do_not_Reduce_or_Increase),

set(Additional_Order_Information.Do_not_Reduce_or_Increase),

setNull()

)

Here, if the value of the
Additional_Order_Information.Do_not_Reduce_or_Increase source field is
not null, its value is set to the target field for which this formula is specified.
Otherwise, the null value is assigned to the target field.

In a mapping formula, to test whether an optional section is empty (there are no
occurrences of that section), use the size operator as shown in the following
expression.

Additional_Order_Information.$size == 0

This expression will evaluate to true if there are no elements in the
Additional_Order_Information optional section.

Note

Mapping from a section to a field or from a field to a section is not allowed.

See Also:

Top Level Field to Top Level Field
Nested Field to Top Level Field
Top-Level Field to Nested Field
Nested Field to Nested Field
Optional Field Mapping
Mapping involving Fields of Optional Sections
Merging Fields of Sibling Sections
Section Mapping
Creating a Message Mapping
Mapping Rules UI
Message Mapping

Top Level Field to Top Level Field

Source Data Format Target Data Format Mapping Allowed

Top-Level Field Top-Level Field Yes

Example

Consider the mapping ‘EmployeeToEmployeeDetails’ defined in
TopLevelFieldToTopLevelField.car. The mapping rules specified for the target format
fields ‘EmployeeName’ and ‘EmployeeID’ are examples of this case.

Target Data Format Source Data Format

Mapping

Pseudocode

destObj.EmployeeName =

srcObj.Name;

destObj.EmployeeID = srcObj.ID;

Explanation

The value retrieved from the ‘Name’ field of the source data object is set to the
‘EmployeeName’ field of the target data object. It works the same for the
‘EmployeeID’ field.

See Also:

Nested Field to Top Level Field
Top-Level Field to Nested Field
Nested Field to Nested Field
Optional Field Mapping
Mapping involving Fields of Optional Sections
Merging Fields of Sibling Sections
Field Mapping

Nested Field to Top Level Field

This can be further categorized into:
Nested Field of a Repeating Section to Top Level Field
Nested Field of a Non-repeating Mandatory Section to Top-Level Field
Nested Field of a Non-repeating Optional Section to Top-Level Field

Nested Field of a Repeating Section to Top Level Field

Source Data Format Target Data Format Mapping Allowed

Nested Field of a
repeating section

Top-Level Field No. But, a top-level field
can be mapped to a field

of a particular section
element, using index.

Note

A top-level field can be directly mapped to a nested field of a non-repeating section.
See the section Nested Field of a Non-repeating Mandatory Section to Top-Level Field
for more details.

Example

Consider the mapping ‘EmployeeToEmployeeDetails’ defined in
RepeatingSectionFieldToTopLevelField.car. The mapping rules specified for the
target data format fields ‘TaskID’ and ‘TaskDescription’ are examples of this case.

Target Data Format Source Data Format

Mapping

Pseudocode

destObj.TaskID = srcObj.Task[0].ID;

destObj.TaskDescription =

srcObj.Task[0].Desc;

Explanation

Suppose there are two elements in the ‘Task’ section of the source data format.
Then, there are two ‘ID’ values; one in element one (index 0) and another in
element two (index 1). Using the index, we can assign either the value at index 0 or
at index 1. The pseudocode assigns the value at index 0.

This approach is often useful when you know that the section is non-repeating and
non-optional (size = 1).

Note

Mappings defined using the indexes are formula mappings.

See Also:

Nested Field to Top Level Field

Nested Field of a Non-repeating Mandatory Section to
Top-Level Field

Source Data Format Target Data Format Mapping Allowed

Nested Field of a
non-repeating

Top-Level Field Yes

mandatory section

Example

Consider the mapping ‘EmployeeToEmployeeDetails’ defined in
NonReptMandatorySecFieldToTopLevelField.car. The mapping rules specified for the
target data format fields ‘DepartmentID’ and ‘DepartmentLocation’ are examples of
this case.

Target Data Format Source Data Format

Mapping

 Pseudocode

destObj.DepartmentID = srcObj.Dept[0].ID;

destObj.DepartmentLocation =

srcObj.Dept[0].Loc;

Explanation

As the ‘Dept’ section in the source data object is a non-repeating mandatory section,
it would contain exactly one element. So the generated code assumes index 0 to
access the ‘Dept’ section. So the value of the ‘ID’ field in the first element of the
‘Dept’ section (index 0) is assigned to the ‘DepartmentID’ field of the target data
object. Likewise, the value of the ‘Loc’ source field is assigned to the
‘DepartmentLocation’ target field.

See Also:

Nested Field to Top Level Field

Nested Field of a Non-repeating Optional Section to
Top-Level Field

Source Data Format Target Data Format Mapping Allowed

Nested Field of a
non-repeating optional

section

Top-Level Field Yes

Example

Consider the mapping ‘EmployeeToEmployeeDetails’ defined in
NonReptOptionalSecFieldToTopLevelField.car. The mapping rules specified for the
target data format fields ‘Location’ and ‘CityName’ are examples of this case.

 Target Data Format Source Data Format

Mapping

Pseudocode

if (srcObj.Address.getElementCount() > 0)

{

 destObj.Location =

srcObj.Address[0].Loc;

}

if (srcObj.Address.getElementCount() > 0)

{

 destObj.CityName =

srcObj.Address[0].City;

}

Explanation

As the ‘Address’ section of the source data object is an optional non-repeating
section, it would contain zero or one element. So the generated code first checks for
the presence of the ‘Address’ element before assigning the value of ‘Loc’ field to the
‘Location’ target field. Index 0 is assumed to access the ‘Address’ section, as it is a
non-repeating section. The mapping for the ‘CityName’ target field is handled in the
similar way.

See Also:

Top Level Field to Top Level Field
Top-Level Field to Nested Field
Nested Field to Nested Field
Optional Field Mapping
Mapping involving Fields of Optional Sections
Merging Fields of Sibling Sections
Field Mapping

Top-Level Field to Nested Field

This can be further categorized into:

Top Level Field to Field of a Section without Mapping
Top Level Field to Field of a Section with Mapping

Top Level Field to Field of a Section without Mapping

Source Data Format Target Data Format Mapping Allowed

Top-Level Field Nested Field Yes

This case assumes that there is no section mapping from any source section
to the target section containing the nested field.

Example

Consider the mapping ‘EmployeeToEmployeeDetails’ defined in
TopLevelFieldToFieldofUnmappedSection.car. The mapping rules specified for the
nested fields ‘ID’ and ‘Loc’ of the ‘Dept’ section of the target data format are
examples of this case.

 Target Data Format Source Data Format

Mapping

Pseudocode

Dept dept = new Dept();

dept.ID = srcObj.DepartmentID;

dept.Loc =

srcObj.DepartmentLocation;

destObj.Dept.add(dept);

Explanation

Since there is only a single value to store, only a single element is created for the
‘Dept’ section of the target data object (note that any number of elements can be
created for a repeating section). The value of the ‘DepartmentID’ source field is
assigned to the ‘ID’ field of the newly created ‘Dept’ element. Likewise, the value of
the ‘DepartmentLocation’ source field is assigned to the ‘Loc’ field of that ‘Dept’
element. At last, the newly created ‘Dept’ element is added to the ‘Dept’ section.

Top Level Field to Field of a Section with Mapping

Source Data Format Target Data Format Mapping Allowed

Top-Level Field Nested Field Yes

In this case, there is a section mapping from a source section to the target
section containing the nested field.

Example

Consider the mapping ‘EmployeeToEmployeeDetails’ defined in
TopLevelFieldToFieldofMappedSection.car. The mapping rules that were specified for
the nested field ‘ID’ of the ‘Dept’ section are examples of this case.

Target Data Format Source Data Format

 Mapping

 Pseudocode

for (int i=0; i < srcObj.DepartmentLocation.length;

++i) {

 Dept dept = new Dept();

 dept.ID = srcObj.DepartmentID;

 dept.Loc = srcObj.DepartmentLocation[i].City;

 destObj.Dept.add(dept);

}

Explanation

Since there is an implicit mapping from the ‘DepartmentLocation’ section of the
source data object to the ‘Dept’ section of the target data object (see Section
Mapping for more information), for every element of the ‘DepartmentLocation’
section, the corresponding ‘Dept’ element is created.

The ‘City’ field value of a ‘DepartmentLocation’ element is assigned to the ‘Loc’ field
of the corresponding ‘Dept’ element. The value of ‘DepartmentID’ source field is
assigned to the ‘ID’ field of each newly created element of the ‘Dept’ section
(denormalized).

See Also:

Top Level Field to Top Level Field
Nested Field to Top Level Field
Nested Field to Nested Field
Optional Field Mapping
Mapping involving Fields of Optional Sections
Merging Fields of Sibling Sections
Field Mapping

Nested Field to Nested Field

Source Data Format Target Data Format Mapping Allowed

Nested Field Nested Field Yes

Example

Consider the mapping ‘EmployeeToEmployeeDetails’ defined in
NestedFieldToNestedField.car. The mapping rules specified for the ‘TaskID’ and
‘TaskDescription’ nested fields of the ‘Responsibility’ section of the target data format
are examples of this type.

 Target Data Format Source Data Format

 Mapping

 Pseudocode

for (int i=0; i< srcObj.Task.length; i++) {

 Responsibility responsibility = new

Responsibility();

 responsibility.TaskID = srcObj.Task[i].ID;

 responsibility.TaskDescription =

srcObj.Task[i].Desc;

 destObj.Responsibility.add(responsibility);

}

Explanation

For every element of the ‘Task’ section in the source data object, the corresponding
element is created for the ‘Responsibility’ section of the target data object. Suppose
there are two elements in the ‘Task’ section. The same numbers of ‘Responsibility’
elements (two) are created. Then, the ‘ID’ and ‘Desc’ field values of a ‘Task’ element
are respectively assigned to the ‘TaskID’ and ‘TaskDescription’ fields of the
corresponding ‘Responsibility’ element.

Note:

 Even though there is no explicit mapping from the ‘Task’ section of the source
data format to the ‘Responsibility’ section of the target data format, it is
assumed. Since the mapping between the ‘ID’ and ‘TaskID’ fields is the deepest
mapping between these two sections, the mapping between these sections is
automatically assumed. See Section Mapping for more information.

 Section level mapping between two sections results in the same number of

elements in both sections.

See Also:

Top Level Field to Top Level Field
Nested Field to Top Level Field
Top-Level Field to Nested Field
Optional Field Mapping
Mapping involving Fields of Optional Sections
Merging Fields of Sibling Sections
Field Mapping

Optional Field Mapping

Consider the mapping ‘EmployeeToEmployeeDetails’ defined in
OptionalFieldMapping.car. The mapping rule specified for the ‘EmployeeName’ field of
the target data format is an example of this type.

 Target Data Format Source Data Format

Mapping

Explanation

The value of ‘EmployeeName’ target field is the concatenation of the values of source
fields ‘FirstName’ and ‘LastName’. For this requirement, we tend to write the
mapping formula as given below:

FirstName + " " + LastName

But, this would result in the following warning message during validation.

Optional field 'LastName' is accessed without an isNotNull() guard.

But, if you ignore this warning message and proceed with cartridge generation and
deployment, at runtime submitting an input message without the optional ‘LastName’
field would result in ‘TransformNullValueException’ with the following error message:

Attempt to access field 'LastName' with null value

The reason is that the code generator will not add guard check automatically for the
optional field, as it is used in formula mapping. Thus, when an optional field is used
in a formula mapping, it is the user’s responsibility to add guard check as shown
below:

FirstName + If(IsNotNull(LastName), " " + LastName, "")

See Also:

Top Level Field to Top Level Field
Nested Field to Top Level Field
Top-Level Field to Nested Field
Nested Field to Nested Field
Mapping involving Fields of Optional Sections
Merging Fields of Sibling Sections
Field Mapping

Mapping involving Fields of Optional Sections

Consider the mapping ‘OrderInfoToOrder’ defined in
FieldsofOptionalSectionsMapping.car. The mapping rule specified for the ‘OrderQty’
field of the target data format is an example of this type.

 Target Data Format Source Data Format

Explanation

Here, the mapping requirement is as follows: if the ‘LeaveOrWas’ field of the optional
section ‘Cancel_with_Leaves_Quantity’ is present and its value is "WAS", the value of
‘Leaves_Quantity’ field of that section should be set to the target field ‘OrderQty’;
otherwise, the value of the ‘Quantity’ field of the optional section ‘Basic_Order_Data’
should be set to that target field.

Consider the mapping formula given below for the above mapping requirement.

if(IsNotNull(Cancel_with_Leaves_Quantity.LeaveOrWas)) {

 if(Cancel_with_Leaves_Quantity.LeaveOrWas == "WAS") {

 Set(Cancel_with_Leaves_Quantity.Leaves_Quantity);

 }

}

else {

 Set(Basic_Order_Data.Quantity);

}

The mapping is expected to execute even if only one of the sections
‘Cancel_with_Leaves_Quantity’ and ‘Basic_Order_Data’ sections is present. But the
above mapping will work only if both these sections are present in the message, as
explained below.

This mapping accesses fields inside two sections directly;
‘Cancel_with_Leaves_Quantity’ and ‘Basic_Order_Data’. Whenever fields of a
non-repeating optional section are accessed directly without indices, then the
Designer adds a guard. The Designer assumes that mapping is required only if at
least an element exists in all the optional sections whose fields are accessed. For
example, consider the simple mapping given below.

Set(Basic_Order_Data.Quantity + 10);

This mapping is executed only if ‘Basic_Order_Data’ section has an element. That is
the above mapping gets translated to,

if(Basic_Order_Data.$size > 0) {

 Set(Basic_Order_Data[0].Quantity + 10);

}

Note that it has to access the ‘Quantity’ field from the first element; hence it ensures
that such an element exists. Without the automatic guard, many of normal looking
mappings will fail, with runtime exception.

This logic is applied to all the sections that are accessed directly. Hence the formula
that is being considered gets converted to,

if(Cancel_with_Leaves_Quantity.$size > 0 && Basic_Order_Data.$size > 0)) {

 if(IsNotNull(Cancel_with_Leaves_Quantity[0].LeaveOrWas)) {

 if(Cancel_with_Leaves_Quantity[0].LeaveOrWas == "WAS") {

 Set(Cancel_with_Leaves_Quantity[0].Leaves_Quantity);

 }

 }

 else {

 Set(Basic_Order_Data[0].Quantity);

 }

}

This explains why the mapping is never executed when only one of the
‘Cancel_with_Leaves_Quantity’ and ‘Basic_Order_Data’ sections is present in the
source message. The guard code (added for the entire mapping) prevents it from
getting executed if the section elements are missing. So it would be a good idea to
use explicit indices when accessing elements from multiple sections.

Mapping

The mapping formula given below uses explicit indices and it will work as expected.

if(Cancel_with_Leaves_Quantity.$size > 0) {

 if(Cancel_with_Leaves_Quantity[0].LeaveOrWas == "WAS") {

 Set(Cancel_with_Leaves_Quantity[0].Leaves_Quantity);

 }

}

else {

 if(Basic_Order_Data.$size > 0) {

 Set(Basic_Order_Data[0].Quantity);

 }

}

See Also:

Top Level Field to Top Level Field
Nested Field to Top Level Field
Top-Level Field to Nested Field
Nested Field to Nested Field
Optional Field Mapping
Merging Fields of Sibling Sections
Field Mapping

Merging Fields of Sibling Sections

This can be further categorized into:

Merging Fields of Repeating Sibling Sections
Merging Fields of Repeating and Non-Repeating Sibling Sections

Merging Fields of Repeating Sibling Sections

Source Data Format Target Data Format Mapping Allowed

Fields of sibling sections
(where the sibling
sections are repeating
sections)

Fields of a single section No. But can be achieved
using a special syntax of
mapping explained
below. For this to work,
the number of elements
in the sibling sections
should be same.

Note:

Mapping from the fields of sibling sections to the fields of a target section is allowed,
if only one of the sibling sections is a repeating section and others are non-repeating
sections. See Merging Fields of Repeating and Non-Repeating Sibling Sections for
more details.

Sibling sections are sections that are children of the same parent section. They can
also be top-level sections that are unrelated with each other.

Example

Consider the mapping ‘CourseToCourseDetails’ defined in
MergingRepeatingSiblingSecFields.car. The mapping rules specified for the fields of
the ‘SubjectInfo’ section of the target data format illustrate this case.

 Target Data Format Source Data Format

In this case, an attempt is made to map the fields of ‘Subject’ and ‘Book’ sections
(which are top-level sibling sections) of the source data format to the fields of the
‘SubjectInfo’ section of the target data format. The simple and usual way of mapping
would be:

Target Fields Source Fields

SubjectInfo.SubjectCode

SubjectInfo.PrescribedBook

Subject.Code

Book.Name

But the above mapping is not allowed.

Why the above mapping is not allowed?

The generated code for the above mapping would be similar to:

for(int i=0; i < srcObj.Subject.length; i++) {

 SubjectInfo subjectInfo = new SubjectInfo();

 subjectInfo.SubjectCode =

srcObj.Subject[i].Code;

 //cannot iterate srcObj.Book elements

}

The mapping of the field ‘Code’ of the first sibling section ‘Subject’ causes a loop to
iterate the elements of that section to get the field values, in the generated code.
There is no possible way to iterate the elements of ‘Book’ section within that loop (of
‘Subject’ section). Because of this constraint mapping of such unrelated sibling
sections is not allowed.

How the mapping can be done?
The obvious solution to this problem is to use the same loop of ‘Subject’ section to
iterate ‘Book’ section elements as well, i.e. use the same index of ‘Subject’ element

to get the corresponding ‘Book’ element field values. But this brings in another
constraint that ‘Subject’ and ‘Book’ sections should have the same number of
elements. The generated code then, will look similar to:

Pseudocode

for(int i=0; i < srcObj.Subject.length; i++) {

 SubjectInfo subjectInfo = new SubjectInfo();

 subjectInfo.SubjectCode =

srcObj.Subject[i].Code;

 subjectInfo.PrescribedBook =

srcObj.Book[i].Name;

 destObj.SubjectInfo.add(subjectInfo);

}

Note the same index ‘i’ is used to access the corresponding elements of ‘Subject’ and
‘Book‘ elements.

What happens when the number of elements in the sibling sections is
different?

Suppose there are 3 ‘Subject’ elements and 2 ‘Book’ elements in the source
message. The above mapping would create two ‘SubjectInfo’ elements based on the
first two elements (with index 0 and 1) of ‘Subject’ and ‘Book’ sections. As the third
element is available only in ‘Subject’ section but not in ‘Book’ section (‘Book’ section
has only two elements), it would result in runtime error. Hence during runtime, the
sibling sections ‘Subject’ and ‘Book’ should have the same number of elements.

Mapping in Designer

The solution for this mapping is to use the same index to access the corresponding
elements of the sibling sections ‘Subject’ and ‘Book’, as mentioned above. The
mapping for the ‘PrescribedBook’ field of the ‘SubjectInfo’ section of the target data
format shows how to use the $index variable to obtain the index of the element
being processed (see figure below).

Mapping

As per the above mapping, for each element of the ‘Subject’ section in the source
data object, a corresponding ‘SubjectInfo’ element is created in the target data
object (note that section level mapping between two sections results in the same
number of elements in both sections). Then the value of the ‘Code’ field of the
‘Subject’ element is assigned to the ‘SubjectCode’ field of the corresponding
‘SubjectInfo’ element.

The index of the current ‘Subject’ element can be obtained using $index as shown
below:

Subject.$index

This $index variable is used to access the value of ‘Name’ field of the ‘Book’ element
(whose index is same as that of the current ‘Subject’ element) and it is assigned to
the ‘PrescribedBook’ field of the ‘SubjectInfo’ element.

See Also:

Merging Fields of Sibling Sections

Merging Fields of Repeating and Non-Repeating Sibling
Sections

Source Data Format Target Data Format Mapping Allowed

Fields of sibling sections
(where only one of the
sibling sections is a
repeating section and
others are
non-repeating sections)

Fields of a single section Yes

Sibling sections are sections that are children of the same parent section. They can
also be top-level sections that are unrelated with each other.

Example

Consider the mapping ‘CourseToCourseDetails’ defined in
JustOneofSiblingSectionsIsRepeating.car. The mapping rules specified for the fields
of the ‘SubjectInfo’ section of the target message format illustrate this case.

In this case, an attempt is made to map the fields of ‘Subject’ and ‘CoachingCenter’
sections (which are top-level sibling sections) of the source data format to the fields
of the ‘SubjectInfo’ section of the target data format. While the first sibling section
‘Subject’ is a repeating section, the second sibling section ‘CoachingCenter’ is a
non-repeating section.

 Target Data Format Source Data Format

Mapping

Pseudocode

for(int i=0; i < srcObj. Subject.length; i++) {

 SubjectInfo subjectInfo = new SubjectInfo();

 subjectInfo.SubjectCode = srcObj.Subject[i].Code;

 subjectInfo.CoachingCenterCode =

srcObj.CoachingCenter[0].Code;

 destObj.SubjectInfo.add(subjectInfo);

}

Explanation

For each element in the source section ‘Subject’, the corresponding ‘SubjectInfo’
element is created and the value of the ‘Code’ field of a ‘Subject’ element is assigned
to the ‘SubjectCode’ field of the corresponding ‘SubjectInfo’ element. The value of
‘Code’ field in the only element of the ‘CoachingCenter’ section is assigned to the
‘CoachingCenterCode’ field of each element created for the target section
‘SubjectInfo’.

See Also:

Top Level Field to Top Level Field
Nested Field to Top Level Field
Top-Level Field to Nested Field
Nested Field to Nested Field
Optional Field Mapping

Mapping involving Fields of Optional Sections
Field Mapping

Section Mapping

Normally, designer figures out section mapping automatically by looking at field
mapping. It uses section mapping to create the correct number of section elements
in the output. The user can map sections if a section has no fields, but has
subsections (in this case designer cannot figure out how many elements need to be
created). If the user does not provide a section mapping, it creates just one element.

There is no harm in mapping sections even if the fields have mapping. Designer
ensures that the section mapping is consistent with the field mappings (extra
validation).

It is important to remember that field mapping is necessary (if the field is needed at
the output) even when section mapping is provided.

How is section mapping determined?

A section, SecOut, in the output is mapped to a section, SecIn, in the input if,

 the two sections are explicitly mapped by the user,

 a field in the output section is mapped to a field in the input section and no other

field in SecOut is mapped to a field belonging to a descendent section of SecIn.
That is the mapping for an output section is determined by the deepest mapping
of its fields.

 The following restrictions apply.

 The section mapping determined by each of the fields of the output section must

be in the same hierarchy (they should have parent–child-child-... relationship).
The actual mapping is the deepest section in the hierarchy. This is why mapping
to fields of sibling sections in the input is not allowed (Case 8A).

 The user specified mapping for a section couldn’t be weaker than the mapping

determined by its fields. This means that if the deepest mapping determined by
the fields of the section SecOut is SecIn, then it is an error to explicitly map
SecOut to a parent section of (or a section unrelated to) SecIn. It is acceptable to
map it to a child of SecIn.

See Also:
Top-Level Section to Nested Section
Nested Section to Top-Level Section
Nested Section to Nested Section
Optional Section Mapping
Section Formula Mapping
Field Mapping
Creating a Message Mapping
Mapping Rules UI
Message Mapping

Top-Level Section to Nested Section

Source Data Format Target Data Format Mapping Allowed

Top-Level Section Nested Section Yes

Example

Consider the mapping ‘SalesToSalesDetails’ defined in
TopLevelSectionToNestedSection.car. The mapping specified for the ‘ProductInfo’
nested section of the ‘YearlySales’ target data format section is an example of this
case.

 Target Data Format Source Data Format

Mapping

Pseudocode

for(int j=0; j < srcObj.Product.length; ++j) {

 ProductInfo productInfo = new ProductInfo();

 for(int k=0; k < srcObj.Product.Brand.length; ++k) {

 BrandInfo brandInfo = new BrandInfo();

 brandInfo.BrandName =

srcObj.Product[j].Brand[k].Name;

 brandInfo.SalesQty =

srcObj.Product[j].Brand[k].Qty;

 productInfo.BrandInfo.add(brandInfo);

 }

 destObj.ProductInfo.add(productInfo);

}

Explanation

Suppose there are two ‘Product’ elements in the input object and there are two
‘Brand’ elements in the first ‘Product’ element and one ‘Brand’ element in the
second. Note that section level mapping between two sections results in the same
number of elements in both sections. So, two ‘ProductInfo’ elements are created in
the only element of the ‘YearlySales’ section (This is because of the mapping from
the top-level field ‘Year’ in source data format to the nested field ‘SalesYear’ in target
data format). For further details, refer to the section Top Level Field To Field of a
Section Without Mapping. The mapping of the ‘BrandInfo’ section of the target data
format to the ‘Brand’ section of the source data format results in the same number of
‘BrandInfo’ elements to be created in a ‘ProductInfo’ element as that of the
corresponding ‘Product’ element. So, two ‘BrandInfo’ elements are created for the
first ‘ProductInfo’ element of the target data object and one ‘BrandInfo’ element is
created for the second ‘ProductInfo’ element (same as in the input).

See Also:

Nested Section to Top-Level Section
Nested Section to Nested Section
Optional Section Mapping
Section Formula Mapping
Section Mapping

Nested Section to Top-Level Section

Source Data Format Target Data Format Mapping Allowed

Nested Section Top-Level Section Yes

Example

Consider the mapping ‘SalesToSalesDetails’ defined in
NestedSectionToTopLevelSection.car. The mapping specified for the ‘ProductInfo’
target section is an example of this case.

 Target Data Format Source Data Format

Mapping

Pseudocode

for(int i=0; i < srcObj.YearlySales.length; ++i) {

 for(int j=0; j < srcObj.YearlySales.Product.length; ++j) {

 ProductInfo productInfo = new ProductInfo();

 for(int k=0; k < srcObj.YearlySales.Product.Brand.length; ++k) {

 BrandInfo brandInfo = new BrandInfo();

 brandInfo.BrandName =

srcObj.YearlySales[i].Product[j].Brand[k].Name;

 brandInfo.SalesQty = srcObj.YearlySales[i].Product[j].Brand[k].Qty;

 productInfo.BrandInfo.add(brandInfo);

 }

 destObj.ProductInfo.add(productInfo);

 }

}

Explanation

Suppose there is a single ‘YearlySales’ element in the source data object that
contains two ‘Product’ elements with two ‘Brand’ elements in the first ‘Product’
element and one ‘Brand’ element in the second. Since the ‘ProductInfo’ section of the
target data format is mapped to the ‘Product’ source section, for every ‘Product’

element within every ‘YearlySales’ element, the corresponding ‘ProductInfo’ element
is created in the target data object. In our case, two ‘ProductInfo’ elements are
created in the target data object. The mapping of the ‘BrandInfo’ target section to
the ‘Brand’ source section, results in the same number of ‘BrandInfo’ elements to be
created in a ‘ProductInfo’ element as that of the corresponding ‘Product’ element. So
there will be two ‘BrandInfo’ elements in the first ‘ProductInfo’ element of the target
data object and one ‘BrandInfo’ element in the second ‘ProductInfo’ element.

