
B E A e L i n k A d a p t e r f o r M a i n f r a m e 4 . 0
D o c u m e n t E d i t i o n 4 . 0

J a n u a r y 2 0 0 1

BEA eLink Adapter
for Mainframe

 Samples Guide

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, WebLogic Enterprise,
WebLogic Commerce Server, and WebLogic Personalization Server are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

BEA® eLink™ Adapter for Mainframe User Guide

Document Edition Part Number Date Software Version

4.0 January 2001 BEA eLink Adapter for Mainframe, 4.0

Contents

1. ATMI to CPI-C Function Mapping
ATMI Calls Mapped to CPI-C Verbs.. 1-1

2. CPI-C Parameters and Values
CPI-C Verbs .. 2-1

3. Sample VTAM Configurations
Overview of the eAM Environment .. 3-1

Local Environment ... 3-1

Remote Environment.. 3-2

Sample Environments.. 3-2

Machine Attributes (LAN Descriptions).. 3-2

Local Environment Configuration ... 3-5

HPSNAPlus2 Configuration ... 3-5

Microsoft SNA Cross-Platform Definitions 3-10

VTAM Application Program Major Node.. 3-12

Remote Environment Configurations... 3-13

ATCSTRxx VTAM Start List... 3-13

XCA Major Node Defines the LAN Adapter for SYS1 3-14

Switched Network (SWNET) Definitions .. 3-14

VTAM Application Major Nodes for CICS Regions 3-16

CICS Resource Definition Entries (RDO) .. 3-17

4. Application-to-
Application Programming Examples

Distributed Program Link (DPL) Examples.. 4-22

ATMI Client Request/Response to CICS/ESA DPL 4-23
BEA eLink Adapter for Mainframe Samples Guide iii

ATMI Client Asynchronous Request/Response to CICS/ESA DPL 4-24

ATMI Client Asynchronous Request/Response with No Reply to CICS/ESA
DPL ... 4-26

CICS/ESA DPL to ATMI Request/Response Server............................... 4-28

CICS/ESA DPL to ATMI Request/Response Server, Service in Autonomous
Transaction .. 4-30

ATMI Client Request/Response to CICS/ESA DPL, in Autonomous
Transaction .. 4-32

Transactional ATMI Client Multiple Requests/Responses to CICS/ESA DPL
4-34

Transactional CICS/ESA DPL to ATMI Request/Response Server 4-36

Distributed Transaction Processing (DTP) Examples 4-38

ATMI Client Request/Response to CICS/ESA DTP................................ 4-39

ATMI Client Asynchronous Request/Response to CICS/ESA DTP 4-41

ATMI Client Asynchronous Request/Response with No Reply to CICS/ESA
DTP ... 4-43

ATMI Conversational Client to CICS/ESA DTP, Server Gets Control... 4-45

ATMI Conversational Client to CICS/ESA DTP, Client Sends/Receives Data
4-47

ATMI Conversational Client to CICS/ESA DTP, Client Grants Control 4-49

CICS/ESA DTP to ATMI Conversational Server, Client Retains Control
4-51

CICS/ESA DTP to ATMI Conversational Server, Client Relinquishes
Control... 4-53

Transactional ATMI Client Request/Response to CICS/ESA DTP......... 4-55

Transactional ATMI Conversational Client to CICS/ESA DTP, Server Gets
Control... 4-57

Transactional CICS/ESA DTP to ATMI Conversational Server, Host Client
Relinquishes Control ... 4-59

CPI-C Programming Examples ... 4-61

ATMI Client Request/Response to Host CPI-C....................................... 4-62

ATMI Client Asynchronous Request/Response to Host CPI-C............... 4-64

ATMI Client Asynchronous Request/Response to Host CPI-C with No Reply
4-66

ATMI Conversational Client to Host CPI-C, Server Gets Control 4-68

ATMI Conversational Client To Host CPI-C, Client Retains Control..... 4-70
iv BEA eLink Adapter for Mainframe Samples Guide

ATMI Conversational Client to Host CPI-C, Client Grants/gets Control 4-72

Host CPI-C to ATMI Asynchronous Request/Response Server with No Reply
4-74

Host CPI-C to ATMI Server Request/Response 4-76

Host CPI-C to ATMI Conversational Service, Client Retains Control.... 4-78

Host CPI-C ATMI to Conversational Service, Client Grants Control 4-80

Transactional ATMI Client Request/Response to Host CPI-C 4-82

Transactional ATMI Conversational Client to Host CPI-C, Server Gets
Control... 4-84

Transactional Host CPI-C to ATMI Conversational Server, Client Grants
Control... 4-86

CICS/ESA Mirror Transaction Examples ... 4-88

Implicit Attachment of TRANSID (Outbound Requests Only) 4-88

Explicit Attachment of TRANSID for Outbound Requests 4-90

Explicit Attachment of TRANSID for Inbound Requests........................ 4-92

Additional Information .. 4-93
v BEA eLink Adapter for Mainframe Samples Guide

vi BEA eLink Adapter for Mainframe Samples Guide

1 ATMI to CPI-C Function
Mapping

ATMI Calls Mapped to CPI-C Verbs

This appendix lists the most common ATMI function calls and shows how their
parameters map to CPIC verbs. The mappings are shown in the following order:

t tpcall()

t tpacall() with or without reply

t tpgetrply()

t tpservice()

t tpreturn()

t tpcancel()

t tpconnect()

t tpsend()

t tprecv()

t tpdiscon()

t tpforward ()
BEA eLink Adapter for Mainframe Samples Guide 1-1

1 ATMI TO CPI-C FUNCTION MAPPING
The tables on the following pages show the parameters of the ATMI call, what the
content or meaning of the parameters is, and notes that indicate the usage with the
CPIC verbs.

Table 0-1 tpcall

tpcall() Parameters Contents CPIC Notes

svc Service Name Used in CMALLC to identify the CICS
transaction to be invoked.

idata User data This data is sent in CMSENDs until completely
transmitted

len Length of User data 0 < data <= 32K

odata Reply data CMRCV receives the data until it has been
completely transmitted (data_received is set to
CM_COMPLETE_DATA_RECEIVED) and
return code is set to CM_OK or
CM_DEALLOCATE_NORMAL

olen Reply data length 0 < data < 32K

flags TPNOTRAN Not part of a transaction

TPNOCHANGE N/A Local

TPNOBLOCK N/A Local

TPNOTIME N/A Local

TPSIGRSTRT N/A Local

Table 0-2 tpacall

tpacall() Parameter Contents CPIC Notes

svc Service Name Used in CMALLC to identify the CICS
transaction to be invoked.

data User data This data is sent in CMSENDs until completely
transmitted
1-2 BEA eLink Adapter for Mainframe Samples Guide

ATMI CALLS MAPPED TO CPI-C VERBS
len Length of user data 0 < data <= 32K

flags TPNOREPLY false The last data is sent with a CMSEND with
send_type set to
CMSEND_AND_PREP_TO_RECEIVE. This
changes the state of the conversation to receive
and a CMRCV is issued to await the reply

true Since no reply is expected, a CMDEAL
deallocates the conversation after all data has
been received

TPNOTRAN Not part of a transaction Sync level 2 not supported in this release,
therefore the service call should not be in
transaction mode

TPNOBLOCK N/A Local

TPNOTIME N/A Local

TPSIGRSTRT N/A Local

Table 0-2 tpacall

tpacall() Parameter Contents CPIC Notes

Table 0-3 tpgetrply

tpgetrply() Parameters Contents CPIC Notes

cd call descriptor The call descriptor is mapped to the
CONVID returned by the CMINIT when
the LU6.2 was initiated

data User data Data received from CMRCV if
WHAT_RECEIVED set to
DATA_COMPLETE

len Length of user data 0 < data <= 32K
BEA eLink Adapter for Mainframe Samples Guide 1-3

1 ATMI TO CPI-C FUNCTION MAPPING
flags TPGETANY If true, data is returned from any
conversation. If false, data is
returned from conversation
associated with the cd

Data available on any conversation is
returned to the requestor

TPNOCHANGE Local to the requestor Limited buffer types supported.

TPNOBLOCK N/A Local

TPNOTIME N/A Local

TPSIGRSTRT N/A Local

Table 0-3 tpgetrply

tpgetrply() Parameters Contents CPIC Notes

Table 0-4 tpservice

tpservice() Parameters Contents CPIC Notes

svcinfo Service information
and data

User Data captured from a CMRCV populates the
TPSVCINFO structure user data area. Service
characteristics are obtained from the service
attributes in the DMCONFIG and UBBCONFIG
files.

name Service name The service name associated with the 8 character
RNAME sent from CICS.

data User data Data captured from CMRCV

len Length of user data 0 < data <= 32K
Length of data received

cd call descriptor The call descriptor associated with the CONVID
returned by the CMINIT when the LU6.2 was
initiated

appkey 32-bit key (if used) For security

cltid set by BEA Tuxedo For security
1-4 BEA eLink Adapter for Mainframe Samples Guide

ATMI CALLS MAPPED TO CPI-C VERBS
flags TPCONV If true, service is
conversational

TPTRAN N/A Sync level 2 not supported in this release, therefore
the service cannot be called in transaction mode

TPNOREPLY If true, requestor not
expecting a reply

The conversation is terminated with a CMDEAL
normal

TPSENDONLY N/A If set, the CPIC conversation in CICS should be in
receive state. If not set, the CICS CPIC conversation
state will be in send state.

TPRECVONLY N/A If set, the CPIC conversation in CICS remains in
send state.

Table 0-4 tpservice

tpservice() Parameters Contents CPIC Notes

Table 0-5 tpreturn

tpreturn() Parameters Contents CPIC Notes

rval TPSUCCESS Set to TPSUCCESS when conversation terminates
with a normal deallocation.

TPSVCERR Set to TPESVCERR when the conversation has
terminated with a non-normal deallocation type or
other error.

rcode Set by the application N/A

data User data Data is returned to the CICS transaction from a
successful CMRCV with data received set to
CM_DATA_COMPLETE and return code of
CM_DEALLOCATE_NORMAL. If the service
fails, no data is returned to the caller and the
conversation is deallocated abnormally.

len Length of data returned 0 < data <= 32K

flags N/A N/A
BEA eLink Adapter for Mainframe Samples Guide 1-5

1 ATMI TO CPI-C FUNCTION MAPPING
Table 0-6 tpcancel

tpcancel() Parameters Contents CPIC Notes

cd The connection
descriptor on which a
tpgetreply() is
waiting.

CMDEAL abnormal is issued on the conversation
with CONVID mapped from call descriptor

Table 0-7 tpconnect

tpconnect() Parameters Contents CPIC Notes

svc The local service name
representing the service
to be invoked. in CICS

The name is used to find the RNAME. The
RNAME should match the TPName in CICS and
will be used by CMINIT and CMALLC to initiate
and allocate the conversation

data User data This data is sent in CMSENDs until completely
transmitted

len Length of User data 0 < data <= 32K

flags TPNOTRAN True Sync level 2 not supported in this release,
therefore the service call should not be in
transaction mode

TPSENDONLY If true, the conversation
stays in or changes to
send state

The conversation remains in send state. This is the
default.

TPRECVONLY If true, the conversation
stays in or changes to
receive state

Immediately after the allocate BEA Tuxedo sends
a CMSEND with no data and send_type set to
CM_SEND_AND_PREP_TO_RECEIVE

TPNOBLOCK N/A Local

TPNOTIME N/A Local

TPSIGRSTRT N/A Local
1-6 BEA eLink Adapter for Mainframe Samples Guide

ATMI CALLS MAPPED TO CPI-C VERBS
Table 0-8 tpsend

tpsend() Parameters Contents CPIC Notes

cd The connection
descriptor

This locally assigned connection descriptor
has been mapped to the CONVID returned in
the CMINIT and CMALLC on behalf of the
tpconnect()

data User data ASCII/EBCDIC conversion may be required
before sending to CICS. See Chapter 5
“Buffers”

len Length of User data 0 < data <= 32K

flags TPRECVONLY If true, the conversation
changes to receive state

The state of the conversation changes from
send to receive. A CMSEND is sent with
send_type set to
CM_SEND_AND_PREP_TO_RECEIVE

TPNOBLOCK N/A Local

TPNOTIME N/A Local

TPSIGRSTRT N/A Local

revent TPEV_DISCONIMM If set, the LU6.2
conversation has been
terminated abnormally

If the return code from a CMRCV is
deallocate_abnormal, the conversation is
terminated. A disconnect event is sent to the
sending process.

TPEV_SVCERR If set, the LU6.2
conversation has been
terminated abnormally

Any return code other than CM_OK or
CM_DEALLOCATE_NORMAL is treated
as a TPEV_SVCERR

TPEV_SVCFAIL If set, the LU6.2
conversation has been
terminated abnormally

If the return code from CMRCV is
CM_TP_NOT_AVAIL_NO_RETRY or
CM_TP_RESOURCE_FAILURE_NO_RE
TRY, revent is set to TPEV_SVCFAIL
BEA eLink Adapter for Mainframe Samples Guide 1-7

1 ATMI TO CPI-C FUNCTION MAPPING
Table 0-9 tprecv

tprecv() Parameters Contents CPIC Notes

cd The connection
descriptor

This locally assigned connection descriptor
has been mapped to the CONVID returned in
the CMINIT and CMALLC issued by the
initiator of this conversation

data User data Date to be received using a
CMRCV_immediate and returned to the
BEA Tuxedo service

len Length of User data 0 < data <= 32K

flags TPNOCHANGE Local Must be a supported buffer type

TPNOBLOCK N/A Local

TPNOTIME N/A Local

TPSIGRSTRT N/A Local

revent TPEV_DISCONIMM If set, the LU6.2
conversation has been
terminated abnormally

If the return code from a CMSEND is
deallocate_abnormal, the conversation is
terminated. A disconnect event is sent to the
sending process.

TPEV_SENDONLY If set, the LU6.2
conversation changes to
send if partner allows it

The sending partner has sent a CMSEND
with send_type set to
CM_SEND_AND_PREP_TO_RECEIVE

TPEV_SVCERR If set, the LU6.2
conversation has been
terminated abnormally

Any return code other than CM_OK or
CM_DEALLOCATE_NORMAL is treated
as a TPEV_SVCERR

TPEV_SVCFAIL If the return code from CMRCV is
CM_TP_NOT_AVAIL_NO_RETRY or
CM_TP_RESOURCE_FAILURE_NO_RE
TRY, revent is set to TPEV_SVCFAIL

TPEV_SVCSUCC If set, the conversation
has completed normally

The return code from CMRCV was set to
CM_DEALLOCATE_NORMAL. This
indicates that the sending TP has completed
and deallocated the conversation normally.
1-8 BEA eLink Adapter for Mainframe Samples Guide

ATMI CALLS MAPPED TO CPI-C VERBS
Table 0-10 tpdiscon

tpdiscon() Parameters Contents CPIC Notes

cd The connection
descriptor

This connection descriptor in mapped to the
CONVID returned from CMINIT or CMACCP
to the originator of the conversation

Table 0-11 tpforward

tpforward () Parameters Contents CPIC Notes

svc Service name tpforward() is treated as if it were a
tpacall(). A CMINIT and subsequent
CMALLC are issued to initialize and allocate a
session for a conversation. ClientID must be
propagated to the CICS transaction in a
TPSVCINFO record

data User data Data is sent using CMSEND. The last
CMSEND is sent with send_type of
deallocate_normaL

len Length of data returned 0 < data <= 32K

flags Refer to tpacall()
BEA eLink Adapter for Mainframe Samples Guide 1-9

1 ATMI TO CPI-C FUNCTION MAPPING
1-10 BEA eLink Adapter for Mainframe Samples Guide

2 CPI-C Parameters and
Values

CPI-C Verbs

The following tables show the parameters required for each CPI-C verb and the
permissible values when used with BEA eLink Adapter for Mainframe software.

Parameter In/Out Value Usage

conversation_ID Output Returned by the SNA Stack Used on every other call

sym_dest_name Input Symbolic name that represents
the partner LU, the modename,
and the TP (Tuxedo service)

If blank, SET calls must be made to
initialize conversation parameters

return code Output See list of CPI-C return codes If not CM_OK, conversation fails.

Parameter In/Out Value Usage

conversation_ID Input Value returned from CMINIT

return_code Output See list of CPI-C return codes If not CM_OK, or
CM_ALLOCATION_FAILURE_
RETRY, conversation fails
BEA eLink Adapter for Mainframe Samples Guide 2-1

2 CPI-C PARAMETERS AND VALUES
Parameter In/Out Value Usage

conversation_ID Input Value returned from CMINIT

buffer Input Name of variable to be
populated by data received

requested_length Input Name of variable where amount
of data to be received is posted

0 <= requested_length < 32K

data_received Output CM_COMPLETE

CM_INCOMPLETE

Indicates enough data in LU buffer
to satisfy requested length

Another CMRCV must be issued
to get enough data to satisfy the
requested length

received-length Output Name of variable where amount
of data returned is posted

Returned data may be shorter than
requested amount including zero

status_received Output CM_NO_STATUS

CM_SEND_RECEIVED

No state change.

