
BEAAquaLogic
Service Bus™

Interoperability
Solutions for
Web Services Remote
Portlets (WSRP)

Version: 2.6
Document Revised: January 2007

BEA AquaLogic Service Bus Interoperability Solutions for WSRP iii

Contents

Introduction
WSRP Producers and Consumers . 1-1

WSRP Architecture . 1-2

Basic Architecture. 1-2

Enhanced Architecture with AquaLogic Service Bus . 1-2

WSRP Design Concepts. 1-4

WSRP WSDLs . 1-4

WSRP Messages . 1-5

Configuring AquaLogic Service Bus for WSRP
Getting the Producer WSDL . 2-1

Routing Messages Between the Consumer and the Producer . 2-2

Monitoring WSRP Applications . 2-3

Load Balancing and Failover . 2-5

WSRP Interoperability Example
Example Prerequisites . 3-1

Example Projects and Folders . 3-2

Monitoring Example . 3-2

Step 1: Define WSDL Resources . 3-3

Step 2: Create Business Services . 3-3

Step 3: Create the Proxy Services . 3-5

Step 4: Retrieve the WSDL from the Producer . 3-8

iv BEA AquaLogic Service Bus Interoperability Solutions for WSRP

Step 4.1: Create the Business Service to Retrieve the WSDL 3-9

Step 4.2: Create an XQuery Expression to Construct URLs 3-9

Step 4.3: Create a No-Op Proxy Service . 3-10

Step 4.4: Create a Common Proxy Service to Retrieve the WSDL 3-10

Step 5: Verify the Configuration . 3-13

BEA AquaLogic Service Bus Interoperability Solutions for WSRP 1-1

C H A P T E R 1

Introduction

Web Services for Remote Portlets (WSRP) is a mechanism used to generate markup fragments
on a remote system for display in a local portal application. This mechanism is gaining popularity
in recent years. This chapter describes how AquaLogic Service Bus can be used to provide
Service Level Agreement (SLA) monitoring in applications that use WSRP.

This section discusses the following topics:

WSRP Producers and Consumers

WSRP Architecture

WSRP Design Concepts

WSRP Producers and Consumers
WSRP involves two integral components:

The remote application, called a WSRP producer (referred to as a producer in this section)
implements standards-based Web Services using the SOAP specification over HTTP.
Producers are created using WebLogic Portal or third-party implementations of WSRP.

A WSRP consumer (referred to as a consumer in this section) is a Portal application.
Typically, the consumer application references the producer's WSDL when the portal is
designed, and the consumer directly accesses the producer.

In t roduct ion

1-2 BEA AquaLogic Service Bus Interoperability Solutions for WSRP

WSRP Architecture
This section describes basic WSRP architecture and shows how this architecture can be enhanced
by adding AquaLogic Service Bus.

Basic Architecture
Figure 1-1 shows the basic WSRP SOAP request and response flow between a producer
application and a consumer application.

Figure 1-1 Basic Request/Response Flow Between Producer and Consumer Applications

Enhanced Architecture with AquaLogic Service Bus
Because a WSRP producer implements SOAP Web Services, an enterprise service bus (such as
AquaLogic Service Bus) can be used as an intermediary between the producer and consumer to
provide Service Level Agreement (SLA) monitoring, as shown in Figure 1-2.

WSRP Arch i tec ture

BEA AquaLogic Service Bus Interoperability Solutions for WSRP 1-3

Figure 1-2 Enhanced WSRP Request / Response Flow Via AquaLogic Service Bus

In this architecture, the WSRP SOAP request/response flow occurs in the following sequence:

1. Inbound Request: The consumer calls the proxy service in the AquaLogic Service Bus.

2. Outbound Request: The proxy service routes the request (a message containing the SOAP
body and transport headers) to the producer.

3. Outbound Response: The producer returns a reply to AquaLogic Service Bus.

4. Inbound Response: The proxy service returns the reply (a message containing the SOAP
body and transport headers) to the consumer.

The remainder of this section provides instructions for configuring the AquaLogic Service Bus
to proxy service requests for WSRP services. It describes services that a producer provides, along
with other attributes of WSRP that must be used to properly configure AquaLogic Service Bus.

In t roduct ion

1-4 BEA AquaLogic Service Bus Interoperability Solutions for WSRP

This section also discusses different possible strategies that can be used to monitor producers with
increasing degrees of detail. Finally, it discusses load balancing and failover with WSRP.

WSRP Design Concepts
This section describes the following WSRP design concepts:

WSRP WSDLs

WSRP Messages

WSRP WSDLs
Table 1-1 describes various kinds of services offered by producers.

