0?7,

r
S’ 7
L/

BEAAqualogic
Service Bus™

JMX Monitoring API
Programming Guide

Version 3.0
Document Revised: February, 2008

Contents: JMX Monitoring API

1. Introduction

Purpose of IMX Monitoring APlo
DS CIIPLION o\t

More Informationttt

2. Concepts

Public POJO ObjeCtS. . . o v et e e
RESOUICETYPE. . o ottt
ServiceResourceStatistic o
ResourceStatistict
StatisticValue
Sttt CTY P, . oot

ServiceDomainMBean

Statistics Detailso
Statistics details for Resource Type -SERVICE
Statistics details for Resource Type-FLOW_COMPONENT..............
Statistics details for Resource Type - WEBSERVICE_OPERATION
Statistics details for Resource Type -URIt

CaVBALS . o it

PerformanCe

3. APl Usage Example

Sample Program o

JMX Monitoring APl Programming Guide

iv JMX Monitoring APl Programming Guide

Introduction

Purpose of JMX Monitoring API

In previous releases of Aqualogic Service Bus, run-time service-monitoring data was only
available through the Monitoring Dashboard of the AqualLogic Service Bus console. It was not
possible for clients to programmatically access and consume monitoring data.

The JMX Monitoring API in AquaLogic Service Bus provides external access to monitoring data.
Java Management Extensions (JMX) technology was used for the implementation, as it is a
public standard that meets the implementation requirements.

The primary purpose of the JIMX Monitoring API is to provide efficient, lower-level APIs
supporting bulk operations. It does this using JMX as a transport. This API is not a high-level API
compatible with JIMX-based tools. However, if you are developing client software, you may want
to develop high-level IMX APIs that support JIMX-based tooling.

Description

The JMX monitoring API makes use of JMX as a transport only.

It exposes a public MBean to provide all the required operations to get monitoring data (statistical
information) for any monitored service and its components.

It also exposes a set of public POJO objects required to carry out operations provided by the
MBean.

There is no need for third-party client software to know the intricacies of the hierarchy inherent
in the statistical information stored in the AquaLogic Service Bus monitoring system.

JMX Monitoring APl Programming Guide 1-1

Introduction

Using these APIs, customers can integrate their monitoring/management systems with
Agualogic Service Bus to do the following:

o |dentify services enabled for monitoring.
e Get detailed statistical information for a specific service, for its components, or for both.

e Reset statistics accumulated since the last reset.

More Information

For more information about AqualLogic Service Bus 3.0, see BEA Aqualogic Service Bus 3.0.

For basic concepts and terminology, see AqualLogic Service Bus Concepts and Architecture.

1-2 JMX Monitoring API Programming Guide

http://e-docs.bea.com/alsb/docs30/index.html
http://e-docs.bea.com/alsb/docs30/concepts/index.html

Concepts

The public JIMX APIs are modeled by a single instance of ServiceDomainMBean, which has
operations to check for monitored services and retrieve data from them.

A public set of POJOs provide additional objects and methods that, along with
ServiceDomainMbean, provide a complete API for monitoring statistics.

The following sections provide brief descriptions of the POJOs and MBean. The Javadoc
provides detailed descriptions. There is also a detailed description of statistics that are reported
for resources.

Please be sure to read the important notes at the end of this chapter.

Public P0JO Objects

The following POJO objects are exposed as part this API.
ResourceType

ServiceResourceStatistic

ResourceStatistic

StatisticValue

StatisticType

JMX Monitoring APl Programming Guide 2-1

Concepts

2-2

ResourceType

This object represents all types of resources that are enabled for service monitoring. There are
four enum constants representing types: SERVICE, FLOW_COMPONENT, URI, and
WEBSERVICE_OPERATION.

See com.bea.wli.monitoring.ResourceType in the javadoc at:
http://edocs.bea.com/alsb/docs30/javadoc/

ServiceResourceStatistic

This object represents all business and proxy service resource types and the statistics associated
with them. There are methods to get statistics for all resources or for a specified one.