Consider the following input:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Sales SYSTEM "Sales.dtd">

<Sales>

 <YearlySales>

 <Year>2003</Year>

 <Product>

 <Brand>

 <Name>HP</Name>

 <Qty>1000</Qty>

 </Brand>

 <Brand>

 <Name>Philips</Name>

 <Qty>1500</Qty>

 </Brand>

 </Product>

 <Product>

 <Brand>

 <Name>BPL</Name>

 <Qty>1200</Qty>

 </Brand>

 </Product>

 </YearlySales>

</Sales>

The output in this case (when the sections are mapped) is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE SalesDetails SYSTEM "SalesDetails.dtd">

<SalesDetails>

 <SalesYear>2003</SalesYear>

 <ProductInfo>

 <BrandInfo>

 <BrandName>HP</BrandName>

 <SalesQty>1000</SalesQty>

 </BrandInfo>

 <BrandInfo>

 <BrandName>Philips</BrandName>

 <SalesQty>1500</SalesQty>

 </BrandInfo>

 </ProductInfo>

 <ProductInfo>

 <BrandInfo>

 <BrandName>BPL</BrandName>

 <SalesQty>1200</SalesQty>

 </BrandInfo>

 </ProductInfo>

</SalesDetails>

See Also:
Top-Level Section to Nested Section
Nested Section to Nested Section
Optional Section Mapping
Section Formula Mapping
Section Mapping

Nested Section to Nested Section

Consider the mapping ‘SalesToSalesDetails’ defined in
NestedSectionToNestedSection.car. This is same as same as Nested Section to
Top-Level Section example but with a difference that there is no mapping for the
‘ProductInfo’ output section as shown in the figure given below:

Mapping

Pseudocode

ProductInfo productInfo = new ProductInfo(); //Note the placement of this

stmt

for(int i=0; i < srcObj.YearlySales.length; ++i) {

 for(int j=0; j < srcObj.YearlySales.Product.length; ++j) {

 for(int k=0; k < srcObj.YearlySales.Product.Brand.length; ++k) {

 BrandInfo brandInfo = new BrandInfo();

 brandInfo.BrandName =

srcObj.YearlySales[i].Product[j].Brand[k].Name;

 brandInfo.SalesQty =

srcObj.YearlySales[i].Product[j].Brand[k].Qty;

 productInfo.BrandInfo.add(brandInfo);

 }

 }

}

destObj.ProductInfo.add(productInfo);

Explanation

Since there is no mapping for the ‘ProductInfo’ section of the target data format,
only one ‘ProductInfo’ element is created in the target data object, for all ‘Product’
elements that occur within the ‘YearlySales’ section of the source data object. The
mapping of ‘BrandInfo’ section of the target data object is handled as in Nested
Section to Top-Level Section.

Source Data Object:

No. of
‘YearlySales’

elements

No. of
‘Product’
elements

No. of
‘Brand’

elements

2
2

3 2

1 4

Target Data Object:

No. of
‘ProductInfo’

elements

No. of
‘BrandInfo’
elements

1 9

The output in this case (for the input in Nested Section to Top-Level Section) is as
follows:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE SalesDetails SYSTEM "SalesDetails.dtd">

<SalesDetails>

 <SalesYear>2003</SalesYear>

 <ProductInfo>

 <BrandInfo>

 <BrandName>HP</BrandName>

 <SalesQty>1000</SalesQty>

 </BrandInfo>

 <BrandInfo>

 <BrandName>Philips</BrandName>

 <SalesQty>1500</SalesQty>

 </BrandInfo>

 <BrandInfo>

 <BrandName>BPL</BrandName>

 <SalesQty>1200</SalesQty>

 </BrandInfo>

 </ProductInfo>

</SalesDetails>

Though section mapping is not a must, it is done implicitly when the fields are
mapped. But in certain cases like this, section mapping needs to be done to get the
output in the required format.

See Also:
Top-Level Section to Nested Section
Nested Section to Top-Level Section
Optional Section Mapping
Section Formula Mapping
Section Mapping

Optional Section Mapping

Consider the mapping ‘PayrollXMLToPayroll’ defined in OptionalSectionMapping.car.
The mapping rule specified for the ‘Deduction’ field of the target data format is an
example of this case.

Target Data Format Source Data Format

Mapping

Explanation

To calculate the value of the ‘Deduction’ target field based on the values (given in
percentage of basic pay) of ‘PF’ and ‘IT’ fields of the optional source section
‘Deductions’, we tend to write the mapping formula as given below:

(Employee.Deductions[0].PF / 100.0) * Employee.Basic +

 (Employee.Deductions[0].IT / 100.0) * Employee.Basic

But, this would result in FieldNotFoundException with the following error message
during runtime if the ‘Deductions’ section is missing in the input (which is valid as it
is an optional section).

Error accessing element of section 'Employee.Deductions'. Section index out
of bounds, size = '0' , index accessed = '0'.

When the user uses a field from an optional section in a formula, to avoid runtime
exception, the code generator adds guard code around optional section as explained
in Nested Field of a Non-repeating Optional Section to Top-Level Field. However, if
the user specifies an index (in this case 0), then it is the user's responsibility to
specify the guard and code generator will not add guard check automatically. Thus,
the above mapping rule should be written as shown below. Here
Employee.Deductions.$size returns the number of elements in the
‘Employee.Deductions’ section.

If(Employee.Deductions.$size > 0,

 Set((Employee.Deductions[0].PF / 100.0) * Employee.Basic +

 (Employee.Deductions[0].IT / 100.0) *

 Employee.Basic))

See Also:

Section Mapping

Section Formula Mapping

Consider the SectionFormulaMapping.car cartridge. Here the mapping requirement is
that the input fields F1, F2 and F3 (see the pictures given below) need to be mapped
to the field ‘Fld’ of the internal message section ‘Sec’ as shown below:

 F1 -> Sec[0].Fld
 F2 -> Sec[1].Fld
 F3 -> Sec[2].Fld

Here, all the source fields are optional. In the destination we need to create as many
elements of ‘Sec’ as required.

Target Data Format (NO Fields) Source Data Format(Input Fields)

This cannot be achieved by using normal mapping at it requires control over creation
of the target section elements as well as assignment of values to the fields of the
target section elements created.

This can be achieved by specifying a mapping formula for the section ‘Sec’ as shown
in the following picture.

Input Mapping

Note that this formula does not return anything. This is taken as a clue that user has
taken charge of the section mapping. Also, note that there is no mapping for the field
‘Fld’.

The formula creates section elements based on the occurrences of fields F1, F2, and
F3 and sets the value of sub field ‘Fld’. For instance, if field F2 is missing, then only
two elements are created.

If the target format has other fields/sections, the user can provide a mapping for
them. The only restriction is that the user cannot provide a mapping for
fields/sections under this section (for which a void returning formula has been
specified).

See Also:
Top-Level Section to Nested Section
Nested Section to Top-Level Section
Nested Section to Nested Section
Optional Section Mapping
Section Mapping

Formula

A formula is an expression that evaluates to a value. A formula expression can refer
to one or more data items depending on the context in which they are used. The
value returned by a formula expression is used for setting/validating fields. These
formula expressions have Java like expression syntax and can access a number of
predefined functions available in Designer.

See Also:

Entering a Formula
Editing a Formula
Reformat Formula
Edit Formula Dialog
Designer User Interface
Cartridge
Message
Message Mapping
Function Definition
Code Generation
Simulator
Working With Cartridge Designer

Entering a Formula

A formula can include one or more functions and has to be specified in the
Formula text box. The users need not type the formula directly. Instead, they can
choose the required function(s) from the Function name list box of the Edit
Formula dialog box. See the section Edit Formula Dialog for more information. Let’s
consider an example to understand the usage of this dialog.

In this example, the condition that we will be assuming is that the first character of
the input data for a particular field should not be a ”/". The following steps have to
be performed to validate data to suit the above condition.

a) The first character from the left of the input data has to be extracted.

b) This character should be checked to see that it is not equal to “/”.

The above condition can be verified using the following formula:

NotEqual(Left(A.F20C.SEME.Reference, 1), "/")

In the above formula,

 A.F20C.SEME.Reference is the data field under consideration.

 The function Left(A.F20C.SEME.Reference, 1) extracts the first character from

the left.

 The NotEqual function checks if the extracted character is not equal to “/”.

Let’s now go through the steps involved in specifying the above formula in the
Formula text box.

1. Double click inside the Formula text box. Now pressing the F4 key or clicking

the Edit Formula icon brings up the Edit Formula dialog box that can be
used in defining the formula.

2. NotEqual is a logical function. Therefore, in the Formula Functions tab of the

Edit Formula dialog, select Logical item from the Function category list box.

3. The functions under the Logical category will be displayed in the Function

name list box. In the figure shown above only a few of the functions are

currently visible. Use the scroll bar in this box to view the remaining functions.
You can double-click on a function name to select it. Otherwise, click on the
function name and then click on the Insert button that is present below this box.
Now select the NotEqual function for this example. The current state of the Edit
Formula dialog box is shown below.

4. Now, the bottom panel of the Edit Formula dialog displays another section and

the name of this section is the same as the selected function (in our case it is
NotEqual). The fields in this section correspond to the inputs that need to be
specified for the function. In this example, the first value for the NotEqual
function is another function, which is the Left function.

5. Place the cursor in the val1 field to indicate the insertion point. The function Left

falls under the Text category. So, first select the Text category and then the
Left function as indicated in steps 2 and 3 of this procedure. The bottom panel of
the Edit Formula dialog will now be different as shown in the following figure. As
you can see, the inputs that need to be provided for the Left function are
displayed.

6. The first input of the Left function is the string from which the leftmost character

has to be extracted. In our case it is the A.F20C.SEME.Reference field. To
select this field instead of typing it, first make sure that the text cursor is in the
str text box and then click on the Data tab.

7. The current state of the Edit Formula dialog box is shown below.

8. In the Fields list displayed in the top panel of the dialog, double-click on the

Reference field or select it and click the Insert button. The field will appear in
the str field in the bottom panel and the details of this field will be displayed
besides the Insert button.

9. As only one character needs to be extracted from the left of the Reference field,

specify 1 as the input for the num_chars field as in the following figure.

10. Having specified the inputs for the Left function, click the Finish button. Clicking

the Cancel button takes the user to the previous screen that displays the input
parameters of the NotEqual function. The following figure shows the current
state of the Edit Formula dialog box.

11. As the extracted character needs to be compared with a “/”, specify “/” (with the

quotation marks) in the val2 text box. Having specified both the inputs for the
NotEqual function, click the Finish button.

12. As in the following figure, the completed formula appears in the Formula text

box. The OK button at the bottom of the Edit Formula dialog enables the user
to quit this dialog after inserting the formula into the text field from where the
dialog box is invoked. Alternatively, the Cancel button allows the user to quit the
dialog without inserting the formula.

See Also:

Editing a Formula
Edit Formula Dialog
Formula

Editing a Formula

The users may find the necessity to edit a previously specified formula. The required
changes can be made very easily. Let us consider the same example as given in the
Entering a Formula section. Let us now see how the changes in the formula should
be made if you want to extract the first two characters of the input string and check
that they are not “--”. To extract the first two characters, we need to edit the Left
function. To check that these extracted characters are not “--”, the NotEqual
function should be edited.

1. Let us first edit the Left function definition. In the Formula text box wherein the

complete formula is displayed, click on any of the parameters associated with the
Left function. The signature of the Left function is displayed at the bottom of the

Edit Formula dialog box. See the section Edit Formula Dialog for more
information.

2. Click on the hyperlink shown at the bottom of the dialog when the text cursor is

moved into the Left function signature.

3. In the Edit Formula screen that displays the input parameters of the Left

function, replace the value 1 in the num_chars field with 2.

4. Clicking the Finish button will update the Left function part of the formula.

5. Similarly select any of the parameters associated with the NotEqual function and

click on the hyperlink displayed.

6. In the Edit Formula screen that displays the input parameters of the NotEqual

function, replace “/” with “--“ in the var2 text box.

7. Click on the Finish button to view the modified formula as in the following figure.

8. Click the OK button to accept the changes made to the formula. Clicking the

Cancel button will retain the original formula without any changes.

Note:

The function help displayed in the status bar of the application window is also a
hyperlink. Clicking on it will also launch this dialog.

See Also:

Entering a Formula
Edit Formula Dialog
Formula

Reformat Formula

The ‘Reformat Formula’ dialog can be used to auto-format the formula code. If a
formula is typed with unwanted spaces or lines, it can be beautified using this
feature.

1. Select ‘Reformat Formula’ menu item under ‘Edit’ menu. The Reformat Formula

dialog is displayed.

2. If you want to format formula present only in the current node select the ‘Current

Node’ option button. If you want to format all formula present in the current node
and its child nodes select the ‘Include child nodes’ check box.

3. If you want to reformat all formula entered in the cartridge, select ‘All nodes in

cartridge’ option.

See Also:

Editing a Formula
Edit Formula Dialog

Edit Formula Dialog

The Edit Formula dialog helps in entering/editing formulas, checking the
correctness of a formula and testing it. This dialog can be popped up using the Edit
Formula button in the main window toolbar or using the shortcut key F4, when
the focus is in the formula text box. The Edit Formula dialog is shown below.

In the above picture, the Data tab is currently active. The top panel of the dialog
displays the Fields list.

The bottom panel of the dialog displays the formula editor. In the formula editor, the
user can directly type the required formula that might result in errors like syntax
error, misspelled parameter name, etc. To avoid these common errors, it is
recommended to insert data fields and functions used in the formula from the tabs of
the Edit Formula dialog.

The Formula Functions tab lists the supported functions as shown in the following
figure. These functions are categorized based on their functionality. The Function
category list box displays the different function categories. The user can click on

any item in this box to select a specific category. The functions falling under the
selected category will be displayed in the Function name list box. In the following
figure, the functions in the Arithmetic category are displayed. On selecting any
function, the syntax and usage of the function will be displayed below the list boxes.

A splitter separates the top panel and bottom panel containing the formula editor.
You can adjust the size, as you want. Line number would appear for the codes
besides the code pane. The dialog size and the position of the splitter are now sticky
(for the session). Any adjustments you make are retained the next time the dialog is
shown.

See Also:

Syntax Highlighting
Auto Completion
Quick Function help
Code Reformater (Formula Beautifier)
Formula Validation (Automatic Error Checking)
Formula Tester
Locating Variable

Incremental Search
Formula Edit Operations
Entering a Formula
Editing a Formula
Formula

Syntax Highlighting

In the formula editor of the Edit Formula dialog, the formula functions and string
literal(s) of a formula are colored differently as shown in the following picture.

See Also:

Auto Completion
Quick Function help
Code Reformater (Formula Beautifier)
Formula Validation (Automatic Error Checking)
Formula Tester
Locating Variable
Edit Formula Dialog

Auto Completion

The Edit Formula dialog makes entering formula easier by supporting auto
completion of function names in the formula editor.

Follow the Steps given below to auto complete function names while entering a
formula in the formula editor:

1. Type in part of the function name.

2. Press Ctrl + Space.

3. A list box pops up with possible choices. Select the one you want and press Enter

or ‘(‘.

See Also:

Syntax Highlighting
Quick Function help
Code Reformater (Formula Beautifier)
Formula Validation (Automatic Error Checking)
Formula Tester
Locating Variable
Edit Formula Dialog

Quick Function help

In the formula editor while entering a formula that involves functions, help for a
function can be displayed without leaving the editor by pressing the Ctrl button and
hovering the mouse pointer over the function name.

See Also:

Syntax Highlighting
Auto Completion
Code Reformater (Formula Beautifier)
Formula Validation (Automatic Error Checking)
Formula Tester
Locating Variable
Edit Formula Dialog

Code Reformater (Formula Beautifier)

The ‘Reformat Code’ button in the formula editor toolbar of the Edit Formula dialog
can be used to auto-format the formula code. If a formula is typed with unwanted
spaces or lines, it can be beautified using this feature. For example, consider the
following formula:

To format the above formula (remove unwanted spaces and lines) click the
‘Reformat Code’ button in the formula editor toolbar. The formula will be
automatically formatted as shown below:

See Also:

Syntax Highlighting
Auto Completion
Quick Function help
Formula Validation (Automatic Error Checking)
Formula Tester
Locating Variable
Edit Formula Dialog

Formula Validation (Automatic Error Checking)

While entering a formula in the formula editor of the Edit Formula dialog, the
syntax and correctness of the formula are checked as it is typed. The offending code
is underlined (in red) and error message is displayed in the status bar as shown in
the following picture.

See Also:

Syntax Highlighting
Auto Completion

Quick Function help
Code Reformater (Formula Beautifier)
Formula Tester
Locating Variable
Edit Formula Dialog

Formula Tester

This feature can be used to test a formula in isolation.

On clicking the ‘Test’ button in the formula editor, the Test Formula dialog is
displayed as shown in the following picture. The user will be prompted for the value
of all the input variables used in the formula. The formula is executed and the
output(s) are displayed.

In some cases where sections and arrays indexes are used, this feature does not
work well.

See Also:

Syntax Highlighting
Auto Completion
Quick Function help
Code Reformater (Formula Beautifier)
Formula Validation (Automatic Error Checking)
Locating Variable
Edit Formula Dialog

Locating Variable

To locate the definition of a variable used in the formula, move the mouse pointer
over that variable with the CTRL key pressed. A hyper link is shown (similar to
functions) as can be seen in the following picture. Clicking on it will take you to the
definition of that variable. If it refers to a field, the field is selected in the Field list in
the top panel of the Edit Formula dialog.

See Also:

Syntax Highlighting
Auto Completion
Quick Function help
Code Reformater (Formula Beautifier)
Formula Validation (Automatic Error Checking)
Formula Tester
Edit Formula Dialog

Formula Edit Operations

Several edit operations can be performed on the formula entered in the formula text
area. Select the text entered or a portion of the text and right click. A popup menu is
displayed as shown below

 Select the ‘Cut’ menu to remove the selected text.

 Select the ‘Copy’ menu to copy the selected text.

 Select ‘Copy as HTML’ menu to copy the selected text using HTML syntax. It can

be saved into an HTML file.

 Select the ‘Paste’ menu to paste any content present in the clipboard into the

text area.

 To search for particular text in the formula select the ‘Find’ menu. The Find

dialog is displayed.

Specify the text to search for in the ‘Find What’ text field. You can also specify
search options. Press OK. If a match occurs the text will be highlighted as shown
below

 Select the ‘Find Next’ menu if you need to search for the text again.

See Also:

Syntax Highlighting
Auto Completion
Quick Function help
Code Reformater (Formula Beautifier)
Formula Validation (Automatic Error Checking)
Formula Tester
Edit Formula Dialog

Function Definition

Designer supports defining functions in the Formula language. The functions are
defined in a Cartridge and are available globally in the cartridge. Once defined, a
function can be used in formula code from anywhere in the cartridge.

Like functions in other languages, during definition you need to specify the
parameters, return type and provide a body for the function. The body of the
function should be in formula code. The parameters and return value should be of
the specified type. During definition you can choose to use an ‘Any’ for parameters
and return type which makes the functions behave like generic functions, applicable
to multiple types.

See Also:

Defining a Function
Function Definition Properties
Invoking Functions
Working with Functions
Simple Function
Parameterized functions
Token based functions
Testing the function

Formula
Edit Formula Dialog
Designer User Interface
Cartridge
Message
Message Mapping
Formula
Code Generation
Simulator
Working With Cartridge Designer

Defining a Function

To create a new function,

1. Right click the cartridge node, select ‘Add Item-> New Function’ as shown below.

2. A new function definition will be added.

3. The function definition by default will be added under a folder ‘Function

Definitions’. Any function definition you add will be added under this folder.

4. You can also add a function definition by right clicking on the ‘Function

Definitions’ folder and selecting ‘New Function’ item.

Note:

A function definition defined in a cartridge can be accessed only within that cartridge.
It cannot be accessed from elsewhere.

See Also:

Function Definition UI
Invoking Functions
Working with Functions
Copy/Paste Support

Function Definition UI

After creating a function definition you can specify properties for it. The properties
that can be specified for a function definition are

 Name
 Category
 Description
 Parameters
 Return Type
 Code

See Also:

Defining a Function
Working with Functions

Name

The name of the function definition. The function should be accessed using this
name. This is a mandatory property. The name should conform to identifier rules.

See Also:

Category
Description
Parameters
Return Type
Code

Category

The category of the function definition. The ‘User Defined’ category is selected by
default. You can select any other category from the drop down list. In the ‘Edit
Formula’ dialog the function will be listed under the specified category.

Description

Description for the function definition. This is not mandatory. When a function
definition is selected in the functions list box the description specified here will be
displayed.

See Also:

Name
Parameters
Return Type
Code

Parameters

The parameters for the function. A function can have multiple parameters or no
parameter. Parameters are not mandatory for a function.

Properties of a parameter are

Name: Each parameter name should be unique.
Description: Description of the parameter. This is not mandatory.
Type: The parameter type. All the supported Designer types can be specified as
parameters. Along with those types four new types can be specified.
 Any
 Token
 Section
 Message

See Also:

Name

Category
Description
Return Type
Code

Return Type

The return type of the function. The type can be any of the supported designer
types. Five new types are also supported as return types.

 Any
 Token
 Section
 Message
 Void

See Also:

Name
Category
Description
Parameters
Code

Code

The actual operation that the function performs should be specified here.

You can choose to implement the operation of the function using either the formula
language or the platform specific code.

To implement the function using platform specific code, you have to select the
‘Native Function’ check box and specify a reference name in the ‘Native Class Ref’
text field. The reference name should be bound to the platform specific class (that

contains function implementation) using the ‘Language Bindings’ tab of the ‘Code
Generation Settings’ dialog. The custom class must implement the IInvokable
interface. See API documentation for more details.

Please refer New File from Template for easily creating a native function
implementation class.

To implement the function using the formula language, you have to deselect the
‘Native Function’ check box (by default it is deselected) and specify the
implemenation code in the Code text area.

You can click the button or press ‘F4’ in the Code text area to view the ‘Edit
Formula’ dialog.

You can access all parameters that are defined for the function in the formula dialog.

Please note that the value returned by the function should correspond to the return
type. If the return type is ‘String’ the function should return a String value. If the
return type is ‘Void’ the function should not return any thing.

See Also:

Name
Category
Description
Parameters
Return Type
Formula
Edit Formula Dialog

Copy/Paste Support

Copy/Paste operations are supported for a function definition. Right click the function
definition

Select the ‘Copy’ menu item. The function definition will be copied. You can then
paste it elsewhere.

Function definitions can also be exported/imported as XML files.

See Also:

Defining a Function
Working with Functions
Invoking Functions

Invoking Functions

You can access the function definitions in all places where formula support is
provided (e.g. validation rules). Please note that a function definition can be
accessed only within the cartridge where it has been defined. It cannot be accessed
from outside the cartridge.

In the Edit formula dialog in ‘Formula Functions’ tab category ‘Functions’ will be
present. When you select it, only those function definitions that have been added in
the cartridge will be displayed in the functions list box. You can select a function
definition from the ones available.

When a function definition is selected in the functions list box the description of the
function that is specified while defining it will be displayed. The signature of the
function will also be displayed.

Note:

The help links for the user defined function definitions will not work.

See Also:

Defining a Function
Working with Functions
Edit Formula Dialog

Working with Functions

In this section we consider specific cases and illustrate various possibilities in
creating functions. There are three major classifications of functions. The
classifications are based on the parameter type used while defining the function.

Simple Functions Functions whose parameters and return types are all of
known type

Parameterized functions Functions with at least one parameter of type ‘Any’
(unspecified).

Token based functions Functions with at least one parameter of type ‘Token’.

See Also:

Testing the function
Defining a Function
Invoking Functions

Simple Function

Lets us assume that you want to create ‘min’ function, which returns the minimum of
two integers. The function will take two parameters of type Integer and return the
lesser of the two, again an Integer.

1. Create a new Function and set its name to ‘min’.

2. Change the Return Type to ‘Integer’

3. Add two Parameters ‘val1’ and ‘val2’ and set their type as Integer.

4. Enter a description of the function.

5. In the code area enter the body of the function.

val1 < val2 ? val1 : val2

You can also use an explicit return statement. If not it will use the value of the last
top level expression in the body of the method.

In case of complex formula you can use the Edit Formula Dialog to enter the text.
The main advantage of the dialog is that it provides immediate error feedback and
has basic testing capabilities.

This function can be invoked from others locations in the cartridge where you are
allowed to enter a formula. The newly added function appears in the function list in
Edit Formula Dialog like any other predefined function.

See Also:

Parameterized functions
Token based functions
Testing the function
Defining a Function

Formula

Testing the function

There are two ways you can test this newly created function. You can test the code
that forms the body of the function or you can invoke the function from elsewhere in
the cartridge and check whether it returns correct values.

See Also:

Testing the body
Test by invoking the function

Testing the body

1. To quickly test implementation of the above function, place the cursor in the

Function code area (in the Function Definition UI) and Click F4. The Edit formula
dialog pops up.

2. Click the ‘Test’ button in the toolbar. The Test Formula dialog is displayed.

3. There will be a text field for each parameter to enter the input for function. Enter

some integer values for the two parameters. The result is immediately computed
and displayed in the ‘Return’ text field.

Here we are directly testing the body of the function; we do not actually invoke it.

See Also

Test by invoking the function
Edit Formula Dialog

Test by invoking the function

The other way of testing this function, is to invoke it from some other location in the
cartridge where formula is supported.

To do that, create a new dummy function definition. We will use the body of the
function to invoke the ‘min’ function and test whether it works. It is also possible to
test it from any other location where formula is supported by following the procedure
below.

1. To test min function, place the cursor in the Function code area (of the dummy
function) and Click F4. The Edit formula dialog pops up.

2. Enter the code ‘min(10, 12)’ in the code area. Here we are calling the min
function we created earlier. Unlike the previous case, here we are actually trying
to invoke the function and testing it from outside.

3. Click the ‘Test’ button in the toolbar. The ‘Test Formula’ dialog is displayed. Since

we are not using any variables in the test code, it does not prompt for any
arguments and displays the output/return value.

These two ways of testing appear very similar and one gets the impression that one
of them is redundant. While the former is easy to do (because you don’t have to
create a dummy call point), the latter is more versatile. In particular, when we use
parameterized functions, you cannot test it using the former approach, since types of
the parameters are not known.

See Also:

Testing the body
Edit Formula Dialog

Parameterized functions

The min function we wrote is specific to Integer type. It takes two Integer
parameters and returns an Integer as result. If you follow this approach, you need to
define a min function for each type you want to support or need. It would be nice if
we can generalize the same function to support all types.

val1 < val2 ? val1 : val2

If you look at the body of the function, it looks like it would work for any type that
supports a less than operator. Since this operator is supported for all basic types
(String, Double etc), the same body should work for all basic types. The only
problem is that we are asked to specify the parameter type and the return type when
we define the function.

Designer provides a way to “generify” this function definition. The trick is to not
commit to a specific parameter/return type. In the ‘Return Type’ and ‘Parameter
Type’ combo boxes, there is type called ‘Any’. If you chose this type, your function is
not tied to a particular return type or parameter type respectively.

Lets try to parameterize the min function and make it work for all basic types.

1. Change the Return type of the min function to ‘Any’.

2. Change the type of the parameters val1 and val2 to ‘Any’.

3. Since the body is not tied to a type we don’t have to change it.

Now this function operates on two unspecified types and returns an unspecified type.
Unlike C++ templates there is no way to specify (constrain) that parameter types
should be same and the return type will be same as the parameter type.

Let us try to use this function and see how it works. Since the types are unspecified
it is not possible to test just the body of the function. You need to invoke this
function from elsewhere and check whether it works. When you invoke it with actual
values, the types of the arguments are known. Using this information, it will
synthesize a function definition with the known parameter types.

As before use a dummy function definition to test this function. Enter the code
min("SEME", "ALTE"). We expect it to return the lesser of the two strings.

Use the Test dialog to verify this. Now change the code to min(12.5, 12.4) and again
test it. You can see how the same function works for all the types that support the
less than operator.

What would happen if you try to use it on a type that does not support it, for
instance the boolean type; or if you mix incompatible types. Lets try it with an
Integer and a String.

