
User Guide

B E A e L i n k A d a p t e r D e v e l o p m e n t K i t V e r s i o n 1 . 1
D o c u m e n t E d i t i o n 1 . 1

A p r i l 2 0 0 0

BEA eLink Adapter
 Development Kit

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA
Systems License Agreement and may be used or copied only in accordance with the terms of that
agreement. It is against the law to copy the software except as specifically allowed in the agreement. This
document may not, in whole or in part, be copied photocopied, reproduced, translated, or reduced to any
electronic medium or machine readable form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA
Systems License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted
Rights Clause at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013, subparagraph (d) of the Commercial Computer
Software--Licensing clause at NASA FAR supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on
the part of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS"
WITHOUT WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER,
BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS
REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN
MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder,
BEA Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, and
WebLogic Enterprise are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

BEA eLink Adapter Development Kit

Document Edition Part Number Date Software Version

1.1 Not Applicable April 2000 BEA eLink Adapter Development Kit
Version 1.1

1.0 Not Applicable January 2000 BEA eLink Adapter Development Kit
Version 1.0

BEA eLink Adapter Development Kit User Guide iii

Contents

About This Document
What You Need to Know ..x

e-docs Web Site ...x

How to Print the Document...x

Contact Us! .. xi

Documentation Conventions .. xii

1. Understanding The BEA eLink System
BEA eLink Solution Overview ... 1-1

BEA eLink Adapter Overview .. 1-3

BEA eLink Adapter Development Kit Overview ... 1-5

BEA eLink Platform Architecture... 1-6

2. Understanding the BEA eLink Platform
ATMI Runtime Services.. 2-2

FML32... 2-4

FML Buffers... 2-4

Mapping Field Names to Field Identifiers ... 2-5

Creating Field Names... 2-6

ud32 Client ... 2-6

FML32 Primitives .. 2-7

eLink Commands... 2-8

Commonly Used Tuxedo Commands .. 2-8

Commonly Used tmadmin Commands .. 2-9

Hardware Requirements for the eLink Platform ... 2-10

Special Instructions for Installing the Tuxedo Core.. 2-10

Preparing the License File ... 2-11

iv BEA eLink Adapter Development Kit User Guide

About the Tuxedo Simple Application .. 2-11

Setting Environment Variables... 2-12

Configuring the Simple Application .. 2-13

Building the Client and Server for the Simple Application 2-14

For UNIX Operating Systems... 2-14

For Windows NT Operating Systems ... 2-14

Booting the Simple Application ... 2-14

Shutting Down the Simple Application.. 2-15

3. Understanding Adapter Architecture and Design
eLink Adapter Architecture Overview .. 3-1

The Server Module... 3-2

The Configuration Processing Module... 3-3

Adapter Design Pseudo Code... 3-3

The TPSVCINFO Structure ... 3-7

Application to eLink Adapters .. 3-7

eLink to Application Adapters .. 3-9

eLink Adapter Configuration... 3-10

Standards for Adding an eLink Adapter to the UBBCONFIG File 3-11

Sample UBBCONFIG File... 3-12

eLink Adapter Configuration Files... 3-13

Structure of the eLink Adapter Configuration File 3-13

The SERVER Section ... 3-14

The SERVICE Section .. 3-15

The FIELDMAP Section... 3-15

Sample Adapter Configuration File.. 3-17

API to Parse and Store Configuration Data.. 3-18

API to Parse the Configuration File .. 3-18

API to Store the Configuration Data ... 3-19

Error Handling ... 3-19

Business Level Exceptions... 3-20

Infrastructure Level Exceptions ... 3-20

Message Catalog... 3-22

API to Access the Message Catalog File .. 3-22

Tracing.. 3-23

BEA eLink Adapter Development Kit User Guide v

Trace Levels .. 3-23

Tracing Functions and Macros.. 3-24

Deployment and Installation of eLink Adapters ... 3-25

Installation Directory Structure for Components 3-26

Naming Convention for Source and Executable Files 3-27

4. Installing the eLink ADK and Sample Adapters
What is Included in the eLink ADK.. 4-1

Include Files and Libraries ... 4-2

The Sample Application to eLink Adapter .. 4-3

The Sample eLink to Application Adapter .. 4-4

The Sample E-Mail Adapter .. 4-5

Installing the eLink Adapter Development Kit ... 4-7

Installing on the Windows NT Platform .. 4-7

Installing on the HP-UX, AIX, Solaris, and Compaq TRU64 UNIX
Platforms ... 4-16

5. Configuring and Running the Sample Adapters
Demo Prerequisites for UNIX ... 5-1

The Sample Application to eLink Adapter.. 5-2

Configuring the Sample Application to eLink Adapter 5-3

Building and Running the Sample Application to eLink Adapter 5-4

The Sample eLink to Application Adapter.. 5-5

Configuring the Sample eLink to Application Adapter 5-5

Building and Running the Sample eLink to Application Adapter 5-5

The Sample E-Mail Adapter.. 5-6

Invoking the Sample E-Mail Adapter .. 5-7

Configuring the Sample E-Mail Adapter ... 5-8

Building and Running the Sample E-Mail Adapter 5-8

A. eLink Adapter Development Kit References
Configuration Processing API .. A-1

eLA_OpenTagFile... A-2

eLA_CloseTagFile .. A-3

eLA_CloseTagHandle ... A-4

eLA_GetFirstSection... A-5

vi BEA eLink Adapter Development Kit User Guide

eLA_GetNextSection .. A-6

eLA_GetFirstProperty ... A-7

eLA_GetNextProperty... A-8

eLA_GetPropertyValue... A-9

eLA_GetFieldMap... A-11

eLA_GetFirstField... A-12

eLA_GetNextField .. A-13

Hash Table API .. A-14

eLA_InitHashTable ... A-14

eLA_DestHashTable ... A-15

 eLA_put.. A-15

eLA_get ... A-16

eLA_hash... A-17

Utility Functions and Macros ... A-18

eLA_catentry ... A-18

eLA_chkeLinkLic.. A-19

eLA_CloseCatalogFile .. A-19

eLA_GetConfigFileName ... A-20

eLA_hexdump ... A-21

eLA_log... A-22

eLA_OpenCatalogFile... A-22

eLA_SetServerMsgLevel .. A-23

ELACATENTRY .. A-24

ELAIFTRACE... A-24

ELATRACE .. A-25

Definitions and Typedefs.. A-25

B. ATMI References
Client Membership ... B-2

tpinit... B-2

tpterm... B-5

Buffer Management .. B-5

tpalloc .. B-5

tprealloc ... B-7

tpfree.. B-8

BEA eLink Adapter Development Kit User Guide vii

tptypes ..B-8

Request/Response..B-9

tpcall ...B-9

tpacall ...B-13

tpgetrply ...B-16

tpcancel...B-19

Service Entry and Return...B-20

tpsvrinit...B-20

tpsvrdone ..B-21

tpreturn ...B-22

Dynamic Advertisement ..B-25

tpadvertise ..B-25

tpunadvertise ..B-26

C. FML32 API
Fadd, Fadd32 ...C-2

Fchg, Fchg 32 ..C-3

Ffind, Ffind32..C-4

Fget, Fget32...C-6

Fielded, Fielded32 ...C-7

Finit, Finit32 ..C-7

Fldid, Fldid32 ..C-8

Fneeded, Fneeded32 ..C-9

Fsizeof, Fsizeof32..C-10

Example of a Server that Uses FML32 ...C-10

D. Tuxedo Commands
buildclient ... D-1

buildserver .. D-4

tmadmin .. D-8

tmboot... D-15

tmloadcf .. D-20

tmshutdown .. D-22

ud, ud32, wud, wud32 .. D-26

viii BEA eLink Adapter Development Kit User Guide

E. Servopts

F. Error Messages
Source Module adklog.c ..F-1

Source Module cfgfns.c...F-2

Source Module chkelinklic.c ...F-2

Glossary

BEA eLink Adapter Development Kit User Guide ix

About This Document

This document explains what the eLink Adapter Development Kit is and describes
how to use it for designing adapters to third-party enterprise applications such as ERP,
CRM, and Supply Chain Management.

This document covers the following topics:

n Chapter 1, “Understanding The BEA eLink System,” a brief description of the
BEA eLink system.

n Chapter 2, “Understanding the BEA eLink Platform,” a brief description of the
BEA eLink platform.

n Chapter 3, “Understanding Adapter Architecture and Design,” a brief description
of adapter architecture and design.

n Chapter 4, “Installing the eLink ADK and Sample Adapters,” a description of
what is included in the eLink Adapter Development Kit and how to install it.

n Chapter 5, “Configuring and Running the Sample Adapters,” a description of
how to configure and run the sample adapters.

n Appendix A, “eLink Adapter Development Kit References,” a description of
eLink Adapter configuration processing API, hash table API, utility functions
and macros, and definitions and typedefs.

n Appendix B, “ATMI References,” a description of commonly used Tuxedo
ATMI functions for the eLink Adapter Development Kit.

n Appendix C, “FML32 API,” a description of commonly used Tuxedo FML32
API functions for the eLink Adapter Development Kit.

n Appendix D, “Tuxedo Commands,” a description of some of the commonly used
Tuxedo commands for the eLink Adapter Development Kit.

n Appendix E, “Servopts,” a description of the Tuxedo servopts function.

x BEA eLink Adapter Development Kit User Guide

n Appendix F, “Error Messages,” a description of eLink Adapter Development Kit
error messages and recommended actions.

n Glossary

What You Need to Know

This document is intended mainly for Application Programmers who will configure
and set up the BEA eLink Adapter Development Kit and eLink services to create
software components called adapters, which are used to integrate third-party
applications to the eLink system. It is assumed that the programmer has experience
with the C language. Experience with BEA Tuxedo is an asset, but not necessary.

e-docs Web Site

BEA product documentation is available in both PDF and HTML format on the BEA
corporate Web site. From the BEA Home page, click on Product Documentation or go
directly to the “e-docs” Product Documentation page at http://www.e-
docs.beasys.com.

How to Print the Document

You can print a copy of the HTML document, one file at a time, from your Web
browser by selecting File|Print, or you can print the PDF document. Open the PDF file
in the Adobe Acrobat Reader and print the entire document (or a portion of it) in book
format. To access the PDFs, open the eLink Adapter Development Kit documentation
Home page, click the PDF files button and select the document you want to print.

Contact Us!

BEA eLink Adapter Development Kit User Guide xi

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/. Refer to the eLink Adapter Development Kit
Release Notes for more detailed information about viewing and printing the
documentation.

Related Information

The following BEA Tuxedo documents contain information that is relevant to using
the eLink Adapter Development Kit.

n BEA Tuxedo Administering the BEA Tuxedo System

n BEA Tuxedo Application Development Guide

n BEA Tuxedo FML Programmer’s Guide

n BEA Tuxedo Programmer’s Guide

n BEA Tuxedo Reference Manual

For more information about Tuxedo, refer to the BEA Tuxedo Online Documentation
CD at http://edocs.beasys.com/tuxedo/tux65/index.htm.

Contact Us!

Your feedback on the eLink Adapter Development Kit documentation is important to
us. Send us e-mail at docsupport@beasys.com if you have questions or comments.
Your comments will be reviewed directly by the BEA professionals who create and
update the eLink Adapter Development Kit documentation. In your e-mail message,
please indicate that you are using the documentation for the BEA eLink Adapter
Development Kit Product Version: 1.1 release.

xii BEA eLink Adapter Development Kit User Guide

If you have any questions about this version of BEA eLink Adapter Development Kit,
or if you have problems installing and running BEA eLink Adapter Development Kit,
contact BEA Customer Support through BEA WebSupport at www.beasys.com. You
can also contact Customer Support by using the contact information provided on the
Customer Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

Documentation Conventions

The following typographic conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

blue text Indicates a hyperlink to a cross-reference.

Documentation Conventions

BEA eLink Adapter Development Kit User Guide xiii

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]... [-
l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Convention Item

xiv BEA eLink Adapter Development Kit User Guide

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]... [-
l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

BEA eLink Adapter Development Kit User Guide 1-1

CHAPTER

1 Understanding The
BEA eLink System

This section discusses the following topics:

n BEA eLink Solution Overview

n BEA eLink Adapter Overview

n BEA eLink Adapter Development Kit Overview

n BEA eLink Platform Architecture

BEA eLink Solution Overview

BEA eLink™ provides an open Enterprise Application Integration (EAI) solution that
allows applications throughout organizations to communicate seamlessly. Using EAI,
you gain the long-term flexibility and investment protection you need to keep up with
today’s ever-changing business environment.

Typically, companies use packaged applications to automate internal operations, such
as financial, manufacturing, or human resources. While they successfully address the
needs of these specific areas, these proprietary platforms often do not work together.
To compete today, you need a much greater exchange of information. Systems need to
communicate at a process level within your own organization, as well as with
customer’s and supplier’s systems. BEA eLink Platform is the underlying basis of

1 Understanding The BEA eLink System

1-2 BEA eLink Adapter Development Kit User Guide

BEA eLink, a family of off-the-shelf enterprise application integration (EAI) products
that leverage the BEA transaction platform to integrate existing legacy applications
with customer-focused and business-to-business e-commerce initiatives.

BEA eLink Platform provides a proven infrastructure for integrating applications
within the enterprise and across the Web. BEA eLink Platform ensures high-
performance, secure transactions and transparent access to mission-critical
applications and information throughout the enterprise and across the Web. Figure 1-
1 illustrates the eLink logical architecture and shows where the eLink Adapters fit into
the process.

Figure 1-1 BEA eLink Solution Illustration

The entire BEA eLink family (including all options and adapters) is highly scalable.
Multiple instances of BEA eLink components can collaborate so that work is divided
between eLink domains. BEA eLink includes Simple Network Management Protocol
(SNMP) integration for enterprise management.

The current BEA eLink Platform leverages the BEA Tuxedo infrastructure because it
is based on a service-oriented architecture. Both BEA Tuxedo and BEA eLink
communicate directly with each other and with other applications through the use of
services. Multiple services are grouped into “application servers” or “servers”. The

BEA eLink Adapter Overview

BEA eLink Adapter Development Kit User Guide 1-3

terms Tuxedo services/servers and eLink services/servers can be used interchangeably.
Because this document is specifically addressing the eLink family, the terms “eLink
service” and “eLink server” are used throughout.

The BEA eLink Platform complies with the Open Group’s X/Open standards
including support of the XA standard for two-phase commit processing, the X/Open
ATMI API, and XPG standards for language internationalization. C, C++, COBOL,
and Java are supported. The BEA eLink Platform connects to any RDBMS,
OODBMS, file manager or queue manager, including a supplied XA-compliant
queueing subsystem.

The following components operate with BEA eLink Platform:

t The Data Integration Option translates data models used by different
applications into a common data format. It provides a cost-effective alternative
to writing or generating programs to perform this function. It also handles
complex translation with great power and scalability. The DIO leverages
technology based on the TSI Mercator product, which is integrated with eLink.

t The Business Process Option helps automate tasks in the distributed global
business process and dynamically responds to business events and exceptions.
The BPO is currently implemented by integrating eLink with technology based
on InConcert workflow management software.

n An eLink Adapter provides the interface between the BEA eLink Platform and
external applications with out-of-the-box functionality.

BEA eLink Adapter Overview

eLink Adapters provide a communication path between the eLink Platform and third-
party applications such as PeopleSoft or SAP. eLink Adapters are implemented as
eLink Platform servers. Servers are software modules responsible for processing
service requests made by requestors and potentially sending replies back to the
originator of the request. Services are provided by code that accesses the business
logic of a third-party application.

An eLink Adapter must accomplish at least two things. First, it must normalize the
communication between the two components. Second, it should advertise business
level services supported by the third-party application into the eLink Platform

1 Understanding The BEA eLink System

1-4 BEA eLink Adapter Development Kit User Guide

environment. In addition, application to eLink Adapters must publish events with
associated data on behalf of the third-party application in the eLink Platform
environment. If the third-party application allows scripting or other extensions, it
should be capable of invoking known eLink Platform services advertised by other
third-party applications.

An adapter may support both the eLink bound paths (application to eLink) and third-
party application bound paths (eLink to application); however, it is recommended that
an adapter be implemented for only one path. If both application to eLink and eLink to
application paths are required, they should be implemented as two separate servers.
Separate servers allow for a more flexible solution because the usage requirements of
eLink-bound and application-bound adapters may vary widely.

eLink Adapters use FML32, a BEA native data structure, to communicate with other
components in the integration environment. The third-party native interface is used to
communicate with the third-party application. eLink Adapters act as a “translator”
between the third-party API and the BEA ATMI. This translation is facilitated by use
of the ADK API.

Figure 1-2 eLink Adapter Illustration

BEA eLink Adapter Development Kit Overview

BEA eLink Adapter Development Kit User Guide 1-5

BEA eLink Adapter Development Kit
Overview

The eLink Adapter Development Kit (ADK) is a set of tools and libraries that allow
BEA, our partners, and our customers to build adapters that interact with the eLink
Platform. The ADK helps programmers build adapters for third-party software without
in-depth knowledge of the eLink Platform.

The ADK consists of:

n A sample Application to eLink Adapter. The sample Application to eLink
Adapter contains code to generate the sample application to eLink server, a
demo server needed for testing, sample UBBCONFIG file (eLink configuration),
.MAK files for all supported UNIX platforms, as well as .BAT and .SCR files to
setup the environment.

n A sample eLink to Application Adapter. The sample eLink to Application
Adapter contains code to generate demo servers, a demo client to be used for
testing, sample UBBCONFIG file (eLink configuration) and .CFG files (adapter
specific configuration), .MAK files for all supported UNIX platforms, as well as
.BAT and .SCR files to setup the environment and automate the build process.

n A sample E-Mail Adapter. The sample E-Mail Adapter contains code to
generate the sample E-Mail server and client, which can be used for sending E-
Mail. A template is available to help the user develop functionality for receiving
E-Mail.

n Required include files (.H); shared libraries, (.SL) for HP-UX 10.20 and
11.0, (.S0) for Solaris 2.6, (.a) for AIX 4.3.x; and a dynamic link library
(.DLL) and import library (.LIB) for Windows NT. These libraries support
the sample eLink to application and application to eLink Adapters, as well as
adapter development. The .LIB file is compiled with MS VC++ v5.x.

n This documentation. The documentation includes general information about the
eLink Platform, design information for adapters, and instructions for running the
sample adapter.

1 Understanding The BEA eLink System

1-6 BEA eLink Adapter Development Kit User Guide

BEA eLink Platform Architecture

The eLink Platform communications application programming interface, Application
to Transaction Manager Interface (ATMI), is a collection of runtime services that can
be called directly by a C (or COBOL) application. These runtime services provide
support for communications, distributed transactions, and system management.

The Management Information Base (MIB) maintains a virtual repository of all the
configuration and operational information for a runtime eLink environment. The eLink
services are implemented using a shared bulletin board (BB) that contains
configuration information. This is the dynamic part of the eLink. Servers advertise
their services in the Bulletin Board. The Bulletin Board Liaison (BBL) is an
administrative eLink server that is the keeper of the Bulletin Board. There is a BBL on
every machine participating in the integration infrastructure; the BBL coordinates
changes to the local copy of the MIB. The Distinguished Bulletin Board Liaison
(DBBL) is responsible for propagating global changes to the MIB and is the keeper of
the static part of the MIB. The MASTER node is the computer where the DBBL runs.

Administrators use an ASCII file to specify eLink system configuration. This file,
called the UBBCONFIG file, is used as input by the configuration loading utility,
tmloadcf. The tmloadcf utility generates a binary version of the configuration called
the tuxconfig file. This binary file is used by the system to construct the Bulletin
Board and contains the persistent part of the MIB.

Servers are processes that provide one or more services. They continually check their
message queue for service requests and dispatch them to the appropriate third-party
application. A service is the name of a server interface. Many servers can support a
single service, thereby providing for load balancing and a fail-safe mechanism. The
mapping of services to servers is recorded in the Bulletin Board. When a service
request is made, the Bulletin Board forwards the request to a server (eLink Adapter)
that advertises that service. An eLink server advertises a service by posting its name in
the Bulletin Board.

BEA eLink Adapter Development Kit User Guide 2-1

CHAPTER

2 Understanding the BEA
eLink Platform

This chapter discusses the following topics:

n ATMI Runtime Services

n FML32

n eLink Commands

n Hardware Requirements for the eLink Platform

n Special Instructions for Installing the Tuxedo Core

n Preparing the License File

n About the Tuxedo Simple Application

Before you install the BEA eLink Platform, which is available separately, it is helpful
to understand the Application to Transaction Manager Interface (ATMI), the 32-bit
Field Manipulation Language (FML32), FML buffers, and some commonly used
eLink commands. The ATMI runtime services provide support for communications,
distributed transactions, and system management. FML32 is a BEA native data
structure and function library that allows associative access to fields of a data record.
Commands are used to configure and administer the BEA eLink environment.

2 Understanding the BEA eLink Platform

2-2 BEA eLink Adapter Development Kit User Guide

ATMI Runtime Services

The eLink Platform ATMI is a collection of runtime services that can be called directly
by a C (or COBOL) application. The ATMI is a compact set of primitives used to open
and close resources, begin and end transactions, allocate and free buffers, and provide
the communication between adapters and other requestors or responders.

Following is a list of ATMI primitives for the C binding. For more complete details of
the ATMI primitives you will most commonly use, see Appendix B, “ATMI
References.” See the BEA Tuxedo Reference Guide at http://edocs.beasys.com/tuxedo/
tux65/index.htm for detailed information on all the ATMI primitives.

Table 2-1 ATMI Primitives for the C Binding

API Group C API Name Detailed in
Appendix B

Description

Client
Membership

tpchkauth

tpinit

tpterm

*

*

Check if authentication is needed

Used by a client to join an application

Used by a client to leave an application

Buffer
Management

tpalloc

tprealloc

tpfree

tptypes

*

*

*

*

Create a message

Resize a message

Free a message

Get a message type and subtype

Message Priority tpgprio

tpsprio

Get the priority of the last request

Set priority of the next request

Request/Response tpcall

tpacall

tpgetreply

tpcancel

*

*

*

*

Synchronous request/response to service

Asynchronous request

Receive asynchronous response

Cancel asynchronous request

Conversational tpconnect

tpdiscon

tpsend

tprecv

Begin a conversation with a service

Abnormally terminate a conversation

Send a message in a conversation

Receive a message in a conversation

ATMI Runtime Services

BEA eLink Adapter Development Kit User Guide 2-3

Reliable
Queueing

tpenqueue

tpdequeue

Enqueue a message to an application queue

Dequeue a message to an application queue

Event-based tpnotify

tpbroadcast

tpsetunsol

tpchkunsol

tppost

tpsubscribe

tpunsubscribe

Send unsolicited message to a client

Send message to several clients

Set unsolicited message callback

Check arrival of unsolicited message

Post an event message

Subscribe to event messages

Unsubscribe to event messages

Transaction
Management

tpbegin

tpcommit

tpabort

tpgetlev

tpsuspend

tpresume

tpscmt

Begin a transaction

Commit the current transaction

Rollback the current transaction

Check if in transaction mode

Suspend the current transaction

Resume a transaction

Control commit return

Service Entry and
Return

tpsvrinit

tpsvrdone

tpreturn

tpforward

*

*

*

*

Server initialization

Server termination

End service function

Forward request

Dynamic
Advertisement

tpadvertise

tpunadvertise

*

*

Advertise a service name

Unadvertise a service name

Resource
Management

tpopen

tpclose

Open a resource manager

Close a resource manager

Table 2-1 ATMI Primitives for the C Binding

API Group C API Name Detailed in
Appendix B

Description

2 Understanding the BEA eLink Platform

2-4 BEA eLink Adapter Development Kit User Guide

FML32

FML is a set of C language functions for defining and manipulating storage structures
called fielded buffers, which contain attribute-value pairs called fields. The attribute is
the field’s identifier and the associated value represents the field’s data content.

FML32 uses 32-bit values for the field lengths and identifiers. BEA eLink Adapters
use FML32. FML32 allows for about 30 million fields, and field and buffer lengths of
up to about 2 billion bytes. The definitions, types, and function prototypes for FML32
are located in fml32.h and functions are located in -lfml32. All definitions, types,
and function names for FML32 have a “32” suffix (for example, MAXFBLEN32,
FLDID32, Fchg32). Also the environment variables are suffixed with “32” (for
example, FLDTBLDIR32, FIELDTBLS32).

Note: FML has two interfaces. The original FML interface is based on 16-bit values
for the length of fields and for containing information identifying fields. The
original interface should not be used when creating eLink Adapters.

FML Buffers

A fielded buffer is composed of field identifier and field value pairs for fixed length
fields (for example, long, short), and field identifier, field length, and field value triples
for varying length fields.

Figure 2-1 Example of a Fielded Buffer

A field identifier is a tag for an individual data item in a fielded buffer. The field
identifier consists of the name of the field number and the type of data in the field. The
field number must be in the range 1 to 33,554,431 inclusive for FML32, and the type
definition for a field identifier is FLDID32.

FML32

BEA eLink Adapter Development Kit User Guide 2-5

Field numbers 1 to 100 are reserved for system use and should be avoided. The field
types can be any of the standard C language types: short, long, float, double, and
char. Two other types are also supported: string (a series of characters ending with
a null character) and carray (character arrays). These types are defined in fml32.h
as FLD_SHORT, FLD_LONG, FLD_CHAR, FLD_FLOAT, FLD_DOUBLE, FLD_STRING, and
FLD_CARRAY.

For FML32, a fielded buffer pointer is of type FBFR32 *, a field length has the type
FLDLEN32, and the number of occurrences of a field has the type FLDOCC32.

Fields are referred to by their field identifier in the FML32 interface. However, it is
normally easier to remember a field name. There are two approaches to mapping field
names to field identifiers. One is a compile-time mapping, the other is a run-time
mapping.

Mapping Field Names to Field Identifiers

To avoid naming conflicts, BEA eLink Adapters must use the following run-time
mapping method. Field name/identifier mappings can be made available to FML32
programs at run-time through field table files. Field data types must be specifiable
within field table files.

The FML32 interface uses the environment variables, FLDTBLDIR32 to specify a list
of directories where field tables can be found and FIELDTBLS32 to specify a list of the
files that are to be used from the table directories.

Note: The environment variables, FLDTBLDIR32 and FIELDTBLS32, must be set
prior to using FML32.

Within application programs, the FML32 function, Fldid32, provides for a run-time
translation of a field name to its field identifier, and Fname32 translates a field
identifier to its field name. Type conversion should be performed implicitly via FML
library functions. Implicit type conversion facilitates component reuse.

Use FML32 symbolic names and retrieve their values using FLDID32. The
Mkfldhdr32 function must not be used to build the adapter because it may cause
conflicts with other field IDs.

Any field in a fielded buffer can occur more than once. Many FML32 functions take
an argument that specifies which occurrence of a field is to be retrieved or modified.
If a field occurs more than once, the first occurrence is numbered 0 and additional

2 Understanding the BEA eLink Platform

2-6 BEA eLink Adapter Development Kit User Guide

occurrences are numbered sequentially. The set of all occurrences make up a logical
sequence, but no overhead is associated with the occurrence number (that is, it is not
stored in the fielded buffer). If another occurrence of a field is added, it is added at the
end of the set and is referred to as the next higher occurrence. When an occurrence
other than the highest is deleted, all higher occurrences of the field are shifted down by
one (for example, occurrence 6 becomes occurrence 5, 5 becomes 4, etc.).

Creating Field Names

Wherever possible, field names should match application field names one-to-one.
Equivalent field names make the configuration easier to understand and manage. Field
names must follow the convention of using only uppercase alphanumeric characters
and underscores. This is a requirement of the Business Process Option (BPO).

Adapter-specific fields must not be required; they must be optional. Optional adapter-
specific fields allow component reuse. Adapter-specific fields break the business
process abstraction, requiring the designer of a process flow to have an understanding
of the specific adapter for a given process step. Wherever possible, all adapter-specific
field names should be configurable to avoid conflicts with other field names. Adapters
should use a prefixing convention for any adapter-specific field names to avoid
conflicts with other field names.

ud32 Client

There is an eLink-supplied client, ud32, that reads a tab delimited text file and uses the
information from the file to construct an FML32 buffer. The ud32 client sends the
buffer to a service that the user designates in the text file. ud32 is useful for testing.
For an example of a text-delimited file that ud32 could use as input, see the “ud, ud32,
wud, wud32” section in Appendix D, “Tuxedo Commands.”

Refer to the “Example of a Server that Uses FML32” section in Appendix C, “FML32
API,” for an example of simple code for a server that uses FML32.

FML32

BEA eLink Adapter Development Kit User Guide 2-7

FML32 Primitives

Following is a summary of some of the FML32 primitives that are used for all eLink
programs including general eLink services and adapters. This subset of FML32
primitives should be sufficient to create most adapters. For more complete details and
code examples, see Appendix C, “FML32 API,” and the BEA Tuxedo Reference Guide
at http://edocs.beasys.com/tuxedo/tux65/index.htm

Warning: The Falloc function allocates FML buffers; however, buffers allocated
using Falloc cannot be passed in a tpcall. FML32 buffers that will be
passed using the tpcall or tpacall ATMI primitives should be allocated by
using a tpalloc with type parameter set to FML32.

Use FML32 symbolic names and retrieve their values using Fldid32. Field IDs must
be determined dynamically at runtime or during initialization at boot time. The
Mkfldhdr32 function must not be used to build the adapter because it may cause
conflicts with other field IDs.

Table 2-2 FML32 Primitives

FML Primitive Description

Fadd32 Add new field occurrence

Fchg32 Change field occurrence value

Ffind32 Find field occurrence in buffer

Fget32 Get copy and length of field occurrence

Fielded32 Return true if buffer is fielded

Finit32 Initialize fielded buffer

Fldid32 Map field name to field identifier

Fneeded32 Compute size needed for buffer

Fsizeof32 Returns the size of an FML32 buffer

2 Understanding the BEA eLink Platform

2-8 BEA eLink Adapter Development Kit User Guide

eLink Commands

Commands are used to configure and administer the eLink runtime environment. Refer
to Administering the BEA Tuxedo System for procedures and administrative tasks that
are based on the command-line interface. For details about individual commands, refer
to the BEA Tuxedo Reference Manual. Both documents may be found online at http://
edocs.beasys.com/tuxedo/tux65/index.htm

Commonly Used Tuxedo Commands

Following is a list of the Tuxedo commands that are most commonly used for adapters.
For complete details and code examples for each of the following commands, refer to
Appendix D, “Tuxedo Commands.”

Table 2-3 Commonly Used Tuxedo Commands

Tuxedo Commands Description

buildclient Constructs a BEA Tuxedo client module. This
command combines the files supplied by the -f and -l
options with the standard BEA Tuxedo libraries to form
a load module and invokes the platform's default
compiler to perform the build.

buildserver Constructs a BEA Tuxedo server load module. This
command generates a stub file containing a main()
function and invokes the platform's default compiler to
perform the build.

tmadmin Invokes the BEA Tuxedo bulletin board command
interpreter. Refer to the “Commonly Used tmadmin
Commands” section for more information.

tmboot Invokes a BEA Tuxedo application with a
configuration defined by the options specified.

tmloadcf Parses a UBBCONFIG file and load binary TUXCONFIG
configuration file.

eLink Commands

BEA eLink Adapter Development Kit User Guide 2-9

Commonly Used tmadmin Commands

The tmadmin command allows you to inspect and dynamically configure your eLink
application. There are many commands that can be invoked from tmadmin, probably
the most important being help. Several of the most useful commands are summarized
in the following table

For details about tmadmin commands, refer to the BEA Tuxedo Reference Manual at
http://edocs.beasys.com/tuxedo/tux65/index.htm.

tmshutdown Shuts down a set of BEA Tuxedo servers.

ud32 Runs the BEA Tuxedo ud32 client that reads a tab
delimited text file, produces an FML32 buffer, and
uses the buffer to make a request to a specified service.

Table 2-3 Commonly Used Tuxedo Commands

Tuxedo Commands Description

Table 2-4 Commonly Used tmadmin Commands

Command Description

help Prints help messages.

quit Terminates the session.

pclt Prints information for the specified set of client processes.

psr Prints information for application and administrative
servers.

psc Prints information for application and administrative
services.

susp Suspends services.

2 Understanding the BEA eLink Platform

2-10 BEA eLink Adapter Development Kit User Guide

Hardware Requirements for the eLink
Platform

The ADK hardware requirements are dictated by eLink adapter requirements. The MS
VC++ v5.x command line compiler should be used for NT platforms.

Special Instructions for Installing the
Tuxedo Core

For NT, use the InstallShield installer. For Unix, use the install.sh Korn shell script in
the top level of the CD directory structure. Follow the instructions in the BEA Tuxedo
Installation Guide, but pay special attention to the following tips.

n The default path for installation on Windows NT is under the Program Files
directory. Using a directory with spaces in the name has presented a problem in
prior releases of some of the Tuxedo utilities. Using spaces in the path
directories should not be a problem with Tuxedo 6.5, but if you experience
problems, choose a path name without spaces for installation.

Note: To be MS Windows 2000 compliant, all programs must be installed in the
Program Files directory.

n The Web GUI is not required.

n Important! When InstallShield asks if you want to install your Tuxedo license
file at this time, answer NO. See the following section for instructions on
preparing the license file.

