0?7,

r
S’ 7
L/

BEAAqualogic
Enterprise
Security™

Policy Managers Guide

Version 2.6
Document Revised: April 2007

Contents

1. Introduction

Document Scope and AUdIENCE.ottt e 1-1
Guide to this DOCUMENL.ot e 1-2
Related Documentationt e 1-2
CoNtaCt US! L 1-3

2. Security Policies Overview

What is an Aqualogic Enterprise Security Policy? 2-1
Closed-world Security Environment 2-2
Policy COMPONENES . . . oottt e e e e e 2-3
RESOUICES. . . . et 2-4
Virtual RESOUICES . . . o oot 2-6
Resource Attributes 2-6
Privilege Groups. oo e 2-6
PrIVIIEgES . o 2-6
dENtItiES . .. 2-7
Identity Attributes.o 2-8
GIOUPS . . ottt 2-8
L =T 2-9
ROIES. o 2-10
POIICIES. . . oo 2-10
Role Mapping POlICIESo e 2-10
Authorization POIICIES 2-12
Delegation POLICIES.o 2-13
Summary of Policy Differences. i 2-14

Policy Managers Guide

DECIAratioNS. . . .\ttt 2-14

CONStANTS . . . o 2-15
Enumerated TYPeS . .. oot 2-15
AUNIOULES . o 2-15
Evaluation FUNCIONSo 2-15

3. Writing Policies

Policy Implementation: Main Steps i 3-1
ACCESS DECISION PrOCESS . . . o vttt e e e 3-4
Authentication SErviCe. 3-4
Role Mapping SErViCeo 3-4
AUthOriZation SEIVICE 3-5
Credential Mapping SErvice.t 3-5
Authorization and Role Mapping Engine i, 3-5
Using the Administration Console to Write Policies 3-7
Administration Console OVEIVIeW.t e 3-7
Defining RESOUICES . . . oo\ ottt e e e e e e e 3-8
Virtual RESOUICES . . . oottt 3-11
Resource Attributes. 3-12
Privileges o 3-12
Privilege GroupsS oot 3-13
Defining Identities e 3-14
Identity Attributes. 3-16

GIOUPS. . .ttt et 3-16

USBIS . ottt et e 3-17

ROIES . o 3-18

Writing Authorization and Role Mapping Policies 3-19
Role Mapping Policies e 3-20

vi Policy Managers Guide

Authorization POliCIES.ot 3-20

Role Mapping Policy Reports. 3-21
Authorization Policy Reports 3-21
Defining Declarations.ot e 3-22
Binding PoliCies o 3-23
Deploying PoliCieso 3-23

4. Advanced Topics

Designing More Advanced Policies 4-1
Multiple Components. 4-2
Policy CoNnStraints. o e 4-2

Comparison OPerators. oottt 4-4
Regular EXPressionsot 4-4
CoNStraiNt SetS.ttt 4-6
String CoOMPariSONS. oot e 4-7
Boolean Operators.t e 4-8
Associativity and Precedence 4-9
Grouping with Parentheses 4-9
Boolean Operators and Constraint Sets. oo, 4-10
DECIarations oo 4-11
Constant Declarationst e 4-12
Enumerated Type Declarations 4-14
Attribute Declarations. 4-15
Evaluation Function Declarations. 4-22
Policy Inheritance. i e 4-25
Group Inheritance 4-26
Direct and Indirect Group Membership 4-26
Restricting Policy Inheritance. i 4-27

Policy Managers Guide vii

viii

Resource Attribute Inheritance. o 4-27

WebLogic Resource Type Conversions and Resource Trees. 4-28
Understanding Resource NOdes.ot 4-28
ROOENOGE. . .o 4-29
Application Deployment ParentNode it 4-29
Application Node o 4-29
Resource Type NOde.ot 4-29
Resource Parent NOde.t 4-29
ReSOUICE NOGE . . . oo 4-29
Resource Paths and Policies for Common Resources., 4-31
EJB RESOUICESot 4-32
EJB Resource Path Example. i 4-32
EJB Resource Privilege Mappingst 4-33
EJB Resource Dynamic Resource Attributes 4-33
INDIRESOUICESo 4-34
JNDI Resource Path Example. i 4-34
JNDI Resource Privilege Mappingst 4-35
JNDI Dynamic Resource Attributes. oo 4-35
JNDI Resource Policy Examples 4-36
URL RESOUICESottt e s 4-36
URL Resource Path Example o 4-36
URL Resource Privilege Mappingst 4-37
URL Dynamic Resource Attributes 4-37
HTTP Request Context Elements. 4-39
URL Resource Policy Examples. 4-40
JDBC RESOUICES . .. ittt et e e e e e e e e e 4-41
JDBC Resource Path Example 4-42
JDBC Resource Privilege Mappings 4-42

Policy Managers Guide

JDBC Resource Path Example 4-43

JDBC Dynamic Resource Attributes. i 4-44

JDBC Resource Policy Examples. o i 4-44

JMS RESOUICES . . o vttt e e e e e 4-44
JMS Resource Path Example i 4-45

JMS Resource Privilege Mappings.o 4-45

JMS Resource Example 4-46

JMS Resource Policy Examples oo 4-47

Web Services RESOUICES.t 4-47
Web Services Resource Path Exampleo, 4-48

Web Services Resource Privilege Mappings. ... 4-49

Web Services Resource Policy Examples.ot 4-49

Web Services Dynamic Resource Attributes.o 4-50

Web Services Resource Policy Examples.ot 4-50

SBIVEI RESOUICES . . . ittt ettt e e e e e e e 4-51
Server Resource Path Example. i 4-51

Server Resource PrivilegesMapping 4-52

Server Dynamic Resource Attributes i 4-52

Server Resource Policy Examples. oo 4-52

SUBJECt MaPPINgot 4-53
Policy Element Naming.ot 4-54
Fully Qualified Names e 4-55

Policy Element Qualifiers. o i 4-56

Size Restrictionon Policy Data. 4-56
Character Restrictionsin PolicyData., 4-58

Special Names and Abbreviations. o i, 4-64

Sample Policy Files. 4-65
Application Bindings [binding]. 4-67

Policy Managers Guide ix

Attribute [attr]o 4-67

Declarations [dec]ot 4-68
Directories [dir].ot 4-69
Directory Attribute Schemas [schema]............, 4-69
Mutually Exclusive Subject Groups [excl]. i, 4-70
Resources [object].o 4-70
Resource Attributes [object] 4-72

Policy Distribution [distribution] L 4-72

Policy Inquiry [piquery] 4-73

Policy Verification [pvquery] 4-74
Privileges [priv] 4-75
Privilege Bindings [privbinding] 4-75
Privilege Groups [Privarp] - . ..o 4-75

Role [role]. . .o 4-76

Rule [rule]. . .o 4-76
Distribution Targetst 4-77

Subject Group Membership [member] oL 4-77
Subjects [SUbJect]o 4-78

Using Response Attributes 4-79
report() FUNCLION oo 4-80
report_as() FUNCLION. o 4-81
Report Function Policy Languaget 4-81
Using Evaluation Plug-ins to Specify Response Attributes. 4-82
Using queryResources and grantedRESOUrCES. oo vttt 4-83
RESOUICE DISCOVEIY. . . o ottt et e e e e 4-84

5. Using the Entitlements Management Tool

X Policy Managers Guide

Understanding the RBAC Model e 5-2

ALES RBAC Model CONCeptS. . . oot 5-2
Summary of Entitlements Management Tool Functions 5-3
Role Management FUNCLIONS.ot 5-4
Permission Management Functions i, 5-4
Separation of Duties FUNCtioNS oot 5-4
Entitlements Reporting Functions. o i i 5-4

Setting Up the Entitlements Management Tool. 5-5
Load the Entitlements Management Tool Policies. 5-5
Deploy the Entitlements Management Tool Web Application. 5-6
Deploying on WebLogic Server 9.Xt 5-6
Deploying on WebLogic Server 8.1 i 5-7
Deploying on Apache TOMCAt.ttt 5-7
Configuring the RBAC Model in SSMS. 5-7
Using the Entitlements Management Tool 5-8
Saving and Distributing Changes oo i 5-8
Security for the Entitlements Management Tool 5-9
Working With ROIES.o 5-9
VieWing ROIES 5-10
Creatinga NeW ROl oo 5-10
Assigning Role Attributes 5-13
Modifying and Removing Roles i 5-13
Working with Identities. 5-14
USEIS Tab . .o 5-14
GroUPS Tab . o . 5-15
Attributes Tabo 5-16
Working with Permissions and Permission Sets., 5-16
Viewing Permission Setst 5-16

Policy Managers Guide Xi

Creating a New Permission Set e 5-17

Modifying the Permission Set Hierarchy. 5-18
Assigning Permission Attributes 5-19
Separation of Duties Constraints.t 5-20
Generating RePOITSot 5-22

6. Extending the Entitlements Management Tool

Xii

Why Might You Wantto Extendthe UI? i 6-2
Managing a Subscription Model: Step 1 i 6-2
Managing a Subscription Model: Step2 6-3
Managing a Subscription Model: Step3 6-4
Managing a Subscription Model: Step 4 6-5
Managing a Subscription Model: Step5 6-5

Components of the Entitlements Management Tool. 6-6

Entitlements Ul Application Objects i 6-8
Entitlements Ul BeansPackage. 6-8
Entitlements UIRBAC Package 6-9
Utils Packageo 6-12
Persistence Packageo 6-12

Extending the Entitlements Management Tool: Main Steps. 6-13
Un-jar Entitlements Management Tool Web Archive File. 6-13

Create a metaobject_mappings.properties Configuration File Under WEB-INF/config.
6-13

Create Custom Implementation Node to Extend EUIMetaObjectNode 6-15
Create CUSIOM JSPSo 6-16
Modify Existing Navigation and Main JSSPFiles. 6-18

Modifying Main.jsp.o 6-20
Modify the JSF Configuration File 6-21

Policy Managers Guide

Re-jar Entitlements Management Tool Web Archive. 6-24

Redeploy Entitlements Management Tool Web Archive on Admin Server. 6-24
Using Custom Data for Access Control. i, 6-24
Using an Attribute Retriever to Get a Custom Data Value. 6-25
Using an Evaluation Function i 6-29
Clone and Move Operation for Custom Node.o, 6-32
Debugging Techniques and Problem Isolation 6-34
Example of Extending the EntitlementUl. o 6-34
Follow the Instructionsinthe Readme i, 6-34

/. Importing and Exporting Policy Data

Importing Policy Datao 7-1
Policy Import ToOlo 7-2
Configuring the Policy Import Tool 7-3

Setting Configuration Parameters., 7-3
Sample Configuration File i 7-7
Running the Policy Import Tool. 7-9
Understanding How the Policy Loader Works. o .. 7-10

Exporting Policy Datao 7-11
Policy EXport ToOol o 7-11
Before YOU Begin.o 7-11
Exporting Policy Data on Windows Platforms. 7-12
Exporting Policy Data on UNIX Platforms o . 7-13
What's NeXt . ..o 7-13

Policy Managers Guide Xiii

Xiv Policy Managers Guide

Introduction

This section describes the contents and organization of this guide—Policy Managers Guide. It
includes the following topics:

e “Document Scope and Audience” on page 1-1
e “Guide to this Document” on page 1-2
e “Related Documentation” on page 1-2

e “Contact Us!” on page 1-3

Document Scope and Audience

This document is a resource for system administrators who create and deploy security policies
using BEA AquaLogic Enterprise Security™. Typical tasks include writing security policies
using the ALES Administration Console, writing security policies outside the console and
importing them into ALES, and exporting security policies from ALES and importing them into
other ALES installations.

The topics in this document are relevant during the staging, production deployment, and
production use phases of a software project. For links to other Aqual.ogic Enterprise Security
documentation and resources, see “Related Documentation” on page 1-2.

It is assumed that readers understand Web technologies and have a general understanding of the
Microsoft Windows or UNIX operating system being used. Prior to using this document, you
should be familiar with the policy model used by BEA Aqualogic Enterprise Security and
described in the Introduction to BEA Aqualogic Enterprise Security.

Policy Managers Guide 1-1

http://e-docs.bea.com/ales/docs26/secintro/index.html

Additionally, BEA Aqualogic Enterprise Security includes many terms and concepts that you
need to understand. These terms and concepts, which you will encounter throughout the
documentation, are defined in the Glossary.

Guide to this Document

This document describes tasks associated with deploying and managing Aqualogic Enterprise
Security. It is organized as follows:

e Chapter 2, “Security Policies Overview,” describes the different types of policies, describes
how to design policies and provides general information about the components of policies:
effects, privileges, roles, resources, identities, delegation, and declarations.

e Chapter 3, “Writing Policies,” describes how to use the Administration Console to write
policies.

e Chapter 4, “Advanced Topics,” describes how to write more advanced and complex
policies and how to create policy data files.

e Chapter 5, “Using the Entitlements Management Tool,” described how to use the
Entitlements Management Tool, a user interface based on a hierarchical role-based access
control (RBAC) model, to manage roles, users and groups, permissions, and separation of
duties constraints.

e Chapter 6, “Extending the Entitlements Management Tool,” describes how to extend the
Entitlements Management Tool.

e Chapter 7, “Importing and Exporting Policy Data,” describes how to import and export
policy data to and from the policy database.

Related Documentation

For information about other aspects of AqualLogic Enterprise Security, see the following
documents:

e Introduction to BEA Aqualogic Enterprise Security—This document provides overview,
conceptual, and architectural information for AqualLogic Enterprise Security.

e Installing the Administration Server—This document describes installing and configuring
the AquaLogic Enterprise Security Administration Application.

e Installing Security Service Modules—This document describes installing and configuring
Security Service Modules for Aqualogic Enterprise Security.

1-2 Policy Managers Guide

http://e-docs.bea.com/ales/docs26/glossary/glossary.html
http://e-docs.bea.com/ales/docs26/secintro/index.html
http://e-docs.bea.com/ales/docs26/installadmin/index.html
http://e-docs.bea.com/ales/docs26/installssms/index.html

Contact Us!

e Administration and Deployment Guide—This document provides an architectural overview
of the product and includes step-by-step instructions on how to perform various
post-installation administrative tasks.

e Integrating ALES with Application Environments—This document describes
post-installation integration tasks to configure ALES for use with BEA WebLogic Server,
BEA WebLogic Portal, BEA Aqualogic Data Services Platform, BEA Aqualogic Service
Bus, Apache Web Server, Microsoft I1S web server and Web Services.

e Programming Security for Java Applications—This document describes how to implement
security in Java applications. It includes descriptions of the security service Application
Programming Interfaces and programming instructions.

e Programming Security for Web Services—This document describes how to implement
security in web servers. It includes descriptions of the Web Services Application
Programming Interfaces.

e Developing Security Providers for BEA Aqualogic Enterprise Security —This document
provides security vendors and security and application developers with the information
needed to develop custom security providers.

e Javadocs for Java API—This document provides reference documentation for the Java
Application Programming Interfaces that are provided with and supported by this release of
BEA Aqualogic Enterprise Security.

e Wsdldocs for Web Services API—This document provides reference documentation for the
Web Services Application Programming Interfaces that are provided with and supported by
this release of BEA Aqualogic Enterprise Security.

e Javadocs for Security Service Provider Interfaces—This document provides reference
documentation for the Security Service Provider Interfaces that are provided with and
supported by this release of BEA Aqualogic Enterprise Security.

e Javadocs for BLM API—This document provides reference documentation for the Business
Logic Manager (BLM) Application Programming Interfaces that are provided with and
supported by this release of BEA Aqualogic Enterprise Security.

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed
directly by the BEA professionals who create and update the documentation.

Policy Managers Guide 1-3

http://e-docs.bea.com/ales/docs26/admindeployguide/index.html
http://e-docs.bea.com/ales/docs26/integrateappenviron/index.html
http://e-docs.bea.com/ales/docs26/programmersguide/index.html
http://e-docs.bea.com/ales/docs26/webservicesprogrammersguide/index.html
http://e-docs.bea.com/ales/docs26/dvspisec/index.html
http://e-docs.bea.com/ales/docs26/javadocs/JavaAPI/index.html
http://e-docs.bea.com/ales/docs26/javadocs/WsdlAPI/wsdldoc/index.html
http://e-docs.bea.com/ales/docs26/javadocs/SSPI/index.html
http://e-docs.bea.com/ales/docs26/javadocs/BlmAPI/index.html

1-4

In your e-mail message, please indicate the software name and version you are using, as well as
the title and date of your documentation. If you have any questions about this version of BEA
AgquaLogic Enterprise Security, or if you have problems installing and running BEA Aqualogic
Enterprise Security products, contact BEA Customer Support through BEA WebSupport at
http://www.bea.com. You can also contact Customer Support by using the contact information
provided on the Customer Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:
e Your name, e-mail address, phone number, and fax number
e Your company name and company address
e Your machine type and authorization codes

e The name and version of the product you are using

A description of the problem and the content of pertinent error messages.

Policy Managers Guide

http://www.bea.com

Security Policies Overview

This section covers the following topics:

“What is an AqualLogic Enterprise Security Policy?” on page 2-1
“Policy Components” on page 2-3

“Resources” on page 2-4

“ldentities” on page 2-7

“Policies” on page 2-10

“Declarations” on page 2-14

What is an Aqualogic Enterprise Security Policy?

Aqualogic Enterprise Security is a fine-grained entitlements engine that allows the user to
centrally define and manage a set of policies to control access for both application software
components (for example URLSs, EJBs, and EJB methods) as well as the application business
objects (for example accounts and patient records) that make up the application. A set of access
control policies is evaluated and enforced locally in the application container so application
context can be included as part of the access control decision. A major benefit of using
Aqualogic Enterprise Security to implement access control is that it allows you to remove
security logic from the application. This enables you to take access control decisions out of the
hands of your developers and define and manage access control consistently across multiple
applications.

Policy Managers Guide 2-1

2-2

Policies are statements that work together to define access control for your business resources. A
resource is any object that represents an underlying application or application component that
needs to be protected from unauthorized access. A well-written set of policies accurately
represents the access control requirements for your business, is easy to manage, and is designed
for maximum efficiency.

You write separate policies to grant or deny access privileges to your business resources to users,
groups, and roles under some set of conditions, or constraints. Therefore, before you begin to
write policies, you must know the access control requirements of your business, the resources that
are to be protected, who the users are and their responsibilities, and what privileges the users are
to have on the resources.

There are three types of policies, authorization policies, role mapping policies, and delegation
policies, each type having a different function:

e Authorization policies—Also referred to as access policies, these define which users,
groups, or roles have which privileges on which resources. Authorization policies are used
to define the access control for application software components (for example, URLS,
JSPs, EJBs, and so on), as well as business objects (such as accounts, customer records,
and similar items) in the application.

e Role mapping policies—Define what users and groups belong to what roles for what
resources. You use role mapping policies to define how, when, and under what constraints
roles are assigned to what users and groups.

e Delegation policies—Once you have written authorization policies and role mapping
policies, you can then write delegation policies. Privileges and roles can be delegated.
Typically, delegation policies are used to define the constraints under which a privilege or a
role that was previously granted to one user is granted to another user; however, the time
period for the delegation can be indefinite. You can use delegation policies to assign access
privileges previously granted to one user to another user, group, or role. You can also use
delegation policies to assign roles previously granted to one user to another user or group.

Closed-world Security Environment

The policy evaluation strategy imposes a closed-world security environment. This means that
before you specifically create an authorization policy granting access privileges to specific
resources, users, groups, and roles have no privileges. You must grant privileges with an
authorization policy before users can do anything. This means that all privileges to all resources
protected by a Security Service Module are implicitly denied until authorization policies grant
specific privileges.

Policy Managers Guide

Policy Components

Thus, the closed-world security environment has the powerful advantage of having your
application security err on the side of caution. That is, if you forget to deploy an authorization
policy, someone may be denied access rather than be granted access to something to which they
should not have access. A user that is denied privileges will usually let you know that there is a
problem (and, if they do not, that is probably okay). On the other hand, a user that has been
granted privileges they should not have may not tell you, which may have disastrous
consequences. Once you grant an access privilege, you must explicitly deny it to revoke that right.
Explicit DENY policies cannot be overruled.

Policy Components

All policies follow a specified sentence-like syntax. The structure of a policy is similar to a
sentence and the policy elements can be thought of as parts of the sentence.

The general syntax for an Aqualogic Enterprise Security policy is as follows:
Effect (privilege|role, resource, subject, delegator) IF constraint;
A single policy can have multiple privileges, resources, and subjects defined.

The functions of each policy component are as follows:

e The Effect can be to grant, to deny, or to delegate a privilege or role. A policy can grant,
deny, or delegate a privilege or role on a given resource to a subject under some set of
constraints. Grant is used to assign a privilege or a role to a subject. Deny is used to deny a
privilege or a role from a subject. Delegate is used to assign a privilege or a role that has
been granted to one subject to another subject.

e Privilege|role—a privilege is an action on a resource. A role is a name that can be
assigned to a set of users, similar to a group. Authorization policies assign privileges. Role
mapping policies assign roles. Delegation policies can delegate privileges or roles.

e A resource is a protected object.

e A subject can be a user, group, or role. For authorization policies, subjects can be users,
groups, or roles. For role mapping policies, subjects can be users or groups.

e A delegator is a user, or subject, whose privilege or role is being delegated, or assigned, to
another subject. Delegation policies that delegate privileges can delegate the privileges
from one user to other users, groups, or roles. Delegation policies that delegate roles can
delegate the role to other users or groups. You cannot delegate a role from one user to role.

e Constraints are conditions that must be true for the policy to evaluate to true. A broad
range of operators and functions can be used to define constraints, but in general,

Policy Managers Guide 2-3

constraints are made up of attribute/value pairs with some comparison operator. Individual
constraints can also be combined with logical operators such AND, OR, and NOT.
Conditions can include a date, a time, a time period, a day of the week, a day of the month,
a day of the year, a location, and other attributes. You may also write custom attributes and
use them as conditions. In addition to attributes that you may define specifically for users
and groups and then use them as conditions, you can also define different types of
declarations and use them as conditions.

Policies must adhere to the following rules:

Parentheses enclose the privilege or role, resource, subject, and delegator, as a group.
Commas separate the privilege or role, resource, subject, and delegator.

A delegator cannot be a group or a role.

The delegator portion of a policy is used only for delegation policies.

A delegator must be a user, not a group or role.

For authorization policies, subjects can be users, groups, and roles. However, for role
mapping policies, subjects are limited to users and groups. Roles cannot be used as
subjects in role mapping policies.

You may not delegate to a role, only to a user or group.

The keyword IF indicates a constraint.

e All policies end with a semicolon.

Resources

2-4

A resource is simply an object used to represent an underlying application or application
component (or any resource), that can be protected from unauthorized access using authorization
policies. Resources are often hierarchical in nature. Resources can be specific application
software components managed by the container (for example, URLs, EJBs, JSPs, and so on) or
any business object in the application. Resources may have attributes; for example bank accounts
have owners and transfer limits. Resources are hierarchical and child resources inherit policies
and attributes from their parent in the hierarchy.

When defining resources you start by defining the top-level resource in the resource tree and then
define the resources that make up the tree. Once a resource is defined, you can write authorization
policies to grant or deny access privileges to users, groups, or roles for the top-level resource and
resources on the tree. Hence, defining a resource tree is a necessary prequisite to writing policies.

Policy Managers Guide

Resources

For example, if you define a resource named Tel lerApp (see Figure 2-1), you can then write an
authorization policy that grants or denies access privileges to the Tel lerApp resource.

Figure 2-1 Resource Mapping

o Q
DRAERRAR s

@ Teller Group
|u;] Create agroup of tellers. This group s
Ifw typically established through an

l external application.
TellerApp
R g Determ ine which resources and

applications all tellers have access to.

Some typical resources that you might want to secure, include:

an application, an application window, or a dialog box

specific business transactions, such as a money transfer or security trade

application controls, such as buttons and menu selections

database or directory server structures
e Web pages, servlets, and Enterprise Java Beans (EJBS)

e products or services accessed through a BEA WebLogic Portal

Note: Indevelopment mode, you may use the Resource Discovery tool to help define resources
for a particular application. For more information, see “Resource Discovery” on
page 4-84.

For more information about resources, see the following topics:
e “Virtual Resources” on page 2-6
e “Resource Attributes” on page 2-6
e “Privilege Groups” on page 2-6

e “Privileges” on page 2-6

Policy Managers Guide 2-5

2-6

Virtual Resources

In addition to the resources that you define in the resource tree, you have the option of defining
virtual resources, which do not appear in the resource tree. This feature offers some flexibility as
to the levels of resource hierarchy that must be included in the resource tree so that protections
can be assigned. Once you configure a resource to allow virtual resources, any resources below
it, that is, its child resources, are, in effect, virtual resources and are protected by the same policies
as their parent, even though they do not appear in the resource tree. If you configure a resource
to allow virtual resources, you enable policies to be evaluated on resources below the resource
which are not explicitly defined inside in the resource tree. For example, if a directory is
configured in the resource tree to allow virtual resources, the Authorization and Role Mapping
Engine (ARME) can process access requests on files in of the directory even if the files are not
explicitly listed in the resource tree.

Resource Attributes

You can associate attributes with resources. An attribute contains information about a
characteristic of the resource to which it is associated. Thus, you can use attributes to define
additional information about a resource. For example, filetype could be a resource attribute
that you use to define an html, image, jsp, or pdf file type. Then, you could grant access to all pdf
files in a directory by adding the condition: if filetype = pdf.

Privilege Groups

A privilege group is constructed by grouping two or more privileges. A privilege can belong to
more than one privilege group. In addition to the privilege groups that are provided in the product,
you can define your own with distinct characteristics. Privilege groups are not used in policies.
They are simply a way to organize privileges and have no meaning when writing a policy and are
only provided to simplify the task of choosing the right privilege.

It is common to define a privilege group that applies to a particular application or set of
transactions. You can control access to privilege groups (those provided in the product and those
that are user-defined) through delegated administration.

Privileges

A privilege represents an action or task in your business policy that can be executed on a resource.
Privileges in a policy specify the actions that are granted or denied on a resource. Privileges can
be standard actions associated with specific software components (for example Get and Post for
a URL) or a custom action for a business object in an application (for example, transfer for a bank

Policy Managers Guide

Identities

account). The privileges that may be granted or denied on a particular resource are limited by the
operations supported by the resource. For example, a simple text file may support Read, Write,
Copy, Edit, and Delete operations. Similarly an executable (.exe) may support operations such
as Copy, Delete, and Execute. A more complex resource may support far more complex
privileges. For example, a checking account application may support operations such as deposit,
withdrawal, view account balance, view account history, transfer to savings, and transfer from
savings.

In addition to the privileges that are provided in the product, you can define your own privileges.
You can also organize privileges into logical groups for ease of management.

You use privileges to write authorization polices as follows:

grant(privilege, resource, subject[users, groups, roles]) IF constraint;

For example, if you have the business security requirement: "Only lead tellers can open an
account," you might define an OpenAccount privilege and a LeadTel1lers role. Now, to grant
LeadTel lers (the role) the authority to open an account (the privilege), the authorization policy
might look like this:

grant(//priv/OpenAccount, //app/policy/TellerApp, //role/LeadTellers)
if time24 in [900..1700] AND
dayofweek in [Monday..Friday];

When this policy is deployed, only tellers who are assigned the LeadTel lers role are allowed to
used the Tel lerApp to open an account and they may do so only between the hours of 9:00 AM
and 5:00 PM (a time-of-day constraint) on Monday through Friday (a days-of-the-week
constraint).

Identities

Identity definition includes the definition of directories, users, groups, and roles. An identity
directory serves as a logical container for a collection of identity attributes, users, groups, and
roles. An identity directory typically represents a set of users, groups, and roles. Therefore, the
first step in defining identities is to define the directory. Once you have defined the identity
information, you can use it to write authorization policies and role mapping policies. In
authorization and role mapping policies, the user identity (users, groups, roles) is defined in the
subject element of the policy.

You may define multiple identity directories. The number of directories you define depends on
the level of granularity needed to separate your user community. You may want to have one
global directory containing all users. In this case, you can populate a single directory using

Policy Managers Guide 2-1

2-8

multiple external repositories. Having one directory for all users requires that you have a unique
name for each user and group across all of your identity repositories. If you cannot guarantee this
when you integrate your identity repositories, then you should probably maintain separate
directories. For example, you might have one directory for customers, one for employees, and
one for partners.

The following topics describe user identity components:
o “ldentity Attributes” on page 2-8
e “Groups” on page 2-8
e “Users” on page 2-9

e “Roles” on page 2-10

Identity Attributes

A user or group can contain attributes that further describe their characteristics—who they are
and what they can do; these are referred to as identity attributes. You can use these identity
attributes to define dynamic constraints for a role to which a user or group belongs. For example,
consider that account balance is an attribute of a user. To allow customers with an account
balance over $100,000 to access the premier banking features of your application, you define
accountbalance as an attribute and apply it to each customer in the bankusers group (sgrp).
Next, you define the premierbanking role and write a role mapping policy that only allows
access to the application if the customer is in the premierbanking role. Then you write an
authorization policy that defines the privileges you want to allow on the bankapp resource and
define the subject as the role premierbanking.

Grant(//role/premierbanking,//app/policy/bankapp,
//sgrp/bankusers/customers/) if accountbalance > 100000

This role mapping policy allows customers who are assigned the premierbanking role to access
the resource called bankapp if they have an accountbalance of over $100,000.

Groups

A group is typically a collection of users that have something in common, such as a department,
a job function, or a job title. For example, a group named Accounting might contain users in the
accounting department. It is important to realize that this does not directly reflect what access
rights they have. A group can contain either users or other groups; users who are assigned to a

Policy Managers Guide

Identities

group are called group members. Nested memberships of groups within a group form a hierarchy.
Group membership can be assigned only from within the same directory. Groups have a static
identity, or name, which you assign.

If a group has subgroups and an authorization policy grants certain privileges to the group, the
members of subgroups will have the same privileges. This is true because each member of a
subgroup is by default a member of the parent group.

In addition to managing groups in the policy database, Aqualogic Enterprise Security can use
group membership information from a corporate directory. Typically, a group hierarchy is based
on an organizational model of the company, although this is not a requirement. For example, the
source of your user data might be an employee database, where users belong to four groups: the
employee group, the Sales department group, the London office group, and the star-salesmen
group.

Thus, you want to create groups of users, whose tasks are related and for whom the policy
enforcement is the same. In the following example (see Figure 2-2), Tellers are assigned to the
Teller Group.

Figure 2-2 Users and Groups

Users Attributes
Determine the identity Apply attributes for
of each teller. each user.

GOGERBRE T R

Teller Group

o Create a group of tellers. This group is
typically established through an
external application.

Users

A user corresponds to an individual who makes a request to access a resource, although a user
can also be an automated process that accesses a resource. You can assign users to groups from
the same directory. Each user within a directory must have a unique identity or user name. Users
can be associated with certain characteristics or attributes that contain information about the user.
Keep in mind that it may be more efficient to write policies that apply to a collection of users
defined as a role or a group. Aqualogic Enterprise Security supports both.

Policy Managers Guide 2-9

Roles

Arole is a set of privileges that can be assigned to a user or group. The actual access privileges
assigned to a role are defined by the authorization policy that you write for the role. You write a
role mapping policy to assign the role to users and/or groups, thereby granting the access
privileges defined by the authorization policy. Once you have written a role mapping policy to
assign the role to a user or a group, you can also write a delegation policy to delegate the role
from one user to another user or group. Like groups, roles allow you to restrict access to resources
for many users or groups at once. However, unlike groups, roles are computed dynamically at
runtime based on role mapping policies. Additionally, roles can be associated with specific
resources in an application.

Policies

2-10

To specify the access control requirements for your resources you write a set of policies that may
include role mapping policies, authorization policies, and delegation policies.

The following topics describe the different types of policies:
e “Role Mapping Policies” on page 2-10
e “Authorization Policies” on page 2-12
e “Delegation Policies” on page 2-13

e “Summary of Policy Differences” on page 2-14

Role Mapping Policies

Role mapping policies define when and which to grant roles to users or groups for a particular
resource.

The basic format of a role mapping policy is as follows:
grant]deny(role, resource, subjects[users, groups]) IF constraints;

Where the grant|deny portion is the policy effect and either allows or prohibits the role to the
subject for the given resource, the role defines the role, the resource is the application or
application component to which the role is scoped, subjects specify which users and groups
belong to the role, and constraints define any conditions that apply to the role.

For example:

GRANT(//role/accountants, //app/policy/acme/payroll, //user/acme/Bill/);

Policy Managers Guide

Policies

grants the accountants role to the user Bi 1l on the payrol 1 resource.

At runtime, user access privileges are computed based on the roles the user has been assigned—
either explicitly or through a role mapping policy—at the time an access request is made. Unlike
groups, which are relatively static and persist for duration of the runtime session, roles are highly
dynamic and are assigned to users by processing role mapping policies. Role mapping
significantly reduces the number of policies required and makes features like role delegation
easier to manage.

A role may apply to one or more users and groups and usually refers to some set of related tasks.
For example, a group of bank tellers might have access to the same set of applications (resources)
to perform specific banking tasks; thus, you might have a role called Tel lerRole and assign the
BankTellers group to that role. Figure 2-3 shows a group of tellers who belong to a Teller group
that has membership in the CustomerService role that, in turn, has access to the Teller resource.
The privileges, or actions, allowed on that resource are defined by an authorization policy, which
you also define. Now, anyone who is not in the CustomerService Role does not have access to
the Teller resource. You can also apply restrictions and conditions to limit access to the resource
at runtime by defining the constraints such as time-of-day or day-of-the-week on the role
mapping policy and/or the authorization policy.

Figure 2-3 Role Mapping Policy

Role Mapping

GEBERERE cemmevmosmacer

Teller Group

=] Create a group of tellers. This group is
ﬁﬁ typically established through an

external application.

CustomerService Role
Create a role and write a role

= mapping policy that assigns
theTeller group to that role.
Teller Resource
Determine which resources the
R g role can access and write an
Authorization policy to grant

privileges for the role to that
resource.

Policy Managers Guide 2-11

2-12

Authorization Policies

An authorization policy specifies what a user is allowed to do with a resource. The syntax of an
authorization policy is as follows:

grant]deny(privilege, resource, subjects[users, groups, roles]) IF
constraints;

Where the grant]deny portion is the policy effect and either allows or prohibits the privilege to
the subject for the given resource, the privilege defines the privilege, resource defines the
application or application component of the privilege, subjects specify which users, groups,
and roles are granted the privilege, and constraints defines any conditions that apply to the
privilege.

For example, the policy:

GRANT(//priv/any, //app/policy/acme/payroll, //user/acme/agarcia/);

grants any privileges supported by the acme payrol I application (the resource) to the user
agarcia in the acme directory. The policy:

GRANT(//priv/any, //app/policy/acme/payroll, //role/accountants/);

grants any privileges supported by the acme payrol I application (the resource) to the role
accountants so only users and groups who have been granted the accountants role are
granted this privilege. Therefore, before anyone can gain this privilege, a role mapping policy has
to be written and deployed that grants this role to a user or a group.

It is important to note that by default, all access to a resource is denied until an authorization
policy is written and deployed that explicitly grants an access privilege, or an entitlement, on that
resource to a user, group, or role. If the authorization policy only grants an entitlement on a
resource to a role, then a role mapping policy must be written and deployed that assigns a user or
a group the defined role.

If an authorization policy denies a previously granted entitlement, the deny takes precedence over
the grant. Explicit DENY authorization policies cannot be overruled. A practical use of a DENY
policy is to explicitly deny an entitlement to ensure that a user or group can never gain access to
a specific resource. For example, the DENY authorization policy:

DENY (//priv/view, //app/policy/acme/payroll, //sgrp/acme/receptionist/);

denies the view privilege related to the acme payro11 application to everyone belonging to the
group named receptionist in the acme directory.

Policy Managers Guide

Policies

Delegation Policies

The syntax of a delegation policy is as follows

DELEGATE (privilege|role, resource, subject, delegator) IF constraint;

A DELEGATE policy that delegates a privilege allows you to share the privileges of one user with
another user, group, or role. You may also add a constraint that restricts this sharing to a certain
time of day or day of the week, for example:

DELEGATE (//priv/any, //app/policy/acme, //user/acme/joe/,
//user/acme/larry/) if dayofweek in [Monday..Friday];

At runtime, this policy delegates any privileges that larry (the delagator) has on the acme
application to joe if the day of the week is Monday, Tuesday, Wednesday, Thursday, or Friday.

