L)

L)

‘ L
2 bea
L/

BEAAquaLogic®
Data Services
Platform

XQuery and XQSE
Developer’s Guide

Note: Product documentation may be revised post-release and
made available from the following BEA e-docs site:

http://e-docs.bea.com/aldsp/docs30/index.html

Version: 3.0
Document Date: June 2005
Revised: January 2008

http://e-docs.bea.com/aldsp/docs30/index.html

Contents

Introducing the Aqualogic Data Services Platform XQuery

Engine
XML ANA XQUETY . . . v v ettt ettt et e e e e et e et e et e e 1-2
XQuery Use in AquaLogic Data Services Platform. oo i i, 1-2
Supported XQuery Specifications ...t e 1-3
Learning More About the XQuery Language ..., 1-3

BEA's XQuery Implementation

BEA XQuery Function Implementationo 2-2
Function Overview ...t e 2-3
Access Control FUnCtions.ot 2-7
Duration, Date, and Time Functions.o 2-9
Execution Control Functions.o 2-14
Numeric FUnCtionsoovvnu i 2-20
Other FUNCLIONSot e 2-22
QNAmME FUNCEIONS . . . oo 2-24
Sequence FUNCHIONSo e e e 2-24
String FUNCHIONS . . .\ vttt 2-2b
Extended XQuery Data Model (XXDM) Functionsccoovviinieinn... 2-31
Unsupported XQuery Functionscoiiiiiiiiiiiiiiiiii i, 2-32
Implementation-Specific Functions and Operatorscooviiiiiinis, 2-33

BEA XQuery Language Implementation. ..o 2-34

XQuery Developer’s Guide iii

XQuery Language Support (and Unsupported Features)c.oout. 2-34
Extensions to the XQuery Language in the AquaLogic Data Services Platform XQuery Engine

2-34
Implementation-Defined Values for XQuery Language Processing 2-38
XQuery Engine and SQL
INEroduction.o 3-2
Base and Core RDBMS SUppOrt.vvtttt i it 3-3
How the XQuery Engine Supports SQL Data Sourcesccoovviiviiiiinnn. 3-4
XQuery-SQL Data Type Mappingsottt 3-6
SQL Pushdown: Performance Optimization.............. ..o ..., 3-9
Common Query Patterns. 3-15
Grouping and Aggregation e 3-23
Direct SQL Data Services and Pushdowncoovvii i, 3-31
Distributed Query Pushdownt e e 3-32
Preventing SQL Pushdown i e 3-33

Understanding XML Namespaces

Introducing XML NameSPaCES vttt vttt ettt ettt ettt ittt aiiieeeens 4-1
Exploring XML Schema Namespacesouvuutrtreeteetiiiiiiiineeeeeenniinnns 4-2
Using XML Namespaces in AquaLogic Data Services Platform Queries and Schemas 4-3

Best Practices Using XQuery

Introducing Data Service Design.......... ..ot 5-2

Understanding Data Service Design Principles 5-3

Applying Data Service Implementation Guidelines., 5-b
BEA XQuery Scripting Extension (XQSE)

Introducing the XQuery Scripting Extension, 6-2

XQuery Developer’s Guide

Prolog and QUery Body. ...ttt e e 6-2

Procedure Declaration........... ..o 6-2
XQSE Function Declaration.ttt e e e 6-3
Value Statement and Procedure Call ... 6-4
BlOCK. . oo 6-6
Set Statement 6-6
While Statement . ..o 6-6
Return Statement. ... 6-7
Iterate Statemento 6-8
Try Statementt e e 6-9
IfStatement.oou i 6-10
Changed Element e e 6-11
XQSE Grammar SUMIMATY ovuiiit ettt ittt eeenans 6-12

XQuery-SQL Mapping Reference

IBM DB2/NT 8 (and higher)ouinii e 7-2
Data Type Mapping.vvvtt e e e e e 7-2
Function and Operator Pushdown i i, 7-3
Cast Operation Pushdowno e 7-4
Other SQL Generation Capabilitiescooiiiiiiiiiii ., 75

Microsoft SQL Server 2000 (and higher) ...t 7-6
Data Type Mapping.vvvt e e e e 7-6
Function and Operator Pushdown i i, 7-8
Cast Operation Pushdown i e 7-10
Other SQL Generation Capabilitiescoviiiiiiiiiiii .. 7-11

Oracle 8.1 K .ottt e 7-12
Data Type Mapping.ovvnt et e e e 7-12
Function and Operator Pushdown i 7-13

XQuery Developer’s Guide

vi

Cast Operation Pushdown. i i e e e 7-14

Other SQL Generation Capabilities...............c i i, 7-15
OrACIE 9.X, 10X, ottt e ettt ettt ettt e e e e e e e e 7-16
Data Type Mapping oovi i i e 7-16
Function and Operator Pushdown.oo i 7-18
Cast Operation Pushdown. e e e 7-20
Other SQL Generation Capabilities..............co it 7-21
Sybase 12.5.2 (and higher)t i e e 7-22
Data Type Mapping ovvi i e e 7-22
Function and Operator Pushdown.oo i 7-24
Cast Operation Pushdown. i e e 7-26
Other SQL Generation Capabilities.............c.c i, 7-27
PointBase 5.1o 7-28
Data Type Mapping ovvt i i i e e 7-28
Function and Operator Pushdown. ... i 7-29
Cast Operation Pushdown. i i e e e 7-30
Other SQL Generation Capabilities.............cco it 7-31
Teradata V2R5 (and higher). ... e e 7-32
Data Type Mappingovvi i e e 7-32
Function and Operator Pushdown.o i 7-33
Cast Operation Pushdown. i i e e e e 7-34
Other SQL Generation Capabilities..............cco i, 7-34
Base (Generic) RDBMS SUPPOIt . ..ottt ittt e 7-35
Database Capabilities Informationo i i i, 7-35
Data Type Mappingo o e e 7-37
Cast Operation Pushdown. i e e e 7-39
Other SQL Generation Capabilities.............cco it e, 7-39

XQuery Developer’s Guide

CHAPTERa

Introducing the Aqualogic Data
Services Platform XQuery Engine

This chapter briefly introduces the BEA AquaLogic Data Services Platform XQuery language and

describes the version of the XQuery specification implemented in AquaLogic Data Services Platform
(ALDSP). Links to more information about XQuery are also provided.

The following topics are covered:
o XML and XQuery
e XQuery Use in AquaLogic Data Services Platform
e Supported XQuery Specifications

e Learning More About the XQuery Language

XQuery Developer’s Guide 1-1

Introducing the Aqualogic Data Services Platform XQuery Engine

XML and XQuery

XML is an increasingly popular markup language that can be used to label content in a variety of data
sources including structured and semi-structured documents, relational databases, and object
repositories. XQuery is a query language that uses the structure of XML to express queries against
data, including data physically stored in XML or transformed into XML using additional software.
XQuery is therefore a language for querying XML-based information.

The relationship between XQuery and XML-based information is similar to the relationship between
SQL and relational databases. Developers who are familiar with SQL will find XQuery to be
conceptually a natural next step.

The W3C Query Working Group used a formal approach by defining a data model as the basis for
XQuery. XQuery uses a type system and supports query optimization. It is statically typed, which
supports compile-time type checking,

However, unlike SQL, which always returns two-dimensional result sets (rows and columns), XQuery
results can conform to a complex XML schema. An XML schema can represent a hierarchy of nested
elements that represent very detailed and complicated business data and information.

XQuery Use in Aqualogic Data Services Platform

1-2

AquaLogic Data Services Platform models the contents of various types of data sources as XML
schemas. After you have configured AquaLogic Data Services Platform access to the data sources you
want to use, such as relational databases, Web Services, application views, data views, and so on, you
can issue queries written in XQuery to AquaLogic Data Services Platform. AquaLogic Data Services
Platform evaluates the query, fetches the data from the underlying data sources, and returns the query
results.

For more information on developing data service XQueries see the Data Services Developer’s Guide.

XQuery Developer’s Guide

../datasrvc/index.html

Supported XQuery Specifications

Supported XQuery Specifications

Table 1-1 lists the XQuery and XML specifications with which the BEA implementation complies.

Table 1-1 Supported XQuery and XML Standards

Topic

Specification

XQuery 1.0 and XPath 2.0
Data Model

The XQuery and XPath data model implementation is based on the following
specification:
http://www.w3.0rg/TR/2004 /WD-xpath-datamodel-20040723/

XQuery 1.0 Specification

The BEA XQuery engine implements XQuery 1.0 based on the following specification:
http://www.w3.0rg/TR/2004 /WD-xquery-20040723/

XQuery 1.0 and XPath 2.0
Functions and Operators

The BEA XQuery engine implements functions and operators based on the following
specification:

http://www.w3.0rg/TR/2004/WD-xpath-functions-20040723/

For information about BEA extensions implemented in AquaLogic Data Services
Platform, see “BEA XQuery Language Implementation” on page 2-34.

Learning More About the XQuery Language

You can learn more about XQuery and related technologies at the following locations:

o XQuery

— http://www.w3.org/XML/Query

o XML Schema

— http://www.w3.org/XML/Schema

XQuery Developer’s Guide 1-3

http://www.w3.org/TR/2004/WD-xpath-datamodel-20040723/
http://www.w3.org/TR/2004/WD-xquery-20040723/
http://www.w3.org/TR/2004/WD-xpath-functions-20040723/
http://www.w3.org/XML/Query
http://www.w3.org/XML/Schema

Introducing the Aqualogic Data Services Platform XQuery Engine

1-4 XQuery Developer’s Guide

CHAPTERa

BEA's XQuery Implementation

The World Wide Web Consortium (W3C) defines a set of language features and functions for XQuery.
The BEA AquaLogic Data Services Platform XQuery engine fully supports these language features with
one exception (modules) and also supports a robust subset of functions and adds a number of
implementation-specific functions and language keywords.

This chapter describes the function and language implementation and extensions in the XQuery
engine.

The chapter includes the following topics:
e BEA XQuery Function Implementation

o BEA XQuery Language Implementation

XQuery Developer’s Guide 2-1

BEA's XQuery Implementation

BEA XQuery Function Implementation

AquaLogic Data Services Platform supports the W3C Working Draft “XQuery 1.0 and XPath 2.0
Functions and Operators” dated 23 July 2004 (http://www.w3.org/TR/2004/WD-xpath-functions-
20040723/). In addition, AquaLogic Data Services Platform supports a number of functions that are
enhancements to the XQuery specification, which you can recognize by their extended function prefix
fn-bea:. For example, the full XQuery notation for an extended function is: fn-bea;function_name.

This section describes the BEA XQuery function extensions, and contains the following topics:
e Function Overview
e Access Control Functions
e Duration, Date, and Time Functions
e Execution Control Functions
o Numeric Functions
e Other Functions
o QName Functions
e Sequence Functions
e String Functions
e Unsupported XQuery Functions

o Implementation-Specific Functions and Operators

2-2 XQuery Developer’s Guide

http://www.w3.org/TR/2004/WD-xpath-functions-20040723/

Function Overview

Table 2-1 provides an overview of the BEA XQuery function extensions.

Table 2-1 BEA XQuery Function Extensions

BEA XQuery Function Implementation

Category Function Description
Access Control fn-bea:is-access-al lowed Checks whether a user associated with the
Functions current request context can access the

specified resource.

fn-bea: is-user-in-group

Checks whether the current user is in the
specified group.

fn-bea:is-user-in-role

Checks whether the current user is in the
specified role.

fn-bea:userid

Returns the identifier of the user making the
request for the protected resource.

Duration, Date,
and Time
Functions

fn-bea:date-from-dateTime

Returns the date part of a dateTime value.

fn-bea:date-from-string-
with-format

Returns a new date value from a string
source value according to the specified
pattern.

fn-bea:date-to-string-with-
format

Returns a date string with the specified
pattern.

fn-bea:dateTime-from-string-
with-format

Returns a new dateT ime value from a
string source value according to the
specified pattern.

fn-bea:dateTime-to-string-
with-format

Returns a date and time string with the
specified pattern.

fn-bea:time-from-dateTime

Returns the time part of a dateTime value.

fn-bea:time-from-string-
with-format

Returns a new time value from a string
source value according to the specified
pattern.

fn-bea:time-to-string-with-
format

Returns a time string with the specified
pattern.

XQuery Developer’s Guide 2-3

BEA's XQuery Implementation

Table 2-1 BEA XQuery Function Extensions (Continued)

2-4

Execution fn-bea:async
Control
Functions

Evaluates an XQuery expression
asynchronously, depositing the result of the
evaluation into a buffer.

fn-bea:fence

Enables you to define optimization
boundaries, dividing queries into islands
within which optimizations should occur.

fn-bea:timeout

Returns either the full result of the primary
expression, or the full result of the alternate
expression in cases when the primary
XQuery expression times out.

fn-bea:timeout-with-label

Same as fn-bea:timeout but with label to
support auditing.

fn-bea:fail-over
fn-bea:fail-over-with-label

Returns either the full result of the primary
expression, or the full result of the alternate
expression in cases when the primary
XQuery expression fails.

For fn-bea:fail-over-with-label the audit
record also contains the label, specified as
an argument

fn-bea:fail-over-retry

fn-bea:fail-over-retry-
with-label

Returns either the full result of the primary
expression, or the full result of the alternate
expression in cases when the primary
XQuery expression fails.

The functions re-evaluate the primary
expression for each subsequent evaluation
even if the evaluation of the expression
raises an error.

For fn-bea:fail-over-retry-with-label the
audit record also contains the label,
specified as an argument.

XQuery Developer’s Guide

Table 2-1 BEA XQuery Function Extensions (Continued)

BEA XQuery Function Implementation

Numeric fn-bea:format-number Converts a double to a string using the
Functions specified format pattern.
fn-bea:decimal-round Returns a decimal value rounded to the
specified precision or whole number.
fn-bea:decimal-truncate Returns a decimal value truncated to the
specified precision or whole number.
Other fn-bea:get-property Enables you to write data services that can
Functions change behavior based on external
influence.
fn-bea: inlinedXML Parses textual XML and returns an instance
of the XQuery 1.0 Data Model.
fn-bea:rename Renames a sequence of elements.
QName fn-bea:QName-from-string Creates an xs : QName and uses the value of
Functions specified argument as its local name without
a namespace.
Sequence fn-bea:interleave Interleaves items specified in the
Functions arguments.

XQuery Developer’s Guide 2-5

BEA's XQuery Implementation

Table 2-1 BEA XQuery Function Extensions (Continued)

String fn-bea:match
Functions

Returns a list of integers (either an empty
list with 0 integers or a list with 2 integers)
specifying which characters in the string
input matches the input regular expression.

fn-bea:sqgl-like

Searches a string using a pattern, specified
using the syntax of the SQL LIKE clause. The
function optionally enables you to escape
wildcards in the pattern.

fn-bea:trim

Removes the leading and trailing white
space.

fn-bea:trim-left

Removes the leading white space.

fn-bea:trim-right

Removes the trailing white space.

fn-bea:pad-left

Adds a specified number of characters to the
left of a specified string. Optionally, the
character string used in padding can also be
specified.

fn-bea:pad-right

Adds a specified number of characters to the
right of a specified string. Optionally the
character string used in padding can also be
specified.

Extended fn-bea:current-value Returns an XQuery Data Model (XDM)
XQuery Data instance representing the current value of
Model (XXDM) the specified argument.

Functions

fn-bea:old-value

Returns an XDM instance representing the
value of the specified argument prior to
modification.

2-6 XQuery Developer’s Guide

BEA XQuery Function Implementation

Access Control Functions

AquaLogic Data Services Platform (ALDSP) uses the role-base security policies of the underlying
WebLogic platform to control access to data resources. A security policy is a condition that must be
met for a secured resource to be accessed. If the outcome of condition evaluation is false — given the
policy, requested resource, and user context — access to the resource is blocked and associated data
is not returned.

Once the security policies have been configured using the AquaLogic Data Services Platform Console,
you can use the security function extensions described in this section to determine:

o Whether a user associated with the current request context can access a specified resource.
e Whether the current user is in a specified role.

o Whether the current user is in a specified group.

This section describes the following AquaLogic Data Services Platform access control function
extensions to the BEA implementation of XQuery:

e fn-bea:is-access-allowed
o fn-bea:is-user-in-group
e fn-bea:is-user-in-role

e fn-bea:userid

fn-hea:is-access-allowed

The fn-bea: is-access-al lowed function checks whether a user associated with the current
request context can access the specified resource, which is denoted by a resource name and a data
service identifier.

The function has the following signature:

fn-bea:is-access-allowed($resource as xs:string, $data\service as
xs:string) as xs:boolean

where $resource is the name of the resource, and $dataservice is the resource identifier.

This function makes a call to the WebLogic security framework to check access for the specified
resource. An example is shown below.

if (fn-bea:is-access-allowed("ssn'", "ld:DataServices/CustomerProfile.ds™))

then fn:true(Q)

XQuery Developer’s Guide 2-1

BEA's XQuery Implementation

2-8

fn-bea:is-user-in-group
The fn-bea: is-user-in-group function checks whether the current user is in the specified
group. This function analyzes the WebLogic authenticated subject for appropriate group membership.

This function has the following signature:
fn-bea:is-user-in-group($group as xs:string) as xs:boolean

where $group is the group to test against the current user.

Note: This operation is not automatically authenticated.

fn-bea:is-user-in-role
The fn-bea: is-user-in-role function checks whether the current user is in the specified global
role. This function obtains a list of roles from the WebLogic security framework.

The function has the following signature:
fn-bea:is-user-in-role($role as xs:string) as xs:boolean

where $role is the role to test against the current user.

Note: This operation is not automatically authenticated.

fn-bea:userid

The fn-bea:userid() function returns the identifier of the user making the request for the
protected resource.

The function has the following signature:

fn-bea:userid() as xs:string

XQuery Developer’s Guide

BEA XQuery Function Implementation

Duration, Date, and Time Functions

This section describes the following duration, date, and time function extensions to the BEA
implementation of XQuery:

o fn-bea:date-from-dateTime

o fn-bea:date-from-string-with-format

e fn-bea:date-to-string-with-format

o fn-bea:dateTime-from-string-with-format
o fn-bea:dateTime-to-string-with-format

e fn-bea:time-from-dateTime

o fn-bea:time-from-string-with-format

o fn-bea:time-to-string-with-format

fn-hea:date-from-dateTime

The fn-bea:date-from-dateTime() function converts a dateTime to a date, and returns the
date part of the dateTime value.

The function has the following signature:
fn-bea:date-from-dateTime($dateTime as xs:dateTime?) as xs:date?
where $dateTime is the date and time.

Examples:

e fn-bea:date-from-dateTime(xs:dateTime(*'2005-07-15T721:09:44")) returns a
date value corresponding to July 15th, 2005 in the current time zone.

e fn-bea:date-from-dateTime(()) returns an empty sequence.

XQuery Developer’s Guide 2-9

BEA's XQuery Implementation

2-10

fn-bea:date-from-string-with-format

The fn-bea:date-from-string-with-format function returns a new date value from a string
source value according to the specified pattern.

The function has the following signature:

fn-bea:date-from-string-with-format($format as xs:string?, $dateString
as xs:string?) as xs:date?

where $Format is the pattern and $dateString is the date. For more information about specifying
patterns, see “Date and Time Patterns” on page 2-13.

Examples:

e fn-bea:date-from-string-with-format("'yyyy-MM-dd G, "2005-06-22 AD'")
returns the specified date in the current time zone.

e fn-bea:date-from-string-with-format("yyyy-MM-dd™™, "'2002-July-22')
generates an error because the date string does not match the specified format.

e fn-bea:date-from-string-with-format(“yyyy-MMM-dd”, “2005-JUL-22"") returns
the specified date in the current time zone.

fn-bea:date-to-string-with-format

The fn-bea:date-to-string-with-format function returns a date string with the specified
pattern.

The function has the following signature:

fn-bea:date-to-string-with-format($format as xs:string?, $date as
xs:date?) as xs:string?

where $Format is the pattern and $date is the date. For more information about specifying patterns,
see “Date and Time Patterns” on page 2-13.

Examples:

e fn-bea:date-to-string-with-format(“yy-dd-mm”, xs:date(*2005-07-15"))
returns the string “05-15-07".

e fn-bea:date-to-string-with-format(“yyyy-mm-dd”, xs:date(*2005-07-15"))
returns the string “2005-07-15”.

XQuery Developer’s Guide

BEA XQuery Function Implementation

fn-bea:dateTime-from-string-with-format

The fn-bea:dateTime-from-string-with-format function returns a new dateTime value
from a string source value according to the specified pattern.

The function has the following signature:

fn-bea:dateTime-from-string-with-format($format as xs:string?,
$dateTimeString as xs:string?) as xs:dateTime?

where $format is the pattern and $dateTimeString is the date and time. For more information
about specifying patterns, see “Date and Time Patterns” on page 2-13.

Examples:

e fn-bea:dateTime-from-string-with-format("'yyyy-MM-dd G", '"2005-06-22
AD™) returns the specified date, 12:00:00AM in the current time zone.

o fn-bea:dateTime-from-string-with-format("'yyyy-MM-dd “at® hh:mm®,
'"2005-06-22 at 11:04') returns the specified date, 11:04:00AM in the current time zone.

e fn-bea:dateTime-from-string-with-format("'yyyy-MM-dd", "2005-July-22'")
generates an error because the date string does not match the specified format.

e fn-bea:dateTime-from-string-with-format(“yyyy-MMM-dd”, “2005-JUL-22"")
returns 12:00:00AM in the current time zone.

fn-bea:dateTime-to-string-with-format

The fn-bea:dateTime-to-string-with-format function returns a date and time string with
the specified pattern.

The function has the following signature:

fn-bea:dateTime-to-string-with-format($format as xs:string?, $dateTime
as xs:dateTime?) as xs:string?

where $Format is the pattern and $dateTime is the date and time. For more information about
specifying patterns, see “Date and Time Patterns” on page 2-13.

Examples:

e fn-bea:dateTime-to-string-with-format(“dd MMM yyyy hh:mm a G”,
xs:dateTime(*“2005-01-07T22:09:44"")) returns the string “07 JAN 2005 10:09 PM AD”.

e fn-bea:dateTime-to-string-with-format(“MM-dd-yyyy”,
xs:dateTime(*2005-01-07T22:09:44"")) returns the string “01-07-2005".

XQuery Developer’s Guide 2-11

BEA's XQuery Implementation

2-12

fn-hea:time-from-dateTime
The fn-bea:time-from-dateTime function returns the time from a dateTime value.
The function has the following signature:

fn-bea:time-from-dateTime($dateTime as xs:dateTime?) as xs:time?
where $dateTime is the date and time.

Examples:

e fn-bea:time-from-dateTime(xs:dateTime(*'2005-07-15T721:09:44")) returns a
time value corresponding to 9:09:44PM in the current time zone.

e fn-bea:time-from-dateTime(()) returns an empty sequence.

fn-bea:time-from-string-with-format

The fn-bea:time-from-string-with-format function returns a new time value from a string
source value according to the specified pattern.

The function has the following signature:

fn-bea: time-from-string-with-format($format as xs:string?, $timeString
as xs:string?) as xs:time?

where $format is the pattern and $timeString is the time. For more information about specifying
patterns, see “Date and Time Patterns” on page 2-13.

Examples:

e fn-bea:time-from-string-with-format("'"HH.mm.ss", "21.45.22") returns the
time 9:45:22PM in the current time zone.

e fn-bea:time-from-string-with-format(""hh:mm:ss a'", "8:07:22 PM") returns
the time 8:07:22PM in the current time zone.

XQuery Developer’s Guide

BEA XQuery Function Implementation

fn-bea:time-to-string-with-format
The fn-bea: time-to-string-with-format function returns a time string with the specified
pattern.

The function has the following signature:

fn-bea:time-to-string-with-format($format as xs:string?, $time as
Xs:time?) as xs:string?

where $Fformat is the pattern and $time is the time. For more information about specifying patterns,
see “Date and Time Patterns” on page 2-13.

Examples:

e fn-bea:time-to-string-with-format(*“hh:mm a”, xs:time(*22:09:44"")) returns
the string “10:09 PM”.

e fn-bea:time-to-string-with-format(“HH:mm a”, xs:time(*22:09:44"")) returns
the string “22:09 PM”.

Date and Time Patterns

You can construct date and time patterns using standard Java class symbols. Table 2-2 outlines the
pattern symbols you can use.