State of the conversation is
changed to send

request_to_send_r
eceived

Output CM_REQ_TO_SEND_
RECEIVED

CM_REQ_TO_SEND_
NOT_RECEIVED

Receiver enters send state.

Partner has not requested a state
change

return_code Output See list of CPI-C return codes If not CM_OK or
CM_DEALLOCATE_NORMAL,
the conversation is deallocated.

Parameter In/Out Value Usage

conversation_ID Input Value returned from CMINIT

buffer Input Name of buffer area containing data
to be sent

send_length Input Length of data in buffer to be sent 0 <= data < 32K
2-2 BEA eLink Adapter for Mainframe Samples Guide

CPI-C VERBS
req_to_send_recei
ved

Output The name of the variable that contains
the indication that indicates
CM_REQ_TO_SEND_ RECEIVED

CM_REQ_TO_SEND_
NOT_RECEIVED

Partner request to change state to
send

Partner has not requested a state
change

return_code Output See list of CPI-C return codes If not CM_OK, the conversation
is deallocated

Parameter In/Out Value Usage

Parameter In/Out Value Usage

conversation _ID Output Returned from the LU

return_code Output See list of CPI-C return codes If not CM_OK, the accept fails
and no conversation is started
BEA eLink Adapter for Mainframe Samples Guide 2-3

2 CPI-C PARAMETERS AND VALUES
2-4 BEA eLink Adapter for Mainframe Samples Guide

3 Sample VTAM
Configurations

This section provides sample environments showing how BEA eLink Adapter for
Mainframe (eAM) software can be configured for use with an Ethernet LAN and an
APPN system 390. Considerations for token ring and subarea-style configurations are
included. It is assumed that hardware and operating system installation have been
completed.

This section discusses the following topics:

n Overview of the eAM Environment

n Sample Environments

Overview of the eAM Environment

An environment properly configured for the BEA eLink Adapter for Mainframe
system involves two general components, a local environment and a remote
environment.

Local Environment

A local environment is a UNIX-based machine running eAM software. BEA eLink
Adapter for Mainframe is a fully bi-directional program, supporting the local system
as either a client or server. This environment consists of the following components:
BEA eLink Adapter for Mainframe Samples Guide 3-1

3 SAMPLE VTAM CONFIGURATIONS
t Hardware consisting of any workstation and network interface supported by the
required software.

t Platform operating systems with protocol stacks (PU servers)

Remote Environment

A remote environment is an IBM mainframe that may or may not be on the same local
network. As in the local environment, BEA eLink Adapter for Mainframe is a fully
bi-directional program, supporting the remote system as either a client or server. This
environment consists of the following components:

t Hardware consisting of any workstation and network interface supported by the
required software.

t Software as described in “Supported Host Platforms,” in the BEA eLink Adapter
for Mainframe Release Notes.

Sample Environments

Samples of each environment are provided to illustrate a starting point when first
configuring your system. These samples are not intended to be used without
modifications. Any similarity between them and any actual system is coincidental.

Machine Attributes (LAN Descriptions)

The attributes of the sample environment machines are listed below for reference. The
sample configurations refer to these attributes as required.

10BaseT carrying SNA/DLC (IEEE 802.3) and TCP/IP (DIX) traffic.
3-2 BEA eLink Adapter for Mainframe Samples Guide

SAMPLE ENVIRONMENTS
Name Attribute

OS Solaris 2.5.1 or 2.6

SNA Brixton/CNT 4.1

APP Tuxedo 6.5

MAC 08:00:20:7C:47:50

IP 206.189.43.14

NAME beasun2

Name Attribute

OS Solaris 7 or Solaris 8

SNA SunLink 9.1

APP Tuxedo 6.5

MAC 08:00:20:87:47:2d

IP 206.189.43.54

NAME dalsun4

Name Attribute

OS HP-US B 11.00

SNA HP SNAPlus 6.0

APP Tuxedo 6.5

MAC 08:00:09:30:24:77

IP 206.189.43.13
BEA eLink Adapter for Mainframe Samples Guide 3-3

3 SAMPLE VTAM CONFIGURATIONS
NAME dalhp10

Name Attribute

OS MVS 5.22 9510

SNA VTAM 4.3

APP CICS 4.1 / IMS DC 5.1

MAC 10:00:5a:d4:3e:8e

IP 206.189.43.98

NAME beavs

Name Attribute

OS OS/390 1.2

SNA VTAM 4.3

APP CICS 4.1

MAC 10:00:5a:d4:c1:e0

IP 206.189.43.96

NAME dalvs2

Name Attribute
3-4 BEA eLink Adapter for Mainframe Samples Guide

SAMPLE ENVIRONMENTS
Local Environment Configuration

HPSNAPlus2 configurations are usually set up using the HP xSnapAdmin utility,
resulting in the configuration text file /etc/opt/sna/sna_node.cfg. This file can
be manually created and/or maintained using a text editor, however, using the HP
xSnapAdmin utility is recommended. The example below is the sna_node.cfg file
for the sample environment.

HPSNAPlus2 Configuration

[define_node_config_file]
major_version = 5
minor_version = 1
update_release = 1
revision_level = 116

[define_node]
node_name = dalhp10
description = snacrm development
node_type = END_NODE
fqcp_name = BEALAN.DALHP10
cp_alias = dalhp10
mode_to_cos_map_supp = NO
mds_supported = YES
node_id = <05ffffff>
max_locates = 100
dir_cache_size = 255

Name Attribute

OS Windows NT Server 4.0, SP2

SNA IBM Comm Server 6.0

APP CICS 4.1

MAC 10:00:5a:d4:c1:e0

IP 206.189.43.99

NAME dalnt
BEA eLink Adapter for Mainframe Samples Guide 3-5

3 SAMPLE VTAM CONFIGURATIONS
max_dir_entries = 0
locate_timeout = 60
reg_with_nn = YES
reg_with_cds = YES
mds_send_alert_q_size = 100
cos_cache_size = 24
tree_cache_size = 40
tree_cache_use_limit = 40
max_tdm_nodes = 0
max_tdm_tgs = 0
max_isr_sessions = 1000
isr_sessions_upper_threshold = 900
isr_sessions_lower_threshold = 800
isr_max_ru_size = 16384
isr_rcv_pac_window = 8
store_endpt_rscvs = NO
store_isr_rscvs = NO
store_dlur_rscvs = NO
dlur_support = YES
pu_conc_support = NO
nn_rar = 128
ptf_flags = NONE

[define_ethernet_dlc]
dlc_name = ETHER0
description = ""
neg_ls_supp = YES
initially_active = NO
adapter_number = 0

[define_ethernet_port]
port_name = ethl0
description = 1st ethernet adapter
dlc_name = ETHER0
port_type = PORT_SATF
port_number = 1
max_rcv_btu_size = 1033
tot_link_act_lim = 64
inb_link_act_lim = 0
out_link_act_lim = 0
ls_role = LS_NEG
act_xid_exchange_limit = 9
nonact_xid_exchange_limit = 5
ls_xmit_rcv_cap = LS_TWS
max_ifrm_rcvd = 7
target_pacing_count = 7
max_send_btu_size = 1033
mac_address = <000000000000>
lsap_address = 0x08
3-6 BEA eLink Adapter for Mainframe Samples Guide

SAMPLE ENVIRONMENTS
implicit_cp_cp_sess_support = NO
implicit_limited_resource = NO
implicit_deact_timer = 0
effect_cap = 3993600
connect_cost = 0
byte_cost = 0
security = SEC_NONSECURE
prop_delay = PROP_DELAY_LAN
user_def_parm_1 = 0
user_def_parm_2 = 0
user_def_parm_3 = 0
initially_active = YES
test_timeout = 5
test_retry_limit = 2
xid_timeout = 5
xid_retry_limit = 2
t1_timeout = 5
t1_retry_limit = 5

[define_ethernet_ls]
ls_name = P390HP10
description = P390 – beavs
port_name = ethl0
adj_cp_name = P390.USS3270
adj_cp_type = LEARN_NODE
mac_address = <0020af543176>
lsap_address = 0x08
auto_act_supp = NO
tg_number = 0
limited_resource = NO
solicit_sscp_sessions = NO
pu_name = <0000000000000000>
disable_remote_act = NO
default_nn_server = NO
dspu_services = NONE
dspu_name = <0000000000000000>
dlus_name = <0000000000000000000000000000000000>
bkup_dlus_name = <0000000000000000000000000000000000>
link_deact_timer = 0
use_default_tg_chars = YES
ls_attributes = SNA
adj_node_id = <00000000>
local_node_id = <00000000>
cp_cp_sess_support = YES
effect_cap = 3993600
connect_cost = 0
byte_cost = 0
security = SEC_NONSECURE
prop_delay = PROP_DELAY_LAN
BEA eLink Adapter for Mainframe Samples Guide 3-7

3 SAMPLE VTAM CONFIGURATIONS
user_def_parm_1 = 0
user_def_parm_2 = 0
user_def_parm_3 = 0
target_pacing_count = 7
max_send_btu_size = 1033
ls_role = USE_PORT_DEFAULTS
initially_active = NO
react_timer = 30
react_timer_retry = 65535
test_timeout = 5
test_retry_limit = 2
xid_timeout = 5
xid_retry_limit = 2
t1_timeout = 5
t1_retry_limit = 5

[define_local_lu]
lu_name = LUHP10A
description = Test LU #1
lu_alias = LUHP10A
nau_address = 0
syncpt_support = YES
lu_session_limit = 0
default_pool = NO
pu_name = <0000000000000000>
sys_name = ""
timeout = -1
back_level = NO

[define_local_lu]
lu_name = LUHP10B
description = Test LU #2
lu_alias = LUHP10B
nau_address = 0
syncpt_support = YES
lu_session_limit = 0
default_pool = NO
pu_name = <0000000000000000>
sys_name = ""
timeout = -1
back_level = NO

[define_local_lu]
lu_name = LUHP10C
description = Test LU #3
lu_alias = LUHP10C
nau_address = 0
syncpt_support = YES
lu_session_limit = 0
3-8 BEA eLink Adapter for Mainframe Samples Guide

SAMPLE ENVIRONMENTS
default_pool = NO
pu_name = <0000000000000000>
sys_name = ""
timeout = -1
back_level = NO

[define_partner_lu]
description = APPC MVS LU for IMS
fqplu_name = P390.MVSLU01
plu_alias = MVSLU01
plu_un_name = MVSLU01
max_mc_ll_send_size = 32767
conv_security_ver = NO
parallel_sess_supp = YES

[define_partner_lu]
description = backend cics #1
fqplu_name = P390.C410XB01
plu_alias = C410XB01
plu_un_name = C410XB01
max_mc_ll_send_size = 32767
conv_security_ver = NO
parallel_sess_supp = YES

[define_partner_lu]
description = Second backend cics
fqplu_name = P390.C410XB02
plu_alias = CICS2
plu_un_name = C410XB02
max_mc_ll_send_size = 32767
conv_security_ver = NO
parallel_sess_supp = YES

[define_mode]
mode_name = SMSNA100
description = Sessions: 10 -- 5,5
max_ru_size_upp = 1024
receive_pacing_win = 4
default_ru_size = YES
max_neg_sess_lim = 256
plu_mode_session_limit = 10
min_conwin_src = 5
cos_name = #eLink
cryptography = NONE
auto_act = 0
BEA eLink Adapter for Mainframe Samples Guide 3-9

3 SAMPLE VTAM CONFIGURATIONS
Microsoft SNA Cross-Platform Definitions

Be sure to communicate with the administrator of the CICS/ESA remote domain to
obtain key parameters in the VTAM definition that must be included in the Microsoft
SNA Server configuration, as well as in other configuration files in the eAM local
domain.

Before installing eAM software, please examine the following general procedure for
configuring the Microsoft SNA Server. Use the Microsoft SNA Server Manager GUI.
Sample values are shown in parenthesis. Consult with the VTAM system administrator
to obtain the proper values.

1. Start Microsoft SNA Server Manager from Start button on the Task Bar.

2. A server is automatically created (MVSNT1). Note the configuration values
displayed in the Server Properties window:

Server: MVSNT1

Subdomain: MVSNT1

Server Role: Primary

Network Transports: TCP/IP

3. Under Link Services, define a link service (SNADLC1)

In the link service Properties, define DLC 802.2 Link Service Configuration:

Title: DLC 802.2 Link Service #1

Adapter: <your ethernet adapter>

Local Service Access Point (SAP): 0x4

Use Fixed SAP

4. Under SNA Service, Connections, define an 802.2 connection (MVSNT1.).

In the MVSNT1 Properties, define:

General

Name: MVSNT1

Link Service: SnaDlc1

Remote End: Peer System

Allowed Directions: Both Directions
3-10 BEA eLink Adapter for Mainframe Samples Guide

SAMPLE ENVIRONMENTS
Activation: On Server Startup

Supports Dynamic Remote APPC LU Definition

 Address

Remote Network Address: <host MAC address>

Remote SAP Address: <host SAP address>

System Identification

Local Node Name

 Network Name: <mynetwork>

 Control Point Name: MVSNT1

 Local Node ID: <xxx nnnn>XID Type: Format 3

Remote Node Name

 Network Name: <hostnetwork>

 Control Point Name: <vtamcpname>

 Remote Node ID: Peer DLC Role: Negotiable

Compression Type: None

802.2 DLC

Take Defaults

5. Under Local APPC LUs (SNA Service: Connections: Insert: APPC: Local LU),
define a local lu (LUNT1A) in the LUNT1A Properties, define:

General

LU Alias: LUNT1A

Network Name: <mynetwork>

LU Name: LUNT1A

Advanced

Take Defaults

6. Under Remote APPC LUs, define a remote lu (CICS1) in the CICS1 Properties,
define:

General
BEA eLink Adapter for Mainframe Samples Guide 3-11

3 SAMPLE VTAM CONFIGURATIONS
Connection: MVSNT1

LU Alias: CICS1

Network Name: <hostnetwork>

LU Name: CICS1

Uninterpreted Name: CICS1

Options

Take Defaults

7. Under APPC Modes, define a mode (SMSNA100) in the SMSNA100 Properties,
define:

General

Mode Name: SMSNA100

Limits

Parallel Session Limit: <max sessions>

Minimum Winner Contention Limit: <min winners>

Partner Min Winner Contention Limit: <max sessions - min winners>

Automatic Activation Limit: 0

Characteristics

Take Defaults

Partners

Add partnership for Server Name: MVSNT1 between Local LU: LUNT1A
and Partner LU: CICS1

Compression

Take Defaults

VTAM Application Program Major Node

The APPLID definition shown in the following listing defines the local stack
configuration to run under OS/390 using VTAM.
3-12 BEA eLink Adapter for Mainframe Samples Guide

SAMPLE ENVIRONMENTS
Listing 3-1 Applid definition (OS/390)

BEAVTAM VBUILD TYPE=APPL
BEAAPPL1 APPL ACBNAME=BEAAPPL1,

AUTH=(ACQ,PASS),
APPC=YES,
SYNCLVL=SYNCPT,
PARSESS=YES

Remote Environment Configurations

You must involve your mainframe system support personnel early in the process.
Make sure everyone is involved. Most of the configuration for your mainframe should
have already been done.

These samples are provided for illustration. Mainframe technical support is important.
This documentation is not intended demonstate all of the possible configurations.
These samples represent one way a P390 can be configured to work in an APPN LAN
environment.

ATCSTRxx VTAM Start List

The example below is the VTAM start list for the BEAVS P390 machine. It supports
both the subarea and APPN environments.

* --------------------------*
* VTAM START LIST FOR SYS1 *
* --------------------------*
BN=YES,
BNDYN=FULL,
XNETALS=YES,
SSCPID=06,NOPROMPT,
CONFIG=00,MAXSUBA=31,SUPP=NOSUP,
SSCPNAME=USS3270,
NETID=P390,
NODETYPE=NN,
HOSTSA=6,
CRPLBUF=(208,,15,,1,16),
IOBUF=(100,512,19,,1,20),
LFBUF=(104,,0,,1,1),
BEA eLink Adapter for Mainframe Samples Guide 3-13

3 SAMPLE VTAM CONFIGURATIONS
LPBUF=(64,,0,,1,1),
SFBUF=(163,,0,,1,1)

XCA Major Node Defines the LAN Adapter for SYS1

This definition is set up for use with a 3172 (emulated) for connecting an APPN
network node to another APPN node. Note that it is for an Ethernet LAN and the
SAPADDR specified must be the same as the LSap specified for the local link station.

**
* Emulated 3172 XCA MAJOR NODE FOR HOST beavs

XETH2LP1 VBUILD TYPE=XCA ** EXTERNAL COMMUNICATION ADAPT**
PORTE2 PORT ADAPNO=1, ** 3172 RELATIVE ADAPTER NUMBER**
 CUADDR=E22, ** CHANNEL UNIT ADDRESS **
 MEDIUM=CSMACD, ** LAN TYPE=ETHERNET **
 SAPADDR=8, ** SERVICE ACCESS POINT ADDRESS**
 TIMER=120 ** CHANNEL ACTIVATE RESP TIME **
*
G1ETH2 GROUP DIAL=YES, ** YES required for putype 2 **
 DYNPU=YES,
 CALL=INOUT,
 ANSWER=ON,
 ISTATUS=ACTIVE
LETH20 LINE
PETH20 PU
LETHE3 LINE
PETHE3 PU
LETHF3 LINE
PETHF3 PU

Switched Network (SWNET) Definitions

The three switched network definition examples in this section specify the VTAM PU,
representing the local link stations that expect to connect with the host machine. The
10BLK and IDNUM definitions are provided to support 3270 traffic and must be
unique, as well as match the values specified in the local link definition.