A DELEGATE policy that delegates a role allows you to share a role of one user with another user
or group. You may also add a constraint that restricts this sharing to a certain time of day or date
range, for example:

DELEGATE (//role/accountants, //app/policy/acme, //user/acme/joe/,
//user/acme/bill/) 1IF ThisMonth = December;

delegates the role accountants on the acme application from bi Il (the delagator) to joe at
runtime if the current mouth is December.

Note: Before a delegator’s privilege or role can be delegated, the ARME must verify that the
delegator has the privilege or role to be delegated on the specified resource. To perform
the verification, the ARME uses information about the delegator (password, groups,
roles) that is stored in the policy database to build a Subject for the delegator. If the
database does not contain the required information, the delegation policy will not be
executed.

Policy Managers Guide 2-13

Summary of Policy Differences

Table 2-1 summarizes the functions of authorization and role mapping policies and highlights the
differences.

Table 2-1 Summary of Policy Differences

Policy Component Authorization Policy Role Mapping Policy

Effect (Grant, GRANT permits the specified privilege cranT permits the specified role to the

Deny, or Delegate) to a user, group, or role. specified user or group.
DENY denies the privilege to a user, DENY denies the role to the specified user
group, or role. or group.

Privilege The privilege granted or denied. NA

Role NA The role granted or denied.

Resources The resource to which the privilege is The resource to which the role is granted or
granted or denied. denied.

subjects The user, group, or role to which the The user or group to which the role is
privilege is granted or denied. granted or denied.

Delegator The user whose privilege is delegated. The user whose role is delegated.

Constraints Conditions under which the privilege is Conditions under which the role is granted,
granted, denied, or delegated. denied, or delegated.

A declaration is a variable that represents either a predefined value (for example, days of the
week) or a value that is dynamically defined at runtime (the date). You use declarations in policies
as attributes. To help you design policies, built-in declarations are pre-defined for your use. You
can also define custom declarations to suit your requirements.

You can define four types of declarations:
e “Constants” on page 2-15
e “Enumerated Types” on page 2-15
e “Attributes” on page 2-15

2-14 Policy Managers Guide

Declarations

e “Evaluation Functions” on page 2-15

Constants

A constant is a named value or set of values that does not change at runtime. You can reference
constants in policies. For example, if you set a constant named Rate to 12, policies can then refer
to the constant Rate rather than using its literal value, 12. Using constants in policies makes them
more readable and makes changes to values that are used across of set policies easier

Constants are especially useful if the value changes periodically and you use the constant in more
than one location. For example, if you enter a rate value 12 into multiple policies, you need to
individually change each one. Instead, if you use the constant Rate, you can edit the value once
and have it take effect in every policy that refers to the constant.

Enumerated Types

An enumerated type is a type that consists of a predefined list of values from which you create
constants and multi-valued attributes. The product comes with a number of predefined
enumerated types and allows you to define your own. For example, you could define the
enumerated type "color” with the values of "red", "

, "green”, or "blue".
Attributes

Attributes represent characteristics that define dynamic values, users, groups, and configurations.
Attributes may be associated with users or groups (identity attributes), resources (resource
attributes), or policy requests (dynamic attributes). Attributes may be descriptive, may be used to
configure policy engine behavior or manage delegated administration, or used in forming policy
as part of the policy constraint.

Attributes must have a defined type, which denotes the range of legal values that it may have. A
number of predefined types exist, such as string, integer, date, time, and IP address. You can also
use custom enumerated types. The value of the attribute may be assigned to only one instance of
an attribute. An attribute may be a multi-valued list.

Evaluation Functions

An evaluation function is a named function that you can use in a policy constraint to perform
more advanced operations. Each function may have a number of parameters and returns a
Boolean result of true or false.

Policy Managers Guide 2-15

2-16

Aqualogic Enterprise Security provides a number of predefined evaluation functions and also
allows you to declare your own custom evaluation functions. You can use a predefined function
in your application by using a plug-in extension that a programmer creates specifically for your
application. To use an evaluation function, you must register it as a plug-in with the authorization
and role mapping providers used in the Security Service Module (SSM) configuration and declare
it in a policy. For information about creating and using plug-in extensions, see Provider
Extensions in the Administration Reference.

Policy Managers Guide

http://e-docs.bea.com/ales/docs26/adminref/plugins.html
http://e-docs.bea.com/ales/docs26/adminref/plugins.html

Writing Policies

The following topics are covered in this section:
e “Policy Implementation: Main Steps” on page 3-1

e “Using the Administration Console to Write Policies” on page 3-7

Policy Implementation: Main Steps

To write and deploy a set of policies, perform the following tasks (see Figure 3-1):

Task 1: Define the security requirements for your business. Understand the functions of your
applications and the various types of users who need to access them under different
circumstances.

Task 2: Define resources. Determine which resources you want to protect and define them in a
resource tree. Resources include the resources to be protected, the resource attributes, the
privileges, or actions, that will be used to access the resources, and, optionally, privilege groups.

Task 3: Define an identity directory and the identity attributes, users, groups, and roles that are
to make up the directory.

Task 4: Define declarations to use with the resources and identities and as constraints in
authorization policies, role mapping policies, and delegation policies.

Task 5: Write role mapping policies that control which users and groups have membership in
specific roles, under what constraints, and on which resources.

Policy Managers Guide 3-1

3-2

Task 6: Write authorization policies to define which privileges apply to each resource, under
what specific conditions, or constraints, and which roles a user or group must have membership
in so as to be granted the defined privilege to the specified resource.

Task 7: Bind the top-level resource and the identity directory to the authorization and role
mapping providers configured in the security configuration. By doing this you choose which
Security Service Module (SSM) enforces policies for these resources.

Task 8: Deploy the set of policies to the SSM. The SSM starts to enforce policies only after the
policies are deployed.

Policy Managers Guide

Policy Implementation: Main Steps

Figure 3-1 Policy Implementation Tasks

Define the Security Requirements

Task 1 (Resources, Privileges, Users)

Define Resources

Task 2 (Resource Tree, Privileges)

Define Identities

Task 3 (Directory, Users, Groups, Roles)

Task 4 Define Declarations

Task 5 Write Role Mapping Policies

Task 6 Write Authorization Policies

Bind Resources and Identity Directory
Task 7 to Authorization _and Role Maping
Providers

Task 8 Deploy Policy Set to the SSM

While the subsequent sections of this document describe how to use the Administration Console
to define and manage role mapping and authorization policies, you may also use the Business
Logic Manager (BLM) as it offers the same capabilities.

e For instructions on using the Administration Console to perform policy implementation
tasks, see “Using the Administration Console to Write Policies” on page 3-7.

e For instructions for using the BLM, see the Javadocs for the Business Logic Manager.

Policy Managers Guide 3-3

http://e-docs.bea.com/ales/docs26/javadocs/BlmAPI/index.html

Access Decision Process

3-4

For a user to gain access to a resource, AqualLogic Enterprise Security provides the following
services and components:

e “Authentication Service” on page 3-4

e “Role Mapping Service” on page 3-4

e “Authorization Service” on page 3-5

e “Credential Mapping Service” on page 3-5

e “Authorization and Role Mapping Engine” on page 3-5

Authentication Service

The authentication service is responsible for authenticating the user. There are two ways a user
can be authenticated.

e One way is that the authentication service tells the container what type of credentials are
required and then the SSM authenticates those credentials with an external source like a
directory or database. ALES supports a wide range of authentication stores and an APl is
also provided to write custom authentication modules.

e The other way to identify the user is via identity assertion. The ALES SSM authentication
service provides a means for plugging in an ldentity Assertion service that can be used to
validate a token that is provided by an external system. Several Web single sign-on vendors
provide Identity Assertion plug-ins for ALES.

You can configure multiple authentication services to authenticate, assert identity, and collect
additional group or attribute information at authentication time.

Once the user is authenticated, the service will create a subject object. The subject can contain
one or more user principles with attribute information, one or more group principles for the
groups in which the user has membership, and any attributes associated with those groups. The
subject is provided to the authorization and role mapping services.

Role Mapping Service

Given the subject, which is provided by the authentication service, the role mapping service
evaluates the role mapping policies to determine if a user or group is granted a role on the
requested resource. Roles provide a level of abstraction between users and the privileges that they

Policy Managers Guide

Access Decision Process

have in a given context (within an application). Role mapping policies can be time-based so that
users can delegate their privileges for a limited time (for example, when they go on vacation).
Roles are always associated with resources and can be granted broadly or granted only in the
context of a particular application resource.

Authorization Service

The actual authorization decision is made (isAccessAllowed) based on identity, group, or role
membership.

The authorization service evaluates access control policies to determine what a user can do on a
particular resource. Policies can include constraints that the authorization service evaluates
against static data, such as user attributes that are retrieved when a user is authenticated. The
authorization service can also evaluate constraints against dynamic data that is retrieved at
runtime when the policy is evaluated. Further, the authorization service can take application
context (for example, EJB parameter values) into account at evaluation time. The authorization
service can return authorization decisions or entitlements through the report function.

The authorization service supports the use of multiple authorization providers. This allows you
to use ALES in conjunction with an existing entitlements system. ALES can be used to add new
capabilities while preserving the existing access control logic. When multiple authorization
providers are used, a custom adjudicator is required to determine the outcome when conflicts
occur between authorization providers.

Credential Mapping Service

The credential mapping service provides a mechanism to address enterprise single sign-on to
enterprise systems. This service can map user identity to an appropriate set of credentials for
authentication to enterprise applications like PeopleSoft, SAP, and relational databases. This
service can also be used to remove the need to embed credentials within application code. ALES
can support a number of identity token formats, such as SAML, to represent the user’s identity.

Authorization and Role Mapping Engine

At runtime, the ASI Authorizer, which is also known as the Authorization and Role Mapping
Engine (ARME))—Ilocated in the Security Service Module instance on which the polices are
deployed—uses the role mapping, authorization, and delegation policies to make access control
decisions and grant or deny access to users.

Policy Managers Guide 3-5

Figure 3-2 shows the access control decision process. As illustrated, before you can write policies
to define access control for your business resources, you must define those resources, the
associated user identity, and, optionally, any custom declarations you may want to use. Once
resources and user identify are defined and the policies are written, they do not take effect until
they are bound to the Authorization and Role Mapping providers in a Security Service Module
(SSM) configuration and deployed. At runtime, user requests to perform actions on specific
resources are processed using role-based access control (RBAC) to determine whether the user is
granted the requested access (isAccessAllowed).

Figure 3-2 Access Control Decision Process

Resources, User

Identity, and Ide[;"tityct . Declarations
i irectories Constants

Declarations Attributes constants

Resources Users nu_:_r;r p‘:r: €
Attributes Groups Attributes
Privilege Groups Roles Avaluation
Privileges Functions
y Y Y

Role Mapping
Policy

\

Reoles

Resources

Palicy Subjects [Users,

Groups,) ¢

(resource,

Authorization Policy

Privileges

'

Resources

Policy Subjects (Users, ioups,
Roles)

Constraints

Delegation Policy

Privileges|Role

\

Policy Subjects [Users, Groups,
Roles)

Resources

Constraints

1

Delegator (==

Role Mapping Authorization
Policies Policies

Delegation
Policies

subject,
action)

ASIAuthorizer

Runtime

User Requee‘;js y

Computation

of Roles

Runtime Access
Control Decisions

Policy Managers Guide

Using the Administration Console to Write Policies

Using the Administration Console to Write Policies

A set of policies control what actions users can perform on resources. A set of policies can be
applied to a single resource, an entire application, or implemented globally as a structured
collection of entitlements for your organization, representing the superset of all of your
application policies.

The following sections describe the components of Aqualogic Enterprise Security policies as
presented in the Administration Console and how to write security policies using the
Administration Console:

e “Administration Console Overview” on page 3-7

e “Defining Resources” on page 3-8

e “Defining Identities” on page 3-14

e “Writing Authorization and Role Mapping Policies” on page 3-19
e “Defining Declarations” on page 3-22

e “Binding Policies” on page 3-23

e “Deploying Policies” on page 3-23

Administration Console Overview

Figure 3-3 shows how the Administration Console represents the various policy components.
You use the Security Configuration node to configure security providers for the SSM and to bind
the set of policies to the security configuration. You use the Resources, Identity, Policy, and
Declarations nodes to write policy. Then you use the Deployment node to deploy the policy set
and the security configuration to the SSM.

Policy Managers Guide 3-7

Figure 3-3 Administration Console

a BEA Aqualogic Enterprise Security Administratiol

=10] x|
J Fil= Edit ‘iew Faworites Tools Help |
J dBack ~ = -) ot | @hsearch [GelFavorites GffMedia £% | B\ S = - 9 - 1
J.ﬁ.ddress |JLinks ”J @a' vlfw.x‘m:ﬁ;fm j » H QSnagIt H" |J

B =2 sdministration Gonsole
@ Security Configuratic

Resources

Resources
C3 1dentity

@ Policy

@ Declarations
Deployment

Connected to :

E--@ policy
E|°® aldsprealm
EH@ BzBEDefault\webappapplication

© el ourd
E---H@ console

: EH@ url

H ---H@ console
E---H@ ldconsole

: EH@ url

E---H@ ldconsale ;I
® MNew | .~ Edit | J@ Configure | XDelste| % Clone| Lf—
Fiter: |+ [@)Refrash| 40| =]

< | i

|glj Done l_ l_ E ;gi" Lacal intranet

Defining Resources

A resource is a general term that refers to an entity or group of entities that you can protect.
Resources can include applications, data, or system components. Resources may also include
background services with which the user has no direct interaction.

Figure 3-4 shows the expanded Resource node in the Administration Console.

3-8 Policy Managers Guide

&

Using the Administration Console to Write Policies

Figure 3-4 Expanded Resource Node

= Resources
= Attributes
ﬁ‘% Privilege Groups
BN Privileges

Clicking Resources displays all of the resources that are defined in the right pane (see Figure 3-5).

Figure 3-5 Defined Resources

ElEE? policy %

"E; &5IRecovery
=1 ssmws

e H@ Favicon.ico

EI---HG test

i Foo,html

s HE:; MamePassword, acc

The Administration Console displays resources in a tree structure called a resource hierarchy. A
page generated from a Java Server Page (JSP) is an example of an application resource. The page
can call EJBs or COM resources to execute some business logic. The back office services that
transfer money between accounts, issue a payment, or run a report are also resources, although
they may not appear on the web page or execute on the application server.

An administrator may define as many resources and levels in the hierarchy as needed to represent
data, services, and system components within an application.

Individual resources in the hierarchy are also called nodes and the type of hode can convey
additional information about the resource. Table 3-1 lists and describes the types of nodes that
you can configure using the Administration Console.

Policy Managers Guide 3-9

3-10

Table 3-1 Types of Nodes Supported

Node Type

Console
Icon

Description

Organizational

@

You use organizational nodes to represent organizational structure with
the goal of enforcing uniform access control across multiple applications.

An organizational node can be configured as a distribution point and to
allow virtual resources.

Application

.

You use application nodes to represent a collection of applications that
provide a specific set of services. An application node can also be used to
represent an application with a single component, such as a desktop
spreadsheet application.

An application node can be configured as a distribution point and to allow
virtual resources.

Binding

You use binding nodes to represent applications. When you configure the
security providers you can use a binding node to bind the authorization
and role mapping providers to the application resource tree.

A binding node can be configured as a distribution point and to allow
virtual resources.

Binding
Application

You can use binding application nodes to represent applications. When
you configure the security providers you can use a binding application
node to bind the authorization and role mapping providers to the
application resource tree.

A binding application node can be configured as a distribution point and
to allow virtual resources.

Resource

You use resource nodes to represent subcomponents of your application.
Resource nodes can be used to represent any object within an application,
such as data, services, and system components, to which you might want
to control access. A binding node or a binding application node can have
as many resource nodes as needed at as many levels in the resource
hierarchy as necessary. Thus, resource nodes can have other resource
nodes as children.

A resource node can be configured to allow virtual resources, but it
cannot be configured as a distribution point.

Policy Managers Guide

Using the Administration Console to Write Policies

Any resource at or above a binding node can be configured as a distribution point for policies.
When a distribution, or deployment, is initiated, you can choose to distribute either all updates
(by selecting the root node) or you can limit which updates are distributed by selecting resources
using the nodes that are configured as distribution points. Only updates that were made at and
below the selected nodes are distributed.

Some typical resources that you might want to secure, include:
e An application, an application window, or a dialog box
e Specific business transactions, such as a money transfer or security trade
e Application controls, such as buttons and menu selections
e Database or directory server structures
e Web pages (URLS), servlets, and Enterprise Java Beans (EJB)

e Products or services available through the BEA WebLogic Portal

For instructions on how to define a resource, log into the Administration Console, access the
Console Help, find Resources in the left pane, and click Creating a Resource.

The following topics provide more information on configuring resources:

“Virtual Resources” on page 3-11

“Resource Attributes” on page 3-12

“Privileges” on page 3-12

“Privilege Groups” on page 3-13

Virtual Resources

Any resource defined in the resource tree can be configured as a virtual resource. Once you
configure a resource to allow virtual resources, any resources below it, that is, its child resources,
are, in effect, virtual resources and are protected by the same policies as their parent, even though
they do not appear in the resource tree. For example, given a resource hierarchy URL such as
http://www.myname.com/private/dirl/dir2/, if you create the resource tree up to
http://www.myname.com/private and then configure private to allow virtual resources,
dirland dir2 are automatically protected by the access control policies you assign to private,
without having to add dir1 and dir2 as explicit resources on the resource tree or assigning them
explicit policies.

Policy Managers Guide 3-11

3-12

To configure a resource as virtual, select a resource in the resource tree, click Configure, and
check the Allow Virtual Resources check box.

Resource Attributes

A resource attribute is represented under Resources in the Administration Console (see

Figure 3-4). All resources can have attributes, which store information about the resources to
which they belong. For example, you may create resource attributes to specify resource owner,
type of resource, creation date, and so on.

Attributes are inherited by child resources from their parent. If a resource explicitly sets the value
for an attribute, this value overrides the inherited one.

For instructions on how to create a resource attribute, log into the Administration Console, access
the Console Help, find Resource Attributes in the left help pane, and click Creating a Resource
Attribute.

Privileges

A privilege is represented by the key icon in the Administration Console (see Figure 3-4) and is
an action that you can perform on a resource. For instance, execute is a typical application
privilege; and read and write are typical file-system privileges.

You can use the privileges provided or you can create your own. Figure 3-6 shows how privileges
appear in the Administration Console. Notice that each privilege refers to an action. A related
collection of privileges may be organized into a privilege group for management purposes.

For instructions on how to create privileges, log into the Administration Console, access the
Console Help, find Resources > Privileges in the left help pane, and click Creating a Privilege.

Policy Managers Guide

Using the Administration Console to Write Policies

Figure 3-6 Privileges Representation in the Administration Console

Privileges
Connected 152 tupolev.amer.bea com:8014 ; : Logout
Name Last Modified Date Modified By

%, any 10/06/05 17:15:03 root

¥, COMMECT 10406405 17:20:29 Jfusarfasifsystemy
™, DELETE 10/06/05 17:20:29 ffuserfasifsystemn/
¥, GET 10/06/05 17:20:29 Jfuser/asifsystermny
¥, HEAD 10/06/05 17:20:29 ffuserfasifsystern,/
¥, OPTIONS 10/06/05 17:20:29 ffuserfasifsystermn/
", POST 10/06/05 17:20:29 Afuser/asifsystemy
¥ PUT 10/06/05 17:20:29 ffuserfasifsystern/
™, TRACE 10/06/05 17:20:29 fuserfasifsystemn/
¥, access 10/06/05 17:20:29 Jfuser/asifsystemy
¥, addMember 10/06/05 17:20:29 fuserfasifsystemn/
¥, adrin 10/06/05 17:20:29 Jfuser/asifsystermny
¥, authenticate 10,/06/05 17:20:55 ffuserfasifsystern,/ =
™, bind 10/06/05 17:20:29 ffuserfasifsystermn/
¥, boot 10/06/05 17:20:29 /fuserfasifsystem/
¥, browse 10/06/05 17:20:29 ffuserfasifsystern/
¥, cascadeDelete 10/06/05 17:20:29 fuserfasifsystemn/
¥, copy 10/06/05 17:20:29 fluserfasifsystern,
¥, create 10/06/05 17:20:28 fuserfasifsystemn/
%, delete 10/06/05 17:20:29 Jfuser/asifsystermny
¥, deployStructuralChange 10/06/05 17:20:29 fuserfasifsystern,
E—‘gdeployUpdate 10/06/05 17:20:29 fuserfasifsystem,
¥, execute 10/06/05 17:20:29 ffuser/asifsystermny
¥, export 10/06/05 17:20:29 Afuserfasifsystems x|
B New | .~ Edit | X Delete| Up |

Filter: [+ @)Refresh| [Dawn |

Privilege Groups

A privilege group is represented by the keys icon in the Administration Console (see Figure 3-4)
and allows you to organize privileges into logical groups for ease of management. For example,
it is common to define a privilege group that applies to a particular application or set of
transactions. Privilege groups can be used as filters when constructing policies, although they
cannot appear directly in a policy. Figure 3-7 shows an example of how privilege groups and their
associated privileges appear in the Administration Console.

Policy Managers Guide 3-13

For instructions on how to create privilege groups, log into the Administration Console, access
the Console Help, find Resources > Privilege Groups in the left help pane, and click Creating a

Privilege Group.

Figure 3-7 Privilege Groups Representation in the Administration Console

Privilege Groups

Connected ta : tupo Logaut
Mame I[‘;;iimnd'ﬁed Modified By z‘éaCBYNNECT
7 t ™, DELETE
Iﬁkasiadrﬁin 10/06/05 17:20: 29 /userfasifsystem/ RGET
RDDI‘I‘I 10/06/05 17:20: 29 /userfasifsystem, E!%HE.D.D
Taeis 10406405 17:20:29//user/asi/systermns ¥, OPTIONS
Rjdbc 10/06/05 17:20:29//userfasifsystem,/ RPOST
ijs 10706405 17:20: 29/ /user/asi/systerm,/ M PUT
Taindi 10/06/05 17:20:29//user/asi/systermn/ ™, TRACE
furl 10406405 17:20:29//userfasi/systern/ ¥, access
Rwhadmin 10/06/05 17:20: 29/ /userfasifsystem,/ T’%addMEmher
I%‘§t-\llssnar\-'nar 10/06/05 17:20: 29/ /user/asi/system,/ Radmin
¥, authenticate
¥ bind -
I | o

B New | .~ Edit | KDelete| @ Clone|] Up |

Defining ldentities

The Identity icon represents your directories and user communities in the Administration Console
(see Figure 3-8). Although BEA Aqualogic Enterprise Security provides tools to manage users
and groups locally, they are typically managed through an external repository, such as a
Lightweight Directory Access Protocol (LDAP) directory server or a network database. User and
group information, along with any attributes, is stored as metadata in the policy database and is
then available for viewing directly through the Administration Console.

Figure 3-8 shows the expanded Identity node in the Administration Console.

3-14 Policy Managers Guide

Using the Administration Console to Write Policies

Figure 3-8 Expanded Identity Node

= 3 1adagity
= attributes
s Groups
fﬁ zars

Roles

A directory typically represents groups of users of a particular application or resource, or users
in a specific location. Each directory has an associated attribute schema. The schema defines the
attributes applied to members of the directory. Figure 3-9 shows how directories are represented
in the Administration Console. In this example, there is one directory: asi and test. The test
directory shows the attributes that are stored for each member of the directory.

Figure 3-9 Directory Representation in the Administration Console

Identity
Connected to : tupolev.amer. bea.com:8014 | You are logged in as Logout
Name Attribute Type Default Yalue
[asi jobcode string "T136"

my_dogs_name string "Billy"

For instructions on how to create directories, log into the Administration Console, access the
Console Help, find Identity in the left help pane, and click Creating a Directory.

For more information on configuring identity policy elements, see the following topics:
e “ldentity Attributes” on page 3-16
e “Groups” on page 3-16
e “Users” on page 3-17

e “Roles” on page 3-18

Policy Managers Guide 3-15

3-16

Identity Attributes

Identity attributes are represented under the Identity in the Administration Console (see

Figure 3-8). Each user and group can have different characteristics defined as identity attributes.
The type of information or attributes collected—a method typically referred to as profiling—also
varies and typically includes information such as name and address, phone, e-mail address,
personal preferences, and so forth. Identity attributes can be extracted from the external data
source.

An identity attribute is declared specifically to contain identity information. An attribute value

can be used in policies to set limits for that user. Attributes provide a very powerful way to refer
to users and groups indirectly in policies, which results in a more dynamic and versatile policy

set.

Figure 3-10 shows how identity attributes are represented in the Administration Console.

Figure 3-10 Identity Attributes Representation in the Administration Console

Identity AXributes
Connected to : tupolev. amer.bea. com:8014 | Yfou are logged in as : | Logout
Last Modified -
Name Type Date Modified By

@ capital_city string 10/12/05 16:59:16 ffuserfasi/system,
@ city integer 10/12/05 16:58:08 /ffuserfasi/system,
@jnbcnde string 10/12/05 17:05:11 ffuserfasi/systemn/
@ my_dogs_name string 10410405 14:05:54 Afuserfasi/systern/

For instructions on how to create identity attributes, log into the Administration Console, access
the Console Help, find Identity Attributes in the left help pane, and click Creating an Identity
Attribute.

Groups

A group is a logical collection of users that share some common characteristics, such as
department, job function, or job title. For example, a company may separate its sales staff into
two groups, Sales Representatives and Sales Managers, because they want their sales personnel
to have different levels of access to resources depending on their job functions.

Policy Managers Guide

Using the Administration Console to Write Policies

A group can contain either users or other groups; users who are assigned to a group are called
group members. Nested memberships of groups within a group form a hierarchy. Group
membership can be assigned only from within the same directory. Groups have a static identity
that an administrator assigns.

Managing groups is more efficient than managing large numbers of users individually. By using
groups, you do not need to define an access control policy for each and every user. Instead, each
user in the group inherits the policies applied to the group; this rule also applies to nested groups.
Granting a permission or role to a group is the same as giving that permission or role to each user
who is a member of the group. For example, an administrator can specify roles for 50 users at one
time by placing the users in a group, and then granting that group the role on a given resource.

Figure 3-11 shows how groups are represented in the Administration Console. Notice that the
BankTellers group contains four members.

Figure 3-11 Group Representation in the Administration Console

asi >Groups

ected t_l;l s tupolev.amer.bea.c 01 4 fou are logged inas | Logout

Members of BankTellers

Name X
s allusers {i Bill
PITTOTTE | § oo
lﬁ Jane
!ﬁ Peter

Mow Showing:1 - 4 of 4 Filter: I*

For instructions on how to create groups, log into the Administration Console, access the Console
Help, find Identity > Groups in the left help pane, and click Creating a Group.

Users

A user corresponds to an individual who makes a request to access a resource, although a user
can be an automated process that accesses the system. Users are included in an authorization

Policy Managers Guide 3-17

3-18

policy by assigning users to groups, and then assigning that group to a role or assigning the users
directly to roles. Each user within a directory must have a unique identity, or user name.

Users can be associated with certain characteristics, referred to as identity attributes; these
attributes store information about the user. The list of attributes that can be set for a user is
dictated by the attribute schema of the directory to which the user belongs. Figure 3-12 shows an
example of a user representation with identity attributes.

Figure 3-12 User Representation in the Administration Console

test =Users

Co r'nhu::ted to : tupolev.amer.bea.com:B8014 | fou are logged in as : | Logout

Group Membershi
NMame B B

aill ﬁ.ﬁﬁ' Banktellers
Hally

Attribute Attribute ¥alue
jobcode "T138"
rmy_dogs_name "Billy"

For instructions on how to create users, log into the Administration Console, access the Console
Help, find Identity > Users in the left help pane, and click Creating a User.

Roles

A role is a dynamic alias used to associate users and groups to role-based functional
responsibilities. A role represents a collection of privileges on a resource. Roles are computed and
granted to users or groups dynamically based on conditions, such as user name, group
membership, identity attributes, or dynamic data, such as the time of day. Roles membership can
apply to only specific resources within a single application or can be applied globally across the
enterprise. A role can also be delegated from one user to another user. Multiple users or groups
can be granted a single security role. Figure 3-13 shows an example of a roles representation in
the Administration Console.

Policy Managers Guide

Using the Administration Console to Write Policies

Figure 3-13 Roles Representation in the Administration Console

Roles

Connected to : tupolev.amer.bea.com:8014 | You are logged in as ;. system

For instructions on how to create roles, log into the Administration Console, access the Console
Help, find Identity > Roles in the left help pane, and click Creating a Role.

Writing Authorization and Role Mapping Policies

A set of policies can include three types of policies: role mapping policies, authorization polices,
and delegation policies:

e Role mapping policies, at a minimum, are written to create roles that define what subjects
(user and groups) are assigned to the role for what resources. Role mapping policies can
also include constraints.

e Authorization policies are written against resources to define what subjects (users, group,
or roles) have what privileges on what resources. Authorization policies can also include
constraints.

e Delegation policies are used to assign privileges or roles granted to one user to another
user.
Figure 3-14 shows the expanded Policy node in the Administration Console.
Note: Delegation policies that assign roles are listed in the console with role mapping policies.
Delegation policies that assign privileges are listed in the console with authorization

policies. Delegation policies are distinguished by the Effect type of DELEGATE as oppose
to GRANT or DENY.

Policy Managers Guide 3-19

3-20

Figure 3-14 Expanded Policy Node

= [2 Policy
H Role Mapping Policies
8% Authorization Policies
% Role Mapping Policy Reports
% Autharization Policy Reports

For more information about policies, refer to the following topics:

“Role Mapping Policies” on page 3-20

e “Authorization Policies” on page 3-20

“Role Mapping Policy Reports” on page 3-21

e “Authorization Policy Reports” on page 3-21

Role Mapping Policies

Role mapping policies determine how roles are granted, and to which a user or group can be
assigned. Role mapping policies are used to grant users or groups membership into a given role.
The membership can be limited based on a number of items including the resource hierarchy,
subjects (users and groups), constraints, and delegator. A delegation policy that delegates a role
assigns a role granted to one user (the delegator) on a resource to another user or group. A role
cannot be delegated to a role. See Figure 3-14 for an illustration of how role mapping policies are
represented in the Administration Console.

For instructions on how to write role mapping policies, log into the Administration Console,
access the Console Help, find Policy > Role Mapping Policies in the left help pane, and click
Creating a Role Mapping Policy.

Authorization Policies

Authorization policies determine what actions can be performed on a resource. Authorization
policies are typically written to grant specific privileges upon specific resources to a role with a
defined set of constraints. An authorization policy can define privileges, resources, subjects
(users, groups, and roles), constraints, and delegators. A delegation policy that delegates a
privilege assigns the privileges granted to one user (the delegator) on a resource to another user,
group, or role. See Figure 3-14 for an illustration of how authorization policies are represented in
the Administration Console.

Policy Managers Guide

Using the Administration Console to Write Policies

For instructions on how to write authorization policies, log into the Administration Console,
access the Console Help, find Policy > Authorization Policies in the left help pane, and click
Creating an Authorization Policy.

Role Mapping Policy Reports

You can use role mapping policy reports to create a role mapping policy inquiry and use it to
generate a report that you can use for analysis. You can define inquiries that include a policy
subject list (user and group), a role list, a resource list, and a delegator list. Role mapping policy
inquiries ask this question, What role is granted to a user or group scoped to a particular resource?

For example, let us say that you want to find out who can access a particular resource. You can
run a policy inquiry that includes a resource and an Effect type of GRANT. Such an inquiry
produces a complete list of the roles that will be granted to any subject during access to the
defined resource. To narrow the inquiry you can add roles, subjects (users and groups) and
delegators to the inquiry definition. See Figure 3-14 for an illustration of how role mapping
policy reports are represented in the Administration Console.

For instructions on how to create role mapping policy reports, log into the Administration
Console, access the Console Help, find Policy > Role Mapping Policy Reports in the left help
pane, and click Creating a Role Mapping Policy Report Inquiry.

Authorization Policy Reports

You can use authorization policy reports to create an authorization policy inquiry and use it to
generate a report that you can use for analysis. Authorization policy inquiries search for
privilege-based policies that match specified characteristics exactly. You can define inquiries that
include a policy subject list (user, group and role), a privilege list, a resource list, and a delegator
list. Authorization policy inquiries ask this question, Who can do what to what resource?

For example, let us say that you want to find out who with a privilege type of GRANT can access
a particular resource. You can run a policy inquiry that includes a resource and an Effect type of
GRANT. Such an inquiry produces a complete list of the users for any subject for any role on the
defined resource that has a GRANT privilege type. To narrow the inquiry you can add privileges,
subjects (users, groups, and roles) and delegators to the inquiry definition. See Figure 3-14 for an
illustration of how authorization policy reports are represented in the Administration Console.

For instructions on how to create authorization policy reports, log into the Administration
Console, access the Console Help, find Policy > Authorization Policy Reports in the left help
pane, and click Creating an Authorization Policy Report Inquiry.

Policy Managers Guide 3-21

Defining Declarations

A declaration is a variable that represents either a predefined value (for example, days of the
week) or a value that is dynamically defined at runtime (for example, the date). To help you
design efficient policies, various built-in declarations are provided for your use.

Figure 3-15 shows the expanded Declarations node in the Administration Console.

Figure 3-15 Expanded Declarations Node

B {22 Declarations
Constants
Enumerated Types
=y Attributes
Evaluation Functions

There are four types of declarations:

e Constants—A named, predefined, static value, or set of values that you can reference in a
policy for a value that does not change at runtime.

e Enumerated Types—A type that consists of a predefined list of ordered values from which
you create constants and attributes. The system comes with a number of predefined
enumerated types and you can define your own. For example, you could define the
enumerated type "color" with the values of "red", "green", or "blue".

e Attributes—Represents characteristics that define dynamic values, users, groups, resources
and configurations. An attribute has an associated type which may either be a built-in type
(such as string, integer, date) or an enumerated type. For more information, see “Dynamic
Attributes” on page 4-18.

e Evaluation Functions—A named function that you can use in a policy constraint to
perform more advanced operations. Each function may have a number of parameters and
returns a Boolean result. There are a number of built-in evaluation functions and you can
declare and use your own custom evaluation functions. Each custom evaluation function
must be registered as a plug-in with the authorization and role mapping engine (ARME)
that uses it. For more information, see “Evaluation Function Declarations” on page 4-22.

For instructions on how to create the different types of declarations, log into the Administration
Console, access the Console Help, find Declarations in the left help pane, and click the following
topics:

3-22 Policy Managers Guide

Using the Administration Console to Write Policies

Creating a Constant

Creating an Enumerated Type

Creating an Attribute

e Creating an Evaluation Function

Binding Policies

You can use the Administration Console to write and deploy a set of policies to protect
application resources. A policy set can include role mapping policies, authorization policies, and
delegation policies that, taken together, define who has access to which resources. You design
and write policies to satisfy the resource access control requirements of your business. Once
written, the policy set must be bound to the authorization and role mapping providers that are
configured for the SSM that you will use to protect your application resources.

To use the Administration Console to bind the policies to the authorization and role mapping
providers, perform the following steps:

1. Open the Security Configuration folder.

2. Open the Service Control Manager folder that contains the Security Service Module whose
providers you want to configure or change.

3. Open the Security Service Module folder that contains the providers you want to configure or
change.

Note: If you have not bound the Security Service Module, open the Unbound Configuration
folder that contains the providers you want to configure.

4. Open the Authorization folder, and click Authorization.
The Authorization page appears.

5. Click the Details tab, enter identity directory you defined when you define the user identities
and the application deployment parent (//app/resource) you defined the top-level
resource, and click Save.

Deploying Policies

Once you have designed your policies and configuration, you need to deploy them to the SSM so
that they can be used to protect your resources. You must distribute both policy and configuration
data before they can take effect. You can distribute policy data and configuration data together,

Policy Managers Guide 3-23

3-24

or you can distribute only configuration data as structural changes. After a configuration update,
you must restart the SSM for the new configuration to take effect.

Before you distribute policies, you choose the distribution point. The distribution point identifies
what portions of the policy updates are distributed.

After the distribution, you can view the results of the policy distribution by clicking on
Distribution Results and Deployment Status. Figure 3-16 shows the expanded Deployment node
in the Administration Console.