Each producer implements a minimum of two services (Service Description and Markup).
A simple producer offers just these two services. A complex producer, however, provides two
additional services (Registration and Management). WebLogic Portal producers also implement
an extension service (Markup Extension) that replaces the standard Markup service.

These services are described using a standard WSDL format. The producer supplies a single URL
for retrieving its WSDL, which describes all the services that are available from that producer.

Table 1-1 Producer Services

Service Description

Service Description Required service. Describes the producer and the portlets that the producer
makes available to consumers.

Markup Required service. Manages user interaction with a remote portlet and returns the
HTML markup used to render the portlet.

Registration Optional service. Required for complex producers. Allows consumers to register
themselves with the producer.

Management Optional service. Provided by complex producers for managing portlet
customization and portlet preferences.

Markup Extension Provided by BEA Portal producers and replaces the Markup service. Markup
Extension allows more efficient message handling by using multipart MIME
messages for transmitting HTML markup content.

WSRP Des ign Concepts

BEA AquaLogic Service Bus Interoperability Solutions for WSRP 1-5

The end points for each service indicate whether the consumer should use transport-level security
(HTTP(s)) or not to communicate with the producer.

WSRP Messages
WSRP uses SOAP over HTTP for all messages sent between producers and consumers. In
addition to using standard message formats in the SOAP Body, WSRP requires that consumers
must set at least a SOAPAction header, cookie headers, and the usual HTTP headers (such as
Content-Type). Producers will return a session cookie, plus any application-specific cookies, in
the HTTP transport header of the response message. The consumer must return the session cookie
in subsequent request messages.

In t roduct ion

1-6 BEA AquaLogic Service Bus Interoperability Solutions for WSRP

BEA AquaLogic Service Bus Interoperability Solutions for WSRP 2-1

C H A P T E R 2

Configuring AquaLogic Service Bus for
WSRP

The AquaLogic Service Bus Console, which is described in the Using the AquaLogic Service Bus
Console, is used to configure AquaLogic Service Bus. For more information about creating
WSRP-enabled portals using WebLogic Portal, see Federated Portals Guide.

Configuring AquaLogic Service Bus for WSRP involves the following tasks:

Implementing a service that consumers can invoke to obtain an appropriate WSDL for a
particular producer.

Implementing the details of conveying a consumer's request to the producer and returning
the response to the consumer.

This chapter describes the following tasks:

Getting the Producer WSDL

Routing Messages Between the Consumer and the Producer

Monitoring WSRP Applications

Load Balancing and Failover

Getting the Producer WSDL
As a common practice, consumers contact a producer directly to obtain its WSDL. However, if
AquaLogic Service Bus is used as a proxy service, then all access to the producer occurs via
AquaLogic Service Bus. Therefore, a proxy service must be implemented for consumers that
calls the producer's real URL to obtain its WSDL, and then transform the results as follows:

http://e-docs.bea.com/alsb/docs26/consolehelp/index.html
http://e-docs.bea.com/alsb/docs26/consolehelp/index.html
http://edocs.bea.com/wlp/docs92/federation/index.html

Conf igur ing AquaLog ic Serv ice Bus fo r WSRP

2-2 BEA AquaLogic Service Bus Interoperability Solutions for WSRP

Rewrite the endpoint address for the producer to refer to the Service Bus IP address and
port

Change the endpoint URI to refer to the AquaLogic Service Bus proxy service that reflects
the required monitoring granularity (as described in “Monitoring WSRP Applications” on
page 2-3)

Change the endpoint protocol and port if transport security is used between the consumer
and the AquaLogic Service Bus proxy service

The developer who creates a producer can specify whether the producer requires SSL or not
("secure=true"). In addition, the AquaLogic Service Bus administrator can change the security
requirement to the consumer via AquaLogic Service Bus configuration. For example, if a
producer does not require SSL, the AquaLogic Service Bus administrator can require consumers
to use SSL by:

Changing the WSDL to specify HTTP(s)

Configuring the proxy services for WSRP to use HTTP(s)

When configured in this way, AquaLogic Service Bus automatically bridges the secure messages
from the consumer to the non-secure messages used by the producer.

