0?7,

r
S’ 7
L/

BEAAqualogic
Enterprise
Security™

Administration
Reference

Version 2.1
Document Revised: December 19, 2005

Copyright

Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “ASIS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT,
GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE
USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY,
RELIABILITY, OR OTHERWISE.

Third-Party Software License Agreement

Sun Microsystems, Inc.’s XACML implementation v2.0
Copyright © 2003-2004 Sun Microsystems, Inc. All Rights Reserved.

This product includes Sun Microsystems, Inc.’s XACML implementation v2.0, which is governed by the following terms:

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

1. Redistribution of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistribution in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

Neither the name of Sun Microsystems, Inc. or the names of contributors maybe used to endorse or promote products
derived from this software without specific prior written permission.

This software is provided "AS IS," without a warranty of any kind. ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
HEREBY EXCLUDED. SUN MICROSYSTEMS, INC. ("SUN") AND ITS LICENSORS SHALL NOT BE LIABLE
FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR
DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS
BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,

CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS
OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS
SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You acknowledge that this software is not designed or intended for use in the design, construction, operation or
maintenance of any nuclear facility.

For all third-party software license agreements, see the 3rd_party_licenses.txt file, which is placed in the
\ales21-admin directory when you install the AquaLogic Enterprise Security Administration Server.

Trademarks or Service Marks

BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data
Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service Registry,
BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA WebLogic
Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security,
BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic
JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server, BEA WebLogic
Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup Edition, BEA
WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical Support is a
service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual property rights
reserved by third parties.

All other trademarks are the property of their respective companies.

About This Document

AUAIENCE . o e XVi
Product Documentation.ttt XVi
Related Information.ot XVi

1. Provider Extensions

What is a Provider EXtENSiON?. 1-1
Authorization and Role Mapping EXtensions i, 1-2
Using Java-Based PIug-ins. i 1-2
Using the Java-based Plug-in Interfaces. 1-3
Resource CONVEIEr e 1-4
Attribute Retriever 1-5
Attribute ConVerter. oo 1-6
Using Language EXtensions.t e e 1-7
Building an EXtension. 1-8
Deploying the EXtENSION oot e 1-8

Using the EXIENSION o e 1-9

Custom Audit PIUg-INSo e 1-9
Using the Custom Audit Plug-in i 1-9
Audit Plug-in Renderer Class. e e 1-10
Database Authentication Plug-in. i i 1-10
Configuring a Custom Attribute Retriever i, 1-13

2. Audit Events

What is an AuditEVent?. 2-1
What Events are Audited?. 2-3
Custom Audit Context EXIENSIONS 2-4
Audit Event Interfaces and Audit EVeNnts i 2-5

Administration Reference

AUdItAINEVENT . . . o 2-5

AUdItALZEVENL 2-6
AuditCredentialMappingEvent 2-7
AuditMgmMEEVENt 2-7
AUditPOlICYEVENL. . . o 2-7
AuditRoleDeploymentEvent 2-8
AUditROIEEVENT . . . oo 2-9
Admin Policy AUdit EVENtSo e 2-9
Additional Audit Event Interfaces. 2-17
Authentication - AuditAtnEvent. 2-17

Policy Deployment - AuditPolicyDeployEvent 2-18

Policy Undeployment - AuditPolicyUndeployEvent 2-19

Policy Events - AuditPolicyEvent i 2-19

Role Mapping - AuditRoleEvent i 2-19

Role Deployment - AuditRoleDeployEvent. 2-20

Role Undeployment - AuditRoleUndeployEvent. 2-20
Predicate Events - AuditPredicateEvent., 2-20
ContextHandler Object. 2-21
PolicyAdministrationEvent. 2-21

Using Custom Audit Providers 2-22

3. Policy Language Custom Extension Library API Reference

vi

Plug-In Extension Function Pointers. i i 3-1
*CredFunc() - Custom Credential Function Pointer 3-2
DESCIIPLION . . . 3-2

S A . o et 3-2
Parameters. . . .o 3-2

REtUINS 3-2

Administration Reference

SEE AlSD. . o 3-3
*EvalFunc() - Custom Evaluation Function Pointer 3-3
SYMaX . ot 3-3
Parameters. 3-3
ReIUMS . 3-3
EXample. ..o 3-4
SEE AlSD. . o 3-4
*ShutdownFunc () - Custom Shutdown Function Pointer 3-4
SYaX ot 3-4
Parameters. 3-4
REIUIMS . 3-4
EXample. ..o 3-4
SEE AlSD. . o 3-5
*PlugininitFunc() - Plug-in Initialization Function Pointer. 3-5
SYMaX . ot 3-5
Parameters. 3-5
REIUIMS . 3-5
EXample. ..o 3-5
registerCustomCredentialFunction() - Register Credential Function. 3-6
SYMaX . 3-6
Parameters. 3-6
REIUIMS . 3-6
EXample. ..o 3-6
SEE AlSD. . o 3-6
registerCustomEvaluationFunction() - Register Evaluation Function. 3-7
SYMaX ot 3-7
Parameters. 3-7

Administration Reference vii

EXample .. 3-7

SEE AISD . o 3-7
registerShutdownFunction() - Register Shutdown Function................... 3-8
S X . o ot 3-8
Parameters. 3-8
REIUIMS 3-8
EXample .. 3-8

SEE AISD . 3-8
SESSION ClaSS. . o ot 3-9
Session::SetAttribute() - Append AttributeValue Object. 3-10
SYaX . o et 3-10
Parameters. 3-10
REIUIMS 3-10
EXample .. 3-10

SEE AISD . 3-11
Session::getAttribute() - Get AttributeValue Object from Attribute 3-12
SYMEAX . o e 3-12
Parameters. 3-12
REIUIMS 3-12
EXample .. 3-12

SR AlSD . 3-12
Session::getEvalResult() - Get EvaluationResult 3-13
SYMAX . o ot 3-13
Parameters. 3-13
REIUIMS 3-13
EXample .. 3-13

SEE AISD . 3-13

viii Administration Reference

SYMaX . o ot 3-14
Parameters. 3-14
RetUMS . 3-15
Example. ..o 3-15
SEE AlSD. . o 3-15
Session::getDomainName() - Get Domain Name for the Session.............. 3-16
SYMaX oot 3-16
Parameters. 3-16
REtUIMS . 3-16
Example. ..o 3-16
SEE AlSD. . o 3-16
Session::getLocationName() - Get Location Name for Session. 3-17
SYAX . o 3-17
Parameters. 3-17
RetUIMS . 3-17
Example. ..o 3-17
SEE AlSD. . o 3-17
Session::getApplicationName() - Get Application Name for Session........... 3-18
SYaX . ot 3-18
Parameters. 3-18
RetUIMS . 3-18
Example. .. 3-18
SEE AlSD. . o 3-18
Session::getUserID() - Get User Name for Session. 3-19
SYaX oo 3-19
Parameters. 3-19
RetUIMS . 3-19

Administration Reference ix

SEE AISD . o 3-19
AttributeValue Class.o 3-20
SingleValue 3-20
Listsof Values. 3-21
Methods Common to Both Types.t 3-21
Internal Methods. o 3-21
AttributeValue::addValue() - Add and Set a String List Attribute Value......... 3-23
SYMBX . o et 3-23
Parameters. 3-23
REIUIMS 3-23
EXample .. 3-23

SEE AISD . 3-23
AttributeValue::AttributeValue() - Constructor, 3-24
SYAX . o e 3-24
Parameters. 3-24
REIUIMS 3-24
EXample .. 3-24

SEE AISD . 3-25
AttributeValue::entries() - Count Number of List Elements 3-26
SYMEAX . o e 3-26
Parameters. 3-26
REIUIMS 3-26
EXample .. 3-26

SR AISD . 3-26
AttributeValue::getValue() - Get Single Attribute Value 3-27
SYAX . o e 3-27
Parameters. 3-27

Administration Reference

Administration Reference

Xi

Parameters. 3-32
ReIUIMS .« 3-32
EXample .. 3-32
SEE AlSD . 3-32
AttributeValue::removeAt() - Remove Indexed List Attribute Value 3-33
S MY . o et 3-33
Parameters. 3-33
REIUMS 3-33
EXample .. 3-33
SEE AISD . 3-33
AttributeValue::removeValue() - Remove Named List Attribute Value 3-34
SYaX . o e 3-34
Parameters. 3-34
REIUIMS .« 3-34
EXample .. 3-34
SEE AISD . 3-34
AttributeValue::size() - Count Number of List Elements 3-35
SYMaX . o et 3-35
Parameters. 3-35
REtUIMS 3-35
EXample .. 3-35
SEE AISD . 3-35

AttributeValue [] Operator - Returns the Value of an Indexed String List Element 3-36

4. BLM Configuration API Security Providers Reference

ActiveDirectoryAuthenticator. 4-2
ALESIAentity ASSeIter . . o ot 4-4

Xii Administration Reference

ALESIdentityCredentialMapper e 4-6

ASIAIUAICALOT. . . . oo e 4-7
AsiAuthorizationProvider 4-7
ASIAULNOIIZEY . . . 4-8
ASIROIEMAPPEIPIOVIAEN . . . o e 4-11
Database AUtNENtiCator.o o 4-11
DatabaseCredentialMappert 4-11
DBMSAULheNtiCatort 4-17
DefaultAuthenticator. 4-21
DefaultAUtNOrIZer 4-22
DefaultCredentialMapperot 4-24
DefaultRolEMappero 4-24
IPlanetAuthenticator o 4-25
LDAPAUNENLICAIOr. . . . o oot 4-26
LOGAJAUdITOr 4-29
NoVellAUtheNtiCator 4-32
NTAUtNENTICALOro e e 4-33
OpenLDAPAULNENLICAIOrt 4-36
ResourceDeploymentAuditor i 4-37
SAMLCredentialMapper.t 4-39
SAMLIAENtItY ASSEITEr . . . ot 4-40
SinglePassNegotiateldentity ASSerter.t 4-42
XB001dentity ASSEITEr. . o .\ ot 4-42
XACMLAULNOFIZEN . . oo 4-44

Administration Reference Xiii

Xiv Administration Reference

About This Document

This document is organized as follows:

e Chapter 1, “Provider Extensions,” describe how to write custom security provider
extensions. A provider extension is a plug-in function that you write to extend the
capabilities of the existing providers. While the security providers supplied with
AquaLogic Enterprise Security are configurable, the plug-ins enable you to customize them
to add additional functionality.

e Chapter 2, “Audit Events,” describes how extent the AuditContext interface. The
AuditEvent interface provides a mechanism for passing additional audit information to
Auditing providers during a writeEvent operation. If you implement this interface and
you expect to receive a ContextHandler argument from a caller, you can extend the
Auditcontext interface to provide more information.

e Chapter 3, “Policy Language Custom Extension Library APl Reference,” describes how to
use the Custom Extensions API. The Custom Extensions API provides a policy language
for writing custom extension libraries (plug-ins) to enhance features available through the
Authorization and Role Mapping Engine (ARME), such as routines for dynamic
computation of an attribute value (credential function) or custom predicate (evaluation
function).

e Chapter 4, “BLM Configuration API Security Providers Reference,” describes the security
provider attributes, their default values, and indicates whether the getvalue/setvalue
and the getvalue/setvalueList methods can be used with the attributes. This
information is needed if you want to use the BLM API to configure security providers.

Administration Reference XV

About This Document

Audience

This document distinguishes between two levels of security administrators.

e Application Security Administrators — these administrators are responsible for integrating
ALES into application environments, managing interaction between an applications and
ProductNameShort, and setting up application-level security administrators.

Typical tasks include modifying deployment descriptors, managing security providers and
other security configurations, managing single sign-on scripts, setting up application-level
security administrators.

e Application-level Security Administrators — these administrators are responsible for
securing applications using ALES policies.

The primary task is to create and deploy the policies securing application resources.

Product Documentation

BEA product documentation, along with other information about BEA software, is available
from the BEA dev2dev web site:

http://dev2dev.bea.com

To view the documentation for a particular product, select that product from the Product Centers
menu on the left side of the screen on the dev2dev page. Select More Product Centers. From the
BEA Products list, choose Aqualogic Enterprise Security 2.1. The home page for this product is
displayed. From the Resources menu, choose Documentation 2.1. The home page for the
complete documentation set for the product and release you have selected is displayed.

Related Information

Xvi

The BEA corporate web site provides all documentation for BEA Aqual.ogic Enterprise Security.
Other BEA Aqual.ogic Enterprise Security documents that may be of interest to the reader
include:

e Introduction to AqualLogic Enterprise Security—This document summarizes the features of
the BEA Aqualogic Enterprise Security products and presents an overview of the
architecture and capabilities of the security services. It provides a starting point for
understanding the family of BEA Aqualogic Enterprise Security products.

e Polricy Managers Guide—This document defines the policy model used by BEA
AquaLlogic Enterprise Security, and describes how to import and export policy data.

Administration Reference

http://dev2dev.bea.com
{DOCROOT}/secintro/index.html
{DOCROOT}/policymanager/index.html

Related Information

o Admirnistration and Deployment Guide—This document provides step-by-step instructions
for performing various administrative tasks.

o [ntegrrating ALES with Application Environments—This document describes important
tasks associated with integrating AqualLogic Enterprise Security into application
environments.

e Programming Security for Java Applications—This document describes how to implement
security in Java applications. It includes descriptions of the Security Service Application
Programming Interfaces and programming instructions.

e Developing Security Providers for BEA AquaLogic Enterprise Security —This document
provides security vendors and security and application developers with the information
needed to develop custom security providers.

e BEA AqualLogic Enterprise Security Policy Managers Guide—This document defines the
policy model used by BEA AquaLogic Enterprise Security, and describes how to import
and export policy data.

e Javadocs for Java API—This document provides reference documentation for the Java
Application Programming Interfaces that are provided with and supported by this release of
BEA AquaLlogic Enterprise Security.

e Javadocs for Security Service Provider Interfaces—This document provides reference
documentation for the Security Service Provider Interfaces that are provided with and
supported by this release of BEA Aqual.ogic Enterprise Security.

Administration Reference Xvii

{DOCROOT}/programmersguide/index.html
{DOCROOT}/dvspisec/index.html
{DOCROOT}/policymanager/index.html
{DOCROOT}/javadocs/JavaAPI/index.html
{DOCROOT}/javadocs/SSPI/index.html
{DOCROOT}/adminguide/index.html
{DOCROOT}/integrateappenviron/index.html

About This Document

Xviii Administration Reference

Provider Extensions

The following topics are covered in this section:
e “What is a Provider Extension?” on page 1-1
e “Authorization and Role Mapping Extensions” on page 1-2
e “Custom Audit Plug-ins” on page 1-9
e “Database Authentication Plug-in” on page 1-10

e “Configuring a Custom Attribute Retriever” on page 1-13

What is a Provider Extension?

A provider extension is a plug-in function that you write to extend the capabilities of the existing
providers. You can use these plug-ins to manipulate existing policy data in a way that is not
already provided or to retrieve data from external sources to add to an authorization or role
mapping decision or a deployment audit. You can use these plug-ins with the ASI Authorization,
ASI Role Mapping, Resource Deployment Audit, Log4j Audit Channel, and Database
Authentication providers.

While the security providers supplied with AqualLogic Enterprise Security are configurable, the
plug-ins enable you to customize them to add additional functionality. For example, you may
want some form of special business logic to retrieve additional data that you want to use before
the authorization decision is made or for the custom processing of data, such as the audit context.
Plug-ins are provided for a variety of functions:

Administration Reference 1-1

Provider Extensions

You can use Java-based plug-ins to perform attribute retrieval, attribute conversion, and
resource conversion. You can use attribute retrievers to retrieve embedded data from
complex data objects or external data sources. You can use resource converters to convert
WebLogic Server and Aqualogic Enterprise Security data to an internal resource format.
You can use attribute converters to convert context data to an internal attribute format.

You can use C++ language extensions plug-ins to add your own custom authorization and
role mapping evaluation functions to the standard ones provided. After you develop a
function, administrators can manipulate its input using the Administration Console. The
plug-in appears to the administrator as simply new evaluation functions or newly available
dynamic attributes.

You can use the audit plug-ins to help format audit events that are generated by the
Security Framework, the runtime API, or custom implementations.

You can use the database authentication plug-in with the Database Authentication provider
to customize authentication features.

The following sections provide more information on the plug-ins and how to use them.
e “Authorization and Role Mapping Extensions” on page 1-2
e “Custom Audit Plug-ins” on page 1-9

e “Database Authentication Plug-in” on page 1-10

Authorization and Role Mapping Extensions

1-2

Aqualogic Enterprise Security supports using Java-based plug-ins and language extensions with
security providers. You can use these plug-ins to performed custom functions for authorization,
role mapping, and resource deployment auditing.

The following types of plug-ins are supported:
e “Using Java-Based Plug-ins” on page 1-2

e “Using Language Extensions” on page 1-7

Using Java-Based Plug-ins

Aqualogic Enterprise Security providers support three types of Java-based plug-ins: resource
converters, attribute retrievers, and attribute converters. Table 1-1 shows the types of Java-based
plug-ins that each security provider supports.

Administration Reference

Authorization and Role Mapping Extensions

Table 1-1 Java-based Plug-in Support for Security Providers

Security Provider Supports Resource Supports Attribute Supports Attribute
Converter Plug-in Retrievers Plug-in Converter Plug-in

ASI Authorization provider Yes Yes Yes

Resource Deployment Yes No Yes

Audit provider

ASI Role Mapping Yes Yes Yes
provider

To use these plug-ins, you must perform the following tasks:
1. Write a Java class that implements the plug-in interface.

2. Place the Java class in the appropriate directory of the Security Service Module with which
you intend to use the plug-in. A single Java class may be used with more than one Security
Service Module.

3. Use the Administration Console to register the Java class on the desired Security Service
Module(s).

For instructions for performing these tasks, refer to the following sections:
e “Using the Java-based Plug-in Interfaces” on page 1-3
e “Resource Converter” on page 1-4
e “Attribute Retriever” on page 1-5

e “Attribute Converter” on page 1-6

Using the Java-based Plug-in Interfaces

To implement a Java-based plug-in interface, you must perform the following steps:

1. Refer to the description of the plug-in interface you want to use and write a Java class to
implement the interface. The following sections provide descriptions of each type of plug-in
interface:

— “Resource Converter” on page 1-4

Administration Reference 1-3

Provider Extensions

1-4

— “Attribute Converter” on page 1-6

— “Attribute Retriever” on page 1-5

2. Use the Java class to create a JAR file and place the JAR file in the /1ib/providers
directory in the installation directory for the Security Service Module on the machine on
which the Security Service Module is installed. For example, the default location of this
directory for the WebLogic Server 8.1 Security Service Module is
C:\bea\ales2l-ssm\wls-ssm\lib\providers.

3. Refer to the following topics in the Console Help and use the Administration Console to
register the Java plug-ins in the desired security providers for the desired Security Service
Modules:

— Cofiguring an ASI Authorization Provider

— Configuring an ASI Role Mapping Provider

Resource Converter

Resource converters are used by ASI Authorization, ASI Role Mapping, and Resource
Deployment Audit providers to convert WebLogic Server resources into an internal resource
format that is recognized by Aqualogic Enterprise Security. For a description of the policy data
formats, see the BEA AquaLogic Enterprise Security Policy Managers Guide.

