
BEAAquaLogic 
Service Bus™

Security Guide

Version: 3.0
Document Revised: February 2008





BEA AquaLogic Service Bus Security Guide iii

Contents

Introduction
Document Audience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

Related Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Understanding AquaLogic Service Bus Security
Inbound Security  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

Outbound Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

Options for Identity Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

Example: Authentication with a User Name Token . . . . . . . . . . . . . . . . . . . . . . . . . 2-16

Administrative Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17

Access Control Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18

Configuring Proxy Service Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19

Access Control Policy Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19

Deleting a Proxy Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20

Deleting the Access Control Policy Assigned to a Proxy Service  . . . . . . . . 2-20

Moving or Renaming a Proxy Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20

Renaming a Proxy Service Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20

Preserving Security Configuration During Import. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21

Preserve Security and Policy Configuration Check Box  . . . . . . . . . . . . . . . . . . . . . 2-22

Preserve Credentials Check Box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23

Preserve Access Control Check Box  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23

Configuring the WebLogic Security Framework: Main Steps  . . . . . . . . . . . . . . . . . . . . 2-23



iv BEA AquaLogic Service Bus Security Guide

Context Properties Are Passed to Security Providers . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27

Context Properties for HTTP Transport-Level Authentication . . . . . . . . . . . . . . . . 2-27

ContextHandler Properties for Access Control and Message-Level Custom 
Authentication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-28

Additional Transport-Specific Context Properties. . . . . . . . . . . . . . . . . . . . . . . . . . 2-29

Administrator-Supplied Context Properties for Message-Level Authentication . . . 2-30

Security Provider Must Have Knowledge of the Property Name . . . . . . . . . . . . . . 2-31

WebLogic Server Administrative Channel is Supported . . . . . . . . . . . . . . . . . . . . . 2-32

Using the Administrative Channel: Main Steps . . . . . . . . . . . . . . . . . . . . . . . . 2-32

Supported Standards and Security Providers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34

Support for WebLogic Security Providers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-35

Configuring Authentication Providers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-35

Using a Custom Authorization Provider to Protect AquaLogic Service Bus Resources. 
2-37

WebLogic Authorization Provider Usage Information. . . . . . . . . . . . . . . . . . . 2-37

ALSBProxyServiceResource Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-38

ProjectResourceV2 Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-40

ConsoleResource Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-41

AquaLogic Service Bus Security FAQ

Configuring Transport-Level Security
Configuring Transport-Level Security for HTTPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2

HTTPS Authentication Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2

Configuring Inbound HTTPS Security: Main Steps  . . . . . . . . . . . . . . . . . . . . . . . . . 4-3

Configuring Outbound HTTPS Security: Main Steps . . . . . . . . . . . . . . . . . . . . . . . . 4-4

Configuring Transport-Level Security for HTTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5

Configuring Inbound HTTP Security: Main Steps  . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6

Configuring Outbound HTTP Security: Main Steps . . . . . . . . . . . . . . . . . . . . . . . . . 4-6



BEA AquaLogic Service Bus Security Guide v

Configuring Transport-Level Security for JMS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7

Configuring Inbound JMS Transport-Level Security: Main Steps. . . . . . . . . . . . . . . 4-8

Configuring Outbound JMS Transport-Level Security: Main Steps . . . . . . . . . . . . . 4-9

Configuring Transport-Level Security for SFTP Transport  . . . . . . . . . . . . . . . . . . . . . . 4-10

How Two-Way Authentication is Performed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10

Use of the known_hosts File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11

Creating the known_hosts File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11

SFTP Transport Authentication Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12

Configuring Inbound SFTP Transport-Level Security: Main Steps. . . . . . . . . . . . . 4-13

Configuring Outbound SFTP Transport-Level Security: Main Steps  . . . . . . . . . . . 4-15

SFTP Security Attributes Preserved During Import. . . . . . . . . . . . . . . . . . . . . . . . . 4-18

SFTP Credential Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18

Email, FTP, and File Transport-Level Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18

Email and FTP Transport-Level Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18

File Transport Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-19

Configuring Transport-Level Security for SB Transport  . . . . . . . . . . . . . . . . . . . . . . . . 4-19

Configuring SAML Authentication With Service Bus (SB) Transport . . . . . . . . . . 4-20

Configuring Transport-Level Security for WS Transport . . . . . . . . . . . . . . . . . . . . . . . . 4-20

Reliable Web Services Messaging Defined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-21

WS Transport Resources Visible in WLS Console  . . . . . . . . . . . . . . . . . . . . . . . . . 4-21

Use of WS-Policy Files for Web Service Reliable Messaging Configuration . . . . . 4-22

Preconfigured WS-RM Policy Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-22

RM WS-Policy Required Prior to Activation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-23

Async Responses  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24

Proxy Service Authentication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24

Preserving Security Configuration on Import  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-26

Configuring Inbound and Outbound WS Transport-Level Security  . . . . . . . . . . . . 4-26

Configuring Transport-Level Security for WebSphere Message Queue Transport  . . . . 4-27



vi BEA AquaLogic Service Bus Security Guide

Configuring Inbound MQ Transport-Level Security: Main Steps . . . . . . . . . . . . . . 4-27

Configuring Outbound MQ Transport-Level Security: Main Steps  . . . . . . . . . . . . 4-28

Transport-Level Security Elements in the Message Context  . . . . . . . . . . . . . . . . . . . . . 4-29

Configuring Custom Authentication
What Are Custom Authentication Tokens?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2

Custom Authentication Token Use and Deployment. . . . . . . . . . . . . . . . . . . . . . . . . 5-3

Understanding Transport-Level Custom Authentication  . . . . . . . . . . . . . . . . . . . . . . . . . 5-3

Importing and Exporting and Transport-Level Custom Token Authentication . . . . . 5-4

Understanding Message-Level Custom Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5

Format of XPath Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6

Configuring Identity Assertion Providers for Custom Tokens . . . . . . . . . . . . . . . . . . . . . 5-6

Object Type of Custom Tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8

Configuring a Custom Token Type in an Identity Assertion Provider. . . . . . . . . . . . 5-8

Steps for Configuring a Custom Token Type in an Identity Assertion Provider  5-9

Setting the Supported and Active Types in the MBean  . . . . . . . . . . . . . . . . . . . 5-9

Configuring Custom Authentication Transport-Level Security . . . . . . . . . . . . . . . . . . . 5-11

Steps for Configuring Custom Authentication Transport-Level Security . . . . . . . . 5-11

Configuring Custom Authentication Message-Level Security . . . . . . . . . . . . . . . . . . . . 5-12

Steps for Configuring Custom Authentication Message-Level Security. . . . . . . . . 5-12

Propagating the Identity Obtained From Custom Authentication Tokens . . . . . . . . . . . 5-13

Combining WS-Security with Custom Username/Password and Tokens  . . . . . . . . . . . 5-13

Using WS-Policy in ALSB Proxy and Business Services
About Web Services Policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

Relationship Between WS-Security and WS-Policy . . . . . . . . . . . . . . . . . . . . . . . . . 6-2

Supported Web Services Security Policy Assertions . . . . . . . . . . . . . . . . . . . . . . . . . 6-3

WS-Policies Can be Bound Directly to Service. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3



BEA AquaLogic Service Bus Security Guide vii

Abstract and Concrete WS-Policy Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4

AquaLogic Service Bus WS-Policy Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5

Predefined WS-Security Policy 1.2 Policy Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5

Predefined BEA Proprietary Policy Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6

Predefined Reliable Messaging Policy Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7

When to use the Predefined Policy Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7

Creating and Using Custom WS-Policy Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8

Custom WS-SecurityPolicy 1.2 Policy Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9

Attaching WS-Policy Statements to WSDL Documents. . . . . . . . . . . . . . . . . . . . . . . . . . 6-9

Determining the URI of a WS-Policy Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10

Specifying the URI of a WS-Policy Statement in a WSDL Document . . . . . . . . . . 6-10

Best Practices: Attaching WS-Policy Statements. . . . . . . . . . . . . . . . . . . . . . . . . . . 6-12

Example: Requiring X.509 Credentials for Identity and Confidentiality. . . . . . . . . 6-13

Example: Attaching Custom Inline WS-Policy Statements to a WSDL Document  6-14

BEA-Proprietary Security Policy Best Practices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-15

Policy Subjects and Effective Policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-17

Configuring Message-Level Security for Web Services
About Message-Level Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2

Sample Sequence of Actions in Message-Level Security  . . . . . . . . . . . . . . . . . . . . . 7-3

Message-Level Access Control Policies for Proxy Services. . . . . . . . . . . . . . . . . . . . . . . 7-4

Configuring Proxy Service Message-Level Security  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4

Creating an Active Intermediary Proxy Service: Main Steps  . . . . . . . . . . . . . . . . . . 7-5

Creating a Pass-Through Proxy Service: Main Steps. . . . . . . . . . . . . . . . . . . . . . . . . 7-7

Configuring Business Service Message-Level Security: Main Steps . . . . . . . . . . . . . . . . 7-8

Examples of Custom WS-Policy Statements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10

Example: Encrypting Part of the SOAP Body and Header  . . . . . . . . . . . . . . . . . . . 7-10

Example: Encryption Policy for a Business Service  . . . . . . . . . . . . . . . . . . . . . . . . 7-13



viii BEA AquaLogic Service Bus Security Guide

Example: Encrypting a Custom SOAP Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-15

Example: Signing the Message Body and Headers . . . . . . . . . . . . . . . . . . . . . . . . . 7-16

Example: Signing a SOAP Body with SAML Holder-of-Key  . . . . . . . . . . . . . . . . 7-18

Example: Authenticating, Signing, and Encrypting a SOAP Body and Headers with 
SAML Sender Vouches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-20

Disabling Business Service Message-Level Security . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-23

Using SAML for Authentication
Configuring SAML Credential Mapping: Main Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2

Configuring SAML Pass-Through Identity Propagation  . . . . . . . . . . . . . . . . . . . . . . . . . 8-3

Authenticating SAML Tokens in Proxy Service Requests . . . . . . . . . . . . . . . . . . . . . . . . 8-3

Configuring SAML Authentication with Service Bus (SB) Transport . . . . . . . . . . . . . . . 8-4

Troubleshooting SAML Web Services Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4

Configuring Administrative Security
Administrative Security Roles and Privileges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2

Role-Based Access in AquaLogic Service Bus Console . . . . . . . . . . . . . . . . . . . . . . 9-3

Administrative Security Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-12

Configuring Administrative Security: Main Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-13

Securing AquaLogic Service Bus in a Production Environment
Undeploying the Service Bus (SB) Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2

Protection of Temporary Files With Streaming body Content . . . . . . . . . . . . . . . . . . . . 10-2



BEA AquaLogic Service Bus Security Guide 1-1

C H A P T E R 1

Introduction

This document describes how to use standard technologies such as SSL and Web Services 
Security along with BEA proprietary technologies to ensure that only authorized users can access 
resources in an AquaLogic Service Bus domain. 

Document Audience
This document is intended for the following audiences:

Application Architects—Architects who, in addition to setting security goals and designing 
the overall security architecture for their organizations, evaluate AquaLogic Service Bus 
security features and determine how to best implement them. Application Architects have 
in-depth knowledge of Java programming, Java security, and network security, as well as 
knowledge of security systems and leading-edge, security technologies and tools.

Security Developers—Developers who focus on defining the system architecture and 
infrastructure for security products that integrate into AquaLogic Service Bus and on 
developing custom security providers for use with AquaLogic Service Bus. They work 
with Application Architects to ensure that the security architecture is implemented 
according to design and that no security holes are introduced, and work with Server 
Administrators to ensure that security is properly configured. Security Developers have a 
solid understanding of security concepts, including authentication, authorization, auditing 
(AAA), in-depth knowledge of Java (including Java Management eXtensions (JMX), and 
working knowledge of WebLogic Server, AquaLogic Service Bus, and security provider 
functionality.



In t roduct ion

1-2 BEA AquaLogic Service Bus Security Guide

Application Developers—Developers who are Java programmers that focus on developing 
client applications, adding security to Web applications and Enterprise JavaBeans (EJBs), 
and working with other engineering, quality assurance (QA), and database teams to 
implement security features. Application Developers have in-depth/working knowledge of 
Java (including J2EE components such as servlets/JSPs and JSEE) and Java security.

Server Administrators—Administrators work closely with Application Architects to design 
a security scheme for the server and the applications running on the server, to identify 
potential security risks, and to propose configurations that prevent security problems. 
Related responsibilities may include maintaining critical production systems, configuring 
and managing security realms, implementing authentication and authorization schemes for 
server and application resources, upgrading security features, and maintaining security 
provider databases. Server Administrators have in-depth knowledge of the Java security 
architecture, including Web services, Web application and EJB security, Public Key 
security, SSL, and Security Assertion Markup Language (SAML).

Application Administrators—Administrators who work with Server Administrators to 
implement and maintain security configurations and authentication and authorization 
schemes, and to set up and maintain access to deployed application resources in defined 
security realms. Application Administrators have general knowledge of security concepts 
and the Java Security architecture. They understand Java, XML, deployment descriptors, 
and can identify security events in server and audit logs.

Related Information
AquaLogic Service Bus uses the WebLogic security framework as building blocks for higher 
level security services, including authentication, identity assertion, authorization, role mapping, 
auditing, and credential mapping. In addition to this document, the AquaLogic Service Bus 
Security Guide, the following documents provide information about the WebLogic Security 
Service:

Understanding WebLogic Security—This document summarizes the features of the 
WebLogic Security Service and presents an overview of the architecture and capabilities of 
the WebLogic Security Service. It is the starting point for understanding the WebLogic 
Security Service.

Securing a Production Environment—This document highlights essential security measures 
for you to consider before you deploy WebLogic Server into a production environment.

Securing WebLogic Server—This document explains how to configure security for 
WebLogic Server and how to use Compatibility security.

http://e-docs.bea.com/wls/docs100
/secintro/index.html
http://e-docs.bea.com/wls/docs100/lockdown/index.html
http://e-docs.bea.com/wls/docs100/secmanage/index.html


Related  In fo rmat ion

BEA AquaLogic Service Bus Security Guide 1-3

Securing WebLogic Resources—This document introduces the various types of WebLogic 
resources, and provides information that allows you to secure these resources using 
WebLogic Server.

http://e-docs.bea.com/wls/docs100/secwlres/index.html


In t roduct ion

1-4 BEA AquaLogic Service Bus Security Guide



BEA AquaLogic Service Bus Security Guide 2-1

C H A P T E R 2

Understanding AquaLogic Service Bus 
Security

AquaLogic Service Bus supports open industry standards for ensuring the integrity and privacy 
of communications and to ensure that only authorized users can access resources in an AquaLogic 
Service Bus domain. It uses the underlying WebLogic security framework as building blocks for 
its security services. The WebLogic security framework divides the work of securing a domain 
into several components (providers), such as authentication, authorization, credential mapping, 
and auditing. You configure only those providers that you need for a given AquaLogic Service 
Bus domain.

The following sections introduce the AquaLogic Service Bus security model and its features:

“Inbound Security” on page 2-2

“Outbound Security” on page 2-4

“Options for Identity Propagation” on page 2-4

“Administrative Security” on page 2-17

“Configuring the WebLogic Security Framework: Main Steps” on page 2-23

“Context Properties Are Passed to Security Providers” on page 2-27

“Supported Standards and Security Providers” on page 2-34



Unders tanding  AquaLog ic  Se rv ice  Bus  Secur i t y

2-2 BEA AquaLogic Service Bus Security Guide

Inbound Security
Inbound security ensures that AquaLogic Service Bus proxy services handle only the requests 
that come from authorized clients. (By default, any anonymous or authenticated user can connect 
to a proxy service.) It can also ensure that no unauthorized user has viewed or modified the data 
as it was sent from the client. 

Proxy services can have two types of clients: service consumers and other proxy services. 
Figure 2-1 illustrates that communication between proxy services and their clients is secured by 
inbound security, while communication between proxy services and business services is secured 
by outbound security.

Figure 2-1  Inbound and Outbound Security

You set up inbound security when you create proxy services and you can modify it as your needs 
change. For outward-facing proxy services (which receive requests from service consumers), 
consider setting up strict security requirements such as two-way SSL over HTTPS. For proxy 
services that are guaranteed to receive requests only from other AquaLogic Service Bus proxy 
services, you can use less secure protocols.

If a proxy service uses public key infrastructure (PKI) technology for digital signatures, 
encryption, or SSL authentication, create a service key provider to provide private keys paired 
with certificates. For more information, see Service Key Providers in Using the AquaLogic 
Service Bus Console.

Proxy Service Business ServiceService Consumer
Client

Inbound Outbound

Proxy Service Business Service

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyServiceProviders.html


I nbound  Secur i t y

BEA AquaLogic Service Bus Security Guide 2-3

For each proxy service, you can configure the following inbound security checks:

Transport-level security applies security checks as part of establishing a connection 
between a client and a proxy service. The security requirements that you can impose 
through transport-level security depend on the protocol that you configure the proxy 
service to use.

For example, for proxy services that communicate over the HTTP protocol, you can 
require that all clients authenticate against a database of users that you create in the 
Security Configuration module of the AquaLogic Service Bus Console. You then create an 
access control policy that specifies conditions under which authenticated users are 
authorized to access the proxy service. 

AquaLogic Service Bus also supports client-specified custom authentication tokens for 
inbound transport-level requests.

For information about configuring transport-level security for each supported protocol, see 
“Configuring Transport-Level Security” on page 4-1.

Custom Authentication for message-level security. AquaLogic Service Bus supports 
client-specified custom authentication credentials for inbound transport- and message-level 
requests. The custom authentication credentials can be in the form of a custom token, or a 
username and password. 

For information on configuring custom authentication transport- and message-level 
security, see “Configuring Custom Authentication” on page 5-1.

Message-level security (for proxy services that are Web Services) is part of the 
WS-Security specification. It applies security checks before processing a SOAP message or 
specific parts of a SOAP message. 

Part of the configuration for message-level security can be embedded in the WSDL 
document and WS-Policy document that are associated with the Web service. These 
documents specify whether SOAP messages must be digitally signed and encrypted and 
which Web service operations can be invoked only by authorized users.

In ALSB 3.0 there is an alternative way to bind WS-Policy to services. The WS-Policy 
console page allows you to bind policies to the service as a whole, to individual operations 
in the service, or to the request message or response message of individual operations. 

If a proxy service or business service uses a WS-Policy statement to secure access to one 
or more of its operations, and if you have configured the service as an active intermediary 
(as opposed to a pass-through service), you use the AquaLogic Service Bus Console to 
create a message-level access control policy. The policy specifies conditions under which 
users, groups, or security roles are authorized to invoke the protected operations.



Unders tanding  AquaLog ic  Se rv ice  Bus  Secur i t y

2-4 BEA AquaLogic Service Bus Security Guide

For more information about configuring message-level security, see “Configuring 
Message-Level Security for Web Services” on page 7-1.

Outbound Security
Outbound security secures communication between a proxy service and a business service. Most 
of the tasks that you complete for outbound security are for configuring proxy services to comply 
with the transport-level or message-level security requirements that business services specify. 

For example, if a business service requires user name and password tokens, you create a service 
account, which either directly contains the user name and password, passes along the user name 
and password that was contained in the inbound request, or provides a user name and password 
that depend on the user name that was contained in the inbound request. For more information, 
see Service Accounts in Using the AquaLogic Service Bus Console.

If a business service requires the use of PKI technology for digital signatures, or SSL 
authentication, you create a service key provider, which provides private keys paired with 
certificates. For more information, see Service Key Providers in Using the AquaLogic Service 
Bus Console.

Options for Identity Propagation
A key group of decisions that you must make when designing security for AquaLogic Service 
Bus is how to handle (propagate) the identities that clients provide. You can configure AquaLogic 
Service Bus to do any of the following:

Authenticate the credentials that clients provide

Perform authorization checks

Pass client credentials to business services unchanged

Map client credentials to a different set of credentials that a business service can 
authenticate and authorize

Bridge between security technologies

http://e-docs.bea.com/alsb/docs30/consolehelp/serviceAccounts.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyServiceProviders.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyServiceProviders.html


Opt i ons  fo r  Ident i t y  P ropagat ion

BEA AquaLogic Service Bus Security Guide 2-5

Table 2-1 describes the decisions that affect how AquaLogic Service Bus propagates client 
identities to business services.

Table 2-1  Options for Identity Propagation

Decision Description

Which type of credentials do you require clients to 
provide?

For transport-level security, AquaLogic Service Bus adapts 
to your existing security requirements. Clients of 
AquaLogic Service Bus can supply user name and 
password tokens, SSL certificates, or any other type of 
custom authentication token that is supported by an 
Identity Assertion provider that you configure. 

For message-level security, AquaLogic Service Bus 
supports the Username Token, X.509 Token, any other 
type of custom authentication token that is supported by an 
Authentication or Identity Assertion provider that you 
configure, and SAML Token profiles (see “Supported 
Standards and Security Providers” on page 2-34).

If you are establishing security requirements for a new 
business service that uses Web Services Security, BEA 
recommends that you require clients to provide SAML 
tokens. SAML is the emerging standard for propagating 
user identities within Web services. See “Using SAML for 
Authentication” on page 8-1.

Do you require AquaLogic Service Bus to 
authenticate clients or to simply pass the 
client-supplied credentials to business services for 
authentication?

When you require clients to authenticate with AquaLogic 
Service Bus, you add an additional layer of security. In 
general, the more security layers you add, the more secure 
you make a domain. 

To enable AquaLogic Service Bus to authenticate users, 
you must create user accounts in the AquaLogic Service 
Bus Console. If your set of users is very large, you must 
consider whether maintaining a large database of user 
accounts in the AquaLogic Service Bus Console is worth 
the effort.



Unders tanding  AquaLog ic  Se rv ice  Bus  Secur i t y

2-6 BEA AquaLogic Service Bus Security Guide

If AquaLogic Service Bus authenticates clients 
that provide X.509 tokens or SAML tokens, 
which AquaLogic Service Bus user maps to the 
tokens? 

BEA recommends that you require clients to authenticate 
with AquaLogic Service Bus and that you modify the 
default access-control policies to allow (authorize) only 
specific, authenticated users access to your proxy services. 

To authenticate and authorize clients who supply X.509 
certificates, SAML tokens, or other types of credentials 
other than user names and passwords, you must configure 
an identity assertion provider that maps the client’s 
credential to an AquaLogic Service Bus user. AquaLogic 
Service Bus will use this user name to establish a security 
context for the client.

Table 2-1  Options for Identity Propagation

Decision Description



Opt i ons  fo r  Ident i t y  P ropagat ion

BEA AquaLogic Service Bus Security Guide 2-7

If AquaLogic Service Bus authenticates clients 
that provide custom authentication tokens, which 
AquaLogic Service Bus user maps to the tokens? 

BEA recommends that you require clients to authenticate 
with AquaLogic Service Bus and that you modify the 
default access-control policies to allow (authorize) only 
specific, authenticated users access to your proxy services. 

To authenticate and authorize clients who supply custom 
authentication tokens other than user names and 
passwords, you must configure an Identity Assertion 
provider that maps the client’s credential to an AquaLogic 
Service Bus user. AquaLogic Service Bus will use this user 
name to establish a security context for the client.

If AquaLogic Service Bus authenticates clients 
that provide user name and password tokens, 
decide whether you want to:
• Pass the client’s user name and password to 

the business service
• Map the client’s user name to a new user 

name and password and pass the new 
credentials to the business service

If a custom username/password token is used, as described 
in “What Are Custom Authentication Tokens?” on 
page 5-2, then the username and password in the custom 
token can be used for outbound HTTP BASIC or outbound 
WS-Security Username Token authentication if a 
pass-through service account is used.

If you pass the client-supplied user name and password to 
the business service, then clients are responsible for 
maintaining the credentials that the business service 
requires. If the business service changes its security 
requirements, then you must notify each client to make 
corresponding changes. 

If you expect a business service to change its requirements 
frequently, then consider mapping the credentials that 
clients supply to the credentials that the business service 
requires. The more clients for a business service, the more 
work will be required to maintain this credential mapping.

Table 2-1  Options for Identity Propagation

Decision Description



Unders tanding  AquaLog ic  Se rv ice  Bus  Secur i t y

2-8 BEA AquaLogic Service Bus Security Guide

Table 2-2 describes all combinations of the requirements that you can impose for inbound and 
outbound transport-level security. 

Table 2-2  Combinations of Transport-Level Security Requirements

This Inbound Requirement... Can Be Used With This 
Outbound Requirement...

How to Configure

Client supplies user name and 
password in the HTTP header and 
AquaLogic Service Bus 
authenticates the client.

Pass the client’s credentials 
in an HTTP header.

1. Configure inbound HTTP security. See 
“Configuring Inbound HTTP Security: 
Main Steps” on page 4-6.
Be sure to add the client’s user name to 
the AquaLogic Service Bus Security 
Configuration module.

2. Configure outbound HTTP security. 
See “Configuring Outbound HTTP 
Security: Main Steps” on page 4-6.
Be sure to create a pass-through 
service account and attach the account 
to the business service.

Map the client’s credentials 
to a different AquaLogic 
Service Bus user and pass 
the new credentials in an 
HTTP header.

1. Configure inbound HTTP security. See 
“Configuring Inbound HTTP Security: 
Main Steps” on page 4-6.
Be sure to add the client’s user name to 
the AquaLogic Service Bus Security 
Configuration module.

2. Configure outbound HTTP security. 
See “Configuring Outbound HTTP 
Security: Main Steps” on page 4-6.
Be sure to create a user-mapping 
service account and attach the account 
to the business service.



Opt i ons  fo r  Ident i t y  P ropagat ion

BEA AquaLogic Service Bus Security Guide 2-9

Client supplies user name and 
password in the HTTP header and 
AquaLogic Service Bus does not 
authenticate the client.

Pass the client’s credentials 
in an HTTP header.

1. Configure inbound HTTP security. See 
“Configuring Inbound HTTP Security: 
Main Steps” on page 4-6.
Be sure to configure the proxy service 
for HTTP, no authentication or 
HTTPS, one-way SSL, no 
authentication. 

2. Configure outbound HTTP security. 
See “Configuring Outbound HTTP 
Security: Main Steps” on page 4-6.
Be sure to configure the business 
service for HTTP BASIC 
authentication or HTTPS, one-way 
SSL, BASIC authentication.
Also create a pass-through service 
account and attach the account to the 
business service.

Client supplies custom 
authentication token in the HTTP 
header. AquaLogic Service Bus 
authenticates the client.

Map the client’s credentials 
to a different AquaLogic 
Service Bus user and pass 
the new credentials in an 
HTTP header.

1. Configure inbound HTTP security. See 
“Configuring Inbound HTTP Security: 
Main Steps” on page 4-6.
Be sure to add the client’s user name to 
the AquaLogic Service Bus Security 
Configuration module.

2. Configure outbound HTTP security. 
See “Configuring Outbound HTTP 
Security: Main Steps” on page 4-6.
Be sure to create a user-mapping 
service account and attach the account 
to the business service.

Table 2-2  Combinations of Transport-Level Security Requirements

This Inbound Requirement... Can Be Used With This 
Outbound Requirement...

How to Configure



Unders tanding  AquaLog ic  Se rv ice  Bus  Secur i t y

2-10 BEA AquaLogic Service Bus Security Guide

Any form of local authentication 
(HTTP or HTTPS BASIC, 
HTTPS CLIENT CERT with 
credential mapping)

Pass the client’s credentials 
to an EJB over RMI. The 
EJB container authenticates 
the user.

Create a pass-through service account and 
attach the account to the business service. 
See “Service Accounts” in Using the 
AquaLogic Service Bus Console.

Table 2-2  Combinations of Transport-Level Security Requirements

This Inbound Requirement... Can Be Used With This 
Outbound Requirement...

How to Configure

http://e-docs.bea.com/alsb/docs30/consolehelp/serviceAccounts.html


Opt i ons  fo r  Ident i t y  P ropagat ion

BEA AquaLogic Service Bus Security Guide 2-11

Table 2-3 describes all combinations of the requirements that you can impose for inbound and 
outbound message-level security. In some cases, the inbound requirement for transport-level 
security affects the requirements that you can impose for outbound message-level security.

Table 2-3  Combinations of Message-Level Security Requirements

This Inbound Requirement... Can Be Used With This 
Outbound Requirement...

How to Configure

Client supplies user name and 
password, or custom 
authentication token, in the 
HTTP header and AquaLogic 
Service Bus authenticates the 
client.

Pass the client’s credentials 
in a SOAP header.

1. Configure inbound HTTP security. See 
“Configuring Inbound HTTP Security: 
Main Steps” on page 4-6.
Be sure to add the client’s user name to 
the AquaLogic Service Bus Security 
Configuration module.

2. Create a pass-through service account and 
attach the account to the business service. 
See “Service Accounts” in Using the 
AquaLogic Service Bus Console.

Map the client’s credentials 
to a different AquaLogic 
Service Bus user and pass 
the new credentials in a 
SOAP header.

1. Configure inbound HTTP security. See 
“Configuring Inbound HTTP Security: 
Main Steps” on page 4-6.
Be sure to add the client’s user name to 
the AquaLogic Service Bus Security 
Configuration module.

2. Create a user-mapping service account 
and attach the account to the business 
service. See “Service Accounts” in Using 
the AquaLogic Service Bus Console.

Map the client credentials to 
a SAML token. AquaLogic 
Service Bus asserts the user 
identity.

1. Configure inbound HTTP security. See 
“Configuring Inbound HTTP Security: 
Main Steps” on page 4-6.
Be sure to add the client’s user name to 
the AquaLogic Service Bus Security 
Configuration module.

2. Configure a SAML credential mapping 
provider. See “Configuring SAML 
Credential Mapping: Main Steps” on 
page 8-2.

http://e-docs.bea.com/alsb/docs30/consolehelp/serviceAccounts.html
http://e-docs.bea.com/alsb/docs30/consolehelp/serviceAccounts.html


Unders tanding  AquaLog ic  Se rv ice  Bus  Secur i t y

2-12 BEA AquaLogic Service Bus Security Guide

Client supplies custom user 
name and password, or custom 
authentication token, in the 
message header or body and 
AquaLogic Service Bus 
authenticates the client.

Pass the client’s credentials 
in a SOAP header.

1. Configure an Authentication or Identity 
Assertion provider to handle the custom 
token or username and password.
Be sure to add the client’s user name to 
the AquaLogic Service Bus Security 
Configuration module.

2. Create a pass-through service account and 
attach the account to the business service. 
See “Service Accounts” in Using the 
AquaLogic Service Bus Console.

Map the client’s credentials 
to a different AquaLogic 
Service Bus user and pass 
the new credentials in a 
SOAP header.

1. Configure an Authentication or Identity 
Assertion provider to handle the custom 
token or username and password.
Be sure to add the client’s user name to 
the AquaLogic Service Bus Security 
Configuration module.

2. Create a user-mapping service account 
and attach the account to the business 
service. See “Service Accounts” in Using 
the AquaLogic Service Bus Console.

Map the client credentials to 
a SAML token. AquaLogic 
Service Bus asserts the user 
identity.

1. Configure an Authentication or Identity 
Assertion provider to handle the custom 
token or username and password.
Be sure to add the client’s user name to 
the AquaLogic Service Bus Security 
Configuration module.

2. Configure a SAML credential mapping 
provider. See “Configuring SAML 
Credential Mapping: Main Steps” on 
page 8-2.

Table 2-3  Combinations of Message-Level Security Requirements

This Inbound Requirement... Can Be Used With This 
Outbound Requirement...

How to Configure

http://e-docs.bea.com/alsb/docs30/consolehelp/serviceAccounts.html
http://e-docs.bea.com/alsb/docs30/consolehelp/serviceAccounts.html


Opt i ons  fo r  Ident i t y  P ropagat ion

BEA AquaLogic Service Bus Security Guide 2-13

Client supplies user name and 
password in the HTTP header 
and AquaLogic Service Bus 
does not authenticate the 
client.

Pass the client’s credentials 
in a SOAP header.

1. Configure inbound HTTP security. See 
“Configuring Inbound HTTP Security: 
Main Steps” on page 4-6.
Be sure to configure the proxy service for 
HTTP, no authentication or HTTPS, 
one-way SSL, no authentication. 

2. Configure outbound HTTP security. See 
“Configuring Outbound HTTP Security: 
Main Steps” on page 4-6.
Be sure to configure the business service 
for HTTP BASIC authentication or 
HTTPS, one-way SSL, BASIC 
authentication.
Also create a pass-through service 
account and attach the account to the 
business service.

Client supplies a certificate as 
part of HTTPS CLIENT-CERT 
authentication (two-way SSL) 
and AquaLogic Service Bus 
authenticates the client.

Map the client credentials to 
a SAML token. AquaLogic 
Service Bus asserts the user 
identity.

1. Configure inbound HTTP security. See 
“Configuring Inbound HTTP Security: 
Main Steps” on page 4-6.

2. Configure a SAML credential mapping 
provider. See “Configuring SAML 
Credential Mapping: Main Steps” on 
page 8-2.

Table 2-3  Combinations of Message-Level Security Requirements

This Inbound Requirement... Can Be Used With This 
Outbound Requirement...

How to Configure



Unders tanding  AquaLog ic  Se rv ice  Bus  Secur i t y

2-14 BEA AquaLogic Service Bus Security Guide

An active intermediary proxy 
service enforces Web-Services 
Security with the User Name 
Token Profile.

Encode the credentials as a 
user name and password 
token in the SOAP message.

Create an active intermediary proxy service 
with a WS-Policy statement that requires 
passwords (not password digests). See 
“Creating an Active Intermediary Proxy 
Service: Main Steps” on page 7-5.

Encode the credentials as a 
SAML token in the SOAP 
message.

1. Create an active intermediary proxy 
service with a WS-Policy statement that 
requires passwords. See “Creating an 
Active Intermediary Proxy Service: Main 
Steps” on page 7-5.

