
BEAAquaLogic®
Data Services
Platform

Retail Dataspace Sample
Application Guide

Version: 3.0
Revised: April 2008

Retail Dataspace Sample Application Guide iii

Contents:

About Avitek Ltd. .2

General IT Goals. .2

Specific Projects .2

Dataspace Projects in the Retail Dataspace Sample Application .3

Configuring the RTLApp Example and its Web Application .4

The Challenge of Disparate Data .10

Business Case for the Avitek Self-Service Web Site. .10

Web Site Design Requirements .11

Maintenance Requirements. .11

Design Requirements .11

Information Technology (IT) Weighs In: The Moment of Truth11

Search for an Alternative .12

A Possible Solution. .13

RTLApp Dataspace Projects .13

RTLApp Data Sources .14

RTLApp Data Services .15

Viewing the Data Services in Data Services Studio .17

Physical Data Services Folder .19

Normalized Data Services Folder .22

Logical Data Services Folder. .23

RetailApplication Data Services Folder .24

Model Diagrams .25

iv Retail Dataspace Sample Application Guide

Building Queries . 26

Query Union . 27

Use of XQuery Statement Extension (XQSE) . 27

Example 1: Using a Java Function to Update an Element. 28

Example 2: Implementing a Web Service Update. 28

Example 3: Implementing the ELEC Order Updates 28

Updating Data Based on a Web Service . 29

About Customer Orders for Electronic Products . 29

XQSE Procedure Walkthrough . 32

Viewing the updateELEC_ORDER XQSE Procedure in Data Services Studio
32

Description of XQSE Statements in updateELEC_ORDER. 32

Quick Start Instructions for the RTLSelfService Application . 34

Importing the RetailDataspace Resources . 34

Building and Deploying the RTLSelfService Application in the Workshop IDE 35

Running the RTLSelfService Application in a Browser . 39

My Profile Page . 40

Page Design . 41

Open Order Page. 42

Data Sources . 42

Update Mechanisms. 42

Caching Options . 43

Handling Unavailable Sources . 43

Access LD via JDBC. 43

Page Design . 43

Order History Page . 43

Security . 45

Page Design . 45

Retail Dataspace Sample Application Guide v

Support Page . 45

Search Page . 45

Summary . 46

vi Retail Dataspace Sample Application Guide

Sample Retail Application Guide 1

Retail Dataspace Sample Application

This chapter provides a brief overview of the Retail Dataspace Sample Application (RTLApp),
which is included with a complete AquaLogic Data Services Platform (ALDSP) installation, and
also describes a scenario about how this sample application was developed by a fictitious
enterprise named Avitek Ltd. The purpose of this scenario is to illustrate how ALDSP can
aggregate data from highly disparate data sources, allowing access to that data through a single
point of access that itself is easily integrated with other applications.

The following sections are included:

About Avitek Ltd.

Dataspace Projects in the Retail Dataspace Sample Application

The Challenge of Disparate Data

Business Case for the Avitek Self-Service Web Site

RTLApp Dataspace Projects

Quick Start Instructions for the RTLSelfService Application

Summary

These sections are preceded by a brief description of a fictitious enterprise named Avitek Ltd.

Reta i l Dataspace Sample Appl i ca t i on

2 Sample Retail Application Guide

About Avitek Ltd.
Avitek is a mythical retailer that has grown through acquisitions. The company started out selling
apparel but recently merged with an electronic retailer to expand business and consolidate cost
centers such as accounting and web development. Because of this acquisition the company now
has two very different order management systems (OMS), one each for electronics and apparel
orders. Avitek also has a customer relationship management (CRM) system to manage customer
profile information. Finally, Avitek has a Customer Service system to manage the support cases
for Electronic products.

General IT Goals
General immediate and mid-range goals for the newly consolidated IT department include:

An easy solution to providing integration of different back-end resources.

An easy solution to providing read/update to these back-end resources.

An abstraction layer to hide the complexities of interacting with different systems.

Specific Projects
An early “low-hanging fruit” project is to build a customer self-service web site which can also
be used by support representatives. This web site needs to provide an easy solution to integrating
different back-end resources and to providing two-way communication (read/update). It will also
need to provide an abstraction layer to hide the complexities of the different systems.

The front-end architecture of the Web site will provide a Java-based Customer Self-Service portal
where customers can update their profile information and review or modify their orders. The
back-end architecture will access the following five different sources of data (as shown in
Figure 1):

Customer related information stored in a CRM database (Oracle)

Credit card information from a billing system (Sybase)

Case information from a support database (DB2)

Apparel order information from the company’s Order Management system (SQL Server)

Electronics Order System accessed through a web service. (The original source of
information is mainframe inherited with the merger.)

Dataspace Pro jec ts in the Reta i l Dataspace Sample App l i cat ion

Sample Retail Application Guide 3

The project also needs a code name. RTLApp is selected.

Figure 1 RTLApp Front and Back End Architecture

Dataspace Projects in the Retail Dataspace Sample
Application

Retail Dataspace Sample Application (RTLApp) includes the following dataspace projects:

ElectronicsWS

Contains a set of data services that form the basis for electronics equipment orders. A web
service has been created from this dataspace project that serves as a data source for the
RetailDataspace project. (The purpose of the Electronics dataspace project is to show how
a web service can be used as a data source by another project.)

Reta i l Dataspace Sample Appl i ca t i on

4 Sample Retail Application Guide

RetailDataspace

Main dataspace project demonstrated by RTLApp. The RetailDataspace project contains
data services based on the following data sources:

– The ElectronicsWS web service

– The following relational data sources:

• Order Management System, which contains the ApparelDB database

• Billing Information, which contains the BillingDB database

• Customer Relationship Management (CRM) System, which contains the
CustomerDB database

• Customer Service, which contains the CustomerDB database

The Retail Dataspace Sample Application also includes a separate client application,
RTLSelfService, which demonstrates an application that invokes the RTLApp data services to
display data in a Web application. Building, deploying and running the RTLSelfService
application is described in “Quick Start Instructions for the RTLSelfService Application” on
page 34.

Note: The source files and other application data for RTLApp are created and laid down in your
domain directory tree by the wizards that you execute as part of the steps described in the
sections that follow. These files do not exist on your machine prior to completing these
steps.

Configuring the RTLApp Example and its Web Application
The following table provides links to topics which describe how to build and deploy the Retail Sample
example under ALDSP versions 3.0, 3.2, and 3.01.

Links to instructions for running the RTLApp sample Web application are also provided.