SWNET Major Node (DALHP10)

SWNETHHP VBUILD TYPE=SWNET,MAXNO=3,MAXGRP=3
P390HP10 PU ADDR=02,
 IDBLK=05F,
 IDNUM=FFFFF,
 PUTYPE=2,
3-14 BEA eLink Adapter for Mainframe Samples Guide

SAMPLE ENVIRONMENTS
 NETID=BEALAN,
 CPNAME=DALHP10,
 MAXPATH=3,
 DWACT=YES,
 CONNTYPE=APPN,
 CPCP=YES,
 DYNLU=YES
* ---
* SNA SAP & HP10 MAC ADDRESS BIT REVERSED FOR TRFMT
* ---
PATHHP PATH DIALNO=00041000900C24EE,
 GRPNM=G1ETH2
LUHP10A LU LOCADDR=0
LUHP10B LU LOCADDR=0
LUHP10C LU LOCADDR=0

SWNET Major Node (SUN2)

SWNETH2 VBUILD TYPE=SWNET,MAXNO=3,MAXGRP=3
P390ETH2 PU ADDR=04,
 IDBLK=019,
 IDNUM=10092,
 PUTYPE=2,
 NETID=BEALAN,
 CPNAME=SUN2,
 MAXPATH=3,
 DWACT=YES,
 CONNTYPE=APPN,
 CPCP=YES,
 DYNLU=YES
* ---
* SNA SAP & SUN2 MAC ADDRESS BIT REVERSED FOR TRFMT
* ---
PATH01 PATH DIALNO=00081000043EE20A,
 GRPNM=G1ETH2
LUSUN2A LU LOCADDR=0
LUSUN2B LU LOCADDR=0
LUSUN2C LU LOCADDR=0

SWNET Major Node ((SUN4)

SWNESUN4 VBUILD TYPE=SWNET,MAXNO=3,MAXGRP=3
P390ETH4 PU ADDR=03,
 IDBLK=018,
 IDNUM=10092,
 PUTYPE=2,
 NETID=BEALAN,
BEA eLink Adapter for Mainframe Samples Guide 3-15

3 SAMPLE VTAM CONFIGURATIONS
 CPNAME=SUN4,
 MAXPATH=3,
 DWACT=YES,
 CONNTYPE=APPN,
 CPCP=YES,
 DYNLU=YES
* ---
* SNA SAP & SUN4 MAC ADDRESS BIT REVERSED FOR TRFMT
* ---
PATHSL4 PATH DIALNO=0008100002E1E2B4,
 GRPNM=G1ETH2
LUSUN4A LU LOCADDR=0
LUSUN4B LU LOCADDR=0
LUSUN4C LU LOCADDR=0

VTAM Application Major Nodes for CICS Regions

These examples represent the partner LU definitions to be accessed from the local
environment. The APPL names must match those specified in the partner LU
definitions on the local machine.

BEACICS VBUILD TYPE=APPL APPLICATION MAJOR NODE
* APPL DEFINITION STATEMENTS FOR CICS
* CICS 4.10 BACKEND REGION #1 SYSID=B41A
C410XB01 APPL EAS=64, ESTIMATED CONCURRENT SESSIONS
 MODETAB=ISTINCLM, MAKE SURE DEFAULT MODETAB
 PARSESS=YES,
 AUTH=(ACQ,BLOCK,PASS) CICS CAN ACQUIRE & PASS TMLS
 CICS CAN REQUEST BLOCKED INPUT

C410XB02 APPL EAS=64, ESTIMATED CONCURRENT SESSIONS
 MODETAB=ISTINCLM, MAKE SURE DEFAULT MODETAB
 PARSESS=YES,
 AUTH=(ACQ,BLOCK,PASS) CICS CAN ACQUIRE & PASS TMLS
 CICS CAN REQUEST BLOCKED INPUT
C410XB03 APPL EAS=64, ESTIMATED CONCURRENT SESSIONS
 MODETAB=ISTINCLM, MAKE SURE DEFAULT MODETAB
 PARSESS=YES,
 AUTH=(ACQ,BLOCK,PASS) CICS CAN ACQUIRE & PASS TMLS
 CICS CAN REQUEST BLOCKED INPUT
* #######################
* END OF BEACICS APPL DEF
* #######################
3-16 BEA eLink Adapter for Mainframe Samples Guide

SAMPLE ENVIRONMENTS
CICS Resource Definition Entries (RDO)

CICS connection and session definitions map the VTAM path definitions for the CICS
application. Each connection represents one local LU definition in the local SNA
configuration, therefore, the names must match.

CICS session definitions associate a VTAM mode with the LU specified in the
connection. The mode names and session count characteristics must match those
specified in the mode definitions for the local SNA configuration. Note that these
definitions set AUTOCONNECT to “YES,” allowing automatic session acquisition for a
CICS client application.

LIST GROUP(BEAHP10) OBJECTS
GROUP NAME: BEAHP10

 CONNECTIONS: FHPA FHPB FHPC
 SESSION FHPA FHPB FHPC

CONNECTION(FHPA) GROUP(BEAHP10)
 DESCRIPTION(1ST HP SNAP2+ CONNECTION)
 CONNECTION-IDENTIFIERS
 NETNAME(LUHP10A) INDSYS()
 REMOTE-ATTRIBUTES
 REMOTESYSTEM() REMOTENAME() REMOTESYSNET()
 CONNECTION-PROPERTIES
 ACCESSMETHOD(VTAM) PROTOCOL(APPC) CONNTYPE()
 SINGLESESS(NO) DATASTREAM(USER) RECORDFORMAT(U)
 QUEUELIMIT(NO) MAXQTIME(NO)
 OPERATIONAL-PROPERTIES
 AUTOCONNECT(NO) INSERVICE(YES)
 SECURITY
 SECURITYNAME() ATTACHSEC(LOCAL) BINDSECURITY(NO)
 USEDFLTUSER(NO)
 RECOVERY
 PSRECOVERY(SYSDEFAULT)

CONNECTION(FHPB) GROUP(BEAHP10)
 DESCRIPTION(2ND HP SNA+ 2 CONNECTION)
 CONNECTION-IDENTIFIERS
 NETNAME(LUHP10B) INDSYS()
 REMOTE-ATTRIBUTES
 REMOTESYSTEM() REMOTENAME() REMOTESYSNET()
 CONNECTION-PROPERTIES
 ACCESSMETHOD(VTAM) PROTOCOL(APPC) CONNTYPE()
 SINGLESESS(NO) DATASTREAM(USER) RECORDFORMAT(U)
 QUEUELIMIT(NO) MAXQTIME(NO)
 OPERATIONAL-PROPERTIES
BEA eLink Adapter for Mainframe Samples Guide 3-17

3 SAMPLE VTAM CONFIGURATIONS
 AUTOCONNECT(YES) INSERVICE(YES)
 SECURITY
 SECURITYNAME() ATTACHSEC(LOCAL) BINDSECURITY(NO)
 USEDFLTUSER(NO)
 RECOVERY
 PSRECOVERY(SYSDEFAULT)

CONNECTION(FHPC) GROUP(BEAHP10)
 DESCRIPTION(3RD HP SNA+ 2 CONNECTION)
 CONNECTION-IDENTIFIERS
 NETNAME(LUHP10C) INDSYS()
 REMOTE-ATTRIBUTES
 REMOTESYSTEM() REMOTENAME() REMOTESYSNET()
 CONNECTION-PROPERTIES
 ACCESSMETHOD(VTAM) PROTOCOL(APPC) CONNTYPE()
 SINGLESESS(NO) DATASTREAM(USER) RECORDFORMAT(U)
 QUEUELIMIT(NO) MAXQTIME(NO)
 OPERATIONAL-PROPERTIES
 AUTOCONNECT(NO) INSERVICE(YES)
 SECURITY
 SECURITYNAME() ATTACHSEC(LOCAL) BINDSECURITY(NO)
 USEDFLTUSER(NO)
 RECOVERY
 PSRECOVERY(SYSDEFAULT)

 SESSIONS(FHPA) GROUP(BEAHP10)
 DESCRIPTION(1ST HP SNAP2+ SESSION)
 SESSION-IDENTIFIERS
 CONNECTION(FHPA) SESSNAME() NETNAMEQ()
 MODENAME(SMSNA100)
 SESSION-PROPERTIES
 PROTOCOL(APPC) MAXIMUM(32,16) RECEIVEPFX()
 RECEIVECOUNT() SENDPFX() SENDCOUNT()
 SENDSIZE(4096) RECEIVESIZE(4096) SESSPRIORITY(0)
 PRESET-SECURITY
 USERID()
 OPERATIONAL-PROPERTIES
 AUTOCONNECT(NO) BUILDCHAIN(YES) USERAREALEN(0)
 IOAREALEN(0,0) RELREQ(NO) DISCREQ(NO)
 NEPCLASS(0)
 RECOVERY
 RECOVOPTION(SYSDEFAULT)

 SESSIONS(FHPB) GROUP(BEAHP10)
 DESCRIPTION(2ND HP SNAP2+ SESSION)
 SESSION-IDENTIFIERS
 CONNECTION(FHPB) SESSNAME() NETNAMEQ()
 MODENAME(SMSNA100)
 SESSION-PROPERTIES
3-18 BEA eLink Adapter for Mainframe Samples Guide

SAMPLE ENVIRONMENTS
 PROTOCOL(APPC) MAXIMUM(32,16) RECEIVEPFX()
 RECEIVECOUNT() SENDPFX() SENDCOUNT()
 SENDSIZE(4096) RECEIVESIZE(4096) SESSPRIORITY(0)
 PRESET-SECURITY
 USERID()
 OPERATIONAL-PROPERTIES
 AUTOCONNECT(YES) BUILDCHAIN(YES) USERAREALEN(0)
 IOAREALEN(0,0) RELREQ(NO) DISCREQ(NO)
 NEPCLASS(0)
 RECOVERY
 RECOVOPTION(SYSDEFAULT)

 SESSIONS(FHPC) GROUP(BEAHP10)
 DESCRIPTION(3RD HPSNAP2+ SESSION)
 SESSION-IDENTIFIERS
 CONNECTION(FHPC) SESSNAME() NETNAMEQ()
 MODENAME(SMSNA100)
 SESSION-PROPERTIES
 PROTOCOL(APPC) MAXIMUM(10,5) RECEIVEPFX()
 RECEIVECOUNT() SENDPFX() SENDCOUNT()
 SENDSIZE(4096) RECEIVESIZE(4096) SESSPRIORITY(0)
 PRESET-SECURITY
 USERID()
 OPERATIONAL-PROPERTIES
 AUTOCONNECT(YES) BUILDCHAIN(YES) USERAREALEN(0)
 IOAREALEN(0,0) RELREQ(NO) DISCREQ(NO)
 NEPCLASS(0)
 RECOVERY
 RECOVOPTION(SYSDEFAULT)
BEA eLink Adapter for Mainframe Samples Guide 3-19

3 SAMPLE VTAM CONFIGURATIONS
3-20 BEA eLink Adapter for Mainframe Samples Guide

4 Application-to-
Application
Programming
Examples

This section provides the following transaction scenarios for the programming
environments supported by eAM:

n Distributed Program Link (DPL) Examples

n Distributed Transaction Processing (DTP) Examples

n CPI-C Programming Examples

n CICS/ESA Mirror Transaction Examples

Caution: The scenarios in this section demonstrate how ATMI calls relate to
CICS/ESA programming structures. They are not intended for use in
developing application code, or for the replacement of existing application
code. The use of any of these examples in actual situations may have
unpredictable results.

Each example provides a graphical illustration of the scenario followed by a
description of each step of the scenario.
BEA eLink Adapter for Mainframe Samples Guide 4-21

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
Distributed Program Link (DPL) Examples

The examples in this section represent a few of the many programming scenarios
available for using DPL and ATMI service invocations. These examples employ the
most natural and efficient approaches.

Note: To run transaction client/server scenarios, the eAM software must be licensed
for sync-level 2 operations.
4-22 BEA eLink Adapter for Mainframe Samples Guide

DISTRIBUTED PROGRAM LINK (DPL) EXAMPLES
ATMI Client Request/Response to CICS/ESA DPL

1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpcall for SIMPDPL, which is advertised in the
DM_REMOTE_SERVICES section of the DMCONFIG file.

3. Host mirror transaction starts TOUPDPLS program and passes idata buffer
contents for processing.

ATMI CICS

toupclt
ATMI Service

toupsrv
{ .
 .
 .
tpcall (“SIMPDPL”,
 idata
 ilen
 odata,
 olen
 0);
 .
 .
 .
}

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPDPL RNAME=TOUPDPLS FUNCTION=DPL CONV=N

HOST
Mirror

Transaction

TOUPDPLS
PROGRAM
 .
 .
 .
...(manipulate
commarea)...
 .
 .
 .
EXEC CICS RETURN

1

2

3

5

4

BEA eLink Adapter for Mainframe Samples Guide 4-23

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
4. The TOUPDPLS program processes data.

5. The CICS/ESA server returns the commarea into the client’s odata buffer.

ATMI Client Asynchronous Request/Response to
CICS/ESA DPL

ATMI CICS

toupclt
ATMI Service

toupsrv
{ .
cd=tpacall
 (“SIMPDPL”,
 idata
 ilen
 0);
 .
 .
tpgetreply (cd,
 odata,
 olen,
 0);
}

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPDPL RNAME=TOUPDPLS FUNCTION=DPL CONV=N

HOST
Mirror

Transaction

TOUPDPLS
PROGRAM
 .
 .
 .
...(manipulate
commarea)...
 .
 .
 .
EXEC CICS RETURN

1

2

3

5

4

4-24 BEA eLink Adapter for Mainframe Samples Guide

DISTRIBUTED PROGRAM LINK (DPL) EXAMPLES
1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpacall for SIMPDPL, which is advertised in the
DM_REMOTE_SERVICES section of DMCONFIG file.

3. Host mirror transaction starts TOUPDPLS program and passes idata buffer
contents for processing.

4. The TOUPDPLS program processes data.

5. The CICS/ESA system returns the commarea into the client’s tpgetreply
odata buffer.
BEA eLink Adapter for Mainframe Samples Guide 4-25

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
ATMI Client Asynchronous Request/Response with No
Reply to CICS/ESA DPL

1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpacall for SIMPDPL, which is advertised in the
DM_REMOTE_SERVICES section of DMCONFIG file. The toupsrv service uses
TPNOREPLY to specify that no reply is expected.

ATMI CICS

toupclt
ATMI Service

toupsrv
{ .
 cd tpacall
 (“SIMPDPL”,
 idata
 ilen
 TPNOREPLY);
 }

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPDPL RNAME=TOUPDPLS FUNCTION=DPL CONV=N

HOST
Mirror

Transaction

TOUPDPLS
PROGRAM
 .
 .
 .
...(manipulate
commarea)...
 .
 .
 .
EXEC CICS RETURN

1

2

3

4

4-26 BEA eLink Adapter for Mainframe Samples Guide

DISTRIBUTED PROGRAM LINK (DPL) EXAMPLES
3. Host mirror transaction starts TOUPDPLS program and passes idata buffer
contents for processing.

4. The TOUPDPLS program processes data.
BEA eLink Adapter for Mainframe Samples Guide 4-27

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
CICS/ESA DPL to ATMI Request/Response Server

1. User-entered HOPL invokes MIRRDPLC program.

2. The EXEC CICS LINK command causes the advertised service mapped to
MIRRDPLS (in the DM_LOCAL_SERVICES section of the DMCONFIG file) to
execute.

3. The MIRROR service processes the data received in the service TPSVCINFO data
buffer from the EXEC CICS LINK.

ATMI CICS

MIRROR
ATMI Service

MIRROR
(TPSVCINFO*
tpsvcinfo)
{ .
 .
...(manipulate
tpsvcinfo data)...
.
tpreturn
 (TPSUCCESS,
 0,
 tpsvcinfo->data
 tpsvcinfo->len);
}

DMCONFIG File Entry

DM_LOCAL_SERVICES

MIRROR RNAME=MIRRDPLS CONV=N

HOPL
User Transaction

MIRRDPLC
PROGRAM
 .
 .
 .
EXEC CICS LINK
 PROGRAM (“MIRRDPLS”)
 COMMAREA (COMM-AREA)
 DATALENGTH (COMM-LEN)
 LENGTH (COMM-LEN)
 SYNCONRETURN

4

2

1

3

4-28 BEA eLink Adapter for Mainframe Samples Guide

DISTRIBUTED PROGRAM LINK (DPL) EXAMPLES
4. The tpreturn call returns the data into the COMM-AREA buffer.
BEA eLink Adapter for Mainframe Samples Guide 4-29

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
CICS/ESA DPL to ATMI Request/Response Server, Service
in Autonomous Transaction

ATMI CICS

MIRROR

ATMI Service

MIRROR
(TPSVCINFO*
tpsvcinfo)
{
tpbegin();

...(manipulate
tpsvcinfo data)...

tpcommit();

tpreturn(TPSUCCESS,
 0,
 tpsvcinfo->data,
 tpsvcinfo->len);
}

DMCONFIG File Entry

DM_LOCAL_SERVICES

MIRROR RNAME=MIRRDPLC CONV=N

MRRDPLC
PROGRAM
 .
 .
 .
EXEC CICS LINK
 PROGRAM("MIRRDPLS")
 COMMAREA(COMM-AREA)
 DATALENGTH(COMM-LEN)
 LENGTH(COMM-LEN)
 SYNCONRETURN

EXEC CICS RETURN

5

4

3

2

6

H0PL
1

7

4-30 BEA eLink Adapter for Mainframe Samples Guide

DISTRIBUTED PROGRAM LINK (DPL) EXAMPLES
1. User-entered H0PL invokes MIRRDPLC program.