ResourceConverter IS an interface in the
com.bea.security.providers.authorization.asi package. This interface is used to
implement plug-ins for converting from the Security Framework defined resource interface into
an access query. There is no standard for resource definitions so plug-ins are needed to handle
each of the resource types. The set of resource types is not fixed and you can define your own
resource, in which case, you need to define a resource converter to allow the ASI Authorization
provider to protect the resource. Numerous resource converters are supplied for your use, one for
each defined WebL ogic Server and AqualLogic Enterprise Resource type. Table 1-2 lists and
describes the methods provided by the Resourceconverter interface.

Administration Reference

{DOCROOT}/policymanager/index.html

Authorization and Role Mapping Extensions

Table 1-2 ResourceConverter Interface Methods

Method Description

String[] This method is called when the plug-in is instantiated and is used to determine

getHandledTypes () what resource types the converter knows how to handle. The Security Framework
represents resource types internally as strings.

AccessElement This method extracts enough information from a Resource and

convertResource (Res
ource

resource, ContextHan
dler
contextHandler)
throws
ResourceConversion
Exception

ContextHandler to form an access query. The minimum amount of required
information to be extracted is the resource object and privilege. Additional
information that can be included is the application name and input attributes
extracted from the Resource or ContextHander:

If the application is not specified, then the provider uses the following rules for
selecting one:

e If no application is specified, then the object is queried under the shared
resource node as specified in the provider configuration.

« Ifanunqualified application is specified, the object is queried under the
default deployment node, plus the application, plus the object.

« Ifafully qualified application is specified, then the object is queried under that
node.

If the resource converter is unable to generate an access query from the
information provided in the Resource, it throws a
ResourceConversionException indicating to the provider and framework
that this query cannot be answered by this provider.

Object
getAttributevalue
(Resource resource,
String

name, ContextHandler
contextHandler)

This method finds the value of a missing attribute. It is left up to you as the
developer of the ResourceConverter plug-in to determine how the
ResourceConverter gets the required value. The plug-in may return null if the
value is not found.

Attribute Retriever

Attribute retrievers are used by ASI Authorization and ASI Role Mapping providers to retrieve
attributes for use by Aqualogic Enterprise Security authorization and role mapping.
AttributeRetriever isaninterface inthe com.bea.security.providers.authorization
package that you can use to implement plug-ins for retrieving attributes. You use an
implementation of the attributeRetriever interface to get embedded data from complex data

Administration Reference

Provider Extensions

objects. For example, if the contextHandler includes an address element, you can use an
attribute retriever to make the zip code portion of the address available separately. You can also
use an attribute retriever to fetch data from external data sources, for example, JDBC data stores.

Note: Itis generally not necessary to write attribute retrievers for objects that appear directly in
the contextHandler; attribute retrievers are used to extract embedded or otherwise
inaccessible data.

You can register multiple attribute retrievers with the same attribute name. If you do so, the
attribute retrievers are called in order until one of them returns a non-null result.

Table 1-3 lists and describes the methods provided by the attributerRetriever interface.

Tahle 1-3 AttributeRetriever Interface Methods

Method Description
Stringl] This method returns the names of attributes handled by this
getHandledAttributeNames () object. An empty or nul1l value indicates that the retriever is

considered capable of handling any attribute name.

Object getAttributeValue (This method retrieves the value of the named attribute.
String name, Additional authorization request data is made available to
Subject subject, allow for more complex attribute retrieval. The parameters are
Map roles, as follows:

Resource resource,

* name—name of the needed attribute

ContextHandler contextHandler)

* subject—subject associated with the request

* roles—role membership of the subject, ornull ifthisisa
role mapping call

» resource—resource associated with the request

« contextHandler—context associated with the request; may
be null if non-existent

This method returns the attribute value, or nul1l if the
attribute is not found.

1-6

Attribute Converter

Attribute converters are used by ASI Authorization, ASI Role Mapping, and Resource
Deployment Audit providers to convert context data to an internal attribute format. For a
description of the policy data formats, see the BEA AquaLogic Enterprise Security Policy
Managers Guide.

Administration Reference

{DOCROOT}/policymanager/index.html
{DOCROOT}/policymanager/index.html

Authorization and Role Mapping Extensions

To create attribute converters, you implement the Typeconverter interface. This interface
converts between native Java types and ASI formatted Strings. If you create a new ASI type, you
may want to create a Java class to handle it and implement a TypeConverter interface to handle
that class. ASI types are the credential types that are visible through the console such as integer,
date, and string types, and so on, versus Java data types. Table 1-4 lists and describes methods
provided by the Typeconverter interface.

Table 1-4 TypeConverter Interface Methods

Method Description

Class getType () This method returns the type which this converter converts.
String getASITypeName () This method returns the ASI type name.

String convertToASI (Object This method converts a java object into a ASI string.

javaFormat) throws
UnsupportedTypeException

Object convertFromASI (String This method converts a ASI string to a Java Object.
asiFormat) throws
TypeConversionException

Using Language Extensions

The ASI Authorization and ASI Role Mapping providers support the use of C++ plug-ins for
custom rule extensions for evaluation and credential functions. The functions available for use
are described in “Policy Language Custom Extension Library API Reference” on page 3-1.

This section contains a description of how to create an extension library for the ASI Authorization
and ASI Role Mapper engine (ARME) used by the ASI Authorization provider. This example
works with BEA Aqualogic Enterprise Security, Version 4.2.

The product installation includes an example of code and build commands for an extension
library located in the /examples subdirectory in the Administration Application installation
directory.

For instructions for building, deploying, and using extensions, see the following sections:
e “Building an Extension” on page 1-8

e “Deploying the Extension” on page 1-8

Administration Reference 1-1

Provider Extensions

e “Using the Extension” on page 1-9

Building an Extension

To build the extension library, you need to have the following header files, installed in the asi
subdirectory:

e armeapi.h

e AttributeValue.h
e session.h

e defs.h

e exception.h

The extension needs to be linked with the following libraries, included with the ARME
executable:

e utilmd.lib or libutil.so

e pluginmd.lib or libplugin.so

The compiler used must generate library binaries compatible with the compiler used to compile
the ARME server.

e On Windows platform: Visual C++ 6.0 SP5
e On Linux Red Hat, AS 2.1 or 3.0: gcc 2.96

e On Solaris: Forte 7.0, or a binary compatible mode for later versions

Deploying the Extension
To deploy the extension, do the following:

1. Place the compiled library (for example, arme_extension.d11) into the same path
accessible by the ARME process.

2. Configure the initialization function in the ARME local configuration file, using the
following syntax:

<ARME. tag>.plugin[l..4] <path>/<DLL plug_in filename>(initialize 'arg')
For example:

ARME.alesadmin.pluginl arme_extension.dll(initialize 'test')

1-8 Administration Reference

Custom Audit Plug-ins

This example assumes that the arme_extension.d11 is in the path for the ARME
process. In this example, initialize is the name of the routine in the extension library
that is called when the library is loaded to perform initialization. <arME. tag>isa
parameter passed in the command line of the ARME process. This parameter defines the
scope for the configuration parameters used from a local file. You may use an empty scope
for these keywords; that is, just plugin(1..41].

Using the Extension

The extension library adds credential functions (custom dynamic attributes) and evaluation
functions. To use them in your policy, you need to add declarations for them. For example, if an
extension library defines the custom-attribute credential function, you need to add a
declaration for a custom-attribute inthe Administration Console with a dynamic type, and
an appropriate data type (string, integer, and so on.). Then, you can use this attribute in policy
constraints.

Custom Audit Plug-ins

The Log4j Audit Channel provider uses Log4j renderer classes that convert the associated audit
event object into a simple string representation. However, you can write custom renderers that
convert the audit event object to something other than the default string representation and
register them as plug-ins using the Administration Console.

Refer to the following topics for information how to write and register custom audit plug-ins:
e “Using the Custom Audit Plug-in” on page 1-9
e “Audit Plug-in Renderer Class” on page 1-10

Using the Custom Audit Plug-in

To implement an audit plug-in interface, you must perform the following steps:

1. Refer to “Audit Plug-in Renderer Class” on page 1-10 for a description of the audit plug-in
renderer class and write a Java class to implement a new renderer class.

2. Use the Java class to create a JAR file and place the JAR file in the /1ib/providers
directory in the installation directory for the Security Service Module on the machine on
which the Security Service Module is installed. For example, the default location of this
directory for the WebLogic Server 8.1 Security Service Module is:
C:\bealales42-wls-ssm\lib\providers.

Administration Reference 1-9

Provider Extensions

3. For instructions on using the Administration Console to register the audit plug-in for the
desired Log4j Audit Channel provider, refer to Configuring a Log4j Audit Channel Provider
in the Console Help.

Audit Plug-in Renderer Class

To write a plug-in renderer class, you must implement the

org.apache.log4j.or.0ObjectRenderer interface and then register the renderer class to the

type of Audit Event class for which you want to use that renderer. For example,

weblogic.security.spi.MyAuditEvent=com.bea.security.providers.
audit.MyAuditEventRenderer

For instructions on how to write a renderer for a custom object, see the Log4j documentation
located at http://logging.apache.org/log4j/docs/documentation.html.

Table 1-5 lists and describes a sample AuditEventRenderer class.

Table 1-5 AuditEventRenderer Class Method

Method Description
public class MyAuditAtnEventRenderer implements Inthis sample, this method renders the
org.apache.log4j.or.ObjectRenderer { AuditEvent object as a simple string. To
public String doRender (Object o) { render the Audit Event as something other
String eventStr = null; than a simple string, modify this method
if (o instanceof MyAuditEvent) { to form your own string representation.
MyAuditEvent event = (MyAuditEvent) o;
eventStr = event.getEventType()+" --

"+event.toString() ;
}
return eventStr;
}
}

Database Authentication Plug-in

The Database Authentication extension is used by the Database Authentication provider to
customize authentication features. The default database authentication extension (located in the
com.bea.security.providers.authentication.dbms.DefaultDBMSPluginImpl
package) is designed to authenticate the user against the policy database. This implementation
uses a specific password hashing algorithm, namely, SHA1 and SHA-1. It also uses a special

1-10 Administration Reference

http://logging.apache.org/log4j/docs/

Database Authentication Plug-in

format for the user name and the group name that is pertinent to the policy database. The hashing
algorithm used is:

{Algorithm} + 4 byte Salt+passwordhash

The policy database uses name scope (for example, directory name) and a qualified name format
to store the user and group. See the BEA AquaLogic Enterprise Security Policy Managers Guide
for details.

If you are authenticating users against another database that uses a different password hashing
algorithm and a different user/group name format, you may decide to implement your own
plug-in by following the guidelines provided with the plug-in.

A custom database authentication plug-in must also implement the peuspP1ugin Interface
(Iocated in the com.bea.security.providers.authentication.dbms.DBMSPlugin
package). The pBMsPlugin Interface implementation must include the methods described in
Table 1-6.

To use your plug-in implementation, you need to deploy the plug-in class (or its JAR file) in the
classpath of the Database Authentication provider and use the Administration Console to
configure the Database Authentication provider to use the plug-in.

Table 1-6 lists and describes the methods provided by the pBMSPlugin interface.

Table 1-6 DBMSPlugin Interface Methods

Method Description

public void This method is executed when the authorization provider is initialized
initialize() on startup.

public void This method is executed when the authorization provider is shut down.
shutdown ()

Administration Reference 1-1

{DOCROOT}/policymanager/index.html

Provider Extensions

Table 1-6 DBMSPIlugin Interface Methods

Method

Description

public boolean
authenticate(
String user,
char[] password,
char[]
databasePassword,
Map options)

When the Database Authentication provider attempts to authenticate
a user, the authenticate method is called on the plug-in. This method
may be called in one following two scenarios. If the provider is
configured with the SQL Query to retrieve password, the password
(databasePassword) is retrieved from the database using this query
and is provided to this method. This authenticate method must
determine if the user provides the correct password (password) and
return true, if authenticated, or false.

The options map contains a TRUE value for key =
"QueryPassword". If no SQL Query string is configured for
retrieving the password, the Database Authentication provider
assumes that the authentication plug-in retrieves the password and then
authenticates the user. The options map contains values for these keys,
"scope" and "connection”, and a FALSE value for key =
"QueryPassword". Also, databasePassword = null.

public String
formatUser (String
user, Map options)

This method is executed before any call to the database. The user string
is the one passed into the login module. This method returns a formatted
user name, which is later used as the input parameter in all the SQL
queries to verify user, to retrieve password, and to retrieve groups. The
options Map contains values for these keys, "scope" and "connection”,
and the configured string of the SQL query to verify user with key =
"SQL_QUERY™.

public Vector
formatGroups (String
user, Vector groups,
Map options)

This method is executed after the call to retrieve groups from the
database. A vector of strings containing the groups the user belongs to
are passed in. Any formatting of group names that is required before
inserting these into the Subject should be done and the resulting vector
passed back. The options Map contains values for these keys, scope
and connection, and the configured string of the SQL query to
retrieve groups with key = "sQL_QUERY".

The options Object is a map containing optional information that the plug-in may want to use.
The most common options of use and their keys for retrieval are:

e key = scope—the configured scope for the Database Authentication provider.

1-12 Administration Reference

Configuring a Custom Attribute Retriever

® key = QueryPassword—the java.lang.Boolean Value that indicates whether the
password SQL Query String was configured and executed. If it is false, then the password
was not retrieved from the database. This key is only present for the authentication method.

® key = connection—an open JDBC java.sql.Connection oObject. Do not close this
object; it is returned to the pool after authentication.

Configuring a Custom Attribute Retriever

To configure a custom attribute retriever, you must implement the attribute retriever and register
it with the configured ASI Authorization provider.

To configure an attribute retriever, perform the following steps:
1. Implement a custom attribute retriever and use the Java class to create a JAR file

2. Place the JAR file in the /1ib/providers directory in the installation directory for the
Security Service Module (SSM) on the machine on which the SSM is installed (either the
WebLogic Server 8.1 SSM or the Java SSM). For example, the default directory for the
WebLogic Server 8.1 SSM is c:\bea\ales21-ssm\wls-ssm.

3. Inthe left pane of the Administration Console, click the ASI Authorization provider
configured for the SSM instance, select the Advanced tab in the right pane, type in the fully
qualified name of your custom retriever in the Attribute Retrievers field, and click Apply.

4. Repeat step 3. to register the Attribute Retriever with the ASI Role Mapping provider.

5. Inthe left pane, click Deployment, select the Configuration tab, and deploy the
configuration change to the SSM.

6. Restart the SSM ARME process.

Administration Reference 1-13

Provider Extensions

1-14 Administration Reference

Audit Events

The following topics are covered in this section:

“What is an AuditEvent?” on page 2-1

“What Events are Audited?” on page 2-3

“Custom Audit Context Extensions” on page 2-4
“Audit Event Interfaces and Audit Events” on page 2-5
“Additional Audit Event Interfaces” on page 2-17

“Using Custom Audit Providers” on page 2-22

What is an AuditEvent?

The auditEvent interface provides a mechanism for passing additional audit information to
Auditing providers during a writeEvent operation. This is the base interface that is extended by
components in the Security Framework to compose specific audit event types. Extending this
interface helps auditing providers determine the calling security component.

If you implement this interface and you expect to receive a ContextHandler argument from a
caller, you can extend the auditcontext interface to provide more information. Some of the
sub-interfaces defined by the security SPI are listed in Table 2-1. Table 2-1 also indicates which
sub-interfaces implement the auditcontext interface. These interfaces are documented in the
BEA Aqualogic Enterprise Security Provider SSPI 4.2 API Reference.

Administration Reference 2-1

{DOCROOT}/javadocs/SSPI/index.html
{DOCROOT}/javadocs/SSPI/index.html

Audit Events

Table 2-1 Audit Events

Audit Event Name Interface Class Interfaces Implemented

AuditEvent AuditContext

Authentication weblogic.security.spi.AuditAtnEvent Yes No
Audit Event

Authentication weblogic.security.spi.AuditAtnEventV2 Yes Yes
Audit Event V2

Authorization Audit weblogic.security.spi.AuditAtzEvent Yes Yes
Event

Role Mapping Audit weblogic.security.spi.AuditRoleEvent Yes Yes
Event

Credential Mapping weblogic.security.spi.AuditCredentialMappingEvent ~ Yes Yes
Audit Event

Management Audit weblogic.security.spi.AuditMgmtEvent Yes No
Event

Policy Audit Event weblogic.security.spi.AuditPolicyEvent Yes No
Role Deployment weblogic.security.spi.AuditRoleDeploymentEvent Yes No
Audit Event

Provider Audit com.bea.security.spi.ProviderAuditRecord Yes Yes
Record

The providers implement the appropriate audi tEvent interfaces and post those events to the
Audit provider. The audi tEvents that also implement the audi tcontext interface can provide
more information via a contextHandler.

The contextHandler interface provides a way for an internal WebLogic container to pass
additional information to a WebLogic Security Framework call, so that a security provider can
obtain additional context information beyond what is provided by the arguments to a particular
method. A contextHandler iS essentially a name/value list. The name/value list is also called a
context element, and is represented by a contextElement 0object.

2-2 Administration Reference

What Events are Audited?

What Events are Audited?

Depending on the interface that the AuditEvent has implemented, different information is
audited. For all audit events, the toString() method is called on the event and that string is
audited. Some audit events have a ContextHandler, such as the AuditAtzEvent and
AuditRoleEvent, in which case the context is audited in addition to calling the toString()
method on the AuditEvent. You can have many ContextElements, but each NAME/VALUE pair
must be iterated over and audited.

The Log4j Audit Channel provider ships with Log4j renderers that are aware of these interfaces
and know how to extract the appropriate audit information. You can change this behavior by
writing custom renderers and updating the Custom Log4j Renderer Properties text box on the
Advanced tab for the Log4j Auditor page in the Administration Console. A custom renderer is
useful if only a particular subset of context elements are required or if the default style of audit
events needs to be changed.

Each audit record has the following format:

2004-04-22 12:21:55,833 [Thread-27] SUCCESS ASI_AUDIT — My Custom Event —

Custom Event msg -- <attrl = valuel><attr2 = value2>
A custom renderer may require square brackets [] instead of angle brackets <>.

To be audited, you can select which severity the audit event must equal or be greater than; and
you can select the types of AuditEvents by setting the Custom Audit Events attribute. If an
AuditEvent implements or is an instance of any of the classes listed, then you can audit it. Only
new custom events need to be listed here. The default events already exist and are controlled by
selecting either: DISABLED, WITH_CONTEXT, or WITHOUT_CONTEXT on the Details tab for the
Log4j Auditor page in the Administration Console. For a list of audit events, see “Audit Events”
on page 2-1.

Note: Printing the entire context by enabling wITH_coNTEXT can be an expensive task and is
proportional to the number of context elements contained in the contextHandler.

All audit events generated through the Java API are called through the Provider Audit Records
interface using the auditRecord method. This includes PolicyAdministrationEvent and
ARMEAuthorizationEvent. A PolicyAdministrationEvent is generated when a policy
change is made through the Administration Console. An ARMEAuthorizationEvent iS
generated when the ARME makes a authorization request for a policy change.

All audit events can be DISABLED OF WITHOUT_CONTEXT. For those that have context, you can
select wiTH_coNTEXT. The AuditAtzEvents have more options then all the other types, you can
select the events to audit based on the following options:

Administration Reference 2-3

Audit Events

e DIsABLE—NO auditing occurs.
e WITHOUT_CONTEXT—AUdits what is in the event message.
e WITH_REQUEST_CONTEXT—AWUdIits the event message plus the request context.

e WITH_RESPONSE_CONTEXTS—AUdIts the event message plus all the response contexts.
Only contains the context that was populated with responses from the ASI Authorization
provider. There can be many contexts returned for a single query and hence the coNTEXTS.

e WITH ALL_CONTEXTS—AUdIts the event message plus all the contexts (request as well as
response contexts).