Table 1 Version-specific Links for Configuring RTLApp and Installing its Sample Web Application

ALDSP 3.0 ALDSP 3.2 ALDSP 3.01

Build and deploy RTLApp Build and deploy RTLApp and run
the web-based sample

Build and deploy RTLApp

Install the sample retail
application

Install the sample retail
application

../dsp30wiki/Install the ALDSP Sample Retail Application.html
../datasrvc/Configure the Retail Dataspace Sample Application.html
../datasrvc/Configure the Retail Dataspace Sample Application for ALDSP 3.2.html
../datasrvc/Configure the Retail Dataspace Sample Application for ALDSP 3.01.html

Dataspace Pro jec ts in the Reta i l Dataspace Sample App l i cat ion

Sample Retail Application Guide 5

Note: If you are using ALDSP version 3.2, please see “How to Configure the Retail Dataspace
Sample Application for ALDSP 3.2.” This topic includes simplified instructions for
creating and running the retail dataspace (RTLApp) sample web application.

To build and deploy the RTLApp dataspace projects, complete the following steps. If you have
already built and deployed the dataspace projects in Data Services Studio, you can skip to
“Importing the RetailDataspace Resources” on page 34.

1. Start Data Services Studio by choosing Start → All Programs → BEA Products → BEA
AquaLogic Data Services Platform 3.0 → Data Services Studio.

2. In the Workspace Launcher, make sure that the Workspace is set to
<aldsp_home>/samples/workspaces/aldsp, as in Figure 2, and click OK.

Figure 2 Data Services Studio Project Launcher

3. In the Welcome screen displayed in the Data Services Studio, click Retail Dataspace Sample,
shown in Figure 3, which appears under the heading Install Sample Applications.

Figure 3 Link for Installing RTLApp

Data Services Studio displays a dialog box containing the message, “No server runtimes
can be found in this workspace,” and prompts you to click the Installed Runtimes... button.

../datasrvc/Configure the Retail Dataspace Sample Application for ALDSP 3.2.html
../datasrvc/Configure the Retail Dataspace Sample Application for ALDSP 3.2.html

Reta i l Dataspace Sample Appl i ca t i on

6 Sample Retail Application Guide

4. In the Application location section, make sure that Use default location is checked, and click
Installed Runtimes...

Data Services Studio displays a Preferences dialog box in which you add the home
directory of the WebLogic Server 9.2 runtime that is contained in the same BEA Home
directory as your ALDSP 3.0 installation.

5. In the Installed Server Runtime Environments dialog box, click Add...

Data Services Studio displays the New Server Runtime dialog box, in which you select
BEA WebLogic Server v9.2, as in Figure 4.

Figure 4 Server Runtime Environment Selection Dialog Box

6. Click Next.

Dataspace Pro jec ts in the Reta i l Dataspace Sample App l i cat ion

Sample Retail Application Guide 7

Data Services Studio then displays the Define a WebLogic Runtime dialog box, in which
you specify the home directory of the WebLogic Server 9.2 installation associated with
your ALDSP 3.0 installation.

7. Next to the field labeled WebLogic Home, click Browse... and select the WebLogic Server 9.2
home directory. By default, this directory name is weblogic92. Click OK.

8. Back in the Define a WebLogic Runtime dialog box, make sure the radio button for the JRE
in your BEA Home directory is selected, and click Finish.

9. In the Installed Server Runtime Environments dialog box, click OK.

10. In the Retail Dataspace Sample — Server Configuration dialog box in which you specify the
application location and WebLogic domain used for development, click Browse... next to the
field labeled Domain home.

11. In the Browse for Folder dialog box, select the <aldsp_home>/samples/domains/aldsp
directory, as in Figure 5, and click OK.

Reta i l Dataspace Sample Appl i ca t i on

8 Sample Retail Application Guide

Figure 5 Samples Domain Home Directory Selection Dialog Box

12. In the Retail Dataspace Sample — Server Configuration dialog box in which you specify the
application location and WebLogic domain used for development, click Next.

13. In the Summary dialog box that is displayed, click Finish.

Data Services Studio builds the sample dataspace, displaying a progress message box
similar to Figure 6.

Dataspace Pro jec ts in the Reta i l Dataspace Sample App l i cat ion

Sample Retail Application Guide 9

Figure 6 Dataspace Project Build Status Message Box

When the build process for the RTLApp dataspace projects is complete, the main Data
Services Studio window is displayed.

14. Deploy the ElectronicsWS project by right-clicking the entry for it in the Project Explorer
view, located on the left, and choosing Deploy Project, as in Figure 7.

Figure 7 Dataspace Project Deployment Menu Option

Reta i l Dataspace Sample Appl i ca t i on

10 Sample Retail Application Guide

15. A message is displayed indicating that the server is not started, and prompts you to start it.
Click Yes.

16. If you get a message indicating that the ElectronicsWS deployment is a success, click OK,
and deploy the RetailDataspace project in the same way as the ElectronicsWS project.

The Challenge of Disparate Data
The sample retail application illustrates in simplified form the kinds of data integration
challenges often encountered by Information Technology (IT) managers and staff. Issues include:

What is the best way to normalize data drawn from widely divergent sources?

Having normalized the data, can you access it, ideally through a single point of access.

Having such a single point of access to your data, can you develop reusable queries that
are easily tested, stored, and retrieved?

Once you can query data, can you as easily update it in a secure manner?

Can you cache data to improve performance while protecting users from stale information?

How difficult is it to consume query results in client applications?

Other questions may occur. Is the data-rich solution scalable? Is it reusable throughout the
enterprise? Are the original data sources transparent to the application — or do they become an
issue each time you want to make a minor adjustment? When changes to underlying data
inevitably occur, how difficult will it be to propagate those changes to the application layer?

So many questions...

Business Case for the Avitek Self-Service Web Site
A survey commissioned by Avitek Marketing found customers to be dissatisfied with the call-in
wait time required to track orders or update customer information. In a focus group the idea of a
self-service web site resonated. Customer Service agreed; they have been requesting such a site
for years, but the internal costs were always above budget. But now that Marketing is on board …

Bus iness Case fo r the Av i tek Se l f -Serv ice Web S i te

Sample Retail Application Guide 11

Web Site Design Requirements
Site requirements seem simple. Fulfillment identifies that customers will need to be able to:

Securely log in and out.

Review order status. A Home page will provide information on open orders, including
product names and quantities of items ordered, order amount, shipping instructions, and a
summary of any open customer service cases, with details.

Review order history.

Review and change personal profile information.

Search through orders. A sample page provides the ability to retrieve orders based on a
range of prices, range of dates, etc.