Preparing the License File

BEA eLink Adapter Development Kit User Guide 2-11

Preparing the License File

In order to use the ADK you need a license for both the eLink Platform and the ADK.
The license files are delivered on a floppy disk and should have accompanied your
order of the eLink Platform and ADK. To use the license files, perform the following
steps:

1. Copy the LIC.TXT file into the TUXDIR/udataobj directory.

2. This license file must have sections for [Tuxedo 6.5], [eLink Platform],
and [eLink Adapter Development Kit]. Refer to your Tuxedo
documentation at http://edocs.beasys.com/tuxedo/tux65/index.htm for
information about the Tuxedo license file.

Note: If you previously installed the eLink Platform the content of the supplied
license files should be added to the LIC.TXT.

About the Tuxedo Simple Application

The Tuxedo Simple Application provides a way to verify your installation of Tuxedo
as well as provide a working example of a Tuxedo application. A more comprehensive
description of the Simple Application can be found in the Tuxedo Application
Development Guide. The information provided here is specific to running the Tuxedo
Simple Application in preparation for using the ADK.

All necessary code is located in the directory, $TUXDIR\apps\simpapp, where
$TUXDIR is the directory where Tuxedo is installed. The Simple Application consists
of a single server offering a single service. The service is called TOUPPER. You run the
client with a single argument, which is a string to convert to upper case. The client calls
the service, which returns the converted string. The client then prints the string.

Example: simpcl “Hello World”

Returned string is: HELLO WORLD

2 Understanding the BEA eLink Platform

2-12 BEA eLink Adapter Development Kit User Guide

The Simple Application is designed so that it can be running within minutes after
installing the Tuxedo software. You should probably copy the simpapp files to your
own directory, since the configuration file must be edited and you might also want to
experiment with the client and server code. Refer to the “Running a Sample
Application” section of the BEA Tuxedo Installation Guide at http://edocs.beasys.com/
tuxedo/tux65/index.htm for more information about running the Simple Application.

Setting Environment Variables

You need to set several environment variables before using the eLink Platform,
running any eLink adapters, or running the Simple Application. Refer to the “Setting
Up Your Environment” section of the BEA Tuxedo Installation Guide at http://
edocs.beasys.com/tuxedo/tux65/index.htm for more information about setting
environment variables. The following table lists the environment variables you need to
set for any eLink Adapter.

Table 2-5 Environment Variables Used By the ADK

Following is an example of a script for Windows NT that could be used to set system
variables:

Variable Name Description

TUXDIR Base directory of the Tuxedo software.

APPDIR Base directory for applications such as the sample
program.

PATH Must include $TUXDIR/bin.

TUXCONFIG Full pathname of binary tuxconfig file.

LD_LIBRARY_PATH Must include $TUXDIR/lib on systems that use
shared libraries (except HP-UX and AIX).

SHLIB_PATH HP-UX only - Must include $TUXDIR/lib.

LIBPATH AIX only - Must include $TUXDIR/lib.

About the Tuxedo Simple Application

BEA eLink Adapter Development Kit User Guide 2-13

Listing 2-1 Script for Setting System Variables for Windows NT

set TUXDIR=C:\tuxedo
set APPDIR=C:\simpapp
set PATH=%TUXDIR%\bin;%APPDIR%;%PATH%
set TUXCONFIG=%APPDIR%\tuxconfig

You must also set other environment variables if you are using a Workstation client.

Scripts are often used to save time in setting environment variables in a development
directory. The following scripts are provided to set these variables for you, but the
scripts must be edited for your environment.

n $TUXDIR\apps\simpapp\setenv.cmd for NT

n $TUXDIR/tux.env for Unix

Configuring the Simple Application

You configure the Simple Application by editing the sample configuration file,
ubbsimple, and then submitting the tmloadcf command to create a binary
configuration file for Tuxedo tuxconfig.

To configure the Simple Application, perform the following steps:

1. Edit the sample configuration file, ubbsimple, to replace the bracketed items with
values appropriate to your installation.

Note: Your TUXDIR and TUXCONFIG environment variables must match the
values in the configuration file.

2. After editing ubbsimple, create the binary TUXCONFIG file with the command:

tmloadcf ubbsimple

3. Answer y if you are asked whether to proceed.

Note: After you create the initial TUXCONFIG file, you may recreate it using a -y
command line option with tmloadcf to suppress the prompt.
For example:

2 Understanding the BEA eLink Platform

2-14 BEA eLink Adapter Development Kit User Guide

tmloadcf -y ubbsimple

eLink creates a log file called ULOG.mmddyy. The default directory where this log
resides is the application directory, $APPDIR. The creation of the binary file,
TUXCONFIG, is logged in the ULOG. Any time there is some type of error or failure in
your eLink adapter or eLink environment, the ULOG is one of the first places you should
look.

Building the Client and Server for the Simple Application

For UNIX Operating Systems

The client and server for the Simple Application are already built. The executables are
named simpcl and simpserv.

Or you can also build the client and server yourself by entering the following
commands:

buildclient -o simpcl -f simpcl.c
buildserver -o simpserv -f simpserv.c -s TOUPPER

For Windows NT Operating Systems

You can build the server and client executables using the makefile simpapp.nt.

Or you can use the buildclient and buildserver commands described for UNIX
operating systems in the previous section.

Booting the Simple Application

The Simple Application can be booted with the following command:

tmboot -y

After booting the system examine the ULOG. You will see a welcome message that is
printed to the ULOG when simpserv is booted.

About the Tuxedo Simple Application

BEA eLink Adapter Development Kit User Guide 2-15

Then you can run simpcl as described in the “About the Tuxedo Simple Application”
section above. simpcl can be run as many times as you wish.

Use the administrative command, tmadmin, to display and modify the parameters of
the running application. For example, try any of the following parameters:

:

In particular, try suspending the TOUPPER service and then running the client. Refer to
the BEA Tuxedo Reference Manual at http://edocs.beasys.com/tuxedo/tux65/
index.htm for information about using commands.

Shutting Down the Simple Application

When you are done, you can shut down the Simple Application with the following
command:

tmshutdown -y

Examine the ULOG after shutdown to review the messages that result from a shut down.

Parameter Description

psr Printserver-Print information for application and administrative servers.

psc Printservice-Print information for application and administrative
services.

susp Suspend-Suspend services.

2 Understanding the BEA eLink Platform

2-16 BEA eLink Adapter Development Kit User Guide

BEA eLink Adapter Development Kit User Guide 3-1

CHAPTER

3 Understanding
Adapter Architecture
and Design

This chapter discusses the following topics:

n eLink Adapter Architecture Overview

n Application to eLink Adapters

n eLink to Application Adapters

n eLink Adapter Configuration

n Error Handling

n Deployment and Installation of eLink Adapters

eLink Adapter Architecture Overview

The standard design for an eLink adapter consists of at least two distinct program
modules, the Server Module and the Configuration Processing Module.

3 Understanding Adapter Architecture and Design

3-2 BEA eLink Adapter Development Kit User Guide

Figure 3-1 Standard Adapter Design

The Server Module

The Server Module contains the code for the functions that perform the services
advertised by the server. The Server Module also contains the code for the tpsvrinit
function, which is called when the server is booted, and the tpsvrdone function,
which is called at server shutdown time.

The tpsvrinit function performs the following tasks:

n Checks the license with the eLA_chkeLinkLic function in the ADK library.

Warning! eLA_chkeLinkLic must be called to verify the eLink platform
release. Failure to do so may result in incorrect runtime behavior in the adapter.

n Opens the message catalog.

n Retrieves the name of the configuration file.

n Reads the trace level from the configuration file.

n Calls functions from the Configuration Processing Module to make use of ADK
API functions for parsing, processing, and storing the configuration data.

eLink Adapter Architecture Overview

BEA eLink Adapter Development Kit User Guide 3-3

n Advertises services with the ATMI tpadvertise function.

Functions in the ADK library or the ATMI API facilitate most of these tasks.

The following table provides descriptions of the calls made by the tpsvrinit
function.

The Configuration Processing Module

Parsing and processing of the configuration file is done by the
loadConfigurationInformation and cleanupConfigurationResources
functions in the Configuration Processing Module. These functions make use of the
ADK API functions for parsing, processing, and storing the configuration data.

Adapter Design Pseudo Code

Following is an example of a pseudo code outline that gives an overview of the general
design of an adapter. The pseudo code outline follows these conventions:

n Comments, preceded by /* and followed by */, explain the purpose of particular
sections of code.

n Functions from ATMI begin with the prefix tp.

Table 3-1 tpsvrinit Function Calls

tpsvrinit Tasks Description

Check the license Call eLA_chkeLinkLic()

Open catalog file Call eLA_OpenCatalogFile()

Get configuration file Call eLA_GetConfigFileName()

Read trace level Call eLA_SetServerMsgLevel()

Parse, process, and store
configuration data

Call loadConfigurationInformation and
cleanupConfigurationResources.

Advertise services Call tpadvertise

3 Understanding Adapter Architecture and Design

3-4 BEA eLink Adapter Development Kit User Guide

n Functions from the ADK begin with the prefix eLA_.

n Text that is not commented or the name of a function from ATMI or ADK
represents code that must be inserted to complete a required task.

In the pseudo code example, the server module has functions that support N services
named SERVICE_1 through SERVICE_N; however, SERVICE_1 is the only service with
any example code given.

Note: For an example of the general form of an application to eLink adapter that uses
an FML32 buffer, see the sample application to eLink adapter that is shipped
with the kit. However, the sample application to eLink adapter is not a
complete example because it does not use a configuration file or the ADK
library. For a complete working example see the sample eLink to application
adapter code that is installed with the ADK.

Listing 3-1 Server Module Pseudo Code

/* tpsvrinit is called when a server is booted */
tpsvrinit()
{
 /* Check license */
 eLA_chkeLinkLic()
 /* Open the message catalog file. */
 eLA_OpenCatalogFile()
 /* Get the configuration file name. */
 eLA_GetConfigFileName()
 /* Read the trace level. */
 eLA_SetServerMsgLevel()
 /* Process configuration file */
 loadConfigurationInformation() /* See configuration module below. */

 /* Call tpadvertise for each service name */
 for(i=0; i < numServices; i++)
 {
 tpadvertise() ;
 }
}

/* tpsvrdone is called at server shutdown time */
tpsvrdone()
{
 /* Close the message catalog file. */
 eLA_CloseCatalogFile()
 cleanupConfigurationResources() /* See configuration module below. */

eLink Adapter Architecture Overview

BEA eLink Adapter Development Kit User Guide 3-5

}

/*
** Supply functions that perform the actual services available to and or
** requested by the client. The argument to each is a structure TPSVCINFO
** (see definition following the code) containing, among other things a pointer
** to the data buffer, and the length of the data buffer.
*/

SERVICE_1(TPSVCINFO * request)
{
/* Check the type of the data member of the incoming TPSVCINFO struct */
 tptypes()

Insert code to perform the actual service here. This will probably involve interacting
with the third-party API in some way.

/* Return the transformed buffer to the requestor. */
 tpreturn()
}
....
....
....
SERVICE_N(TPSVCINFO * rqst)
{
}
/* End of Server module */

Listing 3-2 Configuration Processing Module Pseudo Code

/* The following function is called in tpsvrinit to process the configuration file
information */
loadConfigurationInformation()
{
 /* Allocate hash table for service information */
 eLA_InitHashtable()

 /* Open Configuration */
 eLA_OpenTagFile()

 /* Parse SERVER section, insure proper configuration file */
 eLA_GetFirstSection()
 while(ADK_SUCCESS)
 {
 /* Parse properties for each SERVER section */

3 Understanding Adapter Architecture and Design

3-6 BEA eLink Adapter Development Kit User Guide

 eLA_GetFirstProperty()
 while(ADK_SUCCESS)
 {
 eLA_GetNextProperty()
 }
 eLA_GetNextSection(sHandle)
 }
 eLA_CloseTagHandle()

 /* Parse SERVICE(s) data for this SERVER */
 eLA_GetFirstSection()
 /* Begin Services loop */
 while(ADK_SUCCESS)
 {
 /* Get first property for this service */
 eLA_GetFirstProperty()

 /* begin Property loop */
 while(ADK_SUCCESS)
 {

Insert code here to process properties for each service.

 eLA_GetNextProperty()
 } /* end Property loop */

 /* Add service data element to hash table */
 eLA_put()

 eLA_GetNextSection()

 } /* End Services loop */

 eLA_CloseTagFile()
 eLA_CloseTagHandle()

}
/* This function was called in tpsvrdone to clean up any allocated resources. */
cleanupConfigurationResources()
{
 /* Deallocate the hashtable allocated in loadConfigurationInformation */
 eLA_DestHashtable()
}

Application to eLink Adapters

BEA eLink Adapter Development Kit User Guide 3-7

The TPSVCINFO Structure

As shown in the SEVICE_1 and SERVICE_N lines of the above pseudo code, the
argument to a function that performs an eLink service is a structure called TPSVCINFO.
TPSVCINFO contains, among other things, a pointer to the data buffer, and the length
of the data buffer. The full definition is given below:

Listing 3-3

Struct tpsvcinfo {

 char name[32]; /* Service name */
 long flags; /* Options about the request */
 char *data; /* Request data */
 long len; /* Request data length */
 int cd; /* Connection descriptor */
 long appkey; /* Application key */
 CLIENTID cltid; /* Client identifier */
};
typedef struct tpsvcinfo TPSVCINFO;

Application to eLink Adapters

Application to eLink adapters translate requests initiated by the third-party software
(for example, SAP, Broadvision, or MQseries) into standard eLink ATMI calls, such
as a tpcall. The application to eLink adapter is an eLink server that will probably run
as a “daemon” process. You can run the server as a daemon process by making a
tpacall with the TPNOREPLY flag set to the daemon service from the server's tpsvrinit
function. The daemon process starts when the server is booted. The code for the
daemon service contains an infinite loop. Inside the loop, the server checks for input
from the third-party software.

The method of communication between the third-party software and the adapter
depends on the third-party interface. For example, for an MQSeries adapter, requests
are written to a queue by MQSeries and the adapter monitors that queue. The eLink
Platform routes the request. The Bulletin Board Liaison (BBL) consults the Bulletin

3 Understanding Adapter Architecture and Design

3-8 BEA eLink Adapter Development Kit User Guide

Board to find the name of the server that has advertised the requested service. The BBL
then resolves the service name into a fully qualified address and sends the request to
the server. The server or other adapter that advertises the desired service must be
provided by the customer and is not part of the application to eLink adapter. However,
in order to test an adapter, the adapter must be able to call an eLink service, so an eLink
server that processes such a request should be part of a test for the adapter.

Note: All communication between the originating adapter and the adapter that
services the request should be in FML32.

Following is an example of the server code that is specific to application to eLink
adapters.

Listing 3-4 Server Module Code

tpsvrinit(argc,argv){
....
tpacall(“DAEMON”,...,TPNOREPLY);
return(0);
}

DAEMON (...){
....
for(;;)
 {
 //Check for requests from third-party application
 }
....
}

Following is an illustration of the typical request path for an application to eLink
adapter.

eLink to Application Adapters

BEA eLink Adapter Development Kit User Guide 3-9

Figure 3-2 Typical Request Path for an Application to eLink Adapter

eLink to Application Adapters

eLink to application adapters translate requests made by requesting applications into
calls to the API of third-party software. The eLink to application adapter is a server.
A tpcall (or tpacall) initiates the request. The service name is defined by a
parameter in the tpcall. The eLink Platform makes an association between the
service name and a server, or adapter, that advertises that service. The service, a
function defined in the adapter, makes a call to the third-party API. The interface
between the adapter and the third-party software is defined by the third-party software.

The sample eLink to application adapter included with the ADK is a complete working
example of an eLink to application adapter. Client code is provided to initiate the
request. In real environments this originating call might be from another adapter or the
Business Process Option. This code is not part of the adapter, however such a client
should be written to test the adapter.

Following is an illustration of the typical request path for an eLink to application
adapter.

3 Understanding Adapter Architecture and Design

3-10 BEA eLink Adapter Development Kit User Guide

Figure 3-3 Typical Request Path for an eLink to Application Adapter

eLink Adapter Configuration

The eLink Adapter configuration is defined in the SERVERS section of the
UBBCONFIG file. The UBBCONFIG file is located in the directory specified by the
configuration. You must create a custom UBBCONFIG file and add the configuration
information for the eLink Adapter to the SERVERS section.

The method of configuring adapters and how the adapter processes that configuration,
follows a standard format. All adapter code and any test configurations must follow
this standard.

eLink Adapter Configuration

BEA eLink Adapter Development Kit User Guide 3-11

Standards for Adding an eLink Adapter to the
UBBCONFIG File

In a UBBCONFIG file, lines beginning with an asterisk (*) indicate the beginning of a
specific section. The name of the section immediately follows the *. The beginning of
the SERVERS section is marked *SERVERS. Parameters are generally specified by
KEYWORD= value. Entries in the SERVERS section have the form:

AOUT required parameters [optional parameters]

where AOUT specifies the file (string_value) to be executed by tmboot.

Required parameters are:

SRVGRP = string_value

which specifies the name for the group in which the server is to run. The
string_value must be the logical name associated with a server group in the
GROUPS section. The string_value must be 30 characters or less. This association
with an entry in the GROUPS section means that AOUT is executed on the machine with
the Logical Machine ID (LMID) specified for the server group. The GROUPS section
also specifies the GRPNO for the server group and parameters to pass when the
associated resource manager is opened. All server entries must have a server group
parameter specified:

SRVID = number

which specifies an integer that uniquely identifies a server within a group. Identifiers
must be between 1 and 30,000 inclusive. This parameter must be present on every
server entry.

All adapter entries in the UBBCONFIG file are required to have the CLOPT parameter
(although it is listed as optional in the Tuxedo online documentation.) CLOPT specifies
servopts options to be passed to the server when booted. “--” marks the end of
system-recognized arguments and the start of arguments to be passed to a subroutine
within the server. All eLink adapters will have exactly one argument after the --, the -

C option followed by the name of the adapter-specific configuration file. All other
configuration parameters specific to the adapter should appear in the adapter-specific
configuration file. For more details on the CLOPT parameter see Appendix E,
“Servopts.”

3 Understanding Adapter Architecture and Design

3-12 BEA eLink Adapter Development Kit User Guide

Listing 3-5 Example of the CLOPT Parameter Entry

*SERVERS
elinkmqi
SRVID=”number”
REPLYQ=N
CLOPT="-- -C configuration_file_name"

Sample UBBCONFIG File

Listing 3-6 Sample UBBCONFIG File

*RESOURCES

IPCKEY 123791
DOMAINID simpapp
MASTER simple

*MACHINES

DALNT6
 LMID= simple
 TUXDIR= "\tuxedo"
 TUXCONFIG= "\myappdir\tuxconfig"
 APPDIR= "\myappdir"
 FIELDTBL32= "sample.fml"
 FLDTBLDIR32= "\myappdir"
 ULOGPFX= "\myappdir\ULOG"

*GROUPS

eLINK
 LMID=simple GRPNO=1

*SERVERS
DEFAULT:
 CLOPT="-A"

elinkmqi
 SRVGRP=eLINK
 SRVID=10

eLink Adapter Configuration

BEA eLink Adapter Development Kit User Guide 3-13

 CLOPT="-- -C config.file"

*SERVICES

*ROUTING

eLink Adapter Configuration Files

In addition to the configuration information contained in the application’s UBBCONFIG
file, each adapter must have its own specific configuration file. You must create the
configuration file following the guidelines specific to the type of adapter.

The adapter configuration file defines aliasing of service names, tracing parameters,
and the names of outside resources to be used. Aliasing allows the names of advertised
services to be related to the business logic and also allows for many service names to
be mapped to a single implementation. In the configuration file, users can activate
tracing and specify the level of tracing that is done. If a server needs to retrieve
information from outside resources, for example read requests from a queue, the names
of the outside resources are specified in the configuration file.

The eLink Adapter reads the configuration file at startup. The configuration file is an
ASCII text file that the user creates for the adapter. The user arbitrarily chooses the
name of this file, but it must match what is specified by the CLOPT parameter in the
UBBCONFIG file (as described in “Standards for Adding an eLink Adapter to the
UBBCONFIG File” on page 3-11). This configuration file must be located in the
application directory (APPDIR) for the end-user's application.

Structure of the eLink Adapter Configuration File

The adapter configuration file is divided into several sections. Each adapter
configuration file contains one, and only one, SERVER section. The configuration file
may also contain one or more SERVICE sections and one or more FIELDMAP
sections.

When you create an eLink Adapter configuration file, some standard conventions
apply to the format. Following are the standard conventions that should be used for the
adapter configuration file:

3 Understanding Adapter Architecture and Design

3-14 BEA eLink Adapter Development Kit User Guide

n The name of a section (e.g., SERVER or SERVICE) is always preceded by an
asterisk (*).

n The section name follows the asterisk and is entered in all upper case.

n The parameter names and values appear on the lines following the section
names.

n The parameter name is entered in uppercase followed by an equal sign and the
parameter value. If there is no parameter value following the equal sign, an error
is returned, but the Tag Value field is filled in and the configuration file is still
processed.

n A # sign is treated as the beginning of a comment UNLESS it is preceded by a
backslash. If your data entry requires a # sign, use a backslash as in the
following example:

Phone \#-800.555.1212 returns Phone #-800.555.1212

Example of the format of a configuration file section and parameter:

*<NAME OF SECTION>

<PARAMETER NAME>=<PARAMETER VALUE>

The SERVER Section

There is only one SERVER section in each configuration file. In this section, the only
required parameters are the MAXMSGLEVEL and MINMSGLEVEL tracing level parameters.
The following table provides descriptions for these parameters:

For more information about the trace levels, refer to the “Tracing” section in this
chapter.

Parameter Name Description

MAXMSGLEVEL=<int> Indicates the maximum level of tracing messages the
adapter is to log.

MINMSGLEVEL=<int> Indicates the minimum level of tracing messages the
adapter is to log.

eLink Adapter Configuration

BEA eLink Adapter Development Kit User Guide 3-15

The SERVICE Section

You must define the services that will be advertised in the SERVICE sections of the
configuration file. Each defined service has a corresponding section in the
configuration file. Each defined service section has exactly one required parameter,
NAME. The NAME parameter must be 15 characters or less in length. The following table
provides a description for this parameter.

The SERVICE section is where names advertised by eLink and related to business
logic are mapped to the names of the actual functions that perform the services.

For example, the eLink Adapter for XML performs data format conversion between
FML and XML data formats. For each conversion, you must create a SERVICE
section in the adapter configuration file. This SERVICE section describes an eLink
service that the adapter advertises in order to perform a conversion. End-user
applications then request this service to perform the necessary conversion.

The SERVICE definition maps an eLink service name to a specific type of conversion.
The service name is arbitrarily chosen. These SERVICE definitions allow different
conversions to be represented by different eLink service names. For example, you
could define services CONVERT_A, MAKEXML, or MYFMLXML that are all FML to XML
conversions. This allows many conversions to be mapped to one implementation.
However, these SERVICE names cannot equal the CONVERSION type parameter.

The FIELDMAP Section

A field map is a set of mappings of the names of fields used by the third-party software
to the names of the corresponding FML32 fields. A field map must be defined in a
section called FIELDMAP. The first parameter of the FIELDMAP section must be
FMID (field map identifier). This parameter identifies a field map and is referenced by
the service definition using the map. A field map may be referenced by more than one
service, if applicable.

The following format is used in adapter configuration files to define each mapping in
a field map:

Application Name:FML32 Field Name:input/output:field designator

Parameter Name Description

NAME=<Name> Defines the eLink service name that is to be advertised.

3 Understanding Adapter Architecture and Design

3-16 BEA eLink Adapter Development Kit User Guide

where

Application Name is the name of the application field

FML32 Field Name is the name of the FML32 field associated with this Application
field name.

Input/output defines whether a field is expected as input or passed as output or
both. Valid values are I, O, and IO.

Field designator is an adapter-defined designator for the defined field. This
parameter can be used to designate required fields, key fields, optional fields, etc.

R = Required Field
O = Optional Field
K = Key Field
P = Parent Key Field
L = Link Field
G = Group Field

Additional values can be defined by the adapter, if necessary

Example:

*SERVICE
NAME=NwCont
BUSINESS_OBJECT=Account
BUSINESS_COMPONENT=Contact
OPERATION=NEW
FMID=Map1

*FIELDMAP
FMID=Map1
Birth Date:EL_SBL_BIRTH_DATE:I:O
Comment:EL_SBL_COMMENT:I:O
Credit Agency:EL_SBL_CREDIT_AGNCY:I:O
Credit Score:EL_SBL_CREDIT_SCORE:I:O
Email:EL_SBL_EMAIL:I:O
Address:EL_SBL_ADDRESS:I:O
Job Title:EL_SBL_JOB_TITLE:I:O
First Name:EL_SBL_FIRST_NAME:I:R
Last Name:EL_SBL_LAST_NAME:I:R
Id:EL_SBL_ID:O:R

In the above example, the application field “Birth Date” maps to the FML32 field
EL_EBL_BIRTH_DATE. This field is an optional (designated by an O) input (indicated
by the I/O type of I) field. The application field “ID” is mapped to EL_SBL_ID. This
field is defined as a required output field.

eLink Adapter Configuration

BEA eLink Adapter Development Kit User Guide 3-17

The ADK contains the following functions that are used to parse the field map sections
in the adapter configuration file: eLA_GetFieldMap, eLA_GetFirstField,
eLA_GetNextField. For complete details and code examples see the “Configuration
Processing API” section in Appendix A.

Sample Adapter Configuration File

The following is an example of a configuration file for an adapter that difines one
service.

Listing 3-7 Adapter Configuration File

This is a comment

*SERVER
MAXMSGLEVEL=10
MINMSGLEVEL=0
*SERVICE
NAME=CONVERT_WITHDRAWAL
CONVERSION_TYPE=FMLMTI2XML
MTI_NAME=withdraw.mti

*SERVICE
NAME=CONVERT_DEPOSIT
CONVERSION_TYPE=FML2XML
LIST_TAG_SUFFIX=_LIST
FMID=Map1
*FIELDMAP
FMID=Map1
Birth Date:EL_SBL_BIRTH_DATE:I:O
Comment:EL_SBL_COMMENT:I:O
Credit Agency:EL_SBL_CREDIT_AGNCY:I:O
Credit Score:EL_SBL_CREDIT_SCORE:I:O
Email:EL_SBL_EMAIL:I:O
Address:EL_SBL_ADDRESS:I:O
Job Title:EL_SBL_JOB_TITLE:I:O
First Name:EL_SBL_FIRST_NAME:I:R
Last Name:EL_SBL_LAST_NAME:I:R
Id:EL_SBL_ID:O:R

3 Understanding Adapter Architecture and Design

3-18 BEA eLink Adapter Development Kit User Guide

API to Parse and Store Configuration Data

The ADK includes an API to facilitate the parsing of the Adapter configuration file and
to store configuration information for quick lookup.

API to Parse the Configuration File

The following API functions may be used to facilitate the parsing of the Adapter
configuration file. For complete details and code examples see the “Configuration
Processing API” section in Appendix A, “eLink Adapter Development Kit
References.”

Table 3-2 Configuration Processing API Functions

Configuration
Processing API Name

Description

eLA_OpenTagFile Opens a Tag (or config.) file, and reads it into
memory.

eLA_CloseTagFile Closes a handle returned by eLA_OpenTagFile.

eLA_CloseTagHandle Closes a handle returned by eLA_GetFirstSection.

eLA_GetFirstSection Searches the config file memory image for desired
section.

eLA_GetNextSection Finds next occurrence of desired section.

eLA_GetFirstProperty Retrieves Tag/Value pair for first property in a
section.

eLA_GetNextProperty Retrieves Tag/Value pair for successive properties in
a section.

eLA_GetPropertyValue Retrieves value for first occurrence of a tag in a
section.

eLA_GetFieldMap Searches for the named *FIELDMAP section.

eLA_GetFirstField Retrieves the information for the first line in a
fieldmap section.

Error Handling

BEA eLink Adapter Development Kit User Guide 3-19

API to Store the Configuration Data

After the configuration information has been parsed, it can be stored in a hash table to
facilitate quick lookup. The hash table API is included in the ADK. A summary of the
available functions is provided here. For complete details and code examples see the
“Hash Table API” section in Appendix A, “eLink Adapter Development Kit
References.”

Error Handling

Error handling may be accomplished through error logging and tracing. Error logging
is mandatory and must always be “turned on”, while tracing can be activated or
deactivated by the user.

eLA_GetNextField Retrieves the information for successive lines in a
fieldmap section.

Table 3-2 Configuration Processing API Functions

Configuration
Processing API Name

Description

Table 3-3 Hash Table API Functions

Hash Table API Name Description

eLA_InitHashTable Creates a hash table.

eLA_DestHashTable Frees all dynamic memory in the hash table.

eLA_put Adds a new element to the hash table.

eLA_get Retrieves an element from the hash table.

eLA_hash Returns the hash value for a given key.

3 Understanding Adapter Architecture and Design

3-20 BEA eLink Adapter Development Kit User Guide

If an eLink to application adapter successfully completes a service request, then the
adapter returns with tpreturn (TPSUCCESS, ….). The tpurcode, the second
parameter in tpreturn, should be set to the value of the third-party API return code
(if available and applicable). This is to ensure that other eLink components can
determine that the application request has been successfully executed.

Errors from eLink to application adapters should return in a consistent manner.
Consistency allows other eLink components, such as the Data Integration Option
(DIO) or the Business Process Option (BPO), to detect and respond to errors.

eLink adapters need to handle two types of errors, business level exceptions and
infrastructure errors. Proper error handling ensures that all the eLink components
recognize error codes that are returned for eLink to application adapters.

Business Level Exceptions

Business level exceptions are those that occur when the advertised service is
successfully invoked by the adapter, but the called application is unable to complete
the requested operation. For example, if the business service advertised is “Ship
Order”, the service may fail if one of the items to be shipped is out of stock and the
incomplete order may not be shipped. This exception must be returned to the caller but
will not be logged.

If a business-level exception occurs, then the adapter returns with tpreturn (TPFAIL,
0, ...). The details of the error, for example the application error code, are returned in
the ELINK_APP_ERR FML32 field. This is a string field. Using the recommended
CFchg32() call, the adapter may populate the ELINK_APP_ERR FML32 field with
either an error number or error string without further conversion.

Infrastructure Level Exceptions

Infrastructure level exceptions are those in which the adapter encounters an
uncorrectable error, for example, a failure to allocate an FML32 buffer or other
memory allocation errors within the adapter code. All infrastructure level errors are
returned to the caller and logged using the eLA_log() function that is included in the
ADK. A message catalog should be used (See the following “Message Catalog”
section). The eLA_catentry function is used to retrieve the actual message string
from the catalog using a message number.

Error Handling

BEA eLink Adapter Development Kit User Guide 3-21

If an eLink to application adapter fails because of an infrastructure level error, then the
adapter returns with tpreturn (TPFAIL, !0, ...). The FML32 field,
ELINK_ADAPTER_ERR, contains an error message. The category of adapter error is
indicated in the FML32 ELINK_ADAPTER_ERR_CODE field. The content of this string
field is a single keyword. A predefined set of categories is described in the list below.
Whenever possible, errors should be mapped to these categories. Adapter authors may
define additional categories, however, third-party additions should omit the
“ELINK_” prefix.

Table 3-4 Adapter Error Categories

Category Description

ELINK_EAPP_API The application’s API returned an error. Note that this refers
to the application’s API returning an infrastructure level error
rather than a business level error.

ELINK_EAPP_UNAVAIL The application was unavailable.

ELINK_EATMI An ATMI error occurred.

ELINK_ECONFIG An error occurred with the adapter configuration data.

ELINK_EFML An FML error occurred.

ELINK_EINVAL Invalid value/argument error. For example, an FML32
request buffer is sent to an adapter without all the required
FML32 fields being present.

ELINK_EITYPE An input type mismatch. For example, converting
between FML32 and application data types on the input.

ELINK_ELIMIT Out of range value.

ELINK_ENOENT No entry found. The application functionality
corresponding to the service could not be found.

ELINK_EOS An operating system error. For example, a memory
allocation error.

ELINK_EOTYPE An output type mismatch. For example, converting
between FML32 and application data types on the
output.

ELINK_EPERM A permissions error.

3 Understanding Adapter Architecture and Design

3-22 BEA eLink Adapter Development Kit User Guide

Message Catalog

All error and tracing messages should be put in a message catalog file. The catalog file
is assumed to be a text file (.txt) whose message lines adhere to the rules outlined in
the HP-UNIX gencat() MAN pages. The MAN pages provide reference information in
an online format.

For example:

10 “WARN: Existing parameter %s = %d, cannot change to %d”
11 “ERROR: Memory allocation failure”

The message numbers should be in ascending order, but the numbers need not be
contiguous. Double quotes are stripped and lines starting with comments (’$’) are
disregarded. Sets are not supported.

These catalog files are required to be located in the $TUXDIR\ELINK\CATALOGS
directory. However, the ADK utility function that is used to open the catalog file,
eLA_OpenCatalogFile() , expects a fully qualified path name.

In the event that the message number is not found in the catalog file, a string similar to
“Message xxx not found” is returned to the caller.

API to Access the Message Catalog File

The ADK includes an API to access the message catalog file. A summary of the
available functions is provided here. For complete details see the “Utility Functions
and Macros” section in Appendix A, “eLink Adapter Development Kit References.”

ELINK_EPROTO A protocol error.

ELINK_ETIME A timeout error. For example, timing-out while waiting
for the application to process the request.

ELINK_ETRAN A transaction error.