2. The EXEC CICS LINK command causes the advertised service mapped to
MIRRDPLS (in the DM_LOCAL_SERVICES section of the DMCONFIG file) to
execute. The SYNCONRETURN option indicates that the invoked service will not
participate in the CICS/ESA transaction.

3. The MIRROR service request tpbegin incorporates all further operations in a
transaction.

4. The MIRROR service processes the data.

5. The tpcommit indicates the end of the transaction; all updates performed within
the service transaction are to be committed.

6. The tpreturn call returns the data into the commarea buffer.

7. The EXEC CICS SYNCPOINT is an explicit commit request. All updated resources
in the CICS/ESA transaction are committed.
BEA eLink Adapter for Mainframe Samples Guide 4-31

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
ATMI Client Request/Response to CICS/ESA DPL, in
Autonomous Transaction

ATMI CICS

toupclt

ATMI Service

toupsrv
{
tpbegin(0,0)

tpcall("SIMPDPL",
 idata,
 ilen,
 odata,
 olen,
 TPNOTRAN)
tpcommit

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPDPL RNAME=TOUPDPLS FUNCTION=DPL CONV=N

Host Mirror Transaction

DPL

TOUPDPLS
Program
 .
 .
 .
..(manipulate commarea)..

EXEC CICS SYNCPOINT

EXEC CICS RETURN

2

1

5

6

3

4

7
8

4-32 BEA eLink Adapter for Mainframe Samples Guide

DISTRIBUTED PROGRAM LINK (DPL) EXAMPLES
1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpbegin to start the transaction.

3. The toupsrv service issues tpcall for SIMPDPL, which is advertised in the
DM_REMOTE_SERVICES section of the DMCONFIG file. The TPNOTRAN
parameter indicates the CICS/ESA application does not participate in the service
transaction.

4. Host mirror transaction starts TOUPDPLS program and passes idata buffer
contents for processing.

5. The TOUPDPLS program processes data.

6. The EXEC CICS SYNCPOINT is an explicit commit request. All updated resources
in the CICS/ESA transaction are committed.

7. The CICS/ESA server returns the commarea into the client’s odata buffer.

8. The toupsrv service tpcommit request signals the successful completion of the
transaction, causing a commit of its own updated resources.
BEA eLink Adapter for Mainframe Samples Guide 4-33

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
Transactional ATMI Client Multiple Requests/Responses
to CICS/ESA DPL

ATMI CICS

toupclt
ATMI Service

toupsrv
{
tpbegin(0,0);

do{.
 .
 .
 tpcall (“SIMPDPL”,
 idata,
 ilen,
 odata,
 olen,
 0);
 .
 .
 .
}while (NOTEND);

tpcommit

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPDPL RNAME=TOUPDPLS FUNCTION=DPL CONV=N

HOST
Mirror

Transaction

TOUPDPLS
PROGRAM
 .
 .
 .
...(manipulate
commarea)...
 .
 .
 .
EXEC CICS RETURN

1

3

4

5
2

8

7

6

4-34 BEA eLink Adapter for Mainframe Samples Guide

DISTRIBUTED PROGRAM LINK (DPL) EXAMPLES
1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpbegin to start the transaction.

3. The toupsrv service issues tpcall for SIMPDPL, which is advertised in the
DM_REMOTE_SERVICES section of the DMCONFIG file. The tpcall is requested
multiple times within the same transaction.

4. Host mirror transaction starts TOUPDPLS program and passes idata buffer
contents for processing. The host mirror transaction remains as a long-running
task to service all further requests on the transaction.

5. The TOUPDPLS program processes data.

6. The CICS/ESA system returns the commarea into the client’s odata buffer.

7. Step 3 through Step 6 are repeated until the toupsrv service loop end conditions
are met.

8. The tpcommit request indicates the successful completion of the transaction,
causing a commit of its own resources and the resources held by the host mirror
transaction.
BEA eLink Adapter for Mainframe Samples Guide 4-35

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
Transactional CICS/ESA DPL to ATMI Request/Response
Server

ATMI CICS

MIRROR

ATMI Service

MIRROR
(TPSVCINFO*
 tpsvcinfo)
{
...(manipulate
tpsvcinfo data)...

tpreturn(TPSUCCESS,
 0,
 tpsvcinfo->data,
 tpsvcinfo->len);
}

DMCONFIG File Entry

DM_LOCAL_SERVICES

MIRROR RNAME=MIRRORSERV CONV=N

H2PL

MIRRDPLC
PROGRAM
 .
 .
 .
EXEC CICS LINK
 PROGRAM ("MIRRDPLS")
 COMMAREA (comm-area)
 LENGTH (comm-area)

EXEC CICS SYNCPOINT

EXEC CICS RETURN

1

5

2

3

4

4-36 BEA eLink Adapter for Mainframe Samples Guide

DISTRIBUTED PROGRAM LINK (DPL) EXAMPLES
1. User-entered H2PL invokes MIRRDPLC program.

2. The EXEC CICS LINK command causes the advertised service mapped to
MIRRDPLS (in the DM_LOCAL_SERVICES section of the DMCONFIG file) to
execute. The invoked service participates in the CICS/ESA transaction.

3. The MIRROR service processes the data.

4. The tpreturn call returns the data into the commarea buffer.

5. The EXEC CICS SYNCPOINT is an explicit commit request indicating a successful
end of the conversation. All updated resources in the transaction are committed.
BEA eLink Adapter for Mainframe Samples Guide 4-37

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
Distributed Transaction Processing (DTP)
Examples

The following examples represent programming scenarios for using DTP and ATMI
service invocations.

Although it is most suited for the DPL environment, the tpcall is usually used for the
DPL environment, it can also be used for a request/response to a DTP server.

The examples in this section represent some of the programming scenarios available
for using DTP and ATMI service invocations. These examples employ the most
natural and efficient approaches.

Note: To run transactional client/server scenarios, the eAM software must be
licensed for sync-level 2 operations.
4-38 BEA eLink Adapter for Mainframe Samples Guide

DISTRIBUTED TRANSACTION PROCESSING (DTP) EXAMPLES
ATMI Client Request/Response to CICS/ESA DTP

ATMI CICS

toupclt
ATMI Service

toupsrv
{ .
 .
 .
tpcall (“SIMPDTP”,
 idata
 ilen
 odata,
 olen
 0)
 .
 .
 .
}

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPDTP RNAME=DTPS FUNCTION=APPC CONV=N

User Transaction
DTPS

TOUPDTPS
PROGRAM
 .
 .
...(move eibtrmid to
conv-id)...

EXEC CICS RECEIVE
 CONVID (CONV-ID)
 INTO (IN-BUFFER)
 FLENGTH (IN-LEN)
 .
 .
...(process data)...
 .
 .
EXEC CICS SEND
 FROM (OUT-BUFFER)
 FLENGTH (OUT-LENGTH)
 CONVID (CONV-ID)
 LAST WAIT

1
3

4

5

6
7

2

BEA eLink Adapter for Mainframe Samples Guide 4-39

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpcall for SIMPDTP, which is advertised in the
DM_REMOTE_SERVICES section of DMCONFIG file.

3. User transaction DTPS starts TOUPDTPS program.

4. It is recommended you save the eibtrmid to a program variable. This value may
be used to identify the specific conversation in your CICS/ESA APPC verbs.

5. The EXEC CICS RECEIVE command receives the idata buffer contents for
processing.

6. The TOUPDTPS program processes data.

7. The EXEC CICS SEND command returns the OUT-BUFFER contents into the
clients odata buffer. LAST indicates the conversation is finished. WAIT
suspends processing until the data has successfully been received.
4-40 BEA eLink Adapter for Mainframe Samples Guide

DISTRIBUTED TRANSACTION PROCESSING (DTP) EXAMPLES
ATMI Client Asynchronous Request/Response to
CICS/ESA DTP

ATMI CICS

toupclt

ATMI Service

toupsrv
{ .
 .
 .
cd=tpacall
 (“SIMPDTP”,
 idata,
 ilen,
 0);
 .
 .
 .
tpgetreply (cd,
 odata,
 olen,
 0);
}

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPDTP RNAME=DTPS FUNCTION=APPC CONV=N

User Transaction

DTPS

TOUPDTPS
PROGRAM
 .
 .
...(move EIBTRMID to
CONV-ID)...

EXEC CICS RECEIVE
 CONVID (CONV-ID)
 INTO (IN-BUFFER)
 FLENGTH (IN-LEN)
 .
 .
...(process data)...
 .
 .
EXEC CICS SEND
 FROM (OUT-BUFFER)
 FLENGTH (OUT_LENGTH)
 CONVID (CONV-ID)
 LAST WAIT

EXEC CICS RETURN

1
3

4

5

6

2

7

BEA eLink Adapter for Mainframe Samples Guide 4-41

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpacall for SIMPDTP, which is advertised in the
DM_REMOTE_SERVICES section of the DMCONFIG file.

3. User transaction DTPS starts TOUPDTPS program.

4. It is recommended you save the EIBTRMID to a program variable. This value may
be used to identify the specific conversation in your CICS/ESA APPC verbs.

5. The EXEC CICS RECEIVE command receives the idata buffer contents for
processing.

6. The TOUPDTPS program processes data.

7. The EXEC CICS SEND command returns the OUT-BUFFER contents into the
clients tpgetreply odata buffer. LAST indicates the conversation is finished.
WAIT suspends processing until the data has successfully been received.
4-42 BEA eLink Adapter for Mainframe Samples Guide

DISTRIBUTED TRANSACTION PROCESSING (DTP) EXAMPLES
ATMI Client Asynchronous Request/Response with No
Reply to CICS/ESA DTP

ATMI CICS

toupclt

ATMI Service

toupsrv
{ .
 .
 .
cd=tpacall
 (“SIMPDTP”,
 idata,
 ilen,
 TPNOREPLY);
 }

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPDTP RNAME=DTPS FUNCTION=APPC CONV=N

User Transaction
DTPS

TOUPDTPS
PROGRAM
 .
 .
...(move EIBTRMID to
CONV-ID)...

EXEC CICS RECEIVE
 CONVID (CONV-ID)
 INTO (IN-BUFFER)
 FLENGTH (IN-LEN)
 .
 .
...(process data)...
 .
 .
EXEC CICS RETURN

1
3

4

6

2

5

BEA eLink Adapter for Mainframe Samples Guide 4-43

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpacall with a TPNOREPLY request for SIMPDTP,
which is advertised in the DM_REMOTE_SERVICES section of DMCONFIG file.

3. User transaction DTPS starts TOUPDTPS program.

4. It is recommended you save the EIBTRMID to a program variable. This value may
be used to identify the specific conversation on your CICS/ESA APPC verbs.

5. The EXEC CICS RECEIVE command receives the idata buffer contents for
processing.

6. The TOUPDTPS program processes data.
4-44 BEA eLink Adapter for Mainframe Samples Guide

DISTRIBUTED TRANSACTION PROCESSING (DTP) EXAMPLES
ATMI Conversational Client to CICS/ESA DTP, Server Gets
Control

ATMI CICS

toupclt

ATMI Service

toupsrv
{ .
 .
 .
cd=tpconnect
 (“SIMPDTP”,
 idata,
 ilen,
 TPRECVONLY);
 .
 .
 .
tprecv (cd,
 odata,
 olen,
 0,
 revent);
}

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPDTP RNAME=DTPS FUNCTION=APPC CONV=Y

User Transaction
DTPS

TOUPDTPS
PROGRAM
 .
 .
...(move EIBTRMID to
CONV-ID)...

EXEC CICS RECEIVE
 CONVID (CONV-ID)
 INTO (IN-BUFFER)
 FLENGTH (IN-LEN)
 .
 .
...(process data)...
 .
 .
EXEC CICS SEND
 FROM (OUT-BUFFER)
 FLENGTH (OUT-LEN)
 WAIT LAST

EXEC CICS RETURN

1
3

4

5

6

2

 .

7

BEA eLink Adapter for Mainframe Samples Guide 4-45

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpconnect for SIMPDTP, which is advertised in the
DM_REMOTE_SERVICES section of DMCONFIG file. The TPRECVONLY flag
indicates the server gets control and the first conversation verb toupsrv can
issue is tprecv. Data is sent on the tpconnect in the idata buffer.

3. User transaction DTPS starts TOUPDTPS program.

4. It is recommended you save the EIBTRMID to a program variable. This value may
be used to identify the specific conversation on your CICS/ESA APPC verbs.

5. The EXEC CICS RECEIVE command receives the idata buffer contents for
processing.

6. The TOUPDTPS program processes data.

7. The EXEC CICS SEND command returns the OUT-BUFFER contents into the
clients tprecv odata buffer. WAIT suspends processing in TOUPDTPS until the
data has successfully been received. LAST indicates the conversation is finished
and is communicated to the tprecv as TPEV_SVCSUCC.
4-46 BEA eLink Adapter for Mainframe Samples Guide

DISTRIBUTED TRANSACTION PROCESSING (DTP) EXAMPLES
ATMI Conversational Client to CICS/ESA DTP, Client
Sends/Receives Data

ATMI CICS

toupclt
ATMI Service

toupsrv
{ .
 .
 .
cd=tpconnect
 (“SIMPDTP”,
 idata,
 ilen,
 TPSENDONLY);
 .
 .
 .
tpsend (cd,
 idata,
 ilen,
 0,
 TPRECVONLY);
tprecv (cd,
 odata,

 olen,
 o,
 revent);

tpreturn();
}

DMCONFIG File Entry
DM_REMOTE_SERVICES

SIMPDTP RNAME=DTPS FUNCTION=APPC CONV=Y

User Transaction

TOUPDTPS
PROGRAM
 .
 .
...(move eibtrmid to
conv-id)...
EXEC CICS RECEIVE
 CONVID (CONV-ID)
 INTO (IN-BUFFER)
 FLENGTH (IN-LEN)
 .
 .
...(process data)...
 .
 .
EXEC CICS RECEIVE
 CONVID (CONV-ID)
 INTO (IN-BUFFER)
 FLENGTH (IN-LEN)
 .
 .
 .
...(process data)...

EXEC CICS SEND
 CONVID (CONV-ID) WAIT LAST
 FROM (OUT-BUFFER)
 FLENGTH (OUT-LENGTH)
EXEC CICS RETURN

1
3

5

2

7

8

6

4

DTPS

9

BEA eLink Adapter for Mainframe Samples Guide 4-47

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpconnect for SIMPDTP, which is advertised in the
DM_REMOTE_SERVICES section of DMCONFIG file. The TPSENDONLY indicates
the client retains control and continues to send data. Data is sent on the
tpconnect in the idata buffer.

3. User transaction DTPS starts TOUPDTPS program.

4. It is recommended you save the EIBTRMID to a program variable. This value may
be used to identify the specific conversation on your CICS/ESA APPC verbs.

5. The EXEC CICS RECEIVE command receives the tpconnect idata buffer
contents for processing.

6. The TOUPDTPS program processes data.

7. The EXEC CICS RECEIVE command receives the tpsend idata contents into
the server’s IN-BUFFER.

8. The server processes the data.

9. The EXEC CICS SEND WAIT LAST returns OUT-BUFFER data in the tprecv
odata buffer, along with notification that the conversation is over.
4-48 BEA eLink Adapter for Mainframe Samples Guide

DISTRIBUTED TRANSACTION PROCESSING (DTP) EXAMPLES
ATMI Conversational Client to CICS/ESA DTP, Client
Grants Control

ATMI CICS

toupclt

ATMI Service

toupsrv
{ .
 .
cd=tpconnect
 (“SIMPDTP”,
 NULL,
 0,
 TPRECVONLY);

tprecv (cd,
 odata
 olen
 0,
 revent)
 .
 .
tpsend (cd,
 idata,
 ilen,
 0,
 TPRECVONLY);
tprecv (cd,

dummy,
dumlen
0,
reevent);

tpreturn();
}

DMCONFIG File Entry
DM_REMOTE_SERVICES

SIMPDTP RNAME=DTPS FUNCTION=APPC CONV=Y

User Transaction

DTPS

TOUPDTPS
PROGRAM
 .
 .
...(move EIBTRMID to
CONV-ID)...

EXEC CICS RECEIVE
 CONVID (CONV-ID)
 INTO (IN-BUFFER)
 FLENGTH (IN-LEN)
 .
 .