Bottom line: If customers can perform this level of self-service the company will save a lot of
money.

Maintenance Requirements
A cross-sectional team of marketing and customer service develop maintenance requirements for
the web application:

7x24 access

Fewer than 10 HTML pages

Low-maintenance

Easily modified

Design Requirements
An application/UI designer begins “spec’ing out” the required JSPs. Pages are the easy part. Data
is needed so he shoots off an email to the consolidated IT department.

Information Technology (IT) Weighs In: The Moment of Truth
When an IT data architect analyzes the requirements she turns up a problem. In surveying the
information needed by the application — customer data for one data source, order data from two
very separate divisions of the company (two more data sources), and customer support data (a
fourth data source) — the architect realizes that integrating data from these diverse data sources

Reta i l Dataspace Sample Appl i ca t i on

12 Sample Retail Application Guide

will be complicated and time consuming with additional maintenance problems down the road.
Challenges included:

Cost of development. Writing the code to access and integrate data from multiple diverse
data sources would take more time than originally expected and require more expensive
and scarcer resources.

Time to market. Developing and testing an application against multiple data sources
would extend beyond the date when the application is needed.

Cost of testing and maintenance. High.

Perhaps most frustrating: little of the specialized code needed by the application can be reused.

So much for low-hanging fruit.

Search for an Alternative
Developing a unified view into distributed data is one of the most persistent challenges faced by
IT departments. Just when you get all the available data sources normalized, new sources appear
that must be dealt with, making yesterday’s data integration solution practically obsolete.

This problem is so pervasive that each year thousands of arguably critically-needed applications
go unwritten, are delayed, or are delivered in highly-compromised form because of the data
integration challenges faced by even the most sophisticated enterprises.

Compared to the above, the RTLApp team preferred a solution that:

Provides a layer of data abstraction so that queries can treat highly-divergent data sources
as a single, virtual data source.

Allows development of human-readable, reusable queries.

Can be easily accessed by consuming applications through a simple API.

Protects the integrity and security of the underlying data.

Allows read-write testing and deployment.

RTLApp Dataspace P ro j ec ts

Sample Retail Application Guide 13

A Possible Solution
When Avitek looked at AquaLogic Data Services Platform, they found a product that addressed
the underlying challenges posed by the apparently simple RTLApp:

Addressing the problem of data access, ALDSP provides data integration through a
highly-accessible graphical interface.

In ALDSP, queries are developed graphically and are self-describing.

Once data integration is achieved, persistent queries are generated.

Read-write to live or staged data is available at every step of the development process.

Because ALDSP is based upon WebLogic Server, data caching and enterprise-level
security is built in.

Specifically, the features that the team found most appealing included:

Data Access. ALDSP allows the application to access information from anywhere in the
company — or beyond — through an easily-created virtual data access layer. Once accessed,
data can easily be aggregated through a combination of reusable queries and views that are
maintained in the ALDSP server.

Query Development. Then, once the data is collected under a single point of access, it is not
difficult to create query functions that consolidate data from these disparate sources and present
a common, reusable view ready for more specialized queries.

The declarative form of ALDSP artifacts (query functions in data services) makes them very
readable.

Query Deployment. Once developed, queries are easily integrated into a client application
thorough a variety of access methods such as the ALDSP Mediator API, the ALDSP control in
Workshop, JDBC, or web service.

RTLApp Dataspace Projects
Several BEA technologies are exercised by the RTLApp dataspace projects:

Query Development. Data services and queries that draw data from multiple data sources
are created in Data Services Studio. ALDSP provides an extension of XQuery that can be
used for data service development called XQuery Scripting Extension (XQSE), described
in “Use of XQuery Statement Extension (XQSE)” on page 27.

Reta i l Dataspace Sample Appl i ca t i on

14 Sample Retail Application Guide

For more information about XQSE, see the following:

– BEA XQuery Scripting Extension

– How to Use the BEA XQuery Scripting Extensions

Query Access. Query functions are accessible through the Data Services Studio (Test view
only), the ALDSP mediator API, JDBC, Web services, and the ALDSP control and can be
tested within the Data Services Studio.

Client-side Development. Data Services Studio provides a single environment for
modeling, designing, testing, tuning, and deploying data services and application logic via
facilities such as the following:

– Query Mapper

– Source Editor

– Test Editor

– Query Plan

– Update Mapper

The following sections examine key artifacts of the RTLApp dataspace projects and describe
examples of some of the query building features provided by ALDSP:

“RTLApp Data Sources” on page 14

“RTLApp Data Services” on page 15

“Model Diagrams” on page 25

“Building Queries” on page 26

RTLApp Data Sources
Although the RTLApp is very simple, the underlying data acquisition is challenging because data
comes from four heterogeneous data sources. These are:

Customer Relationship Management (CRM) system. CRM data (customer and credit
card information) is stored in a database called RTLCUSTOMER.

Order Management System (OMS). Avitek has two order management systems:

– Apparel products. Information is maintained on site in a second database. This is
represented in ALDSP as RTLAPPLOMS.

../xquery/xqse.html
../dsp30wiki/How To Develop Good XQSEs.html

RTLApp Dataspace P ro j ec ts

Sample Retail Application Guide 15

– Electronic products. OMS information is available from a legacy system
(RTLELECOMS) via a web service. The web service has several methods such as
getCustomerOrderByCustomerID(), that takes a customer ID as input and returns a
list of customer open order information through a web service.

Customer Service. Service data is stored in a third database. The schema for this data is
RTLSERVICE.

Billing information. Credit card information is maintained in a separate, highly secure
database, RTLBILLING.

RTLApp Data Services
The following sections describe work done by some of the RTLApp data services and shows how
they are organized within a dataspace project. When you create a dataspace project, it is a best
practice to construct data services in multiple layers, with the upper layers being increasingly
abstract from the physical data sources on which they are based. The RTLapp data services were
created in Data Services Studio and exist in the following layers:

Physical data services

Physical data services correspond to the physical data sources that are needed by the
dataspace project.

Normalized data services

RTLApp adds this layer to present the dataspace project’s data services in a more
database-neutral manner that, for example, translates vendor-specific data types or create
element names that are more readable or standardized.

Logical data services

RTLApp adds this layer to create discrete data services that combine other data services
that draw upon multiple data sources and that expose data operations in the way in which
clients will consume them.

Application data services

RTLApp adds this layer to provide the actual applications that are composed from data
services defined in the preceding layers and to determine which operations on those data
services are exposed to client applications.

Figure 8 shows the data services that make up the RetailDataspace dataspace project in RTLApp.