See com.bea.wli.monitoring.ServiceResourceStatistic in the javadoc at:

http://edocs.bea.com/alsb/docs30/javadoc/

ResourceStatistic

This object represents a resource for which statistics collection is supported. There are methods
to get the name of the resource, the type, and the statistics.

See com.bea.wli.monitoring.ResourceStatistic in the javadoc at:
http://edocs.bea.com/alsb/docs30/javadoc/

StatisticValue

This object represents a statistic value for a resource. The monitoring system currently supports
the following types of statistic values, both nested classes:

e CountStatistic
e IntervalStatistic
e StatusStatistic

StatisticValue is an abstract class so that concrete objects representing count and interval
statistic values can be derived from it. It includes getName () and getType() methods.

See com.bea.wli.monitoring.StatisticValue in the javadoc at:
http://edocs.bea.com/alsb/docs30/javadoc/

JMX Monitoring API Programming Guide

http://e-docs.bea.com/alsb/docs30/javadoc
http://e-docs.bea.com/alsb/docs30/javadoc
http://e-docs.bea.com/alsb/docs30/javadoc
http://e-docs.bea.com/alsb/docs30/javadoc

ServiceDomainMBean

StatisticType

This object represents predefined types of statistics. There are three enum types: STATUS, COUNT,
and INTERVAL.

See com.bea.wli.monitoring.StatisticValue in the javadoc at:

http://edocs.bea.com/alsb/docs30/javadoc/

ServiceDomainMBean

This is the only MBean exposed as part of the public IMX API. It provides methods to find
monitored service and get and reset statistics.

See com.bea.wli.monitoring.ServiceDomainMBean in the javadoc at:

http://edocs.bea.com/alsb/docs30/javadoc/

Statistics Details

The following sections provide detailed information about statistics reported for each resource
type.

Statistics details for Resource Type - SERVICE

A service is an inbound or outbound endpoint that is configured within AqualLogic Service Bus.
It may have an associated WSDL, security settings, etc.

The following statistics are reported for this resource type.

Table 2-1 SERVICE Statistics

Statistic Name Type
message-count count
error-count count
failover-count count
wss-error count
response-time interval
validation-errors count

JMX Monitoring APl Programming Guide 2-3

http://e-docs.bea.com/alsb/docs30/javadoc
http://e-docs.bea.com/alsb/docs30/javadoc

Concepts

Tahle 2-1 SERVICE Statistics

Statistic Name Type
failure-rate count
success-rate count
sla-severity-warning count
sla-severity-major count
sla-severity-minor count
sla-severity-normal count
sla-severity-fatal count
sla-severity-critical count
sla-severity-all count
pipeline-severity-warning count
pipeline-severity-major count
pipeline-severity-minor count
pipeline-severity-normal count
pipeline-severity-fatal count
pipeline-severity-critical count
pipeline-severity-all count
throttling-time interval
uri-offline-count count

The statistics sla-severity-warning, sla-severity-major, sla-severity-minor,
sla-severity-normal, sla-severity-fatal, sla-severity-critical, and
sla-severity-all are collected for both proxy services and business services.

The statistics pipel ine-severity-warning, pipeline-severity-major,
pipeline-severity-minor, pipeline-severity-normal, pipeline-severity-fatal,

2-4 JMX Monitoring API Programming Guide

Statistics Details

pipeline-severity-critical, and pipeline-severity-all are collected only for proxy
services.

Notes:

e Statistic “wss-error” provides Web Service security violations counts. It is
applicable to both business and proxy services.

e Statistic “validation errors” is only applicable to proxy service; it is not returned
for a business service.

e Statistic “failover-count” is only applicable to business service; it is not returned
for a proxy service.

e When the statistics of a managed server are retrieved from a cluster domain using
the ServiceDomainMBean the statistics for proxy services will not contain
sla-severity-normal, sla-severity-minor, sla-severity-major,
sla-severity-warning, sla-severity-critical, sla-severity-fatal,
sla-severity-all.