Table 3-4 Adapter Error Categories

Category Description

Error Handling

BEA eLink Adapter Development Kit User Guide 3-23

The following code segment illustrates how these functions are used:

Listing 3-8 Code for Catalog File Functions

ADK_CAT_HANDLE rHandle;
char catFileName[MAX_FNAME];
char msgbuffer[1024];
....
rHandle = eLA_OpenCatalogFile(catFileName);
....
eLA_catentry(msgbuffer, sizeof(msgbuffer), rHandle, 11);
....
eLA_CloseCatalogFile(rHandle);

Tracing

eLink adapters should be written to allow tracing to be enabled through the adapter-
specific configuration file. Tracing can then be activated or deactivated by the user.

Trace Levels

A trace level parameter is associated with each tracing message. The MAXMSGLEVEL
and MINMSGLEVEL parameters are set in the adapter configuration file to specify the
range of trace messages to be printed. The MAXMSGLEVEL and MINMSGLEVEL
parameters are read in the tpsvrinit function by calling the

Message Catalog API
Name

Description

eLA_OpenCatalogFile Open the message catalog file

eLA_CloseCatalogFile Close the message catalog file

eLA_catentry Retrieve the message corresponding to the entry
number

3 Understanding Adapter Architecture and Design

3-24 BEA eLink Adapter Development Kit User Guide

eLA_SetServerMsgLevel function. They are then stored in the corresponding fields
of a MSG_LEVEL structure. For more information, refer to the “Definitions and
Typedefs” section in Appendix A, “eLink Adapter Development Kit References.”

MAXMSGLEVEL and MINMSGLEVEL parameters have a range of values from 0 to 9. If
both the MAXMSGLEVEL and MINMSGLEVEL parameters are set to 0, then no tracing is
done. Following are guidelines for assigning a message level to each individual trace
statement.

If there is any code in the adapter that does signal or event handling, it is advisable to
use a trace level in the 7-9 range so that the signal or event handling is turned off for
the purposes of debugging. Actual usage of trace values should be described in user
documentation for the adapter.

Tracing Functions and Macros

In addition to the eLA_log function, there are two other functions included in the ADK
to help with tracing, eLA_hexdump and eLA_catentry. eLA_hexdump performs a
formatted hexdump of a buffer. eLA_catentry retrieves an entry from the message
catalog. The macro, ELACATENTRY, serves as a cover for the eLA_catentry function.

The ADK includes two macros, ELATRACE and ELAIFTRACE, that are specifically
designed to aid in tracing. ELATRACE has three arguments: VAR, LVL and ARGS. If the
LVL argument is between the values of the fields of the MSG_LEVEL structure VAR
(inclusively), then the argument ARGS is substituted into an eLA_log function call.
ELAIFTRACE has two arguments: VAR and LVL. ELAIFTRACE evaluates to an if

Table 3-5 Error Message Levels

Level Range Corresponding Tracing

1-3 Minimal level of tracing. Log module, program, or major
function entry points only.

4-6 Moderate level of tracing. Log entry into major control
blocks or execution of key events in the program. Log exit
points from modules, programs, and functions.

7-9 Very detailed level of tracing. All function calls and
return codes are printed. All buffers are hex dumped.
Entry and exit from all functions are logged.

Deployment and Installation of eLink Adapters

BEA eLink Adapter Development Kit User Guide 3-25

statement that checks to see if LVL is between the values of the fields of the MSG_LEVEL
structure VAR. ELAIFTRACE can be used to check if bracketed code immediately
following it should be evaluated.

The following code segment illustrates the use of the tracing functions and macros:

Listing 3-9 Code for Tracing Functions and Macros

MSG_LEVEL zLevel = {0,0};
char configFileName[MAX_FNAME];
...

rc = eLA_GetConfigFileName(configFileName, MAX_FNAME, argc, argv);
printf("eLA_GetConfigFileName - rc = %d\n", rc);
if(rc == -1)
 printf("Buffer not large enough\n");
else if(rc == 0)
 printf("File Name parameter not found\n");
else
 printf("File Name = %s\n", configFileName);
...
rc = eLA_SetServerMsgLevel(configFileName, &zLevel);
printf("SetServerMsgLevel - rc = %d\n",rc);
if(rc == ADK_SUCCESS)
 printf("min, max = %d, %d\n", zLevel.minMsgLevel, zLevel.maxMsgLevel);
for(i = 0;i < 10;i ++)
 { ELAIFTRACE(zLevel, i) printf("Level = %d\n", i);}
for(i = 0;i < 10;i ++)
 ELATRACE(zLevel, i, ("Log msg level %d", i));
...

Deployment and Installation of eLink
Adapters

Adapters should be compatible with all the following platforms supported by eLink
Platform v1.1 or higher. Additional operating systems may be supported in future
releases of the eLink Platform and the ADK.

n HP 10.20 and 11.00

3 Understanding Adapter Architecture and Design

3-26 BEA eLink Adapter Development Kit User Guide

n AIX 4.3.x

n Compaq Tru64 UNIX 5.0

n Solaris 2.6 and 7

n NT 4.0

For HP-UX builds, the +DAportable compilation flag should be used to make the
resulting object files portable across PA-RISC 1.1 and 2.0 workstations. Other
important build flags are -Wl,+s. This is actually a command for the linker to use the
SHLIB_PATH environment variable to locate shared libraries.

As an example, CFLAGS should at least use the following parameters:

CFLAGS=+DAportable -Wl,+s

Installation Directory Structure for Components

Adapters are installed in the eLink Platform using the traditional configuration shown
in the following table. Your code needs to work in this environment. In the table,
adapter should be replaced by the name of your adapter (PeopleSoft, SAP, etc.).

Table 3-6 Directory Path for Tuxedo Components Relating to Adapters

Directory Contents

$(TUXDIR)/bin Executables and dynamic link libraries.

$(TUXDIR)/lib Library objects (*.so, *.a, *.sl, *.lib).

$(TUXDIR)/include Include files needed for customer applications.

$(TUXDIR)/ELINK/CATALOGS Message catalog files.

$(TUXDIR)/udataobj FML fldtbls for internal adapter use and
binfiles.adapter.

$(TUXDIR)/adapter Adapter-specific files and samples. It may
contain subdirectories.

Deployment and Installation of eLink Adapters

BEA eLink Adapter Development Kit User Guide 3-27

Each Adapter should provide a flat text file named binfiles.adapter for inclusion in the
$(TUXDIR)/udataobj directory. The flat text file lists the files that are deliverables
for this product. These deliverables should be placed in the following directory paths:

Naming Convention for Source and Executable Files

The source and executable files for all adapters must follow specific naming
conventions.

The naming convention for source files is:

$(TUXDIR)/adapter/mysample Sample applications provided with the adapter
where mysample is the name of the sample
application provided.

Table 3-7 Directory Path for Adapter Deliverables

Directory Deliverables

/(base directory for
installation)

All make, bat, script files and readme files.

/doc All documentation.

/src All source code.

/include All include files.

/bin All binary command line executables (if any).

/dll All dlls (if any).

/lib All libs (.SL, .SO, .LIB, etc.) (if any).

/demo Any demo code, sample programs, etc.

/test All test material (scripts, data, and programs).

Table 3-6 Directory Path for Tuxedo Components Relating to Adapters

Directory Contents

3 Understanding Adapter Architecture and Design

3-28 BEA eLink Adapter Development Kit User Guide

eLink<abbeviation><i or o>.c

where <abbreviation> is the two or three letter abbreviation associated with the
adapter and i is for inbound (application to eLink) and o is for outbound (eLink to
application).

The naming convention for executable files is:

ELINK<abbreviation><I or O>

where <abbreviation> is the two or three letter abbreviation associated with the
adapter (in caps this time) and I is for inbound (application to eLink) and O is for
outbound (eLink to application). Using all caps for the names of servers is an eLink
convention.

BEA eLink Adapter Development Kit User Guide 4-1

CHAPTER

4 Installing the eLink
ADK and Sample
Adapters

This chapter discusses the following topics:

n What is Included in the eLink ADK

l Include Files and Libraries

l The Sample Application to eLink Adapter

l The Sample eLink to Application Adapter

l The Sample E-Mail Adapter

n Installing the eLink Adapter Development Kit

l Installing on the Windows NT Platform

l Installing on the HP-UX, AIX, Solaris, and Compaq TRU64 UNIX Platforms

What is Included in the eLink ADK

Your eLink Adapter Development Kit is shipped with include files, shared libraries,
and sample application to eLink and eLink to application adapters.

4 Installing the eLink ADK and Sample Adapters

4-2 BEA eLink Adapter Development Kit User Guide

Note: In order to use the ADK you need a license for both the eLink Platform and
the ADK. The license files are delivered on a floppy disk and should have
accompanied your order of the eLink Platform and ADK. Refer to “Preparing
the License File” on page 2-11 for more information about the license file.

Include Files and Libraries

In addition to the required include files (.H); the development kit includes shared
libraries, (.sl) for HP-UX 10.20 and 11.0, (.so) for Solaris 2.6 and AIX 4.3.x; and a
dynamic link library (.dll) and import library (.lib) for Windows NT. The .dll is
compiled with Microsoft VC++ v5.x. While the .dll may be used with any Windows
development platform, the import library is specific to the Microsoft compiler.

Note: The HP 10.20 operating system is not supported for this release of the Sample
E-Mail Adapter because the SMTP library does not support HP 10.20.

Table 4-1 Shipping List for ADK Include Files and Libraries

File Description

adkdemo\adkdemo.text Sample message catalogue

include\adkfns.h Include file for both NT and Unix

include\adklog.h Include file for both NT and Unix

include\adktypes.h Include file for both NT and Unix

include\fmlfns.h Include file for both NT and Unix

bin\libadk.dll Dynamic link library for Windows NT

lib\libadk.lib Import library for Windows NT

lib\libadk.sl Shared library for HP 10.20 or 11.00

lib\libadk.so Shared library for Solaris 2.6 or 7 or Compaq
Tru64 UNIX 5.0

lib\libadk.a Shared library for AIX 4.3

lib\libsmtp.sl Shared SMTP library for HP 11.00

What is Included in the eLink ADK

BEA eLink Adapter Development Kit User Guide 4-3

The Sample Application to eLink Adapter

The sample application to eLink adapter contains code to generate the application to
eLink adapter program, which is a Tuxedo server. The sample application to eLink
adapter also contains a demo server program that can be used to test the adapter. The
application to eLink adapter also includes a sample UBB file, as well as .bat and .SCR
files to set up the environment. Since the .lib files included with Tuxedo are specific
to the MS VC++ compiler, and BUILDSERVER and BUILDCLIENT default to calling the
command line version of the MS compiler (CL), the .bat files were created for use with
the MS compiler.

lib\libsmtp.so Shared SMTP library for Solaris 2.6. or 7 or
Compaq Tru64 UNIX 5.0

lib\libsmtp_shr.a Shared SMTP library for AIX 4.3

lib\libcomm.so Communication protocol library for Solaris 2.6.
or 7 or Compaq Tru64 UNIX 5.0

lib\libcomm_shr.a Communication protocol library for AIX 4.3

lib\libcomm.sl Communication protocol library for HP 11.00

lib\libcomm.dll Communication protocol dynamic link library
for Windows NT

lib\libcomm.lib Communication protocol library for Windows
NT

Table 4-1 Shipping List for ADK Include Files and Libraries

File Description

Table 4-2 Shipping List for Sample Application to eLink Adapter Components

File Description

adkdemo\inbound\elinkdi.mak .MAK file for Unix

adkdemo\inbound\inbound.c Source code for the demo application to
eLink server program for Unix

4 Installing the eLink ADK and Sample Adapters

4-4 BEA eLink Adapter Development Kit User Guide

The Sample eLink to Application Adapter

The sample eLink to application adapter contains code to generate demo server and
client programs, sample .UBB and .CFG files, as well as .bat and .SCR files to set up
the environment and automate the build process. Since the .lib files included with
Tuxedo are specific to the MS VC++ compiler, and BUILDSERVER and BUILDCLIENT
default to calling the command line version of the MS compiler (CL), the .bat files
were created for use with the MS compiler.

adkdemo\inbound\input.txt File containing requests

adkdemo\inbound\README README file for Sample Application
to eLink Adapter

adkdemo\inbound\SETENV.BAT Sets the various environment variables
required by Tuxedo for NT

adkdemo\inbound\setenv.sh Sets the various environment variables
required by Tuxedo for Unix

adkdemo\inbound\simpserv.c Source code for the Tuxedo server
program

adkdemo\inbound\table.fml FML32 table

adkdemo\inbound\ubb.inbound UBBCONFIG file

Table 4-2 Shipping List for Sample Application to eLink Adapter Components

File Description

Table 4-3 Shipping List for Sample eLink to Application Adapter Components

File Description

adkdemo\outbound\ADKDEMO.C Source code for the demo server program

adkdemo\outbound\ADKDEMO.CFG CFG file

adkdemo\outbound\ADKDEMO.H Source code for the demo server program

adkdemo\outbound\ADKDEMO.UBB UBB file for NT

What is Included in the eLink ADK

BEA eLink Adapter Development Kit User Guide 4-5

The Sample E-Mail Adapter

The sample E-Mail Adapter contains code to generate demo E-Mail server and client
programs. This adapter is an eLink to Application adapter.

adkdemo\outbound\ADKDEMOX.UBB UBB file for Unix

adkdemo\outbound\CONFIG.C Routines to verify and load CFG file

adkdemo\outbound\CONFIG.H Routines to verify and load CFG file

adkdemo\outbound\democlient.C Source code for the demo client program

adkdemo\outbound\elinkdo.mak .MAK file for Unix

adkdemo\outbound\FOOFNS.C String handling functions to simulate the
calling of an outside API

adkdemo\outbound\FOOFNS.H String handling functions to simulate the
calling of an outside API

adkdemo\outbound\makeclient.BAT Makes the demo client program

adkdemo\outbound\makeclient.SCR Makes the demo client program

adkdemo\outbound\makeserver.BAT Makes the demo server program

adkdemo\outbound\makeserver.SCR Makes the demo server program

adkdemo\outbound\README README file for Sample eLink to
Application Adapter

adkdemo\outbound\SETADK.BAT Sets the various environment variables
required by Tuxedo

adkdemo\outbound\SETADK.SCR Sets the various environment variables
required by Tuxedo

Table 4-3 Shipping List for Sample eLink to Application Adapter Components

File Description

4 Installing the eLink ADK and Sample Adapters

4-6 BEA eLink Adapter Development Kit User Guide

Table 4-4 Shipping List for Sample E-Mail Adapter

File Description

adkdemo\email\config.c Routines to verify and load CFG file

adkdemo\email\config.h Routines to verify and load CFG file

adkdemo\email\emailclient.c Source code for the email client program

adkdemo\email\emailserver.c Source code for the email server program

adkdemo\email\emailserver.cfg Configuration file for the server

adkdemo\email\emailserver.h Header file for the email server program

adkdemo\email\emaildemo.ubb UBB file for NT

adkdemo\email\emaildemox.ubb UBB file for UNIX

adkdemo\email\emaildemo.mak .MAK file for UNIX

adkdemo\email\emailtools.c Source code used to configure and send
email

adkdemo\email\emailtools.h Header file for emailtools

adkdemo\email\email.cfg Email configuration file (used with -f
option)

adkdemo\email\emailmessage.txt Sample email message to send

adkdemo\email\makeclient.bat Makes the email client program (NT)

adkdemo\email\makeclient.scr Makes the email client program (UNIX)

adkdemo\email\makeserver.bat Makes the email server program (NT)

adkdemo\email\makeserver.bat Makes the email server program (UNIX)

adkdemo\email\README.DEMO README file for Sample Email Adapter

adkdemo\email\setadk.bat Sets the various environment variables
required by Tuxedo (NT)

adkdemo\email\setadk.scr Sets the various environment variables
required by Tuxedo (UNIX)

Installing the eLink Adapter Development Kit

BEA eLink Adapter Development Kit User Guide 4-7

Installing the eLink Adapter Development
Kit

BEA-branded adapters must be buildable on all supported eLink Platform operating
systems. HP-UX 11.00 platforms use the standard HP C compiler and NT platforms
use the MS VC++ v5.x command line compiler.

Complete the following tasks prior to installing the eLink Adapter Development Kit:

t Read the eLink Adapter Development Kit Release Notes.

t Install and verify the operation of the BEA Tuxedo product. Refer to the
“Special Instructions for Installing the Tuxedo Core” section of this guide for
installation tips and the BEA Tuxedo Installation Guide at http://
edocs.beasys.com/tuxedo/tux65/index.htm for more information.

Installing on the Windows NT Platform

The eLink Adapter Development Kit software is available only for Version 4.0 of the
Windows NT platform.

Perform the following steps to install the eLink ADK software on a Windows NT
system:

1. Insert the product CD-ROM and click the Run option from the Start menu. The
Run window displays. Click the Browse button to select the CD-ROM drive.
Select the winnt directory and select the Setup.exe program. Click OK to run the
executable and begin the installation. The Welcome window displays as shown in
Figure 4-1. Click Next to continue with the installation.

http://edocs.beasys.com/tuxedo/tux65/index.htm
http://edocs.beasys.com/tuxedo/tux65/index.htm

4 Installing the eLink ADK and Sample Adapters

4-8 BEA eLink Adapter Development Kit User Guide

Figure 4-1 Welcome Window

Installing the eLink Adapter Development Kit

BEA eLink Adapter Development Kit User Guide 4-9

2. The License Agreement window displays as shown in Figure 4-2. Read the
license agreement information, and click Yes to continue with the installation.

Figure 4-2 License Agreement Window

4 Installing the eLink ADK and Sample Adapters

4-10 BEA eLink Adapter Development Kit User Guide

3. The User Information window displays as shown in Figure 4-3. Enter your
name in the Name field. Enter the name of your company in the Company field.
Click Next to continue with the installation.

Figure 4-3 User Information Window

Installing the eLink Adapter Development Kit

BEA eLink Adapter Development Kit User Guide 4-11

4. After you click Next, the Select License File Source Directory window displays
as shown in Figure 4-4.

a. Enter the Directory and Path or click the Browse button to display the Choose
Folder pop-up window as shown in Figure 4-5

Figure 4-4 Select License File Source Directory Window

4 Installing the eLink ADK and Sample Adapters

4-12 BEA eLink Adapter Development Kit User Guide

b. If you clicked Browse, locate the License file and click OK to return to the
Select License File Source Directory window. Then click Next to continue
with the installation process.

Figure 4-5 Choose Folder Pop-up Window

Installing the eLink Adapter Development Kit

BEA eLink Adapter Development Kit User Guide 4-13

5. If,

Tuxedo is already installed on your system,
The installation begins and a progress bar displays the status. The eLink ADK
components install into the Tuxedo directory. You may abort the installation
process anytime prior to completion by clicking the Cancel button.

When the installation completes, the Setup Complete window shown in
Figure 4-7 notifies you that the eLink ADK software is installed on your
system.

Warning: If Windows NT is your execution environment, BEA TUXEDO should be
installed first and the eLink ADK should be installed within the same
directory. If you install the eLink ADK outside of the Tuxedo directory,
you will need to copy the files into the Tuxedo directory for processing of
data mapping service requests.Click Yes to continue the installation or No
to quit.

Tuxedo is NOT already installed on your system,
The Error pop-up window displays as shown in Figure 4-6. Click OK on the
pop-up window to terminate the installation process. Install Tuxedo 6.5 on your
system (see warning above). Reinitiate the installation process starting with step
one of these installation instructions.

4 Installing the eLink ADK and Sample Adapters

4-14 BEA eLink Adapter Development Kit User Guide

Figure 4-6 Tuxedo 6.5 Installation Error Pop-Up Window

Installing the eLink Adapter Development Kit

BEA eLink Adapter Development Kit User Guide 4-15

6. The Setup Complete window notifies you that the eLink ADK software is
installed on your system. Click Finish to complete the setup process.

Figure 4-7 Setup Complete

4 Installing the eLink ADK and Sample Adapters

4-16 BEA eLink Adapter Development Kit User Guide

Installing on the HP-UX, AIX, Solaris, and Compaq TRU64
UNIX Platforms

This section explains how to install the eLink Adapter Development Kit software on
the following execution platforms.

n HP-UX 10.20 or 11.00

n AIX v4.3.x

n SUN Solaris 2.6 or 7

n Compaq Tru64 UNIX 5.0

Warning: You must install the eLink ADK execution components within the eLink
Platform directory.

To install the eLink ADK software, you run the install.sh script. This script installs
all the necessary software components.

Perform the following steps to install the eLink ADK software on a supported Unix
platform:

1. Log on as root to install the eLink ADK software.

$ su -
Password:

2. Access the CD-ROM device.

ls -1 /dev/cdrom

total 0

brw-rw-rw- 1 root sys 22, 0 January 5 10:55 c1b0t010

3. Mount the CD-ROM.

mount -r -F cdfs /dev/cdrom/c1b0t0l0 /mnt

4. Change the directory to your CD-ROM device.

cd /mnt

5. List the CD-ROM contents.

Installing the eLink Adapter Development Kit

BEA eLink Adapter Development Kit User Guide 4-17

ls

install.sh hp

6. Execute the installation script.

sh ./install.sh

7. The installation script runs and prompts you for responses.

Listing 4-1 Install.sh Script Prompts

cmadm@dalhpw1:/cmhome/dist/balkan-1> ls
alpha/ hp/ ibm/ install.sh* sun5x/ winnt/
cmadm@dalhpw1:/cmhome/dist/balkan-1> sh install.sh

01) alpha/tru64 02) hp/hpux1020 03) hp/hpux11
04) ibm/aix43 05) sun5x/sol26 06) sun5x/sol7

Install which platform’s files? [01-6, q to quit, l for list]: 2

** You have chosen to install from hp/hpux1020 **

BEA eLink Adapter Development Kit Release 1.1

This directory contains the BEA eLink Adapter Development Kit System
for
HP-UX 10.20 on 9000/800 series.

Is this correct? [y,n,q]: y

To terminate the installation at any time
press the interrupt key,
typically , <break>, or <ctrl+c>.

The following packages are available:

 1 adk BEA eLink Adapter Development Kit

Select the package(s) you wish to install (or ’all’ to install
all packages) (default: all) [?,??,q]:

BEA eLink Adapter Development Kit
(9000) Release 1.1
Copyright (c) 2000 BEA Systems, Inc.

4 Installing the eLink ADK and Sample Adapters

4-18 BEA eLink Adapter Development Kit User Guide

All Rights Reserved.
Distributed under license by BEA Systems, Inc.
BEA eLink is a trademark of BEA Systems, Inc.

Directory where ADK Adapter files are to be installed
(Enter your Tuxedo directory path) [?,q]: /work/cmadm/tux65

Using /work/cmadm/tux65 as the ADK Adapter base directory

Determining if sufficient space is available ...
528 blocks are required
3783706 blocks are available to /work/cmadm/tux65

Unloading /cmhome/dist/balkan-1/hp/hpux1020/adk/ADKT65.Z ...
adkdemo/adkdemo.text
adkdemo/email/README.DEMO
adkdemo/email/adkdemo.text
adkdemo/email/config.c
adkdemo/email/config.h
adkdemo/email/email.cfg
adkdemo/email/emailclient.c
adkdemo/email/emaildemo.mak
adkdemo/email/emaildemox.ubb
adkdemo/email/emailmessage.txt
adkdemo/email/emailserver.c
adkdemo/email/emailserver.cfg
adkdemo/email/emailserver.h
adkdemo/email/emailtools.h
adkdemo/email/makeclient.scr
adkdemo/email/makeserver.scr
adkdemo/email/setadk.scr
adkdemo/inbound/elinkdi.mak
adkdemo/inbound/inbound.c
adkdemo/inbound/input.txt
adkdemo/inbound/readme
adkdemo/inbound/setenv.sh
adkdemo/inbound/simpserv.c
adkdemo/inbound/table.fml
adkdemo/inbound/ubb.inbound
adkdemo/outbound/adkdemo.c
adkdemo/outbound/adkdemo.cfg
adkdemo/outbound/adkdemo.h
adkdemo/outbound/adkdemox.ubb
adkdemo/outbound/config.c
adkdemo/outbound/config.h
adkdemo/outbound/democlient.c
adkdemo/outbound/elinkdo.mak
adkdemo/outbound/foofns.c

Installing the eLink Adapter Development Kit

BEA eLink Adapter Development Kit User Guide 4-19

adkdemo/outbound/foofns.h
adkdemo/outbound/makeclient.scr
adkdemo/outbound/makeserver.scr
adkdemo/outbound/readme.demo
adkdemo/outbound/setadk.scr
bin/lic.sh
include/adkfns.h
include/adklog.h
include/adktypes.h
include/fmlfns.h
lib/libadk.sl.1.10
lib/libcomm.sl
lib/libsmtp.sl
490 blocks
... finished

Changing file permissions...
... finished

If your license file is accessible, you may install it now.
Install license file? [y/n]: n

Please don’t forget to use lic.sh located in your product bin
directory
to install the license file from the enclosed floppy.
Refer to your product Release Notes for details on how to do this.

Installation of BEA eLink Adapter Development Kit was successful

Please don’t forget to fill out and send in your registration card
cmadm@dalhpw1:/cmhome/dist/balkan-1>

4 Installing the eLink ADK and Sample Adapters

4-20 BEA eLink Adapter Development Kit User Guide

BEA eLink Adapter Development Kit User Guide 5-1

CHAPTER

5 Configuring and
Running the Sample
Adapters

The eLink Adapter Development Kit includes a Sample Application to eLink Adapter,
a Sample eLink to Application Adapter, and a Sample E-mail Adapter.

This chapter discusses the following topics:

n Demo Prerequisites for UNIX

n The Sample Application to eLink Adapter

n The Sample eLink to Application Adapter

n The Sample E-Mail Adapter

Demo Prerequisites for UNIX

If you run the demos on a UNIX operating system, there are several prerequisites:

n Before building the demo, you must have GNU Make Version 3.74 or higher. If
you do not have Make, you can download it from http\\www.gnu.org. Select the
Software item and then scroll down to make.

n Check the machine entry in your elinkdo.mak and elinkdi.mak files by
performing the following procedure:

http\\www.gnu.org

5 Configuring and Running the Sample Adapters

5-2 BEA eLink Adapter Development Kit User Guide

l Open the .mak file in a text editor.

l Find the following line(s), which may be entered multiple times for multiple
machines:
ifeq ADK_MACHINE #, where # equals a machine ID per the following table.

Table 5-1 UNIX Machine ID Numbers

l Verify that the information under the machine ID line is correct for the
identified operating system. If it is not correct, change the information to
reflect your system configuration.

l Save the edited .mak file.

The Sample Application to eLink Adapter

The Sample Application to eLink Adapter provides an example of the general form of
an application to eLink adapter. In particular, it provides an example of using a Tuxedo
daemon service to poll an external source for requests. In the case of the Sample
Application to eLink Adapter, the external source is just a text file that contains request
strings. The Sample Application to eLink Adapter also provides a complete example
of the use of FML32. At this time, the Sample Application to eLink Adapter does not
provide a complete code example of an adapter because it does not read information
from a configuration file, it does not use the standard eLA_log() function provided
for logging message by adapters, and it does not check a license file. For a more
complete code example of an adapter, see the Sample eLink to Application Adapter.

Operating System ID #

AIX 4.3 49

Compaq Tru64 UNIX 5.0 37

HP-UX 10.20 36

HP-UX 11.0 40

Solaris 35

The Sample Application to eLink Adapter

BEA eLink Adapter Development Kit User Guide 5-3

Before installing and running the Sample Application to eLink Adapter, you must
install Tuxedo.

Configuring the Sample Application to eLink Adapter

To configure the Sample Application to eLink Adapter:

1. Edit SETENV.BAT for NT, or setenv.sh for Unix to reflect your environment.

Note: For NT, Tuxedo sets TUXDIR and adds TUXDIR\bin to the PATH environment
variable. For Unix, Tuxedo generates a TUX.ENV file that sets these variables
for you.

You need to set the INCLUDE, LIB, APPDIR, TUXCONFIG,

FIELDTBLS32, and FLDTBLDIR32 variables on both NT and Unix, and the
SHLIB_PATH (or LD_LIBRARY_PATH or LIBPATH) variable on Unix.

Make sure that each of the following variables is set correctly:

l TUXDIR=<Base directory of the Tuxedo software>

l APPDIR=<Base directory of the sample application>

l PATH must include $TUXDIR/bin

l TUXCONFIG=<Full pathname of the binary tuxconfig file>

l FLDTBLDIR32=<Base directory of the sample application>

l FIELDTBLS32=table.fml (FML32 table for this application)

l LD_LIBRARY_PATH must include $TUXDIR/lib on systems that
use shared libraries (except HP-UX and AIX).

l SHLIB_PATH (HP-UX only) must include $TUXDIR/lib

l LIBPATH (AIX only) must include $TUXDIR/lib

l ADK_MACHINE must be set to the appropriate machine ID # as
referenced in Table 5-1

2. Execute SETENV.BAT for NT, or setenv.sh for Unix to complete the
installation.

5 Configuring and Running the Sample Adapters

5-4 BEA eLink Adapter Development Kit User Guide

Building and Running the Sample Application to eLink
Adapter

At this point, you are ready to build and run the Sample Application to eLink Adapter
included in ADKDEMO\INBOUND.

1. Because the sample inbound adapter runs as a Tuxedo server and the imitation
third-party “software” is just a file that is used for input, there is no Tuxedo client
to build, but there are two servers that must be built.

To build the servers, execute:

make -felinkdi.mak

or use the commands:

buildserver -o simpserv -f simpserv.c -s TOUPPER
buildserver -o inbound -f inbound.c -s DAEMON

Note: For NT, the default compiler is the MS VC++ command line compiler,
CL.EXE. While the compiler can be changed by setting the CC environment
variable, there is no guarantee that the .LIB files supplied with either Tuxedo
or the ADK will work with any other compiler.

2. Edit the ubb.inbound file. The APPDIR, TUXDIR and TUXCONFIG variables
need to be set independently of external variables. Be sure that the variables set
in the ubb.inbound file match your environment variables. The machine ID
field must also be set. The machine ID field on Windows NT (in this instance
DALNT10) should be entered in upper case.

3. Execute tmloadcf with ubb.inbound as an argument. This converts the
ubb.inbound text file into a binary TUXCONFIG file.

tmloadcf -y ubb.inbound

4. Execute tmboot to load the ADKDEMO inbound application.

tmboot -y

The demo inbound server is booted and runs until it has processed all requests in
the file input.txt. The outputs are written to stdout.

5. Execute tmshutdown to shut down the ADKDEMO inbound application.

The Sample eLink to Application Adapter

BEA eLink Adapter Development Kit User Guide 5-5

The Sample eLink to Application Adapter

Before installing and running the Sample eLink to Application Adapter, you must
install Tuxedo and the ADK.

Configuring the Sample eLink to Application Adapter

To configure the Sample Application to eLink Adapter:

1. Edit SETADK.BAT for NT or SETADK.SCR for Unix to reflect your environment.

Note: For NT, Tuxedo sets TUXDIR and adds TUXDIR\bin to the PATH environment
variable. For Unix, Tuxedo generates a TUX.ENV file that sets these variables
for you. You need to set the INCLUDE, LIB, APPDIR and TUXCONFIG variables
on both NT and Unix, and the SHLIB_PATH variable on Unix.

2. Execute SETADK.BAT for NT or SETADK.SCR for Unix to complete the
installation.

Building and Running the Sample eLink to Application
Adapter

At this point, you are ready to build and run the sample eLink to application adapter
included in ADKDEMO.

1. Build the client and server as appropriate for your operating system:

l For NT, execute MAKECLIENT.BAT and MAKESERVER.BAT.

l For Unix, enter make -felinkdo.mak or execute MAKECLIENT.SCR and
MAKESERVER.SCR.

These batch or script files invoke BUILDCLIENT and BUILDSERVER to build
DEMOCLIENT.EXE and ADKDEMO.EXE. No changes should be required as long as
BUILDSERVER, BUILDCLIENT and your C compiler can be found.

5 Configuring and Running the Sample Adapters

5-6 BEA eLink Adapter Development Kit User Guide

Note: For NT, the default compiler is the MS VC++ command line compiler,
CL.EXE. While this compiler can be changed by setting the CC environment
variable, there is no guarantee that the .LIB files supplied with either Tuxedo
or the ADK will work with any other compiler.

2. Edit the ADKDEMO.UBB file for NT or ADKDEMOX.UBB file for Unix. The APPDIR,
TUXDIR and TUXCONFIG variables need to be set independently of external
variables. The machine ID field on NT (in this instance DALNT10) should be
entered in upper case.

Note: The ADKDEMO.CFG file referenced by both UBB files need not be edited,
because it is installation independent.

3. Execute tmloadcf with the appropriate UBB file as an argument to convert the
UBB text file into a binary TUXCONFIG file.

4. Execute tmboot to load the ADKDEMO application.

5. Run DEMOCLIENT with a variety of arguments to exercise the server.

6. Execute tmshutdown to shut down the ADKDEMO application.

The Sample E-Mail Adapter

The Sample E-Mail Adapter is an eLink to application adapter that consists of a
Tuxedo client and server. The E-Mail Adapter’s SEND service allows a user to
connect to an SMTP Server to send an E-Mail. The RECEIVE service is not
implemented so you must add the functionality to connect to a POP3 server to receive
E-Mail.

