BEA eLink Adapter
Development Kit

User Guide

BEA eLink Adapter Development Kit Version 1.1
Document Edition 1.1
April 2000

Copyright
Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA
Systems License Agreement and may be used or copied only in accordance with the terms of that
agreement. It is against the law to copy the software except as specifically allowed in the agreement. This
document may not, in whole or in part, be copied photocopied, reproduced, translated, or reduced to any
electronic medium or machine readable form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA
Systems License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted
Rights Clause at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013, subparagraph (d) of the Commercial Computer
Software--Licensing clause at NASA FAR supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on
the part of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS"
WITHOUT WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY

WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER,

BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS
REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN
MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder,
BEA Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, and
WebLogic Enterprise are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

BEA el ink Adapter Development Kit

Document Edition Part Number Date Software Version

11 Not Applicable April 2000 BEA eLink Adapter Development Kit
Version 1.1

1.0 Not Applicable January 2000 BEA eLink Adapter Development Kit

Version 1.0

Contents

About This Document

What Y OU NEEd 10 KNOWc.ociiiiiiieiiseieeeete ettt st sttt X
E-UOCSWED SHE... ettt st e st et et eae e X
HOW t0 Print the DOCUMENT..........cee ittt e st ereere e X
CONLBCE USH ...t s st s st st et ebeen e eae e aeanes Xi
Documentation CONVENLIONScocecueiiecieie e e st sreerae st enee s Xii
1. Understanding The BEA eLink System
BEA €eLink SOlUtion OVEIVIEWccecieeeeiiieceectie ettt 1-1
BEA eLink Adapter OVEIVIEWceiiiieuiieirenie et seesee s 1-3
BEA eLink Adapter Development Kit OVEIVIEWccccevereeneeiieneneeeeinenee 1-5
BEA eLink Platform ArchiteCtUre..........coooveeci et 1-6
2. Understanding the BEA eLink Platform

ATMI RUNLIME SEIVICES......ociiieceecee ettt st et 2-2
Y R T TSRS 2-4

FIML BUFFEES.... ittt s st st een e e en e e 2-4

Mapping Field Namesto Field ldentifiers ... iineie e 2-5

Creating Field NamMES........coooiiie e e 2-6

UAS2 ClIBNL ...ttt e e e s e e e sr e e saesreebaesreenne s 2-6

FIML32 PHIMITIVEScoo ettt sttt et s 2-7
ELINK COMMANGS.......cce ittt st st st a e st n e et e e 2-8

Commonly Used Tuxedo COmMMaNdS.........cccereerererierneeuinierieee e 2-8

Commonly Used tmadmin Commands..........cccceeeeeieeneeceeneesneesresiee e 2-9
Hardware Requirements for the eLink Platformccccociiie i vnnccene, 2-10
Special Instructions for Installing the Tuxedo Core...........coccoveevenrcieinncnnns 2-10
Preparing the License File.........co e e 2-11

BEA eLink Adapter Development Kit User Guide i

About the Tuxedo Simple AppliCation..........ccooeoeerereie e 2-11

Setting Environment Variables..........ccooveiiiiiineiee e 2-12
Configuring the Simple Applicationcoooeiiiiie e 2-13
Building the Client and Server for the Simple Applicationc......... 2-14

For UNIX Operating SyStemS.......ccceeeverene e e 2-14

For Windows NT Operating SyStemscccevvveeirerneresesenese e 2-14
Booting the Simple APPliCatioNcoeiriiiee e 2-14
Shutting Down the Simple AppliCation..........cccooiireie e 2-15

3. Understanding Adapter Architecture and Design

eLink Adapter ArchiteCture OVEIVIEWcooeiucieriieeecie e 31
The Server MOTUIE..........coiiie et 32
The Configuration Processing Module............ccoeieinininie e 3-3
Adapter Design PSeudo COE........coueoeirreenieie e e e 3-3
The TPSV CINFO SITUCUIE ..ottt ettt esier e 3-7

Application to eLink AdBPLErSooueiiieeee et e 3-7

eLink to Application AJAPLESc.ooueieiiee e e e 39

eLink Adapter Configuration.ocoeeeereneeiee e e e 3-10
Standards for Adding an eLink Adapter to the UBBCONFIG File......... 311
Sample UBBCONFIG Fil€.......ccoouiriiinireciieneserreicrnesiee e 3-12
eLink Adapter Configuration Files............ccooeeirenieieiinciee e 3-13
Structure of the eLink Adapter Configuration File..........ccccoceiiiieeinaens 3-13

The SERVER SECHONcviutiiirecteie sttt s e 3-14
The SERVICE SECHON. ..ottt s 3-15
The FIELDMAP SECHON.......cuiuceiiireeeetce et s 3-15
Sample Adapter Configuration File...........coooeiriiieieiencice e 3-17
API to Parse and Store Configuration Data...........ccccceevevveiececie e, 3-18
API to Parse the Configuration File.........cccooveieiieie e, 3-18
API to Store the Configuration Data.............cccccveveviniececie e, 3-19

S g0 o =0 1o | gV TR 3-19
BUSINESS LEVE EXCEPLIONS......ocviieiiiiieiie ettt 3-20
Infrastructure Level EXCEPLIONScocooiiiiire it 3-20
MESSAGE CatAlOQ. ... ecuveeeeeeiieeieiee sttt e steereeste et ere e sre e e e e e e e e e 3-22

API to Access the Message Catalog Fileccooveveiiecevieiieiecs 3-22
B I o 11 RSO 3-23

BEA el ink Adapter Development Kit User Guide

R ETo N Y/ E TR 3-23

Tracing FUNCtioNS @and MaCr0S........cccooieeeierine e e 3-24
Deployment and Installation of eLink Adaptersccocvveee e veeiee e, 3-25
Installation Directory Structure for COmponents.........ccoceeeeeiereereeeeneenne 3-26
Naming Convention for Source and Executable Files..........ccccoeeieennee. 3-27
Installing theeL ink ADK and Sample Adapters
What is Included in the eLink ADKcooiiiiiiiniieiee e 4-1
Include Files and Libraries. e 4-2
The Sample Application to eLink Adapter ..o rireieieveneee e 4-3
The Sample eLink to Application Adaptercooeveveieienencnee e 4-4
The Sample E-Mail Adaper ..o 4-5
Installing the eLink Adapter Development Kitcccoooevinininieie e, 4-7
Installing on the Windows NT Platformccocovnieiie e 4-7
Installing on the HP-UX, AlX, Solaris, and Compag TRU64 UNIX
PLELFOMMIS ... 4-16

Configuring and Running the Sample Adapters

Demo PrerequisiteS fOor UNIX ... e 51
The Sample Application to eLink Adapter..........ccooeeeirinienie e 5-2
Configuring the Sample Application to eLink Adaptercccccceeeveeruenne 5-3
Building and Running the Sample Application to eLink Adapter 5-4
The Sample eLink to Application Adapter...........cocooeeerineee e 5-5
Configuring the Sample eLink to Application Adapterccccoeeevennenee 5-5
Building and Running the Sample eLink to Application Adapter 5-5
The Sample E-Mail AdaDer.......coo v 5-6
Invoking the Sample E-Mail Adaptercocoooeieieie e 5-7
Configuring the Sample E-Mail Adapterocoooeeeiiniieececree e 5-8
Building and Running the Sample E-Mail Adaptercooeeeiinriennnnen 5-8

. eLink Adapter Development Kit References

Configuration Processing APl ... e A-1
ELA_OPENTAGFII€... .ot et e A-2
ELA _ClOSETAGFII© ... ettt e A-3
ELA_CloSETagHANAI.eiieieeie e A-4
ELA _GELFIrStSECION.....ccveeceicteece et s A-5

BEA eLink Adapter Development Kit User Guide %

ELA _GEINEXISECHION ...ttt ettt A-6

ELA_GEtFirStPrOPEITY ...cce ettt e e A-7
ELA_GEINEXIPIOPEITYottt e e e A-8
ELA_GEtPropertyValUe........c.coe i e A-9
ELA_GEtFIE M. oo ettt e e e A-11
ELA _GEFIrStFIEd... .o A-12
ELA _GEINEXIFIEIcceecee e e e A-13
Hash Tahl@ AP ... e e e e A-14
ELA_INItHAShTADI €. e A-14
ELA_DestHashTablecccoiiiiie e e A-15
LA ULt e A-15
ELA QB e A-16
ELA _N@Sh....ei e A-17
Utility Functionsand MaCroS..........ccoveiieiinieseinie et ee e e A-18
L AN o= (01 VPSR RURRP A-18
ELA _ChKELINKLIC. ... et ettt ittt sttt e A-19
ELA _CloSeCatal OgFilE....ccueeveeeieeeeceeeeecte et A-19
eLA_GetConfigFilENaMEcccieie e e A-20
ELA_NEXAUMP ...ccv ittt e e A-21
(=10 2N Lo o RSN A-22
ELA_OpenCatalOgFile.........coueii i e e A-22
ELA_SetServerMsSgLEVE! ... A-23
ELACATENTRY ..ottt ettt s e e s A-24
ELATFTRAGCE ... ettt ettt e e e e A-24
ELATRACE ...ttt et e e e s e A-25
Definitions and TYPEAESS........cuv e A-25
B. ATMI References
Client Membershipc..coeeieee e e B-2
L1011 4 ST RRT B-2
L1011 £ O PP R PTUP PP UPPPRRRTIN B-5
BUFfer Managementoeoie e e e s B-5
EPAITOC et e e e e enes B-5
EPFEAIIOC ...t e e e ene s B-7
L1011 (=TSSR B-8

Vi BEA el ink Adapter Development Kit User Guide

REQUESE/RESPDONSE. ... ce et seee e ettt et ettt st seesbenbeseeseeneeneese s e anesbesresneas B-9
11077 || SRR B-9
L7 o= | USSR B-13
L1070 < 11 o Y TSRS PPT SRR B-16
EPCANCE ...ttt ettt e n e B-19

Service Entry and REIUMN........ooueiiie e e e B-20
L1071 o OSSPSR PSSR B-20
L1017 (0 (0] 0 1= TR B-21
L0 LU 1 0 USSR U SRRSO B-22

Dynamic AdVErtISEMENL........cceceiie e et et st et B-25
TPAAVEITISE ..ot ettt e e B-25
EPUNBAVEITISE ...t ettt st e ne e B-26

. FML32 API

Fadd, FaOU32........coieiee et e e e e C-2

FChG, FCNQ 32 .. e e C-3

FRIN, FIINAS2.....ccoiiee e e C-4

FOEL, FOEISZ....cee ettt ettt e e e C-6

Fielded, FIelded32ccooi i e Cc-7

FINit, FINIT32 ..ot C-7

FIAid, FIAIA32ocoeeeeee s C-8

Fneeded, FNeeded32.........coo it e C-9

FSIZEOF, FSIZEOF32......oceie e e e e C-10

Example of a Server that USeS FML32ooiiiiiiiiiiiee e C-10

. Tuxedo Commands

{10 T] o (o3 1= o | TSR D-1
DUITASEIVEL ... e rr e st s r et steerbeare e D-4
LUL A= | 1T o SRS D-8
L1041 70 T | TSSOSO D-15
1104107 o [1RSSR D-20
L1455 101 (011 o ST TSRR D-22
Ud, Ud32, WU, WUAB2ooiiieeeee et srenees D-26

BEA eLink Adapter Development Kit User Guide Vii

E. Servopts

F. Error Messages

Source Module adKIOG.C.......coveuiieieie et e e F-1

Source Module CFOfNS.C....ueereece e e s F-2

Source Module ChKEIINKITIC.Cveuiieicicre e F-2
Glossary

viii BEA el ink Adapter Development Kit User Guide

About This Document

This document explains what the eLink Adapter Development Kit is and describes
how to useit for designing adaptersto third-party enterprise applications such as ERP,
CRM, and Supply Chain Management.

This document covers the following topics:

Chapter 1, “Understanding The BEA eLink System firief description of the
BEA eLink system.

Chapter 2, “Understanding the BEA eLink Platforra,brief description of the
BEA eLink platform.

Chapter 3, “Understanding Adapter Architecture and Desigrief description
of adapter architecture and design.

Chapter 4, “Installing the eLink ADK and Sample Adaptessdescription of
what is included in the eLink Adapter Development Kit and how to install it.

Chapter 5, “Configuring and Running the Sample Adaptersléscription of
how to configure and run the sample adapters.

Appendix A, “eLink Adapter Development Kit Referencea,tlescription of
eLink Adapter configuration processing API, hash table API, utility functions
and macros, and definitions and typedefs.

Appendix B, “ATMI References,& description of commonly used Tuxedo
ATMI functions for the eLink Adapter Development Kit.

Appendix C, “FML32 API,”a description of commonly used Tuxedo FML32
API functions for the eLink Adapter Development Kit.

Appendix D, “Tuxedo Commandsd description of some of the commonly used
Tuxedo commands for the eLink Adapter Development Kit.

Appendix E, “Servopts,a description of the Tuxedo servopts function.

BEA eLink Adapter Development Kit User Guide iX

m Appendix F, “Error Messagesd description of eLink Adapter Development Kit
error messages and recommended actions.

m Glossary

What You Need to Know

This document is intended mainly for Application Programmers who will configure
and set up the BEA eLink Adapter Development Kit and eLink services to create
software components called adapters, which are used to integrate third-party
applications to the eLink system. It is assumed that the programmer has experience
with the C language. Experience with BEA Tuxedo is an asset, but not necessary.

e-docs Web Site

BEA product documentation is available in both PDF and HTML format on the BEA
corporate Web site. From the BEA Home page, click on Product Documentation or go
directly to the “e-docs” Product Documentation page at http://www.e-
docs.beasys.com.

How to Print the Document

X

You can print a copy of the HTML document, one file at a time, from your Web
browser by selecting File|Print, or you can print the PDF document. Open the PDF file
in the Adobe Acrobat Reader and print the entire document (or a portion of it) in book
format. To access the PDFs, open the eLink Adapter Development Kit documentation
Home page, click the PDF files button and select the document you want to print.

BEA el ink Adapter Development Kit User Guide

Contact Us!

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/. Refer to the el ink Adapter Development Kit
Release Notes for more detailed information about viewing and printing the
documentation.

Related Information

The following BEA Tuxedo documents contain information that is relevant to using
the eLink Adapter Development Kit.

m BEA Tuxedo Administering the BEA Tuxedo System
m BEA Tuxedo Application Development Guide

m BEA Tuxedo FML Programmer’s Guide

m BEA Tuxedo Programmer’s Guide

m BEA Tuxedo Reference Manual

For more information about Tuxedo, refer to the BEA Tuxedo Online Documentation
CD at http://edocs.beasys.com/tuxedo/tux65/index.htm.

Contact Us!

Y our feedback on the eLink Adapter Devel opment Kit documentation isimportant to
us. Send us e-mail at docsupport@beasys.com if you have questions or comments.
Y our comments will be reviewed directly by the BEA professionals who create and
update the eLink Adapter Development Kit documentation. In your e-mail message,
please indicate that you are using the documentation for the BEA eLink Adapter
Development Kit Product Version: 1.1 release.

BEA eLink Adapter Development Kit User Guide Xi

If you have any questions about thisversion of BEA eLink Adapter Devel opment Kit,
or if you have problemsinstalling and running BEA el ink Adapter Devel opment Kit,
contact BEA Customer Support through BEA WebSupport at www.beasys.com. Y ou
can also contact Customer Support by using the contact information provided on the
Customer Support Card, which isincluded in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number
Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions

The following typographic conventions are used throughout this document.

Convention Item

boldfacetext Indicatesterms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.
italics Indicates emphasis or book titles.
blue text Indicates a hyperlink to a cross-reference.

Xii BEA el ink Adapter Development Kit User Guide

Documentation Conventions

Convention Item
nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#i ncl ude <iostreamh> void main () the pointer psz
chrmod u+w *
\'t ux\ dat a\ ap
.doc
tux. doc
Bl TMAP
fl oat
nonospace Identifies significant wordsin code.
bol df ace Example:
t ext . .
void conmt ()
nonospace Identifies variables in code.
italic Example:
t ext .
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR
{} Indicates a set of choices in asyntax line. The braces themselves should

never be typed.

Indicates optional itemsin a syntax line. The brackets themsel ves should
never be typed.

Example:
buil dobjclient [-v] [-0 name | [-f file-list]... [-
| file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

BEA eLink Adapter Development Kit User Guide Xiii

Xiv

Convention

Item

Indicates one of the following in acommand line:

m That an argument can be repeated several timesin acommand line

m That the statement omits additional optiona arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:
bui l dobjclient [-v] [-0 name | [-f file-list]... [-
| file-list]...

Indicates the omission of items from a code example or from a syntax line.
The vertical dlipsisitself should never be typed.

BEA el ink Adapter Development Kit User Guide

CHAPTER

1 Understanding The
BEA eLink System

This section discusses the following topics:
m BEA elLink Solution Overview

m BEA elink Adapter Overview

BEA eLink Adapter Development Kit Overview

BEA eLink Platform Architecture

BEA eLink Solution Overview

BEA eLink™ provides an open Enterprise Application Integration (EAI) solution that
allows applications throughout organizations to communicate seamlessly. Using EAI,
you gain the long-term flexibility and investment protection you need to keep up with
today’s ever-changing business environment.

Typically, companies use packaged applications to automate internal operations, such
as financial, manufacturing, or human resources. While they successfully address the
needs of these specific areas, these proprietary platforms often do not work together.
To compete today, you need a much greater exchange of information. Systems need to
communicate at a process level within your own organization, as well as with
customer’s and supplier’s systems. BEA eLink Platform is the underlying basis of

BEA eLink Adapter Development Kit User Guide 1-1

1 Understanding The BEA eLink System

BEA eLink, afamily of off-the-shelf enterprise application integration (EAI) products
that leverage the BEA transaction platform to integrate existing legacy applications
with customer-focused and business-to-business e-commerce initiatives.

BEA eLink Platform provides a proven infrastructure for integrating applications
within the enterprise and across the Web. BEA el ink Platform ensures high-
performance, secure transactions and transparent access to mission-critical
applications and information throughout the enterprise and across the Web. Figure 1-
lillustratesthe el ink logical architecture and showswherethe el ink Adaptersfit into
the process.

Figure1-1 BEA eLink Solution lllustration

P Oplian et g

Ordesing ard

Prowisaning

Wissaan Crhcad
Integration Platiomm Data inbegration
Oplan

[Financial
Syiem

The entire BEA eLink family (including all options and adapters) is highly scalable.
Multiple instances of BEA el ink components can collaborate so that work is divided
between el.ink domains. BEA eLink includes Simple Network Management Protocol
(SNMP) integration for enterprise management.

The current BEA el ink Platform leverages the BEA Tuxedo infrastructure because it

is based on a service-oriented architecture. Both BEA Tuxedo and BEA eLink
communicate directly with each other and with other applications through the use of
services. Multiple services are grouped into “application servers” or “servers”. The

1-2 BEA el ink Adapter Development Kit User Guide

BEA eLink Adapter Overview

terms Tuxedo services/serversand el ink services/servers can be used interchangeably.
Because this document is specifically addressing the eLink family, the terms “eLink
service” and “eLink server” are used throughout.

The BEA eLink Platform complies with the Open Group’s X/Open standards
including support of the XA standard for two-phase commit processing, the X/Open
ATMI API, and XPG standards for language internationalization. C, C++, COBOL,
and Java are supported. The BEA eLink Platform connects to any RDBMS,
OODBMS, file manager or queue manager, including a supplied XA-compliant
gqueueing subsystem.

The following components operate with BEA eLink Platform:

¢ TheData Integration Option translates data models used by different
applications into a common data format. It provides a cost-effective alternative
to writing or generating programs to perform this function. It also handles
complex translation with great power and scalability. The DIO leverages
technology based on the TSI Mercator product, which is integrated with eLink.

¢ TheBusiness Process Option helps automate tasks in the distributed global
business process and dynamically responds to business events and exceptions.
The BPO is currently implemented by integrating eLink with technology based
on InConcert workflow management software.

m Anelink Adapter provides the interface between the BEA eLink Platform and
external applications with out-of-the-box functionality.

BEA eLink Adapter Overview

eLink Adapters provide a communication path between the eLink Platform and third-
party applications such as PeopleSoft or SAP. eLink Adapters are implemented as
eLink Platform serversServers are software modules responsible for processing
service requests made by requestors and potentially sending replies back to the
originator of the requeservices are provided by code that accessedilmeness

logic of a third-party application.

An eLink Adapter must accomplish at least two things. First, it must normalize the
communication between the two components. Second, it should advertise business
level services supported by the third-party application into the eLink Platform

BEA eLink Adapter Development Kit User Guide 1-3

1 Understanding The BEA eLink System

environment. In addition, application to eLink Adapters must publish events with
associated data on behalf of the third-party application in the eLink Platform
environment. If the third-party application allows scripting or other extensions, it
should be capable of invoking known eLink Platform services advertised by other
third-party applications.

An adapter may support both the eLink bound paths (application to eLink) and third-
party application bound paths (eLink to application); however, it isrecommended that
an adapter be implemented for only one path. If both application to eLink and eLink to
application paths are required, they should be implemented as two separate servers.
Separate servers allow for amore flexible solution because the usage requirements of
eLink-bound and application-bound adapters may vary widely.

eLink Adaptersuse FM L 32, a BEA native data structure, to communicate with other
components in the integration environment. The third-party native interface is used to
communicate with the third-party application. eLink Adapters act as a “translator”
between the third-party APl and the BBAMI. This translation is facilitated by use
of the ADK API.

Figure1-2 elLink Adapter Illustration

eLink Platform

FRLA2

Saerabisn Adwetiaed

b (0 ik el grason
CarnpaRrls

sy O alh o
Ol Sarvers

1-4 BEA el ink Adapter Development Kit User Guide

BEA eLink Adapter Development Kit Overview

BEA elLink Adapter Development Kit
Overview

The eLink Adapter Development Kit (ADK) is a set of tools and libraries that allow
BEA, our partners, and our customers to build adapters that interact with the eLink
Platform. The ADK helps programmersbuild adaptersfor third-party software without
in-depth knowledge of the eLink Platform.

The ADK consists of

m A sample Application to eLink Adapter. The sasmple Application to eLink
Adapter contains code to generate the sample application to eLink server, a
demo server needed for testing, sample UBBCONFI Gfile (eLink configuration),

. MaK files for al supported UNIX platforms, aswell as . BAT and . SCRfilesto
setup the environment.

m A sampleelink to Application Adapter. The sasmple eLink to Application
Adapter contains code to generate demo servers, ademo client to be used for
testing, sample UBBCONFI Gfile (eLink configuration) and . CFGfiles (adapter
specific configuration), . MAK files for all supported UNIX platforms, aswell as
. BAT and . SCRfiles to setup the environment and automate the build process.

m A sample E-Mail Adapter. The sasmple E-Mail Adapter contains code to
generate the sample E-Mail server and client, which can be used for sending E-
Mail. A template is avail able to help the user develop functionality for receiving
E-Mail.

m Required includefiles (.H); shared libraries, (.SL) for HP-UX 10.20 and
11.0, (.S0) for Solaris 2.6, (.a) for AlX 4.3.x; and adynamiclink library
(.DLL) and import library (.L1B) for Windows NT. These libraries support
the sample eLink to application and application to eLink Adapters, as well as
adapter development. The .LIB fileis compiled with MSV C++ v5.x.

m Thisdocumentation. The documentation includes general information about the
eLink Platform, design information for adapters, and instructions for running the
sample adapter.

BEA eLink Adapter Development Kit User Guide 1-5

1

Understanding The BEA eLink System

BEA eLink Platform Architecture

1-6

The eLink Platform communications application programming interface, Application
to Transaction Manager Interface (ATMI), isacollection of runtime servicesthat can
be called directly by aC (or COBOL) application. These runtime services provide
support for communications, distributed transactions, and system management.

The Management Information Base (M| B) maintains a virtual repository of all the
configuration and operational information for aruntimeeLink environment. TheeLink
services are implemented using a shared bulletin board (BB) that contains
configuration information. This isthe dynamic part of the eLink. Server s advertise
their servicesin the Bulletin Board. The Bulletin Board Liaison (BBL) isan
administrative eLink server that isthe keeper of the Bulletin Board. ThereisaBBL on
every machine participating in the integration infrastructure; the BBL coordinates
changes to the local copy of the MIB. The Distinguished Bulletin Board Liaison
(DBBL) isresponsible for propagating global changesto the MIB and is the keeper of
the static part of the MIB. The MASTER nodeis the computer where the DBBL runs.

Administrators use an ASCI| file to specify el ink system configuration. Thisfile,
called the UBBCONFI Gfile, is used as input by the configuration loading utility,

t m oadcf. Thet ml oadcf utility generatesabinary version of the configuration called
thet uxconfi g file. This binary file is used by the system to construct the Bulletin
Board and contains the persistent part of the MIB.

Servers are processes that provide one or more services. They continually check their
message queue for service requests and dispatch them to the appropriate third-party
application. A service isthe name of a server interface. Many servers can support a
single service, thereby providing for load balancing and afail-safe mechanism. The
mapping of services to serversisrecorded in the Bulletin Board. When a service
request is made, the Bulletin Board forwards the request to a server (eLink Adapter)
that advertisesthat service. An eLink server advertises a service by posting its namein
the Bulletin Board.

BEA el ink Adapter Development Kit User Guide

CHAPTER

2

Understanding the BEA
eLink Platform

This chapter discusses the following topics:

ATMI Runtime Services

FML32

eLink Commands

Hardware Requirements for the eLink Platform
Special Instructions for Installing the Tuxedo Core
Preparing the License File

About the Tuxedo Simple Application

Beforeyou install the BEA el ink Platform, which isavailable separately, it is helpful
to understand the Application to Transaction Manager Interface (ATM), the 32-bit
Field Manipulation Language (FM L 32), FML buffers, and some commonly used
eLink commands. The ATMI runtime services provide support for communications,
distributed transactions, and system management. FML 32 isa BEA native data
structure and function library that allows associative access to fields of a data record.
Commands are used to configure and administer the BEA eLink environment.

BEA eLink Adapter Development Kit User Guide 2-1

2 Understanding the BEA eLink Platform

ATMI Runtime Services

Theel ink Platform ATMI isacollection of runtime servicesthat can be called directly
by aC (or COBOL) application. The ATMI isacompact set of primitives used to open
and close resources, begin and end transactions, allocate and free buffers, and provide
the communi cation between adapters and other requestors or responders.

Followingisalist of ATMI primitivesfor the C binding. For more complete detail s of

the ATMI primitives you will most commonly use, see Appendix B, “ATMI
References.See théBEA Tuxedo Reference Guide at http://edocs.beasys.com/tuxedo/
tux65/index.htm for detailed information on all the ATMI primitives.

Table2-1 ATMI Primitivesfor the C Binding

API Group C API Name Detailed in Description
Appendix B
Client tpchkauth Check if authentication is needed
Membership tpinit * Used by aclient to join an application
tpterm * Used by aclient to leave an application
Buffer tpalloc * Create a message
Management tprealloc * Resize a message
tpfree * Free amessage
tptypes * Get a message type and subtype
Message Priority tpgprio Get the priority of the last request
tpsprio Set priority of the next request
Reguest/Response tpcall * Synchronous request/response to service
tpacall * Asynchronous request
tpgetreply * Recelve asynchronous response
tpcancel * Cance asynchronous request
Conversational tpconnect Begin a conversation with a service
tpdiscon Abnormally terminate a conversation
tpsend Send amessage in a conversation
tprecv Recelve a message in a conversation

2-2 BEA el ink Adapter Development Kit User Guide

ATMI Runtime Services

Table2-1 ATMI Primitivesfor the C Binding

API Group C API Name Detailed in Description
Appendix B
Reliable tpenqueue Enqueue a message to an application queue
Queueing tpdequeue Dequeue a message to an application queue
Event-based tpnotify Send unsolicited message to a client
tpbroadcast Send message to several clients
tpsetunsol Set unsolicited message callback
tpchkunsol Check arrival of unsolicited message
tppost Post an event message
tpsubscribe Subscribe to event messages
tpunsubscribe Unsubscribe to event messages
Transaction tpbegin Begin atransaction
Management tpcommit Commit the current transaction
tpabort Rollback the current transaction
tpgetlev Check if in transaction mode
tpsuspend Suspend the current transaction
tpresume Resume a transaction
tpscmt Control commit return
ServiceEntry and tpsvrinit * Server initialization
Return tpsvrdone * Server termination
tpreturn * End service function
tpforward * Forward request
Dynamic tpadvertise * Advertise a service name
Advertisement tpunadvertise * Unadvertise a service name
Resource tpopen Open aresource manager
Management tpclose Close a resource manager

BEA eLink Adapter Development Kit User Guide 2-3

2 Understanding the BEA eLink Platform

FML32

FML isaset of Clanguage functionsfor defining and manipulating storage structures
called fielded buffers, which contain attribute-value pairscalled fields. Theattributeis
the field'sidentifier and the associated value represents the field's data content.

FML 32 uses 32-bit values for the field lengths and identifiers. BEA eLink Adapters
use FML32. FML32 allowsfor about 30 million fields, and field and buffer lengths of
up to about 2 billion bytes. The definitions, types, and function prototypesfor FML 32
arelocated inf n 32. h and functions arelocated in -1 f m 32. All definitions, types,
and function names for FML32 have a “32” suffix (for exampleFBLEN32,

FLDI D32, Fchg32). Also the environment variables are suffixed with “32” (for
example FLDTBLDI R32, FI ELDTBLS32).

Note: FML has two interfaces. The original FML interface is based on 16-bit values
for the length of fields and for containing information identifying fields. The
original interface should not be used when creating eLink Adapters.

FML Buffers

A fielded buffer is composed of field identifier and field value pairs for fixed length
fields (for example, long, short), and field identifier, field length, and field value triples
for varying length fields.

Figure2-1 Example of a Fielded Buffer

FLOD Lessgth Value FLDID Valus FLOD Walus

A field identifier is a tag for an individual data item in a fielded buffer. The field
identifier consists of the name of the field number and the type of data in the field. The
field number must be in the range 1 to 33,554,431 inclusive for FML32, and the type
definition for a field identifier is=LDI D32.

2-4 BEA el ink Adapter Development Kit User Guide

FML32

Field numbers 1 to 100 are reserved for system use and should be avoided. The field

types can be any of the standard C language types: short, | ong, f | oat , doubl e, and
char . Two other types are also supported: st ri ng (aseries of characters ending with
anull character) and car r ay (character arrays). Thesetypes are definedin fm 32. h

aSFLD SHORT, FLD LONG, FLD CHAR, FLD FLQAT, FLD DOUBLE, FLD STRI NG, and

FLD_ CARRAY.

For FML 32, afielded buffer pointer is of type FBFR32 *, afield length has the type
FLDLEN32, and the number of occurrences of afield has the type FLDOCC32.

Fields are referred to by their field identifier in the FML32 interface. However, it is
normally easier to remember afield name. There are two approaches to mapping field
names to field identifiers. One is a compile-time mapping, the other isarun-time

mapping.

Mapping Field Names to Field Identifiers

To avoid naming conflicts, BEA elLink Adapters must use the following run-time
mapping method. Field name/identifier mappings can be made availableto FML 32
programs at run-time through field table files. Field data types must be specifiable
within field table files.

The FML 32 interface uses the environment variables, FLDTBLDI R32 to specify alist
of directorieswhere field tables can be found and FI ELDTBLS32 to specify alist of the
files that are to be used from the table directories.

Note: The environment variables, FLDTBLDI R32 and FI ELDTBLS32, must be set
prior to using FML32.

Within application programs, the FML 32 function, FI di d32, providesfor arun-time
translation of afield name to itsfield identifier, and Fnane32 translates afield
identifier to its field name. Type conversion should be performed implicitly viaFML
library functions. Implicit type conversion facilitates component reuse.

Use FML 32 symbolic names and retrieve their values using FLDI D32. The
Mf | dhdr 32 function must not be used to build the adapter because it may cause
conflicts with other field I Ds.

Any field in afielded buffer can occur more than once. Many FML 32 functions take
an argument that specifies which occurrence of afield isto be retrieved or modified.
If afield occurs more than once, the first occurrence is numbered 0 and additional

BEA eLink Adapter Development Kit User Guide 2-5

2

Understanding the BEA eLink Platform

occurrences are numbered sequentially. The set of al occurrences make up alogica
sequence, but no overhead is associated with the occurrence number (that is, it is not
stored in the fielded buffer). If another occurrence of afield isadded, it isadded at the
end of the set and is referred to as the next higher occurrence. When an occurrence
other than the highest is deleted, all higher occurrences of the field are shifted down by
one (for example, occurrence 6 becomes occurrence 5, 5 becomes 4, etc.).

Creating Field Names

Wherever possible, field names should match application field names one-to-one.
Equivalent field names makethe configuration easier to understand and manage. Field
names must follow the convention of using only uppercase alphanumeric characters
and underscores. This isarequirement of the Business Process Option (BPO).

Adapter-specific fields must not be required; they must be optional . Optional adapter-
specific fields allow component reuse. Adapter-specific fields break the business
process abstraction, requiring the designer of a process flow to have an understanding
of the specific adapter for agiven process step. Wherever possible, all adapter-specific
field names should be configurable to avoid conflicts with other field names. Adapters
should use a prefixing convention for any adapter-specific field names to avoid
conflicts with other field names.

ud32 Client

2-6

Thereisan eLink-supplied client, ud32, that reads atab delimited text fileand uses the
information from the file to construct an FML32 buffer. The ud32 client sends the
buffer to a service that the user designates in the text file. ud32 isuseful for testing.
For an exampl e of atext-delimited file that ud32 could use asinput, seethe “ud, ud32,
wud, wud32"section in Appendix D, “Tuxedo Commands.”

Refer to theExample of a Server that Uses FML3&3ction in Appendix C, “FML32
API,” for an example of simple code foser ver that uses FML32.

BEA el ink Adapter Development Kit User Guide

FML32

FML32 Primitives

Following is a summary of some of the FML32 primitives that are used for al eLink
programsincluding general eLink services and adapters. This subset of FML32
primitives should be sufficient to create most adapters. For more complete details and
code examples, see Appendix C, “FML32 API,"and theBEA Tuxedo Reference Guide
at http://edocs.beasys.com/tuxedo/tux65/index.htm

Table 2-2 FML 32 Primitives

FML Primitive Description

Fadd32 Add new field occurrence

Fchg32 Change field occurrence value

Ffi nd32 Find field occurrence in buffer

Fget 32 Get copy and length of field occurrence
Fi el ded32 Return true if buffer isfielded

Fi ni t 32 Initialize fielded buffer

FI di d32 Map field name to field identifier
Fneeded32 Compute size needed for buffer

Fsi zeof 32 Returns the size of an FML32 buffer

Warning: TheFal | oc function allocates FML buffers; however, buffers allocated
usingFal | oc cannot be passed in pcal | . FML 32 buffers that will be
passed using thpcall ortpacallATM | primitives should be allocated by
using atpallocwith type parameter set fM.32.

Use FML32 symbolic names and retrieve their values 18idgd32. Field IDs must
be determined dynamically at runtime or during initialization at boot time. The

Mf | dhdr 32 function must not be used to build the adapter because it may cause
conflicts with other field IDs.

BEA eLink Adapter Development Kit User Guide 2-7

2

Understanding the BEA eLink Platform

eLink Commands

Commandsare used to configure and administer theeLink runtime environment. Refer
to Administering the BEA Tuxedo System for procedures and administrative tasks that
arebased on the command-line interface. For details about individua commands, refer
to the BEA Tuxedo Reference Manual. Both documents may be found online at http://
edocs.beasys.com/tuxedo/tux65/index.htm

Commonly Used Tuxedo Commands

2-8

Followingisalist of the Tuxedo commandsthat are most commonly used for adapters.
For complete details and code examples for each of the following commands, refer to
Appendix D, “Tuxedo Commands.”