Reta i l Dataspace Sample Appl i ca t i on

16 Sample Retail Application Guide

Figure 8 RetailDataspace Dataspace Project Data Services

Figure 9 shows the data services that make up the ElectronicsWS dataspace project in RTLApp.

RTLApp Dataspace P ro j ec ts

Sample Retail Application Guide 17

Figure 9 ElectronicsWS Dataspace Project Data Services

Viewing the Data Services in Data Services Studio
To open the RTLApp dataspace projects, start Data Services Studio, if not already running, by
completing the following steps. These steps assume that you have already installed the RTLApp
dataspace projects as described in “Dataspace Projects in the Retail Dataspace Sample
Application” on page 3.

1. Start Data Services Studio by choosing Start → All Programs → BEA Products → BEA
AquaLogic Data Services Platform 3.0 → Data Services Studio.

2. In the Workspace Launcher, make sure that the Workspace is set to
<aldsp_home>/samples/workspaces/aldsp and click OK.

Data Services Studio is displayed on your machine, with the RTLApp dataspace project view
appearing in the Project Explorer window, as shown in Figure 10.

Reta i l Dataspace Sample Appl i ca t i on

18 Sample Retail Application Guide

Figure 10 Initial Retail Sample Application Dataspace Project View

Like all dataspace projects in Data Services Studio, components of the RTLApp sample are
arranged in folders. This section briefly describes the key folders and their contents.

RetailDataspace is the main dataspace project in RTLApp. It encompasses all the data sources
and data services that are accessed by client applications to RTLApp, and it shows a number of
best practices for data service design and implementation. The ElectronicsWS dataspace project
is included specifically to demonstrate the use of a web service as a data source and does not show
best practices in the same way; however, a limited number of examples shown in this document
are taken from ElectronicsWS as well.

The following key folders are described:

Physical Data Services Folder

Normalized Data Services Folder

Logical Data Services Folder

RetailApplication Data Services Folder

Note: Because the RetailDataspace dataspace project demonstrates best practices of data
service design, most of the examples shown in this section are taken from that dataspace.

RTLApp Dataspace P ro j ec ts

Sample Retail Application Guide 19

Physical Data Services Folder
Physical data services correspond to the physical data sources, described in “RTLApp Data
Sources” on page 14, that are needed by the dataspace project. For example, the physical data
services in the RetailDataspace project include apparel orders (ApparelDB), credit card
information (BillingDB), Customer Relationship Management (CRM) information
(CustomerDB), electronic orders (ElectronicsWS), and customer service information
(ServiceDB).

In the RTLApp sample, physical data services typically have a read function and, often, one or
several navigation functions that correlate to the primary key/foreign key relationship between
relational sources.

The folders, schema, and physical data services for the data sources included in the
ElectronicsWS dataspace project are shown in Figure 12.

Figure 11 ElectronicsWS Physical Data Services

The folders, schema, and physical data services for the data sources included in the
RetailDataspace project are shown in Figure 12.

Reta i l Dataspace Sample Appl i ca t i on

20 Sample Retail Application Guide

Figure 12 RetailDataspace Physical Data Services

The physical data services in RTLApp are based on the data sources listed in Table 1.

RTLApp Dataspace P ro j ec ts

Sample Retail Application Guide 21

Table 1 Data Sources for Physical Data Services in RTLApp

The data services in are based on the following data sources . . .

ElectronicsWS/Physical folder:
• CUSTOMER_ORDER_LINE_ITEM.ds

• CUSTOMER_ORDER.pds

• ELECOrderUpdate.ds

• ELECResourceUpdates.ds

• PRODUCT.ds

RTL Electronics Order Management System
(RTLELECOMS), which contains the following relational
database tables:
• CUSTOMER_ORDER_LINE_ITEM

• CUSTOMER_ORDER

• PRODUCT

RetailDataspace/Physical/ApparelDB folder:
• CUSTOMER_ORDER_LINE_ITEM.ds

• CUSTOMER_ORDER.ds

• MAXLINEIS.ds

• PRODUCT.ds

RTL Order Management System (RTLAPPLOMS), which
contains the ApparelDB RDBMS. Each of the following tables
in ApparelDB is established as a discrete data source:
• CUSTOMER_ORDER_LINE_ITEM

• CUSTOMER_ORDER

• PRODUCT

RetailDataspace/Physical/BillingDB folder:
• CREDIT_CARD.ds

Billing Information System (RTLBILLING), which contains
the BillingDB RDBMS. A data source is established for the
BillingDB table CREDIT_CARD.

RetailDataspace/Physical/CustomerDB
folder:
• ADDRESS.ds

• CUSTOMER.ds

Customer Relationship Management System
(RTLCUSTOMER), which contains the CustomerDB
RDBMS. Each of the following tables in CustomerDB is
established as a discrete data source:
• ADDRESS

• CUSTOMER

RetailDataspace/Physical/ServiceDB folder:
• SERVICE_CASE.ds

Customer Service (RTLSERVICE), which contains the
ServiceDB RDBMS. A data source is established for the
ServiceDB table SERVICE_CASE.

RetailDataspace/Physical/ElectronicWS
folder:
• ElectronicOrders.ds

• ElectronicProducts.ds

ElectronicsWS web service, which serves as a data source for
the physical data services for electronics orders

Reta i l Dataspace Sample Appl i ca t i on

22 Sample Retail Application Guide

Normalized Data Services Folder
Normalized data services are located in a folder called Normalized, and they add a layer of
abstraction or translation to the physical data services. At the normalized layer, the RTLApp data
services are customized so that the data can be managed and used in a more database-neutral
manner. Customizations may include translating vendor-specific data types on some fields and
creating more readable, or more standardized, data element names. In addition, customized
schema types, schema URLs, and the schema’s target namespace may typically created in this
layer. The mapping of the physical data elements to the normalized schema can be done using the
XQuery Editor.

The folders, schema, and data services in the Normalized folder of the RetailDataspace project
are shown in Figure 13.

Figure 13 RetailDataspace Normalized Data Services

RTLApp Dataspace P ro j ec ts

Sample Retail Application Guide 23

Logical Data Services Folder
Logical data services (services based on normalized data services or other logical data services)
for a dataspace project are located in a folder called Logical. It is in these logical data services
that the read and navigation functions drawing on multiple data sources are developed and
maintained.