Routing Messages Between the Consumer and the
Producer

After retrieving a copy of the WSDL, the consumer uses the WSDL definitions to formulate
service requests and sends them to the producer via AquaLogic Service Bus. The WSRP
request/response process involves the following steps:

1. The consumer sends a message to the AquaLogic Service Bus proxy service corresponding to
the producer service.

2. The proxy service executes a simple message flow that routes the message (unchanged) to the
actual producer service.

3. The producer formulates a response that it then sends to the consumer via AquaLogic Service
Bus.

4. The consumer receives the response (unchanged) from the producer.

WSRP Web services expose portlets and those can rely on HTTP cookies and sessions.
Therefore, WLSB must be configured to propagate HTTP transport headers (such as

Moni to r ing WSRP App l i cat i ons

BEA AquaLogic Service Bus Interoperability Solutions for WSRP 2-3

SOAPAction and cookies). However, by default, AquaLogic Service Bus does not pass transport
headers from the proxy service to the business service, because the proxy service may or may not
use the same transport as the business service. Therefore, the message flow must be configured
to copy the request headers from the inbound request to the outbound request. Similarly, the
response headers from the business service must be copied back to the proxy service's response
to the consumer.

Although it is possible to copy all transport headers between the proxy service and the business
service, it is necessary to be more selective to avoid errors. The Set-Cookie and Cookie headers
must be copied. Because AquaLogic Service Bus is the entity that assembles the final message to
send, it must own some headers (such as Content-Length). For example, if the message flow
were to copy the Content-Length header from the proxy service to the business service, it might
result in an error because the length of the message could change during processing. Therefore
ALSB must own this header.

Monitoring WSRP Applications
Monitoring tracks the usage of a producer’s individual services and operations. The message flow
for WSRP services introduces very little overhead, and the mapping between proxy services and
producers, and between business services and producers, is simple to configure. Therefore, to
satisfy SLA requirements, it is sufficient to monitor only the proxy services.

Monitoring for Proxy Services
To configure monitoring for WSRP proxy services, create a proxy service for each of the services
implemented by the producer.

Simple producers require only two proxies—one for the Markup service and one for the
Description service.

Complex producers require these two proxies and two additional proxy services for
Registration and Management.

These proxy services should be based on the standard WSRP WSDLs using SOAP bindings.
Only a single business service for the producer should be created, and it should be configured to
use "Any SOAP Service" instead of being based on a WSDL. The message flow between the
proxies and the business service should not modify the SOAP body in any way. However, just as
for all WSRP message flows, it must pass the request headers via HTTP from the client request
to the actual producer. Similarly, the response HTTP headers returned by the producer must be
copied back to the client in the message flow.

Conf igur ing AquaLog ic Serv ice Bus fo r WSRP

2-4 BEA AquaLogic Service Bus Interoperability Solutions for WSRP

Monitoring for Business Services
Monitoring is required for a producer’s business services. Separate business services must be
created for each of the Web services described in the producer's WSDL, and the business services
must be defined using the WSDL. There is a one-to-one mapping between the proxy services and
the business services—an unconditional routing node is sufficient in the message flow.

AquaLogic Service Bus requires information about which operation to use, in order that
operations are counted correctly. Normally, the administrator would do this by selecting one of
the operations from a drop-down menu when the business service is selected for the Route action.
However, the operation specified by the client message is not the same for all messages, so a
single, hard-coded value will not work here.

The administrator must ensure that the business service uses the same operation as the proxy
service. While this could be achieved by specifying a Routing Table action that selects the case
using the $operation variable, it is a very tedious approach because the WSRP standard defines
14 operations across all WSRP services, and each would require a Route action with
transformations to propagate the transport headers.

An alternative when routing to the business service is, rather than selecting the operation from
the drop-down menu, an administrator should use another transformation in the request actions
to insert the value of $inbound/ctx:service/ctx:operation into
$outbound/ctx:service.

Another alternative on the AquaLogic Service Bus console is when you are configuring the
routing to a business service, select the Use inbound operation for outbound check box when
you are editing a route node to avoid low level Xquery manipulation as in Figure 2-1.

Load Ba lanc ing and Fa i l ove r

BEA AquaLogic Service Bus Interoperability Solutions for WSRP 2-5

Figure 2-1 Passing an Operation From Inbound to Outbound

With this transformation, the operation for the business service is dynamically set to the same
value as was specified for the proxy service, and AquaLogic Service Bus will correctly count and
monitor all operations of the service.

Load Balancing and Failover
AquaLogic Service Bus allows business services to define multiple endpoints that all provide the
same Web service. When multiple endpoints are defined, AquaLogic Service Bus can
automatically distribute load balance requests across endpoints, and it can automatically failover
requests when an endpoint is inaccessible. However, WSRP imposes some limitations on the use
of these features.