2. Configure a SAML credential mapping 
provider. See “Configuring SAML 
Credential Mapping: Main Steps” on 
page 8-2.

An active intermediary proxy 
service enforces Web-Services 
Security with the X.509 Token 
Profile.

Encode the credentials as a 
SAML token in the SOAP 
message.

1. Create an active intermediary proxy 
service with a WS-Policy statement that 
requires digital signatures and optionally 
requires authentication with an X.509 
token. See “Creating an Active 
Intermediary Proxy Service: Main Steps” 
on page 7-5.

2. Configure a SAML credential mapping 
provider. See “Configuring SAML 
Credential Mapping: Main Steps” on 
page 8-2.

Table 2-3  Combinations of Message-Level Security Requirements

This Inbound Requirement... Can Be Used With This 
Outbound Requirement...

How to Configure



Opt i ons  fo r  Ident i t y  P ropagat ion

BEA AquaLogic Service Bus Security Guide 2-15

For inbound Tuxedo requests, you can configure any of the following security requirements:

Encode the client’s credentials in an outbound call to a Tuxedo service.

Encode the client’s credentials in an outbound SOAP message as either a user name token 
or a SAML token.

Map the client’s credentials to a different AquaLogic Service Bus user and pass the new 
credentials in an outbound HTTP header.

Map the client’s credentials to a different AquaLogic Service Bus user and pass the new 
credentials to an EJB over RMI. The EJB container authenticates the user.

For information about using Tuxedo with AquaLogic Service Bus, see Interoperability Solution 
for Tuxedo.

An active intermediary proxy 
service enforces Web-Services 
Security with the SAML Token 
Profile.

Generate a new SAML 
token in the outbound SOAP 
message.

1. Create an active intermediary proxy 
service with a WS-Policy statement that 
requires a SAML token. See 
“Authenticating SAML Tokens in Proxy 
Service Requests” on page 8-3.

2. Configure a SAML credential mapping 
provider. See “Configuring SAML 
Credential Mapping: Main Steps” on 
page 8-2.

A pass-through proxy service, 
which can pass user names and 
passwords, X.509 tokens, or 
SAML tokens.

A business service that uses 
either the User Name Token 
Profile, the X.509 Token 
Profile, or the SAML Token 
Profile.

1. Create a pass through proxy service. See 
“Creating an Active Intermediary Proxy 
Service: Main Steps” on page 7-5.

2. Create a business service that enforces 
one of the token profiles. See 
“Configuring Business Service 
Message-Level Security: Main Steps” on 
page 7-8 or “Configuring SAML 
Pass-Through Identity Propagation” on 
page 8-3.

Table 2-3  Combinations of Message-Level Security Requirements

This Inbound Requirement... Can Be Used With This 
Outbound Requirement...

How to Configure

http://e-docs.bea.com/alsb/docs30/interoptux/index.html
http://e-docs.bea.com/alsb/docs30/interoptux/index.html


Unders tanding  AquaLog ic  Se rv ice  Bus  Secur i t y

2-16 BEA AquaLogic Service Bus Security Guide

Example: Authentication with a User Name Token
Figure 2-2 illustrates how user identities flow through AquaLogic Service Bus when you 
configure AquaLogic Service Bus as follows:

Require clients to provide user names and passwords in their requests

You can require Web services clients to provide credentials at the transport level, the 
message level, or both. If you require clients to provide credentials at both levels, 
AquaLogic Service Bus uses the message-level credentials for identity propagation and 
credential mapping.

Authenticate clients 

The illustration begins with the inbound request and ends with the outbound request:

1. A client sends a request to a proxy service. The request contains the user name and password 
credentials.

Clients can send other types of tokens for authentication, such as an X.509 certificate or a 
custom authentication token. If a client sends an X.509 certificate token or a custom token, 
you must configure an identity assertion provider to map the identity in the token to an 
AquaLogic Service Bus security context.

2. The proxy service asks the domain’s authentication provider if the user exists in the domain’s 
authentication provider store.

If the user exists, the proxy service asks the domain’s authorization provider to evaluate the 
access control policy that you have configured for the proxy service.

3. If the proxy service’s access control policy allows the user access, the proxy service processes 
the message. As part of generating its outbound request to a business service, the proxy 
service asks the business service to supply the user name and password that the business 
service requires. 

The business service asks its service account for the credentials. Depending on how the 
service account is configured, it does one of the following:

– Requires the proxy service to encode a specific (static) user name and password.

– Requires the proxy service to pass along the user name and password that the client 
supplied.

– Maps the user name that was returned from the authentication provider to some other 
(remote) user name, then requires the proxy service to encode the remote user name.



Admin is t rat i ve  Secur i t y

BEA AquaLogic Service Bus Security Guide 2-17

4. The proxy service sends its outbound request with the user name and password that was 
returned from the service account.

Figure 2-2  How Service Accounts Are Used

Administrative Security
To secure access to administrative functions, such as creating proxy services or business services, 
AquaLogic Service Bus provides four security roles with pre-defined access privileges:

IntegrationAdmin

IntegrationDeployer

IntegrationMonitor

IntegrationOperator

Client

Service Account

Authorization
Provider

Authentication
Provider

Business Service

Proxy Service

Inbound request:

Is pat a known user?

Is pat allowed access?

Get credentials for outbound
request

1

2

3

4

username=pat

Outbound request



Unders tanding  AquaLog ic  Se rv ice  Bus  Secur i t y

2-18 BEA AquaLogic Service Bus Security Guide

A security role is an identity that can be dynamically conferred upon a user or group at runtime. 
You cannot change the access privileges for these administrative security roles, but you can 
change the conditions under which a user or group is in one of the roles.

The AquaLogic Service Bus roles have permission to modify only AquaLogic Service Bus 
resources; they do not have permission to modify WebLogic Server or other resources on 
WebLogic Server. When assigning administrative users to roles, assign at least one user to the 
WebLogic Server Admin role. The WebLogic Server security roles are described in Table 9-2.

For more information, see “Configuring Administrative Security” on page 9-1.

Access Control Policies
Access control determines who has access to the resources in AquaLogic Service Bus. An access 
control policy specifies conditions under which users, groups, or roles can access a proxy service. 
For example, you can create a policy that always allows users in the GoldCustomer role to access 
a proxy service and that allows users in the SilverCustomer role to access the proxy service only 
after 12pm on weeknights. 

An access control policy is an association between a WebLogic resource and one or more users, 
groups, or security roles. A security policy protects the WebLogic resource against unauthorized 
access. Access control policies are boolean expressions assigned to specific resources. When 
there is an attempt to access the resource, the expression is evaluated. The expression consists of 
one or more conditions joined by boolean operators, such as a role (operator) and access time (8 
am to 5 pm). For more information about access control policies, see Security Fundamentals in 
Understanding WebLogic Security.

AquaLogic Service Bus relies on WebLogic Server security realms to protect its resources. Each 
security realm consists of a set of configured security providers, users, groups, security roles, and 
(access control) security policies. To access any resources belonging to a realm, a user must be 
assigned a security role defined in that realm, as described in “Administrative Security Roles and 
Privileges” on page 9-2. When a user attempts to access an AquaLogic Service Bus resource, 
WebLogic Server authenticates and authorizes the user by checking the security role assigned to 
the user in the relevant security realm and relevant security policy. 

Note: Only a WebLogic Server administrator can define security policies or edit security roles 
in the AquaLogic Service Bus Console.

For all proxy services, you can create a transport-level policy, which applies a security check 
when a client attempts to establish a connection with the proxy service. Only requests from users 
who are listed in the transport-level policy are allowed to proceed. 

http://e-docs.bea.com/wls/docs100/secintro/concepts.html
http://e-docs.bea.com/wls/docs100/secintro/


Access  Cont ro l  Po l i c i es

BEA AquaLogic Service Bus Security Guide 2-19

For proxy services that are WS-Security active intermediaries, or that implement message-level 
custom authentication, you can also create a message-level policy. This type of policy applies a 
security check when a client attempts to invoke one of the secured operations. Only users who 
are listed in the message-level policy are allowed to invoke the operation. 

The AquaLogic Service Bus Console contains a Security Configuration module for viewing and 
configuring users, groups, and security roles. Additionally, the AquaLogic Service Bus Console 
allows you to view and configure credentials. 

Configuring Proxy Service Access Control
You can configure transport-level access control for all proxy services. You can also configure 
access control at the message-level for any WS-Security active intermediary proxy service, or for 
any proxy service that implements message-level custom authentication,. To configure access 
control, you must assign an access control policy to the proxy service, either at the transport-level 
or message-level (or both).

The default transport-level and message-level access control policy for all proxy services is to 
allow access to all requests. You must assign an access control policy to the proxy service to 
protect it.

You configure transport-level and message-level access control policies in the AquaLogic 
Service Bus Console, as described in Editing Transport-Level Access Policies and Editing 
Message-Level Access Policies respectively.

Access Control Policy Management
Access control policies are persisted in authorization providers. However, as of ALSB 3.0 there 
is now a reference to them in the ALSB repository. 

Access control policies are managed within an ALSB design session and not outside the session, 
as was the case in releases prior to 3.0. Because the changes are made within a session, you can 
commit or discard the changes as with other resources. 

Although ACLs can be managed from the ALSB console, you can change policies outside ALSB. 
However, changing policies outside of ALSB can make the reference in ALSB out-of-date and 
invalid.

Therefore, for consistent management, either completely manage ACLs outside of ALSB 
sessions (using the authorization provider MBeans or third-party authorization provider tools) or 
completely manage them from within ALSB sessions. Any combination of the two approaches 
can result in an inconsistent view of policies.

http://e-docs.bea.com/alsb/docs30/consolehelp/securityconfiguration.html#wp1137120
http://e-docs.bea.com/alsb/docs30/consolehelp/securityconfiguration.html#wp1112149
http://e-docs.bea.com/alsb/docs30/consolehelp/securityconfiguration.html#wp1112149


Unders tanding  AquaLog ic  Se rv ice  Bus  Secur i t y

2-20 BEA AquaLogic Service Bus Security Guide

ALSB manages access control policy only for proxy services. You must manage access control 
policy management for other server resources, such as JMS queues, JNDI entries, EJBs, 
applications, WebLogic Server instances, data sources, and so forth from the WebLogic Server 
console.

Note: When you clone a service, ACLs are also cloned in the session. If the user commits the 
session, ACLs on the service will be committed to the authorization provider. Therefore, 
when you clone a service you need to decide if you want the clone to have the same ACLs 
as the original. If you do not want this, then make sure to edit the ACLs of the clone.

In ALSB releases prior to 3.0, when you cloned a service, access control policies were 
not cloned.

Deleting a Proxy Service
Deleting a proxy service deletes all of the ACLs referenced by the proxy from the repository 
controlled by ALSB, as well as from the appropriate authorization provider. 

Deleting the Access Control Policy Assigned to a Proxy Service
You can also delete the access control policies assigned to a service without deleting the service. 
To do this: 

1. Create a session. 

2. From the View a Proxy Service -> Security tab, use the edit Transport Access Control option 
to delete the policies. 

3. Commit the session. 

Moving or Renaming a Proxy Service
Renaming a proxy service correctly moves all of the policies. You need only rename or move the 
service in an ALSB session.

Renaming a Proxy Service Operation
When an operation is renamed, the existing operation is transparently deleted and a new operation 
is created. 

However, when an operation name is changed by changing the WSDL, ALSB considers any 
policies for the old operation to be invalid, removes the reference from the ALSB repository, and 
deletes the policies from the appropriate authorization provider. 



Preserv ing  Secur i t y  Conf igurat ion  Dur ing  Impor t

BEA AquaLogic Service Bus Security Guide 2-21

In this case ALSB does not know that the old operation is renamed to the new operation, and it 
does not add anything new for the new operation. That is, ALSB considers that there are no 
policies for this new operation.

You need to add the appropriate policy to the new operation manually. You can do this in the 
same session as the rename of operation, after the rename is done.

Preserving Security Configuration During Import
As of this release of ALSB, you can export or import ALSB resources without losing any 
associated security configuration data. 

ALSB includes import check boxes that you can use to determine whether to preserve or 
overwrite the existing security configuration.

For example, assume that you want to configure your credentials in a staging area, export a 
project that contains these credentials, and then import the project in your production 
environment. When you export the project, the security configuration is included in the ALSB 
configuration jar. When you then import the project on your target system, how the resources are 
treated depends on whether they already exist on the target system:

New resources that exist only in the jar file always use the security configuration from the 
jar file. 

For resources that exist on the import target server as well as in the jar file, the new import 
check box allows you to decide whether to preserve the existing security configuration or 
to overwrite it with the configuration in the jar file.

The three import check boxes allow you to decide which, if any, aspects of the security 
configuration must be preserved during import:

Preserve Security and Policy Configuration

Preserve Credentials 

Preserve Access Control Policies

Note: These check boxes work the same way for ALSB configuration files created for a 
project-level export and for an individual resource export.

These check boxes are described in more detail in the sections that follow. 



Unders tanding  AquaLog ic  Se rv ice  Bus  Secur i t y

2-22 BEA AquaLogic Service Bus Security Guide

Preserve Security and Policy Configuration Check Box
When the Preserve Security and Policy Configuration check box is set (the default), the following 
configuration parameters are preserved:

Proxy service security and policy configuration:

– A reference to the service key provider.

– The set of WS-Policies that are bound directly to the service through the Policies tab. 

Note: If the service is using WSDL-based policies, the policies are not preserved by this 
check box. This is because the WSDL might itself be updated and the service must 
reflect the WSDL.

The control also preserves the type of the WS-Policy Binding, either Custom (through 
the Policies tab) or WSDL-based. 

– The state of the Process WS-Security Header check box.

– Message-level custom authentication configuration.

Proxy service transport-specific security configuration:

– For HTTP, the HTTPS flag and the authentication mode (anonymous, BASIC, client 
certificate, or custom token).

– For JMS, the JMS and JNDI service accounts.

– For email and FTP, the service account reference.

– The SFTP authentication configuration.

Business service security and policy configuration:

– WS-Policy bindings

– A reference to the service account for outbound WS-Security.

Business service transport-specific security configuration:

– For HTTP, the authentication mode (anonymous, BASIC, or client certificate) and the 
service account reference.

– For JMS, references to the JMS and JNDI service accounts.

– For FTP, EJB, Tuxedo, and DSP, the service account reference.

– The SFTP authentication configuration.



Conf igur ing  the  WebLogic  Secu r i t y  F ramework :  Ma in  S teps

BEA AquaLogic Service Bus Security Guide 2-23

Preserve Credentials Check Box
When the Preserve Credentials check box is set (the default), the following credentials are 
preserved during the import process:

PKI credentials in service key providers. 

A PKI credential mapping provider maps AquaLogic Service Bus service key providers to 
key-pairs that can be used for digital signatures and encryption (for Web Services Security) 
and for outbound SSL authentication. For more information, see Configuring a PKI 
Credential Mapping Provider in Securing WebLogic Server.

Username and passwords in service accounts.

Username and password in SMTP server, JNDI provider, and UDDI registries.

Preserve Access Control Check Box
When the Preserve Access Control Policies check box is set (the default), all access control 
policies for the imported proxy services are preserved during the import process.

Configuring the WebLogic Security Framework: Main 
Steps

Many of the initial configuration tasks for AquaLogic Service Bus security require you to work 
in the WebLogic Server Administration Console to configure the WebLogic security framework. 
After these initial tasks, you can complete most security tasks from the AquaLogic Service Bus 
Console.

To configure the WebLogic security framework for AquaLogic Service Bus:

1. If you plan to use SSL as part of transport-level security, do the following:

a. In the WebLogic Server Administration Console, configure identity and trust. See 
Configuring Identity and Trust in Securing WebLogic Server.

b. In the WebLogic Server Administration Console, configure SSL. See Configuring SSL in 
Securing WebLogic Server.

BEA recommends the following for your SSL configuration:

– If you configure two-way SSL, you must choose between two modes: Client Certificate 
Requested But Not Enforced or Client Certificates Requested and Enforced. BEA 

http://e-docs.bea.com/wls/docs100/secmanage/ssl.html
http://e-docs.bea.com/wls/docs100/secmanage/ssl.html
http://e-docs.bea.com/wls/docs100/secmanage/providers.html#wp1204115
http://e-docs.bea.com/wls/docs100/secmanage/providers.html#wp1204115


Unders tanding  AquaLog ic  Se rv ice  Bus  Secur i t y

2-24 BEA AquaLogic Service Bus Security Guide

recommends that whenever possible you choose Client Certificate Requested and 
Enforced. For more information, see “Secure Sockets Layer (SSL)” in Security 
Fundamentals in Understanding WebLogic Security.

– In a production environment, make sure that Host Name Verification is enabled. See 
“Using Host Name Verification” in Configuring SSL in Securing WebLogic Server.

2. In the WebLogic Server Administration Console, configure authentication providers, which 
your proxy services use for inbound security.

Table 2-4 describes the authentication providers that are commonly configured for 
AquaLogic Service Bus. For a description of all authentication providers that you can 
configure, see Security Providers in Securing WebLogic Server.

Table 2-4  Authentication Providers

If You Require Clients to Provide... Configure...

Simple user names and passwords The WebLogic Authentication provider and use the AquaLogic 
Service Bus Console to enter the user names and passwords of the 
clients that you want to allow access. 

Note: As described in “Configuring Authentication Providers” on 
page 2-35, BEA recommends that you use the default 
WebLogic Authentication provider for all WebLogic Server 
and ALSB administrative accounts.

See “Adding a User” under Security Configuration in Using the 
AquaLogic Service Bus Console.

X.509 tokens for inbound HTTPS and 
two-way SSL authentication

All of the following:
• The WebLogic Identity Assertion provider, which can validate 

X.509 tokens but does not by default. Make sure that you enable 
this provider to support X.509 tokens. In addition, enable this 
provider to use a user name mapper. See “Identity Assertion and 
Tokens” under “Authentication” in Security Fundamentals in 
Understanding WebLogic Security.

• WebLogic CertPath Provider, which completes and validates 
certificate chains by using trusted Certificate Authority based 
checking. 

http://e-docs.bea.com/wls/docs100/secmanage/overview.html#security_providers
http://e-docs.bea.com/alsb/docs30/consolehelp/securityconfiguration.html
http://e-docs.bea.com/wls/docs100/secintro/concepts.html
http://e-docs.bea.com/wls/docs100/secintro/concepts.html
http://e-docs.bea.com/wls/docs100/secintro/concepts.html
http://e-docs.bea.com/wls/docs100/secmanage/ssl.html


Conf igur ing  the  WebLogic  Secu r i t y  F ramework :  Ma in  S teps

BEA AquaLogic Service Bus Security Guide 2-25

3. If needed, in the WebLogic Server Administration Console, configure one or more Identity 
Assertion providers to handle the token types, such as X.509 or custom token types, for which 
you require support. For a description of all Identity Assertion providers that you can 
configure, see Security Providers in Securing WebLogic Server.

4. If you plan to create proxy services or business services that require WS-Security digital 
signatures on inbound requests, enable the Certificate Registry provider, which is a 
Certification Path provider that validates inbound certificates against a list of certificates that 
you register. 

See Configure Certification Path Providers in WebLogic Server Administration Console 
Online Help.

5. If you configure message-level security (in inbound requests or outbound requests) to require 
user name and password tokens, and if you want messages to provide a password digest 
instead of cleartext passwords, do the following:

Custom authentication and 
username/password tokens for 
inbound HTTP and message-level 
authentication

All of the following:
• An Identity Assertion provider, possibly user-written or from a 

third-party, that can validate the token type. Make sure that you 
enable this provider to support the token. See “Identity Assertion 
and Tokens” under “Authentication” in Security Fundamentals in 
Understanding WebLogic Security.

X.509 tokens for inbound Web 
Services Security X.509 Token 
Authentication

If any of your proxy services or business services are Web services 
that use abstract WS-Policy statements, you must also configure the 
following:
• In the Web Service security configuration named 

__SERVICE_BUS_INBOUND_WEB_SERVICE_SECURITY_MB
EAN__ add the UseX509ForIdentity property and set it to 
true. See Use X.509 Certificates to Establish Identity in the 
WebLogic Server Administration Console Online Help.

SAML tokens All of the following:
• WebLogic SAML Identity Assertion Provider V2, which 

authenticates users based on Security Assertion Markup 
Language 1.1 (SAML) assertions.

• WebLogic SAML Credential Mapping Provider V2, which maps 
AquaLogic Service Bus users to remote users.

Table 2-4  Authentication Providers

If You Require Clients to Provide... Configure...

http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/security/ConfigureCertPathProviders.html
http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/webservices/webservicesecurity/UseX509ForIdentity.html
http://e-docs.bea.com/wls/docs100/secmanage/overview.html#security_providers
http://e-docs.bea.com/wls/docs100/secintro/concepts.html


Unders tanding  AquaLog ic  Se rv ice  Bus  Secur i t y

2-26 BEA AquaLogic Service Bus Security Guide

a. In the WebLogic Server Administration Console, find the two Web Service security 
configurations that AquaLogic Service Bus provides and set the value of the 
UsePasswordDigest property to true. 

The AquaLogic Service Bus Web Service security configurations are named:
__SERVICE_BUS_INBOUND_WEB_SERVICE_SECURITY_MBEAN__ and 
__SERVICE_BUS_OUTBOUND_WEB_SERVICE_SECURITY_MBEAN__ 

For information on setting the values in Web Service security configurations, see Use a 
Password Digest in SOAP Messages in the WebLogic Server Administration Console 
Online Help.

b. For each authentication provider that you configured in step 2, in the WebLogic Server 
Administration Console, select the Password Digest Enabled check box. 

c. For each identity assertion provider that you configured in step 2, in the WebLogic Server 
Administration Console set wsse:PasswordDigest as one of the active token types.

6. If you plan to create a service key provider (which passes key-certificate pairs in outbound 
requests), use the WebLogic Server Administration Console to configure a PKI credential 
mapping provider. In any WebLogic Server domain that hosts AquaLogic Service Bus, you 
can configure at most one PKI credential mapping provider. 

A PKI credential mapping provider maps AquaLogic Service Bus service key providers to 
key-pairs that can be used for digital signatures and encryption (for Web Services Security) 
and for outbound SSL authentication. For more information, see “Configuring a PKI 
Credential Mapping Provider” in Configuring WebLogic Security Providers in Securing 
WebLogic Server.

You store the key-pairs that the PKI credential mapping provider uses in a keystore. You 
can store the PKI credential mappings in WebLogic Server’s identity keystore or in a 
separate keystore. Configure each WebLogic Server instance to have access to its own 
copy of each keystore. All entries referred to by the PKI credential mapper must exist in all 
keystores (same entry with the same alias). For information about configuring keystores in 
WebLogic Server, see “Identity and Trust” in Security Fundamentals in Understanding 
WebLogic Security.

Note: When you create an AquaLogic Service Bus domain, by default the domain contains 
a user name/password credential mapping provider, which you can use if you need 
credential mapping for user names and passwords. In addition to this user 
name/password credential mapping provider, you can add one PKI credential 
mapping provider. An AquaLogic Service Bus domain can contain at most one user 
name/password credential mapping provider, one PKI credential mapping provider, 
and multiple SAML credential mapping providers.

http://e-docs.bea.com/wls/docs100/secintro/concepts.html
http://e-docs.bea.com/wls/docs100/secmanage/providers.html
http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/webservices/webservicesecurity/UsePasswordDigest.html
http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/webservices/webservicesecurity/UsePasswordDigest.html


Contex t  P roper t i es  A re  Passed  to  Secur i t y  P rov ide rs

BEA AquaLogic Service Bus Security Guide 2-27

7. If you want to enable security auditing, do the following:

a. In the WebLogic Server Administration Console, configure an auditing provider. See 
Configuring a WebLogic Auditing Provider in Securing WebLogic Server. 

b. To enable auditing of events related to WS-Security, when you start each AquaLogic 
Service Bus server, include the following Java option in the server’s startup command:

-Dcom.bea.wli.sb.security.AuditWebServiceSecurityErrors=true 

AquaLogic Service Bus supports the auditing of security events but it does not support 
configuration auditing, which emits log messages and generates audit events when a user 
changes the configuration of any resource within a domain or invokes management 
operations on any resource within a domain. See Configuration Auditing Securing 
WebLogic Server. 

8. If you have not already done so, in the WebLogic Server Administration Console, activate 
your changes. If you have made changes that require you to restart WebLogic Server, the 
Administration Console will indicate that a restart is required. If you see such a message, 
restart all WebLogic Server instances that host AquaLogic Service Bus so your modifications 
to the security providers will be in effect for the remaining configuration steps.

Context Properties Are Passed to Security Providers
Context Properties provides a way (the ContextHandler interface) to pass additional information 
to the WebLogic Security Framework so that a security provider can obtain contextual 
information beyond what is provided by the arguments to a particular provider method. A 
ContextHandler is a high-performing WebLogic class that obtains additional context and 
container-specific information. 

ALSB makes use of the ContextHandler interface and passes several context properties to the 
security framework for transport-level and message-level authentication, transport-level and 
message-level access control, and credential mapping. 

This section describes the situations in which ALSB-specific context properties are used.

Context Properties for HTTP Transport-Level Authentication
When an HTTP proxy service is configured for authentication, the HTTP transport provider 
passes an ALSB implementation of the WebLogic Server ContextHandler. There is no user 
configuration required for this feature. 

http://e-docs.bea.com/wls/docs100/secmanage/providers.html#ConfigurationAuditing
http://e-docs.bea.com/wls/docs100/secmanage/providers.html#auditprovider


Unders tanding  AquaLog ic  Se rv ice  Bus  Secur i t y

2-28 BEA AquaLogic Service Bus Security Guide

The ContextHandler properties in Table 2-5 are passed at runtime, under the following 
conditions:

To Authentication providers, if the proxy is configured for HTTP BASIC authentication. 

To Identity Assertion providers, if the proxy is configured for CLIENT-CERT identity 
assertion. 

To Identity Assertion providers, if the proxy is configured for HTTP custom token identity 
assertion. 

ContextHandler Properties for Access Control and 
Message-Level Custom Authentication
The ContextHandler properties shown in Table 2-6 are passed at runtime, under the following 
conditions:

To Authentication providers when performing message-level custom username/password 
authentication. 

To Identity Assertion providers when performing message-level custom token identity 
assertion. 

Table 2-5  ContextHandler Properties for HTTP Transport Authentication

Property Name Type Property Value

com.bea.contextelem
ent.alsb.service-in
fo

com.bea.wli.sb.serv
ices.ServiceInfo

An instance of ServiceInfo that contains 
information about the proxy service.

com.bea.contextelem
ent.alsb.transport.
endpoint

com.bea.wli.sb.tran
sports.TransportEnd
Point

This is the HTTP or HTTPS endpoint.

com.bea.contextelem
ent.alsb.transport.
http.http-request

javax.servlet.http.
HttpServletRequest 

This is the HttpServletRequest object.

com.bea.contextelem
ent.alsb.transport.
http.http-response

javax.servlet.http.
HttpServletResponse

This is the HttpServletResponse object.



Contex t  P roper t i es  A re  Passed  to  Secur i t y  P rov ide rs

BEA AquaLogic Service Bus Security Guide 2-29

To Authorization providers when performing transport-level or message-level access 
control. 

Additional Transport-Specific Context Properties
In addition to the properties in Table 2-6, other transport-specific properties may be present. For 
each transport request-header (see the transport SDK), a property with the name

Table 2-6  ContextHandler Properties for Message-Level Custom Authentication and Access Control

Property Name Type Property Value

com.bea.contextelem
ent.alsb.router.Pro
xyService

java.lang.String The service name (full-name; for 
example 
/myproject/myfolder/svc-a)
.

com.bea.contextelem
ent.alsb.router.Ser
viceUri

java.net.URI The base URI from which the 
message was received.

com.bea.contextelem
ent.alsb.router.inb
ound.TransportProvi
der

java.lang.String The Id of the transport provider that 
received this message.

com.bea.contextelem
ent.alsb.router.inb
ound.request.Messag
eId

java.lang.String This is the transport provider-specific 
message identifier. Ideally it should 
uniquely identify the message among 
other messages going through the 
ALSB runtime. However, ALSB does 
not depend on the message Id being 
unique. The message Id is added to 
the message context and thus visible 
in the pipeline.

com.bea.contextelem
ent.alsb.router.inb
ound.request.Charac
terEncoding

java.lang.String Character encoding used in the 
message payload, or null.

com.bea.contextelem
ent.wli.Message

java.io.InputStream The request message as an input 
stream.



Unders tanding  AquaLog ic  Se rv ice  Bus  Secur i t y

2-30 BEA AquaLogic Service Bus Security Guide

com.bea.contextelement.alsb.router.inbound.request.headers.<provider-id>.<

header-name>

is present, where provider-id is the transport provider id, and header-name is one of the 
request-headers declared in the provider's schema file. 

The type and semantics of these properties is transport-specific. For HTTP proxy services, the 
properties in Table 2-7 are also available. 

Administrator-Supplied Context Properties for 
Message-Level Authentication
Both custom username/password authentication and custom token authentication allow users 
(who are in the IntegrationAdmin or IntegrationDeployer roles) to pass additional context 
information to the security provider in the Context Properties field on the Security tab. 

Table 2-7  Additional Message-Level Security ContextHandler Properties for HTTP Proxy Services

Property Name Type Property Value

com.bea.contextelem
ent.alsb.router.inb
ound.request.metada
ta.http.relative-UR
I

java.lang.String The relative URI of the request.

com.bea.contextelem
ent.alsb.router.inb
ound.request.metada
ta.http.query-strin
g

java.lang.String The query string that is contained in 
the request URL after the path.

com.bea.contextelem
ent.alsb.router.inb
ound.request.metada
ta.http.client-host

java.lang.String The fully qualified name of the client 
that sent the request.

com.bea.contextelem
ent.alsb.router.inb
ound.request.metada
ta.http.client-addr
ess

java.lang.String The Internet Protocol (IP) address of 
the client that sent the request.



Contex t  P roper t i es  A re  Passed  to  Secur i t y  P rov ide rs

BEA AquaLogic Service Bus Security Guide 2-31

You can configure additional context properties by entering the Property Name as a literal 
string, and the Value Selector as a valid XPath expression. (XPath expressions can also be literal 
strings.)

The XPath expression is evaluated at runtime against the same message part that is used for the 
custom token or custom username/password. That is, the Value Selector XPath expressions are 
evaluated against the header for SOAP-based proxy services, and against the body for 
non-SOAP-based proxy services. 

Security Provider Must Have Knowledge of the Property 
Name
A ContextHandler is essentially a name/value list and, as such, it requires that a security provider 
know what names to look for. Therefore, for both transport- and message-level custom 
authentication, the XPath expressions are evaluated only if an Authentication provider or Identity 
Assertion provider asks for the value of one of these properties. 

This means that your configured Authentication or Identity Assertion provider must explicitly 
know which property names to request via the 
ContextHandler.getValue(propertyName)method. The only way to satisfy this 
requirement is for you, or a third party, to write a custom Authentication or Identity Assertion 
provider. 

For example, Listing 2-1 shows how to get the HttpServletRequest property from a provider that 
you write. 

Listing 2-1   Getting the HttpServletRequest Property

:

Object requestValue = 

handler.getValue("com.bea.contextelement.alsb.transport.http.http-request"

);

if ((requestValue == null) || (!(requestValue instanceof 

HttpServletRequest)))

return;

HttpServletRequest request = (HttpServletRequest) requestValue;

log.println(" " + HTTP_REQUEST_ELEMENT + " method: " + request.getMethod());



Unders tanding  AquaLog ic  Se rv ice  Bus  Secur i t y

2-32 BEA AquaLogic Service Bus Security Guide

log.println(" " + HTTP_REQUEST_ELEMENT + " URL: " + 

request.getRequestURL());

log.println(" " + HTTP_REQUEST_ELEMENT + " URI: " + 

request.getRequestURI());

return;

If the security provider does not need the value of the user-defined property, then the XPath 
expression is not evaluated.

WebLogic Server Administrative Channel is Supported
This release of AquaLogic Service Bus can use the WebLogic Server administrative channel. 

As described in Understanding Network Channels, a WebLogic Server network channel is a 
configurable resource that defines the attributes of a network connection to WebLogic Server.  

You can configure a particular type of network channel, called an administrative channel, to 
isolate “administration” and application (“business”) traffic in a WebLogic domain. The 
administrative channel is a secured channel that accepts only SSL connections.  

In AquaLogic Service Bus, business traffic is comprised of all messages sent to and from 
AquaLogic Service Bus proxy services and business services.  SSL business traffic must use the 
default WebLogic Server secure network channel.

Administration traffic is comprised of all communication with the WebLogic Server 
Administration Console, AquaLogic Service Bus Administration console, internal traffic within 
a cluster, and traffic between administration scripts and admin or managed servers. 

When an administrative channel is enabled in a domain, all of the administration traffic in that 
domain must go through that channel. Otherwise, the administration traffic also uses the default 
WebLogic Server secure network channel.

Using the Administrative Channel: Main Steps
1. Close any open browser connections to the AquaLogic Service Bus Administration Console 

for the domain.  

As soon as you activate the administrative channel in WebLogic Server, the AquaLogic 
Service Bus Administration Console for the domain becomes unavailable at the current URL. 
The Help system also becomes unavailable.

http://e-docs.bea.com/wls/docs100/config_wls/network.html#wp1058979


Contex t  P roper t i es  A re  Passed  to  Secur i t y  P rov ide rs

BEA AquaLogic Service Bus Security Guide 2-33

2. Enable the domain-wide administration port in the WebLogic Server Administration Console 
(which configures an administrative channel on your behalf), or explicitly create an 
administrative channel. Both of these tasks are described in Configuring Network Resources. 

The domain-wide administration port control is located on the Domain > Configuration > 
General page.  The default administration port is 9002. 

Be sure to activate the change.