Logical data services expose data operations in the way in which clients should consume them,
that reflect how data services should interoperate with each other, and that are enriched with the
business data vocabulary of the enterprise. For example, the RetailDataspace dataspace contains
the logical data service Profile.ds, which combines the following data tables:

The ADDRESS and CUSTOMER tables in CustomerDB

The CREDIT_CARD table in BillingDB

The folders, schema, and data services in the Logical folder of the RetailDataspace project are
shown in Figure 14.

Figure 14 RetailDataspace Logical Data Services

ALDSP also enables you to create a single logical data service that is drawn from disparate data
sources. For example, the RetailDataspace dataspace contains a logical data service, Order.ds,
that includes: ApparelOrderDetail.ds, which is based upon a relational data source; and
ElectronicOrderDetail.ds, which is based upon a web service data source originating in a

Reta i l Dataspace Sample Appl i ca t i on

24 Sample Retail Application Guide

separate dataspace. The ALDSP feature that enables the union of two data sources is described
further in “Query Union” on page 27.

RetailApplication Data Services Folder
The highest-level abstraction presented in RTLApp is the application layer. Users can define
multiple applications composed from data services defined in the previous, or lower, layers.

The folders, schema, and data services in the RetailApplication folder of the RetailDataspace
project are shown in Figure 15.

Figure 15 RetailApplication Data Services

The operations of the RetailApplication data services that can be exposed to client applications
can be identified graphically within Data Services Studio. For example, if you click the
OrderManagement/OrderSummaryService.ds data service to expose its operations, you
notice a small green ball icon next to several operations, shown in Figure 16.

RTLApp Dataspace P ro j ec ts

Sample Retail Application Guide 25

Figure 16 Public Operations in OrderSummaryService Data Service

The green ball indicates that the following operations are publicly accessible by applications that
invoke data services in the RetailApplication dataspace:

getOpenOrderSummaryByCustID

getOrderSummaryByCustID

getOrderSummaryByCustIDWithPagnation

search

The following operations are not publicly accessible:

getCustomerService

getOrderService

In the Workshop IDE, when the ALDSP control is generated for the RetailApplication data
services, the client application sees only the public functions. When the Mediator Client JAR file
is generated from the RetailApplication data services, only the public functions are contained.

Model Diagrams
The Models folder of a logical data service folder contains model diagrams that are based on both
physical and logical data services. Models are available in every main dataspace layer except in
the physical layer. The purpose of models are two-fold:

Models give the ALDSP user a big picture of the current layer in dataspace project. For
example, the models in a given logical folder show the relationships among the data
services in that folder.

Reta i l Dataspace Sample Appl i ca t i on

26 Sample Retail Application Guide

A convenient, graphical tool for establishing the functional relationship between any two
data services that have something in common. Once you define the relationship function,
ALDSP automatically generates the code represented by that function and incorporates it
into the respective data services.

For example, the model RetailDataspace/Normalized/Models/Customer.md, shown in
Figure 17, shows how an order is created: the customer has a relationship with a profile and with
a product.

Figure 17 Customer Model

Building Queries
The following sections highlight examples of select features built into ALDSP that provide a
simple and convenient way to enable powerful query capabilities inside of data services

RTLApp Dataspace P ro j ec ts

Sample Retail Application Guide 27

Query Union
The RetailDataspace project provides an example of a query union that concatenates a query for
a relational data source to a query for a web service data source. ALDSP supports the ability to
display this union in the Update Map, which can support the Create, Update, and Delete (CUD)
operations automatically.

The RetailDataspace project uses this capability to combine the following product orders inside
a single logical data service, Order.ds:

An apparel order that originates from the relational database ApparelDB

An electronics order that originates from the Electronics web service and also the order
comes from the ElectronicsWS web service

Figure 18 Query Union

To display this query union, double click the getOrderByCustID(string) function of the data
service RetailDataspace/Logical/Order.ds in the Project Explorer.

The following code is displayed in the Source tab. The code in bold performs the union:

declare function tns:getOrderByCustID($custID as xs:string) as element(ns1:ORDER)*{
 (:this union doesn't work for the update map
 for $APPAREL_ORDER in ns8:getApparelOrderByCustID($custID)
 return $APPAREL_ORDER
 ,
 for $ELECTRONIC_ORDER in ns9:getElectronicOrderByCustID($custID)
 return $ELECTRONIC_ORDER :)

 (:this union works for the update map:)
 for $ORDER1 in (ns8:getApparelOrderByCustID($custID),
 ns9:getElectronicOrderByCustID($custID))
 return $ORDER1
};

Use of XQuery Statement Extension (XQSE)
XQSE is a BEA extension to XQuery that adds procedural constructs — including basic
statements, control flow, and user-defined procedures — to XQuery. Thus, XQSE is a superset

Reta i l Dataspace Sample Appl i ca t i on

28 Sample Retail Application Guide

of XQuery, extending it with additional features that enable a much richer set of data services to
be built without leaving the XML/XQuery world.

The following examples describe how XQSE is used in RTLApp.

Example 1: Using a Java Function to Update an Element
XQSE extends the base XQuery data model with information about elements that have been
updated and then resubmitted to ALDSP. An XML node that contains such changes has the new
XQSE type changed-element, which represents an element with changes.

In the RetailDataspace project, the normalized data service ApparelOrder contains a primary
update operation, updateAPPAREL_ORDER. This operation passes a changed-element to the
physical data service ApplOrderUpdate. ApplOrderUpdate is based on a Java function that
updates the value of the element and returns it to the caller. The source of the Java function is
included in RetailDataspace\DSP-INF\lib\APPLOrderUOV.jar.

Example 2: Implementing a Web Service Update
In the RetailDataspace project, the normalized data service CustomerOrder uses XQSE in the
function updateELEC_ORDER to determine how to invoke the CustomerOrders.ws web service
to update electronics orders. In addition, CustomerOrder is designed as a reflection of the
ElectronicsWS logical data service CustomerOrder. This ALDSP capability allows RTLApp to
eliminate the web service wrappers (xxxRequest and xxxResponse) that are defined by the
WSDL when the ElectronicsWS CustomerOrder data service is exposed as a web service.

For an in-depth walkthrough of this example, see “Updating Data Based on a Web Service” on
page 29.

