
BEAAquaLogic®
Data Service
Platform™

Administration Guide

Version 3.0 ™
Revised: January 2007

Administration Guide iii

Contents

1. Overview of ALDSP Administration
Administering ALDSP . 1-1

Securing Data. 1-2

Caching Query Results . 1-2

Viewing Metadata . 1-2

Understanding ALDSP-Enabled WLS Domains . 1-3

Understanding the Relationship between ALDSP and WebLogic Domains 1-3

Creating a New Domain . 1-4

Provisioning an Existing Domain for ALDSP . 1-4

Understanding Console Users . 1-5

Introducing the ALDSP Administration Console . 1-5

ALDSP Administration Console Components . 1-6

Server Classpath Settings . 1-7

2. Getting Started with ALDSP Administration
Updating the ALDSP License . 2-2

Starting and Stopping WebLogic Server. 2-2

Starting the Server . 2-2

Stopping the Server . 2-3

Launching ALDSP Administration Console. 2-5

Exploring ALDSP Administration Console . 2-6

Using the Navigation Pane. 2-6

iv Administration Guide

Change Center and Configuration Locking . 2-7

Navigation Tree and Category List . 2-9

Using the Workspace Content Area . 2-10

3. Deploying Dataspaces
Introduction . 3-1

Creating a New Dataspace . 3-2

Deleting a Dataspace . 3-4

Deploying Dataspaces on a Target Server . 3-5

Deploying a Dataspace . 3-6

Deploying a Web Service Map on a Cluster . 3-8

Importing Dataspace Artifacts . 3-8

Exporting Dataspace Artifacts . 3-10

4. Configuring ALDSP Resources
Configuring the Cache and Log for a Dataspace . 4-1

Using the Physical Sources Category. 4-2

Viewing Physical Data Source Locations . 4-3

Modifying Data Source End Points. 4-3

Substituting SQL Statements . 4-5

How SQL Statement Substitution Works. 4-6

Requirements for SQL Statement Substitution . 4-8

Creating Substitute SQL Query Statements. 4-8

SQL Statement Substitution Example . 4-9

Setting the Server Thread Count . 4-12

Item-based Memory Management . 4-14

Using Administrative Properties . 4-15

Monitoring Active Queries and Updates . 4-17

Administration Guide v

Setting the Transaction Isolation Level . 4-19

5. Securing ALDSP Resources
Introduction to ALDSP Security. 5-2

Understanding Runtime Security Policies . 5-2

Definition of a Securable Resource . 5-3

Allowing Anonymous Access . 5-4

Creating and Applying Runtime Security Policies . 5-6

Configuring Dataspace-Level Security. 5-9

Working with XQuery Functions for Security. 5-11

Creating an XQuery Function for Security . 5-11

Applying an XQuery Function for Security . 5-13

Understanding and Using Service Accounts . 5-15

Creating a Service Account . 5-15

Exporting Access Control Resources . 5-19

Configuring Data Service and Operation-Level Security. 5-21

Creating Data Service Runtime Security Policies . 5-21

Creating and Configuring Security Policies for Operations 5-23

Configuring Data Elements-level Security . 5-24

Securing Native Web Services. 5-25

Creating Security Policies for User-Defined Security Resources 5-26

Working with Administrative Access Control Policies . 5-27

Assigning Entitlements . 5-30

Gaining Administrative Access After a System Lockout 5-32

Taking Lock and Edit Capability. 5-33

6. Viewing Native Web Services
Viewing Native Web Service Artifacts . 6-1

vi Administration Guide

Using the General Tab . 6-2

Test the Generated Web Service . 6-2

View the WSDL . 6-3

Export the Static JAR File . 6-4

Using the Operations Tab . 6-4

Using the Data Lineage Tab . 6-5

Generating a Web Services Mediator Client JAR File. 6-5

Generating a Mediator Client JAR File . 6-7

7. Viewing Metadata Using the Service Explorer
Introducing Service Explorer . 7-1

Using the Service Explorer. 7-2

Web Browser Requirements for Data Lineage Graph. 7-3

Analyzing and Viewing Data Services Metadata . 7-4

Viewing Data Service Functions Metadata . 7-9

Cyclic Dependency . 7-11

Viewing Web Service Metadata . 7-12

Searching Metadata . 7-14

Search Guidelines . 7-14

Performing a Basic Metadata Search . 7-15

Performing an Advanced Metadata Search . 7-16

Generating Reports . 7-19

8. Configuring Query Results Cache
Understanding Results Caching . 8-1

Caching API . 8-2

Setting Up Caching . 8-3

Step 1: (Optional) Run the SQL Script to Create the Cache Tables 8-5

Administration Guide vii

Modifying the Cache Table Structure. 8-6

Step 2: Create the JDBC Data Source for the Cache Database 8-7

Step 3: Specify the Cache Data Source and Table . 8-7

Step 4: Enabling Caching by Function . 8-8

Caching Identity Keys for Security . 8-10

Monitoring and Purging Data Cache . 8-10

Purging Data Cache . 8-11

Purging the Cache for a Dataspace. 8-11

Purging the Cache for a Function. 8-12

9. Working With Audit and Log Information
Auditing . 9-1

Setting Global Audit Properties. 9-2

Auditing Severity Levels . 9-4

Setting Individual Auditing Properties . 9-4

Admin Audit Properties . 9-7

Common Audit Properties . 9-7

Query Audit Properties. 9-10

Update Audit Properties . 9-17

Function-level Auditing. 9-19

Retrieving Audit Information . 9-20

WebLogic Server Security Framework . 9-21

ALDSP Client API . 9-22

ALDSP Performance Profiling. 9-23

Monitoring the Server Log . 9-26

Monitoring a WebLogic Domain . 9-26

Using Other Monitoring Tools . 9-27

viii Administration Guide

10. Extending Database Support
Introduction . 10-2

General Use Cases. 10-2

Overview of the Extension Framework Architecture . 10-3

Relational Providers Included With ALDSP . 10-5

Supported Features . 10-6

Importing Relational Source Metadata . 10-7

Related Reading . 10-7

Sample Configurable Relational Provider File . 10-8

Using the Configurable Relational Provider . 10-13

Summary of Basic Configuration Steps . 10-13

Deploying the Relational Provider . 10-14

Adding a Provider . 10-14

Removing a Provider . 10-14

Configurable Relational Provider Format Description and Reference 10-15

Overview of Primary XML Elements . 10-15

Overview of the <custom-rdb-provider> Element . 10-17

Configurable Relational Provider Reference . 10-19

Database Matching . 10-30

Rules for Database Matching . 10-30

JDBC Metadata Methods to XQuery Functions Mapping 10-31

Additional External XQuery Functions . 10-32

Specifying SQL Syntax for Functions . 10-33

Syntax Overview. 10-33

Setting the infix Attribute . 10-34

Using a Variable Length Placeholder . 10-34

Default SQL Syntax for Functions. 10-35

Administration Guide ix

Translating Built-In XQuery Operators Into SQL . 10-47

Standard and ALDSP Namespaces for Functions and Types. 10-49

Function and Type Name Resolution Process . 10-49

Abstract SQL Providers . 10-50

AbstractSQLProvider . 10-50

AbstractSQL89Provider . 10-53

AbstractSQL92Provider . 10-54

x Administration Guide

Administration Guide 1-1

C H A P T E R 1

Overview of ALDSP Administration

This chapter introduces AquaLogic Data Services Platform (ALDSP) administration. It explains
the concept of ALDSP-Enabled WebLogic domains and introduces the ALDSP Administration
Console components.

The chapter contains the following sections:

Administering ALDSP

Understanding ALDSP-Enabled WLS Domains

Introducing the ALDSP Administration Console

Server Classpath Settings

Note: ALDSP was previously named Liquid Data. Some artifacts of the original name remain
in the product, installation path, and components.

Administering ALDSP
ALDSP is an integration software that unifies data programming by using data services. You can
deploy it to WebLogic Server and administer tasks such as dataspace deployment, managing
services accounts, controlling user access, and configuring runtime security through the ALDSP
console.

Some administrative tasks that you can perform through WebLogic console include starting and
stopping the server, configuring connection pools and data sources, logging, and others. The
WebLogic Platform provides extensive tools and capabilities for configuring and maintaining a
large-scale, production-level integration platform.

Overv iew o f ALDSP Admin is t ra t ion

1-2 Administration Guide

This section introduces you to the general administration tasks that you can perform using the
ALDSP console. It includes the following topics:

Securing Data

Caching Query Results

Viewing Metadata

For information on WebLogic administration, refer to System Administration for BEA
WebLogic Server 9.2.

Securing Data
ALDSP leverages the security model of the WebLogic Platform to ensure data security.
WebLogic uses security policies that control access to deployed resources based on user
credentials or other factors.

ALDSP enables you to apply policies to its data resources at various levels ranging from the
dataspace to data elements. In addition, you can secure resources based on data values (called
instance-level security). For example, you can secure objects if an element value exceeds a
specific threshold.

For details, see Chapter 5, “Securing ALDSP Resources.”

Caching Query Results
ALDSP can cache query results for data service functions to enhance overall system
performance. Caching data alleviates the burden on back-end resource and improves data request
response times from the client’s perspective. If you want to cache data service function results,
you must explicitly enable results caching in the ALDSP Administration Console.

For more information, see Chapter 4, “Configuring ALDSP Resources.”

Viewing Metadata
Traditionally, enterprises have lacked a universal mechanism for advertising availability of data
resources across source types, or for communicating information about those resources. ALDSP
provides this capability through dynamically generated metadata.

Data service metadata serves these primary purposes:

http://edocs.bea.com/wls/docs92/admin.html
http://edocs.bea.com/wls/docs92/admin.html

Unders tanding ALDSP-Enab led WLS Domains

Administration Guide 1-3

It helps developers create client applications that use the information made available by
ALDSP by revealing what data is available and how to use it.

It helps administrators maintain ALDSP by providing a mechanism to gauge effects of
changes in underlying data sources upon a data service deployment.

Metadata provides information on data services such as their public functions, datatypes, data
lineage, and more. It also provides where used information, showing dependencies between data
services.

For more information, see Chapter 7, “Viewing Metadata Using the Service Explorer.”

Understanding ALDSP-Enabled WLS Domains
An ALDSP domain is created and deployed on WLS 9.2 and is a collection of resources managed
as a single unit. In case of ALDSP, the WebLogic Administration console is used to create users
and assign roles for a domain. An ALDSP domain may constitute one or more dataspaces
deployed on a WebLogic Server as well as clusters. It is also where you deploy the ALDSP
dataspace for your domain.

The WebLogic Administration Console is a web-based interface for configuring and monitoring
a WebLogic domain. In cases when the domain has more than one server, one of the servers is
designated as the Administration Server for the domain. The Administration Server then serves
as the central point of control for an entire domain. If there is only one server in a domain, then
that server is the Administration Server in addition to the other functions it provides. Any other
servers in a domain are Managed Servers.

For more information about domains, see “Understanding WebLogic Server Domains” in
Configuring and Managing WebLogic Server.

Understanding the Relationship between ALDSP and
WebLogic Domains
ALDSP constitutes one or more dataspaces, which have a set of associated resources deployed
on a WebLogic domain. To manage an ALDSP dataspace, start the WebLogic Server within the
domain where an ALDSP dataspace is deployed, and then use the ALDSP Administration
Console for that server to configure and manage ALDSP resources.

http://edocs.bea.com/wls/docs92/domain_config/understand_domains.html

Overv iew o f ALDSP Admin is t ra t ion

1-4 Administration Guide

Creating a New Domain
A dataspace created in the ALDSP development environment, works with WebLogic domains
that have been provisioned for ALDSP. You can use the BEA WebLogic Configuration Wizard
to create such domains.

To create a new domain provisioned with ALDSP:

1. On Windows systems, choose Programs > BEA Products > Tools > Configuration
Wizard.

2. In the wizard, choose AquaLogic Data Service Platform Domain as the domain source as
shown in Figure 1-1.

Figure 1-1 Selecting ALDSP as the Domain Source

3. Follow the on-screen instructions to complete the initial configuration of the domain.

For more information on creating domains, see “Creating WebLogic Domains Using the
Configuration Wizard” in the WebLogic Platform documentation.

Provisioning an Existing Domain for ALDSP
If you have an existing WebLogic Server domain and you want to setup ALDSP project within
that domain, you can provision the domain for ALDSP, using the Configuration Wizard:

http://edocs.bea.com/common/docs92/confgwiz/index.html
http://edocs.bea.com/common/docs92/confgwiz/index.html

I n t roduc ing the ALDSP Admin is t rat ion Conso le

Administration Guide 1-5

1. Open the Configuration Wizard:

Start > Programs > BEA Products > Tools > Configuration Wizard

2. Select the option: Extend an existing WebLogic configuration.

3. Select the domain you wish to enable for ALDSP (such as:
AL_HOME/samples/domains/portal).

4. Select AquaLogic Data Services Platform extension using the Extend my domain
automatically to support the following added BEA Products option.

For information on selecting domain setting options see Creating WebLogic Domains Using the
Configuration Wizard.

Once a domain is provisioned with ALDSP, you can deploy dataspace to WebLogic Server
enabled for ALDSP.

For additional information see Chapter 3, “Deploying Dataspaces.”

Understanding Console Users
ALDSP Administration Console provides different privileges to different user entitlements.
ALDSP now has the domain, admin, monitor, and browser entitlements. The domain level user
is created by default and can assign entitlements to a user. The user privileges within ALDSP
Administration Console depend on the entitlements. For example, the monitor or browser
entitlements can only view the configuration in the ALDSP Administration Console, whereas the
admin entitlement allows a user to change the configuration.

For more information, see Chapter 5, “Securing ALDSP Resources.”

Introducing the ALDSP Administration Console
The ALDSP Administration Console is a web-based user interface to configure and administer
ALDSP runtime server or cluster. You can use the ALDSP Administration Console to set security
and caching policies for data services and configure ALDSP runtime settings such as thread usage
and logging levels. In addition, you can deploy, import, and export dataspaces using the console
and view metadata that is required by both developers and administrators.

Note: For more information, see Chapter 7, “Viewing Metadata Using the Service Explorer.”

Figure 1-2 shows the main page of the ALDSP Administration Console.

http://edocs.bea.com/common/docs100/confgwiz/index.html
http://edocs.bea.com/common/docs100/confgwiz/index.html

Overv iew o f ALDSP Admin is t ra t ion

1-6 Administration Guide

Figure 1-2 ALDSP Administration Console

ALDSP Administration Console Components
The DSP Console constitutes the Navigation Pane and the Workspace Content area as shown in
Figure 1-2. The navigation pane consists of the change center, navigation tree, and the
category-based tabs. You can use this pane to access the deployed dataspace, functions, and web
services. In addition, you can view and manage data in different categories such as the physical
data sources and administrative access control.

Table 1-1 briefly describes the functions of each component in ALDSP Administration Console:

Table 1-1 Functions of ALDSP Administration Console Components

Component Usage

Change Center The change center is used to acquire and release a lock for editing the
configuration within the console in a transactional manner. For more
information, refer to “Change Center and Configuration Locking” on
page 2-7

Navigation Tree The navigation tree shows the artifacts stored on the server. The artifacts
displayed in the workspace content area depend on the category you
select from the list of category-based tabs. The navigation tree is rooted
to the ALDSP domain. For more information, refer to “Navigation Tree
and Category List” on page 2-9.

Se rver C lasspath Set t ings

Administration Guide 1-7

Server Classpath Settings
The following table provides classpath requirements for servers running ALDSP.

Listing 1-1 Server Classpath Settings for ALDSP-Enabled Servers

CLASSPATH=
<ALDSP_HOME>/lib/ld-server-core.jar
<WLS_CLASSPATH>

Notes:

ALDSP depends on the apache_xbean.jar, which is available from the weblogic.jar
manifest entry.

The ld-server-core.jar's manifest file refers to the following set of jars used by the
ALDSP server.

sdo.jar
wlsdo.jar
binxml.jar
xquery.jar

Category List The category-based tabs or the category list provides specific
information about the deployed dataspace, web services, and functions.
Each tab in the list provides a set of artifacts for the selected project, data
service, or function. For more information, refer to “Navigation Tree
and Category List” on page 2-9.

Workspace Content Area The workspace content area displays the artifacts based on the
selection in the navigation tree and the category list. It allows you
to configure system administration tasks, import, export, and
deploy dataspaces, work with security configurations, manage
data caching, and auditing tasks.

For more information, refer to “Using the Workspace Content
Area” on page 2-10.

Table 1-1 Functions of ALDSP Administration Console Components

Component Usage

Overv iew o f ALDSP Admin is t ra t ion

1-8 Administration Guide

../external/com.bea.common.configfwk.wlinterop_9.2.2.0.jar

../external/com.bea.common.configfwk_1.0.0.0.jar

../external/alsb_client_9.2.jar

../external/jgrapht-jdk1.5.jar
relational-providers.jar
ld-client.jar

Administration Guide 2-1

C H A P T E R 2

Getting Started with ALDSP
Administration

With ALDSP 3.0 release, you need to create and configure WebLogic Server 9.2.x unlike the
previous ALDSP releases, which used WebLogic Server 8.1. Before you start working with
ALDSP development environment, you need to deploy your dataspace project on a WebLogic
domain enabled for ALDSP. Using WebLogic Server 9.2.x, you can create users and groups for
ALDSP and manage their permissions.