Table 2-3 Commonly Used Tuxedo Commands

Tuxedo Commands

Description

bui | dcl i ent

Constructs a BEAuxedo client module. This
command combines the files supplied by the -f and -I
options with the standard BERuxedo libraries to form

a load module and invokes the platform's default
compiler to perform the bul

bui | dser ver

Constructs a BEAuxedo server load module. This
command generates a stub file containing a main()
function and invokes the platform's default compiler to
perform the bud.

tmadni n Invokes the BEA Tuxedo bulletin board command
interpreter. Refer to thHE&€ommonly Used tmadmin
Commands’section for more information.

t mboot Invokes a BEA Tuxedo application with a
configuration defined by the options specified.

tm oadcf Parses &BBCONFI G file and load binaryrUXCONFI G

configuration file.

BEA el ink Adapter Development Kit User Guide

eLink Commands

Table 2-3 Commonly Used Tuxedo Commands

Tuxedo Commands Description
t mshut down Shuts down a set of BEA Tuxedo servers.
ud32 Runs the BEA Tuxedo ud32 client that reads a tab

delimited text file, produces an FML 32 buffer, and
usesthe buffer to make arequest to a specified service.

Commonly Used tmadmin Commands

The t madni n command allows you to inspect and dynamically configure your eLink
application. There are many commands that can be invoked from t madmni n, probably
the most important being help. Several of the most useful commands are summarized
in the following table

Table 2-4 Commonly Used tmadmin Commands

Command Description

hel p Prints help messages.

qui t Terminates the session.

pclt Printsinformation for the specified set of client processes.

psr Prints information for application and administrative
servers.

psc Prints information for application and administrative
services.

susp Suspends services.

For details about tmadmin commands, refer to the BEA Tuxedo Reference Manual at
http://edocs.beasys.com/tuxedo/tux65/index.htm.

BEA eLink Adapter Development Kit User Guide 2-9

2 Understanding the BEA eLink Platform

Hardware Requirements for the eLink
Platform

The ADK hardware requirements are dictated by el ink adapter requirements. The M S
V C++ v5.x command line compiler should be used for NT platforms.

Special Instructions for Installing the
Tuxedo Core

For NT, usethe Install Shield installer. For Unix, use theinstall.sh Korn shell script in
the top level of the CD directory structure. Follow the instructionsin the BEA Tuxedo
Installation Guide, but pay special attention to the following tips.

m Thedefault path for installation on Windows NT is under the Program Files
directory. Using a directory with spaces in the name has presented a problem in
prior releases of some of the Tuxedo utilities. Using spaces in the path
directories should not be a problem with Tuxedo 6.5, but if you experience
problems, choose a path name without spaces for installation.

Note: TobeMS Windows 2000 compliant, all programs must beinstalled in the
Program Files directory.

m TheWeb GUI isnot required.

m Important! When InstallShield asks if you want to install your Tuxedo license
file at thistime, answer NO. See the following section for instructions on
preparing the licensefile.

2-10 BEA elink Adapter Development Kit User Guide

Preparing the License File

Preparing the License File

In order to usethe ADK you need alicensefor both the eLink Platform and the ADK.
The license files are delivered on a floppy disk and should have accompanied your
order of theeLink Platform and ADK. To usethelicensefiles, perform thefollowing
steps:

1. Copy theLl C. TXT fileinto the TUXDI R udat aobj directory.

2. Thislicensefile must have sectionsfor [Tuxedo 6.5], [eLink Platforny,
and [eLi nk Adapter Devel opment Kit]. Refer to your Tuxedo
documentation at http://edocs.beasys.com/tuxedo/tux65/index.htm for
information about the Tuxedo license file.

Note: If you previously installed the eLink Platform the content of the supplied
license files should be added to the LIC.TXT.

About the Tuxedo Simple Application

The Tuxedo Simple Application provides away to verify your installation of Tuxedo
aswell asprovide aworking example of aTuxedo application. A more comprehensive
description of the Simple Application can be found in the Tuxedo Application
Development Guide. The information provided here is specific to running the Tuxedo
Simple Application in preparation for using the ADK.

All necessary codeis located in the directory, $TUXDI R\ apps\ si npapp, where
$TUXDI Risthe directory where Tuxedo isinstalled. The Simple Application consists
of asingle server offering asingleservice. The serviceiscalled TOUPPER. Y ou run the
client with asingle argument, which isastring to convert to upper case. Theclient calls
the service, which returns the converted string. The client then prints the string.

Example: simpcl “Hello World”

Returned string is: HELLO WORLD

BEA eLink Adapter Development Kit User Guide — 2-11

2 Understanding the BEA eLink Platform

The Simple Application is designed so that it can be running within minutes after

installing the Tuxedo software. Y ou should probably copy the si npapp filesto your

own directory, since the configuration file must be edited and you might also want to
experiment with the client and server code. Refer to the “Running a Sample
Application” section of thdBEA Tuxedo I nstallation Guide athttp://edocs.beasys.com/
tuxedo/tux65/index.htm for more information about running the Simple Application.

Setting Environment Variables

You need to set several environment variables before using the eLink Platform,
running any eLink adapters, or running the Simple Application. Refer to the “Setting
Up Your Environment” section of tHBEA Tuxedo Installation Guide athttp://
edocs.beasys.com/tuxedo/tux65/index.htm for more information about setting
environment variables. The following table lists the environment variables you need to
set for any eLink Adapter.

Table 2-5 Environment Variables Used By the ADK

Variable Name Description

TUXDI R Base directory of the Tuxedo software.

APPDI R Base directory for applications such asthe sample
program.

PATH Must include $TUXDI R/ bi n.

TUXCONFI G Full pathname of binary t uxconfi g file.

LD LI BRARY_PATH Must include $TUXDI R/ | i b on systems that use
shared libraries (except HP-UX and AlX).

SHLI B_PATH HP-UX only - Must include $TUXDI R/ | i b.

LI BPATH AlXonly - Mustinclude $TUXDI R/ | i b.

Following is an example of a script for Windows NT that could be used to set system
variables:

2-12 BEA elink Adapter Development Kit User Guide

About the Tuxedo Simple Application

Listing 2-1 Script for Setting System Variablesfor Windows NT

set
set
set
set

TUXDI R=C: \ t uxedo

APPDI R=C: \ si npapp

PATH=%TUXDI R% bi n; %APPDI R% %PATHY%
TUXCONFI G=%APPDI RA t uxconfi g

Y ou must also set other environment variables if you are using a Workstation client.

Scripts are often used to save time in setting environment variables in a development
directory. The following scripts are provided to set these variables for you, but the
scripts must be edited for your environment.

$TUXDI R\ apps\ si npapp\ set env. cd for NT

$TUXDI R/ tux. env for Unix

Configuring the Simple Application

Y ou configure the Simple Application by editing the sample configuration file,
ubbsi npl e, and then submitting thet m oadcf command to create a binary
configuration file for Tuxedo t uxconfi g.

To configure the Simple Application, perform the following steps:

1

Edit the sample configurationfile, ubbsi npl e, to replace the bracketed itemswith
values appropriate to your installation.

Note: Your TUXDI R and TUXCONFI Genvironment variables must match the
valuesin the configuration file.

After editing ubbsi npl e, create the binary TUXCONFI Gfile with the command:
tm oadcf ubbsi npl e
Answer y if you are asked whether to proceed.

Note: After you create theinitial TUXCONFI Gfile, you may recreateit usinga-y
command line option with t ml oadcf to suppress the prompt.
For example:

BEA eLink Adapter Development Kit User Guide — 2-13

2

Understanding the BEA eLink Platform

t m oadcf -y ubbsinple

eLink creates alog file called ULOG. mddyy. The default directory where thislog
residesis the application directory, $APPDI R. The creation of the binary file,
TUXCONFI G, islogged in the ULOG Any time there is sometype of error or failurein
your eLink adapter or eLink environment, the ULOGis one of thefirst placesyou should
look.

Building the Client and Server for the Simple Application

For UNIX Operating Systems

Theclient and server for the Simple Application are aready built. The executables are
named simpcl and simpserv.

Or you can also build the client and server yourself by entering the following
commands:

buildclient -0 sinmpcl -f sinpcl.c
bui | dserver -0 sinpserv -f sinpserv.c -s TOUPPER

For Windows NT Operating Systems

Y ou can build the server and client executables using the nakefi | e si npapp. nt.

Or you can usethe bui | dcl i ent and bui | dser ver commands described for UNIX
operating systemsin the previous section.

Booting the Simple Application

2-14

The Simple Application can be booted with the following command:
t mboot -y

After booting the system examine the ULOG. Y ou will see awelcome message that is
printed to the ULOG when si npser v is booted.

BEA el ink Adapter Development Kit User Guide

About the Tuxedo Simple Application

Thenyou canrunsi npcl asdescribed inthe “About the Tuxedo Simple Application”
section abovesi npcl can be run as many times as you wish.

Use the administrative commandadni n, to display and modify the parameters of
the running application. For example, try any of the following parameters:

Parameter Description

psr Printserver-Print information for application and administrative servers.

psc Printservice-Print information for application and administrative
services.

susp Suspend-Suspend services.

In particular, try suspending th@UPPER service and then running the client. Refer to
the BEA Tuxedo Reference Manual at http://edocs.beasys.com/tuxedo/tux65/
index.htm for information about using commands.

Shutting Down the Simple Application

When you are done, you can shut down the Simple Application with the following
command:

t nshut down -y

Examine theJLoGafter shutdown to review the messages that result from a shut down.

BEA eLink Adapter Development Kit User Guide 2-15

2 Understanding the BEA eLink Platform

2-16 BEA elink Adapter Development Kit User Guide

CHAPTER

3 Understanding

Adapter Architecture
and Design

This chapter discusses the following topics:
m elLink Adapter Architecture Overview
m Application to eLink Adapters

m elink to Application Adapters

m elLink Adapter Configuration

m Error Handling

m Deployment and Installation of eLink Adapters

eLink Adapter Architecture Overview

The standard design for an eLink adapter consists of at least two distinct program
modules, the Server Module and the Configuration Processing Module.

BEA eLink Adapter Development Kit User Guide 31

3 Understanding Adapter Architecture and Design

Figure3-1 Standard Adapter Design

Server
Module

tpsvrinit()
tpsvrdone()

SERVICE_1()
SERVICE_Nj

ADAPTER

Configuration Processing
Module

loadConfigurationinformation()
cleanupConfiguration Resources()

The Server Module

The Server Module contains the code for the functions that perform the services
advertised by the server. The Server Modul ealso containsthe codefor thet psvri ni t
function, which is called when the server is booted, and thet psvr done function,
whichiscalled at server shutdown time.

Thet psvri ni t function performsthe following tasks:

32

Checksthe license with the eLA_chkelLi nkLi ¢ functionin the ADK library.

Warning! eLA chkeLi nkLi ¢ must be called to verify the eLink platform
release. Failure to do so may result in incorrect runtime behavior in the adapter.

Opens the message catal og.

Retrieves the name of the configuration file.

Reads the trace level from the configuration file.

Callsfunctions from the Configuration Processing M odule to make use of ADK

API functions for parsing,

processing, and storing the configuration data.

BEA el ink Adapter Development Kit User Guide

eLink Adapter Architecture Overview

m Advertises services withthe ATMI t padverti se function.
Functionsin the ADK library or the ATMI API facilitate most of these tasks.

The following table provides descriptions of the calls made by the t psvri ni t
function.

Table 3-1 tpsvrinit Function Calls

tpsvrinit Tasks Description

Check the license Call eLA chkelLi nkLic()

Open catalog file Call eLA OpencCat al ogFi | e()

Get configuration file Call eLA Get Confi gFi | eNarre()

Read trace level Call eLA Set Ser ver MsgLevel ()

Parse, process, and store Call | oadConf i gur ati onl nf or mat i on and
configuration data cl eanupConfi gur ati onResour ces.
Advertise services Cadll t padvertise

The Configuration Processing Module

Parsing and processing of the configuration file is done by the

| oadConf i gur ati onl nf or mat i on and cl eanupConf i gur ati onResour ces
functionsin the Configuration Processing Module. These functions make use of the
ADK API functions for parsing, processing, and storing the configuration data.

Adapter Design Pseudo Code

Following isan example of apseudo code outlinethat gives an overview of thegeneral
design of an adapter. The pseudo code outline follows these conventions:

m Comments, preceded by /* and followed by */, explain the purpose of particular
sections of code.

m Functionsfrom ATMI begin with the prefix t p.

BEA eLink Adapter Development Kit User Guide 33

3 Understanding Adapter Architecture and Design

m Functions from the ADK begin with the prefix eLA .

m Text that is not commented or the name of afunction from ATMI or ADK
represents code that must be inserted to complete a required task.

In the pseudo code example, the server module has functions that support N services
named SERVI CE_1 through SERVI CE_N; however, SERVI CE_1 istheonly servicewith
any example code given.

Note: For an example of the general form of an application to eLink adapter that uses
an FML 32 buffer, see the sample application to el ink adapter that is shipped
with the kit. However, the sample application to eLink adapter is not a
complete example because it does not use a configuration file or the ADK
library. For a complete working example see the sample eLink to application
adapter code that isinstalled with the ADK.

Listing 3-1 Server Module Pseudo Code

/* tpsvrinit is called when a server is booted */
tpsvrinit()

/* Check license */

eLA chkeLinkLic()

/* Open the nessage catalog file. */

eLA OpenCat al ogFi | e()

/* Get the configuration file nane. */

eLA Get Confi gFil eNane()

/* Read the trace |evel. */

eLA Set ServerMsgLevel ()

/* Process configuration file */

| oadConfi gurationlnformation() /* See configuration nodul e bel ow. */

/* Call tpadvertise for each service name */
for(i=0; i < nunBervices; i++)

tpadvertise() ;

}
}

/* tpsvrdone is called at server shutdown tine */
t psvrdone()

/* Close the nessage catalog file. */

eLA d oseCatal ogFil e()
cl eanupConfi gurati onResources() /* See configuration nodul e bel ow. */

34 BEA el ink Adapter Development Kit User Guide

eLink Adapter Architecture Overview

}

/*

** Supply functions that performthe actual services available to and or

** requested by the client. The argunment to each is a structure TPSVClI NFO

** (see definition follow ng the code) containing, anbng other things a pointer
** to the data buffer, and the length of the data buffer.

*/

SERVI CE_1(TPSVCI NFO * request)

{
/* Check the type of the data nenmber of the incom ng TPSVC NFO struct */
tptypes()

Insert code to perform the actual service here. Thiswill probably involve interacting
with the third-party APl in some way.

/* Return the transfornmed buffer to the requestor. */
tpreturn()
}

SERVI CE_N(TPSVCI NFO * rgst)
{

/* End of Server nodule */

Listing 3-2 Configuration Processing M odule Pseudo Code

/* The followi ng functionis calledintpsvrinit to process the configurationfile
information */
| oadConfi gurationl nformation()
{
/* Allocate hash table for service information */
elLA I nitHashtable()

/* Open Configuration */
eLA OpenTagFile()

/* Parse SERVER section, insure proper configuration file */
eLA GetFirstSection()

whi | e(ADK_SUCCESS)

{

/* Parse properties for each SERVER section */

BEA eLink Adapter Development Kit User Guide 35

3 Understanding Adapter Architecture and Design

eLA GetFirstProperty()
whi | e(ADK_SUCCESS)
{
eLA Get Next Property()

}
eLA Get Next Sect i on(sHandl e)
}
eLA d oseTagHandl e()
/* Parse SERVICE(s) data for this SERVER */
eLA GetFirstSection()
/* Begin Services |oop */
whi | e(ADK_SUCCESS)
/* Get first property for this service */
eLA GetFirstProperty()

/* begin Property |oop */
whi | e(ADK_SUCCESS)
{

Insert code here to process properties for each service.

eLA Get Next Property()
} /* end Property loop */

/* Add service data el enent to hash table */
elLA put()

eLA Get Next Section()
} /* End Services |oop */

eLA d oseTagFile()
eLA d oseTagHandl e()

/* This function was called in tpsvrdone to clean up any allocated resources.

cl eanupConfi gurati onResour ces()

/* Deal | ocate the hashtabl e allocated in | oadConfigurationlnformation */
eLA Dest Hashtabl e()

}

*/

3-6 BEA el ink Adapter Development Kit User Guide

Application to eLink Adapters

The TPSVCINFO Structure

Asshown inthe SEVICE_1 and SERVICE N lines of the above pseudo code, the
argument to afunction that performsan eLink serviceisastructure called TPSVQ NFO.
TPSVCI NFO contains, among other things, a pointer to the data buffer, and the length
of the data buffer. The full definition is given below:

Listing 3-3

Struct tpsvcinfo {

char nane[32] ; /* Service nane */

| ong fl ags; /* Options about the request */
char *dat a; /* Request data */

| ong | en; /* Request data length */

i nt cd; /* Connection descriptor */

| ong appkey; /* Application key */

CLI ENTI D cltid; /* Cient identifier */

b
typedef struct tpsvcinfo TPSVClI NFO,

Application to eLink Adapters

Application to eLink adapters trandlate requests initiated by the third-party software

(for example, SAP, Broadvision, or MQseries) into standard eLink ATM| calls, such

asat pcal | . Theapplicationto el ink adapter isan eLink server that will probably run

as a “daemon” process. You can run the server as a daemon process by making a

t pacal I with theTPNOREPLY flag set to the daemaarvice from the server's tpsvrinit
function. The daemon process starts when the server is booted. The code for the
daemon service contains an infinite loop. Inside the loop, the server checks for input
from the third-party software.

The method of communication between the third-party software and the adapter
depends on the third-party interface. For example, for an MQSeries adapter, requests
are written to a queue by MQSeries and the adapter monitors that queue. The eLink
Platform routes the request. The Bulletin Board Liai®®BL() consults the Bulletin

BEA eLink Adapter Development Kit User Guide 3-7

3 Understanding Adapter Architecture and Design

Board to find the name of the server that has advertised the requested service. The BBL
then resolves the service name into afully qualified address and sends the request to
the server. The server or other adapter that advertises the desired service must be
provided by the customer and is not part of the application to eLink adapter. However,
in order to test an adapter, the adapter must beableto call anelLink service, soanelLink
server that processes such arequest should be part of atest for the adapter.

Note: All communication between the originating adapter and the adapter that
services the request should bein FML32.

Following is an example of the server code that is specific to application to eLink
adapters.

Listing 3-4 Server Module Code

tpsvrinit(argc, argv){

tpacall(“DAEMON”,...,TPNOREPLY);
return(0);

}
DAEMON (...}
1"5;(;;)

/ICheck for requests from third-party application

}

Following isan illustration of the typical request path for an application to el ink
adapter.

3-8 BEA el ink Adapter Development Kit User Guide

eLink to Application Adapters

Figure3-2 Typical Request Path for an Application to eLink Adapter

eLink to Application Adapters

eLink to application adapters translate requests made by requesting applications into
callsto the API of third-party software. The eLink to application adapter isaserver.
A tpcal | (ortpacal I') initiates the request. The service nameis defined by a
parameter inthet pcal | . The eLink Platform makes an association between the
service name and a server, or adapter, that advertises that service. The service, a
function defined in the adapter, makes a call to the third-party API. The interface
between the adapter and the third-party softwareis defined by thethird-party software.

The sampleeLink to application adapter included with the ADK isacompleteworking
example of an eLink to application adapter. Client code is provided to initiate the
request. Inreal environments thisoriginating call might be from another adapter or the
Business Process Option. This code is not part of the adapter, however such a client
should be written to test the adapter.

Following is an illustration of the typical request path for an eLink to application
adapter.

BEA eLink Adapter Development Kit User Guide 39

3 Understanding Adapter Architecture and Design

Figure3-3 Typical Request Path for an eLink to Application Adapter

eLink Adapter Configuration

TheeLink Adapter configuration is defined in the SERV ERS section of the
UBBCONFI Gfile. The UBBCONFI Gfileislocated in the directory specified by the
configuration. Y ou must create a custom UBBCONFI Gfile and add the configuration
information for the eLink Adapter to the SERVERS section.

Themethod of configuring adapters and how the adapter processesthat configuration,
follows a standard format. All adapter code and any test configurations must follow
this standard.

3-10 BEA elLink Adapter Development Kit User Guide

eLink Adapter Configuration

Standards for Adding an eLink Adapter to the
UBBCONFIG File

In a UBBCONFI Gfile, lines beginning with an asterisk (*) indicate the beginning of a

specific section. The name of the section immediately followsthe*. The beginning of
the SERV ERS section is marked * SERVERS. Parameters are generally specified by

KEYWORD= val ue. Entriesin the SERVERS section have the form:

AQUT required paraneters [optional paraneters]

where AQUT specifies the file (string_value) to be executed by t nboot .
Required parameters are:

SRVGRP = string val ue

which specifies the name for the group in which the server isto run. The

st ring_val ue must bethe logical name associated with a server group in the
GROUPS section. Thest ri ng_val ue must be 30 charactersor less. This association
with an entry in the GROUPS section meansthat AOUT is executed on the machinewith
the Logical Machine ID (LM D) specified for the server group. The GROUPS section
also specifies the GRPNOfor the server group and parameters to pass when the
associated resource manager is opened. All server entries must have a server group
parameter specified:

SRVI D = nunber

which specifies an integer that uniquely identifiesa server within a group. Identifiers
must be between 1 and 30,000 inclusive. This parameter must be present on every
server entry.

All adapter entriesin the UBBCONFI G file are required to have the CLOPT parameter
(althoughitislisted as optional in the Tuxedo online documentation.) CLOPT specifies

ser vopt s options to be passed to the server when booted. “--" marks the end of
system-recognized arguments and the start of arguments to be passed to a subroutine
within the server. All eLink adapters will have exactly one argument after the -, the

C option followed by the name of the adapter-specific configuration file. All other
configuration parameters specific to the adapter should appear in the adapter-specific
configuration file. For more details on theoPT parameter se&ppendix E,

“Servopts.”

BEA eLink Adapter Development Kit User Guide — 3-11

3 Understanding Adapter Architecture and Design

Listing 3-5 Example of the CLOPT Parameter Entry

* SERVERS

el i nkni

SRVID="number"

REPLYQ=N

CLOPT="-- -C configuration_file_name"

Sample UBBCONFIG File

Listing 3-6 Sample UBBCONFIG File

*RESOURCES

IPCKEY 123791
DOMAINID simpapp
MASTER simple

*MACHINES

DALNT6
LMID= simple
TUXDIR= "\tuxedo"
TUXCONFIG= "\myappdir\tuxconfig"
APPDIR= "\myappdir"
FIELDTBL32= "sample.fml"
FLDTBLDIR32="\myappdir"
ULOGPFX="\myappdinULOG"

*GROUPS

eLINK
LMID=simple GRPNO=1

*SERVERS
DEFAULT:
CLOPT="-A"

elinkmai

SRVGRP=eLINK
SRVID=10

3-12 BEA elLink Adapter Development Kit User Guide

eLink Adapter Configuration

CLOPT="-- -C config.file"
* SERVI CES

*ROUTI NG

eLink Adapter Configuration Files

In addition to the configuration information contained in the application’s UBBCONFI G
file, each adapter must have its own specific configuration file. Y ou must create the
configuration file following the guidelines specific to the type of adapter.

The adapter configuration file defines aliasing of service names, tracing parameters,
and the names of outsideresourcesto be used. Aliasing allows the names of advertised
servicesto berelated to the business logic and also allowsfor many service namesto
be mapped to a single implementation. In the configuration file, users can activate
tracing and specify the level of tracing that is done. If a server needsto retrieve
information from outsi de resources, for example read requests from aqueue, the names
of the outside resources are specified in the configuration file.

The eLink Adapter reads the configuration file at startup. The configuration fileisan
ASCII text file that the user creates for the adapter. The user arbitrarily chooses the
name of thisfile, but it must match what is specified by the CLOPT parameter in the
UBBCONFI Gfile (as described in “Standards for Adding an eLink Adapter to the
UBBCONFIG File” on page 3-11)his configuration file must be located in the
application directoryAPPDI R) for the end-user's application.

Structure of the eLink Adapter Configuration File

The adapter configuration file is divided into several sections. Each adapter
configuration file contains one, and only one, SERVER section. The configuration file
may also contain one or more SERVICE sections and one or more FIELDMAP
sections.

When you create an eLink Adapter configuration file, some standard conventions
apply to the format. Following are the standard conventions that should be used for the
adapter configuration file:

BEA elLink Adapter Development Kit User Guide 3-13

3 Understanding Adapter Architecture and Design

m Thename of asection (e.g., SERVER or SERVICE) is always preceded by an
asterisk (*).

m The section name follows the asterisk and is entered in all upper case.

m The parameter names and values appear on the lines following the section
names.

m The parameter name is entered in uppercase followed by an equal sign and the
parameter value. If there is no parameter value following the equal sign, an error
isreturned, but the Tag Val ue field isfilled in and the configuration fileis still
processed.

m A #signistreated as the beginning of acomment UNLESS it is preceded by a
backslash. If your data entry requires a# sign, use abackslash asin the
following example:

Phone \ #-800. 555. 1212 returns Phone #- 800. 555. 1212
Example of the format of a configuration file section and parameter:

*<NAME OF SECTI ON>
<PARAMETER NAME>=<PARAMETER VALUE>

The SERVER Section

3-14

Thereisonly one SERVER section in each configuration file. In this section, the only
required parametersare the MAXMSGLEVEL and M NVBGLEVEL tracing level parameters.
Thefollowing table provides descriptions for these parameters:

Parameter Name Description

MAXVBGELEVEL=<i nt > Indicates the maximum level of tracing messages the
adapter is to log.

M NVBGLEVEL=<i nt > Indicates the minimum level of tracing messages the
adapter is to log.

For more information about the trace levels, refer to the “Tracing” section in this
chapter.

BEA el ink Adapter Development Kit User Guide

eLink Adapter Configuration

The SERVICE Section

Y ou must define the servicesthat will be advertised in the SERVICE sections of the
configuration file. Each defined service has a corresponding section in the
configuration file. Each defined service section has exactly one required parameter,
NANME. The NAME parameter must be 15 charactersor lessin length. Thefollowing table
provides a description for this parameter.

Parameter Name Description

NAVE=<Nane> Definesthe eLink service name that is to be advertised.

The SERVICE section iswhere names advertised by eLink and related to business
logic are mapped to the names of the actual functions that perform the services.

For example, the eLink Adapter for XML performs data format conversion between
FML and XML dataformats. For each conversion, you must create a SERVICE
section in the adapter configuration file. This SERVICE section describes an eLink
service that the adapter advertises in order to perform a conversion. End-user
applications then request this service to perform the necessary conversion.

The SERVICE definition mapsan eLink service name to a specific type of conversion.
The service name is arbitrarily chosen. These SERVICE definitions allow different
conversionsto be represented by different eLink service names. For example, you
could define services CONVERT_A, MAKEXM., or MYFMLXM_ that are all FML to XML
conversions. This allows many conversions to be mapped to one implementation.
However, these SERVICE names cannot equal the CONVERSI ON type parameter.

The FIELDMAP Section

A field map isaset of mappings of the names of fields used by the third-party software
to the names of the corresponding FML32 fields. A field map must be defined in a
section called FIELDMAP. The first parameter of the FIELDMAP section must be
FM D (field map identifier). This parameter identifies afield map and isreferenced by
the service definition using the map. A field map may be referenced by more than one
service, if applicable.

The following format is used in adapter configuration files to define each mapping in
afield map:

Application Name: FML32 Fi el d Nanme:input/output:field designator

BEA eLink Adapter Development Kit User Guide 3-15

3 Understanding Adapter Architecture and Design

where
Appl i cati on Name isthe name of the application field

FM_.32 Fi el d Name isthe name of the FML 32 field associated with this Application
field name.

I nput / out put defines whether afield is expected as input or passed as output or
both. Validvaluesare I, O, andI O

Fi el d designator isan adapter-defined designator for the defined field. This
parameter can be used to designate required fields, key fields, optional fields, etc.

Required Field
Optional Field
Key Field

Parent Key Field
Link Field

Goup Field

OroTXO0=X

Additional values can be defined by the adapter, if necessary
Example:

* SERVI CE

NAME=NwCont

BUSI NESS_OBJECT=Account
BUSI NESS_COVPONENT=Cont act
OPERATI ON=NEW

FM D=Map1l

* Fl ELDVAP

FM D=Map1l

Birth Date: EL_SBL_BI RTH DATE: | : O
Comment : EL_SBL_COMMENT: | : O

Credit Agency: EL_SBL _CREDI T_AGNCY:1: O
Credit Score:EL_SBL _CREDI T_SCORE: |: O
Email: EL_SBL_EMAIL:1: O

Addr ess: EL_SBL_ADDRESS: | : O

Job Title:EL_SBL_JOB TITLE:|: O

First Name: EL_SBL_FIRST_NAME: | : R
Last Name: EL_SBL_LAST _NAME: | : R
Id:EL_SBL_ID:OR

In the above example, the application fieRi ¥t h Dat e” maps to the FML32 field
EL_EBL_BI RTH_DATE. This field is an optional (designated by@nnput (indicated
by the 1/0 type ofl) field. The application fieldI“D" is mapped t&EL_SBL_I D. This
field is defined as a required output field.

3-16 BEA elLink Adapter Development Kit User Guide

eLink Adapter Configuration

The ADK containsthe following functions that are used to parse the field map sections

in the adapter configuration file: eLA_Get Fi el dMap, eLA GetFirstField,

eLA_Get Next Fi el d. For complete details and code examples see the “Configuration
Processing API” section in Appendix A.

Sample Adapter Configuration File

The following is an example of a configuration file for an adapter that difines one
service.

Listing 3-7 Adapter Configuration File

This is a coment

* SERVER

MAXVMVBGLEVEL=10

M NVBGLEVEL=0

* SERVI CE

NAME=CONVERT_W THDRAWAL
CONVERS| ON_TYPE=FM_MTI 2XM.
MIT _NAME=wi t hdr aw. nt i

* SERVI CE

NAME=CONVERT_DEPCSI T

CONVERS| ON_TYPE=FM_2XM_

LI ST_TAG SUFFI X=_LI ST

FM D=Map1l

*Fl ELDVAP

FM D=Map1l

Birth Date: EL_SBL_BI RTH DATE: |: O
Comment : EL_SBL_COMVENT: | : O

Credit Agency: EL_SBL_CREDI T_AGNCY: |: O
Credit Score:EL _SBL_CREDI T _SCORE: |: O
Email : EL_SBL_EMAIL:1:0O

Address: EL_SBL_ADDRESS: | : O

Job Title:EL_SBL_JOB TITLE I: O

First Nane: EL_SBL_FI RST_NAME: | : R
Last Name: EL_SBL_LAST_NAME: | : R
Id:EL_SBL_ID: O R

BEA eLink Adapter Development Kit User Guide — 3-17

3 Understanding Adapter Architecture and Design

API to Parse and Store Configuration Data

API to Parse the Configuration File

3-18

The ADK includesan API tofacilitate the parsing of the Adapter configuration fileand
to store configuration information for quick lookup.

Thefollowing API functions may be used to facilitate the parsing of the Adapter
configuration file. For complete details and code examples see the “Configuration
Processing APIection in Appendix A, “eLink Adapter Development Kit

References.”

Table 3-2 Configuration Processing API Functions

Configuration
Processing APl Name

Description

eLA OpenTagFile

Opens a Tag (or config.) file, and reads it into
memory.

eLA CloseTagFil e

Closes a handle returned byA_OpenTagFi | e.

eLA C oseTagHandl e

Closes a handle returned byA Get Fi rst Sect i on.

eLA Get FirstSection

Searches the config file memory image for desired
section

eLA Get Next Section

Finds next occurrence of desired section

eLA GetFirstProperty

Retrieves Tag/Value pair for first property in a
section

eLA Cet Next Property

Retrieves Tag/Value pair for successive properties in
a section

eLA Get PropertyVal ue

Retrieves value for first occurrence of a tag in a
section

eLA Get Fi el dMap

Searches for the named *FIELDMAP section.

elLA GetFirstField

Retrieves the information for the first line in a
fieldmap section.

BEA el ink Adapter Development Kit User Guide

Error Handling

Table 3-2 Configuration Processing APl Functions

Configuration Description
Processing APl Name

eLA CetNextField Retrieves the information for successive lines in a
fieldmap section.

API to Store the Configuration Data

After the configuration information has been parsed, it can be stored in a hash table to
facilitate quick lookup. The hash table API isincluded in the ADK. A summary of the
available functions is provided here. For complete details and code examples see the
“Hash Table API"section in Appendix A, “eLink Adapter Development Kit
References.”

Table 3-3 Hash Table API Functions

Hash Table APl Name Description

eLA | nitHashTabl e Creates a hash table.

eLA Dest HashTabl e Frees all dynamic memory in the hash table.
eLA put Adds a new element to the hash table.

eLA get Retrieves an element from the hash table.
elLA hash Returns the hash value for a given key.

Error Handling

Error handling may be accomplished through error logging and tracing. Error logging
is mandatory and must always be “turned on”, while tracing can be activated or
deactivated by the user.

BEA eLink Adapter Development Kit User Guide 3-19

3 Understanding Adapter Architecture and Design

If an eLink to application adapter successfully completes a service request, then the
adapter returnswith t pr et ur n (TPSUCCESS,). Thet pur code, the second
parameter in pr et ur n, should be set to the value of the third-party API return code
(if available and applicable). This is to ensure that other eLink components can
determine that the application request has been successfully executed.

Errors from eLink to application adapters should return in a consistent manner.
Consistency allows other eLink components, such aB#he | ntegration Option
(DIO) or theBusiness Process Option (BPO), to detect and respond to errors.

eLink adapters need to handle two types of errors, business level exceptions and
infrastructure errors. Proper error handling ensures that all the eLink components
recognize error codes that are returned for eLink to application adapters.

Business Level Exceptions

Business level exceptions are those that occur when the advertised service is
successfully invoked by the adapter, but the called application is unable to complete
the requested operation. For example, if the business service advertised is “Ship
Order”, the service may fail if one of the items to be shipped is out of stock and the
incomplete order may not be shipped. This exception must be returned to the caller but
will not be logged.

If a business-level exception occurs, then the adapter returnispwvithur n (TPFAI L,

0, ...). The details of the error, for example the application error code, are returned in
theELI NK_APP_ERR FML32 field. This is a string field. Using the recommended
CFchg32() call, the adapter may populate tha NK_APP_ERR FML32 field with

either an error number or error string without further conversion.

Infrastructure Level Exceptions

3-20

Infrastructure level exceptions are those in which the adapter encounters an
uncorrectable error, for example, a failure to allocate an FML32 buffer or other
memory allocation errors within the adapter code. All infrastructure level errors are
returned to the caller and logged usingéhea | og() function that is included in the
ADK. A message catalog should be used (See the follo\Mrgsage Catalog”
section). TheeLA cat ent ry function is used to retrieve the actual message string
from the catalog using a message number.

BEA el ink Adapter Development Kit User Guide

Error Handling

If an eLink to application adapter fails because of an infrastructure level error, then the
adapter returnswitht preturn (TPFAIL, !0, ...).TheFML32fied,

ELI NK_ADAPTER_ERR, contains an error message. The category of adapter error is
indicated in the FML 32 ELI NK_ADAPTER _ERR CCDE field. The content of this string
field isasingle keyword. A predefined set of categoriesis described in the list below.
Whenever possible, errors should be mapped to these categories. Adapter authors may
define additional categories, however, third-party additions should omit the
“ELINK_" prefix.

Table 3-4 Adapter Error Categories

Category Description

ELI NK_EAPP_API The application’s API returned an error. Note that this refers
to the application’s API returning an infrastructure level error
rather than a business |evel error.

ELI NK_EAPP_UNAVAI L The application was unavailable.

ELI NK_EATM An ATM error occurred.