Custom Audit Context Extensions

The Log4J Audit Channel provider is used to audit events that are generated by the Security
Framework, the runtime API, or custom implementations based on the
weblogic.security.spi.AuditEvent interface auditEvent class.

Audit plug-ins can be used to audit with minimal awareness of the audit data formats being passed
in by the calling Security Framework component. Additionally, Log4j plug-ins written or
supplied by third parties can implement actions (such as paging security personal) based on audit
severity/criteria you set in the Log4j Audit Channel provider Details tab in the Administration
Console. Some general descriptions or suggestions for the information suitable for auditing by
AuditEvent are as follows:

e Audit events are structured to have a two-tier model. There is a
weblogic.security.spi.AuditEvent interface that defines the minimum requirements
for an audit event. This interface includes type, severity, toString (), and, if there was
an exception associated with the event, a reference to the exception.

e In addition to the core auditEvent interface, several additional interfaces are defined to
further elaborate on the audit types, and, for providers that need to retrieve audit properties
that are specific to the audit type, interfaces exist that allow the providers to extract these
values.

e A provider that is not reporting specific event properties can be coded to only recognize
the core auditEvent class and to use tostring to output its representation of the event as
a String.

e Audit providers that need to do other things (such as selectively log events based on event
properties) must be specifically coded to the interfaces described so that they know how to
extract these event values from the audit event.

2-4 Administration Reference

Audit Event Interfaces and Audit Events

Audit Event Interfaces and Audit Events

In the security provider interface package, WebLogic Security defines one top-level base
interface (auditEvent) with seven different derived interfaces that represent the different types
of audit events. The following sections describe when the security framework and security
providers post these audit events.

e AuditAtnEvent

o AuditAtzEvent

AuditMgmtEvent

AuditCredentialMappingEvent
e AuditPolicyEvent
¢ AuditRoleDeploymentEvent

e AuditRoleEvent

For a list of the events that are audited for the default Admin policy, see “Admin Policy Audit
Events” on page 2-9.

AuditAtnEvent

Authentication audit events are posted by the security framework. Table 2-2 describes the
conditions under which the event is posted and severity level of the event.

Table 2-2 Authentication Audit Events

Component Description Severity
Security Framework Posted after successful authentication of a user. Success
Security Framework Posted after unsuccessful authentication (a LoginException Failure

thrown from JAAS login method). This LoginException can be
thrown by either JAAS framework or by JAAS LoginModule of
WebLogic Server authentication provider.

Security Framework Posted after an identity assertion to an anonymous user. Success
Security Framework Posted after an unsuccessful identity assertion Failure
(IdentityAssertionException thrown from identity assertion
method).

Administration Reference 2-5

Audit Events

2-6

Table 2-2 Authentication Audit Events (Continued)

Component Description Severity
Security Framework Posted after an unsuccessful identity assertion (IOExceptionis Failure
thrown by identity assertion callback handler when retrieving
username from callback).
Security Framework Posted after an unsuccessful identity assertion Failure
(UnsupportedCallbackException is thrown by identity assertion
callback handler when retrieving username from callback).
Security Framework Posted after an unsuccessful identity assertion (when username Failure
returned from identity assertion callback handler is null or zero
length).
Security Framework Posted after a successful identity assertion. Success
Security Framework Posted after an unsuccessful identity assertion. Failure
Security Framework Posted after a successful impersonate identity (anonymous Success
identity).
Security Framework Posted after a successful impersonate identity. Success
Security Framework Posted after an unsuccessful impersonate identity. Failure
Security Framework Posted after a failure of principal validation. Failure

AuditAtzEvent

Authorization audit events are posted by the security framework. Table 2-3 describes the
conditions under which the events are posted and severity level of the event.

Table 2-3 Authorization Audit Events

Component

Description Severity

Security Framework

Posted if access is not allowed to resource Failure
(exception thrown by authorization provider).

Security Framework

Posted if access is allowed to resource. Success

Security Framework

Posted if access is not allowed to resource. Failure

Administration Reference

Audit Event Interfaces and Audit Events

AuditCredentialMappingEvent

Credential Mapping audit events are posted by the security framework. Table 2-4. describes the
condition under which the events are posted and severity level of the event.

Table 2-4 Credential Mapping Audit Events

Component Description Severity

Security Framework Posted after each successful get of credentials. ~ Success

AuditMgmtEvent

Management audit events are not currently posted by either the security framework or by the
supplied providers.

AuditPolicyEvent

AuditPolicyEvent are posted by the security framework and the WebLogic Authorization
provider. The security framework posts audit policy events when policies are deployed to or
undeployed from an authorization provider. The WebLogic Server authorization provider posts
audit policy events when creating, deleting, or updating policies. Table 2-5 describes the
conditions under which the events are posted and lists the event severity level.

Table 2-5 Audit Policy Events

Component Description Severity
Security Framework Posted after successful deploy of policy. Success
Security Framework Posted after unsuccessful deploy of policy. Failure

Security Framework Posted after successful undeploy of policy. Success

Administration Reference 2-1

Audit Events

Table 2-5 Audit Policy Events (Continued)

Component Description Severity
Security Framework Posted after an unsuccessful undeploy of policy. Failure
WebLogic Authorization Posted after the following events occur: Success
Provider e Asuccessful create of policy from console

« Anunsuccessful create of policy from console
(various exceptions)

e A successful remove of policy from console

* An unsuccessful remove of policy from console
(various exceptions)

¢ Asuccessful update of policy from console

¢ Anunsuccessful update of policy from console
(various exceptions)

AuditRoleDeploymentEvent

The security framework posts audit role deployment events when roles are deployed to or
undeployed from a role mapping provider. Table 2-6 describes the conditions under which the
events are posted and lists the event severity level.

Table 2-6 Audit Role Deployment Events

Component Description Severity
Security Posted after each successful role deployment to a role mapping Success
Framework provider.

Security Posted after each unsuccessful role deployment to a role mapping Failure
Framework provider.

Security Posted after each successful role undeployment from a role mapping Success
Framework provider.

Security Posted after each unsuccessful role undeployment from a role mapping Failure
Framework provider.

2-8 Administration Reference

AuditRoleEvent

Audit Event Interfaces and Audit Events

The WebLogic Role Mapping provider posts audit role events when roles are created, deleted, or
updated. Table 2-7 describes the conditions under which the events are posted and lists the event

severity level.

Table 2-7 Audit Role Events

Component

Description Severity

WebLogic Role Mapping
Provider

Posted after the following events occur: Success

A successful create of role from console

An unsuccessful create of role from console (various
exceptions)

A successful remove of role from console

An unsuccessful remove of role from console (various
exceptions)

A successful update of role from console

An unsuccessful update of role from console (various
exceptions)

Admin Policy Audit Events

Table 2-8 lists and describes the administration policy events that are audited.

Table 2-8 Admin Policy Audit Events

Policy Element Action Type Event Description

Declaration/Attribute create declaration Create a new attribute declaration.
delete declaration Delete an attribute declaration.
rename declaration, new_name Rename an attribute declaration.
modify declaration Modify an attribute declaration.

Administration Reference 2-9

Audit Events

Table 2-8 Admin Policy Audit Events (Continued)

Policy Element Action Type Event Description
Declaration/Constant ~ create declaration, value Create a new constant.

delete declaration, value Delete a constant.

rename declaration, value, new_name Rename a constant.

modify declaration, value, new_value Modify a constant.
Declaration/Enumerat create declaration, value Create a new enumeration.
ion

delete declaration, value Delete an enumeration.

rename declaration, value, new_name Rename an enumeration.

modify declaration, value, new_value Modify an enumeration.
Declaration/Evaluatio create declaration Create an evaluation function.
n Function

delete declaration Delete an evaluation function.

rename declaration, new_name Rename an evaluation function.
Identity/Directory/Ins create directory Create a directory.
tance - -

delete directory Delete a directory.

cascade directory Delete a directory and all its users.

Delete

rename directory, new_name Rename a directory.
Identity/Directory/ create attribute, default_value, Add a scalar attribute to a directory
AttributeMapping/ directory attribute schema.
Single

delete attribute, default_value, Delete a scalar attribute from a

directory directory attribute schema.
modify attribute, default_value, Modify a scalar attribute in a

directory, new_default_value

directory attribute schema.

2-10 Administration Reference

Audit Event Interfaces and Audit Events

Table 2-8 Admin Policy Audit Events (Continued)

Policy Element Action Type Event Description
Identity/Directory/ create attribute, default_value, Add a vector attribute to a directory
AttributeMapping/ directory attribute schema.
List
delete attribute, default_value Delete a vector attribute from a
directory directory attribute schema.
modify attribute, default_value, Modify a vector attribute in a
directory, new_default_value directory attribute schema.
Identity/Subject/ create subject_name Create a new user.
User
copy subject_name, Copy a user.
new_subject_name
delete subject_name Delete a user.
cascade subject_name Cascade a user and all policies
Delete associated with the user.
rename subject_name, Rename a user.
new_subject_name
Identity/Subject/ create subject_name Create a new group.
Group
delete subject_name Delete a group.
rename subject_name, Rename a group.
new_subject_name
addMemb subject_name, member_subject Add a member to a group.
er
remove subject_name, member_subject Remove a member from a group.
Member
Identity/Subject/ create attribute, value, subject_name Set a value to a currently unset
Attribute Assignment/ scalar subject attribute.
Single
delete attribute, value, subject_name Unset a currently set scalar subject
attribute.
modify attribute, value, subject_name, Modify the value of a currently set

new_value

scalar subject attribute.

Administration Reference 2-11

Audit Events

Table 2-8 Admin Policy Audit Events (Continued)

Policy Element Action Type Event Description
Identity/Subject/ create attribute, value, subject_name Set a value to a currently unset
Attribute vector subject attribute.
Assignment/List
delete attribute, value, subject_name Unset a currently set vector subject
attribute.
modify attribute, value, subject_name, Modify the value of a currently set
new_value vector subject attribute.
Identity/Subject/ modify subject_name Modify the user password. The
Password “subject_name” attribute contains
the name of the user with which the
password is associated.
Resource/Instance create resource, resource_type Create a new resource.
delete resource Delete a resource.
cascade resource Cascade delete of a resource. This
Delete includes deletion of all child
resources and associated policies.
rename resource, new_name Rename a resource.
Resource/Attribute create attribute, resource, value Set a value to a currently unset
Assignment/Single scalar resource attribute.
delete attribute, resource, value Unset a currently set scalar
resource attribute.
modify attribute, resource, value, Modify the value of a currently set
new_value scalar resource attribute.
Resource/Attribute create attribute, resource, value Set a value to a currently unset
Assignment/List vector resource attribute.
delete attribute, resource, value Unset a currently set vector
resource attribute.
modify attribute, resource, value, Modify the value of a currently set

new_value

vector resource attribute

2-12 Administration Reference

Audit Event Interfaces and Audit Events

Table 2-8 Admin Policy Audit Events (Continued)

Policy Element Action Type Event Description
Resource/Metadata/ modify resource, value, new_value Toggle the “is application”
IsApplication resource metadata.
Resource/Metadata/ modify resource, value, new_value Toggle the “is distribution point”
IsDistributionPoint resource metadata.
Resource/Metadata/ create logical_name, resource Create a logical name for a
Logical Name resource.
delete logical_name, resource Delete the logical name of a
resource.
rename logical_name, resource, Rename the logical name of a
new_name resource.
Policy/Rule/Grant create action, resource, subject_name, Create a new grant policy. The
constraint “action”, “resource”, and
“subject_name” attributes are lists.
delete action, resource, subject_name, Delete a grant policy. The “action”,
constraint “resource”, and “subject_name”
attributes are lists.
modify action, resource, subject_name, Modify a grant policy. The

constraint, new_action,
new_resource,
new_subject_name,
new_constraint

“action”, “resource”, and
“subject_name” attributes are lists.

Administration Reference 2-13

Audit Events

Table 2-8 Admin Policy Audit Events (Continued)

Policy Element Action Type Event Description
Policy/Rule/Deny create action, resource, subject_name, Create a new deny policy. The
constraint “action”, “resource”, and
“subject_name” attributes are lists.
delete action, resource, subject_name, Delete a deny policy. The “action”,
constraint “resource”, and “subject_name”
attributes are lists.
modify action, action_type, resource, Modify a deny policy. The
subject_name, subject_type, “action”, “resource”, and
constraint, new_effect, “subject_name” attributes are lists.
new_action, new_action_type,
new_resource,
new_subject_name,
new_subject_type,
new_constraint
Policy/Rule/Delegate create action, resource, subject_name, Create a new delegate policy. The
delegator, constraint “action”, “resource”, and
“subject_name” attributes are lists.
delete action, resource, subject_name, Delete a delegate policy. The
delegator, constraint “action”, “resource”, and
“subject_name” attributes are lists.
modify action, resource, subject_name, Modify a delegate policy. The
delegator, constraint, “action”, “resource”, and
new_action, new_resource, “subject_name” attributes are lists.
new_subject_name,
new_delegator, new_constraint
Policy/Action/Role/ create action Create a new role.
Instance
delete action Delete a role.
rename action, new_name Rename a role.
Policy/Action/ create action Create a privilege.
Privilege/Instance - —
delete action Delete a privilege.
rename action, new_name Rename a privilege.

2-14 Administration Reference

Audit Event Interfaces and Audit Events

Table 2-8 Admin Policy Audit Events (Continued)

Policy Element Action Type Event Description
Policy/Action/ create action_group Create a privilege group.
Privilege/Group
delete action_group Delete a privilege group.
rename action_group, new_name Rename a privilege group.
addMemb action_group, action Add a privilege to a privilege
er group.
remove action_group, action Remove a privilege from a
Member privilege group.
Policy/Analysis/ create title, owner, effect_type, Create a new policy query.
Inquiry Query subjects, actions, resources,
delegator
delete title, owner Delete a policy query.
modify title, owner, effect_type, Modify a policy query.
subjects, actions, resources,
delegator
execute title, owner, effect_type, Execute a policy query. If thisis an
subjects, actions, resources, unsaved query “title” and “owner”
delegator is set to an emptystring.
Policy/Analysis/ create title, owner, actions, resources Create a new policy verification
Verification Query query.
delete title, owner Delete a policy verification query.
modify title, owner, actions, resources Modify a policy verification query.
execute title, owner, actions, resources Execute a policy verification query.

If this is an unsaved query “title”
and “owner” is set to an
emptystring.

Administration Reference 2-15

Audit Events

Table 2-8 Admin Policy Audit Events (Continued)

Policy Element Action

Type

Event Description

Policy/Repository deploy

Update

resource, directory

Deploy a policy update. The
“resource” is the distribution node;
all nodes below it may be effected.
This check is made for each chosen
distribution point

deploy
Structural
Change

deleted_directories,
deployed_engines,
deleted_engines,
deleted_bindings,
deleted_applications

Deploy a structural change.

Infrastructure/Engines create engine Create a new SSM.
IARME
delete engine Delete an SSM.
rename engine, new_name Rename an SSM.
bind engine, resource Bind a resource to an SSM.
unbind engine, resource Unbind a resource from an SSM.
Infrastructure/Engines create engine Create an SCM.
/SCM
delete engine Delete an SCM.
rename engine, new_name Rename an SCM.
bind engine, resource Bind an SSM to an SCM. A
“resource” contains the name of the
SSM.
unbind engine, resource Unbind an SSM from an SCM. A
“resource” contains the name of the
SSM.
Infrastructure/ login Login to the ALES administration
Management/Console console.
Infrastructure/ login Login to the ALES policy loader.

Management/BulkMa

nager

2-16

Administration Reference

Additional Audit Event Interfaces

Additional Audit Event Interfaces

The following sections describe additional audit event interfaces:

“Authentication - AuditAtnEvent” on page 2-17

“Policy Deployment - AuditPolicyDeployEvent” on page 2-18
“Policy Undeployment - AuditPolicyUndeployEvent” on page 2-19
“Policy Events - AuditPolicyEvent” on page 2-19

“Role Mapping - AuditRoleEvent” on page 2-19

“Role Deployment - AuditRoleDeployEvent” on page 2-20

“Role Undeployment - AuditRoleUndeployEvent” on page 2-20
“Predicate Events - AuditPredicateEvent” on page 2-20
“ContextHandler Object” on page 2-21

“PolicyAdministrationEvent” on page 2-21

Authentication - AuditAtnEvent

The AuditAtnEvent interface provides an interface for audit providers to determine the
instance types of the extended authentication event type objects. Table 2-9 describes the event
properties.

Table 2-9 Authentication - AuditAtnEvent

Event Property Description
AUTHENTICATE Represents the "simple authentication™ authentication type.
USERLOCKED Indicates that a user was locked because of a series of failed login attempts.

USERLOCKOUTEXPIRED Indicates that a lock on a user has expired.

USERUNLOCKED Indicates that a lock on a user was cleared.

ASSERTIDENTITY Represents the identity assertion authentication token type.

IMPERSONATEIDENITY Represents the impersonate identity authentication type.

Administration Reference 2-11

Audit Events

2-18

When this event is generated, the following information associated with this AuditatnEvent is
available:

e The username associated with this auditatnivent; that is, the username of the person
who is attempting authentication.

e The event type associated with this AuditatnEvent

e Authorization - AuditAtzEvent

There are both pre- and post-authorization access control checks; each of which generates pre-
and post-operation audit write events. The auditatzEvent event interface is used to report
events that result when access is allowed on a resource. The Audit Channel provider is called on
both the pre- and post-operation cases. The exceptions reported using this event must derive from

the java.security.GeneralSecurityException.

When this event is generated, the following information associated with this auditatzEvent is
available:

e The name of the resource
e The name of the subject

e The ContextHandler object

The resource container that handles the type of resource requested (for example, in WebLogic
Server 8.1, the EJB container receives the request for an EJB resource) constructs a
ContextHandler object that may be used by an authorization provider Access Decision to
obtain information associated with the context of the request. This ContextHandler object is
also available with this AuditAtzEvent. For more information about the ContextHandler
object, see “ContextHandler Object” on page 2-21.

Policy Deployment - AuditPolicyDeployEvent

The auditPolicyDeployEvent event interface is used when the Authorization Manager
deployPolicy method is called. When this event is generated, the following information is
available:

e The subject whose action is being audited
e The severity of this event
e The resource that is the target of action being audited

e A string array of role names for this policy

Administration Reference

Additional Audit Event Interfaces

e The exception that occurred (if any) while attempting to carry out this action. Typically,
there will only be an exception if the severity is error or failure.

Policy Undeployment - AuditPolicyUndeployEvent

The auditPolicyUndeployEvent event interface is used when the Authorization Manager
undeployPolicy method is called. When this event is generated, the following information is
available:

e The subject whose action is being audited
e The severity of this event
e The resource that is the target of action being audited

e A string array of role names for this policy

The exception that occurred (if any) while attempting to carry out this action. Typically, there is
only an exception if the severity is error or failure.

Policy Events - AuditPolicyEvent

The auditPolicyEvent eventinterface determines the instance types of extended Authorization
event type objects. Table 2-10 describes the event subtypes.

Table 2-10 Policy Event- AuditPolicyEvent

Event Subtype Description

DEPLOY Indicates that a policy deployment event occurred.
UNDEPLOY Indicates that a policy undeployment event occurred.
UPDATE Indicates that a policy was updated.