3. Open a browser connection to the new URL for the AquaLogic Service Bus Administration 
Console for the domain. 

The URL is https://hostname:9002/sbconsole if you enabled the domain-wide 
administration port and accepted the default port number. 

4. Revise any startup scripts that refer to the old URL. If you are using the Windows graphical 
interface to launch the AquaLogic Service Bus Administration Console for the domain, revise 
the shortcut property to reflect the new URL.

http://e-docs.bea.com/wls/docs100/config_wls/network.html


Unders tanding  AquaLog ic  Se rv ice  Bus  Secur i t y

2-34 BEA AquaLogic Service Bus Security Guide

Supported Standards and Security Providers
This release of AquaLogic Service Bus supports the following standards.

For information about the standards that WebLogic Server supports, see “Standards Support” 
under What's New in WebLogic Server in WebLogic Server Release Notes.

Table 2-8  Web Services Security and Related Standards

Standard Version

WS-Security 1.0

WS-Policy Previous releases of WebLogic Server, released before the 
formulation of the WS-SecurityPolicy specification, used 
security policy files written under the WS-Policy framework, 
using a proprietary BEA schema for security policy. 

As of release 3.0, ALSB provides limited support for security 
policy files that conform to the WS-SecurityPolicy 1.2 
specification, and continues to support the files written under 
the BEA Web Services security policy schema first included in 
WebLogic Server 9.

ALSB supports the WebLogic Server-proprietary format that is 
based on the assertions described in the December 18, 2002 
version of the Web Services Security Policy Language 
(WS-SecurityPolicy) specification. This release of AquaLogic 
Service Bus does not incorporate the latest update of the 
specification (13 July 2005). 

WS-Policy Attachment 1.0

WS-Security: Username Token 
Profile 

1.0

WS-Security: X.509 Token Profile 1.0

WS-Security: SAML Token Profile 1.0

SAML 1.1

http://e-docs.bea.com/wls/docs100/notes/new.html


Suppor ted  Standards  and  Secur i t y  P rov ide rs

BEA AquaLogic Service Bus Security Guide 2-35

Support for WebLogic Security Providers
AquaLogic Service Bus supports the security providers that are included with WebLogic Server, 
such as the WebLogic authentication providers, identity assertion providers, authorization 
providers, role-mapping providers, credential mapping providers, and Certificate Lookup and 
Validation (CLV) providers. Additionally, AquaLogic Service Bus supports the WebLogic 
SAML Identity Assertion Provider V2 and WebLogic SAML Credential Mapping Provider V2.

AquaLogic Service Bus supports the WebLogic XACML Authorization provider and XACML 
Role Mapping provider, which use the OASIS standard eXtensible Access Control Markup 
Language (XACML). Support for the WebLogic Default Authorization provider and Default 
Role Mapping provider was deprecated in AquaLogic Service Bus 2.5. These providers are not 
supported anymore. If you are upgrading from a previous release of AquaLogic Service Bus in 
which you used the WebLogic Default Authorization provider and Default Role Mapping 
provider, use the WebLogic Server Administration Console to import authorization and 
role-mapping data into the XACML providers. See Upgrading AquaLogic Service Bus 
Environments in AquaLogic Service Bus Upgrade Guide.

Third-party security providers have not been tested and therefore have not been certified in 
AquaLogic Service Bus. However, the AquaLogic Service Bus security architecture supports the 
use of third-party authentication, authorization and role-mapping providers. Contact BEA 
customer support if you are interested in third-party security provider support in AquaLogic 
Service Bus.

For more information about the security providers, see “WebLogic Security Providers” in the 
WebLogic Security Service Architecture in Understanding WebLogic Security.

Configuring Authentication Providers
Check the provided WebLogic Server Authentication providers to see if one meets your needs. 
WebLogic Server includes a broad array of Authentication providers, including the following: 

The WebLogic Authentication provider accesses user and group information in 
WebLogic Server's embedded LDAP server. This is the default out-of-the-box 
authentication provider. This provider is not optimized for use with very large numbers of 
users.

LDAP Authentication providers access external LDAP stores. You can use an LDAP 
Authentication provider to access any LDAP server. WebLogic Server provides LDAP 
Authentication providers already configured for Open LDAP, Sun iPlanet, Microsoft 
Active Directory and Novell NDS LDAP servers. 

http://e-docs.bea.com/wls/docs100/secintro/archtect.html
http://e-docs.bea.com/alsb/docs30/upgrade/index.html


Unders tanding  AquaLog ic  Se rv ice  Bus  Secur i t y

2-36 BEA AquaLogic Service Bus Security Guide

RDBMS Authentication providers access external relational databases. WebLogic Server 
provides three RDBMS Authentication providers: SQL Authenticator, Read-only SQL 
Authenticator, and Custom RDBMS Authenticator. 

The SAML Authentication provider, which authenticates users based on Security Assertion 
Markup Language 1.1 (SAML) assertions. 

See Improving the Performance of WebLogic and LDAP Authentication Providers for guidance 
on improving the performance of these authentication providers. 

As described in Why Customize the Default Security Configuration, you may want to use an 
Authentication provider that accesses a database other than WebLogic Server's embedded LDAP 
server. For example, you might want to use a different authentication provider for the majority of 
user accounts, but continue to use the default authentication provider (embedded LDAP) for 
ALSB and Web Logic Server administrative user accounts.

Using the WebLogic Authentication provider for all WebLogic Server and ALSB administrative 
user accounts provides reliable access in the event of a network or database problem. BEA 
recommends that you use the default WebLogic Authentication provider for all WebLogic Server 
and ALSB administrative accounts for this reason.

If one of the bundled Authentication providers meets your needs, see Configuring Authentication 
Providers for instructions on how to configure this Authentication provider in the WebLogic 
Server Administration Console. 

If none of the Authentication providers included in WebLogic Server suits your needs, you (or a 
third-party) must first write a custom Authentication provider and then use the WebLogic Server 
Administration Console to add that provider to the security realm. To do this, follow these steps:

Note: Only a broad overview of the required tasks is included here. You will need to consult 
the WebLogic Server documentation to actually complete the tasks. 

1. Create Runtime Classes Using the Appropriate SSPIs 

2. Generate an MBean Type Using the WebLogic MBeanMaker 

3. Configure the Custom Authentication Provider Using the Administration Console 

See Authentication Providers in Developing Security Providers for WebLogic Server for 
additional information. 

http://e-docs.bea.com/wls/docs100/secmanage/atn.html
http://e-docs.bea.com/wls/docs100/secmanage/atn.html
http://e-docs.bea.com/wls/docs100/dvspisec/atn.html#wp1108989
http://e-docs.bea.com/wls/docs100/dvspisec/atn.html#wp1106272
http://e-docs.bea.com/wls/docs100/dvspisec/atn.html#wp1106241
http://e-docs.bea.com/wls/docs100/dvspisec/atn.html
http://e-docs.bea.com/wls/docs100/secmanage/atn.html
http://e-docs.bea.com/wls/docs100/secmanage/realm.html#wp1187960


Suppor ted  Standards  and  Secur i t y  P rov ide rs

BEA AquaLogic Service Bus Security Guide 2-37

Using a Custom Authorization Provider to Protect 
AquaLogic Service Bus Resources
You can use AquaLogic Service Bus resources with custom Authorization providers, but those 
providers must understand the type and format of the AquaLogic Service Bus resources. 

There are three possible resource objects for AquaLogic Service Bus that an Authorization 
provider must be able to detect and handle: 

“ALSBProxyServiceResource Object” on page 2-38

“ProjectResourceV2 Object” on page 2-40 

“ConsoleResource Object” on page 2-41

These resource objects are described in the sections that follow.

WebLogic Authorization Provider Usage Information
This section briefly describes the WebLogic Server Authorization provider SSPI. See 
Developing Security Providers for WebLogic Server for complete information. 

You protect resources by binding access control policies to resources via the AquaLogic Service 
Bus console, third-party tools or scripts. The WebLogic Server Security Service Provider 
Interface (SSPI) requires containers, such as AquaLogic Service Bus, to implement the Resource 
SPI. These implementations represent concrete resources. 

The Authorization provider database contains a map from resource to policy. When an attempt is 
made to access a resource, the container calls the runtime SSPI to get an access control decision. 
The container passes a resource instance indicating which resource is being accessed.

An Authorization provider has one method, getAccessDecision(). The 
getAccessDecision() method obtains the implementation of the AccessDecision SSPI. The 
AccessDecision SSPI itself has one method, isAccessAllowed(). isAccessAllowed has five 
parameters, one of which is the Resource object for which access is being requested. 

isAccessAllowed determines if the requestor should be allowed to access the named resource. 
To do this, the Authorization provider must  find the right access control policy to evaluate. The 
provider must first look for a policy bound to the resource passed in. The lookup can use either 
the Resource.getId() or Resource.toString() method as a lookup key. If no policy is found, the 
Authorization provider must then get the parent resource and look again. This process is repeated 
until a policy is found or the parent is null, in which case no policy is found. When no policy is 
found, isAccessAllowed must return false.

http://e-docs.bea.com/wls/docs100/dvspisec/atz.html
http://e-docs.bea.com/wls/docs100/dvspisec/design.html#wp1168740
http://e-docs.bea.com/wls/docs100/dvspisec/design.html#wp1168752


Unders tanding  AquaLog ic  Se rv ice  Bus  Secur i t y

2-38 BEA AquaLogic Service Bus Security Guide

This algorithm allows you to create coarse-grained policies that protect all proxy services in a 
given project or folder, all resources in a project, or all AquaLogic Service Bus proxy services in 
an AquaLogic Service Bus domain. More specific, finer-grained policies take precedence over 
coarse-grained policies.

Note: The AquaLogic Service Bus console user interface does not provide pages for protecting 
proxy services at the folder, project or domain level.

ALSBProxyServiceResource Object
The ALSBProxyServiceResource object is used for transport-level and message-level access 
control to ALSB proxy services. The ALSBProxyServiceResource resource extends 
weblogic.security.service.ResourceBase, which itself implements 
weblogic.security.spi.Resource. 

ALSBProxyServiceResource implements the following methods, as described in 
weblogic.security.spi.Resource: 

getType() 
Returns the type, where type is "<alsb-proxy-service>"

getKeys() 
Returns up to four key-value properties: path, proxy, action, and operation. The 
properties are defined as follows:

• path is the full-name of the proxy service. For example, 
path=project/folder1/folder2

• proxy is the name of the proxy service. For example, proxy=myProxy

• action is one of two values, invoke or wss-invoke. For example, 
action=invoke

The action attribute is used to distinguish between transport-level and message-level 
access control. invoke is used for transport-level access control. wss-invoke is 
used for message-level access control; that is, access control on WS-Security active 
intermediaries or proxies with custom message-level authentication. The operation 
attribute is only allowed when action is wss-invoke.

• operation is the name of the operation to invoke, and is used only when action is 
wss-invoke. For example, operation=processPO. The operation attribute is 
only allowed when action is wss-invoke. 

http://e-docs.bea.com/wls/docs100/javadocs/weblogic/security/service/ResourceBase.html
http://e-docs.bea.com/wls/docs100/javadocs/weblogic/security/spi/Resource.html
http://e-docs.bea.com/wls/docs100/javadocs/weblogic/security/spi/Resource.html


Suppor ted  Standards  and  Secur i t y  P rov ide rs

BEA AquaLogic Service Bus Security Guide 2-39

An ALSBProxyServiceResource has from 1 to 4 keys. The following table explains how 
the various combinations protect proxy services. The most specific policies take 
precedence.

getPath() 
Gets the path (project and folders) to the proxy service. This is the path where the proxy 
service exists within the AquaLogic Service Bus configuration framework.

getProxyServiceName() 
 Gets the name of the proxy service. For example, proxy=myProxy.

getAction() 
 Gets one of two values, invoke or wss-invoke. For example, action=invoke.

getOperation() 
Gets the name of the operation to invoke, and is used only when action is wss-invoke. 
For example, operation=processPO.

If the Resource Contains 
These Keys

A Policy Bound to the Resource Protects:

path The policy protects all proxy services in the given path

path and proxy The policy protects all access to the given proxy service 
(transport-level as well as message-level)

path, proxy, and action If action="invoke":
• The policy is the transport-level policy to the given 

proxy

- If action="wss-invoke":
• The policy is the message-level policy to the given 

proxy (for all operations)

path, proxy, 
action="wss-invoke", and 
operation

The policy is a message-level policy for the given proxy 
and operation



Unders tanding  AquaLog ic  Se rv ice  Bus  Secur i t y

2-40 BEA AquaLogic Service Bus Security Guide

makeParent() 
Creates a new ALSBProxyServiceResource object that represents the parent of the 
current ALSBProxyServiceResource resource. makeParent() uses the path of the 
proxy service to create the parent. 

ALSBProxyServiceResource Examples 
The following examples show various uses of the ALSBProxyServiceResource object.

Using ALSBProxyServiceResource for transport-level access control for proxy 
project/folder/myProxy:

type=<alsb-proxy-service>, path=project/folder, proxy=myProxy, 
action=invoke

Using ALSBProxyServiceResource for message-level access control for operation 
processPO on proxy project/folder/myProxy:

type=<alsb-proxy-service>, path=project/folder, proxy=myProxy, 
action=wss-invoke, operation=processPO

Using the parentage hierarchy for an ALSBProxyServiceResource, from fine-grained to 
coarse-grained:

type=<alsb-proxy-service>, path=myProject/f1/f2, proxy=myProxy, 
action=wss-invoke, operation=foo

type=<alsb-proxy-service>, path=myProject/f1/f2, proxy=myProxy, 
action=wss-invoke

type=<alsb-proxy-service>, path=myProject/f1/f2, proxy=myProxy

type=<alsb-proxy-service>, path=myProject/f1/f2

type=<alsb-proxy-service>, path=myProject/f1

type=<alsb-proxy-service>, path=myProject

type=<alsb-project>, project-name=myProject

type=<alsb-proxy-service>

ProjectResourceV2 Object
The ProjectResourceV2 is the root resource for all ALSBProxyServiceResource objects in a 
given project. ProjectResourceV2 extends ResourceBase.

Setting an access control policy on a ProjectResourceV2 provides a coarse-grained access 
control policy for all proxy services in the given project that do not have more specific policies.



Suppor ted  Standards  and  Secur i t y  P rov ide rs

BEA AquaLogic Service Bus Security Guide 2-41

ProjectResourceV2 has the following methods: 

getType() 
Returns the type, where type is "<alsb-project>".

getKeys()
Returns the key, where key is "project-name”.

getName() 
Gets the name of the ProjectResourceV2 object.

makeParent()
There is no parent for an ProjectResourceV2 object. This method therefore returns the 
object name that was used to create the ProjectResourceV2 object, or null if 
ProjectResourceV2 does not exist.

ConsoleResource Object
The com.bea.wli.security.resource.ConsoleResource object is used for access control 
to the ALSB console. However, we do not recommend that you set access control policies for 
ConsoleResource objects via a custom Authorization provider. This is because these policies 
are subject to change in future AquaLogic Service Bus releases. 

We instead recommended that even if you need to use a custom Authorization provider, you also 
continue to use the WebLogic Server XACML Authorization provider to maintain the policies 
for the ConsoleResource object. In this case of two Authorization providers, you must also 
configure an Adjudication provider.



Unders tanding  AquaLog ic  Se rv ice  Bus  Secur i t y

2-42 BEA AquaLogic Service Bus Security Guide



BEA AquaLogic Service Bus Security Guide 3-1

C H A P T E R 3

AquaLogic Service Bus Security FAQ

This section includes frequently asked questions about AquaLogic Service Bus security and their 
answers. It includes the following questions:

How are AquaLogic Service Bus and WebLogic Server Security related?

What is Transport-Level Security?

What is Web Services Security?

What is Web Service Policy?

What are Web Service Policy assertions?

Are Access Control Policy and Web Service Policy the same?

What is Web Services Security Pass-Through?

What is a Web Services Security Active Intermediary?

What is outbound Web Services Security?

What is SAML?

What is the Certificate Lookup And Validation Framework?

Does AquaLogic Service Bus support identity propagation in a proxy service?

If both transport-level authentication and message-level authentication exist on inbound 
messages to the proxy service, which identity is propagated?



AquaLog ic  Serv i ce  Bus  Secur i t y  FAQ

3-2 BEA AquaLogic Service Bus Security Guide

Is it possible to customize the format of the subject identity in a SAML assertion?

Is single sign-on supported in AquaLogic Service Bus?

Are security errors monitored?

Can I configure security for MBeans?

How are AquaLogic Service Bus and WebLogic Server Security related?
AquaLogic Service Bus leverages the WebLogic Security Framework. The details of this 
framework are described in “WebLogic Security Framework” in WebLogic Security 
Service Architecture in Understanding WebLogic Security. Before configuring security in 
AquaLogic Service Bus, you must configure a WebLogic Server security realm and other 
server configurations (such as SSL) in WebLogic Server, as described in “Configuring the 
WebLogic Security Framework: Main Steps” on page 2-23.

What is Transport-Level Security?
Transport-level security refers to the transport protocols that secure the connection over 
which messages are transported. An example of transport-level security is HTTPS (HTTP 
over SSL). SSL provides point-to-point security, but does not protect the message when 
intermediaries exist in the message path. For more information, see Chapter 4, 
“Configuring Transport-Level Security”.

What is Web Services Security?
Web Services Security (WS-Security) is an OASIS standard that defines interoperable 
mechanisms to incorporate message-level security into SOAP messages. WS-Security 
supports message integrity and message confidentiality. It also defines an extensible 
model for including security tokens in a SOAP envelope and a model for referencing 
security tokens from within a SOAP envelope. WS-Security token profiles specify how 
specific token types are used within the core WS-Security specification. Message integrity 
is achieved through the use of XML digital signatures; message confidentiality is 
accomplished through the use of XML encryption. WS-Security allows you to specify 
which parts of a SOAP message are digitally signed or encrypted. AquaLogic Service Bus 
supports WS-Security over HTTP (including HTTPS) and JMS. For more information on 
WS-Security see Web Services Security: SOAP Message Security 1.0 (WS-Security 2004) 
at the following URL:
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message
-security-1.0.pdf 

What is Web Service Policy?
The Web Services Policy Framework (WS-Policy) provides a general-purpose model and 
corresponding syntax to describe and communicate the policies of a Web service. 
WS-Policy defines a base set of constructs that can be used and extended by other Web 

http://e-docs.bea.com/wls/docs100/secintro/archtect.html
http://e-docs.bea.com/wls/docs100/secintro/archtect.html
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf


BEA AquaLogic Service Bus Security Guide 3-3

service specifications to describe a broad range of service requirements, preferences, and 
capabilities. For more information, see Chapter 6, “Using WS-Policy in ALSB Proxy and 
Business Services”.

What are Web Service Policy assertions?
The Web Services Policy Assertions Language (WS-PolicyAssertions) specifies a set of 
common message policy assertions that can be specified within a security policy. The 
specification defines general messaging-related assertions for use with WS-Policy. 
Separate specifications describe the syntax and semantics of domain-specific assertions 
for security assertions and reliable-messaging assertions.

Are Access Control Policy and Web Service Policy the same?
No. Access control policy is a boolean expression that is evaluated to determine which 
requests to access a particular resource (such as a proxy service, Web application, or EJB) 
are granted and which should be denied access. Typically access control policies are based 
on the roles of the requestor. WS-Policy is metadata about a Web service that 
complements the service definition (WSDL). WS-Policy can be used to express a 
requirement that all service clients must satisfy, such as, all requests must be digitally 
signed by the client.

What is Web Services Security Pass-Through?
In a WS-Security pass-through scenario, the client applies WS-Security to the request 
and/or response messages. The proxy service does not process the security header, 
instead, it passes the secured request message untouched to a business service. Although 
AquaLogic Service Bus does not apply any WS-Security to the message, it can route the 
message based on values in the header. After the business service receives the message, it 
processes the security header and acts on the request. The business service must be 
configured with WS-Policy security statements. The secured response message is passed 
untouched back to the client. For example, the client encrypts and signs the message and 
sends it to the proxy service. The proxy service does not decrypt the message or verify the 
digital signature, it simply routes the message to the business service. The business service 
decrypts the messages and verifies the digital signature, and then processes the request. 
The response path is similar. This is sometimes called a passive intermediary.

What is a Web Services Security Active Intermediary?
In an active intermediary scenario, the client applies WS-Security to the request and/or 
response messages. The proxy service processes the security header and enforces the 
WS-Security policy. For example, the client encrypts and signs the message and sends it 
to the proxy service, the proxy decrypts the message and verifies the digital signature, then 
routes the message. Before the proxy service sends the response back to the client, the 
proxy signs and encrypts the message. The client decrypts the message and verifies the 
proxy’s digital signature.



AquaLog ic  Serv i ce  Bus  Secur i t y  FAQ

3-4 BEA AquaLogic Service Bus Security Guide

What is outbound Web Services Security?
Outbound WS-Security refers to security between AquaLogic Service Bus proxy services 
and business services. It includes both the request and response between business 
applications and proxy services. For more information, see “About Message-Level 
Security” on page 7-2.

What is SAML?
SAML (Security Assertion Markup Language) is an OASIS standards-based extensible 
XML framework for exchanging authentication and authorization information, allowing 
single sign-on capabilities in modern network environments.

Is it possible to customize the format of the subject identity in a SAML assertion?
By default, the subject identity within an outbound SAML token is the same as the 
inbound username. The format of the subject identity can be customized by writing a 
custom SAML name mapper-provider. For more information, see Configuring a SAML 
Credential Mapping Provider in Securing WebLogic Server. 

What is the Certificate Lookup And Validation Framework?
The Certificate Lookup and Validation (CLV) providers complete certificate paths and 
validate X509 certificate chains. The two types of CLV providers are:

CertPath Builder—receives a certificate, a certificate chain, or certificate reference (the 
end certificate in a chain or the Subject DN of a certificate) from a Web service or 
application code. The provider looks up and validates the certificates in the chain. 

CertPath Validator—receives a certificate chain from the SSL protocol, a Web service, 
or application code and performs extra validation, such as revocation checking. 

At least one CertPath Builder and one CertPath Validator must be configured in a security 
realm. Multiple CertPath Validators can be configured in a security realm. If multiple 
providers are configured, a certificate or certificate chain must pass validation with all the 
CertPath Validators for the certificate or certificate chain to be valid. WebLogic Server 
provides the functionality of the CLV providers in the WebLogic CertPath provider and 
the Certificate Registry. For more information see “The Certificate Lookup and 
Validation Process” in WebLogic Security Service Architecture in Understanding 
WebLogic Security.

Does AquaLogic Service Bus support identity propagation in a proxy service?

Yes, AquaLogic Service Bus supports two methods for propagating identities:

– By generating SAML 1.1 assertions in conformance with the Web Services Security: 
SAML Token Profile 1.0 specification:
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf 

http://e-docs.bea.com/wls/docs100/secmanage/providers.html
http://e-docs.bea.com/wls/docs100/secmanage/providers.html
http://e-docs.bea.com/wls/docs100/secintro/archtect.html
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf


BEA AquaLogic Service Bus Security Guide 3-5

This is done by setting a SAML holder-of-key or sender-vouches WS-Policy on the 
business service routed to by the proxy.

– If a business service requires user name and password tokens, you can configure the 
business service’s service account to pass through the user credentials from the original 
client request. See Service Accounts in Using the AquaLogic Service Bus Console.

If both transport-level authentication and message-level authentication exist on inbound 
messages to the proxy service, which identity is propagated?

If both transport authentication and message-level authentication exist, the message-level 
subject identity is propagated.

Is single sign-on supported in AquaLogic Service Bus?
Strictly speaking single sign-on (SSO) is not applicable to AquaLogic Service Bus 
messaging scenarios for several reasons. First, AquaLogic Service Bus is stateless; there 
is no notion of a session or conversation among multiple parties. Second, AquaLogic 
Service Bus clients are typically other enterprise software applications, not users behind 
a Web browser. Therefore, it is acceptable to require that these clients send credentials 
such as username and password on every request, provided that the communication is 
secured by means such as SSL or WS-Security. However, SSO between the AquaLogic 
Service Bus Console and the WebLogic Server Administration Console is supported. For 
more information, see “Single Sign-On” in Security Fundamentals in Understanding 
WebLogic Security. 

Are security errors monitored? 
Only WS-Security errors are monitored by the AquaLogic Service Bus monitoring 
framework. Transport-level security errors such as SSL handshake errors, transport-level 
authentication and transport-level access control are not monitored in this release. For 
more information, see “Service Monitoring Details” in Monitoring in the AquaLogic 
Service Bus Operations Guide. However, it is possible to configure an Auditor provider 
to audit transport-level authentication and authorization.

Can I configure security for MBeans? 
AquaLogic Service Bus includes two managed beans (MBeans) that configure such 
runtime behavior as which types of credentials are available to abstract WS-Policy 
statements. By default, only users in the Admin and Deployer security roles can modify 
these MBeans, however you can change these defaults. See Create JMX Policies in 
WebLogic Server Administration Console Help.

http://e-docs.bea.com/alsb/docs30/consolehelp/serviceAccounts.html
http://e-docs.bea.com/alsb/docs30/operations/monitoring.html
http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/security/DefinePoliciesforMBeans.html
http://e-docs.bea.com/wls/docs100/secintro/concepts.html


AquaLog ic  Serv i ce  Bus  Secur i t y  FAQ

3-6 BEA AquaLogic Service Bus Security Guide



BEA AquaLogic Service Bus Security Guide 4-1

C H A P T E R 4

Configuring Transport-Level Security

Transport-level security applies security checks as part of establishing a connection between 
service consumers, proxy services, and business services. The type of security checks that 
AquaLogic Service Bus can apply depends on the protocol that the proxy service or business 
service uses to communicate. Some protocols can also encrypt the communication between client 
and endpoint to prevent snooping from third parties. 

Inbound transport-level secures the communication between clients and AquaLogic Service Bus 
proxy services. Outbound transport security secures all three techniques of sending outbound 
requests from AquaLogic Service Bus proxy services: route actions, publish actions, and callout 
actions. 

The following sections describe configuring transport-level security:

“Configuring Transport-Level Security for HTTPS” on page 4-2

“Configuring Transport-Level Security for HTTP” on page 4-5

“Configuring Transport-Level Security for JMS” on page 4-7

“Configuring Transport-Level Security for SFTP Transport” on page 4-10

“Email, FTP, and File Transport-Level Security” on page 4-18

“Configuring Transport-Level Security for SB Transport” on page 4-19

“Configuring Transport-Level Security for WS Transport” on page 4-20

“Configuring Transport-Level Security for WebSphere Message Queue Transport” on 
page 4-27



Conf igur ing  T ranspo r t -Leve l  Secur i t y

4-2 BEA AquaLogic Service Bus Security Guide

“Transport-Level Security Elements in the Message Context” on page 4-29

Note: Transport-level security secures only the connection itself. Even if you use the HTTPS 
or JMS protocols to encrypt the communication, if there is an intermediary between a 
Web services client and an AquaLogic Service Bus proxy service, such as a router, 
message queue or another proxy service, the intermediary gets the SOAP message in 
plain text. When the intermediary sends the message to the second receiver, the second 
receiver does not know who the original sender was. To prevent unintended 
intermediaries from viewing or modifying SOAP or JMS messages, configure 
message-level security in addition to transport-level security. See “Configuring 
Message-Level Security for Web Services” on page 7-1.

Configuring Transport-Level Security for HTTPS
Note: In previous releases of ALSB, HTTPS was managed via the HTTPS transport. In this 

release of ALSB, HTTPS has been merged in to the HTTP transport. 

This section has been updated to reflect the new configuration model.

The HTTPS protocol uses SSL to secure communication. SSL can be used to encrypt 
communication, ensure message integrity, and to require strong server and client authentication. 
Before you can use HTTPS, you must configure SSL in WebLogic Server, see “Configuring the 
WebLogic Security Framework: Main Steps” on page 2-23.

The following sections describe configuring transport-level security for the HTTPS protocol:

“HTTPS Authentication Levels” on page 4-2

“Configuring Inbound HTTPS Security: Main Steps” on page 4-3

“Configuring Outbound HTTPS Security: Main Steps” on page 4-4

HTTPS Authentication Levels
For each proxy service or business service that communicates over the HTTPS protocol, you can 
configure the service to require one of the following levels of authentication:

One-way SSL, no authentication

This level enables encrypted communication but does not require clients to provide 
credentials. To establish a one-way SSL connection, the client initiates the connection and 
AquaLogic Service Bus sends its certificate to the client. In other words, the client 
authenticates AquaLogic Service Bus.



Conf igur ing  T ranspor t -Leve l  Secur i t y  fo r  HTTPS

BEA AquaLogic Service Bus Security Guide 4-3

One-way SSL, BASIC authentication

This level enables encrypted communication and requires clients to supply a user name and 
password after the one-way SSL connection is established. The client supplies a user name 
and password by encoding it in the HTTP request header (which is encrypted by SSL). 
When the proxy service receives the encrypted request, it passes the credentials to the 
domain’s authentication provider, which determines whether client’s credentials match a 
user account that you have created. 

Two-way SSL, CLIENT CERT authentication

This level enables encrypted communication and strong client authentication (two-way 
SSL).

To establish a two-way SSL connection, the client initiates the connection and AquaLogic 
Service Bus sends its X.509 certificate to the client. Then, the client sends its certificate to 
AquaLogic Service Bus and AquaLogic Service Bus authenticates the client. 

To get the user name from the client’s certificate, you configure an identity assertion 
provider, which extracts a field in the certificate to use as the client identity (X.509 token), 
typically the CN (common name) or E (email) of the SubjectDistinguishedName in the 
certificate. After extracting the X.509 token, the token is compared to the user accounts in 
the Security Configuration module of the AquaLogic Service Bus Console. 

For more information about SSL and identity assertion providers, see Security 
Fundamentals in Understanding WebLogic Security.

Transport-Level Custom Credentials.

You can authenticate client requests at the transport-level via custom authentication tokens. 
Transport-level custom credentials are supported only on inbound requests. You specify a 
custom token in an HTTP header. The HTTP-specific configuration pages of the service 
definition wizard allows you to configure client authentication. Custom authentication 
concepts are described in “Configuring Custom Authentication” on page 5-1. 

Configuring Inbound HTTPS Security: Main Steps
To configure inbound transport-level security for a proxy service:

1. Make sure that you have configured the WebLogic security framework to support SSL, an 
authentication provider, and an identity assertion provider, depending on the HTTPS 
authentication level that you want to use:

– For no client authentication (anonymous requests), set Client Authentication to None. 

http://e-docs.bea.com/wls/docs100/secintro/concepts.html
http://e-docs.bea.com/wls/docs100/secintro/concepts.html


Conf igur ing  T ranspo r t -Leve l  Secur i t y

4-4 BEA AquaLogic Service Bus Security Guide

– For basic authentication, set Client Authentication to Basic. See “Adding a User” under 
Security Configuration in Using the AquaLogic Service Bus Console.

– For SSL client authentication, set Client Authentication to Client Certificate, configure 
the WebLogic Identity Assertion provider and the WebLogic CertPath Provider.

– For custom authentication token, set Client Authentication to Custom Authentication. 
The custom authentication token can be any active token type previously configured for 
an Identity Assertion provider that is carried in an HTTPS header. Custom 
authentication concepts are described in “Configuring Custom Authentication” on 
page 5-1.

Note: You must first configure, or create and configure, a WebLogic Server Identity 
Assertion provider as described in “Configuring Identity Assertion Providers for 
Custom Tokens” on page 5-6, and add the user names and passwords of the clients 
that you want to allow access to the Security Configuration module of the AquaLogic 
Service Bus Console.

See “Configuring the WebLogic Security Framework: Main Steps” on page 2-23.

2. When you create a proxy service in the AquaLogic Service Bus Console, on the Transport 
Configuration page select HTTP. 

3. On the HTTP Transport Configuration page, click the HTTPS check box. 

4. Choose an authentication level, as described in “HTTPS Authentication Levels” on page 4-2. 
You may also want to see “Adding a Proxy Service” under Proxy Services in Using the 
AquaLogic Service Bus Console.

5. Make your Dispatch Policy, Request Encoding, and Response Encoding choices, as described 
in “Adding a Proxy Service” under Proxy Services in Using the AquaLogic Service Bus 
Console.

6. If the service you are creating has operations, make your selections on the Operation Selection 
Configuration page. Determine whether to enforce WS-I compliance (for SOAP 1.1 services 
only) and select the selection algorithm to use to determine the operation called by this proxy 
service. This option is available only for SOAP or XML services defined from a WSDL. 

Configuring Outbound HTTPS Security: Main Steps
In outbound transport-level security, a proxy service is the client that opens a connection with a 
business service.

To configure outbound transport-level security:

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyservices.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyservices.html
http://e-docs.bea.com/alsb/docs30/consolehelp/securityconfiguration.html


Conf igur ing  T ranspor t -Leve l  Secur i t y  fo r  HTTP

BEA AquaLogic Service Bus Security Guide 4-5

1. If you are configuring transport-level security for a production environment (as opposed to a 
development or testing environment), make sure that Host Name Verification is enabled. See 
“Using Host Name Verification” in Configuring SSL in Securing WebLogic Server.

2. When you create a business service in the AquaLogic Service Bus Console, on the Transport 
Configuration page select HTTP. See “Adding a Business Service” under Business Services 
in Using the AquaLogic Service Bus Console. 

Follow the prompts to choose an authentication level.

If you configured the proxy service such that AquaLogic Service Bus does not authenticate 
clients, configure the enterprise system to authenticate clients by selecting an 
authentication level of one-way SSL, BASIC authentication.

3. The URI determines whether HTTP or HTTPS is used. HTTP business services can combine 
HTTP and HTTPS URLs unless the authentication method is Client Certificate, in which case 
all URLs must be HTTPS.

4. If the business service uses HTTPS with BASIC authentication, create a service account to 
provide the user name and password that the business service requires. 