ELI NK_ECONFI G An error occurred with the adapter configuration data
ELI NK_EFM_ An FML error occurred.

ELI NK_EI NVAL Invalid value/argument error. For example, an FML32

request buffer is sent to an adapter without all the required
FML32 fields being present.

ELI NK_El TYPE An input type mismatch. For example, converting
betweerFML32 and application data types on the input.

ELINK ELIM T Out of range value.

ELI NK_ENOENT No entry found. The application functionality
corresponding to thservice could not be found.

ELI NK_ECS An operating system error. For example, a memory
allocation error.

ELI NK_EOTYPE An output type mismatch. For example, converting
betweernFML 32 and application data types on the
output.

ELI NK_EPERM A permissions error.

BEA eLink Adapter Development Kit User Guide — 3-21

3 Understanding Adapter Architecture and Design

Table 3-4 Adapter Error Categories

Category Description
ELI NK_EPROTO A protocol error.
ELI NK_ETI ME Atimeout error. For example, timing-out while waiting

for the application to process the request.

ELI NK_ETRAN A transaction error

Message Catalog

All error and tracing messages should be put in amessage catal og file. The catalog file
isassumed to be atext file (.txt) whose message lines adhere to the rules outlined in
the HP-UNIX gencat() MAN pages. The MAN pages providereferenceinformationin
an online format.

For example:

10 “WARN: Existing parameter %s = %d, cannot change to %d”
11 “ERROR: Memory allocation failure”

The message numbers should be in ascending order, but the numbers need not be
contiguous. Double quotes are stripped and lines starting with comments ('$)) are
disregarded. Sets are not supported.

These catalog files are required to be located in the $TUXDIR\ELINK\CATALOGS
directory. However, the ADK utility function that is used to open the catalog file,
eLA_OpenCatalogFile() , expects afully qualified path name.

In the event that the message number is not found in the catalog file, astring similar to
“Message xxx not found” isreturned to the caller.

API to Access the Message Catalog File

The ADK includes an API to access the message catalog file. A summary of the
available functionsis provided here. For complete details see the “Utility Functions
and Macros’section in Appendix A, “eLink Adapter Development Kit References.”

3-22 BEA elLink Adapter Development Kit User Guide

Error Handling

Tracing

Trace Levels

M essage Catalog API Description
Name

eLA_(penCat al ogFile Open the message catalog file

eLA_C oseCatal ogFil e Closethe message catalog file

eLA catentry Retrieve the message corresponding to the entry
number

The following code segment illustrates how these functions are used:

Listing 3-8 Codefor Catalog File Functions

ADK_CAT_HANDLE r Handl e;

char cat Fi | eName[MAX_FNAME] ;

char nsgbuffer[1024];

rHandl e = eLA OpenCat al ogFi | e(cat Fi | eNane) ;

eLA catentry(msgbuffer, sizeof(msgbuffer), rHandle, 11);

eLA Cl oseCat al ogFi |l e(rHandl e) ;

el ink adapters should be written to allow tracing to be enabled through the adapter-
specific configuration file. Tracing can then be activated or deactivated by the user.

A trace level parameter is associated with each tracing message. The MAXVBGLEVEL
and M NVSGLEVEL parameters are set in the adapter configuration file to specify the
range of trace messages to be printed. The MAXMSGLEVEL and M NVBGLEVEL
parameters areread in the t psvri ni t function by calling the

BEA elLink Adapter Development Kit User Guide ~ 3-23

3 Understanding Adapter Architecture and Design

eLA Set Server MsgLevel function. They are then stored in the corresponding fields
of aMSG_LEVEL structure. For more information, refer to the “Definitions and
Typedefs”section in Appendix A, “eLink Adapter Development Kit References.”

MAXMSGLEVEL andM NVBGLEVEL parameters have a range of values from 0 to 9. If
both theMAXMBGLEVEL andM NVSGLEVEL parameters are set to 0, then no tracing is
done. Following are guidelines for assigning a message level to each individual trace
statement.

Table 3-5 Error Message L evels

Level Range Corresponding Tracing

13 Minimal level of tracing. Log module, program, or major
function entry points only.

4-6 Moderate level of tracing. Log entry into major control
blocks or execution of key events in the program. Log exit
points from modules, programs, and functions.

7-9 Very detailed level of tracing. All function calls and
return codes are printed. All buffers are hex dumped.
Entry and exit from all functions are logged.

If there is any code in the adapter that does signal or event handling, it is advisable to
use a trace level in the 7-9 range so that the signal or event handling is turned off for
the purposes of debugging. Actual usage of trace values should be described in user
documentation for the adapter.

Tracing Functions and Macros

3-24

In addition to theLA | og function, there are two other functions included in the ADK
to help with tracingeLA _hexdunp andeLA catentry. eLA hexdunp performs a
formatted hexdump of a buffesLA cat ent ry retrieves an entry from the message
catalog. The macr@&@LACATENTRY, serves as a cover for theA_cat ent ry function.

The ADK includes two macro&l ATRACE andELAI FTRACE, that are specifically
designed to aid in tracingLATRACE has three argumentAR, LVL andARGS. If the
LVL argument is between the values of the fields o LEVEL structurevAR
(inclusively), then the argumeARGS is substituted into aslL A | og function call.
ELAI FTRACE has two argument¥AR andLVL. ELAI FTRACE evaluates to an if

BEA el ink Adapter Development Kit User Guide

Deployment and Installation of eLink Adapters

statement that checksto seeif LVL isbetween thevalues of thefields of the MSG_LEVEL
structure VAR. ELAI FTRACE can be used to check if bracketed code immediately
following it should be evaluated.

The following code segment illustrates the use of the tracing functions and macros:

Listing 3-9 Codefor Tracing Functionsand Macros

MSG_LEVEL zLevel = {0, 0};
char confi gFi | eName[MAX_FNAME] ;

rc = eLA Get ConfigFil eName(configFil eName, MAX_FNAME, argc, argv);
printf("eLA GetConfigFileName - rc = %\n", rc);

if(rc == -1)

printf("Buffer not |arge enough\n");
else if(rc == 0)

printf("File Name paraneter not found\n");
el se

printf("File Name = %\n", configFil eNane);

rc = eLA_Set Server MsgLevel (confi gFi | eName, &zlLevel);
printf("SetServerMsgLevel - rc = %l\n",rc);
i f(rc == ADK_SUCCESS)

printf("mn, max = %, %\ n", zLevel.m nMsgLevel, zLevel.maxMsgLevel);

for(i = 0;i < 10;i ++)
{ ELAI FTRACE(zLevel, i) printf("Level = %\n", i);}
for(i = 0;i < 10;i ++)

ELATRACE(zLevel, i, ("Log nsg level %", i));

Deployment and Installation of eLink
Adapters

Adapters should be compatible with al the following platforms supported by eLink
Platform v1.1 or higher. Additional operating systems may be supported in future
releases of the eLink Platform and the ADK.

m HP10.20 and 11.00

BEA elLink Adapter Development Kit User Guide 3-25

3 Understanding Adapter Architecture and Design

m AIX 43X

m Compag Tru64 UNIX 5.0
m Solaris2.6and 7

m NT40

For HP-UX builds, the +DApor t abl e compilation flag should be used to make the
resulting object files portable across PA-RISC 1.1 and 2.0 workstations. Other
important build flagsare- W, +s. Thisis actually acommand for the linker to use the
SHLI B_PATH environment variable to locate shared libraries.

As an example, CFLAGS should at least use the following parameters:

CFLAGS=+DAportable -W, +s

Installation Directory Structure for Components

Adapters areinstalled in the eLink Platform using the traditional configuration shown
in the following table. Y our code needs to work in this environment. In the table,
adapter should be replaced by the name of your adapter (PeopleSoft, SAP, etc.).

Table 3-6 Directory Path for Tuxedo Components Relating to Adapters

Directory Contents

$(TUXDI R/ bi n Executables and dynamic link libraries.
$(TUXDIR) /i b Library objects (*.s0, *.a, * .dl, *.lib).

$(TUXDI R) /i ncl ude Include files needed for customer applications.

$(TUXDI R)/ ELI NK/ CATALOGS ~ Message catalog files.

$(TUXDI R) / udat aobj FML fldtbls for internal adapter use and
binfiles.adapter.
$(TUXDI R)/ adapt er Adapter-specific files and samples. It may

contain subdirectories.

3-26 BEA elLink Adapter Development Kit User Guide

Deployment and Installation of eLink Adapters

Table 3-6 Directory Path for Tuxedo Components Relating to Adapters

Directory Contents

$(TUXDI R) / adapt er/ nysanpl e Sample applications provided with the adapter
where mysample is the name of the sample
application provided.

Each Adapter should provide aflat text file named binfiles.adapter for inclusion in the
$(TUXDI R) / udat aobj directory. Theflat text file lists the files that are deliverables
for this product. These deliverables should be placed in the following directory paths:

Table 3-7 Directory Path for Adapter Deliverables

Directory Deliverables

/ (base directory for All make, bat, script files and readme files.
installation)

/ doc All documentation.

Isrc All source code.

/incl ude All includefiles.

/ bin All binary command line executables (if any).
/dl | All dils (if any).

Ilib All libs (.SL, .SO, .LIB, etc.) (if any).

/ demo Any demo code, sample programs, etc.

/test All test material (scripts, data, and programs).

Naming Convention for Source and Executable Files

The source and executable files for all adapters must follow specific naming
conventions.

The naming convention for source filesis:

BEA eLink Adapter Development Kit User Guide — 3-27

3 Understanding Adapter Architecture and Design

elLi nk<abbevi ation><i or o>.c

where <abbr evi at i on> isthe two or three letter abbreviation associated with the
adapter and i is for inbound (application to eLink) and o isfor outbound (eLink to
application).

The naming convention for executablefiles is:
ELI NK<abbrevi ati on><l or O

where <abbr evi at i on> isthe two or three letter abbreviation associated with the
adapter (in capsthistime) and | isfor inbound (application to eLink) and O is for
outbound (eLink to application). Using all capsfor the names of serversisan eLink
convention.

3-28 BEA elLink Adapter Development Kit User Guide

CHAPTER

4 Installing the eLink

ADK and Sample
Adapters

This chapter discusses the following topics:
m What isIncluded in the eLink ADK
e IncludeFilesand Libraries
e The Sample Application to eLink Adapter
e The Sample eLink to Application Adapter
e The Sample E-Mail Adapter
m Installing the eLink Adapter Development Kit
e Installing on the Windows NT Platform
e Installing on the HP-UX, AlX, Solaris, and Compag TRU64 UNIX Platforms

What is Included in the eLink ADK

Your el ink Adapter Development Kit is shipped with include files, shared libraries,
and sample application to el ink and eLink to application adapters.

BEA eLink Adapter Development Kit User Guide 4-1

Installing the eLink ADK and Sample Adapters

Include Files and Libraries

4-2

Note: Inorder to use the ADK you need alicense for both the eLink Platform and
the ADK. Thelicensefiles are delivered on afloppy disk and should have
accompanied your order of the eLink Platform and ADK. Refer to “Preparing
the License File” on page 2-Iar more information about the license file.

In addition to the required include files (.H); the development kit includes shared
libraries, (.sl) for HP-UX 10.20 and 11.0, (.so) for Solaris 2.6 and AlX 4.3.x; and a
dynamic link library (.dll) and import library (.lib) for Windows NT. The .dll is
compiled with Microsoft VC++ v5.x. While the .dll may be used with any Windows
development platform, the import library is specific to the Microsoft compiler.

Note: The HP 10.20 operating system is not supported for this release of the Sample
E-Mail Adapter because the SMTP library does not support HP 10.20.

Table4-1 Shipping List for ADK Include Filesand Libraries

File

Description

adkdeno\ adkdenp. t ext

Sample message catal ogue

i ncl ude\ adkf ns. h

Include file for both NT and Unix

i ncl ude\ adkl og. h

Include file for both NT and Unix

i ncl ude\ adkt ypes. h

Include file for both NT and Unix

include\fmfns. h

Include file for both NT and Unix

bi n\1 i badk. dl | Dynamic link library for Windows NT

lib\libadk.lib Import library for Windows NT

i b\Iibadk. sl Shared library for HP 10.20 or 11.00

I'i b\libadk. so Shared library for Solaris 2.6 or 7 or Compaq
Tru64 UNIX 5.0

i b\Iibadk. a Shared library for AIX 4.3

l'ib\Ilibsntp. sl Shared SMTP library for HP 11.00

BEA el ink Adapter Development Kit User Guide

What is Included in the eLink ADK

Table4-1 Shipping List for ADK Include Filesand Libraries

File Description

lib\libsntp.so Shared SMTP library for Solaris 2.6. or 7 or
Compag Tru64 UNIX 5.0

lib\libsmp_shr.a Shared SMTP library for AIX 4.3

Iib\libcomm so Communication protocol library for Solaris 2.6.

or 7 or Compaq Tru64 UNIX 5.0

Iib\libcommshr.a Communication protocol library for AIX 4.3
I'ib\Ilibcomm sl Communication protocol library for HP 11.00
lib\libcommdlI Communication protocol dynamic link library

for Windows NT

lib\libcommlib Communication protocol library for Windows
NT

The Sample Application to eLink Adapter

The sample application to el ink adapter contains code to generate the application to
el ink adapter program, which is a Tuxedo server. The sample application to eLink
adapter also contains a demo server program that can be used to test the adapter. The
application to el ink adapter al so includes a sample UBB file, as well as .bat and .SCR
files to set up the environment. Since the .lib filesincluded with Tuxedo are specific
to the MSV C++ compiler, and BUI LDSERVER and BUI LDCL | ENT default to calling the
command lineversion of theM S compiler (CL), the .bat fileswere created for use with
the MS compiler.

Table 4-2 Shipping List for Sample Application to eLink Adapter Components

File Description
adkdero\ i nbound\ el i nkdi . mak .MAK file for Unix
adkdeno\ i nbound\ i nbound. ¢ Source code for thedemo application to

eLink server program for Unix

BEA eLink Adapter Development Kit User Guide 4-3

4

Installing the eLink ADK and Sample Adapters

Table 4-2 Shipping List for Sample Application to eLink Adapter Components

File

Description

adkdeno\ i nbound\i nput . t xt

File containing requests

adkdeno\ i nbound\ READMVE

README file for Sample Application
to eLink Adapter

adkdeno\ i nbound\ SETENV. BAT

Sets the various environment variables
required by Tuxedo for NT

adkdeno\ i nbound\ set env. sh

Sets the various environment variables
required by Tuxedo for Unix

adkdeno\ i nbound\ si npserv. c

Source code for the Tuxedo server
program

adkdeno\ i nbound\t abl e. fm

FML32 table

adkdeno\ i nbound\ ubb. i nbound

UBBCONFIG file

The Sample eLink to Application Adapter

4-4

The sample eLink to application adapter contains code to generate demo server and
client programs, sample .UBB and .CFG files, as well as .bat and .SCR filesto set up
the environment and automate the build process. Since the .lib files included with
Tuxedo are specific tothe MS VC++ compiler, and BUl LDSERVER and BUI LDCLI ENT
default to calling the command line version of the MS compiler (CL), the .bat files

were created for use with the MS compiler.

Table 4-3 Shipping List for Sample eLink to Application Adapter Components

File

Description

adkdeno\ out bound\ ADKDEMO. C

Source code for the demo server program

adkdeno\ out bound\ ADKDEMO. CFG

CFGfile

adkdeno\ out bound\ ADKDEMO. H

Source code for the demo server program

adkdeno\ out bound\ ADKDEMO. UBB

BEA el ink Adapter Development Kit User Guide

UBB filefor NT

What is Included in the eLink ADK

Table 4-3 Shipping List for Sample eLink to Application Adapter Components

File

Description

adkdeno\ out bound\ ADKDEMOX. UBB

UBB file for Unix

adkdeno\ out bound\ CONFI G. C

Routinesto verify and load CFG file

adkdeno\ out bound\ CONFI G. H

Routines to verify and load CFG file

adkdeno\ out bound\ denoclient.C

Source code for the demo client program

adkdeno\ out bound\ el i nkdo. mak

.MAK filefor Unix

adkdeno\ out bound\ FOOFNS. C

String handling functions to simulate the
caling of an outside API

adkdeno\ out bound\ FOOFNS. H

String handling functions to simulate the
caling of an outside API

adkdeno\ out bound\ makecl i ent. BAT Makes the demo client program
adkdeno\ out bound\ makecl i ent. SCR Makes the demo client program
adkdenp\ out bound\ makeser ver . BAT Makes the demo server program
adkdenp\ out bound\ makeserver. SCR Makes the demo server program

adkdeno\ out bound\ READVE

README file for Sample eLink to
Application Adapter

adkdeno\ out bound\ SETADK. BAT

Sets the various environment variables
required by Tuxedo

adkdeno\ out bound\ SETADK. SCR

Sets the various environment variables
required by Tuxedo

The Sample E-Mail Adapter

The sample E-Mail Adapter contains code to generate demo E-Mail server and client
programs. This adapter is an eLink to Application adapter.

BEA eLink Adapter Development Kit User Guide

4-5

4

Installing the eLink ADK and Sample Adapters

4-6

Table 4-4 Shipping List for Sample E-Mail Adapter

File

Description

adkdemo\email\config.c

Routines to verify and load CFG file

adkdemo\email\config.h

Routines to verify and load CFG file

adkdemo\email\emailclient.c

Source code for the email client program

adkdemo\email\emailserver.c

Source code for the email server program

adkdemo\email\emailserver.cfg

Configuration file for the server

adkdemo\email\emailserver.h

Header file for the email server program

adkdemo\email\emaildemo.ubb

UBB filefor NT

adkdemo\email\emaildemox.ubb

UBB file for UNIX

adkdemo\email\emaildemo.mak

.MAK filefor UNIX

adkdemo\email\emailtools.c

Source code used to configure and send
email

adkdemo\email\emailtools.h

Header file for emailtools

adkdemo\email\email.cfg

Email configuration file (used with -f
option)

adkdemo\email\emailmessage.txt

Sample email message to send

adkdemo\email\makeclient.bat

Makes the email client program (NT)

adkdemo\email\makeclient.scr

Makes the email client program (UNIX)

adkdemo\email\makeserver.bat

Makes the email server program (NT)

adkdemo\email\makeserver.bat

Makes the email server program (UNIX)

adkdemo\ema\README.DEMO

README file for Sample Email Adapter

adkdemo\email\setadk.bat

Sets the various environment variables
required by Tuxedo (NT)

adkdemo\email\setadk.scr

Sets the various environment variables
required by Tuxedo (UNIX)

BEA el ink Adapter Development Kit User Guide

Installing the eLink Adapter Development Kit

Installing the eLink Adapter Development
Kit

BEA-branded adapters must be buildable on all supported el ink Platform operating
systems. HP-UX 11.00 platforms use the standard HP C compiler and NT platforms
use the MS V C++ v5.x command line compiler.

Complete the following tasks prior to installing the eLink Adapter Devel opment Kit:
¢ Readthe eLink Adapter Devel opnent Kit Release Notes.

¢ Install and verify the operation of the BEA Tuxedo product. Refer to the
“Special Instructions for Installing the Tuxedo Cose&ttion of this guide for
installation tips and thBEA Tuxedo Installation Guide athttp://
edocs.beasys.com/tuxedo/tux65/index.fidmmore information.

Installing on the Windows NT Platform

The eLink Adapter Development Kit software is available only for Version 4.0 of the
Windows NT platform.

Perform the following steps to install the eLink ADK software on a Windows NT
system:

1. Insert the product CD-ROM and click tRein option from theStart menu. The
Run window displays. Click th&rowse button to select the CD-ROM drive.
Select thev nnt directory and select thget up. exe program. CliclOK to run the
executable and begin the installation. Wielcome window displays as shown in
Figure 4-1. ClickNext to continue with the installation.

BEA eLink Adapter Development Kit User Guide 4-7

http://edocs.beasys.com/tuxedo/tux65/index.htm
http://edocs.beasys.com/tuxedo/tux65/index.htm

4

Installing the eLink ADK and Sample Adapters

4-8

Figure4-1 Welcome Window

Yelcome to the BEA eLink Adapter Development Kit
= Setup program. This program will install BEA eLink
Adapter Development Kit on your computer.

Itis strongly recommended that you exit all Windows
programs before running this Setup program.

Click Cancel to quit Setup and then close any programs you
have running. Click Next to continue with the Setup program.

YWARNING: This program is protected by copyright law and
international treaties.

Unauthorized reproduction or distribution of this program, or any
portion of it, may result in severe civil and criminal penalties,
and will be prosecuted to the maximum extent possible under
law.

Next > Cancel

BEA el ink Adapter Development Kit User Guide

Installing the eLink Adapter Development Kit

2. TheLicense Agreement window displays as shown in Figure 4-2. Read the
license agreement information, and click Yesto continue with the installation.

Figure4-2 License Agreement Window

/EJ Please read the following License Agreement. Press the PAGE DOWN key to
= see the rest of the agreement.

[BEA eLink Adapter Development Kit Software License j

The eLink Adapter Development Kit Software and accompanying documentation
[respectively "Software' and "Documentation'] you have acquired are protected by the
copyright laws of the United States and international copyright treaties. In addition, the
possession and use of the Software and Documentation is subject to the restrictions

contained in this License.

For purposes of this agreement.

Domain means a single unit Server Software [network server] or a collection of Server
Software defined as an administratively autonomous eLink Adapter Development Kit
System application[s]. J

Do you accept all the terms of the preceding License Agreement? If you choose No,
Setup will close. To install BEA eLink Adapter Development Kit, you must accept this
agreement.

< Back Yes No ‘

Software License Agreement

BEA eLink Adapter Development Kit User Guide

4-9

4 Installing the eLink ADK and Sample Adapters

3. TheUser Information window displays as shown in Figure 4-3. Enter your
name in the Name field. Enter the name of your company in the Company field.
Click Next to continue with the installation.

Figure4-3 User Information Window

User Information

Please enter your name and the name of the company for
whom you work.

Name: IJuhn Smith

Company: IEIEA Systems, Inc

< Back | MNext > I Cancel

4-10 BEA elLink Adapter Development Kit User Guide

Installing the eLink Adapter Development Kit

4. After you click Next, the Select License File Source Directory window displays
as shown in Figure 4-4.

a. Enter the Directory and Path or click the Browse button to display the Choose
Folder pop-up window as shown in Figure 4-5

Figure4-4 Select License File Source Directory Window

Select License File Source Directory

Please Enter Directory where your product license file resides.
[Insert your license file diskette and select NEXT to process
the license.]

=
Browse... |

< Back I Next > I Cancel

BEA eLink Adapter Development Kit User Guide — 4-11

4 Installing the eLink ADK and Sample Adapters

b. If you clicked Browse, locate the License file and click OK to return to the
Select License File Source Directory window. Then click Next to continue
with the installation process.

Figure4-5 Choose Folder Pop-up Window

Select License File Source Directory I

Choose Folder E 'ccnsc file resides.

MEXT to process
Please choose the installation folder.

Path:

=

Directories:
B a = 0K |

Browse... |

Cancel |

| |
Drives:
= a: TRANSFER =l Network... |
< Back | Next > | Cancel

4-12 BEA elLink Adapter Development Kit User Guide

Installing the eLink Adapter Development Kit

5. If,

Tuxedo isalready installed on your system,

The installation begins and a progress bar displays the status. The eLink ADK
componentsinstall into the Tuxedo directory. You may abort the installation
process anytime prior to completion by clicking the Cancel button.

When the installation completes, the Setup Complete window shown in
Figure 4-7 notifies you that the eLink ADK software is installed on your
system.

Warning: 1f WindowsNT isyour execution environment, BEA TUXEDO should be
installed first and the eLink ADK should beinstalled within the same
directory. If you install the eLink ADK outside of the Tuxedo directory,
you will need to copy thefilesinto the Tuxedo directory for processing of
datamapping servicerequests.Click Yesto continuetheinstallation or No
to quit.

Tuxedo isNOT already installed on your system,

The Error pop-up window displays as shown in Figure 4-6. Click OK on the
pop-up window to terminate the installation process. Install Tuxedo 6.5 on your
system (see warning above). Reinitiate the installation process starting with step
one of these installation instructions.

BEA eLink Adapter Development Kit User Guide ~ 4-13

4

Installing the eLink ADK and Sample Adapters

4-14

Figure4-6 Tuxedo 6.5 Installation Error Pop-Up Window

User Information

Please enter your name and the name of the company for
whom you work.

Name: [John Smith

i

Setup is searching for installed TUXEDO v6.5 software on your system.

° TUXEDO 6.5 must be installed on the target maching.

Pres=s O to terminate installation.

Pleaze install one of these products kefore continuing swith this installstion.

< Back U Next> Cancel

BEA el ink Adapter Development Kit User Guide

Installing the eLink Adapter Development Kit

6. The Setup Complete window notifies you that the eLink ADK softwareis
installed on your system. Click Finish to complete the setup process.

Figure4-7 Setup Complete

Setup Complete

Setup has completed installing BEA Systems eLink Adapter
Development Kit on your computer.

Click Finish to complete Setup.

< Back

BEA elLink Adapter Development Kit User Guide 4-15

4 Installing the eLink ADK and Sample Adapters

Installing on the HP-UX, AlX, Solaris, and Compaq TRU64
UNIX Platforms

This section explains how to install the el ink Adapter Development Kit software on
the following execution platforms.

m HP-UX 10.20 or 11.00

m AIX v4.3X

m SUN Solaris2.6 or 7

m Compag Tru64 UNIX 5.0

Warning: Youmustinstall theelink ADK execution components within the eLink
Platform directory.

Toinstall theelLink ADK software, yourunthei nst al | . sh script. Thisscript installs
all the necessary software components.

Perform the following stepsto install the eLink ADK software on a supported Unix
platform:

1. Logonasroottoinstall theelLink ADK software.

$ su -
Passwor d:

2. Access the CD-ROM device.

1s -1 /dev/cdrom

total O

brw rwrw 1 root sys 22, 0 January 5 10:55 c1b0t 010
3. Mount the CD-ROM.

mount -r -F cdfs /dev/cdron c1bOtOl O / mt

4. Change the directory to your CD-ROM device.

cd / mt

5. List the CD-ROM contents.

4-16 BEA eLink Adapter Development Kit User Guide

Installing the eLink Adapter Development Kit

#1s

install.sh hp

6. Execute the installation script.
sh ./install.sh

7. Theinstallation script runs and prompts you for responses.

Listing4-1 Install.sh Script Prompts

cmadm@al hpwl: / crhone/ di st/ bal kan-1> |'s

al pha/ hp/ i bm install.sh* sun5x/ wi nnt/
cmadm@al hpwl: / crhone/ di st/ bal kan-1> sh install.sh

01) al pha/tru64 02) hp/ hpux1020 03) hp/ hpux1l

04) ibn ai x43 05) sun5x/sol 26 06) sunb5x/sol 7

Install which platforms files? [01-6, g to quit, | for list]: 2
** You have chosen to install from hp/hpux1020 **

BEA elLi nk Adapter Developnent Kit Release 1.1

Thi s directory contains the BEA eLi nk Adapter Devel opment Kit System
for

HP- UX 10. 20 on 9000/ 800 series.

Is this correct? [y,n,q]: ¥y

To terminate the installation at any tine

press the interrupt key,

typically , <break>, or <ctrl +c>,

The foll owi ng packages are avail abl e:

1 adk BEA eLi nk Adapter Devel opment Kit

Sel ect the package(s) you wish to install (or 'all’ to install
al | packages) (default: all) [?,??,q]:

BEA eLi nk Adapt er Devel opnent Kit

(9000) Release 1.1
Copyright (c) 2000 BEA Systemns, Inc.

BEA eLink Adapter Development Kit User Guide — 4-17

4 Installing the eLink ADK and Sample Adapters

Al R ghts Reserved
Distributed under |icense by BEA Systens, |nc
BEA eLink is a trademark of BEA Systens, |nc.

Directory where ADK Adapter files are to be installed
(Enter your Tuxedo directory path) [?,q]: /work/cmadnm tux65

Usi ng /work/crmadni t ux65 as the ADK Adapter base directory

Determining if sufficient space is available ..
528 bl ocks are required
3783706 bl ocks are available to /work/cmadnftux65

Unl oadi ng / cmhone/ di st/ bal kan- 1/ hp/ hpux1020/ adk/ ADKT65. Z . .
adkdeno/ adkdeno. t ext
adkdeno/ enai | / README. DEMO
adkdeno/ emai | / adkdeno. t ext
adkdeno/ emai | / config.c
adkdeno/ emai | / config. h
adkdeno/ ermai | / emai | . cfg
adkdeno/ emai |l /emai lclient.c
adkdeno/ enai | / emai | deno. mak
adkdeno/ emai | / emai | denox. ubb
adkdeno/ emai | / enmi | nessage. t xt
adkdeno/ emai | / emai | server. c
adkdeno/ erai | / emmi | server. cfg
adkdeno/ enai | / emai | server. h
adkdeno/ emai | / emai | tool s. h
adkdeno/ emai | / makecli ent. scr
adkdeno/ emai | / makeser ver. scr
adkdeno/ emai | / set adk. scr
adkdeno/ i nbound/ el i nkdi . mak
adkdeno/ i nbound/ i nbound. c
adkdeno/ i nbound/ i nput . t xt
adkdeno/ i nbound/ r eadne
adkdeno/ i nbound/ set env. sh
adkdeno/ i nbound/ si npserv. c
adkdeno/ i nbound/tabl e. fm
adkdeno/ i nbound/ ubb. i nbound
adkdeno/ out bound/ adkdeno. ¢
adkdeno/ out bound/ adkdeno. cfg
adkdeno/ out bound/ adkdeno. h
adkdeno/ out bound/ adkdenox. ubb
adkdeno/ out bound/ config.c
adkdeno/ out bound/ config. h
adkdeno/ out bound/ denoclient.c
adkdeno/ out bound/ el i nkdo. mak
adkdeno/ out bound/ f oof ns. c

4-18 BEA elLink Adapter Development Kit User Guide

Installing the eLink Adapter Development Kit

adkdeno/ out bound/ f oof ns. h
adkdeno/ out bound/ makecl i ent. scr
adkdeno/ out bound/ makeser ver. scr
adkdeno/ out bound/ r eadne. deno
adkdeno/ out bound/ set adk. scr
bin/lic.sh

i ncl ude/ adkf ns. h

i ncl ude/ adkl og. h

i ncl ude/ adkt ypes. h
include/fmfns. h
lib/libadk.sl.1.10
lib/libcomm sl

l'ib/libsntp.sl
490 bl ocks
finished
Changing file perm ssions..
finished
If your license file is accessible, you may install it now.
Install license file? [y/n]: n

Pl ease don’t forget to use lic.sh located in your product bin
directory

to install the license file fromthe encl osed floppy.

Refer to your product Rel ease Notes for details on how to do this.

Install ati on of BEA eLink Adapter Devel opnent Kit was successfu

Pl ease don't forget to fill out and send in your registration card
cmadm@al hpwl: / cmhone/ di st/ bal kan- 1>

BEA elLink Adapter Development Kit User Guide 4-19

4 Installing the eLink ADK and Sample Adapters

4-20 BEA elLink Adapter Development Kit User Guide

CHAPTER

5 Configuring and

Running the Sample
Adapters

The el ink Adapter Development Kit includesa Sample Application to eLink Adapter,
a Sample eLink to Application Adapter, and a Sample E-mail Adapter.

This chapter discusses the following topics:

m Demo Prerequisites for UNIX

m The Sample Application to eLink Adapter
m The Sample eLink to Application Adapter
m The Sample E-Mail Adapter

Demo Prerequisites for UNIX

If you run the demos on a UNIX operating system, there are severa prerequisites:

m Beforebuilding the demo, you must have GNU Make Version 3.74 or higher. If
you do not have Make, you can download it from http\\www.gnu.org. Select the
Sof t war e item and then scroll down to make.

m Check the machine entry in your el i nkdo. mak and el i nkdi . nak files by
performing the following procedure:

BEA eLink Adapter Development Kit User Guide 5-1

http\\www.gnu.org

5 Configuring and Running the Sample Adapters

e Openthe. mak fileinatext editor.

¢ Find the following line(s), which may be entered multiple times for multiple
machines:
i feq ADK_MACHI NE #, where# equalsamachine|D per the following table.

Table5-1 UNIX MachinelD Numbers

Operating System ID#
AlX 4.3 49
Compag Tru64 UNIX 5.0 37
HP-UX 10.20 36
HP-UX 11.0 40
Solaris 35

e Verify that the information under the machine ID line is correct for the
identified operating system. If it is not correct, change the information to
reflect your system configuration.

e Savetheedited . mak file.

The Sample Application to eLink Adapter

The Sample Application to eLink Adapter provides an example of the general form of
an applicationto eLink adapter. In particular, it provides an example of usingaTuxedo
daemon service to poll an external source for requests. In the case of the Sample
Application to eLink Adapter, the external sourceisjust atext filethat containsrequest
strings. The Sample Application to eLink Adapter also provides a complete example
of the use of FM L 32. At thistime, the Sample Application to eLink Adapter does not
provide a complete code example of an adapter because it does not read information
from a configuration file, it does not use the standardeLA | og() function provided
for logging message by adapters, and it does not check alicense file. For amore
complete code example of an adapter, see the Sample eLink to Application Adapter.

5-2 BEA el ink Adapter Development Kit User Guide

The Sample Application to eLink Adapter

Before installing and running the Sample Application to el ink Adapter, you must
install Tuxedo.

Configuring the Sample Application to eLink Adapter

To configure the Sample Application to eLink Adapter:

1. Edit SETENV. BAT for NT, or set env. sh for Unix to reflect your environment.

Note: For NT, Tuxedo sets TUXDI R and adds TUXDI R\ bi n to the PATH environment

variable. For Unix, Tuxedo generates a TUX. ENV file that sets these variables
for you.

You need to set the | NCLUDE, LIB, APPDIR, TUXCONFIG,
FI ELDTBLS32, and FLDTBLDI R32 variables on both NT and Unix, and the
SHLI B_PATH (or LD LI BRARY_PATHOTr LI BPATH) variable on Unix.

Make sure that each of the following variablesis set correctly:

TUXDI R=<Base directory of the Tuxedo software>

APPDI R=<Base directory of the sanple application>

PATH nust incl ude $TUXD R/ bin

TUXCONFI G=<Ful | pat hnane of the binary tuxconfig file>
FLDTBLDI R32=<Base directory of the sanple application>
FI ELDTBLS32=table.fm (FM.32 table for this application)

LD LI BRARY_PATH nust include $TUXDIR/ Iib on systens that
use shared libraries (except HP-UX and Al X).

SHLI B PATH (HP-UX only) nust include $TUXDIR/lib
LI BPATH (Al X only) nust include $TUXDIR/lib

ADK_MACHI NE must be set to the appropriate machine ID # as
referenced in Table 5-1

2. Execute SETENV. BAT for NT, or set env. sh for Unix to complete the
installation.

BEA eLink Adapter Development Kit User Guide 5-3

5 Configuring and Running the Sample Adapters

Building and Running the Sample Application to eLink
Adapter

At this point, you are ready to build and run the Sample Application to eLink Adapter
included in ADKDEMO\INBOUND.

1. Because the sample inbound adapter runs as a Tuxedo server and the imitation
third-party “software” is just a file that is used for input, there is no Tuxedo client
to build, but there are twaerver s that must be built.

To build the servers, execute:

make -felinkdi.mak

or use the commands:

bui | dserver -0 sinpserv -f sinpserv.c -s TOUPPER
bui | dserver -0 inbound -f inbound.c -s DAEMON

Note: For NT, the default compiler is the MS VC++ command line compiler,
CL.EXE. While the compiler can be changed by setting the CC environment
variable, there is no guarantee that the .LIB files supplied with either Tuxedo
or the ADK will work with any other compiler.