Statistics details for Resource Type—FLOW_COMPONENT

Statistics are collected for the following two types of components that can be present in the flow
definition of a proxy service.

o Pipeline-pair node

e Route node

Pipelines are one-way processing paths consisting of stages that are executed sequentially against
the current message. Stages are used to perform activities such as transformation, logging and
publishing.

There are three categories of pipelines: request, response, and error.

The pipeline-pair node ties together a single request and a single response pipeline into one
top-level element.

A routing node consists of a set of routes. A route identifies a target service and includes some
additional configuration options that determines how the message will be packaged and sent to
that service. A routing node will result in at most one route being selected as part of request
processing.

The following statistics are reported for this resource type.

JMX Monitoring APl Programming Guide 2-5

Concepts

Table 2-2 FLOW_COMPONENT Statistics

Statistic Name Type

elapse-time interval

message-count count

error-count count
Notes:

2-6

1. Statistics for pipeline and route nodes are returned as statistics for flow components. enum
value ResourceType.FLOW_COMPONENT represents both pipeline and route nodes.

2. Thus there is no way for a client to check if the returned flow component is a pipeline or route
node. The name of the flow component, however, may suggest the type.

Statistics details for Resource Type —
WEBSERVICE_OPERATION

This resource type provides statistical information pertaining to WSDL operations. Statistics are
reported for each defined operation.

The following statistics are reported.

Table 2-3 WEBSERVICE_OPERATION Statistics

Statistic Name Type
elapsed-time interval
message-count count
error-count count

Statistics details for Resource Type —URI

This resource type provides statistical information pertaining to endpoint URI for a business
service. Statistics are reported for each defined Endpoint URI. The following statistics are
reported.

JMX Monitoring API Programming Guide

Caveats

Table 2-4 Statistics for Endpoint URI

Statistic Name Type

message-count count

error-count count

response-time interval

status status
Caveats

Please be aware of the following:

e A client program will not know about newly added services that have monitoring turned
on, or services modified to turn on monitoring, unless it periodically checks for such
changes.

e Reset operations should not be performed too frequently. BEA recommends that reset
intervals be greater than 15 minutes.

e BEA strongly discourages using this API in a concurrent manner with more than one
thread or process. This is because a reset performed in one thread or process is not visible
to another threads or processes. This caveat also applies to resets performed from the
Monitoring Dashboard of the AquaLogic Service Bus Console, as such resets are not
visible to this API.

Performance

Performance should be better than or equivalent to that observed in the Monitoring Dashboard of
the AqualLogic Service Bus Console.

JMX Monitoring APl Programming Guide 2-1

Concepts

2-8 JMX Monitoring API Programming Guide

APl Usage Example

The sample program in this section demonstrates how to use the JIMX Monitoring API.

The following steps describe how statistics can be retrieved for a proxy service that is enabled for
monitoring.

1.
2.

Get ServiceDomainMBean from the MBean Server.

Get the references for monitored proxy services using the
getMonitoredProxyServiceRefs operation of the ServiceDomainMBean.

Identify the references of the desired proxy service from the retrieved references.

Get ServiceResourceStatistics using the getProxyServiceStatistics operation of
the ServiceDomainMBean of the desired proxy service.

Get all ResourceStatistic objects using the operations of ServiceResourceStatistic.

For each retrieved ResourceStatistic object, get StatisticVvalue objects using the
getStatistics operation and print statistical information.

Repeat process as necessary.

JMX Monitoring APl Programming Guide 3-1

APl Usage Example

Sample Program

The following sample program explains how to:

1. Find by type services enabled for monitoring.

Set a resource-type filter.

Retrieve by type statistics for one or more services.

Extract statistics from the ServiceResourceStatistics object.

Save retrieved statistics in the proper format.

o o ~ w N

Reset statistics for one or more services.

To run this program, include the following JAR files in the classpath:

1. weblogic.jar

2. sb-kernel-api.jar

3. com.bea.common.configfwk_1.1.0.0.jar (found in the ALSBInstal IHome/modules
directory)

You may need to reset the default values for SERVER_NAME, HOSTNAME, PORT, USERNAME, and/or
PASSWORD in the code below for your environment.