Figure 3-16 Expanded Deployment Node

= 53 Deployment
|2 Distribution Results
|Z| Deployment Status

For more information about deployment and instructions on how to distribute policy data and
configuration information, log into the Administration Console, access the Console Help, find
Deployments in the left help pane, and click the following topics:

e Distributing Policy
e Viewing Distribution Results

e Viewing Deployment Status

Policy Managers Guide

Advanced Topics

This topic describes more advanced aspects of writing role mapping and authorization policies.
The following topics are covered here:

e “Designing More Advanced Policies” on page 4-1

e “WebLogic Resource Type Conversions and Resource Trees” on page 4-28
e “Resource Paths and Policies for Common Resources” on page 4-31

e “Subject Mapping” on page 4-53

e “Resource Paths and Policies for Common Resources” on page 4-31

e “Policy Element Naming” on page 4-54

e “Sample Policy Files” on page 4-65

e “Using Response Attributes” on page 4-79

e “Using queryResources and grantedResources” on page 4-83

e “Resource Discovery” on page 4-84

Designing More Advanced Policies

All policies, simple or complex, follow the same standard syntax:

GRANT | DENY | DELEGATE (privilege|role, resource, subject, delegator) IF
constraint;

Policy Managers Guide 4-1

42

You can extend the policy syntax to encompass very complex situations by grouping policies and
adding constraints.

For more information, see the following topics:
e “Multiple Components” on page 4-2
e “Policy Constraints” on page 4-2
e “Declarations” on page 4-11

e “Policy Inheritance” on page 4-25

Multiple Components

You are not limited to one role, privilege, resource or subject per policy. You may specify sets
by enclosing them in brackets [] and separating the individual items with commas. For example:

GRANT(any, //app/policy/MyApp, [//user/ORG/USER21/, //user/ORG/USER22/]);

Policy Constraints

A constraint is a statement that limits when or under what circumstances permission is granted,
denied or delegated. All constraints start with the keyword 1F. Simple constraints usually contain
two values separated by an operator. The following example shows an authorization policy with
a simple constraint:

GRANT(//priv/any, //app/policy/MyApp, //sgrp/ORG/allusers/) IF

purchaseAmount < 2000;

In this policy, any user of the resource MyApp who is in the ORG directory is allowed to spend
any amount less than $2000.

Constraints are very useful because they allow your application to have different responses based
on dynamic application, data, business environment, or real-time conditions. For example, you
might use a constraint to grant a user access to a resource only during certain hours of the day.

When checking if a value is within an attribute, the constraint must be written as: <value> in
[attribute]. For example if checking to see that the requested resource name is in a list of
userentitlements, you would say:

sys_obj IN [userentitlements]

Policy Managers Guide

Designing More Advanced Policies

To limit the user in the previous example to having privileges only in December and January, you
would add the constraint:

IF month IN [december, january]

To limit the user to accessing the application from a computer with a particular static IP address,
you would add the constraint:

IF clientip = 207.168.100.1

Several types of attributes are provided that are automatically computed for you (see
“Declarations” on page 4-11).

Once a grant result is determined at runtime by the ASI Authorizer (also called the Authorization
and Role Mapping Engine (ARME)) for a particular resource, the rest of the applicable GRANT
policies, which may contain additional constraints, are ignored. Therefore, if your business logic
requires the evaluation of multiple constraints, you must combine them into a complex constraint
using an AND operator to achieve the desired result. For example, given the following two
policies:

GRANT(//priv/any, //app/policy/MyApp, //sgrp/ORG/allusers/) IF
purchaseAmount < 2000;

GRANT(//priv/any, //app/policy/MyApp, //sgrp/ORG/allusers/) IF month IN
[december, january];

The conditions under which al lusers would be granted access would be determined by which
policy the ASI Authorizer evaluates first. If the goal is to grant access only if both constraints are
true, you must combine these policies into one policy using the AND operator as follows:

GRANT(//priv/any, //app/policy/MyApp, //sgrp/ORG/allusers/) IF
purchaseAmount < 2000 AND month IN [december, january];

For more information on combining multiple constraints into one policy, see “Boolean
Operators” on page 4-8.

The following topics provide more information on constraints:
e “Comparison Operators” on page 4-4
e “Regular Expressions” on page 4-4
e “Constraint Sets” on page 4-6
e “String Comparisons” on page 4-7

e “Boolean Operators” on page 4-8

Policy Managers Guide 4-3

e “Associativity and Precedence” on page 4-9
e “Grouping with Parentheses” on page 4-9

e “Boolean Operators and Constraint Sets” on page 4-10

Comparison Operators
Constraints support the comparison operators listed in Table 4-1.

Table 4-1 Comparison Operators

Symbol Operation Applicable Types
= Equal to All

1= Not equal to All

> Greater than All except String
< Less than All except String
=> Greater than or equal to All except String
=< Less than or equal to All except String
LIKE Matches regular expression String
NOTLIKE Does not match regular expression String

IN Included in a list List of any type
NOTIN Not included in a list List of any type

Regular Expressions

There are two comparison operators, LIKE and NOTLIKE, that are used to perform regular
expression matching on attribute values or string literals. This is typically used for pattern
matching on resource names. For example, the following policy provides the GET access privilege
to all JPGs in a web application (//app/policy/MyWebApp).

GRANT(//priv/GET, //app/policy/MyWebApp, //role/webusers)

IF sys_obj LIKE "_*_JPG";

4-4 Policy Managers Guide

Designing More Advanced Policies

The regular expression syntax follows certain policies.

Any character that is not a special character matches itself. Special characters are:

+ * ? . L 1 n $
A backslash (\) followed by any special character matches the literal character. For example:
o\
matches "u" .

A period (.) matches any character. For example:
'.ush"
matches any string containing the set of characters, such as "Lush™ or "Mush".

A set of brackets ([]) indicates a one-character regular expression matching any of the characters
in the set. For example:

"[abc]"

matches either "a", "b", or "c".

A dash (-) indicates a range of characters. For example:
"[0-9]"

matches any single digit.

A caret () at the beginning of a set indicates that any character outside of the set matches. For
example:

"["~abc]"

matches any character other than "a", "b", or ""c" not including an empty string.

The following policies are used to build a multi-character regular expressions.

Parentheses (()) indicate that two regular expressions are combined into one. For example:
(ma)+

matches one or more instances of "mad's".

The OR character (|) indicates a choice of two regular expressions. For example:
bell(y]ies)

matches either "belly" or "bellies".

Policy Managers Guide 4-5

4-6

A single-character regular expression followed by an asterisk (*) matches zero or more
occurrences of the regular expression. For example:

"[0-91*"
matches any sequence of digits or an empty string.

A single-character regular expression followed by an plus sign (+) matches one or more
occurrences of the regular expression. For example:

"[0-9]+"
matches any sequence of digits but not an empty string.

A single-character regular expression followed by a question mark (?) matches either zero or one
occurrence of the regular expression. For example:

"[0-9]?"
matches any single digit or an empty string.

A concatenation of regular expression matches the corresponding concatenation of strings. For
example:

[A-Z][a-z]*
matches any word starting with a capital letter.

When you use a regular expression that contains backslashes, the constraint evaluator and the
regular expression operation both assume that any backslashes are used to escape the character
that follows. To specify a regular expression that exactly matches "a\a", create the regular
expression using four backslashes as follows:

LIKE "a\\\\a"

Likewise, with the period character "." you need to include two backslashes in the expression:

LIKE "\\."

Constraint Sets

There are two operators, IN and NOTIN, used to test the memberships of sets in your constraint.
A constraint set is a definition of a set of items, notated by one or more values separated by
commas, enclosed in square brackets, and prefaced with either the keyword IN or NOTIN. For
example, rather than writing:

IF NextMonth = january or

Policy Managers Guide

Designing More Advanced Policies

. NextMonth = february or
. NextMonth = march;
You can write:
IF NextMonth IN [January, february, march] ;

The keyword IN means in this set of values, and NOTIN means not in this set of values. Neither
keyword is case sensitive.

You can also specify a range of values in a set of constraints. For example, the statement:
IF age NOTIN[1..100]

says if the age value is not between 1 and 100 (inclusive), then the statement is true. The
keywords IN and NOTIN work well with attributes based on enumerated types and constant sets.

String Comparisons

You can test for specific text strings in your constraints by using the keywords LIKE and
NOTLIKE. For example, assume you have a user attribute called GroupID. This attribute contains
a string of data indicating information about the group the user belongs to:

GrouplID = "59NY20BREQ";

To check for and exclude users in the New York office, you can test the Group 1D attribute for NY
as follows:

(Grant policy) IF GroupID NOTLIKE "*NY*";

where * represents any number of characters. Similarly, if you want to ensure that the user was
in New York, you can add this constraint:

(Grant policy) IF GrouplID LIKE "*NY*";
Similar to v and NoTIN, LIKE and NOTLIKE are not case sensitive.

To compare a string to a policy element in the constraint, replace the first characters of the
element with a wildcard. Normally, the system does not evaluate a policy element as a string. For
example, to compare a user, enter the constraint using the following format:

IF user like “??user/acme/Joe/";

Policy Managers Guide 4-1

4-8

Boolean Operators

You can build complex policy constraints by using logical operators. Boolean operators allow
you to string multiple constraints together and to have the whole constraint return true only if
certain patterns of the component constraints are true. For instance, if the whole constraint is only
true if both component constraints are true.

If one of them is not true, then the whole constraint is not true, as the following example:

(whole constraint) is true IF (First constraint is true) AND (second
constraint is true)

Or in another example, where it is true if either component is true:

(whole constraint) is true IF (first constraint is true) OR (second
constraint is true)

Boolean operators are nothing more than a way to make these kinds of statements. You can write
a complex Boolean constraint like this:

IF userBudget < 2000 AND ThisMonth = December

This constraint is only true if userBudget is less than $2000 and the current month is December.
Table 4-2 lists the three Boolean operators allowed.

Table 4-2 Boolean Operators

Operator Description

AND Each component must be true.

OR At least one component must be true.
NOT The component cannot be true.

The third Boolean operator is NOT, which simply reverses the truth of a constraint. For example,
if you want to make sure it is not December, you can write:

IF NOT ThisMonth = December

The use of these Boolean operators can get as complex as you want. For example, you can have
the following constraint:

IF A AND B OR NOT C

Policy Managers Guide

Designing More Advanced Policies

In English, this means, If both A and B are true or if C is not true, then the constraint is true. With
a little thought, that is easy enough, but what about a complex constraint, such as:

IF A AND B OR C AND NOT D
Does it mean, if A and B are true or C is true and D is not true, grant the privilege, or does it

mean, if A and B or C is true and D is not true, grant the privilege, or does it mean something
else?

Associativity and Precedence

One way to decipher Boolean expressions is to understand keyword precedence, which is the
order in which keywords are evaluated, and associativity, which is the direction in which terms
are grouped. The order of precedence is:

1. NOT
2. AND
3. OR

AND and OR are left associative and NOT is right associative. That is, with AND and OR the system
always looks to the immediate left of the keyword for the first value and to the immediate right
for the second value. With NOT, the system only looks to the immediate right because NOT does
not compare two or more values; it affects only one value. If our earlier example is evaluated
using associativity and precedence, it means, If either both A and B are true or if C is true and D
is not, the constraint is true.

Grouping with Parentheses

Rather than remembering the policies about associativity and precedence, the easiest thing to do
is to use parentheses to logically group your AND, OR, and NOT statements.

In the previous example:

IF A AND B OR C AND NOT D

you can evaluate the statement by applying the policies of associativity and precedence or you
can logically group the statements in parentheses as follows:

IF (A AND B) OR (C AND NOT D)

This eliminates ambiguity from the statement. It becomes clear that there are two constraints: (A
AND B) and (C AND NOT D), and that one of those constraints must be true for the statement
to be true because the two statements have an OR between them.

Changing the location of the parentheses can change the meaning of the statement. For example:

Policy Managers Guide 4-9

IF (A AND B OR C) AND (NOT D)

changes the statement completely. Now there are two constraints: (A AND B OR C) and (NOT
D), in which both must be true for the statement to be true.

You may nest parentheses within parentheses to clarify or change the logic of the statement. For
example:

IF ((A AND B) OR C) AND (NOT D)

is the same statement as the previous example, but it is now even clearer. However, if the
parentheses are changed slightly, as in:

IF (A AND (B OR C)) AND (NOT D)
the meaning completely changes.

To understand complex grouped statements with parentheses, follow these policies:
e Evaluate the statements within parentheses first.
o |f there are nested parentheses, evaluate the inner ones first.
e Once the statements in parentheses are evaluated, evaluate the other statements.

o If necessary, use associativity and precedence on the simplified statements.

Boolean Operators and Constraint Sets

Rather than building long OR or AND statements, you can define sets of constraints for your
policies. A constraint set defines a set of items. For example, rather than writing:

IT ThisMonth = january OR ThisMonth = february

OR ThisMonth = march

you can write:

IF ThisMonth IN [January, february, march]

The keyword IN means in this set of values, and NOTIN means not in this set of values.

You can also specify a range of values in a set of constraints. For example, the following
statement:

IF age NOTIN[1..100]

says if the age value is not between 1 and 100 (inclusive), then the statement is true.

4-10 Policy Managers Guide

Designing More Advanced Policies

The keywords IN and NOTIN work well with attributes based on enumerated types and with
constant sets.

You may be wondering about the value of constraint sets when the constraint statement is nearly
as long as the chain of ORs that you would instead have to write. Besides the ability to specify
ranges of values, the real benefit to constraint sets is that you can predefine them as constants
(“Constant Declarations” on page 4-12). Using the previous example:

IF ThisMonth in [january, february, march]
using a predefined a constant list called FirstQuarter, you can write:
IF ThisMonth in FirstQuarter

rather than the longer bracketed statement.

Declarations

Declarations allow you to add new keywords to the policy language. These keywords can
represent new data types, constants, attributes, or evaluation functions. Declaration names must
start with a letter or an underscore. There are four types of declarations:

e Constants—States one definition for a value that is used over and over.
e Enumerated Types—Defines the structure of the other declarations.

e Attributes—Contains data and must have a declared type. There are several types of
attributes, including identity attributes (user and group attributes), resource attributes, and
built-in system attributes.

e Evaluation Functions—Returns a true or false value from a plug-in.

For programmers, type declarations are enumerated types. Type declarations declare the
composition of the enumerated type and define an ordered list of acceptable values. Attributes
and evaluation functions declare an instance (variable) of a built-in or enumerated type.
Attributes are based on predefined or user-defined types, and evaluation functions are based on
Boolean types.

For more information on declarations, see the following topics:
e “Constant Declarations” on page 4-12
e “Enumerated Type Declarations” on page 4-14

e “Attribute Declarations” on page 4-15

Policy Managers Guide 41

4-12

e “Evaluation Function Declarations” on page 4-22

Constant Declarations

A constant is a named value or set of values that does not change at runtime. For instance, if you
set a constant named Rate to 12, policies can then refer to the constant Rate rather than using its
literal value, 12. You use constants to:

e make policies more readable

e make policy-wide value changes easier

Constants are especially useful if the value changes periodically and you use the constant in more
than one location. For example, if you enter a rate value 12 into multiple policies, you need to
individually change each one. Instead, if you use the constant Rate, you can edit the value once
and have it take effect in every policy that refers to it.

Simple Constant
Here are some examples of simple constant declarations:
CONST Insurance = "home";

CONST InterestRate= 12;

Constants can contain other constants in their value:
CONST ClosurePoints = 2;

Or even enumerated types:
CONST FavoriteVehicle = Motorcycle;
If you enclose Motorcycle in quotation marks, this constant would contain a string without any

special meaning. If you use Motorcycle without quotation marks, it is recognized as the special
value Motorcycle Of type Vehicles.

Constants List
A constant can also contain a list of more than one value. For example, you may define a constant
called MyColors with the values red, green, blue, white and black.

Constant lists differ from enumerated type lists. Types are used to restrict the values an attribute
may contain. For example, an integer may only contain numerals and a constant list is simply a
declared list or range of values with no implied order. A constant list always has an underlying

Policy Managers Guide

Designing More Advanced Policies

type. In the previous example, the underlying type is a string. You can also create lists of any
other type.

The rules for defining constant lists are as follows:
e Ensure all the constants in a list represent the same data type, including enumerated types.

Use commas to separate the items in the list.

Use square brackets [] to enclose the whole list.

Enclose strings in the list with quotation marks.

o If values in a list are a range, indicate the range with two dots. For example, [1..100]. A list
of one item is still a valid list, as long as you enclose it in brackets.

Here are some examples of constant lists:

CONST MyPets = ["Dogs', "Cats"™, "Birds"];

CONST CurrentAge = [1..120];

CONST WorkWeek = [monday..friday];

CONST Transportation = [Motorcycle];

You can even place another constant list within a constant list, like this:
CONST FamilyPets = ["Ferrets', '"Birds', MyPets];

One benefit of a constant list is that it saves you from having to write multiple policies or
string-together constraints to test if a value belongs in a group. Without constant lists, you would
need to compare your value to each independent constant, rather than perform one quick test to
see if the value belongs in the list. For example, given the constant list:

CONST Manager = ["Bert", "Marty", "Sandy'];

If you want to find out if your string attribute called active contains a value that is in the
Manager list, you could write constraints to test for these three possibilities:

IF Active = "Bert”
OR Active = "Marty"
OR Active = "Sandy"
or you could simply write:

IF Active IN Managers

Policy Managers Guide 4-13

As mentioned before, there is no implied order to the Manager list. So, even if Bert is clearly a
more privileged Manager than sandy, the following test is invalid.

IT "Bert" > "Sandy"

For the test to work, you need to create an enumerated type containing the names of the three
managers.

Enumerated Type Declarations

An enumerated type defines a class or group of values from which you can create constants and
attributes. It is a template for constants and attributes. For example, an attribute of the type integer
(a predefined, built-in type) may only have integer values. Many attributes can use the same type
declaration, but each attribute is limited to one type, and this type cannot change without deleting
and recreating the attribute. For example, you could have dozens of integer attribute variables,
but each one is based on the same integer type declaration. Think of an enumerated type
declaration as a cookie cutter and attributes as the cookies.

Pre-Defined, Built-In Enumerated Types

The following types are pre-defined and built into the product and are available for you to use.
They cannot be modified.

e date — A type that limits the data to the format MM/DD/YYYY and allows you to compare
date values and date ranges within constraints.

e integer — A type that contains a whole number with no decimal places that may be
negative, positive, or zero. You can use integers in comparisons and ranges.

e ip— A type that limits the data to the format allowed for IP (Internet Protocol) addresses:
XXX XXX XXX XXX, Where xxx is any numeral between 0 and 255, inclusive. You can
compare IP addresses, but when defining ranges of IP values, the host number, which is
represented by the last three digits, is allowed to vary.

e string — A type that contains an alphanumeric text value. Strings do not allow
comparison or range operations because they are not ordered. However, you can use
wildcard comparisons using LIKE and NOTLIKE operations.

e time — A type that limits data to the format HH:MM:SS and allows you to compare time
values and time ranges within constraints.

Note: Different types of declarations cannot have the same names as they share the same
namespace. For example, you cannot have a constant and an attribute both named

4-14 Policy Managers Guide

Designing More Advanced Policies

account_number. In addition, the values of enumerated types share this namespace. So,
continuing with our example, you could not create constants or attributes with the values
Crows, Ducks, or Geese (or Birds).

User-Defined Types

You can also create custom types. For example, you might create a type called Insurance that
contains the values Truck, Car and Motorcycle. You would declare it like this:

enum_Insurance = (Truck,Car,Motorcycle)

Once you declare a type, you must declare an attribute to use the type in your policy. You can
declare an attribute based on your new type like this:

cred Transportation : Insurance;

Once declared, you must give the attribute a value, like this:

Transportation = Motorcycle;

As mentioned earlier, you can compare the value based on your type by testing if the value is
greater to or less than a value in the list. For example, to make your list order represent the relative
level of insurance of a vehicle, you might use this constraint to see if your Transportation
attribute is greater than a car enumeration:

IF Transportation > Car

If Transportation iSaMotorcycle, given the order of the list defined earlier, this would return
TRUE and your constraint allows implementation of the policy.

Attribute Declarations

An attribute is a variable that you can use in policies. Attributes store values that are predefined
or dynamically defined at runtime.

Declaring an attribute allows you to associate an instance of that attribute with an identity or a
resource. For example, you can declare a identity attribute named "emai 1" of type "string", and
then associate email addresses to users.

Attributes make policies more legible by replacing certain constraint values with logical names.
You can use attributes to put values in constraints that depend on conditions unknown when you
write the policy, such as timeofday. Attributes contain values for your input data that your
policies can manipulate. That is, they can serve as variables, for example, account_balance
could be used as an attribute.

There are several ways to use attributes:

Policy Managers Guide 4-15

4-16

e Resource Attribute—Provides a value defined and associated with a resource.
o ldentity Attribute—Provides a value defined and associated with a user or group.

e Dynamic Attribute—Provides a value computed or retrieved when the policy is evaluated.

— System Attribute — A dynamic attribute that is computed automatically by the
Authorization Provider and available for use in your policy. These attributes usually
begin with the prefix sys_.

— Time and Date Attributes — System attributes that provide time and date information.

Attributes are specific instances of a declared type. For example, an attribute of the type integer
can only contain an integer value. Attributes can represent any type, whether provided as part of
the product or defined by you. Here are some examples of attribute declarations:

cred month : month_type;
cred timeofday : time;
cred pencils_swiped : integer;

For a description of the different types of attributes, see the following topics:

“Resource Attributes” on page 4-16

e “ldentity Attributes” on page 4-17

e “Static Attributes” on page 4-18

e “Dynamic Attributes” on page 4-18

e “Time and Date Attributes” on page 4-19
e “Request Attributes” on page 4-20

Resource Attributes

Resource attributes store information about the entity to which they belong. For example, the
Banking application might have an attribute called Version that contains the current version
number for the application, denoted as a string.

Resource attributes behave differently from identity attributes. While they do inherit attributes

and their values, they do not merge any values of redundant attributes. If the same attribute exists
in more than one place in a tree, the resource first attempts to take the attribute from itself. Failing
that, the resource takes the value of the attribute from the first resource above it on the tree that

Policy Managers Guide

Designing More Advanced Policies

contains the attribute. The attributes of the same name on still higher nodes are ignored; once an
instance of the attribute is found, the search ends.

For example, assume that you have an application resource called Banking that contains a variety
of banking features. Deposit is a resource of the ATMCard application, which in turn is an
application node below the Banking organization node. If both the ATMCard resource and the
Banking application have the Version attribute defined with a value (and Deposit does not),
Deposit inherits the value of the Version attribute from ATMCard. The Banking Version
attribute is ignored.

Identity Attributes

User attributes store information about an individual user. For instance, you could have an
attribute called AgeRange that stores a range of dates. Attributes are associated with a directory
through a directory schema. The schema states that all users of a given directory have a given set
of available attributes. Additionally the schema determines if the attribute value is a list.

You can also assign attributes to groups (although groups may only contain list attributes). Thus,
users can inherit the attributes of all groups to which they belong. However, a user can still have
a unique value for an inherited attribute. If you do not assign the user attribute a value, then the
user inherits the value of the attribute from the group. This is how group attributes provide default
attribute values for users who are members of those groups. If a user has the same attribute as a
group, but a different value is assigned to the user attribute, the value of the user attribute always
takes precedence of the value of the group attribute.

Even an empty string, " ", is considered a value for purposes of this rule. Therefore, if you do not
assign a value, the user attribute does not take precedence over a group attribute of the same
name. However, if you placed an empty string in the user attribute, it does take precedence.

Group attributes behave very differently from user attributes. Group attribute values are

cumulative — if the same attribute exists in more than one place in the inheritance path of a user,
the values of the attributes are merged and passed on to the user. For example, assume you have
a user called Bob, and Bob is a member of the Manager group, which in turn is a member of the
Employee group. If both Manager and Employee both have an attribute called WorkPlace with
the values primary and secondary respectively, Bob would inherit a WorkP lace attribute with

Policy Managers Guide 4-11

4-18

the value primary and secondary (a list attribute). In fact, to support this merging of attribute
values, all group attributes must be list attributes. If the attribute merging finds the same value
more than once, it eliminates the redundancy from the final list value.

Static Attributes

Many attributes are specific instances of a declaration type. These attributes are often user
(identity) attributes. For example, if you had a type called ColorType, you might have the static
credentials HairCollor and EyeColor, which are both of type ColorType. You can attach these
static attributes to a user. Table 4-3 lists some examples of user attributes.

Table 4-3 User Attributes

Instance Type
MonthBorn month_type
ArrivalTime time
Pencils_needed integer

As previously discussed, there are several attribute types. Attributes differ from constants in that
their value may change, but not the name and value type. Depending on the user making the
request, a different value can be calculated for the attribute. In contrast, constants have a static
value, as well as a static name and type. The declaration for a user attribute is attached to one or
more directories. Because of this, all users in the same directory have the same user attribute
names but not necessarily the same values for those attributes. Attributes can be applied to users,
groups, and resources; however, each one behaves a bit differently.

Dynamic Attributes

A dynamic attribute is an attribute with a value that may change at policy evaluation time.
Dynamic attributes have their value set by the provider, your application, or through a plug-in
function. These attributes can have any type of value.

Additionally, plug-ins can be registered to compute the value of dynamic attributes. These
plug-ins can retrieve the values of other attributes and use them to compute the attribute value
needed.

Policy Managers Guide

Time and Date Attributes

Numerous time and date system attributes are pre-defined and built in. Most system attributes
allow you to use comparison and range operators. Table 4-4 lists the built-in time and date
attributes provided for you to use.

Table 4-4 Built-In Time and Date System Attributes

Designing More Advanced Policies

Attribute Value Range or Format
time24 integer 0-2359
time24gmt’ integer 0-2359
dayofweek Dayofweek_type Sunday-Saturday
dayofweekgmt Dayofweek_type Sunday-Saturday
dayofmonth integer 1-31
dayofmonthgmt integer 1-31

dayofyear integer 1-366
dayofyeargmt integer 1-366
daysinmonth integer 28-31
daysinyear integer 365-366

minute integer 0-59

minutegmt integer 0-59

month month_type January-December
monthgmt month_type January—-December
year integer 0-9999

yeargmt integer 0-9999
timeofday time HH:MM:SS
timeofdaygmt time HH:MM:SS

hour integer 0-23

Policy Managers Guide 4-19

Table 4-4 Built-In Time and Date System Attributes (Continued)

Attribute Value Range or Format
hourgmt integer 0-23
currentdate Date MM/DD/ZYYYY
currentdategmt Date MM/DD/YYYY

1. gmt is an abbreviation for Greenwich Mean Time

Request Attributes

There is a set of system attributes that contain details of the request. Table 4-5 describes these
attributes and provides and example of each one.

Table 4-5 Built-In Request System Attributes

Attribute Value Range or Format
sys_defined Evaluation Returns true if all arguments passed to it are defined
function attributes (either single valued or list). Using an

undefined attribute in a policy causes a runtime error.
This can occur when the value of the attribute is
determined from the application code, either through the
context handler or the resource object. If there is a chance
that the attribute does not have a value, then use the
sys_defined evaluation function to ensure that a
value exists before it is used. For example

grant(..) if sys_defined(foo) and foo =
“bar”’;

sys_external_attributes list of strings

A resource attribute set through the Administration
Console on an application resource to indicate what
attributes are needed for dynamic evaluation. This
contains a list of attribute names.

sys_rule_subj_q string Qualified subject user or group name in the currently
evaluated policy: //user/ales/systen/

sys_rule_subj string Unqualified subject user or group name in the currently
evaluated policy: system

Servername string Name of the server, where ALES process is running.

4-20 Policy Managers Guide

Designing More Advanced Policies

Table 4-5 Built-In Request System Attributes (Continued)

Attribute Value Range or Format

sys_rule_obj_q string Qualified resource name for the currently evaluated
policy: //app/policy/foo

sys_rule_obj string Ungqualified resource name for the currently evaluated
policy: foo

sys_rule_priv_q string Qualified current policy privilege: //priv/write

sys_rule_priv string Unqualified current policy privilege: write

sys_subjectgroups_q list of string List of groups to which the current user belongs:

["//sgrp/ales/admin/.”
"//sgrp/ales/managers/"]

sys_subjectgroups

list of strings

List of unqualified group names to which user belongs:

["admin”, "managers"]

sys_dir_q string Directory of the user: //dir/ales
sys_dir string Directory of the user, unqualified form: ales
sys_user_g string Current user: //user/ales/system/
Sys_user string Current user: unqualified form: system

sys_obj_type

enumeration

Set through the Administration Console on the resource.
Valid values include:

« Organizational node (orgnode)

e Application node (appnode)

e Binding node (bndnode)

« Application Binding node (bndappnode)
« Resource node (resnode)

sys_obj_distribution_po
int

Boolean
enumeration

{yes, no}

Distribution point set through the Administration Console
on the resource. Setting this to yes, displays the resource
on the distribution page as a potential point of
distribution.

Policy Managers Guide 4

Table 4-5 Built-In Request System Attributes (Continued)

Attribute Value Range or Format

sys_suppress_rule_excep Boolean Set through the Administration Console to indicate

tions enumeration whether to continue evaluation if a policy with missing

{yes, no} data is encountered.

sys_app_q string Name of the binding resource for the resource on which
query is performed: //app/policy/ALES/admin

sys_app string Ungqualified name of the binding resource for the resource
on which the query is performed: admin

sys_obj_q string Resource on which the query is performed:
//app/policy/foo/bar

sys_obj string Resource on which the query is performed: bar

sys_priv_q string Effect of the current policy: //priv/foo

sys_priv string Unqualified form of the effect of the current policy: foo

sys_privilege string Ungqualified name of the action on which the resource is

being queried.
The following two policies are equivalent:

grant(//priv/READ,
//app/policy/library, //role/Reader);
grant(any, //app/policy/library,
//role/Reader) if sys privilege="READ";

The attribute can also be used in a role-mapping policy.
For example, the following policy assigns the role
Reader to all users if the requested action is READ:

grant(//role/Reader,
//app/policy/library,
//sgrp/asi/allusers/) if
sys_privilege="READ";

sys_direction

enumeration

Defines the direction of authorization: once, post or prior.

Evaluation Function Declarations

An evaluation function is a declaration that returns one of two values: true or false. These
values come from a predefined function and are included by using a plug-in extension that a

4-22 Policy Managers Guide

Designing More Advanced Policies

programmer creates specifically for your application. Additionally, you can use any of the
built-in evaluation functions available in all applications.

For instance, your programmer might create a plug-in for your accounting application that
includes an evaluation function called Overdrawn that contains the results of a calculation of
whether the account was overdrawn for that month. A constraint for a deny policy might use that
function like this:

[Deny user access to something] IF Overdrawn();

Like functions and procedures in programming, evaluation functions can take zero or more
parameter values, which are passed to the plug-in. For example, if you wanted to provide the
overdrawn amount, you might use it like this:

[Deny user access to something] IF Overdrawn(500);

Evaluation functions can dynamically take different numbers or types of parameter values each
time they are referenced in a policy. It is up to the programmer writing the evaluation function
code to correctly handle the parameters.

Authorization Caching Expiration Functions

Authorization caching allows the system to cache the result of an authorization call and use that
result if future identical calls are made. The cache is smart and automatically invalidates itself if
there is a policy change or other client side change that would affect the authorization results.
However, the cache is not smart enough to know when authorization decisions depend on
dynamic data. Dynamic data includes date and time values, as well as evaluation plug-ins that
reference external sources. If you are using authorization caching you need to set expiration times
on policies that reference dynamic data. For additional information on caching, see Authorization
Caching, in Integrating ALES with Application Environments.

Note: By default, authorization caching is turned on.

Table 4-6 lists the expiration functions for the authorization cache that let you set an expiration
time for the authorization decision. This way you can instruct the cache to only hold the value for
a given period of time, based on Greenwich Mean Time (GMT), or not to hold it at all.

Tahle 4-6 Expiration Functions for Authorization Cache

Function Argument Type Description
valid_for_mseconds integer Valid for a given number of milliseconds.
valid_for_seconds integer Valid for a given number of seconds.

Policy Managers Guide 4-23

http://e-docs.bea.com/ales/docs26/integrateappenviron/performance.html
http://e-docs.bea.com/ales/docs26/integrateappenviron/performance.html

Tahle 4-6 Expiration Functions for Authorization Cache (Continued)

Function Argument Type Description

valid_for_minutes integer Valid for a given number of minutes.
valid_for_hours integer Valid for a given number of hours.
valid_until_timeofday time Valid until the specified time on the date the

evaluation is performed.

valid_until_time24 integer Valid until the specified time on the date the
evaluation is performed.

valid_until_hour integer Valid until the specified hour on the date the
evaluation is performed.

valid_until_minute integer Valid until the specified minute of the hour the
evaluation is performed.

valid_until_date Date Valid until the specified date.
valid_until_year integer Valid until the specified year.
valid_until_month month_type Valid until the specified month of the year the

evaluation is performed.

valid_until_dayofyear integer Valid until the specified day of the year the
evaluation is performed

valid_until_dayofmonth integer Valid until the specified day of the month the
evaluation is performed.

valid_until_dayofweek Dayofweek_type valid until the specified day of the week the
evaluation is performed.

valid_until_timeofday gmt time Valid until the specified time on the date the
evaluation is performed in GMT time.

valid_until_time24_gmt integer Valid until the specified time on the date the
evaluation is performed in GMT time.

valid_until_hour_gmt integer Valid until the specified minute of the hour the
evaluation is performed in GMT time.

valid_until_minute_gmt integer Valid until the specified minute of the hour the
evaluation is performed in GMT time.

4-24 Policy Managers Guide

Designing More Advanced Policies

Tahle 4-6 Expiration Functions for Authorization Cache (Continued)

Function Argument Type Description

valid_until_date gmt Date Valid until the specified date in GMT time.
valid_until_year_gmt integer Valid until the specified year in GMT time.
valid_until_month_gmt month_type Valid until the specified month of the year the

evaluation is performed in GMT time.

valid_until_dayofyear_gmt integer Valid until the specified day of the year the
evaluation is performed in GMT time.

valid_until_dayofmonth_gmt integer Valid until the specified day of the month the
evaluation is performed in GMT time.

valid_until_dayofweek_gmt Dayofweek_type Valid until the specified day of the week the
evaluation is performed in GMT time.

For example, suppose you have the following authorization policy:

GRANT(//priv/order,//app/restaurant/breakfast,//group/customers/allusers)
if hour < 11;

With authorization caching enabled (it is enabled by default), the results of this grant decision is
cached until the next policy distribution.

On the other hand, if you call the valid_until_hour() expiration function in the authorization
policy as follows:

GRANT(//priv/order,//app/restaurant/breakfast,//group/customers/allusers) if
hour < 11 and valid_until_hour(11);

with authorization caching, the result of this policy is cached until 11:00 AM, at which time it
expires. Therefore, with authorization caching enabled, it is important to update your time
dependent policies appropriately.

Policy Inheritance

Using policy inheritance can reduce the number of policies that have to written to protect a set of
resources. The following topics describe how inheritance works:

e “Group Inheritance” on page 4-26

Policy Managers Guide 4-25

4-26

e “Direct and Indirect Group Membership” on page 4-26
e “Restricting Policy Inheritance” on page 4-27

e “Resource Attribute Inheritance” on page 4-27

Group Inheritance

Users or groups inherit the right (privilege or role) of any group to which they belong, either
directly or through their parents. Group inheritance allows each user in the group to assume all
the group rights to which they are members, either directly or indirectly through their parent
groups (or the groups of their parents). Both users and groups can have parent groups but only
groups can have children. Group inheritance is very powerful as it allows you to define
entitlements once and have the policy apply to all members.

Note: BEA recommends that you define your role mapping policies using groups, rather than
individual users. Role mapping policies written using users should be used for exceptions
and to handle unusual or infrequent situations.

It is important to note that parent groups usually have fewer rights than their children. As you
move from the bottom of the resource tree to the top, the groups inherit the rights of their
ancestors and are directly granted.

Direct and Indirect Group Membership

The immediate members of a group are called direct members. Direct members appear
immediately below their parent on the inheritance tree. A member that has an inherited
membership is called indirect member. The collection of all groups available, either directly or
through inheritance, is referred to as group closure.

Group inheritance behavior is affected by how group membership searching is configured in your
security providers. Two attributes control group membership searching:

e GroupMembershipSearching—Specifies whether group membership searching traverses all
the group’s children or a limited number of levels of child groups.

o MaxGroupMembershipSearchLevel—If GroupMembershipSearching is set to limited,
specifies the number of levels of child groups to search. A value of 0 indicates only direct
group memberships will be found. A positive number indicates the number of levels to go
down.

If you set GroupMembershipSearching to unlimited, all indirect members will be considered
when a policy is evaluated. If you set GroupMembershipSearching to limited, only indirect

Policy Managers Guide

Designing More Advanced Policies

members within the number of levels of inheritance specified by
MaxGroupMembershipSearchLevel will be considered.