Example 3: Implementing the ELEC Order Updates
In the RetailDataspace project, the normalized data service CustomerOrder contains a
procedure, updateELEC_ORDER, which is implemented through a web service interface. As a
result, because we do not want to transfer the data graph between the dataspace and web service
protocol, the changed-element is not available in CustomerOrders. Therefore, RTLApp uses
XQSE in the changeCustomerOrders function in the logical data service CustomerOrders (of
the ElectronicsWS dataspace project) to implement the logic for updating the element
representing electronics orders. This logic is as follows:

1. Delete the Order and LineItems.

2. Re-insert the updated values.

RTLApp Dataspace P ro j ec ts

Sample Retail Application Guide 29

Updating Data Based on a Web Service
ALDSP provides a robust set of automated services to handle updates to data services that are based on
relational data sources. However, automated update services are not available for data sources that are based
on web services. For web service based data sources, ALDSP permits the use of XQSE procedures, which
can greatly simplify the creation of custom code for those update tasks. RTLApp provides an example of
using XQSE to update the customer orders that are managed by a web service. This example demonstrates
a design pattern for isolating a web service resource from the higher-level data services in a dataspace
project. The sections that follow provide a detailed walkthough of this example.

About Customer Orders for Electronic Products
As explained in “RTLApp Data Sources” on page 14, orders for electronics products are managed by the
web service, CustomerOrders. This web service is created from the logical data service CustomerOrders,
which is in the ElectronicsWS dataspace project. This web service is subsequently imported into the
physical layer of the RetailDataspace project. The physical data service, ElectronicOrders, uses the
imported CustomerOrders web service as a data source.

Note: The creation of a web service from a logical data service, and then importing that web
service into the physical layer of another dataspace project, is not meant to be a design
pattern. However, RTLApp uses this method for two reasons: first, to show that it can be
done; and second, to take advantage of an easy-to-use ALDSP capability to generate a
simple, ad hoc web service that can serve the purposes of the RTLApp dataspace sample.

Normalizing a data service enables consuming applications to use the data without regard for the
inherent differences of its various underlying source representations. The RetailDataspace project
contains two normalized data services, shown in Figure 19, that together abstract the process of using and
updating data that is managed by the CustomerOrders web service.

Figure 19 RTLApp Data Services Based on a Web Service

Reta i l Dataspace Sample Appl i ca t i on

30 Sample Retail Application Guide

The following data services, circled in Figure 19, are the focus of how XQSE can be used in a data service
to update data managed by a web service:

ElectronicOrder

This data service contains normalized elements for processing electronics orders, exposing
them to logical data services as simple create-update-delete procedures. The
ElectronicOrder data service abstracts the elements and procedures contained in the
CustomerOrder logical data service. When create-read-update-delete (CRUD) operations are
invoked on the ElectronicOrder data service to process customer orders, the
ElectronicOrder data service invokes the corresponding CRUD operations on the
normalized CustomerOrder data service.

CustomerOrder

This is the normalized data service that is based on the physical data service
ElectronicOrders, which is in turn based upon the CustomerOrders web service that has
been imported into the physical layer of the RetailDataspace project. The CustomerOrder
data service normalizes the ElectronicOrders physical data service by removing
multiple web service wrapper layers that result when that physical data service is created.
When the normalized ElectronicOrder data service invokes the CustomerOrder data
service to process a customer order update, the CustomerOrder data service uses XQSE to
update the value of the customer order in the CustomerOrders web service, as explained in
“XQSE Procedure Walkthrough” on page 32.

The CustomerOrder data service therefore functions as a bridge between the normalized
ElectronicOrder data service and the physical ElectronicOrders data service.

Figure 20 shows the relationship among the data services in the RetailDataspace project and the
CustomerOrders web service when the data managed by that web service is updated.

RTLApp Dataspace P ro j ec ts

Sample Retail Application Guide 31

Figure 20 Relationship Among RetailDataspace Data Services and CustomerOrders Web Service

Figure 20 includes the following numbered callouts to highlight execution flow when the normalized data
service ElectronicOrder is invoked to update the value of a customer order:

1. As the result of a client application that has submitted the values of a customer order, a logical
data service in the RetailDataspace project invokes the updateELECTRONIC_ORDER
operation.

2. The ElectronicOrder data service invokes the updateELEC_ORDER procedure of the
CustomerOrders data service to effect the update of the value of the customer order.

3. The updateELEC_ORDER procedure invokes the changeCustomerOrders operation in the
physical data service ElectronicOrders to construct a changeCustomerOrders object,
which holds the value of the customer order.

4. The changeCustomerOrders operation of the physical data service ElectronicOrders
invokes the CustomerOrders web service to submit the updated value of the customer order.

Reta i l Dataspace Sample Appl i ca t i on

32 Sample Retail Application Guide

XQSE Procedure Walkthrough
The normalized CustomerOrder data service contains the XQSE procedure, updateELEC_ORDER, to
perform the web service update, which cannot be accomplished via the automated update services available
in ALDSP. Specifically, the updateELEC_ORDER procedure performs the following tasks:

1. Retrieves a new value for the customer order from the web browser client, RTLSelfService.

2. Creates a changeCustomerOrders SDO object and inserts the new value of the customer
order into it.

3. Calls the changeCustomerOrders function in the physical data service
ElectronicOrders, passing the changeCustomerOrders SDO object.

As a result of an invocation on the updateELEC_ORDER procedure, the CustomerOrders web service that
has been imported into the physical layer of the RetailDataspace project invokes the logical data service
CustomerOrders that is contained in the ElectronicsWS dataspace project. In turn, that
CustomerOrders data service updates the electronics orders RDBMS, RTLELECOMS, which is
described in “RTLApp Data Sources” on page 14.

Viewing the updateELEC_ORDER XQSE Procedure in Data Services Studio
To view the updateELEC_ORDER XQSE procedure:

1. Start Data Services Studio, if necessary, as described in steps 1 and 2 in “Configuring the
RTLApp Example and its Web Application” on page 4.

2. In the Project Explorer, double click the CustomerOrder data service, which appears in the
Normalized/Electronic folder of the RetailDataspace dataspace project, as shown in Figure 19.

3. In the bottom of the workspace, select the source tab.

4. Expand the procedure named updateELEC_ORDER.

Description of XQSE Statements in updateELEC_ORDER
The updateELEC_ORDER procedure is shown in Figure 21.

RTLApp Dataspace P ro j ec ts

Sample Retail Application Guide 33

Figure 21 XQSE Code for Updating a Web Service

For a description of the statements in the updateELEC_ORDER procedure, refer to the following callouts
in Figure 21:

1. This XQSE procedure declaration establishes updateELEC_ORDER as the primary update
function of the CustomerOrder data service. A primary update function must pass an
argument that is declared to be of XQSE type changed-element, which contains the updates
for the web service data source. The argument $custOrder is a data graph that
simultaneously contains both the old and new values of the customer order.

For more information about XQSE procedure declarations and the changed-element
type, see BEA XQuery Scripting Extension (XQSE) in the XQuery and XQSE Developer’s
Guide.