Tahle 2-2 Date and Time Patterns

This Symbol Represents This Data Produces This Result
G Era AD
y Year 1996
M Month of year July, 07
d Day of the month 19
h Hour of the day (1-12) 10
H Hour of the day (0-23) 22
m Minute of the hour 30
S Second of the minute b5

XQuery Developer’s Guide 2-13

BEA's XQuery Implementation

Tahle 2-2 Date and Time Patterns (Continued)

S Millisecond 978

E Day of the week Tuesday

D Day of the year 27
Week in the year 27

w Week in the month 2

a am/pm marker AM, PM

k Hour of the day (1-24) 24

K Hour of the day (0-11) 0

z Time zone PST

PDT

Repeat each symbol to match the maximum number of characters required to represent the actual
value. For example, to represent 4 July 2002, the pattern is d MMMM yyyy. To represent 12:43 PM, the
pattern is kh.mm a.

Execution Control Functions

This section describes the following AquaLogic Data Services Platform execution control function
extensions to the BEA implementation of XQuery:

e fn-bea:async

e fn-bea:fail-over, fn-bea:fail-over-with-label, fn-bea:fail-over-retry, and
fn-bea:fail-over-retry-with-label

e fn-bea:fence

e fn-bea:timeout and fn-bea:timeout-with-label

2-14 XQuery Developer’s Guide

BEA XQuery Function Implementation

fn-bea:async

The fn-bea:async function evaluates an XQuery expression asynchronously, using a buffer to
control data flow between threads of execution.

The function has the following signature:
fn-bea:async($expression as item()*) as item(Q*
where $expression is the XQuery expression to evaluate asynchronously.

The fn-bea:async function enables asynchronous execution of Web services to reduce problems
caused by the latency of these services.

Note: Asynchronous web services do not propagate the transaction context to other threads,
regardless of the transaction settings. Asynchronous operations are likewise unable to start
new transactions.

Example:

In the following example, CUSTOMER is a database table while the getCreditScore functions are
Web services offered by two credit rating agencies.

for $cust in db:CUSTOMERQ)
where $cust/ID eq $param

return
let $scorel:= fn-bea:async(exper:getCreditScore($cust/SSN), 2),
$score2:= fn-bea:async(equi:getCreditScore($cust/SSN), 2)
return

ifT (fn:abs($scorel - $score2) < $threshold)
then fn:avg(($scorel, $score?))
else fn:max(($scorel, $score?))

fn-bea:fence

The fn-bea: fence function enables you to define optimization boundaries, dividing queries into
islands within which optimizations should occur while preventing optimizations across boundaries.
You might consider using the fn-bea: fence function when building a query incrementally.

The function has the following signature:
fn-bea:fence($expression as item()*) as item(Q*

where $expression is the input expression.

XQuery Developer’s Guide 2-15

BEA's XQuery Implementation

2-16

The fn-bea: fence function is a pass-through function that does not change the input stream, but
indicates to the optimizer that global rewritings should not occur across itself. Specifically, the
fn-bea: fence function stops the following rewritings: view unfolding, loop unrolling, constant
folding, and Boolean optimizations.

fn-hea:timeout and fn-bea:timeout-with-label

The timeout functions return either of the following:
o The full result of the primary expression.

o The full result of an alternate expression, in cases where the primary XQuery expression times
out or fails. One or two alternate expressions can be returned, as described below.

Timeout functions are designed to be highly configurable. In the case of an error condition, the
function can return either a single $alt expression or it can return more detailed information as
$timeout and $failure.

The difference between the two functions fn-bea-timeout() and
fn-bea-timeout-with-label () is that the latter returns $1abel along with other auditing
information when an error condition is encountered.

fn-bea-timeout Signature
The fn-bea:timeout() function has the following signature:
fn-bea:timeout($seq as item(Q*,
$millisec as xs:integer,

$timeout as item(Q)*,
$failure as item()*) as itemQ*

where $seq is the primary XQuery expression to evaluate, $mi Il isec is the timeout value in
milliseconds, $timeout is returned if the evaluation of $seq takes more than $mi 1 1is milliseconds
to execute. $Failure is returned if the evaluation of $seq raises an error.

Alternatively, you can replace the $timeout and $fai lure parameters with a single $alt
parameter. The result of $alt will then be returned if a timeout or other error occurs.

XQuery Developer’s Guide

BEA XQuery Function Implementation

fn-bea-timeout-with-label Signature
The fn-bea: timeout-with-label () function has the following signature:

fn-bea:timeout-with-label ($seq as item()*,
$millisec as xs:integer,
$timeout as item()*
$failure as item(),
$label as xs:string) as item(Q*

where $1abel represents information provided to the audit record.

Operational Details
Both functions return the result of evaluating $seq if the evaluation of $seq:

1. Does not raise an error and

2. Does not take more than the value of $mi 1lis (in milliseconds) to execute.

If an error does occur or the millisecond limit is exceeded, the alternate expression is returned along
with the audit record.

The audit record contains:
e Name of the function call
e Source location of the function call (if available)
o Timeout value that was exceeded, if the execution of $seq timed out, or
o The error that was raised by execution of $seq

e Label, if the version of timeout that returns $1abel is invoked.

If the evaluation of $mi I lis or $alt raises an error, the error is reported in the usual way. That is,
neither of the functions attempts to handle the returned error.

If — for a specific instance of one of these functions in a query — the evaluation of $seq raises an
error or “times out”, all subsequent evaluations of this instance during the same query evaluation will
return $timeout and $Failure (or $alt). No attempt to re-evaluate $seq is made in such a case.

XQuery Developer’s Guide 2-11

BEA's XQuery Implementation

You can use the timeout functions in the following ways:

e Around a region of an XQuery result which is optional, such as when you want the rest of the
answer in any case.

o To select an available data source from among a set of possibly (very) heterogeneous sources
that can provide the information of interest.

e To handle slow or unavailable resources uniformly.

Note that the timeout functions immediately return the alternative expression in cases when
accessing the data source causes an error.

Here is an example where $param is a external parameter:

for $cust in db:CUSTOMERQ)
where $cust/ID eq $param
return
fn-bea:timeout(exper:getCreditScore($cust/SSN), 200,
fn-bea:timeout(equi:getCreditScore($cust/SSN), 200,
fn:error()

)
))

fn-bea:fail-over, fn-bea:fail-over-with-label, fn-bea:fail-over-retry, and
fn-bea:fail-over-retry-with-label

The fn:bea:fail-over and fn:bea: fail-over-with-label functions return the result of
evaluating $seq if the evaluation of $seq does not raise an exception. If it does raise an exception, $alt
isreturned. Both functions are polymorphic and their static return type is the union of the static types
of $seq and $alt.

The functions have the following signatures:
fn-bea:fail-over($seq as item(Q*,

$alt as item()*) as itemQ*

fn-bea: fail-over-with-label ($seq as item(Q)*,
$alt as item(Q)~*,
$label as xs:string) as item(Q*

2-18 XQuery Developer’s Guide

BEA XQuery Function Implementation

If $alt is returned the audit record contains:
e The name of the function call
o The source locations of the function call (if available)

e The exception that was raised by the execution of $seq
For fn-bea:fail-over-with-label the audit record also contains $1abel.

If the evaluation of $seq raises an exception, all subsequent evaluations of this instance during the
same query evaluation will return $alt. No attempt to re-evaluate $seq is made. If the evaluation of
$alt raises an exception, it is simply reported. No attempt is made to handle the error.

The fn:bea:fail-over-retryand fn:bea:fail-over-retry-with-label functions return
the result of evaluating $seq if the evaluation of $seq does not raise an exception. If it does raise an
exception, $alt is returned.

In contrast to the fn:bea: fail-over and fn:bea: fail-over-with-label functions, however,
the fn:bea:fail-over-retry and fn:bea: fail-over-retry-with-label functions
re-evaluate $seq for each subsequent evaluation even if the evaluation of $seq raises an error.

The fn:bea:fail-over-retry and fn:bea:fail-over-retry-with-label functions have
the following signatures:
fn-bea:fail-over-retry($seq as item(Q)*,
$alt as item()*) as itemQ*

fn-bea:fail-over-retry-with-label ($seq as i1tem(Q*,
$alt as item(Q*,
$label as xs:string) as item(Q*

XQuery Developer’s Guide 2-19

BEA's XQuery Implementation

2-20

Usage Suggestions
The fn-bea:fail-over() functions can be used in two ways:
o A fail-over function can be placed around an “optional” XQuery result. Then, if expected result
is not returned, at least the remainder of the query results will be returned. In such a case, the

XMLtype (schema) needs to be constructed in such a way that the results remain valid when
some portion of the information is not returned.

e Nested invocations can be used to select an available data source from among a set of
(possibly) heterogeneous and (possibly) unavailable data sources. Each invocation can access
the appropriate available source and restructure its answer set appropriately for the
surrounding context. Best practices in query construction would likely involve the use of
functions to restructure the content.

Numeric Functions

This section describes the following numeric function extensions to the BEA implementation of
XQuery:

e fn-bea:format-number
e fn-bea:decimal-round

e fn-bea:decimal-truncate

fn-hea:format-number

The fn-bea: format-number function converts a double to a string using the specified format
pattern.

The function has the following signature:

fn-bea: format-number($number as xs:double, $pattern as xs:string) as
Xxs:string

where $number represents the double number to be converted to a string, and $pattern represents
the pattern string. The format of this pattern is specified by the JDK 1.5.0 Decimal Format class. (For
information on DecimalFormat and other JDK 1.5.0 Java classes see: http://java.sun.com/j2se/1.5.0.)

XQuery Developer’s Guide

http://java.sun.com/j2se/1.5.0/

BEA XQuery Function Implementation

fn-hea:decimal-round

The fn-bea:decimal-round function returns a decimal value rounded to the specified precision
(scale) or to the nearest whole number.

The function has the following signatures:

fn-bea:decimal-round($value as xs:decimal?, $scale as xs:integer?) as
xs:decimal?

fn-bea:decimal-round($value as xs:decimal?) as xs:decimal?

where $value is the decimal value to round and $scale is the precision with which to round the
decimal input. A scale value of 1 rounds the input to tenths, a scale value of 2 rounds it to hundreths,
and so on.

Examples:
e fn-bea:decimal-round(127.444, 2) returns 127.44.

e fn-bea:decimal-round(0.1234567, 6) returns (.123457.

fn-bea:decimal-truncate

The fn-bea:decimal-truncate function returns a decimal value truncated to the specified
precision (scale) or to the nearest whole number.

The function has the following signatures:

fn-bea:decimal-truncate($value as xs:decimal?, $scale as xs:integer?)
as xs:decimal?

fn-bea:decimal-truncate($value as xs:decimal?) as xs:decimal?

where $value is the decimal value to truncate and $scale is the precision with which to truncate
the decimal input. A scale value of 1 truncates the input to tenths, a scale value of 2 truncates it to
hundreths, and so on.

Examples:
o fn-bea:decimal-truncate(192.454, 2) returns 192.45.
o fn-bea:decimal-truncate(192.454) returns 192.
o fn-bea:decimal-truncate(0.1234567, 6) returns 0.123456.

XQuery Developer’s Guide 2-21

BEA's XQuery Implementation

2-22

Other Functions

This section describes the following function extensions to the BEA implementation of XQuery:
e fn-bea:get-property
o fn-bea:inlinedXML

e fn-bea:rename

fn-bea:get-property

The fn-bea:get-property function enables you to write data services that can change behavior
based on external influence. This is an implicit way to parameterize functions.

The function first checks whether the property has been defined using the AquaLogic Data Services
Console. If so, it returns this value as a string. In cases when the property is not defined, the function
returns the default value.

The function has the following signature:

fn-bea:get-property($propertyName as xs:string, $defaultValue as
Xs:string) as xs:string

where $propertyName is the name of the property, and $defaul tValue is the default value
returned by the function.

fn-bhea:inlinedXML

The fn-bea: inlinedXML function parses textual XML and returns an instance of the XQuery 1.0 Data
Model.

The function has the following signature:
fn-bea:inlinedXML($text as xs:string) as node()*

where $text is the textual XML to parse.

Examples:
e fn-bea:inlinedXML(“<e>text</e>"") returns element “e”.

o fn-bea:inlinedXML(“<?xml version="1.0"><e>text</e>"") returns a document with
root element “e”.

XQuery Developer’s Guide

BEA XQuery Function Implementation

fn-bea:rename
The fn-bea: rename function renames an element or a sequence of elements.
The function has the following signature:

fn-bea:rename($oldelements as element()*, $newname as element()) as
element()*)

where $Soldelements is the sequence of elements to rename, and $newname is an element from
which the new name and type are extracted.

For each element in the original sequence, the fn-bea:rename function returns a new element with
the following:

o The same name and type as $newname

o The same content as the old element
Example:

for $c in CUSTOMERQ)
return
<CUSTOMER>
{fn-bea:rename($c/FIRST_NAME, <FNAME/>)}
{fn-bea:rename($c/LAST_NAME, <LNAME/>)}
</CUSTOMER>

In the above, if CUSTOMER() returns:

<CUST><FIRST_NAME>John</FIRST_NAME><LAST_NAME>Jones</LAST_NAME></CUST>

The output value would be:

<CUSTOMER><FNAME>John</FNAME><LNAME>Jones</LNAME></CUSTOMER>

XQuery Developer’s Guide 2-23

BEA's XQuery Implementation

QName Functions

This section describes the following QName function extensions to the BEA implementation of
XQuery:

fn-bea:QName-from-string

The fn-bea:QName-from-string function creates an xs:QName and uses the value of $param
as its local name without a namespace.

The function has the following signature:
fn-bea:QName-from-string($name as xs:string) as xs:QName

where $name is the local name.

Sequence Functions

This section describes the following sequence function extensions to the BEA implementation of
XQuery:

e fn-bea:interleave

fn-hea:interleave

The fn-bea: interleave function interleaves the specified arguments. The function has the
following signature:

fn-bea:interleave($iteml as item()*, $item2 as xdt:anyAtomicType) as
itemQ*

where $iteml and $item?2 are the items to interleave.
For example, fn-bea: interleave((<a/>, , </c>), " ') returns the following sequence:

(<a/>, v o , ", </c>)

2-24 XQuery Developer’s Guide

BEA XQuery Function Implementation

String Functions

This section describes the following string function extensions to the BEA implementation of XQuery:
e fn-bea:match
o fn-bea:sql-like
o fn-bea:trim
o fn-bea:trim-left
o fn-bea:trim-right
o fn-bea:pad-left
e fn-bea:pad-right

fn-hea:match

The fn-bea:match function returns a list of two integers specifying the characters in the string
input that match the input regular expression (or an empty list, if none found). When the function
returns a match, the first integer represents the index of (the position of) the first character of the
matching substring and the second integer represents the number of matching characters. The
function has the following signature:

fn-bea:match($source as xs:string?, $regularExp as xs:string?) as
Xs:int*

where $source is the input string and $regularExp uses is the regular expression.

Regular expression use standard java.util.regex.Pattern class patterns. Currently the
following link to regular expression constructs is valid:

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern._html

XQuery Developer’s Guide 2-25

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

BEA's XQuery Implementation

2-26

fn-bea:sql-like

The fn-bea:sql-like function tests whether a string contains the specified pattern. Typically, you
can use this function as a condition for a query, similar to the SQL LIKE operator used in a predicate
of SQL queries. The function returns TRUE if the pattern is matched in the source expression;
otherwise the function returns FALSE.

The function has the following signatures:

fn-bea:sql-like($source as xs:string?, $pattern as xs:string?, $escape
as xs:string?) as xs:boolean?

fn-bea:sqgl-like($source as xs:string?, $pattern as xs:string?) as
xs:boolean?

where $source is the string to search, $pattern is the pattern specified using the syntax of the SQL
LIKE clause, and $escape is the character to use to escape a wildcard character in the pattern.

You can use the following wildcard characters to specify the pattern:
e Percent character (“%”). Represents a string of zero or more characters.

e Underscore character (“_"). Represents any single character.

You can include the “%” or “_" character in the pattern by specifying an escape character and

preceding the “%” or “_” character in the pattern with this character. The function then reads the

character literally, instead of interpreting it as a special pattern-matching character.

The $escape character has to be exactly one character in length and cannot be either the percent
(“%”") or underscore (“_") character.

Examples:

e fn-bea:sql-like($RTL_CUSTOMER.ADDRESS 1/FIRST_NAME,"H%",""\'") returns TRUE
for all FIRST_NAME elements in $SRTL_CUSTOMER . ADDRESS that start with the character H.

e fn-bea:sql-like($RTL_CUSTOMER.ADDRESS_1/FIRST_NAME," a%",'\'") returns
TRUE for all FIRST_NAME elements in $RTL_CUSTOMER . ADDRESS that start with any
character and have a second character of the letter a.

e fn-bea:sql-1ike($RTL_CUSTOMER.ADDRESS_1/FIRST_NAME, ""H\%%",'"\'") returns
TRUE for all FIRST_NAME elements in $RTL_CUSTOMER . ADDRESS that start with the
characters H%.

XQuery Developer’s Guide

BEA XQuery Function Implementation

fn-bea:trim
The fn-bea: trim function removes the leading and trailing white space.
The function has the following signature:

fn-bea:trim($source as xs:string?) as xs:string?

where $source is the string to trim. In cases when $source is an empty sequence, the function
returns an empty sequence. AquaLogic Data Services Platform generates an error when the parameter
is not a string.

Examples:
e fn-bea:trim('abc™) returns the string value "abc".
e fn-bea:trim("" abc ') returns the string value "abc".
e fn-bea:trim(()) returns the empty sequence.

e fn-bea:trim(5) generates a compile-time error because the parameter is not a string.

fn-bea:trim-left
The fn-bea: trim-left function removes the leading white space.
The function has the following signature:
fn-bea:trim-left($input as xs:string?) as xs:string?
where $input is the string to trim.

Examples:

e fn-bea:trim-lefe(” abc '") removes leading spaces and returns the string
"abc "

e fn-bea:trim-left(()) returns the empty sequence.

XQuery Developer’s Guide 2-21

BEA's XQuery Implementation

2-28

fn-bea:trim-right
The fn-bea:trim-right function removes the trailing white space.
This function has the following signature:
fn-bea:trim-right($input as xs:string?) as xs:string?
where $input is the string to trim.

Examples:

e fn-bea:trim-right(” abc ') removes trailing spaces and returns the string
" abc".

e fn-bea:trim-right(()) returns the empty sequence.

fn-bea:pad-left

The fn-bea:pad-left functions add padding characters to the left of a string to create a
fixed-length string. There are two variations of the function:

o The other uses the default character, which is a space (ASCII 32).

e One allows pad characters to be specified.

If the input string exceeds the requested length, only a substring as long as the length is returned.

Pad Left Function Using Default Character (ASCII 32)
The function has the following signature:
fn-bea:pad-left($str as xs:string?, $size as xs:integer?) as xs:string?

where string ($str) is returned with a specified number ($size) of characters (ASCII 32)
prepended to the left of the string. The result is a string of length $size. It consists of $str prepended
with $size - fn:length($str) space characters.

Examples:

e fn-bea:pad-left(“abcd”, 6) prepends spaces to the string up to the maximum 6
specified. The returned string is: ““ abcd”.

e fn-bea:pad-left(“abcd”, 2) returns only ““ab” because characters are only prepended
to the complete string. In addition, only the first two characters are returned since that is the
setting of $size.

XQuery Developer’s Guide

BEA XQuery Function Implementation

Additional notes:
o If either argument is an empty sequence, an empty sequence is returned.

e If $size is negative, a runtime exception occurs.

Pad Left Function with Specified Pad String

This function has the following signature:

fn-bea:pad-left($str as xs:string?, $size as xs:integer?, $pad as
Xs:string?) as xs:string?

where string ($str) is returned with an arbitrary number ($size) of prepended characters with the
pad string ($pad) replicated as many times as necessary.

Examples:

e fn-bea:pad-left(“abcd”, 6, “01’) prepends a pad string to the string up to the
maximum 6 specified. The returned string is: “01abcd”.

e fn-bea:pad-left(“abcd”, 2, “01™) returns only “ab” because characters are only
prepended to a complete string. In addition, only the first two characters are returned since
that is the setting of $size.

e fn-bea:pad-left(“abc™, 6, “01”) returns “010abc”. Note that the prepended string is
returned completely once and then partially up to the length ($size) specified.

Additional notes:
o If either argument is an empty sequence, an empty sequence is returned.
e If $size is negative, a runtime exception occurs.

fn-bea:pad-right

The fn-bea:pad-right functions add padding characters to the right of a string to create a
fixed-length string. There are two variations of the function:

o The other uses the default character, which is a space (ASCII 32).

e One allows pad characters to be specified.

If the input string exceeds the requested length, only a substring as long as the length is returned.

XQuery Developer’s Guide 2-29

BEA's XQuery Implementation

Pad Right Function Using Default Character (ASCII 32)
The function has the following signature:
fn-bea:pad-right($str as xs:string?, $size as xs:integer?) as xs:string?

where string ($str) is returned with a specified number ($size) of characters (ASCII 32) appended
to the string. The result is a string of length $size. It consists of $str appended with $size -
fn:length($str) space characters.

Examples:

e fn-bea:pad-right(“abcd”, 6) appends spaces to the string up to the maximum 6
specified. The returned string is: “abcd ™.

e fn-bea:pad-right(“abcd”, 2) returns only “ab” because characters are only appended
to a complete string. In addition, only the first two characters are returned since that is the
setting of $size.

Additional notes:
e If either argument is an empty sequence, an empty sequence is returned.

e If $size is negative, a runtime exception occurs.

Pad Right Function with Specified Pad String

This function has the following signature:

fn-bea:pad-right($str as xs:string?, $size as xs:integer?, $pad as
Xs:string?) as xs:string?

where string ($str) is returned with an arbitrary number ($size) of appended characters with the
pad string ($pad) replicated as many times as necessary.

Examples:

e fn-bea:pad-right(“abcd”, 6, “01") prepends a pad string to the string up to the
maximum 6 specified. The returned string is: “abcd01”.

e fn-bea:pad-right(“abcd”, 2, “01”) returns only “ab” because characters are only
appended to a complete string. In addition, only the first two characters are returned since that
is the setting of $size.

e fn-bea:pad-right(“abc”, 6, “01™) returns only “abc010”. Note that the appended
string is returned completely once and then partially up to the length ($size) specified.

2-30 XQuery Developer’s Guide

BEA XQuery Function Implementation

Additional notes:
o If either argument is an empty sequence, an empty sequence is returned.

e If $size is negative, a runtime exception occurs.

Extended XQuery Data Model (XXDM) Functions

AquaLogic Data Services Platform includes functions to support the Extended XQuery Data Model
(XXDM). The XXDM represents instances of the XQuery Data Model (XDM) along with information
about changes to the instances.

This section describes functions that you can use to convert XXDM instances to XDM instances.

fn-bea:current-value

The fn-bea:current-value function returns an XDM instance representing the current value of
the specified argument (discarding information about applied changes).

The function has the following signature:

fn-bea:current-value($changed as changed-element()) as element()?

where $changed is the XXDM instance.

fn-bea:old-value

The fn-bea:old-value function returns an XDM instance representing the value of the specified
argument prior to modification.

The function has the following signature:

fn-bea:old-value($changed as changed-element()) as element()?

where $changed is the XXDM instance.
Both the fn-bea:current-value and fn-bea:old-value functions are polymorphic.

Example:

XQuery Developer’s Guide 2-31

BEA's XQuery Implementation

2-32

The following function returns the salary difference for a customer before and after modification.

declare function salaryDifference($cus as changed-element
(cus:customer)) as xs:decimal {
fn:data(fn-bea:get-current-value($cus)/salary - fn:data(fn-
bea:get-old-value($cus)/salary)

}

The function does this by accessing the current and old versions of the customer element, extracting
the salaries, and subtracting to determine the difference.

Unsupported XQuery Functions

The following functions from the XQuery 1.0 specification are not supported in current BEA XQuery

engine implementation:

e fn:
e fn
o n:
e fn:
e fn:

o fn:

base-uri

:collection

doc
id
idref

normalize-unicode

XQuery Developer’s Guide

BEA XQuery Function Implementation

Implementation-Specific Functions and Operators

This section describes BEA-specific implementation details related to functions and operators.

Table 2-3 Implementation-Defined Values

Section

Description

Aqualogic Data Services
Platform XQuery Engine

6.2—Operators on
Numeric Values [Overflow
and Underflow during

Choice between raising an error and
other options for overflow or
underflow of numeric operations.

Arithmetic overflow and
underflow follows behavior of
the underlying Application

Arithmetic Operations] Server’s JVM (Java Virtual
Machine).

6.2—Operators on Number of digits of precision for 18 digits.

Numeric Values xs:decimal results

[xs:decimal value digit

precision]

7.4.6— In addition to supporting required Not supported.

fn:normalize-unicode

normalization form “NFC”,
conforming implementations may
also support implementation-defined
semantics.

7.5—Functions Based on
Substring Matching

Ability to decompose strings into
collation units.

No collations supporting this
feature are available.