The E-Mail client uses the contents of the email.cfg file to send information to the
E-Mail server. The email.cfg file contains the following information in the form of
field name = field contents. Edit the .cfg file with information appropriate for
your system.

server=your.SMTPServer.com
domain=your.SMTPDomain.com
sender=sender@email.com

The Sample E-Mail Adapter

BEA eLink Adapter Development Kit User Guide 5-7

recipient=recipient@email.com
subject=message subject
file=emailmessage.txt

When the E-Mail client is invoked, it reads the E-Mail information from the email.cfg
file, puts the .cfg file fields into an FML32 buffer, and then sends that buffer to the E-
Mail server. When the server receives the E-Mail buffer, it processes the buffer and
uses emailtools to configure the message and send it to the specified SMTP server.
When the server receives confirmation that the message was sent, the server returns the
FML32 buffer back to the E-Mail client and the process terminates.

Invoking the Sample E-Mail Adapter

Invoke the Sample E-Mail Adapter with a command line in the following format:

$ emailclient <service> [-f email.cfg])

For example, to invoke the Sample E-Mail Adapter using default information
contained in the email.cfg file, use the following entry for UNIX:

$ emailclient send -f email.cfg

For Windows NT, enter the command at the appropriate directory prompt:

C:\emailclient send -f email.cfg

Or, to invoke the Sample E-Mail Adapter using your own information rather than using
parameters specified in the email.cfg file, enter the emailclient command without
specifying the .cfg file as the following UNIX example shows:

$ emailclient send

After submitting the command, you will be prompted to enter the following
parameters, where the text in brackets equals the parameter values that you wish to use:

Enter Enter SMTP server (your.SMTPServer.com)=[your SMTP server]
Enter SMTP domain (your.SMTPDomain.com)=[your SMTP domain]
Enter Recipient of email (recipient@email.com)=[your recipient’s E-Mail address]
Enter Sender's email (sender@email.com)=[your sender’s E-Mail address]
Enter Subject of email=[your message subject]
Enter file loacation of message=[your emailmessage.txt]

5 Configuring and Running the Sample Adapters

5-8 BEA eLink Adapter Development Kit User Guide

Configuring the Sample E-Mail Adapter

To configure the Sample E-Mail Adapter:

1. Edit SETADK.BAT for NT or SETADK.SCR for Unix to reflect your environment.

Note: For NT, Tuxedo sets TUXDIR and adds TUXDIR\bin to the PATH environment
variable. For Unix, Tuxedo generates a TUX.ENV file that sets these variables
for you. You need to set the INCLUDE, LIB, APPDIR, ADKDIR,
ADK_MACHINE, and TUXCONFIG variables on both NT and UNIX, and the
SHLIB_PATH on HP-UX, LIBPATH on AIX, and LD_LIBRARY_PATH
on all other UNIX platforms.

2. Execute SETADK.BAT for NT or SETADK.SCR for Unix to complete the
installation.

Building and Running the Sample E-Mail Adapter

At this point, you are ready to build and run the sample E-Mail Adapter.

1. Build the client and server as appropriate for your operating system:

l For NT, execute MAKECLIENT.BAT and MAKESERVER.BAT.

l For Unix, enter make -f emaildemo.mak or execute MAKECLIENT.SCR and
MAKESERVER.SCR.

Note: The GNU Make Utility is used for the make function. Refer to Demo
Prerequisites for UNIX for more information about GNU Make.

These batch or script files invoke BUILDCLIENT and BUILDSERVER to build
EMAILCLIENT.EXE and EMAILSERVER.EXE. No changes should be required as
long as BUILDSERVER, BUILDCLIENT and your C compiler can be found.

Note: For NT, the default compiler is the MS VC++ command line compiler,
CL.EXE. While this compiler can be changed by setting the CC environment
variable, there is no guarantee that the .LIB files supplied with either Tuxedo
or the ADK will work with any other compiler.

The Sample E-Mail Adapter

BEA eLink Adapter Development Kit User Guide 5-9

2. Edit the EMAILDEMO.UBB file for NT or EMAILDEMOX.UBB file for Unix. The
APPDIR, TUXDIR and TUXCONFIG variables need to be set independently of
external variables. The machine ID field on NT (in this instance DALNT10)
should be entered in upper case.

Note: The EMAILSERVER.CFG file referenced by both UBB files need not be edited,
because it is installation independent.

3. Execute tmloadcf with the appropriate UBB file as an argument to convert the
UBB text file into a binary TUXCONFIG file.

4. Execute tmboot to load the EMAILSERVER application.

5. Run EMAILCLIENT with a variety of arguments to exercise the server.

6. Execute tmshutdown to shut down the EMAILSERVER application.

5 Configuring and Running the Sample Adapters

5-10 BEA eLink Adapter Development Kit User Guide

BEA eLink Adapter Development Kit User Guide A-1

APPENDIX

A eLink Adapter
Development Kit
References

This section discusses the following topics:

n Configuration Processing API

n Hash Table API

n Utility Functions and Macros

n Definitions and Typedefs

Configuration Processing API

This section provides detailed descriptions of the configuration processing API used
by the ADK listed in the order that the functions will most likely be used. Following
is an alphabetical list of the configuration processing API functions and a reference to
where details about the function can be found in this appendix.

Table A-1 Alphabetical Cross-Reference List of Configuration Processing API
Functions

A eLink Adapter Development Kit References

A-2 BEA eLink Adapter Development Kit User Guide

eLA_OpenTagFile

eLA_OpenTagFile opens a Tag file, reads the data into memory. Some preliminary
processing is performed, such as deleting leading and trailing white space, removing
blank lines, converting section names and tag data to uppercase and indexing the data.
Section names are always preceded by an asterisk (*). Tag data specifically refers to a
string that is to the left of an equal sign on a line. If a string is not preceded by an
asterisk or to the left of an equal sign on a line, then it will not be uppercased. Finally,

Refer to

eLA_CloseTagFile

eLA_CloseTagHandle

eLA_DestHashTable

eLA_get

eLA_GetFieldMap

eLA_GetFirstField

eLA_GetFirstProperty

 eLA_GetFirstSection

eLA_GetNextField

eLA_GetNextProperty

eLA_GetNextSection

eLA_GetPropertyValue

eLA_hash

eLA_InitHashTable

eLA_OpenTagFile

 eLA_put

Configuration Processing API

BEA eLink Adapter Development Kit User Guide A-3

the file is closed and a handle to the data is returned. This handle is used by the
eLA_GetFirstSection function and should be closed using eLA_CloseTagFile
when no longer needed. Multiline entries are allowed. If the last non white space
character on any line is a \, the next line will be concatenated to the current line. A
blank line will terminate the multiline entry.

Prototype ADK_CFG_HANDLE eLA_OpenTagFile(char * TagFileName)

where

TagFileName is the name of the Tag (or .INI) file.

Return

Example #include “adkfns.h”
...
ADK_CFG_HANDLE fHandle;
char FileName[256];
...
strcpy(FileName, “MYSAMPLE.INI”);
fHandle = eLA_OpenTagFile(FileName);
if(fHandle == ADK_INVALID_HANDLE_VALUE)
 printf(“Unable to process file %s\n”,FileName);
else
 printf(“File %s opened\n”, FileName);
...
eLA_CloseTagFile(fHandle);

eLA_CloseTagFile

eLA_CloseTagFile closes a handle returned by eLA_OpenTagFile and frees any
internally allocated resources. It can be called with an invalid handle.

Prototype int eLA_CloseTagFile(ADK_CFG_HANDLE TagFileHandle)

where

Return Description

ADK_INVALID_HANDLE_VALUE On any error, such as invalid file name, malloc
problems, etc.

Anything else Success

A eLink Adapter Development Kit References

A-4 BEA eLink Adapter Development Kit User Guide

TagFileHandle is the handle returned by eLA_OpenTagFile.

Return

Example #include “adkfns.h”
...
ADK_CFG_HANDLE fHandle;
...
fHandle = eLA_OpenTagFile(FileName);
...
eLA_CloseTagFile(fHandle);

eLA_CloseTagHandle

eLA_CloseTagHandle closes a handle returned by eLA_GetFirstSection and frees
any internally allocated resources. It also can be called with an invalid handle.

Prototype int eLA_CloseTagHandle(ADK_CFG_HANDLE GenericHandle)

where

GenericHandle is the handle returned by eLA_GetFirstSection .

Return

Example #include “adkfns.h”
...
ADK_CFG_HANDLE fHandle, sHandle;
 ...
fHandle = eLA_OpenTagFile(FileName);

Return Description

ADK_SUCCESS Success

Anything else Error

Return Description

ADK_SUCCESS Success.

Anything else Error.

Configuration Processing API

BEA eLink Adapter Development Kit User Guide A-5

...
if(fHandle != ADK_INVALID_HANDLE_VALUE)
 sHandle = eLA_GetFirstSection(fHandle, "SERVICE");
...
eLA_CloseTagFile(fHandle);
eLA_CloseTagHandle(sHandle);

eLA_GetFirstSection

eLA_GetFirstSection searches the INI file memory image for the desired sections
(all text matching done after conversion to upper case). These locations are indexed,
and a handle to this data is returned. This handle is used by the eLA_GetNextSection,
eLA_GetFirstProperty, eLA_GetNextProperty and eLA_GetPropertyValue. It
should be freed by eLA_CloseTagHandle when no longer needed.

Prototype ADK_CFG_HANDLE eLA_GetFirstSection(ADK_CFG_HANDLE TagFileHandle,
 char * SectionName)

where

TagFileHandle is the handle returned by eLA_OpenTagFile.

SectionName is the name of the section desired, excluding “*” (SectionName is
provided by the API). The text is converted to upper case before searching.

Return

Example #include “adkfns.h”
...
ADK_CFG_HANDLE fHandle, sHandle;
...
fHandle = eLA_OpenTagFile(FileName);
...
if(fHandle != ADK_INVALID_HANDLE_VALUE)
 sHandle = eLA_GetFirstSection(fHandle, "SERVICE");
...

Return Description

ADK_INVALID_HANDLE_VALUE On any error, such as invalid handle in argument,
malloc problems, or not finding section name.

Anything else Success

A eLink Adapter Development Kit References

A-6 BEA eLink Adapter Development Kit User Guide

eLA_CloseTagFile(fHandle);
eLA_CloseTagHandle(sHandle);

eLA_GetNextSection

eLA_GetNextSection updates the information in the section handle returned by
eLA_GetFirstSection and point to the next occurrence of the section in question.

Prototype int eLA_GetNextSection(ADK_CFG_HANDLE SectionHandle)

where

SectionHandle is the handle returned by eLA_GetFirstSection.

Return

Example #include “adkfns.h”
...
ADK_CFG_HANDLE fHandle, sHandle;
int rc;
...
fHandle = eLA_OpenTagFile(FileName);
...
if(fHandle != ADK_INVALID_HANDLE_VALUE)
 sHandle = eLA_GetFirstSection(fHandle, "SERVICE");
 if(sHandle != ADK_INVALID_HANDLE_VALUE)
 { rc = ADK_SUCCESS;
 while(rc == ADK_SUCCESS);
 { rc = eLA_GetNextSection(sHandle);
 ...
 }
 }
...
eLA_CloseTagFile(fHandle);
eLA_CloseTagHandle(sHandle);

Return Description

ADK_INVALID_HANDLE_VALUE Invalid handle in argument.

ADK_ERROR_LAST_SECTION No more sections.

ADK_SUCCESS Success

Configuration Processing API

BEA eLink Adapter Development Kit User Guide A-7

eLA_GetFirstProperty

eLA_GetFirstProperty retrieves the Tag/Value pair for the first property for a
particular section.

Prototype int eLA_GetFirstProperty(ADK_CFG_HANDLE SectionHandle,
 char * TagBuffer, size_t TagLength,
 char * ValueBuffer, size_t ValueLength);

where

SectionHandle is the handle returned by eLA_GetFirstSection.

TagBuffer is address of the tag data return buffer.

TagLength is the size of the tag data buffer (including NULL).

ValueBuffer is the address of the value data return buffer.

ValueLength is the size of the value data buffer (including NULL).

Return

Example #include “adkfns.h”
...
ADK_CFG_HANDLE fHandle, sHandle;
char tBuffer[100], vBuffer[100];
int rc, pc;
...
fHandle = eLA_OpenTagFile(FileName);
...
if(fHandle != ADK_INVALID_HANDLE_VALUE)
 sHandle = eLA_GetFirstSection(fHandle, "SERVICE");

Return Description

ADK_INVALID_HANDLE_VALUE Invalid handle in argument.

ADK_ERROR_NO_PROPERTIES No property lines for section.

ADK_ERROR_NO_VALUE No text following the = in the tag line.

ADK_ERROR_NO_TAG No text preceding the = in the tag line.

ADK_ERROR_BUFFER_OVERFLOWNot enough room for either tag or value data.

A eLink Adapter Development Kit References

A-8 BEA eLink Adapter Development Kit User Guide

 if(sHandle != ADK_INVALID_HANDLE_VALUE)
 { rc = ADK_SUCCESS;
 while(rc == ADK_SUCCESS);
 { pc = eLA_GetFirstProperty(sHandle, tBuffer,
 sizeof(tBuffer),vBuffer,sizeof(vBuffer);
 ...
 rc = eLA_GetNextSection(sHandle);
 ...
 }
 }
...
eLA_CloseTagFile(fHandle);
eLA_CloseTagHandle(sHandle);

eLA_GetNextProperty

eLA_GetNextProperty retrieves the Tag/Value pair for the second and successive
properties for a particular section.

Prototype int eLA_GetNextProperty(ADK_CFG_HANDLE SectionHandle,
 char * TagBuffer, size_t TagLength,
 char * ValueBuffer, size_t ValueLength);

where

SectionHandle is the handle returned by eLA_GetFirstSection.

TagBuffer is the address of the tag data return buffer.

TagLength is the size of the tag data buffer (including NULL).

ValueBuffer is the address of the value data return buffer.

ValueLength is the size of the value data buffer (including NULL).

Return

Return Description

ADK_INVALID_HANDLE_VALUE Invalid handle in argument.

ADK_ERROR_LAST_PROPERTY No more properties for this section.

ADK_ERROR_NO_VALUE No text following the = in the tag line.

Configuration Processing API

BEA eLink Adapter Development Kit User Guide A-9

Example #include “adkfns.h”
...
ADK_CFG_HANDLE fHandle, sHandle;
char tBuffer[100], vBuffer[100];
int rc, pc;
...
fHandle = eLA_OpenTagFile(FileName);
...
if(fHandle != ADK_INVALID_HANDLE_VALUE)
 sHandle = eLA_GetFirstSection(fHandle, "SERVICE");
 if(sHandle != ADK_INVALID_HANDLE_VALUE)
 { rc = ADK_SUCCESS;
 while(rc == ADK_SUCCESS);
 { pc = eLA_GetFirstProperty(sHandle, tBuffer,
 sizeof(tBuffer),vBuffer, sizeof(vBuffer);
 ...
 pc = eLA_GetNextProperty(sHandle, tBuffer,
 sizeof(tBuffer),vBuffer, sizeof(vBuffer);
 ...
 rc = eLA_GetNextSection(sHandle);
 ...
 }
 }
...
eLA_CloseTagFile(fHandle);
eLA_CloseTagHandle(sHandle);

eLA_GetPropertyValue

eLA_GetPropertyValue retrieves the Value data for the first occurrence of a particular
tag in a given section. Text fields are converted to upper case prior to searching.

Prototype int eLA_GetPropertyValue(ADK_CFG_HANDLE SectionHandle,
 char * TagName,char * ValueBuffer, size_t ValueLength);

where

ADK_ERROR_NO_TAG No text preceding the = in the tag line.

ADK_ERROR_BUFFER_OVERFLOWNot enough room for either tag or value data.

Return Description

A eLink Adapter Development Kit References

A-10 BEA eLink Adapter Development Kit User Guide

SectionHandle is the handle returned by eLA_GetFirstSection.

TagName is the tag to search for.

ValueBuffer is the address of the value data return buffer.

ValueLength is the size of the value data buffer (including NULL).

Return

Example #include “adkfns.h”
...
ADK_CFG_HANDLE fHandle, sHandle;
char tBuffer[100], vBuffer[100];
int rc, pc;
...
fHandle = eLA_OpenTagFile(FileName);
...
if(fHandle != ADK_INVALID_HANDLE_VALUE)
 sHandle = eLA_GetFirstSection(fHandle, "SERVICE");
 if(sHandle != ADK_INVALID_HANDLE_VALUE)
 { rc = ADK_SUCCESS;
 while(rc == ADK_SUCCESS);
 { pc = eLA_GetPropertyValue(sHandle, "NAME" vBuffer,
 sizeof(vBuffer);
 ...
 rc = eLA_GetNextSection(sHandle);
 ...
 }
 }
...
eLA_CloseTagFile(fHandle);
eLA_CloseTagHandle(sHandle);

Return Description

ADK_INVALID_HANDLE_VALUE Invalid handle in argument.

ADK_ERROR_PROPERTY_NOT_
FOUND

No tag matching input found.

ADK_ERROR_NO_VALUE No text following the = in the tag line.

ADK_ERROR_NO_TAG No text preceding the = in the tag line.

ADK_ERROR_BUFFER_OVERFLOWNot enough room for value data.

Configuration Processing API

BEA eLink Adapter Development Kit User Guide A-11

eLA_GetFieldMap

eLA_GetFieldMap searches the adapter specific configuration file memory image for
the named *FIELDMAP section. A handle to the data is returned, which is then used
by eLA_GetFirstField and eLA_GetNextField to retrieve each line in order. This
handle should be freed by eLA_CloseTagHandle when no longer needed. (This
function is somewhat analogous to eLA_GetFirstSection).

Prototype ADK_CFG_HANDLE eLA_GetFieldMap(ADK_CFG_HANDLE TagFileHandle
 char * FieldMapName)

where

TagFileHandle is the handle returned by eLA_OpenTagFile.

FieldMapName is the name of the Fieldmap desired.

Return

Example #include “adkfns.h”
#include “adktypes.h”
...
ADK_CFG_HANDLE fHandle, sHandle;
char FileName[256];
...
fHandle = eLA_OpenTagFile(FileName);
if(fHandle != ADK_INVALID_HANDLE_VALUE)
 sHandle = eLA_GetFieldMap(fHandle, "Map1");
...
eLA_CloseTagHandle(sHandle);
eLA_CloseTagFile(fHandle);

Return Description

ADK_INVALID_HANDLE_VALUE On any error, such as invalid handle in argument,
malloc problems, or not finding Fieldmap.

Anything else Success

A eLink Adapter Development Kit References

A-12 BEA eLink Adapter Development Kit User Guide

eLA_GetFirstField

eLA_GetFirstField retrieves the information for the first line in a fieldmap section.
This data is parsed into the appropriate structure members, up to the maximum field
widths, with no validity checking.

Prototype long eLA_GetFirstField(ADK_CFG_HANDLE MapHandle, FIELDMAP * FieldMap)

where

MapHandle is the handle returned by eLA_GetFieldMap.

FieldMap is a pointer to a FIELDMAP (typedef(d) struct).

Return

Example #include “adkfns.h”
#include “adktypes.h”
...
ADK_CFG_HANDLE fHandle, sHandle;
FIELDMAP FieldMap;
char FileName[256];
long rc;
...
fHandle = eLA_OpenTagFile(FileName);
if(fHandle != ADK_INVALID_HANDLE_VALUE)
 { sHandle = eLA_GetFieldMap(fHandle, “Map1”);
 if(sHandle != ADK_INVALID_HANDLE_VALUE)
 rc = eLA_GetFirstField(sHandle, &FieldMap);
 ...
 }
...
eLA_CloseTagHandle(sHandle);
eLA_CloseTagFile(fHandle);

Return Description

ADK_INVALID_HANDLE_VALUE Invalid handle in argument.

ADK_ERROR_NO_FIELDS No field lines for map.

Configuration Processing API

BEA eLink Adapter Development Kit User Guide A-13

eLA_GetNextField

eLA_GetNextField retrieves the information for successive lines in a fieldmap
section. This data is parsed into the appropriate structure members, up to the maximum
field widths, with no validity checking.

Prototype long eLA_GetNextField(ADK_CFG_HANDLE MapHandle, FIELDMAP * FieldMap)

where

MapHandle is the handle returned by eLA_GetFieldMap.

FieldMap is a pointer to a FIELDMAP (typedef(d) struct).

Return

Example #include “adkfns.h”
#include “adktypes.h”
...
ADK_CFG_HANDLE fHandle, sHandle;
FIELDMAP FieldMap;
char FileName[256];
long rc;
...
fHandle = eLA_OpenTagFile(FileName);
if(fHandle != ADK_INVALID_HANDLE_VALUE)
 { sHandle = eLA_GetFieldMap(fHandle, “Map1”);
 if(sHandle != ADK_INVALID_HANDLE_VALUE)
 { rc = eLA_GetFirstField(sHandle, &FieldMap);
 while(rc == ADK_SUCCESS)
 { ...
 rc = eLA_GetNextField(sHandle, &FieldMap);
 ...
 }
 }
 ...
 }
...

Return Description

ADK_INVALID_HANDLE_VALUE Invalid handle in argument.

ADK_ERROR_LAST_FIELD No more fields for map.

A eLink Adapter Development Kit References

A-14 BEA eLink Adapter Development Kit User Guide

eLA_CloseTagHandle(sHandle);
eLA_CloseTagFile(fHandle);

Hash Table API

Following are the hash table API functions used by the ADK.

eLA_InitHashTable

eLA_InitHashTable creates a hash table and returns a pointer to it. This table should
be free(d) when no longer needed by eLA_DestHashTable.

Prototype struct nlist * * eLA_InitHashtable(void);

Return

Example #include “adkfns.h”
...
struct nlist * * cb_hash;
...
cb_hash = eLA_InitHashtable();
if(cb_hash == NULL)
 printf(“unable to make hash\n”);
else
...
...
...
eLA_DestHashtable(cb_hash);

Return Description

NULL malloc error.

Anything else Table address.

Hash Table API

BEA eLink Adapter Development Kit User Guide A-15

eLA_DestHashTable

eLA_DestHashTable frees all of the dynamic memory in a hash table. It will behave
intelligently when fed a NULL pointer.

Prototype void eLA_DestHashtable(struct nlist * hashtable[])

Return No returns.

Example #include “adkfns.h”
...
struct nlist * * cb_hash;
...
cb_hash = eLA_InitHashtable();
...
...
...
eLA_DestHashtable(cb_hash);

 eLA_put

eLA_put adds a new element to the hash table. It signals an error when a duplicate key
is encountered.

Prototype struct nlist * eLA_put(struct nlist * hashtable[], char * key,
 void * data, size_t datalen)

Return

Example #include “adkfns.h”
...
struct nlist * * cb_hash, * element;
char data[81], key[81];
...
cb_hash = eLA_InitHashtable();
if(cb_hash == NULL)

Return Description

NULL Duplicate key or malloc error.

Anything else Pointer to element (success).

A eLink Adapter Development Kit References

A-16 BEA eLink Adapter Development Kit User Guide

 printf("unable to make hash\n");
else
 { strcpy(key, “passphrase”);
 strcpy(data, “Open Sesame”);
 element = eLA_put(cb_hash, key, data, 1 + strlen(data));
 if(element == NULL)
 printf(“unable to add element to hash table\n”);
 else
 ...
 }
...
...
eLA_DestHashtable(cb_hash);

eLA_get

eLA_get retrieves an element from the hash table. Note that a pointer to the element
is returned - you must extract the data explicitly.

Prototype struct nlist * eLA_get(struct nlist * hashtable[], char * key)

Return

Example #include “adkfns.h”
...
struct nlist * * cb_hash, * element;
char data[81], key[81];
...
cb_hash = eLA_InitHashtable();
if(cb_hash == NULL)
 printf(“unable to make hash\n”);
else
 { strcpy(key, “passphrase”);
 strcpy(data, “Open Sesame”);
 element = eLA_put(cb_hash, key, data, 1 + strlen(data));
 if(element == NULL)
 printf(“unable to add element to hash table\n”);
 else

Return Description

NULL Key not found.

Anything else Pointer to element (success).

Hash Table API

BEA eLink Adapter Development Kit User Guide A-17

 ...
 }

strcpy(key, “passphrase”);
element = eLA_get(cb_hash, key);
if(element == NULL)
 printf(“unable to fetch element from hash table\n”);
else
 ...
 ...
...
eLA_DestHashtable(cb_hash);

eLA_hash

Returns the hash value for a given key.

Prototype unsigned int eLA_hash (char * key)

Return

Example #include “adkfns.h”
...
unsigned int cbhash;
char key[81];
...
strcpy(key, “corned beef”);
cbhash = eLA_hash(key);
printf(“hash value for key = %s is %d\n”, key, cbhash);
...
...

Return Description

Any value Hash value for key.

A eLink Adapter Development Kit References

A-18 BEA eLink Adapter Development Kit User Guide

Utility Functions and Macros

Following are the utility functions and macros used by the ADK.

eLA_catentry

eLA_catentry retrieves a specified error message from a message catalog file using
the handle returned by eLA_OpenCatalogFile.

Prototype char * eLA_catentry(char * msgbuffer, size_t bufferlen,
 ADK_CAT_HANDLE chandle, int msgnumber)

where

msgbuffer is the caller supplied buffer. This is filled to a maximum of bufferlen -1
chars with the message requested.

bufferlen is the size of the buffer.

chandle is the ADK_CAT_HANDLE returned by eLA_OpenCatalogFile.

msgnumber is the ID of the message desired.

Return A message buffer is ALWAYS returned. This buffer may contain the following text

Example #include adkfns.h
#include adktypes.h
...
ADK_CAT_HANDLE rHandle;
char catFileName[MAX_FNAME];
char msgbuffer[1024];
...
strcpy(catFileName, “c:\\tuxedo\elink\catalogs\ouradapter.text”

Return Description

Invalid ADK_CAT_HANDLE An invalid handle was passed.

Message xxx not found Message ID xxx not found in file.

Utility Functions and Macros

BEA eLink Adapter Development Kit User Guide A-19

rHandle = eLA_OpenCatalogFile(catFileName);
...
eLA_log(eLA_catentry(msgbuffer, sizeof(msgbuffer), rHandle, 121);
...
eLA_CloseCatalogFile(rHandle);

eLA_chkeLinkLic

eLA_chkeLinkLic checks for a valid, current ’eLink Platform’ section within the
Tuxedo License File (TUXDIR/udataobj/lic.txt), in addition to checking the
adapter_section specified in the argument to the function. Version numbers in the
License File >= function argument are acceptable. eLA_chkeLinkLic can be used to
verify the platform license only by passing a NULL in the adapter_section parameter.

Prototype int eLA_chkeLinkLic(const char * adapter_section, const char
 * current_version)

Return

Example #include “adkfns.h”
...
int rc;
char Section[81], Version[81];
strcpy(Section, “eLink Adapter for PeopleSoft”);
strcpy(Version, “1.1”);
rc = eLA_chkeLinkLic(Section, Version);
printf(“eLinkLicense test, (v%s) - rc = %d\n”, Version, rc);
...

eLA_CloseCatalogFile

eLA_CloseCatalogFile closes a handle returned by eLA_OpenCatalogFile and
frees any internally allocated resources. It can be called with an invalid handle.

Return Description

-1 Invalid (missing, expired, etc.) license. (Details in
userlog()).

0 Success

A eLink Adapter Development Kit References

A-20 BEA eLink Adapter Development Kit User Guide

Prototype int eLA_CloseCatalogFile(ADK_CAT_HANDLE CatFileHandle)

where

CatFileHandle is the handle returned by eLA_OpenCatalogFile.

Return

Example #include adkfns.h
#include adktypes.h
...
ADK_CAT_HANDLE rHandle;
char catFileName[MAX_FNAME];
...
strcpy(catFileName, “c:\\tuxedo\elink\catalogs\tuxnt.text”
rHandle = eLA_OpenCatalogFile(catFileName);
...
eLA_CloseCatalogFile(rHandle);

eLA_GetConfigFileName

eLA_GetConfigFileName extracts the server configuration file name from the
command line arguments passed to tpsvrinit() by Tuxedo.

Prototype int eLA_GetConfigFileName(char * FileNameBuffer, size_t
 BufferSize,int argc, char * argv[])

where

FileNameBuffer is the caller-supplied buffer to receive the file name.

BufferSize is the length of the buffer.

argc, argv argc, is the argv as passed to tpsvrinit() by Tuxedo.

Return Description

ADK_SUCCESS Success

Anything else Error

Utility Functions and Macros

BEA eLink Adapter Development Kit User Guide A-21

Return

Example char configFileName[MAX_FNAME];
...
rc = eLA_GetConfigFileName(configFileName, MAX_FNAME, argc, argv);
printf(“eLA_GetConfigFileName - rc = %d\n”, rc);
if(rc == -1)
 printf(“Buffer not large enough\n”);
else if(rc == 0)
 printf(“File Name parameter not found\n”);
else
 printf(“File Name = %s\n”, configFileName);

eLA_hexdump

eLA_hexdump prints (to ULOG) data in the format given below, starting with the input
address and continuing for maxchars bytes. If offlag = =
ELA_HEX_ADDRESS_OFFSET, the offset from starting address is printed,
otherwise the absolute address is printed.

Prototype void eLA_hexdump(void * char_buffer, size_t maxchars, int offlag)

Example of
Output

0012FB38 ff ff ff ff 54 fb 12 00 f1 85 f8 77 18 07 14 00 Tû..ñ..w....
0012FB48 74 0f 14 00 dc 05 14 00 09 00 00 00 00 00 00 00 t...Ü...........
0012FB58 09 00 00 00 b0 2b 00 10 50 0f 14 00 cc 05 14 01 °+..P.......
0012FB68 7d 1e f6 77 68 }..wh

Return Description

-1 Buffer not large enough.

0 File Name parameter NOT found.

>0 Number of characters returned, including NULL.

A eLink Adapter Development Kit References

A-22 BEA eLink Adapter Development Kit User Guide

eLA_log

eLA_log currently is a cover function for userlog(). It is intended that this function will
be extended to handle message catalogs in the near future.

Prototype void eLA_log(char *userText, ...)

Return None

Example #include “adkfns.h”
...
eLA_log(“Required parameter -C missing”);
...

eLA_OpenCatalogFile

eLA_OpenCatalogFile opens a message catalog file (in text form), reads the
information into memory, does some preliminary processing (for example, removes
double quotes) and indexes the file. The file is closed and a handle to the data is
returned. This handle is used by the eLA_catentry function and should be closed
using eLA_CloseCatalogFile when no longer needed.

Prototype ADK_CAT_HANDLE eLA_OpenCatalogFile(char * CatFileName)

where

CatFileName is the FULLY QUALIFIED file name for the message catalog.

Return

Example #include adkfns.h
#include adktypes.h
...
ADK_CAT_HANDLE rHandle;

Return Description

ADK_INVALID_HANDLE_VA
LUE

On any error, such as invalid handle in argument,
malloc problems, or not finding Fieldmap.

Anything else Success

Utility Functions and Macros

BEA eLink Adapter Development Kit User Guide A-23

char catFileName[MAX_FNAME];
...
strcpy(catFileName, “c:\\tuxedo\elink\catalogs\tuxnt.text”
rHandle = eLA_OpenCatalogFile(catFileName);
...
eLA_CloseCatalogFile(rHandle);

eLA_SetServerMsgLevel

eLA_SetServerMsgLevel extracts the min and max message levels from the values
for the MINMSGLEVEL and MAXMSGLEVEL tags in the SERVER section of the
configuration file.

Prototype int eLA_SetServerMsgLevel(char * Filename, MSG_LEVEL * msglevels)

where

Filename is the configuration file name.

msglevels is the MSG_LEVEL struct to receive level data.

Return

Example MSG_LEVEL zLevel = {0,0};
char configFileName[MAX_FNAME];
...
rc = eLA_GetConfigFileName(configFileName, MAX_FNAME, argc, argv);
if(rc == ADK_SUCCESS)
 { rc = eLA_SetServerMsgLevel(configFileName, &zLevel);
 printf(“SetServerMsgLevel - rc = %d\n”,rc);
 if(rc == ADK_SUCCESS)

Return Description

ADK_SUCCESS Found and extracted both values

ADK_ERROR_SECTION_NOT_
FOUND

SERVER section not found.

ADK_ERROR_PROPERTY_NOT_
FOUND

One or both levels not found.

ADK_ERROR_OPEN_READ Unable to read file.

A eLink Adapter Development Kit References

A-24 BEA eLink Adapter Development Kit User Guide

 printf(“min, max = %d, %d\n”, zLevel.minMsgLevel,
 zLevel.maxMsgLevel);
 }

...

ELACATENTRY

ELACATENTRY is a cover macro for the eLA_catentry function.

Definition #define ELACATENTRY(u,v,x,y) eLA_catentry((u),(v),(x),(y))

Example ...
char cat_buffer[ELA_MAX_ERROR_MESSAGE];
 size_t cat_len;
...
cat_len = sizeof(cat_buffer);
 strcpy(catFileName, “c:\\tuxedo\elink\catalogs\ouradapter.text”
 rHandle = eLA_OpenCatalogFile(catFileName);

...
eLA_log(ELACATENTRY(cat_buffer, cat_len, rHandle, 2221));

ELAIFTRACE

ELAIFTRACE calls a bracketed {} set of code if LVL falls within a range defined by
minMsgLevel and maxMsgLevel of the given MSG_LEVEL structure VAR.

