
CollabraSuite
BEA Edition®

Integration Guide

Version 5.1

Copyright
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Interaction, BEA AquaLogic Interaction Analytics, BEA
AquaLogic Interaction Collaboration, BEA AquaLogic Interaction Content Services, BEA AquaLogic Interaction Data
Services, BEA AquaLogic Interaction Integration Services, BEA AquaLogic Interaction Process, BEA AquaLogic
Interaction Publisher, BEA AquaLogic Interaction Studio, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Kodo, BEA Liquid Data for
WebLogic, BEA Manager, BEA MessageQ, BEA Salt, BEA WebLogic Commerce Server, BEA WebLogic
Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise
Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe, BEA
WebLogic JDriver, BEA WebLogic Log Central, BEA WebLogic Mobility Server, BEA WebLogic Network
Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API, BEA WebLogic
Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Real Time, BEA WebLogic RFID
Compliance Express, BEA WebLogic RFID Edge Server, BEA WebLogic RFID Enterprise Server, BEA WebLogic
Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, BEA Workshop for WebLogic
Platform, BEA Workshop JSP, BEA Workshop JSP Editor, BEA Workshop Struts, BEA Workshop Studio, Dev2Dev,
Liquid Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated Knowledge Transfer, AKT, BEA
Mission Critical Support, BEA Mission Critical Support Continuum, and BEA SOA Self Assessment are service marks
of BEA Systems, Inc.

All other names and marks are property of their respective owners.

Integration Guide 1

Contents

Getting Started
Compiling. 1-1

Running . 1-2

Connecting . 1-4

Using the API
Utility Classes . 2-1

Exceptions . 2-4

Logging . 2-5

Transactions . 2-5

Package com.collabraspace.csuite.server.i9n.ejb. 2-5

Administrative Functions . 2-6

Information Retrieval and Modification . 2-6

Location Administration . 2-7

Permissions . 2-8

Collaboration Functions . 2-9

Samples
Creating a document . 3-1

Sending a Page to a User . 3-2

Retrieving Online Users. 3-2

Retrieving Rooms . 3-2

Retrieving/Printing a User's Skills . 3-3

2 Integration Guide

Integration Guide 1-1

C H A P T E R 1

Getting Started

An effective collaborative environment not only brings people together, it provides access to
important data by tightly integrating with other business critical systems. CollabraSuite BEA
Edition provides an Application Programming Interface (API) to facilitate this integration. This
API allows developers to seamlessly bring existing data and systems into their collaborative
environment, tailoring it to their specific requirements.

For example, documents can be created in a room or user's briefcase using real-time data such as
an RSS feed. The document's subscriber list can then be modified to automatically notify users
of the new information. Another example might involve dynamically creating rooms or sessions
to deal with a situation in real-time, such as an intrusion detection system. When a pre-defined
event occurs, the API could be used to create a new collaborative session and bring a set of online
users into that new session.

Compiling
In order to begin compiling code using the Integration API, the following CollabraSuite BEA
Edition JAR is required: csuite-i9n-client.jar. This JAR is located under the CollabraSuite
BEA Edition installation in the lib directory. Additionally, the standard Java 2 Enterprise Edition
(J2EE) classes are required. These can usually be found bundled with your J2EE application
server. For example, WebLogic includes these classes in weblogic.jar. Below is an example
of compiling a client using the Integration API:
% javac -classpath

csuite-i9n-client.jar:${WL_HOME}/server/lib/weblogic.jar:.

CSuiteIntegrationClient.java

Get t ing Star ted

1-2 Integration Guide

Running
The Integration API uses Log4j for logging, so running the client code requires all of the JARs
mentioned above plus log4j.jar. The following command illustrates running a stand-alone client
that connects to a WebLogic application server:
% java –classpath csuite-i9n-client.jar:log4j.jar:

${WL_HOME}/server/lib/weblogic.jar:. CSuiteIntegrationClient

Running client code inside the web tier of an application server requires access to the same list
of JAR files. These can be made available by placing them in the WEB-INF/lib directory of a
WAR. Additionally, the following changes must be made to web.xml and the application specific
deployment descriptor such as weblogic.xml. Note that all of the necessary modifications are
automatically performed when installing CollabraSuite BEA Edition into an existing web
application via WebLogic Workshop. See the Installation Guide for additional details.