Restricting Policy Inheritance
Policies are inherited in a number of ways:

e Policies written on a resource apply to the descendants of that resource.
e Policies written on a group apply to all members of that group.
e Policies written on a role apply to everyone who has been granted that role.

e Policies written on the any privilege apply to all privileges.

You can restrict policy inheritance by limiting its applicability. For example, you can limit the
applicability of a GRANT role mapping policy by adding a constraint. The following policy
illustrates this:

GRANT(//role/admin, //app/policy/www.myserver.com/protected,
//sgrp/acme/manager/) IF sys obj q =
//app/policy/www.myserver.com/protected;

where: sys_obj_q is a system attribute on which the query is performed.

The sys_obj_q constraint keeps this policy from being applicable to the descendants of the
protected resource, thus blocking policy inheritance.

Resource Attribute Inheritance

Like users and groups, descendant resources also inherit the attributes of any parent resource.
Resource inheritance allows each child resource in the tree to assume all of the attributes of the
parent resource. Resource attribute inheritance is also very powerful as it allows you to define
attributes on the parent resource, and have the attributes be inherited to all child resources
automatically.

Note: BEA recommends that you define your attributes on parents, rather than individual child
resources. When an attribute is explicitly defined for a child, the attribute overrides any
inherited value. Policies written directly for child resources should be used for exceptions
or short-lived policies so as to handle unusual circumstances.

Policy Managers Guide 4-217

WebLogic Resource Type Conversions and Resource
Trees

4-28

This section describes how ALES converts the different resource types supported by WebLogic
Server, WebL ogic Portal, AquaLogic Data Services Platform, and AqualLogic Service Bus and
how they are represented in a resource tree in the Administration Console.

Table 4-7 lists the resource types supported for WebLogic Server, WebLogic Portal, AqualLogic
Data Services Platform, and AqualLogic Service Bus.

Table 4-7 Supported Resource Types

Target System Supported Resource Types

WebLogic Server <adm>, <app>, <com>, <eis>, <ejb>, <jdbc>,
<jms>, <jndi>, <ld>, <svr>, <url>, <web>,
<webservices>

WebLogic Portal All WebLogic Server resources plus <wlp>.

Aqualogic Data Services All WebLogic Server resources plus <ld>.
Platform

Aqualogic Service Bus All WebLogic Server resources plus
<wlsb-proxy-service> and
<alsb-proxy-service>.

Understanding Resource Nodes

An authorization policy involves a resource, action, subject and attributes. Every resource is
represented as a node within a tree, and the node is referenced using a path-like expression. The
nodes are delimited by the */* character and can include the following hierarchy of nodes:

1. root node
application deployment parent node
application node

resource type node

o & w0 b

resource parent node

Policy Managers Guide

WebLogic Resource Type Conversions and Resource Trees

6. resource node

Root Node

The root node of resources in ALES is a node named //app/policy.

Application Deployment Parent Node

Typically a node called an application deployment parent follows the root node. Using multiple
application deployment parent nodes helps to organize resources according to their physical,
organizational or logical structure. The application deployment parent can be set in the
Administration Console under the authorization provider.

Application Node

The application deployment parent is followed by the application node that corresponds to an
application a resource is associated with. Not every resource belongs to a particular application
(for example, a JDBC resource); in that case, the keyword shared substitutes for the name of the
application.

Resource Type Node

The next level in the resource path is the resource type node. The name of this node corresponds
to a resource type being addressed, for example, jms, ejb, jndi, etc.

Resource Parent Node

The resource type node is followed by the resource parent node. The resource parent node helps
to organize resources within an application and its value depends on the type of the resource.

Resource Node

The final element in a resource description is the name of the resource itself, which follows the
resource parent node.

Thus, to address any resource in the resource tree, it is necessary to know the following resource
path elements:

e application deployment parent
e application name

e resource type

Policy Managers Guide 4-29

e resource parent

e [esource name

The application deployment parent depends only on the configuration of the authorization
provider; the remaining four elements vary from one resource type to another.

Table 4-8 gives an example of how the different resource type can be represented in the
Administration Console resource tree.

Table 4-8 Examples of Mapping Resource Types to Resource Nodes

Resource Type Sample Resource Tree Conversions

<adm> //app/policy/ALES/shared/adm
//app/policy/ALES/shared/adm/Configuration
//app/policy/ALES/shared/adm/FileDownload
//app/policy/ALES/shared/adm/FileUpload
//app/policy/ALES/shared/adm/ViewlLog

<app> //app/policy/essdemo/myapplication/app
//app/policy/essdemo/anotherapplication/app

<com> //app/policy/essdemo/comapplication/com/classpackage/cla
ssname

<eis> //app/policy/essdemo/shared/eis

<ejb> //app/policy/essdemo/ess/ejb/netuix.jar
//app/policy/essdemo/ess/ejb/netuix. jar/PortalCustomizati
onManager

<jdbc> //app/policy/essdemo/shared/jdbc/ConnectionPool

//app/policy/essdemo/shared/jdbc/ConnectionPool/MyPool-DB

<jms> //app/policy/essdemo/shared/jms/queue
//app/policy/essdemo/shared/jms/queue/jms

<jndi> //app/policy/essdemo/shared/jndi/jms
//app/policy/essdemo/shared/jndi/weblogic
//app/policy/essdemo/shared/jndi/weblogic/jms
//app/policy/essdemo/shared/jndi/weblogic/jms/MessageDriv
enBeanConnectionFactory
//app/policy/essdemo/shared/jndi/weblogic/jms/S:MedRecSer
ver
//app/policy/essdemo/shared/jndi/weblogic/management
//app/policy/essdemo/shared/jndi/weblogic/management/home
//app/policy/essdemo/shared/jndi/weblogic/management/home
/localhome

4-30 Policy Managers Guide

Resource Paths and Policies for Common Resources

Tahle 4-8 Examples of Mapping Resource Types to Resource Nodes

Resource Type

Sample Resource Tree Conversions

<svr>

//app/policy/essdemo/shared/svr

<url>

[lapp/policy/essdemo/ess/url/demolaunch
[lapp/policy/essdemo/ess/url/demolaunch/launch.portal
Ilapp/policy/essdemo/ess/url/demolaunch/framework
[lapp/policy/essdemo/ess/url/demolaunch/framework/skins
[lapp/policy/essdemo/ess/url/demolaunch/resources
[lapp/policy/essdemo/ess/url/demolaunch/resources/images

<webservices>

[lapp/policy/essdemo/shared/webservices

[lapp/policy/essdemo/ess/wlp/essWeb/com_bea_p13n

<wlp>
Ilapp/policy/essdemo/ess/wip/essWeb/com_bea_pl3n/Page
Ilapp/policy/essdemo/ess/wlp/essWeb/com_bea_p13n/Desktop
[lapp/policy/essdemo/ess/wlp/essWeb/com_bea_p13n/Book
[lapp/policy/essdemo/ess/wip/essWeb/com_bea_p13n/Portlet
<ld> [lapp/policy/essdemo/shared/Id

lapp/policy/myrealm/RTLApp/ld/DataServices/RTLServices/CustomerV
iew.dssCUSTOMER/ORDERS/ORDER_SUMMARY/OrderDate

Resource Paths and Policies for Common Resources

This section describes the values of resource path elements for most popular resource types. For
each resource type, we describe how to specify the resource path and privileges, list dynamic
resource attributes are available, and give examples of policies for that resource type. In the
examples in this section, we assume that the application deployment parent node is
//app/policy/AppParentNode.

e “EJB Resources” on page 4-32

e “JNDI Resources” on page 4-34

e “URL Resources” on page 4-36

e “JDBC Resources” on page 4-41

e “JMS Resources” on page 4-44

Policy Managers Guide 4-31

e “Web Services Resources” on page 4-47
e “Server Resources” on page 4-51

e “Subject Mapping” on page 4-53

EJB Resources

Table 4-9 shows the mapping of the resource path elements for an EJB resource.

Table 4-9 EJB Resource Path Elements

Element Name Value

application name Same as the EJB application name

resource type ejb
resource parent Same as the EJB module name
resource name EJB_NAME/METHOD_NAME, where:

¢« EJB_NAME is the name of the EJB
¢ METHOD_NAME is the invoked method name

EJB Resource Path Example

For the purposes of this example, suppose you have an EJB application named
MyEjbApplication and a module named MyManagers, configured by the following EJB
application declaration:

<Application Name="MyEjbApplication”™ Path="_./applications”
StagingMode=""nostage'" TwoPhase="true">
<EJBComponent Name=""MyManagers' Targets="myserver" URI=""managers.jar"/>
</Application>

Listing 4-1 shows how an EJB named AccountService could be defined in the standard EJB
ejb-jar.xml deployment descriptor:

Listing 4-1 EJB Configuration

<enterprise-beans>
<!-- Session Beans -->

4-32 Policy Managers Guide

Resource Paths and Policies for Common Resources

<session>
<display-name>AccountService</display-name>
<ejb-name>AccountService</ejb-name>
<home>com.bea.security.examples.ejb.AccountServiceHome</home>
<remote>com.bea.security.examples.ejb.AccountService</remote>
<ejb-class>ejb.AccountServiceSession</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Bean</transaction-type>

</session>

</enterprise-beans>

In the case of a getBalance method call on the AccountService stateless session bean defined
by the configuration in this example, the fully qualified resource path would be:

//app/policy/AppParentNode/MyEjbApplication/ejb/MyManagers/AccountService/
getBalance

EJB Resource Privilege Mappings

ALES version 2.6 changes the way the EJB Resource converter works. As of this release, the
EJB method becomes a part of the resource URL, instead of being the privilege. The privilege
now is always equal to execute.

Consider the example of AccountEJB with method transferMoney. Priorto ALES version 2.6,
the resource would be $some_prefix/AccountEJB and the privilege would be
transferMoney. As of this release, the resource is
$some_prefix/AccountEJB/transferMoney and the privilege is execute.

In releases prior to ALES 2.6, the privilege required to access an EJB resource was the method
name called on the EJB. For example, assume that the AccountService bean has a business
method called getBalance(). To be able to call the getBalance() method, the user must be
granted the getBalance privilege. In order for the user to be able to instantiate the remote
interface by calling the create() method on the EJB home interface, the user must be granted
the create privilege.

EJB Resource Dynamic Resource Attributes

The following attributes are supported by EJB resources and can be used as a part of an
authorization policy:

application
The name of the application

Policy Managers Guide 4-33

module
The name of the module

ejb
the name of the EJB

method
the name of the method

methodinterface
One of the values Home, Remote, LocalHome, or Local

Param<N>
A value of the Nth parameter in the method, e.g. Param1, Param2...

For an example that illustrates EJB resources, see WLS_SSM_HOME/examples/EJBAppExample .

INDI Resources

Table 4-10 shows the mapping of the resource path elements for a JNDI resource.

Tahle 4-10 JNDI Resource Path Elements

Element Name Value

application name shared

resource type Jndi
resource parent The JNDI resource path
resource name Not used

JNDI Resource Path Example

Listing 4-2 is an extract from weblogic-ejb-jar.xml that defines the JNDI name of the
AccountService EJB used in “EJB Resource Path Example” on page 4-32.

Listing 4-2 JNDI Name Definition

<weblogic-ejb-jar>
<weblogic-enterprise-bean>
<ejb-name>AccountService</ejb-name>

4-34 Policy Managers Guide

Resource Paths and Policies for Common Resources

<stateless-session-descriptor></stateless-session-descriptor>
<reference-descriptor></reference-descriptor>
<jndi-name>AccountService</jndi-name>
</weblogic-enterprise-bean>
</weblogic-ejb-jar>
The fully qualified resource name that corresponds to the physical JNDI name of the
AccountService EJB home interface would be:

//app/policy/AppParentNode/shared/jndi/AccountService

JNDI Resource Privilege Mappings

The privilege for a JNDI call is the JINDI action name. The privilege value can have one of the
following values:

modify
Required whenever an application modifies the INDI tree in any way (that is, adding,
removing, changing). This includes the bind(), rebind(), createSubContext(),
destroySubContext(), and unbind() methods.

lookup
Required whenever an application looks up an object in the JNDI tree. This includes the
lookup() and lookupLink() methods.

list
Required whenever an application lists the contents of a context in JNDI. This includes
the list() and listBindings() methods

JNDI Dynamic Resource Attributes

The following dynamic attributes are supported by JNDI resources and can be used as a part of
an authorization policy:

application
Always shared.

path
The JNDI resource path.

action
The JNDI action name (modify | lookup | list).

Policy Managers Guide 4-35

4-36

JNDI Resource Policy Examples

The following policy grants the group Everyone a privilege to perform the 1ookup operation on
any JNDI resource. Note that the resource //app/pol icy/AppParentNode/shared/jndi
must be a virtual one.

grant(//priv/lookup, //app/policy/mybank/shared/jndi, //role/Everyone) if
true;

The following policy grants the role Admin a privilege to modify a JNDI resource named
DataSource. This will allow a user who has been assigned the Admin role to perform such
operations as bind() and unbind().

grant(//priv/modify, //app/policy/mybank/jndi/DataSource, //role/Admin) if
true;

URL Resources

Table 4-11 shows the mapping of the resource path elements for a URL resource.

Tahle 4-11 URL Resource Path Elements

Element Name Value

application name The name of the web application that contains the resource

resource type url
resource parent The context path of the web application
resource name The resource URI after the context path

URL Resource Path Example
In this example, assume that:

o there is a web resource accessible through the URL
http://1ocalhost/helloworld/HelloWorld. jsp

o the web server configuration file references the web application as Hel lowor 1dApp with
the context path /helloworld

To protect the resource, it is necessary to know how the JSP page is represented in the resource
tree. In this example, the elements of the resource path are:

Policy Managers Guide

Resource Paths and Policies for Common Resources

Application Name — the name of the web application,. Hel lowor 1dApp

Resource Type — url

Resource Parent — the context path of the web application, hel loworld
e Resource Name — the JSP name, Hel loWorld. jsp
The resulting resource representation is:

//app/policy/AppParentNode/Hel loWor 1dApp/url/hel loworld/Hel loWorld. jsp

URL Resource Privilege Mappings

In case of a URL resource, the privilege name is mapped to the HTTP request method name:
GET, POST, PUT, HEAD, DELETE, TRACE, CONNECT, etc.

URL Dynamic Resource Attributes

The following dynamic attributes are supported by URL resources and can be used as a part of
an authorization policy:

application
The name of the web application.

contextpath
The context path of the web application.

uri
The URI of the resource.

httpmethod
The HTTP method (same as privilege).

transporttype
The transport guarantee required to access the URL resource, as it appears in the
corresponding <transport-guarantee> element in the deployment descriptor. The
value can be one of INTEGRAL or CONFIDENTIAL.

authtype
The name of the authentication scheme used to protect the servlet. The value can be one
of: BASIC, FORM, CLIENT_CERT or DIGEST.

pathinfo

Extra path information associated with the URL sent by the client when it made a request.

Policy Managers Guide 4-37

4-38

pathtranslated
Extra path information after the servlet name but before the query string is translated to a
real path.

guerystring
The query string that is contained in the request URL after the path.

remoteuser
The login of the user making the request, if the user has been authenticated.

requestedsessionid
The session ID specified by the client.

requesturi
The part of this request's URL from the protocol name up to the query string in the first
line of the HTTP request.

requesturl
The URL the client used to make the request. The returned URL contains a protocol,
server name, port number, and server path, but it does not include query string parameters.

servletpath
The part of this request's URL that calls the servlet.

characterencoding
The character encoding used in the body of the request.

contenttype
The MIME type of the body of the request.

locale
The preferred Locale of the client.

protocol
The name and version of the protocol, for example, HTTP/1.1.

remoteaddr
The Internet Protocol address of the client or last proxy that sent the request.

remotehost
The fully qualified name of the client or the last proxy that sent the request.

scheme
The name of the scheme used to make this request, for example, http, https, or ftp.

Policy Managers Guide

Resource Paths and Policies for Common Resources

servername
The host name of the server to which the request was sent.

serverport
The port number to which the request was sent.

issecure
A boolean indicating whether this request was made using a secure channel, such as
HTTPS.

HTTP Request Context Elements

HTTP request context elements such as servlet attributes, URL query parameters, HT TP request
headers and cookies are available as name/value pairs. This section describes how to access the
following elements while creating authorization policy constraints:

e “Servlet Attributes” on page 4-39

e “URL Query Strings” on page 4-40

e “HTTP Request Headers” on page 4-40
e “Cookies” on page 4-40

The attributes that correspond to servlet attributes, URL query parameters, HT TP request headers
and cookies are case insensitive; however, an assumption that the attribute names are case
sensitive will slightly improve the performance.

If names of a servlet attribute, URL query parameter, HTTP request header, or cookie collide,
only one attribute will be available in policy constraints. The order the framework searches for a
matching attribute is:

1. URL query parameters
servlet attributes

HTTP request headers

> N

cookies

Servlet Attributes

Servlet attributes are name/value pairs that can be internally added to a request by a servlet
container. Usually the attributes are added by calling method setAttribute of the

Policy Managers Guide 4-39

4-40

ServletRequest interface. The policy attribute names correspond to the names of servlet
attributes. The names are represented as strings and case insensitive.

URL Query Strings

The attribute names that correspond to the parameters in a URL query string are the same as the
parameter names. The names are represented as strings and are case insensitive. The attributes
refer to the query string variable encoded within the request. For example, if a URL includes a
query such as ?test=endcoded®%20char, the parameter can be accessed in the constraint of an
authorization policy in the following way:

"if test= "encoded char"

HTTP Request Headers

The attribute name of an HTTP request header corresponds to the name of the header. The name
is returned as a string and is case insensitive. Examples of the headers often available are: date,
if-modified-since, referrer, Or user-agent.

Note: The date header, which is usually a date type, is returned as a string.

Cookies

The attribute names that correspond to cookies in an HTTP request are the same as the cookie
name in the request. The names are returned as strings and case insensitive. The value of the
cookie returned is application specific and may need further decoding. For example, if you are
using the ALES cookie, the attribute name is:

"ALESIdentityAssertion"

URL Resource Policy Examples

The following policy grants user anonymous (any unauthorized user) a privilege to view current
currency exchange rates (the page currentRates. jsp) but only if the connection is secure (for
example, through HTTPS).

grant(//priv/GET,
//app/policy/mybank/bankapp/url/currencyExchange/currentRates. jsp,
//user/myusers/anonymous/) i1f issecure=yes;

The following policy grants the role Manager a privilege to post new currency exchange rates
(the page postNewRates. jsp) but only if the user updates the data from local machine.

Policy Managers Guide

Resource Paths and Policies for Common Resources

grant(//priv/POST,
//app/policy/mybank/bankapp/url/currencyExchange/postNewRates. jsp,
//role/Manager) if remotehost="localhost";

Let us imagine a web application that allows a customer to buy stocks online. When the customer
clicks on the link mybroker/buyStocks . do, the browser sends an HTTP request that is mapped
to a Java servlet. The servlet is responsible for fetching balances of all customer’s accounts and
calculating the customer’s purchasing power, the amount of money he or she can spend on buying
new stocks. Then the servlet then sets a request attribute named purchasingPower and forwards
the request to a page located at mybroker/buyStocks. jsp The mybroker/buyStocks. jsp
shows the customer’s purchasing power and asks about the amount he or she wants to spend.

The mybroker/buyStocks - jsp page should not be displayed if a customer’s purchasing power
is not positive. The following rule grants access to the page only if a customer has a positive
purchasing power by checking the purchasingPower servlet attribute.

grant(//priv/CGET, //app/policy/mybank/bankapp/url/mybroker/buyStocks. jsp,
//role/Client) 1T purchasingPower>0;

Again, let us imagine an application that allows a customer to trade stocks online. Before the
customer can trade stocks, he or she must open a brokerage account. The account can be opened
online by clicking on the mybroker/openAccount. jsp link. The first page that is displayed
contains a trading agreement text and asks the customer to accept it. The checkbox is linked to an
HTML form parameter named customerAgreed. When the HTML form is posted, this
parameter is set to true if the customer has accepted the trading agreement.

The following rule allows customer to proceed only if he or she accepted the trading agreement
by ticking the checkbox off. The rule checks the customerAgreed HTTP request parameter.

deny(//priv/POST,
//app/policy/mybank/bankapp/url/mybroker/openAccount. jsp, //role/Client)
if Not customerAgreed="true"

JDBC Resources

Table 4-12 shows the mapping of the resource path elements for a JDBC resource:

Policy Managers Guide 4-4

Table 4-12 JDBC Resource Path Elements

Element Name Value

application name The application name or shared if the resource is global

resource type jdbc

resource parent the module name (if any) + the resource type (ConnectionPool or
MultiPool)

resource name The resource name

JDBC Resource Path Example

Listing 4-3 shows the configuration of a JDBC resource.

Listing 4-3 JDBC Resource Configuration

<JDBCConnectionPool DriverName="oracle.jdbc.driver.OracleDriver"
Name=""MyJDBCConnectionPool""
PasswordEncrypted=""{3DES}B2Bl1+tp70Eh3D1pT53/anw==""
Properties="user=wles" Targets="myserver"
TestTableName="SQL SELECT 1 FROM DUAL"
URL="jdbc:oracle:thin:@localhost:1521:ASI1"/>
<JDBCTxDataSource JNDIName="‘MyDataSource"
Name=""MyJDBCDataSourceName"
PoolName=""MyJDBCConnectionPool""
Targets="myserver'/>

Because the resource is global and does not belong to any particular module, the fully qualified
resource name is:

//app/policy/AppParentNode/shared/jdbc/ConnectionPool/MyJDBCConnectionPool

where ConnectionPool is the resource type and MyJDBCConnectionPool is the resource name.

JDBC Resource Privilege Mappings

The privilege name of a JDBC resource is mapped to a JDBC operation name and can take one
of the following values:

4-42 Policy Managers Guide

Resource Paths and Policies for Common Resources

admin
Privilege to perform the admin operations such as clearStatementCache, suspend,
forceSuspend, resume, shutdown, forceShutdown, start, getProperties, and
poolExists.

reserve
Privilege to reserve a connection in the data source by looking up the data source and then
calling getConnection.

shrink
Privilege to shrink the number of connections in the data source.

reset
Privilege to reset the data source connections by shutting down and re-establishing all
physical database connections.

JDBC Resource Path Example

Listing 4-4 gives an example of code that uses the JDBC resource we defined earlier.

Listing 4-4 JDBC Resource Code Example

Javax.naming. InitialContext initialContext = new
Jjavax.naming. InitialContext();

Jjavax.sql .DataSource ds = (Javax.sgl.DataSource)
initialContext. lookup(""MyDataSource');

java.sql .Connection conn = ds.getConnection();

PreparedStatement statement =
conn.prepareStatement("'SELECT accountName FROM accounts WHERE balance <
0™M;
ResultSet result = statement.executeQuery();
if (result.next()) {
String accountName = result.getString(l);

System.out.printIn(""The first account with negative balance is " +
accountName) ;

}

Policy Managers Guide 4-43

4-44

In the example, the code calls the getConnection() method on the data source instance. This
initiates an authorization check to verify the reserve privilege against the
//app/policy/AppParentNode/shared/jdbc/ConnectionPool/MyJDBCConnectionPool
resource.

JDBC Dynamic Resource Attributes
The following dynamic attributes are supported by JDBC resources and can be used as a part of
an authorization policy:

application
The name of an application that hosts the resource.

module
The name of a module the resource belongs to.

category
The resource type (ConnectionPool | MultiPool).

resource
The name of the resource.

action
The JDBC operation name (admin | reserve | shrink | reset).

JDBC Resource Policy Examples

The following policy grants the role ExternalApplication a privilege to reserve (open) a
JDBC connection from a connection pool called ExternalDataPool:

grant(//priv/reserve,
//app/policy/mybank/shared/jdbc/ConnectionPool/ExternalDataPool,
//role/ExternalApplication) if true;

The following policy grants the role Admin the admin privilege that will allow him or her to shut
down any JDBC resources except a resource named SystemJdbcPool. Note that the
//app/policy/mybank/shared/jdbc resource must be a virtual one.

grant(//priv/admin, //app/policy/mybank/shared/jdbc, //role/Admin) if Not
resource="SystemJdbcPool"’;

JMS Resources

Table 4-13 shows the mapping of the resource path elements for a JMS resource:

Policy Managers Guide

Resource Paths and Policies for Common Resources

Table 4-13 JMS Resource Path Elements

Element Name Value

application name The application name or shared if the resource is global

resource type ims
resource parent The destination type (topic or queue)
resource name The resource name

JMS Resource Path Example

Listing 4-5 gives an example of how a JMS queue named MyJMSQueue might be configured.

Listing 4-5 JMS Resource Configuration Example

<JMSServer Name="WSStoreForwardIlnternalJMSServermyserver"
Store="FileStore" Targets="myserver"'>
<JMSQueue CreationTime="1150241964468"
JNDIName=""IMSQueue' Name="'"MyJMSQueue''/>
</JIMSServer>

<JMSConnectionFactory JNDIName="JmsConnectionFactory"
Name=""MyJMSConnectionFactory" Targets="myserver'/>

To insure the client can use the JMS queue named MyJMSQueue, it should be granted rights to
access resource //app/policy/AppParentNode/shared/jms/queue/MyJMSQueue.

JMS Resource Privilege Mappings

The privilege name of a JMS resource is mapped to the JMS operation name. It can have one of
the following values:

send
Required to send a message to a queue or a topic. This includes calls to the
MessageProducer.send(), QueueSender.send(), and
TopicPublisher.publish() methods.

Policy Managers Guide 4-45

4-46

receive
Required to create a consumer on a queue or a topic. This includes calls to the
Session.createConsumer(), Session.createDurableSubscriber(),
QueueSession.createReceiver(), TopicSession.createSubscriber(),
TopicSession.createDurableSubscriber(),
Connection.createConnectionConsumer(),
Connection.createDurableConnectionConsumer()
QueueConnection.createConnectionConsumer(),
TopicConnection.createConnectionConsumer(), and
TopicConnection.createDurableConnectionConsumer() methods.

browse
Required to view the messages on a queue using the QueueBrowser interface.

JMS Resource Example
Listing 4-6 gives an example of a JMS client that uses the JMS queue declared above.

Listing 4-6 JMS Client Example

//Instantiate the inital context
Javax.naming. InitialContext initialContext = new
Javax.naming. InitialContext();

//Look up the JMS connection factory and the message queue
Queue messageQueue = (Queue) initialContext.lookup(*'IMSQueue™);
JMSConnectionFactory factory =

(JIMSConnectionFactory) initialContext. lookup(*"'IJmsConnectionFactory');

//Create the queue connection and session
QueueConnection queueConnection = factory.createQueueConnection();
QueueSession session =

queueConnection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

//Create a text message
TextMessage textMessage = session.createTextMessage();
textMessage.setText(""Hello from the client!");

Policy Managers Guide

Resource Paths and Policies for Common Resources

//Send message to the queue
QueueSender sender = session.createSender(messageQueue);
sender.send(textMessage);

In the example, the client sends a text message to MyJMSQueue. This requires the send privilege
for resource //app/policy/AppParentNode/shared/ jms/queue/MyJMSQueue to
successfully execute the code.

JMS Dynamic Resource Attributes

The following dynamic attributes are supported by JMS resources and can be used as a part of an
authorization policy:

application
The name of an application that hosts the resource.

destinationtype
The JMS destination type (queue | topic).

resource
The name of the resource.

action
The JDBC operation name (send | receive | browse).

JMS Resource Policy Examples

The following policy grants the role Client a privilege to send messages to a JMS queue named
FeedbackQueue:

grant(//priv/send, //app/policy/mybank/shared/jms/queue/FeedbackQueue,
//role/Client) if true;

The following policy grants the user FeedbackProcessor a privilege to receive messages from
a JMS gueue named FeedbackQueue:

grant(//priv/receive, //app/policy/mybank/shared/jms/queue/FeedbackQueue,
//user/myusers/FeedbackProcessor);

Weh Services Resources

Table 4-14 shows the mapping of the resource path elements for a Web Services resource:

Policy Managers Guide 4-47

Table 4-14 Web Services Resource Path Elements

Element Name Value

application name The name of the application that contains the resource

resource type webservices
resource parent The application context
resource name The Web Service name

Weh Services Resource Path Example

Listing 4-7 shows the configuration of a web application named BasicWs that contains a Web
Service implementation named BasicWS_Component.

Listing 4-7 Web Application Configuration Example

<application Name="BasicWS"
Path="applications/BasicWS.ear"
StagedTargets="myserver"
<WebServiceComponent Name="BasicWS_Component"
Targets="myserver"

URI="BasicWS.war"/>
</application>

Listing 4-8 shows how the application.xml file from the BasicWS.ear enterprise archive
defines the web application context:

Listing 4-8 Web App Context Example

<module>
<web>
<web-uri>basic_javaclass.war</web-uri>
<context-root>myservices</context-root>

4-48 Policy Managers Guide

Resource Paths and Policies for Common Resources

</web>
</module>

Listing 4-9 shows the configuration of a Web Service named Hel lowor1d, which is defined in
the descriptor web-services.xml inside the WAR file.

Listing 4-9 Web Service Example

<web-services>
<web-service useSOAP12=""false"
name=""Hel loWorld""

style="rpc"
uri="/HelloWorld">
<operations>

<operation name="sayHello"
method="sayHello(int, java. lang.String)"/>
</operations>
</web-service>
</web-services>

The fully qualified name of this Web Service resource is:

//app/policy/AppParentNode/BasicWS/webservices/myservices/Hel loWorld

Web Services Resource Privilege Mappings
The privilege for accessing a Web Service is mapped to the name of the Web Service operation.

Weh Services Resource Policy Examples

To call the operation sayHel 1o in the HelloWorld service defined in this section, the client must
be granted the privilege sayHel 1o. Note that some of the clients may require access to the WSDL
file, which is actually a URL resource. Consider the following client code:

String wsdlUrl = "http://localhost:7001//HelloWord?WSDL";
HelloWorld service = new HelloWorld_Impl(wsdlUrl);
HelloWorldPort port = service.getHelloWorldPort();

String result = port.sayHello(34, "Josh™);

Before calling method sayHel o, the client accesses the WSDL file. To make the code run
successfully, the client must be granted the privilege GET on the resource

Policy Managers Guide 4-49

4-50

//app/policy/AppParentNode/BasicWS/url/myservices/helloworld in addition to the
Web Service resource. Thus, the following policies must be created:

grant(//priv/GET,
//app/policy/AppParentNode/BasicWS/url/myservices/helloworlid,
//role/SomeUser) if true;

grant(//priv/sayHello,
//app/policy/AppParentNode/BasicWS/webservices/myservices/HelloWorld,
//role/SomeUser) if true;

Note that for the URL Resource, the resource name was changed to lower case.

Web Services Dynamic Resource Attributes

The following dynamic attributes are supported by Web Services resources and can be used as a
part of an authorization policy:

application
The name of the application

contextpath
The context part of the web application

webservice
The name of the web service

method
The name of the web service operation called

Param<N>
A value of the Nth parameter in the method, for example,. Param1, Param2...

Web Services Resource Policy Examples
The following policy grants the role Client a privilege to call the operation getDelayedQuote
on a Web Service named StockQuoteService:

grant(//priv/getDelayedQuote,
//app/policy/mybank/myservices/webservices/publishedservices/StockQuoteSer
vice, //role/Client) if true;

The following policy grants the role Client a privilege to call the operation getReal timeQuote
on a Web Service named StockQuoteService, but only if he or she has a premium subscription

type:

Policy Managers Guide

Resource Paths and Policies for Common Resources

grant(//priv/getRealtimeQuote,
//app/policy/mybank/myservices/webservices/publishedservices/StockQuoteSer
vice, //role/Client) if subscriptionType="premium";

Server Resources

A Server resource determines who can control the state of a WebLogic Server instance. When
users start server instances by invoking the weblogic.Server class in a Java command, the
policy on the Server resource is the only security check that occurs. You can create security
policies that apply to all WebLogic Server instances in a domain or to individual servers.

The following table shows the mapping of the resource path elements for a Server resource:

Table 4-15 Server Resource Path Elements

Element Name Value

application name shared

resource type svr
resource parent Not used
resource name The server instance name

Server Resource Path Example

Listing 4-10 gives an example of the configuration of a WebLogic Server instance named
myserver.

Listing 4-10 WebLogic Server Instance Configuration

<Server ListenAddress=
ListenPort="7001"
Machine="mymachine"
Name=""myserver"
NativelOEnabled=""true"
ReliableDeliveryPolicy="RMDefaultPolicy"
ServerVersion="8.1.5.0">

<SSL Enabled="false'" HostnameVerificationlgnored="false"

Policy Managers Guide 4-51

4-52

IdentityAndTrustLocations="KeyStores" Name="myserver'/>
</Server>

The fully qualified name of the resource that corresponds to the server instance is
//app/policy/AppParentNode/shared/svr/myserver.

Server Resource Privileges Mapping

The privilege name of a Server resource is mapped to the operation name. It can have one of the
following values:

boot
Privilege required to start a WebLogic Server instance, either an Administration Server or
Managed Server.

shutdown
Privilege required to shut down a running WebLogic Server instance, either an
Administration Server or Managed Server.

suspend
Privilege required to prohibit additional logins (logins other than for privileged
administrative actions) to a running WebLogic Server instance, either an Administration
Server or Managed Server.

resume
Privilege required to re-enable non-privileged logins to a running WebLogic Server
instance, either an Administration Server or Managed Server.

Server Dynamic Resource Attributes
The following dynamic attributes are supported by Server resources and can be used as a part of
an authorization policy:

server
the name of the server the resource is associated with.

action
the name of an operation performed on the server instance (boot | shutdown | suspend |
resume).

Server Resource Policy Examples

The following policy grants the role Admin a privilege to boot all WebLogic Server instances.
Note that the resource //app/policy/mybank/shared/svr must be a virtual one.

Policy Managers Guide

Subject Mapping

grant(//priv/boot, //app/policy/mybank/shared/svr, //role/Admin) if true;

The following policy grants the role Admin a privilege to shutdown or suspend a WebLogic
Server instance named CentralServer but only on Sundays or other days between 2 a.m. and 4
a.m.:

grant[//priv/shutdown,//priv/suspend],
//app/policy/mybank/shared/svr/CentralServer, //role/Admin) if timeofday in
[2:0:0..4:0:0] Or dayofweek=Sunday;

Subject Mapping

All authorization policies in ALES are applied considering a subject that accesses a resource. A
subject representation uses the standard javax.security.auth_Subject class that contains a
set of java.security.Principal objects. The subject consists of a directory name, a user
name, and a set of group names. The user and groups are considered to exist within the specified
directory. The directory name is a part of configuration of the authentication and role-mapping
providers, and can be modified using the ALES Administration Console.

The providers iterate the principals, selecting those that implement the
weblogic.security.spi.WLSUser and weblogic.security.spi.WLSGroup interfaces.
The first wLSUser principal is used to retrieve the user name. All of the WLSGroup principals are
used to build of the group names.

Note that running an application under the ALES framework does not require any changes on the
client or server side in terms of credential handling. The actual methods of supplying credentials
depend on the resource type. For example, to access a URL resource, the user can supply its
credentials in the browser’s prompt dialog or, if the client is Java code, it can send the credentials
as the HTTP Authorization header of the request. Listing 4-11 shows an example how the
credentials can be supplied using standard methods before accessing enterprise resources:

Listing 4-11 Supplying Credentials

Hashtable properties = new Hashtable();
properties.put(InitialContext.PROVIDER_URL, "t3://localhost:7001");
properties.put(InitialContext.SECURITY_PRINCIPAL, "username'™);
properties.put(InitialContext.SECURITY_CREDENTIALS, "password™);
properties.put(InitialContext. INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory');

Policy Managers Guide 4-53

Javax.naming. InitialContext initialContext =
new javax.naming.InitialContext(properties);

//Look up and access the resources here...

Policy Element Naming

The policy language uses standard naming conventions called qualifiers to refer to privileges,
applications, resources, roles, and identity elements (directories, users and groups). These
conventions ensure that each component has a unique name, even if you use the same name in
other locations. The Administration Console hides these qualifiers from you during most
operations. See “Fully Qualified Names” on page 4-55 for additional information on naming
conventions.

The following rules apply to policy element hames:

e Most names are case sensitive. Declarations and attribute names are the exception; they are
case insensitive. Internally, when a declaration name or attribute name is saved, it is saved
in all lowercase. For example, the user names //user/ales/system/ and
//user/ales/Systen/ reflect the same user.

e A qualified name is a name with qualifier prefix prepended to the non-qualified name.
Some names, like user and group names, have an ending suffix also. See Table 4-16 for
examples. Declaration names do not have a qualified form.

e The characters used for the names and the length of the names are restricted. See “Size
Restriction on Policy Data” on page 4-56.