Most of the other administrations tasks for ALDSP 3.0, can be performed through the ALDSP
Administration Console and therefore you may not need to launch the WLS Administration
console frequently. Table 2-1 lists the tasks that you can perform using ALDSP Administration
Console and the ones that you need to perform using WebLogic Server Administration console.

Table 2-1 Administration Tasks for ALDSP Administration Console and WLS Administration Console

Task Administered Through

ALDSP Users and Groups: Chapter 5, “Securing ALDSP
Resources”

Also refer to WebLogic Server user and groups.

WebLogic Server Administration
Console

Deployment: Chapter 3, “Deploying Dataspaces” ALDSP Administration Console

Security: Chapter 5, “Securing ALDSP Resources” ALDSP Administration Console

Caching: Chapter 8, “Configuring Query Results Cache” ALDSP Administration Console

Auditing: Chapter 9, “Working With Audit and Log
Information”

ALDSP Administration Console

http://e-docs.bea.com/wls/docs91/secwlres/secroles.html

Get t ing Star ted wi th ALDSP Admin is t ra t i on

2-2 Administration Guide

For more information about creating and configuring a new server for ALDSP, refer to
Post-Installation Tasks in AquaLogic Data Services Platform Installation Guide:

This chapter describes the tasks that you can perform using ALDSP Console and also provides
steps to start and stop the WebLogic Server. It contains the following sections:

Updating the ALDSP License

Starting and Stopping WebLogic Server

Launching ALDSP Administration Console

Exploring ALDSP Administration Console

Updating the ALDSP License
ALDSP requires a valid product license to run. The ALDSP license is included as a component
in the WebLogic Server license file, license.bea. To apply or update an ALDSP license file,
use the BEA UpdateLicense utility to update the license.bea file.

For details about BEA product licensing, see Installing and Updating WebLogic Platform
License Files in Installing WebLogic Platform of the WebLogic Server documentation.

Starting and Stopping WebLogic Server
To start working with the ALDSP development environment and to administer the WLS enabled
for ALDSP, you must first start WebLogic Server. Although you may not need to stop WebLogic
Server frequently, it may be required in certain situations. This section describes how to start and
stop WebLogic Server (WLS) in a standalone WebLogic domain, after you have configured your
WebLogic Server 9.2.x.

Note: If you are already running an instance of WebLogic Server that uses the same listener
port as the one to be used by the server you are starting, you must stop the first server
before starting the second server.

Starting the Server
1. At the command prompt, navigate to the domain directory.

The domain directory is BEA_HOME/user_projects/domain_name. An example could be
c:\bea\user_projects\domains\mydomain.

http://e-docs.bea.com/common/docs92/install/prepare.html#wp1129187
http://e-docs.bea.com/common/docs92/install/prepare.html#wp1129187
../install/post.html
../install/post.html

Star t ing and S topp ing WebLog ic Se rve r

Administration Guide 2-3

2. Run the server startup script: startWebLogic.cmd (Windows) or startWebLogic.sh
(UNIX).

The startup script displays a series of messages, finally displaying a message similar to the
following:

<Dec 8, 2004 3:50:42 PM PDT> <Notice> <WebLogicServer> <000360> <Server
started in RUNNING mode>

You can also start WebLogic Server through the eclipse-based IDE for ALDSP. To start the
server:

1. Open the IDE and click the Servers tab.

2. Right-click the server that you have configured and select Start, as shown in Figure 2-1. If you
want run the server in debug-mode then select Debug. This starts WebLogic Server.

Figure 2-1 ALDSP IDE: Starting WebLogic Server

Stopping the Server
To stop the WebLogic Server using the eclipse-based IDE, right-click the server listed in the
Servers tab, as shown in Figure 2-1 and select Stop.

Alternatively, you can stop a WebLogic Server instance that is running a dataspace project from
the WebLogic Administration Console.

1. Start the WebLogic Server Administration Console.

2. Acquire the lock by clicking Lock & Edit.

Get t ing Star ted wi th ALDSP Admin is t ra t i on

2-4 Administration Guide

3. In the left pane, click to expand Environment and select Servers.

4. Select the server instance you need to stop.

5. Click the Control tab. The Start/Stop tab is displayed, as illustrated in Figure 2-2.

Figure 2-2 Graceful Shutdown of a Server

6. Specify the graceful shutdown timeout limit incase you need to do a force shutdown after
some time.

7. From Server Status table, click the Shutdown list.

8. Select the When work completes option.

9. Select Yes to confirm shutdown. This shuts down the selected server after all the pending
tasks are completed.

Launch ing ALDSP Admin is t rat i on Conso le

Administration Guide 2-5

Launching ALDSP Administration Console
The AquaLogic Data Services Platform Administration Console is a web-based interface that
enables you to administer and manage dataspace projects, access metadata, and configure
security and caching policies.

Before you launch the ALDSP Administration Console, make sure that the WebLogic Server is
started. For more information about starting WebLogic Server, see “Starting the Server” on
page 2-2. To launch ALDSP Administration Console:

1. Open the following URL:

http://hostname:port/dspconsole

Where:

– hostname is the machine name or IP address of the host server

– port is the address of the port on which the host server is listening for requests (7001
by default)

For example, to start the ALDSP Administration Console on a local instance of WebLogic
Server (running on your computer), navigate to the following URL:

http://localhost:7001/dspconsole/

2. When the login page appears, enter the appropriate user name and password.

The default user name and password is weblogic/weblogic, respectively.

Note: The discussion and examples in the following chapters of this book (Administration
Guide) assume that you have:

Installed the current version of ALDSP.

Build at least one dataspace as described in the Data Services Developer’s Guide.
Building a dataspace automatically deploys it and any data services it contains on
your currently running WebLogic Server.

In case you need to launch the WLS Administration console, click the WLS Console link on the
top-right corner of ALDSP Administration Console, as shown in Figure 2-3.

Figure 2-3 WLS Console Link in ALDSP Console
f

For more information about launching the WLS Administration Console, refer to:

http://localhost:7001/ldconsole/
../datasrvc/index.html

Get t ing Star ted wi th ALDSP Admin is t ra t i on

2-6 Administration Guide

http://edocs.bea.com/wls/docs91/intro/console.html#1122070

Exploring ALDSP Administration Console
This section provides details about using different components of the ALDSP administration
console. It includes the following topics:

Using the Navigation Pane

Using the Workspace Content Area

Using the Navigation Pane
You can use the navigation pane to view the navigation tree and all the data services, functions,
and web services. The change center allows you lock and edit the configuration settings within
the console and then save or discard changes depending on your requirement. Using the
category-based tabs from the category list, you can view and manage the artifacts related to each
tab, including the system administration tasks such as deployment of data services, importing and
exporting data service JAR files, and auditing.You can also view metadata, manage caching, and
configure security settings using the category-list.

Figure 2-4 displays the components of the navigation pane.

Figure 2-4 Navigation Pane

Exp lo r ing ALDSP Admin is t rat ion Conso le

Administration Guide 2-7

This section describes the functions of some of the components of the navigation pane in detail.

Change Center and Configuration Locking
The change center feature in ALDSP Administration console is similar to the WLS
Administration console. It enables you to acquire a global lock over the console configuration,
make one or more changes to the configuration, if required, and then activate or discard the
changes. The configuration settings are edited in a transactional manner, therefore, only one user
can acquire the lock to the console.

To acquire the lock and then activate or discard changes:

1. Click Lock & Edit option from the change center. This enables you to make changes to the
workspace.

2. Save the changes in the Workspace Content Area by clicking Save. The message “Settings
updated successfully” is displayed in the workspace content area.

3. From the change center area, click Activate Changes or Undo All Changes, as shown in
Figure 2-5, to activate or discard the changes. If you click Activate Changes, then the message
“Changes activated successfully“ is displayed in the workspace content area and if you select
Undo All Changes, then the “Changes discarded successfully” message is displayed.

Figure 2-5 Activating/Deactivating Configuration Changes

The change center feature is available only to the domain and admin entitlements for a resource
configured for security in ALDSP. Other ALDSP entitlements cannot use the change center. For

Get t ing Star ted wi th ALDSP Admin is t ra t i on

2-8 Administration Guide

more information about user entitlements, refer to the Administrative Access Control section in
Chapter 5, “Securing ALDSP Resources.”

You do not need to acquire a lock to edit the configuration within the administration console in
the following cases:

To create and delete dataspaces, you do not need to explicitly acquire a lock because the
system acquires the lock by default. For more information about creating and deleting
dataspaces, refer to Chapter 3, “Deploying Dataspaces.”

Security policies, in both runtime security and administrative access control categories, do
not require the change center lock. The policies are stored in a separate repository, in WLS
configuration, and therefore do not take part in the ALDSP configuration session. For more
information, refer to Chapter 5, “Securing ALDSP Resources.”

Based on the operations performed using the change center, the change center behavior may
differ. Table 2-2 lists and describes the change center behavior in different situations:

For more information about using the change center, you can also refer to:
http://edocs.bea.com/wls/docs92/intro/console.html#wp1122447

Table 2-2 Change Center Behavior

Condition Behavior

User does not have domain or admin entitlements for any
of the ALDSP resources such as a dataspace or data
service.

User is denied access and the change center
is disabled.

Lock has not been acquired by any one and can be
acquired by the logged in user.

The user can acquire the lock to the change
center and perform configuration changes.

Lock has been acquired by the logged in user and changes
are made.

The change center provides the option to
activate or discard changes. So, the Activate
Changes and Undo All Changes options
appear in the change center area.

Lock has been acquired by some other user but the logged
in user being a domain user is allowed to forcibly acquire
the lock.

The change center displays the Take Lock
&& Edit option if the user has domain
entitlements for the dataspace.

Exp lo r ing ALDSP Admin is t rat ion Conso le

Administration Guide 2-9

Pending Changelist
The pending change list displays the difference between the current session values and the core
values. The dataspace artifacts that are created, updated, or deleted are displayed in the pending
changelist. Pending changes are shown in the tree view, as shown in Figure 2-6, whereas the
configuration changes are shown in the leaf node.

Figure 2-6 Pending Changelist

Navigation Tree and Category List
There are six categories in the ALDSP administration console. The artifacts displayed in the
workspace content area for a data service, function, or web service depend on the category-based
tab that you select from the category list.
The following list describes the function of each category tab:
• System Administration: This is the default tab that is displayed when you log into ALDSP console. It

provides functionality to set the state and the target server for deployment, importing and exporting of
project JAR files, checking the administrative properties, and auditing.

• Service Explorer: The service explorer provides metadata artifacts for the deployed dataspace project,
function, and web services including native web services. For more information, refer to Chapter 7,
“Viewing Metadata Using the Service Explorer.”

• Physical Sources: This tab provides details about the different physical data sources that are deployed
on the server. The physical data sources can include delimited files, java functions, relational databases,
web services, and XML files.

• Operations: This tab allows you monitor the active queries, data cache size, and active updates for a
dataspace.

Get t ing Star ted wi th ALDSP Admin is t ra t i on

2-10 Administration Guide

• Security Configuration: This tab allows you set runtime security policies for securable resources such
as dataspaces, data services, functions, and web services. For more information, refer to “Understanding
Runtime Security Policies” section in Chapter 5, “Securing ALDSP Resources.”

• Administrative Access Control: This tab enables you set the administrative access control policies for
different users who need to access ALDSP Administration Console. For more information, refer to the
“Working with Administrative Access Control Policies” section in Chapter 5, “Securing ALDSP
Resources.”:

Using the Workspace Content Area
The workspace content area displays artifacts based on the tab selected in the category list and
the node selected from the navigation tree. It consists of various options that enable you to view,
search, configure, and audit ALDSP resources. Figure 2-7 displays the workspace content area
that is displayed when you log in to the console.

Figure 2-7 Workspace Content Area

As illustrated in this figure, the workspace content area constitutes the following:

Banner Toolbar: It shows the user name and the server that you are logged into. The links
on the right, allow you to log into the WLS Console, logout of ALDSP Administration
Console, along with help options.

Exp lo r ing ALDSP Admin is t rat ion Conso le

Administration Guide 2-11

Breadcrumb Trail: It displays the current category and the resource that you select from
the navigation tree. You can access the category or resource using the trail links also.

Search: This field is you to search metadata. When you click Search, the system starts a
search across all artifacts on the server and displays the results in a search result page. If
you click Search without entering any value in the field, the Advanced Search page is
displayed. For more information, refer to “Searching Metadata” on page 7-14.

Page Title: This displays the current artifact that you access on the ALDSP Administration
Console.

Inline Help: This help is available on each page of the console and provides guidance
about using the options on the console.

Workspace Content: This area displays information about the resource depending on the
category you select from the category-list.

Get t ing Star ted wi th ALDSP Admin is t ra t i on

2-12 Administration Guide

Administration Guide 3-1

C H A P T E R 3

Deploying Dataspaces

This chapter describes how to deploy dataspaces to an Administration Server, a Managed Server,
and a cluster. It also describes how to migrate dataspaces from development to production.

The chapter contains the following sections:

Introduction

Creating a New Dataspace

Deleting a Dataspace

Deploying Dataspaces on a Target Server

Importing Dataspace Artifacts

Exporting Dataspace Artifacts

Introduction
ALDSP Administration Console provides you the ability to deploy, export and import
dataspaces. Using the console, you can export, import, and delete dataspaces that are deployed
on a WebLogic Server without interrupting other running dataspaces. In addition, you can import
artifacts to an existing dataspace without interrupting existing requests running against that
dataspace

During development, you can deploy dataspaces to a WebLogic Server directly from the
eclipse-based IDE. After development, you can deploy dataspaces to production WebLogic
Servers using the ALDSP Administration Console or the IDE.

Deploy ing Dataspaces

3-2 Administration Guide

Creating a New Dataspace
You can create a new dataspace using the ALDSP Administration Console and associate a JAR
file with it. This enables you to create and manage the dataspace on the server directly.

Note: Only a domain user has the ability to create a new dataspace. For more information about
domain users, refer to Working with Administrative Access Control Policies section in
Chapter 5, “Securing ALDSP Resources.”

To create a new dataspace in the ALDSP-enabled WebLogic domain:

1. Click the System Administration category from the navigation pane.

2. Select the domain node.

3. From the workspace content area, click New as shown in Figure 3-1.

Figure 3-1 Creating a New Dataspace

4. On the Create Dataspace page shown in Figure 3-2, specify the following:

Name: Name of the new dataspace that you want to create.

Description: An optional description of the dataspace.

Resource File: A JAR file that you want to import in the dataspace. This is optional.

Creat ing a New Dataspace

Administration Guide 3-3

Figure 3-2 Specifying the New Dataspace Details

5. Click Next. This displays details such as the file size and checksum information about the
resource file being imported as shown in Figure 3-3.

Figure 3-3 Resource File Details

6. On this page, select the Filter Configuration checkbox if you do not want to import the
resource file configuration. To retain the resource file configurations, make sure that you do
not select the Filter Configuration checkbox.

Each dataspace contains one .space file that contains all the global dataspace properties.
For example, for a dataspace my_dspace_DS there is a corresponding file named
My_DSpace.space. The dataspace also contains one file, named My_DSpace.sources, that
contains all the properties pertaining the physical sources used by the dataspace
My_DSpace.

Deploy ing Dataspaces

3-4 Administration Guide

For each dataservice (.ds) file contained in the dataspace, there is a .service file named
after the dataservice and located within the same folder as the data service, that carries the
data service configuration properties.

Finally, a dataspace may contain one or more .xml files under the folder
DSP-INF/service-accounts, which carry service account information details.

7. Click Next. This displays the page where you can select the state and targets for the dataspace
as shown in Figure 3-4.

Figure 3-4 Selecting the State and Target Server for a Dataspace

A deployed dataspace can be in one of the following states:

Disabled: The dataspace is not live and cannot be administered from the console.

Administrative Access Only: The dataspace is accessible only to the Administrator.

Full Access: This dataspace is accessible to all authorized users.

8. Specify the state and target server and click Finish to create and deploy the new dataspace.

Note: You may need to wait for sometime before the new dataspace is deployed successfully
depending on the size of the dataspace.

Deleting a Dataspace
Only a domain user can delete a deployed dataspace. To delete a dataspace:

1. Navigate to the ALDSP Domain level.

2. Select the dataspace that you need to delete as shown in Figure 3-5.

Deploy ing Dataspaces on a Targe t Se rve r

Administration Guide 3-5

Figure 3-5 Selecting the Dataspace to Delete

3. Click Delete. The next page confirms if you want to delete the dataspace. Select Yes to delete
the dataspace.

Note: If you delete the target Managed Server on which your dataspace is deployed, the
dataspace deletion will fail.

Deploying Dataspaces on a Target Server
Deployment is done through the System Administration category in the ALDSP Administration
Console. ALDSP dataspaces can only run in an ALDSP-enabled WebLogic domain. You can
create a new WebLogic domain using the Configuration Wizard.

Note: For more information about using the Configuration Wizard to set up an ALDSP-enabled
WebLogic domain, refer to Creating a New Domain section in Chapter 1, “Overview of
ALDSP Administration.”

The Configuration Wizard automatically transfers the required items to the target server. These
include the ALDSP dataspace artifacts, with the corresponding configuration and binary files, as
well as WebLogic components such as data source connections and pools. When you move a
dataspace from the development to production, you need to make sure that these items are
transferred to the target production server.