Running

Integration Guide 1-3

Figure 1: Additions to web.xml

<ejb-ref>

 <ejb-ref-name>ejb/CSuiteAdmin</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>

com.collabraspace.csuite.server.i9n.interfaces.CSuiteAdminRemoteHome

 </home>

 <remote>

com.collabraspace.csuite.server.i9n.interfaces.CSuiteAdminRemote

 </remote>

</ejb-ref>

<ejb-ref>

 <ejb-ref-name>ejb/CSuiteCollaboration</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>

com.collabraspace.csuite.server.i9n.interfaces.CSuiteCollaborationRem
oteHome

 </home>

 <remote>

com.collabraspace.csuite.server.i9n.interfaces.CSuiteCollaborationRem
ote

 </remote>

</ejb-ref>

Get t ing Star ted

1-4 Integration Guide

Figure 2: Additions to weblogic.xml

Connecting
The Integration API is accessed via Stateless Session Enterprise Java Beans (EJBs) provided by
the CollabraSuite BEA Edition application. The API can be access both locally and remotely.
Local clients run inside the application server while remote clients run stand-alone outside of the
application server. The only difference between the two methods is how the code finds and
connects to the server using JNDI. When running inside the web tier of an application server, no
extra information is required to lookup one of the Stateless Session EJBs:
CSuiteAdminRemote csAdmin =

 CSuiteFactory.getCSuiteAdminRemoteInstance();

Connecting from a remote client requires more information such as the JNDI initial context
factory, provider URL, username and password. Additionally, in WebLogic there is an extra
JNDI parameter to pass in order to execute calls as a specific user instead of as the anonymous
user. Setting weblogic.jndi.enableDefaultUser to true will allow the call to execute as the
user specified in the SECURITY_PRINCIPAL parameter. The following is an example of
connecting remotely using WebLogic:
Hashtable h = new Hashtable();

h.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

 "weblogic.jndi.WLInitialContextFactory");

h.put(javax.naming.Context.PROVIDER_URL, “t3://localhost:7001”);

h.put(javax.naming.Context.SECURITY_PRINCIPAL, “username”);

h.put(javax.naming.Context.SECURITY_CREDENTIALS, “password”);

h.put("weblogic.jndi.enableDefaultUser", "true");

CSuiteAdminRemote csAdmin = CSuiteFactory.getCSuiteAdminRemoteInstance(h);

<ejb-reference-description>

 <ejb-ref-name>ejb/CSuiteAdmin</ejb-ref-name>

 <jndi-name>ejb/CSuiteAdmin</jndi-name>

</ejb-reference-description>

<ejb-reference-description>

 <ejb-ref-name>ejb/CSuiteCollaboration</ejb-ref-name>

 <jndi-name>ejb/CSuiteCollaboration</jndi-name>

</ejb-reference-description>

Connect ing

Integration Guide 1-5

Get t ing Star ted

1-6 Integration Guide

Integration Guide 2-1

C H A P T E R 2

Using the API

The API consists of classes defined in two packages:

com.collabraspace.csuite.server.i9n.util

com.collabraspace.csuite.server.i9n.ejb

After installation, the CollabraSuite JavaDoc API documentation can be found at
http://host:port/csuite/docs.

Utility Classes
The com.collabraspace.csuite.server.i9n.util package consists of a selection of
utility classes and application exceptions, which facilitate the use of the EJBs that define the main
API functionality.

The com.collabraspace.csuite.server.i9n.util package contains a set of utility classes
which are used as arguments and return types of the main EJB methods that form the backbone
of the API. These utility classes can be separated into three main types; those which represent a
CollabraSuite BEA Edition location; those which represent a CollabraSuite BEA Edition folder
or document; those which crrepresenteate a CollabraSuite BEA Edition group or user. Each
utility class accepts a string as a descriptor to construct the related object. There are static
methods in each class that can be used to construct these descriptor strings from the basic building
blocks. The user is free to construct the strings manually, as well. Supplying a descriptor string
with an incorrect format (i.e., accidentally using a CSuiteUser descriptor String in a
CSuiteRoom constructor) will result in a MalformedDescriptorException. (see below)

Using the AP I

2-2 Integration Guide

The classes responsible for representing a CollabraSuite BEA Edition location, as well as,
extending the base class CSuiteLocation are represented below:

Figure 3: Location Class Hierarchy

The constructors for the CSuiteLocation classes accept a string argument that describes the
fully qualified location within a CSuiteCampus. A descriptor of
“SampleCampus/SampleBuilding/SampleFloor/SampleRoom”, for example, defines a room,
“SampleRoom”, located within a floor, “SampleFloor”, contained within a building,
“SampleBuilding”, all within the campus “SampleCampus”. Each level of this descriptor string
can be represented by its own CSuiteLocation object, which is a subset of the “SampleRoom”
example, above.