Portlets are a means of exposing a user interface to an application. Therefore, portlets typically
have session data associated with them. To preserve session data, requests to the portlet must be
directed to the same server (or cluster) that serviced the original request. This requirement makes
load balancing via AquaLogic Service Bus inappropriate. Multiple endpoints in a business
service will usually target different servers or cluster. Because there is no communication among
servers that are in separate clusters, there is no way to preserve the session. Therefore, if multiple

Conf igur ing AquaLog ic Serv ice Bus fo r WSRP

2-6 BEA AquaLogic Service Bus Interoperability Solutions for WSRP

endpoints are defined for a WSRP business service, then the load-balancing algorithm must be
set to "none".

Multiple endpoints can be used to provide redundancy in certain circumstances in the event that
one of the endpoints is unavailable. The WSRP service is still available on a secondary endpoint.
However, any session data that existed at the time the first endpoint failed will not be available
on other endpoints.

This failover configuration is an option only for simple producers (see “WSRP WSDLs” on
page 1-4), not for complex produces. Complex producers require that their consumers first
register with the producer before sending service requests. The producer returns a registration
handle that the consumer must include with each request to that producer. If a business service
defines multiple endpoints, each endpoint provides and requires its own registration handle.

AquaLogic Service Bus is, however, stateless across requests—it does not maintain a mapping
of the correct handle to send to a particular endpoint. In fact, it would only send the registration
request to a single endpoint, so the consumer would be registered with only that one producer. If
that one producer is unavailable, then AquaLogic Service Bus would route a service request to
another endpoint defined for that business service, but the consumer would never have registered
with that new producer, and the request would fail with an "InvalidRegistration" fault.

The management of registration handles requires an application outside of AquaLogic Service
Bus to maintain this state data. Therefore, the registration requirement precludes defining
multiple endpoints for complex producers. As simple producers do not support the registration
service, a failover configuration that defines multiple endpoints in the business service is
possible, although session data is lost on failover.

BEA AquaLogic Service Bus Interoperability Solutions for WSRP 3-1

C H A P T E R 3

WSRP Interoperability Example

The examples described in this section support AquaLogic Service Bus versions 2.0, 2.1 and
2.5 (see Example Prerequisites).

This section describes a WSRP interoperability example. It contains the following topics:

Example Prerequisites

Example Projects and Folders

Monitoring Example

Example Prerequisites
The WSRP interoperability example assumes the following components and configuration:

WebLogic Platform 9.2

AquaLogic Service Bus 2.0, 2.1 and 2.5

Sample Platform domain configured at platform:7001

AquaLogic Service Bus domain configured at alsb:7001

Sample Portal application consumer

Sample producer

WSRP Inte roperab i l i t y Example

3-2 BEA AquaLogic Service Bus Interoperability Solutions for WSRP

For an AquaLogic Service Bus configuration that supports the configuration defined in this
example, see the AquaLogic Service Bus/WSRP code sample, available from the AquaLogic
Service Bus code samples page on BEA dev2dev:

For AquaLogic Service Bus 2.5 see:
https://codesamples.projects.dev2dev.bea.com/servlets/Scarab/remcurrepo
rt/true/template/ViewIssue.vm/id/S267/nbrresults/13

For AquaLogic Service Bus 2.0 and 2.1 see:
https://codesamples.projects.dev2dev.bea.com/servlets/Scarab/remcurrepo

rt/true/template/ViewIssue.vm/id/S175/nbrresults/13

Example Projects and Folders
This example describes the configurations corresponding to the ALSB 2.5 dev2dev code sample.

The structure of the sample is divided into two projects—one containing common resources, and
the other containing resources for the sample producer.

Monitoring Example
The monitoring configuration example (in the operationExample folder) involves
configuring AquaLogic Service Bus to monitor all services and operations of a producer.

The monitoring configuration uses both business services and proxy services that are based on
the WSDLs defined by the WSRP standard. The example also defines the additional resources to
describe the WSRP services and extend the message flows to support monitoring at the operation
level. The rest of this section describes the tasks required to implement the monitoring
configuration.

Table 3-1 Projects in the WSRP Interoperability Examples

Folder Description

wsrp Contains common resources that are not specific to any producer.

operationExample Full example supports the most fine-grained monitoring. The folder contains
producer-specified resources. See “Monitoring Example” on page 3-2.

https://codesamples.projects.dev2dev.bea.com/servlets/Scarab/remcurreport/true/template/ViewIssue.vm/id/S267/nbrresults/13
https://codesamples.projects.dev2dev.bea.com/servlets/Scarab/remcurreport/true/template/ViewIssue.vm/id/S175/nbrresults/13
https://codesamples.projects.dev2dev.bea.com/servlets/Scarab/remcurreport/true/template/ViewIssue.vm/id/S175/nbrresults/13

Moni to r ing Example

BEA AquaLogic Service Bus Interoperability Solutions for WSRP 3-3

Step 1: Define WSDL Resources
Import all the WSRP WSDL definition files, along with the XML schema files on which the
definitions depend. All the files are available as part of the sample code associated with this
example, but the standard resource locations are listed in Table 3-2.