Role Mapping - AuditRoleEvent

The auditRoleEvent event provides an interface for auditing providers to determine the
instance types of extended Role Mapping event type objects. Table 2-11 describes the event
subtypes.

Administration Reference 2-19

Audit Events

2-20

Table 2-11 Role Mapping - AuditRoleEvent

Event Subtype Description

DEPLOY Indicates that a role mapping deployment event occurred.
UNDEPLOY Indicates that a role mapping undeployment event occurred.
UPDATE Indicates that a role mapping was updated.

When an auditRoleEvent iS generated, the following information is available:
e The Subject that is attempting to access the resource associated with this AuditRoleEvent

e The resource attempting to be accessed by the subject associated with this
AuditRoleEvent

e The contextHandler object

The resource container that handles the type of resource being requested (for example, with
WebLogic Server 8.1, the EJB container receives the request for an EJB resource) constructs a
ContextHandler Object that may be used by an Authorization provider Access Decision to
obtain information associated with the context of the request. This contextHandler object is
also available with this auditatzevent. For more information about the contextHandler
object, see “ContextHandler Object” on page 2-21.

Role Deployment - AuditRoleDeployEvent

The auditRoleDeployEvent event provides a interface used by the role mapping service to
determine the instance types of extended Role Mapping deployment event type objects.

Role Undeployment - AuditRoleUndeployEvent

The AuditRoleUndeployEvent event provides a interface used by the role mapping service
to determine the instance types of extended Role Mapping undeployment event type objects.

Predicate Events - AuditPredicateEvent

The AuditPredicateEvent event provides a interface for auditing providers to determine
the instance type of extended predicate event type objects. A predicate event occurs when a policy
expression is either registered or unregistered in the Administration Console. Table 2-12
describes the event subtypes.

Administration Reference

Additional Audit Event Interfaces

Table 2-12 Predicate Events - AuditPredicateEvent

Event Subtype Description

REGISTER Occurs when a policy expression is registered.

UNREGISTER Occurs when a policy expression is registered.
ContextHandler Object

A ContextHandler is a class that obtains additional context and container-specific
information from the resource container, and provides that information to security providers
making access or role mapping decisions. The ContextHandler interface provides a way for
an application or container to pass additional information to a Security Framework call, so that a
security provider can obtain contextual information beyond what is provided by the arguments to
a particular method. A ContextHandler is essentially a name/value list and as such, it
requires a security provider to know what names to look for. In other words, use of a
ContextHandler requires close cooperation between the resource container and the security
provider. Each name/value pair in a ContextHandler is known as a context element, and is
represented by a ContextElement object.

A context handler is an object that is included with some event types that allows an audit provider
to extract other information about the state of the application server at the time of the audit event.
The audit provider may log this other contextual information as a way to elaborate on the event
and provide other useful information about the causes of the event.

PolicyAdministrationEvent

The PolicyAdministrationEvent event is used when AqualLogic Enterprise Security
policy is modified or deployed using the AquaLogic Enterprise Security Administration console
or bulk loader. When this event is generated, the following information is available:

e The subject whose action is being audited
e The severity of this event
e The resource that is the target of action being audited

e Detailed information regarding the change being made

The exception that occurred (if any) while attempting to carry out this action. Typically, there will
only be an exception if the severity is error or failure.

Administration Reference 2-21

Audit Events

Using Custom Audit Providers

2-22

You can use a custom auditing provider instead of the Log4j Audit Channel provider. For a
custom auditing provider to be configurable through the Administration Console, the MBean
JAR file for the provider must be installed into the BEA_HOME. . //1ib/providers directory on
both the machine on which the Administration Application is installed and on the machine on
which the Security Service Module is installed. For complete instructions for configuring a
custom security provider, see Configuring a Custom Security Provider in the Console Help.

Administration Reference

CHAPTERa

Policy Language Custom Extension
Library AP| Reference

The ASI Authorization and Role Mapper providers use an external server process to evaluate
authorization decisions. This process is called the Authorization and Role Mapping Engine
(ARME).

This section describes the Application Programming Interface (API) for writing custom
extension libraries (plug-ins) for this process to enhance features available through the policy
language, such as routines for dynamic computation of an attribute value (credential function) or
custom predicate (evaluation function).

This section covers the following topics:
e “Plug-In Extension Function Pointers” on page 3-1
e “Session Class” on page 3-9

e “AttributeValue Class” on page 3-20

Plug-In Extension Function Pointers

The following plug-in function pointers are described in this API:
e “*CredFunc() - Custom Credential Function Pointer” on page 3-2
e “*EvalFunc() - Custom Evaluation Function Pointer” on page 3-3
e “*ShutdownFunc () - Custom Shutdown Function Pointer” on page 3-4

e “*PluginInitFunc() - Plug-in Initialization Function Pointer” on page 3-5

Administration Reference 3-1

3-2

e “registerCustomCredentialFunction() - Register Credential Function” on page 3-6
e “registerCustomEvaluationFunction() - Register Evaluation Function” on page 3-7

e “registerShutdownFunction() - Register Shutdown Function” on page 3-8

These extension functions (called plug-ins) take two kinds of parameters: required and optional.
Parameters also have one of two modes: in or out. Input parameters pass data to an extension.
Output parameters receive data from an extension.

*CredFunc() - Custom Credential Function Pointer

Description

Pointer to a function that computes the value of a credential function. Your plug-in function is
internally referenced by this pointer. The registerCustomCredentialFunction () function
assigns the pointer to your function. For example, this function declares a credential function:

bool MyCredentialFunction (Session &sess, const char *cvarname)
The ARME then connects a function pointer (assign a handle) to your function:

returnCode = registerCustomCredentialFunction("MyCredentialFunctionsName”,

MyCredentialFunction) ;

Syntax

bool (*CredFunc) (Session &sess, const char *cvarname) ;

Parameters

*cvarname iS a required input parameter, that points to a null-terminated character string (a
character array) and contains the name of a credential function.

&sess isarequired output parameter that references the address of a Session object and a session
that contains the computed value of the credential function.

Returns
TRUE if the computation is successful

FALSE if the computation is unsuccessful

Administration Reference

Plug-In Extension Function Pointers

Example

bool GetAccountID(Session &sess, const char *cvarname)

{

See Also

*EvalFunc ()

*EvalFunc() - Custom Evaluation Function Pointer

Points to a function that computes the value of an evaluation function. Your plug-in function is
internally referenced by the ARME through this pointer. The registerCustomEvaluation
Function () function assigns the pointer to your plug-in function. For example, you could
declare a evaluation function like this:

Truthvalue MyEvalFunction(Session &sess,const char *fname, char **argv);

The ARME then connects a function pointer (assign a handle) to your function:

returnCode = registerCustomEvaluationFunction (“MyEvaluationFunctionsName",
MyEvalFunction) ;
Syntax

TruthvValue (*EvalFunc) (Session &sess,const char *fname, char **argv);

Parameters

&sess IS arequired output parameter that references the address of a session oObject and a
session that contains the computed value of the credential variable.

*fname iSarequired input parameter that points to a null-terminated character string (a character
array) and contains the name of an evaluation function.

**argv IS a required input parameter and is a pointer to a null-terminated array (also a pointer)
of null-terminated strings (character arrays), containing a list of arguments for the function.

Returns
Truthvalue enumerated list, containing one of three constants:

Administration Reference 3-3

TV_TRUE IS true
TV_FALSE is false

TV_UNKNOWN iS an error or undefined result

Example

TruthValue isValidAccountID(Session &sess, const char* fname, char **argv)
{...}

See Also

*CredFunc ()

*ShutdownFunc () - Custom Shutdown Function Pointer

Points to a function that is called when the ARME is about to be shutdown. Put all cleanup code
inside this function that you want the plug-in to perform before the shutdown; for example, open
windows handlers, open file pointers, and database connections. Your plug-in function is
internally referenced by the ARME by this pointer. The registerShutdownFunction ()
function assigns the pointer to your plug-in function. For example, to declare a shutdown
function, use the following:

MyShutdownFunction ()

Assign a handle to your function to connect the ARME to your function pointer:

returnCode = registerShutdownFunction (MyShutdownFunction) ;

Syntax

void (*ShutdownFunc) () ;

Parameters
None

Returns
Nothing

Example

void MyShutdownFunction ()

3-4 Administration Reference

Plug-In Extension Function Pointers

{
// Code that needs to run for the plugin to release

// any resources or open connections that it created

}

See Also

*PluginInitFunc ()

*PluginInitFunc() - Plug-in Initialization Function Pointer

Points to a function that initializes an ARME plug-in. The name of this function must appear in
the ARME configuration file. For example, for the following statement, include the function
name initMyplugins () in the ARME configuration file.

ARME. Instancel.pluginl F:/BEA/MyPlugins/ Plugin01l.dll (initMyplugins
'pluginl")

Syntax

void (*PluginInitFunc) (const char *argp);

Parameters

*argp iSarequired input parameter and is a pointer to a null-terminated array of null-terminated
character strings that contains a list of arguments for the initialization.

Returns
Nothing

Example

void initPlugin(const char *pluginName)

{

Administration Reference 3-5

3-6

registerCustomCredentialFunction() - Register Credential
Function

Registers a credential function with a ARME.

Syntax

bool registerCustomCredentialFunction (const char *credname,CredFunc

credfunc) ;

Parameters

*credname IS a required input parameter and points to a null-terminated character string that
contains the name of a custom credential function.

credFunc i$ a required input parameter used to register the credential function.

Returns
TRUE if the registration is successful

FALSE if the registration is unsuccessful

Example

returnCode = registerCustomCredentialFunction (“MyCredentialFunctionsName”,

MyCredentialFunction) ;

See Also

registerCustomEvaluationFunction ()

Administration Reference

Plug-In Extension Function Pointers

registerCustomEvaluationFunction() - Register Evaluation
Function

Registers a custom evaluation function with a ARME.

Syntax

bool registerCustomEvaluationFunction (const char *evalname, CredFunc

evalfunc) ;

Parameters

*evalname IS a required input parameter and points to a null-terminated character string that
contains the name of an evaluation function.

evalFunc IS arequired input parameter used to register the evaluation function.

Returns
TRUE if the registration is successful

FALSE if the registration is unsuccessful

Example

returnCode = registerCustomEvaluationFunction (“MyEvaluationFunctionsName”,
MyEvalFunction) ;

See Also

registerCustomCredentialFunction ()

Administration Reference 3-7

registerShutdownFunction() - Register Shutdown Function

Registers a shutdown function.

Syntax

bool registerShutdownFunction (ShutdownFunc shutdownfunc) ;

Parameters
shutdownFunc IS a required input parameter used to register the function.

Returns
TRUE if the registration is successful

FALSE if the registration is unsuccessful

Example

returnCode = registerShutdownFunction (MyShutdownFunction) ;

See Also

registerCustomEvaluationFunction ()

registerCustomCredentialFunction ()

3-8 Administration Reference

Session Class

Session Class

A session object keeps all data related to a single access or role query. All attributes used during
evaluation are accessible through the session object.

Subject and resource attributes are always accessible. A dynamic attribute, either computed by
an evaluation function or passed in, may be accessible, but this is not guaranteed as they are
loaded as needed. A attribute used as an argument for an evaluation function is computed before
that function is invoked.

The following session objects are described in this API:

“Session::SetAttribute() - Append AttributeValue Object” on page 3-10
“Session::getAttribute() - Get AttributeValue Object from Attribute” on page 3-12
“Session::getEvalResult() - Get Evaluation Result” on page 3-13
“Session::appendReturnData() - Return Evaluation Results” on page 3-14
“Session::getDomainName() - Get Domain Name for the Session” on page 3-16
“Session::getLocationName() - Get Location Name for Session” on page 3-17
“Session::getApplicationName() - Get Application Name for Session” on page 3-18

“Session::getUserID() - Get User Name for Session” on page 3-19

Administration Reference 3-9

3-10

Session::SetAttribute() - Append AttributeValue Object

Sets an attribute value for a credential attribute by appending an attributevalue object to the
named credential.

Syntax

bool setAttribute(const char *name, AttributevValue *value, bool overwrite)

Parameters

*name IS a required input parameter that points to a null-terminated character string (a character
array), referencing the name of the credential attribute. This parameter must be passed a const
char *and notasachar * variable. Simply placing the name directly into the function (in
quotation marks) does not work.

*value iSarequired input parameter that points to an Attributevalue oObject and contains the
value of the credential. Allocate this object with a new operator because the session object takes
ownership of the object.

Warning: Passing in a pointer to a local object or deleting this pointer inside your plug-in may
lead to unexpected results, most likely terminating the ARME process.

overwrite iSa required input parameter Boolean value (TRUE or FALSE), that determines
whether to overwrite existing attributes of the same name. During evaluation, values set with this
call take precedence over static or dynamic values defined for the same credential attribute. There
are no safeguards to prevent modifying the values of these credential attributes. You should set
the value of a credential function only for the attribute to which it is registered.

Returns

TRUE if operation was successful

FALSE if it was not successful

Example

AttributeValue* SomeAttributeValue = new AttributeValue (false) ;
const char *CredName = “SongCount”;
const char *Value = “small”;

SomeAttributeValue.setValue (Value) ;

Administration Reference

Session Class

retcode = sess.setAttribute (CredName, SomeAttributevValue, true);

Warning: Some attributevalue methods may cause an exception and memory leak if you
call them before calling setattribute().

See Also

getAttribute ()

Administration Reference 3-1

3-12

Session::getAttribute() - Get AttributeValue Object from
Attribute

Gets an attribute value for a credential attribute by requiring that you pass it the address of an
existing Attributevalue Object. YOu can use getAttribute (“my_roles",
SomeAttributevalue) to retrieve a list containing the role for a subject.

Warning: BEA strongly recommends that you not modify the contents of the
AttributeValue Object. Some Attributevalue objects are shared between
credentials objects and evaluation threads. Manipulating their values can lead to
unexpected results.

Syntax

bool getAttribute(const char * name, AttributevValue *& wvalue)

Parameters

*name IS a required input parameter that points to a null-terminated character string (a character
array) and references the name of a credential attribute. You must pass this parameter as a const
char *andnotachar * variable. Simply putting the name directly into the function in quotation
marks does not work.

*gvalue IS a required input parameter that points to an Attributevalue object and contains
the value of the attribute.

Returns
TRUE if operation was successful

FaLSE if it was not successful

Example

const char *inputvalue = "LillyLiverCount";

retcode = sess.getAttribute (inputvalue, SomeAttributeValue) ;

See Also

setAttribute()

Administration Reference

Session Class

Session::getEvalResult() - Get Evaluation Result

Returns a pointer to a temporary EvalResult object containing the data returned, along with the
access decision upon the execution of the policy containing the evaluation or credential function.
The plug-in does not know in advance if the policy containing the plug-in function executes
(other policies that preclude it may execute first), so modifying this object does not guarantee the
information is returned. BEA recommends using the appendrReturnbata () method. In many
cases, you may find using the report () and report_as () functions easier and more flexible.

Syntax

EvalResult* getEvalResult () ;

Parameters
None

Returns

Pointer to an EvalRrResult object containing the evaluation results (output attributes) that may be
returned by the executing policy.

Example

EvalResult *MyEvalResultPtr = getEvalResult();

See Also

getEnumValue ()

Administration Reference 3-13

3-14

Session::appendReturnData() - Return Evaluation Results

Sets the evaluation results returned through an Evalresult object upon successful execution of
a policy containing the evaluation or credential function that references the plug-in function. It
does so by copying the contents of the attributevalue object that is passed to it.

If the same attribute value is redefined by another plug-in within the same policy, the return value
is overwritten.

The evaluation result is returned only if the policy actually executes. It might not if another policy
makes evaluating it superfluous. For example, once a user is explicitly denied access with a deny
policy, a thousand grant policies cannot undo the one deny. Knowing this, as soon as a single
grant policy for an access attempt is found, BEA Aqualogic Enterprise Security only looks for
deny policies. When a single deny policy is found, it stops looking.

The exception to this is if the findal1Facts flag is enabled, which you have to consciously set.
When you set the findallFacts flag to true, you are telling BEA AquaLogic Enterprise

Security to return the policy attributes for all policies affecting the access attempt, whether or not
the policies are redundant. Setting the finda11racts flag to true does change the fact that once
a deny policy has executed, grant policies are not evaluated. The sole purpose is to evaluate and
possibly append return results from all deny policies or all grant policies if no deny policies fired.

Warning: Settingthe findal1Facts flag to true dramatically slows down each access attempt
because all policies are checked every time. Avoid setting the flag to true, unless
there is no other way to accomplish your goal.

Each EvaluationResult object contains the relevant policy identification number,
the name of the object and privilege in that policy, and a collection of return
attributes in list form. Single values are represented as single-value lists.

Warning: Unlike the setattribute () method, this method copies the content of the data. If
you allocate the attributevalue object with the new operator, you have to delete
the object. If you do not, a memory leak may result. You are free to pass in a pointer
to a local variable, like that retrieved by the getattribute () method.

Syntax

void appendReturnData (const char *name, const AttributeValue *data);

Parameters

*name IS a required input parameter that points to a null-terminated character string (a character
array) and references the name of the output credential attribute. This parameter must be passed

Administration Reference

Session Class

a const char * and not a char * variable. Simply putting the name directly into the function in
quotation marks does not work.

*data IS arequired input parameter that points to an attributevalue object and contains the
value of the attribute.

Returns

Nothing

Example

AttributeValue LocalValue (true);

const char *OutputAttributeName = "SomeCount";
const char *ValueSample = "shopping";

Localvalue.addvValue (ValueSample) ;

appendReturnData (OutputAttributeName, &LocalValue) ;

See Also

getEvalResult ()

Administration Reference 3-15

Session::getDomainName() - Get Domain Name for the
Session

Retrieves the name of the domain for the session object to which it belongs.

Syntax

const char *getDomainName () const;

Parameters
None

Returns

Points to a null-terminated character string (a character array) and references the name of the
session domain.

Example

const char *CLDomainNameStr = getDomainName () ;

See Also

getLocationName ()

3-16 Administration Reference

Session Class

Session::getLocationName() - Get Location Name for Session

Retrieves the name of the location for the session object to which it belongs.

Syntax

const char *getLocationName () const;

Parameters
None

Returns

Points to a null-terminated character string (a character array) and references the name of the
session location.

Example

const char *CLLocationNameStr = getLocationName () ;

See Also

getDomainName ()

Administration Reference 3-17

3-18

Session::getApplicationName() - Get Application Name for
Session

Retrieves the name of the application for the session object to which it belongs.

Syntax

const char *getApplicationName () const;

Parameters
None

Returns

Points to a null-terminated character string (a character array) and references the name of the
session application.

Example

const char *CLAppNameStr = getApplicationName () ;

See Also

getUserID()

Administration Reference

Session Class

Session::getUserlID() - Get User Name for Session

Retrieves the name of the user for the session object to which it belongs.

Syntax

const char *getUserId() const;

Parameters
None

Returns

Points to a null-terminated character string (a character array) and references the name of the
session user.

Example

const char *CLUserNameStr = getUserId();

See Also

getApplicationName ()

Administration Reference 3-19

AttributeValue Class

Contains the methods for manipulating attributevalue objects, which is how attribute values
are stored for each user credential attribute.