EXEC CICS SEND
 FROM (OUT-BUFFER)
 FLENGTH (OUT-LEN)
 INVITE

EXEC CICS RECEIVE
 CONVID (conv-id)
 INTO (IN-BUFFER)
 FLENGTH (IN-LEN)

EXEC CICS RETURN

1

3

5

2

6

4

7

8

BEA eLink Adapter for Mainframe Samples Guide 4-49

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpconnect for SIMPDTP, which is advertised in the
DM_REMOTE_SERVICES section of DMCONFIG file. The TPRECVONLY indicates
the server gets control and the first conversation verb toupsrv can issue is
tprecv.

3. User transaction DTPS starts TOUPDTPS program.

4. It is recommended you save the EIBTRMID to a program variable. This value may
be used to identify the specific conversation on your CICS/ESA APPC verbs.

5. The EXEC CICS RECEIVE command receives a send state indicator from the
tpconnect TPRECVONLY flag. No data is received into the INBUFFER.

6. The EXEC CICS SEND command returns the OUT-BUFFER contents into the
clients tprecv odata buffer. The EXEC CICS SEND command relinquishes
control to the client by using the INVITE option. This is communicated to the
tprecv as TPEV_SENDONLY.

7. The EXEC CICS RECEIVE command receives the tpsend idata contents into
the server’s IN-BUFFER, along with notification that the server has relinquished
control.

8. The EXEC CICS RETURN ends the conversation, communicated to the tprecv as
TPEV_SVCSUCC.
4-50 BEA eLink Adapter for Mainframe Samples Guide

DISTRIBUTED TRANSACTION PROCESSING (DTP) EXAMPLES
CICS/ESA DTP to ATMI Conversational Server, Client
Retains Control

ATMI CICS

MIRROR

ATMI Service

MIRROR
 (TPSVCINFO*
 tpsvcinfo)
{
 .
 .
 .
manipulate
 tpsvcinfo->data
 .
 .
tprecv
 (tpsvcinfo->cd,
 odata,
 olen,
 0,
 revent);

...(process data)...

tpreturn
 (TPSUCCESS,
 0,
 idata,
 ilen,
 0;
}

DMCONFIG File Entry
DM_LOCAL_SERVICES

MIRROR RNAME=MIRRORSERV CONV=Y

User Transaction

H0TP

MIRRDTPC
PROGRAM
 .
 .
EXEC CICS ALLOCATE
 SYSID (“BEA”)

...(move EIBRSRCE to
CONV-ID)...

EXEC CICS
 CONNECT PROCESS
 PROCNAME (“MIRRORSERV”)
 PROCLENGTH (10)
 SYNCLEVEL (0)
EXEC CICS SEND
 FROM (OUT-BUFF)
 FLENGTH (OUT-LEN)
 CONVID (CONV-ID)
 WAIT
EXEC CICS SEND
 INVITE WAIT
 FROM (OUT-BUFF)
 FLENGTH (OUT-LEN)
 CONVID (CONV-ID)
EXEC CICS RECV
 SET (PTR)
 FLENGTH (LENGTH)
EXEC CICS RETURN

7

1

2

3

6

4

8

9

5

BEA eLink Adapter for Mainframe Samples Guide 4-51

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
1. User-entered H0TP invokes MIRRDTPC program.

2. The EXEC CICS ALLOCATE acquires a session to the remote Tuxedo domain.

3. Save the conversation ID returned in EIBRSRCE to a program variable. This value
is used to identify the specific conversation in your CICS/ESA APPC verbs.

4. The EXEC CICS CONNECT PROCESS command initiates the advertised service
mapped to MIRROR in the DM_LOCAL_SERVICES section of the DMCONFIG
file.

5. Execute the EXEC CICS SEND command to send the contents of the
OUT-BUFFER to the Tuxedo service in the tpsvcinfo->data buffer. The
contents might be sent immediately.

6. The EXEC CICS SEND INVITE WAIT command sends out-buff contents into
the tprecv odata buffer. The INVITE parameter relinquishes control of the
conversation, seen as a TPEV_SENDONLY in the reevent parameter on the
tprecv command. The data is sent immediately, along with the data from the
previous SEND operation.

7. The Tuxedo service processes data.

8. The CICS/ESA server processes data.

9. The ATMI tpreturn data returns data to the EXEC CICS RECEIVE, along with
notification that the conversation completed successfully.
4-52 BEA eLink Adapter for Mainframe Samples Guide

DISTRIBUTED TRANSACTION PROCESSING (DTP) EXAMPLES
CICS/ESA DTP to ATMI Conversational Server, Client
Relinquishes Control

ATMI CICS

MIRROR

ATMI Service

MIRROR
 (TPSVCINFO*
 tpsvcinfo)
{
 .
 .
 .
tpsend
 (tpsvcinfo->cd,
 idata,
 ilen,
 0,
 revent);

tpreturn();

}

DMCONFIG File Entry

DM_LOCAL_SERVICES

MIRROR RNAME=MIRRORSERV CONV=Y

User Transaction

HOTP

MIRRDTPC
PROGRAM
 .
 .
EXEC CICS ALLOCATE
 SYSID (“BEA”)

...(move EIBRSRCE to
CONV-ID)...

EXEC CICS CONNECT PROCESS
 PROCNAME (“MIRRORSERV”)
 PROCLENGTH (10)
 SYNCLEVEL (0)

EXEC CICS SEND
 INVITE WAIT

EXEC CICS RECEIVE
 CONVID (CONV-ID)
 INTO (IN-BUFFER)
 FLENGTH (IN-LEN)

EXEC CICS RETURN

1

2

3

4

5

6

7

BEA eLink Adapter for Mainframe Samples Guide 4-53

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
1. User-entered HOTP invokes MIRRDTPC program.

2. The EXEC CICS ALLOCATE acquires a session to the remote Tuxedo domain.

3. Save the conversation ID returned in EIBRSRCE to a program variable. This value
is used to identify the specific conversation in your CICS/ESA APPC verbs.

4. The EXEC CICS CONNECT PROCESS command initiates the advertised service
mapped to MIRROR in the DM_LOCAL_SERVICES section of the DMCONFIG
file.

5. The EXEC CICS SEND command relinquishes control with the INVITE WAIT
option.

6. The EXEC CICS RECEIVE command receives the tpsend idata buffer contents
into the IN-BUFFER.

7. The tpreturn request tears down the conversation and indicates on the EXEC
CICS RECEIVE that the conversation is over.
4-54 BEA eLink Adapter for Mainframe Samples Guide

DISTRIBUTED TRANSACTION PROCESSING (DTP) EXAMPLES
Transactional ATMI Client Request/Response to
CICS/ESA DTP

ATMI CICS

toupclt

ATMI Service

toupsrv
{
 tpbegin(0,0)
 tpcall (“SIMPDTP”,
 idata
 ilen
 odata,
 olen
 0)

 tpcommit();
 .
 .
 .
}

DMCONFIG File Entry
DM_REMOTE_SERVICES

SIMPDTP RNAME=DTPS FUNCTION=APPC CONV=N

User Transaction

DTPS

TOUPDTPS
PROGRAM
 .
 .
...(move EIBTRMID to
CONV-ID)...

EXEC CICS RECEIVE
 CONVID (CONV-ID)
 INTO (IN-BUFFER)
 FLENGTH (IN-LEN)
 .
 .
...(process data)...
 .
 .
EXEC CICS SEND
 FROM (OUT-BUFFER)
 FLENGTH (OUT_LENGTH)
 CONVID (CONV-ID)
 CONFIRM INVITE

EXEC CICS RECEIVE
 INTO (DUMMY)
 INLENGTH (DUMMY-LEN)

EXEC CICS RETURN

1
4

5
6

7
8

3
2

9

BEA eLink Adapter for Mainframe Samples Guide 4-55

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
Note: This is not the recommended method of performing a DTP transactional
service. Please refer to the transactional DPL using request/response for the
recommended method.

1. ATMI client toupclt invokes toupsrv service. (Note that each tpcall made in
the program must be bookended with a tpbegin and a tpcommit.)

2. The service issues tpbegin to start a transaction.

3. The toupsrv service issues tpcall for SIMPDTP, which is advertised in the
DM_REMOTE_SERVICES section of the DMCONFIG file.

4. User transaction DTPS starts TOUPDTPS program.

5. Save the EIBTRMID to a program variable. This value is used to identify the
specific conversation on your CICS/ESA APPC verbs.

6. The EXEC CICS RECEIVE command receives the idata buffer contents for
processing.

7. The TOUPDTPS program processes data.

8. The EXEC CICS SEND command returns the OUT-BUUFER contents into the
clients odata buffer. CONFIRM indicates the conversation is finished. INVITE
allows the client to respond with a COMMIT request.

9. The toupsrv service issues tpcommit to end the transaction. The COMMIT is
received on the EXEC CICS RECEIVE verb and the server issues EXEC CICS
RETURN to commit the resources, terminate the transaction, and free the
outstanding conversation.
4-56 BEA eLink Adapter for Mainframe Samples Guide

DISTRIBUTED TRANSACTION PROCESSING (DTP) EXAMPLES
Transactional ATMI Conversational Client to CICS/ESA
DTP, Server Gets Control

ATMI CICS

toupclt

ATMI Service

toupsrv
{
tpbegin(0,0)
 .
 .
 .
cd=tpconnect
 (“SIMPDTP”,
 idata,
 ilen,
 TPRECVONLY);
 .
 .
 .
tprecv (cd,
 odata,
 olen,
 0,
 revent);

tpcommit
}

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPDTP RNAME=DTPS FUNCTION=APPC CONV=Y

User Transaction
DTPS

TOUPDTPS
PROGRAM
 .
 .
...(move eibtrmid to
conv-id)...

EXEC CICS RECEIVE
 CONVID (CONV-ID)
 INTO (IN-BUFFER)
 FLENGTH (IN-LEN)
 .
 .
...(process data)...
 .
 .
EXEC CICS SEND
 FROM (OUT-BUFFER)
 FLENGTH (OUT-LEN)
 CONFIRM INVITE

EXEC CICS RECEIVE
 INTO (DUMMY)
 INLENGTH (DUMMY-LEN)

EXEC CICS RETURN

1
4

5

6

7

3

.

2

8

9

BEA eLink Adapter for Mainframe Samples Guide 4-57

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpbegin to start the transaction.

3. The toupsrv service issues tpconnect for SIMPDTP, which is advertised in the
DM_REMOTE_SERVICES section of DMCONFIG file. The TPRECVONLY indicates
the server gains control and the first conversation verb toupsrv can issue is
tprecv. Data is sent on the tpconnect in the idata buffer.

4. User transaction DTPS starts TOUPDTPS program.

5. It is recommended you save the EIBTRMID to a program variable. This value may
be used to identify the specific conversation on your CICS/ESA APPC verbs.

6. The EXEC CICS RECEIVE command receives the idata buffer contents for
processing.

7. The TOUPDTPS program processes data.

8. The EXEC CICS SEND command returns the OUT-BUFFER contents into the
clients tprecv odata buffer. CONFIRM indicates that the conversation is
finished and is communicated to the tprecv as TPEV_SVCSUCC. INVITE enables
the client to respond with a COMMIT request.

9. The toupsrv service issues tpcommit to end the transaction. The COMMIT is
received on the EXEC CICS RECEIVE verb and the server issues EXEC CICS
RETURN to commit the resources, terminate the transaction, and free the
outstanding conversation.
4-58 BEA eLink Adapter for Mainframe Samples Guide

DISTRIBUTED TRANSACTION PROCESSING (DTP) EXAMPLES
Transactional CICS/ESA DTP to ATMI Conversational
Server, Host Client Relinquishes Control

ATMI CICS

MIRROR

ATMI Service

MIRROR
 (TPSVCINFO*
 tpsvcinfo)
{
 .
 .
 .
tpsend
 (tpsvcinfo->cd,
 idata,
 ilen,
 0,
 revent);

tpreturn();

}

DMCONFIG File Entry

DM_LOCAL_SERVICES

MIRROR RNAME=MIRRORSERV CONV=Y

User Transaction

H2TP

MIRRDTPC
PROGRAM
 EXEC CICS ALLOCATE
 SYSID (“BEA”)
...(move EIBRSRCE to
CONV-ID)...
EXEC CICS CONNECT PROCESS
 PROCNAME (“MIRRORSERV”)
 PROCLENGTH (10)
 SYNCLEVEL (2)
EXEC CICS SEND
 INVITE WAIT
EXEC CICS RECEIVE
 CONVID (CONV-ID)
 INTO (IN-BUFFER)
 FLENGTH (IN-LEN)
EXEC CICS ISSUE CONFIRMATION
 CONVID (CONV-ID)
EXEC CICS RECEIVE
 CONVID (CONV-ID)
EXEC CICS SYNCPOINT

EXEC CICS FREE
 CONVID (CONV-ID)
EXEC CICS RETURN

1

2
3

4

5
6

7

8

9

BEA eLink Adapter for Mainframe Samples Guide 4-59

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
1. User-entered H2TP invokes MIRRDTPC program.

2. The EXEC CICS ALLOCATE acquires a session to the remote Tuxedo domain.

3. Save the conversation ID returned in EIBRSRCE to a program variable. This value
is used to identify the specific conversation on your CICS/ESA APPC verbs.

4. The EXEC CICS CONNECT PROCESS command initiates the advertised service
mapped to MIRRDTPS. The SYNCLEVEL(2) parameter indicates the inclusion of
the ATMI service in the CICS/ESA transaction.

5. The EXEC CICS SEND INVITE WAIT command causes the client to immediately
relinquish control to the Tuxedo server. This is communicated to the service in
TPSVCINFO as TPSENDONLY. No data is sent to the server on this request.

6. The EXEC CICS RECEIVE command receives the tpsend idata buffer contents
into the IN-BUFFER. The EXEC CICS RECEIVE command receives a confirm
request indicating the conversation should be terminated.

7. The EXEC CICS ISSUE CONFIRMATION verb responds positively to the confirm
request.

8. The EXEC CICS SYNCPOINT is an explicit commit request to end the
conversation and update all resources in the transaction.

9. The EXEC CICS FREE verb explicitly frees the outstanding conversation.
4-60 BEA eLink Adapter for Mainframe Samples Guide

CPI-C PROGRAMMING EXAMPLES
CPI-C Programming Examples

The examples in this section show the protocol exchanges between the local ATMI
platform and remote host application program. The type of ATMI service request
determines the nature of the client/server communication model. For requests initiated
by the host application, the configuration information for the local service determines
the protocol exchanges on the conversation.

Although it is most suited for the DPL environment, the tpcall is usually used in the
DPL environment but can also be used for a request/response to an APPC server.

The examples in this section represent a few of the many programming scenarios
available for using CPI-C and ATMI service invocations. These examples employ the
most natural and efficient approaches.

Note: To run transactional client/server scenarios or the CPI Resource Recovery
interface, the eAM software must be licensed for sync-level 2 operations.
BEA eLink Adapter for Mainframe Samples Guide 4-61

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
ATMI Client Request/Response to Host CPI-C

ATMI HOST

toupclt

ATMI Service

toupsrv()
{
tpcall ("SIMPCPIC",
 idata,
 ilen,
 odata,
 olen,
 0);
 }

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPCPIC RNAME=TPNCPIC FUNCTION=APPC CONV=N

Remote Service

tpname = TPNCPIC

TOUPCPIC
PROGRAM
main()
{
cmaccp(convid,rcode);
cmrcv(convid,ibuffer,..);

...(process data)...

cmsst(..);CM_SEND_AND_DEALLOCATE

cmsend(convid, obuffer);
 .
 .
 .
}

 2

5

8

1

4

6

7

3

4-62 BEA eLink Adapter for Mainframe Samples Guide

CPI-C PROGRAMMING EXAMPLES
1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpcall for SIMPCPIC, which is advertised in the
DM_REMOTE_SERVICES section of the DMCONFIG file.

3. The remote service with the tpname TPNCPIC invokes TOUPCPIC program.

4. The server accepts the conversation with the cmaccp call. The conversation id
returned on the request in convid is used for all other requests on this
conversation.

5. The cmrcv request receives the idata buffer contents for processing

6. The TOUPCPIC program processes data.

7. The cmsst request prepares the next send request by setting the send type to
CM_SEND_AND_DEALLOCATE.

8. The cmsend request returns the obuffer contents into the client odata buffer.
The buffer is flushed, and the conversation ended.
BEA eLink Adapter for Mainframe Samples Guide 4-63

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
ATMI Client Asynchronous Request/Response to Host
CPI-C

ATMI HOST

toupclt

ATMI Service

toupsrv()
{
cd=tpacall ("SIMPCPIC",
 idata,
 ilen,
 0);

tpgetreply(cd,
 odata,
 olen,
 0);
 }

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPCPIC RNAME=TPNCPIC FUNCTION=APPC CONV=N

Remote Service

tpname = TPNCPIC

TOUPCPIC
PROGRAM
main()
{
cmaccp(convid,rcode);
cmrcv(convid,ibuffer,..);

...(process data)...

cmsend(convid,
 obuffer,...);

cmdeal(convid, rcode);
 .
 .
 .
}

 2

5

3

8

1

4

6
7

4-64 BEA eLink Adapter for Mainframe Samples Guide

CPI-C PROGRAMMING EXAMPLES
1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpacall for SIMPCPIC, which is advertised in the
DM_REMOTE_SERVICES section of the DMCONFIG file.