Table 4-16 Examples of Qualified Names

Policy Element Example

resource //app/policy/banking/transfer
directory //dir/extranet

privilege //priv/place_order

privilege group //grp/trading_privileges

user //user/extranet/JohnDoe/

group //sgrp/extranet/trader/

4-54 Policy Managers Guide

Policy Element Naming

Table 4-16 Examples of Qualified Names (Continued)

Policy Element Example
role //role/roleName
logical name //1n/ShortHandForResource

For more information on policy element naming, see the following topics:
e “Fully Qualified Names” on page 4-55
e “Policy Element Qualifiers” on page 4-56
e “Size Restriction on Policy Data” on page 4-56
e “Character Restrictions in Policy Data” on page 4-58

e “Special Names and Abbreviations” on page 4-64

Fully Qualified Names

A fully qualified name references the full name for a policy element. This name consists of a
series of simple names separated by forward slashes (/). Fully qualified names have the following
parts, in order:

e A starting double forward slash: //
e A qualifier followed by a forward slash

e For users and groups, a directory name followed by a slash mark, and a final slash after the
name

e A name:
For example, in //user/Accounting/JJBob/

e user is the qualifier
e Accounting is the directory

e JJBob is the user name

For resources, the qualified name starts with //app/policy/. Additional names may appear,
each separated by a single slash. This naming convention defines the resource tree. Each resource

Policy Managers Guide 4-55

4-56

name is represented as a node on the tree, but the entire string represents the fully qualified name
of the final resource. For example:

//app/policy/trading_system/PersonalTrades/BondOrder/Order

Policy Element Qualifiers

Qualifiers are built in. You cannot create your own qualifier or change the existing ones. They
represent one of the basic policy elements and always begin with a double slash (//) followed by
asingle slash (/). Table 4-17 lists the built-in qualifiers.

Table 4-17 Policy Element Qualifiers

Qualifier Policy Element
//priv privilege
//grp privilege group
//user user

//sgrp group

//app resource
//dir directory
//bind engine
//role role

//1In logical name

There is no qualifier for a declaration. Declarations are identified by a different method. For a
discussion of declarations, see “Declaration Names” on page 4-63.

Size Restriction on Policy Data

There are some limits on the size of names, attribute values, and rules, restricted by the type of
database that you use. The restriction by the database is determined by the VARCHAR column size
and the key size allowed by the database. Table 4-18 summarizes the limit for different policy
data for the Oracle and Sybase databases.

Policy Managers Guide

Policy Element Naming

Note: As of ALES version 2.5, additional databases are also supported. See Installing the

Administration Server for additional information.

Table 4-18 Database Restrictions on Policy Data

Policy Data

Oracle

Sybase
12.5
2K

Sybase
12.5
4K

Sybase
12.5
8K

Sybase
12.5
16K

Qualified privilege name
Qualified privilege group name
Qualified role name

Qualified resource name
Qualified user name

Qualified subject group name
Qualified logical name
Qualified security provider name

2000

580

1200

2500

5000

All privileges in the privilege field of a rule
All roles in the privilege field of a rule

All resources in the object field of a rule
All user and group in subject field of a rule

All roles in subject field of a rule

2000

580

1200

2500

5000

Rule conditions

4000

1160

2400

5000

10000

Rule text-combined text of all fields in a rule
(privilege, object, subject, delegator, and
conditions, plus the syntax delimiters)

N/A2

1962

4010

8106

16298

Declaration name
Attribute name

The individual declaration name inside a type
declaration

2000

580

1200

2500

4000

Declaration text-the combined text of
declaration name, kind, and value, plus the
syntax delimiters

4000

1160

2400

5000

10000

A single attribute value

2000

580

1200

2500

4000

Policy Managers Guide

4-517

http://e-docs.bea.com/ales/docs26/installadmin/index.html
http://e-docs.bea.com/ales/docs26/installadmin/index.html

Tahle 4-18 Datahase Restrictions on Policy Data (Continued)

Policy Data Oracle Sybase Sybase Sybase Sybase
12.5 12.5 12.5 12.5
2K! 4K 8K 16K
A quoted literal string in the declaration value 4000 1160 2400 4000 4000
A quoted literal string in a constraint for arule 4000 1160 2400 4000 4000
A qualified name in the declaration value 2000 580 1200 2500 4000
A qualified name in a constraint for a rule 2000 580 1200 2500 4000
Integer value of a constant declaration 9 digits*3 9 digits* 9 digits* 9 digits* 9 digits*
All attribute values combined for a user, group 40000 40000 40000 40000 40000

or resource attribute

4-58

1. Sybase 12.5 has a dependency on the logical page size that you choose when you set up the database
server. The supported logical page size varies from 2K, 4K, 8K, and 16K.

2. N/A means that there is no limit.
3. An asterisk (*) indicates that the limit is imposed.

Character Restrictions in Policy Data

There are several restrictions on the character set that you can use to define policy data. The
following common rules apply and Table 4-19 describes the extended character set restrictions.

= All names without qualifier or called non-qualified names allow alphanumeric characters
(a-z, A-Z, and 0-9) and the underscore (). These names include privilege group name,
resource name, directory name, security provider name, declaration, and attribute name.

= The role name, user name, and subject group name can be multi-byte values.

= All names, except privilege, user, and subject group name, must start with an alpha
character or underscore. Numeric characters are not allowed.

Policy Managers Guide

Policy Element Naming

Table 4-19 Policy Data Character Restrictions

Policy data

Extra characters allowed

Privilege Name

Alphanumeric characters (a-z, A-Z, and 0-9) and the underscore
(1), must start with an alpha character or underscore.

Privilege Group Name

Alphanumeric characters (a-z, A-Z, and 0-9) and the underscore
(), must start with an alpha character or underscore.

Resource name

Alphanumeric characters (a-z, A-Z, and 0-9) and the underscore
(1), must start with an alpha character or underscore. Pound sign
(#), apostrophe (), dash (-), period (.), colon (3), at (@), tilde (~),
ampersand (&).

Directory Name

Alphanumeric characters (a-z, A-Z, and 0-9) and the underscore
(1), must start with an alpha character or underscore.

Security Provider Name

Alphanumeric characters (a-z, A-Z, and 0-9) and the underscore
(1), must start with an alpha character or underscore.

Declaration

Alphanumeric characters (a-z, A-Z, and 0-9) and the underscore
(1), must start with an alpha character or underscore.

Attribute Name

Alphanumeric characters (a-z, A-Z, and 0-9) and the underscore
(1), must start with an alpha character or underscore.

User name or Subject

All printable characters. A forward slash (/) in the name must be

group name escaped by a backward slash (\), because a forward slash (/) is
used as field separator.

Role Alphanumeric characters (a-z, A-Z, and 0-9) and the underscore
(1), must start with an alpha character or underscore.

ARME or SCM Alphanumeric characters (a-z, A-Z, and 0-9) and the underscore

(), must start with an alpha character or underscore.

String typed attribute
value

All printable characters are allowed.

Policy Managers Guide

4-59

4-60

Table 4-19 Policy Data Character Restrictions (Continued)

Policy data Extra characters allowed

Literal string in the value All printable characters are allowed except the double quote (")
of a constant declaration and a backslash (\). When used, these characters may cause
parsing problems.

Literal string in a All printable characters are allowed except the double quote ().
condition for a rule

The following topics provide more information:
e “Data Normalization” on page 4-60
e “Directory Names” on page 4-63
e “Logical Name” on page 4-63

e “Declaration Names” on page 4-63

Data Normalization

When using the ASI Authorization or ASI Role Mapping providers, there are certain data
transformations that you must consider. The policy database limits what characters are allowed
in certain policy elements. This set is more restrictive than the set allowed by the Security
Framework.

The ASI Authorization and ASI Role Mapping providers perform normalization of input data to
ensure that they abide by the restrictions imposed by the authorization management system. The
management system does not currently perform any automatic normalization, so it is important
to understand the normalization mechanism because it must be preformed manually when writing
policy. Unless otherwise stated, the substitutions listed Table 4-20 apply to the following
elements: resource, attribute, privilege, role, and directory names.

Additionally, any nonprintable character is translated into the numeric hexadecimal equivalent;
for example, the ASCII character code 1 (a smiley face) is represented as __ 0x1 . Table 4-20
shows the characters that are normalized and the character substitution applied at runtime. When
writing policy, you must substitute these characters.

Policy Managers Guide

Policy Element Naming

Tahle 4-20 Character Substitution

Character Character Substitution

\n (carriage return) __ CR_ also applies to user and group names

0 __0_ 1st character only

1 1 1stcharacter only

2 __2_1st character only

3 __3_1st character only

4 __ 4 1st character only

5 __5_1st character only

6 __6_1st character only

7 __7_1st character only

8 __ 8 1st character only

9 __ 9 1st character only

\t (tab) __ TAB_

£ (space) __SP_

! __EXPL_

“ _ DQUOT_

__HASH_ 1st character of resource, or any character in attr, priv,
role, dir

__PRD_ 1stcharacter of resource, or any character in attr, priv, role,

dir
% __PRCT_
(__OPRN_
) _ CPRN_
* __ASTR_

Policy Managers Guide 4-61

Tahle 4-20 Character Substitution (Continued)

Character Character Substitution
+ __PLUS_
, __COMMA_
/ __FSLSH_
: __ SCLN_
< _LT
= _EQ_
> _GT_
? _QTM_
[_0SQB_
\ _ BSLSH_
1 _CSQB_
_ CSQUOT._
{ __OCRL_
| _ PIPE_
} _ CCRL_
& __AMP_ Applies only to attr, priv, role, dir

- _ DASH_ Applies only to attr, priv, role, dir

__CLN_ Applies only to attr, priv, role, dir

@ __AT_ Applies only to attr, priv, role, dir

~ __TLD_ Applies only to attr, priv, role, dir

4-62 Policy Managers Guide

Policy Element Naming

Directory Names

A directory further separates qualifiers. You define directories to store and scope users and
groups. For example, if you had an application called Bankers, the directory that stores users and
groups might look like this:

//dir/Bankers
Once declared, the directory is used with the user and group qualifier to fully qualify subjects.
For example, //sgrp/Bankers/loans/ is a group called loans that belongs to the Bankers

group and //user/Bankers/BSilva/ is a user named BSi lva that belongs to the Bankers
application.

Note: A directory name must start with a letter and can contain any number of alphanumeric or
underscore characters. Spaces are not allowed in the name. Directory names are not case
sensitive.

A directory name does not necessarily need to represent a resource. For example, a directory
name might represent users in a particular location (as in //dir/NewYork) or a department (as
in //dir/Accounting). Essentially, you can use them any way you want to delineate groups of
users and groups.

A privilege group is not part of the policy language but is provided for administrative
convenience. Each privilege in a group is defined as an individual privilege in the actual policy.

Logical Name

A logical name is a shorthand method used to represent a resource. Once you map a logical name
to a fully qualified name, your developers can use the logical name when coding your application.

//1In/name

Declaration Names

A declaration name is not qualified. In fact, that is exactly how they are identified. Any policy
element without a fully qualified name and not in quotation marks (indicating a string), is
assumed to be a declaration. When defined, declarations are preceded by one of the following
identifiers:

const - Constant Declaration
type - Type Declaration
cred - Credential (or Attribute) Declaration

eval - Evaluation Function Declaration

Policy Managers Guide 4-63

Special Names and Abbreviations

There are several special names, referred to as keywords, that are shortcuts for denoting groups
of objects. The keywords keep you from having multiple rules or multiple rule queries in certain
reoccurring situations. By using these keywords, you can define very powerful, yet generic rules.

The keywords are as follows:

e any—Signifies any privilege. When specifying any in a rule, it means you do not care

what privilege a user invokes when applying the rule.

e ALL—Signifies a privilege group containing all privileges. You must use the grp qualifier
with the keyword ALL (//grp/ALL). The keyword ALL is mainly used for grouping
purpose in the console and, by default, every privilege defined belongs to the privilege

group ALL.

o allusers—For each user directory, there is an implied group called al lusers. This group

refers to all users in a directory. For example:

//group/Acct/al lusers

This example refers to al lusers for the Acct directory and eliminates the need to
individually address each user or to create a named group for all of the users.

Note: The keyword al lusers is only a limited pseudo group. It does not have many of the
qualities of a regular group; you cannot map it to anything, you cannot add or remove
members, and it cannot be a member of group hierarchy. You can delegate to

allusers groups.

Table 4-21 describes the rules for using keywords.

Table 4-21 Rules for Using Keywords

Characteristic any ALL allusers
Policy Element Built-in privilege Built-in privilege group Built-in local group
Represents any privilege All privileges including All users in one local

built-in and user-defined

directory

Used in rules Yes No Yes
Needs qualifier No Yes Yes
//grp/ALL //sgrp/ [directory
name]/allusers
4-64 Policy Managers Guide

Table 4-21 Rules for Using Keywords (Continued)

Sample Policy Files

Characteristic any ALL allusers

Used in policy Yes No Yes

queries Only finds rules with the Finds rules that
literal any. That is, it does specifically entitle the
not return all rules (rules group allusers
with any privilege).

Controlled by No Yes Yes

delegation

Must be in a group that is
delegated

Controls access to all
privileges regardless of
privilege group

You must be specifically
delegated access to this

group

Case-sensitive

Yes

Yes

Yes

Sample Policy Files

A policy file is a text file that lists the relevant policy elements using their fully qualified names.
The ALES Administration Server installation includes sets of sample policies for BEA
WebLogic Portal, BEA Aqualogic Data Services Platform, and BEA Aqualogic Service Bus.
You can import these sample policies and use them as a starting point for developing a full set of
policies for your applications. For information about how to import the sample policies, see the
README files in each of the sample directories and see also “Importing Policy Data” on

page 7-1. Table 4-22 shows the location of the samples.

Tahle 4-22 Sample Policy Files

BEA Product

Sample Policy Directory

WebLogic Portal

BEA_HOME/ales26-admin/examples/policy/portal_sample

_policy

Aqualogic Data
Services Platform

BEA_HOME/ales26-admin/examples/policy/aldsp_sample_

policy

Aqualogic Service Bus

olicy

BEA_HOME/ales26-admin/examples/policy/alsb_sample p

Policy Managers Guide 4-65

In addition, this section provides examples of policy files. Sample files for each policy element
are provided with the product and are installed in the following directory:

BEA_HOME\ales26-admin\examples\policy

For a description of each of these files, see the following topics. The policy data filenames are
shown in brackets (“[]”).

e “Application Bindings [binding]” on page 4-67

e “Attribute [attr]” on page 4-67

e “Declarations [dec]” on page 4-68

e “Directories [dir]” on page 4-69

e “Directory Attribute Schemas [schema]” on page 4-69
e “Mutually Exclusive Subject Groups [excl]” on page 4-70
e “Resources [object]” on page 4-70

e “Resource Attributes [object]” on page 4-72

e “Policy Distribution [distribution]” on page 4-72

e “Policy Inquiry [piquery]” on page 4-73

e “Policy Verification [pvquery]” on page 4-74

e “Privileges [priv]” on page 4-75

e “Privilege Bindings [privbinding]” on page 4-75

e “Privilege Groups [privgrp]” on page 4-75

e “Role [role]” on page 4-76

e “Rule [rule]” on page 4-76

e “Distribution Targets” on page 4-77

e “Subject Group Membership [member]” on page 4-77
e “Subjects [subject]” on page 4-78

4-66 Policy Managers Guide

Sample Policy Files

Application Bindings [binding]
This file contains an example of the Authorization provider and Service Control Manager
bindings. The resources that can be bound are the resources that are created as binding nodes.

Each line contains a name of an Authorization provider or Service Control Manager, followed by
a binding node name. A Security Provider can only bind policy resources and the Service Control
Manager can only bind configuration resources.

Examples:
//bind/myAuthorizationProvider //app/policy/myApplication/myBinding

//bind/mySCM //app/config/myConfiguration/configBind

Attribute [attr]

This file lists the subject attribute for users and subject group. The attribute value property must
comply with user attribute schema defined for //dir/dirName. If the property is "L", the
attribute value must be enclosed in brackets ([]), with items separated by commas. In general, the
attribute value for all users must be set according to the specification defined in user attribute
schema. However, if an attribute is not set when this file is created, its record may be left out in
this file.

Note: Both user and credential declarations must exist in the policy database before it can be
loaded successfully. Further, the user attribute schema must be defined before the user
attribute can be assigned in Attribute Value file.

Examples:

Given the user attribute schema shown in Listing 4-12, the user attribute values and subject
attribute value are defined as shown in Listing 4-13 and Listing 4-14.

Listing 4-12 User Attribute Schema

//dir/CA_Office my_host_ip S

//dir/CA_Office my_favorite_color L [blue,green]
//dir/NY_Office email_address S "user@crosslogix.com"
//dir/NY_Office my_birthday S

//dir/NY_Office my_favorite_color L [red]

Policy Managers Guide 4-67

Listing 4-13 Sample User Attributes

//user/CA_Office/user_a@mycom.com/ my_host_ip 121.1.100.25
//user/CA_OfFfice/user_b@mycom.com/ my_host_ip 121.1.100.26
//user/CA_Office/user_c@mycom.com/ my_host_ip 121.1.100.50
//user/CA_Office/user_d@mycom.com/ my_host_ip 121.1.100.225
//user/CA_Office/user_e@mycom.com/ my_host_ip 132.99.25.77

//user/CA_Office/user_a@mycom.com/ my_favorite_color [red]
//user/CA_Office/user_b@mycom.com/ my_favorite_color [white,green]
//user/CA_Office/user_c@mycom.com/ my_favorite_color [red,blue]

//user/NY_Office/user_1/ email_address ""userl@crosslogix.com"
//user/NY_Office/user_1/ my_ birthday 1/1/1960
//user/NY_Office/user_1/ my_favorite_color [blue]

Listing 4-14 Sample Subject Group Attribute

//sgrp/NY_Office/rolel/ my favorite_color [green]

Declarations [dec]

Aqualogic Enterprise Security supports four kinds of declarations that are used in rules, user
attributes, and resource attributes. You must create the declaration before you use it in a rule. The
kinds of declarations are: enumerated types (ENUM), constants (CONST), attributes (CRED), and
evaluation functions (EVAL). You can use this file to declare each one. Each line contains the
declaration text, starting with declaration type. Declaration names are case-insensitive and are
always saved in lower case. The four kinds of declaration text must conform with the following
syntax.

ENUM enum_name = (enuml, enum2, ..., enumn);

CONST constant_name_1 = constValue;

CONST constant_name_2 = [valuel, value2, ..., valuen];CRED cred_name :
datatype;

EVAL eval_name;

4-68 Policy Managers Guide

Sample Policy Files

Examples:

ENUM color_type = (red, blue, green, white);

CONST my_Tfavorite_color = green;

CONST my_birth_date = 07/04/1980;

CONST favorite_colors_for_tom = [blue, white];

CONST colors_of_my_choice = [my_favorite_color, red];
CONST a_few_cities = ["New York"™, "Boston', "San Francisco'];
CONST a_magic_number = 28;

CRED string_cred_1 : string;

CRED color_cred : color_type;

CRED date cred : date;

CRED weight_in_pound : integer;

EVAL is_good_number;

Directories [dir]

Multiple directories can be used to separate users and groups that come from different user stores.
A directory is also associated with a schema and the types of attributes the users in that directory
contains.

This file lists the name of some sample directories. The directory name must start with the prefix:
//dir/

Examples:

//dir/CompanyA

//dir/CompanyB

Directory Attribute Schemas [schemal]

A directory defines all users and user groups. Before a user or a user group can be assigned an
attribute, you must declare the directory to accept their attributes. You can use this file to declare
the attributes that a directory can have.

Each line in the file contains a directory name, an attribute name (the attribute declaration as in
file "decl™), a value type (single- or multi-value), and an optional template value matching the

Policy Managers Guide 4-69

4-70

data type of the attribute. The single-value type is denoted by S and multi-value type by L (from
list-value).

You must enter a multi-value (list) attribute with all values enclosed in square brackets [] and
separated by commas, and enclose each value for a string data typed attribute with double quotes
(™). You cannot use another double quote (") and backslash (\) in the template value.

Examples:

//dir/CompanyA my_host_ip S 111.111.111.111

//dir/CompanyA my_favorite_color S

//dir/CompanyA email_address L ["user@bea.com”, "xyz@yahoo.com'"]
//dir/CompanyB my_birthday S

//dir/CompanyB my_favorite_color L [blue,green]

list of exclusive sgrp pair.

Mutually Exclusive Subject Groups [excl]

This file lists the subject groups that are mutually exclusive from one another. An exclusive
subject groups record has the following format:

//sgrp/dirName/aSubjectGroupName/ //sgrp/dirName/anotherSubjectGroupName
For subject groups to be mutually exclusive, they must comply with the following requirements:

e Both subject groups must be in the same directory.
e The subject groups must not share a common sgrp member or user member.

e Both subject groups in a pair must exist in the policy database before the pair can be
defined and loaded successfully.

Example:
//sgrp/CA_Office/trader/ //sgrp/CA_Office/salesPerson/

Resources [object]

In general, resources are constructed as a tree below two tree roots: the policy resources tree and
the configuration tree. The policy tree has a resource name that starts with the prefix
//app/policy/ (for resource configuration) and configuration tree that starts with the prefix

Policy Managers Guide

Sample Policy Files

//app/config/ (for provider configuration). However, you do not see the provider
configuration in the tree. This file lists all the resource names in order, from the root to the child
nodes, together with the resource type and the logical name for the resource.

There is a special resource type, denoted by A, indicating that the resource node is bound by an
ASI Authorization Provider or a Service Control Manager. This special resource node is called a
binding node. All other resources are denoted by O and are called non-binding nodes.

A logical name or alias is a short name for a resource and can be optionally associated with a
resource. Only binding nodes derived from the resource can have an alias. A logical name used
as an alias must start with prefix:

//1n/

and must be unique to the entire resource tree. Each line contains a resource name, an optional
resource type, and an optional alias. If the resource type is missing, it defaults to O. If there is an
alias, the resource type must be specified.

Examples:

//app/policy/myApplication

//app/policy/myApplication/myBinding A
//app/policy/myApplication/myBinding/myresource.one O //In/myresl
//app/policy/myApplication/myBinding/myresource.two O

//app/policy/myApplication/myBinding/myresource.three

//app/config/myConfiguration O
//app/config/myConfiguration/configBind A //In/configBind

Policy Managers Guide 4N

Resource Attributes [object]

Because a resource is also referred to as object, a resource attribute is also referred to as an object
attribute. Each line contains a resource name (as in file "object™), an attribute name (the
declaration as in file "decl"), a value type (single- or multi-value), and values matching the data
type of the attribute. The single-value type is denoted by S and multi-value type is by L (from
list-value). You can enter a multi-value attribute either in multiple lines, with the same resource
name, attribute name and value type (L); or, you can enter it using one line, with all the values
enclosed in square brackets [] and separated by commas. You must enclose each value for a string
attribute with double quotes (**). You cannot use another double quote and backslash (\) in the
attribute value.

Examples:

//app/policy/myApplication/myBinding string_attr_1 S "A value to be decided”

//app/policy/myApplication/myBinding/myresource.one string_attr_1 L ™"lst
Value™

//app/policy/myApplication/myBinding/myresource.one string_attr_ 1 L '2nd
Value"

//app/policy/myApplication/myBinding/myresource.one string_attr_1 L "3rd
Value"

//app/policy/myApplication/myBinding/myresource.two string_attr_1 L ["ABC",
"DEF", "XYZ']

//app/policy/myApplication/myBinding/myresource.three color_attr_1 L [red,
blue]

//app/policy/myApplication/myBinding/myresource.three integer_attr_1 S 1001

//app/policy/myApplication/myBinding/myresource.three date _attr_1 L
[01/01/2003, 01/01/2004]

4-12

Policy Distribution [distribution]

This file provides the parameters used for policy distribution issued by the Policy Import tool
when the distribution is enabled in a configuration. The policy distributor takes a list of user
directories and distribution point combinations. Therefore, each line contains a directory and a
distribution point separated by white spaces.

The distribution point is a resource node on or above a binding resource node. The directory can
be either a specific directory or //dir/* to include all user directories.

Policy Managers Guide

Sample Policy Files

Note: You cannot use applications pending deletion as distribution points. Select a hode higher
in the tree as the distribution point.

Examples:
//dir/* //app/policy/myApplication
//dir/CompanyA //app/policy/myApplication/myBinding

Policy Inquiry [piquery]

AgquaLogic Enterprise Security stores the contents of a policy inquiry in the policy database. This
file contains examples of policy inquiries to import and store in the policy database. Each query
can span multiple lines, can have multiple lines of each type, but must have a minimum of one
line. The first line of each query must specify the privilege, the effect (grant or deny), the query
owner and the query title.

Each line has the following syntax:
P/0/S oneQualifiedName grant/deny queryOwner queryTitleMayhaveSpace
where P/0/S stands for privi lege, object (resource), and subject.

Listing 4-15 shows policy inquiry examples.

Listing 4-15 Policy Inquiry Examples

Sample query 1:

o

//priv/delete grant //user/ales/system/ Saved Policy Inquiry #1
//app/policy/myApplication/myBinding grant //user/ales/system/

Saved Policy Inquiry #1
//ales/ales/userid/ grant //user/ales/system/ Saved Policy Inquiry #1

o

Sample query 2 (same content as query 1):

//priv/delete grant //user/ales/system/ Policy Inquiry #2
//app/policy/myApplication/myBinding
//ales/ales/userid/

Sample query 3:

//priv/delete grant //user/ales/system/ Policy Inquiry #3

¥ UV H »W O UV H O

Sample query 4:

Policy Managers Guide 4-13

P //priv/delete deny //user/ales/system/ PIQuery4
P //priv/create
0 //app/policy/myApplication

Policy Verification [pvquery]
Agualogic Enterprise Security stores the contents of a policy verification in the policy database.

This file defines policy verification queries to import and store in the database. Each query spans
multiple lines. The first line of each query must have the owner and title, in the following syntax:

LP/RO/RP/RO oneQualifiedName queryOwner queryname
A query name may contain spaces.

Listing 4-16 shows policy verification examples:

Listing 4-16 Policy Verification Examples

Sample query 1:

LP //priv/delete //user/ales/system/ Policy Verification #1
LO //app/policy/myApp/firstResource //user/ales/system/ Policy Verification #1
RP //priv/create //user/ales/system/ Policy Verification #1
RO //app/policy/myApp/secondResource //user/ales/system/ Policy Verification #1

Sample query 2 (query content is the same as query 1):

LP //priv/delete //user/ales/system/ Policy Verification #2
LO //app/policy/myApp/firstResource

RP //priv/create

RO //app/policy/myApp/secondResource

Sample query 3:

LP * //user/ales/system/ Policy Verification #3

LO //app/policy/myApp/firstResource //user/ales/system/ Policy Verification #3
RP //priv/delete //user/ales/system/ Policy Verification #3

RO //app/policy/myApp/secondResource //user/ales/system/ Policy Verification #3

Sample query 4:

LP * //user/ales/system/ PolicyVerification#4

LO //app/policy/myApp/firstResource //user/ales/system/ PolicyVerification#4
RP * //user/ales/system/ PolicyVerification#4

RO //app/policy/myApp/secondResource //user/ales/system/ PolicyVerification#4

4-14 Policy Managers Guide

Sample Policy Files

Privileges [priv]

This file contains a sample list of privilege names. Each privilege name must start with the prefix:
//priv/

Examples:

//priv/read

//priv/Read

//priv/search_file

//priv/search_text

Privilege Bindings [privbinding]

This file contains examples of how privileges are bound to privilege groups. Each line contains
a privilege group followed by a privilege.

Examples:

//grp/myPrivGroup //priv/read
//grp/myPrivGroup //priv/search_file
//grp/myPrivGroup //priv/search_text
//grp/DevelopmentGroup //priv/read
//grp/DevelopmentGroup //priv/Read

Privilege Groups [privgrp]
This file contains examples of privilege group names. Each privilege group name must start with
the prefix:

//grp/
Examples:

//grp/myPrivGroup
//grp/DevelopmentGroup

Policy Managers Guide 4-15

4-76

Role [role]

This file defines a list of role names. Roles are used to construct policies. Each line contains a
role name. Each role name is prefixed with:

//role/

Examples:

//role/manager
//role/QA
//role/trading_Manager
//role/salesEngineer
//role/junior_trader
//role/salesPerson
//role/trader

Rule [rule]

Rules are used by the ASI Authorizer to make authorization and role mapping decisions. This file
lists rules with their rule text conforming to rule syntax. Each line contains one rule, a grant, deny,
or delegate rule. Sample entries assume all of the referenced roles, privileges, resources, users,
groups and declarations exist in the policy database.

Examples:

grant(//role/Administrators, //app/policy/myApplication,
//user/ales/system/);

grant(//priv/read, //app/policy/myApplication, //sgrp/ales/allusers/);
deny([//priv/read, //priv/search_text],
//app/policy/myApplication/myBinding/confidentialDocument.one,
//role/public);

delegate(//role/Administrators, //app/policy/myApplication,
//user/ales/John Doe/, //user/ales/system/) if dayofweek in weekend;

Policy Managers Guide

Sample Policy Files

Distribution Targets
There are two types of distribution targets in BEA AqualLogic Enterprise Security:

e The Authorization and Role Mapping providers that enforce policy

e The Service Control Manager that manages configuration changes

Both of these targets retrieve their policy data from the policy distributor. The security providers
receive only policy related changes and the Service Control Manager retrieves only configuration
related changes. The file called engine lists the names of the security providers and the Service
Control Manager and respective type.

The name is qualified by the prefix:
//bind/

The names are referred to by the application binding file (binding) and must be imported before
the application binding file.

Examples:
//bind/mySCM SCM

Subject Group Membership [member]
This file lists subject group membership. Each record has one of the following formats:

//sgrp/dirName/aSubjectGroupName/ //sgrp/dirName/aSubjectGroupMemberName/
//sgrp/dirName/aSubjectGroupName/ //user/dirName/aUserMemberName/

When you define subject group memberships, the subject group and members must comply with
the following requirements:

e The subject group and the member must be in the same directory.

e One user may belong to many subject groups.

One subject group may be a member of many subject groups.

Two subject groups that have common members cannot become mutually exclusive.

e Both subject groups and their members must exist in the policy database before the
membership can be loaded successfully.

For an example of a Member policy file, see Listing 4-17.

Policy Managers Guide 4-7117

4-78

Listing 4-17 Sample Member Policy File

//sgrp/CA_Office/junior_trader/
//sgrp/CA_Office/trader/
//sgrp/CA_Office/senior trader/
//sgrp/CA_Office/salesEngineer/
//sgrp/CA_Office/salesPerson/

//sgrp/CA_Office/junior_trader/
//sgrp/CA_Office/senior trader/
//sgrp/CA_Office/trading_Manager/
//sgrp/CA_Office/salesPerson/
//sgrp/CA_Office/customer/

//sgrp/CA_Office/trader/
//sgrp/CA_Office/senior trader/
//sgrp/CA_Office/trading_Manager/
//sgrp/CA_Office/salesManager/
//sgrp/CA_Office/salesManager/

//user/CA_Office/user_a@mycom.com/
//user/CA_Office/user_b@mycom.com/
//user/CA_Office/user_c@mycom.com/
//user/CA_Office/user_d@mycom.com/
//user/CA_Office/user_e@mycom.com/

Subjects [subject]

This file contains a list of users and subject groups. Each record must have one of the following

formats:

//user/dirName/aUserName/
//sgrp/dirName/aSubjectGroupName/

The directory name must be formatted as //dir/dirName and it must exist in the policy database

before its subjects can be loaded successfully.

For an example of a Subjects policy file, see Listing 4-18.

Listing 4-18 Sample Subjects Policy File

//user/CA_Office/user_a@mycom.com/
//user/CA_OfFfice/user_b@mycom.com/
//user/CA_Office/user_c@mycom.com/
//user/CA_Office/user_d@mycom.com/
//user/CA_Office/user_e@mycom.com/

//sgrp/CA_Office/junior_trader/
//sgrp/CA_Office/trader/
//sgrp/CA_Office/senior trader/
//sgrp/CA_Office/salesEngineer/
//sgrp/CA_Office/salesPerson/

Policy Managers Guide

Using Response Attributes

//sgrp/CA_Office/salesManager/
//sgrp/CA_Office/trading_Manager/
//sgrp/CA_Office/customer/

//user/NY_Office/user_1/
//sgrp/NY_Office/sgrpl/

Using Response Attributes

Response attributes are defined as a list of the attributes you want to return from the authorization
system when a request is made by an application. Response attributes provide a mechanism for
allowing the authorization system to pass arbitrary information back through the Security
Framework to the caller. The use of this information is typically application specific. Some
examples of how you can use response attributes include:

e Personalization—The decision as to what resources to display on a portal may be tied
closely to the security policy. Suppose that when a user enters the portal, the portal
displays a list of accounts and menu options denoting operations on the accounts. If a user
attempts to access a particular item and the attempt is rejected for security reasons, the
portal has limited effectiveness. That is, the portal may serve as an information source used
for future attacks. By tying the security policy directly to the portal, only the resources that
the user is allowed to access are displayed.

e Business process flow —Business processes often have inter-task dependencies. For
example, suppose that a senior trader has the ability to override the rejection of a trade
placed by a junior trader. To make this decision, the senior trader would have to take into
account the reasons why the proposed trade violates the security policy, which could be the
trade amount, the risk profile, or any of several other reasons. By enhancing the
authorization decision with that context, subsequent authorization decisions based on that
context can be enabled.

e Transaction specific data—An application may need specific facts about authorized or
rejected transactions. For example, the application may want to display the post-trade
balance for an executed transaction, information that typically would be calculated as part
of the authorization process but not returned as part of the authorization decision.

Response attributes are typically specified using built-in evaluation functions that report
name/value pairs. There are two functions for returning attributes: report() and report_as().
These functions always return TRUE (if there are no errors), and their information is passed to your
application as response attributes, embedded within the ResponseContextCol lector.

Policy Managers Guide 4-19

4-80

You use report() and report_as() in the policy after an 1F statement used in a constraint. It is
best to use them in a logical if this policy is evaluated, then manner, even though "then" does not
exist in the language.

For example:

if (constraint) and report_as (name,value);

Note: The evaluated policy must result in a GRANT or DENY decision in order for the
report() and report_as() functions to be invoked. Consider the following usage:

o |f the evaluated policy is applicable (based on action, resource, subject, and
constraint expression evaluated to TRUE), then report() and report_as() are
invoked for a GRANT or DENY decision.

o |f the evaluated policy is not applicable, for example in the case of an ABSTAIN
decision, it is just skipped. (If an authorization policy has no policies set on a
resource an ABSTAIN result is returned.) If the policy is skipped, then report()
and report_as() are not invoked.

While the functions are run when the policy is evaluated, they are not really constraints of the
policy. Data reported by the functions are returned only if the adjudicated authorization decision
agrees with the policy. This means the attributes returned from GRANT policies are not passed to
the caller unless the overall access decision is PERMIT.

The following topics provide more information on using response attributes:

“report() Function” on page 4-80

“report_as() Function” on page 4-81

“Report Function Policy Language” on page 4-81

“Using Evaluation Plug-ins to Specify Response Attributes” on page 4-82

report() Function

The report function takes one or more attributes as input parameters and sets a corresponding
response attribute with the name/value pair of the supplied attributes. For example, suppose you
have the attribute called department, containing the value Accounting. If the following
constraint was evaluated:

IF report(department);

the response attribute (department = accounting) is set in the response context results. Your
client application can then use this information in many ways, for example:

Policy Managers Guide

Using Response Attributes

e As a parameter in a database query where it filters the query results by department
e To personalize a portal page with an accounting department template

e To update the record being modified with the department information

report_as() Function

The report_as function loads a named response attribute with a specified value. The value may
be an attribute, a constant or a string literal. You can specify multiple values, in which case the
response attribute is returned as a list.

IF report_as(“error”,"Your account balance is too low);

IF report_as(''query', "Select * from record_table where dept_type = "
department);

IF report_as('userlogin™, trading_login,trading_password);

IF report_as(C'url™,"http://www.xyz.com/userinfo/xyz100383.htm™);

Report Function Policy Language

The report function returns the name/value pair of the specified attribute. The value may be a
one or more strings and is determined using the attribute retrieval mechanism of the authorization
system. This means that the attribute can come from the following sources: system, user, resource
or context.