Even as you type, the incorrect function call is underlined and the tool tip shows the
error message. To do this, it has to replace the ‘Any’ parameter types with the
invoked argument types (Integer & String) and check whether the body of the
function ‘min’ is valid. So, errors if any, will actually occur in the body of the invoked
(min) function. The error message shows the error at the call point as well as the
error that occurred in the body of the invoked function (as nested error). You need
this nested error information, if you have also written the actual function and want to
fix its body. If you are interested in just using the function, you can ignore the
nested error and treat the invocation as invalid.

How it works?

Parameterized functions work very similar to template functions in C++. During code
generation, these functions are “instantiated” based on usage. By instantiation, we

mean that a method with the specific parameter and return types is generated. For
instance, if the min function is invoked from two different places in the Cartridge
with parameters of type Integer and String, then two overloads of the min method is
generated in the chosen language.

If the min function is not used at all, code for it is never generated. This applies to
non-parameterized functions as well; code is generated only for those functions that
you use elsewhere in the cartridge. This feature can be very useful if you build a
library of functions. Since you do not pay for what you don’t use, you can include the
full library and not worry about code bloat. For the two usages of min, the following
code is generated.

public static String min(String _val1, String _val2) {
 return (TextFunctions.less(_val1, _ val2) ? _ val1: _ val2);
}

public static int min(int _ val1, int _ val2) {
 return ((_val1< _ val2) ? _ val1: _ val2);
}

In more complicated cases, the generated method name itself may be different for
different instantiations of a function.

See Also:

Simple Function
Token based Functions
Testing the function
Formula

Token based functions

Generic function definitions let you create functions like min, which work on multiple
types. But most of the functions you normally need that work on primitive types, are
already bundled with the Designer Distribution. After exhausting such possibilities,
you may wonder whether type parameterization is really useful. The real problems
relate to usage of sections and its fields. For instance, you may have a piece of code
that is used in number of places in say, mapping, except that the section and field
names are different. Let us try and write a function secSumDouble1, which returns
the sum of a double field in all the elements of a section.

Let us first implement a non-generic version.

Define a function secSumDouble1, with return type ‘Double’ and two parameters,
‘section’ of type Section and ‘fieldName’ of type String. The goal is to find the sum of
the specified field in all elements of the section.

We have chosen the type ‘Section’ which means that a generic section object is
passed to this method. In the body of the function you cannot directly access the
fields of its elements; you need to use dynamic access, since the type of the section
is not known. This function is not a generic function and only one copy of it is ever
generated. This is the signature of this function.

Double secSumDouble1(Section section, String fieldname)

The body is as follows,

def sum = 0.0;
foreach($elm in section) {
 if(!isNull($elm, fieldName)) {
 sum += getDouble($elm, fieldName);
 }
}
return sum;

You can invoke this function as,

secSumDouble1(mySec, “myField”)

As mentioned earlier, this is not specific to a section, but will work with any section
as long the specified field is available. We have achieved this without using
parameterized functions (Any type); but the cost is paid at runtime. Though, at call
point, we know that the section has a field with the specified name, we don’t directly
access the field in the body, and instead we dynamically access it. Dynamic access
has a cost associated with it.

The first step in generifying a function is to change the type of some of its
parameters (whose type varies) to ‘Any’. Since we want it work for specific section
type, change the type of the section parameter to ‘Any’. What about the fieldName?
Should that be changed to ‘Any’ as well? fieldName is always going to be a string,
but we will pass different values for it. For the time being let us retain it as String
and look at the modified body.

def sum = 0.0;

foreach($elm in section) {

 if(isNull($elm.fieldName)) {

 sum += $elm.fieldName;

 }

}

return sum;

The main change is how the field is accessed from the element. Earlier we had used
dynamic access; now we are using dot notation. This is much more efficient than
earlier implementation.

But this does not work. We have used the notation $elm.fieldName to access a field.
But fieldName is a variable (parameter) of type ‘String’. When you use
$elm.fieldName it would actually expect a field with name ‘fieldName’ to be present
in the element. It will not use the value of the variable fieldName that you passed
while invoking this function.

This is an important use case. If such a thing is not possible you have to resort only
to dynamic access when you are working with sections and elements of sections. To
support this case, there is type called ‘Token’. If you select this type for a parameter,
its value at invocation point is substituted for each occurrence in the body of the
method. For instance if you invoke this function

secSumDouble2(mySec, “myField”)

Then all occurrences of the token ‘fieldName’ are changed to ‘myField’ in the body of
the function.

def sum = 0.0;
foreach($elm in section) {
 if(!isNull($elm.myField)) {
 sum += $elm.myField;
 }
}
return sum;

The invocation of this function is similar to what you would have done for a String
Parameter, secSumDouble2(mySec, “myField”). The only restriction is that value
passed should be literal and not a variable or other type of expressions. This is
needed because the passed value has to replace the parameter name at design time
in the function body.

This function is “instantiated” for every distinct section-fieldname pair. For instance,
if you make two calls secSumDouble2(mySec, “myField”) and
secSumDouble2(mySec, “myAnotherField”), two copies of this function are
generated. But if you again call secSumDouble2(mySec, “myField”) from elsewhere a
new copy is not generated. That is, the ‘Token’ type parameters, like ‘Any’ type
participate in the instantiation of the function. A change in Token value will result a
new copy being generated. In case of ‘Any’ typed parameter, a change in the
argument type (not its value) will result in a new copy being generated.

See Also:

Simple Function
Parameterized functions
Testing the function
Formula

Resources

The Resources design element allows you to separate constant values and locale
specific messages from rest of the cartridge. In general, the Resources node allows
defining name/value pairs called resource items. A resource item is used to represent
either a constant or a message. When it is used to represent a constant, it behaves
very much like a #define in C++ or a constant (public static final) in Java. When it is
used to represent text messages, it resembles a resource bundle in Java or a RC in
Windows development environment.

Separating or externalizing constants to a separate node/location has the following
benefits:

 The constant now has a meaningful name and description. This improves

readability.

 Your formula code is not littered with magic string/numbers; instead you use the

name of resource item, which in general should be self-descriptive.

 If a constant is to be used in multiple places, it is easy to manage its value at a

single location. For instance, if the constant’s value is redefined (say in the spec),
it is easier to change it.

Externalizing messages to a separate node/location has the following benefits:

 Resources node supports locale specific messages. You can provide the resource

item’s value for each locale you are interested in. This is the first step in
internationalizing your cartridge.

 Since the messages are listed in one place, a translator can easily localize, or
translate into different languages.

 All the user visible messages in your cartridge are listed together in one location.

Even if you do not intend to support multiple locales, separating the messages
can improve readability and documentation of your cartridge.

You can access a resource item by name in your formula code. At runtime or during
code generation, the resource item name is substituted with its value. In case of a
resource item representing a message, the appropriate value, based on the current

locale during runtime, is used. In case of a resource item representing a constant,
the resource name is replaced with its value during code generation. The value is
substituted either directly at the usage point, or is converted to a platform specific
constant and referred.

See Also:

Resource Item
Resource Group
Working with Resources
Using a Resource

Resource Item

The Resources node allows you to define name/value pairs called resource items.
The name of the item must conform to regular field name rules (no dots etc).
Resource items are statically typed; all the Designer types are supported. The ‘value’
of the item should be of the specified type; that is, it should be possible to convert
the value specified to the type of the item.

A resource item is used to represent either a constant value or a message. Designer
supports the following resource items of the following types:

1. Simple Constants
2. List Type Constants
3. Messages

Simple Constant

Constants typically are magic numbers or strings, which have a business meaning.
For instance, the character ‘N’ may be used to represent ‘New Order’. These cryptic
values appear in the input/output messages and are usually used as shorthand for
the actual meaning. While processing a message, it is often required to interpret
these values in the message. The following code, checks whether the status of the
order is filled, and sets the destination field’s value accordingly.

If(OrdStatus == '2', 0, ToInt(LeavesQty))

From the code it is not obvious what the magic character ‘2’ means. What this value
means is described elsewhere in the description of the field OrdStatus

Valid values for OrdStatus:
0 = New
1 = Partially filled
2 = Filled

3 = Done for day
4 = Canceled
…
E = Pending Replace (e.g. result of Order Cancel/Replace Request)

Though this information is available elsewhere, it does not make the formula code
easier to read. You need to consult this description every time you read this piece of
code. Also, since the same magic value needs to be used in number of such code
fragments, it is possible to make a mistake and enter a wrong value.
The suggested approach is to externalize these magic values to the resource node
and refer to it by a descriptive name in the formula.

If(OrdStatus == ORDER_STATUS_FILLED, 0, ToInt(LeavesQty))

Now it is possible to manage these values from a single location. A business analyst
can quickly check whether the values used are correct and can change it if the
business meaning of a constant changes.

Note:

Resource items of this type (constants) are typically not assigned locale specific
values; the value is specified only for the default locale.

See Also:

Adding a Simple Constant
Using a Resource

List Type Constant

A resource item of this type associates a set of values to a resource name. Typically
a resource item of this type is used to group related business constants into a single
entity. For example, the resource name COUNTRIES might be used to represent a list
of ISO country code values. This can then be used in an expression like In(Country,
COUNTRIES). In the picture given below, there are two list type constants:
CURRENCIES and ALLOWED_TYPES.

Like a simple constant, the list type constant is accessed by name in a formula. The
value is of list/collection type. You can iterate through the value of list using the
foreach construct or use array operator to access a specific element. More
commonly, you would use it as a parameter to the In() function to check whether a
value is in the list.

During definition, a comma should separate the constants in the list. The comma-
separated values are trimmed at both ends and hence you can leave leading/trailing
spaces or you can break it up into number of lines if the list is long.

Note:

Like simple constants, resource items of this type are typically not assigned locale
specific values.

See Also:
Adding a List Type Constant
Using a Resource

Messages

A resource item of this type is used for externalizing error messages or user visible
texts. A message resource item is provided multiple values, one for each locale you
want to support. At runtime, the value whose locale best matches the current locale
is used.

Resources contain locale-specific objects. When you want to access a locale-specific
resource item, a String object for example, you can load it from Resources that is
appropriate for the current user's locale. In this way, the designer of the cartridge
can write formula code that is largely independent of the user's locale isolating most,
if not all, of the locale-specific information in Resources.

This allows designers to develop cartridges that can:

 be easily localized, or translated, into different languages
 handle multiple locales at once
 be easily modified later to support even more locales

Typically resource items of this type are used in action message of validation rules,
though it can also be used in any formula code. The action message in Designer
defines the message associated with the exception that is thrown when a validation

fails. Since this exception’s message is likely to be user visible, it needs to be
presented in a language and format that the user understands. Designer has good
support for this technique of externalizing locale specific resource, internationalizing
them by supporting multiple locales and presenting them in localized form at
runtime.

In many cases these messages are interspersed with values that are available only
at runtime. For example, if you want to specify an action message that indicates an
error in price value for a specified currency, it will be as follows:

"The amount value " + price + " for the currency " + currency + " has more than the
expected number of digits"

Instead of one message string, we now have three parts. In general, it is not a good
idea to internationalize such fragments for two reasons.

 You have to externalize more number of strings (3 instead of 1)

 In another language, you may express the message completely differently. It

does not make sense to translate the fragments.

The Format() function provides a means to produce concatenated messages in
language-neutral way. Use this to construct messages to be displayed for end users.
The Format() function takes a set of parameters, formats them and then inserts the
formatted strings into the pattern at the appropriate places.

Format(INVALID_PRICE, currency, price);

Here the message pattern INVALID_PRICE is defined as a resource as given below:

The amount value {1} for the currency {0} has more than the expected number
of digits

The message contains placeholders (zero based number), the value for which will be
provided at runtime. The placeholders are substituted with the parameters provided
to the Format() function. The placeholder {0} is substituted with first parameter
(after the pattern), {1} with the second and so on.

The support for externalizing messages from the formula, along with simplicity of
Format() function makes it easy to internationalize user visible error messages.

See Also:
Adding a Message
Customizing Locales
Entering Locale Specific Message Pattern

Internationalization

Internationalization is the process of designing an application so that it can be
adapted to various languages and regions without engineering changes. Sometimes
the term internationalization is abbreviated as i18n, because there are 18 letters
between the first "i" and the last "n."

An internationalized program has the following characteristics:

 With the addition of localization data, the same executable can run in multiple

locales.

 Textual elements, such as status messages and error messages, are not hard
coded in the program. Instead they are stored outside and retrieved dynamically.

 Culturally-dependent data, such as dates and currencies, appear in formats that
conform to the end user's region and language.

 It can be localized quickly.

See Also:

Messages

Locales

On the Designer platform, a locale is an identifier for a particular combination of
language and region and its variant. The runtime has a concept of default locale. This
locale is derived based on the configuration of the operating system in which it is
running. You can also customize it by starting the runtime with the appropriate
command line arguments. For instance, to change the default locale, in case of Java

runtime, you can start the VM with the following additional properties.

java –Duser.language=fr –Duser.country=cn –Duser.variant=Quebec …

The above command sets the default locale to French Canadian.

The language code and the country code used are ISO defined two letter codes.
As mentioned earlier, when you localize a message, the message that is used at the
runtime is based on the default locale. If a message value is not specified for the
default locale, it tries to use the message specified by stripping off the variant
(French Canadian). If it still can’t find a message, it strips off the country part and
uses the message defined for the language (French). If it again fails, it uses the
message defined for the ‘Default’ locale. That is, for a resource item representing a
message, the appropriate value is searched in the following order of locale:

1. Language + Country + Variant
2. Language + Country
3. Language
4. Default

See Also:

Internationalization

Resource Group

Often you would find that you want to define a set of related constants. For example,
you may want to define the valid values for ‘Order Status’ as a separate set of
constants.

Valid values for OrdStatus:
0 = New
1 = Partially filled
2 = Filled
3 = Done for day
4 = Canceled
…
E = Pending Replace (e.g. result of Order Cancel/Replace Request)

You need to come up with names for these constants. To avoid name clashes, it is
very common to prefix the constant’s name with group’s name. So the constant’s
name would be ORDER_STATUS_NEW etc. Since this is a very common case,
Designer supports a way to categorize such constants under a group. The group
should have a unique name and each of the constants under it should have unique
name within the group. It is okay for constants within the group to have the same as
a top level constant or a constant under a different group.

Thus the main benefit of groups is that you get a different namespace to define your
constants. In that sense they are similar to enums in Java and C++. The other
benefit is that while viewing the constants in Resource UI, you can easily skip over
groups of constants that you are not interested in (by collapsing the group).

To access a constant defined under a group you need to use the dot notation. In
above example, you should use ORDER_STATUS.New.

See Also:

Adding Resource Group
Resource Item
Using a Resource

Working with Resources

This first step in using Resources is to create the Resources node. The Resources UI
shown below is used to manage locales and resource items including locale specific
messages.

After creating the Resources node, you can add, edit and remove resource groups
and resource items. You can also add/remove locales supported in the cartridge and
localize your messages.

See Also:

Adding Resources
Adding Resource Group
Adding a Constant Resource Item
Deleting Resource Items
Arranging Resource Items
Customizing Locales
Entering Locale Specific Message Pattern

Adding Resources

Follow the steps given below to create the Resources node:

1. Select the cartridge node.

2. Select the Add Item > Add Resources menu item from its shortcut menu.

The Resources design element will be added as a child node of the cartridge node.

See Also:

Working with Resources
Using a Resource

Adding Resource Group

Follow the steps given below to add a new resource group:

1. Click on the icon in the Resources UI toolbar.
A new row is added in the Resources table for the resource group.

2. Enter the name of the resource group in the ‘Resource Name’ column.

3. Enter the description of the resource group in the ‘Description’ column.

Once you have added a resource group, you can easily add new resource items to

that group by first selecting the resource group row and then clicking on the icon.

See Also:

Adding a Simple Constant
Adding a List Type Constant
Adding a Message

Adding a Constant Resource Item

Designer supports two types of constant resource items: simple constants and list
type constants. The following sections explain the steps required to add resource
items of these types.

Adding a Simple Constant

Follow the steps given below to add a new simple constant resource item:

1. Select the ‘Default’ item from the ‘Active Locale’ drop down list in the

Resources UI toolbar, if it is not already selected.

2. Click on the icon in the Resources UI.

3. Enter the name of the resource item in the ‘Resource Name’ column.

4. Select the Designer type of the resource item from the drop down list displayed

in the ‘Type’ column.

5. Specify the value associated with that resource name in the ‘Value’ column.

6. It should be noted that the value should correspond to the type of the resource

item. Otherwise an error is thrown during validation.

7. Enter the description of the resource in the ‘Description’ column.

Adding a List Type Constant

Follow the steps given below to add a new list type resource item:

1. Select the ‘Default’ item from the ‘Active Locale’ drop down list in the

Resources UI toolbar, if it is not already selected.

2. Click on the icon in the Resources UI.

3. Enter the name of the resource item in the ‘Resource Name’ column.

4. Select the Designer type of the resource item from the drop down list displayed

in the ‘Type’ column.

5. Select the ‘List’ check box.

6. Specify the set of values associated with that resource name in ‘Value’ column.

7. The Comma character should be used to separate values in the list. It should be

noted that each value should correspond to the type of the resource item.
Otherwise an error is thrown during validation.

8. Enter the description of the resource in the ‘Description’ column.

See Also:

Adding a Message
Using a Resource

Adding a Message

A message resource item is used for externalizing error messages or user visible
texts. Once added, a message can be localized for the locales supported in the
cartridge.

Follow the steps given below to add a new message type resource item:

1. Select the ‘Default’ item from the ‘Active Locale’ drop down list in the

Resources UI toolbar, if it is not already selected.

2. Click on the icon in the Resources UI.

3. Enter the name of the resource item in the ‘Resource Name’ column.

4. Select the ‘String’ as the Designer type of the resource item from the drop down

list displayed in the ‘Type’ column.

5. Enter the message pattern associated with that resource name in ‘Value’ column.

6. Enter the description of the resource in the ‘Description’ column.

See Also:

Customizing Locales
Entering Locale Specific Message Pattern
Adding a Simple Constant
Adding a List Type Constant
Using a Resource

Deleting Resource Items

Follow the steps given below to remove a set of resource items.

1. Select the items to be removed.

SHIFT-click in the selection column to select a set of continuous fields and
CTRL-click in the selection column to select any non-continuous field without
affecting the current selection.

2. Click on the icon to remove the selected items.

See Also:

Working with Resources

Arranging Resource Items

Follow the steps given below to rearrange a set of resource items.

1. Select the items to be rearranged.

SHIFT-click in the selection column to select a set of continuous fields and
CTRL-click in the selection column to select any non-continuous field without
affecting the current selection.

Click on the Move Selection Up icon to move the selected items up by one row

or the Move Selection Down icon to move the selected items down by one row.

See Also:

Working with Resources

Customizing Locales

The user can add/remove locales supported in a cartridge by using the ‘Available
Locales’ dialog. At runtime, the best possible locale is used for displaying the
messages. Once a locale is added, the user can then proceed with localizing
messages in that locale.

Adding a Locale

Follow the steps given below to add a new locale:

1. Click on the ‘Customize Locales’ icon present in the Resource UI toolbar.

The ‘Available Locales’ dialog is displayed.

2. Select the language to be supported by from the corresponding drop down list.

3. Select the country to be supported by from the corresponding drop down list, if

required.

4. Enter a variant in the corresponding text box, if required.

5. Now click on the ‘Add Locale’ tool icon to add that locale to the supported

locales list.

Removing Locales

Follow the steps given below to remove a set of locales from the supported locales
list.

1. Click on the ‘Customize Locales’ icon present in the Resource UI toolbar.The

‘Available Locales’ dialog is displayed.

2. Select the locales to be removed.

3. SHIFT-click to select a set of continuous items and CTRL-click to select any

non-continuous item without affecting the current selection.

4. Click on the icon to remove the selected locales.

See Also:

Adding a Message
Entering Locale Specific Message Pattern

Entering Locale Specific Message Pattern

Once a message is added using the ‘Default’ locale, the display text to be used for
other locales supported in cartridge can be entered using the ‘Edit Values’ dialog
displayed by first selecting the message to be localized in the Resources table and

then clicking on the icon in the Resources UI toolbar.

The names of locales supported in that cartridge are listed in the ‘Locale’ column and
the first row displays the display text entered for the ‘Default’ locale. Now the
translator can enter the display text for the other locales in the corresponding rows
of the ‘Value’ column.

See Also:

Messages
Customizing Locales
Using a Resource

Using a Resource

Once a resource item is defined in the Resources UI, it is available globally. This
means that it can be used from any design element of the cartridge just by using the
name of the resource item. As mentioned before the resource name is substituted
with its value wherever it is used.

To use a resource item, for e.g. in a formula, you can select it from the ‘Resources’
tab of the ‘Edit Formula’ dialog and then click on the ‘Insert’ button. If you move the

mouse cursor over the resource name when the CTRL key is depressed, a tool tip will
pop up as shown below with its value and description.

In the example shown in the above picture, the resource NEW_ORDER is of character
type and it represents the value ‘N’.

See Also:

Working with Resources

Cartridge References

In a team environment or in large projects you may want to partition your project
into number of cartridges. For instance, messages can be composed in one (or more)
cartridge, mappings in another and the message flow linking them in another. The
goals are,

 Partitioning the application into number of cartridges, facilitates a team of

developers/analysts to work on the same project. Each person can work on a
separate cartridge, containing a subset of the project.

 The cartridges used can be shared across projects. For instance, message

definitions in a project may be useful in some other project as well. You can
separate these messages into a separate cartridge and reference the cartridge in
multiple projects.

When you breakup a project into number of cartridges, you need a way to refer to
one cartridge from another. For instance, to work on mapping, you need the
message definitions; if messages are defined in a separate cartridge, you need a way
to refer to these message definitions from the cartridge in which the mappings are
defined.

Cartridge references allow you to define a reference from one cartridge to another
cartridge so that the entities defined in the referenced cartridge are accessible from
the main cartridge. The entities include message definitions, mappings, message
flows, function definitions and resource definitions.

Note

 When a cartridge is included in another cartridge, it is marked as read-only. You

cannot edit the entities in the referenced cartridge.

 The entities defined in the referenced cartridge are accessible in the main
cartridge. For instance, you can refer to a mapping defined in the included
cartridge in a message flow of the main cartridge.

See Also:

Reference Links
Partitioning Your Application
Build Process
Best Practices
Adding Cartridge Reference
Removing Cartridge Reference

Reference Links

When you add a cartridge as a reference, Designer records the location of reference
relative to the main cartridge. The contents of the cartridge are not copied into the
main cartridge. The referenced cartridge is displayed as a node under a “References”
folder. You can view the referenced cartridge by expanding this node. The referenced
cartridge is marked as read-only and you cannot modify the entities defined in it.

References have the following implications,

Since Designer stores the relative location of the references, it is important that the
cartridges are located under a common root folder. It is not recommended to have a
cartridge under C:\mycartridges\myapp and refer to another cartridge under
C:\globalcarts\. Such a configuration will tie you to one machine.

 When you open the main cartridge, the referenced cartridge must be available at

the same relative location. Otherwise the main cartridge will fail to open.

 Concurrent modifications to the referenced cartridges are not immediately visible
in the main cartridge (when it is open). You need to close the main cartridge and
reopen to view the updated reference.

 Referenced cartridges are not editable from the main cartridge; this applies even
to its code generation settings. When you build the main cartridge, the
referenced cartridges are built with the default or the saved code generation
settings.

 When you add a reference to a cartridge, the cartridges referred to by the
reference are also treated as references to the main cartridge. That is, the
entities available in the indirect references are also available from the main
cartridge.

 Cyclic references are not supported. That is, you cannot have a cartridge
referring to itself directly or indirectly. For instance, the cycle, A -> B -> C -> A
is not supported. Though cycles are not allowed, it is okay to refer to the same
cartridge multiple times indirectly.

A.car
 |-> B -> C
 |-> D -> C

In the above case, the Cartridge C is indirectly referenced from A twice. This is
allowed and in many cases is unavoidable. Though C is available twice, the entities
defined in C are included just once.

Designer uses the absolute path of a cartridge to recognize that the cartridges are
the same. In the above case, if you had made multiple copies of C.car and included
them separately in B.car and D.car, it would have been treated as a different
cartridge, leading to name collisions and type incompatibilities.

See Also:

Adding Cartridge Reference
Removing Cartridge Reference
Cartridge References

Partitioning Your Application

The way you partition your application has an impact on the way your development
efforts and build process function in a team environment.

There are three main models to consider for partitioning solutions and projects.

1. Single Cartridge
2. Multiple interdependent cartridges
3. Multiple independent cartridges

See Also:

Cartridge References

Single Cartridge

All the entities in the project are defined a single cartridge. The cartridge is self-
contained and has everything it needs to build and execute it. The cartridge, for all
purposes, represents the application.

Advantages

The single cartridge model offers the following advantages:

1. Managing the cartridge in source control, building the cartridge, etc. is all very

simple.

2. It is ideal for simple projects.

Disadvantages

1. The entities defined in the cartridge cannot be easily reused in another project.

You can copy and paste entities across cartridge, but that may lead to
maintenance problems.

2. It is difficult for more than one person to work on the application at the same
time. It is possible to diff and merge concurrent changes in the cartridge, but it is
not recommended.

See Also:

Partitioning Your Application

Multiple Interdependent Cartridges

The entities in the project are defined in more than one cartridge. The higher-level
cartridges, which define mappings, message flows etc, depend on cartridges that
provide definitions for the messages and functions. Typically, there is a main
cartridge that defines the application’s main entry point (for e.g a message flow).
This cartridge directly or indirectly references all the cartridges in the application.
Building the main cartridge is sufficient to build the entire application.

Advantages

The multiple interdependent cartridges model offers the following advantages:

1. Referenced cartridges, which contain message definitions, function definitions can

be shared across multiple applications.

2. It is possible for a team of developers/analysts to work on the application. Each
person can work independently on a part of the application, by separating it into
a cartridge.

See Also:

Partitioning Your Application

Multiple Independent Cartridges

The entities in the project are defined in more than one cartridge. These cartridges
are essentially independent of each other. It is possible that some of these cartridges
depend on other cartridges; but they do not depend on each other. That is, there is
no main cartridge, which directly or indirectly references all other cartridge.

To build the application, you need to build all the top-level cartridges separately. The
application now contains all the assemblies of the top-level cartridges and their
dependencies. If these top-level cartridges depend on the same lower level cartridge,
you need to ensure that assembly of the lower level cartridge is included just once in
the final application.

Advantages

There are no particular advantages in this model. It is similar to multiple
interdependent cartridges model.

Disadvantages

The build process is more complicated. You can solve this problem by defining a
main cartridge, which simply references all the top-level cartridges. This would make
similar to multiple interdependent cartridges.

See Also:

Partitioning Your Application

Build Process

When you build a cartridge, all other cartridges added as references to it are
automatically built (if needed). This includes direct and indirect references.

1. It first computes the set of all cartridges that need to be built. It does this by

starting from the main cartridge and adding its references to a set and so on. If a
cartridge is referenced multiple times directly/indirectly, it occurs just once in the
set.

2. The build order is identified by using the cartridge dependency information.

Since cyclic dependency between cartridges is not supported, it always leads to a
predictable and safe build order.

The cartridges with a dependency (references) are built only after the references
are built. All the cartridges (including references) are built in exactly the way
they would have been built separately. The outputs produced are also identical.
For instance if the main cartridge reference to cartridge A1, A1 is built as part of
the build process of main, and the platform specific assemblies generated for A1
are identical to the case where A1 is built separately. Just like the Main.car
references A1.car, Main.assembly will also depend on (refer to) A1.assembly.
That is, dependency relationship between the assemblies will be similar (if not
identical) to the dependency relation between the cartridges.