3. The remote service with tpname TPNCPIC invokes TOUPCPIC program.

4. The server accepts the conversation with the cmaccp call. The conversation id
returned on the request in convid is used for all other requests on this
conversation.

5. The cmrcv request receives the idata buffer contents for processing.

6. The TOUPCPIC program processes data.

7. The cmsend command returns the obuffer contents into the client tpgetreply
odata buffer. The data may not be immediately sent to the tpgetreply odata
buffer on this request.

8. The cmdeal flushes the data to the client, and indicates the conversation is
finished.
BEA eLink Adapter for Mainframe Samples Guide 4-65

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
ATMI Client Asynchronous Request/Response to Host
CPI-C with No Reply

ATMI HOST

toupsrv

ATMI Service

toupsrv()
{
tpacall ("SIMPCPIC",
 idata,
 ilen,
 TPNOREPLY);

 .
 .
 .
}

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPCPIC RNAME=TPNCPIC FUNCTION=APPC CONV=N

Remote Service

tpname = TPNCPIC

TOUPCPIC
PROGRAM
main()
{
cmaccp(convid,rcode);
cmrcv(convid,ibuffer,..);

...(process data)...

}

 1

3

6

4

2

5

4-66 BEA eLink Adapter for Mainframe Samples Guide

CPI-C PROGRAMMING EXAMPLES
1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpacall with a TPNOREPLY request for SIMPCPIC,
which is advertised in the DM_REMOTE_SERVICES section of the
DMCONFIG file.

3. The remote service with tpname TPNCPIC invokes TOUPCPIC program.

4. The server accepts the conversation with the cmaccp call. The conversation id
returned on the request in convid is used for all other requests on this
conversation.

5. The cmrcv request receives the idata buffer contents for processing, and
notification that the conversation has ended with the return code value of
CM_DEALLOCATED_NORMAL.

6. The TOUPCPIC program processes data.
BEA eLink Adapter for Mainframe Samples Guide 4-67

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
ATMI Conversational Client to Host CPI-C, Server Gets
Control

ATMI HOST

toupclt

ATMI Service

toupsrv()
{
cd=tpconnect
 ("SIMPCPIC",
 idata,
 ilen,
 TPRECVONLY);

tprecv(cd,
 odata,
 olen,
 0
 revent);
 }

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPCPIC RNAME=TPNCPIC FUNCTION=APPC CONV=Y

Remote Service

tpname = TPNCPIC

TOUPCPIC
PROGRAM
main()
{
cmaccp(convid,rcode);

cmrcv(convid,ibuffer,..);

...(process data)...

cmsst(.);CM_SEND_AND_FLUSH

cmsend(convid, obuffer);
cmdeal(convid, rcode);
 .
 .
 .
}

 1

9

7

6

4

2

5

8

3

4-68 BEA eLink Adapter for Mainframe Samples Guide

CPI-C PROGRAMMING EXAMPLES
1. ATMI client invokes toupsrv service

2. The toupsrv service issues tpconnect for SIMPCPIC, which is advertised in the
DM_REMOTE_SERVICES section of the DMCONFIG file. The TPRECVONLY
indicates the server gains control and the first conversation verb the toupsrv can
issue is tprecv. Data is sent on the tpconnect in the idata buffer.

3. The remote service with tpname TPNCPIC invokes TOUPCPIC program.

4. The server accepts the conversation with the cmaccp call. The conversation ID
returned on the request in convid is used for all other requests on this
conversation.

5. The cmrcv request receives the idata buffer contents for processing.

6. The TOUPCPIC program processes data

7. The cmsst request prepares the next send request by setting the send type to
CM_SEND_AND_FLUSH.

8. The cmsend command returns the obuffer contents into the client tprecv
odata buffer. The data is immediately flushed on the send request.

9. The cmdeal request ends the conversation.
BEA eLink Adapter for Mainframe Samples Guide 4-69

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
ATMI Conversational Client To Host CPI-C, Client Retains
Control

ATMI HOST

toupclt

ATMI Service

toupsrv()
{
cd=tpconnect
 ("SIMPCPIC",
 0,
 0,
 TPSENDONLY);

tpsend(cd,
 odata,
 olen,
 0
 TPRECVONLY);

tprecv (cd,
 idata,
 iler
 0,
 revent);
 .
 .
 .
}

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPCPIC RNAME=TPNCPIC FUNCTION=APPC CONV=Y

Remote Service

tpname = TPNCPIC

TOUPCPIC
PROGRAM
main()
{
cmaccp(convid,rcode);

cmrcv(convid,ibuffer,..);

...(process data)...
 .
 .
 .
cmsend (convid,
 obuffer...)
cmdeal (convid,
 rcode);
}

 1

6

4

3
2

5

7

4-70 BEA eLink Adapter for Mainframe Samples Guide

CPI-C PROGRAMMING EXAMPLES
1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpconnect for SIMPCPIC, which is advertised in the
DM_REMOTE_SERVICES section of the DMCONFIG file. The
TPSENDONLY indicates the client retains control and continues to send data.
No data is sent with the tpconnect.

3. The remote service with tpname TPNCPIC invokes TOUPCPIC program.

4. The server accepts the conversation with the cmaccp call. The conversation id
returned on the request in convid is used for all other requests on this
conversation.

5. The cmrcv request receives the tpsend idata buffer contents for processing.
The conversation is relinquished with the TPRECVONLY flag.

6. The TOUPCPIC program processes data.

7. The cmsend returns a response in the tprecv idata buffer, along with
notification from the cmdeal command that the conversation is over. The cmdeal
flushes the data buffer and the tprecv reevent parameter is set to
TPEV_SUCCESS.
BEA eLink Adapter for Mainframe Samples Guide 4-71

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
ATMI Conversational Client to Host CPI-C, Client
Grants/gets Control

ATMI HOST

toupclt

ATMI Service

toupsrv()
{
cd=tpconnect
 ("SIMPCPIC",
 0,
 0,
 TPRECVONLY);
tprecv(cd,
 odata,
 olen,
 0
 revent);
tprecv(cd,
 odata,
 olen,
 0
 revent);
tpsend(cd,
 idata,
 ilen,
 0
 TPRECVONLY);
tprecv(cd,

dumptr,
dumplen,
0,
revent);

}

DMCONFIG File Entry
DM_REMOTE_SERVICES

SIMPCPIC RNAME=TPNCPIC FUNCTION=APPC CONV=Y

Remote Service

tpname = TPNCPIC

TOUPCPIC
PROGRAM
main()
{
cmaccp (convid,rcode);
cmrcv(convid,ibuffer,..);

cmsend(convid,
 obuffer,...);

cmsend(convid,
 obuffer,...);

cmptr(convid,rcode);

cmrcv(convid, ibuffer,
...);
 .
 .
 .
cmdeal (convid,

rcode);
}

 1

8

4

3
2

5
6

7

9

10
4-72 BEA eLink Adapter for Mainframe Samples Guide

CPI-C PROGRAMMING EXAMPLES
1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpconnect for SIMPCPIC, which is advertised in the
DM_REMOTE_SERVICES section of the DMCONFIG file. The
TPRECVONLY indicates the server gains control and the first conversation verb
the toupsrv can issue is tprecv.

3. The remote service with tpname TPNCPIC invokes TOUPCPIC program.

4. The server accepts the conversation with the cmaccp request. The conversation id
returned on the request in convid is used for all other requests on this
conversation.

5. The cmrcv requests receives the indicator that control has been granted to the
server.

6. The cmsend request returns its obuffer contents into the first client tprecv
odata buffer. The data may not immediately be sent.

7. The cmsend request returns its obuffer contents into the second client tprecv
odata buffer. The data may not immediately be sent.

8. The cmptr request flushes the data to the client, and grants control to the client.

9. The cmrcv request receives the tpsend idata buffer contents for processing.
The TPRECVONLY is passed to the tprecv, relinquishing control of the
conversation.

10. The cmdeal indicates a successful completion of the conversation to the tprecv;
no data is passed.
BEA eLink Adapter for Mainframe Samples Guide 4-73

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
Host CPI-C to ATMI Asynchronous Request/Response
Server with No Reply

ATMI HOST

MIRROR

ATMI Service

MIRROR()
 (TPSVCINFO* tpsvcinfo)
{
tpsvcinfo->flags ==
 TPNOREPLY

manipulate
 tpsvcinfo->data

tpreturn(TPSUCCESS, 0,
 NULL, 0, 0);
}

DMCONFIG File Entry

DM_LOCAL_SERVICES

MIRROR RNAME=MIRRORSERV CONV=N

Environment

MIRRCPIC
PROGRAM
main()
{
cminit(convid,"MIRRSIDE",
 rcode);

cmallc(convid,rcode);

cmsend(convid, obufer,
 ...);
cmdeal(convid, rcode);
 .
 .
 .
}

6
3

2

1

4

5

4-74 BEA eLink Adapter for Mainframe Samples Guide

CPI-C PROGRAMMING EXAMPLES
1. The CPI-C application program MIRRCPIC is invoked using environment start-up
specifications.

2. The MIRRCPIC client requests cminit to establish conversation attributes and
receive a conversation ID that will be used on all other requests on this
conversation. The remote server and service are named in the CPI-C side
information entry MIRRSIDE.

3. The cmallc request initiates the advertised service mapped to MIRRORSERV in the
DM_LOCAL_SERVICES section of the DMCONFIG file.

4. The cmsend request sends the contents of obuffer to the ATMI service in the
tpsvcinfo->data buffer.

5. The cmdeal request flushes the data, and indicates the conversation is finished
with the TPNOREPLY in the tpsvcinfo->flag field.

6. The service completes with the tpreturn.
BEA eLink Adapter for Mainframe Samples Guide 4-75

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
Host CPI-C to ATMI Server Request/Response

ATMI HOST

MIRROR

ATMI Service

MIRROR()
 (TPSVCINFO* tpsvcinfo)
{
manipulate
 tpsvcinfo->data

tpreturn(TPSUCCESS, 0,
 odata,
 olen,
 0);
}

DMCONFIG File Entry

DM_LOCAL_SERVICES

MIRROR RNAME=MIRRORSERV CONV=N

Environment

MIRRCPIC
PROGRAM
main()
{
cminit(convid,"MIRRSIDE",
 rcode);

cmallc(convid,rcode);

cmsst(...)CM_SEND_PREP_TO_RECEIVE

cmsend(convid, obufer,
 ...);
cmrcv(convid, ibuffer...);
 }

1

4

3

2

5

6

4-76 BEA eLink Adapter for Mainframe Samples Guide

CPI-C PROGRAMMING EXAMPLES
1. The CPI-C application program MIRRCPIC is invoked using environment start-up
specifications.

2. The MIRRCPIC client requests cminit to establish conversation attributes and
receive a conversation id that will be used on all other requests on this
conversation. The remote server and service are named in the CPI-C side
information entry MIRRSIDE.

3. The cmallc request initiates the advertised service mapped to MIRRORSERV in the
DM_LOCAL_SERVICES section of the DMCONFIG file.

4. The cmsst request prepares the next send request by setting the send type to
CM_SEND_AND_PREP_TO_RECEIVE.

5. The cmsend request immediately sends the contents of obuffer to the ATMI
service in the tpsvcinfo->data buffer and relinquishes control to the
mirrorserv service.

6. The cmrcv request receives the contents of the odata returned on the ATMI
tpreturn service, and notification that the conversation has ended with the
return code value of CM_DEALLOCATED_NORMAL.
BEA eLink Adapter for Mainframe Samples Guide 4-77

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
Host CPI-C to ATMI Conversational Service, Client Retains
Control

ATMI HOST

MIRROR

ATMI Service

MIRROR()
 (TPSVCINFO* tpsvcinfo)
{
tpsvcinfo->flags ==
 TPCONV+TPNOREPLY+
 TPRECVONLY

manipulate
 tpsvcinfo->data

tpreturn(TPSUCCESS, 0,
 NULL, 0, 0);

}

DMCONFIG File Entry

DM_LOCAL_SERVICES

MIRROR RNAME=MIRRORSERV CONV=N

Environment

MIRRCPIC
PROGRAM
main()
{
cminit(convid,"MIRRSIDE",
 rcode);

cmallc(convid,rcode);

cmsend(convid, obuffer,
 ...);
cmdeal(convid, rcode);

}

1

5

3

2

4

4-78 BEA eLink Adapter for Mainframe Samples Guide

CPI-C PROGRAMMING EXAMPLES
1. The CPI-C application program MIRRCPIC is invoked using environment start-up
specifications.

2. The MIRRCPIC client requests cminit to establish conversation attributes and
receive a conversation id that will be used on all other requests on this
conversation. The remote server and service are named in the CPI-C side
information entry MIRRSIDE.

3. The cmallc request initiates the advertised service mapped to MIRRORSERV in the
DM_LOCAL_SERVICES section of the DMCONFIG file.

4. The cmsend request sends the contents of obuffer to the ATMI service in the
tpsvcinfo->data buffer.

5. The cmdeal request flushes the data and ends the conversation, as indicated by
TPNOREPLY in the tpsvcinfo->flag field.
BEA eLink Adapter for Mainframe Samples Guide 4-79

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
Host CPI-C ATMI to Conversational Service, Client Grants
Control

ATMI HOST

MIRROR

ATMI Service

MIRROR()
 (TPSVCINFO* tpsvcinfo)
{
tpsvcinfo->flags ==
 TPCONV+TPSENDONLY

...manipulate
 tpsvcinfo->data...

tpsend (tpsvcinfo->cd,
 odata,
 olen,
 0,
 revent);

tpreturn(TPSUCCESS, 0,
 NULL, 0, 0);

}

DMCONFIG File Entry

DM_LOCAL_SERVICES

MIRROR RNAME=MIRRORSERV CONV=Y

Environment

MIRRCPIC
PROGRAM
main()
{
cminit(convid,"MIRRSIDE",
 rcode);

cmallc(convid,rcode);

cmptr(convid,rcode);

cmrcv(convid, ibuffer,..);
 .
 .
 .
}

3

2

4

5

1

4-80 BEA eLink Adapter for Mainframe Samples Guide

CPI-C PROGRAMMING EXAMPLES
1. The CPI-C application program MIRRCPIC is invoked using environment start-up
specifications.

2. The MIRRCPIC client requests cminit to establish conversation attributes and
receive a conversation ID that will be used on all other requests on this
conversation. The remote server and service are named in the CPI-C side
information entry MIRRSIDE.

3. The cmallc request initiates the advertised service mapped to MIRROR in the
DM_LOCAL_SERVICES section of the DMCONFIG file.

4. The cmptr relinquishes control of the conversation to the ATMI service
indicated as TPSENDONLY in the tpsvcinfo->flag field. No data is passed in the
tpsvcinfo->data field.

5. The cmrcv receives the contents of the tpsend odata into the ibuffer. The
end of the conversation is passed from the tpreturn service as return code value
CM_DEALLOCATED_NORMAL.
BEA eLink Adapter for Mainframe Samples Guide 4-81

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
Transactional ATMI Client Request/Response to Host
CPI-C

ATMI HOST

toupclt

ATMI Service

toupsrv
{
tpbegin(0,0);

tpcall("SIMPCPIC",
 idata,
 ilen,
 odata,
 olen,
 0);
tpcommit;
}

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPCPIC RNAME=TPNCPIC FUNCTION=APPC CONV=N

Remote Service

tpname = TPNCPIC

TOUPCPIC
Program
main()
{
cmaccp(convid,rcode)

cmrcv(convid,ibuffer...)

cmsst(convid,
 CM_SEND_AND_PREP_TO_RECEIVE,..)
cmsptr(convid,
 CM_PREP_TO_RECEIVE_CONFIRM,...)

cmsend(convid,obuffer...)

cmrcv(convid,...)
srrcmit(rrcode);

1

8

7

5

2
3

4

6

9

4-82 BEA eLink Adapter for Mainframe Samples Guide

CPI-C PROGRAMMING EXAMPLES
1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpbegin to start the transaction.

3. The toupsrv service issues tpcall for SIMPCPIC, which is advertised in the
DM_REMOTE_SERVICES section of the DMCONFIG file. Data is sent from
the idata buffer on the tpconnect.

4. The remote service with tpname TPNCPIC invokes TOUPCPIC program.

5. The server accepts the conversation with the cmaccp call. The conversation ID
returned on the request in convid is used for all other requests during this
conversation.

6. The cmrcv request receives the idata buffer contents for processing.

7. The cmsst and cmsptr prepare the next send request by setting the send type to
CM_SEND_AND_PREP_TO_RECEIVE and by setting the prepare-to-receive type to
CM_PREP_TO_RECEIVE_CONFIRM.

8. The cmsend request immediately returns the obuffer contents into the client’s
odata buffer. The server relinquishes control to the server and indicates the end
of the conversation with the CONFIRM request.