You can add a user name and password directly to the service account, or configure the 
service account to pass through the credentials that it received from its client’s request, or 
you can map a client user name to an AquaLogic Service Bus user. If you configured the 
proxy service so that AquaLogic Service Bus does not authenticate clients, create a service 
account that passes through the credentials. See Service Accounts in Using the AquaLogic 
Service Bus Console.

5. If the business service uses Client Certificate authentication, do the following:

a. Create a service key provider to provide the key-pair that proxy services use for SSL client 
authentication with the business service. See Service Key Providers in Using the 
AquaLogic Service Bus Console.

b. Create a proxy service or edit an existing proxy service so that it specifies the service key 
provider. See “Viewing and Changing Proxy Services” under Proxy Services in Using the 
AquaLogic Service Bus Console.

Configuring Transport-Level Security for HTTP
The HTTP protocol does not encrypt communication between clients and proxy services or 
business services, but it does support BASIC authentication in which clients send user names and 
passwords in requests. HTTP also supports custom token authentication.

http://e-docs.bea.com/alsb/docs30/consolehelp/businessServices.html
http://e-docs.bea.com/alsb/docs30/consolehelp/serviceAccounts.html
http://e-docs.bea.com/wls/docs100/secmanage/ssl.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyServiceProviders.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyservices.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyServiceProviders.html


Conf igur ing  T ranspo r t -Leve l  Secur i t y

4-6 BEA AquaLogic Service Bus Security Guide

Caution: Unless you have configured strong network security, BEA recommends that you do 
not use BASIC authentication with HTTP in production environments because the 
password is sent in clear text. Instead, use BASIC authentication with HTTPS.

The following sections describe configuring transport-level security for the HTTP protocol:

“Configuring Inbound HTTP Security: Main Steps” on page 4-6

“Configuring Outbound HTTP Security: Main Steps” on page 4-6

Configuring Inbound HTTP Security: Main Steps
To configure inbound transport-level security for a proxy service:

1. When you create a proxy service in the AquaLogic Service Bus Console, on the Transport 
Configuration page select HTTP. Choose the Client Authentication option None, Basic, or 
Custom Authentication. If you choose Custom Authentication, you must also specify the 
HTTP header that is to carry the token and the token type.

The steps for configuring transport-level custom credentials are described in “Adding a 
Proxy Service” under Proxy Services in Using the AquaLogic Service Bus Console. 
Custom authentication concepts are described in “Configuring Custom Authentication” on 
page 5-1. 

The custom authentication token can be any active token type, previously configured for an 
Identity Assertion provider, that is carried in an HTTP header.

Note: To use custom authentication you must first configure, or create and configure, a 
WebLogic Server Identity Assertion provider as described in “Configuring Identity 
Assertion Providers for Custom Tokens” on page 5-6.

Note: If you want AquaLogic Service Bus to authenticate clients (Basic or Custom 
Authentication) you must create user accounts for the clients. See “Configuring 
Administrative Security: Main Steps” on page 9-13.

2. Modify the proxy service’s default transport-level access control policy, which specifies 
conditions under which users, groups, or roles can access a proxy service. See “Editing 
Transport-Level Access Policies” under Security Configuration in Using the AquaLogic 
Service Bus Console.

Configuring Outbound HTTP Security: Main Steps
In outbound transport-level security, a proxy service is the client that opens a connection with a 
business service.

http://e-docs.bea.com/alsb/docs30/consolehelp/securityconfiguration.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyservices.html


Conf igur ing  T ranspo r t -Leve l  Secur i t y  fo r  JMS

BEA AquaLogic Service Bus Security Guide 4-7

To configure outbound transport-level security:

1. When you create a business service in the AquaLogic Service Bus Console, on the Transport 
Configuration page select HTTP. When prompted, select Basic Authentication Required.

See “Adding a Business Service” under Business Services in Using the AquaLogic Service 
Bus Console.

2. Create a service account to provide the user name and password that the business service 
requires. See Service Accounts in Using the AquaLogic Service Bus Console.

You can add a user name and password directly to the service account, or configure the 
service account to pass through the credentials that it received from its client’s request, or 
you can map a client user name to an AquaLogic Service Bus user. If you configured the 
proxy service so that AquaLogic Service Bus does not authenticate clients, create a service 
account that passes through the credentials. See Service Accounts in Using the AquaLogic 
Service Bus Console.

3. Create a proxy service or edit an existing proxy service so that it specifies the service account. 

Configuring Transport-Level Security for JMS
While transport-level security for JMS does not provide end-to-end security for JMS messaging, 
it does provide the following:

The option to use a secure SSL channel for communication between AquaLogic Service 
Bus and a JMS server for sending or receiving JMS messages.

AquaLogic Service Bus can communicate with local JMS servers or foreign JMS servers. 
The connection to JMS servers can be secured using the T3S protocol (T3 over SSL). T3 
and T3S are proprietary BEA protocols.

The ability to specify the username and password that AquaLogic Service Bus proxy 
services use to authenticate while establishing a connection to a JMS server and/or while 
looking up JMS destinations in the JNDI tree.

Note: JMS administrators use the WebLogic Server Administration Console to create 
access control policies that restrict access to WebLogic JMS servers and destinations 
in the JNDI tree. For more information, see Configuring JMS System Resources in 
Configuring and Managing WebLogic JMS and Securing WebLogic Resources.

If a JMS administrator configures or changes an access control policy for a JMS 
destination, WebLogic Server can take up to 60 seconds to recognize the changes. 

http://e-docs.bea.com/alsb/docs30/consolehelp/serviceAccounts.html
http://e-docs.bea.com/wls/docs100/jms_admin/basic_config.html
http://e-docs.bea.com/wls/docs100/secwlres/index.html
http://e-docs.bea.com/alsb/docs30/consolehelp/businessServices.html
http://e-docs.bea.com/alsb/docs30/consolehelp/serviceAccounts.html


Conf igur ing  T ranspo r t -Leve l  Secur i t y

4-8 BEA AquaLogic Service Bus Security Guide

By default, WebLogic Server JMS checks the policy for each JMS destination every 
60 seconds. To change this behavior, modify the WebLogic Server startup command 
so that it sets the following system property to the frequency (in seconds) that you 
want WebLogic Server JMS to check access control policies:
weblogic.jms.securityCheckInterval 
A value of 0 (zero) for this property ensures that an authorization check is performed 
for every send, receive, and getEnumeration action on a JMS resource.

The following sections describe configuring JMS transport-level security:

“Configuring Inbound JMS Transport-Level Security: Main Steps” on page 4-8

“Configuring Outbound JMS Transport-Level Security: Main Steps” on page 4-9

Configuring Inbound JMS Transport-Level Security: Main 
Steps
To configure inbound JMS transport-level security:

1. When you create or edit a JMS proxy service in the AquaLogic Service Bus Console, on the 
Transport Configuration page, under Advanced Settings, select the Use SSL check box. 
See Proxy Services in the Using the AquaLogic Service Bus Console.

AquaLogic Service Bus configures the JMS proxy service to use the T3S protocol.

2. If the JMS administrator created access control policies that restrict access to a JMS 
connection pool, configure the proxy service to authenticate when it connects to the JMS 
server:

a. Create a service account to provide the user name and password that the JMS server 
requires. See Service Accounts in Using the AquaLogic Service Bus Console.

The JMS service account for the proxy service is used not only for the JMS object 
access, but also for the JNDI lookup. 

You must add a user name and password directly in the service account. JMS cannot 
use a service account that passes through the credentials that it received from its client’s 
request or that maps a client user name to an AquaLogic Service Bus user. See Service 
Accounts in Using the AquaLogic Service Bus Console.

b. When you create or edit the proxy service in the AquaLogic Service Bus Console, on the 
Transport Configuration page, under Advanced Settings, click the Browse button next 
to JMS Service Account. Select the service account that you created in the previous step.

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyservices.html
http://e-docs.bea.com/alsb/docs30/consolehelp/serviceAccounts.html
http://e-docs.bea.com/alsb/docs30/consolehelp/serviceAccounts.html
http://e-docs.bea.com/alsb/docs30/consolehelp/serviceAccounts.html


Conf igur ing  T ranspo r t -Leve l  Secur i t y  fo r  JMS

BEA AquaLogic Service Bus Security Guide 4-9

Configuring Outbound JMS Transport-Level Security: Main 
Steps
To configure outbound JMS transport-level security:

1. When you create or edit a JMS business service in the AquaLogic Service Bus Console, on 
the Transport Configuration page, under Advanced Settings, select the Use SSL check 
box. See “Adding a Business Service” under Business Services in Using the AquaLogic 
Service Bus Console. 

AquaLogic Service Bus configures the JMS proxy service to use the T3S protocol.

2. If the JMS administrator created access control policies that restrict access to a JMS 
connection pool, configure the business service to authenticate when it connects to the JMS 
server:

a. Create a service account to provide the user name and password that the JMS server 
requires. See Service Accounts in Using the AquaLogic Service Bus Console.

You must add a user name and password directly in the service account. JMS cannot 
use a service account that passes through the credentials that it received from its client’s 
request or that maps a client user name to an AquaLogic Service Bus user. See Service 
Accounts in Using the AquaLogic Service Bus Console.

b. When you create or edit the business service in the AquaLogic Service Bus Console, on 
the Transport Configuration page, under Advanced Settings, click the Browse button 
next to JMS Service Account. Select the business account that you created in the 
previous step.

3. If the JMS administrator has restricted access to JMS destinations in the JNDI tree, configure 
the business service to authenticate when it looks up entries in the JNDI tree:

a. (You can skip this step if the JNDI tree and JMS server require the same user name and 
password.) Create a service account to provide the user name and password that the JNDI 
tree requires. See Service Accounts in Using the AquaLogic Service Bus Console.

b. When you create or edit the business service in the AquaLogic Service Bus Console, on 
the Transport Configuration page, under Advanced Settings, click the Browse button 
next to JNDI Service Account. Select the service account that provides the credentials 
that the JNDI tree requires. 

You can use the same service account for both the JMS server and the JNDI tree if both 
objects require the same credentials.

http://e-docs.bea.com/alsb/docs30/consolehelp/serviceAccounts.html
http://e-docs.bea.com/alsb/docs30/consolehelp/businessServices.html
http://e-docs.bea.com/alsb/docs30/consolehelp/serviceAccounts.html
http://e-docs.bea.com/alsb/docs30/consolehelp/serviceAccounts.html
http://e-docs.bea.com/alsb/docs30/consolehelp/serviceAccounts.html


Conf igur ing  T ranspo r t -Leve l  Secur i t y

4-10 BEA AquaLogic Service Bus Security Guide

4. If the business service is configured to require a response, the JNDI Service Account is 
ignored for the response queue. In this case, the JMS Service Account is used for both looking 
up the queue name in JNDI and for reading messages from the queue.

Tip: Use the same service account for both the JMS Service Account and JNDI Service 
Account. That is, leave both fields blank, or use the same service account in both fields.  
This is the recommended best practice.

Configuring Transport-Level Security for SFTP Transport
As described in Using the SFTP Transport, this release of ALSB supports the SFTP transport for 
inbound and outbound transport-level security. The SFTP transport uses Secure Shell (SSH) 
version 2 to transfer files. 

How Two-Way Authentication is Performed
The SFTP authentication is two–way: both the SFTP server and SFTP client (ALSB service) 
authenticate each other, via different mechanisms:

The SFTP server uses the authentication method you specified in the Transport 
Configuration page to authenticate the SFTP client (the ALSB service): Username 
Password, Host Based, or Public Key.

The SFTP client (the ALSB service) uses a known_hosts file to authenticate the SFTP 
server. The known_hosts file on the ALSB proxy service (inbound requests) or business 
service (outbound requests) system must have the hostname, IP address, and public key of 
the remote SFTP servers to which the proxy service or business service can connect. SSH 
version 2 uses this public key to authenticate the connection. 

The SFTP client (the ALSB service) always uses the known_hosts file to determine whether to 
connect to an SFTP server, no matter which of the three authentication methods is chosen in the 
Transport Configuration page. That is, in all cases the SFTP server is authenticated by the 
ALSB service using the information present in this file. This ensures that the ALSB service is 
connecting to a known server.

For example, in case of Username Password authentication, the SFTP Client (ALSB Service) 
authenticates the SFTP server against the SFTP server’s public key in the known_hosts file. 
The SFTP server authenticates the client (ALSB service) with the username and password from 
the service account.

http://e-docs.bea.com/alsb/docs30/httppollertransport/sftptransport.html


Conf igur ing  T ranspor t -Leve l  Secur i t y  fo r  SFTP  T ranspor t

BEA AquaLogic Service Bus Security Guide 4-11

Use of the known_hosts File
No matter which authentication method you choose in the Transport Configuration page, a 
known_hosts file on the ALSB proxy service (inbound requests) or business service (outbound 
requests) system must have the hostname, IP address, and public key of the remote SFTP servers 
to which the proxy service or business service can connect. 

The ALSB service authenticates the SFTP server with the public-key/host/IP combination 
present in the known_hosts file. 

Note: This SSH authentication mechanism is outside of the typical ALSB service key 
provider/PKI credential mapper process. 

The known_hosts file requirement must be satisfied during authentication. SFTP servers not 
listed in the known_hosts file are not authenticated.

Creating the known_hosts File
1. Use the editor of your choice to create a known_hosts text file. 

The format for known_hosts is as follows:

Hostname,IP algorithm public-key

where Hostname, IP,and public_key identify the SFTP server.

The algorithms supported are RSA (entered only as ssh-rsa) and DSA (entered only as 
ssh-dsa or ssh-dss). 

The public key format for this file is “OpenSSH public key format.” 

For example:

getafix,172.22.52.130 ssh-rsa  
AAAAB3NzaC1yc2EAAAABIwAAAIEAtR+M3Z9HFxnKZTx66fZdnQqAHQcF1vQe1+EjJ/HWYtg
Anqsn0hMJzqWMatb/u9yFwUpZBirjm3g2I9Qd8VocmeHwoGPhDGfQ5LQ/PPo3esE+CGwdnC
OyRCktNHeuKxo4kiCCJ/bph5dRpghCQIvsQvRE3sks+XwQ7Wuswz8pv58=

Multiple entries are supported, one entry per line.

2. Move the known_hosts file to the 

<BEA_HOME>\user_projects\domains\alsb_domain\alsb\transports\sftp

directory. The directories \transports\sftp are not created automatically. You must 
create them. 



Conf igur ing  T ranspo r t -Leve l  Secur i t y

4-12 BEA AquaLogic Service Bus Security Guide

SFTP Transport Authentication Process
The following general principles apply to the SFTP authentication process for both a proxy 
service and business service.

Connection: The ALSB service (proxy and business) always acts as the SFTP client and 
connects to the SFTP server.

Authentication by the SFTP Server: For Public Key and Host Based authentication, the 
SFTP server authenticates the connection with the public key of the ALSB service. For 
Username Password, the SFTP server authenticates the connection with the username and 
password. 

Authentication by the SFTP Client: The ALSB service always authenticates the SFTP 
server with the public-key/host/IP combination present in the known_hosts file.

Connection established: If both the server and client authentications are successful, only 
then is the connection established and ready for transfer.

Transfer: The file (message) is downloaded in case of the proxy service and uploaded in 
the case of the business service.

The SFTP authentication process is as follows:

Inbound one-way download to the proxy service:

a. The proxy service, which is the SFTP client, attempts to connect to the SFTP server. 

b. The proxy service is authenticated by the SFTP server via the authentication mechanism 
selected on the Transport Configuration page. 

For Host Based and Public Key authentication, the remote SFTP server uses the host 
name and public key of the proxy service to authenticate the ALSB system. For 
Username Password authentication, the SFTP server uses the username and password 
supplied by the proxy service (via the service account) to authenticate the ALSB 
system.

c. A known_hosts file (on the ALSB proxy service system) keeps the information of the 
remote SFTP servers to which the ALSB proxy service can connect. 

Specifically, this file contains the host name, IP address, and public key of the accepted 
remote servers. 

SSH version 2 uses this public key to authenticate the connection. SFTP servers not 
listed in the known_hosts file are not authenticated. 



Conf igur ing  T ranspor t -Leve l  Secur i t y  fo r  SFTP  T ranspor t

BEA AquaLogic Service Bus Security Guide 4-13

d. If authentication is successful, the proxy service is the SFTP client connected to the 
remote SFTP server.

e. If allowed by the SFTP server, the proxy service (the SFTP client) polls a remote directory 
on the SFTP server and downloads any files (messages) present in the remote directory. 

The proxy service configuration determines which remote directory to poll, how often 
to poll it, and what to do with any files (messages) that it downloads. 

Outbound one-way upload from the business service:

a. The business service (which is the SFTP client) attempts to connect to the SFTP server. 

b. The business service is authenticated by the SFTP server via the authentication 
mechanism selected on the Transport Configuration page.

For Host Based and Public Key authentication, the SFTP server uses the host name and 
public key of the business service to authenticate the ALSB system. For Username 
Password authentication, the SFTP server uses the username and password (from the 
service account) to authenticate the ALSB system.

c. A known_hosts file (on the ALSB business service system) keeps the information of the 
SFTP servers to which the ALSB business service can connect. 

Specifically, this file contains the host name, IP address, and public key of the accepted 
servers. 

SSH version 2 uses this public key to authenticate the connection. SFTP servers not 
listed in the known_hosts file are not authenticated. 

d. If authentication is successful, the business service is the SFTP client connected to the 
remote SFTP server.

e. If allowed by the SFTP server, the business service (the SFTP client) uploads files to the 
remote directory on the SFTP server. 

The business service configuration determines in which remote directory to upload the 
file, how often to retry the upload, and any file prefix or suffix to add to the uploaded 
file name. 

Configuring Inbound SFTP Transport-Level Security: Main 
Steps
To configure inbound transport-level security for a proxy service:



Conf igur ing  T ranspo r t -Leve l  Secur i t y

4-14 BEA AquaLogic Service Bus Security Guide

1. Create a known_hosts file, as described in “Use of the known_hosts File” on page 4-11, on 
the ALSB proxy service system. 

known_hosts keeps the information of the remote SFTP servers to which the ALSB 
proxy service can connect. Specifically, this file contains the host name, IP address, and 
public key of the accepted remote servers. 

SSH version 2 uses this public key to authenticate the connection. SFTP servers not listed 
in the known_hosts file are not authenticated. 

2. When you create a proxy service in the AquaLogic Service Bus Console, on the Transport 
Configuration page select SFTP. 

3. Specify the end point URI in sftp://hostname:port/directory format, where: 

– hostname is the host name or IP address of the SFTP server.

– port is the port on which SFTP server is listening. Default port for SFTP is 22. 

– directory is the location that is periodically polled for files. This directory is relative to 
the home directory of the user. 

4. On the SFTP Transport Configuration page, select either Username Password, Host Based, 
or Public Key authentication. 

The authentication choices are summarized here. See Using the SFTP Transport for 
complete information.

– Username/Password authentication specifies that a static service account (using user 
credentials on the SFTP server) is associated with this authentication method. The 
service account provides a user name and password that the proxy service uses for 
authentication to the SFTP server. The SFTP client is authenticated using the provided 
credentials. Only the static service account type is supported.

– Host Based Authentication specifies that only connections from identified, known hosts 
are allowed. This authentication method requires a username and a service key 
provider. 

The SFTP Server authenticates the proxy service with the public key of the proxy 
service. 

Note: The ALSB proxy service does not itself use the service key provider to 
authenticate any credentials from the SFTP server.  It uses only the known_hosts 
file to authenticate the SFTP server.

http://e-docs.bea.com/alsb/docs30/httppollertransport/sftptransport.html


Conf igur ing  T ranspor t -Leve l  Secur i t y  fo r  SFTP  T ranspor t

BEA AquaLogic Service Bus Security Guide 4-15

The public key of the proxy service is present in the key-pair referred by the service 
key provider. You need to extract this key when you set up the service key provider, 
and then configure the SFTP server to use the public key.

For example, with SFTP server on Linux, you need to: 

• Edit the /etc/ssh/shosts.equiv file and add the host name or IP address of the 
machine on which ALSB domain is running. 

• Edit the /etc/ssh/ssh_known_hosts file and add the host name or IP address of 
the machine on which ALSB domain is running, followed by space and the public 
key. 

The username is used to determine which directory on the SFTP server to poll.

– Public Key specifies a username and service key provider are required to use this 
authentication method. Every user has their own private key. 

The SFTP Server authenticates the proxy service with the public key. 

Note: The ALSB proxy service does not itself use the service key provider to 
authenticate any credentials from the SFTP server.  It uses only the known_hosts 
file to authenticate the SFTP server.

The public key of the proxy service is present in the key-pair referred by the service 
key provider. You need to extract this key when you set up the service key provider, 
and then configure the SFTP server to use the public key.

For example, to allow access to a system for a given identity with an SFTP server on 
Linux, place the public key in a $HOME/.ssh/authorized_keys file on that system. 
All keys listed in that file are allowed access.

The username is used to determine which directory on the SFTP server to poll. It is 
also use to identify the location of the public key on the SFTP server. 

5. If allowed by the remote SFTP server, the proxy service (SFTP client) polls a remote directory 
on the SFTP server and downloads any files present in the remote directory. 

The proxy service configuration determines which remote directory to poll, how often to 
poll it, and what to do with any files (messages) that it downloads. 

The directory to be polled is an absolute path.

Configuring Outbound SFTP Transport-Level Security: Main 
Steps
To configure outbound transport-level security for a business service:



Conf igur ing  T ranspo r t -Leve l  Secur i t y

4-16 BEA AquaLogic Service Bus Security Guide

1. Create a known_hosts file, as described in “Use of the known_hosts File” on page 4-11, on 
the ALSB business service system. 

known_hosts keeps the information of the remote SFTP servers to which the ALSB 
business service can connect. Specifically, this file contains the host name, IP address, and 
public key of the accepted remote servers. 

SSH version 2 uses this public key to authenticate the connection. SFTP servers not listed 
in the known_hosts file are not authenticated. 

2. When you create a business service in the AquaLogic Service Bus Console, on the Transport 
Configuration page select SFTP. 

3. Specify the end point URI in sftp://hostname:port/directory format, where: 

– hostname is the host name or IP address of the SFTP server.

– port is the port on which SFTP server is listening. Default port for SFTP is 22. 

– directory is the location to which files are uploaded. This directory is relative to the 
home directory of the user. 

4. On the SFTP Transport Configuration page, select either Username Password, Host Based, 
or Public Key authentication. 

The authentication choices are summarized here. See Using the SFTP Transport for 
complete information.

– Username/Password authentication specifies that a static service account (using user 
credentials on the SFTP server) is associated with this authentication method. The 
service account provides a user name and password that the business service uses for 
authentication to the SFTP server. The SFTP client is authenticated using the provided 
credentials. Only the static service account type is supported.

– Host Based Authentication specifies that only connections from identified, known hosts 
are allowed. This authentication method requires a username and a service key 
provider. 

The SFTP Server authenticates the business service with the public key of the business 
service. 

Note: The ALSB business service does not itself use the service key provider to 
authenticate any credentials from the SFTP server.  It uses only the known_hosts 
file to authenticate the SFTP server.

http://e-docs.bea.com/alsb/docs30/httppollertransport/sftptransport.html


Conf igur ing  T ranspor t -Leve l  Secur i t y  fo r  SFTP  T ranspor t

BEA AquaLogic Service Bus Security Guide 4-17

The public key of the business service is present in the key-pair referred by the service 
key provider. You need to extract this key when you set up the service key provider, 
and then configure the SFTP server to use the public key.

For example, with SFTP server on Linux, you need to: 

• Edit the /etc/ssh/shosts.equiv file and add the host name or IP address of the 
machine on which ALSB domain is running. 

• Edit the /etc/ssh/ssh_known_hosts file and add the host name or IP address of 
the machine on which ALSB domain is running, followed by space and the public 
key. 

The username is used to determine the upload directory on the SFTP server.

– Public Key specifies a username and service key provider are required to use this 
authentication method. Every user has their own private key. 

The SFTP Server authenticates the business service with the public key. 

Note: The ALSB business service does not itself use the service key provider to 
authenticate any credentials from the SFTP server.  It uses only the known_hosts 
file to authenticate the SFTP server.

The public key of the business service is present in the key-pair referred by the service 
key provider. You need to extract this key when you set up the service key provider, 
and then configure the SFTP server to use the public key.

For example, to allow access to a system for a given identity with an SFTP server on 
Linux, place the public key in a $HOME/.ssh/authorized_keys file on that system. 
All keys listed in that file are allowed access.

The username is used to determine the upload directory on the SFTP server and for 
identifying the location of the public key on the SFTP server.

5. If allowed by the remote SFTP server, the business service (SFTP client) uploads files to the 
remote directory on the SFTP server. 

The business service configuration determines in which remote directory to upload the file, 
how often to retry the upload, and any file prefix or suffix to add to the uploaded file 
name. 

The upload directory is an absolute path and is automatically created. 



Conf igur ing  T ranspo r t -Leve l  Secur i t y

4-18 BEA AquaLogic Service Bus Security Guide

SFTP Security Attributes Preserved During Import
The following security attributes are preserved when “Preserve Security and Policy 
Configuration Check Box” on page 2-22 is turned on during import:

Client authentication method 

Reference to the service account (in case of Username Password authentication) 

Reference to the service key provider (in case of Host Based and Public Key 
authentication)

Username (in case of Host Based and Public Key authentication)

SFTP Credential Lifecycle
Whenever the username/password or public key credential changes, the SFTP transport drops all 
idle connections made with the previous credential and attempts to reconnect. For active 
connections, the SFTP transport drops the connection after the current operation is finished.

Email, FTP, and File Transport-Level Security
The following sections describe the security measures that are available for communication over 
the email, FTP, and file protocols:

“Email and FTP Transport-Level Security” on page 4-18

“File Transport Security” on page 4-19

Email and FTP Transport-Level Security
Email and FTP are not secure protocols. They support weak authentication, typically over 
insecure channels. The supported security method for email or FTP transport is the username and 
password needed to connect to the email or FTP server.

To secure email, you must designate a service account as an alias for the username and password 
in the AquaLogic Service Bus Console. The service will use the username and password to 
authenticate to the SMTP server.

To secure the FTP transport, in the AquaLogic Service Bus Console, select external_user and 
designate a service account as an alias for the username and password. The service will use the 
username and password to authenticate to the FTP server.



Conf igur ing  T ranspor t -Leve l  Secur i t y  f o r  SB  T ranspor t

BEA AquaLogic Service Bus Security Guide 4-19

For information about how to add security to email and FTP transport, see “Adding a Business 
Service” in Business Services in the Using the AquaLogic Service Bus Console.

File Transport Security
The supported security method for file transport is the user login to the computer on which the 
files are located.

The SFTP transport, described in “Configuring Transport-Level Security for SFTP Transport” on 
page 4-10, is the preferred mechanism to secure FTP. 

Configuring Transport-Level Security for SB Transport
The Service Bus (SB) transport allows client ALSB servers to invoke an ALSB proxy service 
synchronously via RMI. RMI is the only mechanism by which client ALSB servers can access 
the SB transport. In this release of ALSB the associated API is for internal user only and is not 
documented. 

The SB proxy service is accessed in one of two ways: 

By a client ALSB server that uses an SB business service to connect to the ALSB server of 
the proxy service by using the JNDI context and the proxy service URI. 

By products such as WLI and DSP that use proprietary artifacts to access SB proxy 
services. These artifacts are unique to those products and are not described here.    

The SB business service can send messages only to SB proxy services. A JNDI provider, which 
is specified in the endpoint URI of the business service, is used to do a JNDI lookup on the remote 
ALSB server. Specifically, the JNDI provider points to the ALSB server where the service is 
deployed to retrieve the RMI stubs corresponding to the SB proxy service. 

For example, the endpoint URI you specify in the business service could be 
sb://some_secured_jndi_provider/some_remote_sb_proxy.

A secure JNDI provider should have a provider URL with a secure protocol. In the SB business 
service case, you can use the HTTPS or t3s protocols. 

The service account (of the business service)  specifies the user credentials that should be used 
for invoking the remote SB proxy service. If no service account is specified, the user credentials 
of the inbound proxy service (the inbound client) of this business service are used for security 
context propagation.

http://e-docs.bea.com/alsb/docs30/consolehelp/businessServices.html


Conf igur ing  T ranspo r t -Leve l  Secur i t y

4-20 BEA AquaLogic Service Bus Security Guide

The SB transport can use SSL to require strong server and client authentication. Before you can 
use the SB transport with SSL, you must configure SSL in WebLogic Server. See “Configuring 
the WebLogic Security Framework: Main Steps” on page 2-23.

Caution: When set, the Use SSL flag means that request must be sent over an SSL connection.   
However, the SB transport does not forbid unsecured connections.  The proxy service 
will be advertised (via the effective WSDL or UDDI) with a secured URI (indicated 
by sbs), but secured access is not enforced.

The ALSB server administrator must close all unsecured protocols on the server (t3, 
http, and so forth) to strictly enforce secured-client connections. 

Configuring SAML Authentication With Service Bus (SB) 
Transport
If you are using SAML-based authentication with the SB transport, be sure to follow these 
configuration requirements: 

On the SB client side, configure a SAML Credential mapper provider and create a SAML 
relying party for each SB proxy service you plan to invoke from this client. In the target 
URL field enter http://openuri.org/<ALSBProxyServiceURI>, where 
ALSBProxyServiceURI is the service URI of the SB proxy service.

On the ALSB side (where the SB proxy service resides), configure a SAML Identity 
Assertion provider and create a SAML asserting party. In the target URL field enter the 
service URI of the SB proxy service. Do not include the SB protocol or host/port 
information. For example, /<ALSBProxyServiceURI>.

Configuring Transport-Level Security for WS Transport
Web service reliable messaging (WS-RM) functionality is available in ALSB as the WS 
transport. ALSB supports the specification submitted in February 2005. For more information 
about the specification, see Web Services Reliable Messaging Protocol 
(WS-ReliableMessaging). 

The WS transport has both proxy service ( inbound) and business service (outbound) components 
that are based on SOAP1.1- and SOAP1.2-based WSDLs, along with WS-RM policy. It supports 
both one-way and request-response patterns, but response is unreliable.

http://schemas.xmlsoap.org/ws/2005/02/rm/
http://schemas.xmlsoap.org/ws/2005/02/rm/


Conf igur ing  T ranspo r t -Leve l  Secur i t y  fo r  WS T ranspor t

BEA AquaLogic Service Bus Security Guide 4-21

Reliable Web Services Messaging Defined
As described in Overview of Web Service Reliable Messaging, WS-RM is a framework in which 
an application running in one application server can reliably invoke a web service running on 
another application server, assuming that both servers implement the WS-ReliableMessaging 
specification. “Reliable” is defined as the ability to guarantee message delivery between the two 
web services. In particular, the specification describes an interoperable protocol in which a 
message sent from a source endpoint (or client web service) to a destination endpoint (or web 
service whose operations can be invoked reliably) is guaranteed either to be delivered, according 
to one or more delivery assurances, or to raise an error. 

WS Transport Resources Visible in WLS Console
WS proxy services are visible from the WLS console, but attempts to assign policies from WLS 
are ignored. 

Specifically, administrators can navigate to the Home > Summary of Security Realms > 
myrealm > Realm Roles pages in the WLS console and seemingly edit the security policy for 
the WS proxy service, as shown in Figure 4-1. 

However, this policy will have no effect and it will not be evaluated at runtime. 

Figure 4-1  WS Transport Resource Displayed in WLS Console

http://e-docs.bea.com/wls/docs100/webserv_adv/rm.html#wp257570


Conf igur ing  T ranspo r t -Leve l  Secur i t y

4-22 BEA AquaLogic Service Bus Security Guide

The EAR application is auto-generated and deployed by ALSB when you activate the session. 
This is one EAR file for each WS proxy service. 

Use of WS-Policy Files for Web Service Reliable Messaging 
Configuration 
You configure WS transport security through WS-Policy files, either from a WSDL or bound 
directly to the service. 

ALSB use WS-Policy files to enable a destination endpoint to describe and advertise its WS-RM 
capabilities and requirements. The WS-Policy specification provides a general purpose model 
and syntax to describe and communicate the policies of a web service. 

These WS-Policy files are XML files that describe features such as the version of the supported 
WS-ReliableMessaging specification, the source endpoint's retransmission interval, the 
destination endpoint's acknowledgment interval, and so on. 

WS-Policy with RM assertions and WSSP 1.2 transport-level security assertions are supported 
for the WS transport only. 

Note: WSSP 1.2 message-level security assertions are not supported for any transport. 9.x BEA 
proprietary security assertions are not supported for the WS transport. 

Preconfigured WS-RM Policy Files
ALSB includes two simple WS-RM WS-policy files that you can specify if you do not want to 
create your own WS-Policy files: 

DefaultReliability.xml—Specifies typical values for the reliable messaging policy 
assertions, such as inactivity timeout of 10 minutes, acknowledgement interval of 200 
milliseconds, and base retransmisstion interval of 3 seconds. 

LongRunningReliability.xml—Similar to the default reliable messaging WS-Policy 
file, except that it specifies a much longer activity timeout interval (24 hours.) 

You cannot change these pre-packaged files. If their values do not suit your needs you must create 
your own WS-Policy file. 

For example, the complete LongRunningReliability.xml file (as extracted from 
weblogic.jar) is shown in Listing 4-1:



Conf igur ing  T ranspo r t -Leve l  Secur i t y  fo r  WS T ranspor t

BEA AquaLogic Service Bus Security Guide 4-23

Listing 4-1   LongRunningReliability.xml File

<?xml version="1.0"?>

<wsp:Policy

   xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"

   xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

   xmlns:beapolicy="http://www.bea.com/wsrm/policy"

  >

  <wsrm:RMAssertion >

    <wsrm:InactivityTimeout

        Milliseconds="86400000" />

    <wsrm:BaseRetransmissionInterval

        Milliseconds="3000" />

    <wsrm:ExponentialBackoff />    

    <wsrm:AcknowledgementInterval

        Milliseconds="200" />

    <beapolicy:Expires Expires="P1M" optional="true"/>

  </wsrm:RMAssertion>

</wsp:Policy>

RM WS-Policy Required Prior to Activation
A proxy or business service that uses the WS transport must have a WS-Policy with RM 
assertions, either from a WSDL or bound directly to the service. Services that use any other 
transport must not have a WS-Policy with RM assertions.