2. Edit theubb. i nbound file. TheAPPDI R, TUXDI R and TUXCONFI Gvariables
need to be set independently of external variables. Be sure that the variables set
in theubb. i nbound file match your environment variables. The machine ID
field must also be set. The machine ID field on Windows NT (in this instance
DALNT10) should be entered in upper case.

3. Execute m oadcf with ubb. i nbound as an argument. This converts the
ubb. i nbound text file into a binaryrTUXCONFI Gfile.

t m oadcf -y ubb.inbound

4. Execute nmboot to load theaDKDEMO inbound application.
t mboot -y

The demo inbound server is booted and runs until it has processed all requests in
the filei nput . t xt . The outputs are written ta dout .

5. Execute nshut down to shut down th@DKDEMD inbound application.

5-4 BEA el ink Adapter Development Kit User Guide

The Sample eLink to Application Adapter

The Sample eLink to Application Adapter

Before installing and running the Sample eLink to Application Adapter, you must
install Tuxedo and the ADK.

Configuring the Sample eLink to Application Adapter

To configure the Sample Application to eLink Adapter:

1. Edit SETADK. BAT for NT or SETADK. SCRfor Unix to reflect your environment.

Note: For NT, Tuxedo sets TUXDI Rand adds TUXDI R\ bi n to the PATH environment
variable. For Unix, Tuxedo generates a TUX. ENV file that sets these variables
for you. Y ou need to set the | NCLUDE, LI B, APPDI Rand TUXCONFI Gvariables
on both NT and Unix, and the SHLI B_PATH variable on Unix.

2. Execute SETADK. BAT for NT or SETADK. SCRfor Unix to complete the
installation.

Building and Running the Sample eLink to Application
Adapter

At thispoint, you are ready to build and run the sample eLink to application adapter
included in ADKDEMO.

1. Buildtheclient and server as appropriate for your operating system:
e For NT, execute MAKECLIENT.BAT and MAKESERVER.BAT.

e For Unix, enter make -felinkdo.mak or execute MAKECLIENT.SCR and
MAKESERVER.SCR.

These batch or script filesinvoke BUI LDCLI ENT and BUI LDSERVER to build
DEMOCLI ENT. EXE and ADKDEMO. EXE. No changes should be required as long as
BUI LDSERVER, BUI LDCLI ENT and your C compiler can be found.

BEA eLink Adapter Development Kit User Guide 5-5

5 Configuring and Running the Sample Adapters

Note: For NT, the default compiler isthe MS VC++ command line compiler,
CL.EXE. While this compiler can be changed by setting the CC environment
variable, there is no guarantee that the .LIB files supplied with either Tuxedo
or the ADK will work with any other compiler.

2. Edit the ADKDEMO. UBB file for NT or ADKDEMOX. UBB file for Unix. The APPDI R,
TUXDI R and TUXCONFI G variables need to be set independently of external
variables. The machine ID field on NT (in thisinstance DALNT210) should be
entered in upper case.

Note: The ADKDEMD. CFGfile referenced by both UBB files need not be edited,
because it isinstallation independent.

3. Executetm oadcf with the appropriate UBB file as an argument to convert the
UBB text file into a binary TUXCONFI Gfile.

4. Executet mboot to load the ADKDEMO application.
5. Run DEMOCLI ENT with a variety of argumentsto exercise the server.

6. Executet nshut down to shut down the ADKDEMO application.

The Sample E-Mail Adapter

The Sample E-Mail Adapter is an eLink to application adapter that consists of a

Tuxedo client and server. The E-Mail Adapter’'s SEND service allows a user to
connect to an SMTP Server to send an E-Mail. The RECEIVE service is not
implemented so you must add the functionality to connect to a POP3 server to receive
E-Mail.

The E-Mail client uses the contents of tmai | . cf g file to send information to the
E-Mail server. The email.cfg file contains the following information in the form of
field nane = field contents. Edit the .cfg file with information appropriate for
your system.

server =your . SMIPSer ver. com
domai n=your . SMTPDongi n. com
sender =sender @mmai | . com

5-6 BEA el ink Adapter Development Kit User Guide

The Sample E-Mail Adapter

reci pi ent=reci pient @nai |l .com
subj ect =message subj ect
fil e=emai |l nessage. t xt

When the E-Mail client isinvoked, it reads the E-Mail information from the email.cfg
file, putsthe .cfg file fields into an FML 32 buffer, and then sends that buffer to the E-
Mail server. When the server receives the E-Mail buffer, it processes the buffer and
uses emailtools to configure the message and send it to the specified SMTP server.
When the server receives confirmation that the message was sent, the server returnsthe
FML32 buffer back to the E-Mail client and the process terminates.

Invoking the Sample E-Mail Adapter

Invoke the Sample E-Mail Adapter with acommand line in the following format:
$ emailclient <service> [-f email.cfg])

For example, to invoke the Sample E-Mail Adapter using default information
contained in the emai | . cf g file, use the following entry for UNIX:

$ emailclient send -f emmil.cfg
For Windows NT, enter the command at the appropriate directory prompt:
C\lemuilclient send -f email.cfg

Or, toinvokethe Sample E-Mail Adapter using your own information rather than using
parameters specified intheensi | . cf g file, enter the emailclient command without
specifying the .cfg file as the following UNIX example shows:

$ emuilclient send

After submitting the command, you will be prompted to enter the following
parameters, where the text in brackets equal sthe parameter values that you wish to use:

Enter Enter SMIP server (your.SMIPServer.con)=[your SMIP server]
Enter SMIP domain (your. SMIPDonai n. con) =[your SMIP domai n]

Enter Recipient of email (recipient@email.com)=[your recipient’s E-Mail address]
Enter Sender's email (sender@email.com)=[your sender’s E-Mail address]

Enter Subject of email=[your message subject]

Enter file loacation of message=[your emailmessage.txt]

BEA eLink Adapter Development Kit User Guide 5-7

5 Configuring and Running the Sample Adapters

Configuring the Sample E-Mail Adapter

To configure the Sample E-Mail Adapter:

1. Edit SETADK. BAT for NT or SETADK. SCR for Unix to reflect your environment.

Note: For NT, Tuxedo sets TUXDI R and adds TUXDI R\ bi n to the PATH environment
variable. For Unix, Tuxedo generates a TUX. ENV file that sets these variables
for you. You need to set thel NCLUDE, LI B, APPDI R ADKDI R,
ADK_MACHI NE, and TUXCONFI Gvariables on both NT and UNIX, and the
SHLI B_PATH on HP-UX, LI BPATHon AlX, and LD LI BRARY_PATH
on all other UNIX platforms.

2. Execute SETADK. BAT for NT or SETADK. SCRfor Unix to complete the
installation.

Building and Running the Sample E-Mail Adapter

At this point, you are ready to build and run the sample E-Mail Adapter.

1. Build the client and server as appropriate for your operating system:
e For NT, execute MAKECLIENT.BAT and MAKESERVER.BAT.

e For Unix, enter make -f emaildemo.mak or execute MAKECLIENT.SCR and
MAKESERVER.SCR.

Note: The GNU Make Utility is used for the make function. Refer to Demo
Prerequisites for UNIX for more information about GNU Make.

These batch or script files invoke BUI LDCLI ENT and BUI LDSERVER to build
EMAI LCLI ENT. EXE and EMAI LSERVER. EXE. No changes should be required as
long as BUI LDSERVER, BUI LDCLI ENT and your C compiler can be found.

Note: For NT, the default compiler isthe MS VC++ command line compiler,
CL.EXE. While this compiler can be changed by setting the CC environment
variable, there is no guarantee that the .LIB files supplied with either Tuxedo
or the ADK will work with any other compiler.

5-8 BEA el ink Adapter Development Kit User Guide

The Sample E-Mail Adapter

2. Edit the EMAI LDEMO. UBB file for NT or EMAI LDEMOX. UBB file for Unix. The
APPDI R, TUXDI R and TUXCONFI G variables need to be set independently of
externa variables. The machine ID field on NT (in thisinstance DALNT10)
should be entered in upper case.

Note: The EMAI LSERVER CFGfile referenced by both UBB files need not be edited,
because it isinstallation independent.

3. Executet nl oadcf with the appropriate UBB file as an argument to convert the
UBB text file into a binary TUXCONFI Gfile.

4. Executet mboot toload the EMAI LSERVER application.
5. Run EMAI LCLI ENT with avariety of argumentsto exercise the server.

6. Executet mshut down to shut down the EMAI LSERVER application.

BEA eLink Adapter Development Kit User Guide 5-9

5 Configuring and Running the Sample Adapters

5-10 BEA elink Adapter Development Kit User Guide

APPENDIX

A elink Adapter

Development Kit
References

This section discusses the following topics:
m Configuration Processing API

m Hash Table API

m Utility Functions and Macros

m Definitions and Typedefs

Configuration Processing API

This section provides detailed descriptions of the configuration processing APl used
by the ADK listed in the order that the functions will most likely be used. Following
isan alphabetical list of the configuration processing API functions and areferenceto
where details about the function can be found in this appendix.

Table A-1 Alphabetical Cross-Reference List of Configuration Processing API
Functions

BEA eLink Adapter Development Kit User Guide A-1

A elink Adapter Development Kit References

Refer to

eLA_CloseTagFile

eLA_CloseTagHandle

eLA_DestHashTable

eLA get

eLA_GetFieldMap

eLA_GetFirstField

eL A_GetFirstProperty

eLA_GetFirstSection

eLA_GetNextField

eLA_GetNextProperty

eLA_GetNextSection

eLA_GetPropertyValue

eLA_hash

eLA_InitHashTable

eLA_OpenTagFile

eLA_put

eLA OpenTagFile

eLA_QpenTagFi | e opensa Tag file, reads the datainto memory. Some preliminary
processing is performed, such as deleting leading and trailing white space, removing
blank lines, converting section names and tag datato uppercase and indexing the data.
Section names are always preceded by an asterisk (*). Tag data specifically refersto a
string that is to the left of an equal sign on aline. If astring is not preceded by an
asterisk or to the left of an equal sign on aline, then it will not be uppercased. Finally,

A-2 BEA el ink Adapter Development Kit User Guide

Configuration Processing API

Prototype

Return

Example

thefileisclosed and ahandle to the data is returned. This handleis used by the
eLA Get Fir st Secti on function and should be closed using eLA_Cl oseTagFi | e
when no longer needed. Multiline entries are allowed. If the last non white space
character on any lineisa\, the next line will be concatenated to the current line. A
blank line will terminate the multiline entry.

ADK_CFG HANDLE eLA OpenTagFil e(char * TagFi | eNane)

where

TagFi | eName isthe name of the Tag (or .INI) file.

Return Description

ADK_INVALID_HANDLE_VALUE On any error, such asinvalid file name, malloc
problems, etc.

Anything else Success

#include “adkfns.h”

ADK_CFG_HANDLE fHandle;
char FileName[256];

strcpy(FileName, “MYSAMPLE.INI);
fHandle = eLA_OpenTagFile(FileName);
if(fHandle == ADK_INVALID_HANDLE_VALUE)
printf(“*Unable to process file %s\n”,FileName);
else
printf(“File %s opened\n”, FileName);

eLA CloseTagFile(fHandle);

eLA CloseTagFile

Prototype

eLA_CloseTagFile closes ahandle returned by eLA_OpenTagFile and frees any
internally alocated resources. It can be called with an invalid handle.

int eLA_CloseTagFile(ADK_CFG_HANDLE TagFileHandle)

where

BEA eLink Adapter Development Kit User Guide A-3

A elink Adapter Development Kit References

TagFi | eHandl e isthe handle returned by eLA OpenTagFi | e.

Return
Return Description
ADK_SUCCESS Success
Anything else Error

Example #include “adkfns.h”
ADK_CFG_HANDLE fHandle:
fHandle = eLA_OpenTagFile(FileName);

eLA_CloseTagFile(fHandle);

eLA CloseTagHandle

eLA CloseTagHandle closesahandlereturned by eLA GetFirstSection and frees
any internally allocated resources. It aso can be called with aninvalid handle.

Prototype int eLA_CloseTagHandle(ADK_CFG_HANDLE GenericHandle)

where

GenericHandle isthe handle returned by eLA_GetFirstSection

Return
Return Description
ADK_SUCCESS Success.
Anything else Error.

Example #include “adkfns.h”
;AI\.DK_CFG_HANDLE fHandle, sHandle;

fHandle = eLA_OpenTagFile(FileName);

A-4 BEA el ink Adapter Development Kit User Guide

Configuration Processing API

i f(fHandl e ! = ADK | NVALI D_HANDLE_VALUE)
sHandl e = eLA Get FirstSection(fHandl e, "SERVICE");

eLA C oseTagFi | e(fHandl e) ;
eLA C oseTagHandl e(sHandl e) ;

eLA_GetFirstSection

Prototype

Return

Example

eLA_Get Fi r st Sect i on searches the INI file memory image for the desired sections
(all text matching done after conversion to upper case). These locations are indexed,
and ahandleto thisdataisreturned. Thishandleisused by theeLA Get Next Sect i on,
eLA GetFirstProperty,eLA Get Next Property andelLA Get PropertyVal ue. It
should be freed by eLA_Cl oseTagHandl e when no longer needed.

ADK_CFG HANDLE elLA Get First Secti on(ADK _CFG HANDLE TagFi | eHandl e,
char * SectionNane)

where
TagFi | eHandl e isthe handle returned by eLA penTagFi | e.

Sect i onName is the name of the section desired, excluding “*” (SectionName is
provided by the API). The text is converted to upper case before searching.

Return Description

ADK_INVALID_HANDLE_VALUE On any error, such asinvalid handle in argument,
malloc problems, or not finding section name.

Anything else Success

#include “adkfns.h”
ADK_CFG_HANDLE fHandle, sHandle;
fHandle = eLA_OpenTagFile(FileName);

if(fHandle = ADK_INVALID_HANDLE_VALUE)
sHandle = eLA_GetFirstSection(fHandle, "SERVICE");

BEA eLink Adapter Development Kit User Guide A-5

A elink Adapter Development Kit References

eLA d oseTagFi | e(f Handl e) ;
eLA d oseTagHandl e(sHandl e);

eLA GetNextSection

eLA_Get Next Sect i on updates the information in the section handle returned by
eLA GetFirst Sect i on and point to the next occurrence of the section in question.

Prototype int eLA Get Next Secti on(ADK_CFG HANDLE Secti onHandl e)
where
Sect i onHandl e isthe handle returned by eLA Get Fi r st Sect i on.

Return

Return Description

ADK_INVALID_HANDLE_VALUE Invalid handle in argument.

ADK_ERROR_LAST_SECTION No more sections.

ADK_SUCCESS Success

Example #include “adkfns.h”

ADK_CFG_HANDLE fHandle, sHandle;
int rc;

fHandle = eLA_OpenTagFile(FileName);

if(fHandle '= ADK_INVALID_HANDLE_VALUE)
sHandle = eLA_GetFirstSection(fHandle, "SERVICE");
if(sHandle != ADK_INVALID_HANDLE_VALUE)
{rc = ADK_SUCCESS;
while(rc == ADK_SUCCESS);
{rc = eLA_GetNextSection(sHandle);

=
}

eLA_CloseTagFile(fHandle);
eLA CloseTagHandle(sHandle);

A-6 BEA el ink Adapter Development Kit User Guide

Configuration Processing API

eLA GetFirstProperty

Prototype

Return

Example

eLA _Get First Property retrievesthe Tag/Vaue pair for the first property for a

particular section.

int eLA GetFirstProperty(ADK CFG HANDLE Secti onHandl e,
char * TagBuffer, size t TaglLength,

char * Val ueBuffer, size_t Val ueLength);

where

Sect i onHandl e isthe handle returned by eLA Get Fi r st Secti on.
TagBuf f er isaddress of the tag data return buffer.

TaglLengt h isthe size of the tag data buffer (including NULL).

Val ueBuf f er isthe address of the value data return buffer.

Val ueLengt h isthe size of the value data buffer (including NULL).

Return Description

ADK_INVALID_HANDLE_VALUE Invalid handlein argument.

ADK_ERROR_NO_PROPERTIES No property lines for section.

ADK_ERROR_NO_VALUE No text following the = in the tag line.

ADK_ERROR_NO_TAG No text preceding the = in the tag line.

ADK_ERROR_BUFFER_OVERFLOW ot enough room for either tag or value data.

#include “adkfns.h”
ADK_CFG_HANDLE fHandle, sHandle;
char tBuffer[100], vBuffer[100];

int rc, pc;

fHandle = eLA_OpenTagFile(FileName);

if(fHandle = ADK_INVALID_HANDLE_VALUE)
sHandle = eLA_GetFirstSection(fHandle, "SERVICE");

BEA eLink Adapter Development Kit User Guide

A-7

A elink Adapter Development Kit References

i f(sHandl e ! = ADK_| NVALI D_HANDLE_VALUE)
{ rc = ADK_SUCCESS;
whi l e(rc == ADK_SUCCESS) ;
{ pc = eLA GetFirstProperty(sHandl e, tBuffer,
si zeof (tBuffer), vBuffer, sizeof (vBuffer);
rc = eLA Get Next Section(sHandl e);

}
}

éi_A_C] oseTagFi | e(f Handl e) ;
eLA d oseTagHandl e(sHandl e);

eLA_GetNextProperty

eLA Get Next Property retrieves the Tag/Value pair for the second and successive
properties for a particular section.

Prototype i nt eLA Get Next Property(ADK _CFG HANDLE Secti onHandl e,
char * TagBuffer, size_ t TaglLength,
char * Val ueBuffer, size_t ValuelLength);
where
Sect i onHandl e isthe handle returned by eLA Get Fi r st Sect i on.
TagBuf f er isthe address of the tag data return buffer.
TaglLengt h isthe size of the tag data buffer (including NULL).
Val ueBuf f er isthe address of the value data return buffer.
Val ueLengt h isthe size of the value data buffer (including NULL).

Return

Return Description

ADK_| NVALI D HANDLE VALUE Invalid handle in argument.

ADK_ERROR _LAST_PROPERTY No more properties for this section.

ADK_ERROR _NO VALUE No text following the = in the tag line.

A-8 BEA el ink Adapter Development Kit User Guide

Configuration Processing API

Return Description

ADK_ERROR_NO_TAG No text preceding the = in the tag line.

ADK_ERROR_BUFFER_OVERFLOW ot enough room for either tag or value data.

Example #include “adkfns.h”

ADK_CFG_HANDLE fHandle, sHandle;
char tBuffer[100], vBuffer[100];
int rc, pc;

fHandle = eLA_OpenTagFile(FileName);

if(fHandle = ADK_INVALID_HANDLE_VALUE)
sHandle = eLA_GetFirstSection(fHandle, "SERVICE");
if(sHandle != ADK_INVALID_HANDLE_VALUE)
{rc = ADK_SUCCESS;
while(rc == ADK_SUCCESS);
{ pc = eLA_GetFirstProperty(sHandle, tBuffer,
sizeof(tBuffer),vBuffer, sizeof(vBuffer);

pc = eLA_GetNextProperty(sHandle, tBuffer,
sizeof(tBuffer),vBuffer, sizeof(vBuffer);

rc = eLA_GetNextSection(sHandle);

=
}

eLA_CloseTagFile(fHandle);
eLA CloseTagHandle(sHandle);

eLA GetPropertyValue

eL A_GetPropertyValueretrieves the Value datafor the first occurrence of aparticular
tag in a given section. Text fields are converted to upper case prior to searching.

Prototype int eLA_GetPropertyValue(ADK_CFG_HANDLE SectionHandle,
char * TagName,char * ValueBuffer, size_t ValueLength);

where

BEA eLink Adapter Development Kit User Guide A-9

A

eLink Adapter Development Kit References

A-10

Sect i onHandl e isthe handle returned by eLA Get Fi r st Sect i on.
TagNare is the tag to search for.

Val ueBuf f er isthe address of the value data return buffer.

Val ueLengt h isthe size of the value data buffer (including NULL).

Return

Return Description

ADK_INVALID_HANDLE_VALUE Invaid handlein argument.

ADK_ERROR_PROPERTY_NOT_ No tag matching input found.

FOUND
ADK_ERROR_NO_VALUE No text following the = in the tag line.
ADK_ERROR_NO_TAG No text preceding the = in the tag line.

ADK_ERROR_BUFFER_OVERFLOW ot enough room for value data

Example #include “adkfns.h”

ADK_CFG_HANDLE fHandle, sHandle;
char tBuffer[100], vBuffer[100];
int rc, pc;

fHandle = eLA_OpenTagFile(FileName);

if(fHandle '= ADK_INVALID_HANDLE_VALUE)
sHandle = eLA_GetFirstSection(fHandle, "SERVICE");
if(sHandle != ADK_INVALID_HANDLE_VALUE)
{rc = ADK_SUCCESS;
while(rc == ADK_SUCCESS);
{ pc = eLA_GetPropertyValue(sHandle, "NAME" vBuffer,
sizeof(vBuffer);

rc = eLA_GetNextSection(sHandle);

=
}

eLA_CloseTagFile(fHandle);
eLA CloseTagHandle(sHandle);

BEA el ink Adapter Development Kit User Guide

Configuration Processing API

eLA GetFieldMap

eLA_Get Fi el dvap searches the adapter specific configuration file memory image for
the named *FIELDMAP section. A handle to the data is returned, which is then used
by eLA GetFirstFiel dandelLA Get NextFi el d toretrieve each linein order. This
handle should be freed by eLA O oseTagHandl e when no longer needed. (This
function is somewhat analogousto eLA Get Fi r st Sect i on).

Prototype =~ ADK_CFG_HANDLE eLA Get Fi el dMap(ADK_CFG HANDLE TagFi | eHandl e
char * Fi el dMapNane)

where
TagFi | eHandl e isthe handle returned by eLA penTagFi | e.
Fi el dvapNane isthe name of the Fieldmap desired.

Return

Return Description

ADK_INVALID_HANDLE_VALUE On any error, such asinvalid handle in argument,
malloc problems, or not finding Fieldmap.

Anything else Success

Example #include “adkfns.h”
#include “adktypes.h”

ADK_CFG_HANDLE fHandle, sHandle;
char FileName[256];

fHandle = eLA_OpenTagFile(FileName);
if(fHandle = ADK_INVALID_HANDLE_VALUE)
sHandle = eLA_GetFieldMap(fHandle, "Map1");

eLA CloseTagHandle(sHandle);
eLA CloseTagFile(fHandle);

BEA eLink Adapter Development Kit User Guide A-11

A elink Adapter Development Kit References

eLA GetFirstField

eLA GetFirstFi el d retrievestheinformation for thefirst linein afieldmap section.
This datais parsed into the appropriate structure members, up to the maximum field
widths, with no validity checking.

Prototype 1 ong eLA Get FirstFi el d(ADK_CFG HANDLE MapHandl e, FI ELDVAP * Fi el dvap)

where
MapHandl e isthe handle returned by eLA_Get Fi el dMap.
Fi el dvap isapointer to a FIELDMAP (typedef(d) struct).

Return

Return Description

ADK_INVALID_HANDLE_VALUE Invalid handlein argument.

ADK_ERROR_NO_FIELDS No field lines for map.

Example #include “adkfns.h”
#include “adktypes.h”

ADK_CFG_HANDLE fHandle, sHandle;
FIELDMAP FieldMap;

char FileName[256];

long rc;

fHandle = eLA_OpenTagFile(FileName);
if(fHandle '= ADK_INVALID_HANDLE_VALUE)
{ sHandle = eLA_GetFieldMap(fHandle, “Map1”);
if(sHandle = ADK_INVALID_HANDLE_VALUE)
rc = eLA_GetFirstField(sHandle, &FieldMap);

.

eLA CloseTagHandle(sHandle);
eLA_CloseTagFile(fHandle);

A-12 BEA elLink Adapter Development Kit User Guide

Configuration Processing API

eLA GetNextField

eLA_Get Next Fi el d retrieves the information for successive linesin afieldmap
section. Thisdatais parsed into the appropriate structure members, up to the maximum
field widths, with no validity checking.

Prototype 1 ong eLA_Get Next Fi el d(ADK_CFG HANDLE MapHandl e, FI ELDVAP * Fi el dVap)

where
MapHand! e isthe handlereturned by eLA Get Fi el dvap.
Fi el dvap isapointer to a FIELDMAP (typedef(d) struct).

Return

Return Description

ADK_INVALID_HANDLE_VALUE Invalid handle in argument.

ADK_ERROR_LAST_FIELD No more fields for map.

Example #include “adkfns.h”
#include “adktypes.h”

ADK_CFG_HANDLE fHandle, sHandle;
FIELDMAP FieldMap;

char FileName[256];

long rc;

fHandle = eLA_OpenTagFile(FileName);
if(fHandle = ADK_INVALID_HANDLE_VALUE)
{'sHandle = eLA_GetFieldMap(fHandle, “Map1l”);
if(sHandle != ADK_INVALID_HANDLE_VALUE)
{ rc = eLA_GetFirstField(sHandle, &FieldMap);
while(rc == ADK_SUCCESS)

rc = eLA_GetNextField(sHandle, &FieldMap);

BEA eLink Adapter Development Kit User Guide A-13

A elink Adapter Development Kit References

eLA d oseTagHandl e(sHandl e);
eLA d oseTagFi | e(f Handl e) ;

Hash Table API

Following are the hash table API functions used by the ADK.

eLA InitHashTable

eLA | ni t HashTabl e creates a hash table and returns a pointer to it. Thistable should
be free(d) when no longer needed by eL A_DestHashTable.

Prototype struct nlist * * eLA I|nitHashtabl e(void);

Return
Return Description
NULL malloc error.
Anything else Table address.

Example #include “adkfns.h”
;S,It.ruct nlist * * cb_hash;
Eb_hash = eLA_InitHashtable();
if(cb_hash == NULL)

printf(“unable to make hash\n”);
else

eLA DestHashtable(cb_hash);

A-14 BEA elLink Adapter Development Kit User Guide

Hash Table API

eLA DestHashTable

Prototype
Return

Example

eLA put

Prototype

Return

Example

eLA Dest HashTabl e freesall of the dynamic memory in a hash table. It will behave
intelligently when fed aNULL pointer.

voi d eLA DestHashtabl e(struct nlist * hashtable[])
No returns.

#include “adkfns.h”

;t.ruct nlist * * cb_hash;

cb_hash = eLA_InitHashtable();

éLA_DestHashtable(cb_hash);

eLA_put addsanew element to the hash table. It signalsan error when a duplicate key
is encountered.

struct nlist * eLA_put(struct nlist * hashtable][], char * key,
void * data, size_t datalen)

Return Description
NULL Duplicate key or malloc error.
Anything else Pointer to element (success).

#include “adkfns.h”

struct nlist * * cb_hash, * element;
char data[81], key[81];

cb_hash = eLA_InitHashtable();
if(cb_hash == NULL)

BEA eLink Adapter Development Kit User Guide A-15

A elink Adapter Development Kit References

printf("unable to make hash\n");
el se
{ strcpy(key, “passphrase”);
strcpy(data, “Open Sesame”);
element = eLA put(cb_hash, key, data, 1 + strlen(data));
if(element == NULL)
printf(“unable to add element to hash table\n");
else

eLA DestHashtable(cb_hash);

eLA get

eLA_get retrieves an element from the hash table. Note that a pointer to the element
isreturned - you must extract the data explicitly.

Prototype struct nlist * eLA_get(struct nlist * hashtable[], char * key)

Return
Return Description
NULL Key not found.
Anything else Pointer to element (success).

Example #include “adkfns.h”

struct nlist * * cb_hash, * element;
char data[81], key[81];

cb_hash = eLA_InitHashtable();
if(cb_hash == NULL)
printf(“unable to make hash\n”);
else
{ strcpy(key, “passphrase”);
strcpy(data, “Open Sesame”);
element = eLA_put(cb_hash, key, data, 1 + strlen(data));
if(element == NULL)
printf(“unable to add element to hash table\n”);
else

A-16 BEA elLink Adapter Development Kit User Guide

Hash Table API

eLA_hash

Prototype

Return

Example

}

strcpy(key, “passphrase”);
element = eLA _get(cb_hash, key);
if(element == NULL)
printf(“unable to fetch element from hash table\n”);
else

eLA DestHashtable(cb_hash);

Returns the hash value for a given key.

unsigned int eLA _hash (char * key)

Return Description

Any value Hash value for key.

#include “adkfns.h”

iJ“nsigned int cbhash;
char key[81];

;t.rcpy(key, “corned beef");

cbhash = eLA_hash(key);
printf(“hash value for key = %s is %d\n”, key, cbhash);

BEA eLink Adapter Development Kit User Guide

A-17

A elink Adapter Development Kit References

Utility Functions and Macros

Following are the utility functions and macros used by the ADK.

eLA_catentry

Prototype

Return

Example

eLA catentry retrieves aspecified error message from a message catalog file using
the handle returned by eLA QpencCat al ogFi | e.

char * eLA catentry(char * nmsgbuffer, size_t bufferlen,
ADK_CAT_HANDLE chandl e, int nsgnunber)

where

msgbuf f er isthe caller supplied buffer. Thisisfilled to a maximum of bufferlen -1
chars with the message requested.

buf f er | en isthe size of the buffer.
chandl e isthe ADK_CAT_HANDLE returned by eLA_OpenCatalogFile.
msgnunber isthe ID of the message desired.

A message buffer is ALWAY S returned. This buffer may contain the following text

Return Description

Invalid ADK_CAT_HANDLE Aninvalid handle was passed.

Message xxx not found Message ID xxx not found in file.

#i ncl ude adkfns. h
#i ncl ude adktypes. h

ADK_CAT_HANDLE r Handl e;
char cat Fi | eName[MAX_FNAME] ;
char msgbuffer[1024];

strcpy(catFileName, “c:\\tuxedo\elink\catalogs\ouradapter.text”

A-18 BEA elink Adapter Development Kit User Guide

Utility Functions and Macros

rHandl e = eLA OpenCat al ogFi | e(cat Fi | eNane) ;
eLA | og(eLA catentry(nmsgbuffer, sizeof(nsgbuffer), rHandle, 121);

eLA C oseCat al ogFi |l e(rHandl e) ;

eLA_chkeLinkLic

eLA_chkelLinkLic checks for avalid, current 'eLink Platform’ section within the
Tuxedo License File (TUXDIR/udataobj/lic.txt), in addition to checking the
adapter_section specified in the argument to the function. VVersion numbers in the
License File >= function argument are acceptable. eLA_chkelL inkLic can be used to
verify the platform license only by passing aNULL in the adapter_section parameter.

Prototype i nt eLA chkelLi nkLic(const char * adapter_section, const char
* current _version)

Return
Return Description
-1 Invalid (missing, expired, etc.) license. (Detailsin
userlog()).
0 Success

Example #include “adkfns.h”

intrc;

char Section[81], Version[81];

strcpy(Section, “eLink Adapter for PeopleSoft”);
strcpy(Version, “1.1");

rc = eLA_chkeLinkLic(Section, Version);
printf(“eLinkLicense test, (v%s) - rc = %d\n”, Version, rc);

eLA CloseCatalogFile

eLA CloseCatalogFile closes ahandle returned by eLA_OpenCatalogFile and
frees any internally allocated resources. It can be called with an invalid handle.

BEA elLink Adapter Development Kit User Guide A-19

A elink Adapter Development Kit References

Prototype

Return

Example

int eLA CloseCatal ogFi |l e(ADK_CAT_HANDLE Cat Fi | eHandl e)

where

Cat Fi | eHandl e isthe handle returned by eLA QpenCat al ogFi | e.

Return Description
ADK_SUCCESS Success
Anything else Error

#i ncl ude adkfns.h
#i ncl ude adktypes. h

ADK_CAT_HANDLE r Handl e;
char cat Fi | eName[MAX_FNAME] ;

strcpy(catFileName, “c:\\tuxedo\elink\catalogs\tuxnt.text”
rHandle = eLA_OpenCatalogFile(catFileName);

eLA_ CloseCatalogFile(rHandle);

eLA GetConfigFileName

Prototype

eLA_GetConfigFileName extracts the server configuration file name from the
command line arguments passed to tpsvrinit() by Tuxedo.

int eLA_GetConfigFileName(char * FileNameBuffer, size_t
BufferSize,int argc, char * argv[])

where
FileNameBuffer isthe caller-supplied buffer to receive the file name.
BufferSize isthelength of the buffer.

argc, argv argc, isthe argv as passed to tpsvrinit() by Tuxedo.

A-20 BEA elLink Adapter Development Kit User Guide

Utility Functions and Macros

Return

Example

Return Description

-1 Buffer not large enough.

0 File Name parameter NOT found.

>0 Number of characters returned, including NULL.

char confi gFi | eNane[MAX_FNAME] ;

rc = eLA Get Confi gFil eNane(confi gFil eName, MAX FNAME, argc, argv);
printf(“eLA_GetConfigFileName - rc = %d\n”, rc);
if(rc == -1)
printf(“Buffer not large enough\n”);
else if(rc == 0)
printf(“File Name parameter not found\n”);
else
printf(“File Name = %s\n”, configFileName);

eLA _hexdump

Prototype

Example of
Output

eLA_hexdump prints (to ULOG) datain theformat given bel ow, starting with theinput
address and continuing for maxchars bytes. If offlag = =

ELA_HEX_ADDRESS OFFSET, the offset from starting address is printed,
otherwise the absolute address is printed.

void eLA_hexdump(void * char_buffer, size_t maxchars, int offlag)

0012FB38 ffffff ff 54 fb 1200 f185f8 7718 07 14 00 ...TO..A..w....
0012FB48 74 0f 14 00 dc 05 14 00 09 00 00 00 00 00 00 00 t...U...........
0012FB58 09 00 00 00 b0 2b 00 10 50 0f 14 00 cc 0514 01°+..P.......
0012FB68 7d le f6 77 68 }..wh

BEA eLink Adapter Development Kit User Guide A-21

A elink Adapter Development Kit References

eLA log

Prototype
Return

Example

eLA | og currently isacover function for userlog(). Itisintended that thisfunction will
be extended to handle message catalogs in the near future.

voi d elLA log(char *userText, ...)
None
#include “adkfns.h”

eLA log(“Required parameter -C missing”);

eLA OpenCatalogFile

Prototype

Return

Example

eLA_OpenCatalogFile opens amessage catalog file (in text form), reads the
information into memory, does some preliminary processing (for example, removes
double quotes) and indexes the file. The fileis closed and a handle to the data is
returned. Thishandle is used by the eLA catentry function and should be closed
using eLA_CloseCatalogFile when no longer needed.

ADK_CAT_HANDLE eLA_OpenCatalogFile(char * CatFileName)
where

CatFileName isthe FULLY QUALIFIED file name for the message catal og.

Return Description

ADK_INVALID_HANDLE VA Onany error, such asinvalid handle in argument,
LUE malloc problems, or not finding Fieldmap.
Anything else Success

#include adkfns.h
#include adktypes.h

ADK_CAT_ HANDLE rHandle;

A-22 BEA elLink Adapter Development Kit User Guide

Utility Functions and Macros

char cat Fi | eName[MAX_FNAME] ;

strcpy(catFileName, “c:\\tuxedo\elink\catalogs\tuxnt.text”
rHandle = eLA OpenCatalogFile(catFileName);

eLA_CloseCatalogFile(rHandle);

eLA SetServerMsgLevel

Prototype

Return

Example

eLA_SetServerMsgLevel extracts the min and max message |levels from the values

for the MINMSGLEVEland MAXMSGLEVELags in the SERVER section of the
configuration file.

int eLA_SetServerMsgLevel(char * Filename, MSG_LEVEL * msglevels)
where
Filename isthe configuration file name.

msglevels isthe MSG_LEVEL struct to receive leve data.

Return Description

ADK_SUCCESS Found and extracted both values

ADK_ERROR_SECTION_NOT_ SERVER section not found.
FOUND

ADK_ERROR_PROPERTY_NOT_ Oneor both levels not found.
FOUND

ADK_ERROR_OPEN_READ Unable to read file.