Note: If you need to get the Status statistics for each end point of a business service, set the
SERVER_NAME attribute in a cluster environment. If you are running on a single node,
Status statistics are returned even if you do not set this property.

For performance reasons, avoid extracting and resetting statistics for a large number of services
too often. See “Caveats” on page 2-7. See Listing 3-1 for a sample program.

Listing 3-1 Sample Program to Retrieve Statistics for a Proxy Service that is Enabled for Monitoring

package tests.monitoring;

/*
Copyright (c) 2007 BEA Systems, Inc.
All rights reserved
THIS IS UNPUBLISHED PROPRIETARY
SOURCE CODE OF BEA Systems, Inc.
The copyright notice above does not

3-2 JMX Monitoring API Programming Guide

evidenc
publica
*/

import com.b
import com.b
import weblo

import javax.
import javax.
import javax.
import javax.
import javax.
import javax.
import javax.

import java.
import java.
import java.
import java.
import java.
import java.
import java.
import java.
import java.

/**
* This cl
* Service
* 1t show
* 1. Find
* 2. Get

Sample Program

e any actual or intended
tion of such source code.

ea.wli.config.Ref;
ea.wli_monitoring.*;
gic.management. jmx.MBeanServerlnvocationHandler;

management.MBeanServerConnection;
management.MalformedObjectNameException;
management.ObjectName;
management. remote . JMXConnector ;
management.remote .JMXConnectorFactory;
management.remote.JMXServiceURL;
naming.Context;

io.File;

io.FileWriter;

i0.10Exception;

lang.reflect. InvocationHandler;
lang.reflect._Method;
lang.reflect._Proxy;
net.MalformedURLException;

util._*;

text.SimpleDateFormat;

ass provides sample code showing how to use
DomainMBean.
s how to:

business and proxy services enabled for monitoring.
statistics for one or more business and proxy services.

* 3. Perform reset operation on one or more business and proxy services.

* 4. Hand

* 1t uses

* perform
*/

public class

le exceptions.
a timer to retrieve statistics, save them in a file, and
resets in a recursive manner.

ServiceStatisticsRetriever {

JMX Monitoring APl Programming Guide 3-3

APl Usage Example

private ServiceDomainMBean serviceDomainMbean = null;
private String serverName = null;

/**

* Retrieve statistics for all business services being monitored in the
* domain and reset statistics for the same.

* @throws Exception

*/

void getAndResetStatsForAllMonitoredBizServices() throws Exception {
Ref[] serviceRefs =
serviceDomainMbean.getMonitoredBusinessServiceRefs();

// Create a bitwise map for desired resource types.
int typeFlag = 0;

typeFlag = typeFlag | ResourceType.SERVICE.value();
typeFlag = typeFlag | ResourceType.WEBSERVICE_OPERATION.value(Q);
typeFlag = typeFlag | ResourceType.URI .value();

HashMap<Ref, ServiceResourceStatistic> resourcesMap = null;
HashMap<Ref, ServiceResourceStatistic> resourcesMapOnSingle
Server = null;
// Get cluster-level statistics.
try {
// Get statistics.
System.out.printIn("'Now trying to get statistics for -" +
serviceRefs.length + " business services...");
resourcesMap =
serviceDomainMbean.getBusinessServiceStatistics
(serviceRefs, typeFlag, serverName);
// Reset statistics.
long resetRequestTime =
serviceDomainMbean.resetStatistics (serviceRefs);

// Save retrieved statistics.
String fileName = "BizStatistics_" +
new SimpleDateFormat(''yyyy MM_dd_HH_mm™).
format(new Date(System. currentTimeMillis()))

3-4 JMX Monitoring API Programming Guide

Sample Program

+ "otxt';
saveStatisticsToFile(resourcesMap, resetRequestTime,
fileName);
}
catch (IllegalArgumentException iae) {
System.out._printin(” \n'");
System.out.printIn("Encountered IllegalArgumentException...
Details:");
System.out.printIn(iae.getMessage());
System.out.printIn('Check if proxy ref was passed OR
flowComp ™ +
"resource was passed OR bitmap is invalid..." +
"\nlf so correct it and try again!!!™);
System.out.printin(” \n");
throw iae;
}

catch (DomainMonitoringDisabledException dmde) {

/** Statistics not available as monitoring is turned off at
domain level.