The report_as function allows you to write the policy to specify both the attribute name and
value:

report_as("'company', '""BEA Systems')
Additionally, you can specify a list of values, as follows:
report_as("accounts’, "123", "456', ''789')

The value portion of the report function supports de-referencing. Assume the user attribute
favorite_color is part of a user profile. You can put the following statement into a policy:

report_as('window_background', favorite_color)

This allows you to set the response attribute window_background with the value of the favorite
color that is stored in another attribute. You can use any of the supported language data types as
values, but they are all returned to the provider using their string representation and no additional
type data is transmitted.

Policy Managers Guide 4-81

4-82

Reporting the same attribute multiple times from the same policy results in only the last report
clause date being used. For example:

grant (p,o,s) if report as ("car”, "porche”) and report_as ("car”’, “ford”);

where: (p,0,s) is shorthand for privilege, object, and subject, results in the response attribute
car = ford

Using Evaluation Plug-ins to Specify Response Attributes

The ASI Authorization and ASI Role Mapping providers support the use of custom evaluation
plug-ins to generate response attributes. The report and report_as functions are just special
implementations of ASI Authorization and ASI Role Mapping provider plug-ins. Using custom
evaluation functions, you can write even more complex statements. For example, the following
policy retrieves the current stock price from an authoritative source.

grant(//priv/lookup, //app/policy/stockprice, //role/everyone)
if report_stock price(""BEAS™);

A plug-in that implements this function must handle all of the logic required to obtain the actual
stock price and then return it in a response attribute. Listing 4-19 shows an example of how to use
a plug-in to implement this function.

Listing 4-19 Stock Price Function Implementation

TruthValue report_stock price(Session &sess, const char *fname,
char **argv) {

const char* stock_symbol=argv[0];
//1ookup stock price using custom logic
double price;
bool found = lookup_stock price(stock_symbol, &price);
if(1found) {

return TV_FALSE;//price not found

}
//change numeric value into a string
char pricestr[1024];
snprintf(pricestr,1023,"%f",price);
//setup the return data
sess.appendReturnData(''stock _price",

new AttributeValue((const char*)pricestr));

Policy Managers Guide

Using queryResources and grantedResources

return TV_TRUE;

For additional information on using ASI Authorization and ASI Role Mapping provider plug-ins,
see Provider Extensions in the Administration Reference Guide.

Using queryResources and grantedResources

This feature allows a caller to query the authorization system to determine access on a set of
resources rather then a single resource. The ASI Authorization provider determines access to all
child nodes of the node specified in the access query, and returns lists indicating which nodes are
granted and which nodes are denied.

The client performs an isAccessAl lowed query on the parentResource. This resource must
be a binding node or a resource of a binding node.

The queryResources functionality evaluation is triggered by the presence of some grvalue
value in the com.bea.security.authorization.queryResources attribute of the
ContextHandler. The access decision for the parentResource is returned, as normal. One of
the return attributes for this decision is a
com.bea.security.Authorization.grantedResources return attribute. One of the return
attributes for this decision isa com.bea.security.Authorization.deniedResources return
attribute.

For grantedResources, the value of this attribute is a list of values for the qrvalue resource
attribute; or, if the grvalue is an empty string, the value is the internal ASI Authorizer name for
the resource. This list is an intersection of all child nodes of parentResource and all resources
for which the ASI Authorization provider and ASI Role Mapping provider and role policy
evaluates to GRANT. If the grvalue attribute is not defined on a particular child node, it is omitted
to allow an application to deal with identification of the resource other than the internal ASI
Authorizer representation of it, which is not trivial to convert back to the framework resource.

This list can contain duplicate values. If the empty value for the grvalue is used, the returned
resource name is unique and defined for each child node.

The same applies for the deniedResources, except for the resources that the policy evaluates to
DENY. For example, assume that an application makes an isAccessAl lowed call on the
//app/policy/Foo resource and sets the value of the queryResources attribute to

Policy Managers Guide 4-83

http://e-docs.bea.com/ales/docs26/adminref/plugins.html

object_id. The authorization policy has no policies set on the Foo resource, thus an ABSTAIN
result is returned.

Now let’s assume that Foo has child nodes Foo/A, Foo/B, Foo/C. The authorization policy allows
access to Foo/A and Foo/C, given the role policy on Foo by all providers, and the role policy for
Aand C for a security provider. Assume that A and C have an object_id resource attribute equal
to "rA" and "rC". Then, the above query returns an attribute grantedResources with the value
["rA", "rC"].

For role providers other than the ASI Role Mapper provider, roles granted on the
parentResource are assumed to apply to all child nodes of the parentResource. For the role
policy, it is evaluated as usual for all child nodes.

To receive the results, you must supply a ResponseContextCol lector in the ContextHandler
request.

When the application needs to call into the Security Framework to query resources it passes in:

AppContextElement grElement = new SimpleContextElement(
""com.bea.security.authorization.", "queryResources', "name');
appContext.addElement(qrElement);

When it retrieves the list of resources from the response, for granted resources, it must call:

AppContextElement granted = responseContext.getElement(
""com.bea.security.Authorization.grantedResources™);

or, for denied resources:

AppContextElement denied = responseContext.getElement(
"'com.bea.security.Authorization.deniedResources™);

Note: The case for authorization on the request and the response is not the same.

Resource Discovery

4-84

When developing policy for use with a Security Service Module, you can use the Discovery mode
to help build your policy. Understanding how to write a policy requires that you understand the
application you want to protect, the policy representations, and the mapping between the two.

Note: You should never use Discovery mode in a production environment. Discovery mode is
used in the development environment to create the bootstrap security policy.

A typical policy consists of the following elements:

e Resources

Policy Managers Guide

Resource Discovery

e Privileges

e Roles

e Attributes (user, group and resource)

e Attributes, privileges, and resource associations

e Rules to grant privileges on resources through roles

e Rules to grant roles to users

The ASI Authorization and ASI Role Mapping providers support a Discovery mode that helps
make this task easier. Typically, these providers answer questions about security, but when in
Discovery mode, the providers record information about those questions to build your policy (for
example, what privileges and resources must be granted to view a particular web page).

To use Discovery mode, you must modify the command line that starts your Security Service
Module by adding the following system properties:

com.bea.security.providers.authorization.asi.AuthorizationProviderImpl._dis
coverymode=true

com.bea.security.providers.authorization.asi.RoleProvideriImpl.discoverymod
e=true

You set the system properties using the -D command-line switch in the appropriate file,
depending on which Security Service Module (SSM) you are targeting. Table 4-23 lists the files
and their default locations for each type of SSM.

Table 4-23 Setting System Properties for Discovery Mode

Security Service File Name File Default Location
Module Type
Apache set-env.sh (UNIXonly) BEA_HOME\ales26-ssm\apache-ssm\
instance\
<instancename>\bin
11S Web Server set-env.bat (Windows BEA_HOME\ales26-ssm\iis-ssm\instance\
only) <instancename>\bin

Java

set-env.bat (.sh for BEA_HOME\ales26-ssm\java-ssm\instance\
UNIX) <instancename>\bin

Policy Managers Guide 4-85

Tahle 4-23 Setting System Properties for Discovery Mode

Security Service File Name File Default Location
Module Type
Web Services wlesws ._.wrapper.conf BEA_HOME\ales26-ssm\webservice-ssm\

instance\<instancename>\config

WebLogic Server8.1 set-wls-env._bat (.sh BEA_HOME\ales26-ssm\wls-ssm\instance\

for UNIX) <instancename>\bin

4-86

Note: The policy files are stored in the domain directory from which the startwWeblogic.bat
or startWeblogic.sh script is started and configured to run in Discovery mode.

A sample policy is recorded by the providers as you traverse an application. This is a learning
process for the providers and they can only learn about the parts of the application that you use.
If a portion of the application is not used, no information or policy about it is recorded. The
generated policy is output to a set of files that you can import later, by using the Policy Import
tool described in “Importing Policy Data” on page 7-1.

Among other things, the ASI Authorization and ASI Role Mapping providers transform their
requests into a proprietary format. A request consists of the following four elements:

e Subject
e Resource
e Action

e Attributes

The ASI Authorizer providers build this information based on data contained in the request to the
provider. Each of these elements has different restrictions on the allowable character set. The
providers automatically normalize any invalid characters to produce a valid entry. See “Character
Restrictions in Policy Data” on page 4-58 for further details.

Policy Managers Guide

CHAPTERa

Using the Entitlements Management
Tool

This section covers the following topics:
e “What is the Entitlements Management Tool?” on page 5-1
e “Setting Up the Entitlements Management Tool” on page 5-5
e “Using the Entitlements Management Tool” on page 5-8
e “Working with Roles” on page 5-9
e “Working with Identities” on page 5-14
e “Working with Permissions and Permission Sets” on page 5-16
e “Separation of Duties Constraints” on page 5-20

e “Generating Reports” on page 5-22

What is the Entitlements Management Tool?

In addition to the Administration Console, AquaLogic Enterprise Security includes another user
interface, the Entitlements Management Tool. The Entitlements Management Tool can be used
by business users to manage roles, users and groups, and entitlements. This user interface enables
you to manage your users’ entitlements based on the Roles Based Access Control (RBAC) model.
The Entitlements Management Tool enables business users to answer questions like “what
entitlements does a user have?” or “which users are allowed to access a given resource?”

Policy Managers Guide 5-1

5-2

Understanding the RBAC Model

The Entitlements Management Tool implements a hierarchical RBAC model. In this model, there
is a seniority relationship between roles: senior roles inherit the permissions of their juniors and
junior roles inherit members of their parents. In this way, data is inherited in both directions, with
membership moving down and permissions moving up the tree. Using a hierarchical model
makes it possible to aggregate permissions associated with users.

Figure 5-1 Roles Based Inheritance

T

Senior
Roles
:.;:':.D
@ =
O
= Role B
3 . -
o Hierarchy E
i @
7] ('
-y
2
Juniar
Rolgs

The Entitlements Management Tool displays which permissions and roles are assigned directly
and which are inherited.

ALES RBAC Model Concepts

Four important concepts to understand in the ALES RBAC Model are:

e roles

Policy Managers Guide

What is the Entitlements Management Tool?

e permissions
e permission sets

e separation of duties constraints

Roles are defined to represent job functions in an organization (for example, teller or executive
VP of Finance). A role’s collection of permissions (and permission sets) represent the set of
entitlements for a role — all of the actions that a role can take within a system. Roles can have
attributes that will be available to the authorization system at runtime. Attributes follow the
RBAC inheritance model from the child to the parent, so a parent role will have all the attributes
of its child roles. Users and groups are assigned to roles via membership rules. A user or group
can be assigned directly to a role, or conditionally assigned to a role.

Permissions are named objects that represent an action on a resource. Permission sets are named
hierarchical objects that are collections of permissions. Under the inheritance model of the
permission set hierarchy, parent permission sets inherit permissions and attributes from their
children. Like roles, permissions and permission sets can have attributes that will be available to
the authorization system at runtime. Permissions can either be assigned directly to a role, or to a
permission set that is in turn assigned to a role. Attributes follow the RBAC inheritance model
from the child to the parent, so a parent permission set will have all the attributes of its child
permissions or permission sets.

Separation of duties constraints define exclusive relationships between roles. A separation of
duties constraint allows you to say, for example: If a user has the role auditor he can not also have
the role of trader. At runtime, the system will not allow a user to have both roles at the same time
and thereby prevent a user from having incompatible permissions.

Summary of Entitlements Management Tool Functions

The Entitlements Management Tool provides the following functions:
e “Role Management Functions” on page 5-4
L

e “Permission Management Functions” on page 5-4

“Separation of Duties Functions” on page 5-4

“Entitlements Reporting Functions” on page 5-4

Policy Managers Guide 5-3

Role Management Functions
Use the Roles node in the Entitlements Management Tool to:

e Create, delete, and copy roles

e Add and remove attributes to roles

e Add and remove users and groups to roles
e Add or remove permission sets to roles

e Add or remove permissions to roles

e Set role mapping constraints

e Scope roles to resources
For more information, see “Working with Roles” on page 5-9.

Permission Management Functions
Use the Permissions node in the Entitlements Management Tool to:

e Create, delete, or copy permissions and permission sets

e Add or remove a permission or a permission set to a permission set
For more information, see “Working with Permissions and Permission Sets” on page 5-16

Separation of Duties Functions
Use the Separation of Duties node in the Entitlements Management Tool to:

e Add or remove separation of duty constraints on roles

e Find conflicts in separation of duty constraints on roles
For more information, see “Separation of Duties Constraints” on page 5-20

Entitlements Reporting Functions
Use the Reports node in the Entitlements Management Tool to:

e What permissions does a user have

e What users have a permission

5-4 Policy Managers Guide

Setting Up the Entitlements Management Tool

e What groups is a user a member of
e What roles is a user a member of

e What users are a member of a role
e What permissions does a role have

e What roles is a permission associated with

For more information, see “Generating Reports” on page 5-22

Setting Up the Entitlements Management Tool

Before you can use the Entitlements Management Tool, you need to do the following:
e “Load the Entitlements Management Tool Policies” on page 5-5

e “Deploy the Entitlements Management Tool Web Application” on page 5-6

Load the Entitlements Management Tool Policies

Before you can use the Entitlements Management Tool, you need to load the policies that govern
access to and use of the tool. To load these policies:

1. Using the Policy Import tool (policyloader), load the policies using the edited
load.entitlements.conf file, using a command like the following:

--\..\bin\policyloader.bat
<bea_home>\ales26-admin\entitlements\policy\load.entitlements.conf

For more information about the Policyloader utility, see “Importing Policy Data” on
page 7-1.

2. Make sure there were no errors on import.
3. Set new passwords for the default users:

a. Log intothe ALES Administration Console and open the Identity node in the navigation
tree.

b. Inthe right pane, select asi, then select user.

c. Select one of the default Entitlements Management Tool users, for example rolesadmin,
and click the Edit button to set a new password for this user.

Policy Managers Guide 5-5

5-6

d.

Repeat for each of the other Entitlements Management Tool users (rbacadmin,
permissionsadmin, reportingadmin).

Deploy the Entitlements Management Tool Web Application

The procedure for deploying the Entitlements Management Tool Web application depends on
which servlet container you are using:

e “Deploying on WebLogic Server 9.x” on page 5-6

e “Deploying on WebLogic Server 8.1” on page 5-7

e “Deploying on Apache Tomcat” on page 5-7

Deploying on WebLogic Server 9.x

1. Start the WebLogic Server Administration Console for the WebLogic Server instance where
the ALES Administration Server is installed.

2. Inthe Change Center of the WebLogic Server Administration Console, click Lock & Edit.

3. In the Domain Structure panel of the WebLogic Server Administration Console, click
Deployments.

4. Click Install.

a.

d.

e.

Locate the Entitlements Management Tool WAR file by navigating to
<bea_home>\ales26-admin\entitlements\wls9.

Select entitlementsadministration.war and click Next.
Click Next.

Click Next.

Click Finish.

5. In the Change Center of the WebLogic Server Administration Console, click Activate
Changes.

6. On the Deployments page, select the entitlementsadministration application.

7. Select Start > Servicing all requests and click Yes.

Policy Managers Guide

Setting Up the Entitlements Management Tool

Deploying on WebLogic Server 8.1

1. Start the WebLogic Server Administration Console for the WebLogic Server instance where
the ALES Administration Server is installed.

2. Inthe left panel of the WebLogic Server Administration Console, select Deployments > Web
Application Modules.

Click Deploy a new Web Application Module.
Navigate to <host>\<bea_home>\ales26-admin\entitlements\wls8.

Select entitlementsadministration.war and click Next.

o o~ w

Click Deploy.

Deploying on Apache Tomcat
1. Stop the ALES Administration Server if it is running.

2. Copy the WAR file for the Entitlements Management Tool,
entitlementsadministration.war, from
<bea_home>\ales26-admin\entitlements\tomcat\ to
<bea_home>\ales26-admin\asiDomain\applications\.

3. Restart the ALES administration server. The Entitlements Management Tool will be loaded.

Configuring the RBAC Model in SSMs

This section describes how to configure a Security Service Module to use the RBAC model.

1. Install the SSM and create the SSM instance that you will use to secure your applications. For
more information, see the Installing the Security Service Module guide for the type of SSM
you are using.

2. Add the RBAC policy. In the ALES Administration Console, add authorization policies for
the resources you want to secure like the following:

grant(any, //app/policy/resourcename, //role/Everyone) if
rbac_eval_action_resource_in_entitlements(entitlements,sys_privilege);

3. Distribute the policies.

4. Setthe metadirectory for the ASIAuthorizer provider. This procedure depends on which SSM
you are configuring. For SSMs other than the WLS 9.x SSM:

Policy Managers Guide 5-7

a. Inthe ALES Administration Console, navigate to ASIAuthorizationProvider.

b. Inthe Metadirectory tab for the ASIAuthorizationProvider, check the Use
Metadirectory checkbox and set JDBC URL, JDBC Driver, Database System,
Database Login, and Database Login Password to the same values as in the
DatabaseAuthenticator configured for the asiadmin security configuration.

c. Distribute the configuration.
For the WLS 9.x SSM:

a. Inthe WebLogic Server Administration Console, select Security Realms and select the
security realm you are configuring.

b. Inthe Providers: Authorization tab, select the ASIAuthorizer.

c. On the Provider-Specific tab for the ASIAuthorizer, check the Use Metadirectory
checkbox and set JDBC URL, JDBC Driver, Database System, Database Login, and
Database Login Password to the same values as in the DatabaseAuthenticator
configured for the asiadmin security configuration.

d. Inthe Change Center of WebLogic Server Administration Console, click Activate
Changes.

5. Restart the application or application server.

Using the Entitlements Management Tool

The Entitlements Management Tool is a browser-based web application. You can access it at this
URL:

https://<hostname>:7010/entitlementsadministration

Like the ALES Administration Console, the Entitlements Management Tool supports only the
Microsoft Internet Explorer browser.

Saving and Distributing Changes

When you use the Entitlements Management Tool to make changes, the tool’s Save Changes and
Revert Changes buttons become active. The Entitlements Management Tool uses a transactional
change model; after you have made all the changes you need to make and click Save Changes,
all the changes are committed in a single transaction. If the changes require it, they are distributed
through the ALES Business Logic Manager.

5-8 Policy Managers Guide

Working with Roles

Security for the Entitlements Management Tool

The Entitlements Management Tool defines the following roles by default that limit access to the
tool:

Table 5-1 Default Roles

Role Description

RBACAdmin The RBACAdmin can perform all possible operations in the Entitlements
Management Tool.

RolesAdmin The Roles Admin can work only in the roles section of the navigation tree

in the Entitlements Management Tool.

SodAdmin The SoD Admin can work only in the Separation of Duties section of the
navigation tree in the Entitlements Management Tool.

PermissionsAdmin The Permissions Admin can work only in the permissions section of the
navigation tree in the Entitlements Management Tool.

ReportingAdmin The Reporting Admin can only generate reports.

The following users are defined by default, with the following roles:

Table 5-2 Default Users

User Name Role

system RBACadmin
rolesadm RolesAdmin
permadm PermissionsAdmin
reportingadm ReportingAdmin

Working with Roles

The Entitlements Management Tool enables you to create hierarchies of roles. In a hierarchical
role system, you can create a tree of roles, with each parent node in the tree possessing all the
permissions of its child roles.

Policy Managers Guide 5-9

5-10

Viewing Roles

To view all the roles defined in your ALES security realm, in the left panel of the Entitlements
Management Tool, expand Entitlements Management > All Roles. The Roles summary page
displays a role’s entitlements, with separate columns indicating which permissions are directly
assigned, inherited from child roles, or denied to this role.

Figure 5-2 Roles Summary Page

4"} ANUALOEIC ENTERPRISE SECURITY

% hea ENTITLEMENTS ADMINISTRATION

=+ Entitlernents Management

\Z All Roles Role

= reaCAdmin
= Summary : Peumissions Membership Rules Attributes

ermissionsadmin

eportingadrmin

Direct Permissions: nherited Permissions: Denied Permissions:
clestdmin || mrectTermisBns. onner
& sodad accessAftributes -
A Sodacdmin accesshemberPules
i3 Permissions accessPermissions
{3 Separation of Duties accessRoles
[Reparts accessSods

accessSubjects
accesspSets

add

addPermission
addPermissionSet
addFole

clone
clonePermission
clonePemissionSet
cloneRole

move
movePermission ™

Mew Clone Rename

Remove Maove

Creating a New Role

To create a new role:

1.

In the left panel of the Entitlements Management Tool, expand Entitlements Management
> All Roles and then select the parent role under which you want to create a new role.

At the bottom of the left panel of the Entitlements Management Tool, click the Add button.
In the New Child Node page, give the new role a name and click OK.

Next, assign permissions or permission sets to the new role.

Policy Managers Guide

Working with Roles

To assign a permission to a role:

a. Inthe left panel of the Entitlements Management Tool, select the new role and click the
Permissions tab at the top of the right panel of the Entitlements Management Tool.

b. Click Modify Permissions. The Add Permissions to Role page appears. Use the Add
and Remove buttons to specify the permissions you want to assign to the role and click
OK.

Figure 5-3 Adding Permissions to a Role

Modify Permissions for Role RolesAdmin

Available Permissions: Selected Permissions:

accessAtributes ||accessRoles
accesshemberRules I
accessPermissions
accessSods
accessSubjects
accesspoets

add

addPermission
addPermissionSet
addRole

clane
clonePermission
clonePermissionSet
cloneRaole

mowve
movePermission
movePermissionSet
moveRole

rerove
rernovePermission
rernovePermissionSet

To assign a permission set to a role:

a. Inthe left panel of the Entitlements Management Tool, select the new role and click the
Permissions tab at the top of the right panel of the Entitlements Management Tool.

b. Click Modify Sets. The Add Permission Sets page appears. The left column lists the
names of the permission sets that have been defined in your installation.

Policy Managers Guide 5-11

5-12

Figure 5-4 Adding Permission Sets to a Role

Select Permission Set to add to role: RolesAdmin

Permission Sets: Permissions For:
- [all Parmission Sets Permissiontanagement
[JpermissionManagement | accessgﬁribgte_s
) |accessPermissions
[Jrepartingtanagement |accesspSets
RoleManagement | addPermission
[Jscotanagement |addPermissionSet

|clanePermissian

| clanePermissionSet
|movePermissian
|movePermissionSet
|remavePermission
|removePermissionSet
|renamePermission
|renamePermissionSet
|vigwPermission
|vigwPermissionSet
EviewPermissionsNode

c. Select a permission set and the permissions contained in that permission set are displayed
in the right column.

d. Check the names of the permissions you want to assign to the role and click Ok.

5. Define the membership of the new role. Click the Membership Rules tab at the top of the
right panel of the Entitlements Management Tool and click New.

The New Member Rule page appears. In the Subject tab, you can select the users or
groups to include (using the Grant option) or exclude (using the Deny option) from the
new role. Use the Add and Remove buttons to specify the users or groups covered by the
grant or deny rule and click OK.

6. Further define the role using the Conditions tab. You can limit membership in a role based
on the presence or absence of attribute values you have previously defined as Declarations in
the ALES Administration Console. For information about using declarations, see
“Declarations” on page 2-14.

Policy Managers Guide

Working with Roles

In the Conditions field, enter one or more attribute-based conditions, such as:
if subject.location = “New York”

This member rule will apply only if the subject has the specified attribute name/value pair.

Assigning Role Attributes

You can assign attributes to roles. An attribute is a name/value pair that will be available to the
ALES authorization system at run time. Assigning an attribute enables the creation of
authorization policies based on the attribute value.

To assign an attribute to a role:

1. In the left panel of the Entitlements Management Tool, expand Entitlements Management
> All Roles and then select the role.

2. Inthe right panel, click the Attributes tab and click 1, ».

3. Inthe Modify Role Attribute page, enter the name and value of the attribute you want to
assign.

Modifying and Removing Roles
You can use the Entitlements Management Tool to move, clone, delete, modify, or rename roles.

To move a role:

1. In the left panel of the Entitlements Management Tool, select the role you want to move and
click Move.

2. Inthe Select the destination node page, select the role that should be the parent in the roles
hierarchy and click OK.

The role you moved, including all its child roles, is now a child of a different parent in the
roles hierarchy.

To clone a role:

1. Inthe left panel of the Entitlements Management Tool, select the role you want to copy and
click Clone.

2. Inthe Select the destination to clone page, select the role that should be the parent of the
cloned role in the roles hierarchy and click OK.

The role you cloned, including all its child roles, is now a child of a different parent in the
roles hierarchy, while the original remains in its original place in the roles hierarchy. You

Policy Managers Guide 5-13

then may want to modify the new cloned role to fit its purpose, including renaming the
role.

To delete a role:

1. Inthe left panel of the Entitlements Management Tool, select the role you want to delete and
click Remove.

2. Inthe Remove Node page, confirm that you want to delete the role and click OK.

The role you selected, including all its child roles, is deleted.

Working with Identities

5-14

You can use the Entitlements Management Tool to manage user and group identities in your
ALES security realm. The Identity node in the Entitlements Management Tool presents user and
group information on three tabs:

e “Users Tab” on page 5-14
e “Groups Tab” on page 5-15
e “Attributes Tab” on page 5-16

By default, the Identity node has a single child identity directory, named asi. You can use the
New and Remove buttons to add or delete other identity directories.

For more information about identities in ALES, see “Identities” on page 2-7.

Users Tah

To view all the users defined in your ALES security realm, in the left panel of the Entitlements
Management Tool, expand Entitlements Management > Identity > asi. The Users tab displays
user names, the groups each user is a member of, and attributes assigned to each user.

Policy Managers Guide

Working with Identities

Figure 5-5 Users Tab

Ches bESETRN e T
hhea ENTITLEMENTS AOMINISTRATION S ogout

= Entitlernents Managerment

@ all Roies \= asi Identity Directory

= & Identity
& asi USER | GROUP Altribules

[Permissions

(& Separation of Duties USER Graups that anonymous s a member of:
[CiReports |

permadmin
reporingadmin
rolesadrmin
sodadmin

system

[|

Attributes of User: anonymous
[Attribute Name Attribute Type Value

Mowy Showing:1 - 7 of 7
Filter|* gt
EMOVE

i -

il (il
o] (L]

You can use this page to add or remove users and to specify which groups a user is a member of.

To add a user to a group:
1. Inthe User column, select the username.
2. Inthe Groups column, click Modify.

3. Inthe Modify group membership window, use the Add and Remove buttons to set the user’s
group memberships and click Ok.

Groups Tah

To view all the groups defined in your ALES security realm, in the left panel of the Entitlements
Management Tool, expand Entitlements Management > Identity > asi and click the Groups
tab. You can use the Groups tab to add or remove groups and view a group’s members and
attributes.

Policy Managers Guide 5-15

Attributes Tab

To view all the identity attributes defined in your ALES security realm, in the left panel of the
Entitlements Management Tool, expand Entitlements Management > Identity > asi and click
the Attributes tab. You can use the Attributes tab to define identity attributes, which you can then
assign to users. You can also modify or remove attributes.

To define a new attribute:

1. In the left panel of the Entitlements Management Tool, expand Entitlements Management
> ldentity > asi and click the Attributes tab.

2. Inthe Attributes tab, click New. The New Attribute window opens.

3. Inthe New Attribute window, specify the new attribute’s name, type, and default value, and
whether the attribute is a list. Note that only list attributes can be group attributes. Click Ok.

To modify the value of an attribute for a user or group:
1. Select the name of the user or group.
2. Under Attributes, click Modify. The Modify User Attribute window opens.

3. Set the new value for the attribute and click Ok.

For more information about identity attributes, see “Identity Attributes” on page 2-8 and
Understanding Identity Attributes in the Administration Console help.

Working with Permissions and Permission Sets

5-16

Permissions can be assigned to roles directly or be assigned to permission sets that are then
assigned to roles. A permission set is a hierarchical collection of permissions that can be assigned
to roles. A child permission set can only have one parent, but a permission set or permission can
be assigned to many roles. In addition, permissions can be assigned to many permission sets.

Grouping permissions into permission sets can greatly ease the task of administering roles and
policies. Since individual permissions are so specific and small-grained, a given role might
require a large number of individual permissions. By grouping permissions into a permission set,
it can be easier to create and maintain roles and permissions that correspond to business tasks.

Viewing Permission Sets

To view all the permission sets defined in your ALES security realm, in the left panel of the
Entitlements Management Tool, expand Entitlements Management > Permissions > All

Policy Managers Guide

Working with Permissions and Permission Sets

Permission Sets. The Permission Sets summary page displays a permission set’s entitlements,
with separate columns indicating which permissions are directly assigned or inherited from child
sets. The Permissions tab enables adding or removing permissions in a permission set, while the
Attributes tab enables assigning attributes to a permission set, as described in “Assigning

Permission Attributes” on page 5-19.

Figure 5-6 Permission Sets Summary Page

/3" AUUALDEIC ENTERPRISE SECURLTY

4 b&a ENTITLEMENTS ADMINISTRATION

ER) &Il Roles
=2 REACAMIN
Ln‘?_ Permissionsadrmi
n

';‘?_ Reportingadrmin
[;‘?_ Ralesadrmin
';‘?_ Sodadrnin
I Permissions
B[R All Permission Sets
([, Permission™Man

[, RoleManagement
[, SODManagement
) Permissions
\% Separation of Duties

=5 Entitlerments Management

T T T]

Summary]

Direct Permissions:

accessAftributes
accessPermissions
accesspSets
addPermission
addPermissionSet
clonePermission

agement clonePermissionSet
[, ReportingManage ITID\IEPE!!’FH!ES\DTI
ment movePermissionSet

removePearmission
removePearmissionSet
renamePearmission
renamePearmissionSet
viewPermission

Permizsions:

Ahtributes

viewPermissionSet
viewPermissionsNode

Attributes Summary:
Value

[Name

Clores | | Rename
Remove| [Move

Creating a New Permission Set

To create a new permission set:

1. In the left panel of the Entitlements Management Tool, expand Entitlements Management >
Permissions and then select the parent node under which you want to create a new permission
set.

2. At the bottom of the left panel of the Entitlements Management Tool, click the Add button.

3. Inthe New Child Node page, give the new permission set a name and click OK.

Policy Managers Guide 5-11

4. Next, add permissions to the new permission set. In the left panel of the Entitlements
Management Tool, select the new permission set and click the Permissions tab at the top of
the right panel of the Entitlements Management Tool.

5. Click Modify. The Add Permissions to Permission Set page appears. Use the Add and
Remove buttons to specify the permissions you want to include in your new permission set
and click OK.

Figure 5-7 Adding Permissions to a Permission Set

Add Permissions to Permission Set: PermissionManagement

Available Permissions: Selected Permissions:

accesshemberRules accessAtributes
accessRoles accessPermissions
accessSods accesspoets
accessSubjects addPermission

add addPermissionSet
addRole clonePermission
clane clonePermissionSet
cloneRaole movePermission
move movePermissionSet
moveRole rernovePermission
rernove removePermissionSet
rernoveRole renamePermission
renarne renamePermissionSet
renameFole wiewPearmission
ressert viewPermissionSet
save viewPermissionsMNode
wiew

viewAttributes

viewhlemberRules

viewPermissions

viewReport

Filter [Ded

Modifying the Permission Set Hierarchy

By default, the Entitlements Management Tool has no permission sets defined, and the only level
of the permission set hierarchy is the All Permission Sets node. After you create one or more
permission sets, you can modify the permission set hierarchy in a number of ways:

e Use the Move button to move a permission set and all its children to a different node in the
hierarchy.

5-18 Policy Managers Guide

Working with Permissions and Permission Sets

e Use the Clone button to create a copy of a permission set that you can then modify.

1. In the left panel of the Entitlements Management Tool, expand Entitlements Management >
Permissions and then select the permission set you want to move. Click Move.

2. Inthe Select the destination node page, select the new parent node for the permission set you
are moving and click OK.

Assigning Permission Attributes

You can assign attributes to permissions and permission sets. An attribute is a name/value pair
that will be available to the ALES authorization system at run time. Assigning an attribute enables
the creation of authorization policies based on the attribute value.

To assign an attribute to a permission or permission set:

1. In the left panel of the Entitlements Management Tool, expand Entitlements Management >
Permissions and then select the permission or permission set.

2. Inthe right panel, click the Attributes tab and click New.

Figure 5-8 Adding Attributes to Permissions

New Permission Attribute for accessRoles

3. Inthe Modify Permission Attribute page, enter the name and value of the attribute you want
to assign.

Policy Managers Guide 5-19

Separation of Duties Constraints

5-20

Separation of duties constraints are used to prevent conflicts of interest in a role based system.
Without separation of duties constraints, the hierarchical role model can give users permissions
associated with conflicting roles. For example, suppose you have a trading system with Trader
and TradeAuditor roles, both reporting to a VP. Without a separation of duties constraint, users
with the VP role would inherit both the Trader and TradeAuditor entitlements. To ensure that the
same user could not be the originator of a trade and the approver of the same trade, you can create
a separation of duties constraint to that specifies that users with the TradeAuditor role cannot also
have the Trader role.

Separation of duties places constraints on the assignment of users to roles so that membership in
one role can preclude membership in another. The Separation of Duties node in the Entitlements
Management Tool enables you to select a defined role (which we will refer to as “the constrained
role”) and then specify which other roles are denied to subjects who have the constrained role.

To create a new separation of duty constraint:
1. In the left panel of the Entitlements Management Tool, select Separation of Duty.

2. Inthe Separation of Duty page, click New.
The Modify Separation of Duty page displays.

Policy Managers Guide

Separation of Duties Constraints

Figure 5-9 Adding Separation of Duties Constraints

Modify Separation of Duties for RolesAdmin

Select Role to create SOD rules for: Select Roles to deny based on being

=& &llRoles a mermber of Rolesadrin
=1 REACAMIN Name
& Permissionsadmin [0 allRoles
& Repartingadrmin [] ReaCAdmIn
E‘_é RalesAdmin [l Permissionsadrin
@ sodadmin [0 Reportingadmin
[Rolestdmin
[0 sSodadmin

3. From the tree of roles in the left column of the Modify Separation of Duty page, select the
role for which you want to define a constraint.

4. From the list of roles in the right column of the Modify Separation of Duty page, check the
roles that should be denied to subjects in the constrained role.

5. Click OK.

The Find Conflict button allows you to find any conflicting role assignment policies in the
system based on the separation of duties defined. If any conflicting roles exist, you need to
modify your role assignments to eliminate the conflicts.

Policy Managers Guide 5-21

Generating Reports

The Reports node of the Entitlement Management Tool enables you to generate reports about
subjects, roles, permissions, and permission sets in your security realm. The following reports are

available:

Table 5-3 Available Entitlement Reports

Report

Description

Subject’s Roles

Which roles does this subject have?

Subject’s Permissions

Which permissions does this subject
have?

Subject’s Permission Sets

Which permission sets does this
subject have?

Role’s Subjects

Which subjects have this role?

Role’s Permissions

Which permissions does this role
have?

Role’s Permission Sets

Which permission sets does this role
have?

Permission’s Permission Sets

Which permission sets does this
permission belong to?

Permission’s Roles

Which roles have this permission?

Permission’s Subjects

Which subjects have this permission?

Permission Set’s Permissions

Which permissions are members of
this permission set?

Permission Set’s Roles

Which roles have this permission set?

Permission Set’s Subjects

Which subjects have this permission
set?

5-22 Policy Managers Guide

Generating Reports

Figure 5-10 Reports in the Entitiements Management Tool

. "'}a AQUALOEIC ENTERPRISE SECURLTY

= [Entitlements Management
= (3@ Al Roles
@ [Permissions
C};‘g Separation of Duties
B0 Reports
& [Subject Reports
@ subject’s Roles
@ Subject's Permissio
ns
@ Subject's Permissio
n Sets
@ [Role Reports
@ [Permission Reports
@[5 Permission Set Reports

e R =
el [ial

All Roles that system belongs to

Subject{Type:Directory:Name):

Query Type:

/RBACAdmIn
/RBACAdmIn/PermissionsAdmin
/RBACAdmin/ReportingAdmin
/RBACAdmin/RolesAdmin
/RBACAdmIn/SodAdmin

O Direct @ All

To generate a Subject’s Roles report:

1. Inthe left panel of the Entitlements Management Tool, expand Reports > Subject and select

Subject’s Roles.

The Report page appears in the right panel.

2. Use the Select Subject button to browse for the name of a subject. The subject can be either

a user or a group.

3. Select a query type, one of:

— Direct - returns only the Subject’s directly-assigned roles

— All - returns both directly-assigned and inherited roles of the Subject

4. Click Generate Report.

The Reports page lists all the roles your selected Subject has.