MSG_LEVEL zLevel = {0,0};
char configFileName[MAX_FNAME];

rc = eLA_GetConfigFileName(configFileName, MAX_FNAME, argc, argv);
if(rc == ADK_SUCCESS)
{rc = eLA_SetServerMsgLevel(configFileName, &zLevel);
printf(“SetServerMsgLevel - rc = %d\n”,rc);
if(rc == ADK_SUCCESS)

BEA eLink Adapter Development Kit User Guide

A-23

A elink Adapter Development Kit References

printf(“min, max = %d, %d\n”, zLevel.minMsgLevel,
zLevel.maxMsgLevel);

ELACATENTRY

ELACATENTRYs a cover macro for the eLA_catentry function.
Definition ~ #define ELACATENTRY (u,v,x,y) eLA_catentry((u),(v),(X),(y))
Example :
char cat_bufferfELA_MAX_ERROR_MESSAGE];
size_t cat_len;
.c“at_len = sizeof(cat_buffer);

strcpy(catFileName, “c:\\tuxedo\elink\catalogs\ouradapter.text”
rHandle = eLA_OpenCatalogFile(catFileName);

eLA log(ELACATENTRY(cat_buffer, cat_len, rHandle, 2221));

ELAIFTRACE

ELAIFTRACE callsabracketed {} set of codeif LVL falls within arange defined by
minMsgLevel and maxMsgLevel of the given MSG_LEVELstructure VAR.

Definition #define ELAIFTRACE(VAR,LVL) if(((LVL) >= (VAR).minMsgLevel)
&& \((LVL)<= (VAR).maxMsgLevel

Example ELAIFTRACE can be used to invoke the eLA_hexdump program:

MSG_LEVEL zLevel = {0,0};
char configFileName[256];

eLA_SetServerMsgLevel(configFileName, &zLevel);

ELAIFTRACE(zLeveI, 3){ eLA_hexdump(buffer, sizeof(buffer), 1);}

A-24 BEA elLink Adapter Development Kit User Guide

Definitions and Typedefs

ELATRACE

Definition

Example

ELATRACE callseLA | og with ARGS if LVL falls within arange defined by
m nMsgLevel and naxMsgLevel of the given M5SG LEVEL structure VAR.

#defi ne ELATRACE(VAR, LVL, ARGS) if(((LVL) >=(VAR). m nMsgLevel)
&% \ ((LVL) <= (VAR).maxMsglLevel)

MBG LEVEL zlLevel = {0, 0};
char cat _buffer[ELA MAX ERROR MESSACE] ;
size_ t cat_len;

cat _|len = sizeof(cat_buffer);
eLA Set ServerMsglLevel (confi gFi |l eName, &zlLevel);
strcpy(catFileName, “c:\\tuxedo\elink\catalogs\ouradapter.text”

rHandle = eLA OpenCatalogFile(catFileName);

ELATRACE(zLevel, 3, (ELACATENTRY (cat_buffer, cat_len, rHandle,
1221)));

Definitions and Typedefs

The following typedef and definitions are used by the configuration file processing
functions:

typedef int ADK_CFG_Handle

Function Typedef
#define ADK_INVALID_HANDLE_VALUE -1
#define ADK_SUCCESS 0
#define ADK_ERROR_LAST_SECTION 1
#define ADK_ERROR_NO_PROPERTIES 2
#define ADK_ERROR_LAST_PROPERTY 3

BEA eLink Adapter Development Kit User Guide A-25

A elink Adapter Development Kit References

Function Typedef
#defi ne ADK_ERROR_NO TAG 4
#defi ne ADK_ERROR_NO VALUE 5
#defi ne ADK_ERROR BUFFER_OVERFLOW 6
#defi ne ADK_ERROR_PROPERTY_NOT_FCOUND 7
#defi ne ADK_ERROR_SECTI ON_NOT_FOUND 8
#defi ne ADK | NVALI D_HANDLE VALUE -1
#defi ne ADK_SUCCESS 0

Thefollowing definitions are used by theeLA_Get Confi gFi | eNarme and
eLA Set Server MsgLevel utility functions:

Function Typedef
#defi ne ADK_ERROR_FI LE_NOT_FOUND 21
#defi ne ADK_ERROR_OPEN READ 22
#defi ne ADK_ERROR OPEN WRI TE 23
#defi ne ADK_ERROR_ON_READ 24
#defi ne ADK_ERROR ON WRI TE 25

Thefollowing definition is used by the hash table functions:

struct nlist

{
struct nlist *next; /* next elenent in the linked list */
char *key; /* String that is hashed */
void *dat a; /* Data stored in hash table */

H

Thefollowing definitions are used by the and eL A_SetServerMsglL evel,
eLA_hexdump and other utility functions, and the tracing macros:

typedef struct

A-26 BEA elLink Adapter Development Kit User Guide

Definitions and Typedefs

{ int mnMgLevel;
int maxMsglLevel ;
} MSG LEVEL;
#defi ne ELA MAX ERROR MESSAGE 1024
#defi ne ELA HEX ADDRESS ABSCOLUTE 0x00000000
#defi ne ELA HEX ADDRESS OFFSET 0x00000001

The following typedef is used by the message catal ogue functions:
typedef | ong ADK CAT_HANDLE;

The following #define(s) and typedef(s) are used in the ADK functions to support
FML32 Field Mapsin the configuration files:

#define ADK_ERROR_NO_FIELDS 8
#define ADK_ERROR_LAST FIELD 9
#define FM_AN_MAX 256
#define FM_FN_MAX 32
#defineFM_IO_MAX 16
#defineFM_FD_MAX 16

typedef struct
{ char ApplicationNane[FM_ AN _NAX] ;
char FM_.32Fi el dNane[FM_FN_MAX] ;
char | nputCQutput|[FM | O MAX];
char Fi el dDesi gnator[FM_FD_NMNAX] ;
} FI ELDVAP;

BEA eLink Adapter Development Kit User Guide A-27

A elink Adapter Development Kit References

A-28 BEA elink Adapter Development Kit User Guide

APPENDIX

B ATMI References

The information included in this section is excerpted from the Tuxedo Online
Documentation. These are some of the most commonly used Tuxedo ATMI functions
used for adapter development. For additional detailsand acomplete list of Tuxedo
functions and commands, see http://edocs.beasys.com/tuxedo/tux65/index.htm.

Following is an alphabeticd list of the the functions described in this section.

Refer to

tpacall

tpadvertise

tpalloc

tpcall

tpcancel

tpfree

tpgetrply
tpinit

tprealloc

tpreturn

tpsvrdone

tpsvrinit

tpterm

BEA eLink Adapter Development Kit User Guide B-1

http://edocs.beasys.com/tuxedo/tux65/index.htm

B ATMI References

Refer to

tptypes

tpunadvertise

Client Membership

tpinit

B-2

Function

Synopsis

Description

Routine for joining an application

#include <atm . h>
int tpinit(TPINIT *tpinfo)

tpinit() alowsaclienttojoin a BEA Tuxedo system application. Before aclient
can use any of the BEA Tuxedo system communication or transaction routines, it must
first join a BEA Tuxedo system application. Because callingt pi ni t () isoptiona, a
client may also join an application by calling many ATMI routines (for example,

t pcal |') that transparently call t pi nit () witht pi nf o setto NULL. A client may want
tocall t pi ni t () directly sothat it can set the parametersdescribed below. In addition,
t pi ni t () must be used when application authentication is required (see the
description of the SECURI TY keyword in ubbconf i g), or when the application wishes
to supply its own buffer type switch (seet ypesw). After t pi ni t () successfully
returns, the client can initiate service requests and define transactions. If t pi ni t () is
called more than once (that is, after the client has aready joined the application), no
action is taken and successis returned.

t pi ni t () 'sargument, t pi nf o, isa pointer to atyped buffer of type TPI NI T and a
NULL sub-type.

TPI NI T isabuffer type that istypedefed inthe at m . h header file. The buffer must
beallocated viat pal | oc() priorto callingt pi ni t . The buffer should be freed using
t pfree(3) after calling t pi nit (). TheTPI NI T typed buffer structure includes the

following members:

BEA el ink Adapter Development Kit User Guide

Client Membership

char usr nane[MAXTI DENT+2] ;
char cl t name[MAXTI DENT+2] ;
char passwd[MAXTI DENT+2] ;
char gr pname[MAXTI DENT+2] ;
| ong fl ags;

| ong dat al en;

| ong dat a;

usr nane, cl t nane, gr pnane and passwd areall NULL -terminated strings. usrname
is a name representing the caller. cl t nane is a client name whose semantics are
application defined. Thevalue, syscl i ent, isreserved by thesystemfor thecl t nane
field. Theusr nanme andcl t nanme fieldsare associated with theclientatt pi ni t () time
and areused for both broadcast notification and administrative statisticsretrieval. They
should not have more characters than MAXTI DENT, which is defined as 30. passwd is
an application password in unencrypted format that is used for validation against the
application password. The passwd is limited to 30 characters. gr pnane isused to
associate the client with a resource manager group name. If gr pnane is set to a 0-
length string, then the client is not associated with a resource manager and isin the
default client group. The value of gr pname must be the null string (0-length string) for
/WS clients. Note that gr pnane isnot related to ACL GROUPS. The setting of flagsis
used to indicate both the client-specific notification mechanism and the mode of
system access. These settings may override the application default; however, in the
event that they cannot, t pi ni t () printsawarninginalog file, ignoresthe setting and
returnsthe application default setting in theflags element upon return from t pi ni t () .
For client notification, the possible values for flags are as follows:

TPU_SI G-Select unsolicited notification by signals.
TPU_DI P-Select unsolicited notification by di p-i n.
TPU_I G\-ignore unsolicited notification.

Only one of the above flags can be used at atime. If the client does not select a
notification method via the flags field, then the application default method will be set
in the flags field upon return from t pi ni t () . For setting the mode of system access,
the possible values for flags are as follows:

TPSA FASTPATH-Set system accessto f ast pat h.
TPSA PROTECTED-Set system accessto pr ot ect ed.

Only one of the above flags can be used at atime. If the client does not select a
notification method or a system access mode via the flags field, then the application
default method(s) will be set in the flags field upon return from t pi ni t () . See

BEA eLink Adapter Development Kit User Guide B-3

B ATMI References

Return Values

B-4

Errors

ubbconfi g for details on both client notification methods and system access modes.
dat al en isthe length of the application specific datathat follows. The buffer type
switch entry for the TPI NI T typed buffer sets thisfield based on the total size passed
in for the typed buffer (the application data size is the tota size less the size of the
TPI NI T structureitself plusthe size of the data placehol der asdefined in the structure).
dat a isaplace holder for variable length data that is forwarded to an application-
defined authentication service. It isalwaysthe last element of this structure. A macro,
TPI NI TNEED, isavailable to determine the size TPI NI T buffer necessary to
accommodate a particular desired application-specific data length. For example, if 8
bytes of application specific data are desired, TPI Nl TNEED will return the required
TPI NI T buffer size. A NULL value for t pi nf o is allowed for applications not making
use of the authentication feature of the BEA Tuxedo system. Clients using a NULL
argument will get defaults of O-length stringsfor usr nane, ¢l t name, and passwd, no
flags set, and no application data.

t pi nit () returns-1 on error and setst per r no to indicate the error condition.
Under the following conditions, t pi ni t () failsand setst per rno to:

[TPEI NVAL]
Invalid arguments were specified. t pi nf o isnon-NULL and does not point
to atyped buffer of type TPI NI T.

[TPENCENT]
The client cannot join the application because of space limitations.

[TPEPERM
The client cannot join the application because it does not have permission to
do so or because it has not supplied the correct application password.
Permission may be denied based on an invalid application password, failure
to pass application specific authentication, or use of restricted names.

[TPEPROTQ
t pi nit () was called in an improper context (for example, the calerisa
server).

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

[TPECS]
An operating system error has occurred.

BEA el ink Adapter Development Kit User Guide

Buffer Management

tpterm

Function

Synopsis

Description

Return Values

Errors

Routine for leaving an application

#i ncl ude <atm . h>
int tptermvoid)

t pt er m() removesaclient from aBEA Tuxedo system application. If the clientisin
transaction mode, thenthe transaction is rolled back. When t pt er m() returns
successfully, the caller can no longer communicate with any other program nor can it
participate in any transactions. Any outstanding conversations are immediately
disconnected. If t pt er m() iscalled morethan once (that is, after the caller has already
left the application), no action is taken and success is returned.

t pt er () returns\-1 on error and setst per r no to indicate the error condition.
Under the following conditions, t pt er m() failsand setst per rno to:

[TPEPROTQ
t pt er m() was called in an improper context (for example, the caller isa
server).

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

[TPEOS]
An operating system error has occurred.

Buffer Management

tpalloc

Function

Routine for allocating typed buffers

BEA eLink Adapter Development Kit User Guide B-5

B ATMI References

Synopsis #i ncl ude <atni.h>
char * tpalloc(char *type, char *subtype, |ong size)

Description t pal | oc() returnsapointer to abuffer of typet ype. Depending on the type of buffer,
both subt ype and si ze are optional. The BEA Tuxedo system provides a variety of
typed buffers, and applications are free to add their own buffer types. Consult
t uxt ypes for more details. If subt ype isnon-NULL int nt ype_swfor a particular
buffer type, then subt ype must be specified whent pal | oc() iscalled. Theallocated
buffer will be at least as large asthe larger of si ze and df | t si ze, wheredf I t si ze
isthe default buffer size specifiedint nt ype_swfor the particular buffer type. For
buffer type STRI NG the minimum is 512 bytes; for buffer types FML and VI Ewthe
minimum is 1024 bytes. Note that only the first eight bytes of t ype and the first 16
bytes of subt ype are significant. Because some buffer typesrequire initiaization
before they can be used, t pal | oc() initializesabuffer (in a BEA Tuxedo system-
specific manner) after it isallocated and beforeit is returned. Thus, the buffer returned
to the caller isready for use. Note that unless the initialization routine cleared the
buffer, the buffer is not initialized to zeros by t pal | oc() .

Return Values Upon successful completion, t pal | oc() returnsapointer to a buffer of the
appropriate type aligned on along word; otherwise, it returnsNULL and setst per r no
to indicate the condition.

Errors Under the following conditions, t pal | oc() failsand setst per r no to:

[TPEI NVAL]
Invalid arguments were given (for example, type is NULL).

[TPENOENT]
No entry int nt ype_swmatchest ype and, if non-NULL, subt ype.

[TPEPROTC|
t pal | oc() wascalled in an improper context.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

[TPECS]
An operating system error has occurred.

B-6 BEA el ink Adapter Development Kit User Guide

Buffer Management

Usage

tprealloc

Function

Synopsis

Description

Return Values

Errors

If buffer initialization fails, the allocated buffer isfreed and t pal | oc() failsreturning
NULL. This function should not be used in concert with mal | oc, real | oc,orfree in
the Clibrary (for example, abuffer allocated witht pal 1 oc() should not befreed with
free()). Two buffer types are supported by any compliant implementation of the
BEA Tuxedo system extension.

Routine to change the size of atyped buffer

#i ncl ude <atni . h>
char * tprealloc(char *ptr, long size)

tpreal | oc() changesthesize of the buffer pointedtoby pt r to size bytesand returns
apointer to the new (possibly moved) buffer. Similar tot pal | oc, the size of the buffer
will be at least as large asthe larger of si ze and df | t si ze, wheredf | t si ze isthe
default buffer size specifiedint nt ype_sw. If thelarger of thetwoislessthan or equal
to zero, then the buffer isunchanged and NULL isreturned. A buffer'st ype remainsthe
same after it isre-allocated. After thisfunction returns successfully, the returned
pointer should be used to reference the buffer; pt r should no longer be used. The
buffer’'s contents will not change up to the lesser of the new and old sizes. Some buffer
types require initialization before they can be used. t preal | oc() re-initiaizesa
buffer (in a communication manager-specific manner) after it is re-allocated and
beforeit isreturned. Thus, the buffer returned to the caller isready for use.

Upon successful completion, tpreal | oc() returns a pointer to a buffer of the
appropriate type aligned on along word; otherwise it returns NULL and setst perr no
to indicate the error condition.

If there-initialization function fails, t preal | oc() failsreturning NULL and the
contents of the buffer pointed to by pt r may not be valid. Under the following
conditions, t pr eal | oc() failsand setst per r no to:

[TPEI NVAL]
Invalid arguments were given (for example, pt r does not point to a buffer
originally allocated by t pal | oc).

[TPEPROTQ
tpreal l oc() wascalled in animproper context.

BEA eLink Adapter Development Kit User Guide B-7

B ATMI References

Usage

tpfree

Function

Synopsis

Description

Return Values

Usage

tptypes

Function

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

[TPECS]
An operating system error has occurred.

If buffer re-initialization fails, t pr eal | oc() fails returning NULL and the contents of
the buffer pointed to by pt r may not be valid. This function should not be used in
concertwithmal | oc,real | oc or f ree intheClibrary (for example, abuffer alocated
witht preal | oc() should not befreed withfree()).

Routine for freeing atyped buffer

#i ncl ude <atm . h>
void tpfree(char *ptr)

Theargument tot pf ree() isapointer to a buffer previously obtained by either

tpal l ocort preal | oc. If pt r iSNULL, no action occurs. Undefined resultswill occur
if pt r does not point to atyped buffer (or if it pointsto space previously freed with

t pfree()). Inside serviceroutines, t pf r ee() returnsand does not free the buffer if
ptr pointsto the buffer passed into a service routine. Some buffer types require state
information or associated data to be removed as part of freeing a buffer. t pf r ee()
removes any of these associations (in a communication manager-specific manner)
before abuffer isfreed. Oncet pfree() returns, ptr should not be passed as an
argument to any BEA Tuxedo system routine or used in any other manner.

t pf ree() doesnot return any valueto itscaller. Thus, it is declared as a void.

This function should not be used in concert withmal | oc, real | oc orfree intheC
library (for example, a buffer allocated with tpalloc should not be freed with free).

Routine to determine information about a typed buffer

B-8 BEA el ink Adapter Development Kit User Guide

Request/Response

Synopsis #i ncl ude <atmi . h>
| ong tptypes(char *ptr, char *type, char *subtype)

Description t pt ypes() takesasitsfirst argument a pointer to a data buffer and returnsthet ype
and subt ype of that buffer in its second and third arguments, respectively. pt r must
point to a buffer gotten fromt pal | oc. If t ype and subt ype are non-NULL, then the
function populates the character arraysto which they point with the names of the
buffer'st ype and subt ype, respectively. If the names are of their maximum length (8
for t ype, 16 for subt ype), the character array is not null-terminated. If no subt ype
exists, then the array pointed to by subt ype will contain aNULL string. Note that
only thefirst eight bytes of t ype and the first 16 bytes of subt ype are populated.

Return Values Upon success, t pt ypes() returnsthe size of the buffer; otherwise it returns \ - 1
upon failure and setst per r no to indicate the error condition.

Errors Under the following conditions, t pt ypes() failsand setst perr no to:

[TPEI NVAL]
Invalid arguments were given (for example, pt r does not point to a buffer
gotten from \ % t pal | oc).

[TPEPROTQ
t pt ypes() was called in an improper context.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

[TPEOS]
An operating system error has occurred.

Request/Response

tpcall

Function Routine for sending service request and awaiting its reply

SynopSiS int tpcall (char *svc, char *idata, long ilen, char **odata, |ong
*olen, long flags

BEA eLink Adapter Development Kit User Guide B-9

B ATMI References

Description

t pcal I sendsarequest and synchronously awaitsitsreply. A call to this functionis
the same as calling t pacal | immediately followed by t pgetrpl y.tpcal | sendsa
request to the service named by svc. The request is sent out at the priority defined for
svc unless overridden by apreviouscall to t pspri o. The data portion of areguest is
pointed to by i dat a, a buffer previously allocated by t pal | oc. i | en specifies how
much of i dat a to send. Note that if i dat a pointsto a buffer of atype that does not
require alength to be specified, (for example, an FML fielded buffer), theni | en is
ignored (and may be 0). Also, i dat a may be NULL, inwhich casei | en isignored.
Thet ype and sub-t ype of i dat a must match one of thet ypes and sub-t ypes
recognized by svc. odat a isthe address of a pointer to the buffer whereareply isread
into, and ol en pointsto the length of that reply. * odat a must point to a buffer
originaly allocated by t pal | oc. If the same buffer isto be used for both sending and
receiving, odat a should be setto theaddressof i dat a. FML and FML 32 buffers often
assume a minimum size of 4096 bytes; if the reply islarger than 4096, the size of the
buffer is increased to a size large enough to accommodate the data being returned.
Also, if i dat a and * odat a were equal whent pcal | wasinvoked, and * odat a is
changed, theni dat a nolonger pointstoavalid address. Using the old address can lead
to data corruption or process exceptions. Buffers on the sending side that may be only
partialy filled (for example, FML or STRING buffers) will have only the amount that
isused sent. The system may then enlarge the received data size by some arbitrary
amount. Thismeansthat the receiver may receive abuffer that issmaller than what was
originaly alocated by the sender, yet larger than the data that was sent. Thereceive
buffer may grow, or it may shrink, and its address almost invariably changes, asthe
system swaps buffersaround internally. To determine whether (and how much) areply
buffer changed in size, compareitstotal size beforet pget r pl y wasissued with *1 en.
If * ol en is 0 upon return, then the reply has no data portion and neither * odat a nor
the buffer it points to were modified. It isan error for *odat a or ol en to be NULL.

Following isalist of valid flags.

TPNOTRAN
If the caller isin transaction mode and this flag is set, then when svc is
invoked, itisnot performed on behalf of the caller'stransaction. Notethat svc
may still be invoked in transaction mode but it will not be the same
transaction: asvc may have as a configuration attribute that it is
automatically invoked in transaction mode. A caller in transaction mode that
setsthis flag is still subject to the transaction timeout (and no other). If a
service fails that was invoked with thisflag, the caller's transaction is not
affected.

B-10 BEA el ink Adapter Development Kit User Guide

Request/Response

Return Values

Errors

TPNOCHANCE
By default, if a buffer is received that differsin type from the buffer pointed
to by *odat a, then *odat a’ s buffer type changes to the received buffer’s
type so long as the receiver recognizes the incoming buffer type. When this
flag is set, the type of the buffer pointed to by * odat a is not allowed to
change. That is, the t ype and sub- t ype of the received buffer must match
thet ype and sub- t ype of the buffer pointed to by * odat a.

TPNOBLOCK
Therequestisnot sent if ablocking condition exists (for example, theinternal
buffersinto which the message is transferred are full). Note that this flag
applies only to the send portion of t pcal I : the function may block waiting
for the reply. When TPNOBLOCK is not specified and a blocking condition
exists, thecaller blocksuntil the condition subsides or atimeout occurs (either
transaction or blocking timeout).

TPNOTI ME
Thisflag signifiesthat the caller iswilling to block indefinitely and wants to
be immune to blocking timeouts. However, if the caller isin transaction
mode, this flag has no effect; it is subject to the transaction timeout limit.
Transaction timeouts may still occur.

TPSI GRSTRT
If asignal interrupts any underlying system calls, then the interrupted system
call isre-issued.

Upon successful return fromt pcal I or upon return wheret per r no is set to
TPESVCFAI L, t pur code contains an application-defined val ue that was sent as part of
tpreturn.tpcall returns-1 onerror and setst per r no to indicate the error
condition. If acall fails with a particular t per r no value, a subsequent call to
tperrordetail withnointermediate ATMI calls, may provide more detailed
information about the generated error. Refer tothet perr or det ai | reference pagefor
more information.

Under thefollowing conditions, t pcal | failsand setst per r no to one of thefollowing
values. (Unless otherwise noted, failure does not affect the caller’s transaction, if one
exists.)

[TPEI NVAL]
Invalid arguments were given (for example, svc isSNULL or flagsare
invalid).

BEA eLink Adapter Development Kit User Guide B-11

B ATMI References

[TPENOENT]

Can not send to svc because it does not exist, or it isaconversational service,
or the name provided begins with adot (.).

[TPEI TYPE]

Thet ype and sub-t ype of i dat a is not one of the allowed types and sub-
typesthat svc accepts.

[TPEOTYPE]

Either thet ype and sub- t ype of the reply are not known to the caller; or,
TPNOCHANGE was seti nf | ags andthet ype and sub-t ype of * odat a do not
match thet ype and sub-t ype of the reply sent by the service. Neither
*odat a, its contents, nor * ol en is changed. If the service request was made
on behalf of the caller’s current transaction, then the transaction is marked
abort-only since thereply is discarded.

[TPETRAN]

svc belongsto aserver that does not support transactions and TPNOTRAN was
not set.

[TPETI ME]

A timeout occurred. If the caller isin transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neither TPNOBLOCK nor TPNOTI ME was
specified. In either case, neither * odat a, itscontents, nor * ol en ischanged.
If atransaction timeout occurred, then with one exception, any attempts to
send new requests or receive outstanding replieswill fail with TPETI ME until
the transaction has been aborted. The exception is a request that does not
block, expects no reply, and is not sent on behalf of the caller’s transaction
(that is, t pacal I with TPNOTRAN, TPNOBLOCK, and TPNCREPLY set).

[TPESVCFAI L]

The service routine sending the caller'sreply called t pr et ur n with TPFAI L.
Thisisan application-level failure. The contents of the service'sreply, if one
was sent, is available in the buffer pointed to by * odat a. If the service
request was made on behalf of the caller’s current transaction, then the
transaction is marked abort-only. Note that so long as the transaction has not
timed out, further communication may be performed before aborting the
transaction and that any work performed on behalf of the caller’s transaction
will be aborted upon transaction completion (that is, for subsequent
communication to have any lasting effect, it should be done with TPNOTRAN
set).

B-12 BEA elink Adapter Development Kit User Guide

Request/Response

[TPESVCERR]
A serviceroutine encountered an error either int pret ur n ort pf or war d (for
example, bad arguments were passed). No reply datais returned when this
error occurs (that is, neither *odat a, its contents, nor * ol en is changed). If
the service request was made on behalf of the caller’s transaction (that is,
TPNOTRAN was not set), then the transaction is marked abort-only. Note that
so long as the transaction has not timed out, further communication may be
performed before aborting the transaction and that any work performed on
behalf of the caller’s transaction will be aborted upon transaction completion
(thatis, for subsequent communication to have any lasting effect, it should be
done with TPNOTRAN set). If either SVCTI MEQUT in the ubbconfi g file or
TA_SVCTI MEQUT in the TM_M B is non-zero, TPESVCERR is returned when a
service timeout occurs.

[TPEBLOCK]
A blocking condition was found on the send call and TPNOBLOCK was
specified.

[TPGOTSI G
A signal wasreceived and TPSI GRSTRT was not specified.

[TPEPROTQ
tpcal I wascalledin animproper context.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred. If a message queue on aremote
location is filled, TPEOS may be returned even if t pcal | returned
successfully.

tpacall

Function Routine for sending a service request

Synopsis #i ncl ude <atmi . h>
int tpacall(char *svc, char *data, long len, |ong flags)

BEA eLink Adapter Development Kit User Guide B-13

B ATMI References

Description

t pacal | () sendsarequest messageto the service named by svc. Therequest is sent
out at the priority defined for svc unless overridden by a previouscall to t pspri o. If
dataisnon-NULL, it must point to a buffer previously allocated by t pal | oc and | en
should specify the amount of data in the buffer that should be sent. Note that if data
pointsto a buffer of atypethat does not require alength to be specified, (for example,
an FML fielded buffer), then! en isignored (and may be 0). If dat a isNULL, I enis
ignored and arequest is sent with no data portion. Thet ype and sub-t ype of dat a
must match one of thet ypes and sub-t ypes recognized by svc. Note that for each
request sent whilein transaction mode, a corresponding reply must ultimately be
received.

Following isalist of valid flags.

TPNOTRAN
If the caller isin transaction mode and this flag is set, then when svc is
invoked, it is not performed on behalf of the caller’s transaction. If svc
belongsto a server that does not support transactions, then this flag must be
set when the caller isin transaction mode. Notethat svc may still beinvoked
in transaction mode but it will not be the same transaction: asvc may have as
aconfiguration attribute that it is automatically invoked in transaction mode.
A caller intransaction mode that setsthisflag is still subject to the transaction
timeout (and no other). If a service failsthat was invoked with this flag, the
caller’s transaction is not affected.

TPNOREPLY
Informst pacal | () that areply isnot expected. When TPNOREPLY is set, the
function returns 0 on success, where 0 is an invalid descriptor. When the
caller isin transaction mode, this setting cannot be used unless TPNOTRAN i S
also set.

TPNOBLOCK
Therequest isnot sent if ablocking condition exists (for example, theinternal
buffers into which the message is transferred are full). When TPNOBLOCK is
not specified and a blocking condition exists, the caller blocks until the
condition subsides or atimeout occurs (either transaction or blocking
timeout).

TPNOTI ME
Thisflag signifiesthat the caller iswilling to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

B-14 BEA elink Adapter Development Kit User Guide

Request/Response

Return Values

Errors

TPSI GRSTRT
If asignal interrupts any underlying system calls, then the interrupted system
call isre-issued.

Upon successful completion, t pacal | () returns a descriptor that can be used to
receive thereply of the request sent. Otherwiseit returns avalue of \ - 1 and sets
t per r no to indicate the error condition.

Under the following conditions, t pacal | () failsand setst per r no to one of the
following values. (Unless otherwise noted, failure does not affect the caller's
transaction, if one exists.)

[TPEI NVAL]
Invalid argumentswere given (for example, svc isSNULL, datadoes not point
to space allocated with t pal | oc, or flags are invalid).

[TPENCENT]
Cannot send to svc because it does not exist or is a conversational service.

[TPEI TYPE]
Thet ype and sub- t ype of dataisnot one of the allowed types and sub-types
that svc accepts.

[TPELI M T]
The caller's request was not sent because the maximum number of
outstanding asynchronous requests has been reached.

[TPETRAN]
svc belongsto aserver that does not support transactions and TPNOTRAN was
not set.

[TPETI ME]
A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neither TPNOBLOCK nor TPNOTI ME was
specified. If atransaction timeout occurred, then with one exception, any
attemptsto send new requests or receive outstanding replies will fail with
TPETI ME until the transaction has been aborted. The exception is arequest
that does not block, expects no reply, and is not sent on behalf of the caller’s
transaction (thatis, t pacal | () with TPNOTRAN, TPNOBL OCK, and TPNOREPLY
set).

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

BEA eLink Adapter Development Kit User Guide B-15

B ATMI References

tpgetrply

Function

Synopsis

Description

[TPGOTSI G
A signal was received and TPSI GRSTRT was not specified.

[TPEPROTQ
t pacal | () wascalled in an improper context.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

[TPECS]
An operating system error has occurred. If a message queue on aremote
location is filled, TPEGS may be returned even if t pacal | returned
successfully.

Routine for getting a reply from a previous request

#i ncl ude <atm . h>
int tpgetrply(int *cd, char **data, long *len, |ong flags)

t pgetrpl y returns areply from a previously sent request. This function’s first
argument, cd, pointsto acall descriptor returned by t pacal | . By default, the function
waits until the reply matching * cd arrives or atimeout occurs. dat a must be the
address of a pointer to a buffer previously allocated by t pal | oc and | en should point
toalongthat t pget r pl y setsto the amount of data successfully received. Upon
successful return, * dat a points to abuffer containing the reply and *1 en contains the
size of thedata. FML and FM L 32 buffers often assume a minimum si ze of 4096 bytes,
if thereply islarger than 4096, the size of the buffer isincreased to asizelarge enough
to accommodate the data being returned. Buffers on the sending side that may be only
partialy filled (for example, FML or STRING buffers) will have only the amount that
isused send. The system may then enlarge the received data size by some arbitrary
amount. Thismeansthat the receiver may receive abuffer that issmaller than what was
originaly alocated by the sender, yet larger than the data that was sent. Thereceive
buffer may grow, or it may shrink, and its address almost invariably changes, asthe
system swaps buffersaround internally. To determine whether (and how much) areply
buffer changed in size, compareitstotal size beforet pget r pl y wasissued with *1 en.
If *1 en isO, then thereply has no data portion and neither *dat a nor the buffer it
points to were modified. It isan error for *dat a or | en to be NULL.

B-16 BEA el ink Adapter Development Kit User Guide

Request/Response

Return Values

Errors

Following isalist of valid flags.

TPCGETANY
Thisflag signifiesthat t pget r pl y should ignore the descriptor pointed to by
cd, return any reply available and set cd to point to the call descriptor for the
reply returned. If no replies exist, t pget r pl y by default will wait for oneto
arrive.

TPNOCHANCE
By default, if a buffer is received that differsin type from the buffer pointed
to by * dat a, then *dat a’ s buffer type changesto the received buffer's type
so long as the receiver recognizes theincoming buffer type. When thisflagis
set, the type of the buffer pointed to by * dat a isnot alowed to change. That
is, thet ype and sub-t ype of the received buffer must match thet ype and
sub-t ype of the buffer pointed to by *dat a.

TPNOBLOCK
t pget r pl y does not wait for thereply to arrive. If thereply isavailable, then
t pget r pl y getsthe reply and returns. When this flag is not specified and a
reply is not available, the caller blocks until the reply arrives or atimeout
occurs (either transaction or blocking timeout).

TPNOTI ME
Thisflag signifies that the caller iswilling to block indefinitely for its reply
and wantsto beimmune to blocking timeouts. Transaction timeouts may still
occur.

TPSI GRSTRT
If asignal interrupts any underlying system calls, then the interrupted system
call isre-issued. Except as noted below, * cd isno longer valid after itsreply
isreceived.

Upon successful return fromt pget r pl y or upon return where t per r no is set to
TPESVCFAI L, t pur code contains an application-defined val ue that was sent as part of
tpreturn.tpgetrply returns-1 on error and setst per r no to indicate the error
condition.

Under the following conditions, t pget r pl y failsand setst per r no asindicated
below. Notethat if TPGETANY ishot set, then* cd isinvalidated unless otherwise stated.
If TPGETANY is set, then cd points to the descriptor for the reply on which the failure
occurred; if an error occurred before a reply could be retrieved, then cd pointsto O.
Also, the failure does not affect the caller’'s transaction, if one exists, unless otherwise
stated. If acall failswith a particular t per r no value, a subsequent call to

BEA eLink Adapter Development Kit User Guide B-17

B ATMI References

tperrordetail withnointermediate ATMI calls, may provide more detailed
information about the generated error. Refer to thet per r or det ai | reference pagefor
more information.

[TPEI NVAL]
Invalid arguments were given (for example, cd, data, *dataorlenis
NULL or flagsareinvalid). If cd isnon-NULL, then itis till valid after this
error and the reply remains outstanding.

[TPECTYPE]
Either thet ype and sub-t ype of the reply are not known to the caller; or,
TPNOCHANGE was set in flags and thet ype and sub- t ype of *dat a do not
match thet ype and sub-t ype of thereply sent by the service. Regardless,
neither * dat a, its contents nor * | en are changed. If the reply wasto be
received on behalf of the caller’s current transaction, then the transaction is
marked abort-only since the reply is discarded.

[TPEBADDESC]
cd pointsto an invalid descriptor.

[TPETI VE]
A timeout occurred. If the caller isin transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neither TPNOBLOCK nor TPNOTI ME were
specified. In either case, neither * dat a, its contents nor * 1| en are changed.
*cd remainsvalid unlessthe caller isin transaction mode (and TPGETANY was
not set). If atransaction timeout occurred, then with one exception, any
attempts to send new requests or receive outstanding replies will fail with
TPETI ME until the transaction has been aborted. The exception is arequest
that does not block, expects no reply and is not sent on behalf of the caller’'s
transaction (that is, t pacal | with TPNOTRAN, TPNOBLOCK and TPNOREPLY
set).