Definition #define ELAIFTRACE(VAR,LVL) if(((LVL) >= (VAR).minMsgLevel)
 && \((LVL)<= (VAR).maxMsgLevel

Example ELAIFTRACE can be used to invoke the eLA_hexdump program:

...
MSG_LEVEL zLevel = {0,0};
 char configFileName[256];
 ...
 eLA_SetServerMsgLevel(configFileName, &zLevel);
...
ELAIFTRACE(zLevel, 3){ eLA_hexdump(buffer, sizeof(buffer), 1);}

Definitions and Typedefs

BEA eLink Adapter Development Kit User Guide A-25

ELATRACE

ELATRACE calls eLA_log with ARGS if LVL falls within a range defined by
minMsgLevel and maxMsgLevel of the given MSG_LEVEL structure VAR.

Definition #define ELATRACE(VAR, LVL, ARGS) if(((LVL) >= (VAR).minMsgLevel)
 && \ ((LVL) <= (VAR).maxMsgLevel)

Example ...
MSG_LEVEL zLevel = {0,0};
 char cat_buffer[ELA_MAX_ERROR_MESSAGE];
 size_t cat_len;
...
cat_len = sizeof(cat_buffer);
...
eLA_SetServerMsgLevel(configFileName, &zLevel);
strcpy(catFileName, “c:\\tuxedo\elink\catalogs\ouradapter.text”
rHandle = eLA_OpenCatalogFile(catFileName);
...
ELATRACE(zLevel, 3, (ELACATENTRY(cat_buffer, cat_len, rHandle,
 1221)));

Definitions and Typedefs

The following typedef and definitions are used by the configuration file processing
functions:

typedef int ADK_CFG_Handle

Function Typedef

#define ADK_INVALID_HANDLE_VALUE -1

#define ADK_SUCCESS 0

#define ADK_ERROR_LAST_SECTION 1

#define ADK_ERROR_NO_PROPERTIES 2

#define ADK_ERROR_LAST_PROPERTY 3

A eLink Adapter Development Kit References

A-26 BEA eLink Adapter Development Kit User Guide

The following definitions are used by the eLA_GetConfigFileName and
eLA_SetServerMsgLevel utility functions:

The following definition is used by the hash table functions:

struct nlist

{
 struct nlist *next; /* next element in the linked list */
 char *key; /* String that is hashed */
 void *data; /* Data stored in hash table */
};

The following definitions are used by the and eLA_SetServerMsgLevel,
eLA_hexdump and other utility functions, and the tracing macros:

typedef struct

#define ADK_ERROR_NO_TAG 4

#define ADK_ERROR_NO_VALUE 5

#define ADK_ERROR_BUFFER_OVERFLOW 6

#define ADK_ERROR_PROPERTY_NOT_FOUND 7

#define ADK_ERROR_SECTION_NOT_FOUND 8

#define ADK_INVALID_HANDLE_VALUE -1

#define ADK_SUCCESS 0

Function Typedef

#define ADK_ERROR_FILE_NOT_FOUND 21

#define ADK_ERROR_OPEN_READ 22

#define ADK_ERROR_OPEN_WRITE 23

#define ADK_ERROR_ON_READ 24

#define ADK_ERROR_ON_WRITE 25

Function Typedef

Definitions and Typedefs

BEA eLink Adapter Development Kit User Guide A-27

 { int minMsgLevel;
 int maxMsgLevel;
 } MSG_LEVEL;
#define ELA_MAX_ERROR_MESSAGE 1024
#define ELA_HEX_ADDRESS_ABSOLUTE 0x00000000
#define ELA_HEX_ADDRESS_OFFSET 0x00000001

The following typedef is used by the message catalogue functions:

typedef long ADK_CAT_HANDLE;

The following #define(s) and typedef(s) are used in the ADK functions to support
FML32 Field Maps in the configuration files:

typedef struct
 { char ApplicationName[FM_AN_MAX];
 char FML32FieldName[FM_FN_MAX];
 char InputOutput[FM_IO_MAX];
 char FieldDesignator[FM_FD_MAX];
 } FIELDMAP;

#define ADK_ERROR_NO_FIELDS 8

#define ADK_ERROR_LAST_FIELD 9

#define FM_AN_MAX 256

#define FM_FN_MAX 32

#define FM_IO_MAX 16

#define FM_FD_MAX 16

A eLink Adapter Development Kit References

A-28 BEA eLink Adapter Development Kit User Guide

BEA eLink Adapter Development Kit User Guide B-1

APPENDIX

B ATMI References

The information included in this section is excerpted from the Tuxedo Online
Documentation. These are some of the most commonly used Tuxedo ATMI functions
used for adapter development. For additional details and a complete list of Tuxedo
functions and commands, see http://edocs.beasys.com/tuxedo/tux65/index.htm.

Following is an alphabetical list of the the functions described in this section.

Refer to

tpacall

tpadvertise

tpalloc

tpcall

tpcancel

tpfree

tpgetrply

tpinit

tprealloc

tpreturn

tpsvrdone

tpsvrinit

tpterm

http://edocs.beasys.com/tuxedo/tux65/index.htm

B ATMI References

B-2 BEA eLink Adapter Development Kit User Guide

Client Membership

tpinit

Function Routine for joining an application

Synopsis #include <atmi.h>
int tpinit(TPINIT *tpinfo)

Description tpinit() allows a client to join a BEA Tuxedo system application. Before a client
can use any of the BEA Tuxedo system communication or transaction routines, it must
first join a BEA Tuxedo system application. Because calling tpinit() is optional, a
client may also join an application by calling many ATMI routines (for example,
tpcall) that transparently call tpinit() with tpinfo set to NULL. A client may want
to call tpinit() directly so that it can set the parameters described below. In addition,
tpinit() must be used when application authentication is required (see the
description of the SECURITY keyword in ubbconfig), or when the application wishes
to supply its own buffer type switch (see typesw). After tpinit() successfully
returns, the client can initiate service requests and define transactions. If tpinit() is
called more than once (that is, after the client has already joined the application), no
action is taken and success is returned.

tpinit()’s argument, tpinfo, is a pointer to a typed buffer of type TPINIT and a
NULL sub-type.

TPINIT is a buffer type that is typedefed in the atmi.h header file. The buffer must
be allocated via tpalloc() prior to calling tpinit. The buffer should be freed using
tpfree(3) after calling tpinit(). The TPINIT typed buffer structure includes the
following members:

tptypes

tpunadvertise

Refer to

Client Membership

BEA eLink Adapter Development Kit User Guide B-3

char usrname[MAXTIDENT+2];
char cltname[MAXTIDENT+2];
char passwd[MAXTIDENT+2];
char grpname[MAXTIDENT+2];
long flags;
long datalen;
long data;

usrname, cltname, grpname and passwd are all NULL-terminated strings. usrname
is a name representing the caller. cltname is a client name whose semantics are
application defined. The value, sysclient, is reserved by the system for the cltname
field. The usrname and cltname fields are associated with the client at tpinit() time
and are used for both broadcast notification and administrative statistics retrieval. They
should not have more characters than MAXTIDENT, which is defined as 30. passwd is
an application password in unencrypted format that is used for validation against the
application password. The passwd is limited to 30 characters. grpname is used to
associate the client with a resource manager group name. If grpname is set to a 0-
length string, then the client is not associated with a resource manager and is in the
default client group. The value of grpname must be the null string (0-length string) for
/WS clients. Note that grpname is not related to ACL GROUPS. The setting of flags is
used to indicate both the client-specific notification mechanism and the mode of
system access. These settings may override the application default; however, in the
event that they cannot, tpinit() prints a warning in a log file, ignores the setting and
returns the application default setting in the flags element upon return from tpinit().
For client notification, the possible values for flags are as follows:

TPU_SIG-Select unsolicited notification by signals.

TPU_DIP-Select unsolicited notification by dip-in.

TPU_IGN-ignore unsolicited notification.

Only one of the above flags can be used at a time. If the client does not select a
notification method via the flags field, then the application default method will be set
in the flags field upon return from tpinit(). For setting the mode of system access,
the possible values for flags are as follows:

TPSA_FASTPATH-Set system access to fastpath.

TPSA_PROTECTED-Set system access to protected.

Only one of the above flags can be used at a time. If the client does not select a
notification method or a system access mode via the flags field, then the application
default method(s) will be set in the flags field upon return from tpinit(). See

B ATMI References

B-4 BEA eLink Adapter Development Kit User Guide

ubbconfig for details on both client notification methods and system access modes.
datalen is the length of the application specific data that follows. The buffer type
switch entry for the TPINIT typed buffer sets this field based on the total size passed
in for the typed buffer (the application data size is the total size less the size of the
TPINIT structure itself plus the size of the data placeholder as defined in the structure).
data is a place holder for variable length data that is forwarded to an application-
defined authentication service. It is always the last element of this structure. A macro,
TPINITNEED, is available to determine the size TPINIT buffer necessary to
accommodate a particular desired application-specific data length. For example, if 8
bytes of application specific data are desired, TPINITNEED will return the required
TPINIT buffer size. A NULL value for tpinfo is allowed for applications not making
use of the authentication feature of the BEA Tuxedo system. Clients using a NULL
argument will get defaults of 0-length strings for usrname, cltname, and passwd, no
flags set, and no application data.

Return Values tpinit() returns -1 on error and sets tperrno to indicate the error condition.

Errors Under the following conditions, tpinit() fails and sets tperrno to:

[TPEINVAL]
Invalid arguments were specified. tpinfo is non-NULL and does not point
to a typed buffer of type TPINIT.

[TPENOENT]
The client cannot join the application because of space limitations.

[TPEPERM]
The client cannot join the application because it does not have permission to
do so or because it has not supplied the correct application password.
Permission may be denied based on an invalid application password, failure
to pass application specific authentication, or use of restricted names.

[TPEPROTO]
tpinit() was called in an improper context (for example, the caller is a
server).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS]
An operating system error has occurred.

Buffer Management

BEA eLink Adapter Development Kit User Guide B-5

tpterm

Function Routine for leaving an application

Synopsis #include <atmi.h>
int tpterm(void)

Description tpterm() removes a client from a BEA Tuxedo system application. If the client is in
transaction mode, thenthe transaction is rolled back. When tpterm() returns
successfully, the caller can no longer communicate with any other program nor can it
participate in any transactions. Any outstanding conversations are immediately
disconnected. If tpterm() is called more than once (that is, after the caller has already
left the application), no action is taken and success is returned.

Return Values tpterm() returns \-1 on error and sets tperrno to indicate the error condition.

Errors Under the following conditions, tpterm() fails and sets tperrno to:

[TPEPROTO]
tpterm() was called in an improper context (for example, the caller is a
server).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS]
An operating system error has occurred.

Buffer Management

tpalloc

Function Routine for allocating typed buffers

B ATMI References

B-6 BEA eLink Adapter Development Kit User Guide

Synopsis #include <atmi.h>
char * tpalloc(char *type, char *subtype, long size)

Description tpalloc() returns a pointer to a buffer of type type. Depending on the type of buffer,
both subtype and size are optional. The BEA Tuxedo system provides a variety of
typed buffers, and applications are free to add their own buffer types. Consult
tuxtypes for more details. If subtype is non-NULL in tmtype_sw for a particular
buffer type, then subtype must be specified when tpalloc() is called. The allocated
buffer will be at least as large as the larger of size and dfltsize, where dfltsize
is the default buffer size specified in tmtype_sw for the particular buffer type. For
buffer type STRING the minimum is 512 bytes; for buffer types FML and VIEW the
minimum is 1024 bytes. Note that only the first eight bytes of type and the first 16
bytes of subtype are significant. Because some buffer types require initialization
before they can be used, tpalloc() initializes a buffer (in a BEA Tuxedo system-
specific manner) after it is allocated and before it is returned. Thus, the buffer returned
to the caller is ready for use. Note that unless the initialization routine cleared the
buffer, the buffer is not initialized to zeros by tpalloc().

Return Values Upon successful completion, tpalloc() returns a pointer to a buffer of the
appropriate type aligned on a long word; otherwise, it returns NULL and sets tperrno
to indicate the condition.

Errors Under the following conditions, tpalloc() fails and sets tperrno to:

[TPEINVAL]
Invalid arguments were given (for example, type is NULL).

[TPENOENT]
No entry in tmtype_sw matches type and, if non-NULL, subtype.

[TPEPROTO]
tpalloc() was called in an improper context.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS]
An operating system error has occurred.

Buffer Management

BEA eLink Adapter Development Kit User Guide B-7

Usage If buffer initialization fails, the allocated buffer is freed and tpalloc() fails returning
NULL. This function should not be used in concert with malloc, realloc, or free in
the C library (for example, a buffer allocated with tpalloc() should not be freed with
free()). Two buffer types are supported by any compliant implementation of the
BEA Tuxedo system extension.

tprealloc

Function Routine to change the size of a typed buffer

Synopsis #include <atmi.h>
char * tprealloc(char *ptr, long size)

Description tprealloc() changes the size of the buffer pointed to by ptr to size bytes and returns
a pointer to the new (possibly moved) buffer. Similar to tpalloc, the size of the buffer
will be at least as large as the larger of size and dfltsize, where dfltsize is the
default buffer size specified in tmtype_sw. If the larger of the two is less than or equal
to zero, then the buffer is unchanged and NULL is returned. A buffer’s type remains the
same after it is re-allocated. After this function returns successfully, the returned
pointer should be used to reference the buffer; ptr should no longer be used. The
buffer’s contents will not change up to the lesser of the new and old sizes. Some buffer
types require initialization before they can be used. tprealloc() re-initializes a
buffer (in a communication manager-specific manner) after it is re-allocated and
before it is returned. Thus, the buffer returned to the caller is ready for use.

Return Values Upon successful completion, tprealloc() returns a pointer to a buffer of the
appropriate type aligned on a long word; otherwise it returns NULL and sets tperrno
to indicate the error condition.

Errors If the re-initialization function fails, tprealloc() fails returning NULL and the
contents of the buffer pointed to by ptr may not be valid. Under the following
conditions, tprealloc() fails and sets tperrno to:

[TPEINVAL]
Invalid arguments were given (for example, ptr does not point to a buffer
originally allocated by tpalloc).

[TPEPROTO]
tprealloc() was called in an improper context.

B ATMI References

B-8 BEA eLink Adapter Development Kit User Guide

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS]

An operating system error has occurred.

Usage If buffer re-initialization fails, tprealloc() fails returning NULL and the contents of
the buffer pointed to by ptr may not be valid. This function should not be used in
concert with malloc, realloc or free in the C library (for example, a buffer allocated
with tprealloc() should not be freed with free()).

tpfree

Function Routine for freeing a typed buffer

Synopsis #include <atmi.h>
void tpfree(char *ptr)

Description The argument to tpfree() is a pointer to a buffer previously obtained by either
tpalloc or tprealloc. If ptr is NULL, no action occurs. Undefined results will occur
if ptr does not point to a typed buffer (or if it points to space previously freed with
tpfree()). Inside service routines, tpfree() returns and does not free the buffer if
ptr points to the buffer passed into a service routine. Some buffer types require state
information or associated data to be removed as part of freeing a buffer. tpfree()
removes any of these associations (in a communication manager-specific manner)
before a buffer is freed. Once tpfree() returns, ptr should not be passed as an
argument to any BEA Tuxedo system routine or used in any other manner.

Return Values tpfree() does not return any value to its caller. Thus, it is declared as a void.

Usage This function should not be used in concert with malloc, realloc or free in the C
library (for example, a buffer allocated with tpalloc should not be freed with free).

tptypes

Function Routine to determine information about a typed buffer

Request/Response

BEA eLink Adapter Development Kit User Guide B-9

Synopsis #include <atmi.h>
long tptypes(char *ptr, char *type, char *subtype)

Description tptypes() takes as its first argument a pointer to a data buffer and returns the type
and subtype of that buffer in its second and third arguments, respectively. ptr must
point to a buffer gotten from tpalloc. If type and subtype are non-NULL, then the
function populates the character arrays to which they point with the names of the
buffer’s type and subtype, respectively. If the names are of their maximum length (8
for type, 16 for subtype), the character array is not null-terminated. If no subtype
exists, then the array pointed to by subtype will contain a NULL string. Note that
only the first eight bytes of type and the first 16 bytes of subtype are populated.

Return Values Upon success, tptypes() returns the size of the buffer; otherwise it returns \-1
upon failure and sets tperrno to indicate the error condition.

Errors Under the following conditions, tptypes() fails and sets tperrno to:

[TPEINVAL]
Invalid arguments were given (for example, ptr does not point to a buffer
gotten from \% tpalloc).

[TPEPROTO]
tptypes() was called in an improper context.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS]
An operating system error has occurred.

Request/Response

tpcall

Function Routine for sending service request and awaiting its reply

Synopsis int tpcall(char *svc, char *idata, long ilen, char **odata, long
*olen, long flags

B ATMI References

B-10 BEA eLink Adapter Development Kit User Guide

Description tpcall sends a request and synchronously awaits its reply. A call to this function is
the same as calling tpacall immediately followed by tpgetrply. tpcall sends a
request to the service named by svc. The request is sent out at the priority defined for
svc unless overridden by a previous call to tpsprio. The data portion of a request is
pointed to by idata, a buffer previously allocated by tpalloc. ilen specifies how
much of idata to send. Note that if idata points to a buffer of a type that does not
require a length to be specified, (for example, an FML fielded buffer), then ilen is
ignored (and may be 0). Also, idata may be NULL, in which case ilen is ignored.
The type and sub-type of idata must match one of the types and sub-types
recognized by svc. odata is the address of a pointer to the buffer where a reply is read
into, and olen points to the length of that reply. *odata must point to a buffer
originally allocated by tpalloc. If the same buffer is to be used for both sending and
receiving, odata should be set to the address of idata. FML and FML32 buffers often
assume a minimum size of 4096 bytes; if the reply is larger than 4096, the size of the
buffer is increased to a size large enough to accommodate the data being returned.
Also, if idata and *odata were equal when tpcall was invoked, and *odata is
changed, then idata no longer points to a valid address. Using the old address can lead
to data corruption or process exceptions. Buffers on the sending side that may be only
partially filled (for example, FML or STRING buffers) will have only the amount that
is used sent. The system may then enlarge the received data size by some arbitrary
amount. This means that the receiver may receive a buffer that is smaller than what was
originally allocated by the sender, yet larger than the data that was sent. The receive
buffer may grow, or it may shrink, and its address almost invariably changes, as the
system swaps buffers around internally. To determine whether (and how much) a reply
buffer changed in size, compare its total size before tpgetrply was issued with *len.
If *olen is 0 upon return, then the reply has no data portion and neither *odata nor
the buffer it points to were modified. It is an error for *odata or olen to be NULL.

Following is a list of valid flags.

TPNOTRAN
If the caller is in transaction mode and this flag is set, then when svc is
invoked, it is not performed on behalf of the caller’s transaction. Note that svc
may still be invoked in transaction mode but it will not be the same
transaction: a svc may have as a configuration attribute that it is
automatically invoked in transaction mode. A caller in transaction mode that
sets this flag is still subject to the transaction timeout (and no other). If a
service fails that was invoked with this flag, the caller’s transaction is not
affected.

Request/Response

BEA eLink Adapter Development Kit User Guide B-11

TPNOCHANGE
By default, if a buffer is received that differs in type from the buffer pointed
to by *odata, then *odata’s buffer type changes to the received buffer’s
type so long as the receiver recognizes the incoming buffer type. When this
flag is set, the type of the buffer pointed to by *odata is not allowed to
change. That is, the type and sub-type of the received buffer must match
the type and sub-type of the buffer pointed to by *odata.

TPNOBLOCK

The request is not sent if a blocking condition exists (for example, the internal
buffers into which the message is transferred are full). Note that this flag
applies only to the send portion of tpcall: the function may block waiting
for the reply. When TPNOBLOCK is not specified and a blocking condition
exists, the caller blocks until the condition subsides or a timeout occurs (either
transaction or blocking timeout).

TPNOTIME

This flag signifies that the caller is willing to block indefinitely and wants to
be immune to blocking timeouts. However, if the caller is in transaction
mode, this flag has no effect; it is subject to the transaction timeout limit.
Transaction timeouts may still occur.

TPSIGRSTRT

If a signal interrupts any underlying system calls, then the interrupted system
call is re-issued.

Return Values Upon successful return from tpcall or upon return where tperrno is set to
TPESVCFAIL, tpurcode contains an application-defined value that was sent as part of
tpreturn. tpcall returns -1 on error and sets tperrno to indicate the error
condition. If a call fails with a particular tperrno value, a subsequent call to
tperrordetail with no intermediate ATMI calls, may provide more detailed
information about the generated error. Refer to the tperrordetail reference page for
more information.

Errors Under the following conditions, tpcall fails and sets tperrno to one of the following
values. (Unless otherwise noted, failure does not affect the caller’s transaction, if one
exists.)

[TPEINVAL]
Invalid arguments were given (for example, svc is NULL or flags are
invalid).

B ATMI References

B-12 BEA eLink Adapter Development Kit User Guide

[TPENOENT]

Can not send to svc because it does not exist, or it is a conversational service,
or the name provided begins with a dot (.).

[TPEITYPE]

The type and sub-type of idata is not one of the allowed types and sub-
types that svc accepts.

[TPEOTYPE]

Either the type and sub-type of the reply are not known to the caller; or,
TPNOCHANGE was set inflags and the type and sub-type of *odata do not
match the type and sub-type of the reply sent by the service. Neither
*odata, its contents, nor *olen is changed. If the service request was made
on behalf of the caller’s current transaction, then the transaction is marked
abort-only since the reply is discarded.

[TPETRAN]

svc belongs to a server that does not support transactions and TPNOTRAN was
not set.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neither TPNOBLOCK nor TPNOTIME was
specified. In either case, neither *odata, its contents, nor *olen is changed.
If a transaction timeout occurred, then with one exception, any attempts to
send new requests or receive outstanding replies will fail with TPETIME until
the transaction has been aborted. The exception is a request that does not
block, expects no reply, and is not sent on behalf of the caller’s transaction
(that is, tpacall with TPNOTRAN, TPNOBLOCK, and TPNOREPLY set).

[TPESVCFAIL]
The service routine sending the caller’s reply called tpreturn with TPFAIL.
This is an application-level failure. The contents of the service’s reply, if one
was sent, is available in the buffer pointed to by *odata. If the service
request was made on behalf of the caller’s current transaction, then the
transaction is marked abort-only. Note that so long as the transaction has not
timed out, further communication may be performed before aborting the
transaction and that any work performed on behalf of the caller’s transaction
will be aborted upon transaction completion (that is, for subsequent
communication to have any lasting effect, it should be done with TPNOTRAN
set).

Request/Response

BEA eLink Adapter Development Kit User Guide B-13

[TPESVCERR]

A service routine encountered an error either in tpreturn or tpforward (for
example, bad arguments were passed). No reply data is returned when this
error occurs (that is, neither *odata, its contents, nor *olen is changed). If
the service request was made on behalf of the caller’s transaction (that is,
TPNOTRAN was not set), then the transaction is marked abort-only. Note that
so long as the transaction has not timed out, further communication may be
performed before aborting the transaction and that any work performed on
behalf of the caller’s transaction will be aborted upon transaction completion
(that is, for subsequent communication to have any lasting effect, it should be
done with TPNOTRAN set). If either SVCTIMEOUT in the ubbconfig file or
TA_SVCTIMEOUT in the TM_MIB is non-zero, TPESVCERR is returned when a
service timeout occurs.

[TPEBLOCK]

A blocking condition was found on the send call and TPNOBLOCK was
specified.

[TPGOTSIG]

A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpcall was called in an improper context.

[TPESYSTEM]

A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS]

An operating system error has occurred. If a message queue on a remote
location is filled, TPEOS may be returned even if tpcall returned
successfully.

tpacall

Function Routine for sending a service request

Synopsis #include <atmi.h>
int tpacall(char *svc, char *data, long len, long flags)

B ATMI References

B-14 BEA eLink Adapter Development Kit User Guide

Description tpacall() sends a request message to the service named by svc. The request is sent
out at the priority defined for svc unless overridden by a previous call to tpsprio. If
data is non-NULL, it must point to a buffer previously allocated by tpalloc and len
should specify the amount of data in the buffer that should be sent. Note that if data
points to a buffer of a type that does not require a length to be specified, (for example,
an FML fielded buffer), then len is ignored (and may be 0). If data is NULL, len is
ignored and a request is sent with no data portion. The type and sub-type of data
must match one of the types and sub-types recognized by svc. Note that for each
request sent while in transaction mode, a corresponding reply must ultimately be
received.

Following is a list of valid flags.

TPNOTRAN
If the caller is in transaction mode and this flag is set, then when svc is
invoked, it is not performed on behalf of the caller’s transaction. If svc
belongs to a server that does not support transactions, then this flag must be
set when the caller is in transaction mode. Note that svc may still be invoked
in transaction mode but it will not be the same transaction: a svc may have as
a configuration attribute that it is automatically invoked in transaction mode.
A caller in transaction mode that sets this flag is still subject to the transaction
timeout (and no other). If a service fails that was invoked with this flag, the
caller’s transaction is not affected.

TPNOREPLY
Informs tpacall() that a reply is not expected. When TPNOREPLY is set, the
function returns 0 on success, where 0 is an invalid descriptor. When the
caller is in transaction mode, this setting cannot be used unless TPNOTRAN is
also set.

TPNOBLOCK
The request is not sent if a blocking condition exists (for example, the internal
buffers into which the message is transferred are full). When TPNOBLOCK is
not specified and a blocking condition exists, the caller blocks until the
condition subsides or a timeout occurs (either transaction or blocking
timeout).

TPNOTIME

This flag signifies that the caller is willing to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

Request/Response

BEA eLink Adapter Development Kit User Guide B-15

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is re-issued.

Return Values Upon successful completion, tpacall() returns a descriptor that can be used to
receive the reply of the request sent. Otherwise it returns a value of \-1 and sets
tperrno to indicate the error condition.

Errors Under the following conditions, tpacall() fails and sets tperrno to one of the
following values. (Unless otherwise noted, failure does not affect the caller’s
transaction, if one exists.)

[TPEINVAL]

Invalid arguments were given (for example, svc is NULL, data does not point
to space allocated with tpalloc, or flags are invalid).

[TPENOENT]

Cannot send to svc because it does not exist or is a conversational service.

[TPEITYPE]

The type and sub-type of data is not one of the allowed types and sub-types
that svc accepts.

[TPELIMIT]

The caller’s request was not sent because the maximum number of
outstanding asynchronous requests has been reached.

[TPETRAN]

svc belongs to a server that does not support transactions and TPNOTRAN was
not set.

[TPETIME]

A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neither TPNOBLOCK nor TPNOTIME was
specified. If a transaction timeout occurred, then with one exception, any
attempts to send new requests or receive outstanding replies will fail with
TPETIME until the transaction has been aborted. The exception is a request
that does not block, expects no reply, and is not sent on behalf of the caller’s
transaction (that is, tpacall() with TPNOTRAN, TPNOBLOCK, and TPNOREPLY
set).

[TPEBLOCK]

A blocking condition exists and TPNOBLOCK was specified.

B ATMI References

B-16 BEA eLink Adapter Development Kit User Guide

[TPGOTSIG]

A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]

tpacall() was called in an improper context.

[TPESYSTEM]

A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS]

An operating system error has occurred. If a message queue on a remote
location is filled, TPEOS may be returned even if tpacall returned
successfully.

tpgetrply

Function Routine for getting a reply from a previous request

Synopsis #include <atmi.h>
int tpgetrply(int *cd, char **data, long *len, long flags)

Description tpgetrply returns a reply from a previously sent request. This function’s first
argument, cd, points to a call descriptor returned by tpacall. By default, the function
waits until the reply matching *cd arrives or a timeout occurs. data must be the
address of a pointer to a buffer previously allocated by tpalloc and len should point
to a long that tpgetrply sets to the amount of data successfully received. Upon
successful return, *data points to a buffer containing the reply and *len contains the
size of the data. FML and FML32 buffers often assume a minimum size of 4096 bytes;
if the reply is larger than 4096, the size of the buffer is increased to a size large enough
to accommodate the data being returned. Buffers on the sending side that may be only
partially filled (for example, FML or STRING buffers) will have only the amount that
is used send. The system may then enlarge the received data size by some arbitrary
amount. This means that the receiver may receive a buffer that is smaller than what was
originally allocated by the sender, yet larger than the data that was sent. The receive
buffer may grow, or it may shrink, and its address almost invariably changes, as the
system swaps buffers around internally. To determine whether (and how much) a reply
buffer changed in size, compare its total size before tpgetrply was issued with *len.
If *len is 0, then the reply has no data portion and neither *data nor the buffer it
points to were modified. It is an error for *data or len to be NULL.

Request/Response

BEA eLink Adapter Development Kit User Guide B-17

Following is a list of valid flags.

TPGETANY

This flag signifies that tpgetrply should ignore the descriptor pointed to by
cd, return any reply available and set cd to point to the call descriptor for the
reply returned. If no replies exist, tpgetrply by default will wait for one to
arrive.

TPNOCHANGE

By default, if a buffer is received that differs in type from the buffer pointed
to by *data, then *data’s buffer type changes to the received buffer’s type
so long as the receiver recognizes the incoming buffer type. When this flag is
set, the type of the buffer pointed to by *data is not allowed to change. That
is, the type and sub-type of the received buffer must match the type and
sub-type of the buffer pointed to by *data.

TPNOBLOCK

tpgetrply does not wait for the reply to arrive. If the reply is available, then
tpgetrply gets the reply and returns. When this flag is not specified and a
reply is not available, the caller blocks until the reply arrives or a timeout
occurs (either transaction or blocking timeout).

TPNOTIME

This flag signifies that the caller is willing to block indefinitely for its reply
and wants to be immune to blocking timeouts. Transaction timeouts may still
occur.

TPSIGRSTRT

If a signal interrupts any underlying system calls, then the interrupted system
call is re-issued. Except as noted below, *cd is no longer valid after its reply
is received.

Return Values Upon successful return from tpgetrply or upon return where tperrno is set to
TPESVCFAIL, tpurcode contains an application-defined value that was sent as part of
tpreturn. tpgetrply returns -1 on error and sets tperrno to indicate the error
condition.

Errors Under the following conditions, tpgetrply fails and sets tperrno as indicated
below. Note that if TPGETANY is not set, then *cd is invalidated unless otherwise stated.
If TPGETANY is set, then cd points to the descriptor for the reply on which the failure
occurred; if an error occurred before a reply could be retrieved, then cd points to 0.
Also, the failure does not affect the caller’s transaction, if one exists, unless otherwise
stated. If a call fails with a particular tperrno value, a subsequent call to

B ATMI References

B-18 BEA eLink Adapter Development Kit User Guide

tperrordetail with no intermediate ATMI calls, may provide more detailed
information about the generated error. Refer to the tperrordetail reference page for
more information.

[TPEINVAL]

Invalid arguments were given (for example, cd, data, *data or len is
NULL or flags are invalid). If cd is non-NULL, then it is still valid after this
error and the reply remains outstanding.

[TPEOTYPE]

Either the type and sub-type of the reply are not known to the caller; or,
TPNOCHANGE was set in flags and the type and sub-type of *data do not
match the type and sub-type of the reply sent by the service. Regardless,
neither *data, its contents nor *len are changed. If the reply was to be
received on behalf of the caller’s current transaction, then the transaction is
marked abort-only since the reply is discarded.

[TPEBADDESC]

cd points to an invalid descriptor.

[TPETIME]

A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neither TPNOBLOCK nor TPNOTIME were
specified. In either case, neither *data, its contents nor *len are changed.
*cd remains valid unless the caller is in transaction mode (and TPGETANY was
not set). If a transaction timeout occurred, then with one exception, any
attempts to send new requests or receive outstanding replies will fail with
TPETIME until the transaction has been aborted. The exception is a request
that does not block, expects no reply and is not sent on behalf of the caller’s
transaction (that is, tpacall with TPNOTRAN, TPNOBLOCK and TPNOREPLY
set).

[TPESVCFAIL]

The service routine sending the caller’s reply called tpreturn with TPFAIL.
This is an application-level failure. The contents of the service’s reply, if one
was sent, is available in the buffer pointed to by *data. If the service request
was made on behalf of the caller’s transaction, then the transaction is marked
abort-only. Note that so long as the transaction has not timed out, further
communication may be performed before completely aborting the transaction
and that any work performed on behalf of the caller’s transaction will be

Request/Response

BEA eLink Adapter Development Kit User Guide B-19

aborted upon transaction completion (that is, for subsequent communication
to have any lasting effect, it should be done with TPNOTRAN set).

[TPESVCERR]

A service routine encountered an error either in tpreturn or tpforward (for
example, bad arguments were passed). No reply data is returned when this
error occurs (that is, neither *data, its contents nor *len are changed). If the
service request was made on behalf of the caller’s transaction, then the
transaction is marked abort-only. Note that so long as the transaction has not
timed out, further communication may be performed before completely
aborting the transaction and that any work performed on behalf of the caller’s
transaction will be aborted upon transaction completion (that is, for
subsequent communication to have any lasting effect, it should be done with
TPNOTRAN set). If either SVCTIMEOUT in the ubbconfig file or
TA_SVCTIMEOUT in the TM_MIB is non-zero, TPESVCERR is returned when a
service timeout occurs.

[TPEBLOCK]

A blocking condition exists and TPNOBLOCK was specified. *cd remains
valid.

[TPGOTSIG]

A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]

tpgetrply was called in an improper context.