In addition to providing descriptor strings, alternate constructors, defined above, allow one to
build a location relative to an existing CSuiteLocation object. Thus, given a CSuiteCampus
object, a CSuiteBuilding within that campus can be created by using the constructor of the
form CSuiteBuilding (CSuiteCampus, String), where the String argument is the name
of the building. A similar process can be used to create a CSuiteFloor and CSuiteRoom.

Finally, a third constructor form allows for individual strings, corresponding to each of the
elements of the descriptor string. Thus, for the SampleRoom example above, the object can also
be created using a constructor of the form CSuiteRoom (“SampleCampus”, “SampleBuilding”,
“SampleFloor”, “SampleRoom”).

The CSuiteLocationInfo object acts as a wrapper around a CSuiteLocation and contains
additional information about a CollabraSuite location.

CSuiteLocation

CSuiteCampus CSuiteBuilding CSuiteFloor CSuiteRoom

Ut i l i t y C lasses

Integration Guide 2-3

Where a CSuiteLocation object contains information only about a specific location (e.g.
building), the CSuiteLocationInfo object contains information about the location's description
and icon. In the case of a room it also contains its lockable status.

The classes responsible for creating a folder or document are depicted below, and all extend the
base class CSuiteContent:

Figure 4: Content Class Hierarchy

The constructors for the CSuiteContent classes take a string argument that describes the file
structure within CollabraSuite BEA Edition of the desired content. For example, a document
named “MyDocument” within a folder named “Folder1” would be constructed with a descriptor
String of “/Folder1/MyDocument”. A forward slash (“/”) is always used as the file separator.
As with CSuiteLocation, nested folders must be created one at a time. (although this is not true
for deleting content)

It should also be noted that the CSuiteContent classes are used for both File Cabinet and
Briefcase operations. The distinction is made by the passing either a user (for Briefcase) or room
(for File Cabinet) into the specific API methods. The descriptor string “/” always denotes the root
of the location (either the File Cabinet or the Briefcase).

Once content is created, its metadata can be manipulated via CSuiteDocumentInfo and
CSuiteFolderInfo objects. Content information can be read by using the
getFolderContentInfo() methods, while it is set through the use of the setContentInfo()
methods.

The classes responsible for representing a CollabraSuite BEA Edition group and user include:

CSuiteGroup

CSuiteUser

CSuiteContent

CSuiteDocument CSuiteFolder

Using the AP I

2-4 Integration Guide

The constructors for these objects consist of a campus name and either a user or group name, as
appropriate. For example, to create a CSuiteUser object for a user in campus “SampleCampus”
whose login is “testUser1”, the descriptor string would be: “SampleCampus:testUser1”.

The CSuiteACL class defines an Access Control List comprised of a set of users and/or groups.
These users and/or groups can be either granted or denied access to a location or resource.

The CSuiteDocumentType class represents a Document Type in CollabraSuite BEA Edition and
consists of a mime-type, a file extension, a name, a description and an image.

Where the CSuiteUser class represents a CollabraSuite BEA Edition user, the
CSuiteUserInfo class contains information about a user such as home room and contact
information.

The CSuitePriority class is used to define a priority within CollabraSuite BEA Edition that
can be used as an argument to a page. Unlike the other utilities, this class does not take a
descriptor String in its constructor. Rather, it takes the name of the priority (i.e., “High”) and a
numeric sort order used to compare one priority against another. An icon should also be supplied.

Finally, the API also defines the CSuiteFactory utility class to perform JNDI lookups
associated with obtaining handles to the two session EJBs:

Exceptions
The com.collabraspace.csuite.server.i9n.util package contains two varieties of
exceptions that are described in the API. The two varieties are the standard Java/EJB Exceptions
and CollabraSuite BEA Edition API specific Integration Application Exceptions. These
Integration Application Exceptions are defined in the document as:

InvalidResourceException – denotes an invalid resource or location in CollabraSuite
BEA Edition that is being passed as a descriptor. An example is an incorrect path to a
campus location.

MalformedDescriptorException – denotes a syntactical error in the string being passed
as a descriptor or supplying a descriptor string with an incorrect format (i.e., accidentally
using a CSuiteUser descriptor String in a CSuiteRoom constructor)

It must be noted that there are several other CollabraSuite BEA Edition exception types that may
be thrown by the API method. One example of this exception type is the
com.collabraspace.cserver.interfaces.ServiceException. These exceptions are
generated from within the CollabraSuite BEA Edition server code that sits behind the API
methods themselves. These are not Integration-specific CollabraSuite BEA Edition exceptions
and are not detailed in this API.