This section describes the following Attributevalue objects:
e “AttributeValue::addValue() - Add and Set a String List Attribute Value” on page 3-23
e “AttributeValue:: AttributeValue() - Constructor” on page 3-24
e “AttributeValue::entries() - Count Number of List Elements” on page 3-26
e “AttributeValue::getValue() - Get Single Attribute Value” on page 3-27
e “AttributeValue::has() - Check If Value is Already Present in a List” on page 3-28
o “AttributeValue::IsList() - Is Attribute Value an Indexed List?” on page 3-29
e “AttributeValue::IsSingle() - Is Attribute Value a Single Value?” on page 3-30
e “AttributeValue::isUndefined() - Is Attribute Value an undefined object?” on page 3-31
o “AttributeValue::setValue() - Set Single Attribute Value” on page 3-32
o “AttributeValue::removeAt() - Remove Indexed List Attribute Value” on page 3-33
e “AttributeValue::removeValue() - Remove Named List Attribute Value” on page 3-34
e “AttributeValue::size() - Count Number of List Elements” on page 3-35

e “AttributeValue [] Operator - Returns the Value of an Indexed String List Element” on
page 3-36

Attributevalue Objects store values in one of two ways:
e Asasingle string value

e As an array-like list of strings

Single Value

Single values are nothing more than one string of characters per attributevalue oObject and are
the most common type of attribute value. The methods that are exclusively for manipulating
single values are:

setValue ()

3-20 Administration Reference

AttributeValue Class

getvalue ()

Lists of Values

Lists of values are collections of strings for one attributevalue Object. They are accessed by
their index value (in square brackets), just like a one-dimensional array. Normally, list values are
not set with duplicate string values. The methods that are exclusively for manipulating lists of
values are:

addvalue ()
removeValue ()
removeAt ()
entries ()

There is also an undefined type of At tributevalue object created by a default constructor with
no arguments. It becomes either a single or a list type after the first call to the setvalue ()
method (single), adavalue () method (list), or operator=1().

Methods Common to Both Types

Several methods are available for both single and list attributes. Most of them are for testing what
type of attribute you have. These include:

size() (returns 1 for single value, or entries() for list value)

operator[0] (same as getValue() for index 0), or operator[] for list

type

isList ()
isSingle()
isUndefined ()

has ()

Internal Methods

The header files contain many methods related to this class and ones that are not documented.
These are used internally by the ARME and are not recommended for use. BEA cannot guarantee
these methods work at all or will work in the future due to deprecation. These include
operator+=(), operator-= (), all those taking non-const char*, enumeration-related, and
type-checking-related methods.

Administration Reference 3-21

Warning: BEA does not recommend using any method not documented in this guide.

3-22 Administration Reference

AttributeValue Class

AttributeValue::addValue() - Add and Set a String List
Attribute Value

Adds and sets a string value to a string list At tributevalue oObject. Use isList () to determine
if the object contains a list of values. If you call this method for an undefined attributevalue
object, it becomes a list type.

Syntax

void addvalue (const char *value, bool check_unique = false)

Parameters

*value iSarequired input parameter that points to a null-terminated character string (a character
array). This parameter adds an element to the end of a string list increasing the list index value by
one and must be passed a const char * and nota char =* variable. Simply putting the value
directly into the function in quotation marks does not work.

check_unigque iS an input parameter that defaults to false. If this parameter is set to TRUE,
duplicate values are not added to the list.

Returns
Nothing

Example

const char *FavoriteSongValue = “foreveryours";
if (FaveSongAvObj.isList())

FaveSongAVObj.addvValue (FavoriteSongValue) ;

See Also

setValue ()
getvValue ()

isList ()

Administration Reference 3-23

3-24

AttributeValue::AttributeValue() - Constructor

The attributevalue class constructor is polymorphic. You can pass it different sets of
parameters depending on your goals.

Syntax

For an undefined attribute:
AttributevValue() ;

For a single-value attribute:
AttributeValue (const char *value);
For an empty list of values or a single value:
AttributeValue (bool isList);

To copy an existing Attributevalue:

AttributevValue (const AttributevValue &value) ;

Parameters

*value (String) iSarequired input parameter used to create asingle-value attribute that points
to a null-terminated character string (a character array). This parameter references the name of a
credential attribute and must be passed a const char * and nota char * variable. Simply
putting the value directly into the function in quotation marks does not work.

&value (AttributeValue Object) iSa required input parameter (for copying an
AttributeValue Object) that points to an Attributevalue object.

isList iS set to TRUE if the attribute and contains an enumerated list of strings; set to FaLsE for
a single value attribute.

Returns
Nothing

Example
For a single-value attribute:
const char *MyAttrName = "SomeCount";

AttributevValue *MyAttrValPtr = new

Administration Reference

AttributeValue Class

AttributeValue (MyAttrName) ;

For a list of values:

AttributeValue *MyAVListPtr = AttributeValue (true) ;
To copy an existing Attributevalue Object:

AttributeValue *MyAttrValPtr = new

AttributeValue (MyExistingAttrValObj) ;

See Also

setvValue()

Administration Reference 3-25

AttributeValue::entries() - Count Number of List Elements

Returns a count of the total number of elements in an indexed list.

Syntax

int entries() const

Parameters
None

Returns
An integer that contains the total count of elements.

Example

if (FaveSongAvObj.isList())int elementCount = FaveSongAVObj.entries() ;

See Also

addvalue ()

Attributevalue: :size()

3-26 Administration Reference

AttributeValue Class

AttributeValue::getValue() - Get Single Attribute Value

Gets a single string value for an Attributevalue oObject. Use issingle () to determine if the
object contains a single value.

Syntax

const char *getValue() const

Parameters
None

Returns

A pointer to a constant, null-terminated character string (a character array) that contains the string
value of the attributevalue object. This value must be a const char *and notachar *
variable.

Example

const char *FavoriteSongValue;
if (FaveSongAvObj.isSingle())FavoriteSongValue =

FaveSongAVObj.getValue() ;

See Also
addvalue ()

setValue ()

isSingle()

Administration Reference 3-27

AttributeValue::has() - Check If Value is Already Present in a
List

Checks if a value is present in a list or if a single-value attribute is equal to it. Attributevalue
objects of the list type should not contain redundant values.

Syntax

bool has(const char * value) const

Parameters

*value
is a required input parameter

Points to a null-terminated character string (a character array)

Returns
TRUE if the supplied value is present in a list, or is equal to the value of a single type value.

Example

Bool A = AttributeValue.has (“SomeValue”’) ;

See Also
addvalue ()

setValue ()

AttributevValue::size ()

3-28 Administration Reference

AttributeValue Class

AttributeValue::IsList() - Is Attribute Value an Indexed List?

Returns TrUE if the At tributevalue object contains a list of strings or integers. The list attribute
values are accessed by their index value.

Syntax

bool isList() const;

Parameters
None

Returns
TRUE If the attribute contains a list of values

Example

bool AttrIsList = MyAttrValueObj.isList();

See Also

isSingle()

Administration Reference 3-29

AttributeValue::IsSingle() - Is Attribute Value a Single Value?

Returns TRUE if the attributevalue object contains a single value and not a list of values.

Syntax

bool isSingle() const;

Parameters
None

Returns
TRUE if the attribute is a single-value type

Example

bool AttrIsSingle = MyAttrValueObj.isSingle();

See Also

isList ()

3-30 Administration Reference

AttributeValue Class

AttributeValue::isUndefined() - Is Attribute Value an
undefined object?

Returns TRUE if the attributevalue object is constructed with a default constructor and does
not have a list or single type. The type can be set by calling setvalue (), Or addvalue ()
methods and becomes a single value or a list correspondingly, or by using an assignment
operator. Once set, the type cannot be changed.

Syntax

bool isUndefined() const;

Parameters
None

Returns
TRUE if the attribute is undefined

Example

bool AttrIsSingle = MyAttrValueObj.isUndefined() ;

See Also

isList ()

Administration Reference 3-31

3-32

AttributeValue::setValue() - Set Single Attribute Value

Sets a single string value for an attributevalue object. Use issingle () to determine if the
object is the correct type for a single value. If you call this method for an undefined
Attributevalue Object, it becomes a single type.

Syntax

void setValue (const char *value)

Parameters

*value iSarequired input parameter that points to a null-terminated character string (a character
array) and sets the string value of an attributevalue Object. This parameter must be passed a
const char * andnotachar * variable. Simply putting the value directly into the function in
quotation marks does not work.

Returns
Nothing

Example

const char *FavoriteSongValue = "foreveryours";

FaveSongAVObj.setValue (FavoriteSongValue) ;

See Also

addvalue ()

getvValue ()

Administration Reference

AttributeValue Class

AttributeValue::removeAt() - Remove Indexed List Attribute
Value

Removes a value identified by index in a string or integer list Attributevalue object. Use
isList () to ensure that it is a list of values.

Syntax

char *removeAt (int idx)

Parameters

idx is arequired input parameter with an integer value that removes a string or integer element
in the list by the index value of the element (index starts at 0).

Returns

A pointer to the string representing the value. This is provided as a convenience to use the value
so you do not have to retrieve the value with a separate call.

Warning: You must delete the returned value with the delete[] operator within the plug-in.

Example

//Remove the second value, which is “Apple”:

char * MrValue = someAttrValuePtr->removeValue(l);
//MrValue now points to "Apple" if the index position
//contained such value, to null if not..

//Delete value, even if null:

delete[] MrValue;

See Also
addvalue ()

removeValue ()

Administration Reference 3-33

3-34

AttributeValue::removeValue() - Remove Named List Attribute
Value

Removes a named element from a string list Attributevalue Object. use isList () t0
determine if the object contains a list of values.

Syntax

char *removeValue (const char *value)

Parameters

*value iSarequired input parameter that points to a null-terminated character string (a character
array) and identifies an element in the list by the value of the element. This parameter must be
passed a const char * and notachar = variable. Simply putting the value directly into the
function in quotation marks does not work.

Returns

A pointer to the sting representing the value. This is provided as a convenience to use the value
so you do not have to retrieve the value with a separate call.

Warning: To avoid a memory leak, you must delete the returned value with the delete[]
operator within the plug-in.

Example

char * MrValue = someAttrValuePtr->removeValue ("Apple");
//MrValue now points to "Apple" if someAttrValuePtr
//contained such value, to null if not..

//Delete value, even if null:

delete[] MrValue;

See Also
addvalue ()

removeAt ()

isList ()

Administration Reference

AttributeValue Class

AttributeValue::size() - Count Number of List Elements

This method returns a count of the total number of elements in an indexed list and returns the
value 1 for single-type attributes. That is, for lists, it is equivalent to entries ().

Syntax

int entries() const

Parameters
None

Returns
An integer value that contains the total count of elements.

Example

if (FaveSongAvObj.isList())int elementCount = FaveSongAVObj.size();

See Also

addvalue ()

Attributevalue: :size()

Administration Reference 3-35

3-36

AttributeValue [] Operator - Returns the Value of an Indexed
String List Element

Retrieves the value of a specific list element by integer index, use the [] overloaded operator.
For example, to retrieve the third element in the Colors string list, use this syntax:

const char *FavoriteColor = Colors[2];
You can use isList () beforehand to determine if the object contains a list of values and
entries () OF size() toensure the index is valid. This method also works with single-type

object. In such a case, the index is 0. When used in this way, the method is equivalent to the
getvalue () method.

Administration Reference

CHAPTERo

BLM Configuration API Security
Providers Reference

This section provides a reference for the security provider attributes, and their default values.

Because default security provider attributes are not stored in the database, the BLM configuration
API cannot discover the security provider attribute names or default values. Further, since there
is an inheritance model with the provider attributes, if a given provider extends another, all the

attributes from the parent are available as well.

Note: All information entered through the BLM Configuration API is string based.

Each of the following sections includes a table that lists the attributes supported by each security
provider. Each table includes a List column that designates whether the getvalue/setvalue oOr
getvalueList/setValueList methods should be used with each attribute.

“ActiveDirectoryAuthenticator” on page 4-2
“ALESIdentityAsserter” on page 4-4
“ALESIdentityCredentialMapper” on page 4-6
“AsiAdjudicator” on page 4-7
“AsiAuthorizationProvider” on page 4-7
“ASIAuthorizer” on page 4-8
“ASIRoleMapperProvider” on page 4-11
“DatabaseAuthenticator” on page 4-11

“DatabaseCredentialMapper” on page 4-12

Administration Reference

4-1

BLM Configuration APl Security Providers Reference

e “DBMSAuthenticator” on page 4-17

e “DefaultAuthenticator” on page 4-21

e “DefaultAuthorizer” on page 4-22

e “DefaultCredentialMapper” on page 4-24

o “DefaultRoleMapper” on page 4-24

e “IPlanetAuthenticator” on page 4-25

e “LDAPAuthenticator” on page 4-26

e “Log4jAuditor” on page 4-29

e “NovellAuthenticator” on page 4-32

e “NTAuthenticator” on page 4-33

e “OpenLDAPAuthenticator” on page 4-36

e “ResourceDeploymentAuditor” on page 4-37
e “SAMLCredentialMapper” on page 4-39

e “SAMLCredentialMapper” on page 4-39

e “SAMLIdentityAsserter” on page 4-40

e “SinglePassNegotiateldentityAsserter” on page 4-42
e “X509IdentityAsserter” on page 4-42

e “XACMLAuthorizer” on page 4-44

ActiveDirectoryAuthenticator

The ActiveDirectoryAuthenticator extends
com.bea.security.providers.authentication.LDAPAuthenticator. Table 4-1 describes the
attributes supported by this provider.

4-2 Administration Reference

Table 4-1 ActiveDirectoryAuthenticator

ActiveDirectoryAuthenticator

Attribute Name Default Value Description List
mgmtinterface com.bea.security.providers. N
authentication.ActiveDirect
oryAuthenticator
UserNameAttribute “cn” The attribute of the LDAP user object the N
specifies the name of the user.
UserBaseDN “ou=WLSMEMBERS,dc= The base distinguished name (DN) of the treein N
example,dc=com” the LDAP directory that contains users.
UserFromNameFilter “(&;(cn=%u)(objectclass= LDAP search filter for finding a user giventhe N
user))” name of the user. If the attribute (user name
attribute and user object class) is not specified
(that is, if the attribute is null or empty), a default
search filter is created based on the user schema.
UserObjectClass “user” The LDAP object class that stores users. N
GroupBaseDN “ou=WLSGROUPS,dc=ex The base distinguished name (DN) of the treein N
ample,dc=com” the LDAP directory that contains groups.
GroupFromNameFilt “(&;(cn=%g)(objectclass= LDAP search filter for finding a group giventhe N
er group))” name of the group. If the attribute is not specified
(that is, if the attribute is null or empty), a default
search filter is created based on the group
schema.
StaticGroupDNsfrom “(&(member=%M)(objectc LDAP search filter that, given the distinguished N
MemberDNFilter lass=group))” name (DN) of a member of a group, returns the
DN of the static LDAP groups that contain that
member.
StaticGroupObjectCl “group” The name of the LDAP object class that stores N
ass static groups.
StaticMemberDNAttr ~ “member” The attribute of the LDAP static group object N
ibute that specifies the distinguished names (DNs) of
the members of the group.
Administration Reference 4-3

BLM Configuration APl Security Providers Reference

Table 4-1 ActiveDirectoryAuthenticator (Continued)

Attribute Name Default Value Description List
UseTokenGroupsFor “false” Boolean value that indicates whether to use N
GroupMembershipLo TokenGroups attribute lookup algorithm instead

okup of the standard recursive group membership

lookup algorithm.

EnableSIDtoGroupL ~ False Indicates whether SID to group name lookup N
ookupCaching results are cached. This attribute is only used if
the token group membership lookup algorithm is
enabled (see
UseTokenGroupsForGroupMembershipLookup

).
MaxSIDToGroupLoo “500” The maximum size of the LRU cache for holding N
kupsinCache SID to group lookups if caching of SID to group

name mappings is enabled and if the
tokenGroups group membership lookup is
enabled. The default is 500.

ALESIdentityAsserter

ALESIdentityAsserter extends com.bea.security.providers.authentication.alesidentity. Table 4-2
describes the attributes supported by this security provider.

Table 4-2 ALESIdentityAsserter

Attribute Name Default Value Description List

mgmtinterface “com.bea.security.providers.aut N
hentication.alesidentity. ALESId
entityAsserter

ActiveTypes “{*ALESIdentityAssertion”}” Y
Base64Decoding “false” Specifies whether the request header valueor N
Required cookie value must be decoded using Base64

before it is sent to the Identity Assertion
provider. This box is checked by default for
purposes of backward compatibility;
however, most Identity Assertion providers
do not require this decoding.

4-4 Administration Reference

Table 4-2 ALESIdentityAsserter

ALESIdentityAsserter

Attribute Name Default Value

Description List

TrustedCAKeysto “{HOME}/ssl/demoProviderTr
re ust.jks”

The location of the Trusted Keystore stored
in the TrustedCAKeystoreType keystore
format. {HOMEZ} will be replaced with the
Security Service Module (SSM) instance
directory at runtime. This attribute is
determined by the value of instance.home in
SSM.properties located in the /config
directory of the SSM instance.

If SSM.properties cannot be located, then the
system property wles.ssmws.instance.home
is checked. For the Web Services SSM, this
attribute is automatically set to the Web
Services SSM instance home.

If DEFAULT is specified, then the java.home
env variable is used to locate the cacerts
keystore normally located at
JAVA_HOME/lib/security/cacerts.

TrustedKeystore ~ “{HOME}/ssl/demoProviderTr

ust.jks”

The Location of the Trusted Keystore stored N
in the TrustedKeystore Type keystore format.
{HOME} will be replaced with the SSM
instance directory at runtime.

This attribute is determined by the value of
instance.home in SSM.properties located in
the /config directory of the SSM instance. If
SSM.properties cannot be located, then the
system property wles.ssmws.instance.home
is checked. For the Web Services SSM, this
attribute is automatically set to the Web
Services SSM instance home.

TrustedCAKeysto
reType

“JKS”

The type of keystore to which the N
trustedCAKeystore is configured.

TrustedKeystoreT “JKS”

ype

The type of keystore to which the N
trustedKeystore is configured.

Administration Reference 4-5

BLM Configuration APl Security Providers Reference

Table 4-2 ALESIdentityAsserter

Attribute Name Default Value Description List

TrustedCertAlias “demo_provider_trust” The Cert Alias to be used to verify the ALES N
Identity Assertion.

TrustedCertAlias “password” The password to use for the Cert Alias N

Passwd specified to retrieve the private key from the
keystore.

ALESIdentityCredentialMapper

ALESIdentityCredentialMapper extends
weblogic.management.security.credentials.CredentialMapper. Table 4-3 describes the attributes
supported by this security provider.

Table 4-3 ALEsldentityCredential Mapper

Attribute Name Default Value Description List

mgmtinterface “com.bea.security.providers.cre N
dentials.alesidentity. ALESIdent
ityCredentialMapper”

TrustedKeystore ~ “{HOME}/ssl/demoProviderTr The Keystore to be used to get the Certificate N
ust.jks” chain to sign the ALES Identity Assertion
with. {HOME} will be replaced with the
SSM instance directory at runtime.

This attribute is determined by the value of
instance.home in SSM.properties located in
the /config directory of the SSM instance. If
SSM.properties cannot be located, then the
system property wles.ssmws.instance.home
is checked. For the Web Services SSM, this
attribute is automatically set to the Web
Services SSM instance home.

TrustedKeystoreT — “JKS” The TYPE of keystore that is specified inthe N
ype TrustedKeystore.

4-6 Administration Reference

Table 4-3 ALEsldentityCredential Mapper

AsiAdjudicator

Attribute Name Default Value

Description List

TrustedCertAlias demo_provider_trust

The Cert Alias to be used to signthe ALES N
Identity Assertion.