2. Two variables are declared:

– $curr — to represent the object containing the current values of the customer order,
initially held by the web service

– $parameter — to represent the SDO object that contains the new customer order,
which is passed to the web service

3. This set statement invokes fn-bea:current-value($custOrder) on the
changed-element, $custOrder. This statement causes $custOrder to be updated with the

../xquery/xqse.html

Reta i l Dataspace Sample Appl i ca t i on

34 Sample Retail Application Guide

new values of the customer order, which are assigned to the variable $curr. (The previous
values of $curr are discarded.)

4. This set statement constructs a changeCustomerOrders SDO object, named $parameter,
from the array of customer order values contained the $curr variable.

5. This statement invokes the changeCustomerOrders procedure in the physical data service
ElectronicOrders, passing the changeCustomerOrders SDO object.

Quick Start Instructions for the RTLSelfService
Application

RTLSelfService is a companion sample application provided with RTLApp that demonstrates the
use of a Web-based client application that invokes data services and displays the resulting data in
a Web browser.

The steps for configuring, building, deploying, and running the RTLSelfService application are
provided in the following sections:

“Importing the RetailDataspace Resources” on page 34

“Building and Deploying the RTLSelfService Application in the Workshop IDE” on
page 35

“Running the RTLSelfService Application in a Browser” on page 39

Importing the RetailDataspace Resources
The RTLApp sample application exercises ALDSP functionality that requires certain data service
configurations, such as failover, caching, security, and others, to be set prior to building and
deploying the RTLapp application in the Workshop IDE. These configurations are contained in
the resource file, RetailDataspace.jar, which needs to be imported into the RetailDataspace
project as explained in the steps that follow.

1. After the RetailDataspace project is deployed in Data Services Studio, start the AquaLogic
Data Services Console by choosing Start → All Programs → BEA Products → BEA
AquaLogic Data Services Platform 3.0 → Examples → AquaLogic Data Services Console.

2. Log in to the AquaLogic Data Services Console using the default username weblogic and
password weblogic.

Quick S ta r t Ins t ruc t ions fo r the RTLSe l fSe rv ice App l i cat ion

Sample Retail Application Guide 35

3. Select the System Administration category, and then select RetailDataspace from the
navigation tree, shown in Figure 22.

Figure 22 Dataspace Selection in ALDSP Administration Console

4. Click Lock & Edit.

5. Click the Import tab, then click Browse... to select the RetailDataspace JAR file
<aldsp_home>\samples\workspaces\aldsp\RetailDataspace\RetailDataspace.j
ar, as in Figure 23.

Figure 23 Importing a Resource JAR

6. Make sure that the Full Deployment checkbox remains unchecked, and click Next.

7. Click Import.

8. Click Activate Changes.

Building and Deploying the RTLSelfService Application in
the Workshop IDE
Note: If you are using ALDSP version 3.2, please see “How to Configure the Retail Dataspace

Sample Application for ALDSP 3.2.” This topic includes simplified instructions for
creating and running the retail dataspace (RTLApp) sample web application.

../datasrvc/Configure the Retail Dataspace Sample Application for ALDSP 3.2.html
../datasrvc/Configure the Retail Dataspace Sample Application for ALDSP 3.2.html

Reta i l Dataspace Sample Appl i ca t i on

36 Sample Retail Application Guide

To build and deploy the RTLSelfService application in the Workshop for WebLogic Platform 9.2
IDE, complete the following steps.

Note: The RTLApp sample can be run only in the ALDSP sample domain directory; that is, in
the <aldsp_home>/samples/domains/aldsp directory.

1. Copy the file com.bea.dsp.ide.control.feature.link from the
<aldsp_home>/eclipse-plugins/workshop9 directory (for example,
C:\bea\aldsp_3.0\eclipse-plugins\workshop9), and place it into the
<workshop92_home>/eclipse/links directory (for example,
C:\bea\workshop92\eclipse\links).

2. Start Workshop for WebLogic Platform 9.2 by choosing Start → All Programs → BEA
Products → Workshop for WebLogic Platform.

3. In the Workspace Launcher dialog box, specify the workspace RTLAppWeb, as in the
following example:

C:\bea\user_projects\w4WP_workspaces\RTLAppWeb

4. In the Workshop IDE, choose File → Import..., and click Existing Projects into Workspace, as
in Figure 24:

Quick S ta r t Ins t ruc t ions fo r the RTLSe l fSe rv ice App l i cat ion

Sample Retail Application Guide 37

Figure 24 Project Archive Selection Dialog Box

5. Click Next.

6. In the Import Projects dialog box, click Select archive file, click Browse..., and select the
following file:

Windows:
<aldsp_home>\samples\RetailAppWeb\RetailAppWeb_workshop9.zip

Unix:
<aldsp_home>/samples/RetailAppWeb/RetailAppWeb_workshop9.tar

Note: The <aldsp_home>/samples/RetailAppWeb directory also contains the file
RetailAppWeb_workshop10 (.zip or .tar) because the Workshop for WebLogic
Platform 10.0 IDE can also be used with ALDSP 3.0. For more information, see the
Release Notes.

7. Click Open.

8. In the Import Projects dialog box, ensure that the RTLApp and RTLSelfService workspace
projects are selected, and click Finish.

../relnotes.html

Reta i l Dataspace Sample Appl i ca t i on

38 Sample Retail Application Guide

9. Allow a few minutes for the imported workspace projects to build, and ignore warning
messages that may be displayed in the Servers view of the Workshop IDE.

10. In the Package Explorer view in the left, right-click the root node of the RTLSelfService
workspace project, and choose Run As → Run on Server, as in Figure 25.

Figure 25 Workshop Menu Option for Running the RTLSelfService Application

11. In the Define a New Server dialog box, make sure the following are selected:

– Server host name localhost

– Server type BEA WebLogic Server v9.2 Server

Typically you can accept the defaults, but you can click Installed Runtimes... to ensure that
the server runtime is set to the WebLogic Server 9.2 runtime with which your ALDSP
installation is associated.

12. Click Next.

13. In the Run on Server dialog box, click Browse... next to the field labeled Domain home, and
select the following directory:

<aldsp_home>/samples/domains/aldsp

Quick S ta r t Ins t ruc t ions fo r the RTLSe l fSe rv ice App l i cat ion

Sample Retail Application Guide 39

14. Ensure the Use default checkbox below the label Name is unchecked, and click Finish.

15. After the startup of the RTLSelfService application is complete, the welcome screen is
displayed in the Workshop IDE, as in Figure 26.