Main.car -> Main.assembly
A1.car -> A1.assembly
A2.car -> A2.assembly

3. As an optimization, if the referenced cartridges have already been built and are
up to date, the build process, excludes it from the current build. This can lead to
considerable saving in time.

Note:

We have used the term “assembly” to refer to a platform specific package of classes
that we generate. It is Jar in case of Java.

See Also:

Partitioning Your Application
Cartridge References

Executing Cartridge with References

When you build cartridges that refer to other cartridges, it results in number of
assemblies; one for the main cartridge and one each for the referenced cartridges.
This section explains how to execute the generated assemblies in various platforms.

Simulator

You don’t have to do anything special to execute the main cartridge in the Simulator.
When you start the Simulator, it automatically deploys all the assemblies of the main
cartridge as well as the dependent assemblies that were generated while building the
referenced cartridges. In effect, the entities displayed in the Simulator’s drop down
include all the entities that are contained in the main as well as those in referenced
cartridges. This behavior is identical to having a cartridge that is a union of all
cartridges directly or indirectly referenced (contains all the entities defined in the
referenced cartridges). This behavior is the same in the Simulator of all the
platforms.

Java/EJB Platform

Simple Runtime

Add all the Jars that were generated during the build process, including those for the
referenced cartridges in the classpath.

EJB Server

Deploy all the Jars that were generated including those for the referenced cartridges.
All the Jars should be specified as EJB module in the application.xml file. They should
all be available in the application directory.

In the code generation settings, you have an option to generate EAR file. If you have
selected this option, the generated EAR would automatically include all the generated
jars (including for references). It will also include dependent runtime libraries that
are used by the generated Jars. In short, the EJB Jar includes all required
dependencies and is ready to be deployed.

See Also:

Cartridge References

Best Practices

1. Each cartridge should always be in a directory of its own. The code generator

creates a working directory under the cartridge directory (such as java), to
generate source files and build to it. Having multiple cartridges in a single
directory would mean that this code generator directory would be shared. This
can lead to a situation where generated files of the second cartridge overwrite
some of the files of the first.

2. If your application contains multiple cartridges, keep all of them under (not
directly) an application folder. Since cartridges point to each other by their
relative location, it would be safe to xcopy (or zip) the entire application folder,
say, to another machine.

AppFolder
 |
 |--- Car1Folder
 | |
 | |--- Car1.car
 |
 |--- Car2Folder
 | |
 | |--- Car2.car

Other nested configurations are also possible; the key is to have a root folder,
which contains everything. It is not recommended to have a cartridge under
C:\mycartridges\myapp and refer to another cartridge under C:\globalcarts\.
Such a configuration will tie you to one machine.

This directory structure is very important if you want to maintain your cartridges
under source control.

3. The cartridge name should preferably be same as the cartridge file name. By
“name of cartridge” we always mean the name you have specified in the
cartridge and not its file name. It is a good idea to keep these names the same to
avoid confusion.

4. Do not define messages/mappings/flows with same name, either in the same
cartridge or in cartridges that are likely to be used in the same application. At
runtime, these entities can be looked up from a global LookupContext. This
means that any conflict in names can be disastrous. Designer detects such name

collisions in the same cartridge or in referenced cartridges during validation. But,
since you can assemble an application from multiple cartridges, it is your
responsibility to name them uniquely. One solution is to avoid using generic
names like ‘NewOrder’; instead use a qualified name like “FIX41NewOrder”.

5. For applications that require internationalization, it is a good idea to define the
localized messages as resource in a separate cartridge and refer to it from all
other cartridges. That way it becomes simple to add a new language/locale
without changing several application cartridges.

6. If you have number of functions that are shared by many cartridges, then it is a
good idea to separate the functions into a separate function library cartridge.

7. Do not define more than one function with same name and same number of
parameters and with similar or conflicting parameter types. For instance defining
functions f(int) and f(Any) can lead to ambiguities. Note that, currently Designer
does not detect this ambiguity and binds to one of these functions.

8. Unit & Integration testing. The primary goal of unit testing is to take the smallest
piece of testable software in the application, isolate it from the remainder of the
code, and determine whether it behaves exactly as you expect. Each unit is
tested separately before integrating them into modules to test the combined
functionality. In case of Designer, the units are the messages and mappings.
Make sure that you test each message definition separately before you define a
mapping for it. It is possible to test a message definition (in the Simulator as well
as from command line) by passing raw input (say in the form of a file). Record
the outputs of such tests and make sure that output remains consistent after you
make changes to the message definition or upgrade to a new version of Designer.
This same approach must be followed for mappings. Any change in the output
points to a regression in the definition.

Message flows are typically used to integrate, the lower level units. Integration
testing identifies problems that occur when units are combined. By using a test
plan that requires you to test each unit and ensure the viability of each before
combining units, you know that any errors discovered when combining units are
likely related to the integration (message flow) itself. This method reduces the
number of possibilities to a far simpler level of analysis.

See Also:

Partitioning Your Application
Adding Cartridge Reference
Removing Cartridge Reference

Adding Cartridge Reference

To add a reference, right-click the Cartridge node and select ‘New Reference’ menu
item from the short-cut menu that appears.

A file open dialog is displayed where you can select the cartridge file to be included.

The selected cartridge is added under a ‘References’ folder as shown below.

Note that read only nodes are shown with a lock icon overlaid on top of the nodes
icon. The lock indicates that it cannot be modified.

See Also:

Refreshing Cartridge Reference
Removing Cartridge Reference
Best Practices
Cartridge References

Refreshing Cartridge Reference

The ‘Refresh References’ menu item when selected, updates the main cartridge for
the changes made in the reference cartridge. To update a change made in the
reference cartridge, right click the references node and select ‘Refresh References’
menu item.

You can refresh a referenced cartridge by following the steps below.

1. Open the reference cartridge and make the changes and save.

2. Open the main cartridge, right click the ‘References’ node and select ‘Refresh

references’ menu item.

The changes made in the reference cartridge will be updated in the main cartridge.
Selecting the ‘Refresh References’ menu item does not affect the mapping or any of
the referenced cartridge nodes usage in the main cartridge.

See Also:

Removing Cartridge Reference
Best Practices
Cartridge References

Removing Cartridge Reference

You can delete top-level references by following the steps given below.

1. Right Click the cartridge node of the top-level reference to be deleted and select

‘Delete’ menu item.

2. Click ‘Yes’ in the delete message box that appears to remove the cartridge
reference.

See Also:

Adding Cartridge Reference
Best Practices
Cartridge References

Fixing Broken References

When you open a cartridge with broken references, Designer allows you to fix them.

Follow the steps given below to fix broken references in the cartridge being opened.

1. For each broken reference, Designer will display the ‘Cartridge Reference Error'

message box and ask you whether you wish to fix it.

2. If you select the Yes button, it will show you the ‘Resolve Cartridge Reference’
dialog.

3. Navigate to the directory that contains the cartridge corresponding to the broken

link and select it.

4. Click the Open button.

5. When all the broken links are fixed, the main cartridge will be opened in the

Designer window.

When you save the cartridge, Designer will save the new locations selected for the
broken references.

See Also:

Best Practices
Cartridge References

Code Generation

Once a cartridge design is completed, it can be generated into platform specific code
based on the specified code generation settings. Currently Designer supports code
generation in Java/EJB. The generated code is bundled into components as specified
in the code generation settings. These components can then be deployed under
platform specific Runtime. Once deployed, the Runtime becomes capable of
performing transformations defined by that cartridge.

Note

Your Designer installation may not contain support for all these platforms.

See Also:

Selecting the Default Platform
Designer User Interface
Cartridge
Message
Message Mapping
Formula
Function Definition
Resources
Cartridge References
Simulator
Working With Cartridge Designer

Code Generation Settings Dialog

The ‘Code Generation Settings’ dialog allows you to specify the information used in
generating the platform specific components. This dialog for the default platform can
be invoked by selecting the Build > Code Generation Settings menu item or by
clicking on the Code Generation Settings button in the main window toolbar.

See the section Java/EJB Code Generation Settings Dialog for information on settings
used for generating Java/EJB components.

Java/EJB Code Generation Settings Dialog

The settings to be used for generating Java/EJB components is categorized into the
following tabs:

General Tab
Code Generation Tab
Language Bindings Tab

External Sources Tab
Target Platform Tab

Each tab consists of a set of related settings. You should select a tab and then
change the settings given in that tab as required. When finished, click on the OK
button to accept the changes made to the settings. Clicking on the Cancel button will
reject the changes made. Please note that you should save the cartridge to
permanently save the changes.

See Also:
Generating a Cartridge
Deploying a Cartridge
Code Generation

General Tab (Java/EJB)

This tab allows you to specify compilation settings that are not specific to the
cartridge but to the current instance of Designer.

Java Compiler

Here you specify the Java compiler to be used for compiling the Java source files,
both the generated and the external Java files.

Select the ‘Default’ option to use the internal Java compiler (recommended).

Compiler Options

This is used to specify the extra compiler options.

Additional Class Path (Global)

Occasionally you may need to specify additional classpath to compile your external
sources, during code generation. This is needed if your source files depend on some
other custom or third party Jars. This option is available at global level (Designer
instance) and also on a per cartridge basis. This classpath setting is applicable for all
cartridges. The other classpath setting ‘Additional Class Path (Cartridge)’ is
applicable only for the cartridge in which it is specified.

Please note that specifying Jar files in the ‘Additional Class Path’ setting makes them
available only to Designer, but not to the runtime. See the Additional Modules
section for adding a Jar file as a library file of the generated EAR file.

Additional Class Path (Cartridge)

This is used to specify the path of the Jar files to be included in the classpath during
compilation of the Java source files. This classpath setting is applicable only for the
cartridge in which it is specified. The other classpath setting ‘Additional Class Path
(Global)’ is applicable for all cartridges.

Please note that specifying Jar files in the ‘Additional Class Path’ setting makes them
available only to Designer, but not to the runtime. See the Additional Modules
section for adding a Jar file as a library file of the generated EAR file.

See Also:
Code Generation Tab
Language Bindings Tab
External Sources Tab
Target Platform Tab
Code Generation Settings Dialog

Code Generation Tab (Java/EJB)

This tab allows you to specify settings related to the generated components.

The left pane of this dialog displays design elements of the cartridge in a tree
structure and the right pane displays a list of properties corresponding to the design
element selected on the left pane. The properties displayed for a design element
differ based on its type.

Please note that if the cartridge contains references, the referenced cartridges and
their child elements are displayed in the tree structure on the left pane. Selecting a
design element of a referenced cartridge will display its properties on the right pane,
but they are read only. So you cannot change the properties of a referenced
cartridge from the main cartridge that references to it. The cartridge used as a
reference should be opened separately to make changes to its code generation
settings.

Java Package Name

Here you specify the Java package name to be used for the generated Java source
files.

Jar Name

This property is displayed only for the design elements such as messages, message
mappings, message flows and persistence designer, which will be generated into
components. It is used to specify the name of the Jar file into which the component
generated for the current design element will be bundled.

Please note that you can specify the same Jar name for multiple design elements or
use a different Jar name for each of the design elements. In case of using the same
Jar name for multiple design elements, the components generated for these design
elements will be bundled into a single Jar file.

By default, this property is set as ‘%c.jar’. Here, %c represents the cartridge name;
that is, the name of the root design element in the cartridge. This is just a sensible
default and you can always change the Jar name of each component as required.

Manifest Entries

This property is displayed only for the design elements, which will be generated into
components. Here you specify Jar files to be included in the runtime class path of the
generated component.

Please note that Jar file names specified in this property are used in generating the
manifest file of the generated component and it does not make the Jar files available
to the runtime. See the Additional Modules section for adding a Jar file as a library
file of the generated EAR file.

Max Class Length

This is a cartridge level setting that applies to all the design elements of the
cartridge. It allows you to specify the maximum length of the generated Java class
names. The name of classes exceeding this limit will be mangled to a shorter name.

The default value of this property is 150 and the upper limit is 255.

Data Source

This property is displayed only for the design elements, which will be generated into
components. Here you specify the data source reference name used in the
corresponding design element. The reference name should be bound to the actual
server resource. See the section Resource References for more information on
specifying server specific bindings.

Generate MDB

This property is displayed only for a message flow design element. Set this property
to ‘true’ to generate a Message Driven Bean (that will listen for client requests in the
form of JMS messages) in addition to generating the normal session bean for the
corresponding message flow design element. Setting this property to ‘false’ will
generate only the session bean.

Unique Key Table

This property is specific to persistence designer design element. It is used to specify
the name of the table that will be used for generating unique key values.

Adding External Java Classes

You can specify external Java class files (not Java source files) to be bundled with
the component generated for a design element by following the steps given below.

You can include external Java classes to the code generation settings of a cartridge
in two other ways:

 You can bundle the required Java class files into a Jar file and add it to the

manifest entry of the generated component.

 You can add Java source files (instead of Java class files) to the code generation

settings of the cartridge, which will be compiled and the resultant class files will
be bundled with the generated component. See the section Adding External Java
Source Files for more information.

See the section Language Bindings Tab for information on how to bind class name
references used in a cartridge to the actual Java classes.

Steps to add external Java class files to the code generation settings of a cartridge:

1. Compile the Java source files into Java class files.

It is recommended that the compiled Java class files are available under a child
directory of the cartridge directory.

2. In the ‘Code Generation’ tab of the ‘Java/EJB Code Generation Settings’ dialog,
select the required design element in the tree structure displayed on left pane.

3. Click on the ‘External Classes’ button at the bottom of the right pane.

4. The ‘External Classes’ dialog will be displayed.

5. Click on the ‘Add’ button.

6. The file Open dialog will be displayed.

7. Navigate to the directory that contains the required Java class files and select

them.

8. Click the ‘Open’ button.

The files will be included in the ‘Class Files’ list of the ‘External Classes’ dialog.

Note:

To remove class files from the ‘Class Files’ list, select them from the list and then
click on the ‘Remove’ button of the ‘External Classes’ dialog.

See Also:
General Tab
Language Bindings Tab
External Sources Tab (Java/EJB)
Target Platform Tab
Code Generation Settings Dialog

Language Bindings Tab (Java/EJB)

This tab allows you to bind class name references used in a cartridge to actual Java
classes. These classes are used for customizing some processing such as validation
of a field, mapping between two messages, etc. These classes, along with the helper
classes if any, should be included to the code generation settings of the cartridge
before you proceed with code generation and deployment.

You can include external Java classes to the code generation settings of a cartridge
in three ways:

 You can specify the Java class files (not Java source files) to be included in the

generated component. See the section Adding External Java Classes for more
information.

 You can bundle the required Java class files into a Jar file and add it to the

manifest entry of the generated component.

 You can add Java source files (not Java class files) to the code generation

settings of the cartridge, which will be compiled and the resultant class files will
be bundled with the generated component. See the section Adding External Java
Source Files for more information.

Please note that class name references can be specified for the following items:

 Validation rule of an internal/external message field
 Message mapping of all types
 Processing of an internal message
 Processing of an internal message field
 ‘Invoke External’ activity of a message flow

All the class name references used in the cartridge are listed under the ‘Reference’
column of this tab. For each of these references, you have to specify the actual Java
class name in the ‘Java Class’ column of the corresponding row. By default the
reference name itself is displayed as the Java class name. You have to change it to
the actual Java class name along with the package name prefix.

See Also:
General Tab
Code Generation Tab
External Sources Tab
Target Platform Tab
Code Generation Settings Dialog

External Sources Tab (Java/EJB)

This tab allows you to add external Java source files (not Java class files) to the code
generation settings of a cartridge so that they are compiled and the resultant class
files are bundled with the generated component.

You can also specify a directory containing Java source files so that they are
compiled and the resultant class files are bundled with the generated component.

You can include external Java classes to the code generation settings of a cartridge
in two other ways:

 You can specify the Java class files (instead of Java source files) to be included in

the generated component. See the section Adding External Java Classes for more
information.

 You can bundle the required Java class files into a Jar file and add it to the

manifest entry of the generated component.

See the section Language Bindings Tab for information on how to bind class name
references used in a cartridge to the actual Java classes.

Adding External Java Source Files

Follow the steps given below to add external Java source files to the code generation
settings of a cartridge:

1. In the ‘External Sources’ tab of the ‘Java/EJB Code Generation Settings’ dialog,

click on the ‘Add Files’ button.

The ‘Add Source Files’ dialog will be displayed.

2. Navigate to the directory that contains the required Java source files and select
them.

3. It is recommended that the Java source files are available under a child directory

of the cartridge.

4. Click the ‘Open’ button.

5. The files will be included to the external source files list.

6. Select the ‘Main’ check box for one or more source files to mark them as

application class files.

For each file marked as an application class file, a batch file that invokes the
corresponding application class will be generated.

Adding Directories

You can add a directory to the code generation settings of a cartridge so that the
source/resource files under that directory are included in the code generation
process. In case of source files, they are compiled and the class files are bundled
with the generated components. In case of resource file, they are simply bundled
with the generated components.

Follow the steps given below to add directories containing source/resource files to
the code generation settings of a cartridge:

1. In the ‘External Sources’ tab of the ‘Java/EJB Code Generation Settings’ dialog,

click on the ‘Add Files’ button.

2. The ‘Add Source Files’ dialog will be displayed.

3. Navigate to the directory that contains the required source/resource files and

select it.

4. It is recommended that the source/resource files are available under a child

directory of the cartridge.

5. Click the ‘Open’ button.

The directory will be included to the external sources list.

Note:

To remove files/directories from the external sources list, select them from the list

and then click on the ‘Remove Selected Files’ button.

See Also:
General Tab
Code Generation Tab
Language Bindings Tab
Target Platform Tab
Code Generation Settings Dialog

Target Platform Tab (Java/EJB)

This tab allows you to specify the target server platforms for the generated
components. You can also specify server specific deployment information for the
generated EJB components. It also provides options for generating EJB application
(EAR) and for adding additional modules to the generated EAR.

Generate Jar for ALSB

Select this check box, if you require a merged jar (that includes cartridge Jar(s),
referenced cartridge Jar(s) and required standard Jars) for deployment under ALSB.

Enterprise Java Bean

Select this check box, if you intend to deploy the generated components into
application servers such as WebLogic, WebSphere, JBoss and so on. Selecting this
option will generate EJB components.

Generate EJB Application (EAR)

Select this check box, if you want to generate an EJB application by bundling the
generated components and the modules specified in the Additional Modules dialog.

EJB Platforms

This allows you to generate server specific deployment descriptors for the generated
EJB components so that you can straight away deploy them in the server. The
supported EJB servers are JBoss, Geronimo, WebLogic, WebSphere and Orion. Select
a check box corresponding to a server so that the generated EJB component is
bundled with the deployment descriptor for that server platform.

Additional Modules

The ‘Additional Modules’ dialog displayed when clicking on the ‘Additional Modules’
link is used for packaging additional modules (in addition to the generated EJB
components) into the generated EAR. You can add web, EJB, application client and
library modules and the corresponding tags are generated in the application
deployment descriptor (application.xml) of the generated EAR.

Follow the steps given below to add a module to the list of additional modules to be
packaged into the generated EAR.

1. In the ‘Target Platform’ tab of the ‘Java/EJB Code Generation Settings’ dialog,

click on the ‘Additional Modules’ link.

2. The ‘Additional Modules’ dialog will be displayed.

3. Click on the button .

The File Open dialog will be displayed.

4. Navigate to the directory that contains the required module file and select the

file.

5. Click the ‘Open’ button.

The module file will be included to the additional modules list.

6. Select the type of the module from the drop down list displayed in the ‘Type’

column.

7. If you have added a web module, you can specify the context root of the web

application in the ‘Property’ column.

Note:

To remove module files from the additional modules list, select them from the list

and then click on the button.

Resource References

The ‘Resource References’ dialog displayed when clicking on the ‘Resource
References’ link is used to bind the resource reference names used in the cartridge
to server specific resource names. See the Binding Server Resources section for
more information.

See Also:
General Tab
Code Generation Tab
Language Bindings Tab
External Sources Tab
Code Generation Settings Dialog

Binding Server Resources

Entities defined in a cartridge refer to server resources. These references are
specified in the ejb-jar.xml file during code generation. Before or during deployment,
you need to map these resource references to server specific resource names. This
procedure has the following limitations,

 The mapping/binding tools are server specific. The way you map in WebSphere

(using Web UI) is completely different from that of WebLogic (Builder tool).
Worse still, the open source servers do not provide such a tool (or it is very bad).
You have to manually edit the deployment descriptor XML (which is zipped in
ejb jar, which in turn is zipped in an EAR).

 Mapping is error prone, because servers do not properly report errors when you

miss a mapping.

 It is repetitive. Whenever you make a change to the cartridge and rebuild, the

mappings are lost and you start all over again.

This feature enables providing this information in Cartridge itself. Though this
information is specific to the server instance and should ideally be part of
deployment process, it is very convenient to make it part of the build process for the
following reasons:

 You can specify resource mapping independently for each server supported.

 The resource mapping information is saved along with cartridge and converted to

server specific deployment descriptors every time you build.

 You do not have to learn about the deployment descriptors of each server. The

configuration screen is simple and same for all the servers.

To specify the bindings,

 Select the ‘Target Platform’ tab in the code generation settings dialog.

 Click on the ‘Resource References’ link. The dialog shown below is displayed. All
the resources that are referenced from the cartridge are displayed. You need to
fill the last column (Binding), for each of the servers you are interested in.

Note:

 This feature helps in the process of binding Cartridge references to server

resources. It does not help you in creating those resources (e.g DataSource) in
the server. You have to create the resources as you normally do; using server
specific tools.

 You can always change the bindings you specified in the Cartridge later during

deployment using server specific procedure. That is, this feature can simply be
used to specify some defaults, which you override later.

See Also:
Code Generation Settings Dialog
Selecting the Default Platform
Generating a Cartridge
Deploying a Cartridge

Selecting the Default Platform

If you are going to work on a single platform/language, you can set the same as the
default platform by selecting “Select Default Platform…” menu item from the Build
menu. If you have set a Default Platform, then you can use the shortcut key F7 for
generating the cartridge and the shortcut key F5 invoking Simulator.

In the Default Platform dialog box that appears, you can check the radio-button.

Automatically, the selected platform is set as default in the Build menu as seen in
the following picture.

Now, you can use the short-cut key F7 to generate cartridge in Java platform and
the short-cut key F5 to open Java Simulator.

You can also use the ‘Select Default Platform’ drop down list available in the main
window toolbar to select the default platform. Other common functionalities that can
be easily accessed from the main window toolbar include validating the cartridge,
generating the cartridge, invoking the Code Generation Settings dialog and invoking
the Simulator application.

See Also:

Code Generation Settings Dialog
Binding Server Resources

Generating a Cartridge
Deploying a Cartridge
Code Generation

Generating a Cartridge

The Build > Generate Cartridge menu item or the Generate Cartridge button in
the main window toolbar can be used for generating platform specific components
representing the transformations modeled by a cartridge.

See Also:

Code Generation Settings Dialog
Binding Server Resources
Selecting the Default Platform
Deploying a Cartridge
Code Generation

Deploying a Cartridge

Once a cartridge is generated for a specific platform, the generated components can
be deployed under the corresponding Runtime. Once deployed, the Runtime becomes
capable of performing transformations defined by that cartridge.

Selecting the Tools > Deployer menu item brings up a submenu that displays
platform specific Runtime. Selecting one of them brings up the platform specific
Deploy/Undeploy dialog box that can be used to deploy the newly generated
components and/or undeploy previously deployed components.

See Also:
Code Generation Settings Dialog
Binding Server Resources
Selecting the Default Platform
Generating a Cartridge
Code Generation

Simulator

The Cartridge Simulator application allows to test the internal/external message,
message mapping and message flow components generated for a cartridge easily
without the additional overheads of starting the application servers. It can also be
used to test persistence and querying of internal messages using different database
servers. See the section Testing a Cartridge with Persistence Support for more
information.

Designer provides the Simulator application for the Java platform. The Simulator for
the current platform can be invoked from the Run menu of Designer as shown in the
following picture. The Designer main window toolbar also contains an icon for easy
access of the Simulator application.

As Simulator is integrated with Designer, cartridges can be tested directly from
Designer itself. The advantage is that, it is enough to launch Simulator only once,
making it easier to test the cartridges then and there whenever a change is made.

Note

To launch Simulator in a platform supported by Designer, the following steps should
be fulfilled:
 Create a new cartridge or open an existing cartridge in Designer.
 Generate code for the cartridge in that platform implementation.
 Configuring Simulator. This is not needed unless you want to change the default

settings of Simulator.

The features described in this document apply to Java Simulator. Where it is
applicable to a particular platform, it is explicitly mentioned.

See Also:

Simulator User Interface
Testing with Simulator
Miscellaneous Features
Persistence in Simulator (Java/EJB)
Test Data Generation
Frequently Asked Questions

Simulator User Interface

The simulator UI by default looks like the one shown below.

The components of Simulator UI are listed below.
Menu Bar
Tool Bar
Input Pane
Output Pane
Message Window
Trace Window

Simulator Menu Bar

The Simulator menu bar is shown below and it provides all actions related to
Simulator.

File Menu

Open Input From File ... Opens an input data file into the Input pane. In
case of a message flow that accepts multiple
input, selecting this menu item opens the data
file into the currently selected text area
corresponding to a ‘Binary’ type input variable.

Save Input ... Saves the content of the Input pane into a file.

Save Output ... Saves the content of the Output pane into a file.

Recent Input Files Displays a list of the most recently used files.

Exit Closes the current Simulator window.

Edit Menu

Find (Ctrl+F) Displays the Find dialog, which is used to search for
the specified text in the Input/Output pane.

Find Next (F3) Resumes the search operation.

Clear Input Clears the content of Input pane.

Clear Output Clears the content of Output pane.

View Menu

Message (Alt+2) Toggles display of the Message window.

Trace (Alt+3) Toggles display of the Trace window.

Options Menu

Cascade Exceptions Enables/disables cascading of exceptions when
executing an external message.

Enable Tracing Enables/disables generation of trace messages when
executing a message flow.

Test Menu

Generate Test Case Generates a single test case for the selected
internal/external message in the Input pane of
Simulator.

Generate Test Data Set Generates a set of test data files for the selected
internal/external message in the specified directory.

Run Test Data Set Allows the user to execute test data files stored in the
specified directory.

Define DataGen Spec Allows the user to define data generation specification
for the elements of the required data format. Test
cases can be generated based on that specification.

Tools Menu

Submit (F5) Starts processing of the input based on the currently
selected message flow, message mapping or message.

Redeploy Cartridge Redeploys the jars generated for the currently open
cartridge. This has to be done whenever the cartridge is
modified and code is generated. This also needs to be
done whenever you change the data source reference
mapping.

Diff Input/Output Allows the user to compare the contents in Input and
Output panes.

Resource Mapping Allows the user to map the data source reference name
used in a cartridge to one of the data sources configured
in Simulator and thereby allows the user to connect to
different database servers.

Create Schema Allows the user to create schema based on the database
table design of a Persistence Designer.

Data Entry Allows the user to generate an internal message test case
just by entering data for the fields of that internal
message without worrying about XML syntax.

Help Menu

Contents This is a link to the Simulator help.

About Simulator ... Displays the version and copyright information about
Simulator.

See Also:

Simulator User Interface

Simulator Tool Bar

The tool bar contains the following icons for accessing frequently used operations.

 Opens an input data file into the Input pane.

 Saves the content of the Input pane into a file.

 Displays the Find dialog, which is used to search for
the specified text in the Input/Output pane.

 Clears the content of both Input and Output panes.

 Redeploys the jars generated for the currently open
cartridge. This has to be done whenever the cartridge
is modified and code is generated. This also needs to
be done whenever you change the data source
reference mapping.

The user can select the message, message mapping or
message flow to be executed from the ‘Select Message
Flow/Message to execute’ drop down list. It lists all the
internal/external messages, message mappings and
message flows available in the cartridge.