Producers generated by BEA Portal extend the standard WSDLs by defining an additional port
that allows messages to be sent using MIME attachments. It is necessary to define these extension
resources if the producer WSDL references them. In this example, an optional task is to create a
resource for the WSDL used by the producer. After creating these WSDL and XML Schema
resources, edit the references in each resource to resolve the dependencies on other resources.

Step 2: Create Business Services
This monitoring example uses the WSDL bindings for each port type implemented by the
producer. Because a business service can be associated with only one WSDL port or binding, a
separate business service resource must be created for each. A simple producer implements only
the required Markup and Service Description interfaces, while a complex producer also
implements the Management and Registration interfaces. The services are created identically
except for the service name and types, see Table 3-3.

Table 3-2 WSDL Resource Definitions

Resource Name Location

wsrp_v1_bindings http://www.oasis-open.org/committees/wsrp/specificati
ons/version1/wsrp_v1_bindings.wsdl

wsrp_v1_interfaces http://www.oasis-open.org/committees/wsrp/specificati
ons/version1/wsrp_v1_interfaces.wsdl

wsrp_v1_types http://www.oasis-open.org/committees/wsrp/specificati
ons/version1/wsrp_v1_types.xsd

wlp_wsrp_v1_bindings $BEA_HOME/weblogic81/portal/lib/wsrp/wsrp-common.jar

wlp_wsrp_v1_types $BEA_HOME/weblogic81/portal/lib/wsrp/wsrp-common.jar

xml http://www.w3.org/2001/xml.xsd

wsrpWSDL http://platform:7001/producer/producer_WSDL

WSRP Inte roperab i l i t y Example

3-4 BEA AquaLogic Service Bus Interoperability Solutions for WSRP

For each service, the required attributes are listed in Table 3-4.

Table 3-3 Business Service Configuration

Service Name Service Type

base WSDL port: operationExample/wsrpWSDL,
port="WSRPBaseService"

desc WSDL port: operationExample/wsrpWSDL,
port="WSRPServiceDescriptionService"

mgmt WSDL port: operationExample/wsrpWSDL,
port="WSRPPortletManagementService"

reg WSDL port: operationExample/wsrpWSDL,
port="WSRPRegistrationService"

ext WSDL port: operationExample/wsrpWSDL,
port="WLP_WSRP_Ext_Service"

Table 3-4 Service Attributes for Business Services

Name Value Comments

Protocol HTTP Or HTTP(s) if the producer was
created with secure="true".

Load
Balancing
Algorithm

none Must be none, or session data
will be lost across requests if
multiple end points are defined.

Endpoint URI For WebLogic Platform 8.1:
http://platform:7001/producer/producer/

The URL is the same for Markup,
Service Description, Registration
Service, and Portlet Management.

Moni to r ing Example

BEA AquaLogic Service Bus Interoperability Solutions for WSRP 3-5

Step 3: Create the Proxy Services
Proxy services in this monitoring example are configured as follows:

The proxy services must be based on the same WSDL, just as the business services are
based on a WSDL.

One proxy service is created for each business service, but each proxy service must have a
different URI.

The configuration must specify which operation is being invoked.

To create a proxy service:

Endpoint URI
(continued)

For WebLogic Platform 9.2 the URLs are as follows:
• Service Description:

http://host*:port+/wsrpProducer/produce

r/wsrp_1.0/serviceDescription

Multiple endpoints must be
defined for WSRP producers.

• Markup:

http://host*:port+/wsrpProducer/produce
r/wsrp_1.0/markup

• Registration:

http://host*:port+/wsrpProducer/produce
r/wsrp_1.0/registration

• Portlet Management:

http://host*:port+/wsrpProducer/produce
r/wsrp_1.0/portletManagement

• Markup Extension:

http://host*:port+/wsrpProducer/produce
r/wsrp-wlp-ext-1.0/markup

*host - Replace with the actual host name on which
the application is running

+port - Replace with the actual port name on which
the application is running

Table 3-4 Service Attributes for Business Services (Continued)

Name Value Comments

WSRP Inte roperab i l i t y Example

3-6 BEA AquaLogic Service Bus Interoperability Solutions for WSRP

1. Create the proxy service for the base WSRP service.

As in the earlier example, create the proxy service using the existing
operationExample/base business service as the model. This will automatically base the
proxy service on the same WSDL binding as the business service, and it will create a
message flow with an unconditional route action to the business service. For the Endpoint
URI, you can use any URI, such as the producer name with the port type abbreviation
appended to it (for example, /operationExampleBase).