Note: A target server can be an Administration Server, a Managed Server, or a cluster. The
steps to deploy dataspaces on any of these targets are the same.

An Administration Server is the central configuration repository for the set of WebLogic Servers
in a domain.

Deploy ing Dataspaces

3-6 Administration Guide

You can deploy a dataspace on multiple Managed Servers and clusters depending on your
requirement. To deploy dataspace artifacts on a Managed Server or a cluster, you must first create
a Managed Server or cluster using the Configuration Wizard.

Note: If you need to deploy a Web Service Map on a cluster, then you need to specify the cluster
address. For details, refer to Deploying a Web Service Map on a Cluster.

For more information about creating Managed Servers, refer to the Create Managed Servers topic
in WebLogic Server Administration Console Online Help.

For more information about creating clusters, refer to the Create a Cluster topic in WebLogic
Server Administration Console Online Help.

Deploying a Dataspace
To deploy a dataspace on WebLogic Server using ALDSP Administration Console:

1. Start the ALDSP Administration Console.

For more information, see Launching ALDSP Administration Console section in
Chapter 2, “Getting Started with ALDSP Administration.”

2. Select the System Administration category and then select the Targets tab from the workspace
content area as shown in Figure 3-6.

Figure 3-6 Deploying a Dataspace on a Target Server

3. Select the target server on which you want to deploy the dataspace.

http://edocs.bea.com/wls/docs100/ConsoleHelp/taskhelp/domainconfig/CreateManagedServers.html

http://edocs.bea.com/wls/docs100/ConsoleHelp/taskhelp/clusters/CreateCluster.html

Deploy ing Dataspaces on a Targe t Se rve r

Administration Guide 3-7

4. Click Save. This set the target server for your ALDSP dataspace.

5. To view or change the deployment status, click the Server Status tab as shown in Figure 3-7.

Figure 3-7 Checking the Server Status

The options to start and stop the target servers are mentioned in the following table:

Table 3-1 Options for Starting and Stopping Server

State Option Description

Start Servicing Administration Requests Select this option when the dataspace is
accessible only at the Administration level.
This usually happens when the dataspace
project is deployed on the production server
and is yet to go live.

Start Servicing All Requests Select this option when the dataspace is ready
to service all client requests.

Stop Servicing Non-Administration Requests Select this option when you need to stop
servicing requests from clients but continue
servicing administration requests.

Stop Servicing All Requests Select this option if you need to stop servicing
requests from all clients including
administration requests.

Deploy ing Dataspaces

3-8 Administration Guide

Deploying a Web Service Map on a Cluster
Before you deploy a web service map on a cluster you need to specify the cluster address
using the WebLogic Server console. If you do not specify the cluster address then the
WSDL creation for the web service map fails.

To specify the cluster address on WebLogic Server, specify the cluster address in the
Configuration > General tab for the cluster as shown in Figure 3-8.

Figure 3-8 Specifying Cluster Address on WebLogic Server

For detailed information about configuring clusters on WebLogic Server, refer to Create
and Configure Clusters.

Importing Dataspace Artifacts
ALDSP Administration Console allows you to perform incremental and full deployment of
resource JAR files. This section describes the steps to perform incremental and full deployment
through the ALDSP Administration Console.

Note: You can also import the data service configuration settings from ALDSP 2.5. This
enables you to use the same configurations that you used in the ALDSP 2.5 environment,
while continuing to work with ALDSP 3.0. For information about migrating an ALDSP
2.5 application to 3.0, refer to Migrating from ALDSP 2.5 to ALDSP 3.0.

To perform incremental or full deployment of resource files:

../install/migration.html

Impor t ing Dataspace A r t i fac ts

Administration Guide 3-9

1. Acquire the lock by selecting Lock & Edit.

2. From the Navigation pane, select the System Administration category and then select the
dataspace in which you want import configuration or artifacts.

3. Click the Import tab as shown in Figure 3-9.

Figure 3-9 System Administration Category: Import Tab

4. Browse and specify the resource file path in the Resource JAR File box.

5. If you want to perform full deployment, then select the Full Deployment check box from the
Import Resource Jar section. If you select this option, then the system deletes all the artifacts
from the dataspace and then imports the new artifacts.

6. If you want perform incremental deployment, then do not select the Full Deployment check
box. In case of incremental deployment, ALDSP updates only those dataspace artifacts that
have changed and add any new artifacts.

7. Click Next to move to the page that displays the resource JAR file details, which include file
checksum details and file size as shown in Figure 3-10. In addition, this page provides the
following options:

a. Filter Configuration: Select this option if you do not want to import the configurations of
the resource file.

b. Preserve End Point Mappings: Select this option if you want import all the configuration
and the resources (artifacts) but keep the old endpoint mappings intact.

This option is useful when you move configurations from the staging server to a live
production server. On the staging server, you configure and test the configurations. If

Deploy ing Dataspaces

3-10 Administration Guide

the testing is successful, move the configurations from the staging to the production
server. However, the endpoints used during staging and production would not be the
same as you would not be testing directly on production server. So, when you import
mappings from the staging server, you may want to retain the mappings that already
exist in the production database. In that case, select the Preserve Endpoint checkbox.

Figure 3-10 Resource File Details

8. After selecting options on this page, click Import. When the import is completed, the message
“Import operation was successful” is displayed.

Note: Depending on the size of the files and the topology of your domain, the import operation
may take time, therefore you may need to wait for import to complete.

9. Click Activate Changes from the change center to activate the import.

Exporting Dataspace Artifacts
You can export dataspace artifacts with or without retaining the configuration settings. To export
dataspace artifacts:

1. Click the System Administration Category and the dataspace that you want to export as a
JAR.

2. Click the Export tab.

3. Select the Include configuration artifacts check box as shown in Figure 3-11, if you want to
export the configuration along with all the artifacts.

Expor t ing Dataspace A r t i fac ts

Administration Guide 3-11

Figure 3-11 Export Tab

4. If you are already in a session and want to export changes that have occurred within that
session then select the Export only the pending changes in this session check box.

Note: The Export only the changes in this session check box is enabled only when the lock is
acquired.

5. Click Export

6. Specify the location where you want to save the dataspace artifacts and the file is saved as a
JAR file at the specified location.

Deploy ing Dataspaces

3-12 Administration Guide

Administration Guide 4-1

C H A P T E R 4

Configuring ALDSP Resources

This chapter describes how to configure an ALDSP dataspace including tasks such as creating
administrative properties, managing memory, and enabling cache. It contains the following
sections:

Configuring the Cache and Log for a Dataspace

Using the Physical Sources Category

Setting the Server Thread Count

Item-based Memory Management

Using Administrative Properties

Monitoring Active Queries and Updates

Setting the Transaction Isolation Level

Configuring the Cache and Log for a Dataspace
You can view and configure settings for a dataspace such as caching and logging using the
General tab in the System Administration category.

To configure general dataspace settings:

1. Select the System Administration category and then the dataspace from the navigation tree.
The General tab appears as shown in Figure 4-1.

Conf igur ing ALDSP Resources

4-2 Administration Guide

Figure 4-1 General Dataspace Settings Page

2. Acquire the lock to make changes to the general configuration of the dataspace.

3. You can enable data caching and logging level details using this page. For more information
on data caching, refer to Chapter 8, “Configuring Query Results Cache.” For more
information on logging, refer to Chapter 9, “Working With Audit and Log Information.”

4. Click Save > Activate Changes.

Using the Physical Sources Category
The Physical Sources category allows you to configure and modify the resource end points, view
the location of physical data sources, and create substitute SQL statements.

This section provides details about configuring each of these features using the Physical Sources
category on the ALDSP Administration Console. It includes the following topics:

Viewing Physical Data Source Locations

Modifying Data Source End Points

Substituting SQL Statements

Us ing the Phys ica l Sources Catego ry

Administration Guide 4-3

Viewing Physical Data Source Locations
You can view a list of data services and function libraries that use the defined relational databases.
Click the Where Used tab to view the list of data services and the corresponding paths
(Figure 4-2).

Figure 4-2 Physical Data Services Relational Dependencies

You can select a data service from the Resource List to view the metadata about the data service.

Modifying Data Source End Points
When you move dataspaces from development to production server, you may need to change the
location of data sources or names of other artifacts. For example, if you are using sample data
sources during development to protect confidential or otherwise secured information, you need
to substitute a new data source with the actual data for the test version. You can make these
changes through the Physical Sources category as shown in Figure 4-3.

Conf igur ing ALDSP Resources

4-4 Administration Guide

Figure 4-3 Setting End Points for Relational Sources

By modifying the data source endpoints, you can change the name and location of a data source
as well as the target names of subordinate artifacts. In the case of relational sources this includes
names of catalogs, schemas, packages, tables, stored procedures, views, and relational functions.
End point modifications are effective until they are further modified or reverted to the original
value.

To reset the original value to the end point name:

1. Acquire the lock by clicking Lock & Edit.

2. Click Reset to original value. This option will not revert the value to the previous setting,
instead it will directly revert it to the original name. If you assign some intermediate target
names and click Reset to original value, the values revert to the same values as those in the
Original Value column.

3. Click Save > Activate Changes.

Note: If you change the end point for an artifact, some of the properties for the artifact should
match with the old source. For example, the Vendor type and version properties for a
relational data source should be identical with the old source.

Table 4-1 identifies the artifacts whose end point settings can be changed.

Us ing the Phys ica l Sources Catego ry

Administration Guide 4-5

Substituting SQL Statements
ALDSP uses SQL to access relational data sources. At compilation time, the built-in query
optimizer determines the best execution strategy for backend sources. Then SQL queries are
generated and submitted to underlying databases.

SQL queries generated by the relational wrapper are specific to each underlying database. While
the SQL queries that are generated typically produce good results, there are cases when further
optimization of the generated queries is desirable. In most RDBMS systems, such optimization
is done through execution hints.

Table 4-1 Artifacts for which End Points can be Modified Through the ALDSP Administration Console

Data Source Type Artifact

Relational Data source name and location

Catalog

Schema

Package

Table

Views

Relational functions

Stored procedure

Web Service Web service name and location

Service

Port

Operation

XML Content Data source name and location

Delimited File Content Data source name and location

Conf igur ing ALDSP Resources

4-6 Administration Guide

SQL statement substitution allows you to add hints to generated SQL queries by providing edited
SQL statements that will be executed instead of the query that is generated by ALDSP by default.

WARNING: Unlike SQL statements generated by ALDSP, substituted SQL statements are
passed to the underlying database without validation. For this reason, users are
strongly advised against using this feature for any purpose other than providing
hints to the database. It is also recommended that prior to deployment any
substituted SQL statement be tested against its generated counterpart to make sure
that the expected performance advantage is obtained.

Substitute SQL statements are created and registered in the ALDSP Administration Console
using the Substituted SQL Statements tab available through the Physical Sources category as
shown in Figure 4-4.

Figure 4-4 Substituted SQL Statement Dialog Box

s

How SQL Statement Substitution Works
ALDSP server maintains a substitution table between the original generated SQL queries and any
replacement queries supplied by the user. Only SQL queries specified by user will be substituted.

Us ing the Phys ica l Sources Catego ry

Administration Guide 4-7

The ALDSP administrator defines and maintains substitution queries through the ALDSP
Administration Console.

The replacement query is executed instead of the original SQL query. The ALDSP runtime
engine reads the SQL result set using type/column information of the original query. Potential
problems related to incorrect substitution, which violates the conditions listed in Requirements
for SQL Statement Substitution include the following problems:

Incorrect result returned by XQuery, for example, incorrect data, no result at all, incorrect
order of the result, are among the possible unwanted outcomes.

Error generated by the runtime engine during SQL statements execution, for example,
problems with parameter binding and reading the result.

Supporting Externalized End Points in Substituted Queries
In both the generated and substitute queries, a special syntax is used to support externalized end
points (see “Modifying Data Source End Points” on page 4-5 for details). The following
substituted queries show this syntax (emphasis added):

SELECT /*+ FIRST_ROWS (10)*/ t1."BILL_TO_ID" AS c1, t1."C_ID" AS c2,
t1."DATE_INT" AS c3, t1."ESTIMATED_SHIP_DT" AS c4,
t1."HANDLING_CHRG_AMT" AS c5, t1."ORDER_DT" AS c6, t1."ORDER_ID" AS c7,
t1."SALE_TAX_AMT" AS c8,
t1."SHIP_METHOD_DSC" AS c9, t1."SHIP_TO_ID" AS c10, t1."SHIP_TO_NM" AS
c11, t1."STATUS" AS c12,
t1."SUBTOTAL_AMT" AS c13, t1."TOTAL_ORDER_AMT" AS c14, t1."TRACKING_NO"
AS c15
FROM {RTLAPPLOMS}.{CUSTOMER_ORDER} t1

Note: If you are adding SQL fragments (such as string literals) in your substituted SQL
statement, you also need to use the convention of doubling opening curlie braces.

For example:

SELECT t1.ID FROM CUSTOMER() WHERE $i/ID > ‘a{bee}c’ return $i/ID

is translated to:

SELECT t1.ID FROM {CUSTOMER} t1 WHERE t1.ID > ‘a{{bee}c’

Depending on your requirement, specify replacement queries using the same name placeholders
as the original query. At the end of the SQL generation stage the original names are replaced with
the current end-point names. The original names are used if no end-point setting is found.

Conf igur ing ALDSP Resources

4-8 Administration Guide

Requirements for SQL Statement Substitution
There are several requirements regarding the substituted SQL query:

The query must return same data, with same number of columns and column types.

Columns must be listed in the same order as the original query.

The query must have the same number of parameters, in the same order, as the original
query.

The expected parameter types must match that of the original query.

Alias column names must be exactly the same as in the original query.

Note: For queries using sub-queries, the column aliases need to be preserved by only the
outermost subquery and not the inner subqueries.

If the original query contained an ORDER BY clause, the same ordering result must be
required.

Creating Substitute SQL Query Statements
To create a substitute SQL query:

1. Click Lock & Edit to acquire the lock.

2. Select the Physical Sources category from the category list and then select the relational
databases option from the navigation pane.

3. Navigate and select the relational data source for which you want to create the substitute
query and then select the Substituted SQL Statement tab.

4. Click New. This displays the page where you can specify the SQL statement substitution rule
as shown in Figure 4-5.

Us ing the Phys ica l Sources Catego ry

Administration Guide 4-9

Figure 4-5 Rules for SQL Statement Substitution

5. Specify the following details on this page:

Name of the substitute query

Enable the substitute query

An optional description of the query

The SQL statement generated by ALDSP

The substituted SQL statement

The system automatically tracks creation and last modified dates. An example for using the
substitute query is available at SQL Statement Substitution Example.

SQL Statement Substitution Example
The order in which SQL statement substitutions are established is not fixed. Therefore, the
example in this section and the steps involved are only one approach to creating and testing SQL
statement substitution.

1. Setup your environment with these actions:

Conf igur ing ALDSP Resources

4-10 Administration Guide

Eclipse IDE is open with the ALDSP perspective and the dataspace has been successfully
built and deployed.

WebLogic Server is running.

Your ALDSP Administration Console is open. In the sample dataspace the URI is:

http://localhost:7001/dspconsole

Auditing is enabled. (For details on activating and using auditing see Chapter 9, “Working
With Audit and Log Information.”)

2. Set the base SQL statement audit property to Always (Figure 4-6), which means that the base
SQL statement will always be returned. (See also “Setting Individual Auditing Properties” on
page 9-4.)

Figure 4-6 Setting the basesql Property to Always be Returned

3. Select your relational data source in the ALDSP Administration Console (Figure 4-4).

4. Select the Substituted SQL statements option.

5. Click New and enter the following in the resulting dialog box:

Name you want to assign to your substitute query.

An optional description.

Enable (or disable) the substitution logic for the query you are about to create using the
Enabled checkbox

Us ing the Phys ica l Sources Catego ry

Administration Guide 4-11

6. Click Save > Activate Changes.

7. In your Eclipse IDE dataspace, run your query (such as CUSTOMER) in Test. Notice
(Figure 4-7) that a basesql version of generated SQL statement is created.

Figure 4-7 Output from RTLApp CUSTOMER_ORDER() Query with basesql Result Highlighted

8. On the Console tab scroll down until you locate the basesql version of the query you just
generated (also shown in Figure 4-7). Copy this version of the query to your clipboard. A
sample query appears below:

SELECT t1."BIRTH_DAY" AS c1, t1."CUSTOMER_ID" AS c2, t1."CUSTOMER_SINCE"
AS c3,

 t1."DEFAULT_SHIP_METHOD" AS c4, t1."EMAIL_ADDRESS" AS c5,
t1."EMAIL_NOTIFICATION" AS c6,

 t1."FIRST_NAME" AS c7, t1."LAST_NAME" AS c8, t1."LOGIN_ID" AS c9,
t1."NEWS_LETTTER" AS c10,

 t1."ONLINE_STATEMENT" AS c11, t1."SSN" AS c12, t1."TELEPHONE_NUMBER"
AS c13

 FROM {RTLCUSTOMER}.{CUSTOMER} t1

9. Return to the ALDSP Administration Console, Substituted SQL Statements area and paste the
basesql statement into the field labeled Generated SQL Statement.