TrustedCertAlias
Passwd

“password”

The Password to use for the Cert Alias N
specified to retrieve the private key from the
keystore.

AsiAdjudicator

AsiAdjudicator extends weblogic.management.security.authorization.Adjudicator. Table 4-4
describes the attributes supported by this security provider.

Table 4-4 AsiAdjudicator

Attribute Name Default Value

Description List

mgmtinterface “com.bea.security.providers.aut

horization.ASIAdjudicator”

RequireUnanimo “true”

usPermit

Requires all authorization providers to vote N
PERMIT in order for the adjudication

provider to vote PERMIT. If the attribute is

set to disabled, ABSTAIN votes are ignored.

AsiAuthorizationProvider

ASIAuthorizationProvider extends com.bea.security.providers.authorization.asi Table 4-5
describes the attributes supported by this security provider.

Administration Reference 4-1

BLM Configuration APl Security Providers Reference

Table 4-5 AsiAuthorizationProvider

Attribute Name Default Value Description List
mgmtinterface “com.bea.security.providers.aut N
horization.asi.ASIAuthorization
Provider”
IgnoreNonASIRo “false” Specifies if the provider should ignore roles N
les generated by role mapping providers other

than the ASI Role Mapping provider.

AccessAllowedC “true” When enabled results from authorization N
aching queries are cached providing significantly
improved performance for applications
which make repetitive queries.

ASIAuthorizer

ASIAuthorizer extends weblogic.management.security.Provider. Table 4-6 describes the
attributes supported by this security provider.

Table 4-6 AsiAuthorizer

Attribute Name Default Value Description List

mgmtinterface “com.bea.security.pro N
viders.authorization.a
si.ASIAuthorizer”

AdvancedConfigurati Specifies additional advanced configuration Y
onProperties parameters.
Directory “asi” Specifies the identity directory to use when N

performing the authorization or role mapping.

PreLoadAttributes “adaptive-private” Determines whether or not the provider loads N
ContextHandler data before starting to evaluate
policy or waits for a callback to ask for specific items.
Pre-loading attributes can dramatically improve
performance in policies that use contextual attributes.

4-8 Administration Reference

Table 4-6 AsiAuthorizer (Continued)

ASIAuthorizer

Attribute Name Default Value Description List
SessionEvictionCapac 500 The number of authorization and role mapping N
ity sessions to actively maintain. Once the limit is
reached, old sessions are dropped and automatically
re-established when needed.

ApplicationDeployme “//app/policy” Specifies the root of the resource tree for this SSM. N

ntParent

SharedResourcesPare “shared” Specifies the root on the shared resource tree for this N

nt SSM. This item may be relative to the value specified
by Application Deployment Parent on the Details tab.

ResourceConverters Specifies the types of resources supported by these Y
providers. The value is a list of fully-qualified Java
class names. These classes should implement the
ResourceConverter interface. This product includes
resource converters for the standard WebLogic
resource types.

InstantiateWeblogicR ~ “true” Instantiate Resource Converters for all default N

esourceConverters WebLogic resource types.

AttributeRetrievers Specifies plugins used to retrieve attribute values Y
from complex data objects. These classes should
implement the AttributeRetriever interface.

EvaluationFunctions Specifies plugins used to perform complex Y
evaluations. These classes should implement the
EvaluationFunction interface.

AttributeConverters Specifies the plugins to use when converting native Y
Javatypes into the required string representation used
when evaluating policy. If a converter is not
registered for a given type, then the toString() method
is used by default.

AnonymousSubjectN “anonymous” The name to use when performing queries for an N

ame unauthenticated user.

Administration Reference 4-9

BLM Configuration APl Security Providers Reference

Table 4-6 AsiAuthorizer (Continued)

Attribute Name

Default Value

Description

List

“UseUserAttributes”

“trye”

Specifies whether or not user attributes are used in
evaluation of policy. Use Metadirectory on the
Metadirectory tab must also be enabled in order to
make use of user attributes.

ActivateOnStartUp

“true”

Determines whether or not the authorization and role
mapping providers process policy requests from
cached policy before contacting the Policy
Distributor for a policy update.

UseMetadirectory

“false”

When enabled the authorization and role mapping
providers access the metadirectory to gather
additional user profile data. If disabled none of the
other metadirectory settings has any effect.

RoundRobinMetadire
ctories

“false”

When enabled a round robin algorithm is used in
accessing the configured metadirectories, otherwise
they are accessed in the order listed.

sacTimeoutSec

«qgm

Time in seconds after which a previously failed
metadirectory server is retried.

dbServer

Defines the metadirectory database servers. If a
failure occurs when accessing the first server, then
the next one is used.

dbSystem

“ORACLE”

Defines the type of the metadirectory database.

dbName

The name of the metadirectory database. Only
applicable when using Sybase.

dbLogin

Database login for the metadirectory. The password
for this user must be stored in the encrypted password
file within the Security Service Module installation.

dbpoolsize

“10”

The database pool size that the authorization and role
mapping provider use to access the metadirectory

dbConnldleTimeout

“600”

Idle timeout in seconds for metadirectory database
connection.

4-10 Administration Reference

ASIRoleMapperProvider

Table 4-6 AsiAuthorizer (Continued)

Attribute Name Default Value Description List

SessionExpirationSec ~ “60” The duration for which to cache session data, in N
seconds.

SubjectDataCacheExp “60” The duration for which to cache subject data, in N

irationSec seconds.

ASIRoleMapperProvider

ASIRoleMapperProvider extends weblogic.management.security.authorization.RoleMapper.
Table 4-7 describes the attributes supported by this security provider.

Table 4-7 ASIRoleMapperProvider

Attribute Name Default Value Description List

mgmtinterface *“com.bea.security.pro N
viders.authorization.a
si.ASIRoleMapper”

LazyRoleProvider “true” When enabled the role provider will delay calculation of N
role membership until the result is inspected. Leaving
this attribute set to true provides significant
performance improvements when used in conjunction
with the ASI Authorization provider.

GetRolesCaching ~ “true” When enabled results from role mapping queries are N
cached providing significantly improved performance
for applications which make repetitive queries.

DatabaseAuthenticator

DatabaseAuthenticatorextends com.bea.security.providers.authentication.dbms.DBMSAuthen-
ticator.

Administration Reference 4-1

BLM Configuration APl Security Providers Reference

DatabaseCredentialMapper

DatabaseCredentialMapper extends

weblogic.management.security.credentials.CredentialMapper. Table 4-8 describes the attributes

supported by this security provider.

Table 4-8 DatabaseCredentialMapper

Attribute Name Default Value Description List

mgmtinterface “com.bea.security.pro

viders.credentials.dbm
s.DatabaseCredential
Mapper”

AllowedTypes “DBPASSWORD” The types of credentials this provider is allowed to Y
retrieve. If this attribute is set to a single value of
asterisk (*), then all credential types are accepted and
the queries determine if the type is appropriate.

SelectByldent “true” Enables selection of credentials from the database N
based on the username of the requesting identity.

SelectByldentGroup “false” Enables selection of credentials from the database N
based upon the groups of the requesting identity.

DatabaseUserName The username to use to log into the primary database N
connection pool.

DatabasePassword The password to use to log into the primary database N
connection pool.

AdministratorUserN The database username used for the administration of N

ame mappings.

AdministratorPassw The database password used for the administration of N

ord mappings.

DatabaseProperties Properties to use when creating a database Y
connection in the primary connection pool. These
properties are entered as NAME=VALUE

DatabaseURL The JDBC URL the primary connection pool usesto N

connect to the database. This attribute is also used for
credential mapping administration.

4-12

Administration Reference

Table 4-8 DatabaseCredentialMapper (Continued)

DatabaseCredentialMapper

Attribute Name Default Value Description List

DatabaseDriverNam The class name of the JDBC driver to use for the N

e provider database connections. This attribute is also
used for credential mapping administration.

ConnectionPoolMin ~ “5” The minimum number of connections to allow inthe N
primary connection pool.

ConnectionPoolMax ~ “20” The maximum number of connections to allow inthe N
primary connection pool.

ConnectionRetireTi “120” The number of seconds of idle time before a N

me connection is removed from a connection pool.

EnableAutomaticFail “false” Enables the use of the backup connection pool ifthe N

over primary connection pool fails.

BackupDatabaseUse The username to use to log into the backup database. N

rName

BackupDatabasePass The password to use to log into the backup database. N

word

BackupDatabasePro Properties to use when obtaining the JDBC Y

perties connection to the backup database. These properties
are entered as NAME=VALUE

BackupDatabaseUR The JDBC URL to use to connect to the backup N

L database.

BackupConnectionP ~ “0” The minimum number of connections to allow inthe N

oolMin backup connection pool.

BackupConnectionP ~ “20” The maximum number of connections to allow inthe N

oolMax backup connection pool.

FailureThreshold “3” The number of database errors that must occur N
sequentially on a connection pool before that pool is
considered failed.

PrimaryRetryInterval “30” When operating with the backup pool, this setting N
determines how often the primary pool is evaluated
for fail back. This value is in seconds.

Administration Reference 4-13

BLM Configuration APl Security Providers Reference

Table 4-8 DatabaseCredentialMapper (Continued)

Attribute Name Default Value Description

List

QueryByldent “select username, The query to use to retrieve credentials from the
password from database based upon the requester identity. This
asi_credential_map query must return two columns, username and
where byident = {0} password. The password should be encrypted. The
and forident = {1} and following placeholders are replaced in the query at
config = {5}” runtime:

{0} the username of the requesting identity

{1} the username of the target identity

{2} the normalized form of the resource

{3} the normalized form of the action or default if
none is defined

{4} the credential type being requested

{5} the name of this provider configuration

QueryByldentGroup The query to use to retrieve credentials from the
database during group membership evaluation. If
enabled, this query is called once for every group the
forldent user is in. This query must return two
columns, username and password. The password
should be encrypted. The following placeholders are
replaced in the query at runtime:

{0} the group name of the requesting identity

{1} the username of the target identity

{2} the normalized form of the resource

{3} the normalized form of the action or default if
none is defined

{4} the credential type being requested

{5} the name of this provider configuration

CountRecordQuery “select count(*) from The query to use to retrieve a count of the credential
asi_credential_map records associated with a specific configuration for
where config = {0}” administration of credential mappings. This query

must return one numeric value. The following
placeholders are replaced in the query at runtime:
{0} the name of this provider configuration.

4-14 Administration Reference

Table 4-8 DatabaseCredentialMapper (Continued)

DatabaseCredentialMapper

Attribute Name

Default Value

Description List

RetrieveRecordQuer
y

“select map_id,
byident, forident,
username, password,
normalres, normalact,
config from
asi_credential_map
where config = {0}
and map_id = {1}”

The query to use to retrieve a credential record from N
the database for administration of credential
mappings. This query must return a column for
record id (numeric), byldent, forldent, username,
password, resource, action, and config in that order.
The password is encrypted. Resource, action and
config are optional values (you may return null). All
other columns must have values.

The following placeholders are replaced in the query
at runtime:

{0} the name of the provider configuration

{1} the record id being retrieved (numeric).

ListRecordsQuery

“select map_id,
byident, forident,
username, password,
normalres, normalact,
config from
asi_credential_map
where config = {0}
order by
byident,forident,usern
ame,normalres,normal
act,map_id”

The query to use to retrieve a list of records from the N
database for use in the administration of credential
mappings. This query must return a column for
record id (numeric), byldent, forldent, username,
password, resource, action and config in the correct
order. The password is encrypted. Resource, action
and config are optional values (you may return null).
All other columns must have values.

The following placeholders are replaced in the query
at runtime:

{0} the name of the provider configuration.

DeleteRecordQuery

“delete
asi_credential_map
where map_id = {1}"

The query to use delete a credential mapping record N
from the database.

The following placeholders are replaced in the query

at runtime:

{0} the name of the provider configuration

{1} the record id being deleted (numeric).

Administration Reference 4-15

BLM Configuration APl Security Providers Reference

Table 4-8 DatabaseCredentialMapper (Continued)

Attribute Name Default Value Description List
SaveRecordQuery “update The query to use to update a credential mapping N
| asi_credential_mapset record from the database. This query is called

byident={0}, whenever updates need to be recorded without a
forident={1}, password change. The following placeholders are
username={2}, replaced in the query at runtime:
normalres={3}, {0} the username of the requesting user.
normalact={4} where {1} the username or alias of the target user.
map_id = {6}" {2} the remote username

{3} the normalized form of the resource

{4} the normalized form of the action or default if
none is defined

{5} the name of the provider configuration

{6} the record id being update (numeric).

SaveRecordWithPas “update The query to use to update a credential mapping N

| swordQuery asi_credential_mapset record from the database. This query is called
byident={0}, whenever updates need to be recorded with a
forident={1}, password change. The following placeholders are
username={2}, replaced in the query at runtime:
normalres={3}, 0} the username of the requesting user
normalact={4}, {1} the username username of the target user
password={7} where {2} the remote username
map_id = {6}” {3} the normalized form of the resource

{4} the normalized form of the action or default if
none is defined

{5} the name of the provider configuration

{6} the record id being updated (numeric)

{7} the encrypted password.

4-16 Administration Reference

Table 4-8 DatabaseCredentialMapper (Continued)

DBMSAuthenticator

Attribute Name Default Value Description List
AddRecordQuery “insert into The query to use to add a credential mapping record N
asi_credential_map (to the database. The following placeholders are
byident, forident, replaced in the query at runtime:
username, password, {0} the username of the requesting user
normalres, normalact, {1} the username or alias of the target user
config) values ({0}, {2} the remote username
{1}, {23, {63}, {3}, {3} the normalized form of the resource
{4}, {5})” {4} the normalized form of the action or default if
none is defined
{5} the name of the provider configuration
{6} the encrypted password.
SharedSecret A secret pass-phrase used to decrypt passwords N

stored in the database. Only passwords encrypted
with this same secret pass-phrase are available to this
provider.

Note: Changing this secret phrase invalidates all
currently stored passwords. If you change
this shared secret you will have to reset the

passwords in the database so that they match.

DBMSAuthenticator

DBMSAuthenticator extends weblogic.management.security.authentication.Authenticator.
Table 4-9 describes the attributes supported by this security provider.

Table 4-9 DBMSAuthenticator

Attribute Name Default Value Description List
mgmtinterface “com.bea.security.provid N
ers.authentication.dbms.
DBMSAuthenticator”
JDBCDriverClassNam The Java class name of the JDBC Driver. N
e
JDBCConnectionURL The connection string for the authentication N
database.

Administration Reference 4-17

BLM Configuration APl Security Providers Reference

Table 4-9 DBMSAuthenticator (Continued)

Attribute Name Default Value Description List
DatabaseUserLogin The user id to access the authentication database. N
DatabaseUserPassword The user password to access the authentication N
database.
ConnectionPoolCapacit “5” The maximum number of connections to open N
y with the authentication database. This number
also applies to the backup database if there is one.
ConnectionPoolTimeo “10000” The time in milliseconds to wait for a database N
ut connection to become available in the connection
pool.
IdentityScope “asi” The scope users are authenticated in. In ALES N
policy database, it is the directory name.
VerifyUserForldentity — “false” Whether to verify the user in the authentication N
Assertion database when an identity assertion is provided.
AddGroupsFromldentit “false” Whether to add groups for the user from the N
yAssertion identity assertion when Identity Assertion is
turned on.
AddGroupsFromLocal “true” Whether to add groups for the user from the local N
DBMS DBMS identity store after user authentication.
AuthenticationPluginCl “com.bea.security.provid Name of the class that contains the plugin to N
ass ers.authentication.doms. provide custom authentication logic.
DefaultDBMSPIluginimpl
JDBCConnectionPrope Optional parameters for configuring the JDBC Y
rties Connection. Legal values are determined by the
JDBC Driver. These properties are entered as
NAME=VALUE.
GroupMembershipSear ~ “limited” Specifies whether recursive group membership N

ching

searching is unlimited or limited.

4-18

Administration Reference

Table 4-9 DBMSAuthenticator (Continued)

DBMSAuthenticator

Attribute Name Default Value Description List
MaxGroupMembership “0” This setting specifies how many levels of group N
SearchLevel membership can be searched. This setting is valid
only if GroupMemberShipSearching is set to
limited.
Valid values are 0 and positive integers. For
example, O indicates only direct group
memberships will be found. A positive number
indicates the number of levels to go down.
EnableAutomaticFailo “false” Enables the use of the backup connection pool if N
ver the primary connection pool fails.
BackupDatabaseUserN The username to use to log into the backup N
ame database.
BackupDatabasePassw The password to use to log into the backup N
ord database.
BackupDatabaseProper Properties to use when obtaining the JDBC Y
ties connection to the backup database. These
properties are entered as NAME=VALUE.
BackupDatabaseURL The JDBC URL to use to connect to the backup N
database.
PrimaryRetryInterval “30” When operating with the backup pool, this setting N

determines how often the primary pool is
evaluated for fail back. This value is in seconds.

SQLQueryToVerifyUs “SELECT userid FROM SQL Query to verify the user exists in the N
er adminuser WHERE database. Query should only return data if the user
userid = ? and status = exists. The actual data is ignored.
"
SQLQueryToRetrieveP “SELECT password SQL Query to retrieve the password from the N
assword FROM adminuser database. Query should return a single value: the

WHERE status = ‘A’ and
userid = ?”

password. Value may be binary or character data.

Administration Reference 4-19

BLM Configuration APl Security Providers Reference

Table 4-9 DBMSAuthenticator (Continued)

Attribute Name Default Value Description List
SQLQueryToRetrieve “SELECT r.qualified SQL Query to retrieve direct group memberships N
Groups FROM subject_currr, from the database.

sgrpmember_curr rm,

subject_curr m WHERE

m.qualified =? AND m.id

= rm.member_id AND

rm.sgrp_id = r.id AND

r.subj_type = ‘R’ AND

m.qualified =

r.qualified”
SQLQueryForUserExis “SELECT r.qualified SQL query to return the username if itexistsinthe N
ts FROM subject_curr r Database

WHERE r.qualified = ?

AND r.subj_type = ‘U’”
SQLQueryForGroupEx “SELECT r.qualified SQL query to return the groupname if itexistsin N
ists FROM subject_curr r the Database

WHERE r.qualified = ?

AND r.subj_type = ‘R’”
SQLQueryForUsersSea SELECT r.qualified SQL query to search for users that match a certain N
rch FROM subject_curr r pattern.

WHERE r.qualified LIKE

? AND r.subj_type = ‘U’
SQLQueryForGroupsS “SELECT r.qualified SQL query to search for groups that match a N
earch FROM subject_curr r certain pattern.

WHERE r.qualified LIKE
? AND r.subj_type = ‘R’”

4-20

Administration Reference

Table 4-9 DBMSAuthenticator (Continued)

DefaultAuthenticator

Attribute Name

Default Value

List

SQLQueryForMember
Groups

SELECT r.qualified
FROM subject_currr,
sgrpmemberexp_curr rm,
subject_curr m WHERE
m.qualified =? AND m.id
= rm.member_id AND
rm.sgrp_id = r.id AND
r.subj_type = ‘R” AND
r.qualified !=
m.qualified”

SQL query that lists the groups that directly N
contain a user or a group

SQLQueryForGroupM
embers

“SELECT m.qualified
FROM subject_currr,
sgrpmemberexp_curr rm,
subject_curr m WHERE
r.qualified =? AND r.id =
rm.sgrp_id AND
rm.member_id = m.id
AND m.qualified LIKE ?
AND m.qualified !=
r.qualified”

SQL query that searches within a group foruser N
and group (member) names that match a pattern.