Logg ing

Integration Guide 2-5

Logging
The Integration API uses Log4j as its logging implementation. For details on configuring Log4j,
see http://logging.apache.org/log4j/docs/manual.html. When running inside the WebLogic
application server (or when weblogic.jar is on the CLASSPATH), log messages are integrated
with the WebLogic log. In both cases, the cs.log.debug Java system property can be used as a
convenience to enable debugging on a package or class basis. The following example starts a
client with debugging turned on:
% java –classpath

csuite-i9n-client.jar:log4j.jar:${WL_HOME}/server/lib/weblogic.jar:.

-Dcs.log.debug=com.collabraspace CSuiteIntegrationClient

Transactions
It is often desirable to perform multiple Integration API method calls such that they are
committed or rolled back as a group. This is accomplished by executing the multiple calls in the
context of a single transaction.

If the caller does not have a current transaction, one will be started at the beginning of the
Integration API method call and committed when the call sucessfully returns. The transaction will
be rolled back if an exception is thrown. When the caller already has an active transaction, the
Integration API methods will execute within the context of that transaction.

When invoking the Integration API from the Enterprise JavaBean tier of a J2EE application
server, this is easily accomplished with container managed transactions. However, the
transactions must be managed manually from the web tier or from a standalone client. The
CSuiteFactory provides two convenience methods for manually managing transactions:
beginTransaction() and commitTransaction().

For a full discussion on the topic of transaction management please refer to the Enterprise
JavaBeans Specification.

Package com.collabraspace.csuite.server.i9n.ejb
The com.collabraspace.csuit.server.i9n.ejb package contains two EJBs, one handling
basic administrative functions and the other handling collaborative functions. These are
described in more detail below.

http://logging.apache.org/log4j/docs/manual.html

Using the AP I

2-6 Integration Guide

Administrative Functions
Functions necessary for the administration of a CollabraSuite BEA Edition campus are provided
in this API. They can be grouped into three categories: information retrieval/modification,
resource creation/deletion, and permission modification.

Information Retrieval and Modification
The information retrieval functions provide users with information relating to the structure of the
CollabraSuite BEA Edition campus, such as the definition of the buildings, floors, and rooms
contained within the campus. They also provide information on the users in the campus; such as,
who are the active users in a campus? Where are they located? Which are currently on-line?
What are their skills? These methods typically return java.util.Collections containing
utility types described in the above Utility Classes section. For example, getUsers returns a
Collection of CSuiteUser objects, a utility class.

The information modification functions allow for the creation and deletion of skills which are
assigned to users. The list of available skills is customizable and allow for greater knowledge
sharing and problem solving because users can seek out other users with a required skill set in
order to tackle an issue or problem. The functions, createSkill and deleteSkill, accept
CSuiteCampus and a String, which is the skill to be created or deleted, and complete the action
within the campus specified. The information modification functions also allow for the creation
of priorities within a campus. These are used to prioritize pages and secure chat sessions. Default
priorities are “Low”, “Medium” and “High”, but other priorities can be added to a campus. Using
the function, createPriority, a CSuiteCampus class and the CSuitePriority class are used
to assign a new, non-default priority to a CollabraSuite BEA Edition campus.

Specifically, the information retrieval methods are:

doesUserExist()

getAssociates()

getBuildings()

getCampuses()

getDocumentTypesByExtension()

getFloors()

getGroups()

getLocationAccess()

getOnlineUsers()

Package com.co l labraspace .csu i te .se rve r . i9n .e jb

Integration Guide 2-7

getPriorities()

getRooms()

getSkills()

getSkillsForUser()

getUserInfo()

getUserLocations()

getUsers()

The corresponding modification methods are:

createPriority()

createSkill()

deleteSkill()

createGroup()

deleteGroup()

setGroupMembers()

createUser()

deleteUser()

setUserInfo()

modifyDocumentType()

Location Administration
The location functions deal solely with the administration of locations within a campus. A
location can be a room, a floor, a building, and even a campus. Also available is the verification
of the existence of a location within a campus or of the campus, itself. This verification ensures
that duplicate locations are not created or that a location can be identified before it is deleted or
modified. The location functions are:

createLocation()

moveFloor()

MoveRoom()

deleteLocation()

doesLocationExist()

Using the AP I

2-8 Integration Guide

getLocationInfo()

setLocationInfo()

To create new locations, create a CSuiteLocation object representing the new location, then
build a new CSuiteLocationInfo object using the CSuiteLocation object and add the
additional information. Then use the createLocation() method to create the location.