10. Paste the basesql statement into the field labeled Substituted SQL statement.

Conf igur ing ALDSP Resources

4-12 Administration Guide

11. Edit the substituted statement based on supported hints provided by the underlying database.
A sample edited query restricting results to the first 10 rows in an Oracle database (emphasis
added) — appears below:

SELECT /*+ FIRST_ROWS (10)*/ t1."BIRTH_DAY" AS c1, t1."CUSTOMER_ID" AS
c2, t1."CUSTOMER_SINCE" AS c3,

 t1."DEFAULT_SHIP_METHOD" AS c4, t1."EMAIL_ADDRESS" AS c5,
t1."EMAIL_NOTIFICATION" AS c6,

 t1."FIRST_NAME" AS c7, t1."LAST_NAME" AS c8, t1."LOGIN_ID" AS c9,
t1."NEWS_LETTTER" AS c10,

 t1."ONLINE_STATEMENT" AS c11, t1."SSN" AS c12, t1."TELEPHONE_NUMBER"
AS c13

 FROM {RTLCUSTOMER}.{CUSTOMER} t1

12. Click Save > Activate Changes.

13. Return to the Eclipse IDE and re-run your query in Test mode. Notice in the Output pane that
your substitute query appears in the SQL Statement area.

14. Select the CUSTOMER () query from the Plan view. Click Show Query Plan. Notice that the
resulting plan contains the substituted SQL as well as the named of the substituted SQL
statement.

Figure 4-8 Query Plan Displaying Substituted SQL Query

Setting the Server Thread Count
Configuring the thread count optimally depends on the physical resources of the machine on
which you deploy ALDSP, the anticipated load, and the type of dataspace you are deploying.

Set t ing the Se rve r Thread Count

Administration Guide 4-13

Although increasing the thread count accelerates processing it also consumes memory. It is
advised that you increase the thread count based on priority and available resources.

For more information about how to decide the priority and set the server thread count, refer to
ALDSP FAQ which is available at www.dev2dev.com.

ALDSP Administration Console allows you to set the server thread count using the following
options:

Maximum number of query plans cached: This option sets the number of query plans that
can be stored in cache for faster access.

Maximum threads for one query: This option restricts the maximum number of parallel
web service calls to the backend.

To set the server thread count:

1. Select the Runtime tab from the System Administration category.

2. Acquire the lock.

3. In the Server Resources section, specify the value for the maximum number of query plans
cached and the maximum number of threads for a single query, as shown in Figure 4-9.

http://dev2dev.bea.com/wiki/bin/view/CodeShare/Faq10b
http://dev2dev.bea.com/

Conf igur ing ALDSP Resources

4-14 Administration Guide

Figure 4-9 ALDSP Administration Console: Runtime Tab

4. Click Save > Activate Changes.

For more information on tuning performance for WebLogic Server, refer to the WebLogic Server
Performance and Tuning guide.

Item-based Memory Management
When memory management is enabled, ALDSP will use memory-managed sort and join
operators. A memory-managed operator uses the disk to limit memory consumption in the
presence of large datasets. Each operator is only allowed to have up to a set maximum number of
items in memory at a time. If the number of items to be processed exceeds the maximum then the
operator must use the disk to complete its task. Here "items" are things that are being operated
upon (joined or sorted).

Note: Different query workloads usually involve different size items.

For example, consider a query plan that contains 2 sort operators and 3 join operators. Assume
that the maximum number of items per operator is 40,000. Regardless of the overall amount of
data being processed by the query, this query plan will result in at most (2 + 3) * 40,000 = 200,000
items being held in memory at a time.

http://e-docs.bea.com/wls/docs81/perform/index.html
http://e-docs.bea.com/wls/docs81/perform/index.html

Us ing Admin is t ra t ive P roper t i es

Administration Guide 4-15

The maximum number of operators refers to the overall number of operators that may be
concurrently running across all query plans being processed at a given time by the
ALDSP-enabled server. The maximum number of operators and the maximum number of items
together provide a means to control the overall memory consumption of the server and can help
guard against out-of-memory exceptions. When needed, these values should be adjusted based
on workload and data characteristics, as the item count is only a coarse metric for memory
consumption because item sizes affect the actual memory used as well.

To enable and configure memory management:

1. Click the Runtime tab from the System Administration category.

2. Acquire the lock.

3. From the Memory Management section (Figure 4-9), select Enable Memory Management.

4. Specify the limit for the maximum number of operators per dataspace using the Maximum
Operators box. This allows you to restrict the memory usage by operators per dataspace.

5. Specify the limit for the maximum units that can be sorted or joined (items) by a single
operator in memory. If this limit exceeds, then the item is stored in the temporary file system
space.

6. Click Save > Activate Changes.

Using Administrative Properties
An administrative property is a user-defined property that you can configure using the ALDSP
Administration Console. The value of an administrative property can be used in XQuery
functions, either in data service functions or XQuery functions for security.

Note: For information on XQuery functions for security, see Chapter 5, “Securing ALDSP
Resources.”

An administrative property allows you to specify function parameters that can be easily changed
by the administrator, without modifying the body of either the data service function or XQuery
function for security.

Any data service within a dataspace can use the administrative property value. The property value
can be accessed using XQuery with the BEA function get-property(). The function takes the
name of the property as an argument and returns the value as a string. It also takes an argument
that serves as the default value for the parameter. This value is used if the property is not
configured in the console.

Conf igur ing ALDSP Resources

4-16 Administration Guide

The following example illustrates an XQuery Function Library function that uses an
administrative property:

declare function f1:getMaximumAccountViewable() as xsd:decimal {
 let $amount := fn-bea:get-property("maxAccountValue", "1000.00")
 cast as xsd:decimal
 return $amount
};

To manage administrative properties:

1. Click the name of the dataspace in the Navigation pane.

2. Click the Administrative Properties tab from the System Administration category. The list of
property names currently defined appears in the table, as illustrated in Figure 4-10.

Figure 4-10 Administrative Properties Tab

3. Acquire the lock by selecting Lock & Edit.

4. To add a property, complete the following:

a. Enter a name for the property in the Property Name field of the Add Administrative
Property table.

The name must match the name property passed to the get-property() function used
to access the properties value. For example:

fn-bea:get-property("maxAccountValue", "1")

Moni to r ing Ac t i ve Quer ies and Updates

Administration Guide 4-17

b. Optionally, enter an initial value for the property.

You can change this value later, if required.

c. Click Add Property.

The property appears in the Edit Administrative Property table.

5. To change a property value:

a. Acquire the lock.

a. Enter a new value in the Property Value field of the Edit Administrative Property table.

b. Click Save > Activate Changes.

6. To delete a property:

a. Acquire the lock and select the property from the Edit Administrative Property table.

a. Click Delete.

b. Click Activate Changes to confirm deletion of the property.

Note: The default value for the property is used in any get-property() call using the deleted
property.

Monitoring Active Queries and Updates
Using the Operations category in the console, you can monitor long-running active queries and
updates for a dataspace. Figure 4-11 illustrates an active ad hoc query running on the server for
the RTLApp dataspace.

Note: Active queries and updates can be monitored only at the dataspace level.

Conf igur ing ALDSP Resources

4-18 Administration Guide

Figure 4-11 Monitoring the Status of Active Ad Hoc Queries

If an active query or an update is running for a long time on the server then the information is
displayed in the table. This table lists the XQuery functions under the Function Name field.

If a query is taking longer than the expected time to retrieve data, you can also kill a query by
clicking Kill Query.

In case of ad hoc queries, you can view the ad hoc query by clicking the function name in the
Function field. This allows you to view the ad hoc query that is running on the server as shown
in Figure 4-11.

Figure 4-12 Ad Hoc Query Displayed on ALDSP Administration Console

You can monitor active updates the same way as active queries.

Set t ing the T ransact ion I so la t i on Leve l

Administration Guide 4-19

Setting the Transaction Isolation Level
In some instances, ALDSP may not be able to read data from a database table because another
dataspace has locked the table, causing queries issued by ALDSP to be queued until the dataspace
releases the lock. To prevent this, you can set the transaction isolation to read uncommitted in the
JDBC connection pool on your WebLogic Server.

To set the transaction isolation level:

1. Start the WebLogic Administration Console in a web browser by opening the following URL:

http://<HostName>:<Port>/console

For example, to start the Administration Console for a local instance of WebLogic Server
(running on your own machine), type the following URL in a web browser address field:

http://localhost:7001/console/

2. Expand Services > JDBC > Data Sources > <datasourcename>.

3. Select the Connection Pool tab as illustrated in Figure 4-13.

http://localhost:7001/console/

Conf igur ing ALDSP Resources

4-20 Administration Guide

Figure 4-13 WebLogic Administration Console Connections Tab

4. Expand the Advanced section. The page expands to include the Advanced Options section.

5. Acquire the lock.

6. In the Init SQL field, enter the following:

Set t ing the T ransact ion I so la t i on Leve l

Administration Guide 4-21

SQL SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

7. Click Save > Activate Changes.

Conf igur ing ALDSP Resources

4-22 Administration Guide

Administration Guide 5-1

C H A P T E R 5

Securing ALDSP Resources

ALDSP 3.0 provides two types of security:

Managing Security at Runtime: Runtime security enables you to define policies that
secure ALDSP artifacts.

Controlling Administrative Access: Access control policies enable restricting ALDSP
Administration Console access based on user entitlements. Entitlements are predefined in
the console and define the actions that a user can perform.

This chapter explains how you can configure and manage runtime security and access control for
different users through the ALDSP Administration Console. It contains the following sections:

Introduction to ALDSP Security

Understanding Runtime Security Policies

Creating and Applying Runtime Security Policies

Configuring Dataspace-Level Security

Configuring Data Service and Operation-Level Security

Working with Administrative Access Control Policies

Secur ing ALDSP Resources

5-2 Administration Guide

Introduction to ALDSP Security
To work with ALDSP security features, you must first define and create users who will access
the ALDSP Administration Console. For more information about creating users, refer to Create
Users in WebLogic Server Administration Console Online Help.

To secure ALDSP artifacts you can create runtime security policies. ALDSP artifacts or resources
include dataspaces, services, operations, library procedures, and data elements.

For more information on runtime security policies, refer to Understanding Runtime Security
Policies

After creating users in an ALDSP-enabled WebLogic Server domain, you can control
administrative access of these users by applying administrative access control policies. Access
control on ALDSP Administration Console is based on user entitlements. Entitlements are
assigned to users by a domain user, who is a super user for a particular domain. A domain user is
created when you create an ALDSP domain and specify the user name and password for it.

For more information on administrative access control, refer to Working with Administrative
Access Control Policies.

Understanding Runtime Security Policies
The runtime security feature enables you to configure access to resources such as dataspaces, data
services, operations, and data elements. For a secured resource, a requesting client must meet the
condition of the runtime security policy applicable to that resource, whether accessing the
resource through the typed mediator API, an ad hoc query, or any data access interface. ALDSP
exposes its deployed artifacts as resources that can be secured through runtime security policies.

For example, you can control access to an entire ALDSP dataspace or just to a credit card number
element within Customer_Order.ds.

When a request comes to a running ALDSP instance for a secured resource, ALDSP passes an
identifier for the resource to WebLogic Server. WebLogic Server, in turn, passes the resource
identifier, user name, and other context information to the authorization provider, such as
XACMLAuthorizer. The provider evaluates the policy that applies to the resource. As a result of
the evaluation, access to the resource is either permitted or blocked.

If the user does not satisfy the requirements of an element-level policy, the element is redacted
from the result object, and therefore does not appear.

Unders tand ing Runt ime Secur i t y Po l i c i es

Administration Guide 5-3

Figure 5-1 Data Redaction

Note: By default, WebLogic Server security uses the XACML Authorization Provider. Other
authenticators can use any external resource necessary to implement the policy
evaluation.

Definition of a Securable Resource
A securable resource is an ALDSP artifact, such as a data service, operation, or element, to which
you can apply a runtime security policy. The resources you can protect using runtime security
include:

Dataspace: The policies apply to all the resources in the dataspace. However, if there are
policies applied to a data service or operation, then the more specific policy applies.

Data Service: The policies apply to a data service and operations within that data service.
However, if an individual operation has a policy applied to it, then the more specific policy
applies.

Operations: The policy applies to individual data service operations in a dataspace. Data
service operations include ALDSP functions and procedures.

Data Elements: A policy can apply to individual elements within a data service Return
type, such as the salary property of a customer.

After you secure individual resources, you can enable or disable security for the dataspace.
Security policies are inherited. This means that security enabled at the dataspace level applies to
all data services, operations, and elements within the dataspace. However, if several policies

Data Service

Data Redaction

Data Service WebLogic
ConsumerServer Security

Authorized

 False

Secured Element

 User?

 Result

Resource

 Request

Secur ing ALDSP Resources

5-4 Administration Guide

apply to a particular resource, the more specific policy prevails. For example, a policy on an
element supercedes a policy for the data service.

The hierarchy of ALDSP artifacts is as follows:

Dataspace

Data Service

 Operations

Element

Figure 5-2 illustrates the securable resources in an ALDSP dataspace.

Figure 5-2 Securable Resources

Allowing Anonymous Access
At the dataspace level, you can enable anonymous access by creating a policy. If you apply this
policy, all users, including unauthenticated users, can access resources by default. For more
information on creating runtime policies at the dataspace level, refer to Configuring
Dataspace-Level Security.

myDataspace

dataService1

ds1datatype

S
ec

u
ra

b
le

 R
es

o
u

rc
es

update

Element Resources

Dataspace Resources

Operation Resources

readFunc1

createFunc2

delete

Unders tand ing Runt ime Secur i t y Po l i c i es

Administration Guide 5-5

The anonymous access policy works only with the WebLogic Authorization provider. The
ALDSP security policies are intended to work with the default WebLogic Authorization provider.
If you are using another authorization provider, you will need to create policies using the facilities
of the other provider. For more information, see WebLogic Authorization Provider: Provider
Specific in the Administration Console Online Help.

The Security Configurations tab on ALDSP Administration Console provides the configurable
runtime security policies. Setting up runtime security in ALDSP Administration Console
involves the following tasks:

Enabling Access Control

Configuring security policies for dataspaces, data services, operations, and elements.

Identifying data elements that you want to secure and then configure either security
policies or custom XQuery security functions for the elements.

ALDSP directly supports runtime security policies for its resources. The WebLogic Platform
supports extensive security features that can be applied to your implementation as well, including
encryption-based, transport-level security. For runtime security configuration, ALDSP provides
the following policies, called predicates, in ALDSP Administration Console:

Role

Group

User

Access occurs on specified days of the week

Access occurs between specified hours

Context element’s value is greater than a numeric constant

Deny access to everyone

Context element’s value is equals a numeric constant

Access occurs before

Access occurs on the specified day of the month

Context element’s value equals a string constant

Context element defined

http://e-docs.bea.com/wls/docs92/ConsoleHelp/pagehelp/Securitysecurityprovidersauthorizerproviderspecifictitle.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/pagehelp/Securitysecurityprovidersauthorizerproviderspecifictitle.html

Secur ing ALDSP Resources

5-6 Administration Guide

Allow access to everyone

Access occurs after

Access occurs before the specified day of the month

Context element’s value is less than the numeric constant

Access occurs after the specified day of the month

Server is in development mode

The security policies in the ALDSP Administration Console are similar to the conditions used by
WebLogic Server security. For more information on WebLogic Server security policies and
conditions, refer to “Securing WebLogic Resources Using Roles and Policies” in the WebLogic
Server documentation.

In addition to creating runtime security policies, you can create service accounts to map security
configurations of external data sources such as web services and Java functions. This feature
ensures secure storage of the credentials of external data sources and allows runtime identity
mapping.

Creating and Applying Runtime Security Policies
Before you start creating and applying runtime policies, make sure that the Enable Access
Control checkbox in the General tab is selected, as shown in Figure 5-3. This activates the
security policy configurations. If access control is not selected, then security is not enabled for
your dataspace. The General tab is available only at the dataspace level.

http://e-docs.bea.com/wls/docs92/secwlres/sec_poly.html

Creat ing and App l y ing Runt ime Secur i t y Po l i c i es

Administration Guide 5-7

Figure 5-3 General Tab

To enable access control:

1. Select the Security Configurations tab and the dataspace from the navigation pane.

2. Acquire the lock by clicking Lock & Edit.

3. Click the General tab.

4. To enable access control, select Enable Access Control checkbox.

5. To enable JDBC metadata access, select Enable JDBC Metadata Access Control.

6. Click Save > Activate Changes.

The steps to create and apply runtime security policy for a dataspace, data service, and operations
are the same. However, you must make sure that you select the ALDSP resource from the
navigation pane. To create and apply the runtime security policy:

1. Select the Security Configuration category.

2. Click the Policy tab to start creating runtime policies for a dataspace, as shown in Figure 5-4.

Secur ing ALDSP Resources

5-8 Administration Guide

Figure 5-4 Security Configurations: Policy Tab

3. Click Add Conditions on the Policy tab. The Choose a Predicate page is displayed.

4. Select the predicate from the Predicate List drop down. For example, select User and click
Next.

5. The next page that appears, depends on the predicate you select. If you select User predicate,
the page show in Figure 5-5 is displayed.

Note: If you select the User predicate, it implies that you are allowing a particular user to access
the dataspace. Make sure that this user is authenticated by WebLogic Server.

6. Specify the user name in the User Argument Name field, for example User A, and click Add.
This adds the argument to the text box adjacent to the Remove button.