10.1.1—Limits and
Precision

Limits and precision for Durations,
Dates and Times larger then those
specified in XML Schema Part 2: Data

Types

Fractional seconds are
supported for more than 3 digits
of accuracy: seven digits for
serialized data (binXML
package), 18 digits during
computations.

15.5.4—Functions and
Operators on Sequences
[fn:doc]

Processing or document URI, usage of
DTD or Schema for validation,
handling of non-XML media types and
construction of data model instances
from non-XML resources and error
handling for document processing.

fn:doc() function does not
validate. AquaLogic Data
Services Platform uses
predefined external functions
for access to external XML and
non-XML data sources.

XQuery Developer’s Guide 2-33

BEA's XQuery Implementation

BEA XQuery Language Implementation

This section describes the BEA XQuery language implementation, and contains the following topics:
e XQuery Language Support (and Unsupported Features)
e Extensions to the XQuery Language in the AquaLogic Data Services Platform XQuery Engine

e Implementation-Defined Values for XQuery Language Processing

XQuery Language Support (and Unsupported Features)

The AquaLogic Data Services Platform conforms to the W3C Working Draft “XQuery 1.0: An XML Query
Language” dated 23 July 2004 (http://www.w3.org/TR/2004/WD-xquery-20040723/), with these
exceptions:

e Modules are not supported

e xs:integer is represented by 64-bit values

Extensions to the XQuery Language in the AquaLogic Data
Services Platform XQuery Engine

Beyond compliance with the specification, BEA AquaLogic Data Services Platform’s XQuery language
implementation (the AquaLogic Data Services Platform XQuery engine) extends the XQuery language
via the following:

e Generalized FLWGOR (group by)

e Optional Indicator in Direct Element and Attribute Constructors

Generalized FLWGOR (group hy)

BEA offers a group by clause extension to standard FLWOR expressions. The following EBNF shows
the syntax of the general FLWGDOR:

flwgdorExpression := (forClause | letClause) (forClause
| letClause

| whereClause

| groupbyClause

| orderbyClause)* returnClause

groupbyClause := "group'" [variable "as" variable] "by" (expression
["as™ variable]) ('," (expression ["as" variable]))*

2-34 XQuery Developer’s Guide

http://www.w3.org/TR/2004/WD-xquery-20040723/
http://www.w3.org/TR/2004/WD-xquery-20040723/
http://www.w3.org/TR/2004/WD-xquery-20040723/
http://www.w3.org/TR/2004/WD-xquery-20040723/

BEA XQuery Language Implementation

The remaining clauses referenced in the EBNF fragment follow the standard definition, as presented
in the XQuery specification.

As an example, consider the problem of grouping books by year, without losing books that do not have
a year attribute. Using standard XQuery, you would need to perform a self-join with the result of the
fn:distinct-values() function, concatenating the result of the self-join with the result for books without
a year attribute.

The following illustrates an XQuery expression that can be used to accomplish this:

let $books := document("bib.xml")/bib/book return (
for $year in fn:distinct-values($books/@year)
return
<g>
<year>{ $year }</year>
<titles>{ $books[@year eq $year]/title }</titles>
</g>,
<g>
<year/>
<titles>{ $books[fn:empty(@year)]/title }
</g>
)

Using the BEA group by extension function, you could write the same query as follows:

for $book in document("bib.xml"™)/bib/book
group $book as $partition by $book/@year as $year
return
<g>
<year>{ $year }</year>
<titles>{ $partition/title }</titles>
</g>

The following tables (Table 2-4 and Table 2-5) show book bindings before and after the group by clause
is applied.
Table 2-4 Bindings Before Group By Clause is Applied

$hook

<book year=71994" ISBN="147...7">.__.</book>

<book year=71994 ISBN="198...">..._.</book>

<book year=2000" ISBN="123...7">...</book>

XQuery Developer’s Guide 2-35

BEA's XQuery Implementation

2-36

Table 2-5 Bindings After Group By Clause is Applied

$year $partition

1994 (<book year=1994" 1SBN=""147...7>_..</book>,
<book year=71994 ISBN="198..."> _._</book>)

2000 <book year=72000" I1SBN="123...7> _..</book>

The FLWGOR expression conceptually builds a sequence of binding tuples, where the size of the tuple
is the number of variables in scope at that point in the FLWGOR. In the example, the tuple at the
group by clause consists of a single variable binding $book which binds to each book in the
bib.xml document, one book at a time (see Table 2-4).

The group by creates a new sequence of binding tuples with each output tuple containing variables
defined in the group by clause. After the group by, all variables there were previously in-scope go
out of scope.

In the example, the output tuple from the group by clause is of size two with the variable bindings
being for $year and $partition (see Table 2-5).

The number of output tuples is equal to the number of unique group by value bindings. In the above
example, this is the number of unique book/@year values: 2. The variable introduced in the group
clause ($partition in the example above) binds to the sequence of all matching input values.

Optional Indicator in Direct Element and Attribute Constructors

This extension enables external consumers of XML generated by XQuery to have certain empty
elements and attributes omitted. You can specify this using optional indicators, instead of employing
computed constructors, conditional statements, and custom functions.

For example, consider the following query:

<a>{()}<c Foo="{()}"/>,

The extension enables the following to be returned:

<a><c/>

instead of:

<a><c foo="""/>

XQuery Developer’s Guide

BEA XQuery Language Implementation

The extension uses the optional indicator '?' with direct element and attribute constructors. This
means that in the following you could change the production Di rElemConstructor to the following:
[94] DirElemConstructor tI= "<" QName "?"? DirAttributeList

¢'/>" | (¢>" DirElemContent* *'</' QName S? ">")) /* ws: explicit */
Likewise, you could change the DirAttributeList to the following:

[95] DirAttributelList = (S (QName "?"? S? =" S?
DirAttributevValue)?)*

nn

When ? is present, elements with no children and attributes with the value
in the example could then be written as:

are omitted. The query

<a><b?>{(Q}<c Foo?="{(Q}"/>

which produces the following result:

<a><c/>

In another example, consider the case of constructing a new customer element with different tags.
One requirement is that you do not want a phone element in the resulting customer when the phone
number does not exist in the original customer. Using standard XQuery, you would have to write:

for $cust in CUSTOMERQ)
return
<customer>
<id>{ fn:data($cust/C_ID) }</id>
{
ifT (fn:exists($cust/PHONE))
then <phone>{ fn:data($cust/PHONE) }</phone>
else O

}
</customer>
Using the optional element constructor, you could instead write the following;

for $cust in CUSTOMERQ)
return
<customer>
<id>{ fn:data($cust/C_ID) }</id>
<phone?>{ fn:data($cust/PHONE) }</phone>

</customer>

XQuery Developer’s Guide 2-31

BEA's XQuery Implementation

Similarly, when you want the resulting customer element to use attributes instead of elements, you
would need to employ computed attribute constructors using standard XQuery, as illustrated by the

following:
for $cust in CUSTOMERQ)
return
<customer
id="{ fn:data($cust/C_ID) }"
{
if (fn:exists($cust/PHONE))
then attribute { "phone" } { fn:data($cust/PHONE) }
else O
}
/> o

Using the optional attribute constructor, the query becomes:

for $cust in CUSTOMERQ)
return
<customer
id="{ fn:data($cust/C_ID) }"
phone?="{ fn:data($cust/PHONE) }"

/>

Implementation-Defined Values for XQuery Language
Processing

This section describes the BEA-specific implementation details related to XQuery language
processing.

Table 2-6 Implementation-Defined Values

Section Description Aqualogic Data Services
Platform XQuery Engine
2.1.2 Dynamic Context Implicit timezone (value of type Timezone of the JVM of the
xdt:dayTimeDuration) that will be underlying application server.

used when a date, time, or dateTime
value that does not have a timezone is
used in a comparison (or any other
operation).

2-38 XQuery Developer’s Guide

BEA XQuery Language Implementation

Table 2-6 Implementation-Defined Values

2.5.1 Kinds of Errors—
Static Error

Mechanism for reporting static errors
(errors that must be detected during
the analysis phase, such as syntax
€ITorS).

Parser and compiler APIs throw
Java exceptions

2.5.1 Kinds of Errors—
Warnings

In addition to static, dynamic, and
type errors, an XQuery
implementation can (optionally)
raise warnings during the analysis or
evaluation phases, in response to
specific conditions.

Provides a WarningListener API,
but has no special warnings
defined for the core XQuery
language implementation

2.6.3 Full Axis Feature

Set of optional axes when Full Axis
Feature is not supported

None.

2.6.6.1 Must-Understand
Extensions; the XQuery
flagger

Mechanism by which the XQuery
flagger (which flags queries
containing ‘must understand’
extensions) is enabled, if at all. By
default the flagger is disabled.

XQuery flagger is not supported.

2.6.7.1 Static Typing Mechanism by which the XQuery XQuery static flagger is not
Extensions; the XQuery static flagger is provided, if at all. supported.
static flagger
3.1.1 Literals Choice of XML 1.0 or XML 1.1 for XML 1.0
character references (the XML-style
references for Unicode characters,
such as — for an em-dash).
3.7.1.2 Namespace Support for XML Names 1.1 No
Declaration Attributes
3.8.3 Order By and Return Ordering specification (orderspec) Empty least.
Clauses can be implemented as empty least

or empty greatest (for evaluating
greater-than relationship between
two orderspec values in an order by
clause of an XQuery).

XQuery Developer’s Guide 2-39

BEA's XQuery Implementation

2-40

Table 2-6 Implementation-Defined Values

4.10 Module Import

String literals following the at
keyword are optional location hints
in module import statements that
can be interpreted (or disregarded)

Not applicable—Since the
AquaLogic Data Services
Platform XQuery engine does
not support modules, there is no

XML Names, or XML 1.1 and XML
Names 1.1.

by the implementer. implementation.
4.13 Function Declaration Protocol by which parameters are Set of Java APIs provided.
passed to an external function and
the result of the function is returned
to the invoking query.
A.2 Lexical structure Lexical rules can follow XML 1.0 and XML 1.0 and XML Names

XQuery Developer’s Guide

XQuery Engine and SQL

This chapter provides an overview of how AquaLogic Data Services Platform works with relational
data, and describes what happens when a relational data source is imported into AquaL.ogic Data
Services Platform.

The chapter also explains how SQL data types are mapped to XQuery data types and describes what
happens during runtime after deploying a data-service-enabled application. The chapter further
explains how queries are handled and describes the kind of performance you can expect.

This chapter covers the following topics:
e Introduction
o XQuery-SQL Data Type Mappings
o SQL Pushdown: Performance Optimization

e Preventing SQL Pushdown

Note that while the graphical-user interface tools handle many of the details, SQL developers and
application-performance tuning experts should understand how AquaLogic Data Services Platform
works with relational data so that they can:

e (reate well-designed canonical data services that are potentially re-usable throughout an
organization

o Test and tune alternative query approaches

e Validate execution paths for queries and identify opportunities to improve overall performance

XQuery Developer’s Guide 3-1

XQuery Engine and SQL

Note: For simplicity’s sake, this chapter refers to the XQuery engine throughout when in fact some
of the specific functionality is handled by other, ancillary sub-systems (for example, the Data
Source API or other system components depicted in the “AquaLogic Data Services Platform
Components Architecture” figure in the Concepts Guide).

Introduction

3-2

At the core of BEA AquaLogic Data Services Platform is the data processing engine, often referred to
as simply the XQuery engine—the robust, enterprise-class implementation of the XQuery language
based on the standards listed in “Supported XQuery Specifications” on page 1-3, with additional
enhancements as detailed in “BEA’s XQuery Implementation” on page 2-1.

In addition to compliance with XQuery and XML recommendations, AquaLogic Data Services Platform
XQuery engine also complies with the ANSI/ISO standard that bridges the SQL and XML worlds (the
“SQL/XML (ISO-ANSI Working Draft) XML-Related Specifications” WD 9075-14 (SQL/XML), August,
2002). As a Java application (J2EE server application), AquaLogic Data Services Platform uses JDBC
to generate SQL queries and submit them to the appropriate RDBMSs that comprise a data service,
which means AquaLogic Data Services Platform must accommodate differences in both SQL and
JDBC, as follows:

o SQL Language. The SQL standard has evolved over time, and vendor implementations (in their
respective RDBMS products) may be at any number of stages of compliance with the standard
(SQL-89, SQL-92, SQL:1999, and SQL:2003, for example). Furthermore, vendors implement
various extensions to SQL in their respective RDBMS products. In short, AquaLogic Data
Services Platform’s support for SQL is not a “one-size-fits-all” exercise: achieving optimal
integration with relational data sources requires AquaLogic Data Services Platform to generate
vendor-specific SQL code at times.

e JDBC APL Drivers are provided by RDBMS vendors as well as third-parties; various drivers for
each RDBMS can have different levels of JDBC compatibility.

Given these factors, BEA AquaLogic Data Services Platform provides two different levels of SQL
support for relational database management systems (RDBMS): base support and core support, as
defined in the next section.

XQuery Developer’s Guide

Introduction

Base and Core RDBMS Support

AquaLogic Data Services Platform provides two different levels of support for relational data sources:

o Base support. AquaLogic Data Services Platform generates standard SQL code that is
minimally required to be supported by any SQL RDBMS. Some examples of base platforms
would include Oracle 7, Informix, IDMS, and MySQL.

o Core support. AquaLogic Data Services Platform supports the native SQL dialect of specific
versions of several leading commercial RDBMSs using the RDBMS-specific-JDBC of the vendor’s
JDBC driver or BEA's JDBC driver (see Table 3-1).

Tahle 3-1 Core Aqualogic Data Services Platform RDBMS Support
RDBMS and Versions Vendor Driver BEA WebLogic Driver

IBM DB2/NT 8 (and higher) IBM DB2 JDBC thin driver, version 8.01 = BEA (DataDirect) JDBC driver for
DB2, version 3.6.

Microsoft SQL Server 2000 Microsoft SQLServer JDBC driver, BEA (DataDirect) JDBC driver for

(and higher) version 2.2 SQLServer, version 3.6

Oracle 8.1.x,9.x, 10.x Oracle JDBC Thin driver, version 10.1 ~ BEA (DataDirect) JDBC driver for
Oracle, version 3.6

PointBase 5.1 (and higher) PointBase JDBC driver, version 5.1 N/A

Sybase Adaptive Server Sybase jConnect driver, version 5.5 BEA (DataDirect) JDBC driver for

Enterprise 12.5.2 (and Sybase, version 3.6

higher)

Teradata V2R5 (and higher) Teradata JDBC driver N/A

XQuery Developer’s Guide 3-3

XQuery Engine and SQL

How the XQuery Engine Supports SQL Data Sources

BEA AquaLogic Data Services Platform supports SQL (relational) data sources throughout the
life-cycle of a data services project, from metadata import, through query plan optimization, through
runtime execution of queries and delivery of data to an end-user (or other) application. Specifically,
the XQuery engine provides:

o Metadata Mapping. Importing metadata from relational data sources is the first step in
creating a data service.

e Data Type Mapping. Upon import of metadata, AquaLogic Data Services Platform maps data
types from the RDBMS data source into XQuery atomic data types, disregarding length and
other constraints. If the data source tables or views include unsupported data types — an array,
for example — the column is ignored (the GUI tool alerts the person performing the import if
this issue arises, and enables the person to map the data type of the source table or view to a
specific XQuery data type).

o Query Optimization. The XQuery processing engine is fast and efficient, and uses several
optimizing strategies, including:

— SQL pushdown. As much as possible, processing is shifted from the XQuery engine to the
native RDBMS so that smallest practical result set is actually processed by the XQuery
engine.

— Lazy evaluation. Queries are executed against the physical data sources only as far as
necessary to obtain results.

— Connection-sharing. Multiple active queries can run over a single connection (assuming the
data source RDBMS allows; see Table 3-2, “Runtime Connection Management,” on page 3-6).

Metadata and Data Type Mappings Get Stored in Annotated Files

For each of the tables and views whose metadata is imported into AquaLogic Data Services Platform
(using Import Source Metadata feature of the GUI), two files are generated:

o Entity data service (.ds) file that defines the main access function (an external XQuery
function with annotations that specify the RDBMS catalog or schema name and other
properties) to access to the table or view data and return a sequence of elements
corresponding to the rows of the underlying table. The .ds file includes numerous annotations
to handle metadata about the data service, including;

— Relational provider identifier.
— Table structure information, including column names (field names), SQL data types and

corresponding XQuery data types, primary key, and foreign key information.

3-4 XQuery Developer’s Guide

Introduction

— Relationship functions that provide access to related tables or views.
— Relationship annotations.

— JNDI lookup information. The <relationalDB> annotation in the data service file provides
the JNDI name that will be used at runtime to obtain a connection to the data source and
execute queries.

o XML Schema definition (.xsd) file that includes information about all the columns of the
table (or view) and the data types for those columns, as mapped into the XQuery data types.

Runtime Connection Management—Connection Sharing
At runtime, the XQuery engine:

e Obtains a connection to the RDBMS.

e Prepares SQL statements, setting up parameters if necessary.
o Executes the SQL statements and releases the connection.

e Handles errors and exceptions.

o Translates the result of the query to the XML model used by XQuery engine.

Database connections (connection pools) are registered in the JNDI (Java naming and directory
interface) tree of the WebLogic Server (an administrator with privileges on the server can configure
connection pool, data source, and JNDI name by which connection pools are accessible).

When sub-plan execution completes, connections are typically not released back to the WebLogic
Server. The XQuery engine holds the connection for the duration of the entire XQuery — not just the
duration of the SQL — enabling subsequent queries to the same relational data source to be executed
using an already obtained connection (which also improves performance). Whether the XQuery
engine can share connections or not depends on the underlying data source and JDBC driver (see
Table 3-2).

If the data source RDBMS or JDBC driver does not support connection sharing, and if the AquaLogic
Data Services Platform has opened multiple connections to the same data source, the XQuery engine
keeps the initial connection to a data source open during XQuery execution but releases any

subsequent connections to the same data source once the SQL result is received in its entirety by the

XQuery Developer’s Guide 3-5

XQuery Engine and SQL

XQuery engine. The initial connection will be re-used subsequent SQL queries when the connection
becomes available.

Table 3-2 Runtime Connection Management

RDBMS Support
Base RDBMS No connection sharing.
IBM DB2/NT 8 (and higher) Single shared connection for each JNDI data source; each

Microsoft SQL Server 2000 (and higher) connection supports multiple active SQL queries.

Oracle 8.1.x,9.x, 10.x

Sybase Adaptive Server Enterprise
12.5.2 (and higher)

PointBase 5.1 No connection sharing. Each access requires dedicated

Teradata V2R5 connection.

XQuery-SQL Data Type Mappings

3-6

XQuery-SQL data type mappings are specific to the RDBMS version and the JDBC driver, as discussed
in “Base and Core RDBMS Support” on page 3-3. The specific data type mappings for each core RDBMS
and the general mappings for any base RDBMS are detailed in the “XQuery-SQL Mapping Reference.”
However, XQuery and SQL differ in some respects that may affect XQuery-to-SQL translation; these
differences apply to all RDBMSs:

e Date and Time Data Type Differences: Timezones and Time Precision

e Scope Differences for Expressions and Data Types

Date and Time Data Type Differences: Timezones and Time Precision

The XQuery language defines richer data types than SQL for handling date and time information
(temporal data). These data types provide more information (timezone data, for instance) or greater
degree of precision (unlimited number of fractional seconds as part of a time or date, for example).
The three built-in XQuery data types for data and time information are:

o xs:dateTime
e xs:date

e xs:time

XQuery Developer’s Guide

XQuery-SQL Data Type Mappings

Minimally, every RDBMS has a single datatype that conveys both date and time data. This datatype
maps to XQuery’s xs:dateTime data type. Some RDBMSs offer additional SQL data types for storing
date and time data separately (see Table 3-3)

(Of all the RDBMSs supported by AquaLogic Data Services Platform, only Oracle 9.x (and higher)
offers data types with timezone data (TIMESTAMP WITH TIMEZONE, TIMESTAMP WITH LOCAL
TIMEZONE).

Tahle 3-3 Temporal Data Type Mappings

xs:date xs:dateTime xs:time

Base RDBMS Reported by JDBC driver for the specific RDBMS.
IBM DB2/NT 8 DATE TIMESTAMP TIME
Microsoft SQL Server 2000 DATETIME!,

SMALLDATETIME?
Oracle 8.1.x DATE3
Oracle 9.x, 10.x DATE,

TIMESTAMP,

TIMESTAMP WITH
LOCAL TIMEZONE,

TIMESTAMPWITH
TIMEZONE
PointBase 5.1 DATE TIMESTAMP TIME
Sybase Adaptive Server DATE SMALLDATETIME,2 TIME
Enterprise 12.5.2 (and DATET IMEL

higher)

1. Supports fractional seconds up to 3 digits (miliseconds).

2. Accuracy of 1 minute.

3. Provides both date and time data, but supports neither fractional seconds nor timezone data
(fractional-second data is truncated).

AquaLogic Data Services Platform XQuery engine maps all SQL date and time data types to XQuery
data types (for example, during metadata import of a new data source) without loss of data or
precision.

XQuery Developer’s Guide 3-7

XQuery Engine and SQL

3-8

However, the converse is not true: depending on the specific RDBMS (and JDBC driver) for a specific
data source, the XQuery engine may need to perform additional processing to minimize data loss and
to handle the timezone information when mapping XQuery temporal data types to SQL.

How Aqualogic Data Services Platform Handles Timezone Information

When a query is being pushed down to an RDBMS that does not support timezone data, the AquaLogic
Data Services Platform XQuery engine converts date and time data into the local time of the
underlying application server and removes the timezone information. The conversion occurs each
time a date or time value that includes timezone data is sent to the data source, as follows:

e During compile time, when SQL is generated for constant date or time expressions.

e During query run time, when executing parameterized SQL with parameters bound to date/time
values.

e During update, when a date or time value must be stored in the RDBMS.

How Aqualogic Data Services Platform Handles Fractional Seconds

The XQuery language supports unlimited precision for fractional seconds, while the AquaLogic Data
Services Platform XQuery engine supports up to 7 digits only (for fractional seconds). However,
depending on the specific RDBMS, fractional second support may be far less than 7 digits. Or there
may be no fractional second support at all (Oracle 8.1.x, for example). In translating from XQuery to
SQL, AquaLogic Data Services Platform truncates fractional seconds to the precision supported by
that RDBMS.

For example, since Microsoft’s DATETIME data type supports up to 3 digits (milliseconds) for
fractional time precision, when AquaLogic Data Services Platform sends a datetime value to Microsoft
SQL Server 2000, the value is first converted into the local time zone and then any fractional seconds
are converted to the 3-digit-milliseconds allowed.

If fractional-second-precision is required (but the data source does not support it appropriately), use
the fn-bea:fence() function to disable pushdown of date and time data types and operations, so that
the XQuery engine processes the time- and date-related queries. (See “Preventing SQL Pushdown” on
page 3-33 for more information.)

See “XQuery-SQL Mapping Reference” for more information about time and date data types for core
and base RDBMS.

XQuery Developer’s Guide

SQL Pushdown: Performance Optimization

Scope Differences for Expressions and Data Types

The XQuery language is less restrictive than the SQL language in terms of the scope of expressions and
data types. For example, for most all RDBMSs, an SQL query that returns a boolean can only be used
inside a WHERE clause. XQuery does not have such restrictions, and as a result, in some cases, valid
XQuery expressions cannot be pushed down. Expressions and data types that cannot be pushed
include:

e Expressions returning boolean type can only be used in the WHERE clause (all RDBMSs)

e Some data types, such as CLOB, can be returned in the project list but cannot be grouped on or
sorted on (depending on the RDBMS’ SQL dialect; see “XQuery-SQL Mapping Reference” for
details).

e Aggregate functions inside an ordering expression, such as in ORDER BY clauses, are not
pushed down for any base RDBMS or PointBase or (but is supported by all other RDBMSs. See
“XQuery-SQL Mapping Reference” for more information.

SQL Pushdown: Performance Optimization

AquaLogic Data Services Platform achieves optimal performance for queries by performing SQL
pushdown. Pushdown is an optimization technique that offloads processing from the XQuery engine
by sending native SQL queries to the data source so that minimal result sets necessary to answer the
query get processed by the XQuery engine.

SQL pushdown reduces the amount of data transported and processed by AquaLogic Data Services
Platform XQuery processing engine. This technique dramatically improves overall performance,
especially when joining tables.

For example, a JOIN operation on two tables can be done by the underlying RDBMS, returning only
the final result, rather than delivering all the data to the XQuery engine for processing the JOIN
condition. Sorting criteria are also handled by the data source, eliminating the need to re-sort the data
inside the XQuery engine.