DefaultAuthenticator

DefaultAuthenticator extends weblogic.management.security.authentication.Authenticator.

Table 4-10 describes the attributes supported by this security provider.

Table 4-10 DefaultAuthenticator

Attribute Name Default Value List
mgmtinterface weblogic.security.providers. N
authentication.DefaultAuthe
nticator

MinimumPasswo ~ “8”

rdLength

The minimum number of characters requiredina N

Administration Reference 41

BLM Configuration APl Security Providers Reference

Table 4-10 DefaultAuthenticator (Continued)

Attribute Name Default Value Description List
Supportedimport {“DefaultAtn”} The format of the file to import. The list of Y
Formats supported import formats is determined by the
AUthentication provider from which the users and
groups were originally exported.
Supportedimport The users and groups that you want to be imported Y
Constraints into this Authentication provider’s database. If
none are specified, all are imported.
SupportedExport {“Default”} The format of the file to export. The list of Y
Formats supported export formats is determined by this
Authentication provider.
SupportedExport {“users”,”groups”} The users and groups that you want to be exported Y
Constraints from this Authentication provider’s database. If
none are specified, all are exported.
GroupMembershi “unlimited” Specifies whether recursive group membership N
pSearching searching is unlimited or limited. Valid values are
unlimited and limited
MaxGroupMemb “0” This setting specifies how many levels of group N
ershipSearchLeve membership can be searched. This setting is valid
| only if GroupMemberShipSearching is set to
limited
UseRetrievedUse “false” This flag specifies whether we should use the N
rNameAsPrincipa username retrieved from LDAP as the principal in
| the subject.
DefaultAuthorizer

DefaultAuthorizer extends weblogic.management.security.authorization.DeployableAuthorizer.
Table 4-11 describes the attributes supported by this security provider.

4-22 Administration Reference

Table 4-11 DefaultAuthorizer

DefaultAuthorizer

Attribute Name

Default Value

Description List

mgmtinterface

weblogic.security.providers.
authentication.DefaultAuthe

nticator

MinimumPasswo
rdLength

g

The minimum number of characters requiredina N
password.

Supportedimport
Formats

{“DefaultAtn”}

The format of the file to import. The list of Y
supported import formats is determined by the
AUthentication provider from which the users and
groups were originally exported.

Supportedimport
Constraints

The users and groups that you want to be imported Y
into this Authentication provider’s database. If
none are specified, all are imported.

SupportedExport {“Default”} The format of the file to export. The list of Y

Formats supported export formats is determined by this
Authentication provider.

SupportedExport {“users”,”groups”} The users and groups that you want to be exported Y

Constraints

from this Authentication provider’s database. If
none are specified, all are exported.

GroupMembershi “unlimited” Specifies whether recursive group membership N
pSearching searching is unlimited or limited. Valid values are
unlimited and limited
MaxGroupMemb ~ “0” This setting specifies how many levels of group N
ershipSearchLeve membership can be searched. This setting is valid
| only if GroupMemberShipSearching is set to
limited
UseRetrievedUse “false” This flag specifies whether we should use the N

rNameAsPrincipa
|

username retrieved from LDAP as the principal in
the subject.

Administration Reference 4-23

BLM Configuration APl Security Providers Reference

DefaultCredentialMapper

DefaultCredentialMapper extends
weblogic.management.security.credentials.DeployableCredentialMapper. Table 4-12 describes
the attributes supported by this security provider.

Table 4-12 DefaultCredentialMapper

Attribute Name Default Value Description List

mgmtinterface weblogic.security.providers.cre N
dentials.DefaultCredentialMapp
er

Supportedimport {“DefaultCreds”} The format of the fie to import. The list of Y
Formats supported import formats is determined by

the Credential Mapping provider from which

the credential maps were originally exported.

Supportedimport The credential maps that you want to be Y
Constraints imported into this Credential Mapping
provider’s database. If none are specified, all
are imported.

SupportedExport {“DefaultCreds”} The format of the file to export. The list of Y
Formats supported export formats is determined by
this Credential Mapping provider.

SupportedExport {“passwords”’} The credential maps that you want to be Y
Constraints exported from this Credential Mapping
provider’s database. If none are specified, all
are exported.

DefaultRoleMapper

DefaultRoleMapper extends
weblogic.management.security.authorization.DeployableRoleMapper. Table 4-13 describes the
attributes supported by this security provider.

4-24 Administration Reference

Table 4-13 DefaultRoleMapper

IPlanetAuthenticator

Attribute Name

Default Value

Description List

mgmtinterface

weblogic.security.providers.
authorization.DefaultRoleMa

pper

Supportedimport
Formats

{“DefaultRoles}

The format of the file to import. The list of
supported import formats is determined by the
Role Mapping provider from which the security
roles were originally exported.

SupportedImport
Constraints

The security roles that you want to be imported into
this Role Mapping provider’s database. If none are
specified, all are imported.

SupportedExport {“DefaultRoles”} The format of the file to export. The list of

Formats supported export formats is determined by this
Role Mapping provider.

SupportedExport The security roles you want to be exported from

Constraints

this Role Mapping provider’s database. If none are
specified, all are exported.

IPlanetAuthenticator

IPlanetAuthenticator extends com.bea.security.providers.authentication.LDAPAuthenticator.
Table 4-14 describes the attributes supported by this security provider.

Table 4-14 IPlanetAuthenticator

Attribute Name

Default Value

Description List

mgmtinterface

“com.bea.security.providers.
authentication.IplanetAuthent
icator”

GroupFromName
Filter

“(](&(cn=%g)(objectclass=gr
oupofUniqueNames))(&
(cn=%g)(objectclass=groupO
fURLS)))”

An LDAP search filter for finding a group given N
the name of the group. If the attribute is not

specified (that is, if the attribute is null or empty),

a default search filter is created based on the group
schema.

Administration Reference 4-25

BLM Configuration APl Security Providers Reference

Table 4-14 IPlanetAuthenticator (Continued)

Attribute Name Default Value Description List

StaticMemberDN “member” The attribute of an LDAP static group object that N

Attribute specifies the distinguished names (DNs) of the
members of the group.

DynamicGroupO “groupofURLs” The LDAP object class that stores dynamic N

bjectClass groups.

DynamicGroupN “cn” The attribute of the dynamic LDAP group object N

ameAittribute that specifies the name of the group.

DynamicMember “memberURL” The attribute of the dynamic LDAP group object N

URLAttribute

that specifies the URLs of the members of the
dynamic group.

LDAPAuthenticator

LDAPAuthenticator extends weblogic.management.security.authentication. Authenticator.

Table 4-15 describes the attributes supported by this security provider.

Table 4-15 LDAPAuthenticator

Attribute Name Default Value Description List
mgmtinterface com.bea.security.providers. N
authentication.LDAPAuthe
nticator
UserObjectClass “person” The LDAP object class that stores users. N
UserNameAttribu “uid” The attribute of an LDAP user object that specifies N

te

the name of the user.

4-26 Administration Reference

Table 4-15 LDAPAuthenticator (Continued)

LDAPAuthenticator

Attribute Name

Default Value

Description

List

UserDynamicGro
upDNAttribute

The attribute of an LDAP user object that specifies
the distinguished names (DNs) of dynamic groups
to which this user belongs. If such an attribute does
not exist, WebLogic Server determines if a user isa
member of a group by evaluating the URLS on the
dynamic group. If a group contains other groups,

WebLogic Server evaluates the URLS on any of the
descendents (indicates parent relationship) of the

group.

UserBaseDN

“ou=people,
o=example.com”

The base distinguished name (DN) of the tree in the
LDAP directory that contains users.

UserSearchScope

“subtree”

Specifies how deep in the LDAP directory tree to
search for Users. Valid values are subtree and
onelevel.

UserFromNameFi
Iter

“(&(uid=%u)(objectclass=p

erson))”

An LDAP search filter for finding a user given the
name of the user. If the attribute (user name
attribute and user object class) is not specified (that
is, if the attribute is null or empty), a default search
filter is created based on the user schema.

AllUsersFilter

An LDAP search filter for finding all users beneath
the base user distinguished name (DN). If the
attribute (user object class) is not specified (that is,
if the attribute is null or empty), a default search
filter is created based on the user schema.

GroupBaseDN

“ou=groups,
o=example.com”

The base distinguished name (DN) of the tree in the
LDAP directory that contains groups.

GroupSearchScop
e

“subtree”

Specifies how deep in the LDAP directory tree to
search for groups. Valid values are subtree and
onelevel.

GroupFromName
Filter

(&(cn=%g)(objectclass=gro

upofuniguenames))

An LDAP search filter for finding a group given the
name of the group. If the attribute is not specified
(that is, if the attribute is null or empty), a default
search filter is created based on the group schema.

Administration Reference

4-21

BLM Configuration APl Security Providers Reference

Table 4-15 LDAPAuthenticator (Continued)

Attribute Name Default Value Description List
AllGroupsFilter An LDAP search filter for finding all groups N
beneath the base group distinguished name (DN). If
the attribute is not specified (that is, if the attribute
is null or empty), a default search filter is created
based on the Group schema.
StaticGroupObjec “groupofuniquenames” The name of the LDAP object class that stores static N
tClass groups.
StaticGroupName “cn” The attribute of a static LDAP group object that N
Attribute specifies the name of the group.
StaticMemberDN “uniquemember” The attribute of a static LDAP group object that N
Attribute specifies the distinguished names (DNSs) of the
members of the group.
StaticGroupDNsf (& (uniquemember=%M)(o An LDAP search filter that, given the distinguished N
romMemberDNFi bjectclass=groupofuniquena name (DN) of a member of a group, returns the DNs
Iter mes)) of the static LDAP groups that contain that member.
If the attribute is not specified (that is, if the
attribute is null or empty), a default search filter is
created based on the group schema.
DynamicGroupO The LDAP object class that stores dynamic groups. N
bjectClass
DynamicGroupN The attribute of a dynamic LDAP group objectthat N
ameAittribute specifies the name of the group.
DynamicMember The attribute of the dynamic LDAP group object N
URLAttribute that specifies the URLs of the members of the
dynamic group.
AutomaticFailove “false” The option to enable automatic failover whenusing N
rEnabled the LDAP server.
BackupHost “localhost” The host name or IP address of the backup LDAP N
server.
BackupPort “389” The port number on which the backup LDAP server N

is listening.

4-28

Administration Reference

Table 4-15 LDAPAuthenticator (Continued)

Log4jAuditor

Attribute Name Default Value Description List
BackupSSLEnabl “false” The option to enable SSL when connectingtothe N
ed backup LDAP server.

BackupPrincipal The Distinguished Name (DN) of the LDAP user N
that is authorized to connect to the backup LDAP
server.

BackupCredential The credential (generally a password) used to N
authenticate the backup LDAP user that is defined
in the Principal attribute.

PrimaryRetryInte “3600” Length of time, in seconds, before the backup N

rval LDAP server tries to fail back to the primary LDAP
server.

GroupMembershi ~ “unlimited” Specifies whether recursive group membership N

pSearching searching is unlimited or limited. Valid values are
unlimited and limited.

MaxGroupMemb ~ “0” This setting specifies how many levels of group N

ershipSearchLeve membership can be searched. This setting is valid

| only if GroupMemberShipSearching is set to
limited. Valid values are 0, and positive integers.

For example, O indicates only direct group
memberships will be found, positive number
indicates the number of levels to go down.

VerifyUserForlde “false” Whether to verify that the user is present in the N

ntity Assertion LDAP repository when an identity assertion is
provided.

AddGroupsFroml “false” Whether to add groups for the user from the identity N

dentityAssertion assertion when Identity Assertion is turned on.

AddGroupsFrom “true” Whether to add groups for the user from the local N

LocalLDAP LDAP identity store after user authentication.

Log4jAuditor

Log4jAuditor extends weblogic.management.security.audit. Auditor. Table 4-16 describes the
attributes supported by this security provider.

Administration Reference

4-29

BLM Configuration APl Security Providers Reference

Table 4-16 Log4jAuditor

Attribute Name

Default Value

Description

List

mgmtinterface

com.bea.security.providers.
audit.Log4JAuditor

Severity

“ERROR”

Severity is the lowest level at which auditing is
initiated. Audit event severity is treated as
follows by the Log4j Audit Channel provider.

INFORMATION
SUCCESS
WARNING
ERROR
FAILURE

For example, if the log4j severity threshold is set
to ERROR (default setting), then all audit events
with severity ERROR and FAILURE are
audited. Different audit events can be selectively
audited depending on the setting for each of
them.

All audit events can be DISABLED or
WITHOUT_CONTEXT. Those that have
context, you can select WITH_CONTEXT.

Log4jConfigProperti
es

{“log4j.appender.ASlaudit
File=org.apache.log4j.Rolli
ngFileAppender”,“log4j.ap
pender.ASlauditFile.File={
HOME}log/secure_audit.|
0g9”,“log4j.appender.ASlau
ditFile.layout=org.apache.|
0g4j.PatternLayout”,“log4j.
appender.ASlauditFile.layo
ut.ConversionPattern=%d
[%t] %-5p %c -
%m%n”,“log4j.logger.ASI
_AUDIT=NULL,
ASlauditFile”,“log4j.additi
vity.ASI_AUDIT=false”

These properties are passed to log4j upon
initialization of the log4j provider.

By default the log4j provider uses the
RollingFileAppender. {HOME} will be replaced
with the current location of the SSM at runtime.

This setting is determined by the value of
instance.home in SSM.properties.

Custom log4j appenders can be configured here
to send the Auditing information to other
destinations such as JMS, NT Events log, JDBC
etc. For more information, see the log4j
documentation.

4-30

Administration Reference

Table 4-16 Log4jAuditor (Continued)

Log4jAuditor

Attribute Name Default Value Description List
Log4jRendererPrope Custom renderers can be added here for Y
rties rendering classes that implement the

weblogic.security.spi.AuditEvent interface. For
example,
weblogic.security.spi.AuditEvent=com.bea.secu
rity.providers.audit. AuditEventRenderer

See Log4J documentation on how to write a
renderer for a custom object.

Be sure to include the jar file containing the
custom renderer classes in the
ALES_HOME/lib/providers directory

EnabledAuditEvents

List of AuditEvent types that will be Audited
other than the default ones that can be configured
using drop down boxes. Custom AuditEvents not
listed here will not be audited.

The exception to this is if you set Audit Event to
WITHOUT_CONTEXT. In that case all
AuditEvents will be audited.

Custom AuditEvents can be added using
following interface:
weblogic.security.spi.AuditEvent.

AuditEvent

“WITHOUT_CONTEXT”

Setting for events of type N
weblogic.security.spi.AuditEvent.

Note: If you set Audit Event to
WITHOUT_CONTEXT, then all
AuditEvents will be enabled for
auditing.

AuditAuthentication
Event

“WITHOUT_CONTEXT”

Setting for events of type N
weblogic.security.spi.AuditAtnEvent.

AuditAuthorizationE
vent

“WITHOUT_CONTEXT”

Setting for events of type N
weblogic.security.spi.AuditAtzEvent.

AuditRoleEvent

“WITHOUT_CONTEXT”

Setting for events of type N
weblogic.security.spi.AuditRoleEvent.

Administration Reference 4-31

BLM Configuration API

Security Providers Reference

Table 4-16 Log4jAuditor (Continued)

Attribute Name Default Value Description List
AuditProviderRecor “WITHOUT_CONTEXT” Setting for events of type N
dEvent com.bea.security.spi.ProviderAuditRecord
AuditManagemente “WITHOUT_CONTEXT” Setting for events of type N
vent weblogic.security.spi.AuditMgmtEvent
AuditPolicyEvent “WITHOUT_CONTEXT” Setting for events of type N
weblogic.security.spi.AuditPolicyEvent
AuditRoleDeployme “WITHOUT_CONTEXT” Setting for events of type N

ntEvent

weblogic.security.spi.AuditRoleDeploymentEv

ent

NovellAuthenticator

NovellAuthenticator extends com.bea.security.providers.authentication.L DAPAuthenticator.
Table 4-17 describes the attributes supported by this security provider.

Table 4-17 NovellAuthenticator

Attribute Name Default Value Description List
mgmtinterface “com.bea.security.providers. N
authentication.NovellAuthen
ticator”
UserNameAttribute “cn” The attribute of an LDAP user object that N
specifies the name of the user.
UserFromNameFilter *(&(cn=%u)(objectclass=per An LDAP search filter for finding a user N
son)) given the name of the user. If the attribute is
not specified (that is, if the attribute is null or
empty), a default search filter is created based
on the user schema.
GroupFromNameFilter (&(cn=%g)(objectclass=gro An LDAP search filter for finding a group N

upofnames))

given the name of the group. If the attribute is
not specified (that is, if the attribute is null or
empty), a default search filter is created based
on the group schema.

4-32 Administration Reference

Tahle 4-17 NovellAuthenticator

NTAuthenticator

Attribute Name Default Value Description List
StaticGroupObjectClas “groupofnames” The name of the LDAP object class that N
S stores static groups.
StaticGroupDNsfromM “(&(uniqguemember=%M)(o0 An LDAP search filter that, given the N
emberDNFilter bjectclass=groupofnames)) distinguished name (DN) of a member of a
group, returns the DNs of the static LDAP
groups that contain that member. If the
attribute is not specified (that is, if the
attribute is null or empty), a default search
filter is created based on the group schema.
NTAuthenticator
NTAuthenticator extends weblogic.management.security.authentication.Authenticator.
Table 4-18 describes the attributes supported by this security provider.
Table 4-18 NTAuthenticator
Attribute Name Default Value Description List
mgmtinterface “weblogic.security.providers N
.authentication.NTAuthentic
ator”
DomainControllers “localanddomain” The domain controllers to use for locating N
unscoped usernames during authentication,
listing users or groups, and handling unscoped
names.
local - Uses only the local machine.
localanddomain - the default, uses the local
machine and the domain of which the machine
is a member, if it is not standalone.
domain - Uses only the domain of which the
machine is a member.
list - Uses the list of domain controllers
specified ny the DomainControllerList setting.
Administration Reference 4-33

BLM Configuration APl Security Providers Reference

Table 4-18 NTAuthenticator (Continued)

Attribute Name Default Value

Description

List

DomainControllerLis {*“ [localanddomain]”}

t

The list of Domain controllers to use for
locating unscoped usernames during
authentication, listing users or groups, and
handling unscoped names. This setting is only
used if the DomainControllers setting is set to
list. The list should contain the domain
controller names for trusted domains that you
want to use. Placeholders are supported and
expanded if specified. Supported placeholders
are [local], [localanddomain], [domain]

Y

BadDomainControlle “delay”

rRetry

Controls how the provider reacts when a bad
domain controller name is found.
BADDCREetryDelayString indicates the
domain controller can be used again only after
a certain amount of time has elapsed since it
was last tried unsuccessfully.
BADDCRetryNeverString indicates a bad
domain controller is never retried.

BADDCRetryAlwaysStringindicates a bad
domain controller is always retried. The default
is BADDCRetryDelayString.

BadDomainControlle ~ “60000”
rRetryInterval

Amount of time to wait when a bad domain
controller name is found before trying to use
the domain controller again. This option is only
used when the BadDomainControllerRetry
setting is configured to use delay
(BADDCRetryDelayString). The default
setting is 60000 ms (one minute). This setting
helps reduce performance hits when a domain
controller in the list of controllers is
temporarily unavailable.