 (F5) The Submit button starts processing the input based
on the currently selected message flow, message
mapping or message.

 The Debug button starts debugging for the currently
selected message flow, message mapping or message.

The drop down list with output options is displayed
only when an internal/external message is selected for
execution. The user can select one of the output

options: ‘Parse’, ‘Parse and Validate’ or ‘Parse and
Write’

See Also:

Simulator User Interface
Simulator Input-Output Options

Input Pane

The Input pane has two tabs - Input and Query. The Input tab is where the data is
fed either by typing directly or by opening a data file using the File > Open Input
from File... menu item. The Query tab is used to execute queries that interact with
the database directly. Refer Invoking Queries to know more about Query tab.

In case of message flows that accept more than one input arguments, the Input
pane is laid out as a form with text field and/or text area input elements based on
the type of the corresponding input variable. For a simple type input variable, a text
box is shown to accept the input and for a ‘Binary’ type input variable, a text area is
shown to accept the input.

The Input pane shown in the above picture corresponds to a message flow that
accepts two input arguments: ‘salary’ and ‘inputdata’. While the ‘salary’ input
variable is of ‘Integer’ type, the ‘inputdata’ variable is of ‘Binary’ type. To enter
input into a text area (corresponding to a ‘Binary’ type input variable) by opening a
data file, first select that input area and then open the input data file by using the
File > Open Input from File... menu item.

The shortcut menu of the Input pane allows the user to cut (Ctrl+X), copy (Ctrl+C)
and paste (Ctrl+V) its content. The Copy as HTML menu item creates a copy of the
content currently selected in the Input pane using HTML syntax and it can be saved
into an HTML file. The Find and Find Next menu items allow to search for text
within the Input pane.

See Also:

Simulator User Interface
Invoking Queries

Output Pane

The Output pane has a Default tab to which the output generated by executing a
message or message mapping is written by default. When a message flow with
multiple output variables is executed, a separate tab is created in the Output pane
to write the value of each output variable as shown in the following picture.

The user can close a particular output tab or all the output tabs except the Default
tab by selecting the corresponding menu item from the shortcut menu as shown in
the following picture.

The user can add new output channels apart from the default one of the Output
pane.

The Output pane also allows the user to cut (Ctrl+X), copy (Ctrl+C) and paste
(Ctrl+V) its content. The Copy as HTML menu item creates a copy of the content
currently selected in the Output pane using HTML syntax and it can be saved into an
HTML file. The Find and Find Next menu items allow you to search for text within
the Output pane.

See Also:

Simulator User Interface

Simulator Message Window

The Message window displays any error generated on executing the input data. The
user can toggle the display of the Message window either by selecting the View >
Message menu item or by pressing the shortcut key Alt-2.

The user can copy the content of the Message window by first selecting the content
and then selecting the ‘Copy’ menu item from the shortcut menu.

The ‘Clear’ menu item of the shortcut menu clears the current content of the
Message window.

See Also:

Simulator User Interface

Trace Window

The Trace window allows the user to view the trace messages generated during the
execution of a message flow. The user can toggle the display of the Trace window
either by selecting the View > Trace menu item or by pressing the shortcut key
Alt-3.

The shortcut menu of the Trace window provides for copying and clearing of its
content.

See Also:

Simulator User Interface

Log Of SQL Statements

SQL statements that are executed at runtime are logged in the “runtime.log” present
in the log directory of Designer home. For e.g. while executing a query, addition or
removal of records from/into a database, are logged in the ‘runtime.log’. This can
also be viewed in the simulator ‘Trace’ window as follows.

See Also:

Testing with Simulator

Testing with Simulator

Follow the steps below to test an entity defined in a cartridge using the Simulator.
These steps apply for testing messages, mappings and message flows.

1. Create or open the cartridge and generate code for it.

2. Launch Simulator from the Build menu.

The Simulator in turn starts the Volante Server and the database server. (These
servers are launched when Simulator is started for the first time after Designer is
started. These servers are shutdown only when Designer is stopped.) The
settings of these servers can be configured using the Simulator configuration file.
See the section Configuring Simulator for further information. On successful
launching of these servers, Simulator displays all message flows, message
mappings and messages in the cartridge.

3. Select the message flow, message or message mapping to be executed.

4. In case of a message, select the processing that needs to be done. This can be

one of ‘Parse’, ‘Parse and Validate’ and ‘Parse and Write’.

5. Enter the data into the Input pane or open an input test file using the File >
Open Input from File menu item.

In case you have selected a message flow with multiple inputs, the Input pane is
laid out as a form with text field and/or text area input elements based on the
type of the corresponding input variable. For a simple type input variable, a text
box is used to accept the input and for a ‘Binary’ type input variable, a text area
is used to accept the input. To enter input into a text area by opening a data file,
first select that input area and then open the input data file by using the File >
Open Input from File... menu item.

6. Click the Submit button to start execution.

7. The output of the transformation and/or errors generated is displayed in the

Output pane and the Message window respectively.

Note

 Once Simulator is launched and if any change is made in the opened cartridge or
another cartridge is opened, generate code and redeploy the cartridge to update
Simulator.

 For each cartridge that you opened, you can open a Simulator window to test
that cartridge independently. A Simulator instance is attached to corresponding
Designer window. Closing the Designer window also closes the associated
Simulator Window.

See Also:

Simulator Input-Output Options
Simulator User Interface
Cartridge Simulator

Simulator Input-Output Options

The following table shows the possible transformations that can be done using
Simulator and related notes in each case.

Input Output Transformation Comments

External
Message

Parse - Input is format specific.

Output is an XML representation
of the Input.

No validation takes place.

External Parse and - Input is format specific.

Message Validate Output is an XML representation
of the Input.

The validations specified in the
Validation Rules node of the
external message are carried
out.

External
Message

Parse and Write - Input is format specific.

Output is format specific.

The validations specified in the
Validation Rules node of the
external message are carried
out.

Message Flow - As defined in the
message flow.

The input and output are
specific to the message flow.
There can be zero or many
input/output for a message
flow.

Internal
Message

Parse - Input should be an XML
representation of NO.

Output is an XML representation
of the NO.

Internal
Message

NOXMLOut - Requires some trigger (router)
at Internal Message.

Input should be an XML
representation of NO.

Output is an XML representation
of NO.

Processing (including
validations) specified in
processing rules are carried out.

Internal
Message

Output Message NO -> Output Requires some trigger (router)
at Internal Message.

Input should be an XML

representation of NO.

Output is format specific.

Processing (including
validations) specified in
Processing Rules node and
output validations are carried
out.

Input/Output for 2.x features (deprecated)

Input Message Parse - Input is format specific.

Output is an XML representation
of the Input.

No validation/processing takes
place.

Input Message NOXMLOut Input->NO Requires some trigger (router)
at Internal Message.

Input is format specific.

Output is an XML representation
of NO.

Input validations and processing
(including validations) specified
in Processing Rules node are
carried out.

Input Message Output Message Input -> NO

NO -> Output

Requires some trigger (router)
at Internal Message.

Input is format specific.

Output is format specific.

Input message validations,
processing of internal message,
internal message validations
and output message validations
are carried out.

See Also:

Testing with Simulator

Running Test Data Set

The Run Test Data Set dialog allows the user to execute test data files stored in the
specified directory.

Follow the steps given below to execute a set of test data files.

1. Select the Test > Run Test Data Set menu item.

The Run Test Data Set dialog will be shown.

2. In the Run From Directory field, specify the root directory that contains the test

data files to be executed.

You can click on the ellipsis button to bring up the ‘File Open’ dialog box and
select the required directory.

3. Select the Include SubDirectories check box, if you want the subdirectories

under the test root directory to be included in the test run.

4. In the Dat File Pattern field, specify the pattern of the file names to be included

in the test run.

5. Select the Verbose check box, if you want the success or failure message needs

to be displayed in the Message window as soon as a file is run.

6. Select the Save Output check box, if you want to save the output of the files

that have passed.

Select the directory into which the output files should be saved.

7. If the Save Output check box is selected, the ellipsis button besides the Output

Directory field is enabled so that you can select the output directory.

8. It should be noted that if the test data set contains subdirectories, the same

subdirectory structure will be created under the specified output diectory and the
output of the valid files under the subdirectories will be saved under the
corresponding subdirectories.

9. Select the Stop On Error check box, if you want to stop the test run as soon as

the failure of a test file.

10. Select the Save Error check box, if you want to save the error message of the

files that have failed.

11. Select the directory into which the error files should be saved.

If the Save Error check box is selected, the ellipsis button besisdes the Error
Directory field is enabled so that you can select the error directory.

It should be noted that if the test data set contains subdirectories, the same
subdirectory structure will be created under the specified error diectory and the
error message of the invalid files under the subdirectories will be saved under the
corresponding subdirectories.

12. In the No of Test Cases to execute section, select the All option to run all test

files. On the other hand, you can specify the maximum number of test cases to
be executed in the corresponding text field.

13. If you have opted to run the maximum number of test cases, you can select
between whether to select test files in random order or to select test files in the
normal file order by selecting the appropriate option button.

14. Click on the OK button to start running the test data files. The following progress

message box will be displayed.

15. You can click on the Cancel button on this message box to abruptly stop running

the test data set.

See Also:

Defining Data Generation Specification
Generating a Test Case
Generating Test Data Set
Entering Test Data for Internal Messages
Testing with Simulator

Configuring Simulator (Java/EJB)

The simulator.xml file under the <installation dir>\config\simulator directory is
used to configure the Java/EJB Simulator.

Given below is the sample content of simulator.xml file:

<?xml version="1.0"?>

<simulator>

 <server port="1606"

 datasources="${designer.home}/config/simulator/data-sources.xml" />

 <launch name="hsqldb" application="java" wait="false" shutdown="true">

 <arg value="-classpath" />

 <arg value="${designer.home}/lib/ext/hsqldb.jar" />

 <arg value="org.hsqldb.Server" />

 <arg value="-port" />

 <arg value="1608" />

 <arg value="-database" />

 <arg value="${designer.home}/config/simulator/database/volantedb" />

 </launch>

</simulator>

 Here, the ‘server’ tag is used to define the settings of Volante Server that
Simulator launches.

 The ‘port’ attribute of the ‘server’ tag specifies the port to be used by Volante
Server.

 The ‘datasources’ attribute of the ‘server’ tag specifies the file that contains the
definitions of the data sources to be used by Volante Server.

 The ‘launch’ tag is used to specify the applications to be launched for Simulator.
These applications are launched when Simulator is started for the first time.
Here, it is used to specify the HSQL database server to be launched when
Simulator is started.

 The ‘application’ attribute of the ‘launch’ tag specifies the command to be
executed.

 The ‘arg’ tag represents the argument/option to be passed to that command. Its
‘value’ attribute specifies the actual value. Each option should be specified in a
separate ‘arg’ tag and should be in the correct order.

See Also:

Testing with Simulator

Simulator Options

The Cascade Exceptions and Enable Tracing menu items available under the Options
menu of Simulator provide features that help in testing and debugging of cartridges.

See Also:

Testing with Simulator

Generate Trace Messages

The user can enable generation of trace messages during execution of a message
flow by checking the Options > Enable Tracing menu item. You can then view the

trace messages in the Trace window by selecting the View -> Trace menu item. The
Trace window displays the execution log or trace.

Right clicking inside the ‘Trace’ window displays a pop up with menu items Clear,
Copy and Go to Definition. The ‘Clear’ menu item when selected, clears the
content in the ‘Trace’ window and the ‘Copy’ menu item when selected copies the
selected text.

Selecting ‘Go To Definition’ menu from any line in ‘Trace’ window, navigates to the
location (an activity in a message flow, an Internal/External message or a mapping)
specified in the line. For example, consider selecting ‘Go To Definition’ menu from
the following line.

The ‘Start’ activity in the message flow UI would be selected.

See Also:

Testing with Simulator

Cascade Exceptions

The user can enable cascading of exceptions during execution of an external
message by checking the Options > Cascade Exceptions menu item. When this
option is enabled, Simulator will proceed with processing the external message even
when there are exceptions. These exceptions are listed in the Message window.
When this option is disabled by unchecking the Options > Cascade Exceptions
menu item, the Simulator will stop processing the external message as soon as it
comes across an exception.

See Also:

Testing with Simulator

Miscellaneous Features

These features make working with Simulator more easier/interactive.

Feature Description

Syntax Highlighting The test data files are syntax highlighted in
Simulator.

Viewing of Non-printable
Characters

Non-printable (binary) characters are shown as #
followed by its code value.

Search Text This feature allows you to search for a specific text
in the Input/Output pane.

Compare Input and Output This feature allows you to compare the contents in
Input and Output pane.

Adding Output Channels This feature allows you to add a new output
channel to the Output pane.

Syntax Highlighting (Data)

In Simulator, the test data files are syntax highlighted. This works for SWIFT, XML
and FIX. For example, in case of SWIFT, Tags and Qualifiers are displayed in
different colors as could be seen from the following picture.

The ‘cr’ at the end of the line is visible. The ‘lf’ is not shown because the line feed
results in the next character moving to the next line (hence need not be shown
explicitly, to avoid noise).

See Also:

Testing with Simulator

Viewing of Non-printable Characters

Non-printable (binary) characters are shown as # followed by its code value.

To type a non-printable character, type the ASCII number (e.g 25) with CTRL
pressed. CTRL key should be released only after you complete the number.
You can type a character by giving its code value with CTRL pressed. CTRL key
should be released only after you complete the number. For eg., to type ‘A’ you
have to press CTRL and type 65.

See Also:

Testing with Simulator

Search Text

To search for a specific text in the Input/Output pane, refer the following steps:

1. Keep the cursor in the required pane (Input/Output).

2. Select Edit > Find menu item.

The Find dialog is shown.

3. Type the required text in the ‘Find What’ text box.

4. Select the required search options.
 Match Case

You can select this option if you want to do case-sensitive search.
 Match Word

You can select this option if you want to search for an exact word. For eg., if
you want to search for a word, say, “SEC”. If you have not selected this
option, then the word “SECTION” if found will also be highlighted as it has
“SEC” in it.

 Regular Expression
You can also give Regular Expression in the “Find What” text box.

5. Click the OK button to start searching for the specified text.

6. If found, the specified text will be highlighted as shown in the following picture.

7. Select Edit > Find Next menu item to search for the next occurrence of the

specified text.

For this, you can alternately use the shortcut key F3 or the Find Next menu
item from the shortcut menu of the Input/Output pane.

See Also:

Testing with Simulator

Compare Input and Output

You can compare the contents in Input and Output pane using the Tools >
Diff Input/Output menu item.

In the following picture there is a difference between the contents in the ‘inputdata’
text area of the Input pane and Output pane in the 4th line.

When you select Tools > Diff Input/Output menu item, you will get a window
where the difference is highlighted as shown below.

If the contents in the Input and Output panes are identical, you will get a message
dialog as under:

See Also:

Testing with Simulator

Adding Output Channels

In some cases, an application might have multiple channels of output, or the user
might have to send output through a particular channel (not the default one). In
such cases, an error message similar to the one given below will be shown during
execution.

<TransformException>

 <Type>TransformException</Type>

 <Message>Unexpected error</Message>

 <Severity>1</Severity>

 <Cascadable>false</Cascadable>

 <Error-Phase>Internal Message</Error-Phase>

 <StackTrace>

 null

Type=TransformException, Message=Unable to lookup RMI output device

'SecondOut', ErrorCode=null, Severity=1, Cascadable=false

In this case, the output is sent through the output channel (output.device)
‘SecondOut’, but Simulator is not configured to receive it. Hence the error.

The user can add new output channels apart from the default one.

Follow the steps given below to add an Output Channel. The terms output channel
and output device are used interchangeably. They refer to the same entity.

1. Right click besides the Default tab in the Output pane to popup the shortcut

menu with the Add Output Channel menu item.

2. Select that menu item to bring the New Channel dialog.

3. Enter the output device name in the Channel Name text box and click OK.

A new tab with the given channel name appears in the Output pane of Simulator as
shown below. Now if the input is given and the Submit button is clicked, the above
error disappears and the corresponding output appears in the newly added output
channel.

See Also:

Testing with Simulator

Persistence in Simulator (Java/EJB)

Simulator allows to test persistence and querying of internal messages using
different database servers by providing for mapping the data source reference name
used in a cartridge to one of the data sources configured in Simulator.

For testing persistence support in Simulator, the user needs to

1. Define the data sources to be available in Simulator.

2. Map the data source reference name used in a cartridge to one of the data

sources available in Simulator.

3. Create the data base schema.

Defining Data Sources

To connect to a database server from Simulator, configure it in the
data-sources.xml file under the <installation dir>\config\simulator directory
as shown in the following example.

<?xml version="1.0"?>

<data-sources default-data-source="simulatordb" >

 <data-source

 connection-driver="oracle.jdbc.driver.OracleDriver"

 url="jdbc:oracle:thin:@200.200.200.10:1521:orcl"

 username="krishnan"

 password="krishnan"

class="com.volante.component.server.jdbc.ManagedJDBCDriverConnectionPool"

 dialect="oracle"

 location="oracledb"

 name="oracledb"

 />

 <data-source

class="com.volante.component.server.jdbc.ManagedJDBCDriverConnectionPool"

 connection-driver="com.mysql.jdbc.Driver"

 dialect="mysql"

 location="mysqldb"

 name="mysqldb"

 password=""

 url="jdbc:mysql://localhost/test"

 username=""

 />

 <data-source

class="com.volante.component.server.jdbc.ManagedJDBCDriverConnectionPool"

 connection-driver="org.hsqldb.jdbcDriver"

 dialect="hsql"

 location="hsqldb"

 name="hsqldb"

 password=""

 url="jdbc:hsqldb:hsql://localhost"

 username="sa"

 />

 <data-source

class="com.volante.component.server.jdbc.ManagedJDBCDriverConnectionPool"

 connection-driver="COM.ibm.db2.jdbc.net.DB2Driver"

 dialect="db2"

 location="db2db"

 name="db2db"

 password="db2admin"

 url="jdbc:db2://200.200.200.5/toolsdb"

 username="db2admin"

 />

 <data-source

 connection-driver="org.hsqldb.jdbcDriver"

 url="jdbc:hsqldb:hsql://localhost:1608"

 username="sa"

 password=""

class="com.volante.component.server.jdbc.ManagedJDBCDriverConnectionPool"

 dialect="hsql"

 location="simulatordb"

 name="simulatordb"

 />

 <data-source

class="com.volante.component.server.jdbc.ManagedJDBCDriverConnectionPool"

 connection-driver="sun.jdbc.odbc.JdbcOdbcDriver"

 dialect="mssql"

 location="mssqldb"

 name="mssqldb"

 password="krishnan"

 url="jdbc:odbc:testnorth"

 username="Krishnan"

 />

</data-sources>

In the above configuration, each <data-source> tag defines a connection to a
separate database server.

The following table describes the connection attributes used in the <data-source>
tag.

Class Name of the connection pool class. Always use
com.volante.component.server.jdbc.ManagedJDBCDriverCon
nectionPool

name Name of the data source.

location Name of the server resource.

connection-
driver

JDBC driver class.

url URL to be passed to the driver.

username User name to be used to get a connection to the database.

password Password to connect to the database (for the specified username).

See Also:

Resource Reference Mapping
Testing a Cartridge with Persistence Support

Resource Reference Mapping

By mapping the data source reference name used in a cartridge to one of the data
sources configured in Simulator, the user can connect to the database server
identified by that data source configuration.

This section assumes that invoicedb is defined as the data source reference name
using the ‘Java/EJB Code Generation Settings’ dialog as shown in the following
picture.

Follow the steps given below to map the data source reference to one of the
Simulator data sources.

1. Select the Tools > Resource Mapping menu item from the Simulator menu

bar. The ‘Resource Reference Mapping’ dialog is shown.

2. Click on the icon to add a new row, if required.

3. Enter/edit the data source reference name used in the cartridge in the ‘Data

source’ column.

4. Now select the data source to be connected (for persistence and querying of

internal messages) from the ‘Server Reference’ drop down list.

5. Click on the OK button to complete data source reference mapping.

6. Click OK to close the message box that prompts you to redeploy the cartridge.

7. Click on the ‘Redeploy Cartridge’ icon in the Simulator toolbar to start

redeploying the cartridge.

See Also:

Defining Data Sources
Testing a Cartridge with Persistence Support

Creating Schema

To persist internal messages, the schema should have been created. The XML and
the SQL schema files are automatically generated during code generation under
<Cartridge directory>\java directory, if the cartridge has a Persistence
Designer node added. The schema should be created afresh whenever any change
is made to the database table design.

Follow the steps given below to create schema based on the database table design of
a Persistence Designer.

1. Select Tools > Create Schema menu item in Simulator.

2. In the ‘Connection Information’ dialog that appears, select the required data

source.

3. Other fields required for making the database connection are populated from the

Simulator data source configuration. Modify them as required and click the Next
button.

4. In the ‘Select SQL Schema’ dialog that appears, select the schema file to be

executed and click the Finish button. This dialog automatically populates the

schema file available under the cartridge's code generation directory, which is the
required schema file under the normal circumstances.

The schema file gets executed. The message window shows the SQL statements
executed.

See Also:

Testing a Cartridge with Persistence Support

Invoking Queries

The Query tab in the Input pane of Simulator is used to invoke queries defined in
the currently deployed cartridge.

Follow the steps given below to invoke a query:

1. Select the internal message available in the cartridge from the Internal

Message combo box.

2. Select the query to be executed from the Queries combo box.

3. The combo lists the queries defined already using Designer. It also includes a

query named ‘All’ that returns all internal message records.

4. In case of a query with parameters, specify parameter values to be passed to the

query. In the above figure, the value CLNT1 is provided for the parameter ‘Id’.

5. Click on the Execute button to execute the query.

6. The query result is displayed in the Output text area.

Note:

 Records matching a query can be deleted by clicking the Delete button.

See Also:

Testing a Cartridge with Persistence Support

Testing a Cartridge with Persistence Support

The following steps should be followed to test a cartridge having persistence support.

1. In the cartridge, add Persistence Designer and design the database tables.

2. Add queries if needed.

3. Specify the data source to be used for persistence in Java Code Generation

Settings dialog.

4. Generate code for the cartridge.

5. Launch Simulator or just click the Redeploy Cartridge button in Simulator

toolbar if it is already launched.

Map to the required Simulator data source.

6. If the data source mapped to is other than the default data source (simulatordb

is started by default), make sure the database server is running.

7. Create the schema to persist the internal messages.

8. Select the message flow, message or message mapping to be executed.

9. In case of a message, select the processing that needs to be done. This can be
one of ‘Parse’, ‘Parse and Validate’ and ‘Parse and Write’.

10. Enter the data into the Input pane or open an input test file using the File >
Open Input from File menu item.

In case you have selected a message flow with multiple inputs, the Input pane is
laid out as a form with text field and/or text area input elements based on the
type of the corresponding input variable. For a simple type input variable, a text
box is used to accept the input and for a ‘Binary’ type input variable, a text area
is used to accept the input. To enter input into a text area by opening a data file,
first select that input area and then open the input data file by using the File >
Open Input from File... menu item.

11. Click the Submit button to start transformation.

12. The output of the transformation and/or errors generated is displayed in the

Output and the Message pane respectively.

To verify that the records corresponding to the internal message are inserted into
the database, use the Query tab of the Input pane. Refer Invoking Queries to
know about how to invoke queries in Simulator.

See Also:

Cartridge Simulator

Test Data Generation

The test data generation utility helps the user to generate test cases for various data
formats (Currently only the internal formats of internal messages and external
formats of SWIFT and XML are supported). This feature is now made available as
part of Simulator.

The user can generate a single test case shown in the Input pane of Simulator. There
is also an option to generate a set of test data files in the directory specified by the
user.

In case of SWIFT, the generated test cases are based on the SWIFT format
specification. The format specification for SWIFT has information about the type
(character set) as well as the maximum or exact length of each field. So the
generated test cases are reasonably useful.

Unlike SWIFT, the other formats (XML, Internal Format etc) are weakly specified. For
instance, in case of XML format, a field of type String is unconstrained. To constrain
the values generated for the field, the user is allowed to specify a pattern. The

values generated for the field will conform to this pattern. See the section Defining
Patterns for further information. The pattern syntax is similar to the Regular
expression syntax supported by JDK1.4. But instead of matching a string against the
pattern, a random string is generated to conform to that pattern.

The first step in test data generation is defining the data generation specification
(optional). For this the user is shown a dialog based on the selected data format. The
dialog allows the user to define data generation specifications for the elements of the
data format.

In case of simple fields, the specification is a pattern. See the section Defining
Patterns for further information.

In case of sections, the specification is the minimum and maximum occurrences of
the section (currently not implemented).

Normally, once data generation specification is provided, the user can proceed with
the actual data generation. It is possible to directly proceed to data generation
without providing data generation specification. In this case, data generation is
based on random values depending on the corresponding data type.

See Also:

Defining Data Generation Specification
Generating a Test Case
Generating Test Data Set
Running Test Data Set
Entering Test Data for Internal Messages
Testing with Simulator

Defining Data Generation Specification

Follow the steps given below to define data generation specification for the elements
of the required data format.

1. Open and generate the cartridge that contains the data format for which you

want to generate test cases.

2. Start Simulator.

3. Select the internal/external message for which you want to generate test cases.

4. If you select an internal message design element, you can generate test cases for

the selected internal format. Similarly, if the selected design element is an
external message, test cases can be generated for its external format. Currently

only the internal formats of internal messages and external formats of XML
external messages are supported.

5. From the Simulator menu bar, select the Test > Define DataGen Spec menu

item. The Data Generation Specification dialog is displayed as shown below.

6. Select the field/section for which you want to specify data generation pattern.

7. Specify the data generation pattern for the currently selected field/section in the

Pattern text field of the Field Specification section. See the section Defining
Patterns for further information.

8. Once you have completed defining data generation specification, click on the

Validate button to verify the validity of patterns specified.

9. Click on the Close button to close the dialog.

See Also:

Generating a Test Case
Generating Test Data Set
Running Test Data Set
Entering Test Data for Internal Messages
Testing with Simulator

Defining Patterns

In the Pattern text field of the Data Generation Specification dialog, the user can
specify either a single pattern or a list of patterns. If the user specifies a list of
patterns, one of them is randomly selected for data generation. In case of a list, a
comma should separate each pattern.

The following points should be noted when defining a pattern.
 A pattern can be a value itself.
 A pattern can be a regular expression.
 Be careful when you use a regular expression so that it generates a value of the

correct data type. Otherwise, it results in error during data generation rather
than during specification. Refer to the Pattern Grammar section for further
details.

 Except for String and Boolean data types, a pattern can also be a range.
 A pattern can also be empty. Two consecutive commas stand for an empty

pattern. An empty pattern generates a null value.

The following is a list of valid pattern specifications:

String
SD199401, \:a{4}(//\:n{3})?, , \:x{7}
Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec

Integer
1970-1979, 2000, 2003

Long
75[\:n]{3}, 85000, 100000-150000

Double
123456.789-123456.799, 999999.999, [\:n]{7}.[123]{2}

Float
10000.50-20000.25, 35000.00, 50000.00, 100[\:n]{3}.[123]{2}

Character
a-z, 1-5, {, L, \:a

Date
1900121[0123], 1995120[\:n&&[^0]], 20011201-20011210

Note:

We have extended the Regex syntax to easily support SWIFT character set.
Predefined character classes in the pattern syntax represent SWIFT character sets.