[TPESVCFAI L]
The service routine sending the caller'sreply called t pr et ur n with TPFAI L.
Thisisan application-level failure. The contents of the service'sreply, if one
was sent, isavailable in the buffer pointed to by * dat a. If the service request
was made on behalf of the caller’s transaction, then the transaction is marked
abort-only. Note that so long as the transaction has not timed out, further
communication may be performed before compl etely aborting the transaction
and that any work performed on behalf of the caller’s transaction will be

B-18 BEA el ink Adapter Development Kit User Guide

Request/Response

tpcancel

Function

Synopsis

aborted upon transaction completion (that is, for subsequent communication
to have any lasting effect, it should be done with TPNOTRAN set).

[TPESVCERR]
A serviceroutine encountered an error either int pret ur n ort pf or war d (for
example, bad arguments were passed). No reply datais returned when this
error occurs (that is, neither * dat a, its contents nor *1 en are changed). If the
service request was made on behalf of the caller's transaction, then the
transaction is marked abort-only. Note that so long as the transaction has not
timed out, further communication may be performed before completely
aborting the transaction and that any work performed on behalf of the caller’s
transaction will be aborted upon transaction completion (that is, for
subsequent communication to have any lasting effect, it should be done with
TPNOTRAN set). If either SVCTI MEQUT in the ubbconf i g file or
TA_SVCTI MEQUT in the TM_M B is non-zero, TPESVCERR is returned when a
service timeout occurs.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified. *cd remains

vaid.

[TPGOTSI G
A signal wasreceived and TPSI GRSTRT was not specified.

[TPEPROTQ
t pget r pl y was called in an improper context.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is

writtento alog file.

[TPEOS]
An operating system error has occurred. If a message queue on aremote
location is filled, TPEOS may possibly be returned.

Routine for canceling a call descriptor for outstanding reply

#i ncl ude <atmni . h>
int tpcancel (int cd)

BEA eLink Adapter Development Kit User Guide B-19

B ATMI References

Description

Return Values

Errors

t pcancel () cancelsacal descriptor, cd, returned by t pacal | . It isan error to
attempt to cancel acall descriptor associated with a transaction. Upon success, cd is
no longer valid and any reply received on behalf of cd will be silently discarded.

tpcancel () returns\ - 1 on error and setst per r no to indicate the error condition.
Under the following conditions, t pcancel () failsand setst per r no to:

[TPEBADDESC]
cd isaninvalid descriptor.

[TPETRAN]
cd() isassociated with the caller's transaction. cd remains valid and the
caller’'s current transaction is not affected.

[TPEPROTQ
t pcancel () was called in an improper context.

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

[TPECS]
An operating system error has occurred.

Service Entry and Return

tpsvrinit

Function

Synopsis

Description

The BEA Tuxedo system server initialization routine

#i ncl ude <atm . h>
int tpsvrinit(int argc, char **argv)

The BEA Tuxedo system server abstraction callst psvrini t () during its
initialization. Thisroutineis called after the thread of control has become a server but
beforeit handles any service requests; thus, BEA Tuxedo system communication may
be performed and transactions may be defined in thisroutine. However, if
tpsvrini t () returnswith open connections, asynchronous replies pending or while

B-20 BEA el ink Adapter Development Kit User Guide

Service Entry and Return

Return Values

Usage

till in transaction mode, the BEA Tuxedo system will close the connections, ignore
replies pending, abort the transaction, and the server will exit gracefully. If an
application does not provide thisroutine in a server, then the default version provided
by the BEA Tuxedo system is called instead. The default t psvrinit () calls
tpopen() anduserl og() toannounce that the server has successfully started.
Application-specific options can be passed into a server and processed in
tpsvrinit() (seeservopts). The options are passed through ar gc and ar gv. Since
get opt isused in aBEA Tuxedo system server abstraction, opt ar g, opt i nd and
opt er r may be used to control option parsing and error detectionint psvrinit(). If
anerror occursint psvri ni t (), theapplication can cause the server to exit gracefully
(and not take any service requests) by returning - 1. The application should not call
exit(2) itsef.

A negative return value will cause the server to exit gracefully.

If either t preturn() ortpforward() areused outside of aserviceroutine (e.g., in
clients,orint psvrini t () ortpsvrdone()), thentheseroutinessimply return having
no effect.

tpsvrdone

Function

Synopsis

Description

Usage

BEA Tuxedo system server termination routine

#i ncl ude <atni . h>
voi d tpsvrdone(void)

The BEA Tuxedo system server abstraction callst psvr done after it has finished
processing service requests but before it exits. When thisroutineisinvoked, the server
is gtill part of the system but its own services have been unadvertised. Thus, BEA
Tuxedo system communication can be performed and transactions can be defined in
thisroutine. However, if t psvr done returns with open connections, asynchronous
replies pending or while still in transaction mode, the BEA Tuxedo system will close
its connections, ignore any pending replies and abort the transaction before the server
exits. If aserver is shut down by theinvocation of tmshut down -y, services are
suspended and the ability to perform communication or to begin transactionsin

t psvrdone islimited. If an application does not provide thisroutine in a server, then
the default version provided by the BEA Tuxedo system is called instead. The default
t psvr done calst pcl ose and user | og to announce that the server is about to exit.

If either t pret urnortpforwardiscaledint psvrdone, it simply returnshaving no
effect.

BEA eLink Adapter Development Kit User Guide B-21

B ATMI References

tpreturn

Funtion

Synopsis

Description

Arguments

Routine for returning from a service routine

void tpreturn(int rval, long rcode, char *data, long |len, long
flags)

t pr et ur n indicates that a service routine has completed. t pr et ur n actslike areturn
statement in the C language (that is, when t pr et ur n is called, the service routine
returnsto the BEA Tuxedo system dispatcher). It is recommended that t pr et ur n be
called from within the service routine dispatched to ensure correct return of control to
the BEA Tuxedo system dispatcher. t pr et ur n isused to send a service's reply
message. |f the program receiving the reply iswaiting in either t pcal | , t pget rpl vy,
or t precv, then after a successful call tot pret urn, thereply isavailablein the
receiver's buffer. For conversational services, t pr et ur n also tears down the
connection. That is, the service routine cannot call t pdi scon directly. To ensure
correct results, the program that connected to the conversational service should not call
t pdi scon; rather, it should wait for notification that the conversational service has
completed (that is, it should wait for one of the events, like TPEV_SVCSUCC or
TPEV_SVCFAI L, sent by t pr et ur n). If the service routine was in transaction mode,

t pr et ur n places the service's portion of the transaction in a state where it may be
either committed or rolled back when the transaction is completed. A service may be
invoked multiple times as part of the same transaction so it is not necessarily fully
committed nor rolled back until eithert pcommi t ort pabort iscalled by theoriginator
of thetransaction. t pr et ur n should be called after receiving al repliesexpected from
service requestsinitiated by the service routine. Otherwise, depending on the nature of
the service, either a TPESVCERR status or TPEV_SVCERR event will be returned to the
program that initiated communication with the service routine. Any outstanding
replies that are not received will automatically be dropped by the communication
manager. In addition, the descriptors for those replies become invalid. t pret ur n
should be called after closing all connections initiated by the service. Otherwise,
depending on the nature of the service, either a TPESVCERR or a TPEV_SVCERR event
will be returned to the program that initiated communication with the service routine.
Also, an immediate disconnect event (that is, TPEV_DI SCONI MM) is sent over all open
connections to subordinates. Since a conversational service has only one open
connection which it did not initiate, the communication manager knows over which
descriptor data (and any event) should be sent. For this reason, a descriptor is not
passed tot pret ur n.

Thefollowing is adescription of t pret urn s arguments. r val can be set to one of
the following.

B-22 BEA elink Adapter Development Kit User Guide

Service Entry and Return

TPSUCCESS

TPFAI L

TPEXI T

The service has terminated successfully. If datais present, thenit will be sent
(barring any failures processing the return). If the caller isin transaction
mode, then t pr et ur n places the caller’s portion of the transaction in a state
such that it can be committed when the transaction ultimately commits. Note
that acall tot pr et ur n does not necessarily finalize an entire transaction.
Also, even though the caller indicates success, if there are any outstanding
replies or open connections, if any work done within the service caused its
transaction to be marked rollback-only, then afailed messageis sent (that is,
therecipient of the reply receivesa TPESVCERRIndication or aTPEV_SVCERR
event). Note that if atransaction becomes rollback-only while in the service
routine for any reason, then r val should be set to TPFAI L. If TPSUCCESS is
specified for a conversational service, a TPEV_SVCSUCC event is generated.

The service has terminated unsuccessfully from an application standpoint. An
error will be reported to the program receiving the reply. That is, the call to
get the reply will fail and the recipient receives a TPSVCFAI L indication or a
TPEV_SVCFAI L event. If the caller isin transaction mode, thent pr et urn
marks the transaction as rollback-only (note that the transaction may already
be marked rollback-only). Barring any failuresin processing the return, the
caller'sdatais sent, if present. One reason for not sending the caller's datais
that a transaction timeout has occurred. In this case, the program waiting for
the reply will receive an error of TPETI ME. If TPFAI L isspecified for a
conversational service, a TPEV_SVCFAI L event is generated.

Thisvaueisthe same as TPFAI L, with respect to completing the service, but
the server will exit after the transaction is rolled back and the reply is sent
back to the requester. If the server is restartable, then the server will
automatically be restarted.

If rval isnot set to one of these three values, then it defaultsto TPFAI L.

An applicatio-defined return code, r code, may be sent to the program receiving the
servicereply. Thiscodeis sent regardless of the setting of r val aslongasareply can
be successfully sent (that is, aslong as the receiving call returns success or
TPESVCFAI L). In addition, for conversational services, this code can be sent only if the
service routine has control of the connection when it issuest pr et ur n. The value of

r code isavailable in the receiver in the variable, t pur code. dat a pointsto the data
portion of areply to be sent. If datais non-NULL, it must point to a buffer previously
obtained by acall tot pal | oc. If thisis the same buffer passed to the service routine

BEA eLink Adapter Development Kit User Guide B-23

B ATMI References

upon its invocation, then its disposition is up to the BEA Tuxedo system dispatcher;
the service routine writer does not have to worry about whether it is freed or not. In
fact, any attempt by the user to free this buffer will fail. However, if the buffer passed
tot pr et ur n isnot the same one with which the serviceisinvoked, thent pret urn
will free that buffer. | en specifies the amount of the data buffer to be sent. If dat a
pointsto abuffer which does not require alength to be specified, (for example,an FML
fielded buffer), then| en isignored (and can be 0). If dat a iSNULL, thenl en is
ignored. In this case, if areply isexpected by the program that invoked the service,
then areply is sent with no data. If no reply isexpected, thent pr et ur n freesdat a as
necessary and returns sending noreply. Currently, f | ags isreserved for future use and
must be set to O (if set to a non-zero value, the recipient of the reply receives a
TPESVCERRIndication or aTPEV_SVCERR event). If the serviceisconversational, there
aretwo caseswhere the caller’s return code and the data portion are not transmitted: if
the connection has al ready been torn down when the call ismade (that is, the caller has
received TPEV_DI SCONI MMon the connection), then this call simply ends the service
routine and rolls back the current transaction, if one exists. If the caller does not have
control of the connection, either TPEV_SVCFAI L or TPEV_SVCERRIs sent to the
originator of the connection as described above. Regardless of which event the
originator receives, no data istransmitted; however, if the originator receivesthe
TPEV_SVCFAI L event, the return code is available in the originator'st pur code
variable.

Return Values A service routine does not return any value to its caller, the BEA Tuxedo system
dispatcher; thus, it is declared as a void. Service routines, however, are expected to
terminate using either t pr et ur n ort pf or war d. A conversational serviceroutine must
uset pr et ur n, and cannot uset pf or war d. If a service routine returns without using
either t pret urnort pf orward (that is, it usesthe C language return statement or just
simply "fallsout of thefunction") ort pf or war d iscalled from aconversational server,
the server will print awarning message in the log and return a service error to the
service requester. In addition, all open connections to subordinates will be
disconnected immediately, and any outstanding asynchronous replieswill be dropped.
If the server was in transaction mode at the time of failure, the transaction is marked
rollback-only. Note also that if either t pr et ur n or t pf or war d are used outside of a
service routine (for example, in clients, or int psvri ni t ort psvrdone), then these
routines simply return having no effect.

Errors Sincet pr et ur n endsthe service routine, any errors encountered either in handling
arguments or in processing cannot be indicated to the function’s caller. Such errors
causet per r no to be set to TPESVCERRfor a program receiving the service's outcome
viaeithert pcal | ortpgetrply, and cause the event, TPEV_SVCERR, to be sent over
the conversation to a program using t psend or t pr ecv. If either SVCTI MEQUT in the

B-24 BEA el ink Adapter Development Kit User Guide

Dynamic Advertisement

ubbconfi g fileor TA_SVCTI MEQUT inthe TM_M B is non-zero, the event
TPEV_SVCERR is returned when a service timeout occurs. t prror det ai | and
tpstrerrordetail canbeusedtogetadditional information about an error produced
by the last BEA Tuxedo system routine called in the current thread. If an error
occurred, t perr or det ai | returnsanumeric value that can be used as an argument to
trstrerrordetail toretrievethetext of the error detail.

Dynamic Advertisement

tpadvertise
Function Routine for advertising a service name
Synopsis #i ncl ude <atmi . h>
int tpadvertise(char *svcnane, void (*func)(TPSVCINFO *))
Description t padverti se allows aserver to advertise the servicesthat it offers. By default, a

Return Values

server'sservicesare advertised whenit isbooted and unadverti sed whenit is shutdown.
All servers belonging to amultiple server, single queue (MSSQ) set must offer the
same set of services. These routines enforce this rule by affecting the advertisements
of al servers sharing an MSSQ set. t padverti se advertises svcnane for the server
(or the set of servers sharing the caller's M SSQ set). svcnane should be 15 characters
or less, but cannot be NULL or the NULL string (""). f unc isthe address of a BEA
Tuxedo system service function. Thisfunction will be invoked whenever arequest for
svcname isreceived by the server. f unc cannot be NULL. Explicitly specified
function names can be up to 128 characterslong. Nameslonger than 15 characters are
accepted and truncated to 15 characters. Users should make sure that truncated names
do not match other service names. If svcnane isalready advertised for the server and
f unc matchesits current function, thent padvert i se returns success (this includes
truncated names that match already advertised names). However, if svcnane is
already advertised for the server but f unc does not match its current function, then an
error isreturned (this can happen if truncated names match already advertised names).
Service names starting with dot (.) are reserved for administrative services. An error
will be returned if an application attempts to advertise one of these services.

t padverti se returns- 1 on error and setst per r no to indicate the error condition.

BEA eLink Adapter Development Kit User Guide B-25

B ATMI References

Errors Under the following conditions, t padver ti se fails and setst per r no to:

[TPEI NVAL]
svcname iSNULL or the NULL string (""),or beginswitha"." or f unc is
NULL.

[TPELI M T]
svcname cannot be advertised because of space limitations.

[TPEMATCH]
svcnane is already advertised for the server but with afunction other than
f unc. Although the function fails, svchame remains advertised with its
current function (that is, f unc does not replace the current function).

[TPEPROTQ
t padverti se wascalled in an improper context (for example, by aclient).

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to alog file.

[TPECS]
An operating system error has occurred.

tpunadvertise
Function Routine for unadvertising a service name
Synopsis #i ncl ude <atnmi.h>
int tpunadvertise(char *svcnane)
Description t punadverti se() alowsaserver to unadvertise aservicethat it offers. By default, a

server's services are advertised when it is booted and they are unadvertised when itis
shutdown. All servers belonging to a multiple server, single queue (M SSQ) set must
offer the same set of services. These routines enforce this rule by affecting the
advertisements of al servers sharing an MSSQ set. t punadvertise() removes
svcname asan advertised service for the server (or the set of servers sharing the caller’s
MSSQ set). svenane cannot beNULL or theNULL string (*"). Also, svcname should
be 15 characters or less. (See * SERVICES section of ubbconf i g). Longer names will
be accepted and truncated to 15 characters. Care should be taken such that truncated
names do not match other service names.

B-26 BEA el ink Adapter Development Kit User Guide

Dynamic Advertisement

Return Values

Errors

t punadvertise() returns \-1 on error and setst per r no to indicate the error
condition.

Under the following conditions, t punadver ti se() failsand setst perr no to:

[TPEI NVAL]
svcname iISNULL or the NULL string ("").

[TPENCENT]
svcname isnot currently advertised by the server.

[TPEPROTQ
t punadvertise() wascaled inan improper context (for example, by a
client).

[TPESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
writtento alog file.

[TPECS]
An operating system error has occurred.

BEA eLink Adapter Development Kit User Guide B-27

B ATMI References

B-28 BEA el ink Adapter Development Kit User Guide

APPENDIX

C FML32 API

The following information is excerpted from the Tuxedo Online Documentation.
These are some of the most commonly used Tuxedo FML32 API functions used for
adapter development. For additional detailsand a complete list of Tuxedo functions
and commands, see http://edocs.beasys.com/tuxedo/tux65/index.htm.

Following is an alphabeticd list of the the functions described in this section.

Refer to

Fadd, Fadd32

Fchg, Fchg 32

Ffind, Ffind32

Fget, Fget32

Fielded, Fielded32

Finit, Finit32

Fldid, Fldid32
Fneeded, Fneeded32

Fsizeof, Fsizeof32

BEA eLink Adapter Development Kit User Guide C-1

http://edocs.beasys.com/tuxedo/tux65/index.htm

C FML32API

Fadd, Fadd32

Function Add new field occurrence

Synopsis #i ncl ude stdio. h>
#include "fm . h"
int Fadd(FBFR *fbfr, FLDID fieldid, char *val ue, FLDLEN | en)
#include "fm 32. h"
int Fadd32(FBFR32 *fbfr, FLDI D32 fieldid, char *value, FLDLEN32
| en)

Description Fadd() addsthe specified field value to the given buffer. f bf r isapointer to afielded
buffer. fi el di d isafield identifier. val ue isa pointer to a new value; the pointer's
type must bethe samefi el di d t ype asthe vaueto be added. | en isthe length of the
value to be added; it isrequired only if typeisFLD CARRAY Thevalueto be added is
contained in the location pointed to by theval ue parameter. If one or more
occurrences of the field already exist, then the value is added as a new occurrence of
the field, and is assigned an occurrence number 1 greater than the current highest
occurrence (to add a specific occurrence, Fchg must be used). In the SYNOPSIS
section above the value argument to Fadd() isdescribed as a character pointer data
type (char * in C). Technically, this describes only one particular kind of value
passable to Fadd() . In fact, the type of the value argument should be a pointer to an
object of the same type as the type of the fielded-buffer representation of the field
being added. For example, if the field is stored in the buffer astypeFLD_LONG, then
val ue should be of type pointer-to-long (1 ong * in C). Similarly, if thefield is stored
asFLD_SHORT, then val ue should be of type pointer-to-short (short * in C). The
important thingisthat Fadd() assumesthat the object pointed to by value hasthe same
t ype asthe storedt ype of thefield being added. For values of type FLD_CARRAY, the
length of thevalueisgiveninthel en argument.For al t ypes other than FLD_CARRAY,
the length of the object pointed to by val ue isinferred from its type (e.g. a value of
type FLD_FLOAT isof length si zeof (f | oat)), and the contents of | en are ignored.
Fadd32 is used with 32-bit FML.

Return Values ~ Thisfunction returns- 1 on error and sets Fer r or to indicate the error condition.

Errors Under the following conditions, Fadd() failsand setsFerr or to:

[FALIGNERR] "fiel ded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD] "buffer not fiel ded"
The buffer is not afielded buffer or has not been initialized by Fini t ().

C-2 BEA el ink Adapter Development Kit User Guide

Fchg, Fchg 32

[FEI NVAL] "invalid argunment to function"
One of the arguments to the function invoked was invalid. (For example,
specifying a NULL value parameter to Fadd.)

[FNCSPACE] "no space in fielded buffer”
A field valueis to be added in afielded buffer but there is not enough space
remaining in the buffer.

[FBADFLD] "unknown field nunber or type"
A field number is specified which is not valid.

Fchg, Fchg 32

Function

Synopsis

Description

Change field occurrence value

#i ncl ude <stdio. h>

#i nclude "fm.h"

int

Fchg(FBFR *fbfr, FLDID fieldid, FLDOCC oc, char *val ue, FLDLEN | en)
#i ncl ude "fnm 32. h"

int

Fchg32(FBFR32 *fbfr, FLDI D32 fieldid, FLDOCC32 oc, char *val ue,
FLDLEN32 | en)

Fchg() changesthevalueof afield inthebuffer. f bf r isapointer to afielded buffer.
fi el di disafieldidentifier. oc isthe occurrence number of thefield. val ue isa
pointer to a new value, itstype must be the same type as the value to be changed (see
below). | en isthe length of the value to be changed; it isrequired only if field typeis
FLD_CARRAY. If an occurrence of - 1 is specified, thenthefield valueis added as anew
occurrenceto the buffer. If the specified field occurrence isfound, then the field value
ismodified to the value specified. If afield occurrence is specified that does not exist,
then NULL vaues are added for the missing occurrences until the desired occurrence
can be added (for example, changing field occurrence 4 for afield that does not exist
on abuffer will cause 3 NULL valuesto be added followed by the specified field
value). NULL values consist of the NULL string (1 byte in length) for string and
character values, 0 for long and short fields, 0.0 for float and double values, and a zero-
length string for acharacter array. The new or modified value is contained in val ue
anditslengthisgivenin| en if it isacharacter array (ignored in other cases). If value
isNULL, then the field occurrenceis deleted. A value to be deleted that is not found,
isconsidered an error. Inthe SY NOPSI S section abovethe value argument to Fchg()

BEA eLink Adapter Development Kit User Guide C-3

C FML32API

Return Values

Errors

isdescribed as a character pointer data type (char * in C). Technically, this describes
only one particular kind of value passableto Fchg() . In fact, the type of the value
argument should be a pointer to an object of the same type as the type of the fielded-
buffer representation of the field being changed. For example, if the field is stored in
the buffer as type FLD_LONG, then val ue should be of type poi nt er - t o- 1 ong (long
* in C). Similarly, if the field is stored as FLD_SHORT, then val ue should be of type
poi nter-to-short (short* in C). Theimportant thing isthat Fchg() assumes that
the object pointed to by value has the same type as the stored type of the field being
changed.

Fchg32 is used with 32-bit FML.
This function returns - 1 on error and sets Fer r or to indicate the error condition.

Under the following conditions, Fchg() failsand setsFer r or to:

[FALIGNERR] "fiel ded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD] "buffer not fiel ded"
The buffer is not afielded buffer or has not been initialized by Fini t ().

[FNOTPRES] "field not present”
A field occurrenceis requested for deletion but the specified field and/or
occurrence was not found in the fielded buffer.

[FNOSPACE] "no space in fielded buffer”
A field valueisto be added or changed in afielded buffer but there is not

enough space remaining in the buffer.

[FBADFLD] "unknown fiel d nunber or type"
A field identifier is specified which is not valid.

Ffind, Ffind32

Function

Synopsis

Find field occurrence in buffer

#i ncl ude <stdio. h>

#include "fm . h"

char *

Ffi nd(FBFR *fbfr, FLDID fieldid, FLDOCC oc, FLDLEN *Ien)

C-4 BEA el ink Adapter Development Kit User Guide

Ffind, Ffind32

Description

Return Values

Errors

#i ncl ude "fnm 32. h"
char *
Ffi nd32(FBFR32 *fbfr, FLDI D32 fieldid, FLDOCC32 oc, FLDLEN32 *I|en)

Ffind() findsthe value of the specified field occurrence in the buffer. f bfr isa
pointer to afielded buffer. fi el di d isafield identifier. oc isthe occurrence number
of thefield. If thefield isfound, itslengthis set into *I en, and itslocation is returned
asthe value of the function. If the value of | en isNULL, then the field length is not
returned. Ff i nd() isuseful for gaining read-only accessto afield. In no case should
the valuereturned by Ff i nd() be used to modify the buffer. In general, the locations
of valuesof types FLD_LONG, FLD_FLQOAT, and FLD DOUBLE are nhot suitable for direct
use as their stored type, since proper alignment within the buffer is not guaranteed.
Such values must be copied first to a suitably aligned memory location. Accessing
such fields through the conversion function CFf i nd does guarantee the proper
alignment of the found converted value. Buffer modification should only be done by
the functions Fadd or Fchg. The values returned by Ff i nd() and Ffi ndl ast () are
valid only so long as the buffer remains unmodified.

Ffind32 is used with 32-bit FML.

In the SYNOPSI S section above, the return valueto Ff i nd() isdescribed asa
character pointer datatype (char* in C). Actually, the pointer returned pointsto an
object that has the same type as the stored type of the field. This function returns a
pointer to NULL on error and sets Fer r or to indicate the error condition.

Under the following conditions, Ffi nd() faillsand setsFerr or to:

[FALI GNERR] "fi el ded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD] "buffer not fielded"
The buffer is not afielded buffer or has not been initialized by Fi nit ().

[FNOTPRES] "field not present”
A field occurrenceis requested but the specified field and/or occurrence was
not found in the fielded buffer.

[FBADFLD] "unknown field nunber or type"
A field identifier is specified which is not valid.

BEA eLink Adapter Development Kit User Guide C-5

C

FML32 API

Fget, Fget32

Function

Synopsis

Description

Return Values

C-6

Errors

Get copy and length of field occurrence

#i ncl ude <stdio. h>

#include "fm . h"

int

Fget (FBFR *fbfr, FLDI D fieldid, FLDOCC oc, char *val ue, FLDLEN
*max| en)

#include "fm 32. h"

i nt

Fget 32(FBFR32 *fbfr, FLDI D32 fiel did, FLDOCC32 oc, char

*val ue, FLDLEN32 *max| en)

Fget () should be used to retrieve afield from afielded buffer when the valueisto be
modified. f bf r isapointer to afielded buffer. fi el di d isafield identifier. oc isthe
occurrence number of thefield. The caller providesFget () with apointer to aprivate
dataarea, | oc, as well asthelength of the data area, * maxI en, and the length of the
fieldisreturned in * max! en. If *max| en isNULL when the functionis called, then it
isassumed that the data areafor thefield valuel oc is big enough to contain the field
value and the length of the valueis not returned. If 1 oc isNULL, the value is not
retrieved. Thus, the function call can be used to determine the existence of the field.

In the SYNOPSI S section above the value argument to Fget () isdescribed asa
character pointer datatype (char * in C). Technically, this describes only one particular
kind of value passable to Fget () . In fact, the type of the value argument should be a
pointer to an object of the same type asthe type of the fiel ded-buffer representation of
the field being retrieved. For example, if thefield is stored in the buffer as type
FLD_LONG then value should be of type poi nter-to-1ong (long* inC). Similarly,
if thefield is stored asFLD_SHORT, then value should be of type poi nt er - t o- shor t
(short * in C). The important thing isthat Fget () assumes that the object pointed to
by value has the same type as the stored type of the field being retrieved.

Fget32 is used with 32-bit FML.
This function returns - 1 on error and sets Fer r or to indicate the error condition.

Under the following conditions, Fget () failsand setsFerr or to:

[FALIGNERR] "fiel ded buffer not aligned"
The buffer does not begin on the proper boundary.

BEA el ink Adapter Development Kit User Guide

Fielded, Fielded32

[FNOTFLD] "buffer not fielded"
The buffer is not afielded buffer or has not been initialized by Fi nit () .

[FNCSPACE] "no space"
The size of the data area, as specified in max! en, isnot large enough to hold
thefield value.

[FNOTPRES] "field not present”
A field occurrenceis requested but the specified field and/or occurrence was
not found in the fielded buffer.

[FBADFLD] "unknown field nunber or type"
A field identifier is specified which is not valid.

Fielded, Fielded32

Function

Synopsis

Description

Return Values

Return true if buffer isfielded

#i ncl ude stdio. h>

#include "fm . h"

int

Fi el ded(FBFR *f bf r)

#include "fm 32. h"

int

Fi el ded32(FBFR32 *fbfr)

Fi el ded() isused to test whether the specified buffer isfielded. f bf r isapointer to
afielded buffer.

Fielded32 is used with 32-bit FML.

Fi el ded() returnstrue (1) if the buffer isfielded. It returns false (0) if the buffer is
not fielded and does not set Fer r or inthiscase.

Finit, Finit32

Function

Initialize fielded buffer

BEA eLink Adapter Development Kit User Guide C-7

C FML32API

Synopsis #i ncl ude <stdio. h>
#include "fnm . h"
i nt
Finit(FBFR *fbfr, FLDLEN buflen)
#i nclude "fn 32. h"
i nt
Fini t 32(FBFR32 *fbfr, FLDLEN32 bufl en)

Description Fi ni t () can be called toinitialize a fielded buffer statically. f bf r isapointer to a
fielded buffer. buf | en isthelength of the buffer. The function takesthe buffer pointer
and buffer length, and setsup theinternal structurefor abuffer with nofields. Fi ni t ()
can also be used to re-initialize a previoudly used buffer.

Finit32 isused with 32-bit FML.
Return Values Thisfunction returns- 1 on error and sets Fer r or to indicate the error condition.
Errors Under the following conditions, Fi ni t () failsand setsFerror to:

[FALIGNERR] "fiel ded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD] "buffer not fiel ded"
The buffer pointer isNULL.

[FNOSPACE] "no space in fielded buffer”
The buffer size specified istoo small for afielded buffer.

Example The correct way to re-initialize a buffer to have no fieldsis:

Finit(fbfr,
(FLDLEN) Fsi zeof (fbfr));

Fldid, FIdid32

Function Map field nameto field identifier

Synopsis #i ncl ude <stdio. h>
#include "fm . h"
FLDI D
Fl di d(char *nane)
#include "fnl 32. h"

C-8 BEA el ink Adapter Development Kit User Guide

Fneeded, Fneeded32

Description

Return Values

Errors

FLDI D32
FI di d32(char *nan®e)

FI di d() providesaruntime trandation of afield-nameto its field identifier and
returnsa FLDI D corresponding to itsfield name parameter. Thefirst invocation causes
space to be dynamically allocated for the field tables and the tables to be loaded. To
recover data space used by the field tables loaded by FI di d() , the user may unload
the filesby acall to the Fnni d_unl oad function.

Fldid32 is used with 32-bit FML.

This function returns BADFLDI D on error and sets Fer r or to indicate the error
condition.

Under the following conditions, FI di d() fails and setsFerr or to:

[FBADNAME] "unknown field nane"
A field name is specified which cannot be found in the field tables.

[FMALLOC] "mal | oc fail ed"
Allocation of space dynamically using mal | oc(3) failed.

Fneeded, Fneeded32

Function

Synopsis

Description

Return Values

Compute size needed for buffer

#i ncl ude <stdio. h>

#i nclude "fm.h"

| ong

Fneeded(FLDOCC F, FLDLEN V)
#i ncl ude "fnm 32. h"

| ong
Fneeded32(FLDOCC32 F, FLDLEN32 V)

Fneeded() if used to determine the space that must be allocated for F fields and v
bytes of value space.

Fneeded32 is used with 32-bit FML.

Thisfunction returns \ - 1 on error and sets Fer r or to indicate the error condition.

BEA eLink Adapter Development Kit User Guide C-9

C FML32API

Errors Under the following conditions, Fneeded() fails and sets Fer r or to:

[FEI NVAL] "invalid argument to function"
One of the arguments to the function invoked wasinvalid, (for example,
number of fieldsislessthan 0, v is O or total size is greater than 65534).

Fsizeof, Fsizeof32

Function Return size of fielded buffer

Synopsis #i ncl ude "fm 32. h"
| ong
Fsi zeof 32(FBFR32 *fbfr)

Description Fsi zeof () returnsthe size of afielded buffer in bytes. f bf r isapointer to afielded
buffer. Fsi zeof 32 is used with 32-bit FML.

Return Values Thisfunction returns\ - 1 on error and sets Fer r or to indicate the error condition.

Errors Under the following conditions, Fsi zeof () failsand setsFerr or to:

[FALIGNERR] "fiel ded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD] "buf fer not fi el ded"
The buffer isnot afielded buffer or has not been initialized by Fi ni t ().

Example of a Server that Uses FML32

Thefollowing server receivesan FML 32 buffer asthedatafieldinaTPSVRI NFOstruct,
deletes the contents of al of the fields, than repopulates them in the opposite order

Listing 0-1 Example of Server that Uses FML 32

#i ncl ude <stdi o. h>
#i ncl ude <ctype. h>

C-10 BEA elLink Adapter Development Kit User Guide

Example of a Server that Uses FML32

#i ncl ude "atm . h"
#i ncl ude "fm 32. h"
#i ncl ude "userl og. h"

#defi ne TEST_STRI NG " STRTEST"
#define TEST_LONG 70001
#define TEST_CHAR 'Z

#defi ne TEST_SHORT 911

#defi ne TEST_CARRAY "TESTC'
FMLFOQ(s Q)

TPSVCI NFO *nsg;

{

FBFR32 *fbfr;/* data to be sent
FLDLEN32 fbfr _len;
FLD D32 fieldid;

long test_|ong;
char test_char;
short test_short;

fbfr = (FBFR32 *) msg->dat a;

*/

| * o o e e e e e e e mmmmeee—- - * [
/* Delete all fields in FM.32 buffer */
| * o e e e e e e mmmmmmee—-- * [
fieldid = Fldi d32("MYSTRING') ;
if (Fdel 32(fbfr, fieldid, 0) < 0)

userl og("Fdel 32 MYSTRING failed: ");

}
fieldid =
if (Fdel 32(fbfr,
{

FI di d32(" MYLONG') ;

userl og(" Fdel 32 MYLONG f ai | ed:

[

el did = Fl di d32(" MYCHAR');

i
if (Fdel 32(fbfr,

~_~—

user | og(" Fdel 32 MYCHAR f ai | ed:

—_——

el di d
(Fdel 32(fbfr,

i Fl di d32(" MYSHORT") ;
if

~~—

fieldid, 0) < 0)

fieldid, 0) < 0)

fieldid, 0) < 0)

user| og(" Fdel 32 MYSHORT failed: ");

—_

el di d
(Fdel 32(fbfr,

Fl di d32(" MYCARRAY") ;

i
i f

~—

BEA eLink Adapter Development Kit User Guide

fieldid, 0) < 0)

Cc-11

C FML32API

}

2 * [

/* Add all fields to FM.32 buffer in opposite order */
| * o e e e e e e ee e eeeeo o * [

fieldid = Fldi d32(" MYCARRAY");
i f (Fadd32(fbfr, fieldid, TEST CARRAY, (FLDLEN32) si zeof (TEST_CARRAY)) < 0)

{
user | og(" Fadd32 MYCARRAY failed: ");

}

fieldid = Fldid32("M/SHORT");

test _short = TEST_ SHORT,;

if (Fadd32(fbfr, fieldid, (char *) & est_short, (FLDLEN32)
sizeof (test_short)) < 0)

user | og(" Fadd32 MYSHORT failed: ");
}
fieldid = FIdi d32("MYCHAR") ;
test _char = TEST_CHAR
if (Fadd32(fbfr, fieldid, (char *) & est _char, (FLDLEN32)
sizeof (test _char)) < 0)

user| og("Fadd32 MYCHAR failed: ");

}

fieldid = FIdi d32("MYLONG') ;

test _long = TEST_LONG

if (Fadd32(fbfr, fieldid, (char *) & est_|ong, (FLDLEN32)
sizeof (test _long)) < 0)

{

user | og(" Fadd32 MYLONG failed: ");

}
fieldid = FIdid32("MYSTRI NG') ;
if (Fadd32(fbfr, fieldid, TEST_STRING (FLDLEN32) strlen(TEST_STRI NG))
< 0)

{
userl og("Fadd32 MYSTRING failed: ");

}
t preturn(TPSUCCESS, 0, nsg->data, OL, 0);

C-12 BEA elink Adapter Development Kit User Guide

APPENDIX

D Tuxedo Commands

The following information is excerpted from the Tuxedo Online Documentation.
These are some of the most commonly used Tuxedo commands used for adapter

development. For additiona details and acompletelist of Tuxedo functions and
commands, see http://edocs.beasys.com/tuxedo/tux65/index.htm.