You can bind RM assertions only at the service level and not at the operation or request/response 
levels.



Conf igur ing  T ranspo r t -Leve l  Secur i t y

4-24 BEA AquaLogic Service Bus Security Guide

Async Responses
WS-RM supports two messaging patterns: one way, and request/response. The WS transport 
supports both patterns, but does not support reliable response. That is, the response is not sent 
reliably but the request is always reliable.

Async responses from a proxy service using the WS transport to an RM client connect to the 
AcksTo or ReplyTo endpoint references specified by the RM client. The RM client is free to use 
an HTTP or HTTPS URL. When using HTTPS, the RM client is free to request a client certificate 
during the SSL handshake. The WS transport will use the SSL key-pair of the service key 
provider upon request.

Proxy Service Authentication 
The WS transport supports the following HTTPS security modes via WS-Policy files:

HTTPS – no client authentication

HTTPS with BASIC authentication

HTTPS with client-certificate authentication (2-way SSL)

Table 4-1 shows the preconfigured security policies that implement these modes and indicates 
when you might use them.

WS proxy services support both basic and client-certificate (2-way SSL) authentication, as 
determined by the WSSP 1.2 transport-level security assertions in the WS-Policy. 

Consider the example of the HTTPS token and the Basic256 algorithm as extracted from the 
packaged Wssp1.2-Https.xml policy, as shown in Listing 4-2. 

Table 4-1  WS Transport Authentication Matrix

HTTPS Required Authentication Required Preconfigured Transport Security Policy

Yes None Wssp1.2-Https.xml

Yes BASIC Wssp1.2-HttpsBasic.xml

Yes Client-certificate Wssp1.2-HttpsClientCert.xml



Conf igur ing  T ranspo r t -Leve l  Secur i t y  fo r  WS T ranspor t

BEA AquaLogic Service Bus Security Guide 4-25

When basic authentication is specified in the WS-policy, all HTTPS requests (including RM 
protocol messages to the WS proxy service) must have a valid username and password. 

Listing 4-2   Wssp1.2-Https.xml File (Partial)

:

<sp:TransportBinding>

    <wsp:Policy >

      <sp:TransportToken>

        <wsp:Policy>

          <sp:HttpsToken />

        </wsp:Policy>

      </sp:TransportToken>

      <sp:AlgorithmSuite>

        <wsp:Policy>

          <sp:Basic256/>

        </wsp:Policy>

      </sp:AlgorithmSuite>

      <sp:Layout>

        <wsp:Policy>

          <sp:Lax/>

        </wsp:Policy>

      </sp:Layout>

      <sp:IncludeTimestamp/>

    </wsp:Policy>

  </sp:TransportBinding>

</wsp:Policy>



Conf igur ing  T ranspo r t -Leve l  Secur i t y

4-26 BEA AquaLogic Service Bus Security Guide

Proxy service authentication is supported as follows: 

Outbound client-certificate authentication using the SSL key-pair assigned to the service 
key provider configured for the proxy service. 

If you plan to create a service key provider (which passes key-certificate pairs in outbound 
requests), use the WebLogic Server Administration Console to configure a PKI credential 
mapping provider. In any WebLogic Server domain that hosts AquaLogic Service Bus, you 
can configure at most one PKI credential mapping provider. 

Username/password identity propagation through a WS proxy service (with basic 
authentication) to any other outbound transport, or outbound WSS username token. 

If a business service requires user name and password tokens, you can configure the 
business service’s service account to pass through the user credentials from the original 
client request. See Service Accounts in Using the AquaLogic Service Bus Console.

Credential mapping between WS proxy service (with basic or 2-way SSL authentication) 
and any other transport. 

Sending (nonreliable) asynchronous responses from a WS proxy service to an RM client 
via HTTP or HTTPS. The default protocol used by proxy and business services is HTTP. 

Asynchronous responses from a WS proxy service to an RM client connect to the AcksTo 
or ReplyTo endpoint references specified by the RM client. The RM client can use either 
HTTP or HTTPS URL. If the RM client uses HTTPS, the RM client can request a client 
certificate during the SSL handshake. The WS transport uses the SSL key-pair of the 
service key provider upon request. 

Preserving Security Configuration on Import
If the Preserve Security and Policy Configuration flag is set, the WS transport provider 
preserves the following security configuration: 

The reference to the service account (WS business services only)

Configuring Inbound and Outbound WS Transport-Level 
Security
You configure WS transport security through WS-Policy, either from a WSDL or bound directly 
to the service. 

http://e-docs.bea.com/alsb/docs30/consolehelp/serviceAccounts.html


Conf igur ing  T ranspor t -Leve l  Secur i t y  fo r  WebSphere  Message  Queue  T ranspor t

BEA AquaLogic Service Bus Security Guide 4-27

Configuring Transport-Level Security for WebSphere 
Message Queue Transport

ALSB 3.0 provides support for a native Message Queue (MQ) transport that can send messages 
to and from WebSphere MQ. In this context, the MQ transport is a client that connects to an MQ 
Server using MQ libraries.

You configure the security-related properties for the transport when you create an MQ 
Connection resource. These properties are then used by the MQ proxy or business service. 

Note: Make sure that you add the MQ client libraries to your environment, as described in 
Adding MQ Client Libraries to Your Environment.

The MQ Connection resource has two modes: 

binding mode
You use the binding mode to connect to the MQ Queue Manager located on the same 
machine as ALSB. In this mode, the service calls directly into the existing queue manager 
API rather than communicating over the network. This mode provides a fast path to 
connect to local queue managers. 

TCP mode
You use the tcp mode when the MQ Queue Manager is not available on the same machine 
as ALSB. 

Configuring Inbound MQ Transport-Level Security: Main 
Steps
To configure inbound transport-level security for a proxy service:

1. Before you create a proxy service that uses the MQ transport, create an MQ Connection 
resource for the transport to use. Choose from the following security configuration settings:

– SSL Required. Select the check box to use HTTPS for sending messages. Only 
server-side SSL (server authenticates to client) is supported when the 2-way SSL 
Required option is not selected.  

– Cipher Suite. This option is available only when the SSL Required check box is 
selected. Select the Cipher Suite algorithm to be used by SSL. 

A cipher suite is an SSL encryption method that includes the key exchange algorithm, 
the symmetric encryption algorithm, and the secure hash algorithm. A cipher suite is 
used to protect the integrity of a communication.

http://e-docs.bea.com/alsb/docs30/mqtransport/transport.html


Conf igur ing  T ranspo r t -Leve l  Secur i t y

4-28 BEA AquaLogic Service Bus Security Guide

The Cipher Suite algorithm is used to encrypt and decrypt message communications 
between the WebSphere MQ server and the MQ Transport. 

– 2-way SSL Required. This option is available only when the SSL Required check box 
is selected. Select the check box to force the use of both client-side and server-side SSL 
authentication.  

– Reference to the Service Key Provider. If you select 2-way SSL Required, you must 
provide a reference to the service key provider for obtaining the appropriate key 
manager for client-side SSL. 

Enter the path (project/folder) and name of a service key provider, or click Browse to 
select one from the Select Service Key Provider page.  

– Reference to the Static Service Account. Required for user name and password 
authentication. Enter the path (project/folder) and name of a static service account, or 
click Browse to select a service account.  

2. When you create a proxy service in the AquaLogic Service Bus Console, on the Transport 
Configuration page select mq. 

Configuring Outbound MQ Transport-Level Security: Main 
Steps
To configure outbound transport-level security for a business service:

1. Before you create a proxy service that uses the MQ transport, create a MQ Connection 
resource for the transport to use. Choose from the following security configuration settings:

– SSL Required. Select the check box to use HTTPS for sending messages. Only 
server-side SSL (server authenticates to client) is supported when the 2-way SSL 
Required option is not selected.  

– Cipher Suite. This option is available only when the SSL Required check box is 
selected. Select the Cipher Suite algorithm to be used by SSL. 

A cipher suite is an SSL encryption method that includes the key exchange algorithm, 
the symmetric encryption algorithm, and the secure hash algorithm. A cipher suite is 
used to protect the integrity of a communication.

The Cipher Suite algorithm is used to encrypt and decrypt message communications 
between the WebSphere MQ server and the MQ Transport. 



Transpor t -Leve l  Secur i t y  E lements  in  the  Message  Context

BEA AquaLogic Service Bus Security Guide 4-29

– 2-way SSL Required. This option is available only when the SSL Required check box 
is selected. Select the check box to force the use of both client-side and server-side SSL 
authentication.  

– Reference to the Service Key Provider. If you select 2-way SSL Required, you must 
provide a reference to the service key provider for obtaining the appropriate key 
manager for client-side SSL. 

Enter the path (project/folder) and name of a service key provider, or click Browse to 
select one from the Select Service Key Provider page.  

– Reference to the Static Service Account. Required for user name and password 
authentication. Enter the path (project/folder) and name of a static service account, or 
click Browse to select a service account.  

2. When you create a business service in the AquaLogic Service Bus Console, on the Transport 
Configuration page select mq. 

Transport-Level Security Elements in the Message 
Context

If you configure a proxy service to authenticate clients, then you can access the client’s identity 
and the security groups to which the client belongs from the proxy service’s pipeline. The identity 
and group information is located in the message context at 
$inbound/ctx:security/ctx:transportClient/ctx:username 
and
$inbound/ctx:security/ctx:transportClient/ctx:principals/ctx:group 
(the message context contains one ctx:group element for each group the user belongs to)

If a proxy service does not authenticate clients, then the value of 
$inbound/ctx:security/ctx:transportClient/ctx:username is <anonymous> and 
there will not be any ctx:group elements.

For more information, see “Inbound and Outbound Variables” in Message Context in the 
AquaLogic Service Bus User Guide and “Message Flow” in Proxy Services in the Using the 
AquaLogic Service Bus Console. 

http://e-docs.bea.com/alsb/docs30/userguide/context.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyservices.html


Conf igur ing  T ranspo r t -Leve l  Secur i t y

4-30 BEA AquaLogic Service Bus Security Guide



BEA AquaLogic Service Bus Security Guide 5-1

C H A P T E R 5

Configuring Custom Authentication

AquaLogic Service Bus supports client-specified custom authentication credentials for both 
transport- and message-level proxy service requests. The custom authentication credentials can 
be in the form of tokens, or a username and password token combination.  

AquaLogic Service Bus accepts and attempts to authenticate a custom token passed to a proxy 
service in an HTTP header, SOAP header (for SOAP-based proxy services) or in the payload (for 
non-SOAP proxy services).  You use the proxy service configuration wizard to configure the 
proxy service with the mechanism by which the token is passed, and the token type. 

AquaLogic Service Bus also accepts and attempts to authenticate a username and password token 
passed in a SOAP header (for SOAP based proxy services), or in the payload for non-SOAP 
proxy services. You use the proxy service configuration wizard to configure the proxy service 
with the mechanism by which the username and password are passed. 

Note: The custom authentication mechanisms work alone or in concert with the message-level 
security for Web services described in “Configuring Message-Level Security for Web 
Services” on page 7-1. See “Combining WS-Security with Custom Username/Password 
and Tokens” on page 5-13 for information about using both types of security.

The following custom authentication mechanisms are supported:

Transport-Level Security

– Custom token in an HTTP header

Message-Level Security

– For SOAP-based proxy services



Conf igur ing  Custom Authent ica t i on

5-2 BEA AquaLogic Service Bus Security Guide

• Custom token in a SOAP header

• Username/password in a SOAP header

– For non-SOAP-based proxy services

• Custom token in the payload of any XML-based proxy services

• Username/password in the payload of any XML-based proxy services

This section describes the following custom authentication topics:

“What Are Custom Authentication Tokens?” on page 5-2

“Custom Authentication Token Use and Deployment” on page 5-3

“Understanding Transport-Level Custom Authentication” on page 5-3

“Understanding Message-Level Custom Authentication” on page 5-5

“Configuring Identity Assertion Providers for Custom Tokens” on page 5-6

“Configuring Custom Authentication Transport-Level Security” on page 5-11

“Configuring Custom Authentication Message-Level Security” on page 5-12

“Propagating the Identity Obtained From Custom Authentication Tokens” on page 5-13

“Combining WS-Security with Custom Username/Password and Tokens” on page 5-13

What Are Custom Authentication Tokens?
An authentication token is some data, represented as a string or XML, that identifies an entity 
(user or process), such as an X509 client certificate. Typically, authentication tokens are designed 
to be used within specific security protocols. Some authentication tokens are cryptographically 
protected and some are not. Some authentication tokens carry key material.

In the context of AquaLogic Service Bus, a custom authentication token can be a 
username/password or an opaque identity assertion token in a user-defined location in the request. 
A username/password token is allowed in a SOAP header (for SOAP-based services) or in the 
payload of some non-SOAP proxy service. An identity assertion token is allowed in an HTTP 
header, in a SOAP header (for SOAP-based services), or in the payload of some non-SOAP proxy 
service. The AquaLogic Service Bus domain must include an Identity Assertion provider that 
supports the token type.



Unders tand ing  T ranspor t -Leve l  Cus tom Authent i cat ion

BEA AquaLogic Service Bus Security Guide 5-3

AquaLogic Service Bus uses the authenticated user to establish a security context for the client. 
The security context established by authenticating a custom token or username and password can 
be used as the basis for outbound credential mapping and access control.

To authenticate and authorize clients who supply tokens for authentication, you must configure 
an Identity Assertion provider that maps the client’s credential to an AquaLogic Service Bus user. 
AquaLogic Service Bus uses this resulting username to establish a security context for the client.

Custom Authentication Token Use and Deployment
The addition of custom authentication token support in AquaLogic Service Bus addresses two 
customer needs. In the first scenario, a proxy service request has a username/password 
somewhere in the message payload, for example in a SOAP header. AquaLogic Service Bus must 
get this username/password and authenticate the user.

In the second scenario, the message contains some kind of authentication token (other than 
username/password), such as a secure-token-xyz token. The token may be in an HTTP header or 
in the message payload. AquaLogic Service Bus must get the token and authenticate it. In either 
case, a security context is established if authentication succeeds.

Most security-related configuration is typically done at deployment time, and custom 
authentication fits that model: it can be configured directly on the production environment at 
deployment time. Alternatively, you can configure authentication during staging and import it 
into the production environment. 

Custom authentication, which includes both username/password tokens and custom tokens, is an 
integral part of the proxy service definition. When a proxy service is exported, any configuration 
of custom tokens is included in the jar file. When a new version of the proxy service is imported, 
the previous configuration is overwritten with whatever configuration is contained in the jar file. 

Only users in the IntegrationDeployer or IntegrationAdministrator roles can configure 
custom token authentication. Users in the IntegrationOperator or IntegrationMonitor roles 
have read-only access to this configuration.

Understanding Transport-Level Custom Authentication
You can authenticate client requests at the transport-level via custom authentication tokens. You 
specify a custom token in an HTTP header. The HTTP (and HTTPS) configuration page of the 
service definition wizard allows you to configure client authentication. The options for HTTP and 
HTTPS proxy services are:



Conf igur ing  Custom Authent ica t i on

5-4 BEA AquaLogic Service Bus Security Guide

None

Basic

Custom Authentication

Client Certificate (HTTPS Only)

These are mutually exclusive options. 

If you choose custom authentication, you must also specify the name of the HTTP header that is 
to carry the token, and the token type. 

The steps for configuring transport-level custom credentials are described in “Adding a Proxy 
Service” under Proxy Services in Using the AquaLogic Service Bus Console.

The custom authentication token can be any active token type, previously configured for an 
Identity Assertion provider, that is carried in an HTTP header. 

You need to configure, or create and configure, an Identity Assertion provider that handles the 
token type you plan to use. See “Configuring Identity Assertion Providers for Custom Tokens” 
on page 5-6.

After you have configured the transport-level custom credentials, you can then additionally 
configure the message level security configuration, as described in “Configuring Message-Level 
Security for Web Services” on page 7-1.

Importing and Exporting and Transport-Level Custom Token 
Authentication
Transport-level custom authentication tokens are published to the UDDI. The client-auth 
property is present in the instanceParms of the HTTP or HTTPS transport attributes whenever 
authentication is configured. As described in the transport attributes table of the User Guide, the 
possible values of client-auth are BASIC, CLIENT-CERT and CUSTOM-TOKEN. Whenever the value 
is CUSTOM-TOKEN, two additional properties are present: token-header and token-type. 

Note: AquaLogic Service Bus business service definitions do not support custom token 
authentication. If you import a service from UDDI that has client-auth equal to 
CUSTOM-TOKEN, the service is imported as if it does not have any authentication 
configuration.

http://e-docs.bea.com/alsb/docs30/userguide/uddi.html#wp1072478
http://e-docs.bea.com/alsb/docs30/userguide/
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyservices.html


Unders tand ing  Message-Leve l  Cus tom Authent i cat ion

BEA AquaLogic Service Bus Security Guide 5-5

Understanding Message-Level Custom Authentication
AquaLogic Service Bus supports client-specified custom authentication credentials for proxy 
service message-level requests. The custom authentication credentials can be in the form of a 
custom token, or a username and password.  

AquaLogic Service Bus accepts and attempts to authenticate a custom token passed to a proxy 
service in a SOAP header (for SOAP-based proxy services), or in the payload (for non-SOAP 
proxy services).  You use the proxy service configuration wizard to configure the proxy service 
with the mechanism by which the token is passed, and the token type. 

AquaLogic Service Bus also accepts and attempts to authenticate a username and password token 
passed in a SOAP header (for SOAP based proxy services), or in the payload for non-SOAP 
proxy services. You use the proxy service configuration wizard to configure the proxy service 
with the mechanism by which the username and password are passed. 

The following proxy service message-level authentication mechanisms are now supported:

For SOAP-based proxy services

– Custom token in a SOAP header 

– Username/password in a SOAP header 

For non-SOAP-based proxy services

– Custom token in the payload of any XML-based proxy services

– Username/password in the payload of any XML-based proxy services

Message-level custom tokens and message-level username and password are supported on proxy 
services of the following binding types:

WSDL-SOAP

WSDL-XML

Abstract SOAP

Abstract XML

Mixed – XML (in the request)

Mixed – MFL (in the request)



Conf igur ing  Custom Authent ica t i on

5-6 BEA AquaLogic Service Bus Security Guide

Format of XPath Expressions
The configuration for both custom username/password and custom token is similar. In both cases, 
you specify XPath expressions that enable AquaLogic Service Bus to locate the necessary 
information. The root of these XPath expressions is as follows:

Use soap-env:Envelope/soap-env:Header if the service binding is anySOAP or 
WSDL-SOAP.

Use soap-env:Body (specifically, the contents of the $body variable) if the service 
binding is not SOAP based.

Note: All XPath expressions must be in a valid XPath 2.0 format. The XPath expressions must 
use the XPath “declare namespace” syntax to declare any namespaces used, as follows:
declare namespace 
ns='http://webservices.mycompany.com/MyExampleService';

For example, 
declare namespace y="http://foo";./y:my-custom-token/text()

Configuring Identity Assertion Providers for Custom 
Tokens

An Identity Assertion provider is a specific form of Authentication provider that allows users or 
system processes to assert their identity using tokens. A client's identity is established through the 
use of client-supplied tokens. The Identity Assertion provider validates the token. If the token is 
successfully validated, the Identity Assertion provider maps the token to an AquaLogic Service 
Bus username, and returns the username. Identity is said to be "asserted" when the token is  
mapped to the username. AquaLogic Service Bus then uses this user name to establish a security 
context for the client.

If you want the proxy service to consume a custom token, check the provided WebLogic Server 
Identity Assertion providers to see if one meets your needs. WebLogic Server includes a broad 
array of Identity Assertion providers, including the following: 

The WebLogic Identity Assertion provider validates X.509 and IIOP-CSIv2 tokens and 
optionally can use a user name mapper to map that token to a user. 

The SAML Identity Assertion provider, which acts as a consumer of SAML security 
assertions. 



Conf igur ing  Ident i t y  Asser t i on  P rov iders  fo r  Custom Tokens

BEA AquaLogic Service Bus Security Guide 5-7

If you want the AquaLogic Service Bus proxy service to consume a custom token that is not 
handled by one of the bundled Identity Assertion providers, for example a secure-token-xyz 
token, you (or a third-party) must first write a WebLogic Server Identity Assertion provider that 
supports the token type and use the WebLogic Server Administration Console to add that 
provider to the security realm. 

You develop Identity Assertion providers to support the specific types of custom tokens that you 
will be using to assert the identities of users. You can develop an Identity Assertion provider to 
support multiple token types. While you can have multiple Identity Assertion providers in a 
security realm with the ability to validate the same token type, only one Identity Assertion 
provider can actually perform this validation. 

The Identity Assertion process is shown in Figure 5-1, and works as follows: 

1. The proxy service gets the authentication token from the inbound request.

2. The token is passed to an Identity Assertion provider that is responsible for validating tokens 
of that type and that is configured as "active." 

3. The Identity Assertion provider validates the token. 

4. If the token is successfully validated, the Identity Assertion provider maps the token to a 
username, and returns the username. 

5. AquaLogic Service Bus then continues the authentication process with this username and, if 
successful, obtains the authenticated subject.  

6. AquaLogic Service Bus creates the security context. The security context established by 
authenticating a custom token or username and password can be used as the basis for 
outbound credential mapping and access control.

See Identity Assertion and Tokens in Understanding WebLogic Security for additional 
information.

Figure 5-1  Identity Assertion and Custom Tokens

http://e-docs.bea.com/wls/docs100/secintro/concepts.html#wp1122534


Conf igur ing  Custom Authent ica t i on

5-8 BEA AquaLogic Service Bus Security Guide

Object Type of Custom Tokens
For transport-level identity assertion, the header value is passed as a java.lang.String to the 
identity assertion providers. For message-level identity assertion, the XPath expression is 
evaluated as follows: 

If the XPath expression returns multiple nodes, an error is raised and identity assertion is 
not called. 

If the XPath expression returns an empty result, identity assertion is called with a null 
argument. 

If the XPath expression returns a single token of type TEXT or ATTR (See 
XmlCursor.TokenType at 
http://xmlbeans.apache.org/docs/2.0.0/reference/org/apache/xmlbeans/XmlCursor.TokenTyp
e.html), the string value of the text node or attribute is passed (as returned by 
XmlCursor.getStringValue()). Otherwise, a single XmlObject is passed.

Configuring a Custom Token Type in an Identity Assertion 
Provider
The steps required to complete these tasks are described in detail in the following WebLogic 
Server documents: 

http://xmlbeans.apache.org/docs/2.0.0/reference/org/apache/xmlbeans/XmlCursor.TokenType.html
http://xmlbeans.apache.org/docs/2.0.0/reference/org/apache/xmlbeans/XmlCursor.TokenType.html


Conf igur ing  Ident i t y  Asser t i on  P rov iders  fo r  Custom Tokens

BEA AquaLogic Service Bus Security Guide 5-9

Developing Security Providers for WebLogic Server describes how to create custom token 
types for an Identity Assertion provider in How to Create New Token Types. 

Securing WebLogic Server describes how to configure Identity Assertion providers in the 
WebLogic Server Administration Console. 

For your convenience, the steps for creating custom token types for an Identity Assertion provider 
and configuring that provider in the WebLogic Server Administration Console are briefly listed 
here. However, you will need to consult the WebLogic Server documentation to actually 
complete the tasks. 

Steps for Configuring a Custom Token Type in an Identity Assertion Provider
You can develop a custom Identity Assertion provider by following these steps: 

1. Create the New Token Types

2. Create Runtime Classes Using the Appropriate SSPIs. Listing 5-4 from that section shows the 
SampleIdentityAsserterProviderImpl.java class, which is the runtime class for the 
sample Identity Assertion provider. 

3. Generate an MBean Type Using the WebLogic MBeanMaker. 

4. Configure the Custom Identity Assertion Provider Using the Administration Console. 

5. Define the active token type. For this task, see Configuring Identity Assertion Providers and 
How to Make New Token Types Available for Identity Assertion Provider Configurations. 

Setting the Supported and Active Types in the MBean
When you configure a custom Identity Assertion provider (see Configure the Custom Identity 
Assertion Provider Using the Administration Console), the Supported Types field displays a list 
of the token types that the Identity Assertion provider supports. You enter zero or more of the 
supported types in the Active Types field, as shown in Figure 5-1 from that section. 

The content for the Supported Types field is obtained from the SupportedTypes attribute of the 
MBean Definition File (MDF), which you use to generate your custom Identity Assertion 
provider's MBean type. An example from the sample Identity Assertion provider is shown in 
Listing 5-1. (For more information about MDFs and MBean types, see Generate an MBean Type 
Using the WebLogic MBeanMaker.) 

http://e-docs.bea.com/wls/docs100/dvspisec/intro_roadmap.html
http://e-docs.bea.com/wls/docs100/dvspisec/ia.html#wp1155765
http://e-docs.bea.com/wls/docs100/secmanage/index.html
http://e-docs.bea.com/wls/docs100/secmanage/atn.html#wp1199153
http://e-docs.bea.com/wls/docs100/dvspisec/ia.html#wp1155765
http://e-docs.bea.com/wls/docs100/dvspisec/ia.html#wp1108989
http://e-docs.bea.com/wls/docs100/dvspisec/ia.html#wp1161363
http://e-docs.bea.com/wls/docs100/dvspisec/ia.html#wp1163995
http://e-docs.bea.com/wls/docs100/dvspisec/ia.html#wp1164189
http://e-docs.bea.com/wls/docs100/secmanage/atn.html#wp1199153
http://e-docs.bea.com/wls/docs100/dvspisec/ia.html#wp1155776
http://e-docs.bea.com/wls/docs100/dvspisec/ia.html#wp1164189
http://e-docs.bea.com/wls/docs100/dvspisec/ia.html#wp1164189
http://e-docs.bea.com/wls/docs100/dvspisec/ia.html#wp1155784
http://e-docs.bea.com/wls/docs100/dvspisec/ia.html#wp1163995
http://e-docs.bea.com/wls/docs100/dvspisec/ia.html#wp1163995


Conf igur ing  Custom Authent ica t i on

5-10 BEA AquaLogic Service Bus Security Guide

Listing 5-1   SampleIdentityAsserter MDF: SupportedTypes Attribute 

<MBeanType>

...   

<MBeanAttribute 

Name = "SupportedTypes" 

Type = "java.lang.String[]"

Writeable = "false"

Default = "new String[] {&quot;SamplePerimeterAtnToken&quot;}"

/>

...

</MBeanType>

Similarly, the content for the Active Types field is obtained from the ActiveTypes attribute of 
the MBean Definition File (MDF). You can default the ActiveTypes attribute in the MDF so that 
it does not have to be set manually with the WebLogic Server Administration Console. An 
example from the sample Identity Assertion provider is shown in Listing 5-2. 

Listing 5-2   SampleIdentityAsserter MDF: ActiveTypes Attribute with Default 

<MBeanAttribute

Name= "ActiveTypes"

Type= "java.lang.String[]"

Default = "new String[] { &quot;SamplePerimeterAtnToken&quot; }"

/>

While defaulting the ActiveTypes attribute is convenient, you should only do this if no other 
Identity Assertion provider will ever validate that token type. Otherwise, it would be easy to 
configure an invalid security realm (where more than one Identity Assertion provider attempts to 
validate the same token type). Best practice dictates that all MDFs for Identity Assertion 
providers turn off the token type by default; then an administrator can manually make the token 
type active by configuring the Identity Assertion provider that validates it. 



Conf igu r ing  Custom Authent i cat ion  T ranspor t -Leve l  Secur i t y

BEA AquaLogic Service Bus Security Guide 5-11

Configuring Custom Authentication Transport-Level 
Security

You ultimately use the Service Bus Console to configure custom authentication for 
transport-level security, as described on the Protocol-Dependent Transport Configuration page. 
However, before you get to this step of the process, you must first configure, or potentially create 
and configure, an Identity Assertion provider that understands the token type you plan to use.

The steps required to complete these tasks are described in detail in the following WebLogic 
Server documents: 

If one of the bundled Identity Assertion providers meets your needs, see Configure Identity 
Assertion providers for instructions on how to configure this Identity Assertion provider in 
the WebLogic Server Administration Console. 

Developing Security Providers for WebLogic Server describes how to create custom token 
types for an Identity Assertion provider in How to Create New Token Types. 

Securing WebLogic Server describes how to configure Identity Assertion providers in the 
WebLogic Server Administration Console. 

Steps for Configuring Custom Authentication 
Transport-Level Security
The steps for configuring custom authentication transport-level security are as follows: 

1. Determine which custom token format you will be using.

2. Determine if an existing provider meets your needs. Choosing an Authentication Provider 
offers guidance on this task. 

3. Configure, or create and configure, an Identity Assertion provider that supports the token 
format. 

4. The Identity Assertion provider maps the token to a username. Add the client’s username to 
the AquaLogic Service Bus Security Configuration module.

5. On the Protocol-Dependent Transport Configuration page, specify the Authentication 
Header where AquaLogic Service Bus is to find the token and the Authentication Token 
Type. Only those token types that are currently active for a configured Identity Assertion 
provider are displayed. 

http://e-docs.bea.com/wls/docs100/secmanage/atn.html#wp1199153
http://e-docs.bea.com/wls/docs100/secmanage/atn.html#wp1199153
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyservices.html#wp1099151
http://e-docs.bea.com/wls/docs100/dvspisec/intro_roadmap.html
http://e-docs.bea.com/wls/docs100/dvspisec/ia.html#wp1155765
http://e-docs.bea.com/wls/docs100/secmanage/index.html
http://e-docs.bea.com/wls/docs100/secmanage/atn.html#wp1199153
http://e-docs.bea.com/wls/docs100/secmanage/atn.html#wp1198872
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyservices.html#wp1099151


Conf igur ing  Custom Authent ica t i on

5-12 BEA AquaLogic Service Bus Security Guide

Configuring Custom Authentication Message-Level 
Security

You ultimately use the Service Bus Console to configure custom authentication message-level 
security, as described on the Security tab. However, before you get to this step of the process, you 
must first configure, or potentially create and configure, an Authentication provider or Identity 
Assertion provider that understands the token type you plan to use.

The steps required to complete these tasks are described in detail in the following WebLogic 
Server documents: 

If one of the bundled Authentication or Identity Assertion providers meets your needs, see 
Configuring Authentication Providers for instructions on how to configure this 
Authentication provider in the WebLogic Server Administration Console. 

Developing Security Providers for WebLogic Server describes how to create custom token 
types for an Identity Assertion provider in How to Create New Token Types. 

Securing WebLogic Server describes how to configure Identity Assertion providers in the 
WebLogic Server Administration Console. 

Steps for Configuring Custom Authentication 
Message-Level Security
The steps for configuring custom authentication message-level security are as follows: 

1. Determine which custom username/password or token format you will be using.

2. Determine if an existing provider meets your needs. Choosing an Authentication Provider 
offers guidance on this task. 

If you specify any Context Properties you will probably need to create your own provider 
because the provider must know which property names to expect. 

3. Configure, or create and configure, an authentication provider or identity assertion provider 
that supports the username/password or token format, respectively. This provider must also 
understand any Context Properties that you want to provide. 

4. Add the client’s user name to the AquaLogic Service Bus Security Configuration module.

5. On the Security tab, configure a new or existing proxy service for the User Name XPath, 
User Password XPath, or Token Type and Token Path, as appropriate. 

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyservices.html#wp1254381
http://e-docs.bea.com/wls/docs100/secmanage/atn.html
http://e-docs.bea.com/wls/docs100/dvspisec/intro_roadmap.html
http://e-docs.bea.com/wls/docs100/dvspisec/ia.html#wp1155765
http://e-docs.bea.com/wls/docs100/secmanage/index.html
http://e-docs.bea.com/wls/docs100/secmanage/atn.html#wp1199153
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyservices.html#wp1254381
http://e-docs.bea.com/wls/docs100/secmanage/atn.html#wp1198872


Propagat ing  the  Ident i t y  Obta ined  F rom Custom Authent icat ion  Tokens

BEA AquaLogic Service Bus Security Guide 5-13

6. Specify the Property Name and Value Selector of any Context Properties that you want to 
provide. 

Propagating the Identity Obtained From Custom 
Authentication Tokens

The security context established via a custom token or custom username/password is in no way 
unique, and you can use it for credential mapping. If you implement both transport-level 
authentication and message-level authentication, the message-level security context is always 
used for credential mapping and identity propagation.

For example, if the proxy service authenticates the client via a secure-token-xyz token in a SOAP 
header, the authenticated subject is used during any mapped service account lookup. The subject 
is also used when generating SAML tokens on outbound messages. Java callouts can also run 
under the authentication context associated with a custom token or custom username/password.

If a custom username/password is used, the username/password in the custom token can be used 
for outbound HTTP BASIC or outbound WS-Security Username Token authentication if a 
pass-through service account is used.

Combining WS-Security with Custom 
Username/Password and Tokens

You can secure AquaLogic Service Bus proxy services with either transport-level security (for 
example, HTTPS) and message-level security (for example, WS-Security and custom tokens), or 
a combination of both. That is, you can configure an AquaLogic Service Bus proxy service with 
both transport-level authentication and message-level authentication.

For example, client requests can be authenticated at the transport level with custom tokens in 
HTTP headers, and at the message level with WSS security tokens, custom tokens, or 
username/passwords, except in the Web Services Security header.