\:x refers to X char set
\:a refers to A char set
\:n refers to Numeric char set

Pattern Syntax

Character classes

[abc] a, b, or c (simple class)

[^abc] Any character except a, b, or c (negation)

[a-zA-Z] a through z or A through Z, inclusive (range)

[a-d[m-p]] a through d, or m through p: [a-dm-p] (union)

[a-z&&[def]] d, e, or f (intersection)

[a-z&&[^bc]] a through z, except for b and c: [ad-z] (subtraction)

[a-z&&[^m-p]] a through z, and not m through p: [a-lq-z](subtraction)

Predefined character classes

\d A digit: [0-9]

\D A non-digit: [^0-9]

\s A whitespace character: [\t\n\x0B\f\r]

\S A non-whitespace character: [^\s]

\w A word character: [a-zA-Z_0-9]

\W A non-word character: [^\w]

SWIFT character classes

\:n SWIFT numeric character: [0-9]

\:a SWIFT charset A

\:c SWIFT charset C

\:x SWIFT X charset

\:y SWIFT Y charset

\:z SWIFT Z charset

\:h Hex char

Logical operators

XY X followed by Y

X|Y Either X or Y

(X) X, as a capturing group

Cardinality

X? X, once or not at all

X* X, zero or more times

X+ X, one or more times

X{n} X, exactly n times

X(n,} X, at least n times

X{n,m} X, at least n but not more than m times

Examples

Pattern Generated Value

Abcd abcd

a? 0 or 1 ‘a’

a* 0 or more a’s

a+ 1 or more a’s

a{3} aaa

a{3,5} aaa or aaaa or aaaaa

a[bcd] ab or ac or ad

\:n One numeric character

\:a{3} Three alpha characters

[abc[def]] One character among ‘abcdef ‘(union)

[abc&&[bcd]] One character among ‘bc’ intersection

Ab{2} abb (the cardinality applies to the last entity)

(ab){2} abab (ab is grouped)

a|b a or b

a|b{2} a or bb

(a|b){2} aa, bb, ab or ba

[\:n&&[^0]] Numeric character except zero

\:x{16} Equivalent to 16!x

\:x{0,16} Equivalent to 16x

\:a{4}(//\:n{3})? Equivalent to 4!a[//3!n]

See Also:

Defining Data Generation Specification

Pattern Grammar

Character -> SimpleCharacter | CharacterClassProd

SimpleCharacter -> any character (0-128)

CharacterClassProd -> StartBrac [Hat] CharacterClass EndBrac

CharacterClass -> PredefinedClass | UserdefinedClass | IntersectionClass |
 UnionClass

IntersectionClass -> CharacterClass && CharacterClassProd

UnionClass -> CharacterClass CharacterClassProd

UserDefinedClass -> SimpleCharacter*

PredefinedClass -> Colon PredefinedClassChar

PredefinedClassChar -> a | n | x | y | z | h

CharacterGroup -> (CharacterSequence)

CharacterOR -> CharacterSequence | CharacterSequence

RepeatedCharSequence -> CharacterSequence | CharacterSequence * |
 CharacterSequence ? | CharacterSequence + |
 CharacterSequence {n} | CharacterSequence {n,} |
 CharacterSequence {n,m}

CharacterSequenceList -> CharacterSequence CharacterSequence

CharacterSequence -> Character

CharacterSequence -> RepeatedCharSequence

CharacterSequence -> CharacterGroup

CharacterSequence -> CharacterOR

CharacterSequence -> CharacterSequenceList

See Also:

Defining Data Generation Specification

Generating a Test Case

Follow the steps given below to generate a single test case in the Input pane of
Simulator.

1. Open and generate the cartridge that contains the data format for which you

want to generate test cases, if you have not done so before.

2. Start Simulator, if you have not done so before.

3. Select the internal/external message for which you want to generate a test case.

4. Make sure that you have defined data generation specification for that design
element. Otherwise, the generated test case is based on random values
depending on the data type of the corresponding element. See the section
Defining Data Generation Specification for further information.

5. From the Simulator menu bar, select the Test > Generate Test Case menu

item to generate a test case.

See Also:

Defining Data Generation Specification
Generating Test Data Set
Running Test Data Set
Entering Test Data for Internal Messages
Testing with Simulator

Generating Test Data Set

Follow the steps given below to generate a set of test data files in the directory
specified by the user.

1. Open and generate the cartridge that contains the data format for which you

want to generate test cases, if you have not done so before.

2. Start Simulator, if you have not done so before.

3. Select the internal/external message for which you want to generate a test case.

4. Make sure that you have defined data generation specification for that design

element. Otherwise, the generated test cases are based on random values
depending on the data type of the corresponding element. See the section
Defining Data Generation Specification for further information.

5. From the Simulator menu bar, select the Test > Generate Test Data Set menu

item. The ‘Generate Test Data Set’ dialog is displayed.

6. In the Generate in Directory text field, specify the directory where the

generated test data files will be written.

7. In the Test Data Count text field, specify the number of data files to be

generated.

8. In the Generation Seed text field, specify the random seed to be used in data

generation. If not specified, the default value is used.

9. Click on the OK button to start generation.

See Also:

Defining Data Generation Specification
Generating a Test Case
Running Test Data Set
Entering Test Data for Internal Messages
Testing with Simulator

Entering Test Data for Internal Messages

The user can generate an internal message test case just by entering data for the
fields of that internal message without worrying about XML syntax by using the ‘Data
Entry’ tool provided in Simulator.

Follow the steps given below to generate an internal message by using the ‘Data
Entry’ tool.

1. Select the internal message for which you want to generate a test case.

2. Select the Tools > Data Entry menu item.

3. The data entry dialog appears with internal message name as the title.

4. Enter values for the fields. Fields indicated by * are mandatory.

5. Nested fields within a section are grouped under the section name. In the above

figure, fields ‘ItemID’, ‘Qty’ and ‘Price’ are grouped under section ‘Item’.

Add more elements of any repeating section, if required.

6. For repeating sections, when the cursor is placed inside the section group, a

button panel appears. The button panel has buttons for adding an element of the
repeating section, deleting an element and moving back and forth between the
elements of the section.

7. Click OK after entering all the required values.

The generated test case is written to the Input pane of Simulator.

See Also:

Defining Data Generation Specification
Generating a Test Case
Generating Test Data Set
Running Test Data Set
Testing with Simulator

Frequently Asked Questions

1. When I press the Submit button, no output or error is produced?

Check whether you have added router or some other trigger to your internal
message. Check if the message flow that is executed has an output variable
defined in it or the flows sends the output to an output device.

2. I get a runtime error that the output device is not found similar to the one given

below.

<TransformException>

 <Type>TransformException</Type>

 <Message>Unexpected error</Message>

 <Severity>1</Severity>

 <Cascadable>false</Cascadable>

 <Error-Phase>Internal Message</Error-Phase>

 <StackTrace>

 null

Type=TransformException, Message=Unable to lookup RMI output device

'device.GRNOutXML', ErrorCode=null, Severity=1, Cascadable=false

Your application attempts to write to a different output channel. You need to add
an output channel in Simulator.

3. My application uses external jars (libraries). How do I test with Simulator?

Copy the external Jars to the directory in which jars were generated by the code
generator. Simulator will automatically load the dependent jars referenced using
manifest classpath. Remember to refer to these jars in the manifest classpath of
the generated jars using Java Code Generation Settings dialog. A sample is
shown below.

4. I get the error message “Error generating Unique key”.

Verify that you have created UniqueKeyGenTable in the datasource referred in
the cartridge. See the PersistenceDesigner.doc for further information.

5. I get the error message “Table not found”.

If the table mentioned in the error is other than UniqueKeyGenTable, verify that
you have created the schema used in the current cartridge. Refer
Creating Schema to know how to create the schema.

6. How do I use database other than Simulator database?

 Configure the datasource for Simulator.
 Add the database driver jars to <installation dir>\lib\ext directory.
 Create the schemas in the database you intend to use.
 See Testing a Cartridge with Persistence Support for more details.

7. I have added a Persistence Designer but nothing is saved in the database. No

error is reported.

Verify if you have added the Persistence Trigger.

8. I have made changes in the cartridge. But these changes are not reflected in

Simulator.

Make sure that you have generated code and redeployed the cartridge. Redeploy
the cartridge using the Redeploy Cartridge button or the Tools > Redeploy
Cartridge menu item in Simulator.

9. I get the error message “Input Parsing Error”.

Make sure that your input data corresponds to the message flow, message or
message mapping selected for execution.

10. I have defined only the internal/external message in the cartridge. How do I test

it?

 Select the internal/external message for execution.
 Select the ‘Parse’ from the Output Options drop down list.
 Click Submit button. The parsed structure is displayed in the Output pane.

For external messages, two additional options are populated in the Output
Options drop down list – ‘Parse and Validate’ and ‘Parse and Write’. The former
dumps an XML structure of the parsed input while the latter dumps the output in
the plug-in format. In case of the ‘Parse and Validate’ option, the input message

is parsed and validations specified for that message are carried out. In case of
the ‘Parse and Write’ option, apart from parsing and writing of the message,
validations are carried out on the parsed input object and on the output object
before writing the output.

See Also:

Simulator

Debugging

The process of locating and fixing errors in your application is known as debugging.
It includes breakpoints, watch expressions, and the ability to step through
code/model one statement or one procedure at a time and display the values of
variables and properties

To understand how debugging is useful, consider the kinds of errors that can occur

Runtime errors These occur while the application is running when a statement
attempts an operation that is impossible to carry out. An example of this is division
by zero.

Logic errors These occur when an application doesn't perform the way it was
intended. An application can have syntactically valid code, run without performing
any invalid operations, and yet produce incorrect results. Only by testing the
application and analyzing results can you verify that the application is performing
correctly.

These kinds of error can be reduced using debugging.

Debugger requires some additional information to be available at runtime so that the
execution state can be inspected. The Java Code generator has an option to generate
this additional information. The ‘Debug Info’ check box present in the ‘Build Code
Generation Settings’ dialog, should be enabled before generating code for the
cartridge. For details on how to enable this option and to run a cartridge under the
debugger refer to the section Debugging from simulator.

See Also:

Debug Window
Break Points
Step modes
Frames
Watches
Debugging From Simulator

Debug Window

To view the ‘Debug’ window, click on the ‘View Debug window’ menu in ‘Run menu’.

 ‘Go’ button when clicked, moves to the location of Breakpoint in Execution. If

there is no Breakpoint set, the button when clicked completes Debugging.

 ‘Show Null Fields’ button when clicked, hides the fields with null value i.e.,when

this button is enabled ‘ ’, fields without any value are not listed in the
‘Frames’ tab.

 ‘Step Into’ button when clicked, runs the next executable location (an activity

in a message flow, line of code in functions, a validation rule or a mapping) and
steps into procedures.

 ‘Step Over’ button when clicked, runs the next executable location (an activity

in a message flow, line of code in functions, a validation rule or a mapping)

without stepping into procedures.

 ‘Step Out’ button when clicked, runs the remainder of the current execution and
breaks at the next line of execution.

 ‘Stop’ button when clicked, terminates the debugging session.

In the ‘Breakpoints’ tab, the user can add/remove break points for a location (an
activity in a message flow, line of code in functions, a validation rule or a mapping)
in the cartridge.

In the ‘Frames’ tab, the user can view the values of all variables during debugging.

In the ‘Watches’ tab, the user can monitor the value of any variable, property,
object, or expression when the code is executed.

When the Message window is open, it can be closed by clicking on the Close button
present in its title bar.

The Auto Hide mode (Pinned mode) of the Message Window can be enabled or
disabled, by toggling the Auto Hide button present in its title bar. When Auto Hide
mode is enabled (indicated by the icon), the Message Window hides itself when it
loses focus. When Auto Hide mode is disabled (indicated by the icon), the Message
window remains visible even when it loses focus.

See Also:

Break Points
Step modes
Frames
Watches
Debugging From Simulator

Breakpoints

A breakpoint is a location (an activity in a message flow, line of code in functions, a
validation rule or a mapping) at which Designer automatically suspends execution.

While running under the debugger, a breakpoint will stop your code on the line of
code that will be executed next. Once execution has stopped, you can investigate
your code/model and the variables in the enclosing context to get a better
understanding of the execution context.

Note:

To navigate to the location for which Breakpoint is created, the user can also select a
row in the Breakpoints tab, right click it and select ‘Jump to Location’ menu item.

To view the Breakpoints in the HTML format right click inside the Breakpoints tab and
select ‘View As HTML’ menu item. The search results are displayed in HTML form.

See Also:

Adding Breakpoint
Deleting Breakpoint

Enable/Disable Breakpoint
Step modes
Frames
Watches

Adding Breakpoint

You can set Breakpoints in Designer for,

 Message Flow
 Mapping
 Function Definitions
 External Message
 Internal Message
 Validation

In the message flow UI select the location (an activity in a message flow, line of code
in functions, a validation rule or a mapping) for which Breakpoint is to be added. In
case of message flow, the location can be an activity. In case of mapping the location
can be a ‘row’ in the mapping table (destination).

From the ‘Run menu’ in menu bar select ‘Toggle Breakpoint’.

The selected activity appears with the breakpoint icon

In Mapping, the selected row appears with the breakpoint icon as follows

The added breakpoints are also listed in the ‘Breakpoints’ tab of ‘Debug’ window.

Breakpoints can also be added by selecting the location (an activity in a message
flow, line of code in functions, a validation rule or a mapping) and pressing F9 or by
clicking ‘Add Breakpoints’ icon ‘ ’ in the Breakpoints tab of Debug window.

You can navigate to the breakpoint location by clicking on the hyperlink in the
“Node” column.

Note:

When a cartridge is saved, the breakpoints added are also automatically saved.

See Also:

Break Points
Deleting Breakpoint
Enable/Disable Breakpoint

Deleting Breakpoint

Follow the steps given below to delete a Breakpoint using ‘Toggle Breakpoint’ menu.

1. Select the location with Breakpoint.

2. Press F9 or the ‘Toggle Breakpoint’ menu in ‘Run menu’.

Follow the steps given below to delete a Breakpoint using ‘Delete Selected
Breakpoint(s)’ icon.

1. In the ‘BreakPoints’ tab of Debug window, select the location for which

Breakpoint is to be removed.

2. Click the ‘Delete Selected Breakpoint(s)’ icon .

See Also:

Break Points
Adding Breakpoint
Enable/Disable Breakpoint

Enable/Disable Breakpoint

When you uncheck the ‘Enabled’ column in Breakpoints tab, the Designer would not
suspend the execution even if the location has a breakpoint.

In the above figure breakpoint has been disabled for mapping of Records.Cost. So
execution will not be suspended for the mapping and will proceed to the next
mapping code to be executed.

Note:

If the Enabled column of a Breakpoint is unchecked, the Breakpoint icon in the
corresponding Location appears as faded.

 Breakpoint ‘Enabled’ state

 Breakpoint ‘Disabled’ state

See Also:

Break Points
Adding Breakpoint
Deleting Breakpoint
Debug Window

Debugging From Simulator

Step modes

You can use the three step modes to start execution of a location (activity in case of
flow, validation rule or mapping) or to continue execution after it has stopped at a
breakpoint. The three available modes are Step Into, Step Over and Step Out. Using
any of these modes to step through code does not take the code out of break mode.

Step Into

Executes till the next executable location (activity, validation rule or mapping). If the
current location has child steps (for example mapping activity) control descends into
it. When you use Step Into to step through code one statement at a time, Designer
temporarily switches to run time, runs the current statement, and advances to the
next statement.

Click the ‘ ’ button in the Debug window to step into the next location. You can also
use the short key ‘F11’.

See Also:

Step Over
Step Out
Debug Window

Step Over

Step Over is similar to Step Into, except when the current location (activity,
validation rule or mapping) to be executed is a compound location (function call,
mapping activity etc). Unlike Step Into, which steps into the called procedure, Step
Over runs it as a unit and then steps to the next statement in the current node.

For e.g. if a function that is being debugged contains a call to another function, and
Step Over is done, then the called function is executed as a single unit, without
stepping into it.

Click the ‘ ’ button in the Debug window to step over the next location. You can
also use the short key ‘F10’.

See Also:

Step Into
Step Out
Debug Window

Step Out

Step Out advances past the remainder of the code to be executed in the current
node. The remaining code in the current location is executed as a single unit. It then
advances to the statement immediately following the one that called the current
location.

Click the ‘ ’ button in the Debug window to step out after the current location is
executed. You can also use the short key ‘Shift+F11’.

See Also:

Step Into
Step Over
Debug Window

Frames

This window provides a snapshot view of the values of all variables when debugging
is being done. The Frames tab has a combo, which displays the call stack at the point
where execution has paused. Each element in combo represents a stack frame; you
switch to a frame by selecting it from the combo.

The variables (local and instance) that are associated with a stack frame are
displayed as a tree.

Note:

Right clicking inside the Variables tree displays a popup menu with items, Copy
Name, Copy Qualified Name and Copy Value. While Copy Name menu item
copies the name of the selected variable, the Copy Qualified Name menu item
copies the name with its qualified path. For e.g. for the variable ‘OrderID’, the name
is “OrderID” when copied using ‘Copy Name’ menu item and the name is
“messageObj.Data.Records.[0].OrderID” when copied using ‘Copy Qualified Name’
menu item.

Copy Value menu item copies the value of the selected variable.

If the variable is a ‘Section or a ‘Message variable’, the Copy Value menu item copies
the value in XML format.

See Also:

Break Points
Watches

Frame Variables

The variables displayed in the window depend on the entity (External message,
mapping, validation, message flow, function definition) that is being debugged.

Function Definition Variables

In case of Function Definition, the values of the input parameters to the flow are
displayed as name value pairs. Any other local variable defined in the function
definition is also displayed.

The combo box in the ‘Frames’ tab displays the line number of code currently
executed in debugging.

The above function takes variables ‘Orders’ and ‘Symbol’. A local variable ‘sec’ has
been defined in it. Looping is done through each element of Orders and if the
‘symbol’ of an element matches the ‘Symbol’ value passed, it is added to the ‘sec’
variable.

In the above Function Definition code, the second line of code is being executed in
Debugging. The combo box in the ‘Frames’ tab appears with the current
location(Code in Function Definition) of debugging.

As mentioned above, the value in the combo box is of the form
“[Functions]<Function Name>:<Function Name>:<Line Number In Formula>”. For

e.g. in “[Functions]SelectOrders:SelectOrders:2”, ‘SelectOrders’ is the Function
definition name and ‘2’ is the next line number of code to be executed.

The input arguments ‘Orders’ and ‘Symbol’ are also displayed in the ‘Frames’ tab.
The ‘sec’ variable is currently empty. The corresponding Debug window appears as
follows.

When debugging is completed for the above-mentioned code, the variable ‘sec’ is
displayed along with its values.

It can be seen that ‘sec’ has been populated from Orders. There is also a local
variable ‘elm’ which represents a particular element in Orders. This variable is also
displayed. While debugging if any exception occurs in the formula code, the
debugging session is terminated and the corresponding action message is displayed
in the ‘Message’ pane of Simulator.

Note:

The arrow mark highlights the current location (activity in case of flow, validation
rule or mapping) of debugging.

See Also:

Message Mapping Variables
External message Variables
Validation Rules Variables

Message Flow Variables
Debug Window
Debugging From Simulator

Message Mapping Variables

When debugging a ‘Mapping’, the source mapping object and the destination-
mapping object are displayed as variables ‘Source’ and ‘Destination’ in the ‘Frames’
tab. For example, consider the following mapping.

When the above mapping is debugged, the combo box in the ‘Frames’ tab appears
with the current location (Mapping) of debugging.

The value in the combo box is of the form “[<Mapping Name>]map:<Mapping Field
Name>”. For e.g. in “[OrderToOrderCost]map:Records.OrderID”, ‘OrderToOrderCost’
is the name of mapping and ‘Records.OrderID’ represents the field currently
debugged. The source format and Destination format initially appears as follows.

The ‘Source’ variable displays the source format that is to be mapped. The fields in
the source format are displayed as name=value pairs, where ‘name’ is the field
name. The variable ‘Destination’ is initially empty.

‘Source’ format before Debugging ‘Destination’ format before
Debugging

As the mapping proceeds, the Destination variable is listed with values that have
been mapped. If the mapping code has any local variable defined in it, it is also
displayed.

‘Source’ format after Debugging ‘Destination’ format after Debugging

The ‘Destination’ format is filled with records after Debugging.

In the mapping for Records.Cost a local variable ‘cost’ has been defined. The value of
this variable is calculated based on Record.Qty and set as the value for Records.Cost.

As can be seen from the above diagram, the local variable ‘cost’ is also listed during
debugging. When debugging if any error occurs in mapping, the debugging session is
terminated without any output and the corresponding action message is displayed in
the ‘Message’ pane of Simulator.

See Also:

Function Definition Variables
External message Variables
Validation Rules Variables
Message Flow Variables
Step modes
Debug Window
Debugging From Simulator

External message Variables

When an external message is being debugged, a variable ‘input’ is displayed which
contains the value of the raw input. If there are multiple records in the input they
are displayed as a single string.

The ‘Frames’ tab appears with a combo box containing the value of current
location(Message) of debugging.

As can be seen from the above diagram, the value in the combo box is of the form
“[<Message Name>]parse:Operation <Mode>”. For e.g. in “[Order]parse: Operation

Enter”, ‘Order’ is the External message name and ‘Operation Enter’ represents that
debugging is about to start for the external message.

A variable ‘messageObj’ is displayed which is initially null. This variable is used to
display the processed output.

As the message is processed the ‘messageObj’ is populated with values of fields that
have been processed. The values are displayed as name=value pairs, where ‘name’
is the field name.

When debugging if parsing error occurs and the debugging session is terminated.
The corresponding action message is displayed in the ‘Message’ pane of Simulator.

See Also:

Function Definition Variables
Message Mapping Variables
Validation Rules Variables
Message Flow Variables
Step modes
Debug Window
Debugging From Simulator

Validation Rules Variables

The message object variable that is being validated is displayed. If any validation has
any variable defined in it, it is also displayed. For example consider the following
Validation Rules.

The validation for the fields in the External message is defined. When debugging the
above validation, in the frames window the currently debugged location (validation)
is displayed in the combo box.

As can be seen from the above diagram, the value in the combo box is of the form
“[<Message Name>]validate:<Validation Name>:<Line Number of Formula>”. For
e.g. in “[order]validate:E1:1”, ‘Order’ is the message name, ‘E1’ is the name of
validation and ‘1’ represents the line number of code in validation ‘E1’ that is to be
executed next.

A variable ‘messageobj’ appears in the ‘Frames’ tab which contains all the parsed
input.

As debugging continues, the variables defined in the validation rules are also
displayed in the ‘Frames’ tab along with the messageobj variable.

The variables ‘symbol1’ and ‘symbol2’ that was defined in the formula of validation
E2 are also listed. When debugging, if the validation set for the field fails, debugging
stops and the corresponding action message is displayed in the ‘Message’ pane of
Simulator.

See Also:

Function Definition Variables
Message Mapping Variables
External message Variables
Message Flow Variables
Step modes
Debug Window
Debugging From Simulator

Message Flow Variables

When a Message flow is debugged, the variables defined in the message flow are
listed in the ‘Frames’ tab. Initially these variables are assigned null values. As the
debugging proceeds, these variables are filled with values. The values are displayed
as name=value pairs, where ‘name’ is the field name. For example consider the
following message flow.

When the above flow is debugged, the combo box in frames tab lists the location
(activity in flow) that is to be debugged next.

In the above diagram, the value in the combo box is of the form
“[<MessageFlowName>]run:<ActivityName>”. For e.g.
“[SelectOrdersFlow]run:Start1” where ‘SelectOrdersFlow’ is the name of the message
flow and ‘Start1’ is the name of the ‘Start’ activity.

Initially the variables defined in the message flow appear in the Debug window with
their values initialized to null. As debugging proceeds the input values are assigned.

During debugging the variables listed in the ‘Frames’ tab depend on the activity that
is being debugged in the message flow (Parse/Serialize/Mapping/Validation/Custom
etc).

When an activity is being debugged an ‘arrow’ icon will appear in the activity. For
e.g. when a ‘Serialize’ activity is being debugged it will appear as follows.

The arrow icon in the activity represents that the ‘Serialize’ activity is currently
debugged.

When debugging of the flow is completed, all the variables defined in the flow that
were initially null will be listed again with their values.

When debugging if error occurs while processing any activity, the debugging session
is terminated and the corresponding action message is displayed in the ‘Message’
pane of Simulator.

In the above figure it can be seen that the variables are listed along with their
values.

See Also:

Function Definition Variables
Message Mapping Variables
External message Variables
Validation Rules Variables
Debug Window
Debugging From Simulator

Watches

Watch expressions let you monitor the value of any variable defined in a location (an
activity in a message flow, line of code in functions, a validation rule or a mapping),
during debugging.

Right clicking inside the ‘Watches’ tab displays a popup menu with items Copy
Name, Copy Qualified Name, Copy Value, New Watch, Remove Watch and
Remove All Watches.

While Copy Name menu item copies the name of the watch expression, the Copy
Qualified Name menu item copies the name with its qualified path. For e.g. for the
variable ‘OrderID’, the name is “OrderID” when copied using ‘Copy Name’ menu item
and the name is “Destination.Data.Records.[0].OrderID” when copied using ‘Copy
Qualified Name’ menu item.

Copy Value menu item copies the value of the expression.

If the expression is a ‘Section’ or a ‘Message variable’, the Copy Value menu item
copies the value in XML format.

See Also:

Adding Watches
Deleting Watches
Break Points
Frames

Adding Watches

Watch expressions can be added in ‘Watches’ tab of Debug window by right clicking
inside the ‘Watches’ tab and selecting New Watch menu item.

Select the New Watch menu item. The ‘New Watch’ dialog box appears. The name
of the variable whose value needs to be monitored should be entered.

The expression is added in the Watches tab. Initially when the watch expression is
created, value is not assigned. For e.g. consider the ‘Destination’ object created for a
Mapping node and a local variable ‘Cost’ defined in the same Mapping. When
expressions are added for these, they appear as shown below.

When debugging, initially the value of expressions in the Watches tab are assigned
to null.

As debugging is proceeded for the mapping node, the expressions in the ‘Watches’
tab are assigned values when, values for the corresponding variables are assigned in
the ‘Frames’ tab.

In the above figure it can be seen that the expression Destination has changed to a
message variable. The expressions ‘Destination’ and ‘cost’ that were previously
assigned null values are now assigned with values when the corresponding variables
are assigned with values in the ‘Frames’ tab.

Note:

Please note that when an expression added in the watches tab a variable of the same
name should have been defined in a location (an activity, line of code in functions, a
validation rule or a mapping). Otherwise, the expression remains empty even after
debugging.

For e.g. if a variable ‘Cost’ has been defined in a mapping and a expression named
‘Cost1’ has been added, while debugging the mapping the expression will not be
populated with values. In this case an watch expression of name ‘Cost1’ needs to be
created to monitor the value.

See Also:

Watches
Deleting Watches

Deleting Watches

Watch expressions can be removed by selecting the menu items Remove Watch
and Remove All Watches.

While ‘Remove Watch’ menu item removes the selected expression, the ‘Remove All
Watches’ menu item removes all the expressions in the ‘Watches’ tab.

See Also:

Watches
Adding Watches

Frames
Debugging From Simulator

Debugging From Simulator

The ‘Debug Info’ check box present in the ‘Build Code Generation Settings’ dialog,
should be enabled before generating code for the cartridge.

Please note that, enabling the ‘Debug Info’ check box is cartridge dependent. For
each cartridge this option has to be separately selected.

1. Start simulator.

2. In the input combo box select the entity (external message/mapping/message

flow) that needs to be debugged.

3. Enter input values in the ‘Input’ pane.

4. Select the ‘Debug’ button.

5. The focus is transferred to the ‘Debug’ window in the cartridge

6. Click the ‘Step Into’ button in the ‘Debug’ window to run the next executable

location (activity in case of flow, validation rule or mapping).