For all core RDBMSs, the XQuery engine identifies the XQuery constructs and operations that can be
translated into equivalent SQL operations. These include:

e Basic language constructs, including constants, variables, path expressions, functions and
operators, and cast operations.

e Common query patterns, such as selections and projections (where clauses), joins (inner, outer,
semi-join, anti-semi-join), ordering clauses, groupings and aggregations.

XQuery Developer’s Guide 3-9

XQuery Engine and SQL

Not all queries can (or should) get pushed down. The XQuery engine does not pushdown:

o Cross-joins. Any join without a condition (any join that results in a Cartesian product)

o Expressions tagged with the fn-bea:fence() function.

The remainder of this section covers SQL pushdown in more detail, providing syntax samples based
on the table structures shown in Figure 3-4. (For ease of reading, namespace references are not shown
in the example queries.) In some cases, the query may not get pushed down as SQL, but the fragments

of the query — names of columns, for example — may get pushed to the project list.

Figure 3-4 Table Structures for SQL Pushdown Examples

Function and Operator Pushdown

XQuery functions and operators are translated into SQL only when:

e all arguments can be pushed down directly (or as parameters)

o at least one of the argument expressions uses a value from the relational data source

o the XQuery function or operator has an equivalent SQL expression with equivalent semantics

e data type of the result is supported

3-10 XQuery Developer’s Guide

CUSTOMER CUST_ORDER
NAME DATATYPE MULLABLE? MAME DATATYPE NULLABLE?
CUSTOMER_ID | VARCHAR NO ORDER_ID VARCHAR NO
FIRST NAME VARCHAR NO CUSTOMER_ID VARCHAR NO
LAST NAME VARCHAR NO STATUS VARCHAR NOD
BIRTH_DAY TIMESTAMP NO ORDER_AMOUNT | DECIMAL NO
ADDRESS VARCHAR NO
ADDRESSZ VARCHAR YES
STATE VARCHAR NO
ZIP_CODE INTEGER NO
PRODUCT
NAME DATATYPE MULLABLE?
PRODUCT_ID VARCHAR NO
CATEGORY VARCHAR NO
LIST PRICE DECIMAL NO

SQL Pushdown: Performance Optimization

Table 3-5 shows an XQuery statement and its corresponding “pushdown” or SQL translation. (Oracle
syntax is used.)

Table 3-5 Function Pushdown Example

XQuery Statement SQL Translation (Oracle Syntax)

for $c in CUSTOMERQ) SELECT LOWER(t1."LAST_NAME™) AS

return lower-case($c/LAST_NAME) cl
FROM ""CUSTOMER™ t1

If some arguments to a function or operator are not directly pushable, but can be replaced with
parameters, the XQuery engine will replace the arguments with parameters and pushdown the SQL.
For example, since the XQuery’s string-join() function has no explicit SQL equivalent, it is replaced

with a parameter (see Table 3-6).

Tahle 3-6 External Variable Pushdown

XQuery Statement SQL Statement

declare variable $p as xs:string

external; SELECT t1."FIRST_NAME"™ AS cl
FROM ""CUSTOMER™ t1

for $c in CUSTOMERQ) WHERE t1."LAST_NAME" LIKE ?

where starts-with($c/LAST_NAME,
string-join(('a", "b™), $p))
return $c/FIRST_NAME

XQuery Developer’s Guide 3-11

XQuery Engine and SQL

3-12

Aggregate Functions

AquaLogic Data Services Platform translates XQuery 1.0 and XPath 2.0 aggregate functions into
corresponding SQL aggregate functions (Table 3-7).

Table 3-7 Aggregate Functions

XQuery Aggregate Function SQL Aggregate Function
fn:avgQ AVGQ)

fn:count() COUNTQO

fn:max(Q) MAXQO

fnzminQ MINO

fn:sumQ SUMQO
fn:count(fn:distinct-values() COUNT(DISTINCT ..)

Note that the distinct-values() XQuery aggregate function in conjunction with the fn:count() function
is further translated into an SQL COUNT(DISTINCT...) operation, as shown in Table 3-8. See
“Grouping and Aggregation” on page 3-23 for some examples of how aggregate functions in
conjunction with other expressions affect the outcome of SQL pushdown.

Parameters in Generated SQL Statements

The AquaLogic Data Services Platform XQuery engine generates parameters from variables, functions,
operators, and cast operations as needed for use by the SQL engine. If all arguments to a function are
parameters, the entire function gets pushed as a parameter.

The functions that can be pushed down depend on the database. See the “XQuery-SQL Mapping
Reference” on page 7-1 for details.

XQuery Developer’s Guide

SQL Pushdown: Performance Optimization

Cast Operation Pushdown

As with functions and operators, support for cast operation pushdown is RDBMS-specific, although
cast pushdown is available only for core (not base) RDBMSs. The XQuery engine can pushdown cast
operations if the data source RDBMS:

e has equivalent SQL data types for both source and target of the cast XQuery data types (see the
“XQuery Engine and SQL” appendix for details).

e has a semantically equivalent SQL operation to convert from source data type to target data
type.
Table 3-8 shows an example of how a cast in XQuery would get pushed down to a Microsoft SQL Server
2000 data source.

Tahle 3-8 Cast Operation Pushdown

XQuery Statement SQL Statement (Microsoft SQL Server 2000
Syntax)

for $c in CUSTOMERQ) SELECT t1."CUSTOMER_ID" AS ci

where xs:string($c/Z1P_CODE) eq FROM "CUSTOMER™ t1

95131 WHERE CAST(tl."ZIP_CODE"™ AS

return $c/CUSTOMER_ID VARCHAR) = "95131"

Path Expressions Pushdown

The XQuery engine maps table columns to XML elements that are children of the corresponding row
elements. Simple XQuery path expressions are recognized by the XQuery engine as column accessors.
For example, $¢/ZIP_CODE and $¢/LAST_NAME (see Table 3-10) provide access to ZIP_CODE and
LAST NAME columns.

XQuery Developer’s Guide 3-13

XQuery Engine and SQL

Constant Pushdown

The AquaLogic Data Services Platform XQuery engine translates XQuery constants into SQL constants
only if the data source has an equivalent SQL data type. Table 3-9 shows an example of a constant used
in a FLWOR expression and how that constant gets translated in the SQL statement.

Table 3-9 SQL Pushdown for Constants

XQuery Statement SQL Statement

for $c in CUSTOMERQ) SELECT t1."LAST _NAME"™ AS cil
where $c/ZIP_CODE eq 95131 FROM ""CUSTOMER™ t1

return $c/LAST_NAME WHERE t1."ZIP_CODE" = 95131

Variable Pushdown

Both external and internal variables in XQuery expressions can be translated into SQL parameters (in
generated SQL statements) when the variable’s datatype is supported by the XQuery engine and:

e is atomic (static data type).

e can be translated into equivalent SQL type.

Table 3-10 shows an example of variable pushdown.

Table 3-10 Variable Pushdown

XQuery Statement SQL Statement
declare variable $extVar SELECT t1."LAST_NAME"™ as cl
as xs:string external; FROM “CUSTOMER™ t1

WHERE €1."*CUSTOMER_ID"™ = ?
for $c in CUSTOMERQ)
where $c/CUSTOMER_ID eq $extvar
return $c/LAST_NAME

3-14 XQuery Developer’s Guide

SQL Pushdown: Performance Optimization

Common Query Patterns

For each relational data source, the precise set of expressions pushed down depends on the
capabilities of the underlying RDBMS; for details, see “XQuery Engine and SQL” on page 3-1.

Simple Projection Queries

Each of the example XQueries shown in Table 3-11 returns elements containing values of LAST_NAME
columns from a CUSTOMER table. In all cases, the SQL statement generated by the XQuery engine is
the same (see Table 3-11).

Table 3-11 Projection Query

XQuery Statements SaL Statement

for $c in CUSTOMER() return $c/LAST_NAME

CUSTOMER()/LAST_NAME SELECT t1."LAST_NAME™ AS
cl FROM "CUSTOMER™ tl1

for $c in CUSTOMER() return
data($c/LAST_NAME)

data(CUSTOMER()/LAST_NAME)

The difference between the first two queries and the last two queries is that the fn:data() function is
used in the query to limit the results to values only. Without the fn:data() function, the result is a list
of <LAST_NAME> elements containing corresponding column values. If a column value is NULL, the
element is skipped. With the fn:data() function, the result is the actual values.

Where Clause Pushdown

An XQuery where clause is usually translated into an SQL WHERE clause. An XQuery where clause
gets pushed down as SQL when:

e the where expression uses at least one value from a relational source.

o the where expression is pushable (using parameters if needed). See “SQL Pushdown:
Performance Optimization” on page 3-9 for more information.

XQuery Developer’s Guide 3-15

XQuery Engine and SQL

Table 3-12 shows an example of a where clause pushdown.

Table 3-12 Where Clause Pushdown

XQuery Statements SQL Statements

for $c in CUSTOMERQ) SELECT t1.”LAST_NAME” AS cl

where $c/CUSTOMER_ID eq “CUSTOMERO1” FROM “CUSTOMER” t1

return $c/LAST_NAME WHERE t1.”CUSTOMER_ID” = “CUSTOMERO1”

for $c in CUSTOMERQ) (DB2 syntax)

where year-from-dateTime($c/BIRTH_DAY) SELECT t1.7”LAST_NAME” AS cl

eq FROM “CUSTOMER” t1
year-from-date(current-date()) WHERE

return YEAR(t1.”BIRTH_DAY™) = ?
$c/LAST_NAME

However, note that if the WHERE clause follows a group by clause, the WHERE clause is translated
into a HAVING clause. See “Group-By with a Nested Where Clause Translates to SQL HAVING Clause”
on page 3-25).

Order By Clause Pushdown

An XQuery order by expression comprises:
e ordering expression
e direction property for each ordering expression; that is, ascending or descending

e empty ordering property for each ordering expression; that is, empty least or empty greatest
The XQuery engine can pushdown SQL for ordering expressions, including properties, only when the
ordering expression:

e is pushable and uses data from the database.

o is of the kind supported by the underlying data source (some RDBMSs can only support order
by columns, not arbitrary expressions; some RDBMSs support non-column expressions in order
by clause only if they do not contain aggregate functions.

e when an empty expression can result in empty sequence, the RDBMS must support the same
NULL order as the empty order specified by the XQuery. (Some RDBMSs have fixed NULL order,
some allow NULL order to be specified—see “XQuery Engine and SQL” for details).

3-16 XQuery Developer’s Guide

SQL Pushdown: Performance Optimization

Table 3-13 shows an example of an order by clause pushdown.

Table 3-13 Order By Pushdown

XQuery Statement SQL Statement
for $c in CUSTOMER(Q) SELECT t1."CUSTOMER_ID"™ AS cl1
order by $c/CUSTOMER_ID FROM "'CUSTOMER™ t1
descending ORDER BY t1."CUSTOMER_ID" DESC
return $c/CUSTOMER_ID

Table 3-14 shows an example of the SQL pushdown that occurs when ordering by a NULLable column
(ADDRESS2) in the XQuery clause when the RDBMS supports dynamic setting of NULL order.

Table 3-14 Order By Query When Setting NULL Order Dynamically

XQuery Statement SQL Statement (Oracle Syntax)

for $c in CUSTOMERQ) SELECT t1."'CUSTOMER_ID"™ AS c1,

order by $c/ADDRESS2 ascending tl1."ADDRESS2" AS c2
empty greatest FROM "*CUSTOMER™ t1

return $c/CUSTOMER_ID, ORDER BY t1."ADDRESS2" ASC NULLS

$c/ADDRESS2 LAST

If the data source RDBMS does not support the required empty (NULL) order, the order by will not be
pushed down.

As another optimization, the AquaLogic Data Services Platform XQuery engine can insert order by
clauses into generated SQL statements—even when the original XQuery statement does not include
them—to offload expensive sorting operations to the RDBMS. They are automatically inserted by the
XQuery optimizer prior to execution. You can see these as well in the Query Plan View.

Inner Join Pushdown

Joining data from multiple sources is a very common data integration task. In SQL terms, an inner join
relates each row in one table (or view) to one or more corresponding rows in another table or view. In
XQuery, an inner join is expressed as a FLWR expression comprising several for clauses that iterate
over the data sources, where clauses that specify the join predicates, and a refurn clause returning
data values.

XQuery Developer’s Guide 3-17

XQuery Engine and SQL

If two relational sources are located in the same database, the inner join can sometimes be pushed
down as a single SQL statement using either SQL-92 or SQL-89 syntax, depending on the RDBMS of
the data source.

An inner join can be pushed down when:
o the condition itself is pushable.

e both join branches belong to the same RDBMS and can be addressed from a single SQL
statement (both branches are in the same JNDI data source).

e join condition exists and uses values from both branches (cross joins are not pushed down).

Figure 3-15 XQuery Inner Join Pattern

Right branch

!! for $customer in CUSTOMER() /

for $c_order in CUST_ORDER()
where $customer/CUSTOMER_ID eq $¢_order/CUSTOMER_ID———
return <t> {$ customer/LAST_NAME, $c_order/ORDER_ID } </t>

L y
e

Join return

Join condition

Although the example in Figure 3-15 shows a simple inner join between two branches, the XQuery
engine also supports n-way joins, with each branch comprising a different for statement. See also

Tahle 3-16.
Table 3-16 Rendering of XQuery Inner-Join as SQL-92 and SQL-89 Syntax
SQL-92 Syntax SQL-89 Syntax
T2 ORDER ID" RS €2 T2 nORDER ID" RS €2

FROM "CUSTOMER™ t1 JOIN "CUST_ORDER™ t2 FROM "CUSTOMER™ t1, '"CUST_ORDER"™ t2
ON t1."CUSTOMER_ID" = t2.""CUSTOMER_ID" WHERE t1.'""CUSTOMER_ID"™ = t2."CUSTOMER_ID"

3-18 XQuery Developer’s Guide

SQL Pushdown: Performance Optimization

Outer Join Pushdown

The XQuery engine interprets nested FLWR expressions (see Figure 3-17) as an outer join and can
generate SQL for a data source when:

e both join branches belong to the same database and are addressable from a single SQL
statement (both branches must come from the same JNDI datasource), and

e join condition is present and uses values from both branches, and
e join condition is pushable, and

e the underlying RDBMS supports outer join syntax using either SQL-92 or proprietary syntax in
its SQL language

Figure 3-17 Outer Join Pattern

!! for $customer in CUSTOMER()

return
<t>

<last_name>{ data($customer/LAST_NAME) }</last_name=>

{ — Right branch Join condition
for $¢_order in CUST_ORDER()

where $customer/CUSTOMER_ID eq $c_order/CUSTOMER_ID -
return
<order_id>{ data($c_orderfORDER_ID) }</order_id>

}

</t>

The SQL code generated by the XQuery engine depends on the SQL dialect supported by the source
database (see “XQuery-SQL Mapping Reference” for details). Table 3-18 shows example SQL-92 and
proprietary syntax for the query shown in Figure 3-17.

Table 3-18 SQL-92 and Proprietary Outer Join Syntax Comparison

SQL-92 Syntax Oracle 8 Syntax

SELECT t1."LAST_NAME" AS ci, SELECT t1."LAST_NAME" AS cil,
t2."ORDER_ID" AS c2 t2."ORDER_ID" AS c2

FROM "CUSTOMER™ t1 OUTER JOIN FROM "CUSTOMER™ t1, "CUST_ORDER" t2
"CUST_ORDER™ t2 WHERE t1."'CUSTOMER_ID" = t2."CUSTOMER_ID"
ON t1."CUSTOMER_ID" = t2."'CUSTOMER_ID")

XQuery Developer’s Guide 3-19

XQuery Engine and SQL

Variations of the outer-join pattern are obtained from the original query by using equivalent XQuery
expressions. Figure 3-19 is an example of a query equivalent to that shown in Figure 3-17 that will also
result in a SQL statement with an outer join.

Figure 3-19 Outer Join Pattern

Right branch
~ for $customer in CUSTOMER()

let Sc_orders := / Join condition
for $c_order in CUST_ORDER()
where $customer/CUSTOMER_ID eq $c_order/CUSTOMER_ID /,,—
return $c_order/ORDER_ID

return

<t=
<last_name>{ data($customer/LAST_NAME) }</last_name>

{
for $o in $c_orders
return <order_id>{ data($0) }</order_id>

}

<ft=

Semi-Joins and Anti-Semi-Joins

A semi-join returns data from a single branch of the join condition, when the join condition is satisfied.
An anti-semi-join returns data from a single branch when the join condition is false. Although the
XQuery language does not have specific constructs for semi-joins and anti-semi-joins, the XQuery
engine translates several specific FLWR patterns into SQL semi-join or anti-semi-join patterns,
assuming that:

e both sides (outer and inner) belong to the same database and are addressable from a single
SQL statement (both branches must come from the same JNDI datasource).

e the join condition exists.
o the join condition is pushable.

e the RDBMS supports the EXISTS function and subqueries (see “XQuery-SQL Mapping
Reference” on page 7-1 for details).

The XQuery interprets a FLWR query containing an inner existential quantified expression as a
semi-join, translating the expression into an SQL query with the EXISTS check in the WHERE clause.

3-20 XQuery Developer’s Guide

SQL Pushdown: Performance Optimization

Universal quantified expressions are also supported, but their SQL generation is slightly more
complicated. The XQuery engine translates FLWRs with exist() or empty() predicates in the where
clause into semi-joins. Table 3-20 shows several examples of such patterns.

Table 3-20 Various XQuery Patterns that Can Generate Semi-Join and Anti-Semi-Join SQL

and

($c_order/STATUS eq "OPEN")

)

return
$customer/CUSTOMER_ID

XQuery Statement SQL Statement
FLWR with for $customer in CUSTOMER() SELECT t1."CUSTOMER_ID" AS ¢l
??Ste“};al where FROM "CUSTOMER" t1
some
quantifier some $c_order in CUST_ORDER() WHERE EXISTS(
[semi-join] satisfies ($customer/CUSTOMER_ID eq SELECT 1
$C_0rder/0RDER_ID) FROM "CUST_ORDER” t2
and WHERE t1."CUSTOMER_ID" =
($c_order/STATUS eq "OPEN") t2."CUSTOMER_ID" AND t2."STATUS" = 'OPEN'
return)
$customer/CUSTOMER_ID
FLWR with | for $customer in CUSTOMER() SELECT t1."CUSTOMER_ID" AS cl
negation of | o6 not(FROM "CUSTOMER" t1
existential
quantifier some $c_order in CUST_ORDER() WHERE NOT EXISTS(
[anti-semi | satisfies ($customer/CUSTOMER_ID eq SELECT 1
Join] $c_order/ORDER_ID)

FROM "CUST_ORDER" t2
WHERE t1."CUSTOMER_ID" =

t2."CUSTOMER_ID" AND t2."STATUS" = 'OPEN'

)

XQuery Developer’s Guide

3-21

XQuery Engine and SQL

Table 3-20 Various XQuery Patterns that Can Generate Semi-Join and Anti-Semi-Join SQL

FLWR with for $customer in CUSTOMER() SELECT t1."CUSTOMER_ID" AS c1
universal | e FROM "CUSTOMER" t1
((llf;:ziid every $c_order in CUST_ORDER() WHERE NOT EXISTS(
expression | satisfies ($customer/CUSTOMER_ID eq SELECT 1
$c_order/ORDER_ID) and FROM "CUST_ORDER" {2
($c_order/STATUS eq "OPEN") WHERE NOT(¢1."CUSTOMER_ID" =
return t2."CUSTOMER_ID" AND t2."STATUS" =
$customer/CUSTOMER_ID 'OPEN’)
)
FLWR with or $customer in CUSTOMER() SELECT t1."CUSTOMER_ID" AS c1
exists() where exists(FROM "CUSTOMER' t1
predicate
for $c_order in CUST_ORDER() WHERE EXISTS(
where ($customer/CUSTOMER_ID eq SELECT 1
$c_order/ORDER_ID) and FROM "CUST_ORDER" t2
($c_order/STATUS eq "OPEN") WHERE t1."CUSTOMER ID" =
return $c_order t2."CUSTOMER_ID" AND t2."STATUS" = 'OPEN'
))
return
$customer/CUSTOMER_ID
FLWR with for $customer in CUSTOMER() SELECT t1."CUSTOMER_ID" AS ¢l
;;‘;I;zg)te where empty(FROM "CUSTOMER" t1
for $c_order in CUST_ORDER() WHERE NOT(EXISTS(
where ($customer/CUSTOMER_ID eq SELECT 1
$c_order/ORDER_ID) and FROM "CUST_ORDER" t2
($c_order/STATUS eq "OPEN") WHERE t1."CUSTOMER ID" =
return $c_order t2."CUSTOMER_ID" AND t2."STATUS" = 'OPEN'
))
return
$customer/CUSTOMER _ID
3-22 XQuery Developer’s Guide

SQL Pushdown: Performance Optimization

Grouping and Aggregation
The XQuery engine supports several patterns for group by pushdown and aggregate function
pushdown.

Group By Pushdown

The Group By clause is a BEA extension to the XQuery language (see “Generalized FLWGOR (group
by)” on page 2-34 for more information). The XQuery engine implicitly adds a group by expression to
some patterns to enable more efficient pushdown and query execution.

Figure 3-21 XQuery Containing a Group By

Definition of partition variable ‘

for $product in PRODUCT()
group Grouping-variable definition

$product as $product_group
by /

$product/CATEGORY as $category
return

<t>

{
$category,
count($product_group)

} :
<> \\: Use of partition variable

The XQuery engine translates group-by clauses into equivalent SQL GROUP BY clauses if:

Use of grouping variable

o the expressions defining grouping variables are pushable

o the partition variable is used by an aggregate function only

Since the query shown in Figure 3-21 meets these requirements, the following SQL statement is
generated:
SELECT t1.""CATEGORY'"™ AS cl1, COUNT(*) AS c2

FROM "PRODUCT™ t1
GROUP BY t1."CATEGORY"

The group-by pushdown is closely related to the Distinct-by Pushdown. When a group-by clause does
not include a partition variable, the XQuery engine generates SQL that includes the DISTINCT
keyword, as described in the next section.

XQuery Developer’s Guide 3-23

XQuery Engine and SQL

Distinct-by Pushdown

An XQuery containing a Group By clause (without a partition definition), can be generated into SQL
query that uses SQL’s DISTINCT keyword to eliminate duplicates in the result. For example, the
XQuery statement in Table 3-22 uses a group-by clause but has no partition defined, and the SQL
statement created by AquaLogic Data Services Platform refines the result by using the DISTINCT
keyword.

Table 3-22 Distinct By Pushdown

XQuery Statement SQL Statement

for $product in PRODUCTQ) SELECT DISTINCT t1."CATEGORY_ID" AS cl1
group by $product/CATEGORY_ID as FROM "PRODUCT" t1

$category

return $category

Simple Aggregate Pattern

An aggregate function operating on a single column from a data source is one of the simplest aggregate
patterns that the XQuery engine supports, although it does so in a slightly non-intuitive way. It uses a
constant as a single grouping expression (...GROUP ...BY n). The XQuery engine can pushdown the
SQL if the RDBMS supports either a GROUP BY operation on a constant or supports sub-queries in the
sub-clause (see Table 3-23).

Table 3-23 Aggregate Pushdown

XQuery Statement SaL Statement' SaL Statement?

for $product in SELECT SELECT MIN(t2.c2) AS c3
PRODUCT() MINCEL1."LIST_PRICE™) FROM (

group AS cl SELECT 1 AS cl,
$pl’0dUCt/L|ST_PR|CE FROM ""PRODUCT™ t1 t1."LIST PRICE"™ AS c2
as $price_gr0up GROUP BY 1 FROM "PRODUCT" t1
by 1) 2

return GROUP BY t2.cl
min($price_group)

1. RDBMS supports GROUP BY constant
2. RDBMS does not support GROUP BY, but does support sub-queries in the FROM clause

XQuery Developer’s Guide

SQL Pushdown: Performance Optimization

Group-By with a Nested Where Clause Translates to SQL HAVING Clause

If a relational data source supports nested WHERE clauses, the XQuery engine can translate a where
clause after a group-by clause into a SQL HAVING clause (see Table 3-24), provided that the where
clause meets other requirements for XQuery-SQL translation.

Table 3-24 Nested WHERE Clauses

XQuery Statement SQL Statement

for $product in PRODUCT() SELECT t1."'CATEGORY'"™ AS c1,
group $product/LIST_PRICE as MINCE1."LIST_PRICE™) AS c2
$price_group FROM "PRODUCT" t1

by $product/CATEGORY as $category | GROUP BY tl1.'"CATEGORY"
where max($price_group) gt 1000 HAVING MAX(t1."LIST_PRICE"™) >
return 1000
<t>
{
$category,
min($price_group)
}
</t>

XQuery Developer’s Guide 3-25

XQuery Engine and SQL

Outer Join with Aggregate Pattern

Another common pattern supported by the XQuery engine is outer join with aggregation of the right
branch, which is expressed in XQuery as nested FLWR expressions with aggregate functions in the

inner level (Table 3-25).