Conf igur ing Dataspace-Leve l Secur i t y

Administration Guide 5-9

Figure 5-5 User Predicate Arguments Page

7. Click Finish. This adds the policy to the policy conditions applied to the dataspace.

Configuring Dataspace-Level Security
You can configure runtime policies that would ensure access to users who are assigned
entitlements to access the entire dataspace. At the dataspace level, the Security Configuration tab
provides the following tabs:

1. General: This tab provides the options to enable secured access to ALDSP resources and also
to JDBC metadata. To access these options, click Lock & Edit to acquire the lock. It includes
the following options:

Enabling Access Control: Enabling access control activates checking security policies
throughout the dataspaces within the domain. It ensures that access to any resource is
determined by the policy on that resource.By default, access control is not enabled.

Enabling JDBC Metadata Access Control: You can control metadata accessed through
SQL by selecting the Enable JDBC Metadata Access Control option. This option allows
ALDSP metadata access to users based on their access rights at the JDBC driver level.
Selecting this option ensures that users are able to list only those tables and procedures that
they are authorized to use. By default, this option is not enabled.

Secur ing ALDSP Resources

5-10 Administration Guide

Note: If an access policy is time-dependent or is changed and the metadata access control
option is enabled, you may not be able to access the tables and procedures that had been
listed.

Export Access Control Resources: This feature allows you to export the securable
resource IDs within a dataspace to a text file format. However, it does not export the
console configurations while exporting the ALDSP resources. This is helpful in
determining the dataspace structure and defining policies on different systems, which may
not be using the same authorization provider or are working on different servers.

For more information, refer to Exporting Access Control Resources.

2. Policy: This tab allows you to edit policies if the default authorization provider,
XACMLAuthorizer, is used. It provides the following information:

Resource Name: The resource for which you need to add a runtime security policy.

Providers: The authorization provider that WebLogic Server uses.

Policy Conditions: List of policies that have been applied to the resource.

Overwritten Policy: Any policy

If a third-party authorization provider is used, then this tab displays a message as follows:

“Policies for AquaLogic Data Service Platform domain have to be defined in the
configured external policy provider.”

For more information about creating and applying security policies, refer to Creating and
Applying Runtime Security Policies.

3. XQuery Functions for Security: An XQuery function for security enables you to specify
custom security policies that can be applied to data elements. In particular, security XQuery
functions are useful for creating data-driven policies (policies based on data values). For
example, you can block access to an element if the order amount exceeds a given threshold.
For more information, refer to Working with XQuery Functions for Security.

4. Service Accounts Configuration: Service accounts represent a mapping of user credentials
between an ALDSP user and the user of an external data source, such as a web service or Java
function. This mapping is stored as a part of the dataspace configuration and ensures secure
storage of external identity credentials. You can associate service accounts with a number of
external data sources to perform runtime identity mapping. For more information, refer to
Understanding and Using Service Accounts.

Conf igur ing Dataspace-Leve l Secur i t y

Administration Guide 5-11

Working with XQuery Functions for Security
XQuery security functions allow data-driven security of ALDSP resources. At the dataspace
level, you can create and maintain XQuery functions to ensure that data elements are returned
only when the conditions are met. However, to associate these functions to data service elements,
go to the data service and specify the element for which the function applies.

Note: If both a standard security policy and an XQuery function applies to a given data element,
the results of both policy evaluations must be true for access to be permitted (logical and
is applied to the results).

Applying data-driven security policies involves the following steps:

1. Identify the element as a secured element. (For more information, see “Configuring Data
Elements-level Security” on page 5-24.)

2. Create a security XQuery function to define the data-level security. (For more information,
see “Creating an XQuery Function for Security” on page 5-11.)

3. Apply a security XQuery function to the data element. (For more information, see “Applying
an XQuery Function for Security” on page 5-13.)

Creating an XQuery Function for Security
You can create one or more XQuery functions to apply to data elements within a dataspace.

To create an XQuery function for security:

1. Click Security Configurations tab and select the dataspace in the Navigation tree.

2. Click Lock & Edit to acquire the lock and then select the XQuery Functions for Security tab.

Secur ing ALDSP Resources

5-12 Administration Guide

Figure 5-6 Security XQuery Functions

3. Add the XQuery function body in the text area of the tab, as shown in Figure 5-6. The
following code sample is used in this illustration:

declare namespace f1 = "ld:CUSTOMER_ORDER";

declare function f1:secureOrders($order as

element(f1:CUSTOMER_ORDER)) as xs:boolean {

if (fn-bea:is-access-allowed("LimitAccess",

"ld:CUSTOMER_ORDER.ds")) then

fn:true()

else if ($order/TotalOrderAmount lt

(fn-bea:get-property("total_order_amount", "1000000") cast as

xs:decimal))

then

fn:true()

Conf igur ing Dataspace-Leve l Secur i t y

Administration Guide 5-13

else

fn:false()

};

Notice that the function uses the BEA extension XQuery function is-access-allowed(). This
function tests whether a user associated with the current request context can access the specified
resource, which is denoted by an element name and a resource identifier.

ALDSP provides the following additional convenience functions for security purposes:

is-user-in-group ($arg as xs:string) as xs:boolean

Checks whether the current user is in the specified group.

is-user-in-role ($arg as xs:string) as xs:boolean

Convenience method that checks whether the current user is in the specified role.

userid() as xs:string

 Returns the identifier of the user making the request for the protected resource.

Note: For details on creating XQuery functions, see the XQuery and XQSE Developer’s Guide.

4. Click Compile and ensure that the function compiles successfully.

5. Click Save > Activate Changes to store the XQuery function.

Note: A security XQuery function must be applied to a data element for it to take effect. For
more information, see “Applying an XQuery Function for Security” on page 5-13. The
functions are applied to elements by qualified function name. The only requirement for
the function is that it returns a Boolean value and that the name should be qualified by a
namespace URI.

Applying an XQuery Function for Security
You can use XQuery functions for security to control access to data elements. After you define
the XQuery function for security, as described in “Creating an XQuery Function for Security” on
page 5-11, you must apply the function to the corresponding data element for it to take effect. In
addition, you define policies for securing the data elements, which provide additional security
along with the XQuery functions for security. For more information, refer to Configuring Data
Elements-level Security.

http://edocs.bea.com/aldsp/docs25/xquery/index.html

Secur ing ALDSP Resources

5-14 Administration Guide

To make any changes to the security configurations of a data element, you must first acquire the
lock by clicking Lock & Edit. To apply the XQuery function for security to a data element:

1. Select the Security Configuration tab from the navigation pane and then click the data service
associated with the data element that you need to secure.

2. Click the Secured Elements tab and select the checkbox next to the data element to which you
want to apply a custom function.

3. Click Save and then click Activate Changes. This data element is now visible under the data
service in the navigation tree.

4. Select the data element from the navigation tree and click the Secured Elements
Configuration tab. This tab allows you to specify the qualified function name and namespace
URI for the XQuery function that you want to associate with the data element, as shown in
Figure 5-7.

Figure 5-7 Applying XQuery Functions for Security

5. If you want to specify a default value for the element or attribute, then select the User Default
Value checkbox and specify the default value in the Default Value box.

This option allows you to assign a constant value for the element or attribute. However, it
supports only primitive types, so you cannot have a default value for complex types.

Conf igur ing Dataspace-Leve l Secur i t y

Administration Guide 5-15

Note: If you select this check box, then it is mandatory to specify the default value for the
resource.

6. Specify the namespace URI and local name of the XQuery function that you have created.

7. Click Add > Save > Activate Changes. This completes the association of the data element
with the XQuery function for security.

Understanding and Using Service Accounts
Service accounts provide the option to store user credentials of external data sources. It provides
a mapping between the local WebLogic user and a remote external data source user by
configuring the user credentials within the ALDSP Administration Console.

You can configure service accounts for web services and Java functions. For JDBC identity
mapping, ALDSP depends on WebLogic Server 9.2 built-in support.

Service accounts provide different types of mappings, which include:

Pass Through: This mapping creates a mapping where the external user ID is mapped to
an authenticated ALDSP user ID.

Note: A pass through service account is applicable only for WebLogic Server and requires
trusted domain setup.

Static: This mapping option allows you to map all ALDSP users, including
unauthenticated users, to a single external data source user.

Mapping: This option allows you to create a many-to-one mapping of an ALDSP user to
an external data source user. You can also map a single external data source user to
multiple ALDSP users. For unauthenticated users you may define a mapping, otherwise an
error will occur when the unauthenticated user tries to access ALDSP.

Note: Once you create and define the type of a service account, you cannot change it. If you
have to change a service account type, delete the account and create a new one.

Creating a Service Account
To create a service account:

1. Select the Security Configurations tab from the category list and select Service Accounts
Configuration tab from the workspace content area.

2. Click Lock & Edit to acquire the lock and then select the dataspace for which you need to
create the service account.

Secur ing ALDSP Resources

5-16 Administration Guide

3. Click New. This opens the Create a New Service Account page, as shown in Figure 5-8.

4. On this page, specify the following details:

Resource Name: Name of the service account.

Description: A description of the service account. This is optional.

Resource Type: Select the type of the service account from the list of available options
including Pass Through, Static, Mapping.

Figure 5-8 Create a New Service Account Page

Note: Based on the selected resource type, the Next button is enabled.

5. If you select the resource type as Pass Through, then click Finish to complete creating the
service account.

6. If you select the resource type as Static:

a. Click Next.

b. On the next page, specify the user name and password for that account and click Finish,
as shown in Figure 5-9.

Conf igur ing Dataspace-Leve l Secur i t y

Administration Guide 5-17

Figure 5-9 Creating a Static Service Account

7. If you select the resource type as Mapping and click Next, a new page is displayed, as shown
in Figure 5-10.

Figure 5-10 Creating a Service Account of the Mapping Type

On this page, you can define the authorized remote (external data source) users, and add
them as authenticated external data source users.

a. Specify the remote user name and password in the Remote User Name and Password
fields, respectively, of the Enter Authorized Remote User table.

Secur ing ALDSP Resources

5-18 Administration Guide

b. Click Add. This adds the users to the Remote Users table. Using the Remote Users table
you can edit the password or delete a user also.

c. Click Next after adding the remote users. The next page allows you define the local user,
as shown in Figure 5-11.

Figure 5-11 Remote to Local User Mapping

d. Specify the local user name in the Local User Name field and select the corresponding
remote user from the Remote User list.

e. Click Add. This creates the local to remote user mapping.

f. To map all unauthenticated (anonymous) users to a particular remote user, select the Map
Anonymous Requests checkbox and then choose the remote user from the drop down.

g. In case you want to provide a default mapping for all authenticated user that do not have
an explicit mapping to the remote user, select the Map Other Authenticated Requests
checkbox and then choose the remote user from the drop down.

h. Click Finish to create a service account of the mapping type.

Conf igur ing Dataspace-Leve l Secur i t y

Administration Guide 5-19

Exporting Access Control Resources
Authorization is the process whereby the interaction between users and resources are limited to
ensure integrity, confidentiality, and availability. WebLogic uses resource identifiers to identify
deployed ALDSP artifacts, such as dataspaces, data services, and operations. This identifier is
used to associate a client request to any security policies configured for the requested resource.

Resource identifiers are managed for you when you use the default WebLogic Authorization
provider and the ALDSP Administration Console to configure your policies. In particular,
resource identifiers already exist for ALDSP dataspaces, data services, and data service
operations. In addition, when you choose elements to be secured in the console, an identifier is
generated for the element.

However, when using a custom authorizer, you must know the resource identifiers for your
deployment and configure policies for the resources in the form expected by the other
authorization module. This means that you need to identify the element resources that need to be
protected.

Note: The WebLogic security documentation provides details on how to connect another
security authenticator to WebLogic Server. For more information, see WebLogic
Authorization Provider in the Administration Console Online Help.

You can view the list of resource identifiers by exporting the access control resources from the
ALDSP Administration Console.

To export the file:

1. Select the dataspace in the navigation pane and select the General tab from the Security
Configuration category.

2. Click Lock & Edit and then click Export Access Control Resources if you want to export the
current session values of the dataspace.

3. If you want to export the core values, then click Export Access Control Resources without
acquiring the lock.

4. Save the text file.

An example of a portion of the file follows:

<ld type="admin"><app>DOMAIN</app></ld>

<ld type="admin"><app>ADMIN</app></ld>

<ld type="admin"><app>MONITOR</app></ld>

<ld type="admin"><app>BROWSER</app></ld>

http://e-docs.bea.com/wls/docs92/ConsoleHelp/pagehelp/Securitysecurityprovidersauthorizerconfigcommontitle.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/pagehelp/Securitysecurityprovidersauthorizerconfigcommontitle.html

Secur ing ALDSP Resources

5-20 Administration Guide

<ld type="admin"><app>ADMIN</app><ds>DSP_TEST</ds></ld>

<ld type="admin"><app>MONITOR</app><ds>DSP_TEST</ds></ld>

<ld type="admin"><app>BROWSER</app><ds>DSP_TEST</ds></ld>

<ld type="app"><app>DSP_TEST</app></ld>

<ld type="service"><app>DSP_TEST</app><ds>ld:CREDIT_CARD.ds</ds></ld>

<ld
type="function"><app>DSP_TEST</app><ds>ld:CREDIT_CARD.ds</ds><res>{ld:C
REDIT_CARD}CREDIT_CARD:0</res></ld>

<ld
type="function"><app>DSP_TEST</app><ds>ld:CREDIT_CARD.ds</ds><res>{ld:C
REDIT_CARD}createCREDIT_CARD:1</res></ld>

<ld
type="function"><app>DSP_TEST</app><ds>ld:CREDIT_CARD.ds</ds><res>{ld:C
REDIT_CARD}deleteCREDIT_CARD:1</res></ld>

<ld
type="function"><app>DSP_TEST</app><ds>ld:CREDIT_CARD.ds</ds><res>{ld:C
REDIT_CARD}updateCREDIT_CARD:1</res></ld>

<ld type="service"><app>DSP_TEST</app><ds>ld:CUSTOMER.ds</ds></ld>

The format of a resource identifier is shown in Figure 5-12.

Figure 5-12 Resource Identifier Format

The type can be admin, service, or function. The resource can be any of the following:

Function: A data service function, for example, {ld:DataServices/ElectronicsWS/
getProductList}getProductList:1

User-defined or administrative entity: A custom entity, such as a protected element or an
arbitrary label defined in a data service that is used with fn-bea:is-access-allowed
operation.

These are generated when you select an element in the Secured Element tab of the ALDSP
Administration Console.

<ld type =”service”><app>DSP_TEST</app><ds>ld:Credit_CARD.ds</ds></ld>

Qualified

Dataspace

ALDSP

Resource
ID

Identifier Data Service Name
Type

Conf igur ing Data Serv ice and Opera t i on-Leve l Secur i t y

Administration Guide 5-21

Configuring Data Service and Operation-Level Security
A data service has several operations, including one or more read, create, update, delete,
navigation, and library operations. The security policies that you apply at the data service level
apply to data service operations and data elements. You can also select the data elements that you
want to secure at the data service level.

Operation-level security policies enable you to control:

User access to data service operations. It enables you to set stricter controls on the ability
to change data, for example, compared to the ability to read data.

Access time of data service operations. Enables you to control the time when a particular
operation can or cannot be accessed.

Note: Make sure that you configure policies on the data service resources that are accessed
directly by the user. Security policies on data services that are used by other data services
are not inherited by the calling data service. This means that if a data service with a
secured resource is accessed through another data service, the policy is not evaluated
against the caller. For more information, refer to Creating and Configuring Security
Policies for Operations.

Data service operations are identified by name and number of parameters for setting
security configurations. If you modify the number of parameters, you will need to
reconfigure the security settings for the operation.

Creating Data Service Runtime Security Policies
The steps to create the security policy at the data service and operation level are the same as the
dataspace level. Refer to Creating and Applying Runtime Security Policies for details.

At the data service level, you can select the data elements that you want to secure. You can select
the data elements that you want to secure using the Secured Elements tab. For example, if you
create an XQuery function for security and you want to associate it with a data element, you can
select the data element from the Secured Elements tab and then configure the data-element level
security. For more information about XQuery function for security, refer to Working with
XQuery Functions for Security.

To select the data element to be secured:

1. Acquire the lock and select the data service.

2. Select the Secured Elements tab, as shown in Figure 5-13.

Secur ing ALDSP Resources

5-22 Administration Guide

Figure 5-13 Secured Elements Tab

3. Select the data element that you want to configure for security.

4. Click Save > Activate Changes. Notice that the selected element is now included in the
navigation tree under the data service, as shown in Figure 5-14.

Conf igur ing Data Serv ice and Opera t i on-Leve l Secur i t y

Administration Guide 5-23

Figure 5-14 Secured Data Element in the Navigation Tree

To apply security policy to the data element, select the element from the navigation tree. You can
also select the secured element using the Secured Elements tab. For more information, refer to
Configuring Data Elements-level Security.

Creating and Configuring Security Policies for Operations
To set runtime security policy for an operation:

1. Select the operation from the navigation tree and click the Function Configuration tab.

2. Select the Always Secured checkbox and click Save as shown in Figure 5-15.

Secur ing ALDSP Resources

5-24 Administration Guide

Figure 5-15 Function Configuration Tab

This setting ensures that every time this operation is accessed, the runtime policy is adhered to.
Consider the following example:

Operation 1 (fn1) has a runtime policy to allow access to user1 or user2.

Operation 2 (fn2) has a runtime policy to allow access to user2 only and the operation
configuration is set to Always Secured.

fn1 invokes fn2.