9. The toupsrv issues the tpcommit to successfully complete the transaction and
commit all updated resources. The cmrcv request receives the commit request,
and responds explicitly to the request with the SAA Resource/Recovery commit
call srrcmit. The conversation is ended after the successful commit exchange.
BEA eLink Adapter for Mainframe Samples Guide 4-83

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
Transactional ATMI Conversational Client to Host CPI-C,
Server Gets Control

ATMI HOST

toupclt

ATMI Service

toupsrv
{
tpbegin(0,0);

cd=tpconnect("SIMPCPIC",
 idata,
 ilen,
 TPRECVONLY);
tprecv(cd,
 odata
 olen,
 0,
 reevent);
tpcommit();

}

DMCONFIG File Entry

DM_REMOTE_SERVICES

SIMPCPIC RNAME=TPNCPIC FUNCTION=APPC CONV=Y

Remote Service

tpname = TPNCPIC

TOUPCPIC
Program
main()
{
cmaccp (convid,rcode);
cmrecv(convid, ibuffer...)

...(process data)...

cmsend(convid, obuffer...)
cmsptr(convid,
 CM_PREP_TO_RECEIVE_CONFIRM);

cmptr(convid,...);

cmrcv(convid, ...)
scrrcmit(rrcode);
}

 1

9

7

5

2
3 4

6

8

10
4-84 BEA eLink Adapter for Mainframe Samples Guide

CPI-C PROGRAMMING EXAMPLES
1. ATMI client invokes toupsrv service.

2. The toupsrv service issues tpbegin to start the transaction.

3. The toupsrv service issues a tpconnect service request for SIMPCPIC, which is
advertised in the DM_REMOTE_SERVICES section of the DMCONFIG file.
Data is sent in the idata buffer on the tpconnect.

4. The remote service with tpname TPNCPIC invokes TOUPCPIC program.

5. The server accepts the conversation with the cmaccp call. The conversation ID
returned on the request in convid is used for all other requests during this
conversation.

6. The cmrcv request receives the idata buffer contents sent on the tpconnect
for processing.

7. The TOUPCPIC program processes the data.

8. The cmsend returns the obuffer contents into the client’s tprecv odata buffer.
The buffer contents may not be sent immediately.

9. The cmsptr prepares the prepare-to-receive request with
CM_PREP_TO_RECEIVE_CONFIRM. The cmptr request with CONFIRM indicates
that the conversation is finished and is communicated to the tprecv as
TPEV_SVCSUCC.

10. The toupsrv issues the tpcommit to successfully complete the transaction and
commit all updated resources. The cmrcv request receives the commit request
and responds explicitly to the request with the SAA Resource/Recovery commit
call srrcmit. The conversation is ended after the successful commit exchange.
BEA eLink Adapter for Mainframe Samples Guide 4-85

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
Transactional Host CPI-C to ATMI Conversational Server,
Client Grants Control

ATMI HOST

MIRROR

ATMI Service

MIRROR
 (TPSVCINFO* tpsvcinfo);
{
tpsend(tpsvcinfo->cd,
 odata,
 olen,
 0,
 reevent);
tpreturn (TPSUCCESS,
 (chart)NULL,
 0,
 0);
}

DMCONFIG File Entry

DM_LOCAL_SERVICES

MIRROR RNAME=MIRRORSERV CONV=Y

Environment

MIRRCPIC
Program
main()
{
cminit(convid,
 "MIRRSIDE",
 rcode);
cmssl(convid,
 CM_SYNCPOINT,..);
cmallc(convid,rcode)

cmsptr(convid,
 CM_PREP_TO_RECEIVE_FLUSH,..);
cmptr(convid,rcode);
cmrcv(convid,
 ibuffer...);
cmcfmd(confid,rcode)

cmdeal(convid,rcode)

srrcmit(rrcode);
}

8

5

4

3

2

1

6

7

4-86 BEA eLink Adapter for Mainframe Samples Guide

CPI-C PROGRAMMING EXAMPLES
1. The CPI-C application program MIRRCPIC is invoked using environment start-up
specifications.

2. The MIRRCPIC client requests cminit to establish conversation attributes and
receive a conversation ID that will be used on all other requests on this
conversation. The remote server and service are named in the CPI-C side
information entry MIRRSIDE.

3. The cmssl sets the conversation attributes to sync-level 2 with CM_SYNCPOINT.
This allows the ATMI service to participate in the transaction.

4. The cmallc request initiates the advertised service mapped to MIRRORSERV in the
DM_LOCAL_SERVICES section of the DMCONFIG file.

5. The MIRRCPIC causes the client to relinquish control to the ATMI server with a
prepare-to-receive request. The cmsptr sets the prepare-to-receive type to
CM_RECEIVE_AND_FLUSH. The cmptr request immediately relinquishes
control.

6. The MIRROR service sends the data contents of the odata buffer to the cmrcv
ibuffer. The cmrcv receives a confirm request from the server indicating the
conversation should be terminated.

7. The client replies positively to the confirm request with cmcfmd.

8. The MIRRCPIC client prepares to free the conversation with the cmdeal request.
The conversation in CM_DEALLOCATE_SYNC_LEVEL commits all updated
resources in the transaction and waits for the SAA resource recovery verb,
srrcmit. After the commit sequence has completed, the conversation terminates.
BEA eLink Adapter for Mainframe Samples Guide 4-87

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
CICS/ESA Mirror Transaction Examples

Implicit Attachment of TRANSID (Outbound Requests
Only)

Figure 4-1 Implicit Attachment of TRANSID (Outbound Requests Only)

The following list describes the process for implicit attachment as illustrated in
Figure 4-1:

CICS/ESA
Region

CSMI

TRN1

SVC1

DFHMIRS

EXEC CICS LINK
PROG(SVC1)...

RNAME=SVC1
FUNCTION=DPL

ATMI Platform
Local Domain

tpcall(“TRN1DATA”,...)

TRN1DATA

DMCONFIG
File

DM_REMOTE_SERVICES:

eLink
4-88 BEA eLink Adapter for Mainframe Samples Guide

CICS/ESA MIRROR TRANSACTION EXAMPLES
1. The ATMI service makes a request to the service TRN1DATA, which is advertised
as a remote service in the DMCONFIG file. It is a DPL request to a program named
SVC1 in the CICS/ESA region.

2. The first four characters of the remote service tag name (TRN1) are extracted and
passed to the CICS/ESA region as the invoking TRANSID. No CICS/ESA
resource definition for the TRANSID is required in the region.

3. The mirror transaction CSMI is attached in the CICS/ESA region, starting the
mirror program DFHMIRS. The program performs the DTP requests for the
service.

4. The mirror program now attaches the invoking TRANSID (TRN1) and then invokes
the application service program SVC1.The program can interrogate the EIBTRNID
field to find this value.
BEA eLink Adapter for Mainframe Samples Guide 4-89

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
Explicit Attachment of TRANSID for Outbound Requests

Figure 4-2 Explicit Attachment of TRANSID for Outbound Requests

CICS/ESA
Region

TRN1

SVC1

DFHMIRS

EXEC CICS LINK
PROG(SVC1)...

RNAME=TRN1:SERVICE1
FUNCTION=DPL

ATMI Platform
Local Domain

tpcall(“SERVICE1”,...)

SERVICE1

DMCONFIG
File

DM_REMOTE_SERVICES:

eLink

EIBTRNID=TRN1
4-90 BEA eLink Adapter for Mainframe Samples Guide

CICS/ESA MIRROR TRANSACTION EXAMPLES
The following list describes the process for explicit attachment as illustrated in
Figure 4-2:

1. The ATMI program makes a service request for SERVICE1, which is advertised as
a remote service in the DMCONFIG file. The FUNCTION option indicates the remote
service is invoked as a DPL.

2. The request extracts TRN1 as an alternate mirror transaction ID for the remote
region, along with the remote program name SERVICE1.

3. The TRN1 ID is attached instead of the default mirror transaction, CSMI or CVMI.
The TRN1 ID must be defined as a transaction resource in the remote region and
must point to the mirror transaction program DFHMIRS.

4. The mirror program DFMMIRS calls the server application program, passing the
TRN1 ID in the EIBTRNID field.
BEA eLink Adapter for Mainframe Samples Guide 4-91

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
Explicit Attachment of TRANSID for Inbound Requests

Figure 4-3 Explicit Attachment of TRANSID for Inbound Requests

The following list describes the process for implicit attachment as illustrated in
Figure 4-3:

1. The CICS/ESA program makes a request to INSVC1, which is a local ATMI
service. The SYSID and PROGRAM values in the request identify the local system and
the name of the local service. The TRANSID option indicates the mirror transaction
to be initiated.

2. The PROGRAM and mirror TRANSID are extracted from the DPL request and are
used to find an exact RNAME match in the DM_LOCAL_SERVICES section of the
DMCONFIG file.

CICS/ESA
Region

EXEC CICS LINK

RNAME=TRN1:INSVC1

ATMI Platform
Local Domain

SERVICE1(tpsvcinfo...)

SERVICE1

DMCONFIG
File

DM_LOCAL_SERVICES:

PROGRAM(“INSVC1”)
SYSID(“AIX1”)

TRANSID(“TRN1”)

eLink
4-92 BEA eLink Adapter for Mainframe Samples Guide

ADDITIONAL INFORMATION
3. The service SERVICE1, which is advertised locally in the ATMI platform
application, is initiated.

Additional Information

Additional information on the subject of CICS/ESA Intersystem Communications may
be found in the following IBM publications:

n CICS/ESA Intercommunication Guide, IBM publication No. SC33-0657

n CICS/ESA Distributed Transaction Programming Guide, IBM publication No.
SC33-00783

n CICS/ESA Recovery and Restart Guide, IBM publication No. SC33-0658
BEA eLink Adapter for Mainframe Samples Guide 4-93

4 APPLICATION-TO- APPLICATION PROGRAMMING EXAMPLES
4-94 BEA eLink Adapter for Mainframe Samples Guide

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	1. ATMI to CPI-C Function Mapping
	2. CPI-C Parameters and Values
	3. Sample VTAM Configurations
	4. Application-to- Application Programming Examples

	1 ATMI to CPI-C Function Mapping
	ATMI Calls Mapped to CPI-C Verbs
	Table 0�1 tpcall
	Table 0�2 tpacall
	Table 0�3 tpgetrply
	Table 0�4 tpservice
	Table 0�5 tpreturn
	Table 0�6 tpcancel
	Table 0�7 tpconnect
	Table 0�8 tpsend
	Table 0�9 tprecv
	Table 0�10 tpdiscon
	Table 0�11 tpforward

	2 CPI-C Parameters and Values
	CPI-C Verbs

	3 Sample VTAM Configurations
	Overview of the eAM Environment
	Local Environment
	Remote Environment

	Sample Environments
	Machine Attributes (LAN Descriptions)
	Local Environment Configuration
	HPSNAPlus2 Configuration
	Microsoft SNA Cross-Platform Definitions
	1. Start Microsoft SNA Server Manager from Start button on the Task Bar.
	2. A server is automatically created (MVSNT1). Note the configuration values displayed in the Ser...
	3. Under Link Services, define a link service (SNADLC1)
	4. Under SNA Service, Connections, define an 802.2 connection (MVSNT1.).
	5. Under Local APPC LUs (SNA Service: Connections: Insert: APPC: Local LU), define a local lu (LU...
	6. Under Remote APPC LUs, define a remote lu (CICS1) in the CICS1 Properties, define:
	7. Under APPC Modes, define a mode (SMSNA100) in the SMSNA100 Properties, define:

	VTAM Application Program Major Node
	Listing 3-1 Applid definition (OS/390)

	Remote Environment Configurations
	ATCSTRxx VTAM Start List
	XCA Major Node Defines the LAN Adapter for SYS1
	Switched Network (SWNET) Definitions
	SWNET Major Node (DALHP10)
	SWNET Major Node (SUN2)
	SWNET Major Node ((SUN4)

	VTAM Application Major Nodes for CICS Regions
	CICS Resource Definition Entries (RDO)

	4 Application-to- Application Programming Examples
	Distributed Program Link (DPL) Examples
	ATMI Client Request/Response to CICS/ESA DPL
	1. ATMI client invokes toupsrv service.
	2. The toupsrv service issues tpcall for SIMPDPL, which is advertised in the DM_REMOTE_SERVICES s...
	3. Host mirror transaction starts TOUPDPLS program and passes idata buffer contents for processing.
	4. The TOUPDPLS program processes data.
	5. The CICS/ESA server returns the commarea into the client’s odata buffer.
	ATMI Client Asynchronous Request/Response to CICS/ESA DPL
	1. ATMI client invokes toupsrv service.
	2. The toupsrv service issues tpacall for SIMPDPL, which is advertised in the DM_REMOTE_SERVICES ...
	3. Host mirror transaction starts TOUPDPLS program and passes idata buffer contents for processing.
	4. The TOUPDPLS program processes data.
	5. The CICS/ESA system returns the commarea into the client’s tpgetreply odata buffer.

	ATMI Client Asynchronous Request/Response with No Reply to CICS/ESA DPL
	1. ATMI client invokes toupsrv service.
	2. The toupsrv service issues tpacall for SIMPDPL, which is advertised in the DM_REMOTE_SERVICES ...
	3. Host mirror transaction starts TOUPDPLS program and passes idata buffer contents for processing.
	4. The TOUPDPLS program processes data.

	CICS/ESA DPL to ATMI Request/Response Server
	1. User-entered HOPL invokes MIRRDPLC program.
	2. The EXEC CICS LINK command causes the advertised service mapped to MIRRDPLS (in the DM_LOCAL_S...
	3. The MIRROR service processes the data received in the service TPSVCINFO data buffer from the E...
	4. The tpreturn call returns the data into the COMM-AREA buffer.

	CICS/ESA DPL to ATMI Request/Response Server, Service in Autonomous Transaction
	1. User-entered H0PL invokes MIRRDPLC program.
	2. The EXEC CICS LINK command causes the advertised service mapped to MIRRDPLS (in the DM_LOCAL_S...
	3. The MIRROR service request tpbegin incorporates all further operations in a transaction.
	4. The MIRROR service processes the data.
	5. The tpcommit indicates the end of the transaction; all updates performed within the service tr...
	6. The tpreturn call returns the data into the commarea buffer.
	7. The EXEC CICS SYNCPOINT is an explicit commit request. All updated resources in the CICS/ESA t...

	ATMI Client Request/Response to CICS/ESA DPL, in Autonomous Transaction
	1. ATMI client invokes toupsrv service.
	2. The toupsrv service issues tpbegin to start the transaction.
	3. The toupsrv service issues tpcall for SIMPDPL, which is advertised in the DM_REMOTE_SERVICES s...
	4. Host mirror transaction starts TOUPDPLS program and passes idata buffer contents for processing.
	5. The TOUPDPLS program processes data.
	6. The EXEC CICS SYNCPOINT is an explicit commit request. All updated resources in the CICS/ESA t...
	7. The CICS/ESA server returns the commarea into the client’s odata buffer.
	8. The toupsrv service tpcommit request signals the successful completion of the transaction, cau...

	Transactional ATMI Client Multiple Requests/Responses to CICS/ESA DPL
	1. ATMI client invokes toupsrv service.
	2. The toupsrv service issues tpbegin to start the transaction.
	3. The toupsrv service issues tpcall for SIMPDPL, which is advertised in the DM_REMOTE_SERVICES s...
	4. Host mirror transaction starts TOUPDPLS program and passes idata buffer contents for processin...
	5. The TOUPDPLS program processes data.
	6. The CICS/ESA system returns the commarea into the client’s odata buffer.
	7. Step 3 through Step 6 are repeated until the toupsrv service loop end conditions are met.
	8. The tpcommit request indicates the successful completion of the transaction, causing a commit ...

	Transactional CICS/ESA DPL to ATMI Request/Response Server
	1. User-entered H2PL invokes MIRRDPLC program.
	2. The EXEC CICS LINK command causes the advertised service mapped to MIRRDPLS (in the DM_LOCAL_S...
	3. The MIRROR service processes the data.
	4. The tpreturn call returns the data into the commarea buffer.
	5. The EXEC CICS SYNCPOINT is an explicit commit request indicating a successful end of the conve...

	Distributed Transaction Processing (DTP) Examples
	ATMI Client Request/Response to CICS/ESA DTP
	1. ATMI client invokes toupsrv service.
	2. The toupsrv service issues tpcall for SIMPDTP, which is advertised in the DM_REMOTE_SERVICES s...
	3. User transaction DTPS starts TOUPDTPS program.
	4. It is recommended you save the eibtrmid to a program variable. This value may be used to ident...
	5. The EXEC CICS RECEIVE command receives the idata buffer contents for processing.
	6. The TOUPDTPS program processes data.
	7. The EXEC CICS SEND command returns the OUT-BUFFER contents into the clients odata buffer. LAST...

	ATMI Client Asynchronous Request/Response to CICS/ESA DTP
	1. ATMI client invokes toupsrv service.
	2. The toupsrv service issues tpacall for SIMPDTP, which is advertised in the DM_REMOTE_SERVICES ...
	3. User transaction DTPS starts TOUPDTPS program.
	4. It is recommended you save the EIBTRMID to a program variable. This value may be used to ident...
	5. The EXEC CICS RECEIVE command receives the idata buffer contents for processing.
	6. The TOUPDTPS program processes data.
	7. The EXEC CICS SEND command returns the OUT-BUFFER contents into the clients tpgetreply odata b...