[TPESYSTEM]

A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS]

An operating system error has occurred. If a message queue on a remote
location is filled, TPEOS may possibly be returned.

tpcancel

Function Routine for canceling a call descriptor for outstanding reply

Synopsis #include <atmi.h>
int tpcancel(int cd)

B ATMI References

B-20 BEA eLink Adapter Development Kit User Guide

Description tpcancel() cancels a call descriptor, cd, returned by tpacall. It is an error to
attempt to cancel a call descriptor associated with a transaction. Upon success, cd is
no longer valid and any reply received on behalf of cd will be silently discarded.

Return Values tpcancel() returns \-1 on error and sets tperrno to indicate the error condition.

Errors Under the following conditions, tpcancel() fails and sets tperrno to:

[TPEBADDESC]

cd is an invalid descriptor.

[TPETRAN]

cd() is associated with the caller’s transaction. cd remains valid and the
caller’s current transaction is not affected.

[TPEPROTO]

tpcancel() was called in an improper context.

[TPESYSTEM]

A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS]

An operating system error has occurred.

Service Entry and Return

tpsvrinit

Function The BEA Tuxedo system server initialization routine

Synopsis #include <atmi.h>
int tpsvrinit(int argc, char **argv)

Description The BEA Tuxedo system server abstraction calls tpsvrinit() during its
initialization. This routine is called after the thread of control has become a server but
before it handles any service requests; thus, BEA Tuxedo system communication may
be performed and transactions may be defined in this routine. However, if
tpsvrinit() returns with open connections, asynchronous replies pending or while

Service Entry and Return

BEA eLink Adapter Development Kit User Guide B-21

still in transaction mode, the BEA Tuxedo system will close the connections, ignore
replies pending, abort the transaction, and the server will exit gracefully. If an
application does not provide this routine in a server, then the default version provided
by the BEA Tuxedo system is called instead. The default tpsvrinit() calls
tpopen() and userlog() to announce that the server has successfully started.
Application-specific options can be passed into a server and processed in
tpsvrinit() (see servopts). The options are passed through argc and argv. Since
getopt is used in a BEA Tuxedo system server abstraction, optarg, optind and
opterr may be used to control option parsing and error detection in tpsvrinit(). If
an error occurs in tpsvrinit(), the application can cause the server to exit gracefully
(and not take any service requests) by returning -1. The application should not call
exit(2) itself.

Return Values A negative return value will cause the server to exit gracefully.

Usage If either tpreturn() or tpforward() are used outside of a service routine (e.g., in
clients, or in tpsvrinit() or tpsvrdone()), then these routines simply return having
no effect.

tpsvrdone

Function BEA Tuxedo system server termination routine

Synopsis #include <atmi.h>
void tpsvrdone(void)

Description The BEA Tuxedo system server abstraction calls tpsvrdone after it has finished
processing service requests but before it exits. When this routine is invoked, the server
is still part of the system but its own services have been unadvertised. Thus, BEA
Tuxedo system communication can be performed and transactions can be defined in
this routine. However, if tpsvrdone returns with open connections, asynchronous
replies pending or while still in transaction mode, the BEA Tuxedo system will close
its connections, ignore any pending replies and abort the transaction before the server
exits. If a server is shut down by the invocation of tmshutdown -y, services are
suspended and the ability to perform communication or to begin transactions in
tpsvrdone is limited. If an application does not provide this routine in a server, then
the default version provided by the BEA Tuxedo system is called instead. The default
tpsvrdone calls tpclose and userlog to announce that the server is about to exit.

Usage If either tpreturn or tpforward is called in tpsvrdone, it simply returns having no
effect.

B ATMI References

B-22 BEA eLink Adapter Development Kit User Guide

tpreturn

Funtion Routine for returning from a service routine

Synopsis void tpreturn(int rval, long rcode, char *data, long len, long
flags)

Description tpreturn indicates that a service routine has completed. tpreturn acts like a return
statement in the C language (that is, when tpreturn is called, the service routine
returns to the BEA Tuxedo system dispatcher). It is recommended that tpreturn be
called from within the service routine dispatched to ensure correct return of control to
the BEA Tuxedo system dispatcher. tpreturn is used to send a service’s reply
message. If the program receiving the reply is waiting in either tpcall, tpgetrply,
or tprecv, then after a successful call to tpreturn, the reply is available in the
receiver’s buffer. For conversational services, tpreturn also tears down the
connection. That is, the service routine cannot call tpdiscon directly. To ensure
correct results, the program that connected to the conversational service should not call
tpdiscon; rather, it should wait for notification that the conversational service has
completed (that is, it should wait for one of the events, like TPEV_SVCSUCC or
TPEV_SVCFAIL, sent by tpreturn). If the service routine was in transaction mode,
tpreturn places the service’s portion of the transaction in a state where it may be
either committed or rolled back when the transaction is completed. A service may be
invoked multiple times as part of the same transaction so it is not necessarily fully
committed nor rolled back until either tpcommit or tpabort is called by the originator
of the transaction. tpreturn should be called after receiving all replies expected from
service requests initiated by the service routine. Otherwise, depending on the nature of
the service, either a TPESVCERR status or TPEV_SVCERR event will be returned to the
program that initiated communication with the service routine. Any outstanding
replies that are not received will automatically be dropped by the communication
manager. In addition, the descriptors for those replies become invalid. tpreturn
should be called after closing all connections initiated by the service. Otherwise,
depending on the nature of the service, either a TPESVCERR or a TPEV_SVCERR event
will be returned to the program that initiated communication with the service routine.
Also, an immediate disconnect event (that is, TPEV_DISCONIMM) is sent over all open
connections to subordinates. Since a conversational service has only one open
connection which it did not initiate, the communication manager knows over which
descriptor data (and any event) should be sent. For this reason, a descriptor is not
passed to tpreturn.

Arguments The following is a description of tpreturn ’s arguments. rval can be set to one of
the following.

Service Entry and Return

BEA eLink Adapter Development Kit User Guide B-23

TPSUCCESS

The service has terminated successfully. If data is present, then it will be sent
(barring any failures processing the return). If the caller is in transaction
mode, then tpreturn places the caller’s portion of the transaction in a state
such that it can be committed when the transaction ultimately commits. Note
that a call to tpreturn does not necessarily finalize an entire transaction.
Also, even though the caller indicates success, if there are any outstanding
replies or open connections, if any work done within the service caused its
transaction to be marked rollback-only, then a failed message is sent (that is,
the recipient of the reply receives a TPESVCERR indication or a TPEV_SVCERR
event). Note that if a transaction becomes rollback-only while in the service
routine for any reason, then rval should be set to TPFAIL. If TPSUCCESS is
specified for a conversational service, a TPEV_SVCSUCC event is generated.

TPFAIL
The service has terminated unsuccessfully from an application standpoint. An
error will be reported to the program receiving the reply. That is, the call to
get the reply will fail and the recipient receives a TPSVCFAIL indication or a
TPEV_SVCFAIL event. If the caller is in transaction mode, then tpreturn
marks the transaction as rollback-only (note that the transaction may already
be marked rollback-only). Barring any failures in processing the return, the
caller’s data is sent, if present. One reason for not sending the caller’s data is
that a transaction timeout has occurred. In this case, the program waiting for
the reply will receive an error of TPETIME. If TPFAIL is specified for a
conversational service, a TPEV_SVCFAIL event is generated.

TPEXIT
This value is the same as TPFAIL, with respect to completing the service, but
the server will exit after the transaction is rolled back and the reply is sent
back to the requester. If the server is restartable, then the server will
automatically be restarted.

If rval is not set to one of these three values, then it defaults to TPFAIL.

An applicatio-defined return code, rcode, may be sent to the program receiving the
service reply. This code is sent regardless of the setting of rval as long as a reply can
be successfully sent (that is, as long as the receiving call returns success or
TPESVCFAIL). In addition, for conversational services, this code can be sent only if the
service routine has control of the connection when it issues tpreturn. The value of
rcode is available in the receiver in the variable, tpurcode. data points to the data
portion of a reply to be sent. If data is non-NULL, it must point to a buffer previously
obtained by a call to tpalloc. If this is the same buffer passed to the service routine

B ATMI References

B-24 BEA eLink Adapter Development Kit User Guide

upon its invocation, then its disposition is up to the BEA Tuxedo system dispatcher;
the service routine writer does not have to worry about whether it is freed or not. In
fact, any attempt by the user to free this buffer will fail. However, if the buffer passed
to tpreturn is not the same one with which the service is invoked, then tpreturn
will free that buffer. len specifies the amount of the data buffer to be sent. If data
points to a buffer which does not require a length to be specified, (for example, an FML
fielded buffer), then len is ignored (and can be 0). If data is NULL, then len is
ignored. In this case, if a reply is expected by the program that invoked the service,
then a reply is sent with no data. If no reply is expected, then tpreturn frees data as
necessary and returns sending no reply. Currently, flags is reserved for future use and
must be set to 0 (if set to a non-zero value, the recipient of the reply receives a
TPESVCERR indication or a TPEV_SVCERR event). If the service is conversational, there
are two cases where the caller’s return code and the data portion are not transmitted: if
the connection has already been torn down when the call is made (that is, the caller has
received TPEV_DISCONIMM on the connection), then this call simply ends the service
routine and rolls back the current transaction, if one exists. If the caller does not have
control of the connection, either TPEV_SVCFAIL or TPEV_SVCERR is sent to the
originator of the connection as described above. Regardless of which event the
originator receives, no data is transmitted; however, if the originator receives the
TPEV_SVCFAIL event, the return code is available in the originator’s tpurcode
variable.

Return Values A service routine does not return any value to its caller, the BEA Tuxedo system
dispatcher; thus, it is declared as a void. Service routines, however, are expected to
terminate using either tpreturn or tpforward. A conversational service routine must
use tpreturn, and cannot use tpforward. If a service routine returns without using
either tpreturn or tpforward (that is, it uses the C language return statement or just
simply "falls out of the function") or tpforward is called from a conversational server,
the server will print a warning message in the log and return a service error to the
service requester. In addition, all open connections to subordinates will be
disconnected immediately, and any outstanding asynchronous replies will be dropped.
If the server was in transaction mode at the time of failure, the transaction is marked
rollback-only. Note also that if either tpreturn or tpforward are used outside of a
service routine (for example, in clients, or in tpsvrinit or tpsvrdone), then these
routines simply return having no effect.

Errors Since tpreturn ends the service routine, any errors encountered either in handling
arguments or in processing cannot be indicated to the function’s caller. Such errors
cause tperrno to be set to TPESVCERR for a program receiving the service’s outcome
via either tpcall or tpgetrply, and cause the event, TPEV_SVCERR, to be sent over
the conversation to a program using tpsend or tprecv. If either SVCTIMEOUT in the

Dynamic Advertisement

BEA eLink Adapter Development Kit User Guide B-25

ubbconfig file or TA_SVCTIMEOUT in the TM_MIB is non-zero, the event
TPEV_SVCERR is returned when a service timeout occurs. tprrordetail and
tpstrerrordetail can be used to get additional information about an error produced
by the last BEA Tuxedo system routine called in the current thread. If an error
occurred, tperrordetail returns a numeric value that can be used as an argument to
trstrerrordetail to retrieve the text of the error detail.

Dynamic Advertisement

tpadvertise

Function Routine for advertising a service name

Synopsis #include <atmi.h>
int tpadvertise(char *svcname, void (*func)(TPSVCINFO *))

Description tpadvertise allows a server to advertise the services that it offers. By default, a
server’s services are advertised when it is booted and unadvertised when it is shutdown.
All servers belonging to a multiple server, single queue (MSSQ) set must offer the
same set of services. These routines enforce this rule by affecting the advertisements
of all servers sharing an MSSQ set. tpadvertise advertises svcname for the server
(or the set of servers sharing the caller’s MSSQ set). svcname should be 15 characters
or less, but cannot be NULL or the NULL string (""). func is the address of a BEA
Tuxedo system service function. This function will be invoked whenever a request for
svcname is received by the server. func cannot be NULL. Explicitly specified
function names can be up to 128 characters long. Names longer than 15 characters are
accepted and truncated to 15 characters. Users should make sure that truncated names
do not match other service names. If svcname is already advertised for the server and
func matches its current function, then tpadvertise returns success (this includes
truncated names that match already advertised names). However, if svcname is
already advertised for the server but func does not match its current function, then an
error is returned (this can happen if truncated names match already advertised names).
Service names starting with dot (.) are reserved for administrative services. An error
will be returned if an application attempts to advertise one of these services.

Return Values tpadvertise returns -1 on error and sets tperrno to indicate the error condition.

B ATMI References

B-26 BEA eLink Adapter Development Kit User Guide

Errors Under the following conditions, tpadvertise fails and sets tperrno to:

[TPEINVAL]
svcname is NULL or the NULL string (""),or begins with a "." or func is
NULL.

[TPELIMIT]
svcname cannot be advertised because of space limitations.

[TPEMATCH]
svcname is already advertised for the server but with a function other than
func. Although the function fails, svcname remains advertised with its
current function (that is, func does not replace the current function).

[TPEPROTO]

tpadvertise was called in an improper context (for example, by a client).

[TPESYSTEM]

A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS]
An operating system error has occurred.

tpunadvertise

Function Routine for unadvertising a service name

Synopsis #include <atmi.h>
int tpunadvertise(char *svcname)

Description tpunadvertise() allows a server to unadvertise a service that it offers. By default, a
server’s services are advertised when it is booted and they are unadvertised when it is
shutdown. All servers belonging to a multiple server, single queue (MSSQ) set must
offer the same set of services. These routines enforce this rule by affecting the
advertisements of all servers sharing an MSSQ set. tpunadvertise() removes
svcname as an advertised service for the server (or the set of servers sharing the caller’s
MSSQ set). svcname cannot be NULL or the NULL string (""). Also, svcname should
be 15 characters or less. (See *SERVICES section of ubbconfig). Longer names will
be accepted and truncated to 15 characters. Care should be taken such that truncated
names do not match other service names.

Dynamic Advertisement

BEA eLink Adapter Development Kit User Guide B-27

Return Values tpunadvertise() returns \-1 on error and sets tperrno to indicate the error
condition.

Errors Under the following conditions, tpunadvertise() fails and sets tperrno to:

[TPEINVAL]
svcname is NULL or the NULL string ("").

[TPENOENT]

svcname is not currently advertised by the server.

[TPEPROTO]

tpunadvertise() was called in an improper context (for example, by a
client).

[TPESYSTEM]

A BEA Tuxedo system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS]

An operating system error has occurred.

B ATMI References

B-28 BEA eLink Adapter Development Kit User Guide

BEA eLink Adapter Development Kit User Guide C-1

APPENDIX

C FML32 API

The following information is excerpted from the Tuxedo Online Documentation.
These are some of the most commonly used Tuxedo FML32 API functions used for
adapter development. For additional details and a complete list of Tuxedo functions
and commands, see http://edocs.beasys.com/tuxedo/tux65/index.htm.

Following is an alphabetical list of the the functions described in this section.

Refer to

Fadd, Fadd32

Fchg, Fchg 32

Ffind, Ffind32

Fget, Fget32

Fielded, Fielded32

Finit, Finit32

Fldid, Fldid32

Fneeded, Fneeded32

Fsizeof, Fsizeof32

http://edocs.beasys.com/tuxedo/tux65/index.htm

C FML32 API

C-2 BEA eLink Adapter Development Kit User Guide

Fadd, Fadd32

Function Add new field occurrence

Synopsis #include stdio.h>
#include "fml.h"
int Fadd(FBFR *fbfr, FLDID fieldid, char *value, FLDLEN len)
#include "fml32.h"
int Fadd32(FBFR32 *fbfr, FLDID32 fieldid, char *value, FLDLEN32
len)

Description Fadd() adds the specified field value to the given buffer. fbfr is a pointer to a fielded
buffer. fieldid is a field identifier. value is a pointer to a new value; the pointer’s
type must be the same fieldid type as the value to be added. len is the length of the
value to be added; it is required only if type is FLD_CARRAY The value to be added is
contained in the location pointed to by the value parameter. If one or more
occurrences of the field already exist, then the value is added as a new occurrence of
the field, and is assigned an occurrence number 1 greater than the current highest
occurrence (to add a specific occurrence, Fchg must be used). In the SYNOPSIS
section above the value argument to Fadd() is described as a character pointer data
type (char * in C). Technically, this describes only one particular kind of value
passable to Fadd(). In fact, the type of the value argument should be a pointer to an
object of the same type as the type of the fielded-buffer representation of the field
being added. For example, if the field is stored in the buffer as type FLD_LONG, then
value should be of type pointer-to-long (long * in C). Similarly, if the field is stored
as FLD_SHORT, then value should be of type pointer-to-short (short * in C). The
important thing is that Fadd() assumes that the object pointed to by value has the same
type as the stored type of the field being added. For values of type FLD_CARRAY, the
length of the value is given in the len argument.For all types other than FLD_CARRAY,
the length of the object pointed to by value is inferred from its type (e.g. a value of
type FLD_FLOAT is of length sizeof(float)), and the contents of len are ignored.
Fadd32 is used with 32-bit FML.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fadd() fails and sets Ferror to:

[FALIGNERR] "fielded buffer not aligned"

The buffer does not begin on the proper boundary.

[FNOTFLD] "buffer not fielded"

The buffer is not a fielded buffer or has not been initialized by Finit().

Fchg, Fchg 32

BEA eLink Adapter Development Kit User Guide C-3

[FEINVAL] "invalid argument to function"

One of the arguments to the function invoked was invalid. (For example,
specifying a NULL value parameter to Fadd.)

[FNOSPACE] "no space in fielded buffer"
A field value is to be added in a fielded buffer but there is not enough space
remaining in the buffer.

[FBADFLD] "unknown field number or type"

A field number is specified which is not valid.

Fchg, Fchg 32

Function Change field occurrence value

Synopsis #include <stdio.h>
#include "fml.h"
int
Fchg(FBFR *fbfr, FLDID fieldid, FLDOCC oc, char *value, FLDLEN len)
#include "fml32.h"
int
Fchg32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc, char *value,
FLDLEN32 len)

Description Fchg() changes the value of a field in the buffer. fbfr is a pointer to a fielded buffer.
fieldid is a field identifier. oc is the occurrence number of the field. value is a
pointer to a new value, its type must be the same type as the value to be changed (see
below). len is the length of the value to be changed; it is required only if field type is
FLD_CARRAY. If an occurrence of -1 is specified, then the field value is added as a new
occurrence to the buffer. If the specified field occurrence is found, then the field value
is modified to the value specified. If a field occurrence is specified that does not exist,
then NULL values are added for the missing occurrences until the desired occurrence
can be added (for example, changing field occurrence 4 for a field that does not exist
on a buffer will cause 3 NULL values to be added followed by the specified field
value). NULL values consist of the NULL string (1 byte in length) for string and
character values, 0 for long and short fields, 0.0 for float and double values, and a zero-
length string for a character array. The new or modified value is contained in value
and its length is given in len if it is a character array (ignored in other cases). If value
is NULL, then the field occurrence is deleted. A value to be deleted that is not found,
is considered an error. In the SYNOPSIS section above the value argument to Fchg()

C FML32 API

C-4 BEA eLink Adapter Development Kit User Guide

is described as a character pointer data type (char * in C). Technically, this describes
only one particular kind of value passable to Fchg(). In fact, the type of the value
argument should be a pointer to an object of the same type as the type of the fielded-
buffer representation of the field being changed. For example, if the field is stored in
the buffer as type FLD_LONG, then value should be of type pointer-to-long (long
* in C). Similarly, if the field is stored as FLD_SHORT, then value should be of type
pointer-to-short (short * in C). The important thing is that Fchg() assumes that
the object pointed to by value has the same type as the stored type of the field being
changed.

Fchg32 is used with 32-bit FML.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fchg()fails and sets Ferror to:

[FALIGNERR] "fielded buffer not aligned"

The buffer does not begin on the proper boundary.

[FNOTFLD] "buffer not fielded"

The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOTPRES] "field not present"
A field occurrence is requested for deletion but the specified field and/or
occurrence was not found in the fielded buffer.

[FNOSPACE] "no space in fielded buffer"

A field value is to be added or changed in a fielded buffer but there is not
enough space remaining in the buffer.

[FBADFLD] "unknown field number or type"
A field identifier is specified which is not valid.

Ffind, Ffind32

Function Find field occurrence in buffer

Synopsis #include <stdio.h>
#include "fml.h"
char *
Ffind(FBFR *fbfr, FLDID fieldid, FLDOCC oc, FLDLEN *len)

Ffind, Ffind32

BEA eLink Adapter Development Kit User Guide C-5

#include "fml32.h"
char *
Ffind32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc, FLDLEN32 *len)

Description Ffind() finds the value of the specified field occurrence in the buffer. fbfr is a
pointer to a fielded buffer. fieldid is a field identifier. oc is the occurrence number
of the field. If the field is found, its length is set into *len, and its location is returned
as the value of the function. If the value of len is NULL, then the field length is not
returned. Ffind() is useful for gaining read-only access to a field. In no case should
the value returned by Ffind() be used to modify the buffer. In general, the locations
of values of types FLD_LONG, FLD_FLOAT, and FLD_DOUBLE are not suitable for direct
use as their stored type, since proper alignment within the buffer is not guaranteed.
Such values must be copied first to a suitably aligned memory location. Accessing
such fields through the conversion function CFfind does guarantee the proper
alignment of the found converted value. Buffer modification should only be done by
the functions Fadd or Fchg. The values returned by Ffind() and Ffindlast() are
valid only so long as the buffer remains unmodified.

Ffind32 is used with 32-bit FML.

Return Values In the SYNOPSIS section above, the return value to Ffind() is described as a
character pointer data type (char* in C). Actually, the pointer returned points to an
object that has the same type as the stored type of the field. This function returns a
pointer to NULL on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Ffind() fails and sets Ferror to:

[FALIGNERR] "fielded buffer not aligned"

The buffer does not begin on the proper boundary.

[FNOTFLD] "buffer not fielded"

The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOTPRES] "field not present"

A field occurrence is requested but the specified field and/or occurrence was
not found in the fielded buffer.

[FBADFLD] "unknown field number or type"

A field identifier is specified which is not valid.

C FML32 API

C-6 BEA eLink Adapter Development Kit User Guide

Fget, Fget32

Function Get copy and length of field occurrence

Synopsis #include <stdio.h>
#include "fml.h"
int
Fget(FBFR *fbfr, FLDID fieldid, FLDOCC oc, char *value, FLDLEN
 *maxlen)
#include "fml32.h"
int
Fget32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc, char
*value,FLDLEN32 *maxlen)

Description Fget() should be used to retrieve a field from a fielded buffer when the value is to be
modified. fbfr is a pointer to a fielded buffer. fieldid is a field identifier. oc is the
occurrence number of the field. The caller provides Fget() with a pointer to a private
data area, loc, as well as the length of the data area, *maxlen, and the length of the
field is returned in *maxlen. If *maxlen is NULL when the function is called, then it
is assumed that the data area for the field value loc is big enough to contain the field
value and the length of the value is not returned. If loc is NULL, the value is not
retrieved. Thus, the function call can be used to determine the existence of the field.

In the SYNOPSIS section above the value argument to Fget() is described as a
character pointer data type (char * in C). Technically, this describes only one particular
kind of value passable to Fget(). In fact, the type of the value argument should be a
pointer to an object of the same type as the type of the fielded-buffer representation of
the field being retrieved. For example, if the field is stored in the buffer as type
FLD_LONG, then value should be of type pointer-to-long (long * in C). Similarly,
if the field is stored as FLD_SHORT, then value should be of type pointer-to-short
(short * in C). The important thing is that Fget() assumes that the object pointed to
by value has the same type as the stored type of the field being retrieved.

Fget32 is used with 32-bit FML.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fget() fails and sets Ferror to:

[FALIGNERR] "fielded buffer not aligned"

The buffer does not begin on the proper boundary.

Fielded, Fielded32

BEA eLink Adapter Development Kit User Guide C-7

[FNOTFLD] "buffer not fielded"

The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOSPACE] "no space"

The size of the data area, as specified in maxlen, is not large enough to hold
the field value.

[FNOTPRES] "field not present"

A field occurrence is requested but the specified field and/or occurrence was
not found in the fielded buffer.

[FBADFLD] "unknown field number or type"

A field identifier is specified which is not valid.

Fielded, Fielded32

Function Return true if buffer is fielded

Synopsis #include stdio.h>
#include "fml.h"
int
Fielded(FBFR *fbfr)
#include "fml32.h"
int
Fielded32(FBFR32 *fbfr)

Description Fielded() is used to test whether the specified buffer is fielded. fbfr is a pointer to
a fielded buffer.

Fielded32 is used with 32-bit FML.

Return Values Fielded() returns true (1) if the buffer is fielded. It returns false (0) if the buffer is
not fielded and does not set Ferror in this case.

Finit, Finit32

Function Initialize fielded buffer

C FML32 API

C-8 BEA eLink Adapter Development Kit User Guide

Synopsis #include <stdio.h>
#include "fml.h"
int
Finit(FBFR *fbfr, FLDLEN buflen)
#include "fml32.h"
int
Finit32(FBFR32 *fbfr, FLDLEN32 buflen)

Description Finit()can be called to initialize a fielded buffer statically. fbfr is a pointer to a
fielded buffer. buflen is the length of the buffer. The function takes the buffer pointer
and buffer length, and sets up the internal structure for a buffer with no fields. Finit()
can also be used to re-initialize a previously used buffer.

Finit32 is used with 32-bit FML.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Finit() fails and sets Ferror to:

[FALIGNERR] "fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD] "buffer not fielded"
The buffer pointer is NULL.

[FNOSPACE] "no space in fielded buffer"
The buffer size specified is too small for a fielded buffer.

Example The correct way to re-initialize a buffer to have no fields is:

Finit(fbfr,
(FLDLEN)Fsizeof(fbfr));

Fldid, Fldid32

Function Map field name to field identifier

Synopsis #include <stdio.h>
#include "fml.h"
FLDID
Fldid(char *name)
#include "fml32.h"

Fneeded, Fneeded32

BEA eLink Adapter Development Kit User Guide C-9

FLDID32
Fldid32(char *name)

Description Fldid() provides a runtime translation of a field-name to its field identifier and
returns a FLDID corresponding to its field name parameter. The first invocation causes
space to be dynamically allocated for the field tables and the tables to be loaded. To
recover data space used by the field tables loaded by Fldid(), the user may unload
the files by a call to the Fnmid_unload function.

Fldid32 is used with 32-bit FML.

Return Values This function returns BADFLDID on error and sets Ferror to indicate the error
condition.

Errors Under the following conditions, Fldid()fails and sets Ferror to:

[FBADNAME] "unknown field name"
A field name is specified which cannot be found in the field tables.

[FMALLOC] "malloc failed"

Allocation of space dynamically using malloc(3) failed.

Fneeded, Fneeded32

Function Compute size needed for buffer

Synopsis #include <stdio.h>
#include "fml.h"
long
Fneeded(FLDOCC F, FLDLEN V)
#include "fml32.h"

long
Fneeded32(FLDOCC32 F, FLDLEN32 V)

Description Fneeded() if used to determine the space that must be allocated for F fields and V
bytes of value space.

Fneeded32 is used with 32-bit FML.

Return Values This function returns \-1 on error and sets Ferror to indicate the error condition.

C FML32 API

C-10 BEA eLink Adapter Development Kit User Guide

Errors Under the following conditions, Fneeded() fails and sets Ferror to:

[FEINVAL] "invalid argument to function"

One of the arguments to the function invoked was invalid, (for example,
number of fields is less than 0, V is 0 or total size is greater than 65534).

Fsizeof, Fsizeof32

Function Return size of fielded buffer

Synopsis #include "fml32.h"
long
Fsizeof32(FBFR32 *fbfr)

Description Fsizeof() returns the size of a fielded buffer in bytes. fbfr is a pointer to a fielded
buffer. Fsizeof32 is used with 32-bit FML.

Return Values This function returns \-1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fsizeof() fails and sets Ferror to:

[FALIGNERR] "fielded buffer not aligned"

The buffer does not begin on the proper boundary.

[FNOTFLD]"buffer not fielded"

The buffer is not a fielded buffer or has not been initialized by Finit().

Example of a Server that Uses FML32

The following server receives an FML32 buffer as the data field in a TPSVRINFO struct,
deletes the contents of all of the fields, than repopulates them in the opposite order

Listing 0-1 Example of Server that Uses FML32

#include <stdio.h>
#include <ctype.h>

Example of a Server that Uses FML32

BEA eLink Adapter Development Kit User Guide C-11

#include "atmi.h"
#include "fml32.h"
#include "userlog.h"

#define TEST_STRING "STRTEST"
#define TEST_LONG 70001
#define TEST_CHAR ’Z’
#define TEST_SHORT 911
#define TEST_CARRAY "TESTC"

FMLFOO(msg)
TPSVCINFO *msg;
{
 FBFR32 *fbfr;/* data to be sent */
 FLDLEN32 fbfr_len;
 FLDID32 fieldid;

 long test_long;
 char test_char;
 short test_short;

 fbfr = (FBFR32 *) msg->data;

 /*-----------------------------------*/
 /* Delete all fields in FML32 buffer */
 /*-----------------------------------*/
 fieldid = Fldid32("MYSTRING");
 if (Fdel32(fbfr, fieldid, 0) < 0)
 {
 userlog("Fdel32 MYSTRING failed: ");
 }
 fieldid = Fldid32("MYLONG");
 if (Fdel32(fbfr, fieldid, 0) < 0)
 {
 userlog("Fdel32 MYLONG failed: ");
 }
 fieldid = Fldid32("MYCHAR");
 if (Fdel32(fbfr, fieldid, 0) < 0)
 {
 userlog("Fdel32 MYCHAR failed: ");
 }
 fieldid = Fldid32("MYSHORT");
 if (Fdel32(fbfr, fieldid, 0) < 0)
 {
 userlog("Fdel32 MYSHORT failed: ");
 }
 fieldid = Fldid32("MYCARRAY");
 if (Fdel32(fbfr, fieldid, 0) < 0)
 {

C FML32 API

C-12 BEA eLink Adapter Development Kit User Guide

 userlog("Fdel32 MYCARRAY failed: ");
 }
 /*-----------------------------------*/
 /* Add all fields to FML32 buffer in opposite order */
 /*-----------------------------------*/
 fieldid = Fldid32("MYCARRAY");
 if (Fadd32(fbfr, fieldid, TEST_CARRAY, (FLDLEN32) sizeof(TEST_CARRAY)) < 0)

 {
 userlog("Fadd32 MYCARRAY failed: ");
 }
 fieldid = Fldid32("MYSHORT");
 test_short = TEST_SHORT;
 if (Fadd32(fbfr, fieldid, (char *) &test_short, (FLDLEN32)
 sizeof(test_short)) < 0)
 {
 userlog("Fadd32 MYSHORT failed: ");
 }
 fieldid = Fldid32("MYCHAR");
 test_char = TEST_CHAR;
 if (Fadd32(fbfr, fieldid, (char *) &test_char, (FLDLEN32)
 sizeof(test_char)) < 0)
 {
 userlog("Fadd32 MYCHAR failed: ");
 }
 fieldid = Fldid32("MYLONG");
 test_long = TEST_LONG;
 if (Fadd32(fbfr, fieldid, (char *) &test_long, (FLDLEN32)
 sizeof(test_long)) < 0)
 {
 userlog("Fadd32 MYLONG failed: ");
 }
 fieldid = Fldid32("MYSTRING");
 if (Fadd32(fbfr, fieldid, TEST_STRING, (FLDLEN32) strlen(TEST_STRING))
 < 0)

 {
 userlog("Fadd32 MYSTRING failed: ");
 }
 tpreturn(TPSUCCESS, 0, msg->data, 0L, 0);
}

BEA eLink Adapter Development Kit User Guide D-1

APPENDIX

D Tuxedo Commands

The following information is excerpted from the Tuxedo Online Documentation.
These are some of the most commonly used Tuxedo commands used for adapter
development. For additional details and a complete list of Tuxedo functions and
commands, see http://edocs.beasys.com/tuxedo/tux65/index.htm.

Following is an alphabetical list of the the commands described in this section.

buildclient

Function Construct a BEA Tuxedo client module

Synopsis buildclient [-C] [-v] [{-r rmname | -w }] [-o name] [-f
firstfiles] [-l lastfiles]

Refer to

buildclient

buildserver

tmadmin

tmboot

tmloadcf

tmshutdown

ud, ud32, wud, wud32

http://edocs.beasys.com/tuxedo/tux65/index.htm

D Tuxedo Commands

D-2 BEA eLink Adapter Development Kit User Guide

Description buildclient is used to construct a BEA Tuxedo client module. The command
combines the files supplied by the -f and -l options with the standard BEA Tuxedo
libraries to form a load module. The load module is built by buildclient using the
default C language compilation command defined for the operating system in use. The
default C language compilation command for the UNIX System is the cc command
described in UNIX System reference manuals.

-v

specifies that buildclient should work in verbose mode. In particular, it
writes the compilation command to its standard output.

-w
specifies that the client is to be built using the workstation libraries. The
default is to build a native client if both native mode and workstation mode
libraries are available. This option cannot be used with the -r option.

-r rmname

specifies the resource manager associated with this client. The value rmname
must appear in the resource manager table located in $TUXDIR/udataobj/
RM. Each line in this file is of the form:

rmname:rmstructure_name:library_names

(See the buildtms command in the BEA Tuxedo Reference Manual at http://
edocs.beasys.com/tuxedo/tux65/index.htm for further details.) Using the
rmname value, the entry in $TUXDIR/udataobj/RM is used to include the
associated libraries for the resource manager automatically and to set up the
interface between the transaction manager and resource manager properly.
The value Tuxedo/D includes the libraries for the Tuxedo System/D resource
manager. The value Tuxedo/SQL includes the libraries for the Tuxedo
System/SQL resource manager. Other values can be specified as they are
added to the resource manager table. If the -r option is not specified, the
default is that the client is not associated with a resource manager. Refer to
the ubbconfig reference page.