*/

System.out.printin(” \n"");

System.out.printIn(’'Statistics not available as
monitoring " +

"Is turned off at domain level.");

System.out.printin(” \n'");

throw dmde;

}

catch (MonitoringException me) {
// Internal problem... May be aggregation server is
crashed. ..
System.out.printin(” \n'");
System.out.printIn(""ERROR: Statistics is not available...
o+

"Check if aggregation server is crashed...");
System.out._printin(” \n'");
throw me;

JMX Monitoring APl Programming Guide 3-5

APl Usage Example

/**
* Retrieve statistics for all proxy services being monitored in the
* domain and reset statistics for the same.
* @throws Exception
*/
void getAndResetStatsForAlIMonitoredProxyServices() throws Exception {
Ref[] serviceRefs =
serviceDomainMbean.getMonitoredProxyServiceRefs();
// Create a bitwise map for desired resource types.
int typeFlag = 0;
typeFlag = typeFlag | ResourceType.SERVICE.value();
typeFlag = typeFlag | ResourceType.FLOW_COMPONENT.value();
typeFlag = typeFlag | ResourceType.WEBSERVICE_OPERATION.value();

HashMap<Ref, ServiceResourceStatistic> resourcesMap = null;

// Get cluster-level statistics.
try {
// Get statistics.
System.out.printIn("'Now trying to get statistics for -" +
serviceRefs.length + " proxy services...");
resourcesMap = serviceDomainMbean.getProxyServiceStatistics
(serviceRefs, typeFlag, null);

// Reset statistics.
long resetRequestTime =
serviceDomainMbean.resetStatistics(serviceRefs);

// Save retrieved statistics.
String fileName = "ProxyStatistics " +
new SimpleDateFormat(''yyyy MM_dd_HH_mm™).
format(new Date(System.currentTimeMillis(Q))) +
"ot
saveStatisticsToFile(resourcesMap, resetRequestTime,
fileName);
}
catch (IllegalArgumentException iae) {
System.out._printin(” \n'");

3-6 JMX Monitoring API Programming Guide

}

/**
* Saves statistics of all services from the specified map.
* @param statsMap Map containing statistics for one or more services
* of the same type; i.e., business or proxy.

Sample Program

System.out.printIn(*Encountered IllegalArgumentException...
Details:");
System.out.printin(iae.getMessage());
System.out.printIn('Check if business ref was passed OR bitmap
is " + "invalid.._.\nlf so correct it and try again!!I1');
System.out.printin(" \n'");
throw iae;

catch (DomainMonitoringDisabledException dmde) {

}

/** Statistics not available as monitoring is turned off at the

* domain level.

*/
System.out._printin(*” \n'");
System.out.printIn(''Statistics not available as monitoring

"o+

"is turned off at domain level.");
System.out.printin(" \n'");
throw dmde;

catch (MonitoringException me) {

// Internal problem ... May be aggregation server is
crashed ...
System.out.printin(" \n'");
System.out.printIn("'ERROR: Statistics is not available... " +
"Check i1f aggregation server is crashed...'™);
System.out._printin("” \n'");
throw me;

JMX Monitoring APl Programming Guide 3-7

APl Usage Example

3-8

* @param resetReqTime Reset request time. This information will be
* written at the end of the file, provided it is not zero.
* @param fileName Statistics will be saved In a file with this name.
* @throws Exception
*/
private void saveStatisticsToFile(
HashMap<Ref, ServiceResourceStatistic> statsMap,
long resetReqTime, String fileName) throws Exception {
if (statsMap == null) {
System.out.printIn('"\nService statistics map is null.._.
Nothing to save.\n");
}
if (statsMap.size() == 0) {
System.out.printIn('"\nService statistics map is empty...
Nothing to save.\n");
}