	ATMI Client Asynchronous Request/Response with No Reply to CICS/ESA DTP
	1. ATMI client invokes toupsrv service.
	2. The toupsrv service issues tpacall with a TPNOREPLY request for SIMPDTP, which is advertised i...
	3. User transaction DTPS starts TOUPDTPS program.
	4. It is recommended you save the EIBTRMID to a program variable. This value may be used to ident...
	5. The EXEC CICS RECEIVE command receives the idata buffer contents for processing.
	6. The TOUPDTPS program processes data.

	ATMI Conversational Client to CICS/ESA DTP, Server Gets Control
	1. ATMI client invokes toupsrv service.
	2. The toupsrv service issues tpconnect for SIMPDTP, which is advertised in the DM_REMOTE_SERVICE...
	3. User transaction DTPS starts TOUPDTPS program.
	4. It is recommended you save the EIBTRMID to a program variable. This value may be used to ident...
	5. The EXEC CICS RECEIVE command receives the idata buffer contents for processing.
	6. The TOUPDTPS program processes data.
	7. The EXEC CICS SEND command returns the OUT-BUFFER contents into the clients tprecv odata buffe...

	ATMI Conversational Client to CICS/ESA DTP, Client Sends/Receives Data
	1. ATMI client invokes toupsrv service.
	2. The toupsrv service issues tpconnect for SIMPDTP, which is advertised in the DM_REMOTE_SERVICE...
	3. User transaction DTPS starts TOUPDTPS program.
	4. It is recommended you save the EIBTRMID to a program variable. This value may be used to ident...
	5. The EXEC CICS RECEIVE command receives the tpconnect idata buffer contents for processing.
	6. The TOUPDTPS program processes data.
	7. The EXEC CICS RECEIVE command receives the tpsend idata contents into the server’s IN-BUFFER.
	8. The server processes the data.
	9. The EXEC CICS SEND WAIT LAST returns OUT-BUFFER data in the tprecv odata buffer, along with no...

	ATMI Conversational Client to CICS/ESA DTP, Client Grants Control
	1. ATMI client invokes toupsrv service.
	2. The toupsrv service issues tpconnect for SIMPDTP, which is advertised in the DM_REMOTE_SERVICE...
	3. User transaction DTPS starts TOUPDTPS program.
	4. It is recommended you save the EIBTRMID to a program variable. This value may be used to ident...
	5. The EXEC CICS RECEIVE command receives a send state indicator from the tpconnect TPRECVONLY fl...
	6. The EXEC CICS SEND command returns the OUT-BUFFER contents into the clients tprecv odata buffe...
	7. The EXEC CICS RECEIVE command receives the tpsend idata contents into the server’s IN-BUFFER, ...
	8. The EXEC CICS RETURN ends the conversation, communicated to the tprecv as TPEV_SVCSUCC.

	CICS/ESA DTP to ATMI Conversational Server, Client Retains Control
	1. User-entered H0TP invokes MIRRDTPC program.
	2. The EXEC CICS ALLOCATE acquires a session to the remote Tuxedo domain.
	3. Save the conversation ID returned in EIBRSRCE to a program variable. This value is used to ide...
	4. The EXEC CICS CONNECT PROCESS command initiates the advertised service mapped to MIRROR in the...
	5. Execute the EXEC CICS SEND command to send the contents of the OUT-BUFFER to the Tuxedo servic...
	6. The EXEC CICS SEND INVITE WAIT command sends out-buff contents into the tprecv odata buffer. T...
	7. The Tuxedo service processes data.
	8. The CICS/ESA server processes data.
	9. The ATMI tpreturn data returns data to the EXEC CICS RECEIVE, along with notification that the...

	CICS/ESA DTP to ATMI Conversational Server, Client Relinquishes Control
	1. User-entered HOTP invokes MIRRDTPC program.
	2. The EXEC CICS ALLOCATE acquires a session to the remote Tuxedo domain.
	3. Save the conversation ID returned in EIBRSRCE to a program variable. This value is used to ide...
	4. The EXEC CICS CONNECT PROCESS command initiates the advertised service mapped to MIRROR in the...
	5. The EXEC CICS SEND command relinquishes control with the INVITE WAIT option.
	6. The EXEC CICS RECEIVE command receives the tpsend idata buffer contents into the IN-BUFFER.
	7. The tpreturn request tears down the conversation and indicates on the EXEC CICS RECEIVE that t...

	Transactional ATMI Client Request/Response to CICS/ESA DTP
	1. ATMI client toupclt invokes toupsrv service. (Note that each tpcall made in the program must b...
	2. The service issues tpbegin to start a transaction.
	3. The toupsrv service issues tpcall for SIMPDTP, which is advertised in the DM_REMOTE_SERVICES s...
	4. User transaction DTPS starts TOUPDTPS program.
	5. Save the EIBTRMID to a program variable. This value is used to identify the specific conversat...
	6. The EXEC CICS RECEIVE command receives the idata buffer contents for processing.
	7. The TOUPDTPS program processes data.
	8. The EXEC CICS SEND command returns the OUT-BUUFER contents into the clients odata buffer. CONF...
	9. The toupsrv service issues tpcommit to end the transaction. The COMMIT is received on the EXEC...

	Transactional ATMI Conversational Client to CICS/ESA DTP, Server Gets Control
	1. ATMI client invokes toupsrv service.
	2. The toupsrv service issues tpbegin to start the transaction.
	3. The toupsrv service issues tpconnect for SIMPDTP, which is advertised in the DM_REMOTE_SERVICE...
	4. User transaction DTPS starts TOUPDTPS program.
	5. It is recommended you save the EIBTRMID to a program variable. This value may be used to ident...
	6. The EXEC CICS RECEIVE command receives the idata buffer contents for processing.
	7. The TOUPDTPS program processes data.
	8. The EXEC CICS SEND command returns the OUT-BUFFER contents into the clients tprecv odata buffe...
	9. The toupsrv service issues tpcommit to end the transaction. The COMMIT is received on the EXEC...

	Transactional CICS/ESA DTP to ATMI Conversational Server, Host Client Relinquishes Control
	1. User-entered H2TP invokes MIRRDTPC program.
	2. The EXEC CICS ALLOCATE acquires a session to the remote Tuxedo domain.
	3. Save the conversation ID returned in EIBRSRCE to a program variable. This value is used to ide...
	4. The EXEC CICS CONNECT PROCESS command initiates the advertised service mapped to MIRRDTPS. The...
	5. The EXEC CICS SEND INVITE WAIT command causes the client to immediately relinquish control to ...
	6. The EXEC CICS RECEIVE command receives the tpsend idata buffer contents into the IN-BUFFER. Th...
	7. The EXEC CICS ISSUE CONFIRMATION verb responds positively to the confirm request.
	8. The EXEC CICS SYNCPOINT is an explicit commit request to end the conversation and update all r...
	9. The EXEC CICS FREE verb explicitly frees the outstanding conversation.

	CPI-C Programming Examples
	ATMI Client Request/Response to Host CPI-C
	1. ATMI client invokes toupsrv service.
	2. The toupsrv service issues tpcall for SIMPCPIC, which is advertised in the DM_REMOTE_SERVICES ...
	3. The remote service with the tpname TPNCPIC invokes TOUPCPIC program.
	4. The server accepts the conversation with the cmaccp call. The conversation id returned on the ...
	5. The cmrcv request receives the idata buffer contents for processing
	6. The TOUPCPIC program processes data.
	7. The cmsst request prepares the next send request by setting the send type to CM_SEND_AND_DEALL...
	8. The cmsend request returns the obuffer contents into the client odata buffer. The buffer is fl...

	ATMI Client Asynchronous Request/Response to Host CPI-C
	1. ATMI client invokes toupsrv service.
	2. The toupsrv service issues tpacall for SIMPCPIC, which is advertised in the DM_REMOTE_SERVICES...
	3. The remote service with tpname TPNCPIC invokes TOUPCPIC program.
	4. The server accepts the conversation with the cmaccp call. The conversation id returned on the ...
	5. The cmrcv request receives the idata buffer contents for processing.
	6. The TOUPCPIC program processes data.
	7. The cmsend command returns the obuffer contents into the client tpgetreply odata buffer. The d...
	8. The cmdeal flushes the data to the client, and indicates the conversation is finished.

	ATMI Client Asynchronous Request/Response to Host CPI-C with No Reply
	1. ATMI client invokes toupsrv service.
	2. The toupsrv service issues tpacall with a TPNOREPLY request for SIMPCPIC, which is advertised ...
	3. The remote service with tpname TPNCPIC invokes TOUPCPIC program.
	4. The server accepts the conversation with the cmaccp call. The conversation id returned on the ...
	5. The cmrcv request receives the idata buffer contents for processing, and notification that the...
	6. The TOUPCPIC program processes data.

	ATMI Conversational Client to Host CPI-C, Server Gets Control
	1. ATMI client invokes toupsrv service
	2. The toupsrv service issues tpconnect for SIMPCPIC, which is advertised in the DM_REMOTE_SERVIC...
	3. The remote service with tpname TPNCPIC invokes TOUPCPIC program.
	4. The server accepts the conversation with the cmaccp call. The conversation ID returned on the ...
	5. The cmrcv request receives the idata buffer contents for processing.
	6. The TOUPCPIC program processes data
	7. The cmsst request prepares the next send request by setting the send type to CM_SEND_AND_FLUSH.
	8. The cmsend command returns the obuffer contents into the client tprecv odata buffer. The data ...
	9. The cmdeal request ends the conversation.

	ATMI Conversational Client To Host CPI-C, Client Retains Control
	1. ATMI client invokes toupsrv service.
	2. The toupsrv service issues tpconnect for SIMPCPIC, which is advertised in the DM_REMOTE_SERVIC...
	3. The remote service with tpname TPNCPIC invokes TOUPCPIC program.
	4. The server accepts the conversation with the cmaccp call. The conversation id returned on the ...
	5. The cmrcv request receives the tpsend idata buffer contents for processing. The conversation i...
	6. The TOUPCPIC program processes data.
	7. The cmsend returns a response in the tprecv idata buffer, along with notification from the cmd...

	ATMI Conversational Client to Host CPI-C, Client Grants/gets Control
	1. ATMI client invokes toupsrv service.
	2. The toupsrv service issues tpconnect for SIMPCPIC, which is advertised in the DM_REMOTE_SERVIC...
	3. The remote service with tpname TPNCPIC invokes TOUPCPIC program.
	4. The server accepts the conversation with the cmaccp request. The conversation id returned on t...
	5. The cmrcv requests receives the indicator that control has been granted to the server.
	6. The cmsend request returns its obuffer contents into the first client tprecv odata buffer. The...
	7. The cmsend request returns its obuffer contents into the second client tprecv odata buffer. Th...
	8. The cmptr request flushes the data to the client, and grants control to the client.
	9. The cmrcv request receives the tpsend idata buffer contents for processing. The TPRECVONLY is ...
	10. The cmdeal indicates a successful completion of the conversation to the tprecv; no data is pa...

	Host CPI-C to ATMI Asynchronous Request/Response Server with No Reply
	1. The CPI-C application program MIRRCPIC is invoked using environment start-up specifications.
	2. The MIRRCPIC client requests cminit to establish conversation attributes and receive a convers...
	3. The cmallc request initiates the advertised service mapped to MIRRORSERV in the DM_LOCAL_SERVI...
	4. The cmsend request sends the contents of obuffer to the ATMI service in the tpsvcinfo->data bu...
	5. The cmdeal request flushes the data, and indicates the conversation is finished with the TPNOR...
	6. The service completes with the tpreturn.

	Host CPI-C to ATMI Server Request/Response
	1. The CPI-C application program MIRRCPIC is invoked using environment start-up specifications.
	2. The MIRRCPIC client requests cminit to establish conversation attributes and receive a convers...
	3. The cmallc request initiates the advertised service mapped to MIRRORSERV in the DM_LOCAL_SERVI...
	4. The cmsst request prepares the next send request by setting the send type to CM_SEND_AND_PREP_...
	5. The cmsend request immediately sends the contents of obuffer to the ATMI service in the tpsvci...
	6. The cmrcv request receives the contents of the odata returned on the ATMI tpreturn service, an...

	Host CPI-C to ATMI Conversational Service, Client Retains Control
	1. The CPI-C application program MIRRCPIC is invoked using environment start-up specifications.
	2. The MIRRCPIC client requests cminit to establish conversation attributes and receive a convers...
	3. The cmallc request initiates the advertised service mapped to MIRRORSERV in the DM_LOCAL_SERVI...
	4. The cmsend request sends the contents of obuffer to the ATMI service in the tpsvcinfo->data bu...
	5. The cmdeal request flushes the data and ends the conversation, as indicated by TPNOREPLY in th...

	Host CPI-C ATMI to Conversational Service, Client Grants Control
	1. The CPI-C application program MIRRCPIC is invoked using environment start-up specifications.
	2. The MIRRCPIC client requests cminit to establish conversation attributes and receive a convers...
	3. The cmallc request initiates the advertised service mapped to MIRROR in the DM_LOCAL_SERVICES ...
	4. The cmptr relinquishes control of the conversation to the ATMI service indicated as TPSENDONLY...
	5. The cmrcv receives the contents of the tpsend odata into the ibuffer. The end of the conversat...

	Transactional ATMI Client Request/Response to Host CPI-C
	1. ATMI client invokes toupsrv service.
	2. The toupsrv service issues tpbegin to start the transaction.
	3. The toupsrv service issues tpcall for SIMPCPIC, which is advertised in the DM_REMOTE_SERVICES ...
	4. The remote service with tpname TPNCPIC invokes TOUPCPIC program.
	5. The server accepts the conversation with the cmaccp call. The conversation ID returned on the ...
	6. The cmrcv request receives the idata buffer contents for processing.
	7. The cmsst and cmsptr prepare the next send request by setting the send type to CM_SEND_AND_PRE...
	8. The cmsend request immediately returns the obuffer contents into the client’s odata buffer. Th...
	9. The toupsrv issues the tpcommit to successfully complete the transaction and commit all update...

	Transactional ATMI Conversational Client to Host CPI-C, Server Gets Control
	1. ATMI client invokes toupsrv service.
	2. The toupsrv service issues tpbegin to start the transaction.
	3. The toupsrv service issues a tpconnect service request for SIMPCPIC, which is advertised in th...
	4. The remote service with tpname TPNCPIC invokes TOUPCPIC program.
	5. The server accepts the conversation with the cmaccp call. The conversation ID returned on the ...
	6. The cmrcv request receives the idata buffer contents sent on the tpconnect for processing.
	7. The TOUPCPIC program processes the data.
	8. The cmsend returns the obuffer contents into the client’s tprecv odata buffer. The buffer cont...
	9. The cmsptr prepares the prepare-to-receive request with CM_PREP_TO_RECEIVE_CONFIRM. The cmptr ...
	10. The toupsrv issues the tpcommit to successfully complete the transaction and commit all updat...

	Transactional Host CPI-C to ATMI Conversational Server, Client Grants Control
	1. The CPI-C application program MIRRCPIC is invoked using environment start-up specifications.
	2. The MIRRCPIC client requests cminit to establish conversation attributes and receive a convers...
	3. The cmssl sets the conversation attributes to sync-level 2 with CM_SYNCPOINT. This allows the ...
	4. The cmallc request initiates the advertised service mapped to MIRRORSERV in the DM_LOCAL_SERVI...
	5. The MIRRCPIC causes the client to relinquish control to the ATMI server with a prepare-to-rece...
	6. The MIRROR service sends the data contents of the odata buffer to the cmrcv ibuffer. The cmrcv...
	7. The client replies positively to the confirm request with cmcfmd.
	8. The MIRRCPIC client prepares to free the conversation with the cmdeal request. The conversatio...

	CICS/ESA Mirror Transaction Examples
	Implicit Attachment of TRANSID (Outbound Requests Only)
	Figure 4�1 Implicit Attachment of TRANSID (Outbound Requests Only)
	1. The ATMI service makes a request to the service TRN1DATA, which is advertised as a remote serv...
	2. The first four characters of the remote service tag name (TRN1) are extracted and passed to th...
	3. The mirror transaction CSMI is attached in the CICS/ESA region, starting the mirror program DF...
	4. The mirror program now attaches the invoking TRANSID (TRN1) and then invokes the application s...

	Explicit Attachment of TRANSID for Outbound Requests
	Figure 4�2 Explicit Attachment of TRANSID for Outbound Requests
	1. The ATMI program makes a service request for SERVICE1, which is advertised as a remote service...
	2. The request extracts TRN1 as an alternate mirror transaction ID for the remote region, along w...
	3. The TRN1 ID is attached instead of the default mirror transaction, CSMI or CVMI. The TRN1 ID m...
	4. The mirror program DFMMIRS calls the server application program, passing the TRN1 ID in the EI...

	Explicit Attachment of TRANSID for Inbound Requests
	Figure 4�3 Explicit Attachment of TRANSID for Inbound Requests
	1. The CICS/ESA program makes a request to INSVC1, which is a local ATMI service. The SYSID and P...
	2. The PROGRAM and mirror TRANSID are extracted from the DPL request and are used to find an exac...
	3. The service SERVICE1, which is advertised locally in the ATMI platform application, is initiated.

	Additional Information