-o

specifies the file name of the output load module. If not supplied, the load
module is named a.out.

-f

specifies one or more user files to be included in the compilation and link edit
phases of buildclient first, before the BEA Tuxedo libraries. If more
than one file is specified, file names must be separated by white space and the
entire list must be enclosed in quotation marks. This option may be specified

http://edocs.beasys.com/tuxedo/tux65/index.htm
http://edocs.beasys.com/tuxedo/tux65/index.htm

buildclient

BEA eLink Adapter Development Kit User Guide D-3

multiple times. The CFLAGS and ALTCFLAGS environment variables,
described below, should be used to include any compiler options and their
arguments.

-l

specifies one or more user files to be included in the compilation and link edit
phases of buildclient last, after the BEA Tuxedo libraries. If more than
one file is specified, file names must be separated by white space and the
entire list must be enclosed in quotation marks. This option may be specified
multiple times.

-C

specifies COBOL compilation.

Environment
Variables

TUXDIR

buildclient uses the environment variable TUXDIR to find the System/T
libraries and include files to use during compilation of the client process.

CC
buildclient normally uses the default C language compilation command to
produce the client executable. The default C language compilation command
is defined for each supported operating system platform and is defined as
cc(1) for UNIX System. In order to allow for the specification of an alternate
compiler, buildclient checks for the existence of an environment variable
named CC. If CC does not exist in buildclient’s environment, or if it is the string
"", buildclient will use the default C language compiler. If CC does exist
in the environment, its value is taken to be the name of the compiler to be
executed.

CFLAGS
The environment variable CFLAGS is taken to contain a set of arguments to be
passed as part of the compiler command line. This is in addition to the
command line option, "-I${TUXDIR}/include" passed automatically by
buildclient. If CFLAGS does not exist in buildclient’s environment, or
if it is the string, "", no compiler command line arguments are added by
buildclient.

ALTCC

When the -C option is specified for COBOL compilation, buildclient
normally uses the BEA Tuxedo shell cobcc, which in turn calls cob to
produce the client executable. In order to allow for the specification of an
alternate compiler, buildclient checks for the existence of an environment
variable named ALTCC. If ALTCC does not exist in buildclient’s

D Tuxedo Commands

D-4 BEA eLink Adapter Development Kit User Guide

environment, or if it is the string, "", buildclient will use cobcc. If ALTCC
does exist in the environment, its value is taken to be the name of the compiler
command to be executed.

ALTCFLAGS

The environment variable ALTCFLAGS is taken to contain a set of additional
arguments to be passed as part of the COBOL compiler command line when
the -C option is specified. This is in addition to the command line option, "-
I${TUXDIR}/include”, passed automatically by buildclient . When the
-C option is used, putting compiler options and their arguments in the
buildclient -f option will generate errors; they must be put in
ALTCFLAGS. If not set, then the value is set to the same value used for CFLAGS,
as specified above.

COBOPT

The environment variable COBOPT is taken to contain a set of additional
arguments to be used by the COBOL compiler, when the -C option is
specified.

COBCPY
The environment variable, COBCPY, indicates which directories contain a set
of COBOL copy files to be used by the COBOL compiler when the -C option
is specified.

LD_LIBRARY_PATH
The environment variable, LD_LIBRARY_PATH ,indicates which directories
contain shared objects to be used by the COBOL compiler in addition to the
BEA Tuxedo system shared objects.

Examples CC=ncc CFLAGS="-I /APPDIR/include"; export CC CFLAGS
buildclient -o empclient -f emp.c -f "userlib1.a userlib2.a"

buildserver

Function Construct a BEA Tuxedo server load module

Synopsis buildserver [-C] [-s { @filename | service[,service...][:func] |
 :func }] [-n maxdynam] [-v] [-o outfile] [-f firstfiles]
[-l lastfiles] [{-r|-g} rmname] [-k]

buildserver

BEA eLink Adapter Development Kit User Guide D-5

Description buildserver is used to construct a BEA Tuxedo server load module. The command
combines the files supplied by the -f and -l options with the standard server main
routine and the standard BEA Tuxedo libraries to form a load module. The load
module is built by the cc(1) command, which buildserver invokes. (See cc in any
UNIX System reference manual.) The options to buildserver have the following
meaning:

-v

specifies that buildserver should work in verbose mode. In particular, it
writes the compilation command to its standard output.

-o outfile

specifies the name of the file the output load module is to have. If not
supplied, the load module is named SERVER.

-n maxdynam

specifies the maximum number of dynamic services the user can specify
when the server is run. A dynamic service allows the user to specify at run
time the function within the server that is to process the service. If -n is not
specified, the maximum number of such services is set to 25.

-f firstfiles

specifies one or more user files to be included in the compilation and link edit
phases of buildserver first, before the BEA Tuxedo libraries. If more
than one file is specified, file names must be separated by white space and the
entire list must be enclosed in quotation marks. This option may be specified
multiple times. The CFLAGS and ALTCFLAGS environment variables,
described below, should be used to include any compiler options and their
arguments.

-l lastfiles

specifies one or more user files to be included in the compilation and link edit
phases of buildserver last, after the BEA Tuxedo libraries. If more than
one file is specified, file names must be separated by white space and the
entire list must be enclosed in quotation marks. This option may be specified
multiple times.

-r rmname

specifies the resource manager associated with this server. The value rmname
must appear in the resource manager table located in $TUXDIR/udataobj/
RM. Each line in this file is of the form:

rmname:rmstructure_name:library_names

D Tuxedo Commands

D-6 BEA eLink Adapter Development Kit User Guide

(See the buildtms command in the BEA Tuxedo Reference Manual at http:/
/edocs.beasys.com/tuxedo/tux65/index.htm for further details.) Using the
rmname value, the entry in $TUXDIR/udataobj/RM is used to include the
associated libraries for the resource manager automatically and to set up the
interface between the transaction manager and resource manager properly.
The value, Tuxedo/D includes the libraries for the BEA Tuxedo System/D
resource manager. The value, Tuxedo/SQL includes the libraries for the BEA
Tuxedo System/SQL resource manager. Other values can be specified as they
are added to the resource manager table. If the -r option is not specified, the
default is to use the null resource manager. Refer to the ubbconfig reference
page

-s { @filename | service[,service...][:func] | :func }]

specifies the names of services that can be advertised when the server is
booted. Service names (and implicit function names) must be less than or
equal to 15 characters in length. An explicit function name (that is, a name
specified after a colon) can be up to 128 characters in length. Names longer
than these limits are truncated with a warning message. When retrieved by
tmadmin or TM_MIB, only the first 15 characters of a name are displayed. (See
servopts(5).) All functions that can be associated with a service must be
specified with this option. In the most common case, a service is performed
by a function that carries the same name; that is, the x service is performed by
function x. For example, the specification

-s x,y,z

will build the associated server with services x, y, and z, each to be processed
by a function of the same name. In other cases, a service (or several services)
may be performed by a function of a different name. The specification

-s x,y,z:abc

builds the associated server with services x, y, and z, each to be processed by
the function abc. Spaces are not allowed between commas. Function name is
preceded by a colon. In another case, the service name may not be known
until runtime. Any function that can have a service associated with it must be
specified to buildserver. To specify a function that can have a service name
mapped to it, put a colon in front of the function name. For example, the
specification

http://edocs.beasys.com/tuxedo/tux65/index.htm
http://edocs.beasys.com/tuxedo/tux65/index.htm

buildserver

BEA eLink Adapter Development Kit User Guide D-7

-s :pqr

builds the server with a function pqr, which can have a service association.
Tpadvertise could be used to map a service name to the pqr function. A
filename can be specified with the -s option by prefacing the filename with
the ’@’ character. Each line of this file is treated as an argument to the -s
option. You may put comments in this file. All comments must start with the
’#’ character. This file can be used to specify all the functions in the erver that
may have services mapped to them. The -s option may appear several times.
Note that services beginning with the ‘_’ or ’.’ character are reserved for
system use, and buildserver will fail if the -s option is used to include
such a service in the server.

-C

specifies COBOL compilation. buildserver normally uses the cc
command to produce the a.out. In order to allow for the specification of an
alternate compiler, buildserver checks for the existence of a shell variable
named CC. If CC does not exist in buildserver’s environment, or if it is the
string "", buildserver will use cc as the compiler. If CC does exist in the
environment, its value is taken to be the name of the compiler to be executed.
Likewise, the shell variable CFLAGS is taken to contain a set of parameters to
be passed to the compiler.

-k

keeps the server main stub. buildserver generates a main stub with data
structures such as the service table and a main() function. This is normally
compiled and then removed when the server is built. This option indicates that
the source file should be kept (to see what the source file name is, use the -v
option).

Note: The generated contents of this file may change from release to release;
DO NOT count on the data structures and interfaces exposed in this file. This
option is provided to aid in debugging of build problems.

Environment
Variables

Same as buildclient.

Examples The following example shows how to specify the resource manager (-r Tuxedo/SQL)
libraries on the buildserver command line:

buildserver -r Tuxedo/SQL -s OPEN_ACCT -s CLOSE_ACCT -o ACCT
-f ACCT.o -f appinit.o -f util.o

D Tuxedo Commands

D-8 BEA eLink Adapter Development Kit User Guide

The following example shows how buildserver can be supplied CC and CFLAGS
variables and how -f can be used to supply a -lm option to the CC line to link in the
math library:

CFLAGS=-g CC=/bin/cc buildserver -r Tuxedo/SQL -s DEPOSIT
-s WITHDRAWAL -s INQUIRY -o TLR -f TLR.o -f util.o -f -lm

The following example shows use of the buildserver command with no resource
manager specified:

buildserver -s PRINTER -o PRINTER -f PRINTER.o

tmadmin

Function BEA Tuxedo bulletin board command interpreter

Synopsis tmadmin [-r] [-c] [-v]

Description With the commands listed below, tmadmin provides for inspection and modification
of bulletin boards and associated entities in either a uniprocessor, multiprocessor or
networked environment. The TUXCONFIG and TUXOFFSET environment variables are
used to determine the location and offset where the BEA Tuxedo configuration file has
been loaded. If tmadmin is invoked with the -c option, it enters configuration mode.
The only valid commands are default, echo, help, quit, verbose, livtoc, crdl,
lidl, dsdl, indl, and dumptlog. tmadmin may be invoked in this mode on any node,
including inactive nodes. A node is considered active if tmadmin can join the
application as an administrative process or client (via a running BBL). The -r option
instructs tmadmin to enter the bulletin board as a client instead of the administrator and
provides read-only access. This is useful if it is desired to leave the administrator slot
unoccupied. Only one tmadmin process can be the administrator at a time. When the
-r option is specified by a user other than the BEA Tuxedo administrator and security
is turned on, the user will be prompted for a password. The -v option causes tmadmin
to display the BEA Tuxedo version number and license number. After printing out the
information, tmadmin exits. If the -v option is entered with either of the other two
options, the others are ignored; only the information requested by the -v option is
displayed. Normally, tmadmin may be run on any active node within an active
application. If it is run on an active node that is partitioned, then commands are limited
to read only access to the local bulletin board. These include bbls, bbparms,
bbstat, default, dump, dumptlog, echo, help, printclient, printnet,

tmadmin

BEA eLink Adapter Development Kit User Guide D-9

printqueue, printserver, printservice, printtrans, printgroup,

reconnect, quit, serverparms, serviceparms, and verbose, in addition to
the configuration commands.

If the partitioned node is the backup node for the MASTER (specified as the second entry
on the MASTER parameter in the RESOURCES section of the configuration file), the
master command is also available to make this node the MASTER for this part of the
partitioned application. If the application is inactive, tmadmin can only be run on the
MASTER processor. In this mode, all of the configuration mode commands are
available plus the TLOG commands (crlog, dslog, and inlog) and boot.

Once tmadmin has been invoked, commands may be entered at the prompt (">")
according to the following syntax: command [arguments].

Several commonly occurring arguments can be given defaults via the default
command. Commands that accept parameters set via the default command check
default to see if a value has been set. If one hasn’t, an error message is returned. In a
networked or multiprocessor environment, a single bulletin board can be accessed by
setting a default machine (the logical machine id (LMID) as listed in the MACHINES
section of the UBBCONFIG file). If the default machine is set to all, all bulletin boards
are accessed. If machine is set to DBBL, the distinguished bulletin board is addressed.
The default machine is shown as part of the prompt, as in: MASTER> .

If the machine is not set via the default command, the DBBL is addressed (the local
BBL is used in a SHM configuration). The machine value for a command can generally
be obtained from the default setting (printserver is an example). A caution is required
here, however, because some commands (the TLOG commands, for example) act on
devices found through TUXCONFIG; a default setting of DBBL or all results in an error.
There are some commands where the machine value must be provided on the
command line (logstart is an example); the value does not appear as an argument to
the -m option. Once set, a default remains in effect until the session is ended, unless
changed by another default command. Defaults may be overridden by entering an
explicit value on the command line, or unset by entering the value "*". The effect of
an override lasts for a single instance of the command. Output from tmadmin
commands is paginated according to the pagination command in use (see the
paginate subcommand below). There are some commands that have either verbose
or terse output. The verbose command can be used to set the default output level.
However, each command (except boot, shutdown and config) takes a -v or -t
option to turn verbose or terse output on for that command only. When output is
printed in terse mode, some of the information (for example, LMID or GROUP name,

D Tuxedo Commands

D-10 BEA eLink Adapter Development Kit User Guide

service or server name) may be truncated. This is indicated by a plus sign, +, at the end
of the value. The entire value may be seen by re-entering the command in verbose
mode.

tmadmin
Commands

Commands may be entered either by their full name or their abbreviation (as given in
parentheses), followed by any appropriate arguments. Arguments appearing in square
brackets, [], are optional; those in curly braces, {}, indicate a selection from mutually
exclusive options. Note that command line options that do not appear in square
brackets need not appear on the command line (that is, they are optional) if the
corresponding default has been set via the default command. Ellipses following a
group of options in curly brackets, {}..., indicate that more than one of the options may
appear on the command line (at least one must appear).

aborttrans (abort) [-yes] [-g groupname] tranindex

If groupname is specified (on the command line or by default), abort the transaction
associated with the specified transaction index, tranindex, at the specified server
group. Otherwise, notify the coordinator of the transaction to abort the global
transaction. If the transaction is known to be decided and the decision was to commit,
aborttrans will fail. The index is taken from the previous execution of the
printtrans command. To completely get rid of a transaction, printtrans and
aborttrans must be executed for all groups that are participants in the transaction.
This command should be used with care.

The following provides a brief description of tmadmin commands. For a complete
description see the online documentation.

advertise (adv) {-q qaddress [-g groupname][-i srvid] | -g
groupname -i srvid} service[:func]

Create an entry in the service table for the indicated service

bbclean (bbc) machine

Check the integrity of all accessers of the bulletin board residing on machine
machine, and the DBBL as well

bbparms (bbp)

Print a summary of the bulletin board’s parameters, such as maximum number
of servers and services.

bbsread (bbls) machine

List the IPC resources for the bulletin board on machine machine. In SHM
mode, the machine parameter is optional. Information from remote machines
is not available.

tmadmin

BEA eLink Adapter Development Kit User Guide D-11

bbstats (bbs)
Print a summary of bulletin board statistics. (See also shmstats)

boot (b) [options]

This command is identical to the tmboot command. See tmboot for an
explanation of options and restrictions on use.

broadcast (bcst) [-m machine] [-u usrname] [-c cltname] [text]

Broadcasts an unsolicited notification message to all selected clients

changeload (chl) [-m machine] {-q qaddress [-g groupname][-i srvid]
| -g groupname -i srvid } -s service newload

Change the load associated with the specified service to newload.

changepriority (chp) [-m machine] {-q qaddress [-g groupname][-s
srvid] | -g groupname -i srvid } -s service newpri

Change the dequeuing priority associated with the specified service newpri.

changetrace (chtr) [-m machine] [-g groupname] [-i srvid] newspec

Change the runtime tracing behavior of currently executing processes to
newspec.

changetrantime (chtt) [-m machine] {-q qaddress [-g groupname] -
[-s srvid] | -g groupname -i srvid } -s service newtlim

Change the transaction timeout value associated with the specified service to
newtlim.

committrans (commit) [-yes] -g groupname tranindex

Commit the transaction associated with the specified transaction index
tranindex at the specified server group.

config (conf)

This command is identical to the tmconfig command.

crdl -b blocks -z config -o configoffset [-O newdefoffset] [
newdevice]

Create an entry in the universal device list.

crlog (crlg) -m machine

Create the DTP transaction log for the named or default machine (it cannot be
"DBBL" or "all").

default (d) [-g groupname] [-i srvid] [-m machine] [-u usrname] [-
c cltname][-q qaddress] [-s service] [-b blocks] [-o offset] [-z
config] [-a { 0|1|2 }]

Set the corresponding argument to be the default group name, server ID,
machine, user name, client name, queue address, service name, device blocks,

D Tuxedo Commands

D-12 BEA eLink Adapter Development Kit User Guide

device offset, or UDL configuration device path (it must be an absolute
pathname starting with /).

dsdl [-yes] -z config [-o offset] dlindex

Destroy an entry found in the universal device list

dslog (dslg) [-yes] -m machine

Destroy the DTP transaction log for the named or default machine (it cannot
be "DBBL" or "all").

dump (du) filename

Dump the current bulletin board into the file filename.

dumptlog (dl) -z config [-o offset] [-n name] [-g groupname]
filename

Dumps an ASCII version of the TLOG into the specified filename

echo (e) [{off | on}]

Echo input command lines when set to on.

help (h) [{command | all}]

Print help messages.

initdl (indl) [-yes] -z config [-o offset] dlindex

Reinitializes a device on the device list.

inlog [-yes] -m machine

Reinitialize the DTP transaction log for the named or default machine (it
cannot be "DBBL" or "all

lidl -z config [-o offset] [dlindex]
Print the universal device list.

livtoc -z config [-o offset]

Prints information for all VTOC table entries.

loadtlog -m machine filename

Read the ASCII version of a TLOG from the specified filename (produced by
dumptlog) into the existing TLOG for the named or default machine (it cannot
be "DBBL" or "all").

logstart machine

 Force a warm start for the TLOG information on the specified machine.

master (m) [-yes]

If run on the backup node when partitioned, the backup node takes over as the
acting master node and a DBBL is booted to take over administrative
processing.

tmadmin

BEA eLink Adapter Development Kit User Guide D-13

migrategroup (migg) [-cancel] group_name

The migrategroup command takes the name of a server group.

migratemach (migm) [-cancel] machine

All servers running on the specified machine are migrated to their alternate
location.

paginate (page) [{off | on}]

Paginate output.

passwd

Prompt the administrator for a new application password in an application
requiring security.

pclean (pcl) machine

pclean first forces a bbclean on the specified machine to restart or cleanup
any servers that may require it.

printclient (pclt) [-m machine] [-u usrname] [-c cltname]

Print information for the specified set of client processes.

printconn (pc) [-m machine]

Print information about conversational connections.

printgroup (pg) [-m machine] [-g groupname]

Print server group table information.

printnet (pnw) [mach_list]

Print network connection information.

printqueue (pq) [qaddress]

Print queue information for all application and administrative servers.

printserver (psr) [-m machine] [-g groupname] [-i srvid] [-q
qaddress]

Print information for application and administrative servers.

printservice (psc) [-m machine] [-g groupname] [-i srvid] [-a
{ 0|1|2 }][-q qaddress] [-s service]

Print information for application and administrative services.

printtrans (pt) [-g groupname] [-m machine]

Print global transaction table information for either the specified or the
default machine.

quit (q)
Terminate the session.

D Tuxedo Commands

D-14 BEA eLink Adapter Development Kit User Guide

reconnect (rco) non-partitioned_machine1 partitioned_machine2

Initiate a new connection from the non-partitioned machine to the partitioned
machine.

resume (res) {-q qaddress | -g groupname | -i srvid | -s service} ...

Resume (unsuspend) services.

serverparms (srp) -g groupname -i srvid

Print the parameters associated with the server specified by groupname and
srvid for a group.

serviceparms (scp) -g groupname -i srvid -s service

Print the parameters associated with the service specified by groupname,
srvid and service.

shmstats (sstats) [ex | app]

If MODEL SHM is specified in the configuration file, shmstats can be used to
assure more accurate statistics.

shutdown (stop) [options]

This command is identical to the tmshutdown command.

suspend (susp) {-q qaddress | -g groupname | -i srvid | -s service}
...

Suspend services.

unadvertise (unadv) {-q qaddress [-g groupname] [-i srvid] | -g
groupname -i srvid} service

Remove an entry in the service table for the indicated service.

verbose (v) [{off | on}]
Produce output in verbose mode.

! shellcommand

Escape to shell and execute shellcommand.

!!

Repeat previous shell command.

[text]

Lines beginning with "#" are comment lines and are ignored.

CR>

Repeat the last command.

tmboot

BEA eLink Adapter Development Kit User Guide D-15

Environment
Variables

tmadmin acts as an application client if the -r option is used or if it cannot register as
the application administrator. If this is the case, then the APP_PW environment variable
must be set to the application password in a security application if standard input is not
from a terminal.

Diagnostics If the tmadmin command is entered before the system has been booted, the following
message is displayed:

No bulletin board exists. Entering boot mode
>

tmadmin then waits for a boot command to be entered. If the tmadmin command is
entered, without the -c option, on an inactive node that is not the MASTER, the
following message is displayed and the command terminates:

Cannot enter boot mode on non-master node.

If an incorrect application password is entered or is not available to a shell script
through the environment, then a log message is generated, the following message is
displayed and the command terminates:

Invalid password entered.

tmboot

Function Bring up a BEA Tuxedo configuration

Synopsis tmboot [-l lmid] [-g grpname] [-i srvid] [-s aout] [-o sequence]
[-S] [-A] [-b] [-B lmid] [-T grpname] [-e command] [-w] [-y] [-q]
[-n] [-c] [-M] [-d1]

Description tmboot brings up a BEA Tuxedo application in whole or in part depending on the
options specified. tmboot can be invoked only by the administrator of the bulletin
board (as indicated by the UID parameter in the configuration file) or by root. tmboot
can be invoked only on the machine identified as MASTER in the RESOURCES section
of the configuration file, or the backup acting as the MASTER, that is, with the DBBL
already running (via the master command in tmadmin). Except, if the -b option is
used, the system can be booted from the backup machine without it having been
designated as the MASTER. With no options, tmboot executes all administrative
processes and all servers listed in the SERVERS section of the configuration file

D Tuxedo Commands

D-16 BEA eLink Adapter Development Kit User Guide

named by the environment variables, TUXCONFIG and TUXOFFSET. If the MODEL is MP,
a DBBL administrative server is started on the machine indicated by the MASTER
parameter in the RESOURCES section. An administrative server (BBL) is started on
every machine listed in the MACHINES section. For each group in the GROUPS
section, TMS servers are started based on the TMSNAME and TMSCOUNT parameters for
each entry. All administrative servers are started followed by servers in the SERVERS
sections. Any TMS or gateway servers for a group are booted before the first
application server in the group is booted. The TUXCONFIG file is propagated to remote
machines as necessary. tmboot normally waits for a booted process to complete its
initialization (that is, tpsvrinit()) before booting the next process. Booting a
gateway server implies that the gateway advertises its administrative service, and also
advertises the application services representing the foreign services based on the
CLOPT parameter for the gateway (-A will cause all services defined when the gateway
is built with buildgateway to be advertised; -s can be used to give a list of services).
If the instantiation has the concept of foreign servers, these servers are booted by the
gateway at this time. Booting an LMID is equivalent to booting all groups on that
LMID. Application servers are booted in the order specified by the SEQUENCE
parameter, or in the order of server entries in the configuration file (see description in
ubbconfig). If two or more servers in the SERVERS section of the configuration file
have the same SEQUENCE parameter, then tmboot may boot these servers in parallel
and will not continue until they all complete initialization. Each entry in the SERVERS
section can have a MIN and MAX parameter. tmboot boots MIN application servers (the
default is 1 if MIN is not specified for the server entry) unless the -i option is specified;
using the -i option causes individual servers to be booted up to MAX occurrences. If a
server can not be started, a diagnostic is written on the central event log (and to the
standard output, unless -q is specified), and tmboot continues -- except that if the
failing process is a BBL, servers that depend on that BBL are silently ignored; if the
failing process is a DBBL, tmboot ignores the rest of the configuration file. If a server
is configured with an alternate LMID and fails to start on its primary machine, tmboot
automatically attempts to start the server on the alternate machine and, if successful,
sends a message to the DBBL to update the server group section of TUXCONFIG. For
servers in the SERVERS section, only CLOPT, SEQUENCE, SRVGRP and SRVID are used
by tmboot. Collectively, these are known as the server’s boot parameters. Once the
server has been booted, it reads the configuration file to find its runtime parameters.
(See ubbconfig(5) for a description of all parameters.) All administrative and
application servers are booted with APPDIR as their current working directory. The
value of APPDIR is specified in the configuration file in the MACHINES section for
the machine on which the server is being booted. The search path for the server
executables is APPDIR, followed by TUXDIR/bin, followed by /bin and /usr/bin,
followed by any PATH specified in the ENVFILE for the MACHINE. The search path
is only used if an absolute path name is not specified for the server. Values placed in

tmboot

BEA eLink Adapter Development Kit User Guide D-17

the server’s ENVFILE are not used for the search path. When a server is booted, the
variables TUXDIR, TUXCONFIG, TUXOFFSET, and APPDIR, with values specified in the
configuration file for that machine, are placed in the environment. The environment
variable LD_LIBRARY_PATH is also placed in the environment of all servers. Its value
defaults to $APPDIR:$TUXDIR/lib:/lib:/usr/lib:lib> where lib> is the value
of the first LD_LIBRARY_PATH= line appearing in the machine ENVFILE. See
ubbconfig for a description of the syntax and use of the ENVFILE. The ULOGPFX for
the server is also set up at boot time based on the parameter for the machine in the
configuration file. If not specified, it defaults to $APPDIR/ULOG. All of these
operations are performed before the application initialization function, tpsvrinit(),
is called. Many of the command line options of tmboot serve to limit the way in which
the system is booted and can be used to boot a partial system. The following options
are supported:

-l lmid

For each group whose associated LMID parameter is lmid, all TMS and
gateway servers associatedmwith the group are booted and all servers in the
SERVERS section associated with those groups are executed.

-g grpname
All TMS and gateway servers for the group whose SRVGRP parameter is
grpname are started followed by all servers in the SERVERS section
associated with that group. TMS servers are started based on the TMSNAME and
TMSCOUNT parameters for the group entry.

-i srvid

 All servers in the SERVERS section whose SRVID parameter is srvid are
executed.

-s aout

All servers in the SERVERS section with name aout are executed. This
option can also be used to boot TMS and gateway servers; normally this
option would be used in this way in conjunction with the -g option.

-o sequence

All servers in the SERVERS section with SEQUENCE parameter sequence are
executed.

-S
All servers in the SERVERS section are executed.

-A

All administrative servers for machines in the MACHINES section are
executed. Use this option to guarantee that the DBBL and all BBL and

D Tuxedo Commands

D-18 BEA eLink Adapter Development Kit User Guide

BRIDGE processes are brought up in the correct order (also see the -M
option).

-b
Boot the system from the BACKUP machine, (without having to make it the
MASTER).

-B lmid

A BBL is started on a processor with logical name lmid.

-M
This option starts administrative servers on the master machine. If the
MODEL is MP, a DBBL administrative server is started on the machine
indicated by the MASTER parameter in the RESOURCES section. A BBL is
started on the MASTER machine, and a BRIDGE is started if the LAN option
and a NETWORK entry are specified in the configuration file.

-d1
Causes command line options to be printed on the standard output. Useful
when preparing to use sdb to debug application services.

-T grpname
All TMS servers for the group whose SRVGRP parameter is grpname are
started (based on the TMSNAME and TMSCOUNT parameters associated with the
group entry). This option is the same as booting based on the TMS server
name (-s option) and the group name (-g).

-e command
Causes command to be executed if any process fails to boot successfully.
command can be any program, script, or sequence of commands understood
by the command interpreter specified in the SHELL environment variable.
This allows an opportunity to bail out of the boot procedure. If command
contains white space, the entire string must be enclosed in quotes. This
command is executed on the machine on which tmboot is being run, not on
the machine where the server is being booted.

-w

Informs tmboot not to wait for servers to complete initialization before
booting another server. This option should be used with caution. BBLs
depend on the presence of a valid DBBL, ordinary servers require a running
BBL on the processor on which they are placed. These conditions can not be
guaranteed if servers are not started in a synchronized manner.This option
overrides the waiting that is normally done when servers have sequence
numbers.

tmboot

BEA eLink Adapter Development Kit User Guide D-19

-y

Assumes a yes answer to a prompt that asks if all administrative and server
processes should be booted. (The prompt appears only when the command is
entered with none of the limiting options.)

-q

Suppresses the printing of the execution sequence on the standard output. It
implies -y.

-n

The execution sequence is printed, but not performed.

-c

Minimum IPC resources needed for this configuration are printed. When the
-l, -g, -i, -o, and -s options are used in combination, only servers that
satisfy all qualifications specified will be booted. The -l, -g, -s, and -T
options cause TMS servers to be booted; the -l, -g, and -s options cause
gateway servers to be booted; the -l, -g, -i, -o, -s, and -S options
apply to application servers. Options that boot application servers will fail if
a BBL is not available on the machine.The -A, -M, and -B options apply
only to administrative processes. The standard input, standard output, and
standard error file descriptors will be closed for all booted servers.

Environment
Variables

During the installation process, an administrative password file is created. When
necessary, BEA Tuxedo searches for this file in the following directories (in the order
shown): APPDIR/.adm/tlisten.pw TUXDIR/udataobj/tlisten.pw To ensure
that your password file will be found, make sure you have set the APPDIR and/or
TUXDIR environment variables.

Diagnostics If TUXCONFIG is set to a non-existent file, two fatal error messages are displayed: error
processing configuration file configuration file not found If tmboot fails to boot a
server, it will exit with exit code 1 and the user log should be examined for further
details; otherwise it will exit with exit code 0. If tmboot is run on an inactive non-
master node, a fatal error message is displayed: tmboot cannot run on a non-master
node. If tmboot is run on an active node that is not the acting master node, a fatal error
message is displayed:

tmboot cannot run on a non acting-master node in an active
application.

If the same IPCKEY is used in more than one TUXCONFIG file, tmboot fails with the
following message:

Configuration file parameter has been changed since last tmboot

D Tuxedo Commands

D-20 BEA eLink Adapter Development Kit User Guide

If there are multiple node names in the MACHINES section in a non-LAN
configuration, a fatal error message is displayed: Multiple nodes not allowed in
MACHINES for non-LAN application.

Examples To start only those servers located on the machines logically named CS0 and CS1:

tmboot -l CS0 -l CS1

To start only those servers named CREDEB and belonging to group DBG1:

tmboot -g DBG1 -s CREDEB1

To boot a BBL on the machine logically named PE8, as well as all those servers whose
location is specified as PE8:

tmboot -B PE8 -l PE8

To view minimum IPC resources needed for the configuration:

tmboot -c

tmloadcf

Function Parse a UBBCONFIG file and load binary TUXCONFIG configuration file

Synopsis tmloadcf [-n] [-y] [-c] [-b blocks] {ubbconfig_file | -}

Description tmloadcf reads a file or the standard input that is in UBBCONFIG syntax, checks the
syntax, and optionally loads a binary TUXCONFIG configuration file. The TUXCONFIG
and (optionally) TUXOFFSET environment variables point to the TUXCONFIG file and
(optional) offset where the information should be stored. tmloadcf can only be run on
the MASTER machine, as defined in the RESOURCES section of the UBBCONFIG file,
unless the -c or -n option is specified. tmloadcf prints a warning message if it finds
any section of the UBBCONFIG file missing, other than a missing NETWORK section
in a configuration where the LAN OPTION is not specified (see ubbconfig) or a
missing ROUTING section. If a syntax error is found while parsing the input file,
tmloadcf exits without performing any updates to the TUXCONFIG file. The effective
user identifier of the person running tmloadcf must match the UID, if specified, in the
RESOURCES section of the UBBCONFIG file. The -c option to tmloadcf causes the
program to print minimum IPC resources needed for this configuration. Resource
requirements that vary on a per-processor basis are printed for each processor in the

tmloadcf

BEA eLink Adapter Development Kit User Guide D-21

configuration. The TUXCONFIG file is not updated. The -n option to tmloadcf causes
the program to do only syntax checking of the ASCII UBBCONFIG file without actually
updating the TUXCONFIG file. After syntax checking, tmloadcf checks to see if the
file pointed to by TUXCONFIG exists, is a valid BEA Tuxedo system file system, and
contains TUXCONFIG tables. If these conditions are not true, the user is prompted to
decide if they want tmloadcf to create and initialize the file with Initialize
TUXCONFIG file: path [y, q]? Prompting is suppressed if the standard input or
output are not terminals, or if the -y option is specified on the command line. Any
response other than "y" or "Y" will cause tmloadcf to exit without creating the
configuration file. If the TUXCONFIG file is not properly initialized, and the user has
given the go-ahead, tmloadcf creates the BEA Tuxedo system file system and then
creates the TUXCONFIG tables. If the -b option is specified on the command line, its
argument is used as the number of blocks for the device when creating the BEA
Tuxedo system file system. If the value of the -b option is large enough to hold the
new TUXCONFIG tables, tmloadcf will use the specified value to create the new file
system; otherwise, tmloadcf will print an error message and exit. If the -b option is
not specified, tmloadcf will create a new file system large enough to hold the
TUXCONFIG tables. The -b option is ignored if the file system already exists. The -b
option is highly recommended if TUXCONFIG is a raw device (that has not been
initialized) and should be set to the number of blocks on the raw device. The -b option
is not recommended if TUXCONFIG is a regular UNIX file. If the TUXCONFIG file is
determined to already have been initialized, tmloadcf ensures that the system
described by that TUXCONFIG file is not running. If the system is running, tmloadcf
prints an error message and exits. If the system is not running and TUXCONFIG file
already exists, tmloadcf will prompt the user to confirm that the file should be
overwritten with Really overwrite TUXCONFIG file [y, q]? Prompting is
suppressed if the standard input or output are not a terminal or if the -y option is
specified on the command line. Any response other than "y" or "Y" will cause
tmloadcf to exit without overwriting the file. If the SECURITY parameter is specified
in the RESOURCES section of the configuration, then tmloadcf will flush the
standard input, turn off terminal echo and prompt the user for an application password
as follows:

Enter Application Password?
Reenter Application Password?