Table 3-25 Outer Join with Aggregate

XQuery Statement

SQL Statement

for $customer in CUSTOMERQ)
return
<customer>

<name>{
data($customer/LAST_NAME)
}</name>

<order-amount>
{
sum(
for $c_order in CUST_ORDER(Q)

where $customer/CUSTOMER_ID
eq $c_order/CUSTOMER_ID

return
$c_order/ORDER_AMOUNT

D)
}

</order-amount>
</customer>

SELECT t1."LAST NAME" AS c1,
SUM(t2."ORDER_AMOUNT'") AS c2

FROM "CUSTOMER™ t1
LEFT OUTER JOIN ""CUST_ORDER" t2

ON (t2."CUSTOMER_ID" =
t1."CUSTOMER_ID™)

GROUP BY t1."CUSTOMER_ID"

With this type of query, in order to fully push as much of the query as possible to the data source
RDBMS, the XQuery engine evaluates the outer join first and then performs the group-by on the left
branch’s primary key column, to compute the aggregate. The XQuery engine can perform this
optimization only if the left branch of the query has a key column. As shown in Table 3-26, the
CUSTOMER does, so the optimization will be performed.

The net effect is that only the XML creation is performed in the XQuery engine.

3-26 XQuery Developer’s Guide

SQL Pushdown: Performance Optimization

If-Then-Else Pattern

The CASE expression, introduced in SQL:1992, provides a way to use if-then-else logic in SQL
statements without having to invoke procedures. The CASE expression correlates a list of values and
alternatives.

An XQuery if-then-else pattern can be translated into an SQL CASE expression if:
o the underlying data source (RDBMS) supports CASE expressions.
e the XQuery data type result is not an xs:boolean.

o the data types associated with the then and else expressions are the same (quantifiers are
disregarded).

The then and else expressions can contain (or fully consist of) parameters. If the if-then-else
expression does not depend on the data source, the entire expression is pushed as a parameter.

An example can be seen in Table 3-26.

Tahle 3-26 If-Then-Else Pushdown

XQuery Statement SaL Statement
for $i in CUST_ORDER() SELECT
return CASE WHEN (t1."STATUS" =
if ($i/STATUS eq “'SHIPPED™) | ~SHIPPED™)
then data($i/STATUS) THEN t1."'STATUS™
else data($i/CUSTOMER_ID) L ELSE t1."CUSTOMER_ID™ END AS
C
FROM "'CUST_ORDER" t1

XQuery Developer’s Guide 3-21

XQuery Engine and SQL

Subsequence Pushdown

In the typical RDBMS application, it is quite common to paginate the results — output just 20
customer records per page, for example, for printing or other purposes. XQuery meets this need with
its subsequence() function. XQuery provides two different subsequence functions, shown in

3-28

Table 3-27 and in Table 3-28.

Table 3-27 Two- and Three-Argument Variants of XQuery Subsequence Function

Two-argument variant

Three-argument variant

fn:subsequence(
$sourceSeq as item(Q)*,
$startingLoc as xs:double
) as item(Q*

fn:subsequence(
$sourceSeq as item(Q*,
$startinglLoc as xs:double,
$length as xs:double

) as item(Q*

Table 3-28 Subsequence Pushdown

XQuery Statement

SQL Statement (DB2)

let $s :=
for $i in t2:PRODUCTQ)
order by $i/LIST_PRICE descending
return $i
for $p in subsequence($s, 1, 10)
return <product>
<name>

}s

SELECT t3.cl1, t3.c2 FROM(
SELECT ROW_NUMBER() OVERQ)
as c3, t2.cl, t2.c2
FROM(

SELECT t1.”LIST_PRICE” as ci,
t1_“PRODUCT_NAME” as c2
FROM “RTLALL”.”PRODUCT” t1
ORDER BY t1.”LIST_PRICE” DESC

{ data($p/PRODUCT NAME) } </name> N t)3t2
<price>
{ data($p/LIST_PRICE) } WHERE(t3.c3 <11)
</price>
</product>

XQuery Developer’s Guide

SQL Pushdown: Performance Optimization

The two-argument variant returns the remaining items of an input sequence, starting from the
$startingLoc. The three-argument variant returns $length items of the input sequence starting from
the $startingLoc. Table 3-29 shows several different examples of the subsequence function in the
context of specific queries.

Table 3-29 Examples of XQuery Expressions using Subsequence Function

Query statement

XQuery Expression

Return the 10 most
expensive products only.

let $s :=
for $i in PRODUCTQ)
order by $i/LIST_PRICE descending
return $i
for $p in subsequence($s, 1, 10)
return <product>
<name> { data($p/PRODUCT_NAME) } </name>
<price> { data($p/LIST_PRICE) } </price>
</product>

Return all service cases
opened against each of the
10 most expensive products
(outer join).

let $s :=
for $i in PRODUCT()
order by $i/LIST_PRICE descending
return $i

for $p in subsequence($s, 1, 10)

return <product>

<name> { data($p/PRODUCT_NAME) } </name>

{
for $sc in SERVICE_CASE(Q)
where $p/PRODUCT_ID eq $sc/PRODUCT_ID and
$sc/STATUS = “Open”
return <case>{ data($sc/CASE_ID) }</case>
}
</product>

XQuery Developer’s Guide 3-29

XQuery Engine and SQL

Table 3-29 Examples of XQuery Expressions using Subsequence Function (Continued)

Return the total number of let $s :=

service cases opened against for $i in PRODUCT(Q)
each of the 10 most order by $i/LIST_PRICE descending
expensive products return $i
(aggregation). for $p in subsequence($s, 1, 10)
return
<product>
<name> { data($p/PRODUCT_NAME) } </name>
{
let $scs :=

for $sc in SERVICE_CASE(Q)
where $p/PRODUCT_ID eq $sc/PRODUCT_ID and $sc/STATUS =
“Open”
return $sc
return <case_count>{ count($scs) }</case count>

}
</product>

An XQuery subsequence pattern can be translated into an SQL subsequence expression if:
o the fn:subsequence() operates on a FLWR expression that returns items from the RDBMS

o the return expression in the inner FLWR must always return a single item (it can be a row
element or column element)

o the underlying data source (RDBMS) supports subsequence

AquaLogic Data Services Platform can pushdown the subsequence pattern to the underlying RDBMS,
thereby enhancing performance, as long as the underlying RDBMS supports it.

o IBM DB2/8 supports both variants of the subsequence function.

e Oracle 8i, Oracle 9i, and Oracle Database 10g support both versions of the subsequence
function, without restriction.

e Microsoft SQL Server 2000 supports the three-argument version only, and requires that
$startingLoc must be 1 (a constant) and $length must be an xs:integer constant.

e Teradata V2R5 supports both versions of the subsequence function, without restriction.

Note: Subsequence pushdown is not supported for PointBase, Sybase, or any base RDBMS (see
“XQuery-SQL Mapping Reference” on page 7-1 for other core and base RDBMS information.)

3-30 XQuery Developer’s Guide

SQL Pushdown: Performance Optimization

Direct SQL Data Services and Pushdown

AquaLogic Data Services Platform lets you create data services not only from relational tables and
views, but also from SQL queries. These direct SQL data services, as they are called, can also be
composed by the XQuery engine, and pushed down as native SQL to the target RDBMS, if:

o the RDBMS supports sub-queries in the FROM clause.

e for outer join pushdown, key information must be specified in the Direct SQL data service
configuration (see “XQuery-SQL Mapping Reference” on page 7-1).

If the RDBMS does not support sub-queries (the FROM clause), the pushdown will not occur.
For example, a user-defined SQL query, “recent_order” is configured as a relational source:

SELECT * from RECENT_ORDER

The XQuery that gets created in the data service and the resulting generated SQL that gets pushed
down by the XQuery engine are shown in Table 3-30.

Table 3-30 Direct SQL Data Service Example

XQuery Statement SaL Statement

declare variable SELECT t1.""ORDER_AMOUNT™ AS c1
$external_variable as xs:string external; | FROM (

for $recent_order in RECENT_ORDER(Q) SELECT * FROM RECENT_ORDER
where $recent_order/ORDER_ID eq) tl

$external_variable WHERE t1."ORDER ID" = ?
return $recent_order/ORDER_AMOUNT B

XQuery Developer’s Guide 3-31

XQuery Engine and SQL

3-32

SQL pushdown on top of direct SQL is not limited to simple select-project queries. Any operation for
which pushdown is supported for table and view sources is also supported for data services created for
direct SQL queries. For example, Table 3-31 shows a join query and its generated result.

Table 3-31 Direct SQL Data Service with Join Condition

XQuery Statement SQL Statement

for $customer in CUSTOMERQ) SELECT t1."CUSTOMER_ID™ AS cl1,
for $recent_order in €2."ORDER_ID"™ AS c2
RECENT_ORDER(Q) FROM "*CUSTOMER™ t1

where $customer/CUSTOMER_ID eq JOIN (
$recent_order/CUSTOMER_lD SELECT * FROM RECENT ORDER
return) ©2

<t>{ $customer/CUSTOMER_ID, ON t1."CUSTOMER ID" =
$recent_order/ORDER_ID }</t> 2 ."CUSTOMER ID"

Distributed Query Pushdown

AquaLogic Data Services Platform uses SQL pushdown to off-load query processing to the underlying
data source RDBMS whenever possible. However, as mentioned in “How the XQuery Engine Supports
SQL Data Sources” on page 3-4, SQL pushdown is not always possible, nor beneficial. For example,
when two data sources are running on two different systems, or when a query combines relational data
with non-relational data, SQL pushdown may not provide any performance benefit.

In cases such as these, AquaLogic Data Services Platform uses special techniques to batch-process the
outside portion of a query (the left branch) and send a cluster (or chunk) of data to the right branch
as parameters (see Table 3-32).

The XQuery engine chooses this optimization technique (a “clustered parameter passing join,” also
known as PPK) for a distributed query when:

e join pattern is recognized by the compiler, and
o the join cannot be pushed down in its entirety for any reason, and

e join condition is pushable to either branch when all expressions operating on another branch
are treated as parameters in the generated SQL.

XQuery Developer’s Guide

Preventing SQL Pushdown

Table 3-32 Distributed Query Pushdown — a PPK Join Example

XQuery Statement

SQL Statement

for $customer in CUSTOMERQ)
for $order in ORDER()

where
$customer/CUSTOMER_ID eq
$recent_order/CUSTOMER_ID
return

<t>{ $customer/CUSTOMER_ID,
$order/ORDER_ID }</t>

SELECT t1."CUSTOMER_ID"™ AS c1,
t1.”0RDER_ID” as c2

from “ORDER” tl

WHERE t1.”CUSTOMER_ID” = ? OR
t1.”CUSTOMER_ID” = ?

OR

t1.”CUSTOMER_ID” =7

Unless all these conditions are met, the XQuery engine cannot use this optimization technique but will
instead use the single parameter join instead (PP1 join).

Preventing SQL Pushdown

Developers can exercise control over SQL pushdown by using the fn-bea:fence() function (a BEA

extension to XQuery functions and operations) to demarcate sections of XQuery code that the XQuery
engine should ignore when it is evaluating query fragments for SQL pushdown.

For the example shown in Table 3-33, even though the upper-case function could be pushed down to

the RDBMS, its pushdown is blocked by the fence() function and the upper-case function will be

executed by the XQuery engine. Only the fragment comprising the lower-case function is included in
the query plan as SQL pushdown. The result of the SQL will be returned to the XQuery engine, which
will use the XQuery upper-case function on the result.

XQuery Developer’s Guide

3-33

XQuery Engine and SQL

3-34

Table 3-33 Using the fn-bea:fence() Function

XQuery Statement SQL Statement
for $c in CUSTOMERQ) SELECT LOWER(E1.'""LAST NAME'™) AS
return cl

upper-case(FROM **CUSTOMER™ t1

fn-bea:fence(
lower-case($c/LAST_NAME)

)

Use the fence() function whenever you want SQL to be sent as is, to the RDBMS. For example, if you
are accessing an Oracle 8.5.x RDBMS that uses hints and Oracle’s rule-based optimizer, you should
send the hinted SQL queries to the data source by wrapping them in the fence() function.

To circumvent SQL pushdown for specific clauses, extract those clauses into separate FLWOR
expressions with the fence() function at the top of the clause, as shown here:

for $x iIn
fn-bea:fence

for $c in CUSTOMERQ)
return $c/LAST_NAME
)

order by $x

return $x
As you develop data services that use relational data sources, use the AquaLogic Data Services
Platform Query Plan View to see the results of using the fence() function (Figure). In this example,
the order by clause will be executed by the XQuery engine rather than pushed down as SQL.

XQuery Developer’s Guide

Preventing SQL Pushdown

Figure 3-34 Example of an XQuery Plan without (I) and with (r) the fn-bea:fence() Function

= FLWOR

= return
<LAST_NAME:= {F1004,/c1}
£l =+ for $F1004
relational source :OraRemoteDataSource :
SELECT £1."LAST_MAME" A5 c1
FROM "SCOTT""CUSTOMER" £1
ORDER BY t1."LAST_MAME" ASC

= FLWOR

= return
~$fa32
= ¢1§ orderBy stable="false"
[orderByExpression direction="ascending" emptyOrder="least"
[fn:datai)
4Fa32
£l =4 for $fa32
[fn-bea:fences)

=] FLWOR

return
£l =4 for $fa34
relational source :OraRemoteDataSource :
é SELECT £1."LAST_MAME" A5 c1
FROM "SCOTT""CUSTOMER" £1

Note that the red triangles displayed in the SQL portions of Figure are alerts calling attention to the
fact that a where clause is missing from the XQuery statement.

XQuery Developer’s Guide 3-35

XQuery Engine and SQL

3-36 XQuery Developer’s Guide

CHAPTERa

Understanding XML Namespaces

XML namespaces are a mechanism that ensures that there are no name conflicts (or ambiguity) when
combining XML documents or referencing an XML element. BEA AquaLogic Data Services Platform

fully supports XML namespaces and includes namespaces in the queries generated in AquaLogic Data
Services Studio.

This section includes the following topics:

e Introducing XML Namespaces

e Using XML Namespaces in AquaLogic Data Services Platform Queries and Schemas

Introducing XML Namespaces

Namespaces provide a mechanism to uniquely distinguish names used in XML documents. XML
namespaces appear in queries as a namespace string followed by a colon. The W3C uses specific
namespace prefixes to identity W3C XQuery data types and functions. In addition, BEA has defined
the fn-bea: namespace prefix to uniquely identify BEA-supplied functions.

XQuery Developer’s Guide 4-1

Understanding XML Namespaces

42

Table 4-1 lists the predefined XQuery namespaces used in AquaLogic Data Services Platform queries.

Tahle 4-1 Predefined Namespaces in XQuery

Namespace Prefix Description Examples
n The prefix for XQuery functions. fn:data()
fn:sumQ
fn:substring()
fn-bea The prefix for AquaLogic Data Services fn-bea:rename()
Platform-specific extensions to the fn-bea:is-access-allowed()

standard set of XQuery functions.

XS The prefix for XML schema types. Xs:string

For example, the xs: integer data type uses the XML namespace xs. Actually, xs is an alias (called
a prefix) for the namespace URL.

XML namespaces ensure that names do not collide when combining data from heterogeneous XML
documents. As an example, consider a document related to automobile manufacturers that contains
the element <tires>. A similar document related to bicycle tire manufacturers could also contain a
<tires> element. Combining these documents would be problematic under most circumstances. XML
namespaces easily avoid these types of name collisions by referring to the elements as
<automobile:tires> and <bicycle:tires>.

Exploring XML Schema Namespaces

XML schema namespaces—including the target namespace—are declared in the schema tag. The
following is an example using a schema created during metadata import:
<xsd:schema
targetNamespace="http://temp.openuri.org/SampleApp/CustOrder .xsd"
xmIns="http://www.w3.0rg/2001/XMLSchema""
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"

xmlns:bea="http://www_bea.com/public/schemas"
elementFormDefault="unqualified" attributeFormDefault="unqualified">

The second line declares the target namespace using the targetNamespace attribute. It this case,
the target namespace is:

http://temp.openuri.org/SampleApp/CustOrder.xsd

XQuery Developer’s Guide

Using XML Namespaces in AqualLogic Data Services Platform Queries and Schemas

The third line of the schema contains the default namespace, which is the namespace of all the
elements that do not have an explicit prefix in the schema.

For example, if you see the following element in a schema document:

<element name="appliance" type="string"/>
the element e lement belongs to the default namespace, as do unprefixed types such as string.
The fourth line of the schema binds the xsd prefix to the standard XML Schema URI. The fifth line of

the schema contains a namespace declaration which associates a URI with the bea prefix. There can
be any number of these declarations in a schema.

References to types declared in this schema document must be prefixed, as illustrated by the following
example:

<complexType name="AddressType'>
<sequence>
<element name="'street_address" type="'string"/>

</sequence>
</complexType>
<element name="address" type="bea:AddressType'/>

It is recommended that you create schemas with e lementFormDefault=""unqualified" and
attributeFormDefault="unqualified". This enables you to move elements between
namespaces by renaming a single complex element, instead of having to explicitly map every element.

Using XML Namespaces in Aqualogic Data Services
Platform Queries and Schemas

AquaLogic Data Services Platform (ALDSP) automatically generates the namespace declarations
when generating a query. ALDSP employs a simple scheme using labels ns0, ns1, ns2, and so forth.
Although it is easy to change assigned namespace names, care must be taken to make sure that all
uses of that particular namespace are changed.

When a return type is created, by default it is qualified, meaning that the namespace of the outermost
complex element appears in the schema.

XQuery Developer’s Guide 4-3

Understanding XML Namespaces

Figure 4-2 Schema with Unqualified Attributes and Elements

crm:db

5[PROMOTICN*

: STATE -xs:string
PROMOTION_MAME -xs:string
PROMOTION_PLAN*
PROMOTION_MNAME -xs:skring
PLAN_MAME -xs:skring
FROM_DATE -xs:date
TO_DATE -xs:date

PRICE -xs5:decimal

If you want attributes or nested elements to appear as qualified, you need to use an editor outside Data
Services Studio to modify the generated schema for either or both attributeFormDefault and
elementFormDefault to be set to qualified.

4-4 XQuery Developer’s Guide

Best Practices Using XQuery

This chapter offers a series of best practices for creating data services using XQuery. The chapter
introduces a data service design model, and describes a conceptual model for layering data services
to maximize management, maintainability, and reusability.

This chapter includes the following topics:
o Introducing Data Service Design
e Understanding Data Service Design Principles

e Applying Data Service Implementation Guidelines

XQuery Developer’s Guide 5-1

Best Practices Using XQuery

Introducing Data Service Design

When designing data services, you should strive to maximize the ability to maintain, manage, and
reuse queries. One approach is to adopt a layered design model that partitions services into the
following levels:

o Application Services. Data services at the Application Services level are defined by client
application requirements. Functions defined in this layer can additionally be used to constraint
queries and to aggregate data, among other tasks.

o Logical Services. The Logical Services contain functions that perform general purpose logical
operations and transformations on data accessed through Canonical and Physical Services.

e Canonical Services. Data services defined at the Canonical Services level normalize data
obtained from the Physical Services level.

o Physical Services. The Physical Services are defined by the system based on introspection of
physical data sources. The system creates data service functions that retrieve all rows in a
table, offering the greatest flexibility for data service functions defined in higher layers. The
system also defines relationships between data services, as required.

Figure 5-1 illustrates the data service design model.

Figure 5-1 Data Service Design Model

L Customer Shipping
Application Get C-g by
Services Help Center Center _ email
— name
— phone
— lastcall
Logical
Services Get O-¢ by
— orderno
— name
— city/state
Canonical
Services
Physical
Services

Y
fereait() Order, Item

5-2 XQuery Developer’s Guide

Understanding Data Service Design Principles

Using this design model, you can design and develop data services in the following manner:

1.
2.

Develop the Physical Services based on introspection of physical data sources.

Define the Application Services based on precise client application requirements.

Design the Canonical Services to normalize and create relationships between data accessed using

the Physical Services.

Design the Logical Services to manipulate and transform data accessed through the Canonical and
Physical Services, providing general purpose reusable services to the Application Services layer.

Work through the layers from the top down, determining optimal functions for each level and

factoring out reusable queries.

Understanding Data Service Design Principles

This section describes best practices for designing and developing services at each layer of the data
service design model. Table 5-2 describes the data service design principles.

Tahle 5-2 Data Service Design Principles
Level Design Principle Description
Application Base design on client needs Design data services and queries at the Application Services
Services level specifically tuned to client needs, using functions defined

at the Logical and Canonical Service levels.

Nest or relate information, as
required by the application

Use the XML practice of nesting related information in a single
XML structure. Alternatively, use navigation functions to relate
associated information, as required by the application.

Introduce constraints at the
highest level

AquaLogic Data Services Platform propagates constraints down
function levels when generating queries. By keeping constraints,
such as function parameters, at the highest level, you encourage
reuse of lower level functions and permit the system to
efficiently optimize the final generated query.

Aggregate data at the highest
level

Aggregate data in functions at the highest level possible,
preferably at the Application Services level.

XQuery Developer’s Guide 5-3

Best Practices Using XQuery

Table 5-2 Data Service Design Principles (Continued)

Logical Create common functions to Design functions that provide common services required by
Services serve multiple applications applications. Base function design at the Logical Services level
on requirements already established at the Application Services
level, based on client needs.
Refactor toreduce the number Refactor the functions, as necessary, to reduce the overall
of functions number of functions to as few as possible. This reduces
complexity, simplifies documentation, and eases future
maintenance.
Canonical Use function defined in the Create (public) read functions can then all be expressed in
Services Physical Services level terms of the main “get all instances” function.
Canonical Create navigation functionsto Use separate data services with relationships (implemented
Services represent relationships through navigation functions) rather than nesting data. For
example, create navigation functions to relate customers and
orders or customers and addresses instead of nesting this
information.
This keeps data services and their queries small, making them
more manageable, maintainable, and reusable.
Define keys to improve Defining keys enables the system to use this information when
performance optimizing queries.
Establish relationships Establish relationships between unique identifiers or primary
between unique identifiers keys that refer to the same data (such as Customer ID or SSN)
and primary keys but vary across multiple data sources. You can use either of the
following methods:
e (reate navigation functions to create relationships between
the data.
e (reate a new table in the database to relate the unique
identifiers and primary keys.
5-4 XQuery Developer’s Guide

Applying Data Service Implementation Guidelines

Tahle 5-2 Data Service Design Principles (Continued)

Physical Employ functions that get all ~ Using protected functions that get all records at the Physical
Services records Services level provides the system with the most flexibility to
optimize data access based on constraints specified in higher
level functions.
Do not perform data type The system is unable to generate optimizations based on
transformations constraints specified at higher levels when data type

transformations are performed at the Physical Services level.

Do not aggregate Use aggregates at the highest level possible to enable the system
to optimize data access.

Applying Data Service Implementation Guidelines

Table 5-3 describes implementation guidelines to apply when designing and developing data services.

Table 5-3 Data Service Implementation Guidelines

Level Design Principle Description
Application Use the group clause to When performing a simple aggregate operation (such as count,
Services aggregate min, max, and so forth) over data stored in a relational source,

use a group clause as illustrated by the following:
for $x in F1:CUSTOMERQ

group $x as $g by 1

return count($g)

instead of:
count(f1:CUSTOMERQ))

in order to enable pushdown of the aggregation operation to the
underlying relational data source.

Note that the two formulations are semantically equivalent
except for the case where the sequence returned by
f1:CUSTOMER() is the empty sequence. Of course performance
will be better for the pushed down statement.

XQuery Developer’s Guide 5-5

Best Practices Using XQuery

Table 5-3 Data Service Implementation Guidelines (Continued)

Application Use element(foo) instead of

Services

schema-element(foo)

Define function arguments and return types in data services as
element(foo) instead of schema-element(foo). Using
schema-element instead of element causes AquaLogic Data
Services Platform to perform validation, potentially blocking
certain optimizations.

Use xs:string to cast data

Use xs:string when casting data instead of fn:string(). The two
approaches are not equivalent when handling empty input, and
the use of xs:string enables cast operations to be executed by the
database.

Be aware of Oracle treating
empty strings as NULL, and
how this affects XQuery
semantics

The Oracle RDBMS treats empty strings as NULL, without
providing a method of distinguishing between the two. This can
affect the semantics of certain XQuery functions and operations.

For example, the n: lower-case () function is pushed
down to the database as LOWER, though the two have different
semantics when handling an empty string, as summarized by the
following:

e fn:lower-case() returns an empty string
e LOWER in Oracle returns NULL

When using Oracle, consider using the fn-bea:fence()
function and performing additional computation if precise
XQuery semantics are required.