2. Edit the message flow to add the same transformations required to copy the request transport
headers and response transport headers between the consumer and producer.
WSRP relies on data conveyed in the transport headers to function properly. In particular,
producers will return to consumers session cookies in the response headers if they expect
consumers to supply session cookies in subsequent requests. Similarly, producers expect
consumers to provide the requested operation in the SOAPAction request header.

By default, AquaLogic Service Bus does not copy transport headers from the inbound
request to the outbound request, or from the outbound response to the inbound response.
The message flow must therefore propagate the required headers both in and out of the
business service. Because these transformations are required for every WSRP service, it is
convenient to define two common XQuery resources—one for request headers and one for
response headers—that extract the correct headers.

For request headers, use the query provided in Table 3-5.

The rqstHeaders query extracts all transport headers (except Content-Length) from the
$in variable. AquaLogic Service Bus can sometimes reformat the message body so that its
length no longer exactly matches the request message. Copying the length from the

Table 3-5 Request Header Query

Name Value

Resource Name wsrp/rqstHeaders

Xquery declare namespace
ctx="http://www.bea.com/wli/sb/context";

declare namespace
tp="http://www.bea.com/wli/sb/transports";

declare variable $in external;

$in/ctx:transport/ctx:request/tp:headers/child::*[l
ocal-name()!="Content-Length"]

Moni to r ing Example

BEA AquaLogic Service Bus Interoperability Solutions for WSRP 3-7

original request can result in transport errors if the body is modified (for example,
reformatted).

To copy the inbound request headers to the outbound business service, add the following
Replace request action to the message flow:

Replace ./ctx:transport/ctx:request/tp:headers in variable outbound with
xqTransform()

Replace node contents

Variable Mapping (wsrp/rqstHeaders):

in: $inbound

Similar to the request side, the response side defines a common XQuery resource to extract
all but the Content-Length header from the response returned from the producer.

For response headers, use the following query provided in Table 3-6.

The following replace response action in the route node propagates the required headers:

Replace ./ctx:transport/ctx:response/tp:headers in variable inbound with
xqTransform()

Replace node contents

Variable Mapping (wsrp/rspncHeaders):

out: $outbound

3. Specify which operation to be invoked.

Generally, in a route Action that routes to a WSDL-based service, an operation to invoke
(by selecting the correct operation from the drop-down menu) is specified. However, each

Table 3-6 Response Header Query

Name Value

Resource Name wsrp/rspncHeaders

Xquery declare namespace
ctx="http://www.bea.com/wli/sb/context";

declare namespace
tp="http://www.bea.com/wli/sb/transports";

declare variable $out external;

$out/ctx:transport/ctx:response/tp:headers/child::*
[local-name()!="Content-Length"]

WSRP Inte roperab i l i t y Example

3-8 BEA AquaLogic Service Bus Interoperability Solutions for WSRP

WSRP port implements several operations, and so the configuration requires a routing
table with a case for each operation. Each case requires the same transformations to
propagate the transport headers.

Creating all of the transformations in this manner may prove to be tedious. Therefore,
instead of using the drop-down menu, use another transformation to copy the operation
from the proxy service to the business service. Configure this transformation by adding an
Insert Action to the Request Actions of the message flow:

Insert $inbound/ctx:service/ctx:operation as last child of ./ctx:service
in variable outbound

The proxy services for the other business services can be created by repeating these steps,
although a shortcut can be used to avoid recreating all of the transformations manually.

For example, to create the proxy service for the Service Description service:

1. Create a new proxy service using the existing operationExample/base proxy service just
created as the model. Following this example, use /operationExampleDesc for the
Endpoint URI.

2. On the Summary Page, click the edit link for General Configuration. The WSDL binding is
created using the Base port, so correct that here to refer to the
WSRPServiceDescriptionService port.

3. Edit the message flow. The route action refers to the base business service. Correct this to
route to the desc service.

Note: Use the Transport Header action to minimize low level Xquery manipulation and
simplify the configuration of a proxy service. See Transport Headers section in the
AquaLogic Service Bus Console Online Help for details.