In this scenario, if you access fn1 using user1, then access will be denied because the runtime
security policy configuration does not allow user1 to access fn2.

If you do not select the Always Secured check box for fn2, then you will be able to access fn1 if
using either user1 or user2 because the system will check the security policy for fn1 only and not
fn2.

Configuring Data Elements-level Security
Element-level security associates a security policy with a data element for the Return type within
a data service. If the policy condition is not met, the corresponding data is not included in the
result.

An element-level security policy applies across all operations of the data service. In other words,
a security policy set on a particular data service is not inherited. If the same data composes
another data service, either from the source or as an inclusion of the data service on which the
policy is configured, the policy does not apply to users of those data services.

When configuring element-level security, you first identify the element as a securable resource,
then set a policy on the resource.

Conf igur ing Data Serv ice and Opera t i on-Leve l Secur i t y

Administration Guide 5-25

Note: Element-level and data-driven security only apply to read and navigate functions.

The data element security policy can be configured using the steps described in Creating and
Applying Runtime Security Policies.

To associate an XQuery function for security with a corresponding data element, select the
Secured Elements Configuration tab and follow the steps mentioned in Applying an XQuery
Function for Security.

Securing Native Web Services
You can set the security policies for native web services using the Basic Auth Required property
in the Eclipse IDE. You can create runtime security policies for a native web service and then set
this property to true. This applies the security policy for the native web service. For more
information about the Basic Auth Required property, refer to the Add Security Resources to Data
Services topic in the Designing Logical Data Services section of the Data Services Developer’s
Guide.

The Service Explorer in ALDSP Administration Console allows you to check if the Basic Auth
Required property is set to true or false. To view information about this property in the Service
Explorer:

1. Click the Service Explorer category. The General tab is displayed as shown in Figure 5-16.

Figure 5-16 Basic Auth Required Property Information in Service Explorer

2. Select the native web service from the navigation tree. In this case, the Basic Auth Required
property is set to true. This implies that some security policy is applied to
SERVICE_CASE.ws, which the native web service.

../datasrvc/Designing Logical Data Services.html

Secur ing ALDSP Resources

5-26 Administration Guide

Creating Security Policies for User-Defined Security
Resources
User-defined security resources are created in the Eclipse IDE Property Editor, as shown in
Figure 5-17.

Figure 5-17 ALDSP IDE Property Editor: User-Defined Security Resources

For more information about setting the security resource values, refer to Declare a Security
Resource in Data Services Developer’s Guide.

After you assign a value to the security resource, you can create runtime security policies for the
user-defined security resource. In the preceding figure, ordertime is the value of the security
resource. After you deploy the dataspace, this resource is displayed in ALDSP Administration
Console. Figure 5-18 shows the ordertime security resource in the navigation tree for the
customerorder data service.

../datasrvc/index.html
../datasrvc/Declare a Security Resource.html
../datasrvc/Declare a Security Resource.html

Work ing wi th Admin is t ra t ive Access Cont ro l Po l i c i es

Administration Guide 5-27

Figure 5-18 Creating Runtime Security Policy for a User-Defined Security Resource

You can create a runtime security policy for the ordertime security resource using the console.

Working with Administrative Access Control Policies
Administrative roles require entitlements to access ALDSP Administration Console. These
entitlements can be assigned through the Administrative Access Control category, as shown in
Figure 5-19.

Secur ing ALDSP Resources

5-28 Administration Guide

Figure 5-19 Administrative Access Control Tab

A domain user, who is the super user for the console, assigns entitlements to users. In addition to
the domain entitlement, other predefined entitlements are admin, monitor, and browser, which
allow access to information for different categories and resources. The hierarchical structure of
the entitlements is as follows:

Domain

Admin

Monitor

Browser

This hierarchy implies that the domain entitlement allows you to perform all the tasks on ALDSP
Administration Console, depending on whether the domain entitlement is for all the dataspaces
within a domain or a particular dataspace. However, other entitlements cannot perform all the
tasks that can be performed by a user with domain entitlement. For example, you can set the
administrative access control policies only if you have domain entitlement. Similarly, the admin
entitlement allows you to perform more tasks on a dataspace than monitor or browser
entitlements.

Note: Entitlements can be assigned at the dataspace level or for all the dataspaces. For example,
for User A, you can assign admin entitlement for DS1, monitor entitlement for DS2, and
browser entitlement for DS3. Alternatively, you can assign the Admin entitlement for all
the dataspaces within the domain to User A. For more information, refer to Assigning
Entitlements.

Work ing wi th Admin is t ra t ive Access Cont ro l Po l i c i es

Administration Guide 5-29

A default domain user is created on WebLogic Server when you create the ALDSP domain. There
can be more than one domain user for the console and one domain user can create other domain
users.

Note:

By default, an Admin role is created for a domain user in ALDSP Administration Console which
is mapped from WebLogic Server Administrator role, as shown in Figure 5-19.

Table 5-1 lists the tasks that can be performed by a user for each entitlement.

Table 5-1 Tasks Allowed for Entitlements

Entitlement Categories and Resources Available

Domain The domain user for a dataspace can perform all the tasks on the ALDSP
Administration Console. Some of the most important tasks that a domain
user can perform include the following:
• Creating, deploying, and deleting dataspaces
• Creating users with domain, admin, monitor, browser entitlements
• Editing and updating configurations
• Acquiring lock from a user forcibly
• Viewing all tabs in the category list, including the Administrative

Access Control tab
• Configuring auditing options
• Manage data cache

Note: Only a domain user can acquire a lock forcibly from another
user, regardless of the user entitlement. This means that the one
domain user can forcibly acquire the lock from another domain
user also.

Admin Most of the information available to an admin user for a dataspace is the
same as the domain user. However, an admin user cannot create or delete
dataspaces and cannot assign entitlements. Therefore, when you log into
the console with admin entitlement, then the Administrative Access
Control tab will not be available.

Secur ing ALDSP Resources

5-30 Administration Guide

Assigning Entitlements
Entitlements are created for users that are created on WebLogic Server 9.2 and can be managed
through the WebLogic Server Administration Console.

To assign an entitlement:

1. Log into the ALDSP Administration Console using the domain user name and password.

2. Select the Administrative Access Control category.

3. If you want to assign entitlement for a specific dataspace, then from the navigation tree, select
the dataspace listed under the entitlement. For example, if you want to assign admin
entitlement for dataspace DS1, then select DS1 listed under the Admin entitlement, as shown
in Figure 5-20.

Monitor A monitor for a dataspace cannot make any changes in the ALDSP
Administration Console. Therefore, the change center is disabled for the
dataspace for which the user has monitor entitlements. The System
Administration tab for a monitor user does not provide any options. A
monitor user can view the following on the console:
• Data cache, queries and updates available through the Operations

category
• For the dataspace, a monitor user can export the static mediator

client jar file using the General tab.

Browser A browser user has the least control over the ALDSP Administration
Console. This user entitlement can only browse through the console. The
change center is disabled for this user. However, like a monitor user, a
browser user can also export the static mediator client JAR file.

Table 5-1 Tasks Allowed for Entitlements

Entitlement Categories and Resources Available

Work ing wi th Admin is t ra t ive Access Cont ro l Po l i c i es

Administration Guide 5-31

Figure 5-20 Assigning Entitlement for a Dataspace

You can also assign an entitlement to a user for all dataspaces within the domain. For
example, if you want to assign the Admin entitlement for dataspaces DS1, DS2, and DS3
to a user, then select the Admin entitlement option. Similarly, you can assign, monitor and
browser entitlements to a user for all dataspaces by selecting the Monitor or Browser
option from the navigation tree.

Note: In this case, the Admin entitlement is selected for the dataspace DS1.

4. Click Add Conditions on the Policy tab.

5. Select the predicate as User and click Next.

Note: You can also select other options from the list of predicates. For more information, refer
to Understanding Runtime Security Policies.

6. Specify the user name for which you want to assign the admin entitlement and click Finish.
This creates a user who has Admin entitlement for dataspace DS1.

A user views the category-list based on the entitlement assigned to that user for that dataspace.
For example, User A with admin entitlement for DS1 can view the Security Configurations tab,
however, if User A has monitor entitlement for DS2, then the Security Configuration tab for DS2
will not appear for User A.

Secur ing ALDSP Resources

5-32 Administration Guide

Gaining Administrative Access After a System Lockout
Security policies configured for assigning Admin entitlement to a user may get deleted
inadvertently. If that is the only Admin user entitlement for ALDSP Administration Console, then
the Admin user is locked out of the console.

In this case, you can configure the com.bea.dsp.security.admin.bootstrap system
property for WebLogic Server. This property allows you to specify a user name, who gains
domain access rights. However, this property should only be used if the ALDSP Administration
Console is locked due to some policy editing.

To configure this system property:

1. Stop WebLogic Server.

2. Open the setDomainEnv.cmd file located in:
<aldsp_home>\samples\domains\aldsp\bin

where <aldsp_home> is the home directory for ALDSP, for example, c:\bea\aldsp_3.0

3. Edit this file to include the com.bea.dsp.security.admin.bootstrap system property.
For example:

set JAVA_OPTIONS=%JAVA_OPTIONS% %JAVA_PROPERTIES%

-Dwlw.iterativeDev=%iterativeDevFlag%

-Dwlw.testConsole=%testConsoleFlag%

-Dwlw.logErrorsToConsole=%logErrorsToConsoleFlag%

-Dcom.bea.dsp.security.admin.bootstrap=<username>

where <username> is the place to specify the Admin user for ALDSP Administration
Console.

Note: The user name specified in the com.bea.dsp.security.admin.bootstrap system
property should be a user that has already been created using the WebLogic Server
console.

4. Save and close this file.

5. Restart WebLogic Server.

6. Log in to ALDSP Administration Console using this user name and then re-configure the
Admin entitlement policies.

Work ing wi th Admin is t ra t ive Access Cont ro l Po l i c i es

Administration Guide 5-33

Taking Lock and Edit Capability
A domain user can take back the control of the lock from ALDSP Administration Console. The
lock may need to be taken back from a user in cases where a user, such as an admin user, has
acquired the lock but has not released it for a long period and another admin user needs to acquire
the lock to modify configurations. One domain user can acquire the lock from another domain
user also.

When lock is acquired by a user, the Take Lock & Edit option is enabled for the domain user as
shown in Figure 5-21.

Figure 5-21 Take Lock & Edit Enabled in the Change Center

The domain user can click the Take Lock & Edit option from the change center to acquire the
lock. In this case, the user whose lock is acquired will see the core configuration values on the
console and the domain user or the other admin user will be able to view all the changes made by
the other user using the pending changelist. For more information about pending changelist, refer
to “Pending Changelist” on page 2-9.

Secur ing ALDSP Resources

5-34 Administration Guide

Administration Guide 6-1

C H A P T E R 6

Viewing Native Web Services

A native web service is a data service that is exposed as a web service through ALDSP. It allows
a direct mapping from the data service to the web service and updates configurations at runtime.
To generate a native web service the system requires a web service map file, which is used to
generate the WSDL for the web service. A web service map file describes the mapping between
the data services, functions, and WSDL operations.

For more information about creating a native web service, refer to How To Generate a Web
Service Map from a Data Service in the Data Services Developer’s Guide.

For information about consuming a native web service, refer to Invoking Data Services
Through Web Services in the Client Application Developer’s Guide.

ALDSP Administration Console displays the web service map artifacts in the dataspace through
the Service Explorer.

This chapter describes the steps to view the artifacts for the web service and the WSDL definition,
and export it using ALDSP Administration Console.

Viewing Native Web Service Artifacts
When you click the Service Explorer category for a web service, the following tabs are displayed
in the workspace content area, as shown in Figure 6-1.

Note: For more information about using the Service Explorer, refer to Chapter 7, “Viewing
Metadata Using the Service Explorer.”

../datasrvc/Generate a Web Service Map from a Data Service Function.html
../datasrvc/Generate a Web Service Map from a Data Service Function.html
../appdev/wsdlclt.html
../appdev/wsdlclt.html

Viewing Nat ive Web Serv ices

6-2 Administration Guide

Using the General Tab
This tab displays general configuration information about the web service, such as the target
namespace, SOAP version, the status of the ADO.NET control. In addition, it provides the option
to select basic authorization for the web service. Figure 6-1 displays the General tab page for the
ADDRESS.ws.

Figure 6-1 Native Web Service: General Tab

Note: You can set security policies for a native web service using the Basic Auth Required
property. For more information, refer to Securing Native Web Services section in
Chapter 5, “Securing ALDSP Resources.”

Using the General tab, you can also perform the following functions:

Test the Generated Web Service

View the WSDL

Export the Static JAR File

Test the Generated Web Service
Click the Test Web Service link on the General tab. This displays the WebLogic Test Client,
which allows you to test the web service as shown in Figure 6-2.

View ing Nat i ve Web Se rv ice Ar t i facts

Administration Guide 6-3

Figure 6-2 WebLogic Test Client

View the WSDL
Click the View WSDL Definition link to open the WSDL definition for the web service. A
sample WSDL definition looks similar to the displayed in Figure 6-4.

Viewing Nat ive Web Serv ices

6-4 Administration Guide

Figure 6-3 WSDL Definition

Export the Static JAR File
Click the Export Static Client Jar link (Figure 6-1) to export the web service artifacts. This option
is useful when a client needs to consume the data service as a static web service.

Using the Operations Tab
This tab displays information about underlying data service and data service functions associated
with the web service as shown in Figure 6-4.

Figure 6-4 Native Web Service: Operations Tab

Generat ing a Web Se rv ices Media to r C l i en t JAR F i l e

Administration Guide 6-5

Using the Data Lineage Tab
This tab displays the dependencies and where used information for the web service. The
information is same as the data lineage for the referenced data service as shown in Figure 6-5.

Figure 6-5 Native Web Service Data Lineage

Generating a Web Services Mediator Client JAR File
To use the Static Mediator API in a web services-enabled client application, you must generate a
Web Services Mediator Client JAR file. This JAR file contains the Static Mediator API
interfaces, plus all the necessary SDO-compiled schemas for a data space. This section explains
how to generate a Web Services Mediator Client JAR file using the Administration Console.

Tip: For information on the Static Mediator API and on writing web services-enabled clients,
see the Client Application Developer’s Guide.

1. Start the ALDSP Console. See the ALDSP Administration Guide for instructions.

2. Select the Service Explorer category, as shown in Figure 6-1.

../admin/index.html
../appdev/index.html

Viewing Nat ive Web Serv ices

6-6 Administration Guide

Figure 6-1 Selecting the Service Explorer Category

3. In the explorer, click the Data Space node that you wish to export. In Figure 6-1, the node is
called myDataSpace.

4. In the Data Space pane, select the General tab.

5. Select Export Webservice Map Static Mediator Client Jar, as shown in Figure 6-2. The
mediator JAR file is saved to your local file system.

Gene ra t ing a Media to r C l ien t JAR F i l e

Administration Guide 6-7

Figure 6-2 Exporting the Client JAR File

Generating a Mediator Client JAR File
To use the Static Mediator API in a web services-enabled client application, you must generate a
Mediator Client JAR file. This JAR file contains the Static Mediator API interfaces, plus all the
necessary SDO-compiled schemas for a data space. This section explains how to generate a
Mediator Client JAR file using the Administration Console.

Tip: For information on the Static Mediator API and on writing web services-enabled clients,
see the Client Application Developer’s Guide.

1. Start the ALDSP Console. See the ALDSP Administration Guide for instructions.

2. Select the Service Explorer category, as shown in Figure 6-3.

../admin/index.html
../appdev/index.html

Viewing Nat ive Web Serv ices

6-8 Administration Guide

Figure 6-3 Selecting the Service Explorer Category

3. In the explorer, click the Data Space node that you wish to export. In Figure 6-3, the node is
called myDataSpace.

4. In the Data Space pane, select the General tab.

5. Select Export Static Mediator Client Jar, as shown in Figure 6-4.

Figure 6-4 Exporting the Client JAR File

Administration Guide 7-1

C H A P T E R 7

Viewing Metadata Using the Service
Explorer

In ALDSP Administration Console, Service Explorer enables you to view metadata information
on data services, their functions, and their dependencies in the active WebLogic Server.

This chapter describes how to view and analyze metadata for data services, functions, and Web
services using the Service Explorer. It includes the following sections:

Introducing Service Explorer

Using the Service Explorer

Searching Metadata

Introducing Service Explorer
The Service Explorer enables you to view metadata related to a data space project deployed on
the server. The metadata in ALDSP includes metadata documents that the data model represents,
which consist of information about the data services, their functions and return types, and
dependencies between data services. Figure 7-1 displays the Service Explorer tab and the
metadata for the corresponding data service in the Detail Book (right pane).

Viewing Metadata Us ing the Serv ice Exp lo re r

7-2 Administration Guide

Figure 7-1 Service Explorer

ALDSP metadata is mainly used by:

ALDSP administrators to monitor the effects of changes to underlying data sources.

Developers of data services client applications to determine the data services that are
available and their calling conventions.

Using the Service Explorer
The Service Explorer enables you to access metadata in the following ways:

View metadata for data services. For more information, see “Analyzing and Viewing Data
Services Metadata” on page 7-4.

View metadata for data service functions. For more information, see “Viewing Data
Service Functions Metadata” on page 7-9.

View metadata for web services. For more information, see “Viewing Web Service
Metadata” on page 7-12.