However, note the following restriction: Although it is possible to combine WS-Security and 
message-level custom tokens, the WS-Security policy must not require proxy service 
authentication based on WS-Security tokens. Message-level custom tokens and WS-Security 
proxy service authentication are mutually exclusive. 

Consider the following distinction:



Conf igur ing  Custom Authent ica t i on

5-14 BEA AquaLogic Service Bus Security Guide

It is allowable to configure a proxy service that expects a custom token of type MyToken in 
SOAP header <foo:MyToken> and that has a WS-Security policy that requires signing or 
encryption of some message parts (for example, the <foo:MyToken> header and SOAP 
body). 

It is not allowable to configure a proxy service that requires a custom token in header 
<foo:MyToken> and that also has a WS-Security policy that requires a SAML token or 
any other form of authentication.



BEA AquaLogic Service Bus Security Guide 6-1

C H A P T E R 6

Using WS-Policy in ALSB Proxy and 
Business Services

To express the message-level security requirements for a proxy service or business service that 
is a Web service, you use the Web Services Policy (WS-Policy) framework. 

This chapter describes conceptual information that you will need in the next chapter, 
“Configuring Message-Level Security for Web Services” on page 7-1. 

The following sections describe configuring WS-Policy for proxy services and business services:

“About Web Services Policy” on page 6-1

“AquaLogic Service Bus WS-Policy Files” on page 6-5

“Creating and Using Custom WS-Policy Statements” on page 6-8

“Attaching WS-Policy Statements to WSDL Documents” on page 6-9

“BEA-Proprietary Security Policy Best Practices” on page 6-15

“Policy Subjects and Effective Policy” on page 6-17

About Web Services Policy
Web Services Policy (WS-Policy) is a standards-based framework for defining a Web service’s 
constraints and requirements. It expresses constraints and requirements in a collection of XML 
statements called policies, each of which contains one or more assertions. 



Using  WS-Po l i cy  in  ALSB Proxy  and  Bus iness  Serv ices

6-2 BEA AquaLogic Service Bus Security Guide

In AquaLogic Service Bus, WS-Policy assertions are used to specify a Web service’s 
requirements for digital signatures and encryption, along with the security algorithms and 
authentication mechanisms that it requires. 

The WS-Policy framework allows other specifications to declare "policy assertions." These are 
domain-specific XML elements that appear inside a <policy> element. Policy assertions 
specifications describe the syntax and semantics of these domain-specific assertions.

WS-SecurityPolicy is one example of a domain-specific assertion language. The 
WS-SecurityPolicy specification defines a set of security policy assertions for use with the 
WS-Policy framework.

WS-ReliableMessaging is another example of a domain-specific assertion language; it defines 
assertions for declaring reliable-messaging policy.

Relationship Between WS-Security and WS-Policy
Web Services Security (WS-Security) works in conjunction with the Web Services Policy 
Framework (WS-Policy), and it is important that you understand what these terms mean and how 
they relate:

Web Services Security (WS-Security) is an OASIS standard that defines interoperable 
mechanisms to incorporate message-level security into SOAP messages. WS-Security 
determines “how” message-level security is incorporated into SOAP messages.

WS-Security supports message integrity and message confidentiality. It also defines an 
extensible model for including security tokens in a SOAP envelope and a model for 
referencing security tokens from within a SOAP envelope. WS-Security allows you to 
specify which parts of a SOAP message are digitally signed or encrypted.

The Web Services Policy Framework (WS-Policy) provides a general-purpose model and 
corresponding syntax to describe and communicate the policies of a Web service. 
WS-Policy is an abstract XML framework. The interesting aspects of a WS-Policy are 
defined in child elements called policy “assertions.”

WS-SecurityPolicy defines assertions for specifying the security aspects of a WS-Policy. 
WS-SecurityPolicy determines "what" message-level security is required of SOAP 
messages. 

The policies can determine which operations are secured and which security measures a 
Web services client must apply. 



About  Web  Serv i ces  Po l i cy

BEA AquaLogic Service Bus Security Guide 6-3

When you configure the WS-Policy of a proxy or business service, if the WS-Policy contains one 
or more security policy assertions, then the proxy service or business service is considered to be 
WS-Security enabled. 

Supported Web Services Security Policy Assertions
Previous releases of ALSB, released before the formulation of the WS-SecurityPolicy 1.2 
specification, used security policy assertions written under the WS-Policy specification, using a 
proprietary BEA schema for security policy. As of release 3.0, ALSB has limited support for 
policies that conform to the WS-SecurityPolicy 1.2 specification (for the WS transport only), and 
the files written under the BEA web services security policy schema first included in WebLogic 
Server 9. 

The WebLogic Server-proprietary format is based on the assertions described in the December 
18, 2002 version of the Web Services Security Policy Language (WS-SecurityPolicy) 
specification. The syntax and usage of these AquaLogic Service Bus security assertions differ 
from the WS-Policy specification, but the assertions are similar in meaning and are fully 
compatible with security assertions used in WebLogic Server 9.0 and 9.1 Web services.

WARNING: WS-SecurityPolicy 1.2 policy files and BEA proprietary Web Services security 
policy schema files are not mutually compatible; you cannot define both types of 
policy file in the same Web Service. This is true whether the policies are attached 
to the WSDL or bound directly to the service. 

ALSB service validation enforces this rule and a conflict is generated if a service 
has a mix of these two types of WS-SecurityPolicy.

WS-Policies Can be Bound Directly to Service
As in prior releases of ALSB, WS-Policy policies can be included directly in a WSDL document 
or included by reference, and a WSDL document may import other WSDL documents that 
contain or refer to WS-Policy policies. An XML file that contains these policies can be used by 
multiple proxy services or business services.

In addition, as of ALSB 3.0 there is an alternative way to bind WS-Policy to services. The new 
Policies console page allows you to bind policies directly to a service. Policies can be bound to 
different scopes:

The entire service

A service operation

http://e-docs.bea.com/alsb/docs30/consolehelp/policies.html


Using  WS-Po l i cy  in  ALSB Proxy  and  Bus iness  Serv ices

6-4 BEA AquaLogic Service Bus Security Guide

The request message of a service operation

The response message of a service operation

If a policy is bound to the entire service, it applies to all operations in the service and all request 
and response messages of all operations. If a policy is bound to an operation, the policy applies 
to the request and response message of that operation.

Any number of policies can be bound on any given scope.

For the purpose of example, assume there is a service S with operations A, B, C and D, where A, 
B and C are request/response operations and D is a request-only operation. An administrator can 
configure the following ws-policy bindings:

Policy X bound to the entire service S,

Policies Y and Z on operation A

Policies Y and Z on operation B

Policy P on the request message of operation C

Policy Q on the response message of operation C

Policy R on the request message of operation D

In this example: 

The effective policy of the request/response messages of operations A and B is the union 
of policies X, Y and Z. 

The effective policy on the request message of operation C is the union of X and P. The 
effective policy on the response message of operation C is the union of X and Q. 

The effective policy on the request message of operation D is the union of X and R.

Abstract and Concrete WS-Policy Statements
For security policy assertions written under the WS-Policy specification (using the proprietary 
BEA schema for security policy), the WebLogic Web Services runtime environment recognizes 
two types of WS-Policy statements: 

Concrete WS-Policy statements specify the security tokens that are used for 
authentication, encryption, and digital signatures. A concrete encryption policy always has 
the server's encryption certificate embedded in the form of a base-64 encoded certificate in 
an X.509 binary security token.



AquaLog ic  Se rv ice  Bus  WS-Po l i c y  F i l es

BEA AquaLogic Service Bus Security Guide 6-5

You can create concrete WS-Policy statements if you know at design time the type of 
authentication (such as using X.509 or SAML tokens) that you want to require.

Abstract WS-Policy statements do not specify security tokens. Specifically, this means the 
<Identity> and <Integrity> elements (or assertions) of the WS-Policy files do not 
contain a <SupportedTokens><SecurityToken> child element, and the 
<Confidentiality> element WS-Policy file does not contain a 
<KeyInfo><SecurityToken> child element.

The AquaLogic Service Bus runtime environment determines which security token types 
an abstract policy will accept.

AquaLogic Service Bus WS-Policy Files
AquaLogic Service Bus includes a set of out-of-the-box WS-Policy files that you can use. (The 
AquaLogic Service Bus policy files are a subset of the policy files that WebLogic Server 
provides.) To see the contents of these XML files, see BEA Web Services Security Policy Files.

The policy statements are of three types: 

WS-Security Policy 1.2 assertions 

BEA security policy assertions 

Reliable-messaging assertions 

The predefined policy files are described in the sections that follow.

Predefined WS-Security Policy 1.2 Policy Files
As a general rule, ALSB 3.0 does not support WS-Security Policy (WSSP) 1.2 assertions. The 
exception to this rule is the WS transport. The WS transport endpoints can have WSSP 1.2 
policies, but only if they contain transport-level assertions only. WSSP 1.2 policies with 
message-level encryption or digital signature assertions are not allowed in ALSB 3.0.

The following WS-SecurityPolicy 1.2 predefined transport-level policy files are available:

– Wssp1.2-Https-BasicAuth.xml — One way SSL with Basic Authentication. A 401 
challenge occurs if the Authorization header is not present in the request. 

–  Wssp1.2-Https-ClientCertReq.xml — Two way SSL. The recipient checks for the 
initiator's public certificate. Note that the client certificate can be used for 
authentication. 

–  Wssp1.2-Https.xml — One way SSL. 

http://e-docs.bea.com/wls/docs100/webserv_sec/message.html#wp248734


Using  WS-Po l i cy  in  ALSB Proxy  and  Bus iness  Serv ices

6-6 BEA AquaLogic Service Bus Security Guide

Predefined BEA Proprietary Policy Files
The following BEA proprietary predefined policy files are available:

Auth.xml—contains a policy that requires Web service clients to authenticate. BEA 
recommends that you do not use the Auth.xml policy file: use the Sign.xml and 
Encrypt.xml policies whenever possible.

Encrypt.xml—contains a policy that requires clients to encrypt the SOAP body with 
3DES-CBC. The key wrapping algorithm is RSA 1.5. A symmetric key for Triple DES 
(Data Encryption Standard) is generated by the client and encrypted for the recipient with 
RSA 1.5.

You cannot use this policy with a business service. Instead, create your own concrete 
encryption policy. See “Creating and Using Custom WS-Policy Statements” on page 6-8.

Sign.xml—contains a policy that requires clients to sign the SOAP body. It also requires 
that the WS-Security engine on the client add a signed timestamp to the wsse:Security 
header—which prevents certain replay attacks. All system headers are also signed. The 
digital signature algorithm is RSA-SHA1. Exclusive XML canonicalization is used. 

The system headers are:

– wsrm:SequenceAcknowledgement 

– wsrm:AckRequested 

– wsrm:Sequence 

– wsa:Action 

– wsa:From 

– wsa:To 

– wsa:FaultTo 

– wsa:MessageID 

– wsa:RelatesTo 

– wsa:ReplyTo 

– wsu:Timestamp 

– wsax:SetCookie 

The name space prefixes correspond to the name spaces in the following table:



AquaLog ic  Se rv ice  Bus  WS-Po l i c y  F i l es

BEA AquaLogic Service Bus Security Guide 6-7

Predefined Reliable Messaging Policy Files
As described in Use of WS-Policy Files for Web Service Reliable Messaging Configuration, 
WebLogic Web Services use WS-Policy files to enable a destination endpoint to describe and 
advertise its Web Service reliable messaging capabilities and requirements. These WS-Policy 
files are XML files that describe features such as the version of the supported 
WS-ReliableMessaging specification, the source endpoint's retransmission interval, the 
destination endpoint's acknowledgment interval, and so on. 

ALSB includes two simple reliable messaging WS-Policy files that you can use (only with the 
WS-RM transport) if you do not want to create your own WS-Policy files: 

DefaultReliability.xml—Specifies typical values for the reliable messaging policy 
assertions, such as inactivity timeout of 10 minutes, acknowledgement interval of 200 
milliseconds, and base retransmisstion interval of 3 seconds. See DefaultReliability.xml 
WS-Policy File for the actual WS-Policy file. 

LongRunningReliability.xml—Similar to the preceding default reliable messaging 
WS-Policy file, except that it specifies a much longer activity timeout interval (24 hours.) 
See LongRunningReliability.xml WS-Policy File for the actual WS-Policy file. 

When to use the Predefined Policy Files
BEA recommends that you use these pre-packaged policies whenever possible. However, you 
cannot use them under the following conditions:

Use transport-level policies only where message-level security is not required. 

If you need to specify that particular parts of the body of a SOAP message are encrypted or 
digitally signed, rather than the entire body, you cannot use the AquaLogic Service Bus 
WS-Policy statements. 

Prefix Name Space

wsrm http://schemas.xmlsoap.org/ws/2005/02/rm

wsa http://schemas.xmlsoap.org/ws/2004/08/addressing

wsu http://schemas.xmlsoap.org/ws/2002/07/utility

wsax http://schemas.xmlsoap.org/ws/2004/01/addressingx

http://e-docs.bea.com/wls/docs100/webserv_adv/rm.html#wp221890
http://e-docs.bea.com/wls/docs100/webserv_adv/rm.html#wp225631
http://e-docs.bea.com/wls/docs100/webserv_adv/rm.html#wp225631
http://e-docs.bea.com/wls/docs100/webserv_adv/rm.html#wp225632


Using  WS-Po l i cy  in  ALSB Proxy  and  Bus iness  Serv ices

6-8 BEA AquaLogic Service Bus Security Guide

Instead, create custom WS-Policy statements. See “Example: Encrypting Part of the SOAP 
Body and Header” on page 7-10.

If you require clients to provide SAML tokens, you cannot use the AquaLogic Service Bus 
WS-Policy statements. WS-Policy statements that require SAML tokens must specify the 
confirmationMethod and therefore must be concrete. 

If you want a business service to require encryption, you cannot use the AquaLogic 
Service Bus Encrypt.xml policy. Business services require concrete encryption policies (the 
certificate must be embedded in the policy).

For information on using these policies in your proxy services or business services, see 
“Attaching WS-Policy Statements to WSDL Documents” on page 6-9.

Creating and Using Custom WS-Policy Statements
If the AquaLogic Service Bus WS-Policy packaged policy files do not meet your security needs, 
you can write your own WS-Policy statements. You cannot modify the AquaLogic Service Bus 
WS-Policy statements.

You can write custom WS-Policy statements directly in your Web service’s WSDL document. 
Or, if you want to reuse your statements in multiple Web services, write them in a separate XML 
file and then:

Import them to AquaLogic Service Bus and refer to them from the WSDL documents. 

Directly bind them to a service

Note the following restrictions for WS-Policy statements in AquaLogic Service Bus:

Security policy files written under the WS-Policy specification using the proprietary BEA 
schema for security policy are required to have an Id attribute from the following name 
space:
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-util
ity-1.0.xsd 

The value of this attribute must be unique across all WS-Policy statements in the 
AquaLogic Service Bus domain. This attribute is optional in the WS-Policy schema but 
required in an AquaLogic Service Bus Web service.

If you create a confidentiality assertion in a proxy service, it must be abstract (the 
certificate must not be embedded in the policy). You will get error messages while creating 
a proxy service that contains a concrete confidentiality assertion. 



Attach ing  WS-Po l i c y  S tatements  to  WSDL  Documents

BEA AquaLogic Service Bus Security Guide 6-9

If you create a confidentiality assertion in a business service, it must be concrete (the 
certificate must be embedded in the policy) and it must be located directly in the WSDL 
document. You cannot attach such a policy by reference. See “Example: Encryption Policy 
for a Business Service” on page 7-13.

Custom WS-SecurityPolicy 1.2 Policy Statements
Note: As a general rule, ALSB 3.0 does not support WS-Security Policy (WSSP) 1.2 assertions. 

The exception to this rule is the WS transport. 

For WS-SecurityPolicy 1.2 policy statements, your custom policy file needs to comply with the 
standard format and assertions defined in WS-SecurityPolicy 1.2. Note, however, that release 
10.0 of WebLogic Server (used with version 3.0 of ALSB) does not completely implement 
WS-SecurityPolicy 1.2. For more information, see Unsupported WS-SecurityPolicy 1.2 
Assertions. The root element of your WS-SecurityPolicy file must be <Policy> and include the 
following namespace declarations: 

<wsp:Policy 

xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"  

xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512"

>

You can also use the pre-packaged WS-SecurityPolicy files as templates to create your own 
custom files. See Using WS-SecurityPolicy 1.2 Policy Files. 

Attaching WS-Policy Statements to WSDL Documents
AquaLogic Service Bus implements the WS-Policy Attachment specification 
(http://www.w3.org/Submission/WS-PolicyAttachment/), which defines the mechanisms for 
associating WS-Policy statements with Web services.

To attach WS-Policy statements to a WSDL document for a Web service:

1. If you created a custom WS-Policy in a separate XML file, add the custom WS-Policy file as 
a resource in the AquaLogic Service Bus domain. See “Adding a Custom WS-Policy” under 
Custom WS-Policies in Using the AquaLogic Service Bus Console.

2. In the <definitions> element of the WSDL document, add the following child element:
<wsp:UsingPolicy

wsdl:Required="true"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/> 

http://e-docs.bea.com/wls/docs100/webserv_sec/message.html#wp243698
http://e-docs.bea.com/alsb/docs30/consolehelp/policies.html
http://www.w3.org/Submission/WS-PolicyAttachment/
http://e-docs.bea.com/wls/docs100/webserv_sec/message.html#wp248736
http://e-docs.bea.com/wls/docs100/webserv_sec/message.html#wp248736


Using  WS-Po l i cy  in  ALSB Proxy  and  Bus iness  Serv ices

6-10 BEA AquaLogic Service Bus Security Guide

The wsdl:required="true" attribute ensures that proxy services and business services 
are capable of processing the policy attachments.

If you do not add this element, AquaLogic Service Bus ignores any WS-Policy statements 
in the WSDL.

3. Within each element in the WSDL document that you want to secure:

a. Determine the URI of the WS-Policy statements that you want to use. See “Determining 
the URI of a WS-Policy Statement” on page 6-10.

b. Specify the URI in the WSDL document. See “Specifying the URI of a WS-Policy 
Statement in a WSDL Document” on page 6-10.

Determining the URI of a WS-Policy Statement
For the AquaLogic Service Bus WS-Policy statements, the URIs are always as follows:

policy:Auth.xml 

policy:Encrypt.xml 

policy:Sign.xml 

For WS-Policy statements that are located directly in the WSDL document, the URI is as follows:
#policy-ID 
where policy-ID is the value of the policy’s wsu:ID attribute. See Listing 6-2.

For WS-Policy statements that you created in a separate XML file and added as resources to 
AquaLogic Service Bus, the URI is as follows:
policy:policy-ID 
where policy-ID is the value of the policy’s wsu:ID attribute (which you specified in the 
policy’s XML file).

You can also use UDDI to attach WS-Policy statements to a WSDL document, in which case the 
URI is expressed differently. For more information, see the WS-Policy Attachment specification 
(http://www.w3.org/Submission/WS-PolicyAttachment/).

Specifying the URI of a WS-Policy Statement in a WSDL 
Document
Use one of the following techniques to specify the URI in a WSDL document: 

PolicyURIs attribute

http://www.w3.org/Submission/WS-PolicyAttachment/


Attach ing  WS-Po l i c y  S tatements  to  WSDL  Documents

BEA AquaLogic Service Bus Security Guide 6-11

If the WSDL schema (described in http://www.w3.org/TR/wsdl) allows attribute 
extensibility for the element that you want secure, add the PolicyURIs global attribute to 
the element.

For the value of this element, specify a list of URIs, each of which refers to a single policy.  

For example: 
<input message="tns:foo" wsp:PolicyURIs="policy:Sign.xml"/> 

Nested <Policy> element

If the WSDL schema allows element extensibility for the element that you want to secure, 
add <Policy> as a global child element. For each WS-Policy that you want to use, add 
one <PolicyReference> element as a child of the <Policy> element.

For each <PolicyReference> element, include a URI attribute that refers to a single 
policy. You can also include a digest and digest algorithm in the element.

For example:
<wsp:Policy>

<wsp:PolicyReference URI="policy:Sign.xml"/> 
</wsp:Policy> 

Table 6-1 lists the XPath name of WSDL elements and the technique that you use to specify the 
URI of the WS-Policy statement. The table also indicates the WSDL elements for which 
AquaLogic Service Bus does not support the attachment of WS-Policy statements. 

Table 6-1  WSDL Elements That Can Be Protected in AquaLogic Service Bus

To Attach a Policy to This WSDL Element... Use This Technique...

/definitions/message Nested <Policy> element 

/definitions/message/part PolicyURIs attribute

/definitions/portType PolicyURIs attribute

/definitions/portType/operation Nested <Policy> element

/definitions/portType/operation/input PolicyURIs attribute

/definitions/portType/operation/output PolicyURIs attribute

/definitions/portType/operation/fault AquaLogic Service Bus does not support 
attaching WS-Policy statements to this 
element 

http://www.w3.org/TR/wsdl


Using  WS-Po l i cy  in  ALSB Proxy  and  Bus iness  Serv ices

6-12 BEA AquaLogic Service Bus Security Guide

Best Practices: Attaching WS-Policy Statements
BEA recommends that you attach WS-Policy statements to any of the following elements or its 
descendants:

portType 

binding 

BEA recommends that you do not attach WS-Policy statements to the following elements:

service 

port 

message or message/part

/definitions/binding Nested <Policy> element

/definitions/binding/operation Nested <Policy> element

/definitions/binding/operation/input Nested <Policy> element

/definitions/binding/operation/output Nested <Policy> element

/definitions/binding/operation/fault AquaLogic Service Bus does not support 
attaching WS-Policy statements to this 
element 

/definitions/binding/service AquaLogic Service Bus does not support 
attaching WS-Policy statements to this 
element 

/definitions/service/port Nested <Policy> element

Table 6-1  WSDL Elements That Can Be Protected in AquaLogic Service Bus

To Attach a Policy to This WSDL Element... Use This Technique...



Attach ing  WS-Po l i c y  S tatements  to  WSDL  Documents

BEA AquaLogic Service Bus Security Guide 6-13

Example: Requiring X.509 Credentials for Identity and 
Confidentiality
If a WS-Policy statement requires an X.509 token for authentication, it must also require a digital 
signature. An X.509 token cannot satisfy an identity assertion unless the client also signs some 
content with the corresponding private key.

To create a proxy service that requires clients to use X.509 certificates for authentication and 
digital signatures, you can do the following:

1. In the WSDL document that you will use to create a proxy service, attach the AquaLogic 
Service Bus policies that are in the Sign.xml and Auth.xml files. See Listing 6-1.

2. Configure the proxy service to use a service key provider that contains an X.509 certificate 
for digital signatures. See Service Key Providers in Using the AquaLogic Service Bus 
Console.

Because the AquaLogic Service Bus Sign.xml and Auth.xml policies are abstract, they will 
require the client to provide the credentials that are specified in the service key provider that is 
associated with the proxy service.

Listing 6-1 shows a WSDL with references to the AquaLogic Service Bus Sign.xml and 
Auth.xml policies. 

Listing 6-1   WSDL with Policy References to AquaLogic Service Bus WS-Policies

<definitions
...
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401

-wss-wssecurity-utility-1.0.xsd">

<wsp:UsingPolicy
wsdl:Required="true"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/> 

...

<portType name="Sample">
<operation name="doFoo" parameterOrder="data">

<input message="tns:foo" wsp:PolicyURIs="policy:Sign.xml"/>
<output message="tns:fooResponse"/>

</operation>
</portType>

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyServiceProviders.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyServiceProviders.html


Using  WS-Po l i cy  in  ALSB Proxy  and  Bus iness  Serv ices

6-14 BEA AquaLogic Service Bus Security Guide

<binding name="SampleBinding" type="tns:Sample">
<soap:binding style="document" 

transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="doFoo">

<wsp:Policy>
<wsp:PolicyReference URI="policy:Sign.xml"/>
<wsp:PolicyReference URI="policy:Auth.xml"/>

</wsp:Policy>
...

</operation>
</binding>

...

</definitions>

Example: Attaching Custom Inline WS-Policy Statements to 
a WSDL Document
Listing 6-2 shows a WSDL with two custom WS-Policy policies, wsu:Id="policy1" and 
wsu:Id="policy2". The policies are located in the WSDL document; therefore the URIs that 
refer to these polices use XML fragments. 

Listing 6-2   WSDL with Policy References to a Custom Inline Policy

<definitions
...
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-wssecurity-utility-1.0.xsd">

<wsp:UsingPolicy
wsdl:Required="true"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>

<wsp:Policy wsu:Id="policy1">...</wsp:Policy>
<wsp:Policy wsu:Id="policy2">...</wsp:Policy>
...

<portType name="Sample">
<operation name="doFoo" parameterOrder="data">

<input message="tns:foo" wsp:PolicyURIs="#policy1"/> 
<output message="tns:fooResponse"/>



BEA-Propr ie ta r y  Secur i t y  Po l i c y  Bes t  P ract i ces

BEA AquaLogic Service Bus Security Guide 6-15

</operation>
</portType>

<binding name="SampleBinding" type="tns:Sample">
<soap:binding style="document" 

transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="doFoo">

<wsp:Policy>
<wsp:PolicyReference URI="#policy2"/>

</wsp:Policy>
<soap:operation

soapAction="http://com.bea.samples/sample/doFoo"
style="document"/>

<input>
<soap:body namespace="http://com.bea.samples/sample"

use="literal"/>
</input>
<output>

<soap:body namespace="http://com.bea.samples/sample"
use="literal"/>

</output>
</operation>

</binding>
...

</definitions>

BEA-Proprietary Security Policy Best Practices
This section describes best practices you should follow when using security policy assertions 
written under the WS-Policy specification, using the proprietary BEA schema for security policy. 

Note: Carefully analyze your security requirements before you design your 
WS-SecurityPolicy. These best practices may or may not apply to your specific business 
security needs.

Make sure you do not use Identity assertions on an operation’s response policy. As a 
corollary, do not use the predefined Auth.xml policy in a response policy. 

When using WS-Security username tokens on inbound to an active intermediary proxy 
service, if you want to pass the username/password to a back-end service 
(username/password pass-through), the username token must include the password in 
clear-text. 



Using  WS-Po l i cy  in  ALSB Proxy  and  Bus iness  Serv ices

6-16 BEA AquaLogic Service Bus Security Guide

Whenever using WS-Security username tokens with clear-text passwords, it is strongly 
recommended that you protect the confidentiality of the username token, either by 
encrypting the entire token (with WS-Security) or by sending the message over SSL. 

Whenever using an Identity assertion, you may also want to use an Integrity assertion to 
digitally sign the authentication token (username, X.509 or SAML token) together with 
sensitive message content (SOAP body and/or SOAP header parts). The digital signature 
protects the integrity of the signed content and binds together the authentication token and 
message content. This is important to prevent someone from copying the authentication 
token into an arbitrary SOAP envelope, thus forging a message. (You can also send the 
message over SSL instead of using an integrity assertion.) 

When using an Integrity assertion, it is recommended that you also use a MessageAge 
assertion. Furthermore, it is recommended that you include the signing token (that is, the 
verification certificate) in the wsse:Security header and that the digital signature covers the 
signing token and the timestamp, in addition to whatever SOAP body and/or SOAP header 
parts you wish to sign. The message age assertion guarantees a timestamp will be included 
in the security header. The timestamp is used to prevent some replay attacks. The 
predefined Sign.xml policy follows this best practice. 

When using timestamps over JMS (MessageAge assertions), make sure you set the age of 
the MessageAge assertion appropriately. If the value is too low, the message may expire 
while on the queue. 

Whenever an Identity assertion includes X.509 tokens in the supported token list, your 
policy must also have an Integrity assertion. The server will not accept X.509 tokens as 
proof of authentication unless the token is also used in a digital signature. 

If the Identity assertion accepts other token types, you may use the X509AuthConditional 
attribute of the Integrity assertion to specify that the digital signature is required only when 
the actual authentication token is an X.509 token. Remember that abstract Identity 
assertions are pre-processed at deploy time and converted into concrete assertions by 
inserting a list of all token types supported by your runtime environment. 

BEA recommends that you do not use abstract Identity assertions in your policy. It is 
preferable instead to directly specify exactly which token types are supported for 
authentication. Furthermore, BEA recommends that your Identity assertion supports only 
one token type. 

Note: This makes the X509AuthConditional attribute of Integrity assertions unnecessary, as 
there is no ambiguity as to which token types are supported. 

As a corollary, BEA recommends that you do not use the Auth.xml policy file: use the 
Sign.xml and Encrypt.xml policies whenever possible.



Po l icy  Sub jec ts  and  Ef fec t ive  Po l i cy

BEA AquaLogic Service Bus Security Guide 6-17

Whenever an ALSB proxy processes digital signatures (on inbound request messages or 
back-end response messages), it is strongly recommended that you configure a certificate 
registry in your security realm and import your trading partner certificates in the registry. 

Policy Subjects and Effective Policy
A policy subject is an entity, such as service, endpoint, operation, or message, with which a 
policy can be associated. You can associate a single WS-Policy statement with multiple policy 
subjects; conversely, multiple WS-Policy statements can be associated with a single policy 
subject. A policy scope is the collection of policy subjects to which a policy applies. For example, 
the policy scope implied by a policy attached to wsd:binding/wsdl:operation/wsdl:input 
is the input message, the operation, the endpoint, and the service. 

The effective policy for a given policy subject is the merge of all policies whose scopes contain 
that policy subject. For example, the effective policy of the input message of a binding operation 
is the merge of all policies attached to the following:

The input message of the binding operation

The binding operation

The binding

The input message of the port-type operation

The port-type operation

The port-type

The service

The AquaLogic Service Bus Console displays the effective policy (read only) when configuring 
a business or proxy service with WS-Policy statements, as shown in the following figure.



Using  WS-Po l i cy  in  ALSB Proxy  and  Bus iness  Serv ices

6-18 BEA AquaLogic Service Bus Security Guide

Figure 6-1  Effective Policy



BEA AquaLogic Service Bus Security Guide 7-1

C H A P T E R 7

Configuring Message-Level Security for 
Web Services

Message-level security applies security checks to a SOAP message after a Web services client 
establishes a connection with an AquaLogic Service Bus proxy service or business service and 
before the proxy service or business service processes the message. 

Message-level security is categorized as follows:

Inbound message-level security applies to messages between clients and AquaLogic 
Service Bus proxy services. It applies security to both the request from the client and the 
response message back to the client. 

You can think of this as proxy service security.

Outbound message-level security applies to messages between AquaLogic Service Bus 
proxy services and SOAP-HTTP or SOAP-JMS business services. It applies security to 
both the request and the response. 

You can think of this as business service security.

The following sections describe configuring message-level security for a proxy service or a 
business service:

“About Message-Level Security” on page 7-2

“Message-Level Access Control Policies for Proxy Services” on page 7-4

“Configuring Proxy Service Message-Level Security” on page 7-4

“Configuring Business Service Message-Level Security: Main Steps” on page 7-8

“Examples of Custom WS-Policy Statements” on page 7-10



Conf igur ing  Message-Leve l  Secur i t y  f o r  Web  Serv ices

7-2 BEA AquaLogic Service Bus Security Guide

“Disabling Business Service Message-Level Security” on page 7-23

Note: The implementation of message-level security includes proxy services that have been 
configured with message-level custom authentication (either custom token or 
username/password). 

The message-level security mechanisms described in this section work alone or in 
concert with the message-level custom authentication mechanism, which is described in 
“Configuring Custom Authentication” on page 5-1. See “Combining WS-Security with 
Custom Username/Password and Tokens” on page 5-13 for information about using both 
types of security.

About Message-Level Security
AquaLogic Service Bus supports message-level security for SOAP messages that are sent over 
the HTTP (including HTTPS) or JMS protocols. Usually you use message-level security in 
addition to the transport-level security that these protocols offer. You can require Web services 
clients to provide credentials at the transport level, the message level, or both levels. If you 
require clients to provide credentials at both levels, AquaLogic Service Bus uses the 
message-level credentials for proxy service authentication and authorization.

To express the message-level security requirements for a proxy service or business service that 
is a Web service, you use the Web Services Policy (WS-Policy) framework. The Web Services 
Policy (WS-Policy) framework is described in “Configuring Message-Level Security for Web 
Services” on page 7-1.

With message-level security, a proxy service or business service specifies which of its operations 
are secured and which of the following security measures a Web services client must apply to its 
SOAP messages, which contain requests to invoke operations:

Authentication

Requires a client to present an identity that can be compared with user accounts in the 
domain’s authentication provider.

Message integrity through digital signatures

Establishes the identity of the client that is requesting to invoke an operation and 
guarantees that no intermediary has altered the request. Also guarantees that the return 
values of the operation are returned to the client without being altered by an intermediary.

Message confidentiality through XML encryption



About  Message-Leve l  Secur i t y

BEA AquaLogic Service Bus Security Guide 7-3

Encrypts the request and the return value in the response and guarantees that no 
intermediary has viewed the request or the response.

All of these security measures require a client to encode security tokens in its SOAP messages, 
and the proxy service or business service specifies which types of security tokens it requires to 
be encoded in the SOAP messages.

AquaLogic Service Bus supports the following WS-Security token profiles:

WS-Security 1.0, at 
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-se
curity-1.0.pdf

Web Services Security: Username Token Profile 1.0, at 
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-
profile-1.0.pdf 

Web Services Security X.509 Token Profile 1.0, at 
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-prof
ile-1.0.pdf 

Web Services Security SAML Token Profile 1.0, at 
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf 

Sample Sequence of Actions in Message-Level Security
To send a SOAP message to a proxy service that requires message-level security, the following 
actions occur:

1. A Web services client generates a SOAP header and adds the header to the SOAP message 
envelope. The header includes digital signatures, security tokens, and other constructs. 