FileWriter out = new FileWriter(new File(FfileName));

out.write(" \n"");

out.write("This file contains statistics for " + statsMap.size()
+ " services.\n");

out.write(™ \n'");

Set<Map.Entry<Ref, ServiceResourceStatistic>> set =
statsMap.entrySet();

System.out.printIn(new StringBuffer().append("'\nWriting stats to
the file - ").append(FileName).append('"\n").toString());

// Print statistical information of each service
for (Map.Entry<Ref, ServiceResourceStatistic> mapEntry : set) {
out.write(new StringBuffer().

append(*"\n\n======= Pirnting statistics for service ").
append(mapEntry.getKey() .getFul IName()).
append("'=======\n"") . toString());

ServiceResourceStatistic serviceStats = mapEntry.getValue();
out.write(new StringBuffer().

JMX Monitoring API Programming Guide

Sample Program

append(*'Statistic collection time is - ™).
append(new Date(serviceStats.getCollectionTimestamp
0)-

append(*"\n"") . toString();

ResourceStatistic[] resStatsArray = null;

try {
resStatsArray = serviceStats.getAlIResourceStatistics
O;
}
catch (MonitoringNotEnabledException mnee) {
// Statistics not available
out_write("WARNING: Monitoring is not enabled for " +
"this service... Do someting...");
out_write(™ \n'");
continue;

}

catch (InvalidServiceRefException isre) {
// Invalid service
out.write(""ERROR: Invlaid Ref. May be this service is
o+
"deleted. Do something...');
out_write(™ \n');
continue;

}

catch (MonitoringException me) {
// Statistics not available
out.write("ERROR: Failed to get statistics for this

service... " + "Details: " + me.getMessage());
me.printStackTrace();
out.write(™ \n");
continue;

}
for (ResourceStatistic resStats : resStatsArray) {
// Print resource information
out_write(""\nResource name: " + resStats.getName());

JMX Monitoring APl Programming Guide 3-9

APl Usage Example

out.write(""\tResource type: " +
resStats.getResourceType() -toString());

// Now get and print statistics for this resource
StatisticValue[] statValues = resStats.getStatistics();
for (StatisticValue value : statValues) {

out_write(''\n\t\tStatistic Name - " +
value.getName ());
out_.write(""\n\t\tStatistic Type - " +

value.getType().toString());

// Determine statistics type
ifT (value.getType() == StatisticType.INTERVAL) {
StatisticValue. IntervalStatistic is =
(StatisticValue. IntervalStatistic)value;

// Print interval statistics values
out.write(""\n\t\t\t\tCount Value
- " + is.getCount());
out_write("\n\t\t\t\tMin Value - " +
is.getMin());
out.write("\n\t\t\t\tMax Value - " +
is.getMax());
out.write(""\n\t\t\t\tSum Value - " +
is.getSumQ));
out_write("\n\t\t\t\tAve Value - " +
is.getAverage());

else if (value.getType() == StatisticType.
COUNT) {
StatisticValue.CountStatistic cs =
(StatisticValue.CountStatistic)
value;

// Print count statistics value

out.write(""\n\t\t\t\tCount Value - " +
cs.getCount());

3-10 JMX Monitoring API Programming Guide

Sample Program

else if (value.getType() == StatisticType.STATUS
X
StatisticValue.StatusStatistic ss =
(StatisticValue.StatusStatistic)value;
// Print count statistics value

out.write("\n\t\t\t\t Initial Status - " +
ss.getinitialStatus());
out_write("\n\t\t\t\t Current Status - " +

ss.getCurrentStatus());

}

}
out.write(""\n \n');

}

if (resetReqTime > 0) {
// Save reset request time.
out.write(""\n \n'");
out.write(''Statistics for all these services are RESET.\n");
out_write(""RESET request time is " +

new SimpleDateFormat(*'MM/dd/yyyy HH:mm:ss'™).
format(new Date(resetReqTime)));

out.write(""\n \n'"");

}

// Flush and close file.
out.flush();
out.close();

}

/**
* Init method.