5-6

XQuery Developer’s Guide

Applying Data Service Implementation Guidelines

Tahle 5-3 Data Service Implementation Guidelines (Continued)

Application
Services

Return plural for functions
that contain FLWOR
expressions

When a function body contains a FLWOR expression, or
references to functions that contains FLWOR, the function
should return plural.

For example, consider the following XQuery expression:

For $c in CUSTOMER(Q)
Return
<CUSTOMER>
<LAST_NAME>$c/LAST_NAME</LAST_ NAME>
<FIRST_NAME>$c/FIRST_NAME
</FIRST_NAME>
<ADDRESS>{
For $a in ADDRESS(Q)
Where $a/CUSTOMER_ID =
$c/CUSTOMER_ID
Return
$a
}</ADDRESS>
</CUSTOMER>

Defining a one-to-one relationship between a CUSTOMER and an
ADDRESS, as in the following, can block optimizations.

<element name=CUSTOMER>
<element name=LAST_NAME/>
<element name=FIRST_NAME/>
<element name=ADDRESS/>
</element>

XQuery Developer’s Guide 5-7

Best Practices Using XQuery

Table 5-3 Data Service Implementation Guidelines (Continued)

Application

Services

Return plural for functions
that contain FLWOR
expressions (continued)

This is because AquaLogic Data Services Platform determines
that there can be multiple addresses for one CUSTOMER. This
leads the system to insert a TypeMatch operation to ensure
that there is exactly one ADDRESS. The TypeMatch operation
blocks optimizations, thus producing a less efficient query plan.

The Query Plan Viewer shows TypeMatch operations in red
and should be avoided. Instead, the schema definition for
ADDRESS should indicate that there could be zero or more
ADDRESSes.

<element name=CUSTOMER>
<element name=LAST_ NAME/>
<element name=FIRST_NAME/>
<element name=ADDRESS minOccurs="0"
maxOccurs=""unbounded”/>
</element>

Avoid cross product

situations

Avoid cross product (Cartesian Product) situations when
including conditions. For example, the following XQuery sample
results in poor performance due to a cross product situation:

define fn ($p string)
for $c in CUSTOMERQ)
for $o in ORDERQ)
where $c/id eq $p
and $o/id eq $p

Instead, use the following form to specify the same query:

define fn ($p string)
for $c in CUSTOMERQ)
for $o in ORDERQ)
where $c/id eq $o/id
and $c/id eq $p

5-8

XQuery Developer’s Guide

CHAPTERa

BEA XQuery Scripting Extension (XQSE)

This chapter describes the BEA XQuery Scripting Extension (XQSE) that enables you to add
procedural constructs to XQuery-based data services. The chapter describes the language extensions
and includes the statement grammar along with one or more examples.

This chapter includes the following topics:

Extension
Prolog and Query Body
Procedure Declaration

e Introducing the XQuery Scripting e While Statement

Return Statement

Iterate Statement

Try Statement
XQSE Function Declaration If Statement
Value Statement and Procedure Call Changed Element
Block XQSE Grammar Summary

Set Statement

XQuery Developer’s Guide

6-1

BEA XQuery Scripting Extension (XQSE)

Introducing the XQuery Scripting Extension

ALDSP data services are based on the XQuery language, which enables you to use the structure of XML
to express queries against data. The XQuery Scripting Extension builds on this base by adding
procedural constructs, including basic statements, control flow, and user-defined procedures to
XQuery.

XQSE is therefore a superset of XQuery, extending it with additional features that enable you to create
richer and more complex data services while working within the context of XML and XQuery. You can
think of XQSE as an extension to XQuery in the same way as Oracle PL/SQL is an extension of SQL.

Prolog and Query Body

XQSE extends XQuery by adding procedural capabilities to the declarative query capabilities of
XQuery. In XQuery, a query consists of a prolog followed by an XQuery expression. The prolog of a query
sets up the environment for the expression by defining namespaces, external variables, and functions,
among other information.

In XQSE, a prolog can also contain definitions of procedures and XQSE functions which are,
respectively, side-effecting and non-side-effecting callable units of execution written in XQSE.

The following shows the grammar of the XQSE prolog and query body:

Prolog ::= ((DefaultNamespaceDecl | Setter | NamespaceDecl | Import)
Separator)* ((VarDecl | FunctionDecl | ProcedureDecl |
XQSEFunctionDecl | OptionDecl) Separator)*

QueryBody ::= Expr | Block

In XQSE, the body of a top-level query can be either an XQuery expression or an XQSE block. A block
is a sequence of statements that are executed sequentially.

Procedure Declaration

6-2

XQSE enables you to declare a procedure in the prolog of an ALDSP data service. An XQSE procedure
is similar to an XQuery function, but unlike a function, a procedure can have one or more side effects.
Another difference is that XQuery functions are declarative; the body of an XQuery function is an
XQuery expression.

The body of an XQSE procedure, in contrast, consists of a block, which is a list of statements executed
in sequential order when the procedure is called. Alternatively, as in XQuery, you can declare a
procedure as external, in which case it does not have a body and is implemented by ALDSP by

XQuery Developer’s Guide

XQSE Function Declaration

importing procedures from external data sources such as relational stored procedures or Web
services.

The following shows the grammar of the XQSE procedure declaration:

ProcedureDecl ::= "declare'" *procedure™ QName "(** ParamList? ")"
("as™ SequenceType)? (Block | (“external™))
A procedure may, but is not required to, return a value. Individual XQSE statements do not have return
values by themselves, so a procedure returns a value only when an explicit return statement is
included in the body of procedure. If the return type of a procedure is not specified, its return value is
of type item()* by default.

Note: Since returning a value is optional, a return statement is not required in the body of a
procedure. In the absence of a return statement, the return value of a procedure is the empty
sequence and its return type is empty ().

You can use recursion in procedures. This is another difference between XQuery functions and XQSE
procedures in ALDSP.

Example:

(: Procedure to delete an employee given just their employee ID :)

(: Calls the default delete function on the data service after retrieving

the employee object using the ID :)

declare procedure tns:deleteByEmployeelD($id as xs:string?) as empty() {
declare $emp as element(empl:Employee)? := tns:getByEmployeelD($id);
tns:delete($emp);

}:

XQSE Function Declaration

XQSE extends the XQuery function declaration syntax to enable you to declare XQSE-based functions
in addition to procedures. An XQSE function is essentially a read-only procedure written in XQSE with
no side effects.

As with a procedure, the body of an XQSE function consists of a block, which is a list of statements.
The following shows the grammar of the XQSE function declaration:

XQSEFunctionDecl ::= “declare"™ xgse *function'™ QName " ("' ParamList?)"
("'as" SequenceType)? (Block | (external™))

Since an XQSE function does not have any side-effects, you can call it from within an XQuery
expression anywhere that a normal XQuery function can be called.

Since XQuery functions are declarative and therefore amenable to compile-time query optimization,
you should write data service functions using XQuery instead of XQSE where possible. However, it is

XQuery Developer’s Guide 6-3

BEA XQuery Scripting Extension (XQSE)

sometimes necessary (or at least conceptually more convenient) to express certain read-only
computations procedurally. XQSE functions are appropriate in these cases.

For example, you could use an XQSE function to perform calculations that would otherwise require
the use of tail recursion in XQuery. This is necessary since ALDSP does not permit the use of recursion
in XQuery functions.

Example:

(: Procedure to compute the level of an employee in the org tree :)
declare xgse function tns:distanceFromTop($id as xs:string?) as
xs:integer? {
declare $mgrCnt as xs:integer := 0;
declare $curkEmp as element(empl:Employee)? :=
tns:getByEmployeelD($id);
declare $mgrild as xs:string? := fn:data($curEmp/ManageriD);
it (fn:empty($curEmp)) then return value ;
while (fn:not(fn:empty($mgrid))) {
set $mgrCnt := $mgrCnt + 1;
set $curEmp tns:getByEmployeelD($mgrid);
set $mgrlid fn:data($curEmp/ManageriD);
};
return value ($mgrCnt);

};

Value Statement and Procedure Call

6-4

XQSE offers the value statement and procedure call statement to distinguish between function and
procedure calls.

Note: You can call a function wherever an expression can be used, but procedures can only be called
in certain parts of XQSE because they include side effects.

The following shows the grammar of the XQSE value statement and procedure call statement:

ValueStatement := ExprSingle | ProcedureCall

ProcedureCall ::= FunctionCall

Statement := SimpleStatement | BlockStatement

SimpleStatement ::= SetStatement | IfStatement | ReturnStatement |

ProcedurecCall

XQuery Developer’s Guide

Block

Block

An XQSE block contains a list of statements. You can use a block to declare mutable variables (using
declare clauses) and manipulate those variables in subsequent statements, which are executed in
sequential order. The following shows the grammar of the XQSE block statement:

Block ::= {" ((BlockDecl ";')* StatementSequence "}"
BlockDecl ::= "declare"™ "$" VarName TypeDeclaration?
(':=" ValueStatement)?

StatementSequence := ((SimpleStatement ;") | (BlockStatement (*';")?))*
BlockStatement := WhileStatement | lterateStatement | TryStatement |
Block

While XQuery expressions have values, statements do not (with the exception of the return
statement, described in “Return Statement” on page 6-7.). Therefore, a block does not have a return
value since a block is itself a compound statement.

Every variable in a block must be declared before it can be used. If you declare a variable without
explicitly specifying a type, the variable will have a default type of item()*.

Note: Variables in a block are mutable. Unlike et and for variables that appear in XQuery
expressions, which are immutable bindings of names to values, variables in an XQSE block
are assignable (similar to variables in Java and C++, among other languages).

You can define nested blocks, in which case regular scoping rules apply. For example, a variable with
a specific fully-qualified name declared in an inner block will shadow (redefine and hide) variables in
a containing outer block that has the identical fully-qualified name.

Example:

(: Procedure to compute the level of an employee in the org tree :)
declare xgse function tns:distanceFromTop($id as xs:string?)
as xs:integer? {
declare $mgrCnt as xs:integer := O;
declare $curkEmp as element(empl:Employee)? :=
tns:getByEmployeelD($id);
declare $mgrid as xs:string? := fn:data($curEmp/ManageriD);
it (fn:empty($curEmp)) then return value (;
while (fn:not(fn:empty($mgrid))) {
set $mgrCnt := $mgrCnt + 1;
set $curEmp := tns:getByEmployeelD($mgrid);
set $mgrlid fn:data($curEmp/ManageriD);
}

return value ($mgrCnt);

XQuery Developer’s Guide 6-5

BEA XQuery Scripting Extension (XQSE)

Set Statement

The XQSE set statement sets the variable VarName to the value specified by ValueStatement. The
following shows the grammar of the XQSE set statement:

SetStatement ::= "set" "$" VarName '":=" ValueStatement

Before using the set statement, you must first declare the variable VarName using a declare
statement. Only variables declared in this way are mutable and can therefore be changed using the
set statement.

Note: The set statement has copy semantics. Consider the following instance:
set $z = ($x, $y)

If $x and $y are mutable variables and $x and $y are later changed, $z retains the originally
copied values of $x and $y.

Example:

(: Procedure to compute the level of an employee in the org tree :)
declare xgse function tns:distanceFromTop($id as xs:string?)
as xs:integer? {
declare $mgrCnt as xs:integer := 0;
declare $curkEmp as element(empl:Employee)? :=
tns:getByEmployeelD($id);
declare $mgrild as xs:string? := fn:data($curEmp/ManageriD);
it (fn:empty($curEmp)) then return value Q;
while (fn:not(fn:empty($mgrid))) {
set $mgrCnt := $mgrCnt + 1;
set $curEmp tns:getByEmployeelD($mgrid);
set $mgrlid fn:data($curEmp/ManageriD);

};
return value ($mgrCnt);

}:

While Statement

The XQSE whi e statement loops and performs the actions in the block while the effective boolean
value of the condition evaluates to true. The following shows the grammar of the XQSE whi le
statement:

WhileStatement ::= “while™ (" Expr)" Block

The while statement reevaluates the condition expression before each loop. Typically, the condition
depends upon a mutable variable that is manipulated in the block. The loop therefore terminates
when code in the block causes the effective boolean value of the condition to cease being true.

XQuery Developer’s Guide

Return Statement

Example:

(:

Procedure to compute the level of an employee in the org tree :)

declare xgse function tns:distanceFromTop($id as xs:string?)

}:

as xs:integer? {
declare $mgrCnt as xs:integer := 0;
declare $curkEmp as element(empl:Employee)? :=
tns:getByEmployeelD($id);
declare $mgrild as xs:string? := fn:data($curEmp/ManageriD);
it (fn:empty($curEmp)) then return value Q;
while (fn:not(fn:empty($mgrid))) {
set $mgrCnt := $mgrCnt + 1;
set $curEmp := tns:getByEmployeelD($mgrid);
set $mgrlid fn:data($curEmp/ManageriD);
3

return value ($mgrCnt);

Return Statement

The XQSE return statement computes the expression represented by ValueStatement and
returns the resulting value while exiting from the current procedure.

The following shows the grammar of the XQSE return statement:

ReturnStatement ::= "return" "value" ValueStatement

In the special case where a block containing a return statement is the body of the main query, the
return statement returns the value to the invoking environment.

Example:

(:

Procedure to compute the level of an employee in the org tree :)

declare xgse function tns:distanceFromTop($id as xs:string?)

as xs:integer? {
declare $mgrCnt as xs:integer := 0;
declare $curkEmp as element(empl:Employee)? :=
tns:getByEmployeelD($id);
declare $mgrild as xs:string? := fn:data($curEmp/ManageriD);
it (fn:empty($curEmp)) then return value Q;
while (fn:not(fn:empty($mgrid))) {
set $mgrCnt := $mgrCnt + 1;
set $curEmp := tns:getByEmployeelD($mgrid);
set $mgrlid fn:data($curEmp/ManageriD);
};

return value ($mgrCnt);

XQuery Developer’s Guide 6-7

BEA XQuery Scripting Extension (XQSE)

Iterate Statement

XQSE offers an iterate statement that is equivalent to the XQuery for clause and enables you to
perform data-driven looping over a block of XQSE statements. This enables you to iterate through the
result of an XQuery expression, for example.

The following shows the grammar of the XQSE i terate statement:

IterateStatement ::= "iterate" "$" VarName PositionalVar? "over"
ValueStatement Block

The iteration variable VarName is bound to each item in the sequence produced by evaluating
ValueStatement, which can be either an XQuery expression or a procedure call. Optionally, the
PositionalVar variable represents the index of the current item in the sequence.

Note: The VarName and PositionalVar variables are both mutable, though it is not advisable
that you exploit this capability.

Examples:

(: Procedure to allow only updates that don"t violate the salary change
business rules :)
declare procedure tns:updateChecked($changedEmps as
changed-element(empl :Employee)*) {
iterate $sourceEmp over $changedEmps {
if (tns:invalidSalaryChange($sourceEmp)) then
fn:error(xs:QName ("' INVALID_SALARY_CHANGE'™), ':
Salary change exceeds the limit.");
};
tns:update($changedEmps);
}:

(: Procedure to perform "lite ETL", copying and transforming data from
one source to another :)
declare procedure tns:copyAllIToEMP2() as xs:integer {
declare $backupCnt as xs:integer := 0;
declare $emp2 as element(emp2:EMP2)?;
iterate $empl over ensl:getAllI() {
set $emp2 := tns:transformToEMP2($empl);
emp2:createEMP2($emp2) ;
set $backupCnt := $backupCnt + 1;
}
return value ($backupCnt);

6-8 XQuery Developer’s Guide

Try Statement

Try Statement

The try statement enables you to perform procedural error handling in XQSE, such as those raised
by the XQuery fn:error function. The try statement works in much the same way as traditional
try/catch statements in languages such as Java or C++.

The following shows the grammar of the XQSE try statement:

TryStatement ::= "try" Block CatchClauseStatement+

CatchClauseStatement ::= catch "('" NameTest ("into" VarNameExpr ((","
VarNameExpr)? '," VarNameExpr)?)?)" Block
XQSE enables you to catch all XQuery errors. XQuery errors have an associated QName, enabling you
to use the XQuery NameTest to restrict the errors handled by a specific catch clause. In addition,
the following variables in the catch clause work similarly to the arguments of the XQuery fn:-error
function:

® $error—xs:QName
e $description—xs:string

e $error-object—item(Q*

Similar to exceptions in other languages, you can re-throw errors in XQSE using the fn:error
function. When doing so, you need to ensure that all components of the error, including the name,
description, and error-object, are properly passed to the new fn:-error call.

Example:

(: Procedure to create a replicated employee and return an appropriately
specific error message if it fails :)
declare procedure tns:create($newEmps as element(empl:Employee)*)
as element(empl:ReplicatedEmployee KEY)* {
iterate $newEmp over $newEmps {
declare $newEmp2 as element(emp2:EMP2)? :=
bns:transformToEMP2($newEmp) ;
try { tns:createEmployee($newEmp); }
catch (* into $err, $msg) {
fn:error(xs:QName("'PRIMARY_CREATE_FAILURE™),
fn:concat('Create failed on primary copy due to: ", S$err,

$msg));

XQuery Developer’s Guide 6-9

BEA XQuery Scripting Extension (XQSE)

try { emp2:createEMP2($newEmp2); }
catch (* into $err, $msg) {
fn:error(xs:QName("'SECONDARY_CREATE_FAILURE™),
fn:concat("'Create failed on backup copy due to: ", $err,
$msg));

}
¥

If Statement

XQSE offers an i f statement that is equivalent to the XQuery I fExpr expression. The XQSE i f
statement differs from the XQuery 1fExpr expression in the following ways:

e The XQSE i statement is a control flow statement, and does not return a value.

o The else clause is optional in an XQSE i f statement.
The following shows the grammar of the XQSE i f statement:

IfStatement ::= "if" """ Expr)" "then" Statement (“else' Statement)?

Example:

(: Procedure to compute the level of an employee in the org tree :)
declare xgse function tns:distanceFromTop($id as xs:string?)
as xs:integer? {
declare $mgrCnt as xs:integer := 0;
declare $curEmp as element(empl:Employee)? :=
tns:getByEmployeelD($id);
declare $mgrid as xs:string? := fn:data($curEmp/ManageriD);
if (fn:empty($curEmp)) then return value ;
while (fn:not(fn:empty($mgrid))) {
set $mgrCnt := $mgrCnt + 1;
set $curEmp tns:getByEmployeelD($mgrid);
set $mgrlid fn:data($curEmp/ManageriD);
}:

return value ($mgrCnt);

6-10 XQuery Developer’s Guide

Changed Element

Changed Element

The XQSE language extends the XQuery data model with information about elements that have been
updated and resubmitted to ALDSP. This enables XQSE to support SDO client updates along with
associated server-side update logic.

An XML node that contains changes has the XQSE type changed-e lement. The following shows the
grammar of the XQSE changed-element type:

ItemType := AtomicType | KindTestType | <"item" (" ")"> |
ChangedElementType

ChangedElementType := 'changed-element” " (' ElementNameOrWildcard ")"

XQSE provides two built-in functions, fn-bea:old-value and fn-bea:current-value, to
access the pre-update and post-update contents of the changed XML node respectively.

Note: You can only pass instances of changed-e lement into XQSE as arguments to procedures
and functions. Instances of changed-e lement cannot be created or incrementally modified
within XQSE.

You can also use instances of changed-element in variable declarations and assignments.
Example:

(: function to determine whether or not a given salary change is legal
according to business rules :)
declare function tns:invalidSalaryChange($emp as
changed-element(empl:Employee)) as xs:boolean {
let $newSalary := fn:data(fn-bea:current-value($emp)/Salary)
let $oldSalary := fn:data(fn-bea:old-value($emp)/Salary)
return (100.0 * fn:abs($newSalary - $oldSalary) div $oldSalary)
gt 10.0

XQuery Developer’s Guide 6-11

BEA XQuery Scripting Extension (XQSE)

XQSE Grammar Summary

6-12

The following summarizes the XQSE grammar:

Prolog ::= ((DefaultNamespaceDecl | Setter | NamespaceDecl | Import)
Separator)*

((varDecl | FunctionDecl | ProcedureDecl | XQSEFunctionDecl| OptionDecl)
Separator)*

XQSEFunctionDecl ::= "declare" xqgse "function"™ QName " (** ParamList? ")"
("'as" SequenceType)? (Block | (“external'™))

ProcedureDecl ::= "declare" "procedure' QName "(*' ParamList? ")" (“'as"
SequenceType)? (Block | (“external'™))

QueryBody ::= Expr | Block
Statement := SimpleStatement | BlockStatement

SimpleStatement ::= SetStatement | IfStatement | ReturnStatement |
ProcedureCall

BlockStatement := WhileStatement | lterateStatement | TryStatement |
Block

ValueStatement := ExprSingle | ProcedureCall

ReturnStatement ::= "return value'" ValueStatement
Block ::= {" ((BlockDecl ";'")* StatementSequence "}"

StatementSequence := ((SimpleStatement ;") | (BlockStatement (*';'")?))*

BlockDecl ::= "declare'"™ "$" VarName TypeDeclaration? (':="
ValueStatement)?

SetStatement ::= "set" "$" VarName ":=" ValueStatement
WhileStatement ::= "while™ (" Expr "™)" Block

IterateStatement ::= "iterate” "$" VarName PositionalVar? "over"
ValueStatement Block

ProcedureCall ::= FunctionCall

TryStatement ::= "try" Block CatchClauseStatement+
CatchClauseStatement ::= catch "' NameTest ("into" VarNameExpr ((',"
VarNameExpr)? "," VarNameExpr)?)?)" Block

IfStatement :-:= "if" """ Expr "™)" "then" Statement (“'else' Statement)?

ItemType := AtomicType | KindTestType | <"item" (" ")"> |
ChangedElementType

ChangedElementType := "changed-element' (' ElementNameOrWildcard)"

XQuery Developer’s Guide

APPENDIXﬂ

XQuery-SQL Mapping Reference

This appendix provides the details of BEA AquaLogic Data Services Platform (AquaLogic Data
Services Platform) core support and base support for relational data, and includes these topics:

e Core RDBMS Support:
— IBM DB2/NT 8 (and higher)
Microsoft SQL Server 2000 (and higher)
Oracle 8.1.x
Oracle 9.x, 10.x
Sybase 12.5.2 (and higher)
PointBase 5.1
Teradata V2R5 (and higher)

e Base (Generic) RDBMS Support

Each section that follows includes information about:
e Database Capabilities Information
o Native RDBMS Data Type Support and XQuery Mappings
e Function and Operator Pushdown
e (Cast Operation Pushdown

e Other SQL Generation Capabilities (including join pushdown support and SQL syntax for joins)

XQuery Developer’s Guide 1-1

XQuery-SQL Mapping Reference

IBM DB2/NT 8 (and higher)

1-2

The tables in this section identify all data type and other mappings that the XQuery engine generates

or supports for IBM DB2/NT 8.

Data Type Mapping

Table G-1 lists supported data type mappings for IBM DB2/NT 8.

Table G-1 IBM DB2 Data Type Mappings

DB2 Data Type XQuery Type
BIGINT xs:long
BLOB xs:hexBinary
CHAR xs:string
CHAR() FOR BIT DATA xs:hexBinary
CLOB! xs:string
DATE xs:date
DOUBLE xs:double
DECIMAL(p,s) (NUMERIC) xs:decimal (if s > 0), xs:integer (if s = 0)
INTEGER xs:int

LONG VARCHAR! xs:string
LONG VARCHAR FOR BIT DATA xs:hexBinary
REAL xs:float
SMALLINT xs:short
TIME? xs:time?
TIMESTAMP® xs:dateTime*
VARCHAR xs:string4
VARCHAR() FOR BIT DATA xs:hexBinary

XQuery Developer’s Guide

[BM DB2/NT 8 (and higher)

1. Pushed down in project list only.

2. Where p is precision (total number of digits, both to the right and left of decimal point) and
s is scale (total number of digits to the right of decimal point).

3. Accurate to 1 second.

4. Values converted to local time zone (timezone information removed) due to TIME and
TIMESTAMP limitations. See “Date and Time Data Type Differences: Timezones and Time
Precision” on page 3-6 for more information.

5. Precision limited to milliseconds.

Function and Operator Pushdown

Table G-2 lists functions and operators that are pushed down to IBM DB2/NT8 RDBMSs. See
“fn-bea:sql-like” on page 2-26 for details about two-argument and three-argument versions of the
fn-bea:sql-like() function.