Generating any of the other reports is essentially the same.

Policy Managers Guide

5-24 Policy Managers Guide

Extending the Entitlements
Management Tool

ALES version 2.6 makes it possible for you to extend the Entitlements Management Tool to

manage custom objects.

The Entitlements Management Tool provides a powerful and flexible way of managing roles and
permissions. It now allows you to manage custom objects by extending it.

You extend the Entitlements Management Tool by adding new objects to the navigation tree. You
can then add custom JSPs to manage any data associated with the objects. The custom objects and
their attributes can be part of an ALES policy and used to affect an access decision.

The ability to extend the Entitlements Management Tool is not limited to the model used in the

current hierarchal implementation: you can extend the tool to support customer-specific

entitlements modeling. For example, you might incorporate a custom modeling implementation
with the existing Entitlements Management Tool role, permission set, and permission modeling.

This section describes how to extend the Entitlements Management Tool. The following topics
are described:

“Why Might You Want to Extend the UI?” on page 6-2

“Components of the Entitlements Management Tool” on page 6-6
“Entitlements Ul Application Objects” on page 6-8

“Extending the Entitlements Management Tool: Main Steps” on page 6-13
“Using Custom Data for Access Control” on page 6-24

“Clone and Move Operation for Custom Node” on page 6-32

Extending the Entitlements Management Too

6-1

Extending the Entitlements Management Tool

e “Debugging Techniques and Problem Isolation” on page 6-34
e “Example of Extending the Entitlement UI”” on page 6-34

e “Follow the Instructions in the Readme” on page 6-34

Why Might You Want to Extend the UI?

6-2

The Entitlements Management Tool is very powerful and flexible, but it implements a particular
modeling scheme. You might find it more convenient to instead reuse the tool and JSF framework
for custom modeling.

As an example, consider the case where a publishing company wants to manage a subscription
model using the Entitlements Management Tool. (This scenario is the basis for the complete
example described in “Example of Extending the Entitlement UI” on page 6-34.)

Assume that the customer service representatives who manage subscription data need to be able
to do the following:

e Manage a list of magazines to which users can subscribe

e Manage user subscriptions, where a subscription can contain multiple magazines with a
duration for which the subscription is valid.

e Manage user licenses, where each license consists of a subscription and a start date.

The sections that follow illustrate at a very high level how you might extend the Entitlements
Management Tool to handle this scenario.

“Extending the Entitlements Management Tool: Main Steps” on page 6-13 describes how to
extend the Entitlements Management Tool in detail.

Managing a Subscription Model: Step 1

The first step is to design your Ul model. Decide what objects you need in the navigation tree,
the relationships between those objects, the policies you need, and so forth.

You must be familiar with the following concepts:
e The RBAC model, as described in “Understanding the RBAC Model” on page 5-2.

e Java Server Faces (JSF) is a Java framework for building user interfaces for web
applications. It is the foundation of the Entitlements Ul.

See Developing Web Applications with JavaServer Faces for more information.

Extending the Entitlements Management Tool

http://java.sun.com/developer/technicalArticles/GUI/JavaServerFaces/

Why Might You Want to Extend the UI?

e Attribute Inheritance Mode operates in two modes, as described in “Create a
metaobject_mappings.properties Configuration File Under WEB-INF/config” on
page 6-13:

— BOTTOM_TO_TOP — Parent to child inheritance

— TOP_TO_BOTTOM — Child to parent inheritance

Managing a Subscription Model: Step 2
Configure a new Custom Tree node in the Entitlements Management Tool tree.

When extending the Entitlements Management Tool, you cannot add to an existing root node in
the hierarchy. You can only create a new root node, and then add children to it through the UI.
To do this, you extend the EUIMetaObjectNode object. EUIMetaObjectNode is a generic
hierarchal object that facilitates the creation of a selectable tree node.

The key parameter when extending EUIMetaObjectNode is the node type. When you create a
new node, you overload the node type in all of the constructors so that the Entitlements
Management Tool will render the desired content on the main page. You then create a mapping
file and update two JSP files, navigation.jsp and main.jsp, to display the object.

The concept of extending EUIMetaObjectNode and how the node type relates to the JSP files is
described in detail in “Extending the Entitlements Management Tool: Main Steps” on page 6-13.

Add the following three new high-level nodes to the navigation tree, as shown in Figure 6-1.
e Magazines
e Licenses

e Subscriptions

Figure 6-1 Managing a Subscription Model: Step 2

Extending the Entitlements Management Too 6-3

Extending the Entitlements Management Tool

o

’,-h ; AQUALOGIC ENTERPRISE SECURITY
L

ea ENTITLEMENTS ADMINISTRATION

=+ Entitlements Management
& allRoles
|5 Identity
I Permissions
(& Separation of Duties
|5 Reports
w:y' Magazines
w:y Licenses
& Subscriptions

The administrator can now add and delete objects of each type. For this example, we use a flat
list of licenses, magazines, and subscriptions.

New objects to be managed could also be hierarchical, such as by organizational structure,
geographical hierarchy, product categories, and so forth.

Managing a Subscription Model: Step 3

Add a custom JSP to allow the administrator to add and delete publications, as shown in
Figure 6-2.

Figure 6-2 Managing a Subscription Model: Step 3

=+ Entitlements Management

B allRokes Magazines Management
|5 Identity

& Perrmissions Magazines

(& Separation of Duties Name
&= Reparts AMagazing

&Y Magazines MySpaorts

‘:' Licenses ;ngherhﬂagazine
&) Subscriptions il

In this case we have a flat space of magazine names managed as a list. Magazines could also be
managed as objects in the tree with additional data associated with each.

6-4 Extending the Entitlements Management Tool

Why Might You Want to Extend the UI?

Managing a Subscription Model: Step 4

=+ Entitlements Management
& allRoles
|5 Identity
I} Permissions
(& Separation of Duties
|5 Reports
&) Magazines
b:v' Licenses
& Subscriptions

o

Figure 6-3 Managing a Subscription Model: Step 4

License Management

Users

Figure 6-4 Managing a Subscription Model: Step 5

ADUALOGIC ENTERPRISE SECURITY

~ 3
% I] ea ENTITLEMENTS ADMINISTRATION

& &l Roles
|5 Identity
5 Permissions

|5 Reports
&) Magazines
b:,' Licenses
= @ Subscriptions
& sub1
& subz
&) sub3

=+ Entitlements Management

(& Separation of Duties

Add a custom JSP to allow the administrator to manage licenses for each customer, as shown in
Figure 6-3.

License of User: Alexis Benitez

Subscription Magazines Start Date
subl AMagazine, MyEame 03/15/2007
sub2 MySports 08/15/2006

Subscription Management

Ayailable Magazines

AnctherMagazine
MyGame

Extending the Entitlements Management Too

Each license can have multiple magazines, and each license has a start date.

Managing a Subscription Model: Step 5

Add a JSP to allow the administrator to manage each subscription, as shown in Figure 6-4.

Selected Magazines
MySports
AMagazine

6-5

Extending the Entitlements Management Tool

Subscriptions can be added or deleted from the navigation tree, and magazines can be added to a
subscription. A duration is also set for each subscription.

By extending the EUI, the publishing company’s applications can now use the data in ALES
policies to:

e Control access to online content for each publication
e Start and stop subscriptions

e Send renewal or billing notifications, and so forth

The custom data is stored in the ALES database. It can be used in ALES policy through the use
of a custom attribute retriever or a custom evaluation function.

Components of the Entitlements Management Tool

The Entitlements Management Tool is delivered as an archived web application. There are three
major components:

e Presentation Layer — JSP files using javascript and tags that dictate how the Ul is
displayed.

For the ALES 2.6 release, the presentation layer is publicly accessible. You can modify the
layout of the Ul and its look and feel by directly modifying the existing set of JSP files.

e Business Logic — Backing Beans that provide state and caching functionality for managing
user entitlements.

The backing Beans provide a public management interface for referencing data presented
in the Entitlements Management Tool.

e RBAC_API - A management API built on top of the existing BLM_API that provides an
interface for managing RBAC components (roles, permissions and permission sets). The
RBAC_API is available only through the Bean interface.

Figure 6-5 shows how the Entitlements Ul components work together.

Figure 6-5 RBAC API Architecture

6-6 Extending the Entitlements Management Tool

Components of the Entitlements Management Tool

Presentation Layer

EUI 2tate bean
EUI REAC beans / Fole

Mode / EUI Hode
Myfacas ISP tags AP
ntemal beans - Listeners

\J_l/ ani Fenderers

EUI ISPz

Custom JSPs EUI Backng beans

Custom beans

1L

RBAC Laver

[Securtty Runtime H REAC AP|

vy A

L—

I

This figure illustrates how all the components in the Entitlements Ul interact with each other:

e The Myfaces JSP tags reference code that is executed in the Myfaces tag library
implementation.

The tag library’s components used by the entitlements Ul were extended to call
isAccessAl lowed prior to being rendered to allow for component-level redaction of the
Ul via the security bean.

Once authorization is complete, the tags then call into the session beans to get the
appropriate information to be rendered on the JSP page.

The session beans are responsible for maintaining state about a user’s session in the
entitlements UL.

The backing (helper) beans are wrappers around the RBAC API. The helper beans provide
all required caching logic.

The RBAC API is built on top of the BLM API. Access to the RBAC API is through the
helper beans; you do not call the RBAC API directly. The RBAC API is responsible for
providing a clean interface to manage entitlements based on the NIST hierarchical RBAC
model. It currently supports role management, permission management, permission set
management, and provides reporting functionality based on the hierarchical rbac model.

Extending the Entitlements Management Too 6-7

Extending the Entitlements Management Tool

Entitlements Ul Application Objects

There are five packages in the Entitlements Ul:

e com.bea.security.entitlements.admin.beans

e com.bea.security.entitlements.admin.rbac

e com.bea.security.entitlements.admin.resources
e com.bea.security.entitlements.admin._util

e com.bea.ales.persistence

These packages are described in the sections that follow.

Entitlements Ul Beans Package

The beans package is responsible for providing application state and session management
functionality.

Table 6-1 Entitlements Ul Beans

Class Name Description

Distributable Mandates the distribution contract for the EUI functionality, so that the JSP

or the external clients invoke methods to control distribution.

Transactable Mandates transaction contract for the EUI functionality, so that the JSP or

the external clients invoke transaction functionality. Changes stored in the
current session for a given transaction are persisted or rolled back based on
the user operations.

SecurityBean Provides hooks for authorization checks. These hooks append resource

information that provides the context in which a resource resides. For
example, the canViewResource method appends the componentld to
the end of the resource: <the currently selected node>/<the name of the tab
selected>

6-8

Extending the Entitlements Management Tool

Entitlements Ul Application Objects

Tahle 6-1 Entitlements Ul Beans

Class Name

Description

SelectedPermissionSets

Used to provide state information for the permission set popup dialogue
box. This object handles the special functionality: when a parent check box
is checked, all child check boxes are checked, and if a child checkbox is
unchecked, the parent is also unchecked.

SessionState

Main monolithic application state bean. This class provides references to
the current set of selected elements in the entitlements Ul. It’s also
responsible for main application logic like constructing the navigation tree
and policy distribution.

Entitlements Ul RBAC Package

The backing (helper) beans are wrappers around the RBAC API. The helper beans provide all
required caching logic.

Table 6-2 RBAC Package

Class Name

Description

AlISODConflictsReport

Provides implementation to provide a comprehensive report to all
conflicting SODs (separation of duties).

AttributableEntitlementEle
ment

Provides base functionality for elements with attributes requirements.

AttributableEntitlementNo
de

Provides core functionality for all nodes that could have attributes
associated to its definition.

AttributeElement

This is a helper class used to represent an instance of an attribute

BaseTableElement

Provides base functionality for an EUI table element.

BaseTreeNode

Provides base functionality for most tree nodes.

DataTableElement

This is an instance of a row in a data table. It’s used to support making a
data table selectable

EUIMetaObjectNode

Facilitates custom object creation of a selectable tree node. MetaObjects to
extend the EUI functionality are configured via
metaobject_mappings.properties. These files would be loaded during
startup time.

Extending the Entitlements Management Too 6-9

Extending the Entitlements Management Tool

Tahle 6-2 RBAC Package

Class Name

Description

Groupltem

Represents a selected group associated with current identity directory node
in EUI tree. The class will be used by the entitlements front end for group
management.

IdentityDirectoryNode

Represents an identity directory node in EUI tree. The node will wrap
RBAC Identity Directory Node used by the entitlements front end.

IdentityNode

Extends BaseTreeNode.

MembershipRuleElement

Represents an instance of a membership rule. Wraps the
RBAC_MembershipRule object.

NavigationTreeNode

Base node for navigation tree elements.

PermissionElement

Represents an instance of a permission object. Wraps the
RBAC_Permission object.

PermissionNode

Represents the Permission Node on the nav tree. It’s what is used to build
the permissions table. Contains a list of permissionElement objects.

PermissionPermissionSet
MembershipReport

Provides reporting on what permissions are a member of a permission set.

PermissionSetElement

Represents an instance of a permission set. This object just contains data
about Permission Sets

PermissionSetMembership
Report

Accessor class to retrieve the permission set membership report.

PermissionSetNode

Represents a Permission Set node on the navigation tree. Wraps the
RBAC_PermissionSet object.

ReportingNode

The base reporting object. All reporting elements are based on this class.

ResourceNode Represents a node on the resource tree used for adding resources to
permissions.

RoleElement Represents an instance of a role’s data for display in the UI.

RoleNode Represents a role on the navigation tree. Wraps the RBAC_Role object.

RolePermissionSetReport

Used to facilitate the All Permission Sets assigned to a role report.

RolePermissionsReport

Used to facilitate all Permissions assigned to a role report.

6-10

Extending the Entitlements Management Tool

Tahle 6-2 RBAC Package

Entitlements Ul Application Objects

Class Name

Description

RoleSubjectMembersRepo
rt

Used to facilitate all subjects that are a member of a role report.

RolesWithPermissionRepo
rt

Used to facilitate all roles that have a particular permission report.

RolesWithPermissionSetR
eport

Used to facilitate all roles that have a particular permission set report.

SODEIlement Used to represent the instance of an SOD rule. Has a reference to the
rolenode the SOD element is based on
SODNode represents the SOD node on the nav tree.

SubjectComparitor

Used to compare subjects for sorting.

SubjectElement

Represents an instance of a subject for Ul display purposes.

SubjectPermissionSetsRep
ort

Used to report all subjects associated with a permission set.

SubjectPermissionsReport

Used to report all subjects associated with a permission

SubjectRoleMembershipR
eport

Used to report the set of roles a subject has.

SubjectsWithPermissionRe
port

Used to report the set of permissions a subject has.

SubjectsWithPermissionSe
tReport

Used to report the set of permission sets a subject has.

TreeNodeWithSelection

Base TreeNode class used to support the permission set selection popup
window.

Userltem

Represents a selected user associated with current identity directory node
in EUI tree. The class will be used by the entitlements front end for user
management.

Extending the Entitlements Management Too 6-11

Extending the Entitlements Management Tool

Utils Package

The Utils package contains helper classes for converting objects needed by JSF to all the wrapper
classes around the RBAC_API.

Table 6-3 Utils Package

Class Name Description

DirectoryKeyConverter This is used to convert a directory object into a string — used for by select
many list boxes and drop down lists.

IdentityGroupltemKeyCon Converts JSF faces objects to ALES format.
verter

IdentityUserltemKeyConv Converts JSF faces objects to ALES format.
erter

PermissionKeyConverter Responsible for converting permission objects to strings and back to
permission objects.

SubjectKeyConverter Used to convert a subject to a string and back to a subject.

Utils This is a generic helper class that provides functionality like looking up a
bean in the user’s session.

Persistence Package

This API provides access to group objects and their attributes.

Tahle 6-4 Persistence Package

Interface/Class Description

MetaObject This interface is for getting information about an object in a hierarchy. The
object implemented by this interface is a node in a hierarchy. It may have
a parent, children, and attributes.

MetaObjectFactory The factory class to get MetaObject.

MetaObjectImpl Implementation of interface MetaObject. It will be mainly used to
manipulate common object.

Permission Permission object that is associated with privilege and resource directly.

6-12 Extending the Entitlements Management Tool

Extending the Entitlements Management Tool: Main Steps

Tahle 6-4 Persistence Package

Interface/Class Description

PermissionSet The permission set object, which may contain other permission set and
permissions.

Role The Role object. Besides having other Roles as its member, it can also have

Permission and PermissionSet as its member.

Extending the Entitlements Management Tool: Main Steps

Un-jar Entitlements Management Tool Web Archive File

Use the regular jar command to un-jar the
BEA HOME\ales26-admin\entitlements\<container>\entilementsadministration.w
ar file to a directory of your choice, in a manner similar to the following:

Jjar —xvf entilementsadministration.war destination_dir

Create a metaobject_mappings.properties Configuration
File Under WEB-INF/config

When you unjar the entilementsadministration.war file, a sample
<destination_dir>/WEB-INF/config/metaobject_mappings.properties fileis
created.

The metaobject_mapping.properties is located in the WEB- INF/config directory by
default. Alternatively, you can override this with a system property setting similar to the
following. (This has to be directory path only; not a path with the file name.)

-Deui .metaobject._home=<fully qualified directory of the
metaobject_mapping.properties file>

You must create an instance of this file for each top-level node you create when extending the
Entitlements Management Tool.

When extending the Entitlements Management Tool, you cannot add to an existing root node in
the hierarchy, you can only create a new root node and then add to it. To do this, you extend the
EUIMetaObjectNode object. The class you create becomes the link between your Java
application and the Entitlements Management Tool.

Extending the Entitlements Management Too 6-13

Extending the Entitlements Management Tool

A key parameter when extending EUIMetaObjectNode is the node type. When you create a new
node, you overload the node type in all of the constructors so that the Entitlements Management
Tool can render the desired content on the main page.

In this mapping file, you reference those node types in the MetaObjectType field, as well as your
custom classes that implement EUIMetaObjectNode and the names of the root nodes.

Note: The values you specify in the mapping file must be an exact, case-sensitive match to
those specified in your Java application.

Consider the example shown in Listing 6-1 and note the comments in bold.

Listing 6-1 Sample Metaobject_mappings.properties File

Define custom type

MetaObjectTypel=Subscription

Configure custom class implementing EUIMetaObjectNode
Subscription.MetaObjectimpl=com.metanode.test.SubscriptionNode
Configure Name of the root node

Subscription.MetaObjectRootName=All_Subscriptions

MetaObjectType2=Magazine
Magazine.MetaObjectImpl=com.metanode.test.MagazineNode

Magazine.MetaObjectRootName=Magazine_Management

MetaObjectType3=License
License.MetaObjectImpl=com.metanode.test.LicenseNode

License.MetaObjectRootName=License_Management

An InheritanceModel value of 0 uses TOP_TO_BOTTOM (parent to child) inheritance. A value
of 1 use BOTTOM_TO_TOP (child to parent) inheritance. It defaults to 0.

Configure Inheritance Model

6-14 Extending the Entitlements Management Tool

Extending the Entitlements Management Tool: Main Steps

#Inheritance model O implies TOP_TO_BOTTOM
#Inheritance model 1 implies BOTTOM_TO_TOP

License._MetaObjectlInheritanceModel=0

Create Custom Implementation Node to Extend
EUIMetaObjectNode

Create one or more custom implementation nodes that extend the EUIMetaObjectNode class.
Package these classes under <destination_dir>/WEB-INF/classes as a fully-qualified class,
or in <destination_dir>/WEB-INF/1ib as a jar.

When you create a new node, you overload the node type in all of the constructors so that the
Entitlements Management Tool can render the desired content on the main page.

Note: The values you specify in your Java Application must be an exact, case-sensitive match
to those specified in your mapping file.

Consider the example shown in Listing 6-2 from SubscriptionNodejava.

Listing 6-2 Extending EUIMetaObjectNode

package com.metanode.test;

public class SubscriptionNode extends EUIMetaObjectNode {
public static final String SUBSCRIPTION_NODE_TYPE = "'Subscription™;
public SubscriptionNode (MetaObject pset, Boolean isLeaf) {
super (SUBSCRIPTION_NODE_TYPE, pset, isLeaf.booleanValue());
}
public SubscriptionNode (TreeNodeWithSelection parentNode,
MetaObject pset,
Boolean isLeaf) {

super (SUBSCRIPTION_NODE_TYPE, parentNode, pset,
isLeaf.booleanvValue ());

}

Extending the Entitlements Management Too 6-15

Extending the Entitlements Management Tool

6-16

public String getNodeType O {

return SUBSCRIPTION_NODE_TYPE;

In the Subscription example described in “Example of Extending the Entitlement UI” on
page 6-34, there are three custom implementation nodes that extend the EUIMetaObjectNode
class: LicenseNode, MagazineNode, and SubscriptionNode.

The example utilizes three node files (LicenseNode. java, MagazineNode. java, and
SubscriptionNode. java) and three backing bean files (LicenseBean. java,
MagazineBean.java, and SubscriptionBean.java).

The example is designed such that the backing bean code handles the actions of subscription
management (for example, getSelectedOwnedMagazines() in SubscriptionBean. java)
and the node code (for example, SubscriptionNode. java) contains mostly the constructors.

SubscriptionNode. java does include one other method, getAttribute() to get the attribute
element of a specific attribute. You could instead create a
SubscriptionNode.getMagazines() or subScription.getDuration() method to make
the use more intuitive.

Create Custom JSPs

Create new JSPs to represent your custom entitlements model. Consider the sample section of the
subscriptions.jsp file shown in Listing 6-3.

Pay particular attention to the code section in bold.

Listing 6-3 subscriptions.jsp

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jst/html"” prefix="h" %>
<%@ taglib uri="http://myfaces.apache.org/tomahawk" prefix="t" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<Yp—m

Extending the Entitlements Management Tool

Extending the Entitlements Management Tool: Main Steps

This page shows all permisions of the selected role, includes direct,
inherited and denied

——0>

<f:loadBundle
basename=""com.bea.security.entitlements.admin.resources.messages"
var="bundle"/>

<f:subview id="subscriptions'>

<c:if test="${sessionState.selectedNode.description!="All
Subscriptions®}'>

<h:form id="'subscriptionForm">

<t:panelGrid width=""100%" columns="1"
styleClass="main-content-panel’ rowClasses=""twoRowLayout-50_50"
align="center"'">

<t:panelGroup>

<t:panelGrid width="100%"
columnClasses=""agrolesides,agrolesides,agrolecenter,agrolesides"
columns="3" align="center"'>

<t:panelGroup>

<h:outputText
value="#{bundle._AvailableMagazines}'/>

<f:verbatim>

</f:verbatim>

<%-- get all available magazines and
show in list box --%>

<t:selectManyListbox id="allmagazines"
value="#{subscriptionBean.selectedAvailableMagazines}"
styleClass="'selectBox" size=""17"
converter="com.metanode.test._MagazineConverter"'>

<f:selectltems
value="#{subscriptionBean.availableMagazines}"/>

</t:selectManyListbox>

Extending the Entitlements Management Too 6-17

Extending the Entitlements Management Tool

</t:panelGroup>

<t:panelGroup>

Consider how the bold code maps to Figure 6-6:

e AnotherMagazine and MyGame represent the list of available magazines
(subscriptionBean.availableMagazines).

o |f the user were to select AnotherMagazine, it would comprise the list of selected,
available magazines (subscriptionBean.selectedAvai lableMagazines).

Figure 6-6 Available and Selected-Available Magazines

~% % ADUALDGIC ENTERPRISE SECURITY
hhea ENTITLEMENTS ADMINISTRATION g
2H Entitlements Management
&= allRol e
@ AllRokes Subscription Management
|5 Identity
I Permissions Available Magazines Selected Magazines
(5 Separation of Duties 3 MySports
AnctherMagazine Addz > 8
|5 Reports MyGame AMagszine

&) Magazines
&y Licenses
=) Subscriptions
& sub1
& subz
&) sub3

Modify Existing Navigation and Main JSP Files

Modify the Entitlement Management Tool <destination_dir>/navigation_jsp file to add
a new facet for each custom node. This page defines the navigation tree, and all of the supported
node type should have a facet here.

6-18 Extending the Entitlements Management Tool

Extending the Entitlements Management Tool: Main Steps

Inside a facet, two panelGroup objects should be defined. One will display when
sessionState.disableMainButtons is false. The other panelGroup will display when
sessionState.disableMainButtons is true.

Listing 6-4 shows the Subscription facet for the modified navigation. jsp file.

Listing 6-4 Subscription Facet in navigation.jsp

<f:facet name="Subscription'>

<t:panelGrid id="c" columns="2" cellpadding="2" cellspacing="0"
width="100%" styleClass=""treeTable'>

<t:graphiclmage value="_._/images/wlp-info-16.gif"/>

<t:panelGroup
rendered="#{sessionState.disableMainButtons==false}">

<t:commandLink
actionListener="#{sessionState.processSelectAction}"

value="#{node.description}"
styleClass="bold" rendered="#{t.nodeSelected == true}'/>

<t:commandLink
actionListener="#{sessionState.processSelectAction}"

value="#{node.description}"
rendered="#{t.nodeSelected == false}'"/>
</t:panelGroup>

<t:panelGroup
rendered="#{sessionState.disableMainButtons==true}">

<h:outputText value="#{node.description}" styleClass="bold"
rendered="#{t._.nodeSelected == true}''/>

<h:outputText value="#{node.description}"
rendered="#{t._nodeSelected == false}'/>

</t:panelGroup>
</t:panelGrid>

</f:facet>

Extending the Entitlements Management Too 6-19

Extending the Entitlements Management Tool

6-20

Modifying main.jsp

Modify the Entitlement Management Tool <destination_dir>/main.jsp file. This page is
the main page of entitlements administration, and includes the JSPs to which the Tool will
navigate.

Make the following changes:

1. When you created a new node, you overloaded the node type in all of the constructors so that
the Entitlements Management Tool could render the desired content on the main page. You
supply this nodeType in main.jsp.

<h:outputText value="#{bundle.SubscriptionManagement}"
rendered="#{sessionState.selectedNode!=null &&
sessionState.selectedNode.nodeType == "Subscription®}"
styleClass="RoleName' />

2. The header facet displays the title and image associated with a given main page. Update as
needed in main.jsp

3. Add details for the custom node type.
<%-- Add details jsp here for custom node type --%>
<%-- defines the detail page for magazine, subscription and license --%>
<h:panelGroup id="Magazine'>

<jsp:include page="magazines.jsp" />
</h:panelGroup>
<h:panelGroup id="Subscription'>

<jsp:include page="subscriptions.jsp"” />
</h:panelGroup>
<h:panelGroup id="License'>

<jsp:include page="licenses.jsp" />

</h:panelGroup>

Extending the Entitlements Management Tool

Extending the Entitlements Management Tool: Main Steps

Modify the JSF Configuration File

As described in Developing Web Applications with JavaServer Faces, an application
configuration resource file, faces-config.xml, is used to define your managed beans,

validators, converters, and navigation rules.
Modify the Entitlement Management Tool

<destination_dir>/WEB-INF/config/faces-config.xml file to add the relevant
information for your application.

For example, Listing 6-5 shows the changes made to
<destination_dir>/WEB-INF/config/faces-config.xml in support of the extension
example.

Listing 6-5 Modified faces-config.xml File

Define converters
<converter>
<converter-id>com.metanode. test.MagazineConverter</converter-id>

<converter-class>com.metanode.test.MagazineConverter</converter-cl
ass>

</converter>

<converter>

<converter-id>com.metanode. test.LicenseUserConverter</converter-id

<converter-class>com.metanode. test.LicenseUserConverter</converter
-class>

</converter>

Define Managed Beans
<managed-bean>

<managed-bean-name>magaz ineBean</managed-bean-name>

Extending the Entitlements Management Too 6-21

http://java.sun.com/developer/technicalArticles/GUI/JavaServerFaces/

Extending the Entitlements Management Tool

<managed-bean-class>com.metanode. test.MagazineBean</managed-bean-c
lass>

<managed-bean-scope>session</managed-bean-scope>
</managed-bean>
<managed-bean>
<managed-bean-name>subscriptionBean</managed-bean-name>

<managed-bean-class>com.metanode. test.SubscriptionBean</managed-be
an-class>

<managed-bean-scope>session</managed-bean-scope>
</managed-bean>
<managed-bean>

<managed-bean-name>licenseBean</managed-bean-name>

<managed-bean-class>com.metanode. test.LicenseBean</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
</managed-bean>
Define Navigation Rules
<navigation-rule>
<from-view-id>/pages/newmetaattribute. jsp</from-view-id>
<navigation-case>
<from-outcome>Success</from-outcome>
<to-view-id>/pages/modifymetaattribute.jsp</to-view-id>
</navigation-case>
</navigation-rule>
<navigation-rule>
<from-view-id>/pages/modifymetaattribute. jsp</from-view-id>
<navigation-case>

<from-outcome>close</from-outcome>

6-22 Extending the Entitlements Management Tool

Extending the Entitlements Management Tool: Main Steps

<to-view-id>/pages/closepopup.jsp</to-view-id>
</navigation-case>

</navigation-rule>

<navigation-rule>
<from-view-id>/pages/newMagazine. jsp</from-view-id>
<navigation-case>
<from-outcome>close</from-outcome>
<to-view-id>/pages/closepopup.jsp</to-view-id>
</navigation-case>
</navigation-rule>
<navigation-rule>
<from-view-id>/pages/subscriptions. jsp</from-view-id>
<navigation-case>
<from-outcome>success</from-outcome>
<to-view-id>/pages/subscriptions. jsp</to-view-id>
</navigation-case>
<navigation-case>
<from-outcome>failed</from-outcome>
<to-view-id>/pages/subscriptions. jsp</to-view-id>
</navigation-case>
</navigation-rule>
<navigation-rule>
<from-view-id>/pages/newLicense. jsp</from-view-id>
<navigation-case>
<from-outcome>close</from-outcome>

<to-view-id>/pages/closepopup.jsp</to-view-id>

Extending the Entitlements Management Too 6-23

Extending the Entitlements Management Tool

</navigation-case>

</navigation-rule>

Re-jar Entitlements Management Tool Web Archive

Use a command similar to the following to re-jar the Entitlements Management Tool web archive
with your changes from the destination_dir you specified in “Un-jar Entitlements
Management Tool Web Archive File” on page 6-13.

jar —cvfM entilementsadministration.war *_*

Redeploy Entitlements Management Tool Web Archive on
Admin Server

To redeploy the Entitlement Management Tool on the ALES Admin server, use the tool to
overwrite the existing entitlementsadministration.war file. Click redeploy under
Deployments->WebApplications->Redeploy.

Using Custom Data for Access Control

Adding custom data to the ALES Entitlement Management tool involves two steps:

e Adding the new objects to the navigation tree, as described in “Create Custom
Implementation Node to Extend EUIMetaObjectNode” on page 6-15.

e Adding custom JSPs to manage data for the new objects, as described in “Create Custom
JSPs” on page 6-16.

Once these steps are complete, the custom data can be managed in the ALES Entitlements
Management tool and stored in the ALES database.

There are two options to tie the custom data to an ALES policy:

e Use an attribute retriever to get a custom data value that will be used in the constraint
portion of an ALES policy, as described in “Using an Attribute Retriever to Get a Custom
Data Value” on page 6-25.

e Use an evaluation function to execute logic using the custom data that returns a true or
false result, as described in “Using an Evaluation Function” on page 6-29.

6-24 Extending the Entitlements Management Tool

Using Custom Data for Access Control

Using an Attribute Retriever to Get a Custom Data Value

As described in Attribute Retriever, attribute retrievers are used by ASI Authorization and ASI
Role Mapping providers to retrieve attributes for use by Aqualogic Enterprise Security
authorization and role mapping providers.

For example, using the subscription model we can write the following ALES policy:

grant(any, //onlineContent/Newsmagazine, //role/Everyone) if (Newsmagazine
in magazines)

where magazines is a custom attribute retriever that returns a list of magazines by examining the
user’s current subscriptions.

The attribute retriever uses the “Persistence Package” on page 6-12 to get custom runtime
information.

Note: See the Readme for important information about enabling metadirectory support.

Consider the example attribute retriever shown in Listing 6-6. Pay particular attention to the code
in bold.

Listing 6-6 MagazinesAttributeRetriever

package com._bea.security.providers.authorization.asi;

import java.text.SimpleDateFormat;
import java.util.ArrayList;

import java.util_Calendar;

import java.util.Date;

import java.util_HashMap;

import java.util.lterator;

import java.util_Map;

import java.util.Set;

import javax.security.auth_Subject;

Extending the Entitlements Management Too 6-25

http://e-docs.bea.com/ales/docs26/adminref/plugins.html#wp1147775

Extending the Entitlements Management Tool

6-26

import org.apache.log4j.Logger;

import weblogic.security.service.ContextHandler;

import weblogic.security.spi.Resource;

import com.
import com.
import com.
import com.
import com.
import com.

import

bea.ales.persistence.MetaObject;

bea.ales.persistence.MetaObjectFactory;

bea.ales.rbac.AttributeElement;

bea.ales.rbac. Inval idTypeException;

bea.ales.rbac.ObjectNotFoundException;

bea.ales.rbac.QueryType;

com.bea.security.providers.authorization.asi.ARME.evaluator.RequestHandle;

/**

* The custom attribute retriever of subscription model sample

*

*/

public class MagazinesAttributeRetriever implements AttributeRetrieverV2,

InitializationShutdownFunction {

static final String ATTRIBUTE_NAME = "'subscriptions";

private
private
private
private
private
private

private

Extending the Entitlements Management Tool

static
static
static
static
static
static

static

final
final
final
final
final
final

final

String
String
String
String
String
String

String

LICENSE = "license";
SUBSCRIPTION = "Subscription;
MAGAZINES = "magazines";
DURATION = "duration;
DATE_PATTERN = "MM/dd/yyyy';
COMMA = ",";
LEFT_SQUARE_BRACKETS = "\'"";

Using Custom Data for Access Control

private static final String RIGHT_SQUARE_BRACKETS = ""\"'"';
private static final String LICENSE_PREFIX = "\"";

private static final String LICENSE_POSTFIX = "\"""';

private static Logger LOGGER =
Logger.getLogger(MagazinesAttributeRetriever.class);

private MetaObject subScriptionAll = null;

private Map metaProperties = null;

J*x
* The method defined in the interface
* ARME will call this method to initilize this retriever
*/
public void init(Map map){
Set keys = map.-keySet();
Iterator keysit = keys.iterator();
while(keysit._hasNext()) {
Object key = keysit.next();

LOGGER.debug(*"init() Key=" + key + ", value=" + map.get(key));

}

//Use the map to initilize the metaobject factory so that it will
connect the database

this.initMetaProperties(map);
MetaObjectFactory.initilize(map);

try {

subScriptionAll =
MetaObjectFactory.getlnstance() .getRootObject(SUBSCRIPTION);

Extending the Entitlements Management Too 6-27

Extending the Entitlements Management Tool

} catch (InvalidTypeException e) {
LOGGER.error(e.getMessage(), €);

subScriptionAll = null;

* Add a subscription to the result.
* @param entry An entry of license
* @param result The result list to return to ARME
*/
private void addSubScription(Map.Entry entry, ArrayList result){
try {
//Cet the "magazine® and "duration® attribute of the subscription

MetaObject subScription =
subScriptionAll _getObjectByName((String)entry.getKey(), SUBSCRIPTION);

AttributeElement magazines = subScription.getAttribute(MAGAZINES,
QueryType .DIRECT);

AttributeElement duration = subScription.getAttribute(DURATION,
QueryType .DIRECT);

if (LOGGER.isDebugEnabled()){
LOGGER.debug(*'Subscription: "+subScription.getName());
LOGGER.debug(*'magazines: "+magazines);

LOGGER.debug(*'duration: "+duration);

6-28 Extending the Entitlements Management Tool

Using Custom Data for Access Control

Note: As an alternative to calling subScription.getAttribute(MAGAZINES,
QueryType.DIRECT)Or subScription.getAttribute(MAGAZINES,
QueryType.DIRECT), you could instead create a subScription.getMagazines() or
subScription.getbDuration() method to make the use more intuitive.

Using an Evaluation Function

As described in evaluation function, you can write an evaluation function to make additional
authorization request data available, and therefore allow a more complex attribute evaluation to
be performed. The method is invoked while the policy contains a custom evaluation function with
a matching name. For example:

grant(any, //onlineContent/Newsmagazine, //role/Everyone) if
rbac_eval_magazine(session,args,subject,roles,resource,contextHandler);

where rbac_eval_magazine() is the custom evaluation function name. You must register one
evaluation class that includes the rbac_eval _magazine() method.