2. When the proxy service processes the secured envelope, it decrypts the message, which 
removes the security header. 

3. The proxy service then verifies that the message conforms to its security requirements. For 
example, the proxy service confirms that the required message parts were signed and/or 
encrypted and that the required tokens are present with the required claims.

4. The entire process is repeated in reverse for the response from the proxy service to the client.

For more information about WS-Security (which is the OASIS standard that defines 
message-level security), see Web Services Security: SOAP Message Security 1.0 (WS-Security 
2004) at the following URL:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf


Conf igur ing  Message-Leve l  Secur i t y  f o r  Web  Serv ices

7-4 BEA AquaLogic Service Bus Security Guide

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-secur

ity-1.0.pdf 

Message-Level Access Control Policies for Proxy 
Services

While message integrity and message confidentiality guarantee that intermediaries do not view 
or modify messages, and while message authentication requires clients to prove that they are 
known users, they do nothing to specify which known users are allowed (authorized) to invoke 
proxy service operations.

To limit access to authorized users, you use the AquaLogic Service Bus Console to create 
message-level access control policies. These policies allow a proxy service to process only those 
SOAP messages from authorized clients. 

Configuring Proxy Service Message-Level Security
You can configure a proxy service to support one of the following techniques for inbound 
message-level security: 

Active-Intermediary

The proxy service processes the header in the client’s SOAP messages and enforces the 
message-level access control policy on the messages. 

For example, a client encrypts and signs its SOAP message and sends it to a proxy service. 
The proxy service decrypts the message and verifies the digital signature, then routes the 
message. Before the proxy service sends the response back to the client, the proxy service 
signs and encrypts the message. The client then decrypts the message and verifies the 
proxy service’s digital signature.

Pass-Through

Instead of processing the header in the client’s SOAP messages, the proxy service passes 
the message untouched to a business service. Although the proxy service does not process 
the secured sections of the SOAP message, it can route the message based on values in the 
header. When the business service receives the message, it processes the security header 
and acts on the request. Note that the business service must use the Web Services Policy 
(WS-Policy) framework to describe which of its operations are secured with message-level 
security. The business service sends its response to the proxy service, and the proxy service 
passes the response untouched to the client. 

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf


Conf igur ing  P roxy  Se rv ice  Message-Leve l  Secur i t y

BEA AquaLogic Service Bus Security Guide 7-5

For example, the client encrypts and signs the message and sends it to the proxy service. 
The proxy service does not decrypt the message or verify the digital signature; it simply 
routes the message to the business service. The business service decrypts the messages and 
verifies the digital signature, and then processes the request. The response path is similar. 

Creating an Active Intermediary Proxy Service: Main Steps
To create a proxy service to act as an active intermediary:

1. In a text editor or IDE, create a WSDL document to define the proxy service: 

– If you plan to bind the policies directly from the console, the WSDL does not need to 
have policy statements.

– If you want the policy to be WSDL-based, attach one or more Web Services Policy 
(WS-Policy) statements to the WSDL document, including one or more of the 
predefined policies.

2. In the AquaLogic Service Bus Console, import the WSDL document into the AquaLogic 
Service Bus WSDL repository and resolve any WSDL dependencies. 

See “Adding a WSDL” in WSDLs in the Using the AquaLogic Service Bus Console. 

3. If you have not already configured the WebLogic security framework to support AquaLogic 
Service Bus, do one or more of the following depending on whether the WS-Policy of any of 
the operations in the proxy service contains security policy assertions that secure requests 
from clients to the proxy service:

– If you want operation request policies to require authentication with a WS-Security 
X.509 certificate token, configure the Web Service security configuration named 
__SERVICE_BUS_INBOUND_WEB_SERVICE_SECURITY_MBEAN__. See step 2 in 
“Configuring the WebLogic Security Framework: Main Steps” on page 2-23.

– If you want operation request policies to require authentication with a WS-Security 
Username/Password token with password digest, make sure to enable password digests. 
See step 5 in “Configuring the WebLogic Security Framework: Main Steps” on 
page 2-23.

– If you want operation request policies to require the use of SAML tokens, you must 
configure a SAML asserting party for this proxy service. See “Authenticating SAML 
Tokens in Proxy Service Requests” on page 8-3. 

– If you want operation request policies to require digital signatures, register the accepted 
client signature verification certificates in the WebLogic Server Certificate Registry. 

http://e-docs.bea.com/alsb/docs30/consolehelp/wsdls.html


Conf igur ing  Message-Leve l  Secur i t y  f o r  Web  Serv ices

7-6 BEA AquaLogic Service Bus Security Guide

See step 4 in “Configuring the WebLogic Security Framework: Main Steps” on 
page 2-23.

– If you want operation request policies to require digital encryption, configure a service 
key provider that contains an encryption credential. The proxy service will use this 
credential to decrypt the encrypted SOAP message. See “Adding a service key 
provider” in Service Key Providers in Using the AquaLogic Service Bus Console.

4. In the AquaLogic Service Bus Console, do one or more of the following depending whether 
the WS-Policy of any of the operations in the proxy service contains security policy assertions 
that secure responses from the proxy service to clients:

– If any operation response policy requires digital signatures, configure a service key 
provider that contains a digital signature credential. You can create one service key 
provider that contains credentials for both encryption and digital signatures. See 
“Adding a service key provider” in Service Key Providers in Using the AquaLogic 
Service Bus Console.

– If any operation response policy specifies encryption, the client must send its certificate 
to the proxy service on the request. The proxy service will use the client’s public key to 
encrypt its response. The client certificate must not be the same as the proxy service’s 
encryption certificate. 

5. In the AquaLogic Service Bus Console, create a proxy service from the WSDL that you 
imported in step 1. Activate your changes. 

6. If the WSDL document does not have WS-Policy attachments and you want to add them, or 
if you want to specify a different WS-Policy from that of the WSDL, edit the proxy service 
you just created to do the following from the Policies tab:

a. Select Custom Policy Bindings.

b. To specify policies that apply to the entire service, expand the service name entry. Click 
Add to search for and select your policies.

c. To specify policies that apply to an operation or the request/response of that operation, 
expand the operation name entry. Click Add to search for and select your policies.

Update the policy binding.

7. Edit the proxy service you just created to do the following from the Security tab:

a. Specify the service key provider that you created in step 4. 

b. Select the Process WS-Security Header check box. 

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyServiceProviders.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyServiceProviders.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyServiceProviders.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyServiceProviders.html


Conf igur ing  P roxy  Se rv ice  Message-Leve l  Secur i t y

BEA AquaLogic Service Bus Security Guide 7-7

c. Optionally, modify the proxy service’s default message-level access control policy, which 
specifies conditions under which users, groups, or roles can invoke the secured operations. 
See “Editing Message-Level Access Policies” under Security Configuration in Using the 
AquaLogic Service Bus Console.

d. Optionally, modify the proxy service’s message-level custom authentication settings. See 
“Editing Message-Level Access Policies” under Security Configuration in Using the 
AquaLogic Service Bus Console.

Creating a Pass-Through Proxy Service: Main Steps
To create a pass-through proxy service:

1. Create a business service to which the proxy service will pass the unprocessed SOAP 
message. There are two configuration methods: 

– The business service is a Web service that contains WS-Policy statements.

– The business service directly binds the WS-Policies. The WSDL on which the service 
is based should not have any WS-Policy statements. 

See “Configuring Business Service Message-Level Security: Main Steps” on page 7-8.

2. If the WSDL document does not have WS-Policy attachments and you want to add them, or 
if you want to specify a different WS-Policy from that of the WSDL, edit the business service 
you just created to do the following from the Policies tab:

a. Select Custom Policy Bindings.

b. To specify policies that apply to the entire service, expand the service name entry. Click 
Add to search for and select your policies.

c. To specify policies that apply to an operation or the request/response of that operation, 
expand the operation name entry. Click Add to search for and select your policies.

Update the policy binding.

3. In the AquaLogic Service Bus Console, create a proxy service from a WSDL document. You 
can use the same WSDL document that you used for the business service that you created in 
step 1. Activate your changes.

4. If you should later edit the proxy service you just created, do not select the Process 
WS-Security Header check box on the Security tab. 

5. Configure the proxy service to route to the business service that you created in step 1.

http://e-docs.bea.com/alsb/docs30/consolehelp/securityconfiguration.html
http://e-docs.bea.com/alsb/docs30/consolehelp/securityconfiguration.html


Conf igur ing  Message-Leve l  Secur i t y  f o r  Web  Serv ices

7-8 BEA AquaLogic Service Bus Security Guide

If you route to the business service based on the operation that the client’s SOAP message 
is requesting to invoke, you must configure the routing so that it specifies an operation 
selection algorithm other than the SOAP body algorithm. Make sure the actions in the 
proxy service pipeline do not modify the WS-Security header or any parts of the SOAP 
envelope that are signed or encrypted. Changes to clear-text message parts covered by 
digital signatures almost always break the digital signature because the signature cannot be 
verified later. 

See Proxy Services in Using the AquaLogic Service Bus Console.

Configuring Business Service Message-Level Security: 
Main Steps

Outbound message-level security applies to messages between AquaLogic Service Bus proxy 
services and SOAP-HTTP or SOAP-JMS business services. It applies security to both the request 
and the response.

To configure outbound message-level security for a business service that represents a 
SOAP-HTTP or SOAP-JMS Web service:

1. In a text editor or IDE, create a WSDL document to define the policy. 

2. In the AquaLogic Service Bus Console, import the Web service’s WSDL document into the 
AquaLogic Service Bus WSDL repository and resolve any WSDL dependencies. 

See “Adding a WSDL” in WSDLs in the Using the AquaLogic Service Bus Console. 

3. In the AquaLogic Service Bus Console, do one or more of the following depending on 
whether the WSDL document contains WS-Policy statements that secure requests from a 
proxy service to the business service:

– If any operation request policy includes an identity assertion with WS-Security 
Username Token as one of the supported token types, configure a service account for 
the business service. In the service account, provide the user name and password that 
you want the proxy service to send to the business service. Proxy services that route to 
this business service will get the username and password from this service account. See 
Service Accounts and Business Services in the Using the AquaLogic Service Bus 
Console.

– If any operation request policy requires authentication with a WS-Security 
Username/Password token with password digest, make sure to enable password digests. 
See step 5 in “Configuring the WebLogic Security Framework: Main Steps” on 
page 2-23.

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyservices.html
http://e-docs.bea.com/alsb/docs30/consolehelp/wsdls.html
http://e-docs.bea.com/alsb/docs30/consolehelp/serviceAccounts.html
http://e-docs.bea.com/alsb/docs30/consolehelp/businessServices.html


Conf igur ing  Bus iness  Se rv ice  Message-Leve l  Secur i t y :  Ma in  S teps

BEA AquaLogic Service Bus Security Guide 7-9

– If any operation request policy requires digital signatures, configure a service key 
provider that contains a digital signature credential. You can create one service key 
provider that contains credentials for both encryption and digital signatures. See 
“Adding a service key provider” in Service Key Providers in Using the AquaLogic 
Service Bus Console.

4. If any operation response policy in the business service requires encryption (that is, the 
business service encrypts the response with the proxy service’s encryption public key), 
configure a service key provider and assign an encryption credential to the service key 
provider. See “Adding a service key provider” in Service Key Providers in Using the 
AquaLogic Service Bus Console.

Caution: Encrypted back-end response messages: If the response policy of the business 
service specifies encryption, the proxy service will send its encryption certificate 
to the business service on the request. The business service will encrypt its 
response using the proxy service’s public key. The proxy service encryption 
credential must not be the same as the business service encryption credential.

5. If any policy in the business service specifies using SAML assertions, configure a WebLogic 
SAML Credential Mapping Provider V2 asserting party. For more information, see 
“Configuring SAML Credential Mapping: Main Steps” on page 8-2.

6. In the AquaLogic Service Bus Console, create a business service from the WSDL that you 
imported in step 2. Activate your changes.

See Business Services in Using the AquaLogic Service Bus Console.

7. If you want to directly attach the policies to the service, edit the business service you just 
created to do the following from the Policies tab:

a. Select Custom Policy Bindings.

b. To specify policies that apply to the entire service, expand the service name entry. Click 
Add to search for and select your policies. 

c. To specify policies that apply to an operation or the request/response of that operation, 
expand the operation name entry. Click Add to search for and select your policies.

Click Update to update the business service.

8. Create a proxy service that routes SOAP messages to the business service. You can use either 
an active-intermediary proxy service or a pass-through proxy service. 

See “Creating an Active Intermediary Proxy Service: Main Steps” on page 7-5.

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyServiceProviders.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyServiceProviders.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyServiceProviders.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxyServiceProviders.html
http://e-docs.bea.com/alsb/docs30/consolehelp/businessServices.html


Conf igur ing  Message-Leve l  Secur i t y  f o r  Web  Serv ices

7-10 BEA AquaLogic Service Bus Security Guide

Examples of Custom WS-Policy Statements
The following sections provide examples of custom WS-Policy statements written under the 
WS-Policy specification using the proprietary BEA schema for security policy:

“Example: Encrypting Part of the SOAP Body and Header” on page 7-10

“Example: Encryption Policy for a Business Service” on page 7-13

“Example: Encrypting a Custom SOAP Header” on page 7-15

“Example: Signing the Message Body and Headers” on page 7-16

“Example: Signing a SOAP Body with SAML Holder-of-Key” on page 7-18

“Example: Authenticating, Signing, and Encrypting a SOAP Body and Headers with 
SAML Sender Vouches” on page 7-20

Example: Encrypting Part of the SOAP Body and Header
If you need to specify that particular parts of the body of a SOAP message are encrypted or 
digitally signed, rather than the entire body, you must create a custom WS-Policy file.

Listing 7-1 is an abstract WS-Policy statement that does the following:

Requires the message from the client to include a user name and password token for 
authentication

Requires the client to encrypt the user name token (which is in the security header) 

Requires the client to encrypt the /definitions/message/CreditCardNumber element 

This policy cannot be used with a business service because it is abstract: its KeyInfo element 
does not contain the certificate used for encryption. Instead, when you activate a proxy service 
that uses this WS-Policy statement, AquaLogic Service Bus binds to the WS-Policy statement the 
encryption certificate from the service key provider that you associate with the proxy service. See 
Service Key Providers in Using the AquaLogic Service Bus Console.

Figure 7-1  Binding a Certificate to an Abstract Policy

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyServiceProviders.html


Examples  o f  Custom WS-Po l i c y  S ta tements

BEA AquaLogic Service Bus Security Guide 7-11

Proxy Service

WS-Policy Statement
(abstract)

Service Key Provider Certificate

WSDL Document

At runtime, AquaLogic Service Bus
binds the encryption certificate in 
the Service Key Provider to the 
abstract policy.



Conf igur ing  Message-Leve l  Secur i t y  f o r  Web  Serv ices

7-12 BEA AquaLogic Service Bus Security Guide

Also in Listing 7-1:

The KeyWrappingAlgorithm element specifies that the client must use the RSA 1.5 
algorithm to wrap symmetric keys.

The EncryptionAlgorithm specifies that the client must use the Triple DES (Data 
Encryption Standard) algorithm perform encrypt the security header and message body. 

Listing 7-1   Encrypting Part of the SOAP Body and Header

<wsp:Policy
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wssp="http://www.bea.com/wls90/security/policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-utility-1.0.xsd"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-secext-1.0.xsd"
xmlns:m="http://example.org"
wsu:Id="encrypt-custom-body-element-and-username-token">

<!-- Require messages to provide a user name and password token 
for authentication --> 

<wssp:Identity>
<wssp:SupportedTokens>

<wssp:SecurityToken IncludeInMessage="true"
TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-

wss-username-token-profile-1.0#UsernameToken">
<wssp:UsePassword Type="http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-username-token-profile-1.0#PasswordText"/>
</wssp:SecurityToken>

</wssp:SupportedTokens>
</wssp:Identity>

<wssp:Confidentiality>
<wssp:KeyWrappingAlgorithm

URI="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>

<!-- Require the user name and password in the security header
to be encrypted --> 

<wssp:Target>
<wssp:EncryptionAlgorithm

URI="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
<wssp:MessageParts

Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
wls:SecurityHeader(wsse:UsernameToken)

</wssp:MessageParts>
</wssp:Target>



Examples  o f  Custom WS-Po l i c y  S ta tements

BEA AquaLogic Service Bus Security Guide 7-13

<!-- Require the /definitions/message/CreditCardNumber element to 
be encrypted --> 

<wssp:Target>
<wssp:EncryptionAlgorithm

URI="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
<wssp:MessageParts>

wsp:GetBody(.)/m:CreditCardNumber
</wssp:MessageParts>

</wssp:Target>

<!-- This is an abstract policy because the KeyInfo element is
empty. The KeyInfo data is bound to the policy at runtime --> 

<wssp:KeyInfo/>
</wssp:Confidentiality>

</wsp:Policy>

Example: Encryption Policy for a Business Service
If you want messages to a business service to be encrypted, you must create a custom WS-Policy. 
The policy must be concrete (it must contain the encryption certificate instead of using a 
certificate from a service key provider) and it must be located directly in a WSDL document 
instead of being included by reference.

Typically, you would require messages to a business service to be encrypted if the proxy service 
that sends messages to the business service is a pass-through proxy service. That is, the proxy 
service that receives messages from a client does not process the SOAP message. Instead, the 
proxy service routes the message to the business service, and the business service takes on the 
responsibility of Web Services Security. See “Message-Level Access Control Policies for Proxy 
Services” on page 7-4.

Listing 7-2 is a WSDL document that contains a concrete policy. Note the following about this 
example:

The policy requires clients to encrypt the message body. 

The KeyInfo element specifies the type of token that a client must provide to is the parent 
element that is used to describe and embed the encryption certificate. The 
BinarySecurityToken element contains the base-64 encoded encryption certificate (the 
value is truncated in the example). If your certificate is in PEM format, the content of the 
PEM file (without the PEM prefix and suffix) is the base-64 encoded representation of the 
certificate. If your encryption certificate is stored in a JDK keystore, you can easily export 
it to a PEM file.



Conf igur ing  Message-Leve l  Secur i t y  f o r  Web  Serv ices

7-14 BEA AquaLogic Service Bus Security Guide

The policy provides a unique ID and the WSDL uses a URI fragment to refer to the ID. 
See “Attaching WS-Policy Statements to WSDL Documents” on page 6-9.

Listing 7-2   Encrypting the Body with a Concrete Policy, Embedding the Policy in the WSDL Document

<definitions name="WssServiceDefinitions"
targetNamespace="http://com.bea.alsb/tests/wss"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd"

xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
...>

<wsp:UsingPolicy xmlns:n1="http://schemas.xmlsoap.org/wsdl/"
n1:Required="true"/>

<!-- The policy provides a unique ID -->
<wsp:Policy wsu:Id="myEncrypt.xml">
<wssp:Confidentiality

xmlns:wssp="http://www.bea.com/wls90/security/policy">
<wssp:KeyWrappingAlgorithm

URI="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>

<!-- Require the user name and password in the security header
to be encrypted --> 

<wssp:Target>
<wssp:EncryptionAlgorithm

URI="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
<wssp:MessageParts 

Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
wsp:Body()

</wssp:MessageParts>
</wssp:Target>

<!-- Embed the token type and encryption certificate --> 
<wssp:KeyInfo>

<wssp:SecurityToken 
TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-

wss-x509-token-profile-1.0#X509v3"/>
<wssp:SecurityTokenReference>

<wssp:Embedded>
<wsse:BinarySecurityToken

EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-soap-message-security-1.0#Base64Binary"

ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-x509-token-profile-1.0#X509v3"

xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-



Examples  o f  Custom WS-Po l i c y  S ta tements

BEA AquaLogic Service Bus Security Guide 7-15

200401-wss-wssecurity-secext-1.0.xsd">
MIICfjCCAeegAwIBAgIQV/PDyj3...

</wsse:BinarySecurityToken>
</wssp:Embedded>

</wssp:SecurityTokenReference>
</wssp:KeyInfo>

</wssp:Confidentiality>
</wsp:Policy>

<binding name="WssServiceSoapBinding" type="tns:WssService">
<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="getPurchaseOrder">

<soap:operation soapAction="" style="document"/>
<input>

<soap:body parts="parameters" use="literal"/>

<!-- Use a URI fragment to refer to the unique policy ID -->
<wsp:Policy>

<wsp:PolicyReference URI="#myEncrypt.xml"/>
</wsp:Policy>

</input>
<output>

<soap:body parts="parameters" use="literal"/>
</output>

</operation>
</binding>
...

</definitions>

Example: Encrypting a Custom SOAP Header
Listing 7-3 is an abstract WS-Policy statement that encrypts a custom header named 
CreditCardNumber.

If you need to specify that particular parts of the body of a SOAP message are encrypted or 
digitally signed, rather than the entire body, you must create a custom WS-Policy file.

This policy cannot be used with a business service because it is abstract: its KeyInfo element 
does not contain the certificate used for encryption. Instead, when you activate a proxy service 
that uses this WS-Policy statement, AquaLogic Service Bus binds to the WS-Policy statement the 
encryption certificate from the service key provider that you associate with the proxy service. See 
Service Key Providers in Using the AquaLogic Service Bus Console.

Also of note in Listing 7-3:

http://e-docs.bea.com/alsb/docs30/consolehelp/proxyServiceProviders.html


Conf igur ing  Message-Leve l  Secur i t y  f o r  Web  Serv ices

7-16 BEA AquaLogic Service Bus Security Guide

The KeyWrappingAlgorithm element specifies that the client must use the RSA 1.5 
algorithm to wrap symmetric keys.

The EncryptionAlgorithm specifies that the client must use the Triple DES (Data 
Encryption Standard) algorithm perform encrypt the security header. 

Listing 7-3   Encrypting a Custom SOAP Header

<wsp:Policy
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wssp="http://www.bea.com/wls90/security/policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-utility-1.0.xsd"
wsu:Id="dig-sig-for-get-header">
<wssp:Confidentiality>

<wssp:KeyWrappingAlgorithm
URI="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>

<!-- Require the custom CreditCardNumber header to be encrypted --> 
<wssp:Target>

<wssp:EncryptionAlgorithm
URI="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

<wssp:MessageParts
Dialect="http://www.w3.org/TR/1999/REC-xpath-19991116">
wsp:GetHeader(.)/n:CreditCardNumber

</wssp:MessageParts>
</wssp:Target>
<wssp:KeyInfo/>

</wssp:Confidentiality>
</wsp:Policy>

Example: Signing the Message Body and Headers
Listing 7-4 is a WS-Policy statement that requires a digital signature to access the following in 
the SOAP message:

A custom header named header1 

All system headers

The timestamp security header

The message body



Examples  o f  Custom WS-Po l i c y  S ta tements

BEA AquaLogic Service Bus Security Guide 7-17

Listing 7-4   Requiring a Signature for SOAP Headers and Body

<wsp:Policy
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wssp="http://www.bea.com/wls90/security/policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd"
wsu:Id="sign-custom-header-policy">

<wssp:Integrity>
<wssp:SignatureAlgorithm
URI="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

<wssp:CanonicalizationAlgorithm
URI="http://www.w3.org/2001/10/xml-exc-c14n#"/>

<!-- Require the custom header header1 to be signed --> 
<wssp:Target>
<wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
<wssp:MessageParts

Dialect="http://www.w3.org/TR/1999/REC-xpath-19991116"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-secext-1.0.xsd"
xmlns:n="http://example.org">
wsp:GetHeader(.)/n:header1

</wssp:MessageParts>
</wssp:Target>

<!-- Require the system headers to be signed --> 
<wssp:Target>

<wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
<wssp:MessageParts

Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
wls:SystemHeaders()

</wssp:MessageParts>
</wssp:Target>

<!-- Require the Timestamp header to be signed --> 
<wssp:Target>

<wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
<wssp:MessageParts

Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
wls:SecurityHeader(wsu:Timestamp)

</wssp:MessageParts>
</wssp:Target>

<!-- Require the message body to be signed --> 
<wssp:Target>
<wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>



Conf igur ing  Message-Leve l  Secur i t y  f o r  Web  Serv ices

7-18 BEA AquaLogic Service Bus Security Guide

<wssp:MessageParts
Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
wsp:Body()

</wssp:MessageParts>
</wssp:Target>

</wssp:Integrity>
<wssp:MessageAge/>
</wsp:Policy>

Example: Signing a SOAP Body with SAML Holder-of-Key
Listing 7-5 is a WS-Policy statement that requires the SAML asserter to use the holder-of-key 
method to sign the message body. The purpose of a SAML token with "holder-of-key" subject 
confirmation is to allow the subject to use an X.509 certificate that may not be trusted by the 
receiver to protect the integrity of the request messages.

For more information about the two SAML confirmation methods (sender-vouches or 
holder-of-key), see SAML Token Profile Support in WebLogic Web Services. 

The WebLogic Server Security Policy Assertion Reference describes the policy elements in 
detail.

Note the following about this example:

Integrity specifies that part or all of the SOAP message must be digitally signed, as well 
as the algorithms and keys that are used to sign the SOAP message. 

SignatureAlgorithm specifies the cryptographic algorithm used to compute the digital 
signature.

CanonicalizationAlgorithm specifies the algorithm used to canonicalize (use in simple 
or standard form) the SOAP message elements that are digitally signed. You can specify 
only http://www.w3.org/2001/10/xml-exc-cl4n#. 

DigestAlgorithm specifies the digest algorithm that is used when digitally signing the 
specified parts of a SOAP message. You can specify only 
http://www.w3.org/2000/09/xmldsig#sha1 .

MessageParts specifies the parts of the SOAP message that should be signed, in this case 
the body. 

Dialect identifies the dialect used to identify the parts of the SOAP message that should 
be signed. 

http://e-docs.bea.com/wls/docs100/secintro/archtect.html#saml_web_services
http://e-docs.bea.com/wls/docs100/webserv_ref/sec_assert.html


Examples  o f  Custom WS-Po l i c y  S ta tements

BEA AquaLogic Service Bus Security Guide 7-19

SupportedTokens specifies the list of supported security tokens that can be used for 
digital signatures. 

SecurityToken specifies the security token that is supported for digital signatures. 

IncludeInMessage  specifies whether to include the token in the SOAP message. Valid 
values are true or false. The default value of this attribute is true when used in the 
<Integrity> assertion.

TokenType specifies the type of security token, in this case 
http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml-token-profile
-1.0#SAMLAssertionID to specify a SAML token. 

Claims specifies additional metadata information that is associated with a particular type 
of security token. For SAML tokens, you must define a <ConfirmationMethod> child 
element to specify the type of SAML confirmation (sender-vouches or holder-of-key). 

ConfirmationMethod specifies the type of confirmation method, either sender-vouches or 
holder-of-key, that is used when using SAML tokens for identity. 

Specify the <ConfirmationMethod> assertion within an <Integrity> assertion. The 
reason you put the SAML token in the <Integrity> assertion for this confirmation 
method is that the Web Service runtime must prove the integrity of the message, which is 
not required by sender-vouches. 

Listing 7-5   Signing a SOAP Body with SAML Holder-of-Key Method

<wsp:Policy
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wssp="http://www.bea.com/wls90/security/policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-utility-1.0.xsd"
xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
wsu:Id="saml-holder-of-key-signed">

<wssp:Integrity>
<wssp:SignatureAlgorithm
URI="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<wssp:CanonicalizationAlgorithm
URI="http://www.w3.org/2001/10/xml-exc-c14n#"/>

<wssp:Target>
<wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
<wssp:MessageParts



Conf igur ing  Message-Leve l  Secur i t y  f o r  Web  Serv ices

7-20 BEA AquaLogic Service Bus Security Guide

Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
wsp:Body()

</wssp:MessageParts>
</wssp:Target>

<wssp:SupportedTokens>
<wssp:SecurityToken IncludeInMessage="true"

TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml-
token-profile-1.0#SAMLAssertionID">
<wssp:Claims>
<wssp:ConfirmationMethod>holder-of-key</wssp:ConfirmationMethod>

</wssp:Claims>
</wssp:SecurityToken>

</wssp:SupportedTokens>

</wssp:Integrity>
</wsp:Policy>

Example: Authenticating, Signing, and Encrypting a SOAP 
Body and Headers with SAML Sender Vouches
Listing 7-6 is a WS-Policy statement that requires the SAML asserter to use the sender-vouches 
method to sign the message body and headers. 

In sender-vouches the asserting party (different from the subject) vouches for the verification of 
the subject. The receiver must have a trust relationship with the asserting party. 

For more information about the two SAML confirmation methods (sender-vouches or 
holder-of-key), see SAML Token Profile Support in WebLogic Web Services. 

The WebLogic Server Security Policy Assertion Reference describes the policy elements in 
detail.

Note the following about this example:

Identity specifies the type of security tokens. 

SupportedTokens specifies the list of supported security tokens that can be used for 
digital signatures. 

SecurityToken specifies the security token that is supported for digital signatures. 

IncludeInMessage  is not specified because the value of this attribute is always true 
when used in the <Identity> assertion, even if you explicitly set it to false. 

http://e-docs.bea.com/wls/docs100/secintro/archtect.html#saml_web_services
http://e-docs.bea.com/wls/docs100/webserv_ref/sec_assert.html


Examples  o f  Custom WS-Po l i c y  S ta tements

BEA AquaLogic Service Bus Security Guide 7-21

TokenType specifies the type of security token, in this case 
http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml-token-profile
-1.0#SAMLAssertionID to specify a SAML token. 

Claims specifies additional metadata information that is associated with a particular type 
of security token. For SAML tokens, you must define a <ConfirmationMethod> child 
element to specify the type of SAML confirmation (sender-vouches or holder-of-key). 

ConfirmationMethod specifies the type of confirmation method, either sender-vouches or 
holder-of-key, that is used when using SAML tokens for identity. 

Integrity specifies that part or all of the SOAP message must be digitally signed (in this 
example both the body and security headers), as well as the algorithms and keys that are 
used to sign the SOAP message. 

SignatureAlgorithm specifies the cryptographic algorithm used to compute the digital 
signature.

CanonicalizationAlgorithm specifies the algorithm used to canonicalize (use in simple 
or standard form) the SOAP message elements that are digitally signed. You can specify 
only http://www.w3.org/2001/10/xml-exc-cl4n#. 

Target encapsulates information about which targets of a SOAP message are to be 
encrypted or signed, depending on the parent element. The child elements also depend on 
the parent element: 

– When used in <Integrity>, you can specify the <DigestAlgorithm>, <Transform>, 
and <MessageParts> child elements.

– When used in <Confidentiality>, you can specify the <EncryptionAlgorithm>, 
<Transform>, and <MessageParts> child elements. 

DigestAlgorithm specifies the digest algorithm that is used when digitally signing the 
specified parts of a SOAP message. You can specify only 
http://www.w3.org/2000/09/xmldsig#sha1.

MessageParts specifies the parts of the SOAP message that should be signed, in this case 
the body and security header.

Dialect identifies the dialect used to identify the parts of the SOAP message that should 
be signed. 



Conf igur ing  Message-Leve l  Secur i t y  f o r  Web  Serv ices

7-22 BEA AquaLogic Service Bus Security Guide

Confidentiality specifies that part or all of the SOAP message must be encrypted, as 
well as the algorithms and keys that are used to encrypt the SOAP message. The example 
requires that the body and security headers must be encrypted using triple-DES. 

Listing 7-6   Signing a SOAP Body and Headers with SAML Sender-Vouches Method

<wsp:Policy
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wssp="http://www.bea.com/wls90/security/policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-utility-1.0.xsd"
xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
wsu:Id="samlPolicy-sender-vouches-signed-encrypted">

<wssp:Identity>
<wssp:SupportedTokens>
<wssp:SecurityToken

TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-
saml-token-profile-1.0#SAMLAssertionID">
<wssp:Claims>
<wssp:ConfirmationMethod>

sender-vouches
</wssp:ConfirmationMethod>

</wssp:Claims>
</wssp:SecurityToken>

</wssp:SupportedTokens>
</wssp:Identity>

<wssp:Integrity>
<wssp:SignatureAlgorithm

URI="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<wssp:CanonicalizationAlgorithm

URI="http://www.w3.org/2001/10/xml-exc-c14n#"/>

<wssp:Target>
<wssp:DigestAlgorithm

URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
<wssp:MessageParts

Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
wsp:Body()

</wssp:MessageParts>
</wssp:Target>

<wssp:Target>
<wssp:DigestAlgorithm

URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
<wssp:MessageParts



Disab l ing  Bus iness  Serv ice  Message-Leve l  Secur i t y

BEA AquaLogic Service Bus Security Guide 7-23

Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
wls:SecurityHeader(Assertion)

</wssp:MessageParts>
</wssp:Target>

</wssp:Integrity>

<wssp:Confidentiality>
<wssp:KeyWrappingAlgorithm

URI="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>

<wssp:Target>
<wssp:EncryptionAlgorithm

URI="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
<wssp:MessageParts

Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
wls:SecurityHeader(Assertion)

</wssp:MessageParts>
</wssp:Target>

<wssp:Target>
<wssp:EncryptionAlgorithm

URI="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
<wssp:MessageParts

Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
wsp:Body()

</wssp:MessageParts>
</wssp:Target>

<wssp:KeyInfo/>
</wssp:Confidentiality>

</wsp:Policy>

Disabling Business Service Message-Level Security
Some infrequently used design patterns preempt a proxy service from automatically generating 
the outbound WS-Security SOAP envelope and instead use an XQuery expression to create the 
envelope. If you use this design pattern, to prevent a proxy service from automatically generating 
the outbound WS-Security SOAP envelope, you must create an action in the proxy service’s 
message flow that sets the value of the ./ctx:security/ctx:doOutboundWss element in the 
$outbound message context variable to xs:boolean("false"). You can create the action in 
either of the following places:

In a request stage of a pipeline pair. See “Adding a Pipeline Pair Node” under Proxy 
Services: Message Flow in Using the AquaLogic Service Bus Console. 

http://e-docs.bea.com/alsb/docs30/consolehelp/proxymessageflow.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxymessageflow.html


Conf igur ing  Message-Leve l  Secur i t y  f o r  Web  Serv ices

7-24 BEA AquaLogic Service Bus Security Guide

In a request action of a route node. See “Adding Route Node Actions” under Proxy 
Services: Message Flow in Using the AquaLogic Service Bus Console.