It is important to understand that when creating nested locations, it is necessary to create the
locations in proper order. That is, one cannot create a CSuiteRoom object without first creating
the CSuiteFloor object, or the CSuiteFloor before the CSuiteBuilding, etc. For example,
in order to create the “SampleRoom” (described above), it would be necessary to create first the
“SampleCampus”, and then the “SampleBuilding” location, followed by the “SampleFloor”, and
lastly the “SampleRoom” location. Any attempt to create this location in a single call, that is,
creating the campus, building, floor and room all at the same time, will result in an
InvalidResourceException, defined in the Exceptions section, above. In the prior example,
it is not necessary to create descriptor strings for each level. As indicated above in the Utility
Classes section, CSuiteLocation objects can be used in the constructors for other
CSuiteLocations, easing the developer's task in creating nested locations within a campus.

The moveFloor() and moveRoom() methods can be used to move floors and rooms to different
locations within the same campus. They can also be used to rename a floor or room.simply

Permissions
Functions to modify permissions are also available in this API. These permissions take on a
variety of forms. They can be access or administration privileges given to locations for specified
groups and users. They can even be associates lists which are assigned to specific users.
Regardless of form, these all, in some way, regulate or restrict access to locations and users within
in the campus:

setAssociates()

setLocationAccess()

setLocationAdministrators()

setSkillsForUser()

In some of these cases, the arguments for the methods include arrays of CSuiteUser objects and
arrays of CSuiteGroup objects. The general rule of thumb is that any user or group specified
will be used in the given operation. If the users array is null, only the specified groups will be
used. Conversely, if the groups array is null, only the specified users will be used. When both

Package com.co l labraspace .csu i te .se rve r . i9n .e jb

Integration Guide 2-9

the users and groups arrays are null, the operation will be applied to all users in the campus (i.e.,
the “Everyone” group).

In other instances, such as setLocationAccess(), a CSuiteACL object is used to specify the
users, groups and the grant mode. The grant mode defines whether we intend to grant or deny
access to the supplied users/groups. The constants used for the grant mode argument are defined
in the CSuiteACL class.

Collaboration Functions
Functions required to establish and maintain a collaborative session are also included in this API.
These functions relate to the creation, management, and deletion of documents, the sending of
pages between users and/or groups and the initiation of sidebar sessions. These functions are
provided via utility classes found in the com.collabraspace.csuite.server.i9n.ejb
package. In a collaborative session, the creation of documents and folders, and the ability to
manage and share them in that session, is essential. The following allow for the creation, deletion
and examining of the contents of files and folders:

createDocument()

createFolder()

checkOutDocument()

checkInDocument()

deleteItem()

getDocumentContents()

getFolderContents()

getFolderContentInfo()

getItemInfo()

setItemInfo()

In order to modify a document the client must first check out the document from CollabraSuite.
This can be accomplished by invoking either of the checkOutDocument methods (one method
is for briefcase documents, the other for file cabinet documents). After the document is checked
out, invoke the getDocumentContents method to retrieve the actual document to the local
system. At this point the document may be modified either programmatically or via an external
application (e.g. Word, Excel, etc). Once modifications are complete, the document must be
checked back into CollabraSuite. This can be accomplished by using one of the

Using the AP I

2-10 Integration Guide

checkInDocument methods. In general, the call pattern to modify a document in CollabraSuite
will be:

a. checkOutDocument()

b. getDocumentContents()

c. checkInDocument()

The setItemInfo() method takes a CSuiteContentInfo that contains a CSuiteACL,
explained above in the Administrative Functions section. In this case, the CSuiteACL also
contains an accessType that defines whether permissions for an item are being set to read, write
or read-write.

Sending pages and participating in sidebar sessions are also major aspects of collaboration and
the methods, sendPage() and createSidebar(), allow for this functionality in a CollabraSuite
campus.

Integration Guide 3-1

C H A P T E R 3

Samples

Sample code is provided here to demonstrate typical uses of the Integration API.