Following is an alphabetical list of the the commands described in this section.

Refer to

buildclient

buildserver

tmadmin

tmboot

tml oadcf

tmshutdown

ud, ud32, wud, wud32

buildclient

Function Construct a BEA Tuxedo client module

Synopsis buildclient [-C] [-v] [{-r romane | -w}] [-0 name] [-f
firstfiles] [-1 lastfiles]

BEA eLink Adapter Development Kit User Guide D-1

http://edocs.beasys.com/tuxedo/tux65/index.htm

D Tuxedo Commands

Description

bui | dcl i ent isused to construct a BEA Tuxedo client module. The command
combinesthe files supplied by the-f and -1 optionswith the standard BEA Tuxedo
librariesto form aload module. The load module is built by bui | dcl i ent using the
default C language compilation command defined for the operating systemin use. The
default C language compilation command for the UNIX System isthe cc command
described in UNIX System reference manuals.

-V

specifiesthat bui | dcl i ent should work in verbose mode. In particular, it
writes the compilation command to its standard output.

-W
specifiesthat the client is to be built using the workstation libraries. The
default is to build a native client if both native mode and workstation mode
libraries are available. This option cannot be used with the -r option.

-r rmamne

specifies the resource manager associated with this client. The valuer mane
must appear in the resource manager table located in $TUXDI R/ udat aobj /
RM Each linein thisfile is of the form:

rmane: rnstructure_nane: i brary_nanes

(See the buildtms command in the BEA Tuxedo Reference Manual at http://
edocs.beasys.com/tuxedo/tux65/index.htm for further details.) Using the

r mane value, the entry in $TUXDI R/ udat aobj / RMis used to include the
associated libraries for the resource manager automatically and to set up the
interface between the transaction manager and resource manager properly.
ThevalueTuxedo/ Dincludesthelibraries for the Tuxedo System/D resource
manager. The value Tuxedo/ SQL includes the libraries for the Tuxedo
System/SQL resource manager. Other values can be specified as they are
added to the resource manager table. If the - r option is not specified, the
default is that the client is not associated with aresource manager. Refer to
theubbconf i g reference page.

specifies the file name of the output load module. If not supplied, the load
module is named a. out .

specifiesone or more user filesto beincluded in the compilation and link edit
phases of bui I dcl i ent first, beforethe BEA Tuxedo libraries. If more

than onefileisspecified, file names must be separated by white space and the
entirelist must be enclosed in quotation marks. This option may be specified

D-2 BEA el ink Adapter Development Kit User Guide

http://edocs.beasys.com/tuxedo/tux65/index.htm
http://edocs.beasys.com/tuxedo/tux65/index.htm

buildclient

Environment
Variables

TUXD R

CFLAGS

ALTCC

multiple times. The CFLAGS and ALTCFLAGS environment variables,
described below, should be used to include any compiler options and their
arguments.

specifies one or more user filesto beincluded in the compilation and link edit
phases of bui | dcl i ent | ast, after the BEA Tuxedo libraries. If more than
one file is specified, file names must be separated by white space and the
entire list must be enclosed in quotation marks. This option may be specified
multiple times.

specifies COBOL compilation.

bui | dcl i ent uses the environment variable TUXDI R to find the System/T
libraries and include files to use during compilation of the client process.

bui | dcl i ent normally usesthe default C language compilation command to
produce the client executable. The default C language compil ation command
is defined for each supported operating system platform and is defined as
cc(1) for UNIX System. Inorder to alow for the specification of an alternate
compiler, bui | dcl i ent checksfor the existence of an environment variable
named CC. If CCdoes not exist in buildclient’senvironment, or if itisthe string
"" bui | dcl i ent will use the default C language compiler. If CC does exist
in the environment, its value is taken to be the name of the compiler to be
executed.

The environment variable CFLAGS is taken to contain a set of argumentsto be
passed as part of the compiler command line. Thisisin addition to the
command line option, "- I ${ TUXDI R}/ i ncl ude" passed automatically by
bui | dcl i ent . If CFLAGS doesnot exist inbui | dcl i ent’ s environment, or
if itisthe string, "", no compiler command line arguments are added by

bui l dcl i ent.

When the - C option is specified for COBOL compilation, bui | dcl i ent
normally uses the BEA Tuxedo shell cobcc, which inturn callscob to
produce the client executable. In order to allow for the specification of an
alternate compiler, bui | dcl i ent checksfor the existence of an environment
variable named ALTCC. If ALTCC does not exist inbui | dclient’s

BEA eLink Adapter Development Kit User Guide D-3

D Tuxedo Commands

Examples

environment, or if itisthe string, ", bui | dcl i ent will usecobcc. If ALTCC
doesexist intheenvironment, itsvalueistaken to be the name of the compiler
command to be executed.

ALTCFLAGS
The environment variable ALTCFLAGS is taken to contain a set of additional
arguments to be passed as part of the COBOL compiler command line when
the - C option is specified. Thisis in addition to the command line option, " -
I${TUXDIR}Yinclude”, passed automatically by buildclient .Whenthe
-C option is used, putting compiler options and their argumentsin the
buildclient -f option will generate errors; they must be put in
ALTCFLAGSIT not set, then thevalueis set to the same value used for CFLAGS
as specified above.

COBOPT
The environment variable COBOPT's taken to contain a set of additional
arguments to be used by the COBOL compiler, when the -C option is
specified.

COBCPY
The environment variable, COBCPY indicates which directories contain a set
of COBOL copy filesto be used by the COBOL compiler when the -C option

is specified.
LD_LIBRARY_PATH
The environment variable, LD_LIBRARY_PATH ,indicates which directories

contain shared objects to be used by the COBOL compiler in addition to the
BEA Tuxedo system shared objects.

CC=ncc CFLAGS="-1 /APPDIR/include"; export CC CFLAGS
buildclient -o empclient -f emp.c -f "userlibl.a userlib2.a"

buildserver

Function

Synopsis

Construct a BEA Tuxedo server load module

buildserver [-C] [-s { @filename | service[,service...][:func] |
:func }] [-n maxdynam] [-v] [-o outfile] [-f firstfiles]
[-1 lastfiles] [{-r|-g} rmname] [-k]

D-4 BEA el ink Adapter Development Kit User Guide

buildserver

Description

bui | dser ver isused to construct a BEA Tuxedo server load module. The command
combines the files supplied by the - f and -1 options with the standard server main
routine and the standard BEA Tuxedo libraries to form aload module. The load
moduleisbuilt by thecc(1) command, which bui | dser ver invokes. (Seecc inany
UNIX System reference manual.) The optionsto bui | dser ver have the following
meaning:

-V

specifies that bui | dser ver should work in verbose mode. In particular, it
writes the compilation command to its standard output.

outfile
specifies the name of the file the output load moduleis to have. If not
supplied, the load module is named SERVER.

maxdynam
specifies the maximum number of dynamic services the user can specify
when the server is run. A dynamic service allows the user to specify at run
time the function within the server that isto process the service. If - n isnot
specified, the maximum number of such servicesis set to 25.

firstfiles
specifies one or more user filesto beincluded in the compilation and link edit
phases of bui | dserver first, beforethe BEA Tuxedo libraries. If more
than onefileis specified, file names must be separated by white space and the
entire list must be enclosed in quotation marks. This option may be specified
multiple times. The CFLAGS and ALTCFLAGS environment variables,
described below, should be used to include any compiler options and their
arguments.

lastfiles
specifies one or more user filesto beincluded in the compilation and link edit
phasesof bui | dserver | ast, after the BEA Tuxedo libraries. If more than
one file is specified, file names must be separated by white space and the
entire list must be enclosed in quotation marks. This option may be specified
multiple times.

rmamne
specifiesthe resource manager associated with this server. The value rmname
must appear in the resource manager table located in $TUXDI R/ udat aobj /
RM Each linein thisfile is of the form:

rmmane: rnstructure_nane: | i brary_names

BEA eLink Adapter Development Kit User Guide D-5

D Tuxedo Commands

D-6

(Seethebui | dt ms command in the BEA Tuxedo Reference Manual at http:/
/edocs.beasys.com/tuxedo/tux65/index.htm for further details.) Using the

r mane value, the entry in $TUXDI R/ udat aobj / RMis used to include the
associated libraries for the resource manager automatically and to set up the
interface between the transaction manager and resource manager properly.
Thevalue, Tuxedo/ Dincludes the libraries for the BEA Tuxedo System/D
resource manager. Thevalue, Tuxedo/ SQL includesthelibrariesfor the BEA
Tuxedo System/SQL resource manager. Other val ues can be specified asthey
are added to the resource manager table. If the - r option isnot specified, the
default isto use the null resource manager. Refer to theubbconf i g reference

page

-s { @ilename | service[,service...][:func] | :func }]

specifies the names of servicesthat can be advertised when the server is
booted. Service names (and implicit function names) must be less than or
equal to 15 charactersin length. An explicit function name (that is, aname
specified after a colon) can be up to 128 charactersin length. Names longer
than these limits are truncated with a warning message. When retrieved by

t madm n or TM_M B, only thefirst 15 characters of anamearedisplayed. (See
servopt s(5).) All functions that can be associated with a service must be
specified with this option. In the most common case, a serviceis performed
by afunction that carries the same name; that is, the x serviceis performed by
function x. For example, the specification

=S X,Y,2

will build the associated server with servicesx, y, and z, each to be processed
by afunction of the same name. In other cases, a service (or several services)
may be performed by afunction of a different name. The specification

-s X,Y, z:abc

buildsthe associated server with servicesx, y, and z, each to be processed by
the function abc. Spaces are not alowed between commas. Function hameis
preceded by a colon. In another case, the service name may not be known
until runtime. Any function that can have a service associated with it must be
specifiedtobui | dser ver . To specify afunctionthat can have aservice name
mapped to it, put a colon in front of the function name. For example, the
specification

BEA el ink Adapter Development Kit User Guide

http://edocs.beasys.com/tuxedo/tux65/index.htm
http://edocs.beasys.com/tuxedo/tux65/index.htm

buildserver

Environment
Variables

Examples

-S pqr

builds the server with afunction pqr , which can have a service association.
Tpadverti se could be used to map a service name to the pgr function. A
filename can be specified with the - s option by prefacing the filename with
the'@' character. Each line of thisfileis treated as an argument to the - s
option. Y ou may put commentsin thisfile. All comments must start with the
'# character. Thisfile can be used to specify all thefunctionsin the erver that
may have services mapped to them. The - s option may appear several times.
Note that services beginning with the‘_’ or '.’ character are reserved for
system use, and bui | dser ver will fail if the-s option is used to include
such aservice in the server.

specifies COBOL compilation. bui | dser ver normally usesthe cc
command to produce the a. out . In order to alow for the specification of an
alternate compiler, bui | dser ver checksfor the existence of ashell variable
named CC. If CCdoesnot exist inbui | dser ver’ s environment, or if itisthe
string ", bui | dser ver will usecc asthe compiler. If CC does exist in the
environment, itsvalue is taken to be the name of the compiler to be executed.
Likewise, the shell variable CFLAGS istaken to contain a set of parametersto
be passed to the compiler.

keeps the server main stub. bui | dser ver generates amain stub with data
structures such as the service table and amai n() function. Thisis normally
compiled and then removed when the server isbuilt. Thisoptionindicatesthat
the sourcefile should be kept (to see what the source file nameis, usethe - v
option).

Note: The generated contents of thisfile may change from releaseto release;
DO NOT count on the data structures and interfaces exposed in thisfile. This
option is provided to aid in debugging of build problems.

Sameasbui | dcl i ent .

The following example shows how to specify theresource manager (-r Tuxedo/ SQL)
libraries on the bui | dser ver command line:

bui | dserver -r Tuxedo/ SQL -s OPEN ACCT -s CLOSE _ACCT -0 ACCT
-f ACCT.o -f appinit.o -f util.o

BEA eLink Adapter Development Kit User Guide D-7

D Tuxedo Commands

The following example shows how bui | dser ver can be supplied CCand CFLAGS
variablesand how -f can be used to supply a-1 moption to thecClineto link in the
math library:

CFLAGS=-g CC=/bin/cc buildserver -r Tuxedo/SQ. -s DEPOSI T
-s WTHDRAWAL -s INQUIRY -0 TLR -f TLR o -f util.o -f -Im

The following example shows use of the bui | dser ver command with no resource
manager specified:

bui | dserver -s PRINTER -0 PRINTER -f PRI NTER o

tmadmin

Function
Synopsis

Description

BEA Tuxedo bulletin board command interpreter
tmadmn [-r] [-c] [-v]

With the commands listed below, t mradni n provides for inspection and modification
of bulletin boards and associated entitiesin either a uniprocessor, multiprocessor or
networked environment. The TUXCONFI G and TUXOFFSET environment variables are
used to determine thelocation and of fset where the BEA Tuxedo configurationfile has
been loaded. If t madni n isinvoked with the - ¢ option, it enters configuration mode.
Theonly valid commands are def aul t, echo, hel p, qui t,verbose, | ivtoc,crdl,
lidl,dsdl,indl,anddunpt! og.tmadni n may beinvoked in thismode on any node,
including inactive nodes. A node is considered active if t madni n can join the
application as an administrative process or client (viaarunning BBL). The-r option
instructst nadni n to enter the bulletin board asaclient instead of the administrator and
provides read-only access. Thisisuseful if it is desired to leave the administrator slot
unoccupied. Only one t madni n process can be the administrator at atime. When the
- r option is specified by auser other than the BEA Tuxedo administrator and security
isturned on, the user will be prompted for apassword. The-v option causest madni n
to display the BEA Tuxedo version number and license number. After printing out the
information, t madni n exits. If the - v option is entered with either of the other two
options, the others are ignored; only the information regquested by the - v optionis
displayed. Normally, t madnmi n may be run on any active node within an active
application. If itisrun on an active nodethat is partitioned, then commandsare limited
to read only accessto the local bulletin board. Theseinclude bbl s, bbpar ns,
bbstat, default, dunp, dunptlog, echo, help, printclient, printnet,

D-8 BEA el ink Adapter Development Kit User Guide

tmadmin

printqueue, printserver, printservice, printtrans, printgroup,
reconnect, quit, serverparms, serviceparns, andverbose, inadditionto
the configuration commands.

If the partitioned nodeisthe backup node for the MASTER (specified asthe second entry
on the MASTER parameter in the RESOURCES section of the configuration file), the
master command is also available to make this node the MASTER for this part of the
partitioned application. If the application isinactive, t madni n can only berun onthe
MASTER processor. In this mode, all of the configuration mode commands are
available plus the TLOG commands (cr | og, dsl og, and i nl og) and boot .

Once t madni n has been invoked, commands may be entered at the prompt (">"
according to the following syntax: command [ar gunent s] .

Several commonly occurring arguments can be given defaults via the default
command. Commands that accept parameters set via the default command check
default to see if avaue has been set. If one hasn't, an error message isreturned. Ina
networked or multiprocessor environment, a single bulletin board can be accessed by
setting a default machine (the logical machineid (LM D) as listed in the MACHINES
section of the UBBCONFI Gfile). If the default machineis set to all, al bulletin boards
are accessed. If machineis set to DBBL, the distinguished bulletin board is addressed.
The default machine is shown as part of the prompt, asin: MASTER> .

If the machine is not set via the default command, the DBBL is addressed (the local
BBL is used in a SHMconfiguration). The machine value for acommand can generally
be obtained from the default setting (printserver is an example). A caution is required
here, however, because some commands (the TLOG commands, for example) act on
devicesfound through TUXCONFI G adefault setting of DBBL or all resultsin an error.
There are some commands where the machine value must be provided on the
command line (1 ogst art isan example); the value does not appear as an argument to
the - moption. Once set, a default remains in effect until the session is ended, unless
changed by another default command. Defaults may be overridden by entering an
explicit value on the command line, or unset by entering the value "*". The effect of
an override lasts for a single instance of the command. Output from t madmni n
commands is paginated according to the pagination command in use (see the

pagi nat e subcommand below). There are some commands that have either verbose
or terse output. The ver bose command can be used to set the default output level.
However, each command (except boot , shut down and confi g) takesa-v or -t
option to turn verbose or terse output on for that command only. When output is
printed in terse mode, some of the information (for example, LMID or GROUP name,

BEA eLink Adapter Development Kit User Guide D-9

D Tuxedo Commands

service or server name) may betruncated. Thisisindicated by aplussign, +, at the end
of the value. The entire value may be seen by re-entering the command in verbose
mode.

tmadmin Commands may be entered either by their full name or their abbreviation (asgivenin

Commands parentheses), followed by any appropriate arguments. Arguments appearing in square
brackets, [], are optional; those in curly braces, {}, indicate a selection from mutually
exclusive options. Note that command line options that do not appear in square
brackets need not appear on the command line (that is, they are optional) if the
corresponding default has been set via the default command. Ellipses following a
group of optionsin curly brackets, {} ..., indicate that more than one of the options may
appear on the command line (at least one must appear).

aborttrans (abort) [-yes] [-g groupnanme] tranindex

If gr oupnane is specified (on the command line or by default), abort the transaction
associated with the specified transaction index, t r ani ndex, at the specified server
group. Otherwise, notify the coordinator of the transaction to abort the global
transaction. If the transaction isknown to be decided and the decision was to commiit,
abor tt rans will fail. The index istaken from the previous execution of the
printtrans command. To completely get rid of atransaction, pri nttrans and
abor tt rans must be executed for all groups that are participants in the transaction.
This command should be used with care.

Thefollowing provides a brief description of t madnmi n commands. For a complete
description see the online documentation.

advertise (adv) {-q qaddress [-g groupnanme][-i srvid] | -g
groupnanme -i srvid} service[:func]
Create an entry in the service table for the indicated service

bbcl ean (bbc) nachine
Check the integrity of all accessers of the bulletin board residing on machine
machi ne, and the DBBL aswedll

bbparns (bbp)
Print asummary of the bulletin board’s parameters, such as maximum number
of servers and services.

bbsread (bbls) machine
List the IPC resources for the bulletin board on machine machi ne. In SHM
mode, the machine parameter is optional . Information from remote machines
isnot available.

D-10 BEA elink Adapter Development Kit User Guide

tmadmin

bbstats (bbs)
Print a summary of bulletin board statistics. (See also shnst at s)

boot (b) [options]
This command is identical to thet mboot command. Seet mboot for an
explanation of options and restrictions on use.

broadcast (bcst) [-m machine] [-u usrnanme] [-c cltnanme] [text]
Broadcasts an unsolicited notification message to al selected clients

changel oad (chl) [-mnachi ne] {-q gaddress [-g groupnane] [-i srvid]
| -g groupnane -i srvid } -s service new oad
Change the load associated with the specified service to newload.

changepriority (chp) [-m rmachine] {-q gaddress [-g groupnane][-s
srvid] | -g groupname -i srvid } -s service newpri
Change the degueuing priority associated with the specified service newpri .

changetrace (chtr) [-m machine] [-g groupnanme] [-i srvid] newspec
Change the runtime tracing behavior of currently executing processes to
newspec.

changetrantime (chtt) [-m machine] {-qgq qaddress [-g groupnane] -

[-s srvid] | -g groupnane -i srvid } -s service newmtlim
Change the transaction timeout val ue associated with the specified serviceto
newt | i m

commttrans (commit) [-yes] -g groupnane trani ndex
Commit the transaction associated with the specified transaction index
tr ani ndex at the specified server group.

config (conf)
Thiscommand isidentical to thet nconfi g command.

crdl -b blocks -z config -o configoffset [-O newdefoffset | [
newdevi ce]
Create an entry in the universal device list.

crlog (crlg) -mmachine
Createthe DTPtransaction log for the named or default machine (it cannot be
"DBBL" or "al").

default (d) [-g groupnane] [-i srvid] [-m nachine] [-u usrnane] |-
c cltnane][-q qaddress] [-s service] [-b blocks] [-0 offset] [-z
config] [-a { 0]1]2 }]
Set the corresponding argument to be the default group name, server ID,
machine, user name, client name, queue address, service name, device blocks,

BEA eLink Adapter Development Kit User Guide D-11

D Tuxedo Commands

device offset, or UDL configuration device path (it must be an absolute
pathname starting with /).

dsdl [-yes] -z config [-o offset] dlindex
Destroy an entry found in the universal device list

dslog (dslg) [-yes] -m nmachi ne
Destroy the DTP transaction log for the named or default machine (it cannot
be"DBBL" or "al").

dunp (du) fil enane
Dump the current bulletin board into the file filename.

dunptlog (dl) -z config [-0 offset] [-n nane] [-g groupnane]
fil enane

Dumps an ASCII version of the TLOGinto the specified filename

echo (e) [{off | on}]
Echo input command lines when set to on.

help (h) [{comrmand | all}]
Print help messages.

initdl (indl) [-yes] -z config [-o offset] dlindex
Reinitializes a device on the devicellist.

inlog [-yes] -mmachi ne
Reinitialize the DTP transaction log for the named or default machine (it
cannot be"DBBL" or "all

lidl -z config [-o offset] [dlindex]
Print the universal device list.

livtoc -z config [-0 offset]
Prints information for all VTOC table entries.

| oadt| og -m machine fil enane
Read the ASCI| version of aTLOG from the specified filename (produced by
dumptlog) into the existing TLOGfor the named or default machine (it cannot
be"DBBL" or "al").

| ogstart machi ne
Force awarm start for the TLOGinformation on the specified machine.

master (nm) [-yes]
If run on the backup node when partitioned, the backup nodetakes over asthe
acting master node and a DBBL is booted to take over administrative
processing.

D-12 BEA el ink Adapter Development Kit User Guide

tmadmin

m grategroup (mgg) [-cancel] group_nane
The ni gr at egr oup command takes the name of a server group.

m gratemach (mgm [-cancel] nmachi ne
All servers running on the specified machine are migrated to their alternate
location.

pagi nate (page) [{off | on}]
Paginate output.

passwd
Prompt the administrator for a new application password in an application
reguiring security.

pcl ean (pcl) machi ne
pcl ean first forcesabbcl ean on the specified machineto restart or cleanup
any servers that may require it.

printclient (pclt) [-mmachine] [-u usrname] [-c cltnane]
Print information for the specified set of client processes.

printconn (pc) [-m machi ne]
Print information about conversational connections.

printgroup (pg) [-m machine] [-g groupnane]
Print server group table information.

printnet (pnw) [mach_list]
Print network connection information.

printqueue (pqg) [qaddress]
Print queue information for all application and administrative servers.

printserver (psr) [-mmachine] [-g groupnane] [-i srvid] [-q
gaddr ess]
Print information for application and administrative servers.

printservice (psc) [-mnmachine] [-g groupnane] [-i srvid] [-a
{ 0]1/2 }][-q gaddress] [-s service]
Print information for application and administrative services.

printtrans (pt) [-g groupnane] [-m machine]
Print global transaction table information for either the specified or the
default machine.

quit (q)
Terminate the session.

BEA elLink Adapter Development Kit User Guide D-13

D Tuxedo Commands

reconnect (rco) non-partitioned nmachinel partitioned_machi ne2
Initiate anew connection from the non-partitioned machine to the partitioned
machine.

resune (res) {-q qaddress | -g groupnane | -i srvid| -s service} ...
Resume (unsuspend) services.

serverparnms (srp) -g groupnanme -i srvid
Print the parameters associated with the server specified by gr oupnane and
srvi d for agroup.

serviceparns (scp) -g groupname -i srvid -s service
Print the parameters associated with the service specified by gr oupnane,
srvi d andservi ce.

shnstats (sstats) [ex | app]
If MODEL SHMis specified in the configuration file, shnst at s can be used to
assure more accurate statistics.

shut down (stop) [options]
This command is identical to thet mshut down command.

suspend (susp) {-q gaddress | -g groupname | -i srvid | -s service}

Suspend services.

unadvertise (unadv) {-q qgaddress [-g groupnane] [-i srvid] | -g
groupnanme -i srvid} service
Remove an entry in the service table for the indicated service.

verbose (v) [{off | on}]
Produce output in verbose mode.

I shel | conmand
Escape to shell and execute shellcommand.

Repeat previous shell command.

[text]
Lines beginning with "#" are comment lines and areignored.

CR>
Repeat the last command.

D-14 BEA elink Adapter Development Kit User Guide

tmboot

Environment t madmi n actsasan application client if the-r option is used or if it cannot register as
Variables the application administrator. If thisisthe case, then the APP_Pwenvironment variable
must be set to the application password in a security application if standard input isnot

from aterminal.

Diagnostics If thet madmi n command is entered before the system has been booted, the following
message is displayed:

No bulletin board exists. Entering boot node
>

t madni n then waits for aboot command to be entered. If the t madni n command is
entered, without the - ¢ option, on an inactive node that is not the MASTER, the
following message is displayed and the command terminates:

Cannot enter boot nbde on non-naster node.

If an incorrect application password is entered or is not available to a shell script
through the environment, then alog message is generated, the following message is
displayed and the command terminates:

Invalid password entered.

tmboot

Function Bring up a BEA Tuxedo configuration

Synopsis tnboot [-1 Inid] [-g grpname] [-i srvid] [-s aout] [-0 sequence]
[-S] [-Al [-b] [-BImd] [-T grpnane] [-e command] [-w] [-y] [-d]
[-n] [-c] [-M [-d1]

Description t mboot brings up a BEA Tuxedo application in whole or in part depending on the
options specified. t nboot can be invoked only by the administrator of the bulletin
board (asindicated by the Ul D parameter in the configuration file) or by root. t mboot
can beinvoked only on the machine identified as MASTER in the RESOURCES section
of the configuration file, or the backup acting as the MASTER, that is, with the DBBL
aready running (viathe master command in t madni n). Except, if the-b optionis
used, the system can be booted from the backup machine without it having been
designated as the MASTER. With no options, t nboot executes all administrative
processes and all serverslisted in the SERVERS section of the configuration file

BEA elLink Adapter Development Kit User Guide D-15

D Tuxedo Commands

D-16

named by the environment variables, TUXCONFI Gand TUXCFFSET. |f the MODEL is VP,
aDBBL administrative server is started on the machine indicated by the MASTER
parameter in the RESOURCES section. An administrative server (BBL) is started on
every machine listed in the MACHINES section. For each group in the GROUPS
section, TM S servers are started based on the TMSNAME and TMSCOUNT parameters for
each entry. All administrative serversare started followed by serversinthe SERVERS
sections. Any TMS or gateway servers for agroup are booted before the first
application server in the group is booted. The TUXCONFI Gfile is propagated to remote
machines as necessary. t mboot normally waits for a booted process to complete its
initialization (that is, t psvri ni t ()) before booting the next process. Booting a
gateway server impliesthat the gateway advertisesits administrative service, and also
advertises the application services representing the foreign services based on the
CLOPT parameter for the gateway (- Awill causeall services defined when the gateway
isbuilt withbui | dgat eway to be advertised; - s can be used to give alist of services).
If the instantiation has the concept of foreign servers, these servers are booted by the
gateway at thistime. Booting an LMID is eguivalent to booting all groups on that
LMID. Application servers are booted in the order specified by the SEQUENCE
parameter, or in the order of server entries in the configuration file (see description in
ubbconfi g). If two or more serversin the SERV ERS section of the configuration file
have the same SEQUENCE parameter, then t mboot may boot these serversin parallel
and will not continue until they all completeinitialization. Each entry inthe SERVERS
section can have aM Nand MAX parameter. t mhoot bootsM N application servers (the
defaultis1 if M Nisnot specified for the server entry) unlessthe-i option isspecified;
usingthe-i option causesindividual serversto be booted up to MAX occurrences. If a
server can not be started, a diagnostic is written on the central event log (and to the
standard output, unless - q is specified), and t mboot continues -- except that if the
failing processis a BBL, servers that depend on that BBL are silently ignored; if the
failing processisaDBBL, t nboot ignorestherest of the configuration file. If aserver
isconfigured with an alternate LMD and failsto start on its primary machine, t mboot
automatically attempts to start the server on the alternate machine and, if successful,
sends a message to the DBBL to update the server group section of TUXCONFI G. For
serversin the SERVERS section, only CLOPT, SEQUENCE, SRVGRP and SRVI Dare used
by t mboot . Collectively, these are known as the server’s boot parameters. Once the
server has been booted, it reads the configuration file to find its runtime parameters.
(Seeubbconfi g(5) for adescription of al parameters.) All administrative and
application servers are booted with APPDI R as their current working directory. The
value of APPDI Ris specified in the configuration file in the MACHINES section for
the machine on which the server is being booted. The search path for the server
executablesis APPDI R, followed by TUXDI R/ bi n, followed by / bi n and/ usr/ bi n,
followed by any PATH specified in the ENVFI LE for the MACHINE. The search path
isonly used if an absolute path name is not specified for the server. Vaues placed in

BEA el ink Adapter Development Kit User Guide

tmboot

the server’s ENVFI LE are not used for the search path. When a server is booted, the
variables TUXDI R, TUXCONFI G, TUXOFFSET, and APPDI R, with values specified in the
configuration file for that machine, are placed in the environment. The environment
variable LD_LI BRARY_PATHis also placed in the environment of all servers. Itsvalue
defaultsto $APPDI R $TUXDI R/ i b: /i b:/usr/lib:1ib>wherelib>isthevaue
of thefirst LD_LI BRARY_PATH= line appearing in the machine ENVFI LE. See
ubbconf i g for adescription of the syntax and use of the ENVFI LE. The ULOGPFX for
the server isalso set up at boot time based on the parameter for the machinein the
configuration file. If not specified, it defaults to $APPDI R/ ULOG All of these
operations are performed before the application initiaization function, t psvrinit (),
iscalled. Many of the command line options of t nboot serveto limit theway in which
the system is booted and can be used to boot a partial system. The following options
are supported:

-l Imd
For each group whose associated LM D parameter isl ni d, all TMS and
gateway servers associatedmwith the group are booted and all serversin the
SERV ERS section associated with those groups are executed.

-g grpnane
All TMS and gateway servers for the group whose SRVGRP parameter is
gr pnane are started followed by all serversin the SERV ERS section
associated with that group. TM S servers are started based on the TMSNAME and
TMSCOUNT parameters for the group entry.

-i srvid
All serversin the SERVERS section whose SRvI D parameter issrvi d are
executed.

-S aout
All serversin the SERVERS section with name aout are executed. This
option can aso be used to boot TM S and gateway servers; normally this
option would be used in this way in conjunction with the - g option.

-0 sequence
All serversinthe SERVERS section with SEQUENCE parameter sequence are
executed.

All serversin the SERVERS section are executed.

All administrative servers for machinesin the MACHINES section are
executed. Use this option to guarantee that the DBBL and all BBL and

BEA elLink Adapter Development Kit User Guide D-17

D Tuxedo Commands

-Blmd

-dl

BRIDGE processes are brought up in the correct order (also seethe- M
option).

Boot the system from the BACKUP machine, (without having to makeit the
MASTER).

A BBL isstarted on a processor with logical name Imid.

This option starts administrative servers on the master machine. If the
MODEL isvP, aDBBL administrative server is started on the machine
indicated by the MASTER parameter in the RESOURCES section. A BBL is
started on the MASTER machine, and a BRI DGE is started if the LAN option
and a NETWORK entry are specified in the configuration file.

Causes command line options to be printed on the standard output. Useful
when preparing to use sdb to debug application services.

-T grpnane

All TMS serversfor the group whose SRVGRP parameter is gr pnane are
started (based on the TMSNAME and TMSCOUNT parameters associated with the
group entry). This option is the same as booting based on the TM S server
name (- s option) and the group name (- g).

-e conmand

Causes command to be executed if any process failsto boot successfully.
command can be any program, script, or sequence of commands understood
by the command interpreter specified in the SHELL environment variable.
This allows an opportunity to bail out of the boot procedure. If command
contains white space, the entire string must be enclosed in quotes. This
command is executed on the machine on which t mboot is being run, not on
the machine where the server is being booted.

Informst nboot not to wait for serversto complete initialization before
booting another server. This option should be used with caution. BBLs
depend on the presence of avalid DBBL, ordinary servers require arunning
BBL on the processor on which they are placed. These conditions can not be
guaranteed if servers are not started in a synchronized manner.This option
overrides the waiting that is normally done when servers have sequence
numbers.

D-18 BEA el ink Adapter Development Kit User Guide

tmboot

Environment
Variables

Diagnostics

-y
Assumes ayes answer to aprompt that asksif all administrative and server
processes should be booted. (The prompt appears only when the command is
entered with none of the limiting options.)

-q

Suppresses the printing of the execution sequence on the standard output. It
implies-y.

The execution sequence is printed, but not performed.

Minimum | PC resources needed for this configuration are printed. When the
-1, -g, -i, -o, and-s optionsareusedincombination, only serversthat
satisfy all qualifications specified will be booted. The-1, -g, -s, and-T
options cause TM S serversto be booted; the-1, -g, and - s options cause
gateway serversto be booted; the-1, -g, -i, -o, -s, and-Soptions
apply to application servers. Options that boot application serverswill fail if
aBBL isnot available on the machine.The-A, -M and- B options apply
only to administrative processes. The standard input, standard output, and
standard error file descriptors will be closed for all booted servers.

During the installation process, an administrative password file is created. When
necessary, BEA Tuxedo searches for thisfile in the following directories (in the order
shown): APPDI R/ . adm/ t | i st en. pw TUXDI R/ udat aobj /tlisten. pw To ensure
that your password file will be found, make sure you have set the APPDI R and/or
TUXDI R environment variables.

If TUXCONFI Gisset to anon-existent file, two fatal error messages are displayed: error
processing configuration file configuration file not found If t mboot failsto boot a
server, it will exit with exit code 1 and the user log should be examined for further
details; otherwise it will exit with exit code 0. If t mboot isrun on aninactive non-
master node, afatal error message is displayed: t nboot cannot run on a non-master
node. If t mboot isrunon an active node that is not the acting master node, afatal error

message is displayed:

tmboot cannot run on a non acting-master node in an active
appl i cation.

If the same | PCKEY is used in more than one TUXCONFI Gfile, t mboot fails with the
following message:

Configuration file paraneter has been changed since |ast tmboot

BEA elLink Adapter Development Kit User Guide D-19

D Tuxedo Commands

Examples

If there are multiple node names in the MACHINES section in anon-LAN
configuration, afatal error message is displayed: Multiple nodes not allowed in
MACHINES for non-L AN application.