Step 4: Retrieve the WSDL from the Producer
Create a service that will retrieve the WSDL from the producer and transform it to hide the actual
producer endpoints. In this example the proxies for each producer have a different URI. The rest
of this section describes how to create the resources to retrieve the producer WSDL.

http://e-docs.bea.com/alsb/docs26/consolehelp/proxyactions.html#wp1274176

Moni to r ing Example

BEA AquaLogic Service Bus Interoperability Solutions for WSRP 3-9

Step 4.1: Create the Business Service to Retrieve the WSDL
Create a business service to obtain the WSDL from the producer. This resource is specific to the
producer, so it must be created in the operationExample project. Table 3-7 describes the
properties of the business service.

Step 4.2: Create an XQuery Expression to Construct URLs
All end point addresses in the producer's WSDL must be transformed to reflect the AquaLogic
Service Bus server address and the proxy service URI values. Because each producer WSDL can
have four or more ports defined, it is convenient to create an XQuery expression to simplify the
construction of the endpoint locations. The XQuery expression accepts the following three string
variables as input and concatenates them together to form a SOAP address element:

base URL for the AquaLogic Service Bus server

name to identify the producer

extension used to differentiate ports for a producer

Table 3-7 Business Service Configuration Properties

Name Value Comments

Service Name wsdlSvc Any name is allowed.

Service Type Any XML Service Consumers usually retrieve the
WSDL from the producer using an
HTTP GET request. Only XML
services support GET.

Protocol HTTP or HTTP(s) HTTP(s)

Load Balancing
Algorithm

None None preferred

Endpoint URI http://platform:7001/producer/producer?
WSDL

Although multiple endpoints may
be specified for retrieving the
WSDL, doing so is of limited
benefit.

HTTP Request
Method

GET

WSRP Inte roperab i l i t y Example

3-10 BEA AquaLogic Service Bus Interoperability Solutions for WSRP

Table 3-8 provides the query definition in the wsrp project.

Step 4.3: Create a No-Op Proxy Service
Create a service that does nothing. To create this service, define a new proxy service in the wsrp
project folder with the resource name nullSvc. Accept all of the defaults for this service.
Configuring this proxy service creates a message flow for the service of an echo node.

Step 4.4: Create a Common Proxy Service to Retrieve the WSDL
Create a proxy service used by consumers to get WSDLs from producers. This proxy service is
appropriate for any producer configuration modeled on this sample. The example described in
this section is only a suggestion—a different approach might the specific requirements of a given
implementation. Because this proxy service is not specific to a single producer, it should be
created in the wsrp project folder.

The approach used in this step requires the administrator to assign each producer a name that is
included in part of the URL to retrieve the WSDL. The message flow for the proxy service will
extract the name from the URL, use it to locate the business service specific to that producer,
obtain the WSDL, and then transform the WSDL to rewrite the endpoints to AquaLogic Service
Bus. The proxy service endpoint URI is configured as /getWSDL, and the URL that consumers
use to obtain a WSDL is:
http://alsb:7001/getWSDL/<producerName>

where <producerName> is the name assigned to the producer by the administrator. In this
example, the producer name is operationExample.

Table 3-8 XQuery Definition in the wsrp Project

Name Value

Resource Name wsrp/addr

XQuery declare variable $baseURL external;

declare variable $name external;

declare variable $svc external;

declare namespace
soap="http://schemas.xmlsoap.org/wsdl/soap/";

<soap:address location="{concat($baseURL, $name,
$svc)}"/>

Moni to r ing Example

BEA AquaLogic Service Bus Interoperability Solutions for WSRP 3-11

Table 3-9 describes how the proxy service is configured:

The message flow for this proxy service consists of a pipeline pair and a route node. The request
side of the pipeline pair consists of a single stage whose job is to extract the producer name from
the URL and assign it to a context variable. The action is:
Assign $inbound/ctx:transport/ctx:request/http:relative-URI to variable
producerName

The response side of the message flow is a stage where all the transformations are performed.
Before executing the Replace Actions to transform the WSDL, assign the base URL of the
AquaLogic Service Bus server to a context variable to avoid specifying it on every
transformation:
Assign "http://alsb:7001/" to variable nonSecureBaseURL

Edit the stage of the Response Pipeline to modify each Replace Action to make the
transformation match the Endpoint URI given to the proxies created earlier. In this example, the
proxies were created using the producer name with an abbreviated service type appended to it.
The addr XQuery resource created earlier accepts an extension argument to construct the URI
location. Simply change that argument to the proper value, as listed in Table 3-10.

Table 3-9 Proxy Service Configuration Properties

Property Name Value Comments

Service Name producerWSDL Any name is
allowed.