7. Click the ‘Step Over’ button, to run the next executable location without stepping

into functions.

8. Click the ‘Step Out’ button to step out after the execution of current location.

9. If a Breakpoint is set in a location, click the ‘Go’ button to move to the location of

‘Breakpoint’.

If there are multiple breakpoints, clicking the ‘Go’ button again takes you to the
next location of Breakpoint. When there are no more breakpoints, and ‘Go’ button
is clicked, debugging is completed and output is displayed in Simulator.

10. Click the ‘Stop’ button to terminate the debugging session.

Note:

Output is generated in the ‘Output’ pane of simulator only if the debugging session is
completed normally. If the debugging session is terminated using ‘Stop’ button or if
the session terminates due to an exception, no output is generated and the
corresponding action message is displayed in the ‘Message’ pane of simulator.

See Also:

Debugging
Debug Window
Frames
Watches

Executing Cartridge Entities

Utility to execute message flows, messages and message mappings defined in a
cartridge. This utility is automatically created in the generated ‘java’ directory when
code is generated for a cartridge in JAVA.

For e.g. if the cartridge node name is ‘Employee’ then an executable with name
‘EmployeeTest.exe’ will be generated. The generated executable can be used to test
flows/messages/mappings defined in the cartridge.

Syntax

execute [options] name inputparam1 inputparam2

Where

 options

-perf[:count] Runs performance test (default count = 10000)
-threads[:count] Runs multi thread test (default count = 5)
-nocascade Stops the execution when an error occurs. Default is to run
 in cascade mode

 For messages

-parse - Parse the input file (-p)
-validate - Validates parsed object (-v)
-write - Writes the object (-w)

Default option while processing messages is -p -v –w

 name is the name of the external message/message mapping/message flow that is

to be executed.

 inputparam1 inputparam2 is the list of input parameters.

Listing Cartridge Entities

Once code has been generated for a cartridge, you can view the entities that are
present in the cartridge. Run ‘execute.bat’ without specifying any argument.

The list of messages/flows/mappings defined in the cartridge will be displayed.

Message Flows:

 execute BatchFlow rawIn(Binary) rawOut(RawMessage)

Messages:

 execute NonBatchASCII inputfile

 execute BatchASCII inputfile

Message Mappings:

 execute NonBatchASCIIToBatchASCII inputfile

See Also:

Executing Message Flows
Executing Messages
Executing Message Mappings
Performance measurement

Multi Thread testing
Executing multiple samples
Simulator

Executing Message Flows

A message flow contains a sequence of processing steps that execute when an input
message is received. When a message flow is executed through the execute utility,
the steps defined in the flow are executed and the value of the output variable(s)
defined in the message flow are dumped in the console.

For input variables of type ‘Binary’ and ‘RawMessage’ the input should be passed as
a file that contains the data. For other types the input values can be passed directly.

The arguments passed to the flow should correspond to the input arguments defined
in the flow.

For e.g. consider a flow that has two arguments, a binary value and an integer value.
In this case, the arguments to the flow should be a file containing the data and an
integer value.

execute <flowname> data1.txt 1000

The value for the integer input variable has been passed directly.

All the output variables that have been defined in the message flow are dumped
after execution has been completed. The order in which the values are displayed
corresponds to the order in which the output variables have been defined in the flow.

Consider a flow that has two output variables ‘Id’ and ‘Name’ defined in it. ‘Id’ has
been defined first and then ‘Name’ has been defined. The output generated for the
flow will contain the value for ‘Id’ first and then the value for ‘Name’. An e.g. output
for the above mentioned flow is given below.

1001

John

Note:

The name of the message flow to be executed is case sensitive. The name should be
given as defined in the cartridge.

Please refer New File from Template to create a message flow client for a flow
defined in the cartridge.

Specifying IN/OUT scope variables as arguments

Variables of scope ‘IN/OUT’ act both as input and output. While executing a flow that
has variable of type RawMessage and scope ‘IN/OUT’, a file (file name) has to be
passed as input for the variable. The output for the variable will be written to this
file.

execute <flowname> data1.txt

The output will be written to the file ‘data1.txt’.

It is not necessary the file data1.txt should be present while executing the flow. If
the file is not present, it will be created and the output will be written to the file. If
the file is present the output will be appended to the contents of the file.

See Also:

Executing Messages
Executing Message Mappings
Performance measurement
Multi Thread testing
Executing multiple samples

Executing Messages

In some cases the user may want to execute the message alone, to test it as a
separate entity. Execute utility can be used to test only a message.

When a message is executed using execute utility, by default the data is parsed,
validated, serialized and the serialized output is dumped.

The argument to the external message should be a file containing the input data.

execute <messagename> data1.txt

execute <messagename> data1.txt –p

execute <messagename> data1.txt –p -v

The options that can be specified while executing messages are

-parse - Parse the input file (-p)
-validate - Validates parsed object (-v)
-write - Writes the object (-w)

If none of the options are specified, then the default is to parse, validate and write
the input data.

Note:

The name of the message to be executed is case sensitive. The name should be
given as defined in the cartridge.

See Also:

Executing Message Flows
Executing Message Mappings
Performance measurement
Multi Thread testing
Executing multiple samples

Executing Message Mappings

In some cases the user may want to execute the message mapping alone, to test it
as a separate entity. Execute utility can be used to test only a message mapping.

When a message mapping is executed, the input data will be parsed, validated and
mapped to the destination message. The destination message is then validated and
serialized. The output dumped is the serialized destination message.

The argument to the message mapping should be a file containing the input data.

execute <messagemappingname> data1.txt

Note:

The name of the message mapping to be executed is case sensitive. The name
should be given as defined in the cartridge.

See Also:

Executing Message Flows
Executing Messages
Performance measurement
Multi Thread testing
Executing multiple samples

Performance Measurement

By default the transformation is performed once when execute utility is run. The user
would want to measure the transformation performance when multiple runs are
executed. To measure the performance of a flow/message/mapping the ‘–perf’
option should be used.

If no number is specified after the –perf option, by default the count will be 10000.
The processing will be done once, and then the performance measurement will start.
Only the output for the first run is dumped. The output generated during
performance measurement is not dumped.

During performance testing, we need to measure performance after it has reached a
stable state. So Hotspot compiler is warmed up before the actual performance
testing is done.

execute –perf:5000 <message/flow/mapping name> inputparam1….

The transformation is done 5000 times.

execute –perf <message/flow/mapping name> inputparam1….
The transformation is done 10000 times.

The number of transformations per second and the time taken (in milli secs) to
process each message will be dumped.

----- Performance Testing -------

Milli secs/message = 0.0875

Transformations/sec = 11428.57142857143

See Also:

Executing Message Flows
Executing Messages
Executing Message Mappings
Multi Thread testing
Executing multiple samples

Multi Thread Testing

The user may want to test the performance of flow/message/mapping in a multi-
threading environment to check if the performance scales when multiple threads are
executed.

Multithreaded testing can be done by using the ‘–threads’ option. If the count is not
specified after the ‘-threads’ by default 5 threads will be executed. If a value is
specified after the ‘-threads’ option then that many number of threads will be
executed.

By default for each thread the transformation will be performed 10000 times. If the
‘–perf’ option is specified along with the –threads option, the transformation will be
performed based on the -perf count.

execute message/mapping/message flow –threads

5 threads will be executed, with transformation being done 10000 times for each
thread.

execute message/mapping/message flow –threads:10

10 threads will be executed, with transformation being done 10000 times for each
thread.

execute message/mapping/message flow –threads:10 –perf:1000
10 threads will be executed, with transformation being done 1000 times for each
thread.

The output dumped will contain the total time taken for processing, time taken to
process a single message, transformations per thread per second and overall
transformations per second.

----- Multi thread testing -------

Number of threads = 5

Number of iterations per thread = 10000

Total time taken = 2062ms

Milli secs/message = 0.2062

Overall Transformations/sec = 4849.66

Transformations/sec per thread= 969.93

See Also:

Executing Message Flows
Executing Messages
Executing Message Mappings
Performance measurement
Executing multiple samples

Executing Multiple Samples

During regression testing, you may want to test multiple samples in one shot. In
such cases, to execute multiple samples, the parameters can be specified one after
the as command line arguments.

execute message/mapping/messageflow data1.txt data2.txt

Two files data1.txt and data2.txt will be executed.

Wildcard characters can also be given while specifying the filename. Files that match
the pattern specified will be processed.

execute message/mapping/messageflow *.txt

All files with extension ‘.txt’ will be executed. This support is present only in execute
utility.

execute message/mapping/messageflow f*.txt

All files whose name start with ‘f’ and have extension ‘.txt’ will be executed. This
support is present only in execute utility.

When multiple files are executed, output for each file will be generated in the order
they are specified. When each sample is executed a text ‘Executing sample <count>’
will be dumped.

…………..<output for first sample>

------- Executing sample 2 ----------------------

…………..<output for second sample>

Executing multiple samples for Flow with Multiple Arguments

Consider a flow that has two arguments a binary input and an integer value.
In this case the arguments to the flow should be a file containing the data and an
integer value.

execute <flowname> data1.txt 1000

If multiple files need to be executed for this flow they should be specified as

execute <flowname> data1.txt 1000 data2.txt 2000

All the arguments for the first execution are specified and then the second input file
has been specified.

See Also:

Executing Message Flows
Executing Messages
Executing Message Mappings
Performance measurement
Multi Thread testing

Working With Cartridge Designer

This section covers the features that make working with Designer more
easier/interactive.

The following table describes the topics covered under this section.

Topic Description

Tables It explains how to manipulate tables in Designer.

Mount Directory By allowing mounting of one or more file system directories,
Designer supports management of external cartridge resources
along with the cartridge.

Navigation
Features

It explains how to quickly move between Designer elements.

Diff It explains how to diff two design elements or two cartridges.

Cartridge
Publisher

It explains how to generate HTML docs for the cartridge and its
child design elements.

Cartridge Read-
Only Mode

It explains how to view a cartridge in read only mode.

Verify Integrity It explains how to verify the integrity of a message or messages in
the cartridge.

Export/Import a
Design Element

It explains how to export/import a design element in different
formats such as XML, HTML, DTD.

Copy/Paste It shows the easy way for creating copies of design elements and
fields.

Validating
Design
Elements

It explains how to validate a design element or all design elements
in a cartridge.

Delete Node It explains how to remove a node from the cartridge.

Find Usage It explains how the user can find the usages of a design element in
a cartridge.

Find It explains how the user can search for an item of interest in a
design element based on the text contained in it.

Incremental
Search

It explains how the user can quickly search for occurrences of text
in text area elements, tables and formula editor that appear in
Designer and Simulator.

Drag and Drop It shows the easy way for opening cartridge and data files.

Recent File List It shows the easy way for accessing the recently opened cartridges.

Exiting Designer It explains how to exit designer.

Version Support It explains the version support provided by Designer.

See Also:

Designer User Interface
Cartridge
Message
Message Mapping
Formula
Function Definition
Resources
Code Generation
Simulator

Tables

This section explains how to manipulate tables in Designer. The table contents of a
message can also be viewed in tree structure.

See Also:

Rearranging Columns of a Table
Showing/Hiding Columns of a Table
Zebra Highlighting in Tables
Table Auto Formatting
Controlling Row Height in Tables
Tooltips for Table Elements
Viewing Table as HTML Page
Comment/Annotation Support in Tables
Expand/Collapse
Incremental Search

Rearranging Columns of a Table

The user can easily rearrange the columns of a table by dragging a column title and
dropping it at the required location.

See Also:

Showing/Hiding Columns of a Table
Zebra Highlighting in Tables
Table Auto Formatting
Controlling Row Height in Tables
Tooltips for Table Elements
Viewing Table as HTML Page
Comment/Annotation Support in Tables
Incremental Search

Showing/Hiding Columns of a Table

Right-clicking a column title brings up a short-cut menu, which displays the actual
columns of the table as menu items. Selecting the check box besides a menu item
shows the corresponding column. Whereas deselecting the check box besides a
menu item hides the corresponding column. As hiding a column is a common
requirement, a menu item to hide the current column is also included in the
short-cut menu.

See Also:

Rearranging Columns of a Table
Zebra Highlighting in Tables
Table Auto Formatting
Controlling Row Height in Tables
Tooltips for Table Elements
Viewing Table as HTML Page
Comment/Annotation Support in Tables
Incremental Search

Zebra Highlighting in Tables

In the table, adjacent rows are colored differently to distinguish a row from its
preceding and succeeding row as shown in the following picture.

See Also:

Rearranging Columns of a Table
Showing/Hiding Columns of a Table
Table Auto Formatting
Controlling Row Height in Tables
Tooltips for Table Elements
Viewing Table as HTML Page
Comment/Annotation Support in Tables
Incremental Search

Table Auto Formatting

Right-click on any row in the table and select “Table Auto Format” from the context
menu as shown in the following picture.

All the rows and columns in the table are resized (best fit) based on content as
shown in the following picture.

See Also:

Rearranging Columns of a Table
Showing/Hiding Columns of a Table
Zebra Highlighting in Tables
Controlling Row Height in Tables
Tooltips for Table Elements
Viewing Table as HTML Page
Comment/Annotation Support in Tables
Incremental Search

Controlling Row Height in Tables

Right-click on a row in the table and select the “Row Height” menu item from the
context menu as shown in the following picture.

You can resize the selected row / all rows in the table using any of the four options
(explained below) in the context menu, which appears when you select the “Row
Height” menu item.

Single Line

If this option is selected, the height of the selected row/rows is set to a single line.

The following picture shows the rows before selecting the ‘Single Line’ menu item.

The following picture shows the rows after selecting the ‘Single Line’ menu item.

Auto Fit Row(s)

If this option is selected, the height of the selected row/s is set based on the height
of the cell in that row which has the maximum height.

Auto Fit Row on selection

If this check box is checked, any row in the table is automatically resized on
selection to appropriate height (multiple lines if required). When you move the
selection to another row, the original height is restored. This is useful for viewing
formula.

Auto Fit Row on edit

If this check box is checked, any row in the table is automatically resized to
appropriate height when you start editing the same. Unlike “Auto Fit Row on
selection”, the original height is not restored when you navigate to some other row.

You can also set the required row height setting to all the rows and cells added in the
table by right-clicking the Column Header and selecting “Row Height” from the
context menu as shown in the following picture:

Auto Fit

If this option is selected, the height of all rows are automatically best fit based on
the height of the cell in the corresponding row which has the maximum height. This
is same as “Auto Fit Row(s)” seen above, but is applied to all rows instead of the
selected row alone.

Auto Fit cells in column

If this option is selected for a column, say “Name”, then the height of all the rows in
the table is set based on the height of the corresponding cell, which appears under
the column “Name”.

See Also:

Rearranging Columns of a Table
Showing/Hiding Columns of a Table
Zebra Highlighting in Tables
Table Auto Formatting
Tooltips for Table Elements
Viewing Table as HTML Page
Comment/Annotation Support in Tables
Incremental Search

Expand/Collapse

Consider a table where the sections are collapsed

To expand sections right click the table and select ‘All Sections’ menu item under
‘Expand’ menu as shown below.

The table now appears as shown below

To collapse sections right click the table and select ‘All Sections’ menu item under
‘Collapse’ menu as shown below.

The table now appears as shown below

See Also:

Rearranging Columns of a Table
Showing/Hiding Columns of a Table

Zebra Highlighting in Tables
Table Auto Formatting
Controlling Row Height in Tables
Viewing Table as HTML Page
Comment/Annotation Support in Tables
Incremental Search

Tooltips for Table Elements

ToolTip for fields/sections added in the table show most of the properties set for the
same as shown in the following picture.

See Also:

Rearranging Columns of a Table
Showing/Hiding Columns of a Table
Zebra Highlighting in Tables
Table Auto Formatting
Controlling Row Height in Tables
Viewing Table as HTML Page
Comment/Annotation Support in Tables
Incremental Search

Viewing Table as HTML Page

Selecting the View As HTML menu item from the short-cut menu that appears by
right-clicking in the empty column of a table generates an HTML page containing the
table information.

The HTML page is a sort of quick view of the current table information. The structure
of the generated HTML page will be similar to the table. If you have hidden a column
or reordered the columns, it will be reflected in the generated HTML page.

See Also:

Rearranging Columns of a Table
Showing/Hiding Columns of a Table
Zebra Highlighting in Tables
Table Auto Formatting
Controlling Row Height in Tables
Tooltips for Table Elements
Comment/Annotation Support in Tables
Incremental Search

Comment/Annotation Support in Tables

Mapping/validation formulas can easily be created, but very difficult to
maintain/understand. Comments will make that easy.

Given below is the list of items for which the user can add comments. It also
describes where it can be specified for the corresponding item.

 Mapping – For mapping rules comments can be added against each target field in

the left margin. For custom mapping, the comment can go into the window that
pops up when the Custom Mapping button is clicked.

 Validation – For both external and internal message validation rules, the

comment can be specified in the left margin of the corresponding validation rule.

 Enrichment – For processing of a field, a comment can be added in the left

margin. For “Custom Processing”, it is specified using the Comment dialog that
pops up when clicking the Add Comment button.

See Also:

Adding a Comment
Editing a Comment
Removing a Comment
Viewing a Comment
Moving Between Comments in a Table
Rearranging Columns of a Table
Showing/Hiding Columns of a Table
Zebra Highlighting in Tables
Table Auto Formatting
Controlling Row Height in Tables
Tooltips for Table Elements
Viewing Table as HTML Page
Incremental Search

Adding a Comment

Follow the steps given below to add a comment for a table row.

1. In the table, right-click on the first column (empty column) of the row

corresponding to the required field.

This brings up the short-cut menu as shown in the following picture.

2. Now select the Insert Comment menu item from the short-cut menu.

This brings up the comment/annotation pane as shown below.

3. Enter the comment in the annotation pane and click outside that window or just

press the Esc button to close it to finish entering the comment.

See Also:

Editing a Comment
Removing a Comment
Viewing a Comment
Moving Between Comments in a Table

Editing a Comment

Follow the steps given below to edit an existing comment.

1. In the table, right-click on the first column (empty column) of the row

corresponding to the field containing the comment to be edited.

This brings up the short-cut menu as shown in the following picture.

2. Select the Edit Comment menu item from the short-cut menu.

 This brings up the comment/annotation pane.

3. Modify the comment in the annotation pane and click outside that window or just

press the Esc button to close it to finish editing the comment.

See Also:

Adding a Comment
Removing a Comment
Viewing a Comment
Moving Between Comments in a Table

Removing a Comment

Follow the steps given below to remove an existing comment.

1. In the table, right-click on the first column (empty column) of the row

corresponding to the field containing the comment to be removed.

This brings up the short-cut menu as shown in the following picture.

2. Select the Delete Comment menu item from the short-cut menu to remove the

comment.

See Also:

Adding a Comment
Editing a Comment

Viewing a Comment
Moving Between Comments in a Table

Viewing a Comment

Moving the mouse cursor over the comment icon displayed in the empty column
shows the comment. The comment disappears if you move away the mouse cursor.
You can also display a comment by selecting the Show Comment menu item of the
short-cut menu that appears when you right-click the empty column. But the
comment pane should be closed by clicking outside the comment pane or by pressing
the Esc button.

See Also:

Adding a Comment
Editing a Comment
Removing a Comment
Moving Between Comments in a Table

Moving Between Comments in a Table

The user can easily move between the comments of a table by selecting the
Next Comment and Previous Comment menu items of the short-cut menu that is
displayed by right-clicking the empty column of a table.

See Also:

Adding a Comment
Editing a Comment
Removing a Comment

Viewing a Comment

Mount Directory

Cartridge uses external resources such as source files, XML, DTD, etc. By allowing
mounting of one or more file system directories, Designer supports management of
these resources along with the cartridge. Designer also supports viewing, editing and
creation of these resources

Usually you mount directories containing resources related to the current cartridge
so that you can manage a cartridge and its resources from within Designer. It is
recommended that the mount directories are present under the cartridge directory.

When you save a cartridge, the mounted directory locations are saved in it. When
you reopen a cartridge, the mounted directories are shown in Explorer along with
cartridge design elements.

NOTE:

 Saving a cartridge is not tied with saving the constituent files/directories of
mounted directories. In fact changes made to a constituent file of a mounted
directory is saved as soon as the focus is changed to some other item of
cartridge.

 Please also note that the source/resource files of a mounted directory are not
included in the code generation process. For these files to be included in the code
generation process, they have to be specified in the code generation settings of
the Cartridge.

See Also:

Mounting a Directory
Working with a Mounted Directory
Editing and Saving a File
Creating a Directory
Creating a File
Working With Cartridge Designer
New File from Template

Mounting a Directory

Follow the steps given below to mount a directory:

1. Select ‘Mount Directory’ menu item from the ‘New Item’ drop down in Explorer

toolbar.

The ‘Select Directory’ file open dialog box is shown.

2. Select a directory and click on the Open button.

The selected directory along with its top-level children is shown in Explorer.

Save the cartridge, if you want the mounted directory location is saved with the
cartridge so that when you reopen cartridge, the mounted directory is also shown in
Explorer along with cartridge design elements.

See Also:

Mount Directory

Working with a Mounted Directory

When you mount a directory, the constituent files and sub-directories are displayed
in Explorer in a tree view. Please note that not all the files under the mounted
directory are shown; only files with some extension (file types commonly used with a
Cartridge) are shown.

When you select a mounted directory or its sub-directory in Explorer, the top-level
children of that directory are displayed in the detail pane. When you hover the
mouse pointer over the name of a child item, it displays a hyperlink and clicking it
will take you to that child item.

You can expand/collapse the mounted directory and its sub-directory nodes. In fact
when you collapse and then expand a directory node, the content of that directory is
refreshed. This means that if a file/directory is newly created under that directory
(using another application), it will be included in the tree view.

See Also:

Mount Directory

Editing and Saving a File

When you select a file node in Explorer, the content of that file is shown in detail
pane. The content is shown with syntax highlight for some file types such as JAVA,
CPP, XML, etc. The status bar at the bottom of the detail pane shows the current line
and column.

To edit a file, simply select it in Explorer and change its content shown in detail
page. As soon as you change the focus to some other node in Explorer, the file gets
saved.

Please note that saving the file is not tied with saving a cartridge. The file is saved
when the file node loses focus irrespective of whether the cartridge is saved or not.

See Also:

Mount Directory

Creating a Directory

You can create a new directory under the mounted directory or one of its constituent
directories by following the steps given below. The new directory location is relative
to the selected directory.

1. Select the directory node in Explorer under which you want to create a new

directory.

2. Select the ‘New Folder’ menu item from its shortcut menu.

The ‘New Folder’ message box is shown.

3. Enter the name of the folder to be created and click OK.

The folder with the specified name is created directly under the selected
directory.

See Also:

Mount Directory

Creating a File

You can create a new file under the mounted directory or one of its constituent
directories by following the steps given below. The new file location is relative to the
selected directory.

1. Select the directory node in Explorer under which you want to create a new file.

2. Select the ‘New File’ menu item from its shortcut menu.

The ‘New File’ message box is shown.

3. Enter the name of the file to be created with its extension and click OK.

The file with the specified name is created directly under the selected directory.

See Also:

Mount Directory
New File from Template

New File from Template

One of the things users occasionally would want is how to write client, custom
extension classes etc. The ‘New File From Template’ feature allows the user to create
source files from template. Source files can typically be created for handler classes,
clients etc from predefined templates. The files can be created for Java. This feature
is available only when a directory has been mounted in the cartridge.

The templates are stored under ‘config\filetemplates’ directory. The templates for
Java are under ‘config\filetemplates\Java’ and. They are customizable. The templates
are shown as menus when the user selects a ‘Mount Directory’ folder and selects
‘New File from Template’ menu.

See Also:

Creating a New File from Template
Mount Directory
External Sources Tab (Java/EJB)

Creating a New File from Template

1. Right click the ‘Mount directory’ folder under which you need to create a file and

select ‘New File from Template’ menu item. Select Java menu item depending on
the platform in which the template is to be generated.

The types of template that are supported will be displayed. Select the template
for which you need to create a template file. Based on the selected template a
dialog will appear which will prompt you to specify parameters for the template
file to be generated. This dialog will vary depending on the template that is
selected.

2. If ‘FieldValidation’ menu item is selected the following dialog will be displayed.

3. Specify the package in which the client is to be generated.

4. Specify the name of the client.

A client file ‘PurchaseClient.java’ will be created under the mount directory.

See Also:

File Templates
External Sources Tab (Java/EJB)

Navigation Features

These features help in quick movement between elements of a cartridge which
otherwise require the Explorer window.

See Also:

Moving Between Recently Visited Elements
Moving from a Field to its Validation Rule
Moving from a Field to its Mapping Rule
Moving from a Field to its Mapping Usage
Moving from a Field to its Usage Items
Moving Back to a Field Definition
Moving Between Source and Destination Fields in Mapping Rules UI
Working With Cartridge Designer

Moving Between Recently Visited Elements

The Back menu item of the Edit menu takes to the last design element the user has
visited before selecting the current design element.

Whereas, the Next menu item of the Edit menu takes to the design element that
the user has visited before selecting the Back action.

See Also:

Moving from a Field to its Validation Rule
Moving from a Field to its Mapping Rule
Moving from a Field to its Mapping Usage
Moving from a Field to its Usage Items
Moving Back to a Field Definition
Moving Between Source and Destination Fields in Mapping Rules UI
Navigation Features

Moving from a Field to its Validation Rule

The user can quickly move from a field definition in the Format UI to its validation
rules. This can be done by selecting the Find > Validation menu item from the
short-cut menu that appears when you right-click in the row corresponding to the
required field.

See Also:

Moving Between Recently Visited Elements
Moving from a Field to its Mapping Rule
Moving from a Field to its Mapping Usage
Moving from a Field to its Usage Items
Moving Back to a Field Definition
Moving Between Source and Destination Fields in Mapping Rules UI
Navigation Features

Moving from a Field to its Mapping Rule

The user can quickly move from a field definition in the Format UI to its mapping
rule, i.e. to the mapping rule in which this field is the target field. This can be done
by selecting the Find > Mappings To menu item from the short-cut menu that
appears when you right-click in the row corresponding to the required field.

See Also:

Moving Between Recently Visited Elements
Moving from a Field to its Validation Rule
Moving from a Field to its Mapping Usage
Moving from a Field to its Usage Items
Moving Back to a Field Definition
Moving Between Source and Destination Fields in Mapping Rules UI
Navigation Features

Moving from a Field to its Mapping Usage

The user can quickly move from a field definition in the Format UI to its mapping
usage, i.e. to the mapping rule in which this field is used as the source field. This can
be done by selecting the Find > Mappings Usage menu item from the short-cut
menu that appears when you right-click in the row corresponding to the required
field.

See Also:

Moving Between Recently Visited Elements
Moving from a Field to its Validation Rule
Moving from a Field to its Mapping Rule
Moving from a Field to its Usage Items
Moving Back to a Field Definition
Moving Between Source and Destination Fields in Mapping Rules UI
Navigation Features

Moving from a Field to its Usage Items

The user can quickly move from a field definition in the Format UI to its usage items
such as validation rules, mapping rules and processing rules. This can be done in two
steps. First select the Find > Usages menu item from the short-cut menu that
appears when you right-click in the row corresponding to the required field.

Next move to the required item by clicking the hyperlink displayed when you hover
the mouse pointer over the items shown in the Search Results pane.

See Also:

Moving Between Recently Visited Elements
Moving from a Field to its Validation Rule
Moving from a Field to its Mapping Rule
Moving from a Field to its Mapping Usage
Moving Back to a Field Definition
Moving Between Source and Destination Fields in Mapping Rules UI
Navigation Features

Moving Back to a Field Definition

The user can quickly move back to a field definition in the Format UI from its usage
items such as validation rules, mapping rules and processing rules. This can be done
by selecting the Go To Field Definition menu item from the short-cut menu that
appears when you right-click in the row corresponding to the required field.