4-34

Administration Reference

Table 4-18 NTAuthenticator (Continued)

NTAuthenticator

Attribute Name

Default Value

Description List

MapUPNNames

“first”

Indicates how the Authenticator attempts to N
map UPN style names for authentication. For
example, username@domain.

domain\\username is not ambiguous and is

always allowed.

MAP UPNNames First String - a name that
matches the UPN format is treated as a UPN
name first. If it is not a UPN name, the name is
treated as an unscoped name.

MAP UPNNames Last String - a name that
matches the UPN format is treated as a UPN
name, only if the name fails to match as an
unscoped name.

MAP UPN Names Always String - a name that
matches the UPN format is always treated as an
unscoped name and not treated as a UPN name.
MAP UPNNames Never String - a name that
matches the UPN format is always treated as a
UPN name. Only use this option when you are
certain there are no usernames that contain an
@ symbol.

LogonType

“interactive”

This option indicates whether to perform a N
network or an interactive logon.

MapNTDomainName

“never”

Indicates whether to insert the Windows NT N
domain information into the principal name
during authentication and the proper format to
use.

MAP NTDomain Name Never String - the
Windows NT domain name is never inserted
into the principal name.

MAP NTDomain Name UPNString - the
Windows NT domain name is inserted into the
principal name using the style domain\\name.
MAP NTDomain Name Never String - the
Windows NT domain name is inserted into the
principal name using the style name@domain.

Administration Reference 4-35

BLM Configuration APl Security Providers Reference

OpenLDAPAuthenticator

OpenLDAPAuthenticator extends

com.bea.security.providers.authentication.LDAPAuthenticator. Table 4-19 describes the

attributes supported by this security provider.

Table 4-19 OpenLDAPAuthenticator

Attribute Name Default Value Description List
mgmtinterface com.bea.security.providers. N
authentication.OpenLDAP
Authenticator
UserNameAittribute “cn” The attribute of an LDAP user object that N
specifies the name of the user.
UserBaseDN “ou=people, dc=example, The base distinguished name (DN) of the tree N
dc=com” in the LDAP directory that contains users.
UserFromNameFilter “((cn=%u)(objectclass=pers An LDAP search filter for finding a user given N
on))” the name of the user. If the attribute (user name
attribute and user object class) is not specified
(that is, if the attribute is null or empty), a
default search filter is created based on the user
schema.
GroupBaseDN “ou=groups, dc=example, The base distinguished name (DN) of the tree N
dc=com” in the LDAP directory that contains groups.
GroupFromNameFilte “((cn=%g)(objectclass=gro ~ An LDAP search filter for finding a group N
r upofnames))” given the name of the group. If the attribute is
not specified (that is, if the attribute is null or
empty), a default search filter is created based
on the group schema.
StaticGroupObjectCla “groupofnames” The name of the LDAP object class that stores N

SS

static groups.

4-36 Administration Reference

Table 4-19 OpenLDAPAuthenticator (Continued)

ResourceDeploymentAuditor

Attribute Name Default Value Description List
StaticMemberDNAttri “member” The attribute of an LDAP static group object N
bute that specifies the distinguished names (DNs) of

the members of the group.
StaticGroupDNsfrom “((member=%M)(objectcla An LDAP search filter that, given the N

MemberDNFilter ss=groupofnames))”

distinguished name (DN) of a member of a
group, returns the DNs of the static LDAP
groups that contain that member.

ResourceDeploymentAuditor

ResourceDeploymentAuditor extends weblogic.management.security.audit.Auditor. Table 4-20
describes the attributes supported by this security provider.

Table 4-20 ResourceDeploymentAuditor

Attribute Name Default Value

Description List

mgmtinterface com.bea.security.providers.

audit.ResourceDeployment

Auditor
ResourceDeploy ~ “true” If “true” the audit provider will publish resourcesto N
mentEnabled the AquaLogic Enterprise Security Administration
Application.
ResourceDeploy “RESOURCEDEPLOYM The naming authority of audit events to processas N
mentNamingAuth ENT” resource deployment audit events.

ority

SessionEvictionC ~ “40”
apacity

The number of sessions to actively maintain. Once N
the limit is reached, old sessions are dropped and

automatically reestablished when needed.

SessionEvictionP “25”
ercentage

The percentage of the sessions to drop when the N
eviction capacity is reached.

Administration Reference 4-31

BLM Configuration APl Security Providers Reference

Table 4-20 ResourceDeploymentAuditor

Attribute Name Default Value Description List

SessionLifetime ~ “120000” Specifies the maximum length of time (in N
milliseconds) a session can use before it is
discarded. A value of 0 indicates that sessions are
indefinite.

SessionMaxUses ~ “100” Specifies the maximum number of times a session N
can be used before it is discarded. A value of 0
indicates that sessions are indefinite.

ApplicationDeplo “//app/policy” Specifies the root of the resource tree where new N

ymentParent resources are published.

SharedResources “shared” Specifies the root of the resource tree where new N

Parent shared resources are published. This item may be
relative to the value specified by
ApplicationDeploymentParent

ResourceConvert Specifies the types of resources which are supported Y

ers by this provider. The value is a list of fully qualified
Java class names. These classes should implement
the ResourceConverter interface. AqualLogic
Enterprise Security includes resource converters for
the standard WebLogic Server resource types.

InstantiateWeblo ~ “true” Instantiate Resource Converters for all default N

gicResourceConv WebLogic resource types. When set to true, these

erters converters are not listed in the ResourceConverter
configuration attribute. The default set of converters
supports all native WebLogic Server resource types.

AttributeConverte Specifies plugins to convert native Java typesinto Y

rs the corresponding Aqualogic Enterprise Security
string representation. If a converter is not registered
for a given type, then the toString () method is
used by default.

AnonymousSubje “anonymous” The subject name to use when publishing resources N

ctName for an anonymous user.

4-38 Administration Reference

Table 4-20 ResourceDeploymentAuditor

SAMLCredentialMapper

Attribute Name Default Value Description List

IdentityDirectory ~ “asi” Specifies the identity directory to use while N
publishing resources.

Domain Specifies the enterprise domain to use while N

publishing resources.

SAMLCredentialMapper

SAML CredentialMapper extends weblogic.management.security.credentials.Credential Mapper.
Table 4-21 describes the attributes supported by this security provider.

Table 4-21 SAMLCredentialMapper

Attribute Name Default Value Description List
mgmtinterface “com.bea.security.providers. N
credentials.saml.SAMLCred
entialMapper”
TrustedKeystore “{HOME}/ssl/demoProvider The Keystore to be used to get the Certificate chain N
Trust.jks” to sign the SAML Assertion with. {HOME} will be
replaced with the SSM instance directory at
runtime.
This setting is determined by the value of
instance.home in SSM.properties located in the
[/config directory of the SSM instance. If
SSM.properties cannot be located, then the system
property wles.ssmws.instance.home is checked.
For the Web Services SSM, this attribute is
automatically set to the Web Services SSM
instance home.
TrustedKeystoreT — “JKS” The TYPE of keystore that is specified in N
ype TrustedKeystore.
TrustedCertAlias “demo_provider_trust” The Cert alias to be used to sign the SAML N
Assertion.
TrustedCertAlias “password” The password to use for the CertAlias specifiedto N
Passwd retrieve the private key from the keystore.
Administration Reference 4-39

BLM Configuration APl Security Providers Reference

Table 4-21 SAMLCredentialMapper (Continued)

Attribute Name Default Value Description List

NotBeforeOffset ~ “120” The number of seconds in the past to make an N
assertion valid to allow for clock skew.

NotAfterOffset “300” The number of seconds in the future to make an N
assertion valid.

IssuerURI “https://www.bea.com” The value of the Issuer attribute for SAML N
assertions.

Base64Encoding “false” Encode generated SAML Assertion using Base64. N

Required

SAMLIdentityAsserter

SAML IdentityAsserter extends weblogic.management.security.authentication.ldentity Asserter.
Table 4-22 describes the attributes supported by this security provider.

Table 4-22 SAMLIdentityAsserter

Attribute Name Default Value Description List
SupportedTypes {“SAML.Challenge”,“SAML. The active types supported by the SAML Identity Y
Assertion”,“SAML.Profile.PO Assertion provider.
ST}
ActiveTypes “SAML.Challenge”,“SAML. Specifies the type currently used by the SAML Y

Assertion”,“SAML.Profile.PO
ST}

Identity Assertion provider.

4-40 Administration Reference

Table 4-22 SAMLIdentityAsserter (Continued)

SAMLIdentityAsserter

Attribute Name Default Value

Description

List

TrustedCAKeysto “{HOME}/ssl/demoProviderT
re rust.jks”

The location of the Trusted Keystore stored in
the TrustedCAKeystoreType keystore format.
{HOME} will be replaced with the SSM instance
directory at runtime. This setting is determined
by the value of instance.home in SSM.properties
located in the /config directory of the SSM
instance.

If SSM.properties cannot be located, then the
system property wles.ssmws.instance.home is
checked. For the Web Services SSM, this
attribute is automatically set to the Web Services
SSM instance home.

If DEFAULT is specified, then the java.home
env variable is used to locate the cacerts keystore
normally located at
JAVA_HOME/lib/security/cacerts.

N

TrustedKeystore ~ {HOME}/ssl/demoProviderTr
ust.jks”

The Location of the Trusted Keystore stored in
the TrustedKeystoreType keystore format.
{HOME} will be replaced with the SSM instance
directory at runtime. This setting is determined
by the value of instance.home in SSM.properties
located in the /config directory of the SSM
instance.

If SSM.properties cannot be located, then the
system property wles.ssmws.instance.home is
checked. For the Web Services SSM, this
attribute is automatically set to the Web Services
SSM instance home.

TrustedCAKeysto “JKS”
reType

The type of keystore to which the
trustedCAKeystore is configured.

TrustedKeystoreT “JKS”
ype

The type of keystore to which the
trustedKeystore is configured.

Base64Decoding “false
Required

Decode inbound SAML Assertion using Base64.

Administration Reference

4-41

BLM Configuration APl Security Providers Reference

SinglePassNegotiateldentityAsserter

SinglePassNegotiateldentity Asserter extends
weblogic.management.security.authentication.ldentity Asserter. Table 4-23 describes the
attributes supported by this security provider.

Table 4-23 SinglePassNegotiateldentityAsserter

Attribute Name Default Value Description List

mgmtinterface com.bea.security.providers. N
authentication.spnego.Singl
ePassNegotiateldentity Asse
rter

SupportedTypes {“SPNEGO.AtnAssertion”, The token types supported by the Single Pass Y

”Authorization”} Negotiate Identity Assertion provider.
ActiveTypes {“SPNEGO.AtnAssertion”, Specifies the token types currently used by N
”Authorization” the Single Pass Negotiate Identity Assertion
provider.

X5091dentityAsserter

X5091dentityAsserter extends weblogic.management.security.authentication.ldentity Asserter.
Table 4-24 describes the attributes supported by this security provider.

4-42 Administration Reference

Table 4-24 X509ldentityAsserter

X5091dentityAsserter

Attribute Name

Default Value

Description List

mgmtinterface

*“com.bea.security.providers.
authentication.X509Identity
Asserter”

SupportedTypes

{weblogic.security.spi.ldenti
tyAsserter. AU_TYPE,
weblogic.security.spi.ldentit
yAsserter.X509_TYPE,
weblogic.security.spi.ldentit
yAsserter.CSI_PRINCIPAL
_TYPE,
weblogic.security.spi.ldentit
yAsserter.CSI_ANONYMO
US_TYPE,
weblogic.security.spi.ldentit
yAsserter.CSI_X509_CERT
CHAIN_TYPE,
weblogic.security.spi.ldentit
yAsserter.CSI_DISTINGUI
SHED_NAME_TYPE}

The token types supported by the AqualLogic Y
Enterprise Security Identity Assertion provider.

UserNameMappe
rClassName

The name of the Java class that maps X.509 digital N
certificates and X.501 distinguished names to
Aqualogic Enterprise Security user names.

TrustedClientPrin
cipals

The list of trusted client principals to use in CSIv2 Y
identity assertion. The wildcard character (*) can be
used to specify all principals are trusted. If a client

is not listed as a trusted client principal, the CSlv2
identity assertion fails and the invoke is rejected.

UseDefaultUserN
ameMapper

“false”

Specifies whether this X.509 Identity Assertion N
provider uses the default user name mapper
implementation.

Administration Reference 4-43

BLM Configuration APl Security Providers Reference

Table 4-24 X5091dentityAsserter (Continued)

Attribute Name Default Value Description List
DefaultUserName “E” The name of the attribute from the subject N
MapperAttribute Distinguished Name (DN), which this Identity
Type Assertion provider uses when mapping from the
X.509 digital certificate or X.500 name token to the
user name.
DefaultUserName “@” The delimiter that ends the attribute value when N
MapperAttribute mapping from the X.509 digital certificate or X.500
Delimiter name token to the user name.
XACMLAuthorizer
XACMLAuthorizer extends weblogic.management.security.authorization.Authorizer.
Table 4-25 describes the attributes supported by this security provider.
Table 4-25 XACMLAuthorizer
Attribute Name Default Value Description List
mgmtinterface com.bea.security.providers. N
authorization.xacml.XAC
MLAuthorizer
PolicyDirectory “xacmlpolicy” The directory that contains XACML policy files. N
SCMPolicyDeploy “false” Enables XACML policy deployment viathe SCM. N
mentEnabled
SCMPollingPeriod “1000” When XACML SCM policy deployment is N
enabled, this parameter configures how often (in
milliseconds) the provider polls the SCM for
XACML policy changes.
XACMLPolicy The XACML policy that is provisioned to the Y

XACML authorization provider via the SCM.

4-44 Administration Reference

	About This Document
	Audience
	Product Documentation
	Related Information

	Provider Extensions
	What is a Provider Extension?
	Authorization and Role Mapping Extensions
	Using Java-Based Plug-ins
	Using the Java-based Plug-in Interfaces
	Resource Converter
	Attribute Retriever
	Attribute Converter
	Using Language Extensions
	Building an Extension
	Deploying the Extension
	Using the Extension

	Custom Audit Plug-ins
	Using the Custom Audit Plug-in
	Audit Plug-in Renderer Class

	Database Authentication Plug-in
	Configuring a Custom Attribute Retriever

	Audit Events
	What is an AuditEvent?
	What Events are Audited?
	Custom Audit Context Extensions
	Audit Event Interfaces and Audit Events
	AuditAtnEvent
	AuditAtzEvent
	AuditCredentialMappingEvent
	AuditMgmtEvent
	AuditPolicyEvent
	AuditRoleDeploymentEvent
	AuditRoleEvent
	Admin Policy Audit Events

	Additional Audit Event Interfaces
	Authentication - AuditAtnEvent
	Policy Deployment - AuditPolicyDeployEvent
	Policy Undeployment - AuditPolicyUndeployEvent
	Policy Events - AuditPolicyEvent
	Role Mapping - AuditRoleEvent
	Role Deployment - AuditRoleDeployEvent
	Role Undeployment - AuditRoleUndeployEvent
	Predicate Events - AuditPredicateEvent
	ContextHandler Object
	PolicyAdministrationEvent

	Using Custom Audit Providers

	Policy Language Custom Extension Library API Reference
	Plug-In Extension Function Pointers
	*CredFunc() - Custom Credential Function Pointer
	Description
	Syntax
	Parameters
	Returns
	Example
	See Also

	*EvalFunc() - Custom Evaluation Function Pointer
	Syntax
	Parameters
	Returns
	Example
	See Also

	*ShutdownFunc () - Custom Shutdown Function Pointer
	Syntax
	Parameters
	Returns
	Example
	See Also

	*PluginInitFunc() - Plug-in Initialization Function Pointer
	Syntax
	Parameters
	Returns
	Example

	registerCustomCredentialFunction() - Register Credential Function
	Syntax
	Parameters
	Returns
	Example
	See Also

	registerCustomEvaluationFunction() - Register Evaluation Function
	Syntax
	Parameters
	Returns
	Example
	See Also

	registerShutdownFunction() - Register Shutdown Function
	Syntax
	Parameters
	Returns
	Example
	See Also

	Session Class
	Session::SetAttribute() - Append AttributeValue Object
	Syntax
	Parameters
	Returns
	Example
	See Also

	Session::getAttribute() - Get AttributeValue Object from Attribute
	Syntax
	Parameters
	Returns
	Example
	See Also

	Session::getEvalResult() - Get Evaluation Result
	Syntax
	Parameters
	Returns
	Example
	See Also

	Session::appendReturnData() - Return Evaluation Results
	Syntax
	Parameters
	Returns
	Example
	See Also

	Session::getDomainName() - Get Domain Name for the Session
	Syntax
	Parameters
	Returns
	Example
	See Also

	Session::getLocationName() - Get Location Name for Session
	Syntax
	Parameters
	Returns
	Example
	See Also

	Session::getApplicationName() - Get Application Name for Session
	Syntax
	Parameters
	Returns
	Example
	See Also

	Session::getUserID() - Get User Name for Session
	Syntax
	Parameters
	Returns
	Example
	See Also

	AttributeValue Class
	Single Value
	Lists of Values
	Methods Common to Both Types
	Internal Methods
	AttributeValue::addValue() - Add and Set a String List Attribute Value
	Syntax
	Parameters
	Returns
	Example
	See Also

	AttributeValue::AttributeValue() - Constructor
	Syntax
	Parameters
	Returns
	Example
	See Also

	AttributeValue::entries() - Count Number of List Elements
	Syntax
	Parameters
	Returns
	Example
	See Also

	AttributeValue::getValue() - Get Single Attribute Value
	Syntax
	Parameters
	Returns
	Example
	See Also

	AttributeValue::has() - Check If Value is Already Present in a List
	Syntax
	Parameters
	Returns
	Example
	See Also

	AttributeValue::IsList() - Is Attribute Value an Indexed List?
	Syntax
	Parameters
	Returns
	Example
	See Also

	AttributeValue::IsSingle() - Is Attribute Value a Single Value?
	Syntax
	Parameters
	Returns
	Example
	See Also

	AttributeValue::isUndefined() - Is Attribute Value an undefined object?
	Syntax
	Parameters
	Returns
	Example
	See Also

	AttributeValue::setValue() - Set Single Attribute Value
	Syntax
	Parameters
	Returns
	Example
	See Also

	AttributeValue::removeAt() - Remove Indexed List Attribute Value
	Syntax
	Parameters
	Returns
	Example
	See Also

	AttributeValue::removeValue() - Remove Named List Attribute Value
	Syntax
	Parameters
	Returns
	Example
	See Also

	AttributeValue::size() - Count Number of List Elements
	Syntax
	Parameters
	Returns
	Example
	See Also

	AttributeValue [] Operator - Returns the Value of an Indexed String List Element

	BLM Configuration API Security Providers Reference
	ActiveDirectoryAuthenticator
	ALESIdentityAsserter
	ALESIdentityCredentialMapper
	AsiAdjudicator
	AsiAuthorizationProvider
	ASIAuthorizer
	ASIRoleMapperProvider
	DatabaseAuthenticator
	DatabaseCredentialMapper
	DBMSAuthenticator
	DefaultAuthenticator
	DefaultAuthorizer
	DefaultCredentialMapper
	DefaultRoleMapper
	IPlanetAuthenticator
	LDAPAuthenticator
	Log4jAuditor
	NovellAuthenticator
	NTAuthenticator
	OpenLDAPAuthenticator
	ResourceDeploymentAuditor
	SAMLCredentialMapper
	SAMLIdentityAsserter
	SinglePassNegotiateIdentityAsserter
	X509IdentityAsserter
	XACMLAuthorizer