Search for metadata in a data space project. You can perform basic or advanced search on
metadata. For more information, see “Searching Metadata” on page 7-14.

Us ing the Se rv ice Exp lo re r

Administration Guide 7-3

Web Browser Requirements for Data Lineage Graph
You need to install the Adobe® SVG Viewer plugin for Internet Explorer and Netscape Web
browser to view the data lineage feature. It can be downloaded from:

http://www.adobe.com/svg/viewer/install/main.html

Table 7-1 outlines the other web browser requirements to view the data lineage graph. If your
system does not meet the requirements stated in the table, revert to the tabular view of the Service
Explorer.

Table 7-1 Browser Support Information for Viewing Data Lineage Graph

Browser
(Version)

SVG Viewer Information Additional Information

Internet
Explorer
(6.0 and
above)

Can auto-detect SVG viewer. If SVG
viewer is not installed, a message is
displayed with the URL to download the
viewer. Install the viewer and the data
lineage graph will be visible instantly.

• On Windows platform only.

Mozilla
Firefox
(1.5 and
above)

Has native SVG viewer support. • On Windows, Linux platforms.

http://www.adobe.com/svg/viewer/install/main.html

Viewing Metadata Us ing the Serv ice Exp lo re r

7-4 Administration Guide

Analyzing and Viewing Data Services Metadata
There are two kinds of data services in ALDSP, entity and library. Entity and library data services
can be either physical or logical type.

Physical data services represent a single data source, typically a relational database table,
stored procedure, or a web service.

Logical data services can be composed from multiple data sources and represent a view of
data which is typically not available from any single data source.

The metadata that is available through the Service Explorer varies depending on whether a data
service is physical or logical. Logical data services always have dependencies while the physical
data services always have dependents.

Netscape
(7.x and
8.x)

Can auto-detect SVG viewer. If SVG
viewer is not installed, a message is
displayed with the URL to download the
viewer. Install the viewer and the data
lineage graph will be visible instantly.

• Netscape 8.x is available on Windows
platform only.

• Netscape 7.1 is available on Windows and
Linux platforms. However, the data lineage
graphical view is not available.

• You need to add the URL to the list of
trusted sites to view the data lineage graph.
Perform the following steps:

1. Click the Open Site Controls icon on
the browser tab when you log in to the
Administration Console.

2. In the pop-up dialog box, select the I trust
this site radio button.

3. Click Done to save your preference.
This will enable you to view the data
lineage graph.

Netscape
9.0

Has native SVG viewer. • On Windows platform only.

Table 7-1 Browser Support Information for Viewing Data Lineage Graph

Browser
(Version)

SVG Viewer Information Additional Information

Us ing the Se rv ice Exp lo re r

Administration Guide 7-5

Figure 7-2 illustrates a tabular view of dependencies and the where used information of a logical
data service.

Figure 7-2 Logical Data Service Dependencies and Where Used

For a logical data service, the return type displays the schema of the data from multiple data
sources, according to the design of the data service, as illustrated in Figure 7-3.

Figure 7-3 Return Type for a Logical Data Service

Viewing Metadata Us ing the Serv ice Exp lo re r

7-6 Administration Guide

For more information about the data service model, refer to Designing Logical Data Services in
the Data Services Developer’s Guide.

You can browse entity data service metadata including general information about a specific data
service, its data lineage, its read function and return type, relationships, and dependencies.

To view data service metadata:

1. Select the Service Explorer tab in the Navigation pane.

2. Select the data service for which you need to view the metadata. By default, the General tab
is displayed (Figure 7-4), which provides information such as owner, creation date, and return
type for the data service.

Figure 7-4 Data Service Metadata

Table 7-2 describes the data service metadata information accessible through various tabs.

../datasrvc/Designing Logical Data Services.html

Us ing the Se rv ice Exp lo re r

Administration Guide 7-7

Table 7-2 Metadata Information

Tab Description

General Provides general configuration information about the data service,
including the following:
• Name: The name of the data service.
• Description: A user-supplied description.
• Owner: The owner of the service.
• Creation Date: The date when the data service was created.

• Last Modified Date: The date on which the data service was last
changed.

• Return Type: The type returned by the data service.
• Data Service Type: Either physical or logical. For more information

about data service types, see “Viewing Data Service Functions
Metadata” on page 7-9.

• Data Service Kind: Either library or entity data service. For more
information about data service kinds, refer to “Viewing Data Service
Functions Metadata” on page 7-9.

• Data Source Type: The type of the data source such a relational or
web service.

Functions Displays a table of read, create, update, and delete functions. In addition,
it provides the following information:
• Function Name: Name of the function.
• Type: Type of the function, which can be read, create, update,

navigate, delete. In addition, it lists library functions and procedures
also.

• Visibility: The value can be public, protected, or private.
• isPrimary: The value is boolean and can be either true or false.
• Parameter Types: The parameters for each function listed in the

table
• Return Type: The return type for each function listed in the table

Return Type Displays the content of the schema associated with the return type of the
data service. This tab does not appear in case of library data services.

Relationships Displays a table of related navigation functions. The table also lists the
parameter names, if any, and return type for each function.

Viewing Metadata Us ing the Serv ice Exp lo re r

7-8 Administration Guide

Data Service Lineages
Data service lineages can be viewed in graphical or tabular format and all kinds of data services
are traceable. The graphical view is ideal for getting a visual understanding of the lineage
associated with a particular data service. In the tabular view, there are two ways for viewing a
data service lineage:

Where used view: This view displays the currently selected data service and other data
services, which use this data service. This is the downstream view.

Dependency view. This view displays the currently selected data service and the data
services it is dependent upon. This is the upstream view.

In case of navigation functions, references to other data services through a navigation
function are not considered as dependencies. This is because navigation functions can be
created automatically during the import metadata process. For details see Creating and
Updating Physical Data Services, in the Data Services Developer’s Guide.

Properties Lists any user-defined properties assigned to the data service.

Data Lineage Provides a visual representation of the lineage between the currently
selected data service. Relationships can be displayed in one of the two
possible directions:
• Dependencies
• Where used

Each entry includes name and path information. You can view data
lineage in graphical or tabular views.

Table 7-2 Metadata Information

Tab Description

Us ing the Se rv ice Exp lo re r

Administration Guide 7-9

Figure 7-5 Customer Data Service and Its Dependents

Data Lineage Viewing Options
Once visual rendering appears, several options become available:

Panning (Alt + Click, then drag). Allows you to move through the lineage representation
in any direction.

Zoom out (Ctrl + Shift + Click). Allows you to zoom out, providing information on data
services that are further removed from your current selection.

Zoom in (Ctrl + Click). Allows you to zoom in on a set of data services.

Expanding/Contracting. You can use the +/- sign adjacent to the object to expand or
collapse that node.

You can navigate to a new data service simply by double-clicking it in the lineage diagram.

Note: Panning and Zooming operations work only with the Adobe SVG Viewer.

Viewing Data Service Functions Metadata
You can browse metadata associated with a function.

To display function metadata:

1. Select a function in the Navigation pane.

The console displays the General metadata associated with the function.

Viewing Metadata Us ing the Serv ice Exp lo re r

7-10 Administration Guide

2. Click the corresponding tab to display general information, function dependencies, where
used information, properties, and the return type.

Figure 7-6 illustrates the function metadata displayed.

Figure 7-6 Function Metadata

Table 7-3 describes the function metadata available.

Table 7-3 Function Metadata

Function Metadata Description

General General metadata information for the function, which includes the
following:
• Function name: The name of the function.
• Data Service: The containing data service.
• Description: A user-supplied description of the function.
• Return Type: The type returned by the function.
• Function Kind: The type of function such as read, create, update,

delete, navigate, and library.

Return Type Displays the content of the schema associated with the return type of the
function. This tab does not appear in case of library functions.

Us ing the Se rv ice Exp lo re r

Administration Guide 7-11

Data Service Function Lineages
Data service function lineages can be viewed in graphical or tabular format. The graphical view
includes all functions that directly or indirectly call your selected function, or are called by your
selected function. In tabular view, there are two ways to view a data service function lineage:

Dependency view. The currently selected data service function and any functions that it
calls (said another way, it depends upon).

Where used view. The currently selected data service function and any functions that
make use of it (said another way, depend on it).

To view the function lineage

1. Select a data service from the Navigation pane.

2. Click the data service and then select from the list of available functions.

For data lineage viewing options, refer to “Data Lineage Viewing Options” on page 7-9.

Cyclic Dependency
Cyclic dependency can be observed in a graphical view of both data service lineages and data
service function lineages. If a data service is used more than once, each instance of the data
service in the graphical view is indicated in a dark blue color. Similarly, if a data service function
is used more than once, each instance of the data service function in the graphical view is
indicated in a dark blue color. Cyclic redundancy is applicable only when the duplicating nodes
are part of the same branch.

Properties Displays any user-defined properties associated with the function.

Data Lineage Provides a visual representation of the relationships between the currently
selected data service read, navigation, or private function. Lineage can be
displayed in one of the two possible directions:
• Dependencies
• Where used

Each entry includes name and path information.

Table 7-3 Function Metadata (Continued)

Function Metadata Description

Viewing Metadata Us ing the Serv ice Exp lo re r

7-12 Administration Guide

Figure 7-7 shows the cyclic dependency of a data service. The text <<Recursive is specific to a
data service and is displayed only in the case where a data service is used more than once in the
same cycle.

Figure 7-7 Cyclic Dependency of Data Services in a Graphical View

Viewing Web Service Metadata
In ALDSP 3.0, data services can be mapped as a web service and you can view the metadata using
the Service Explorer. The AquaLogic Data Services Platform Administration Console displays
web service maps as artifacts in the data space. The Service Explorer shows the web service map
artifacts in the navigation tree. The contents of the map artifact are shown in the General,
Operations, and Data Lineage tabs, as shown in Figure 7-8. These tabs do not have any editable
components and are only used for viewing and navigation.

Us ing the Se rv ice Exp lo re r

Administration Guide 7-13

Figure 7-8 Web Service Metadata: General Tab

Table 7-4 explains the information displayed for each of these tabs.

Table 7-4 Web Service Metadata

Web Service Metadata Description

General The general properties of the web service map and links to the test web
page of the web service stack as well as the WSDL definition. In addition,
it displays the properties of the web service, which include:
• Target Namespace: The namespace defined for the web service.
• SOAP Version: The current SOAP version of the web service, for

example SOAP_11.
• ADO.net Enabled: The status of this plug-in, which can either be true

or false.
• Transport Type: The protocol used for the transport.
• HTTP Basic Auth Required: The status of the basic auth required

property, which can be either true or false.

Operations The Operations tab displays all operations of the web service maps and
links to the underlying data service and data service functions.

Data Lineage The Data Lineage Tab shows the data lineage to the referenced data
services, which is identical to data services data lineage. You can view
the data lineage in tabular as well as graphical format like data services
data lineage. For more information on data services data lineage refer to
“Data Service Lineages” on page 7-8.

Viewing Metadata Us ing the Serv ice Exp lo re r

7-14 Administration Guide

Searching Metadata
The ALDSP console provides both basic and advanced search facility. You can use the search
capabilities to locate data services based on metadata associated with the services. You can then
generate a report using the results from either of the search modes.

Search algorithms that include wildcards are based on standards governing regular expression
syntax. For detailed information on regular expression syntax see the following currently
available Web site:

http://en.wikipedia.org/wiki/Regular_expression

Alternatively, any other standardized regular expression reference can be consulted.

The following topics are covered in this section:

Search Guidelines

Performing a Basic Metadata Search

Performing an Advanced Metadata Search

Generating Reports

Search Guidelines
ALDSP Administration Console uses inherent Java regular expressions or regex patterns to
implement text search. Following are the features that you can use to perform search operations
on the console:

All text entries in search boxes (basic or advanced) can have Java regex patterns.

.* is used to map zero or more of any char values.

.? is used to optionally map any char values.

Search is case insensitive.

Java regex pattern needs to match the entire string for a successful search. For example, if
a data service name is customer, the following matches are displayed after the search is
complete:

– "*mer"

– "cus*"

http://en.wikipedia.org/wiki/Regular_expression

Search ing Metadata

Administration Guide 7-15

– "customer"

– "Customer"

– "*to*"

– "cus*mer"

The following will not match

– “cus”

– “mer”

Note: Search patterns may be heavy for the server to process, which may cause server
slowdown. Therefore, it is advised that you provide correct and specific details to make
search successful and less costly. For example, an asterisk (*) in the beginning of a
pattern makes the search operation less time consuming and costly than one at the end.

Performing a Basic Metadata Search
You can search for data services based on the data service name, function name, or return type.

To perform a basic search enter the name of the data service, function, or return type in the
Search box and click Search, as shown in Figure 7-9. You can also use regular expressions to
search for data services. For example, to search for the CREDIT_CARD.ds, you can specify the
search option as Credit*.

Figure 7-9 Basic Search

Note: All searches are case sensitive.

Information about the corresponding data service is displayed. The information includes the data
service name with links to navigate through the data service, path, and type of the data service as
shown in Figure 7-10.

Viewing Metadata Us ing the Serv ice Exp lo re r

7-16 Administration Guide

Figure 7-10 Basic Search Facility

3. To create a summarized or detailed report, click Summary or Detail options. For more
information about generating reports, see “Generating Reports” on page 7-19.

To perform an Advanced Search with additional search criteria, you can select the
Advanced Search option. For more information, see “Performing an Advanced Metadata
Search” on page 7-16.

Performing an Advanced Metadata Search
You can use the advanced search facility to narrow your search criteria in cases when a basic
search produces a large number of results. Using the advanced search option, you can specify
criteria such as creation date, last modified date, owner, comments, and user-defined properties.

To perform an advanced search:

1. Click the Search button on the top-right corner of the console. This displays the Advanced
Search screen as shown in Figure 7-11. The Search box should be empty when you click
Search otherwise basic search is performed.

Search ing Metadata

Administration Guide 7-17

Figure 7-11 Advanced Search Screen

2. Enter the search criteria, as appropriate, and click Search. Table 7-5 describes the criteria you
can specify using the advanced search facility.

Table 7-5 Advanced Search Criteria

Search Options Description

Search In The name of the folder you want to search.

Full Text Search The equivalent of basic search, which can be combined with other
advanced search criteria to get the matching results.

Data Service Name The name of the data service.

Data Service Description The user-supplied description of the data service.

Viewing Metadata Us ing the Serv ice Exp lo re r

7-18 Administration Guide

Note: All the search options in an advanced search can use regular expressions except the user
defined properties: name and value.

The search results appear in the Search Results pane. The information displayed in the
search results includes the name of the data service, the path for identifying the data
service, and the of the data service, which can either physical or logical. For more
information about the type of data services, refer to “Viewing Data Service Functions
Metadata” on page 7-9.

Note: The information in the Search Results for basic and advanced search are the same.

3. Click the Summary or Detail option to generate a report from the search results. For more
information about generating reports, see “Generating Reports” on page 7-19.

Function Name The name of the function appearing as part of the data service.

Return Type The return type of the data service.

Creation Date The date the data service was created. You can select a relational operator
when specifying the date from among the following:
• = (On this date). Matches the date specified.
• < (Earlier than). Matches dates earlier than the specified date.
• <= (On this date or earlier). Matches the specified date or earlier

dates.
• >= (On this date or later). Matches the specified date or later dates.
• > (Later than). Matches dates later than the specified date.

Last Modified Date The date the data service was last modified. You can select a relational
operator when specifying the date.

Owner The owner of the data service.

Comment The comment associated with the data service.

User Defined Property:
Name

The name of a user-defined property.

User Defined Property:
Value

The value associated with a user-defined property.

Table 7-5 Advanced Search Criteria (Continued)

Search Options Description

Search ing Metadata

Administration Guide 7-19

Generating Reports
You can generate summarized or detailed reports for both basic or advanced search results. To
generate a report:

1. To generate a summarized report, click Summary from the Search Results page, as shown in
Figure 7-12.

Figure 7-12 Generating Reports

The summary report is generated as shown in Figure 7-13.

Figure 7-13 Summary Report

2. To generate a detailed report, click Detail on the Search Results page. This displays a detailed
report of the data service, as shown in Figure 7-14.

Viewing Metadata Us ing the Serv ice Exp lo re r

7-20 Administration Guide

Figure 7-14 Detailed Report

Administration Guide 8-1

C H A P T E R 8

Configuring Query Results Cache

This chapter describes how to set up and manage caching for data services in ALDSP. It contains
the following sections:

Understanding Results Caching

Setting Up Caching

Monitoring and Purging Data Cache

Note: Caching is not available for ad-hoc queries and XQuery functions for security.

Understanding Results Caching
By caching data returned by data service functions, you can improve response times for clients
and reduce the processing burden on back-end systems.

Note: When results sets are cached, there are chances of using stale data instead of the updated
information.

To use results caching, a database that is certified for ALDSP caching support should be installed
and running. Such DBMS systems are identified in the Supported Configurations.

You can specify if you want to enable caching for functions in the Data Services Studio Overview
mode. When you run the function the first time, the query results for the function are saved to a
local query results cache. The next time the function is run with the same parameters, ALDSP
checks the cache configuration and, if the results have not expired, retrieves the results from the
cache rather than from the external source.

http://edocs.bea.com/platform/suppconfigs/aqualogic/aldsp30.html

Conf igur ing Quer y Resu l ts Cache

8-2 Administration Guide

A cache entry exists for the results of each function invocation with distinct parameters. In cases
when a cache-enabled function is invoked twice with two different parameters, two cache entries
will be created.