For information about the $outbound message context variable, see Message Context in 
AquaLogic Service Bus User Guide.

Under some circumstances, when you attempt to activate a session in which you have created or 
modified a proxy service with outbound message-level security disabled, the AquaLogic Service 
Bus Console reports validation errors (you cannot commit a session that contains errors). If your 
session validation reports errors because you have disabled outbound message-level security, 
modify the AquaLogic Service Bus startup command so that it sets the following system property 
to true:
com.bea.wli.sb.security.wss.LaxOutboundWssValidation 

Then restart AquaLogic Service Bus. With this property set to true, the AquaLogic Service Bus 
Console reports warnings instead of errors (you can commit a session that reports warning 
messages).

Future releases of AquaLogic Service Bus will provide an easier way to disable outbound 
message-level security.

http://e-docs.bea.com/alsb/docs30/consolehelp/proxymessageflow.html
http://e-docs.bea.com/alsb/docs30/consolehelp/proxymessageflow.html
http://e-docs.bea.com/alsb/docs30/userguide/modelingmessageflow.html#MessageContext


BEA AquaLogic Service Bus Security Guide 8-1

C H A P T E R 8

Using SAML for Authentication

Security Assertion Markup Language (SAML) defines a framework for exchanging 
authentication and authorization information between online business partners. AquaLogic 
Service Bus enables the following techniques for using SAML:

If your clients to do not provide SAML tokens but your business services require them, 
you can configure a proxy service to map the client’s identity to a SAML token. See 
“Configuring SAML Credential Mapping: Main Steps” on page 8-2.

If your clients provide SAML tokens to a pass-through proxy service, you can propagate 
the client’s SAML token to the business service. See “Configuring SAML Pass-Through 
Identity Propagation” on page 8-3.

If your clients provide SAML tokens to an active intermediary proxy service, you can 
configure the proxy service to assert the client’s identity. See “Authenticating SAML 
Tokens in Proxy Service Requests” on page 8-3.

For an overview of SAML, see the OASIS technical overview at the following URL:
http://www.oasis-open.org/committees/download.php/6837/sstc-saml-tech-over
view-1.1-cd.pdf

The complete SAML specification set of documents are available at the following URL:
http://www.oasis-open.org/committees/download.php/3400/oasis-sstc-saml-1.1
-pdf-xsd.zip

http://www.oasis-open.org/committees/download.php/6837/sstc-saml-tech-overview-1.1-cd.pdf
http://www.oasis-open.org/committees/download.php/3400/oasis-sstc-saml-1.1-pdf-xsd.zip
http://www.oasis-open.org/committees/download.php/3400/oasis-sstc-saml-1.1-pdf-xsd.zip


Us ing  SAML fo r  Authent ica t i on

8-2 BEA AquaLogic Service Bus Security Guide

Configuring SAML Credential Mapping: Main Steps
If your clients do not provide SAML tokens but your business services require them, you can 
configure a proxy service to map the client’s identity to a SAML token.

This technique requires the business service to be a Web service with WS-Policy statements that 
require authentication using SAML tokens. 

To configure SAML credential mapping:

1. Configure a trust relationship between AquaLogic Service Bus and the system (message 
consumer) that the business service represents.

The message consumer acts as a relying party and must have a trust relationship with 
AquaLogic Service Bus.

2. Configure the WebLogic SAML Identity Assertion Provider V2 and the WebLogic SAML 
Credential Mapping Provider V2 in your security domain. See Configuring a SAML Identity 
Assertion Provider and Configuring a SAML Credential Mapping Provider in Securing 
WebLogic Server.

3. Configure a proxy service to authenticate clients using any of the following techniques:

– HTTP or HTTPS BASIC (client provides user name and password in the request)

– HTTPS Client certificate

– Message-level authentication (using any of the supported token profiles)

If a client request includes a WS-Security security header, you must configure the 
proxy service to process this header on the proxy service side of the message. In 
AquaLogic Service Bus, you cannot add a SAML header (or any other WS-Security 
header) to a SOAP envelope that already contains a WS-Security header, neither can 
you add SAML (or other) security tokens to an existing security header.

– Third-party authentication

4. Configure the proxy service to include a SAML token in the WS-Security header of its 
outbound request. 

Note: If you configured the proxy service for dynamic routing, the message context 
determines the target URL for the request. If the assertion is signed, you must 
configure the certificate. For more information, see Configuring a SAML Credential 
Mapping Provider in Securing WebLogic Server. 

When the proxy service sends its outbound request, it generates a SAML assertion on behalf of 
the client. When the business service processes the WS-Security header, it validates the SAML 

http://e-docs.bea.com/wls/docs100/secmanage/providers.html#SAML_cred
http://e-docs.bea.com/wls/docs100/secmanage/providers.html#SAML_cred
http://e-docs.bea.com/wls/docs100/secmanage/providers.html#SAML_cred
http://e-docs.bea.com/wls/docs100/secmanage/atn.html#SAML_ID
http://e-docs.bea.com/wls/docs100/secmanage/atn.html#SAML_ID


Conf igu r ing  SAML  Pass-Through Ident i t y  P ropagat ion

BEA AquaLogic Service Bus Security Guide 8-3

assertion, creates a security context for the identity in the SAML assertion, and invokes the Web 
service with this security context.

Configuring SAML Pass-Through Identity Propagation
If your clients provide SAML tokens to a pass-through proxy service, you can propagate the 
client’s SAML token to the business service.

This technique requires the business service to be a Web service with WS-Policy statements that 
require authentication using SAML tokens.

To configure SAML pass-through identity propagation:

1. Configure a trust relationship between AquaLogic Service Bus and the back-end service.

2. Configure the back-end service acts as a SAML relying party.

See Create a SAML Relying Party in WebLogic Server Administration Console Online 
Help.

3. Configure a pass-through proxy service.

See“Creating a Pass-Through Proxy Service: Main Steps” on page 7-7 .

4. Configure a SOAP-HTTP or SOAP-JMS business service with WS-Policy statements that 
require authentication using SAML tokens.

See “Configuring Business Service Message-Level Security: Main Steps” on page 7-8.

Authenticating SAML Tokens in Proxy Service Requests
If your clients provide SAML tokens to an active intermediary proxy service, you can configure 
the proxy service to assert the client’s identity. 

To configure a proxy service to use SAML tokens to authenticate clients:

1. Configure a trust relationship between the client software and AquaLogic Service Bus. 

AquaLogic Service Bus relies on SAML assertions issued by the client, or on behalf of the 
client.

http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/security/CreateRelyingParty.html


Us ing  SAML fo r  Authent ica t i on

8-4 BEA AquaLogic Service Bus Security Guide

2. Configure the WebLogic SAML Identity Assertion Provider V2 to validate tokens issued by 
the client’s SAML authority. See Configuring a SAML Identity Assertion Provider in 
Securing WebLogic Server.

When configuring the identity assertion provider, note the following requirements:

– The confirmation method from the WS-Policy must match the SAML profile in the 
SAML asserting party. 

– Specify the asserting party target URL to be the relative URL of the proxy (not 
including the protocol and host information). 

– For signed assertions, add the certificate to the Identity Asserter registry.

3. Configure the WebLogic SAML Credential Mapping Provider V2 in your security domain. 
See Configuring a SAML Credential Mapping Provider in Securing WebLogic Server. 

4. Create an active intermediary proxy service that communicates over the HTTP, HTTPS, or 
JMS protocol. The proxy service must be a Web service with a WS-Policy statement that 
requires authentication and accepts SAML tokens.

A proxy service that communicates over the “local” transport type cannot use a SAML 
token profile to authenticate.

Configuring SAML Authentication with Service Bus (SB) 
Transport

If you are using SAML-based authentication with the SB transport, be sure to follow these 
configuration requirements: 

On the asserting party, configure the SAML Credential mapper with URI 
http://openuri.org/<ALSBProxyServiceURI>, where <ALSBProxyServiceURI> is 
the SB transport service URI.

When configuring the Identity Assertion provider on the ALSB side (the relying party), use 
the asserting party target URL as the proxy endpoint URI.  Do not include the protocol and 
host information.  For example, /<ALSBProxyServiceURL>. 

Troubleshooting SAML Web Services Security
Question: I am trying to propagate my proxy service transport identity to a destination business 
service and keep receiving error, Unable to add security token for identity. What does 
this mean?

http://e-docs.bea.com/wls/docs100/secmanage/atn.html#SAML_ID
http://e-docs.bea.com/wls/docs100/secmanage/providers.html#SAML_cred


T roub leshoot ing  SAML Web  Serv ices  Secur i t y

BEA AquaLogic Service Bus Security Guide 8-5

Answer: There are various causes for this error. Generally this means one of the following 
problems:

The SAML Credential Mapper is not configured correctly. Double check that the 
configuration is in accordance with Configuring a SAML Credential Mapping Provider in 
Securing WebLogic Server.

Another common source of this error is that there is no subject information to propagate. 
To generate a SAML token, you must have a transport-level or message-level subject. 
Make sure that the client has a subject. This can be done by inspecting $security 
message context variable.

http://e-docs.bea.com/wls/docs100/secmanage/providers.html#SAML_cred


Us ing  SAML fo r  Authent ica t i on

8-6 BEA AquaLogic Service Bus Security Guide

Question: I am trying to propagate my proxy service transport identity to a destination business 
service using SAML holder-of-key and keep receiving error, Failure to add signature. 
What does this mean?

Answer: There are various causes for this error, but most likely is that the credentials are not 
configured for the business service’s service key provider. When AquaLogic Service Bus 
generates an outbound holder-of-key assertion, it generally also generates a digital signature over 
the message contents, so that the recipient can verify not only that a message is received from a 
particular user, but that the message has not been tampered with. To generate the signature, the 
business service must have a service key provider with a digital signature credential associated 
with it. For more information on configuring credentials, see “Adding a Credential” in Security 
Configuration in Using the AquaLogic Service Bus Console. 

Question: I am trying to configure an active intermediary proxy service that receives SAML 
identity tokens and keep receiving errors that look like: The SAML token is not valid. How 
do I fix this? 

Answer: This is generally caused by a lack of a SAML Identity Asserter or SAML Identity 
Asserter asserting party configuration for the proxy. For a proxy service to receive SAML 
assertions in active intermediary mode, it must have a SAML Identity Asserter configured. For 
more details, see Configuring a SAML Identity Assertion Provider in Securing WebLogic Server.

http://e-docs.bea.com/alsb/docs30/consolehelp/securityconfiguration.html
http://e-docs.bea.com/alsb/docs30/consolehelp/securityconfiguration.html
http://e-docs.bea.com/wls/docs100/secmanage/atn.html#SAML_ID


BEA AquaLogic Service Bus Security Guide 9-1

C H A P T E R 9

Configuring Administrative Security

To give users access to administrative functions such as creating proxy services, you assign them 
to one of four security roles with pre-defined access privileges. A security role is an identity that 
can be dynamically conferred upon a user or group based on conditions that are evaluated at 
runtime. You cannot change the access privileges for the AquaLogic Service Bus administrative 
security roles, but you can change the conditions under which a user or group is in one of the 
roles.

The following sections describe administrative security for AquaLogic Service Bus:

“Administrative Security Roles and Privileges” on page 9-2

“Administrative Security Groups” on page 9-12

“Configuring Administrative Security: Main Steps” on page 9-13

For more information about security roles, see Users, Groups, and Security Roles, in Securing 
WebLogic Resources.

http://e-docs.bea.com/wls/docs100/secwlres/secroles.html


Conf igur ing  Admin is t ra t ive  Secur i t y

9-2 BEA AquaLogic Service Bus Security Guide

Administrative Security Roles and Privileges
Table 9-1 describes the AquaLogic Service Bus administrative security roles and summarizes 
their access privileges.

Note: In this release, IntegrationAdministrators and IntegrationDeployers have the same 
privileges. This might change in future releases.

The AquaLogic Service Bus roles have permission to modify only AquaLogic Service Bus 
resources; they do not have permission to modify WebLogic Server or other resources on 
WebLogic Server. To give permission to modify WebLogic Server its other resources, add a user 
to one of the WebLogic Server security roles described in Table 9-2. In each AquaLogic Service 
Bus domain, make sure that you add at least one user to the Admin role.

Table 9-1  AquaLogic Service Bus Administrative Security Roles

Role Pre-Defined Access Privileges

IntegrationAdmin
and
IntegrationDeployer

Has complete access to all AquaLogic Service Bus resources, 
including the ability to create, edit, or delete user names, passwords, 
and credential alias bindings in service accounts and service key 
providers. The user names and passwords that this role can create are 
used only by service accounts for outbound authentication; they are 
not used to authorize access to AquaLogic Service Bus resources. 

Cannot create, edit, or delete users, groups, roles, or access control 
policies in the Security Configuration module of the AquaLogic 
Service Bus Console.

IntegrationOperator This group has the following privileges:
• Has read access to all AquaLogic Service Bus resources.
• Cannot export resources.
• Has access to create, view, edit and delete alert rules.
• Has access to session management, including create, commit, 

discard and undo of sessions. Cannot view all sessions.
• Has access to create, edit, view and delete operational settings of 

services.

IntegrationMonitor • Has read access to all AquaLogic Service Bus resources.
• Cannot export resources.



Admin is t ra t i ve  Secur i t y  Ro les  and Pr iv i l eges

BEA AquaLogic Service Bus Security Guide 9-3

Role-Based Access in AquaLogic Service Bus Console
Table 9-3 shows the actions that each AquaLogic Service Bus security role can perform in the 
AquaLogic Service Bus Console. 

Permission to perform an action is indicated by a check mark ( ) in the table. Note that there are 
no check marks in the Security Configuration section of this table because only the WebLogic 
Server Admin role has access to these functions.

Table 9-2  WebLogic Server Security Roles

WebLogic Server Role Default Access Privileges

Admin Has complete access to all WebLogic Server and AquaLogic Service 
Bus objects and functions, including the ability to create, edit, or 
delete users, groups, roles, or access control policies.

Deployer Has read access to all objects. Can create, delete, edit, import or export 
resources, services, service key providers, or projects.

Operator Has read and export access to all objects. Can configure alerts, enable 
or disable metric collection, and suspend or resume services.

Monitor Has read access to all objects. Can export any resource, service, 
service key provider, or project.

Table 9-3  Role-Based Access in AquaLogic Service Bus Console

Console Mode Actions Integration 
Admin

Integration 
Deployer

Integration 
Operator

Integration 
Monitor

OPERATIONS

Monitoring

Dashboard View Statistics

Reset Statistics

View Alerts

Delete Alerts



Conf igur ing  Admin is t ra t ive  Secur i t y

9-4 BEA AquaLogic Service Bus Security Guide

View Alert 
History

View Server 
Summary

Dashboard 
Settings

View Dashboard 
Settings

Set Dashboard 
Settings

Configuration

Smart Search Set Smart Search 
Settings

View Smart 
Search Settings

Global 
Settings

Set Global 
Settings

View Global 
Settings

Tracing Set Tracing 
Settings

View Tracing 
Settings

Reporting

Message 
Reports

View Message 
Reports

Purge 
Messages

Purge Messages

Table 9-3  Role-Based Access in AquaLogic Service Bus Console

Console Mode Actions Integration 
Admin

Integration 
Deployer

Integration 
Operator

Integration 
Monitor



Admin is t ra t i ve  Secur i t y  Ro les  and Pr iv i l eges

BEA AquaLogic Service Bus Security Guide 9-5

RESOURCE BROWSER

Service

Proxy 
Services

Create Proxy 
Service

View Proxy 
Service

Edit Proxy 
Service

Delete Proxy 
Service

Business 
Services

Create Business 
Service

View Business 
Service

Edit Business 
Service

Delete Business 
Service

Interface

WSDLs Create WSDLs

View WSDLs

Edit WSDLs

Delete WSDLs

XML 
Schemas

Create XML 
Schemas

Table 9-3  Role-Based Access in AquaLogic Service Bus Console

Console Mode Actions Integration 
Admin

Integration 
Deployer

Integration 
Operator

Integration 
Monitor



Conf igur ing  Admin is t ra t ive  Secur i t y

9-6 BEA AquaLogic Service Bus Security Guide

View XML 
Schemas

Edit XML 
Schemas

Delete XML 
Schemas

WS-Policies Create 
WS-Policy

View WS-Policy

Edit WS-Policy

Delete 
WS-Policy

Transformation

XQueries Create XQuery

View XQuery

Edit XQuery

Delete XQuery

XSLTs Create XSLT

View XSLT

Edit XSLT

Delete XSLT

MFLs Create MFL

View MFL

Edit MFL

Table 9-3  Role-Based Access in AquaLogic Service Bus Console

Console Mode Actions Integration 
Admin

Integration 
Deployer

Integration 
Operator

Integration 
Monitor



Admin is t ra t i ve  Secur i t y  Ro les  and Pr iv i l eges

BEA AquaLogic Service Bus Security Guide 9-7

Delete MFL

JARs Create JARs

View JARs

Edit JARs

Delete JARs

Security

Service 
Accounts

Create Service 
Account

View Service 
Account

Edit Service 
Account

Delete Service 
Account

service key 
providers

Create service 
key provider

View service key 
provider

Edit service key 
provider

Delete service 
key provider

Notification

Alert 
Destinations

Create Alert Rule

View Alert Rule

Table 9-3  Role-Based Access in AquaLogic Service Bus Console

Console Mode Actions Integration 
Admin

Integration 
Deployer

Integration 
Operator

Integration 
Monitor



Conf igur ing  Admin is t ra t ive  Secur i t y

9-8 BEA AquaLogic Service Bus Security Guide

Edit Alert Rule

Delete Alert Rule

PROJECT EXPLORER

Projects Create Project

View Project

Edit Project

Delete Project

Folders Create Folder

View Folder

Edit Folder

Delete Folder

SECURITY CONFIGURATION

Users Create User

View User

Edit User

Delete User

Groups Create Group

View Group

Edit Group

Delete Group

Table 9-3  Role-Based Access in AquaLogic Service Bus Console

Console Mode Actions Integration 
Admin

Integration 
Deployer

Integration 
Operator

Integration 
Monitor



Admin is t ra t i ve  Secur i t y  Ro les  and Pr iv i l eges

BEA AquaLogic Service Bus Security Guide 9-9

Roles Create Role

View Role

Edit Role

Delete Role

Access 
Control

Create Policy

View Policy

Edit Policy

Delete Policy

SYSTEM ADMINISTRATION

Import/Export

Import 
Resources

Import 

Export 
Resources

Export 

UDDI

UDDI 
Registries

Create

View

Edit

Delete

Import from 
UDDI

Import

Table 9-3  Role-Based Access in AquaLogic Service Bus Console

Console Mode Actions Integration 
Admin

Integration 
Deployer

Integration 
Operator

Integration 
Monitor



Conf igur ing  Admin is t ra t ive  Secur i t y

9-10 BEA AquaLogic Service Bus Security Guide

Auto-Import 
Status

Synchronize

Detach

Publish to 
UDDI

Publish

Auto-Publish 
Status

Auto-Publish 
Status

Publish

Global 
Resources

JNDI 
Providers

Create JNDI 
Providers

View JNDI 
Providers

Edit JNDI 
Providers

Delete JNDI 
Providers

SMTP 
Servers

Create SMTP 
Servers

View SMTP 
Servers

Edit SMTP 
Servers

Delete SMTP 
Servers

Customization

Table 9-3  Role-Based Access in AquaLogic Service Bus Console

Console Mode Actions Integration 
Admin

Integration 
Deployer

Integration 
Operator

Integration 
Monitor



Admin is t ra t i ve  Secur i t y  Ro les  and Pr iv i l eges

BEA AquaLogic Service Bus Security Guide 9-11

Find and 
Replace

Find Value

Replace With

Create 
Customizatio
n File

Create File

Execute 
Customizatio
n File

Select File

Select Items

Execute File

CHANGE CENTER

Session 
Management

Edit Session

View All 
Sessions

View Changes

Activate 
Changes

Discard Changes

Exit Session

Table 9-3  Role-Based Access in AquaLogic Service Bus Console

Console Mode Actions Integration 
Admin

Integration 
Deployer

Integration 
Operator

Integration 
Monitor



Conf igur ing  Admin is t ra t ive  Secur i t y

9-12 BEA AquaLogic Service Bus Security Guide

Administrative Security Groups
To facilitate the process of assigning users to the pre-defined administrative roles, AquaLogic 
Service Bus also provides four corresponding security groups. While membership in a role is 
dynamic, membership in a group is static: an administrator places a user in a group and the user 
remains in the group until the administrator changes the assignment.

In the simplest scenario for configuring administrative security, you create a user, add the user to 
one of the four administrative groups, and the user is automatically always a member of the 
corresponding role with all of the pre-defined access privileges. 

In a more complex scenario, you might create two of your own groups, MyAdministratorsEast 
and MyAdministratorsWest, and assign users appropriately. You configure the pre-defined 
IntegrationAdmin security role so that the MyAdministratorsWest group is in the role from 8am 
to 8pm EST, while the MyAdministratorsEast group is in the role from 8pm to 8am EST.

Table 9-4 describes the administrative groups that AquaLogic Service Bus provides. You can 
create your own groups in addition to these.

Table 9-4  AquaLogic Service Bus Groups

By Default, This Group... Is Always in This Role...

IntegrationAdministrators IntegrationAdmin. See “IntegrationAdmin and IntegrationDeployer” on 
page 9-2.

IntegrationDeployers IntegrationDeployer. See “IntegrationAdmin and IntegrationDeployer” on 
page 9-2.

IntegrationOperators IntegrationOperator. See “IntegrationOperator” on page 9-2.

IntegrationMonitors IntegrationMonitor. See “IntegrationMonitor” on page 9-2.



Conf igur ing  Admin is t ra t i ve  Secur i t y :  Ma in  Steps

BEA AquaLogic Service Bus Security Guide 9-13

Configuring Administrative Security: Main Steps
You can create or modify users, groups, and roles when you are in or out of an AquaLogic Service 
Bus session. Any additions or modifications to this data take effect immediately and are available 
to all sessions. If you discard a session in which you added or modified the data, the security data 
is not discarded.

To configure administrative security:

1. Log in to the AquaLogic Service Bus Console with a user account that is in the WebLogic 
Server Admin role.

2. (Optional) Create your own security groups.

See “Adding a Group” under Security Configuration in the Using the AquaLogic Service 
Bus Console.

3. Create users and assign them to one of the AquaLogic Service Bus groups or one of your own 
groups. 

See “Adding a User” under Security Configuration in the Using the AquaLogic Service Bus 
Console.

4. (Optional) Modify the conditions under which users and groups are in the pre-defined 
AquaLogic Service Bus security roles. 

By default, the four default groups are always in the AquaLogic Service Bus security roles, 
but you can change this default. To more easily manage your list of users, BEA 
recommends that you never add users directly to a role. Instead, add users to a group and 
add the group to the role.

See “Adding a Role” under Security Configuration in the Using the AquaLogic Service Bus 
Console.

http://e-docs.bea.com/alsb/docs30/consolehelp/securityconfiguration.html
http://e-docs.bea.com/alsb/docs30/consolehelp/securityconfiguration.html
http://e-docs.bea.com/alsb/docs30/consolehelp/securityconfiguration.html


Conf igur ing  Admin is t ra t ive  Secur i t y

9-14 BEA AquaLogic Service Bus Security Guide



BEA AquaLogic Service Bus Security Guide 10-1

C H A P T E R 10

Securing AquaLogic Service Bus in a 
Production Environment

To prepare an AquaLogic Service Bus installation for production, you must pay special attention 
to your security needs. The following list outlines some of the tasks you need to perform:

Read and follow the guidelines in Securing a Production Environment in the WebLogic 
Server documentation.

Create user accounts for the AquaLogic Service Bus administrators and assign them to one 
or more of the following groups as appropriate: IntegrationAdministrators, 
IntegrationOperators, IntegrationMonitors, and IntegrationDeployers. For more 
information, see “Role-Based Access in AquaLogic Service Bus Console” under 
“Overview of Security Configuration” in Security Configuration in Using the AquaLogic 
Service Bus Console.

In your file system, configure access control to the directory that contains AquaLogic 
Service Bus configuration data. This is the sbconfig directory under the domain root. For 
example:

C:\bea\user_projects\domains\base_domain\alsb\config

In your file system, configure access control to the directories used by the FTP, SFTP, file, 
and email transports.

If necessary, configure access control to the JMS resources used by your AquaLogic 
Service Bus installation.

http://e-docs.bea.com/wls/docs100/lockdown/intro.html
http://e-docs.bea.com/alsb/docs30/consolehelp/securityconfiguration.html


Secur ing  AquaLog ic  Serv ice  Bus  in  a  P roduc t ion  Env i ronment

10-2 BEA AquaLogic Service Bus Security Guide

Undeploying the Service Bus (SB) Resource
AquaLogic Service Bus provides a resource servlet 
(BEA_HOME/servicebus/lib/sbresourceWar/sbresource.war) that is used to expose the 
resources registered in AquaLogic Service Bus. The resources registered with AquaLogic 
Service Bus include: 

WSDL (a WSDL registered as a resource in AquaLogic Service Bus) 

Schema 

MFL 

WS-Policy 

WSDL (an effective WSDL with resolved policies and port information for a proxy 
service—this effective WSDL is available if the proxy service was created using a WSDL). 

However, this servlet provides anonymous HTTP access to metadata, and as such it may be 
considered a security risk in some high-security environments. 

If you do not want the AquaLogic Service Bus resources to be available anonymously via HTTP, 
you can set security roles on sbresources.war to control access to it, or completely undeploy 
the resource.

Note: If you undeploy the SB resource you will no longer be able to use the UDDI subsystem. 

Protection of Temporary Files With Streaming body 
Content

As described in The Message Context Model, for processing message content, you can specify 
that the ALSB pipeline streams the content rather than loading it into memory. When you enable 
content streaming for a proxy service, you specify whether to buffer the streamed content to 
memory or a disk file as an intermediate step during the processing of the message. 

If you use these temporary disk files, you should protect them.

To lock-down your ALSB domain, set the com.bea.wli.sb.context.tmpdir java system 
property to specify where these temporary files will be written. 

Make sure this directory exists and has the right set of access permissions. 

http://e-docs.bea.com/alsb/docs30/userguide/context.html#wp1008763


Pro tect ion  o f  Temporary  F i l es  Wi th  St reaming  body  Content

BEA AquaLogic Service Bus Security Guide 10-3

For more information see the file access permission and file system recommendations in Securing 
a Production Environment in the WebLogic Server documentation. 

http://e-docs.bea.com/wls/docs100/lockdown/intro.html
http://e-docs.bea.com/wls/docs100/lockdown/intro.html


Secur ing  AquaLog ic  Serv ice  Bus  in  a  P roduc t ion  Env i ronment

10-4 BEA AquaLogic Service Bus Security Guide


	Introduction
	Document Audience
	Related Information

	Understanding AquaLogic Service Bus Security
	Inbound Security
	Outbound Security
	Options for Identity Propagation
	Example: Authentication with a User Name Token

	Administrative Security
	Access Control Policies
	Configuring Proxy Service Access Control
	Access Control Policy Management
	Deleting a Proxy Service
	Deleting the Access Control Policy Assigned to a Proxy Service
	Moving or Renaming a Proxy Service
	Renaming a Proxy Service Operation


	Preserving Security Configuration During Import
	Preserve Security and Policy Configuration Check Box
	Preserve Credentials Check Box
	Preserve Access Control Check Box

	Configuring the WebLogic Security Framework: Main Steps
	Context Properties Are Passed to Security Providers
	Context Properties for HTTP Transport-Level Authentication
	ContextHandler Properties for Access Control and Message-Level Custom Authentication
	Additional Transport-Specific Context Properties
	Administrator-Supplied Context Properties for Message-Level Authentication
	Security Provider Must Have Knowledge of the Property Name
	WebLogic Server Administrative Channel is Supported
	Using the Administrative Channel: Main Steps


	Supported Standards and Security Providers
	Support for WebLogic Security Providers
	Configuring Authentication Providers
	Using a Custom Authorization Provider to Protect AquaLogic Service Bus Resources
	WebLogic Authorization Provider Usage Information
	ALSBProxyServiceResource Object
	ProjectResourceV2 Object
	ConsoleResource Object



	AquaLogic Service Bus Security FAQ
	Configuring Transport-Level Security
	Configuring Transport-Level Security for HTTPS
	HTTPS Authentication Levels
	Configuring Inbound HTTPS Security: Main Steps
	Configuring Outbound HTTPS Security: Main Steps

	Configuring Transport-Level Security for HTTP
	Configuring Inbound HTTP Security: Main Steps
	Configuring Outbound HTTP Security: Main Steps

	Configuring Transport-Level Security for JMS
	Configuring Inbound JMS Transport-Level Security: Main Steps
	Configuring Outbound JMS Transport-Level Security: Main Steps

	Configuring Transport-Level Security for SFTP Transport
	How Two-Way Authentication is Performed
	Use of the known_hosts File
	Creating the known_hosts File

	SFTP Transport Authentication Process
	Configuring Inbound SFTP Transport-Level Security: Main Steps
	Configuring Outbound SFTP Transport-Level Security: Main Steps
	SFTP Security Attributes Preserved During Import
	SFTP Credential Lifecycle

	Email, FTP, and File Transport-Level Security
	Email and FTP Transport-Level Security
	File Transport Security

	Configuring Transport-Level Security for SB Transport
	Configuring SAML Authentication With Service Bus (SB) Transport

	Configuring Transport-Level Security for WS Transport
	Reliable Web Services Messaging Defined
	WS Transport Resources Visible in WLS Console
	Use of WS-Policy Files for Web Service Reliable Messaging Configuration
	Preconfigured WS-RM Policy Files

	RM WS-Policy Required Prior to Activation
	Async Responses
	Proxy Service Authentication
	Preserving Security Configuration on Import
	Configuring Inbound and Outbound WS Transport-Level Security

	Configuring Transport-Level Security for WebSphere Message Queue Transport
	Configuring Inbound MQ Transport-Level Security: Main Steps
	Configuring Outbound MQ Transport-Level Security: Main Steps

	Transport-Level Security Elements in the Message Context

	Configuring Custom Authentication
	What Are Custom Authentication Tokens?
	Custom Authentication Token Use and Deployment

	Understanding Transport-Level Custom Authentication
	Importing and Exporting and Transport-Level Custom Token Authentication

	Understanding Message-Level Custom Authentication
	Format of XPath Expressions
	Configuring Identity Assertion Providers for Custom Tokens
	Object Type of Custom Tokens
	Configuring a Custom Token Type in an Identity Assertion Provider
	Steps for Configuring a Custom Token Type in an Identity Assertion Provider
	Setting the Supported and Active Types in the MBean


	Configuring Custom Authentication Transport-Level Security
	Steps for Configuring Custom Authentication Transport-Level Security

	Configuring Custom Authentication Message-Level Security
	Steps for Configuring Custom Authentication Message-Level Security

	Propagating the Identity Obtained From Custom Authentication Tokens
	Combining WS-Security with Custom Username/Password and Tokens

	Using WS-Policy in ALSB Proxy and Business Services
	About Web Services Policy
	Relationship Between WS-Security and WS-Policy
	Supported Web Services Security Policy Assertions
	WS-Policies Can be Bound Directly to Service
	Abstract and Concrete WS-Policy Statements

	AquaLogic Service Bus WS-Policy Files
	Predefined WS-Security Policy 1.2 Policy Files
	Predefined BEA Proprietary Policy Files
	Predefined Reliable Messaging Policy Files
	When to use the Predefined Policy Files

	Creating and Using Custom WS-Policy Statements
	Custom WS-SecurityPolicy 1.2 Policy Statements

	Attaching WS-Policy Statements to WSDL Documents
	Determining the URI of a WS-Policy Statement
	Specifying the URI of a WS-Policy Statement in a WSDL Document
	Best Practices: Attaching WS-Policy Statements
	Example: Requiring X.509 Credentials for Identity and Confidentiality
	Example: Attaching Custom Inline WS-Policy Statements to a WSDL Document

	BEA-Proprietary Security Policy Best Practices
	Policy Subjects and Effective Policy

	Configuring Message-Level Security for Web Services
	About Message-Level Security
	Sample Sequence of Actions in Message-Level Security

	Message-Level Access Control Policies for Proxy Services
	Configuring Proxy Service Message-Level Security
	Creating an Active Intermediary Proxy Service: Main Steps
	Creating a Pass-Through Proxy Service: Main Steps

	Configuring Business Service Message-Level Security: Main Steps
	Examples of Custom WS-Policy Statements
	Example: Encrypting Part of the SOAP Body and Header
	Example: Encryption Policy for a Business Service
	Example: Encrypting a Custom SOAP Header
	Example: Signing the Message Body and Headers
	Example: Signing a SOAP Body with SAML Holder-of-Key
	Example: Authenticating, Signing, and Encrypting a SOAP Body and Headers with SAML Sender Vouches

	Disabling Business Service Message-Level Security

	Using SAML for Authentication
	Configuring SAML Credential Mapping: Main Steps
	Configuring SAML Pass-Through Identity Propagation
	Authenticating SAML Tokens in Proxy Service Requests
	Configuring SAML Authentication with Service Bus (SB) Transport
	Troubleshooting SAML Web Services Security

	Configuring Administrative Security
	Administrative Security Roles and Privileges
	Role-Based Access in AquaLogic Service Bus Console

	Administrative Security Groups
	Configuring Administrative Security: Main Steps

	Securing AquaLogic Service Bus in a Production Environment
	Undeploying the Service Bus (SB) Resource
	Protection of Temporary Files With Streaming body Content