The same can also done by moving the mouse pointer over the required field when
the CTRL key is depressed and clicking the hyperlink displayed as shown in the
following picture.

See Also:

Moving Between Recently Visited Elements
Moving from a Field to its Validation Rule
Moving from a Field to its Mapping Rule
Moving from a Field to its Mapping Usage
Moving from a Field to its Usage Items
Moving Between Source and Destination Fields in Mapping Rules UI
Navigation Features

Moving Between Source and Destination Fields in
Mapping Rules UI

To move to the source field corresponding to a target field, select the Locate
Source menu item from the short-cut menu that appears when you right-click on
the target field row as shown in the picture given below.

Likewise to move to the target field corresponding to a source field, select the
Locate Destination menu item from the short-cut menu that appears when you
right-click on the source field row as shown in the picture given below.

See Also:

Moving Between Recently Visited Elements
Moving from a Field to its Validation Rule
Moving from a Field to its Mapping Rule
Moving from a Field to its Mapping Usage
Moving from a Field to its Usage Items
Moving Back to a Field Definition
Navigation Features

Diff

This section explains how to diff two design elements or two cartridges.
Designer supports the following diff operations.

Comparing Two Nodes in the Cartridge
Comparing Two Cartridges

See Also:

Differencing View
Differences Pane
Exporting as HTML
Cartridge Publisher
Cartridge Read-Only Mode
Verify Integrity

Comparing Two Nodes in the Cartridge

Designer provides support for comparing two nodes in the cartridge. The only
restriction is that the two nodes should be of the same type. For instance it does not
make sense to compare FIX message’s field structure with that of SWIFT.

 Select two nodes in the explorer (exactly two).

 Right click and select ‘Diff’ from the context menu.

 The first selected node and its children are compared with the second and the

Diff view is displayed as a separate frame.

See Also:

Comparing Two Cartridges
Differencing View
Differences Pane
Exporting as HTML
Diff

Comparing Two Cartridges

Designer also provides support for comparing two cartridges. The active (currently
opened) cartridge can be one of the two cartridges that are compared.

 From the Tools menu select ‘Diff Cartridges’ menu item.

 Select the first and the second cartridge files. You can also choose to use the

active cartridge (the one that is open or selected in the explorer) as either the
first or the second cartridge.

 Click OK. The two cartridges are compared and the diff view is displayed in a
separate frame

An interesting use of Differencing is in upgrading messages in the cartridge. For
example, if a cartridge uses FIX4.1 message and the user wants to upgrade it to the
next version (4.2), this process can be made easier by comparing them and pointing
out the differences (field deleted etc). This will be particularly useful in case of
internal message upgrades (when EIM changes).

See Also:

Comparing Two Nodes in the Cartridge
Differencing View
Differences Pane
Exporting as HTML
Diff

Differencing View

 The diff view is a tri-pane with the bottom pane displaying the list of differences.

 The top left pane represents the first node/cartridge and the top right pane

represents the second.

 Initially the Explorer View of the first and second entities is displayed. Double
clicking a node opens a new tab, with the detail view of the selected node
displayed (next to each other). Number of such detail views can be opened in
tabs.

 To close a detail view tab, right click on the tab and select close (or Close All).
This does not work for explorer tab (for obvious reasons).

 Clicking on a node in one of the explorer view will result in synchronizing the
other explorer view (the corresponding node is selected). This synchronization
also works for fields in the Detail views.

See Also:

Comparing Two Nodes in the Cartridge
Comparing Two Cartridges

Differences Pane
Exporting as HTML
Diff

Differences Pane

It is the bottom pane that displays the list of differences.

 When you are viewing the explorer, the differences are grouped based on the

node as shown as tree. Use the context menu to expand / collapse the tree.

 Clicking on a node/location (hyper link) will take you to that location. If required

it may open a ‘Detail View comparison’ in a new tab.

 The property column indicates the property that has changed. If the node or the
field itself has been deleted or added this column will be empty.

See Also:

Comparing Two Nodes in the Cartridge
Comparing Two Cartridges
Differencing View
Exporting as HTML
Diff

Exporting as HTML

The ‘Export As HTML’ feature of the Diff List Table (bottom pane) can be used to
generate HTML reports.

Follow the steps given below to generate HTML report:

 Expand all the nodes in the Diff list by selecting ‘Expand All’ from the context

menu.

 Right click and select ‘View As HTML’.

The generated HTML report appears as follows.

Colors and Icon

Color Icon Explanation
Red Node or field deleted from the first
Green Node or field added to the second
Blue Property of a node or field has been modified

Tool Tip

Taking the mouse over the ‘Diff Icon’ at a location will popup a tool tip that shows
the differences at the location. This tool tip is also displayed in ‘Difference’ column of
the Diff List (bottom pane).

We have used Microsoft Word’s ‘Compare Documents’ and ‘Track changes’
convention to display the differences. The old value is struck out (in red) and the
new value is underlined (in green).

See Also:

Comparing Two Nodes in the Cartridge
Comparing Two Cartridges
Differencing View
Differences Pane
Diff

Cartridge Publisher

The ‘Cartridge Publisher’ tool is used to generate HTML docs for the cartridge and its
child design elements into the specified directory.

The docs are generated as multiple files with an index.html and an explorer as
shown below.

The explorer displays the contents of a cartridge in the form of a tree structure just
like the Explorer window in Designer. The icon represents an expandable node
with child items and you can click on it to expand the node. Likewise, the icon
represents an already expanded node and you can click on it to collapse the node.
Clicking on the hyperlink of a node loads the corresponding details page on the left
window.

In case of design elements with simple properties, the details page displays those
properties as shown below.

In case of design elements for which a list of items needs to be displayed, the details
page displays a summary table listing all the items involved and separate details
table for each of those items. Each item displayed in the summary table is provided
with a link and the user can click on it to view the details table of the item. It should
be noted that the item properties displayed in these tables are configurable.

A sample summary table of an ‘Internal Format’ details page is shown below. The
fields and sections of the internal format are listed in this table. The user can click on
the hyperlink provided in the right-most column or the ‘Name’ column to move to the
details page of the corresponding field. The user can also click on the folder icon
displayed next to the section name to expand/collapse it.

A sample details table of an ‘Internal Format’ details page is shown below. It is the
details table corresponding to the ‘quantity’ field. It lists the field properties that
have been chosen for the HTML report. It also contains links to parent section of the
field and the validation rule applied for that field. The user can click on these links to
view the details table of those items. In general hyperlinks are provided wherever it
makes sense.

See Also:

Generating HTML Reports
Cartridge Publisher Settings
Working With Cartridge Designer

Generating HTML Reports

Follow the steps given below to generate HTML docs for the current cartridge:

1. Change the ‘Cartridge Publisher’ settings, if required.

2. From the Tool’s menu, select ‘Cartridge Publisher’ menu item.

3. The ‘Cartridge Publisher’ dialog will be displayed.

4. In the ‘Destination Directory’ text box, enter the directory in which the docs
(HTML files) should be generated.

5. Alternatively you can click on the ellipsis button next to the text box to bring up

the ‘File Open’ dialog and select the directory.

6. Select the ‘Open generated documentation in browser’ check box, to immediately

open HTML docs after generation.

7. Click OK to start generation of HTML docs.

See Also:

Cartridge Publisher Settings

Cartridge Publisher Settings

The ‘Configure HTML Reports’ dialog displayed when selecting the Tools > ‘Cartridge
Publisher Settings’ menu item allows the user to configure HTML docs generation. In
particular, it allows the user to select the design element properties to be included in
the generated HTML docs. The ‘Configure HTML Reports’ dialog is shown below.

The list box on the right side of the dialog box lists the different types of design
element items that can be configured. On selecting a design element item from this
list, the current configuration for the selected design element appears on the left side
of the dialog box.

In case of design elements with simple properties, the corresponding page displays
those properties in the details table of that design element. Examples of this type of
design elements include Cartridge, Internal/External Message, and so on.
Configuration of these design elements involves properties to be included for the
details table as shown in the following picture.

In case of design elements for which a list of items needs to be displayed, the
corresponding page displays a summary table listing all the items involved and
separate details table for each of those items. Examples of this type of design
elements include ‘Internal Format’ of internal messages, ‘External Format’ of external
messages of all type, and so on. Configuration of these design elements involves
properties to be included for the summary table and details table as shown in the
following picture.

Adding Properties to the Generated Report

The user can specify a design element property to appear in the generated report by
following the steps given below.

1. In the ‘Available’ list of the summary/details table, select the properties that

should appear in the generated report.

Use SHIFT-click to select a set of continuous properties and CTRL-click to select
any non-continuous properties without affecting the current selection.

2. Click on the ‘Add’ button.

The selected properties will be moved from the ‘Available’ list of the
summary/details table to the ‘Added’ list and these properties will be included in
the generated report.

Removing Properties from Generated Report

The user can specify a design element property not to appear in the generated report
by following the steps given below.

1. In the ‘Added’ list of the summary/details table, select the properties that should

not appear in the generated report.

Use SHIFT-click to select a set of continuous properties and CTRL-click to select
any non-continuous properties without affecting the current selection.

2. Click on the ‘Remove’ button.

The selected properties will be moved from the ‘Added’ list of the
summary/details table to the ‘Available’ list and they will be excluded in the
generated report.

Arranging Properties of the Generated Report

The user can specify the position of the design element properties in the generated
report by following the steps given below.

1. In the ‘Added’ list of the summary/details table, select the properties to be

repositioned.

Use SHIFT-click to select a set of continuous properties and CTRL-click to select
any non-continuous properties without affecting the current selection.

2. Click on the Up icon to move the selected items up by one position or the

Down icon to move the selected items down by one position.

In the generated report, the design element properties will be shown in the
specified order.

See Also:

Generating HTML Reports

Cartridge Read-Only Mode

Designer provides support for viewing cartridge in read-only mode. When a cartridge
is opened in the read-only mode, in all the UI (detail view), the fields are made
non-editable, so that the user is not allowed to make changes to it.

As can be seen in the following picture, the read only nodes are shown with a lock
icon overlaid on top of the node icons. The lock indicates that it cannot be modified.

See Also:

Working With Cartridge Designer

Verify Integrity

This feature (is implemented based on) leverages the following new features.

1. Tracing messages in cartridge to standard

2. Differencing

To verify the integrity of a message or messages in the cartridge,

1. Right click the cartridge node or a message node (internal/external) in the

explorer.

2. From the context menu select ‘Verify Integrity’. The integrity of all the messages

under the selected node is verified and the integrity violations are displayed in
the diff view (separate frame).

How it works?

1. For each internal/external message node under the selected node it tries to load

the corresponding standard message from the message catalog. If the message
node is not based on a standard or if the standard message could not be loaded,
a violation is reported (to make sure that the user knows about this). Note that in
case of internal messages, it does at present pick up the standard (EIM) from the
Repository.

2. The message in the cartridge is compared with the standard message (using the

differencing feature). The list of differences is filtered and changes that are
allowed are removed from the list (for instance, in case of FIX it is OK to add user
defined fields, as long as the tag is greater than 5000).

3. A virtual tree of all the standard messages used is constructed. In the diff view

this tree is the reference (left view) against which the messages in the cartridge
(right view) are compared.

4. The integrity violations are displayed in the bottom pane.

See Also:

Diff
Working With Cartridge Designer

Export/Import a Design Element

Designer provides for exporting/importing a design element in different formats such
as XML, HTML, DTD, etc. depending on its type. While the XML and HTML formats are
supported for all types of design elements, the other formats are supported only for
specific types of design elements. Please note that the HTML format is supported
only to export design elements.

Unlike the validation operation, an export/import operation invoked on a design
element automatically includes its child elements. For example, the export operation

invoked on an input format not only exports the input format design element but
also its External Format, Validation Rules and Mapping Rules child elements.

See Also:

Exporting a Design Element
Importing a Design Element
Copy/Paste
Cartridge Publisher

Exporting a Design Element

The export operation saves the definition of the selected design element in the
specified format.

Follow the steps given below to export the definition of a design element into a file.

1. In the Explorer pane, select the design element to be exported.

2. Invoke the Export command either from the Edit menu or from the popup

menu of that design element. The shortcut key Ctrl+Shift+E can also be used to
invoke the Export command.

The Export dialog box is shown.

3. Select the destination directory and type-in the target file name in the File Name
text box.

4. Select the required format from the Files of Type drop-down list box.

5. If the exported file needs be opened immediately after its creation, select the

Open Exported File check box.

6. Click on the Save button to start the export operation.

Alternatively you can select the required format and click on the Export to
Clipboard button to export the design element to the clipboard, ready for pasting
elsewhere.

See Also:

Importing a Design Element
Export/Import a Design Element
Copy/Paste

Importing a Design Element

The import operation recreates a design element based on its definition found in the
import file. Note that the import operation replaces the definition of the current
design element with the imported design element. This means that the current
definition of the design element is lost when the import operation is completed.

Follow the steps given below to import the design element definition found in a file
(usually a previously exported file).

1. In the Explorer pane, select the design element into which the design element

definition needs to be imported. Note that the type of the selected design
element should match the type of design element definition found in the file.

2. Select the Import command either from the Edit menu or from the popup

menu of the selected design element. The shortcut key Ctrl+Shift+I can also be
used for invoking the import operation.

The Import dialog box is shown.

3. Select the type of file to be imported from the Files of Type drop down list box.

4. Navigate to the directory that contains the file to be imported and select the

required file. Now the file name appears in the File Name text box.

5. Click on the Open button to start the import operation.

Note

The user needs to save the cartridge to permanently save the imported design
element definition.

See Also:

Exporting a Design Element
Export/Import a Design Element
Copy/Paste

Copy/Paste

Designer provides an easy way for creating copies of design elements and fields
through the platform independent copy/paste feature. When the copy operation is
invoked on a design element or on a field, its definition is exported in XML format
and copied into the clipboard as pure text. This makes the copy/paste operation
platform independent.

See Also:

Copy/Paste a Design Element
Copy/Paste Fields
Export/Import a Design Element

Copy/Paste a Design Element

Designer allows copying a design element and pasting it into another design
element. When the paste operation is invoked on a design element other than
cartridge and Folder nodes, it replaces the definition of the current design element
with the imported design element. When the paste operation is invoked on a
cartridge or Folder design element, it creates a new copy of the design element.

Copy a Design Element

Given below are the steps for creating a copy of a design element.

1. Select the design element in the Explorer window.

2. Select the Edit > Copy (Ctrl-C) menu item.

This copies the definition of the design element including its child design elements to
the clipboard, ready for pasting elsewhere.

Paste a Design Element

When the paste operation is invoked on a design element other than cartridge and
Folder nodes, the definition of the copied design element in XML format is imported
into it. Note that the paste operation replaces the definition of the current design
element with the imported design element. This means that the current definition of
the design element is lost when the paste operation is completed.

When the paste operation is invoked on a cartridge or Folder design element, it
creates a new copy of the design element.

Given below are the steps for pasting a design element whose definition in the form
of XML format is already copied into the clipboard. See the sections Copy a Design
Element and Exporting a Design Element for copying a design element definition to
the clipboard.

1. In the Explorer pane, select the cartridge design element or the internal message

design element into which the copied element needs to be pasted. Make sure that
the selected design element is the same type as that of the copied design
element. Otherwise, a Paste Error dialog will be shown to indicate the error.

2. Select the Edit > Paste (Ctrl-V) menu item to complete the paste operation.

See Also:

Copy/Paste Fields
Copy/Paste
Export/Import a Design Element

Copy/Paste Fields

Designer allows copy/paste of fields between message formats of the same type as
well as between message formats of different types. When you copy/paste fields
between message formats of same type, all of the field properties are copied
properly. On the other hand when you copy/paste fields between message formats of
different type, only the information that is common to all formats is copied.

Copy Fields

Given below are the steps for creating a copy of fields. It should be noted that
copying a section includes its constituent fields.

1. Select the internal/external message design element in the Explorer window.

2. In the message format UI, select the field(s) to be copied.

3. Select the Copy (Ctrl-C) menu item from the short-cut menu that is displayed

when you right-click the mouse.

Paste Fields

Designer allows pasting of fields in the form of XML and CSV.

Paste Fields in the Form of XML

Given below are the steps for pasting the fields, which were copied as given in the
Copy Fields section.

1. Select the internal/external message design element in the Explorer window.

2. In the message format UI, select the field after which you want to paste the

copied fields.

3. Select the Paste (Ctrl-V) menu item from the short-cut menu to complete the

operation.

Paste Fields in the Form of CSV

To paste fields in the form of CSV, the fields must be specified as shown in the
following example.

InvoiceDate,DateTime

ClientID,String

ItemID,String

Qty,Integer

Price,Double

The following points should be noted in the above CSV:

 Here, each line represents a field.

 On each line, the first value represents the name of the field and the second

value represents the Designer type of that field.

 The field name and field type values are separated by a comma

Once you prepare the fields in the form of CSV as shown above, you can copy it and
paste it in the internal/external format UI to create fields.

See Also:

Copy/Paste a Design Element
Copy/Paste
Export/Import a Design Element

Copy Name/Qualified Name

Consider the following table.

Right clicking from a field or section displays the sub menu items Name and
Qualified Name under the menu ‘Copy’.

While Name menu item copies the name of the selected field/section, the Qualified
Name menu item copies the name with its qualified path. For e.g. for the sub field
‘Qty’, the copied name is “Qty” when copied using ‘Name’ menu item and the copied
name is “Item.Qty” when copied using ‘Qualified Name’ menu item.

See Also:

Copy/Paste a Design Element
Copy/Paste Fields

Validating Design Elements

The Validate command can be invoked on a design element either using the
Build > Validate menu item or from its popup menu. The validation operation
invoked on a design element validates only that design element; it does not validate
its child elements, if any. For example, the validation operation invoked on an
external message design element does not validate its External Format, and
Validation Rules child elements.

Note

Selecting the Build > Validate All menu item validates the entire cartridge. It
invokes the validation operation on all design elements of the cartridge.

The following table lists the validations carried out on each type of design element.

Design
Element

Validations

Cartridge Verifies whether the names of design elements defined in a
cartridge are unique.

Internal
Message

Verifies the following:

1. whether its transformation name conforms to the
identifier rules such as the identifier not using the space
character, not starting with a numeric character and so
on.

2. whether the internal message name is unique.

Internal Format Verifies whether the default values specified for normalized
fields are valid.

Processing
Rules

The following validations are carried out for processing rules:

1. whether the data type of the specified formula matches
with the data type of the field.

2. whether the fields used in the processing formula are
accessible.

3. whether only one of a processing class or a processing
formula is specified for an internal message field.

Validations specified for the Validation Rules element are also
carried out.

External
Message

Verifies the following:

1. whether its transformation name conforms to the
identifier rules such as the identifier not using the space
character, not starting with a numeric character and so

on.

2. whether the message name is unique.

External
Format

Validations are specific to the message standard used.

The fields of the external format are validated.

A data field validation includes the following:

1. whether the specified default value is valid (default value
data type conforms to the field type).

A section validation includes the following:

1. whether the min occurs value is not larger than the max
occurs value.

2. whether the constituent field names are unique.

Validation
Rules

Verifies the following:

1. whether rule names are specified for all validation rules.

2. whether a custom class reference is provided for a
Custom Class validation rule.

3. whether a formula is specified for a Formula validation
rule.

4. whether the specified ‘Applies To’ field is a valid field
found in the corresponding data format.

5. whether the fields used in a formula are accessible.

6. whether the action message is a string value.

Mapping Rules Verifies whether the mapping between a source field and a
target field is acceptable. For example, one-to-one mapping
between a top-level field and a nested field in a repeating
section is unacceptable.

Resources Verifies the following:

1. Whether constituent Resource names are unique.

1. Whether the Resource name is valid. For example,
Resource names having ‘.’ Character is invalid.

3. Whether Value specified for all Resources.

Function
Definition

Verifies the following:

1. whether function name confirms to identifier rules (no
spaces, should not start with numeric values, etc.)

2. whether code specified for function, when function is
implemented using ‘formula code’

3. whether formula code contains error

4. whether there is any return type mismatch

5. whether ‘Native Function’ reference specified when
function is implemented using ‘Platform Specific Code’.

See Also:

Validating a Cartridge
Working With Cartridge Designer

Find Usage

The user can use this feature to find the usages of a design element defined in a
cartridge. For e.g. if an external format has been defined in cartridge he can use this
feature to find if this message has been used elsewhere in the cartridge (i.e.) in
mapping, message flows etc.

1. Right click the design element for which you want to find the usage. Select ‘Find

Usage’ menu item.

In the above figure ‘Find Usage’ is done for external message ‘MT543Message’.

2. If there are any usages for the element they will be listed in the search results

window.

The external message has been used in mapping and message flow. This is listed
in the search results windows. Clicking on the link in the window will navigate to
the item where the external message has been used.

See Also:

Search Results Window

Find

The user can search for an item of interest in a design element based on the text
contained in it. Designer provides the search feature through its Find , Find Next

 and Find in Path commands. For example, within an internal message format,
the user can search for fields/sections containing the text ‘Time’ as part of its name
or description. This search operation will find fields with names such as ‘DateofBirth’,
‘JoinDate’, ‘SalaryDate’ and so on.

See Also:

Find in UI
Find in Path
Incremental Search
Navigation Features

Find in UI

Follow the steps given below to search for fields/sections of an internal message
format whose names contain the text ‘Date’.

1. Select the Internal Format design element in the explorer pane.

2. Select the Search > Find (Ctrl-F) menu item.

The Find dialog box is shown.

3. In the Find What text box type the search text ‘Date’.

4. Specify other search parameters as required.

 Select the Match Case check box in the Search Criteria section to find only
the text that has the same pattern of upper and lower case as the text
specified in the Find What text box.

 Select the Match Word check box in the Search Criteria section to search

for occurrences that are whole words and not part of a larger word.

 Specify the direction to search starting from the current field/section by

selecting either the Up or Down radio button in the Direction section.

 Select the Name check box in the Search In section to search the names of

fields/sections.

 Select the Description check box in the Search In section to search the
descriptions of fields/sections.

 Select the Optional Fields check box in the Ignore section to ignore

optional fields/sections from the search operation.

 Select the Disabled Fields check box in the Ignore section to ignore

disabled fields/sections form the search operation.

 Select the Search Collapsed Fields check box so that the collapsed fields

are also taken into account in the search operation.

5. Click on the OK button to start the search operation.

Find Next

Use the Search > Find Next (F3) menu item to resume the search operation. The
search text that was last entered is again searched for. The search settings that were
specified earlier are again used in the search process.

See Also:

Find in Path
Find

Find in Path

While the Find and Find Next commands allow the user to search for matching
items one by one in a particular node, the Find in Path command can be used to list
matching items of all nodes in the Find auxiliary window that appears at the bottom
of Designer.

Follow the steps given below to search in the entire cartridge for items whose name
or description contains the text ‘date’.

1. Select the Search > Find in Path menu item.

The Find dialog box is shown.

2. In the Find What text box type the search text ‘date’.

3. Select the ‘Whole Project’ option in the Scope section to search for the given text

in all nodes of the cartridge.

The ‘Selected element and children’ option searches for the given text in the
currently selected node and its children. For example, if an input format node is
currently selected, the search is carried out in the output format node and its
child nodes such as external format node, validation rules node and mapping
rules node.

The ‘Selected element only’ option searches for the given text only in the
currently selected node. For example, if an input format node is currently
selected, the search is carried out only in the output format node. Its child nodes
are not included in the search.

4. Specify other search parameters as required.

 Select the Match Case check box in the Search Options section to find only
the text that has the same pattern of upper and lower case as the text
specified in the Find What text box.

 Select the Match Word check box in the Search Options section to search

for occurrences that are whole words and not part of a larger word.

 Select the Regular Expression check box in the Search Options section to

search for occurrences based on the regular expression specified in the
‘Find What’ text box.

 Select the Optional Fields check box in the Ignore section to ignore

optional fields/sections from the search operation.

 Select the Disabled Fields check box in the Ignore section to ignore

disabled fields/sections form the search operation.

 Select the Name check box in the Search In section to search the names of

items.

 Select the Description check box in the Search In section to search the

descriptions of items.

 Select the Alias Name check box in the Search In section to search the alias

names of fields/sections.

 Select the Comment check box in the Search In section to search the

comments entered for items.

 Select the Formula check box in the Search Also In section to search within

formula entered for mapping rules, validation rules, processing rules.

 Select the Tag check box in the Search Also In section to search within field

tag values in formats such as FIX.

 Select the Default Value check box in the Search Also In section to search

the default value entered for fields.

 The Others option in the Search Also In section searches for other

attributes of an item that depends on the current node.

 For example, in case of the events management node, the search is done in

the event handler class name and event handler properties.

5. Click on the OK button to start the search operation.

The items that match the criteria are listed in the Search Results auxiliary
window shown below.

 Here, the Node column displays the name of the design element node.

 The Location column displays the name of the matched item.

 The Property column displays the matched attribute of the item.

 The Value column displays the matched text.

As can be seen in the above picture moving the mouse pointer over the node name
displays an hyperlink that takes the user to the corresponding item.

See Also:

Find in UI
Find

Incremental Search

In Designer and Simulator, the user can quickly search for occurrences of text in
items like text area elements, tables and formula editor by following the steps given
below.

1. Select the item to be searched by clicking in it.

In case of a table, select the column to be searched by clicking a value in that
column.

Select the Search > Incremental Search menu item or press the shortcut key
CTRL+I (press CTRL+Shift+I for case sensitive search).

2. Type in the search text in the ‘Search for:’ popup as shown in the following

picture.

3. The matching text will be highlighted. If there is no match, the search text will

turn red as in .

4. Press the Up and Down arrow keys to move to other matching occurrences of

text, if any.

See Also:

Find in UI
Find in Path
Working With Cartridge Designer

Drag and Drop

Designer provides an easy way for opening cartridge and data files by supporting the
drag and drop feature.

Drag and Drop a Cartridge File

The user can open a cartridge by dragging and dropping a cartridge file (with the
.car extension) into the title bar of the main window of Designer. If the dropped file
is not a cartridge file, it displays the message dialog indicating the error.

Drag and Drop a Data File

The user can open a data file by dragging and dropping it into the title bar of
Simulator or the text area of the input pane.

See Also:

Working With Cartridge Designer

Version Support

Designer provides version support through its design elements. Both core design
elements (such as cartridge) and design elements supported by plug-ins (such as
external message node) contain version information. When a cartridge is saved, the
design elements of that cartridge are stored along with their version information. To
successfully open a cartridge file, the version of Designer and its plug-ins should not
be earlier than their corresponding design elements stored in that file.

To find out the version of Designer and its plug-ins, select the Help > Version Info
menu item. It displays the Version Info dialog, which contains the version
information.

To find out the version of a design element of a cartridge, just click on the
Version Info button in the design element UI of the corresponding design element.

Follow the steps given below to find out the version of an external message.

1. Select the external message node in the Explorer pane.

The External Message UI appears in the Design Element UI pane as shown below.

2. Click on the Version Info button at the bottom of the External Message UI.

The Version Info dialog for the selected input format is displayed as shown
below.

Here, the version of the input format design element stored in the cartridge file
is 1.0.0 and the version of the XML Format Plug-in installed with Designer is
1.6.0.

Note

In the above example, the version of the XML Format Plug-in is later than the
version of the input format design element stored in the cartridge file. If the user
chooses to save this cartridge, the XML input format currently opened in Designer
will be saved with the latest XML Format Plug-in. So the version of XML input format
design element would also be changed from 1.0.0 to 1.6.0.

See Also:

Working With Cartridge Designer