Table G-2 IBM DB2 Functions and Operators

Group Functions and operators
Logical operators and, or, not
Numeric arithmetic +, - * div, idiv!
mod?
Numeric comparisons! =, 1=, <, <=, >, >=, eq, ne, It, le, gt, ge
Numeric functions abs, ceiling, floor, round
String comparisons® =, 1=, <, <=, >, >=, eq, ne, It, le, gt, ge
String functions concat, upper-case, lower-case, substring(2,3)*,

string-length, contains5, starts—with5, ends—with5,
fn-bea:sql-like(2,3) fn-bea:trimﬁ, fn-bea:trim-left6,
fn-bea:trim-rightﬁ, fn-bea:repeat6, fn—bea:pad-leftG,
fn-bea:pad-righ‘c6

Datetime comparisons =, 1=, <, <=, >, >=, eq, ne, It, le, gt, ge on xs:dateTime,
xs:date, xs:time

XQuery Developer’s Guide

1-3

XQuery-SQL Mapping Reference

Table G-2 IBM DB2 Functions and Operators (Continued)

Datetime functions year-from-dateTime, year-from-date, month-from-dateTime,
month-from-date, day-from-dateTime, day-from-date,
hours-from-dateTime, hours-from-time,
minutes-from-dateTime, minutes-from-time,
seconds-from-dateTime, seconds-from-time,
fn-bea:date-from-dateTime, fn-bea:time-from-dateTime

Aggregate min, max, sum, avg, count, count(distinct-values)

Other empty, exists, subsequence’

1. All numeric types.

2. xs:integer (and subtypes) only.

3. Arguments must have SQL data type CHAR or VARCHAR.

4, If second and third arguments are types xs:double or xs:float, they cannot be
parameters.

5. Second argument must be a constant or a parameter.

6. Argument must be SQL data type CHAR or VARCHAR.

7. Both two- and three-argument variants supported.

Cast Operation Pushdown

Table G-3 lists supported cast operations.

Table G-3 IBM DB2 Cast Operations

Source XQuery Type Target XQuery Type
numeric xs:double

numeric xs:float

numeric xs:int

numeric xs:integer

numeric xs:short

xs:decimal (and subtypes) xs:string

xs:integer (and subtypes) xs:decimal

xs:string xs:double

14 XQuery Developer’s Guide

Table G-3 IBM DB2 Cast Operations (Continued)

xs:string xs:float
xs:string xs:int
xs:string xs:integer
xs:string xs:short
xs:dateTime xs:time

[BM DB2/NT 8 (and higher)

Other SQL Generation Capabilities

Table G-4 lists common query patterns that can be pushed down. See also “Common Query Patterns”.

Table G-4 IBM DB2 Other SQL Generation Capabilities

Feature Description
If-then-else yes

Inner joins yes, SQL-92 syntax
Outer joins yes, SQL-92 syntax
Semi joins, Anti semi joins yes

Order by yes

Order by: Empty (NULL) order
supported

Fixed (always sorts NULLs high).
Order-bys with “empty least” modifier
(the XQuery default) are not pushed

down.
Order by: Aggregate function in yes
ordering expression
Group by yes
Distinct pattern yes

Trivial aggregate pattern

yes (using GROUP BY constant)

Direct SQL composition

yes

XQuery Developer’s Guide

1-5

XQuery-SQL Mapping Reference

Microsoft SQL Server 2000 (and higher)

1-6

The tables in this section identify all data type and other mappings that the XQuery engine generates
or supports for Microsoft SQL Server 2000.

Data Type Mapping

Table G-5 lists supported data type mappings for Microsoft SQL Server 2000.
Table G-5 SQL Server 2000 Data Type Mapping

SQL Data Type XQuery Type
BIGINT xs:long
BINARY xs:hexBinary
BIT xs:boolean
CHAR xs:string
DATETIME! xs:dateTime?

DECIMAL(p,s)? (NUMERIC) xs:decimal (if s > 0), xs:integer (if s = 0)

FLOAT xs:double
IMAGE xs:hexBinary
INTEGER xs:int
MONEY xs:decimal
NCHAR xs:string
NTEXT* xs:string
NVARCHAR xs:string
REAL xs:float
SMALLDATETIME? xs:dateTime
SMALLINT xs:short
SMALLMONEY xs:decimal

XQuery Developer’s Guide

Microsoft SQL Server 2000 (and higher)

Table G-5 SQL Server 2000 Data Type Mapping (Continued)

SQL_VARIANT xs:string
TEXT xs:string
TIMESTAMP xs:hexBinary
TINYINT xs:short
VARBINARY xs:hexBinary
VARCHAR xs:string
UNIQUIDENTIFIER xs:string

1. Fractional-second-precision up to 3 digits (milliseconds). No timezone.

2. Values converted to local time zone (timezone information removed) and fractional seconds
truncated to milliseconds due to DATETIME limitations. See “Date and Time Data Type
Differences: Timezones and Time Precision” on page 3-6 for more information.

3. Where p is precision (total number of digits, both to the right and left of decimal point) and
s is scale (total number of digits to the right of decimal point).

4, Pushed down in project list only.

5. Accuracy of 1 minute.

Additionally, the following XQuery data types can be passed as parameters or returned by pushed
functions:

o xs:date (see Table G-6 for functions and operators that use xs:date). When xs:date is sent to the
database, it is converted to local time zone. See “Date and Time Data Type Differences:
Timezones and Time Precision” on page 3-6 for more information.

o xdt:dayTimeDuration (see “Datetime Arithmetic” functions in Table G-6 for details).

o xdt:yearMonthDuration (see “Datetime Arithmetic” functions in Table G-6 for details).

XQuery Developer’s Guide 1-1

XQuery-SQL Mapping Reference

Function and Operator Pushdown

Table G-6 lists functions and operators that are pushed down to Microsoft SQL Server 2000. (See
“fn-bea:sql-like” on page 2-26 for details about two-argument and three-argument versions of the
fn-bea:sql-like() function.)

Table G-6 SQL Server 2000 Function and Operator Pushdown

1-8

Group

Functions and Operators

Logical operators

and, or, not

Numeric arithmetic

+, - * div, idiv!

mod?

Numeric compau‘isons1

=, 15, <, <=, >, >=, eq, ne, 1t, le, gt, ge

Numeric functions

abs, ceiling, floor, round

String comparisons3

=, 15, <, <=, >, >=, eq, ne, 1t, le, gt, ge

String functions

concat, upper-case, lower-case, substring(2,3)*,
string-length, contains5, starts—with5, ends—with5,
fn-bea:sql-like(2,3)4, fn-bea;trim, fn-bea:trim-left,
fn-bea:trim-right, fn-bea:repeat, fn-bea:pad-left,
fn-bea:pad-right

Datetime comparisons

=, 1=, <, <=, >, >=, eq, ne, It, le, gt, ge on xs:dateTime,
xs:date, xdt:yearMonthDuration, xdt:dayTimeDuration

Datetime functions

year-from-dateTime, year-from-date, years-from-duration,
month-from-dateTime, month-from-date,
months-from-duration, day-from-dateTime, day-from-date,
days-from-duration, hours-from-dateTime,
hours-from-duration, minutes-from-dateTime,
minutes-from-duration, seconds-from-dateTime,
seconds-from-duration, fn-bea:date-from-dateTime

XQuery Developer’s Guide

Microsoft SQL Server 2000 (and higher)

Table G-6 SQL Server 2000 Function and Operator Pushdown (Continued)

Datetime arithmetic

op:add-yearMonthDurations, op:add-dayTimeDurations,
op:subtract-yearMonthDurations,
op:subtract-dayTimeDurations,
op:multiply-yearMonthDuration,
op:multiply-dayTimeDuration,
op:divide-yearMonthDuration, op:divide-dayTimeDuration,
subtract-dateTimes-yielding-yearMonthDuration,
subtract-dateTimes-yielding-dayTimeDuration,
op:add-yearMonthDuration-to-dateTime,
op:add-dayTimeDuration-to-dateTime,
op:subtract-yearMonthDuration-from-dateTime,
op:subtract-dayTimeDuration-from-dateTime,
subtract-dates-yielding-yearMonthDuration,
subtract-dates-yielding-dayTimeDuration,
op:add-yearMonthDuration-to-date,
op:add-dayTimeDuration-to-date,
op:subtract-yearMonthDuration-from-date,
op:subtract-dayTimeDuration-from-date

Aggregate

min, max, sum, avg, count, count(distinct-values)

Other

empty, exists, subsequence6

1. For all numeric types

2. For xs:integer and its subtypes only.

3. Arguments must be of SQL data type CHAR, NCHAR, VARCHAR, or NVARCHAR.
4. Both the 2-argument and 3-argument versions of function supported.

5. Second argument must be SQL data type CHAR, NCHAR, VARCHAR, or

NVARCHAR.

6. Only the three-argument variant of fn:subsequence is supported, with the additionl
requirement that the $startingLoc must be 1 (constant) and $length must be

xs:integer type.

XQuery Developer’s Guide

1-9

XQuery-SQL Mapping Reference

Cast Operation Pushdown

Table G-7 lists supported cast operations.

Table G-7 SQL Server 2000 Cast Operations

1-10

Source XQuery Data Type Target XQuery Data Type
numeric xs:string
numeric xs:double
numeric xs:float
numeric xs:integer
numeric xs:long
numeric xs:int
numeric xs:short
xs:integer (and subtypes) xs:decimal
xs:string xs:double!
xs:string xs:float
xs:string xs:integer
xs:string xs:long
xs:string xs:int
xs:string xs:short
xs:dateTime xs:date
xs:dateTime xs:string

1. Source SQL type must be CHAR, NCHAR, VARCHAR, or NVARCHAR.

XQuery Developer’s Guide

Microsoft SQL Server 2000 (and higher)

Other SQL Generation Capabilities

Table G-8 lists common query patterns that can be pushed down. (See “Common Query Patterns” for

details.)

Table G-8 SQL Server 2000 Other SQL Generation Capabilities

Feature Description
If-then-else yes

Inner joins yes, SQL-92 syntax
Outer joins yes, SQL-92 syntax
Semi joins, Anti semi joins yes

Order by yes

Order by: Empty order (NULL order)

fixed (always sorts NULLs low). Order-bys with "empty
greatest" modifier are not pushed down.

Order by: Aggregate function in yes

ordering expression

Group by yes

Distinct pattern yes

Trivial aggregate pattern yes (using subquery)
Direct SQL composition yes

XQuery Developer’s Guide

-1

XQuery-SQL Mapping Reference

Oracle 8.1.x

The tables in this section identify all data type and other mappings that the XQuery engine generates
or supports for Oracle 8.1.x (Oracle 8).

Data Type Mapping

Table G-9 lists supported data type mappings for Oracle 8.1.x (Oracle 8).
Table G-9 Oracle 8.1.x Data Type Mapping

Oracle 8 Data Type XQuery Type
BFILE not supported
BLOB xs:hexBinary
CHAR xs:string
CLOB! xs:string
DATE2 xs:dateTime
FLOAT xs:double
LONG! xs:string
LONG RAW xs:hexBinary
NCHAR xs:string
NCLOB! xs:string
NUMBER xs:double
NUMBER(p,s)? xs:decimal (if s > 0), xs:integer (if s <=0)
NVARCHAR2 xs:string
RAW xs:hexBinary
ROWID xs:string
UROWID xs:string

1. Pushed down in project list only.

1-12 XQuery Developer’s Guide

Oracle 8.1.x

2. Does not support fractional seconds.
3. Where p is precision (total number of digits, both to the right and left of decimal point) and
s is scale (total number of digits to the right of decimal point).

Additionally, the following XQuery data types can be passed as parameters or returned by pushed
functions:

o xs:date (see Table G-10 for functions and operators that use xs:date)
o xdt:;yearMonthDuration (see “Datetime Arithmetic” in Table G-10 for details)

o xs:integer subtypes (see “Numeric ...” functions and operators in Table G-10 for details)

Function and Operator Pushdown

Table G-10 lists functions and operators that are pushed down. See “fn-bea:sql-like” on page 2-26 for
details about two-argument and three-argument versions of the fn-bea:sql-like() function.

Table G-10 Oracle 8.1.x Function and Operator Pushdown

Group Functions and operators

Logical operators and, or, not

Numeric arithmetic! + - % div, idiv, mod

Numeric comparisons! =, 1=, <, <=,>,>=, eq, ne, It le, gt, ge

Numeric functions abs, ceiling, floor, round

String comparisons? =, 1=, <, <=, >, >=, eq, ne, 1t, le, gt, ge

String functions concat, upper-case®, lower-case®, substring(2,3)?,

string-length4, contains5, starts-with5, ends-with5,
fn-bea:sql-like(2,3), fn-bea:trim, fn-bea:trim-left,
fn-bea:trim-right, fn-bea:repeat, fn-bea:pad-left,
fn-bea:pad-right

Datetime comparisons =, 1=, <, <=, >, >=, eq, ne, 1t le, gt, ge on xs:dateTime,
xs:date, xdt:yearMonthDuration

XQuery Developer’s Guide 1-13

XQuery-SQL Mapping Reference

Tahle G-10 Oracle 8.1.x Function and Operator Pushdown (Continued)

Datetime functions

year-from-dateTime, year-from-date, years-from-duration,
month-from-dateTime, month-from-date,
months-from-duration, day-from-dateTime, day-from-date,
days-from-duration, hours-from-dateTime,
minutes-from-dateTime, seconds-from-dateTime,
fn-bea:date-from-dateTime

Datetime arithmetic

op:add-yearMonthDurations,
op:subtract-yearMonthDurations,
op:multiply-yearMonthDuration,
op:divide-yearMonthDuration,
subtract-dateTimes-yielding-yearMonthDuration,
op:add-yearMonthDuration-to-dateTime,
op:subtract-yearMonthDuration-from-dateTime,
subtract-dates-yielding-yearMonthDuration,
op:add-yearMonthDuration-to-date,
op:subtract-yearMonthDuration-from-date

Aggregate

min, max, sum, avg, count, count(distinct-values)

Other

empty, exists, subsequence6

1. For all numeric types.

2. Arguments must be of SQL data type CHAR, NCHAR, NVARCHAR2, or VARCHAR2.
3. Empty input (NULL) handling deviates from XQuery semantics—returns empty
sequence (instead of empty string).

4, Argument must be data type CHAR, NCHAR, NVARCHARZ, or VARCHAR2.

5. Second argument must be data type CHAR, NCHAR, NVARCHAR2, or VARCHAR2.
6. Both two- and three-argument variants of fn:subsequence() are supported without

restriction.

Cast Operation Pushdown

Table G-11 lists supported cast operations.

Table G-11 Oracle 8.1.x Cast Operation Pushdown

Source XQuery Type Target XQuery Type
numeric xs:string
numeric xs:decimal

1-14 XQuery Developer’s Guide

Oracle 8.1.x

Tahle G-11 Oracle 8.1.x Cast Operation Pushdown (Continued)

numeric xs:integer
numeric xs:float
numeric xs:double
xsistring xs:decimal’
xs:string xsiinteger!
xs:string xs:float!
xs:string xs:double!
xs:dateTime xs:date
xs:date xs:dateTime

1. Source data type must be CHAR, NCHAR, NVARCHARZ, or VARCHAR2.

Other SQL Generation Capabilities

Table G-12 lists common query patterns that can be pushed down. See “Common Query Patterns” for

details.

Table G-12 Oracle 8.1.x Other SQL Generation Capabilities

Feature Description

If-then-else yes

Inner joins yes, SQL-89 syntax

Outer joins yes, Oracle proprietary syntax

Semi joins, Anti semi joins yes

Order by yes

Order by: Empty order (NULL order) dynamic, no restriction on order by
pushdown

Order by: Aggregate function in yes

ordering expression

XQuery Developer’s Guide

1-15

XQuery-SQL Mapping Reference

Table G-12 Oracle 8.1.x Other SQL Generation Capabilities (Continued)

Group by yes
Distinct pattern yes
Trivial aggregate pattern yes (using GROUP BY constant)
Direct SQL composition yes

Oracle 9.x, 10.x

The tables in this section identify all data type and other mappings that the XQuery engine generates
or supports for Oracle 9.x (Oracle %) and Oracle 10.x (Oracle 10g). Note that Oracle treats empty
strings as NULLs, which deviates from XQuery semantics and may lead to unexpected results for
expressions that are pushed down.

Data Type Mapping

Table G-13 lists supported data type mappings for Oracle 9.x and 10.x.

1-16

Table G-13 Oracle 9.x, 10.x Data Type Mapping

Oracle 9 Data Type XQuery Type

BFILE not supported

BLOB xs:hexBinary

CHAR xs:string

CLOB! xs:string

DATE xs:dateTime?

FLOAT xs:double

INTERVAL DAY TO SECOND xdt:dayTimeDuration
INTERVAL YEAR TO MONTH xdt:yearMonthDuration
LONG! xs:string

LONG RAW xs:hexBinary

XQuery Developer’s Guide

Oracle 9.x, 10.x

Table G-13 Oracle 9.x, 10.x Data Type Mapping (Continued)

NCHAR xs:string

NCLOB! xs:string

NUMBER xs:double

NUMBER(p,s) xs:decimal (if s > 0), xs:integer (if s <=0)
NVARCHAR2 xs:string

RAW xs:hexBinary

ROWID xs:string

TIMESTAMP xs:dateTime?

TIMESTAMP WITH LOCAL xs:dateTime

TIMEZONE

TIMESTAMP WITH TIMEZONE xs:dateTime

VARCHAR2 xs:string

UROWID xs:string

1. Pushed down in project list only.

2. When SDO stores xs:dateTime value in Oracle DATE type, it is converted to local time
zone and fractional seconds are truncated due to DATE limitations. See “Date and Time
Data Type Differences: Timezones and Time Precision” on page 3-6 for more information.
3. XQuery engine maps XQuery xs:dateTime to either TIMESTAMP or TIMESTAMP WITH
TIMEZONE data type, depending on presence of timezone information. Storing xs:dateTime
using SDO may result in loss of precision for fractional seconds, depending on the SQL type
definition.

Additionally, these XQuery data types can be passed as parameters or returned by pushed functions:
o xs:date (see Table G-14 for functions and operators that use xs:date)

o xs:integer subtypes (see “Numeric ...” functions and operators in Table G-14 for details)

XQuery Developer’s Guide 1-11

XQuery-SQL Mapping Reference

Function and Operator Pushdown

Table G-14 lists functions and operators that are pushed down to Oracle 9.x and 10.x. See
“fn-bea:sql-like” on page 2-26 for details about two-argument and three-argument versions of the
fn-bea:sql-like() function.

Table G-14 Oracle 9.x, 10.x Function and Operator Pushdown

Group

Functions and Operators

Logical operators

and, or, not

Numeric arithmetic!

+, -, ¥, div, idiv, mod

Numeric comparisons! =, 1=, <, <=,>,>=, eq, ne, It, le, gt, ge

Numeric functions abs, ceiling, floor, round

String comparisons? =, 1=, <, <=, >, >=, eq, ne, It, le, gt, ge

String functions concat, upper-case®, lower-case®, substring(2,3)?, string-length®,

contains5, starts—with5, ends-with5, fn-bea:sql-like(2,3), fn-bea:trim,
fn-bea:trim-left, fn-bea:trim-right, fn-bea:repeat, fn-bea:pad-left,
fn-bea:pad-right

Datetime comparisons =, 1=, <, <=, >, >=, eq, ne, It, le, gt, ge on xs:dateTime, xs:date,

xdt:yearMonthDuration, xdt:dayTimeDuration

Datetime functions year-from-dateTime, year-from-date, years-from-duration,
month-from-dateTime, month-from-date, months-from-duration,
day-from-dateTime, day-from-date, days-from-duration,
hours-from-dateTime, hours-from-duration, minutes-from-dateTime,
minutes-from-duration, seconds-from-dateTime, seconds-from-duration,

fn-bea:date-from-dateTime

7-18 XQuery Developer’s Guide

Oracle 9.x, 10.x

Table G-14 Oracle 9.x, 10.x Function and Operator Pushdown (Continued)

Datetime arithmetic

op:add-yearMonthDurations, op:add-dayTimeDurations,
op:subtract-yearMonthDurations, op:subtract-dayTimeDurations,
op:multiply-yearMonthDuration, op:multiply-dayTimeDuration,
op:divide-yearMonthDuration, op:divide-dayTimeDuration,
subtract-dateTimes-yielding-yearMonthDuration,
subtract-dateTimes-yielding-dayTimeDuration,
op:add-yearMonthDuration-to-dateTime,
op:add-dayTimeDuration-to-dateTime,
op:subtract-yearMonthDuration-from-dateTime,
op:subtract-dayTimeDuration-from-dateTime,
subtract-dates-yielding-yearMonthDuration,
subtract-dates-yielding-dayTimeDuration,
op:add-yearMonthDuration-to-date, op:add-dayTimeDuration-to-date,
op:subtract-yearMonthDuration-from-date,
op:subtract-dayTimeDuration-from-date

Aggregate

min, max, sum, avg, count, count(distinct-values)

Other

empty, exists, subsequence6

1. For all numeric types

2. Arguments must be of SQL type (N)CHAR or (N)VARCHAR2
3. Empty input (NULL) handling deviates from XQuery semantics—returns empty sequence

(instead of empty string).

4, Argument must be CHAR, CLOB, NCHAR, NVARCHAR2, or VARCHAR2 data type.
5. Second argument must be CHAR, NCHAR, NVARCHAR2, or VARCHAR2 data type.
6. Both two- and three-argument variants of fn:subsequence() are supported without restriction.

XQuery Developer’s Guide 1-19

XQuery-SQL Mapping Reference

Cast Operation Pushdown

Table G-15 lists cast operations that can be pushed down.

Table G-15 Oracle 9.x, 10.x Cast Operation

Source XQuery Type Target XQuery Type
numeric xs:string
numeric xs:decimal
numeric xs:integer
numeric xs:float
numeric xs:double
xs:string xs:decimal!
xs:string xs:integer
xs:string xs:float
xs:string xs:double
xs:dateTime xs:date
xs:date xs:dateTime’

1. Source SQL type must be CHAR, NCHAR, VARCHAR2, or NVARCHAR2.
2. Source SQL type must be DATE or TIMESTAMP to achieve this mapping.

1-20 XQuery Developer’s Guide

Oracle 9.x, 10.x

Other SQL Generation Capabilities

Table G-16 lists common query patterns that can be pushed down. (See “Common Query Patterns” for

details.)

Table G-16 Oracle 9.x, 10.x Other SQL Generation Capabilities

Feature Description
If-then-else yes

Inner joins yes, SQL-92 syntax
Outer joins yes, SQL-92 syntax
Semi joins, Anti semi joins yes

Order by yes

Order by: Empty order (NULL order)

dynamic, no restriction on order by pushdown

Order by: Aggregate function in yes
ordering expression

Group by yes
Distinct pattern yes

Trivial aggregate pattern pushdown

yes (using GROUP BY constant)

Direct SQL composition

yes

XQuery Developer’s Guide

1-21

XQuery-SQL Mapping Reference

Sybase 12.5.2 (and higher)

1-22

The tables in this section identify all data type and other mappings that the XQuery engine generates

or supports for Sybase 12.5.2 (and higher).

As you read through the tables in this section, be aware that Sybase deviates from XQuery semantics (which

ignores empty strings) and treats empty strings as a single-space string.

Data Type Mapping

Table G-17 lists supported data type mappings for Sybase 12.5.2.

Table G-17 Sybase 12.5.2 Data Type Mapping

Sybase Data Type XQuery Type
BINARY xs:hexBinary
BIT xs:boolean
CHAR xs:string
DATE xs:date
DATETIME! xs:dateTime?
DECIMAL(p,s)® (NUMERIC) xs:decimal (if s > 0), xs:integer (if s == 0)
DOUBLE PRECISION xs:double
FLOAT xs:double
IMAGE xs:hexBinary
INT (INTEGER) xsiint
MONEY xs:decimal
NCHAR xs:string
NVARCHAR xs:string
REAL xs:float
SMALLDATETIME* xs:dateTime
SMALLINT xs:short

XQuery Developer’s Guide

Sybase 12.5.2 (and higher)

Table G-17 Sybase 12.5.2 Data Type Mapping (Continued)

SMALLMONEY xs:decimal
SYSNAME xs:string
TEXT? xs:string
TIME xs:time
TINYINT xs:short
VARBINARY xs:hexBinary
VARCHAR xs:string

1. Supports fractional seconds up to 3 digits (milliseconds) precision; no timezone information.
2. Values converted to local time zone (timezone information removed) and fractional seconds
truncated to milliseconds due to DATETIME limitations. See “Date and Time Data Type
Differences: Timezones and Time Precision” on page 3-6 for more information.

3. Where p is precision (total number of digits, both to the right and left of decimal point) and
s is scale (total number of digits to the right of decimal point).

4. Accurate to 1 minute.

5. Expressions returning text are pushed down in the project list only.

Additionally, the following data types can be passed as parameters or returned by pushed functions:
o xdt:dayTimeDuration

o xdt:;yearMonthDuration

See “Datetime arithmetic” in Table for details.