Service Type Any XML Service

Protocol HTTP

Endpoint URI /getWSDL

Table 3-10 Extension Settings to Construct the URI Location

If @binding is svc arg of addr is

WSRP_v1_Markup_Binding_SOAP "Base"

WSRP_v1_ServiceDescription_Binding_SOAP "Desc"

WSRP_v1_PortletManagement_Binding_SOAP "Mgmt"

WSRP Inte roperab i l i t y Example

3-12 BEA AquaLogic Service Bus Interoperability Solutions for WSRP

You must map "name:" to "$producerName" and "BaseURL" to "$nonSecureBaseURL" similar
to the "svg arg" mapping in the use table: table num_xref, “Extension Settings to Construct the
URI Location” on page 3-11.

The five Replace Actions are defined as shown in the following code listing. The value of name
is replaced with the binding names from the table.
Replace
./*[local-name()="definitions"]/*[local-name()="service"]/*[local-name()="
port"][ends-with(attribute::binding,"name")]/*[local-name()="address"

Replace entire node

name

WSRP_v1_Markup_Binding_SOAP

WSRP_v1_ServiceDescription_Binding_SOAP

WSRP_v1_PortletManagement_Binding_SOAP

WSRP_v1_Registration_Binding_SOAP

For the first Replace Action, the following User Namespace definitions must be added as in
Table 3-11:

The route node of this message flow consists of a routing table that selects the case based on
$producerName. For each known producer, add cases so that each case routes to the correct
business service to retrieve the WSDL if the name matches. This example uses the following
directive:
= "operationExample" Route to wsdlSvc

WSRP_v1_Registration_Binding_SOAP "Reg"

WLP_WSRP_v1_Markup_Ext_Binding_SOAP "Ext"

Table 3-10 Extension Settings to Construct the URI Location (Continued)

If @binding is svc arg of addr is

Table 3-11 User Namespace Definitions on Replace Action

Prefix Namespace

wsdl http://schemas.xmlsoap.org/wsdl/

soap http://schemas.xmlsoap.org/wsdl/soap/

Moni to r ing Example

BEA AquaLogic Service Bus Interoperability Solutions for WSRP 3-13

1. Add a Default Case that routes to the no-op service to handle cases in which an unknown
producer name is specified:
Default Route to nullSvc

2. In this example, return an HTTP 404 status code by adding these response actions to the
default case:

Insert <http:http-response-code>404</http:http-response-code> as last
child of ./ctx:transport/ctx:response in variable inbound

Reply With Failure

3. Edit the Routing Table in the route node to make the cases correspond to the producers known
to the system.

Step 5: Verify the Configuration
After completing the configuration, verify it as follows:

1. Retrieve the WSDL from a regular browser window by entering the following URL:
http://alsb:7001/getWSDL/operationExample

2. Verify that all of the end point WSRP end point URLs (except for the BEA extension service)
have been changed to correctly refer to the proxy service values on the AquaLogic Service
Bus server.

3. Create a remote portlet in a Portal consumer application, specifying this URL as the address
of the WSDL for the producer.

Use either the WebLogic Workshop or Portal Administration Tool to create the remote
portlet. Except for entering a different URL to retrieve the WSDL, the steps to create this
portlet are the same as those used to create the portlet that is not proxied by AquaLogic
Service Bus.

4. After the consumer portal is complete, run the application.

5. Enable monitoring on the AquaLogic Service Bus components that you have chosen.

6. Use the AquaLogic Service Bus Console to drill down to see message counts and performance
statistics on all WSRP services and operations handled by the producer.

WSRP Inte roperab i l i t y Example

3-14 BEA AquaLogic Service Bus Interoperability Solutions for WSRP

	Introduction
	WSRP Producers and Consumers
	WSRP Architecture
	Basic Architecture
	Enhanced Architecture with AquaLogic Service Bus

	WSRP Design Concepts
	WSRP WSDLs
	WSRP Messages

	Configuring AquaLogic Service Bus for WSRP
	Getting the Producer WSDL
	Routing Messages Between the Consumer and the Producer
	Monitoring WSRP Applications
	Load Balancing and Failover

	WSRP Interoperability Example
	Example Prerequisites
	Example Projects and Folders
	Monitoring Example
	Step 1: Define WSDL Resources
	Step 2: Create Business Services
	Step 3: Create the Proxy Services
	Step 4: Retrieve the WSDL from the Producer
	Step 4.1: Create the Business Service to Retrieve the WSDL
	Step 4.2: Create an XQuery Expression to Construct URLs
	Step 4.3: Create a No-Op Proxy Service
	Step 4.4: Create a Common Proxy Service to Retrieve the WSDL

	Step 5: Verify the Configuration