Figure 26 RTLSelfService Application Login Page

Running the RTLSelfService Application in a Browser
If you have not already done so, start the RTLSelfService Application by completing the steps in
“Building and Deploying the RTLSelfService Application in the Workshop IDE” on page 35.
When the login page shown in Figure 26 displayed, you can choose from users Steve, Jack, Tim,
Homer, or Jerry. Each uses the password weblogic.

Once a customer logs in, she or he sees their MyProfile screen. From there he or she can navigate
to information on open orders, order history, support, search, and logout. Customers can edit open
orders (see Figure 28) and get details on completed orders. Search allows the user to supply
product description information, start or end date, or order amount brackets.

The application also demonstrates some ALDSP facilities including the ability to:

Reta i l Dataspace Sample Appl i ca t i on

40 Sample Retail Application Guide

Refresh data

Restrict or unrestrict access

Make a data source unavailable

Enable Cache

Show SQL reports created from Crystal Reports

Update data

My Profile Page
The My Profile page illustrates ALDSP’s ability to perform automatic read/write on distributed
data.

Quick S ta r t Ins t ruc t ions fo r the RTLSe l fSe rv ice App l i cat ion

Sample Retail Application Guide 41

Figure 27 My Profile Page

My Profile page consolidates Customer and Credit Card information. Users can change their
personal profile information, address information, and credit card information. Changes are
initially reflected on their MyProfile page. If satisfied, the user can click Submit All Changes to
persist changes to the respective data sources.

Page Design
The page is based on ProfileView.jsp and the ProfileView data service
(ProfileService.ds).

Reta i l Dataspace Sample Appl i ca t i on

42 Sample Retail Application Guide

Open Order Page
The Open Order page consolidates a customer’s electronics and apparel open orders.

Figure 28 Open Order Page

Data Sources
From the user’s perspective, changing data is simply a matter of select and type. However, the
underlying update mechanisms for electronic orders (which are maintained as a web service) and
apparel orders are quite different.

Update Mechanisms
Electronic orders are derived from a web service. In this case, updating a electronic order
demonstrates web service custom update capabilities.

Quick S ta r t Ins t ruc t ions fo r the RTLSe l fSe rv ice App l i cat ion

Sample Retail Application Guide 43

Apparel orders are derived from a relational database and updates are automatic.

Caching Options
The Enable Cache option turns on caching for the function underlying the Open Orders page. You
can use the Refresh button to verify that the execution time when cache is enabled is significantly
faster than when it is not.

Handling Unavailable Sources
Click the Make Electronics Source Unavailable button to disable the web service. This action also
refreshes your Open Orders page. Notice that you can still retrieve partial results (apparel orders)
when a data source becomes unavailable.

Access LD via JDBC
The Show SQL Report button illustrates accessing data through JDBC. This demonstrates the
integration of ALDSP query functions with reporting and business intelligence tools such as
Crystal Reports.

Page Design
The Open Order page is controlled by a JSP named defaultView.jsp. Call-outs in Figure 5
show underlying data sources. The page derives its font and other look-and-feel characteristics
from a cascading stylesheet.

Order History Page
The Order History page displays historical order information for electronic and apparel orders.

Reta i l Dataspace Sample Appl i ca t i on

44 Sample Retail Application Guide

Figure 29 Order History Page

Users have several options associated with viewing their previous orders:

Items can be ordered by date, amount, or order type (electronic or apparel).

A operational filter can be applied based on order amount.

Quick S ta r t Ins t ruc t ions fo r the RTLSe l fSe rv ice App l i cat ion

Sample Retail Application Guide 45

The user can restrict the number of orders retrieved to a pre-set amount (5, 10, 15, 20, or
all).

The user can restrict orders to apparel or electronic.

An Apply button is provided to control page refresh.

Security
ALDSP security can be demonstrated when the number of orders is set to All. Then when the
Restrict Access option is selected, data is automatically redacted to show only orders where order
amounts are less than $500.00.

Page Design
The Order History page is controlled by a OrderHistory.jsp.

Support Page
The Support page provides information on any open support cases for the currently logged-in
customer.

Figure 30 Customer Support Page

The underlying JSP is caseView.jsp.

Search Page
Users can search for specific orders based on order dates, items, or amounts. The underlying code
executes ad hoc ALDSP query functions.

Reta i l Dataspace Sample Appl i ca t i on

46 Sample Retail Application Guide

Figure 31 Search Page

Users can search on any combination of search field criteria including product description, start
or end data, and a range of order amounts.

The JSP for this page initiates a small Java program that incorporates customer input and
generates an XQuery based on the selected parameters.

Summary
In summary, the RTLApp provides:

A virtual data access layer that allows you to treat heterogeneous data as from a single
source.

Ability to access the data through declarative queries that can be created in the Data View
Builder or developed externally.

Availability of ALDSP queries and server for easy integration into applications or
processes.

	About Avitek Ltd.
	General IT Goals
	Specific Projects

	Dataspace Projects in the Retail Dataspace Sample Application
	Configuring the RTLApp Example and its Web Application

	The Challenge of Disparate Data
	Business Case for the Avitek Self-Service Web Site
	Web Site Design Requirements
	Maintenance Requirements
	Design Requirements
	Information Technology (IT) Weighs In: The Moment of Truth
	Search for an Alternative
	A Possible Solution

	RTLApp Dataspace Projects
	RTLApp Data Sources
	RTLApp Data Services
	Viewing the Data Services in Data Services Studio
	Physical Data Services Folder
	Normalized Data Services Folder
	Logical Data Services Folder
	RetailApplication Data Services Folder

	Model Diagrams
	Building Queries
	Query Union
	Use of XQuery Statement Extension (XQSE)
	Example 1: Using a Java Function to Update an Element
	Example 2: Implementing a Web Service Update
	Example 3: Implementing the ELEC Order Updates

	Updating Data Based on a Web Service
	About Customer Orders for Electronic Products
	XQSE Procedure Walkthrough
	Viewing the updateELEC_ORDER XQSE Procedure in Data Services Studio
	Description of XQSE Statements in updateELEC_ORDER

	Quick Start Instructions for the RTLSelfService Application
	Importing the RetailDataspace Resources
	Building and Deploying the RTLSelfService Application in the Workshop IDE
	Running the RTLSelfService Application in a Browser
	My Profile Page
	Page Design

	Open Order Page
	Data Sources
	Update Mechanisms
	Caching Options
	Handling Unavailable Sources
	Access LD via JDBC
	Page Design

	Order History Page
	Security
	Page Design

	Support Page
	Search Page

	Summary