To start only those serverslocated on the machines logically named CS0 and CS1:
tnboot -1 CSO -1 CSi1

To start only those servers named CREDEB and belonging to group DBGL1:
tmboot -g DBGL -s CREDEB1

To boot aBBL on the machinelogically named PE8, aswell asall those serverswhose
location is specified as PES:

tnboot -B PE8 -1 PE8
To view minimum | PC resources needed for the configuration:

tnboot -c

tmloadcf

Function
Synopsis

Description

Parse a UBBCONFI G file and load binary TUXCONFI G configuration file
tmoadcf [-n] [-y] [-c] [-b blocks] {ubbconfig_file | -}

t m oadcf reads afile or the standard input that isin UBBCONFI G syntax, checks the
syntax, and optionally loads a binary TUXCONFI G configuration file. The TUXCONFI G
and (optionally) TUXOFFSET environment variables point to the TUXCONFI Gfile and
(optional) offset wheretheinformation should be stored. t M oadcf canonly berunon
the MASTER machine, asdefined in the RESOURCES section of the UBBCONFI Gfile,
unlessthe- c or - n option is specified. t nl oadcf printsawarning message if it finds
any section of the UBBCONFI Gfile missing, other than a missing NETWORK section
in a configuration where the LAN OPTI ONis not specified (seeubbconfi g) or a
missing ROUTING section. If asyntax error is found while parsing the input file,

t m oadcf exitswithout performing any updatesto the TUXCONFI Gfile. The effective
user identifier of the person runningt m oadcf must matchthe Ul D, if specified, inthe
RESOURCES section of the UBBCONFI Gfile. The-c optiontot m oadcf causesthe
program to print minimum | PC resources needed for this configuration. Resource
requirements that vary on a per-processor basis are printed for each processor in the

D-20 BEA elink Adapter Development Kit User Guide

tmloadcf

configuration. The TUXCONFI Gfileisnot updated. The-n optiontot m oadcf causes
the program to do only syntax checking of the ASCII UBBCONFI Gfilewithout actually
updating the TUXCONFI Gfile. After syntax checking, t m oadcf checksto seeif the
file pointed to by TUXCONFI G exists, isavalid BEA Tuxedo system file system, and
contains TUXCONFI Gtables. If these conditions are not true, the user is prompted to
decideif they want t m oadcf to create and initializethefilewith Initi al i ze
TUXCONFI G file: path [y, q]? Promptingissuppressed if the standard input or
output are not terminals, or if the -y option is specified on the command line. Any
response other than "y" or "Y" will causet n oadcf to exit without creating the
configuration file. If the TUXCONFI Gfile is not properly initialized, and the user has
given the go-ahead, t nl oadcf creates the BEA Tuxedo system file system and then
creates the TUXCONFI Gtables. If the - b option is specified on the command line, its
argument is used as the number of blocks for the device when creating the BEA
Tuxedo system file system. If the value of the - b option is large enough to hold the
new TUXCONFI Gtables, t ml oadcf will use the specified value to create the new file
system; otherwise, t m oadcf will print an error message and exit. If the - b optionis
not specified, t nl oadcf will create a new file system large enough to hold the
TUXCONFI Gtables. The - b option isignored if the file system already exists. The - b
option is highly recommended if TUXCONFI Gis araw device (that has not been
initialized) and should be set to the number of blocks on the raw device. The- b option
is not recommended if TUXCONFI Gis aregular UNIX file. If the TUXCONFI Gfileis
determined to already have been initialized, t nl oadcf ensuresthat the system
described by that TUXCONFI Gfileis not running. If the system isrunning, t m oadcf
prints an error message and exits. If the system is not running and TUXCONFI Gfile
aready exists, t nl oadcf will prompt the user to confirm that the file should be
overwritten with Real | y overwrite TUXCONFIG file [y, q]? Promptingis
suppressed if the standard input or output are not aterminal or if the-y optionis
specified on the command line. Any response other than "y" or "Y" will cause

t m oadcf to exit without overwriting thefile. If the SECURI TY parameter is specified
in the RESOURCES section of the configuration, then t m oadcf will flush the
standard input, turn off terminal echo and prompt the user for an application password
asfollows:

Enter Application Password?
Reent er Application Password?

The password islimited to 30 characters. The option to load the ASCII UBBCONFI Gfile
viathe standardinput (rather than afil€) cannot be used when the SECURI TY parameter
isturned on. If the standard input is not atermina, that is, if the user cannot be
prompted for a password (aswith a here file, for example), then the environment
variable APP_Pwis accessed to set the application password. If the environment
variable APP_PWis not set with the standard input not aterminal, thent m oadcf will

BEA elLink Adapter Development Kit User Guide D-21

D Tuxedo Commands

Environment
Variables

Examples

Diagnostics

print an error message, generate alog message and fail to load the TUXCONFI Gfile.
Assuming no errors, andif all checkshave passed,t m oadcf loadsthe UBBCONFI Gfile
into the TUXCONFI Gfile. It will overwrite all existing information found in the
TUXCONFIG tables. Note that some values are rounded during the load and may not
match when they are unloaded. These include but are not limited to MAXRFT and
MAXRTDATA.

Theenvironment variable APP_PwWmust be set for applicationsthat have the SECURI TY
parameter is specified and runt nl oadcf with something other than atermina asthe
standard input.

To load a configuration file from UBBCONFI Gfile BB. shm initialized the device with
2000 blocks:

t m oadcf -b2000 -y BB.shm

If an error is detected in the input, the offending line is printed to standard error along
with amessageindicating the problem. If asyntax error isfound in the UBBCONFI Gfile
or thesystemiscurrently running, no information isupdated in the TUXCONFI Gfile and
t m oadcf exitswith exit code1. If t i oadcf isrun by aperson whose effective user
identifier doesn't match the Ul D specified in the UBBCONFI Gfile, the following error

message is displayed:

*** UDis not effective user |ID ***

If t M oadcf isrun on anon-master node, the following error message is displayed:
tm oadcf cannot run on a non-master node.

If t M oadcf isrun on an active node, the following error message is displayed:

t m oadcf cannot run on an active node.

Upon successful completion, t m oadcf exitswith exit code 0. If the TUXCONFI Gfile
isupdated, auser | og message is generated to record this event.

tmshutdown

Function

Synopsis

Shutdown a set of BEA Tuxedo servers

t mshut down [opti ons]

D-22 BEA elink Adapter Development Kit User Guide

tmshutdown

Description

t mshut down stops the execution of a set of servers or removes the advertisements of
aset of services listed in a configuration file. Only the administrator of the bulletin
board (as indicated by the Ul D parameter in the configuration file) or root can invoke
the t mshut down command. t mshut down can be invoked only on the machine
identified as MASTER in the RESOURCES section of the configuration file, or the
backup acting as the MASTER, that is, with the DBBL already running (viathe master
command int madni n). An exception to thisisthe - P option which is used on
partitioned processors (see below). With no options, t nshut down stops all
administrative, TM S, and gateway servers, and serverslisted in the SERVERS section
of the configuration file named by the TUXCONFI Genvironment variable and removes
their associated | PC resources. For each group, all serversin the SERVERS section, if
any, are shutdown followed by any associated gateway servers (for foreign groups) and
TMS servers. Administrative servers are shutdown last. Application servers without
SEQUENCE parameters are shutdown first in reverse order of the server entriesin the
configuration file, followed by servers with SEQUENCE parameters that are shutdown
from high to low sequence number. If two or more serversin the SERVERS Section
of the configuration file have the same SEQUENCE parameter, then t mshut down may
shut down these serversin parallel. Each entry in the SERV ERS Section may have an
optional M Nand MAX parameter. t mshut down shuts down all occurrences of a server
(up to MAX occurrences) for each server entry, unlessthe-i option is specified; using
the-i option causes individua occurrencesto be shut down. If it isnot possible to
shutdown a server, or remove a service advertisement, a diagnostic is written on the
central event log (see user | og). The following is a description of all options:

-l Imd
For each group whose associated LM D parameter is| ni d, al serversin the
SERV ERS section associated with the group are shut down, followed by any
TMS and gateway servers associated with the group.

-g grpnanme
All serversin the SERV ERS section associ ated with the specified group (that
is, whose SRVGRP parameter isgr pname) are shutdown, followed by al TMS
and gateway servers for the group. TM S servers are shutdown based on the
TMSNAME and TMSCOUNT parameters for the group entry. For aforeign group,
the gateway servers for the associated entry in the HOST section are
shutdown based on GATENAME and GATECOUNT. Shutting down a gateway
implies its administrative service and all advertised foreign services are
unadvertised, in addition to stopping the process.

-i srvid
All serversin the SERVERS section whose SRVI D parameter issr vi d are
shutdown. Do not enter a SRvI D greater than 30,000; this indicates system

BEA elLink Adapter Development Kit User Guide D-23

D Tuxedo Commands

processes(that is, TM Ssor gateway servers) that should only be shutdownvia
the-1 or - g options.

-sS aout
All serversin the SERVERS section with name aout are shutdown. This
option can also be used to shutdown TM S and gateway servers.

-0 sequence
All serversin the SERVERS section with SEQUENCE parameter sequence are

shutdown.
-S
All serversin the SERVERS section are shutdown.
-A
All administrative servers are shutdown.
-M
This option shuts down administrative servers on the master machine. The
BBL isshut down on the MASTER machine, and the BRIDGE is shut down
if the LAN option and aNETWORK entry are specified in the configuration
file. If the MODEL isMP, the DBBL administrative server is shut down.
-Blmd
The BBL on the processor with logical name Imid is shutdown.
-T grpnane
All TMS serversfor the server group whose SRVGRP parameter is gr pname
are shut down (based on the TMSNAME and TMSCOUNT parameters associ ated
with the server group entry).
-w del ay

Tellst nshut down to suspend all selected serversimmediately and waits for
shutdown confirmation for only delay seconds before forcing the server to
shut down by sending a SI GTERMand then a Sl GKI LL signal to the server.
Note: Serversto which the - woption may be applied should not catch the
UNIX signal SI GTERM

-k {TERM Kl LL}
t mshut down suspends all selected serversimmediately and forces them to
shut down in an orderly fashion (TERM or preemptively (KI LL).
Note: This option mapsto the UNIX signals S| GTERMand SI GKI LL on
platforms which support them. By default, a SI GTERMinitiates orderly

D-24 BEA el ink Adapter Development Kit User Guide

tmshutdown

-HImd

-PImd

shutdown in a BEA Tuxedo server. Application resetting of SI GTERMcould
cause to be unable to shutdown the server.

Assumes ayes answer to aprompt that asksif all administrative and server
processes should be shutdown. (The prompt appears only when the command
is entered with none of the limiting options.)

Suppresses the printing of the execution sequence on the standard output. It
implies -vy.

The execution sequence is printed, but not performed.

For migration operations only, shuts down a server on the original processor
without deleting its bulletin board entry in preparation for migration to
another processor. The - Roption must be used with either the - | or- g option
(e.g., tmshutdown -1 1 nmid -R) The M GRATE option must be specified in
the RESOURCES section of the configuration file.

Shuts down BBLs eveniif clients are still attached.

On auniprocessor, al administrative and applications servers on the node
associated with the specified | mi d are shut down. On a multiprocessor(e.g.,
3B4000), all PEs are shut down, even if only one PE is specified.

With this option, t mshut down attaches to the bulletin board on the specified
I mi d, ensuresthat this! ni d is partitioned from the rest of the application
(that is, does not have accessto the DBBL), and shutsdown all administrative
and application servers. It must be run on the processor associated with the

I mi d inthe MACHINES section of the configuration file. The-1, -g, -s,
and - T options cause TMS serversto be shut down; the-1, -g, and-s
options cause gateway serversto be shut down; the -1, -g, -i, -s, -o,
and - S optionsapply to application servers; the- A, -M and - Boptionsapply
only to administrative processes. Whenthe-1, -g, -i, -o, and-s options
are used in combination, only serversthat satisfy all qualifications specified
will be shut down. If the distributed transaction processing feature is being
used such that global transactions are in progress when servers are shutdown,
transactions that have not yet reached the point where commit islogged after

BEA eLink Adapter Development Kit User Guide D-25

D Tuxedo Commands

Diagnostics

Examples

pre-commit will be aborted; transactions that have reached the commit point
will be completed when the servers (for example, TMS) are booted again.

If t nehut down failsto shut down a server or afatal error occurs, it will exit with exit
code 1 and the user log should be examined for further details; otherwise it will exit
with exit code 0. If t mshut down is run on an active node that is not the acting master
node, afatal error message is displayed:

t mshut down cannot run on a non acting-naster node in an active
appl i cation.

If shutting down a process would partition active processes from the DBBL, afatal
error message is displayed:

cannot shutdown, causes partitioning.

If aserver has died, the following somewhat ambiguous message is produced:
CMDTUX_CAT: 947

Cannot shut down server GRPID

To shutdown the entire system and remove all BEA Tuxedo |PC resources (forceit if
confirmation not received in 30 seconds):

t mshut down -w 30

To shutdown only those servers located on the machine with | ni d of CS1. Since the -
| optionrestrictsthe action to serverslisted in the SERVERS section, theBBL on CS1
is not shutdown:

t mshut down -1 CS1

ud, ud32, wud, wud32

Function

Synopsis

BEA Tuxedo driver program

ud [-p] [-ddelay] [-eerror_limt] [-r] [-ssleeptine] [-ttineout]
[-n] [-u{n]| u] j}] [-Wusrname] [-Ccltnane] [-Sbuffersize]
ud32 [options]

wud [options]

wud32 [options]

D-26 BEA el ink Adapter Development Kit User Guide

ud, ud32, wud, wud32

Description

Options

ud reads an input packet from its standard input using Fext r ead. The packet must
contain afield identified asthe name of aservice. The input packet istransferred to an
FML fielded buffer (FBFR) and sent to the service. If the servicethat receivesthe FBFR
is onethat adds records to a database, ud provides a method for entering bulk fielded
data into a database known to the BEA Tuxedo system. By using flags (see | NPUT
FORVAT) to begin the lines of the input packet, you can use ud to test BEA Tuxedo
services. By default, after sending the FBFRto the service, ud expects areturn FBFR.
The sent and reply FBFRs are printed to ud’ s standard output; error messages are
printed to standard error. ud32 uses FML 32 buffers of type FBFR32. wud and wud32
areversions of ud and ud32 built using the Workstation libraries. On sites supporting
just Workstation, only the wud and wud32 commands will be present.

ud supports the following options:

-p
suppress printing of the sent and returned fielded buffers.

-d
expect adelayed reply for every request. delay specifies the maximum delay
time in seconds before time out. If time-out occurs, an error message is
printedon st der r . If ud receivesreply messagesfor previous requestswithin
the delay time, they will be indicated as delayed RTN packets. Hence, it is
possible to receive more than one reply packet within a delay time interval.
The - d option is not available for wud on DOS operating systems.

-e error_limt
ud stops processing requests when errors exceed the limit specified in
error_linmt.Ifnolimitisspecified, the default is 25.

ud should not expect areply message from servers.

-s sl eeptine
sleep between sends of input buffers. sI eept i nme isthe time, in seconds, of
the sleep.

-t timeout
ud should send requestsin transaction mode. t i meout isthetime, in seconds,
before the transaction istimed out. The - d delay and - r (no reply) options
are not allowed in combination with the -t option.

-uf{n | oul j}
specify how the request buffer is modified before reading each new packet.
Then optionindicates that the buffer should bereinitialized (treated as new).
The u option indicates that the buffer should be updated with the reply buffer

BEA elLink Adapter Development Kit User Guide D-27

D Tuxedo Commands

using Fupdat e. The j option indicatesthat the reply buffer should be joined
with the request buffer using Foj oi n.

reinitialize the buffer before reading each packet (i.e., treat each buffer asa
new buffer). This option is equivalent to - un and is maintained for
compatibility.

- U usrnane
Use usr nane as the user name when joining the application.

-S buffersize
If the default buffer sizeisnot large enough, the - S option can be used to raise
thelimit. buf f er si ze can be any number upto MAXLONG. The-d delay and
-r options are mutually exclusive.

Input Format Input packets consist of lines formatted as follows:
[flag]fldnane fl dval

f1agisoptiona. If flag is not specified, a new occurrence of the field named by
f1 dname withvaluef | dval isadded to thefielded buffer. If flag is specified, it should
be one of:

+
occurrence 0 of f | dname in FBFR should be changed tof | dval .

occurrence 0 of f1 dname should be deleted from FBFR. The tab character is
required; f I dval isignored.

thevalueinf | dname should be changed. Inthiscase, f| dval specifiesthe
name of a field whose value should be assigned to the field named by
f | dnane.

the lineis treated as a comment and is ignored.

If f I dnanme istheliteral value SRVCNM f | dval isthe name of the service to which
FBFRisto be passed. Lengthy field values can be continued on the next line by having
the continuation line begin with atab. A line consisting only of the newline character
ends the input and sends the packet to ud. If an input packet beginswith aline
consisting of the character n followed by the newline character, the FBFRis
reinitialized. FBFRreinitialization can be specified for all packets with the - un option
on the command line. To enter an unprintable character in the input packet, use the

D-28 BEA el ink Adapter Development Kit User Guide

ud, ud32, wud, wud32

Processing
Model

Environment
Variables

Diagnostics

Examples

escaping convention followed by the hexadecimal representation of the desired
character (see ASCI | (5) inaUNIX reference manual). An additional backslash is
needed to protect the escape from the shell. A space, for example, can be entered in the
input data as 20. ud recognizes all input in thisformat, but itsgreatest usefulnessisfor
non-printing characters.

Initially, ud reads a fielded buffer from its standard input and sends it to the service
whose nameisgiven by thef | dval of thelinewheref | dname equals SRVCNM Unless
the-r optionisselected, ud waitsfor areply fielded buffer. After obtaining thereply,
ud reads another fielded buffer from the standard input. In so doing, ud retains the
returned buffer as the current buffer. This means that the lines on the standard input
that form the second fiel ded buffer are taken to be additionsto the buffer just returned.
That is, the default action is for ud to maintain a current buffer whose contents are
added to by a set of input lines. The set is delimited by ablank line. ud may be
instructed to discard the current buffer (that is, to reinitialize its FBFR structure) either
by specifying the - un option on the command line, or by including aline whose only
character istheletter n asthefirst line of an input set. ud may beinstructed to merge
the contents of the reply buffer into the request buffer by specifying either the - uu
option (Fupdat e isused) or the - uj option (Foj oi n isused).

FLDTBLDI R and FI ELDTBLS must be set and exported. FLDTBLDI R must include
$TUXDI R/ udat aobj inthelist of directories. FI ELDTBLS must include Usysf | ds as
one of thefield tables.

APP_PWmust be set to the application password in a security application if standard
input is not from aterminal. TPI DATA must be set to the application specific data
necessary to join the application in asecurity application with an authentication server
if standard input is not from aterminal.

WBNADDR, WSDEVI CE and optionally WBTYPE must be set if accessisfrom a
workstation. See compilation for more details on setting environment variables for
client processes.

ud failsif it cannot become aclient process, if it cannot create the needed FBFRs, or if
it encounters a UNIX system error. It also failsif it encounters more than 25 errorsin
processing a stream of input packets. These can be syntax errors, missing service
names, errors in starting or committing a transaction, time-outs and errorsin sending
the input FBFR or in receiving the reply FBFR.

$ud <EOF>

SRVCNM BUY

CLI ENT J. Jones
ADDR 21 Val |l ey Road

BEA elLink Adapter Development Kit User Guide D-29

D Tuxedo Commands

D-30

STOCK AAA
SHARES 100

<CR>

+SRVCNM SELL
+STOCK XXX
+SHARES 300
STOCK YYY
SHARES 150

<CR>

n

SRVCNM BUY
CLIENT T. Smith
ADDR 1 Main Street

STOCK BBB
SHARES 175
<CR>
+SRVCNM SELL
+STOCK 7227
+SHARES 100
<CR>

ECF

$

In thisexample, ud first sends afielded buffer to the service BUY with CLI ENT field set
to J. Jones, ADDRfield set to 21 Valley Road, STOCK field to AAA, and SHARES field
set to 100. When the fielded buffer is returned from the BUY service, ud uses the next
set of linesto change SRVCNMto SELL, STOCK to XXX, and SHARES to 300. Also, it
creates an additional occurrence of the STOCK field with value YY'Y and an additional
occurrence of the SHARES field with value 150. Thisfielded buffer is then sent to the
SELL service (the new value of the SRVCNMfield). When SELL sends back areply
fielded buffer, ud discardsit by beginning the next set of lineswith aline containing
only the character n. ud then begins building an entirely new input packet with a
SRvCNMof BUY,, CLI ENT of value T. Smith, and so on.

BEA el ink Adapter Development Kit User Guide

APPENDIX

E

Synopsis

Description

Servopts

The following information about Servoptsis excerpted from the Tuxedo Online
Documentation. For additional details and a complete list of Tuxedo functions and
commands, see http://edocs.beasys.com/tuxedo/tux65/index.htm.

AQUT CLOPT= [-Al[-s{ @il ename| service[,service...][:func]}]
[-e stderr _file][-p [L][low water][,[term nate_tine]]
[:[high_ water][,create_time]][-h][-] locktype][-n prio]
[-0 stdout _file][-r][-- uargs]

servopt s isnot acommand. Rather, it isalist of run-time options recognized by
serversin aBEA

Tuxedo system. The server using these options may be one of the BEA Tuxedo system-
supplied servers such as FRMPRT, or it may be an application-supplied server built with
the bui | dser ver command. Running serversin a BEA Tuxedo systemis
accomplished through thet nboot andt madmi n commandsworking with servers (and
other resources) specified in the application configuration file. Desired sel ectionsfrom
theservopt s list are specified with the server in the configuration file. The following
options are recognized:

-A
indicates that the server should initially offer all services with which it was
constructed. For BEA Tuxedo system-supplied servers, - Aisthe only way of
specifying services.

-s { @ilenane | service[,service...][:func] }
specifies the names of servicesto be advertised when the server is booted. In
the most common case, a serviceis performed by afunction that carries the
same name; that is, the x serviceisperformed by function x. For example, the
specification

-S X,Y,2
will run the associated server initially offering services x, y, and z, each
processed by afunction of the same name. In other cases, aservice (or severa
services) may be performed by afunction of a different name. The

BEA eLink Adapter Development Kit User Guide E-1

http://edocs.beasys.com/tuxedo/tux65/index.htm

E servo pts

specification, s x, y, z: abc runsthe associated server with initial servicesx,
y, and z, each processed by the function abc. Spaces are not allowed between
commas. Function name is preceded by a colon. Service name (and implicit
function names) must be less than or equal to 15 charactersin length. An
explicit function name (that is, a name specified after a colon) can be up to
128 charactersin length. Names longer than these limits are truncated with a
warning message. When retrieved by t madni n or TM_M B, only the first 15
characters of aname are displayed. A filename can be specified with the - s
option by prefacing the filename with the * @’ character. Each line of thisfile
istreated asan argument to the - s option. Y ou may put commentsin thisfile.
All comments start with ‘# or *:". The -s option may be specified multiple
times.

specifies the name of afile to be opened as the server’s standard error file.
Providing this option ensures that a restarted server has the same standard
error file asits predecessors. If this option isnot used, adefault diversion file
called st derr iscreated in the directory specified by $APPDI R.

-p [L][low water][,[termnate_tine]][:[high water][,create_tine]]

This option can be used to support automatic spawning/decay of servers. It
may be used for serverson an M SSQ with MAX greater than 1; it isnot allowed
(and not necessary) for conversational servers. Argumentsto the option have
the following meanings: L The decision to spawn more serversis based on
load rather than number of servers or messages. -- the remaining arguments,
| ow water,termninate_tine, high water,andcreate_tine areusedto
control when serversare spawned or deactivated. The algorithmis: if theload
meets or exceeds hi gh_wat er for at least cr eat e_t i me seconds, anew
server is spawned. If the load drops below | ow_wat er for at least

t ermi nat e_t i me seconds, aserver isdeactivated. TheL option works only
in SHMmode with load balancing turned on. If SHM LDBAL+Y is not set, then
a userlog message (LI BTUX_CAT: 1542) is printed and no spawning is done.
I ow_wat er defaultsto an average of 1 server or message on the MSSQ or a
workload of 50. hi gh_wat er defaultsto an average of 2 servers or messages,
or aworkload of 100. create_ti ne defaultsto 50: t er mi nat e_ti me
defaults to 60.

do not run the server immune to hangups. If not supplied, the server ignores
the hangup signal.

E-2 BEA el ink Adapter Development Kit User Guide

| ockt ype

lock the server in core. The argument for locktypeist, d, or p according to
whether the text (TXTLOCK), data (DATLOCK), or the entire process (text and
data - PROCLOCK), should belocked. See pl ock for details. The lock failsif
the server isnot run as root. There is no way to unlock a server onceit is
locked.

-n prio

ni ce the server according to the pr i o argument. Giving the process better
priority (a negative argument) requires it to be run with the ui d of root. See
ni ce(2) for details.

-0 stdout file

specifies the name of afile to be opened as the server’s standard output file.
Providing this option ensures that a restarted server has the same standard
output file as its predecessors. If this option is not used, adefault diversion
file called st dout is created in the directory specified by $APPDI R.

specifies that the server should record, on its standard error file, alog of
services performed. Thislog may be analyzed by the t xr pt (1) command.
Whenthe-r optionisused, make surethat the ULOGDEBUG variableisnot set
to"y". The ULOGDEBUG Vvariabl e prevents debugging message from being sent
to st der r . Debugging messagesin the file will be misinterpreted by t xr pt .

marks the end of system-recognized arguments and the start of arguments to
be passed to a subroutine within the server. This option is needed only if the
user wishesto supply application-specific arguments to the server. The
system-recognized options precede the --; application arguments should
follow it. Application argumentsmay be processed by auser-supplied version
of thet psvri ni t function. get opt (3) should be used to parse them.
Because al system arguments are processed prior to the call to

tpsvrini t (3c), whenthe cal is made the external integer, opt i nd points
to the start of the user flags. The same option letters (for example, - A) may be
reused after the -- argument, and given any meaning appropriate to the
application.

Note: At runtime the BEA Tuxedo system automatically adds the following option

to each command line for each server: - ¢ donmedonai ni d

BEA eLink Adapter Development Kit User Guide E-3

E servo pts

The- ¢ option adds a comment line, in which the specified domain ID is
reported, to any command output that reports on the processes associated with
the domain in question, such as the output of the ps command. This comment
helps an administrator who is managing multiple domainsto interpret asingle
output stream that refers to several domains.

E-4 BEA el ink Adapter Development Kit User Guide

APPENDIX

F Error Messages

This section contains the following descriptions of error, informational, and warning
messages that can be encountered while using the BEA el ink Adapter Development
Kit.

Source Module adklog.c

" Unable to open <filename> for read"

DESCRIPTION Unableto open catalog filein el a_par seCat Fi | et oBuf fer ().

ACTION Make sure file exists, and permissions allow read access.

"mallocerror"

DESCRIPTION Unable to allocate enough space to read catalog file in
el a_parseCat Fil etoBuffer().

ACTION Verify that there is sufficient memory on the machine.

BEA eLink Adapter Development Kit User Guide F-1

F Error Messages

Source Module cfgfns.c

" Unableto open <filename> for read"

DESCRIPTION Unableto open configuration filein
el a_parseFil etoBuffer().

ACTION Make sure file exists, and permissions alow read access.

"malloc error"

DESCRIPTION Unableto allocate enough space to read catalog file in
el a_parseFil etoBuffer().

ACTION Verify that there is sufficient memory on the machine.

" Buffer not large enough for file name"

DESCRIPTION Buffer passedto eLA Get Confi gFi | eName() not large
enough to hold configuration file name specified in the UBB file
CLOPT line.

ACTION Specify alarger buffer.

" File Name parameter not found"

DESCRIPTION Unableto locatethe - Cfilename parameter in the UBB config file
CLOPT line.

ACTION Verify that the UBB config fileis correct.

Source Module chkelinklic.c

All messagesin eLA _chkeLi nkLi c() .

F-2 BEA el ink Adapter Development Kit User Guide

Source Module chkelinklic.c

"ERROR: TUXDIR isnot set"

DESCRIPTION TUXDI R environment variable has not been defined.

ACTION Define TUXDI R

"ERROR: Failurereading license file <filename>"

DESCRIPTION This message results from afailurein _gpdmvfile_New() .

ACTION Insure that the lic.txt file existsin TUXDI R\ udat aobj .

"ERROR: <platform> platform license has expired"

DESCRIPTION The license for the platform in question has expired.

ACTION Obtain an up-to-date license for the platform.

"ERROR: Unlicensed platform <platform>"

DESCRIPTION This could result from amissing or corrupted license for the
platform in question.

ACTION Obtain avalid, up-to-date license for the platform.

"ERROR: <adapter> adapter license has expired"

DESCRIPTION Thelicense for the adapter in question has expired.

ACTION Obtain an up-to-date license for the adapter.

"ERROR: Unlicensed adapter <adapter>"

DESCRIPTION This could result from amissing or corrupted license for the
adapter in question.

ACTION Obtain avalid, up-to-date license for the adapter.

"ERROR: Invalid license file <filename>"

DESCRIPTION Signasthat the version number for the adapter isincorrect.

ACTION Obtain avalid, up-to-date license for the version number of the
adapter.

BEA eLink Adapter Development Kit User Guide F-3

F Error Messages

"INFO: Incorrect VERSION valuein <adapter> section"

DESCRIPTION Signals that the version number for the adapter isincorrect.

ACTION Obtain avalid, up-to-date license for the version number of the
adapter.

F-4 BEA el ink Adapter Development Kit User Guide

Glossary

ATMI

Application to Transaction Monitor Interface. The eLink Platform communica-
tions application programming interface. Thisisa collection of runtimes services
that can be called directly by aC (or COBOL) application. These runtime services
provide support for communications, distributed transactions, and system man-
agement. Seethe section.

BBL

The"Application" name server of the Tuxedo system. The BBL isthe Tuxedo pro-
cess that is aware of all servers and advertised services of a Tuxedo system. The
BBL isthe "name server" that connects clients to servers.

Buildserver
Tuxedo command that constructs a BEA Tuxedo server load module.

Buildclient
Tuxedo command that constructs a BEA Tuxedo client module.

Business L ogic

A workflow or procedure that defines the way a company conducts business. In
the eLink system business logic is automated via the business process option.

Business Process Options (BPO)

The Business Process Optionsis a Tuxedo service that performs workflow man-
agement.

CLOPT

Optional boot parameter in the SERVER section of the UBBCONFIG file. The
val ue specifiesthe servoptsthat are passed to the server when the server isbooted.
See servopts.

BEA eLink Adapter Development Kit User Guide G-1

G-2

Data Integration Option (DI O)

The Data Integration Option is a Tuxedo service that can trandate data between
different types and formats. For example COBOL copy books to FML.

FML32

The 32 bit version of Field Manipulation Language or FML. FML isa BEA pro-
prietary data structure and function library that allows associative accessto fields
of adatarecord. The interna implementations of the record are not accessible to
the users of FML. See section 2.2.

MIB

A set of classes of objects with attributes within an application. Each item in a
class has particular values for the attributes.

Server

A software modul e that accepts requests from clients and other servers. A server
advertises one or more services.

Service

An application routine available for requests by a client in the system with well-
defined inputs, outputs, and processing.

Service Advertisement

The process of indicating to al participantsin an application that a service is ac-
tive. (This should be done dynamically by the application adapter.)

SERVOPTS
A list of run-time options recognized by serversin a BEA Tuxedo system. For
complete detail s see Appendix G.

TUXCONFIG
Thebinary version of the UBBCONFIG file. It serves asthe persistent part of the
MIB.

Tuxedo

BEA Systems’ portable Transaction Process (TP) monitor. At thispoint Tuxedois
synonymous with the eLink Platform, but the eLink Platform will be broadened.

BEA el ink Adapter Development Kit User Guide

UBBCONFIG

The generic Tuxedo name for the ASCI| file containing the Tuxedo application
configuration. Thisfileis compiled by using the Tuxedo command tmloadcf. The
resulting binary is called TUXCONFIG. (Ubbconfig files delivered as samples
should be prefixed by the adapter to distinguish them from other UBBCONFIG
files.)

Example: A UBBCONFIG filefor theelLink FML to XML adapter (abbreviated
efx) would be named:

ef x. ubbconfi g

BEA eLink Adapter Development Kit User Guide G-3

G-4 BEA el ink Adapter Development Kit User Guide

	Copyright
	Contents
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Understanding The BEA eLink System
	BEA eLink Solution Overview
	BEA eLink Adapter Overview
	BEA eLink Adapter Development Kit Overview
	BEA eLink Platform Architecture

	2 Understanding the BEA eLink Platform
	ATMI Runtime Services
	FML32
	FML Buffers
	Mapping Field Names to Field Identifiers
	Creating Field Names
	ud32 Client
	FML32 Primitives

	eLink Commands
	Commonly Used Tuxedo Commands
	Commonly Used tmadmin Commands

	Hardware Requirements for the eLink Platform
	Special Instructions for Installing the Tuxedo Core
	Preparing the License File
	About the Tuxedo Simple Application
	Setting Environment Variables
	Configuring the Simple Application
	Building the Client and Server for the Simple Application
	For UNIX Operating Systems
	For Windows NT Operating Systems

	Booting the Simple Application
	Shutting Down the Simple Application

	3 Understanding Adapter Architecture and Design
	eLink Adapter Architecture Overview
	The Server Module
	The Configuration Processing Module
	Adapter Design Pseudo Code
	The TPSVCINFO Structure

	Application to eLink Adapters
	eLink to Application Adapters
	eLink Adapter Configuration
	Standards for Adding an eLink Adapter to the UBBCONFIG File
	Sample UBBCONFIG File
	eLink Adapter Configuration Files
	Structure of the eLink Adapter Configuration File
	The SERVER Section
	The SERVICE Section
	The FIELDMAP Section

	Sample Adapter Configuration File
	API to Parse and Store Configuration Data
	API to Parse the Configuration File
	API to Store the Configuration Data

	Error Handling
	Business Level Exceptions
	Infrastructure Level Exceptions
	Message Catalog
	API to Access the Message Catalog File

	Tracing
	Trace Levels
	Tracing Functions and Macros

	Deployment and Installation of eLink Adapters
	Installation Directory Structure for Components
	Naming Convention for Source and Executable Files

	4 Installing the eLink ADK and Sample Adapters
	What is Included in the eLink ADK
	Include Files and Libraries
	The Sample Application to eLink Adapter
	The Sample eLink to Application Adapter
	The Sample E-Mail Adapter

	Installing the eLink Adapter Development Kit
	Installing on the Windows NT Platform
	Installing on the HP-UX, AIX, Solaris, and Compaq TRU64 UNIX Platforms

	5 Configuring and Running the Sample Adapters
	Demo Prerequisites for UNIX
	The Sample Application to eLink Adapter
	Configuring the Sample Application to eLink Adapter
	Building and Running the Sample Application to eLink Adapter

	The Sample eLink to Application Adapter
	Configuring the Sample eLink to Application Adapter
	Building and Running the Sample eLink to Application Adapter

	The Sample E-Mail Adapter
	Invoking the Sample E-Mail Adapter
	Configuring the Sample E-Mail Adapter
	Building and Running the Sample E-Mail Adapter

	A eLink Adapter Development Kit References
	Configuration Processing API
	eLA_OpenTagFile
	eLA_CloseTagFile
	eLA_CloseTagHandle
	eLA_GetFirstSection
	eLA_GetNextSection
	eLA_GetFirstProperty
	eLA_GetNextProperty
	eLA_GetPropertyValue
	eLA_GetFieldMap
	eLA_GetFirstField
	eLA_GetNextField

	Hash Table API
	eLA_InitHashTable
	eLA_DestHashTable
	eLA_put
	eLA_get
	eLA_hash

	Utility Functions and Macros
	eLA_catentry
	eLA_chkeLinkLic
	eLA_CloseCatalogFile
	eLA_GetConfigFileName
	eLA_hexdump
	eLA_log
	eLA_OpenCatalogFile
	eLA_SetServerMsgLevel
	ELACATENTRY
	ELAIFTRACE
	ELATRACE

	Definitions and Typedefs

	B ATMI References
	Client Membership
	tpinit
	tpterm

	Buffer Management
	tpalloc
	tprealloc
	tpfree
	tptypes

	Request/Response
	tpcall
	tpacall
	tpgetrply
	tpcancel

	Service Entry and Return
	tpsvrinit
	tpsvrdone
	tpreturn

	Dynamic Advertisement
	tpadvertise
	tpunadvertise

	C FML32 API
	Fadd, Fadd32
	Fchg, Fchg 32
	Ffind, Ffind32
	Fget, Fget32
	Fielded, Fielded32
	Finit, Finit32
	Fldid, Fldid32
	Fneeded, Fneeded32
	Fsizeof, Fsizeof32
	Example of a Server that Uses FML32

	D Tuxedo Commands
	buildclient
	buildserver
	tmadmin
	tmboot
	tmloadcf
	tmshutdown
	ud, ud32, wud, wud32

	E Servopts
	F Error Messages
	Source Module adklog.c
	Source Module cfgfns.c
	Source Module chkelinklic.c

	Glossary