*

* @param props Properties required for initialization.
* @throws Exception

JMX Monitoring APl Programming Guide 3-11

APl Usage Example

*/
private void init(HashMap props) throws Exception {
Properties properties = new Properties();
properties.putAll(props);
getServiceDomainMBean(properties.getProperty (""HOSTNAME™),
Integer.parselnt(properties.getProperty("'PORT", "7001'™)),
properties.getProperty(""'USERNAME™),
properties.getProperty("'PASSWORD™));
serverName = properties.getProperty("'SERVER_NAME™);

* Gets an instance of ServiceDomainMBean from the weblogic server.

* @param host
* @param port
* @param username
* @param password
* @throws Exception
*/
private void getServiceDomainMBean(String host, int port, String
username, String password) throws Exception {
InvocationHandler handler =
new ServiceDomainMBeanlInvocationHandler(host, port,
username,password) ;
Object proxy = Proxy.newProxylnstance(
ServiceDomainMBean.class.getClassLoader(),
new Class[]{ServiceDomainMBean.class}, handler);
serviceDomainMbean = (ServiceDomainMBean) proxy;

}

/**
* Invocation handler class for ServiceDomainMBean class.
*/
public static class ServiceDomainMBeanlnvocationHandler
implements InvocationHandler {
private String jndiURL =

3-12 JMX Monitoring API Programming Guide

Sample Program

"weblogic.management.mbeanservers.domainruntime';
private String mbeanName = ServiceDomainMBean.NAME;
private String type = ServiceDomainMBean.TYPE;

private String protocol "t3";
private String hostname = "localhost";
private int port = 7001;

private String jndiRoot = "/jndi/";

private String username = "weblogic";
private String password = "weblogic';

private JMXConnector conn = null;
private Object actualMBean = null;

public ServiceDomainMBeanlnvocationHandler(String hostName, int
port, String userName, String password) {
this_hostname = hostName;
this._port = port;
this._username = userName;
this._password = password;

* Gets JMX connection
* @return JMX connection
* @throws I10Exception
* @throws MalformedURLException
*/
public JMXConnector initConnection()
throws 10Exception, MalformedURLException {
JMXServiceURL serviceURL = new JMXServiceURL(protocol,
hostname, port, jndiRoot + jndiURL);
Hashtable<String, String> h = new Hashtable<String,
string>Q);

if (username !'= null)
h.put(Context.SECURITY_PRINCIPAL, username);

JMX Monitoring APl Programming Guide 3-13

APl Usage Example

if (password != null)
h.put(Context.SECURITY_CREDENTIALS, password);

h.put(IMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
"weblogic.management.remote'™);
return JMXConnectorFactory.connect(serviceURL, h);

* Invokes specified method with specified params on specified
* object.
* @param proxy
* @param method
* @param args
* @return
* @throws Throwable
*/
public Object invoke(Object proxy, Method method, Object[] args)
throws Throwable {
try {
if (conn == null) {
conn = initConnection();
}
if (actualMBean == null) {
actualMBean =
findServiceDomain(conn.getMBeanServer
Connection(),mbeanName, type, null);

}

Object returnValue = method. invoke(actualMBean, args);

return returnValue;

}
catch (Exception e) {
throw e;
}
}
/**

3-14 JMX Monitoring API Programming Guide

Sample Program

* Finds the specified MBean object

* @param connection - A connection to the MBeanServer.

* @param mbeanName - The name of the MBean instance.

* @param mbeanType - The type of the MBean.