The password is limited to 30 characters. The option to load the ASCII UBBCONFIG file
via the standard input (rather than a file) cannot be used when the SECURITY parameter
is turned on. If the standard input is not a terminal, that is, if the user cannot be
prompted for a password (as with a here file, for example), then the environment
variable APP_PW is accessed to set the application password. If the environment
variable APP_PW is not set with the standard input not a terminal, then tmloadcf will

D Tuxedo Commands

D-22 BEA eLink Adapter Development Kit User Guide

print an error message, generate a log message and fail to load the TUXCONFIG file.
Assuming no errors, and if all checks have passed, tmloadcf loads the UBBCONFIG file
into the TUXCONFIG file. It will overwrite all existing information found in the
TUXCONFIG tables. Note that some values are rounded during the load and may not
match when they are unloaded. These include but are not limited to MAXRFT and
MAXRTDATA.

Environment
Variables

The environment variable APP_PW must be set for applications that have the SECURITY
parameter is specified and run tmloadcf with something other than a terminal as the
standard input.

Examples To load a configuration file from UBBCONFIG file BB.shm, initialized the device with
2000 blocks:

tmloadcf -b2000 -y BB.shm

Diagnostics If an error is detected in the input, the offending line is printed to standard error along
with a message indicating the problem. If a syntax error is found in the UBBCONFIG file
or the system is currently running, no information is updated in the TUXCONFIG file and
tmloadcf exits with exit code 1. If tmloadcf is run by a person whose effective user
identifier doesn’t match the UID specified in the UBBCONFIG file, the following error
message is displayed:

*** UID is not effective user ID ***

If tmloadcf is run on a non-master node, the following error message is displayed:

tmloadcf cannot run on a non-master node.

If tmloadcf is run on an active node, the following error message is displayed:

tmloadcf cannot run on an active node.

Upon successful completion, tmloadcf exits with exit code 0. If the TUXCONFIG file
is updated, a userlog message is generated to record this event.

tmshutdown

Function Shutdown a set of BEA Tuxedo servers

Synopsis tmshutdown [options]

tmshutdown

BEA eLink Adapter Development Kit User Guide D-23

Description tmshutdown stops the execution of a set of servers or removes the advertisements of
a set of services listed in a configuration file. Only the administrator of the bulletin
board (as indicated by the UID parameter in the configuration file) or root can invoke
the tmshutdown command. tmshutdown can be invoked only on the machine
identified as MASTER in the RESOURCES section of the configuration file, or the
backup acting as the MASTER, that is, with the DBBL already running (via the master
command in tmadmin). An exception to this is the -P option which is used on
partitioned processors (see below). With no options, tmshutdown stops all
administrative, TMS, and gateway servers, and servers listed in the SERVERS section
of the configuration file named by the TUXCONFIG environment variable and removes
their associated IPC resources. For each group, all servers in the SERVERS section, if
any, are shutdown followed by any associated gateway servers (for foreign groups) and
TMS servers. Administrative servers are shutdown last. Application servers without
SEQUENCE parameters are shutdown first in reverse order of the server entries in the
configuration file, followed by servers with SEQUENCE parameters that are shutdown
from high to low sequence number. If two or more servers in the SERVERS Section
of the configuration file have the same SEQUENCE parameter, then tmshutdown may
shut down these servers in parallel. Each entry in the SERVERS Section may have an
optional MIN and MAX parameter. tmshutdown shuts down all occurrences of a server
(up to MAX occurrences) for each server entry, unless the -i option is specified; using
the -i option causes individual occurrences to be shut down. If it is not possible to
shutdown a server, or remove a service advertisement, a diagnostic is written on the
central event log (see userlog). The following is a description of all options:

-l lmid
For each group whose associated LMID parameter is lmid, all servers in the
SERVERS section associated with the group are shut down, followed by any
TMS and gateway servers associated with the group.

-g grpname
All servers in the SERVERS section associated with the specified group (that
is, whose SRVGRP parameter is grpname) are shutdown, followed by all TMS
and gateway servers for the group. TMS servers are shutdown based on the
TMSNAME and TMSCOUNT parameters for the group entry. For a foreign group,
the gateway servers for the associated entry in the HOST section are
shutdown based on GATENAME and GATECOUNT. Shutting down a gateway
implies its administrative service and all advertised foreign services are
unadvertised, in addition to stopping the process.

-i srvid
All servers in the SERVERS section whose SRVID parameter is srvid are
shutdown. Do not enter a SRVID greater than 30,000; this indicates system

D Tuxedo Commands

D-24 BEA eLink Adapter Development Kit User Guide

processes (that is, TMSs or gateway servers) that should only be shutdown via
the -l or -g options.

-s aout
All servers in the SERVERS section with name aout are shutdown. This
option can also be used to shutdown TMS and gateway servers.

-o sequence
All servers in the SERVERS section with SEQUENCE parameter sequence are
shutdown.

-S
All servers in the SERVERS section are shutdown.

-A
All administrative servers are shutdown.

-M

This option shuts down administrative servers on the master machine. The
BBL is shut down on the MASTER machine, and the BRIDGE is shut down
if the LAN option and a NETWORK entry are specified in the configuration
file. If the MODEL is MP, the DBBL administrative server is shut down.

-B lmid
The BBL on the processor with logical name lmid is shutdown.

-T grpname
All TMS servers for the server group whose SRVGRP parameter is grpname
are shut down (based on the TMSNAME and TMSCOUNT parameters associated
with the server group entry).

-w delay
Tells tmshutdown to suspend all selected servers immediately and waits for
shutdown confirmation for only delay seconds before forcing the server to
shut down by sending a SIGTERM and then a SIGKILL signal to the server.
Note: Servers to which the -w option may be applied should not catch the
UNIX signal SIGTERM.

-k {TERM|KILL}

tmshutdown suspends all selected servers immediately and forces them to
shut down in an orderly fashion (TERM) or preemptively (KILL).
Note: This option maps to the UNIX signals SIGTERM and SIGKILL on
platforms which support them. By default, a SIGTERM initiates orderly

tmshutdown

BEA eLink Adapter Development Kit User Guide D-25

shutdown in a BEA Tuxedo server. Application resetting of SIGTERM could
cause to be unable to shutdown the server.

-y
Assumes a yes answer to a prompt that asks if all administrative and server
processes should be shutdown. (The prompt appears only when the command
is entered with none of the limiting options.)

-q
Suppresses the printing of the execution sequence on the standard output. It
implies -y.

-n

The execution sequence is printed, but not performed.

-R

For migration operations only, shuts down a server on the original processor
without deleting its bulletin board entry in preparation for migration to
another processor. The -R option must be used with either the -l or -g option
(e.g., tmshutdown -l lmid -R) The MIGRATE option must be specified in
the RESOURCES section of the configuration file.

-c

Shuts down BBLs even if clients are still attached.

-H lmid

On a uniprocessor, all administrative and applications servers on the node
associated with the specified lmid are shut down. On a multiprocessor(e.g.,
3B4000), all PEs are shut down, even if only one PE is specified.

-P lmid

With this option, tmshutdown attaches to the bulletin board on the specified
lmid, ensures that this lmid is partitioned from the rest of the application
(that is, does not have access to the DBBL), and shuts down all administrative
and application servers. It must be run on the processor associated with the
lmid in the MACHINES section of the configuration file. The -l, -g, -s,
and -T options cause TMS servers to be shut down; the -l, -g, and -s
options cause gateway servers to be shut down; the -l, -g, -i, -s, -o,
and -S options apply to application servers; the -A, -M, and -B options apply
only to administrative processes. When the -l, -g, -i, -o, and -s options
are used in combination, only servers that satisfy all qualifications specified
will be shut down. If the distributed transaction processing feature is being
used such that global transactions are in progress when servers are shutdown,
transactions that have not yet reached the point where commit is logged after

D Tuxedo Commands

D-26 BEA eLink Adapter Development Kit User Guide

pre-commit will be aborted; transactions that have reached the commit point
will be completed when the servers (for example, TMS) are booted again.

Diagnostics If tmshutdown fails to shut down a server or a fatal error occurs, it will exit with exit
code 1 and the user log should be examined for further details; otherwise it will exit
with exit code 0. If tmshutdown is run on an active node that is not the acting master
node, a fatal error message is displayed:

tmshutdown cannot run on a non acting-master node in an active
application.

If shutting down a process would partition active processes from the DBBL, a fatal
error message is displayed:

cannot shutdown, causes partitioning.

If a server has died, the following somewhat ambiguous message is produced:
CMDTUX_CAT:947

Cannot shutdown server GRPID

Examples To shutdown the entire system and remove all BEA Tuxedo IPC resources (force it if
confirmation not received in 30 seconds):

tmshutdown -w 30

To shutdown only those servers located on the machine with lmid of CS1. Since the -
l option restricts the action to servers listed in the SERVERS section, theBBL on CS1
is not shutdown:

tmshutdown -l CS1

ud, ud32, wud, wud32

Function BEA Tuxedo driver program

Synopsis ud [-p] [-ddelay] [-eerror_limit] [-r] [-ssleeptime] [-ttimeout]
[-n] [-u {n | u | j}] [-Uusrname] [-Ccltname] [-Sbuffersize]
ud32 [options]
wud [options]
wud32 [options]

ud, ud32, wud, wud32

BEA eLink Adapter Development Kit User Guide D-27

Description ud reads an input packet from its standard input using Fextread. The packet must
contain a field identified as the name of a service. The input packet is transferred to an
FML fielded buffer (FBFR) and sent to the service. If the service that receives the FBFR
is one that adds records to a database, ud provides a method for entering bulk fielded
data into a database known to the BEA Tuxedo system. By using flags (see INPUT
FORMAT) to begin the lines of the input packet, you can use ud to test BEA Tuxedo
services. By default, after sending the FBFR to the service, ud expects a return FBFR.
The sent and reply FBFRs are printed to ud’s standard output; error messages are
printed to standard error. ud32 uses FML32 buffers of type FBFR32. wud and wud32
are versions of ud and ud32 built using the Workstation libraries. On sites supporting
just Workstation, only the wud and wud32 commands will be present.

Options ud supports the following options:

-p

suppress printing of the sent and returned fielded buffers.

-d

expect a delayed reply for every request. delay specifies the maximum delay
time in seconds before time out. If time-out occurs, an error message is
printed on stderr. If ud receives reply messages for previous requests within
the delay time, they will be indicated as delayed RTN packets. Hence, it is
possible to receive more than one reply packet within a delay time interval.
The -d option is not available for wud on DOS operating systems.

-e error_limit
ud stops processing requests when errors exceed the limit specified in
error_limit. If no limit is specified, the default is 25.

-r

ud should not expect a reply message from servers.

-s sleeptime

sleep between sends of input buffers. sleeptime is the time, in seconds, of
the sleep.

-t timeout

ud should send requests in transaction mode. timeout is the time, in seconds,
before the transaction is timed out. The -d delay and -r (no reply) options
are not allowed in combination with the -t option.

-u {n | u | j}

specify how the request buffer is modified before reading each new packet.
The n option indicates that the buffer should be reinitialized (treated as new).
The u option indicates that the buffer should be updated with the reply buffer

D Tuxedo Commands

D-28 BEA eLink Adapter Development Kit User Guide

using Fupdate. The j option indicates that the reply buffer should be joined
with the request buffer using Fojoin.

-n

reinitialize the buffer before reading each packet (i.e., treat each buffer as a
new buffer). This option is equivalent to -un and is maintained for
compatibility.

-U usrname

Use usrname as the user name when joining the application.

-S buffersize
If the default buffer size is not large enough, the -S option can be used to raise
the limit. buffersize can be any number up to MAXLONG. The -d delay and
-r options are mutually exclusive.

Input Format Input packets consist of lines formatted as follows:

[flag]fldname fldval

flag is optional. If flag is not specified, a new occurrence of the field named by
fldname with value fldval is added to the fielded buffer. If flag is specified, it should
be one of:

+

occurrence 0 of fldname in FBFR should be changed to fldval.

-

occurrence 0 of fldname should be deleted from FBFR. The tab character is
required; fldval is ignored.

=

the value in fldname should be changed. In this case, fldval specifies the
name of a field whose value should be assigned to the field named by
fldname.

the line is treated as a comment and is ignored.

If fldname is the literal value SRVCNM, fldval is the name of the service to which
FBFR is to be passed. Lengthy field values can be continued on the next line by having
the continuation line begin with a tab. A line consisting only of the newline character
ends the input and sends the packet to ud. If an input packet begins with a line
consisting of the character n followed by the newline character, the FBFR is
reinitialized. FBFR reinitialization can be specified for all packets with the -un option
on the command line. To enter an unprintable character in the input packet, use the

ud, ud32, wud, wud32

BEA eLink Adapter Development Kit User Guide D-29

escaping convention followed by the hexadecimal representation of the desired
character (see ASCII(5) in a UNIX reference manual). An additional backslash is
needed to protect the escape from the shell. A space, for example, can be entered in the
input data as 20. ud recognizes all input in this format, but its greatest usefulness is for
non-printing characters.

Processing
Model

Initially, ud reads a fielded buffer from its standard input and sends it to the service
whose name is given by the fldval of the line where fldname equals SRVCNM. Unless
the -r option is selected, ud waits for a reply fielded buffer. After obtaining the reply,
ud reads another fielded buffer from the standard input. In so doing, ud retains the
returned buffer as the current buffer. This means that the lines on the standard input
that form the second fielded buffer are taken to be additions to the buffer just returned.
That is, the default action is for ud to maintain a current buffer whose contents are
added to by a set of input lines. The set is delimited by a blank line. ud may be
instructed to discard the current buffer (that is, to reinitialize its FBFR structure) either
by specifying the -un option on the command line, or by including a line whose only
character is the letter n as the first line of an input set. ud may be instructed to merge
the contents of the reply buffer into the request buffer by specifying either the -uu
option (Fupdate is used) or the -uj option (Fojoin is used).

Environment
Variables

FLDTBLDIR and FIELDTBLS must be set and exported. FLDTBLDIR must include
$TUXDIR/udataobj in the list of directories. FIELDTBLS must include Usysflds as
one of the field tables.

APP_PW must be set to the application password in a security application if standard
input is not from a terminal. TPIDATA must be set to the application specific data
necessary to join the application in a security application with an authentication server
if standard input is not from a terminal.

WSNADDR, WSDEVICE and optionally WSTYPE must be set if access is from a
workstation. See compilation for more details on setting environment variables for
client processes.

Diagnostics ud fails if it cannot become a client process, if it cannot create the needed FBFRs, or if
it encounters a UNIX system error. It also fails if it encounters more than 25 errors in
processing a stream of input packets. These can be syntax errors, missing service
names, errors in starting or committing a transaction, time-outs and errors in sending
the input FBFR or in receiving the reply FBFR.

Examples $ud <EOF>
SRVCNM BUY
CLIENT J. Jones
ADDR 21 Valley Road

D Tuxedo Commands

D-30 BEA eLink Adapter Development Kit User Guide

STOCK AAA
SHARES 100
<CR>
+SRVCNM SELL
+STOCK XXX
+SHARES 300
STOCK YYY
SHARES 150
<CR>
n
SRVCNM BUY
CLIENT T. Smith
ADDR 1 Main Street
STOCK BBB
SHARES 175
<CR>
+SRVCNM SELL
+STOCK ZZZ
+SHARES 100
<CR>
EOF
$

In this example, ud first sends a fielded buffer to the service BUY with CLIENT field set
to J. Jones, ADDR field set to 21 Valley Road, STOCK field to AAA, and SHARES field
set to 100. When the fielded buffer is returned from the BUY service, ud uses the next
set of lines to change SRVCNM to SELL, STOCK to XXX, and SHARES to 300. Also, it
creates an additional occurrence of the STOCK field with value YYY and an additional
occurrence of the SHARES field with value 150. This fielded buffer is then sent to the
SELL service (the new value of the SRVCNM field). When SELL sends back a reply
fielded buffer, ud discards it by beginning the next set of lines with a line containing
only the character n. ud then begins building an entirely new input packet with a
SRVCNM of BUY, CLIENT of value T. Smith, and so on.

BEA eLink Adapter Development Kit User Guide E-1

APPENDIX

E Servopts

The following information about Servopts is excerpted from the Tuxedo Online
Documentation. For additional details and a complete list of Tuxedo functions and
commands, see http://edocs.beasys.com/tuxedo/tux65/index.htm.

Synopsis AOUT CLOPT= [-A][-s{@filename|service[,service...][:func]}]
[-e stderr_file][-p [L][low_water][,[terminate_time]]
[:[high_water][,create_time]][-h][-l locktype][-n prio]
[-o stdout_file][-r][-- uargs]

Description servopts is not a command. Rather, it is a list of run-time options recognized by
servers in a BEA

Tuxedo system. The server using these options may be one of the BEA Tuxedo system-
supplied servers such as FRMPRT, or it may be an application-supplied server built with
the buildserver command. Running servers in a BEA Tuxedo system is
accomplished through the tmboot and tmadmin commands working with servers (and
other resources) specified in the application configuration file. Desired selections from
the servopts list are specified with the server in the configuration file. The following
options are recognized:

-A

indicates that the server should initially offer all services with which it was
constructed. For BEA Tuxedo system-supplied servers, -A is the only way of
specifying services.

-s { @filename | service[,service...][:func] }

specifies the names of services to be advertised when the server is booted. In
the most common case, a service is performed by a function that carries the
same name; that is, the x service is performed by function x. For example, the
specification

-s x,y,z

will run the associated server initially offering services x, y, and z, each
processed by a function of the same name. In other cases, a service (or several
services) may be performed by a function of a different name. The

http://edocs.beasys.com/tuxedo/tux65/index.htm

E Servopts

E-2 BEA eLink Adapter Development Kit User Guide

specification, s x,y,z:abc runs the associated server with initial services x,
y, and z, each processed by the function abc. Spaces are not allowed between
commas. Function name is preceded by a colon. Service name (and implicit
function names) must be less than or equal to 15 characters in length. An
explicit function name (that is, a name specified after a colon) can be up to
128 characters in length. Names longer than these limits are truncated with a
warning message. When retrieved by tmadmin or TM_MIB, only the first 15
characters of a name are displayed. A filename can be specified with the -s
option by prefacing the filename with the ‘@’ character. Each line of this file
is treated as an argument to the -s option. You may put comments in this file.
All comments start with ‘#’ or ‘:’. The -s option may be specified multiple
times.

-e

specifies the name of a file to be opened as the server’s standard error file.
Providing this option ensures that a restarted server has the same standard
error file as its predecessors. If this option is not used, a default diversion file
called stderr is created in the directory specified by $APPDIR.

-p [L][low_water][,[terminate_time]][:[high_water][,create_time]]
This option can be used to support automatic spawning/decay of servers. It
may be used for servers on an MSSQ with MAX greater than 1; it is not allowed
(and not necessary) for conversational servers. Arguments to the option have
the following meanings: L The decision to spawn more servers is based on
load rather than number of servers or messages. -- the remaining arguments,
low_water, terminate_time, high_water, and create_time are used to
control when servers are spawned or deactivated. The algorithm is: if the load
meets or exceeds high_water for at least create_time seconds, a new
server is spawned. If the load drops below low_water for at least
terminate_time seconds, a server is deactivated. The L option works only
in SHM mode with load balancing turned on. If SHM/LDBAL+Y is not set, then
a userlog message (LIBTUX_CAT:1542) is printed and no spawning is done.
low_water defaults to an average of 1 server or message on the MSSQ or a
workload of 50. high_water defaults to an average of 2 servers or messages,
or a workload of 100. create_time defaults to 50: terminate_time
defaults to 60.

-h

do not run the server immune to hangups. If not supplied, the server ignores
the hangup signal.

BEA eLink Adapter Development Kit User Guide E-3

-l locktype
lock the server in core. The argument for locktype is t, d, or p according to
whether the text (TXTLOCK), data (DATLOCK), or the entire process (text and
data - PROCLOCK), should be locked. See plock for details. The lock fails if
the server is not run as root. There is no way to unlock a server once it is
locked.

-n prio
nice the server according to the prio argument. Giving the process better
priority (a negative argument) requires it to be run with the uid of root. See
nice(2) for details.

-o stdout_file

specifies the name of a file to be opened as the server’s standard output file.
Providing this option ensures that a restarted server has the same standard
output file as its predecessors. If this option is not used, a default diversion
file called stdout is created in the directory specified by $APPDIR.

-r

specifies that the server should record, on its standard error file, a log of
services performed. This log may be analyzed by the txrpt(1) command.
When the -r option is used, make sure that the ULOGDEBUG variable is not set
to "y". The ULOGDEBUG variable prevents debugging message from being sent
to stderr. Debugging messages in the file will be misinterpreted by txrpt.

--

marks the end of system-recognized arguments and the start of arguments to
be passed to a subroutine within the server. This option is needed only if the
user wishes to supply application-specific arguments to the server. The
system-recognized options precede the --; application arguments should
follow it. Application arguments may be processed by a user-supplied version
of the tpsvrinit function. getopt(3) should be used to parse them.
Because all system arguments are processed prior to the call to
tpsvrinit(3c), when the call is made the external integer, optind points
to the start of the user flags. The same option letters (for example, -A) may be
reused after the -- argument, and given any meaning appropriate to the
application.

Note: At run time the BEA Tuxedo system automatically adds the following option
to each command line for each server: -c dom=domainid

E Servopts

E-4 BEA eLink Adapter Development Kit User Guide

The -c option adds a comment line, in which the specified domain ID is
reported, to any command output that reports on the processes associated with
the domain in question, such as the output of the ps command. This comment
helps an administrator who is managing multiple domains to interpret a single
output stream that refers to several domains.

BEA eLink Adapter Development Kit User Guide F-1

APPENDIX

F Error Messages

This section contains the following descriptions of error, informational, and warning
messages that can be encountered while using the BEA eLink Adapter Development
Kit.

Source Module adklog.c

"Unable to open <filename> for read"

DESCRIPTION Unable to open catalog file in ela_parseCatFiletoBuffer().

ACTION Make sure file exists, and permissions allow read access.

"malloc error"

DESCRIPTION Unable to allocate enough space to read catalog file in
ela_parseCatFiletoBuffer().

ACTION Verify that there is sufficient memory on the machine.

F Error Messages

F-2 BEA eLink Adapter Development Kit User Guide

Source Module cfgfns.c

Source Module chkelinklic.c

All messages in eLA_chkeLinkLic().

"Unable to open <filename> for read"

DESCRIPTION Unable to open configuration file in
ela_parseFiletoBuffer().

ACTION Make sure file exists, and permissions allow read access.

"malloc error"

DESCRIPTION Unable to allocate enough space to read catalog file in
ela_parseFiletoBuffer().

ACTION Verify that there is sufficient memory on the machine.

"Buffer not large enough for file name"

DESCRIPTION Buffer passed to eLA_GetConfigFileName() not large
enough to hold configuration file name specified in the UBB file
CLOPT line.

ACTION Specify a larger buffer.

"File Name parameter not found"

DESCRIPTION Unable to locate the -C filename parameter in the UBB config file
CLOPT line.

ACTION Verify that the UBB config file is correct.

Source Module chkelinklic.c

BEA eLink Adapter Development Kit User Guide F-3

"ERROR: TUXDIR is not set"

DESCRIPTION TUXDIR environment variable has not been defined.

ACTION Define TUXDIR.

"ERROR: Failure reading license file <filename>"

DESCRIPTION This message results from a failure in _gpdmvfile_New().

ACTION Insure that the lic.txt file exists in TUXDIR\udataobj.

"ERROR: <platform> platform license has expired"

DESCRIPTION The license for the platform in question has expired.

ACTION Obtain an up-to-date license for the platform.

"ERROR: Unlicensed platform <platform>"

DESCRIPTION This could result from a missing or corrupted license for the
platform in question.

ACTION Obtain a valid, up-to-date license for the platform.

"ERROR: <adapter> adapter license has expired"

DESCRIPTION The license for the adapter in question has expired.

ACTION Obtain an up-to-date license for the adapter.

"ERROR: Unlicensed adapter <adapter>"

DESCRIPTION This could result from a missing or corrupted license for the
adapter in question.

ACTION Obtain a valid, up-to-date license for the adapter.

"ERROR: Invalid license file <filename>"

DESCRIPTION Signals that the version number for the adapter is incorrect.

ACTION Obtain a valid, up-to-date license for the version number of the
adapter.

F Error Messages

F-4 BEA eLink Adapter Development Kit User Guide

"INFO: Incorrect VERSION value in <adapter> section"

DESCRIPTION Signals that the version number for the adapter is incorrect.

ACTION Obtain a valid, up-to-date license for the version number of the
adapter.

BEA eLink Adapter Development Kit User Guide G-1

Glossary

ATMI

Application to Transaction Monitor Interface. The eLink Platform communica-
tions application programming interface. This is a collection of runtimes services
that can be called directly by a C (or COBOL) application. These runtime services
provide support for communications, distributed transactions, and system man-
agement. See the section.

BBL

The "Application" name server of the Tuxedo system. The BBL is the Tuxedo pro-
cess that is aware of all servers and advertised services of a Tuxedo system. The
BBL is the "name server" that connects clients to servers.

Buildserver

Tuxedo command that constructs a BEA Tuxedo server load module.

Buildclient

Tuxedo command that constructs a BEA Tuxedo client module.

Business Logic

A workflow or procedure that defines the way a company conducts business. In
the eLink system business logic is automated via the business process option.

Business Process Options (BPO)

The Business Process Options is a Tuxedo service that performs workflow man-
agement.

CLOPT

Optional boot parameter in the SERVER section of the UBBCONFIG file. The
value specifies the servopts that are passed to the server when the server is booted.
See servopts.

G-2 BEA eLink Adapter Development Kit User Guide

Data Integration Option (DIO)

The Data Integration Option is a Tuxedo service that can translate data between
different types and formats. For example COBOL copy books to FML.

FML32

The 32 bit version of Field Manipulation Language or FML. FML is a BEA pro-
prietary data structure and function library that allows associative access to fields
of a data record. The internal implementations of the record are not accessible to
the users of FML. See section 2.2.

MIB

A set of classes of objects with attributes within an application. Each item in a
class has particular values for the attributes.

Server

A software module that accepts requests from clients and other servers. A server
advertises one or more services.

Service

An application routine available for requests by a client in the system with well-
defined inputs, outputs, and processing.

Service Advertisement

The process of indicating to all participants in an application that a service is ac-
tive. (This should be done dynamically by the application adapter.)

SERVOPTS

A list of run-time options recognized by servers in a BEA Tuxedo system. For
complete details see Appendix G.

TUXCONFIG

The binary version of the UBBCONFIG file. It serves as the persistent part of the
MIB.

Tuxedo

BEA Systems’ portable Transaction Process (TP) monitor. At this point Tuxedo is
synonymous with the eLink Platform, but the eLink Platform will be broadened.

BEA eLink Adapter Development Kit User Guide G-3

UBBCONFIG

The generic Tuxedo name for the ASCII file containing the Tuxedo application
configuration. This file is compiled by using the Tuxedo command tmloadcf. The
resulting binary is called TUXCONFIG. (Ubbconfig files delivered as samples
should be prefixed by the adapter to distinguish them from other UBBCONFIG
files.)

Example: A UBBCONFIG file for the eLink FML to XML adapter (abbreviated
efx) would be named:
efx.ubbconfig

G-4 BEA eLink Adapter Development Kit User Guide

	Copyright
	Contents
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Understanding The BEA eLink System
	BEA eLink Solution Overview
	BEA eLink Adapter Overview
	BEA eLink Adapter Development Kit Overview
	BEA eLink Platform Architecture

	2 Understanding the BEA eLink Platform
	ATMI Runtime Services
	FML32
	FML Buffers
	Mapping Field Names to Field Identifiers
	Creating Field Names
	ud32 Client
	FML32 Primitives

	eLink Commands
	Commonly Used Tuxedo Commands
	Commonly Used tmadmin Commands

	Hardware Requirements for the eLink Platform
	Special Instructions for Installing the Tuxedo Core
	Preparing the License File
	About the Tuxedo Simple Application
	Setting Environment Variables
	Configuring the Simple Application
	Building the Client and Server for the Simple Application
	For UNIX Operating Systems
	For Windows NT Operating Systems

	Booting the Simple Application
	Shutting Down the Simple Application

	3 Understanding Adapter Architecture and Design
	eLink Adapter Architecture Overview
	The Server Module
	The Configuration Processing Module
	Adapter Design Pseudo Code
	The TPSVCINFO Structure

	Application to eLink Adapters
	eLink to Application Adapters
	eLink Adapter Configuration
	Standards for Adding an eLink Adapter to the UBBCONFIG File
	Sample UBBCONFIG File
	eLink Adapter Configuration Files
	Structure of the eLink Adapter Configuration File
	The SERVER Section
	The SERVICE Section
	The FIELDMAP Section

	Sample Adapter Configuration File
	API to Parse and Store Configuration Data
	API to Parse the Configuration File
	API to Store the Configuration Data

	Error Handling
	Business Level Exceptions
	Infrastructure Level Exceptions
	Message Catalog
	API to Access the Message Catalog File

	Tracing
	Trace Levels
	Tracing Functions and Macros

	Deployment and Installation of eLink Adapters
	Installation Directory Structure for Components
	Naming Convention for Source and Executable Files

	4 Installing the eLink ADK and Sample Adapters
	What is Included in the eLink ADK
	Include Files and Libraries
	The Sample Application to eLink Adapter
	The Sample eLink to Application Adapter
	The Sample E-Mail Adapter

	Installing the eLink Adapter Development Kit
	Installing on the Windows NT Platform
	Installing on the HP-UX, AIX, Solaris, and Compaq TRU64 UNIX Platforms

	5 Configuring and Running the Sample Adapters
	Demo Prerequisites for UNIX
	The Sample Application to eLink Adapter
	Configuring the Sample Application to eLink Adapter
	Building and Running the Sample Application to eLink Adapter

	The Sample eLink to Application Adapter
	Configuring the Sample eLink to Application Adapter
	Building and Running the Sample eLink to Application Adapter

	The Sample E-Mail Adapter
	Invoking the Sample E-Mail Adapter
	Configuring the Sample E-Mail Adapter
	Building and Running the Sample E-Mail Adapter

	A eLink Adapter Development Kit References
	Configuration Processing API
	eLA_OpenTagFile
	eLA_CloseTagFile
	eLA_CloseTagHandle
	eLA_GetFirstSection
	eLA_GetNextSection
	eLA_GetFirstProperty
	eLA_GetNextProperty
	eLA_GetPropertyValue
	eLA_GetFieldMap
	eLA_GetFirstField
	eLA_GetNextField

	Hash Table API
	eLA_InitHashTable
	eLA_DestHashTable
	eLA_put
	eLA_get
	eLA_hash

	Utility Functions and Macros
	eLA_catentry
	eLA_chkeLinkLic
	eLA_CloseCatalogFile
	eLA_GetConfigFileName
	eLA_hexdump
	eLA_log
	eLA_OpenCatalogFile
	eLA_SetServerMsgLevel
	ELACATENTRY
	ELAIFTRACE
	ELATRACE

	Definitions and Typedefs

	B ATMI References
	Client Membership
	tpinit
	tpterm

	Buffer Management
	tpalloc
	tprealloc
	tpfree
	tptypes

	Request/Response
	tpcall
	tpacall
	tpgetrply
	tpcancel

	Service Entry and Return
	tpsvrinit
	tpsvrdone
	tpreturn

	Dynamic Advertisement
	tpadvertise
	tpunadvertise

	C FML32 API
	Fadd, Fadd32
	Fchg, Fchg 32
	Ffind, Ffind32
	Fget, Fget32
	Fielded, Fielded32
	Finit, Finit32
	Fldid, Fldid32
	Fneeded, Fneeded32
	Fsizeof, Fsizeof32
	Example of a Server that Uses FML32

	D Tuxedo Commands
	buildclient
	buildserver
	tmadmin
	tmboot
	tmloadcf
	tmshutdown
	ud, ud32, wud, wud32

	E Servopts
	F Error Messages
	Source Module adklog.c
	Source Module cfgfns.c
	Source Module chkelinklic.c

	Glossary