XQuery Developer’s Guide 1-23

XQuery-SQL Mapping Reference

1-24

Function and Operator Pushdown

Table G-18 lists functions and operators that are pushed down to base RDBMSs. (See “fn-bea:sql-like”

on page 2-26 for details about two-argument and three-argument versions of the fn-bea:sql-like()

function.)

Table G-18 Sybase 12.5.2 Function and Operator Pushdown

Group Functions and operators
Logical operators and, or, not
Numeric arithmetic +- % div !

idiv?

mod®

Numeric compaurisons1

= !:7 <y <5, >, >=, €Q, he, lt) lev gt, ge

Numeric functions

abs, ceiling, floor, round

String comparisons4

= !:7 <y <5, >, >=, €Q, he, lt) lev gt, ge

String functions

concat5, upper-case, lower-case, substring(2,3),
string-length, containsﬁ, starts—with6, ends—withG,
fn-bea:sql-like(2,3), fn-bea:trim, fn-bea:trim-left,
fn-bea:trim-right, fn-bea:repeat, fn-bea:pad-left,
fn-bea:pad-right

Datetime comparisons

=, 1=, <, <=, >, >=, eq, ne, It, le, gt, ge on xs:dateTime,
xs:date, xs:time, xdt:yearMonthDuration,
xdt:dayTimeDuration

Datetime functions

year-from-dateTime, year-from-date, years-from-duration,
month-from-dateTime, month-from-date,
months-from-duration, day-from-dateTime, day-from-date,
days-from-duration, hours-from-dateTime, hours-from-time,
hours-from-duration, minutes-from-dateTime,
minutes-from-time, minutes-from-duration,
seconds-from-dateTime, seconds-from-time,
seconds-from-duration, fn-bea:date-from-dateTime,
fn-bea:time-from-dateTime

XQuery Developer’s Guide

Sybase 12.5.2 (and higher)

Tahle G-18 Sybase 12.5.2 Function and Operator Pushdown (Continued)

Datetime arithmetic op:add-yearMonthDurations,
op:subtract-yearMonthDurations,
op:multiply-yearMonthDuration,
op:divide-yearMonthDuration, op:add-dayTimeDurations,
op:subtract-dayTimeDurations,
op:multiply-dayTimeDuration, op:divide-dayTimeDuration,
op:add-yearMonthDuration-to-dateTime,
op:add-yearMonthDuration-to-date,
op:subtract-yearMonthDuration-from-dateTime,
op:subtract-yearMonthDuration-from-date,
op:add-dayTimeDuration-to-dateTime,
op:add-dayTimeDuration-to-date,
op:subtract-dayTimeDuration-from-dateTime,
op:subtract-dayTimeDuration-from-date,
fn:subtract-dateTimes-yielding-yearMonthDuration,
fn:subtract-dates-yielding-yearMonthDuration,
fn:subtract-dateTimes-yielding-dayTimeDuration,
fn:subtract-dates-yielding-dayTimeDuration

Aggregate min, max, sum, avg, count, count(distinct-values)

Other empty, exists

1. All numeric types (+, -, *, div operators are pushed down for all numeric types).
2. xs:decimal (and subtypes) only

3. xs:integer (and subtypes) only

4, Arguments must be SQL data type CHAR, NCHAR, NVARCHAR, or VARCHAR.

5. Each argument must be SQL data type CHAR, NCHAR, NVARCHAR, or VARCHAR.
6. Second argument must be constant or SQL parameter.

XQuery Developer’s Guide

1-25

XQuery-SQL Mapping Reference

Cast Operation Pushdown

The Table G-19 lists supported cast operations.
Table G-19 Sybase 12.5.2 Cast Operation Pushdown

Source XQuery Type Target XQuery Type
numeric xs:double
numeric xs:float
numeric xs:int
numeric xs:short
numeric xs:string
xs:decimal (and subtypes) xs:integer
xs:integer (and subtypes) xs:decimal
xs:string xs:double!
xs:string xs:float
xs:string xs:int
xs:string xs:integer
xs:string xs:short
xs:dateTime xs:date
xs:dateTime xs:time

1. Source SQL type must be (N)CHAR or (N)VARCHAR

1-26 XQuery Developer’s Guide

Sybase 12.5.2 (and higher)

Other SQL Generation Capabilities

Table G-20 lists common query patterns that can be pushed down. See “Common Query Patterns” for

details.

Table G-20 Sybase 12.5.2 Other SQL Generation Capabilities

Feature Description
If-then-else yes

Inner joins yes, SQL-92 syntax
Outer joins yes, SQL-92 syntax
Semi joins, Anti semi joins yes

Order by yes

Order by: Empty order (NULL order)

fixed (always sorts NULLs low). Order-bys with "empty
greatest" modifier are not pushed down.

Order by: Aggregate function in yes

ordering expression

Group by yes

Distinct pattern yes

Trivial aggregate pattern yes (using subquery)
Direct SQL composition yes

XQuery Developer’s Guide

1-21

XQuery-SQL Mapping Reference

PointBase 5.1

The tables in this section identify all data type and other mappings that the XQuery engine generates
or supports for PointBase 5.1.

Data Type Mapping

Table G-21 lists supported data type mappings for PointBase 5.1.

Table G-21 PointBase 5.1 Data Type Mapping

PointBase Data Type XQuery Type
BIGINT xs:long
BLOB xs:hexBinary
BOOLEAN xs:boolean
CHAR (CHARACTER) xs:string
CLOB xs:string
DATE xs:date

DECIMAL(p,s)" (NUMERIC)

xs:decimal (if s > 0), xs:integer (if s == 0)

DOUBLE PRECISION xs:double
FLOAT xs:double
INTEGER (INT) xs:int
SMALLINT xs:short
REAL xs:float
TIME xs:time
TIMESTAMP xs:dateTime
VARCHAR xs:string

1. Where p is precision (total number of digits, both to the right and left of decimal point) and s

is scale (total number of digits to the right of decimal point).

1-28 XQuery Developer’s Guide

PointBase 5.1

Function and Operator Pushdown

Table G-22 lists functions and operators that are pushed down to PointBase. See “fn-bea:sql-like” on
page 2-26 for details about two-argument and three-argument versions of the fn-bea:sql-like()

function.

Table G-22 PointBase 5.1 Function and Operator Pushdown

Group

Functions and operators

Logical operators

and, or, not

Numeric arithmetic!

+, -, ¥, div, idiv

Numeric compaurisons1

= !:7 <y <5, >, >=, €Q, e, lty ley gt, ge

String comparisons2

= !:7 <, <5, >, >=, €Q, 16, lta lea gt7 ge

String functions

concat,upper-case, lower-case, substring(2,3), string-length,
containss, starts—withg, ends—withg, fn-bea:sql-like(2,3)
fn-bea:trim, fn-bea:trim-left, fn-bea:trim-right

Datetime comparisons

=, 1=, <, <=, >, >=, eq, ne, 1, le, gt, ge on xs:dateTime,
xs:date, xs:time

Datetime functions

year-from-dateTime, year-from-date, month-from-dateTime,
month-from-date, day-from-dateTime, day-from-date,
hours-from-dateTime, hours-from-time,
minutes-from-dateTime, minutes-from-time,
seconds-from-dateTime, seconds-from-time,
fn-bea:date-from-dateTime

Aggregate

min, max, sum, avg, count, count(distinct-values)

Other

empty, exists

1. All numeric types

2. CHAR or VARCHAR SQL data types only for arguments
3. Second argument must be constant or parameter.

XQuery Developer’s Guide

1-29

XQuery-SQL Mapping Reference

Cast Operation Pushdown

Table G-19 lists supported cast operations.

Table G-23 PointBase 5.1 Cast Operation Pushdown

Source XQuery Type Target XQuery Type
numeric xs:decimal
numeric xs:double
numeric xs:float
numeric xs:int
numeric xs:short
numeric xs:string
xs:integer and its subtypes xs:integer
xs:integer and its subtypes xs:long
xs:string xs:decimal!
xs:string xs:double!
xs:string xs:float!
xs:string xs:integ.f,er1
xs:string xs:long1
xs:string xs:int!
xs:string xs:short!
xs:dateTime xs:date

1. Source SQL data type must be CHAR or VARCHAR

1-30 XQuery Developer’s Guide

PointBase 5.1

Other SQL Generation Capabilities

Table G-24 lists common query patterns that can be pushed down. (See “Common Query Patterns” for

details.)

Table G-24 PointBase 5.1 Other SQL Generation Capabilities

Feature Description

If-then-else no

Inner joins yes, SQL-92 syntax

Outer joins yes (partially), SQL-92 syntax. Only simple outer joins are

pushed, the ones that require subquery don't (e.g. when right
branch has a where clause)

Semi joins, Anti semi joins

yes

Order by

yes

Order by: Empty order (NULL order)

fixed (always sorts NULLs low). Order-bys with "empty
greatest” modifier are not pushed down.

Order by: Aggregate function in
ordering expression

no

Group by yes (Group by function expression is not supported, only
group by column is pushed

Distinct pattern yes

Trivial aggregate pattern pushdown no

Direct SQL composition no

XQuery Developer’s Guide 1-31

XQuery-SQL Mapping Reference

Teradata V2R3 (and higher)

The tables in this section identify all data type and other mappings that the XQuery engine generates
or supports for Teradata V2R5 (and higher).

Data Type Mapping

Table G-25 lists supported data type mappings for Teradata V2R5.
Table G-25 Teradata V2R5 Data Type Mapping

Teradata Data Type XQuery Type
BYTE xs:hexBinary
BYTEINT xs:short
CHAR xs:string
DATE xs:date

DECIMAL(p,s) (NUMERIC)

xs:decimal (if s > 0),

xs:integer (if s == 0)

FLOAT (REAL, DOUBLE PRECISION) xs:double
INTEGER xs:int

LONG VARCHAR xs:string
SMALLINT xs:short
TIME xs:time
TIMESTAMP xs:dateTime
VARBYTE xs:hexBinary
VARCHAR xs:string

1-32 XQuery Developer’s Guide

Teradata V2R5 (and higher)

Function and Operator Pushdown

Table G-26 lists functions and operators that are pushed down to Teradata. See “fn-bea:sql-like” on

page 2-26 for details about two-argument and three-argument versions of the fn-bea:sql-like()
function.

Table G-26 Teradata V2R5 Function and Operator Pushdown

Group Functions and operators
Logical operators and, or, not
Numeric arithmetic +,- %1
div?
Numeric comparisons! =, 1=, <, <=, >, >=, eq, ne, It, le, gt, ge
String comparisons® =, 1=, <, <=,>,>=, eq, ne, It le, gt, ge
String functions concat?, upper-case®, lower-case®, contains?, starts-with®,

ends-with5, fn-bea:sql-like(2,3)5

Datetime comparisons =, 1=, <, <=, >, >=, eq, ne, It, le, gt, ge on xs:dateTime,
xs:date, xs:time

Aggregate min, max, sum, avg, count, count(distinct-values)

Other empty, exists

1. All numeric types

2. Only xs:decimal, xs:float, and xs:double

3. CHAR or VARCHAR SQL data types only for all arguments

4. CHAR or VARCHAR SQL data type only for first argument

5. First argument must be CHAR or VARCHAR SQL data type, second argument must
be a constant or parameter

XQuery Developer’s Guide

1-33

XQuery-SQL Mapping Reference

Cast Operation Pushdown

Cast operations are not pushed down.

Other SQL Generation Capabilities

Table G-27 lists common query patterns that can be pushed down. (See “Common Query Patterns” for
details.)

Table G-27 Teradata V2R5 Other SQL Generation Capabilities

Feature Description

Inner joins yes, SQL-92 syntax
Outer joins yes

Semi joins, Anti semi joins yes

Order by yes

Order by: Empty order (NULL order) fixed (always sorts NULLs low). Order-bys with "empty
greatest" modifier are not pushed down.

Order by: Aggregate function in no
ordering expression

Group by yes
Distinct pattern yes

Trivial aggregate pattern pushdown yes (using GROUP BY constant)

If-then-else pushdown yes

Subsequence pushdown yes

SQL Exit query composition (pushdown yes
on top of SQL Exit)

Runtime connection management no connection sharing

1-34 XQuery Developer’s Guide

Base (Generic) RDBMS Support

Base (Generic) RDBMS Support

Each JDBC drivers provide information about inherent properties and capabilities of the RDBMS with
which it is associated. During the metadata import process, AquaL.ogic Data Services Platform queries
a configured data source’s JDBC driver for basic properties and capabilities information. Much of the
information obtained is stored in the metadata section of the data service definition file (.ds). See
“Understanding Data Service Annotations” in the Data Services Developer’s Guide for more

information.

Datahase Capabilities Information

The database capabilities listed in Table G-28 are obtained from the operative JDBC driver and stored
as properties in the .ds (data service) definition file.

Table G-28 Database Properties Derived from the JDBC Driver

Property Description Possible Values

supportsSchemasInDataManipulation ~ Boolean that identifies whether SQL true, false
statements can include schema names

supportsCatalogsInDataManipulation ~ Boolean that identifies whether database true, false
catalogs can be addressed by SQL

supportsLikeEscapeClause Boolean that identifies if the database true, false

supports ESCAPE clause in LIKE expression

nullSortOrder Order in which NULLs are sorted low, high, unknown

identifierQuote String used as delimiter to denote (offset) String value (can
identifier labels be empty)

catalogSeparator String used as delimiter (separator) between String value

catalog (or schema) and table name

XQuery Developer’s Guide

1-35

../datasrvc/Understanding Data Service Annotations.html

XQuery-SQL Mapping Reference

1-36

The AquaLogic Data Services Platform XQuery engine typically quotes the names (identifiers) of
object names to properly handle any special characters. The identifierQuote property (see Table) is
obtained from the JDBC driver. However, different RDBMSs may use different identifiers for different
database object names:

e catalogs
e schemas
e tables

e columns

If necessary, you can manually override the identifier quote property for each type of identifier (see
Table).

Typically, the identifierQuote property obtained from the JDBC driver is used. However, if the specific
quote property is available and the RDBMS uses it, you can modify the annotation settings in the .ds
file (see “Understanding Data Service Annotations” in the Data Services Developer’s Guide for more
information about these properties). The XQuery engine (metadata importer sub-system) uses the
specific quote property (see Table G-29) if it is available, otherwise, it uses the “identifierQuote”
property provided by the JDBC driver.

The only exception to this rule is for Sybase versions below Sybase 12.5.2, which is treated as a base
platform. Sybase does not use quotes for catalogs even though JDBC drivers return double quote (")
for “identifierQuote” property. The XQuery engine accommodates this mismatch by automatically
setting “catalogQuote” property to the empty string.

Table G-29 Optional Quote Properties for Database Objects

Property Description Possible Values
catalogQuote Special character used as quote to denote name of string

catalog
schemaQuote Special character used as quote to denote name of string

schema
tableQuote Special character used as quote to denote name of table string
columnQuote Special character used as quote to denote name of string

column

XQuery Developer’s Guide

../datasrvc/Understanding Data Service Annotations.html

Data Type Mapping

When mapping SQL to XQuery datatypes, the XQuery engine first checks the JDBC typecode. If the
typecode has a corresponding XQuery type, AquaLogic Data Services Platform uses the matching
native type name. If no matching typecode or type name is available, the column is ignored. Table G-30

shows this mapping.

Base (Generic) RDBMS Support

Table G-30 Base Platform Data Type Mapping (JDBC<—>XQuery Equivalents)

JDBC Data Type Typecode XQuery Data Type

BIGINT -b xs:long

BINARY 2 xs:string

BIT -7 xs:boolean

BLOB 2004 xs:hexBinary

BOOLEAN 16 xs:boolean

CHAR 1 xs:string

CLOB! 2005 xs:string

DATE 91 xs:date?

DECIMAL (p,s)® 3 xs:decimal (if s > 0), xs:integer (if s =0)
DOUBLE 8 xs:double

FLOAT 6 xs:double

INTEGER 4 xs:int

LONGVARBINARY -4 xs:hexBinary

LONGVARCHAR! -1 xs:string

NUMERIC (p,s)® 2 xs:decimal (if s > 0), xs:integer (if s =0)
REAL 7 xs:float

SMALLINT 5 xs:short

TIME? 92 xs:time?

XQuery Developer’s Guide 1-31

XQuery-SQL Mapping Reference

Table G-30 Base Platform Data Type Mapping (JDBC<—>XQuery Equivalents) (Continued)

JDBC Data Type Typecode XQuery Data Type

TIMESTAMP* 93 xs:dateTime?

TINYINT -6 xs:short

VARBINARY -3 xs:hexBinary

VARCHAR 12 xs:string

OTHER 1111 AquaLogic Data Services Platform uses native
data type name to map to an appropriate XQuery

Other vendor-specific JDBC type codes data type.

1. Pushed down in project list only.

2. Values converted to local time zone (timezone information removed) due to DATE limitations. See
“Date and Time Data Type Differences: Timezones and Time Precision” on page 3-6 for more
information.

3. Where p is precision (total number of digits, both to the right and left of decimal point) and s is
scale (total number of digits to the right of decimal point).

4. Precision of underlying RDBMS determines the precision of TIME data type and how much
truncation, if any, will occur in translating xs:time to TIME.

”

Table G-31 lists functions and operators that are pushed down to base RDBMSs. See “fn-bea:sql-like

on page 2-26 for details about two-argument and three-argument versions of the fn-bea:sql-like()
function.

Tahle G-31 Base Platform Functions and Operators

Group Functions and Operators
Logical operators and, or, not
Numeric arithmetic +, - #
div?
Numeric comparisons! =, 1=, <, <=,>,>=, eq, ne, It, le, gt, ge
String comparisons® =, 1=, <, <=, >, >=, eq, ne, It, le, gt, ge

71-38 XQuery Developer’s Guide

Base (Generic) RDBMS Support

Tahle G-31 Base Platform Functions and Operators (Continued)

Group Functions and Operators

String functions contains®, starts-with?, ends-with?, fn-bea:sql-like(2),

fn-bea:sql-like(S),4 upper-case, lower-case

Datetime comparisons =, 1=, <, <=, >, >=, eq, ne, It, le, gt, ge on xs:dateTime,

xs:date, xs:time

Other empty, exists

1. All numeric types

2. Support for xs:decimal, xs:float, and xs:double data types only.

3. Arguments must be CHAR or VARCHAR SQL data types.

4, First argument must be SQL data type CHAR or VARCHAR; second argument must
be a constant or parameter; and RDBMS must support LIKE (with ESCAPE) clause.

Cast Operation Pushdown

For base RDBMS, cast operations are not pushed down.

Other SQL Generation Capabilities

Table G-32 displays other SQL Pushdown capabilities, as discussed in “Common Query Patterns” on

page 3-15.

Table G-32 Base Platform SQL Generation Capabilities
Query Supported
If-Then-Else no
Inner joins yes (SQL-89 syntax)
Outer joins no
Semi-joins, Anti-semi-joins no
Order by yes

Order by: Empty (NULL) order supported

Database-dependent

Order by: Aggregate function in ordering
expression

no

XQuery Developer’s Guide

1-39

XQuery-SQL Mapping Reference

1-40

Table G-32 Base Platform SQL Generation Capabilities (Continued)

Query Supported

Group by yes (by column only)
Distinct pattern yes

Trivial aggregate pattern no

Direct SQL composition no

XQuery Developer’s Guide

	Introducing the AquaLogic Data Services Platform XQuery Engine
	XML and XQuery
	XQuery Use in AquaLogic Data Services Platform
	Supported XQuery Specifications
	Learning More About the XQuery Language

	BEA’s XQuery Implementation
	BEA XQuery Function Implementation
	Function Overview
	Access Control Functions
	fn-bea:is-access-allowed
	fn-bea:is-user-in-group
	fn-bea:is-user-in-role
	fn-bea:userid

	Duration, Date, and Time Functions
	fn-bea:date-from-dateTime
	fn-bea:date-from-string-with-format
	fn-bea:date-to-string-with-format
	fn-bea:dateTime-from-string-with-format
	fn-bea:dateTime-to-string-with-format
	fn-bea:time-from-dateTime
	fn-bea:time-from-string-with-format
	fn-bea:time-to-string-with-format
	Date and Time Patterns

	Execution Control Functions
	fn-bea:async
	fn-bea:fence
	fn-bea:timeout and fn-bea:timeout-with-label
	fn-bea:fail-over, fn-bea:fail-over-with-label, fn-bea:fail-over-retry, and fn-bea:fail-over-retry-with-label

	Numeric Functions
	fn-bea:format-number
	fn-bea:decimal-round
	fn-bea:decimal-truncate

	Other Functions
	fn-bea:get-property
	fn-bea:inlinedXML
	fn-bea:rename

	QName Functions
	fn-bea:QName-from-string

	Sequence Functions
	fn-bea:interleave

	String Functions
	fn-bea:match
	fn-bea:sql-like
	fn-bea:trim
	fn-bea:trim-left
	fn-bea:trim-right
	fn-bea:pad-left
	fn-bea:pad-right

	Extended XQuery Data Model (XXDM) Functions
	fn-bea:current-value
	fn-bea:old-value

	Unsupported XQuery Functions
	Implementation-Specific Functions and Operators

	BEA XQuery Language Implementation
	XQuery Language Support (and Unsupported Features)
	Extensions to the XQuery Language in the AquaLogic Data Services Platform XQuery Engine
	Generalized FLWGOR (group by)
	Optional Indicator in Direct Element and Attribute Constructors

	Implementation-Defined Values for XQuery Language Processing

	XQuery Engine and SQL
	Introduction
	Base and Core RDBMS Support
	How the XQuery Engine Supports SQL Data Sources
	Metadata and Data Type Mappings Get Stored in Annotated Files
	Runtime Connection Management-Connection Sharing

	XQuery-SQL Data Type Mappings
	Date and Time Data Type Differences: Timezones and Time Precision
	Scope Differences for Expressions and Data Types

	SQL Pushdown: Performance Optimization
	Function and Operator Pushdown
	Parameters in Generated SQL Statements
	Cast Operation Pushdown
	Path Expressions Pushdown
	Constant Pushdown
	Variable Pushdown
	Common Query Patterns
	Simple Projection Queries
	Where Clause Pushdown
	Order By Clause Pushdown
	Inner Join Pushdown
	Outer Join Pushdown
	Semi-Joins and Anti-Semi-Joins

	Grouping and Aggregation
	Group By Pushdown
	Distinct-by Pushdown
	Simple Aggregate Pattern
	Group-By with a Nested Where Clause Translates to SQL HAVING Clause
	Outer Join with Aggregate Pattern
	If-Then-Else Pattern
	Subsequence Pushdown

	Direct SQL Data Services and Pushdown
	Distributed Query Pushdown

	Preventing SQL Pushdown

	Understanding XML Namespaces
	Introducing XML Namespaces
	Exploring XML Schema Namespaces

	Using XML Namespaces in AquaLogic Data Services Platform Queries and Schemas

	Best Practices Using XQuery
	Introducing Data Service Design
	Understanding Data Service Design Principles
	Applying Data Service Implementation Guidelines

	BEA XQuery Scripting Extension (XQSE)
	Introducing the XQuery Scripting Extension
	Prolog and Query Body
	Procedure Declaration
	XQSE Function Declaration
	Value Statement and Procedure Call
	Block
	Set Statement
	While Statement
	Return Statement
	Iterate Statement
	Try Statement
	If Statement
	Changed Element
	XQSE Grammar Summary

	XQuery-SQL Mapping Reference
	IBM DB2/NT 8 (and higher)
	Data Type Mapping
	Function and Operator Pushdown
	Cast Operation Pushdown
	Other SQL Generation Capabilities

	Microsoft SQL Server 2000 (and higher)
	Data Type Mapping
	Function and Operator Pushdown
	Cast Operation Pushdown
	Other SQL Generation Capabilities

	Oracle 8.1.x
	Data Type Mapping
	Function and Operator Pushdown
	Cast Operation Pushdown
	Other SQL Generation Capabilities

	Oracle 9.x, 10.x
	Data Type Mapping
	Function and Operator Pushdown
	Cast Operation Pushdown
	Other SQL Generation Capabilities

	Sybase 12.5.2 (and higher)
	Data Type Mapping
	Function and Operator Pushdown
	Cast Operation Pushdown
	Other SQL Generation Capabilities

	PointBase 5.1
	Data Type Mapping
	Function and Operator Pushdown
	Cast Operation Pushdown
	Other SQL Generation Capabilities

	Teradata V2R5 (and higher)
	Data Type Mapping
	Function and Operator Pushdown
	Cast Operation Pushdown
	Other SQL Generation Capabilities

	Base (Generic) RDBMS Support
	Database Capabilities Information
	Data Type Mapping
	Cast Operation Pushdown
	Other SQL Generation Capabilities