* @param parent - The name of the parent Service. Can be NULL.
* @return Object - The MBean or null if the MBean was not found.
*/

public Object findServiceDomain(MBeanServerConnection connection,

String mbeanName,

String mbeanType,

String parent) {

ServiceDomainMBean serviceDomainbean = null;

try {

ObjectName on =
new ObjectName(ServiceDomainMBean.OBJECT_NAME) ;

serviceDomainbean = (ServiceDomainMBean)
MBeanServerInvocationHandler.

newProxylInstance(connection, on);

}

catch (MalformedObjectNameException e) {
e.printStackTrace();
return null;

}

return serviceDomainbean;

}
/**
* Timer task to keep retrieving and resetting service statistics.
*/
static class GetAndResetStatisticsTask extends TimerTask {
private ServiceStatisticsRetriever collector;

public GetAndResetStatisticsTask(ServiceStatisticsRetriever col

JMX Monitoring APl Programming Guide 3-15

APl Usage Example

){collector = col;

}

public void run(Q) {
System.out._printIn(’'\n ;
System.out.printIn(''Retrieving statistics for all monitored
" + "business services.');

try {
collector.getAndResetStatsForAl IMonitoredBizServices();
System.out.printIn(*'Successfully retrieved and reset
statistics for " +
"all monitored \n business services at " +
new SimpleDateFormat('MM/dd/yyyy HH:mm:ss").
format(new Date(System.currentTimeMillis())));
} catch (Exception e) {

System.out.printIn("'Failed to retrieve and reset
statistics for all " + "monitored business
service...");

e.printStackTrace();

}

System _ OUt . pr i ntl n("**********************************\n") -

System.out.printin(’"\n 9
System.out._printIn(''Retrieving statistics for all
monitored proxy services.');
try {
collector.getAndResetStatsForAl IMonitoredProxy
Services();
System.out.printIn('Successfully retrieved and reset
statistics " +
"“for all monitored \nproxy services at " +
new SimpleDateFormat(*'‘MM/dd/yyyy HH:mm:ss™).
format(new Date(System.currentTimeMillis())));

3-16 JMX Monitoring API Programming Guide

Sample Program

} catch (Exception e) {
System.out.printIn("'Failed to retrieve and reset

statistics " + "for all monitored proxy service
DY
e._printStackTrace();
}
System.out.printin(\n'");
}

}
/**

*

The main method to start the timer task to extract, save, and reset
* statistics for all monitored business and proxy services. It uses
* the following system properties.

hostname - Hostname of admin server

port - Listening port of admin server

username - Login username

password - Login password

period - Frequency in hours. This will be used by the timer

* to determine the time gap between two executions.

*

*
a b~ WDN P

* @param args Not used.
*/
public static void main(String[] args) {

try {
Properties p = System.getProperties();

HashMap map = new HashMap();

map . put("*HOSTNAME", p.getProperty("'hostname™,"localhost'™));
map . put(*'PORT", p.getProperty(port'”, "7001'));
map . put(""'USERNAME™, p.getProperty(‘'username’, "weblogic'));
map . put(""PASSWORD™, p.getProperty(*“password”, "weblogic™));
//set a server name if you want to get the uri status
statistics
in a cluster

JMX Monitoring APl Programming Guide 3-17

APl Usage Example

map . put("'SERVER_NAME",

p-getProperty(‘'server_name","AdminServer'));

}

ServiceStatisticsRetriever collector =
new ServiceStatisticsRetriever();
String periodStr = p.getProperty(“period”, "1');
int periodlnHour = Integer.parselnt(periodStr);
long periodInMilliSec = periodlnHour * 60 * 60 * 1000;

collector.init(map);

// Start timer.
Timer timer = new Timer();
timer.scheduleAtFixedRate(
new GetAndResetStatisticsTask(collector),
0, periodInMilliSec);

catch (Exception e) {

}

e._printStackTrace();

3-18 JMX Monitoring API Programming Guide

	Introduction
	Purpose of JMX Monitoring API
	Description
	More Information

	Concepts
	Public POJO Objects
	ResourceType
	ServiceResourceStatistic
	ResourceStatistic
	StatisticValue
	StatisticType

	ServiceDomainMBean
	Statistics Details
	Statistics details for Resource Type - SERVICE
	Statistics details for Resource Type-FLOW_COMPONENT
	Statistics details for Resource Type - WEBSERVICE_OPERATION
	Statistics details for Resource Type -URI

	Caveats
	Performance

	API Usage Example
	Sample Program