Creating a document
CSuiteCollaborationRemote collaboration =

 CSuiteFactory.getCSuiteCollaborationRemoteInstance();

CSuiteAdminRemote administration =

 CSuiteFactory.getCSuiteAdminRemoteInstance();

// Build a campus descriptor

String campusName = "SampleCampus";

String campusDesc = CSuiteCampus.buildCampusDescriptor(campusName);

CSuiteCampus csCampus = new CSuiteCampus(campusDesc);

// Owner of the document

String userName = "testUser";

String userDesc = CSuiteUser.buildUserDescriptor(campusName, userName);

CSuiteUser csUser = new CSuiteUser(userDesc);

// Get the file type for text documents

CSuiteDocumentType textDocType =

administration.getDocumentTypeByExtension(csCampus, "txt");

// Document’s location inside of CollabraSuite

CSuiteDocumentInfo document =

new CSuiteDocumentInfo(new CSuiteDocument("/", textDocType));

document.setDescription("File description");

// Path to the existing file to be imported into CollabraSuite

File file = new File("exampleFile.txt");

Samples

3-2 Integration Guide

// Create the file in the user’s briefcase

collaboration.createDocument(csUser, document, file);

Sending a Page to a User
CSuiteCollaborationRemote collaboration =

 CSuiteFactory.getCSuiteCollaborationRemoteInstance();

String campusName = "SampleCampus";

String userName = "testUser";

String userDesc = CSuiteUser.buildUserDescriptor(campusName, userName);

CSuiteUser csUser = new CSuiteUser(userDesc);

// Build a Set of recipients

Set toUsers = new HashSet();

userSet.add(csUser);

String campusDesc = CSuiteCampus.buildCampusDescriptor(campusName);

CSuiteCampus csCampus = new CSuiteCampus(campusDesc);

// Send the page

collaboration.sendPage(csCampus, null, toUsers, "subject", "Page text",

 PageConstants.NO_RESPONSE_REQUIRED_MODE);

Retrieving Online Users
CSuiteAdminRemote admin = CSuiteFactory.getCSuiteAdminRemoteInstance();

String campusName = "SampleCampus";

String campusDesc = CSuiteCampus.buildCampusDescriptor(campusName);

CSuiteCampus csCampus = new CSuiteCampus(campusDesc);

// Get the online users and print them out

Collection onlineUsers = admin.getOnlineUsers(csCampus);

for (Iterator i = onlineUsers.iterator(); i.hasNext();) {

CSuiteUser user = (CSuiteUser) i.next();

System.out.println(user);

}

Retrieving Rooms
CSuiteAdminRemote admin = CSuiteFactory.getCSuiteAdminRemoteInstance();

String campusName = "SampleCampus";

String campusDesc = CSuiteCampus.buildCampusDescriptor(campusName);

CSuiteCampus csCampus = new CSuiteCampus(campusDesc);

Ret r iev ing/Pr in t ing a User ' s Sk i l l s

Integration Guide 3-3

// Iterate over all Buildings, floors and rooms

Collection buildings = admin.getBuildings(csCampus);

for (Iterator i = buildings.iterator(); i.hasNext();) {

 Collection floors = admin.getFloors((CSuiteBuilding) i.next());

for (Iterator j = floors.iterator(); j.hasNext();) {

 Collection rooms = admin.getRooms((CSuiteFloor) j.next());

 for (Iterator k = rooms.iterator(); k.hasNext();){

 CSuiteRoom room = (CSuiteRoom) k.next();

 System.out.println(room);

 }

 }

}

Retrieving/Printing a User's Skills
CSuiteAdminRemote admin = CSuiteFactory.getCSuiteAdminRemoteInstance();

String campusName = "SampleCampus";

String campusDesc = CSuiteCampus.buildCampusDescriptor(campusName);

CSuiteCampus csCampus = new CSuiteCampus(campusDesc);

String userName = "testUser";

String userDesc = CSuiteUser.buildUserDescriptor(campusName, userName);

CSuiteUser csUser = new CSuiteUser(userDesc);

// Get the user's skills and print them out

Collection userSkills = admin.getSkillsForUser(csUser);

for (Iterator i = userSkills.iterator(); i.hasNext();) {

 String skill = (String) i.next();

 System.out.println(skill);

}

	Getting Started
	Compiling
	Running
	Connecting

	Using the API
	Utility Classes
	Exceptions
	Logging
	Transactions
	Package com.collabraspace.csuite.server.i9n.ejb
	Administrative Functions
	Information Retrieval and Modification
	Location Administration
	Permissions
	Collaboration Functions

	Samples
	Creating a document
	Sending a Page to a User
	Retrieving Online Users
	Retrieving Rooms
	Retrieving/Printing a User's Skills