Consider the evaluation function shown in Listing 6-7.

Note: This function uses the attribute retriever shown in Listing 6-6.

Listing 6-7 MagazinesEvaluator Function

import com.wles.util.AttributeElement;

/**

* The custom evaluation function of subscription model sample

*

*/cd

public class MagazinesEvaluator {

private static final String REQUESTED RES = *'sys obj_q";

//private static final String MAGAZINES = *‘subscription_magazines";

private static final char SLASH = */*;

Extending the Entitlements Management Too 6-29

http://e-docs.bea.com/ales/docs26/adminref/plugins.html#wp1158698

Extending the Entitlements Management Tool

private static Logger LOGGER =
Logger .getLogger(MagazineskEvaluator.class);

J**
* The method to evaluate whether a request to some magazine is allowed
* @param session
* @param args
* @param subject
* @param roles
* @param resource
* @param contextHandler
* @return
* @throws MissingAttributeException
*/

public boolean rbac_eval_magazine(RequestHandle session, Object[] args,
Subject subject, Map roles, Resource resource,

ContextHandler contextHandler) throws MissingAttributeException {

LOGGER.debug(*'Entering rbac_eval_magazine...");
String currentMagazine = null;
AttributeElement magazines = null;

try

{

//CGet the resource that are requested

AttributeElement resAttr =
session.getAttribute(REQUESTED_RES, false);

String res = (String)resAttr.getValueAs(String.class);
if (res.charAt(res.length()-1) == SLASH){

res = res.substring(0, res.length()-1);

6-30 Extending the Entitlements Management Tool

Using Custom Data for Access Control

}

//get the last part of request url which is the magazine name
currentMagazine = res.substring(res.lastindexOf(*/")+1);

}

catch (Exception e)
{
LOGGER.error(e.getMessage(),e);

throw new MissingAttributeException(*'missing attribute:
"+REQUESTED_RES,REQUESTED_RES) ;

}
try
{
//Check if the requested magazine is in the list which are allowed
//to be accessed according to the license

magazines =
session.getAttribute(MagazinesAttributeRetriever . ATTRIBUTE_NAME,false);

if (magazines = null){

ArraylList mags =
(ArrayList)magazines.getValueAs(ArrayList.class);

Iterator iter = mags.iterator();
while (iter.hasNext()){
String magazine = (String)iter.next();
if (currentMagazine.equalslgnoreCase(magazine)){

LOGGER.debug(""Exiting rbac_eval_magazine with the
result true');

return true;

Extending the Entitlements Management Too 6-31

Extending the Entitlements Management Tool

b
s
catch (Exception e)
{

LOGGER.error(e.getMessage(),e);

throw new MissingAttributeException(*'"Missing attribute:
"+MagazinesAttributeRetriever ATTRIBUTE_NAME,
MagazinesAttributeRetriever ATTRIBUTE_NAME);

}
LOGGER.debug(""Exiting rbac_eval_magazine with the result false");

return false;

Clone and Move Operation for Custom Node

6-32

You can modify the existing <destination_dir>/pages/cloneNode. jsp and
moveNode . jsp files to support the clone and move operations, as show in Listing 6-8.

Note: You would typically need to change only the nodeType and the Facet in this example
for each custom node defined in “Modify Existing Navigation and Main JSP Files” on
page 6-18.

Listing 6-8 Adding Clone and Move Operations to JSP

<c:if test="${sessionState.selectedNode = null && sessionState.nodeType ==
“Subscription'}’>

<t:tree2 id="nTree" value="#{sessionState.rootMetaTree}" var="node"
clientSideToggle=""false" preserveToggle="false" varNodeToggler="t">

<f:facet name=“Subscription'>

Extending the Entitlements Management Tool

Clone and Move Operation for Custom Node

<t:panelGrid id="c" columns="2" cellpadding="2"
cellspacing="0" width="100%" styleClass="treeTable">

<t:graphiclmage
value=""__/images/wlp-folder-rolemapper-16.gif'/>

<t:panelGroup>

<t:commandLink onmousedown="cancel=false;"
actionListener="#{sessionState.processSelectDestinationNodeAction}”
value="#{node.description}” immediate=""true" styleClass="bold"
rendered="#{t._.nodeSelected == true}'/>

<t:commandLink onmousedown="cancel=false;"
actionListener="#{sessionState.processSelectDestinationNodeAction}"value=
#{node .description}" immediate=""true" rendered="#{t.nodeSelected ==
false}''/>

</t:panelGroup>
</t:panelGrid>
</f:facet>
</t:tree2>

</c:if>

Extending the Entitlements Management Too 6-33

Extending the Entitlements Management Tool

Debugging Techniques and Problem Isolation

If you are having trouble with your Entitlement Management Tool extension, please consider the

following possible problem scenarios:

Table 6-5 Problem Isolation

Problem

Solution

Custom nodes fail to load

Verify the meta object properties files entries.

Implementation class available under Web-INF/classes or WEB-INF/lib as
ajar.

Type returned by the custom classes representing the node match

MetaObject property file should be available via either the system property
or under /WEB-INF/config directory.

Check Weblogic server console for NoClassDefFoundError

Blank display pages on the
Entitlements Management
Tool console.

There could be an issue with the scripts. May need to turn on JSF
debugging.

Any authentication and
authorization failures

Use the log4j debugger as for other ALES components.

Example of Extending the Entitlement Ul

ALES 2.6 includes an example that shows how to extend the Entitlements Ul in a custom

entitlement model. The example shows how to extend a generic object, how to create custom JSP

pages and backing beans, and how to integrate them with the entitlements UI.

You can use this example as a guide for extending entitlements Ul.

Follow the Instructions in the Readme

The example is available in BEA_HOME\bea\ales26-admin\entitlements\example and
includes an extensive Readme file. The Readme describes how to build the example and deploy
the web application.

The Readme includes instructions on how to use the ALES Admin console to set the

Authentication provider database properties and how to set the metadirectory for ASIAuthorizer,

as shown in Figure 6-7.

6-34 Extending the Entitlements Management Tool

Follow the Instructions in the Readme

Figure 6-7 ASI Authorization Provider use of Metadirectory

ity

e G8 Yem Fpots Juk b L
Q-0 - o @0 Do e @200 5 - L0 8
E T [—r—— sl ks
b R =]t sewnet - o e @ @ e - Dy veoet « @Butetbdl - gGames + Shuic « B havers « iy
_mwwm..|:+mm @
E Bl Agministraton Contole 2
& :,“:”Wc :'"m Edit AS| Authorization Provider 3= BEA
1 Bervca Contot Manapars
= L asminconty
B) asiaan 5
B & wisam
5) sussericaon Thea settings control the ASH ok ute of th Th i required for
Gt rapuseaton pobens whch Use dalagation of URee BrEUlas
8 msasing
8 :’m-em F lsa Metadinactery
CatstaseAuranicans
When anabied the and 1o acewns o 10 giehar addtinal
8 3"0‘“*"‘ s usar proflo data. ¥ disabled nona of the olher metadiractory satfings has any efect
AGSORTRONProMdE
B Crecertal Magping. e P P Ty p——— =]
:iw:n?cw'“m AL URLs
0 i Fesources |
B S s
B gm« Dsfines tho metaroctory datsbae servers. f & fadurs occuts when accessing the frst sene, thes the next

o & uied

B T Degioyment JDBL Driver: jorache jdc. driver CiracleDeves

Diéines the Svs clans name of the messdnpeseey databan JOBC Dot

Database Sysom: CRACLEID 'i

Dieimes th 1ype of tha metadrectory database
Datshase Hame: =

Tha nam of the metaStectcey dalsbae. Cily apphcabls whin using Sybate

Database Login: g

Distabres logn for the smstadumstery

Database Login Password: [sssssssssssssnssns

Contim Batabase Loghn (o200
Pasword:

L | -

Extending the Entitlements Management Too 6-35

Extending the Entitlements Management Tool

6-36 Extending the Entitlements Management Tool

CHAPTERa

Importing and Exporting Policy Data

The AquaLogic Enterprise Security Administration Server includes two tools to assist you in
managing the contents of the policy store: an import tool and an export tool. Using these tools
you can perform the following tasks:

e Define your policy data in text files that are external to the Administration Server and
import those files to a policy store on any Administration Server.

e Export policy data from an existing policy store on an Administration Server and import
that policy data to a policy store on any Administration Server.

e Export policy data from an existing policy store on an Administration Server, install a
newer version of the server software, and re-import the policy data into the upgraded
server.

For information about writing policy files, see “Advanced Topics” on page 4-1. The following
sections describe how to use the policy import and export tools:

e “Importing Policy Data” on page 7-1

e “Exporting Policy Data” on page 7-11

Importing Policy Data

This section provides instructions and information on how to import policy data to the policy
store. It covers the following topics:

e “Policy Import Tool” on page 7-2

Policy Managers Guide 1-1

e “Configuring the Policy Import Tool” on page 7-3
e “Running the Policy Import Tool” on page 7-9

e “Understanding How the Policy Loader Works” on page 7-10

Policy Import Tool

Note: Asof AqualLogic Enterprise Security version 2.5, policy loading is now transactional: all
policies are loaded, or none. In addition, the BLMContextManager API has been updated
to include transactional methods.

The Policy Import tool is a Java utility that provides an alternate method of entering policy data
(rather than through the Administration Console). The main purpose of using this tool is to reduce
the amount of manual data entry required. The Policy Import tool lets you load policy data into
the database, distribute that policy, and remove policy data from the database. The Policy Import
tool reads and imports policy data that is stored as text using non-XML, easy to read format. Each
policy element is stored in a separate file, referred to as a policy file. For information on the
specific format of these policy elements, see Chapter 4, “Advanced Topics.”

The Policy Import tool has the following features:
e Multi-threaded architecture—Allows for more efficient policy loading.

e Separation of policy elements—Loads multiple files with each file corresponding to one
policy element.

e Optimized—Fast import of large policies during initial import.

e Policy Distribution—After importing, use the Policy Import tool to distribute the policy.

Note: Before you can use the Policy Import tool to distribute policy, you must configure
the distribution file and enable the policy distribution feature in the distribution
configuration file of the policy loader.

e Removing Policy—You can also use the Policy Import tool to remove policy elements from
the database.

Note: When running the Policy Import tool on a large policy, the number of records processed
may not be synchronized. If multiple threads are used to import the data, when one thread
completes before the other cannot be determined. If the threads are set too high, a
message may appear indicating that the number of records processed is not synchronized.
This is normal and is not a problem for the Policy Import tool.

1-2 Policy Managers Guide

http://e-docs.bea.com/ales/docs26/javadocs/BlmAPI/com/wles/blm/BLMContextManager.html

Importing Policy Data

For a description of the content of policy files, see Chapter 4, “Advanced Topics.”

When exporting the policy, the configuration resources are saved to the following files:
object_config and objattr_config. These two files are not loaded by the policy loader by
default. If you want to load the configuration resources, you need to create a directory and copy
object_config, objattr_config, and binding into that directory. Rename object_config
to object and objattr_config to objattr. Then you can configure the policy loader to load
these files into this new directory.

Configuring the Policy Import Tool

The Policy Import tool relies on the configuration file for information on how to load the policy
files. You only need to modify the configuration file if you the change the location of the policy
files or you want to change some configuration options. The Domain parameter is required for
successful import. The Policy Import tool uses default values for the other parameters, which are
all optional.

This section covers the following topics:
e “Setting Configuration Parameters” on page 7-3

e “Sample Configuration File” on page 7-7

Setting Configuration Parameters
Each configuration parameter has the following format:

<Parameter> <Value>

The file paths in the configuration file depend on the directory from which you run the Policy
Import tool. You may use the full path filename to avoid directory dependency. Spaces are
allowed between parameters and between new lines. Parameter names are case insensitive.
Table 7-1 lists the parameters you need to configure for the Policy Import tool.

To create the configuration file (see Listing 7-1 for a complete sample), you need a text editor
such as Notepad. Create the file by entering the necessary parameters and parameter values. The
following sections describe the contents of a sample configuration file, with a detailed
explanation of each parameter and its default value.

Enter the following parts of the configuration file in the format described. These are only sample
entries. Your entries depend on the names you create and where your files are stored. An italics
font is used here to represent variables that you replace with your own parameter names. You do
not need to list the parameters in the configuration file in this order.

Policy Managers Guide 1-3

There is a sample of a Policy Import configuration file named policy_loader_sample.conf
located in the .../examples/policy directory. You can modify this file for your own use. BEA
recommends that you use this file as a template and customize it for your particular needs.

Note: The configuration parameters are listed in alphabetical order in Table 7-1. This is not the
order in which they are listed in the policy_loader_sample.conf file.

Table 7-1 Configuration Parameters

Parameter

Description

Action

Indicates the Action that the Policy Import tool will perform. Supported values are
LOAD and REMOVE (case insensitive).

REMOVE = Unloads the specific policy from the database.
ADD = Loads the specific policy data into the database.

ApplicationNod
e

Specifies the application node that holds the administration policy. If this parameter is
commented out, the default value of admin is used.

BLMContext Specifies the number of times retries should take place. If the ALES Administration

Retries Console server is still starting up, then you need to retry the BLM API Authentication.
In most cases the ALES Administration Console server is always running. Default: 100.

BLMContext Specifies the amount of time (in milliseconds) to wait between context retries.

Interval_ms

DEFAULT: 100ms.

BulkSize

Specifies the number of records to send at one time in a thread. Default: 200.

Note: When there are multiple threads importing policy data, each processing a
number of records, the number of records processed may result in an
“out-of-sync” message. However, it does not harm the data when importing the
policy. The policy import tool switches to single thread when importing some
policy elements, such as resources and declarations, as the later records have
dependency on earlier records.

ConsoleDisplay

Specifies whether to hide console interaction or not (yes/no). If you want to run the
policy loader in the background as a batch process, set to no. Default: yes

no = Error messages are not displayed on the console and the user is requested to enter
their Username and Password if they are missing in the configuration file.

yes = Error messages are displayed on the console. This parameter must be enabled if
you want to type in your password on the command prompt, rather then use the one
specified in the password.xml or in the configuration file.

1-4 Policy Managers Guide

Importing Policy Data

Table 7-1 Configuration Parameters (Continued)

Parameter Description
Debug Specifies whether you want to log debug information. Default: 0

0 = Does not log debug information.

1 = Sends debug information to the file defined by: ErrorLogFile.
Domain Specifies the Enterprise domain name, as assigned during the installation of the

Administration Application. Default: asidomain.
This parameter is required.

ErrorLogFile

Specifies the name of error log file. This file is produced if the Importing Tools fails
while attempting to load a set of policy files. It contains error messages that describe the
failures to assist you in correcting the errors. Default: error. log.

Mode

Specifies the mode of operation the Policy Import tool. Values are INITIAL or
RECOVER (case insensitive). Use INITIAL mode the first time you run the Import
Policy Tool to load a set of policy files. If you encounter errors in the initial load attempt,
check the ErrorLogFi le for a description of the error, correct the errors in the
generated error file(s) (an error file is produced for each policy file that fails), and rerun
the Import Policy Tool again, but this time in the RECOVER mode. This way the tool
only attempts to load the generated error files. If the tool fails again, fix the errors, and
run it again in RECOVER mode. Repeat until no errors are encountered.

Note: This parameter can also be passed in as a command-line parameter —-recover
or —initial. Values for this parameter on the command line override values
specified in the configuration file.

PasswordFile

Specifies an encrypted password file. To set up a password file, use the asipassword
utility. This utility prompts you for the alias (username) and the password of the user
trying to import the policy and then saves the encrypted password in the

password . xml file. Default: . ./ssl/password.xml. For more information, see
asipassword in the Administration Reference.

PasswordKey Specifies a private key used to decrypt the password stored and encrypted in the

File password.xml file. To set up a password file, use the asipassword utility. Default:
. ./ssl/password.key. For more information, see asipassword in the
Administration Reference.

Policy Specifies the directory path from which to import policy files. For example:

DirectoryPath . ./examples/policy. The path may be relative. Default: “.” (for relative)

Policy Managers Guide 1-5

http://e-docs.bea.com/ales/docs26/adminref/utilities.html#asipassword
http://e-docs.bea.com/ales/docs26/adminref/utilities.html#asipassword

Table 7-1 Configuration Parameters (Continued)

Parameter Description
Policy Specifies whether the Policy Import tool will distribute policy. If the distribution file is
Distribution in policy distribution path and PolicyDistribution parameter is set to yes, the policy will

be distributed. Supports YES or NO setting. Default: YES.
YES = The Policy Import tool distributes policy data.

NO = The Policy Import tool does not distribute data. It only imports it into the database.
The Administration Console can then be used to distribute data.

requestTimeout Specifies the time (in milliseconds) to wait for the server to respond. Should be longer

for loading large files. May set to infinite CAS1 . INFINITE) for very large files.
Default: 600000

RunningThread Number of threads running concurrently to process the policy import. The value

depends on the capacity of the database server. Commonly the optimal value is 2 - 4 or
be larger for a high capacity database server. Default: 2.

Username Specifies the username for the administrator (optional). The username is case

sensitive. If the username is not specified in the configuration file and the
ConsoleDisplay parameter is enabled, then you are prompted to enter one. Default:
system.

Note: This user must have the privilege to import policy.

1-6

For more information on the configuration parameters, refer to the following topics:
e “Username and Password” on page 7-6

e “Policy Import Parameters” on page 7-7

Username and Password

Including the password in the configuration file is optional and is not recommended because it
could be viewed by others who are not authorized to import policy. The password can be
encrypted and stored in the password.xml file. You should set the PasswordFi le and
PasswordKeyFile for the policy to automatically retrieve the password using the alias as the
username specified in the configuration file. If you do not include these parameters and the
console display is enabled (the default setting), you are prompted to enter their values when you
run the Policy Import tool. If one of the two parameters is not included in the configuration file
and the console display is disabled, the Policy Import tool logs an error and terminates. When
entered, the password is not displayed for security reasons.

Policy Managers Guide

Importing Policy Data

Policy Import Parameters

This section of the configuration file specifies parameters that the Policy Import tool uses to
import policy data. There are three policy import parameters: PolicyDirectoryPath,
RunningThread and BulkSi ze.

The PolicyDirectoryPath parameter specifies the directory path for the policy files. When
you start the Policy Import tool, it looks in the directory pointed by PolicyDirectoryPath for
valid files. The directory path is either a relative or full path. If the value is left empty or the value
is a period (.), the current directory of the Policy Import tool is assumed. For example:

PolicyDirectoryPath ._./examples/policy

The RunningThread parameter specifies the number of running threads and depends on the
hardware configuration of the database server. The default number is 3. For most database
servers, you want to use a value from 2 to 4. For a high-capacity database server, where a high
CPU speed and large memory size are allocated, increase this number to improve import
performance. If you set this value too high, it may hinder the performance of the Policy Import
tool. If this is the case, you can observe database busy warning messages in the server log file.

The BulkSize parameter denotes the size of each bulk load data block per thread in the Policy
Import tool; that is, the number of entries imported in a single load using a single connection
between server and the database. Increase the parameter value to lessen the time to initiate a
connection. If you enter too high a value, the import process slows, which in turn requires higher
RequestTimeout and ConnectionTimeout Values. The optimal value is between 50 and 300.

Sample Configuration File

Use the sample file shown in Listing 7-1 to guide you through the process of creating your
configuration file. Each parameter description includes comments, indicated by the # symbol.
The sample configuration file assumes that all of your policy files are located in the directory
specified by BEA_HOME/ales26-admin/examples/policy.

Note: Be sure to use forward slashes (/) when specifying the policy file directory path.

The sample configuration file also assumes that no policy distribution is performed.

Listing 7-1 Sample Configuration File

Required

In addition to this file, asi.properties is read in from the ALES HOME/config
directory. Any parameters set here will override values defined there.

Policy Managers Guide 1-1

policy domain name, as set in policy database during database installation
Domain asidomain

Optional

#i### A ALES administrator user id and password.

1T either Username or password is not provided, they can be
entered at prompt (case sensitive).

#i#### They should be same as stored in database.

#Username system

Encrypted password file
#H### To set up a password file, use asipassword utility tool
PasswordFile ../ssl/password.xml

#it#Ht Password key file
PasswordKeyFile ../ssl/password.key

This is the application node that holds the administration policy.
##H##t If commented out it assumes the dafult value of "admin".
ApplicationNode admin

Number of Threads Running concurrently

The value depends on the capacity of the database server

commonly the optimal value is 2 - 4, or could be larger for high capacity
DB server

RunningThread 2

If ALES Admin console server is still coming up then you need to retry
#i## the BLM APl Authentication. In most cases the ALES Admin console server will
#i## always be running.

Configure the number of times retries should take place (DEFAULT 100)
BLMContextRetries 2

#i## Configure the the amount of time in milli seconds to wait between context
#it# retries (DEFAULT 100ms)
BLMContextiInterval_ms 100

#it#tt Size for each bulk load. I.e. number of entries loaded in a
single load(200 here)
BulkSize 200

#i### Loading directory value for loading policy files, value is the
directory from which the files will be loaded.

Directory path may be a relative path

PolicyDirectoryPath .

To indicate whether to distribute policy in same operation.

IF distribution file is in policyDistribution path and

PolicyDistribution parameter is not set to no the policy WILL be
distributed.

1-8 Policy Managers Guide

Importing Policy Data

Parameter takes either yes or no (case insensitive). Default = YES
PolicyDistribution yes

#i## File where all error messages are logged.
ErrorLogFile policylmporter.log

To indicate the Action that the Policy Import tool will perform.
Values are LOAD or REMOVE (case insensitive). Default = LOAD
#Action REMOVE

#i#### To indicate the Mode the Policy Import tool will be in

Values are INITIAL or RECOVER (case insensitive). Default = INITIAL

This parameter can also be passed in as a commandline parameter -recover or
#H#H#H# —initial.

Values on the command line will override values specified in the

configuration file.

#Mode RECOVER

###t uncomment 1If you want to see debug information, Default = 0O (no debug)
#Debug 1

uncomment If you want to hide console interaction (yes/no), default = yes
I you want to run loader in background/in batch process, set this to no
ConsoleDisplay yes

Running the Policy Import Tool

After you complete the configuration file, you can run the Policy Import tool and import your
policy files.

To run the Policy Import tool:
1. Prepare your policy data files.

You can create your own policy data files as described in Chapter 4, “Advanced Topics.”
or you can use files that you have exported from your policy database as described in
“Exporting Policy Data” on page 7-11.

2. Create a configuration file to define your policy load.

You can use the ../examples/policy/policy_loader_sample.conf file as a template
for your configuration file. Additionally, for a sample configuration file, see “Sample
Configuration File” on page 7-7.

3. Run the Policy Import tool.

On a Microsoft Windows platform, run

Policy Managers Guide 1-9

1-10

policyloader._bat
On a UNIX platform, run:

policyloader.sh
4. Check for errors in log file.

Note: Ifan error occurs, the Policy Loader terminates; you must restart the Policy Import tool.
The name of the error file is defined in the your Policy Import tool configuration file by
the ErrorLogFi le parameter. In addition, to distribute policy you need distribution
privileges granted to you.

Also, because the Policy Import tool is multi-threaded and each thread writes out to the
log when it is complete, you cannot guarantee the order in which each load completes.

The Policy Import tool processes policy files according to a predefined order, and if the policy
file is not found, it tries to load the next policy file in the proper order. Records imported
successfully are committed to the database. After the import process begins, you cannot go back
within the same process and edit changes you have made. If you want to change what you have
done, you have to start a new import process. After the import process is complete, you may run
the removal operation to reverse the import process.

Understanding How the Policy Loader Works

When an Object Exists Error occurs—indicating that you created a duplicate policy entry—
the import process does not stop. When the Policy Import tool encounters an error other than the
Object Exists Error, it generates a file named <filename>.<version> (for example,
object.1, object.2) and the error message is logged in the configured error file.

Once the policy loader has finished, you need to check to see if there are any versioned files. If
there are such files, this indicates that there were errors in certain files and only the problematic
lines from those files have been placed in the versioned files. You can now correct the mistakes
in the versioned files and re-run the policy loader in the recover mode. You can do this in two
ways. Either:

e update the mode in the configuration file to RECOVER or

e add an extra command line argument (-recover) when running the policy loader again.

Now the loader will only try to load the highest version files that has not already been previously
loaded. If you corrected priv.1 and there are still problems, then the loader will now generate
priv.2with justthe lines that filed. You now have to make the fix in priv.2 and rerun the policy

Policy Managers Guide

Exporting Policy Data

loader in the recover mode. You need to keep doing this until the policy loader does not generate
any new version files and the error log file does not have any errors listed in it for the last run.

Policy unloading works similar to policy loading except the order in which the files are read is
reversed, and the policy is removed from the database instead of being added.

Exporting Policy Data

This section provides instructions and information on how to export policy data from the policy
store. It covers the following topics:

e “Policy Export Tool” on page 7-11

e “Before You Begin” on page 7-11

e “Exporting Policy Data on Windows Platforms” on page 7-12
e “Exporting Policy Data on UNIX Platforms” on page 7-13

e “What’s Next” on page 7-13

Policy Export Tool

Policy exporting allows you to output data from the policy database to text files called policy
files. These policy files can be imported back to the same or another policy database using the
Policy Import tool, as described in “Importing Policy Data” on page 7-1. This tool allows you to
transfer your policy data easily to a production environment.

To perform policy exporting, you need access to the policy database. In general, you can access
the policy database when you are the policy owner or the database administrator.

All the files that are exported by the Policy Export tool are supported by the Policy Import tool.
All the files are created even though some files may not contain any records. There are two other
files exported: object_config, and objattr_config, that contain the data for SSM
configuration. These files also get loaded and are similar to object and objattr respectively in
format. These files are split so as to differentiate policy elements from configuration elements.
However, the object_config and objattr_config files can be merged into object and
objattr respectively, if needed.

Before You Begin

Before you begin, perform the following tasks:

Policy Managers Guide 1-11

1-12

1.

Locate or create a target directory in which to store the policy files.

Ensure that the directory is not write-protected. The free space that the export requires
depends on the size of your existing policy. If your export fails because of insufficient disk
space, add more space before attempting the export again. In addition, ensure that the full
directory path contains no white space.

Ensure that the database client is installed and configured, and that you have access to the
database.

Depending on the database system, you need to have the database client installed and
configured to connect to the policy database. Make sure all the environment settings are
correct.

Make sure you can access the policy database. For example, for Sybase use the isqgl
command or use the sqlplus command for Oracle. You must be the policy owner or
database administrator to run the export tool. When exporting, you are asked to provide the
information for policy owner, your database login id and password.

Ensure that you can run the tools from the /bin subdirectory for the product installation.

You must run the exporting scripts in this directory because the scripts need to locate some
files relative to this directory.

On a Microsoft Windows platform, you can open a DOS command prompt window and
change to this directory.

Exporting Policy Data on Windows Platforms

This procedure exports your policy from the database into formatted text files. You perform this
export using the export tool included as part of the Administration Application.

To export the policy data on a Windows platform, perform the following steps:

1.

Open a command window and change to the \bin directory in the product installation. By
default, this directory location is C:\bea\ales26-admin\bin.

Ensure that the current path (.) is included your PATH. Also, ensure that the client environment
is set up properly.

At the command prompt, type the following command, and then press <Enter>:
policyexporter._bat directory

where directory is the target directory for the exported policy files. Be sure to include
the full path of the directory. This directory cannot contain white spaces.

Policy Managers Guide

Exporting Policy Data

When exporting the policy, the configuration resources are saved to the following files:
object_config and objattr_config. The Policy Import tool does not import these two files
by default. If you want to import the configuration resources, you need to create a directory, and
copy object_config, objattr_config, and binding into that directory. Rename
object_configtoobjectand objattr_configto objattr. Then you can configure the Policy
Import tool to import these to file in this new directory.

Exporting Policy Data on UNIX Platforms

This procedure exports your policy from the database into formatted text files. You perform this
export using the Policy Export tool included as part of the Administration Server.

Running the Policy Export tool on Sun Solaris requires the use of a shell script. If you do not
normally use this shell or have difficulty running the tool, check with your UNIX system
administrator to determine if it is available in your environment. For Linux, you can run this script
from a Bourne shell.

To export the policy data on a UNIX platform, perform the following steps:
1. Open a command window and change to BEA_HOME/ales26-admin/bin directory.

2. From the command line, enter the following command:

policyexporter.sh

3. When the script prompts you for the directory in which to save the policy files, type the full
path directory name, and then press <Enter>.

When the script completes, a successful message appears.

When exporting the policy, the configuration resources are saved to the following files:
object_config and objattr_config. The Policy Import tool does not import these two files
by default. If you want to import the configuration resources, you need to create a directory, and
copy object_config, objattr_config, and binding into that directory. Rename
object_configtoobjectand objattr_configtoobjattr. Then you can configure the Policy
Import tool to import these to file in this new directory.

What'’s Next

Once you have exported the policy data, you can import the exported policy into policy database
using the Policy Import tool. The exported policy files are in the format required by the Policy
Import tool; however, you need to configure the tool to point to the exported file directory. You
also need to create a policy distribution file distribution if you want the policy to be

Policy Managers Guide 1-13

automatically distributed after the import completes. For additional information, see “Importing
Policy Data” on page 7-1.

1-14 Policy Managers Guide

	Policy Managers Guide
	Introduction
	Document Scope and Audience
	Guide to this Document
	Related Documentation
	Contact Us!

	Security Policies Overview
	What is an AquaLogic Enterprise Security Policy?
	Closed-world Security Environment

	Policy Components
	Resources
	Virtual Resources
	Resource Attributes
	Privilege Groups
	Privileges

	Identities
	Identity Attributes
	Groups
	Users
	Roles

	Policies
	Role Mapping Policies
	Authorization Policies
	Delegation Policies
	Summary of Policy Differences

	Declarations
	Constants
	Enumerated Types
	Attributes
	Evaluation Functions

	Writing Policies
	Policy Implementation: Main Steps
	Access Decision Process
	Authentication Service
	Role Mapping Service
	Authorization Service
	Credential Mapping Service
	Authorization and Role Mapping Engine

	Using the Administration Console to Write Policies
	Administration Console Overview
	Defining Resources
	Virtual Resources
	Resource Attributes
	Privileges
	Privilege Groups

	Defining Identities
	Identity Attributes
	Groups
	Users
	Roles

	Writing Authorization and Role Mapping Policies
	Role Mapping Policies
	Authorization Policies
	Role Mapping Policy Reports
	Authorization Policy Reports

	Defining Declarations
	Binding Policies
	Deploying Policies

	Advanced Topics
	Designing More Advanced Policies
	Multiple Components
	Policy Constraints
	Comparison Operators
	Regular Expressions
	Constraint Sets
	String Comparisons
	Boolean Operators
	Associativity and Precedence
	Grouping with Parentheses
	Boolean Operators and Constraint Sets

	Declarations
	Constant Declarations
	Enumerated Type Declarations
	Attribute Declarations
	Evaluation Function Declarations

	Policy Inheritance
	Group Inheritance
	Direct and Indirect Group Membership
	Restricting Policy Inheritance
	Resource Attribute Inheritance

	WebLogic Resource Type Conversions and Resource Trees
	Understanding Resource Nodes
	Root Node
	Application Deployment Parent Node
	Application Node
	Resource Type Node
	Resource Parent Node
	Resource Node

	Resource Paths and Policies for Common Resources
	EJB Resources
	EJB Resource Path Example
	EJB Resource Privilege Mappings
	EJB Resource Dynamic Resource Attributes

	JNDI Resources
	JNDI Resource Path Example
	JNDI Resource Privilege Mappings
	JNDI Dynamic Resource Attributes
	JNDI Resource Policy Examples

	URL Resources
	URL Resource Path Example
	URL Resource Privilege Mappings
	URL Dynamic Resource Attributes
	HTTP Request Context Elements
	URL Resource Policy Examples

	JDBC Resources
	JDBC Resource Path Example
	JDBC Resource Privilege Mappings
	JDBC Resource Path Example
	JDBC Dynamic Resource Attributes
	JDBC Resource Policy Examples

	JMS Resources
	JMS Resource Path Example
	JMS Resource Privilege Mappings
	JMS Resource Example
	JMS Resource Policy Examples

	Web Services Resources
	Web Services Resource Path Example
	Web Services Resource Privilege Mappings
	Web Services Resource Policy Examples
	Web Services Dynamic Resource Attributes
	Web Services Resource Policy Examples

	Server Resources
	Server Resource Path Example
	Server Resource Privileges Mapping
	Server Dynamic Resource Attributes
	Server Resource Policy Examples

	Subject Mapping
	Policy Element Naming
	Fully Qualified Names
	Policy Element Qualifiers
	Size Restriction on Policy Data
	Character Restrictions in Policy Data
	Special Names and Abbreviations

	Sample Policy Files
	Application Bindings [binding]
	Attribute [attr]
	Declarations [dec]
	Directories [dir]
	Directory Attribute Schemas [schema]
	Mutually Exclusive Subject Groups [excl]
	Resources [object]
	Resource Attributes [object]
	Policy Distribution [distribution]
	Policy Inquiry [piquery]
	Policy Verification [pvquery]
	Privileges [priv]
	Privilege Bindings [privbinding]
	Privilege Groups [privgrp]
	Role [role]
	Rule [rule]
	Distribution Targets
	Subject Group Membership [member]
	Subjects [subject]

	Using Response Attributes
	report() Function
	report_as() Function
	Report Function Policy Language
	Using Evaluation Plug-ins to Specify Response Attributes

	Using queryResources and grantedResources
	Resource Discovery

	Using the Entitlements Management Tool
	What is the Entitlements Management Tool?
	Understanding the RBAC Model
	ALES RBAC Model Concepts
	Summary of Entitlements Management Tool Functions
	Role Management Functions
	Permission Management Functions
	Separation of Duties Functions
	Entitlements Reporting Functions

	Setting Up the Entitlements Management Tool
	Load the Entitlements Management Tool Policies
	Deploy the Entitlements Management Tool Web Application
	Deploying on WebLogic Server 9.x
	Deploying on WebLogic Server 8.1
	Deploying on Apache Tomcat

	Configuring the RBAC Model in SSMs

	Using the Entitlements Management Tool
	Saving and Distributing Changes
	Security for the Entitlements Management Tool

	Working with Roles
	Viewing Roles
	Creating a New Role
	Assigning Role Attributes
	Modifying and Removing Roles

	Working with Identities
	Users Tab
	Groups Tab
	Attributes Tab

	Working with Permissions and Permission Sets
	Viewing Permission Sets
	Creating a New Permission Set
	Modifying the Permission Set Hierarchy
	Assigning Permission Attributes

	Separation of Duties Constraints
	Generating Reports

	Extending the Entitlements Management Tool
	Why Might You Want to Extend the UI?
	Managing a Subscription Model: Step 1
	Managing a Subscription Model: Step 2
	Managing a Subscription Model: Step 3
	Managing a Subscription Model: Step 4
	Managing a Subscription Model: Step 5

	Components of the Entitlements Management Tool
	Entitlements UI Application Objects
	Entitlements UI Beans Package
	Entitlements UI RBAC Package
	Utils Package
	Persistence Package

	Extending the Entitlements Management Tool: Main Steps
	Un-jar Entitlements Management Tool Web Archive File
	Create a metaobject_mappings.properties Configuration File Under WEB-INF/config
	Create Custom Implementation Node to Extend EUIMetaObjectNode
	Create Custom JSPs
	Modify Existing Navigation and Main JSP Files
	Modifying main.jsp

	1. When you created a new node, you overloaded the node type in all of the constructors so that the Entitlements Management Tool could render the desired content on the main page. You supply this nodeType in main.jsp.
	2. The header facet displays the title and image associated with a given main page. Update as needed in main.jsp
	3. Add details for the custom node type.
	Modify the JSF Configuration File
	Re-jar Entitlements Management Tool Web Archive
	Redeploy Entitlements Management Tool Web Archive on Admin Server

	Using Custom Data for Access Control
	Using an Attribute Retriever to Get a Custom Data Value
	Using an Evaluation Function

	Clone and Move Operation for Custom Node
	Debugging Techniques and Problem Isolation
	Example of Extending the Entitlement UI
	Follow the Instructions in the Readme

	Importing and Exporting Policy Data
	Importing Policy Data
	Policy Import Tool
	Configuring the Policy Import Tool
	Setting Configuration Parameters
	Sample Configuration File

	Running the Policy Import Tool
	Understanding How the Policy Loader Works

	Exporting Policy Data
	Policy Export Tool
	Before You Begin
	Exporting Policy Data on Windows Platforms
	Exporting Policy Data on UNIX Platforms
	What’s Next