By default caching is disabled. If you enable it, you can configure the cache and its time-to-live
(TTL) for individual data service functions through the ALDSP Administration Console.

To enable caching for data service functions, you need to:

Enable caching at the dataspace level and set the cache data source and table names.

Enable caching of data service functions, and set the cache time-to-live (which determines
how long results are stored in cache).

Monitor and clear the cache, as required.

The TTL setting is set individually for each data service function. In general, the more dynamic
the underlying data, the more frequently the cache should be set to expire.

Note: Cached data is valid until the TTL limit goes past the time at which it is cached regardless
of other changes in the configuration between that time.

In some cases, caching should not be used at all. Here are two examples:

If the data changes frequently and real-time access to it is critical cache should not be
enabled. On the other hand, for functions that return static data, you can configure the
results cache so that it never expires. If the cache policy expires for a particular function,
ALDSP flushes the cache result automatically on the next invocation.

Cache should never be set for functions without parameters. Every physical data service
function based around a relational table, for example, falls into this category. Caching such
a function can have a very negative impact of performance unless the table itself has very
few records.

If an ALDSP-enabled server shutdown occurs, the contents of the results cache are retained.
When the server restarts, it resumes caching as before. On first invocation of a cache-enabled
function, the ALDSP-enabled server checks the results cache to determine whether the cached
results for this function are valid or have expired, and then proceeds accordingly.

Caching API
ALDSP provides an API allowing client applications to bypass any existing cached results in
favor of the physical data source. This API provides automatic client-side cache refresh of the
affected function. For details about forcing data cache update and read-through, refer to “Forcing

Set t ing Up Cach ing

Administration Guide 8-3

Data Cache Read-through and Update” in the Invoking Data Services from Java Clients chapter.
Application Developer’s Guide:

Note: Caching is particularly effective in cases when significant processing has been applied
against large data sets, producing filtered results. For optimal performance, it is
recommended that you not enable caching on functions that simply return large data sets
directly from a relational database data source.

ALDSP can set up the cache table in the data source for you (if the server is in development
mode), or you can create it yourself as described in the following section. Note that it is
recommended that the dataspace not share cache tables. There should be separate tables for each
dataspace.

Note: To prevent unauthorized access to sensitive data in the cache, it is important to maintain
access control over the cache database. Also, make sure that the JDBC data source used
for caching is not be used for other purposes.

Setting Up Caching
The steps for setting up cache depend on several factors, including whether you are in
development or production mode and whether you need to customize the cache table schema.
Figure 8-1 shows the steps for setting up caching.

../appdev/ejbclt.html

Conf igur ing Quer y Resu l ts Cache

8-4 Administration Guide

Figure 8-1 Cache Setup Steps

The steps illustrated in Figure 8-1 are described in the following sections:

Step 1: (Optional) Run the SQL Script to Create the Cache Tables

Step 2: Create the JDBC Data Source for the Cache Database

Step 3: Specify the Cache Data Source and Table

Production
Deployment?

YesNo

Custom
Schema

Required?

Customize
Schema Script

YesNo

For Each
Dataspace

Customize
Table Name

Run DBMS
Cache Script

(ALDSP Console)
For Each

Dataspace

For Each
DS Function

Specify
Data Source/
Cache Table

Enable Caching
and Set TTL

Create JDBC
Data Source

For Cache DB

1

2

3

4

Set t ing Up Cach ing

Administration Guide 8-5

Step 4: Enabling Caching by Function

Step 1: (Optional) Run the SQL Script to Create the Cache
Tables
For a WebLogic server that is in development mode, you can set up the cache table automatically
from the ALDSP Administration Console using the data source you choose. For production
environments, or if you want to customize the cache schema, you will need to run the SQL scripts
manually.

You can create the cache table using SQL scripts in the subdirectory corresponding to a particular
DBMS at the following location:
<ALDSP_HOME>/dbscripts/

For example:
<ALDSP_HOME>/dbscripts/oracle/dsp_cache.sql

To create the cache table:

1. Open the script from the subdirectory that corresponds to your DBMS and modify the name
of the created table so that it is unique for the dataspace.

It is recommended that you store the cached data for each dataspace in its own cache table.
For example, you can name the table <dsname>_CACHE.

2. Make any other schema changes, as required.

You should not change the column names or otherwise modify the structure of the schema
tables (except in specific cases, as noted in “Modifying the Cache Table Structure” on
page 8-6). See Table 8-1 for information about the cache table schema.

3. Run the script.

4. Index the table based on the CHASH column (for retrieval) and the CUID column (for record
updates).

When the table is created automatically by ALDSP (as described in“Step 3: Specify the
Cache Data Source and Table” on page 8-7), an index for CHASH is created. The
automatically created name is the table name with "_INDEX" appended to it.

Note: On DB2, the name is truncated to a maximum of 18 characters.

Conf igur ing Quer y Resu l ts Cache

8-6 Administration Guide

Modifying the Cache Table Structure
ALDSP requires that its cache tables have a specific schema. Therefore, you should generally not
modify the structure of the cache table. In some cases, however, the default column sizes may
need to be adjusted based on the deployment. This may be a requirement in cases when you have
data services that frequently serve result sets that are larger than the content columns in the
default database tables and you are using DB2 as your DBMS.

For DB2, the scripts create the CINVKEY and CCONTENT columns (which store the results
data) with a specific size, as shown in Table 8-1. If any serialized keys or content need to be larger
than that size, the table schema should be adjusted accordingly before running the script.

Before attempting to implement customizations to the cache table, you should be familiar with
the schema as shown in Table 8-1.

Table 8-1 Cache Table Schema

Column Description

CUID Unique numeric identifier for the cache entry.

CHASH Hash value of the key (CINVKEY) as a 64-bit integer. This field
enables fast searches, since searching by the key itself is inefficient as
the key is stored as a binary object. (In fact, searching by the key itself
is impossible for any DBMS for which the scripts create the
CINVKEY as a BLOB type.)

CEXPIRE Timestamp value indicating when the record expires. This value is
computed during record insertion as current time plus the TTL value
defined for the function.

CFID Serialized name of the function. When the table is created
automatically, VARCHAR(512) type is used. The value should be
adjusted to a lower or higher size if names of all functions in a
dataspace are smaller or if some names are larger then 512 characters.

CFARITY The number of arguments the function accepts. This is used to
differentiate functions in case of function overloading (not currently
used).

CINVKEY The serialized invocation identifier consisting of the function and its
arguments (created with a size of 50 kilobytes on a Pointbase DBMS).

CCONTENT Binary data constituting the cached results. (Created with size of 1
gigabyte for DB2 and 200K for a Pointbase DBMS.)

Set t ing Up Cach ing

Administration Guide 8-7

Step 2: Create the JDBC Data Source for the Cache
Database
After creating the cache table, you can use the WebLogic Administration Console to create a
JDBC data source on the WebLogic Server that points to the database that you have set up for the
ALDSP cache.

Note: If using Oracle as your cache database, you must set the Honor Global Transactions
setting to FALSE (it is set to TRUE by default). When you create the Oracle JDBC data
source in the WebLogic Administration Console, you must uncheck the Honor Global
Transactions box.

Once created, you can enable the result cache as described in the following section.

Step 3: Specify the Cache Data Source and Table
After configuring the table that you want to use for caching as a JDBC data source in the
WebLogic Administration Console, you can set up the cache tables using the ALDSP
Administration Console.

To specify the cache database and enable caching:

1. Select the dataspace node in the Navigation pane. The General tab appears, as shown in
Figure 8-2.

Figure 8-2 Enabling Results Caching for a Dataspace

2. Click Lock & Edit to acquire the lock.

Conf igur ing Quer y Resu l ts Cache

8-8 Administration Guide

3. In the Data Cache section of the General tab, click Enable Cache.

4. Specify the JNDI name of the data source you configured for the cache table in the Data
source name list box.

If you did not create a cache table, choose the data source in which you want ALDSP to
create the cache table.

5. If you created a custom cache table for the dataspace, enter its name in the Cache table name
field.

Otherwise, either enter another name for ALDSP to use when creating the table or leave
the field blank, in which case the default name, <dsName>_CACHE, will be used.

6. Click Save > Activate Changes.

Once caching is enabled, you need to configure results caching for each function.

Step 4: Enabling Caching by Function
After enabling Cache settings for the dataspace, you can configure data service function caching.
For each function, you can specify whether caching should be enabled, and set the time-to-live
(in seconds) for cache entries.

To enable caching by function:

1. Make sure that the System Administration category is selected.

2. Click the data service name in the Navigation pane.

The Data Cache page appears, as illustrated in Figure 8-3.

Set t ing Up Cach ing

Administration Guide 8-9

Figure 8-3 Enabling Caching by Function

3. Click Lock & Edit to acquire the lock.

4. Select the Enable Data Cache checkbox for each function for which you want to enable
caching.

Note: Make sure that you set the Allow Data Caching property for the function to true in
ALDSP IDE, before enabling data caching on the console. For example, to enable
caching for ADDRESS(), set Allows Data Caching property to true in ALDSP IDE,
as shown in Figure 8-4.

Figure 8-4 Configuring the Allow Data Caching Property in ALDSP IDE

5. Enter a time-to-live (TTL) value, in seconds, for each cache-enabled function.

Conf igur ing Quer y Resu l ts Cache

8-10 Administration Guide

The more dynamic the underlying data, the more frequently the cache should be set to
expire.

6. Select the Add Identity Key in Cache if you want to store the caching information of the
identity keys of ALDSP resources. This enables securing the data cache values that depend
on other environmental variables. For more information about this feature, refer to Caching
Identity Keys for Security.

7. Click Save > Activate to save your changes.

Caching Identity Keys for Security
This features provides the ability to filter cached entries based on user profile. When you select
the Add Identity Keys in Cache checkbox, the data cache values become user-specific, which
ensures that relevant data cache entries are available to the corresponding user. For example, if
two users, User A and User B, are accessing the cached values for functions, then User A will be
able to view values specific to User A’s transactions and User B will be able to view cached
values for transactions done by User B.

This feature is especially useful when an external data source is mapped and managed through
ALDSP Administration Console.

Monitoring and Purging Data Cache
You can manage function-level data caching using the Operations category. Selecting the
Operation category displays the Monitor tab as shown in Figure 8-5.

Figure 8-5 Monitoring Data Cache Values

This tab provides runtime cache statistics for functions and allows you purge cache.

The Number of Data Cache Entries field displays the number of results that have been cached
in the data cache.

Moni to r ing and Purg ing Data Cache

Administration Guide 8-11

Purging Data Cache
Purging the cache removes cached entries from the cache database. When the cache is purged,
each function executes against its data sources until it is cached again.

ALDSP flushes the cached query result for a given stored query whenever any of the following
events occur:

The data service function is modified or deleted

Caching is disabled on the server

ALDSP flushes the cached function result on the next invocation whenever any of the following
events occur:

The function results have expired per the cache policy

The cache policy for a function is updated or deleted

You can also purge the cache manually, either for the entire dataspace at once, or for individual
functions, as described in the following sections.

Purging the Cache for a Dataspace
To purge the cache for a dataspace:

1. Select the dataspace from the navigation pane.

2. Click the Operations category.

Figure 8-6 Purging the Cache for a Dataspace

3. Click Purge Data Cache in the Monitor tab.

Conf igur ing Quer y Resu l ts Cache

8-12 Administration Guide

Purging the Cache for a Function
You can purge the cache for individual functions using the Monitor tab in the Operations
category, as illustrated in Figure 8-5.

To purge cache by function:

1. From the navigation tree, select the data service for which you want to purge cache by
function.

2. Click the Trash icon in the Purge Data Cache field to purge cache for the function.

Administration Guide 9-1

C H A P T E R 9

Working With Audit and Log
Information

This chapter describes the auditing framework, performance profiling, and logging capabilities
provided with the AquaLogic Data Services Platform. It contains the following sections:

Auditing

Monitoring the Server Log

Monitoring a WebLogic Domain

Using Other Monitoring Tools

Auditing
The auditing framework is used to collect auxiliary runtime data using a normal XQuery
operation in an ALDSP dataspace. This information may be used for security auditing,
performance profiling, and other purposes.

Audit Data Structure
The data structure comprises a sequence of audit records containing an unordered collection of
audit properties. Each audit record contains properties of a specific type, usually identified using
a hierarchal name. Each audit record corresponds to an operation performed by ALDSP. For
example, access to a relational data source may generate a record of
"evaluation/wrappers/relational" type that includes the following audit properties: sql,
datasource, returnedRows, evaluationTime, parameters, message, and exception.

Work ing Wi th Aud i t and Log In fo rmat i on

9-2 Administration Guide

Any individual property may be configured to be collected. Each property has an individual
intrinsic severity level that can be used to configure an overall threshold of what properties to
collect. In certain cases, like when an exception occurs, some properties may be added to the
record even if they are not configured to be collected. Typically, this information would be
identifiers for a failed data source or update operation.

On the other hand, a property configured for collection may not be collected. This might be
attributed to one of the following reasons:

Data might be unavailable due to internal implementation logic.

A property is collected by an audit based on the need to record internal conditions, for
external analysis.

If an exception is encountered. This will result in an alternate execution path and impact
the information being collected.

Collected elements of the data structure can be individually configured to be:

Submitted to the WebLogic Server auditing framework and processed by an auditing
provider.

Written to an application server or system logging stream.

Transferred to a client application.

Note: Auditing occurs whenever the engine is invoked and the Auditing option is enabled.
Timestamps and other collected data enable you to match auditing information with
particular query operations.

Use the System Administration category in ALDSP Administration Console to configure audits
such as setting the global audit severity level and overriding audit settings for individual
properties that you may need to monitor.

Setting Global Audit Properties
There are some global auditing options that inherently apply to every aspect of the auditing
process. To set these properties:

1. Acquire the lock.

2. Select the System Administration category and then the Audit tab shown in Figure 9-1, which
allows you to configure these options.

Aud i t ing

Administration Guide 9-3

By default, the audit report generation utility is turned off. Before you start generating audit
reports, you need to enable auditing.

Note: With auditing enabled, performance may be affected, depending on the audit levels and
the number of properties being audited.

Figure 9-1 Audit Options

Table 9-1 describes available global auditing options. Select the respective check box in the
ALDSP Console to implement the required audit options.

Table 9-1 ALDSP Global Auditing Options

Options Description

Enable Auditing Determines whether the auditing is activated or not.

Note: When auditing is enabled, performance can be affected to a degree,
depending on the audit level and the number of items being tracked.

Audit Queries Determines whether the auditing is activated or not, during a query evaluation.

Audit Administrative
Actions

Collects audit data during dataspace deployment and configuration.

Audit Updates Determines whether auditing is activated or not during update operations.

Work ing Wi th Aud i t and Log In fo rmat i on

9-4 Administration Guide

Auditing Severity Levels
You can set the severity levels using the Severity Level drop down list in the Audit tab
(Figure 9-1). Severity levels are similar to those provided with WebLogic Server security. For
WebLogic Server details, see Message Severity.

Setting Individual Auditing Properties
This section describes the individual auditing properties that you can audit and to what level. To
configure these auditing properties:

Severity Level Determines the level of information to be captured by the auditing process. See
Auditing Severity Levels section for more information.

Send Audit Events
Asynchronously

Determines whether the events are processed synchronously or asynchronously.

Enable Logging of
Audit Events

Determines whether the auditing information is to be included in the application
server log file.

Note: If you enable this option (logging), ensure that the Log Level value in
the General tab is set to either Info or Debug. Any other value will result
in the log file not accepting any information.

Incremental Audit
Dispatch

Determines if the audit records are to be dispatched partially or completely
every time there is a new record.

Table 9-2 ALDSP Audit Severity Levels

Level Description

Debug This setting is often referred to as “verbose”. Any audit property that can be added
to the audit report is collected.

Information Properties with information or higher conditions are collected for the audit report.

Warning Properties with warning or higher conditions are collected for the audit report.

Failure Properties with error or more higher conditions are collected for the audit report.

Table 9-1 ALDSP Global Auditing Options

Options Description

http://e-docs.bea.com/wls/docs92/logging/logging_services.html#wp1181596

Aud i t ing

Administration Guide 9-5

1. Acquire the lock.

2. Select the System Administration category

3. Click the Audit Properties tab as shown in Figure 9-2.

Figure 9-2 Audit Properties Tab

4. After configuring audit properties, click Save > Activate Changes to implement the audit
settings.

Note: Click Default Settings to rearrange the auditing properties to the default values.

Audit properties can be configured at different levels and you can select the level using the Is
Audited drop-down list. Table 9-3 lists the audit levels that you can set for each property. All
levels listed in the table are not applicable to all the properties. Typically, each property has only
three levels to choose from.

Note: If you want the property-specific audit information to be returned to a client, then select
the Available to Client check box.

Work ing Wi th Aud i t and Log In fo rmat i on

9-6 Administration Guide

Note: After you set and apply individual auditing property settings, any changes you make on
the individual properties will override the initial settings for that property only.

ALDSP Administration Console provides you with the option to select all audit properties to be
audited using the Select All Properties node. You can set this property at the following levels:

Always

At Default Level

Never

All other individual properties are categorized into the following overall types depending on the
corresponding operation that generates the audit data:

Admin Audit Properties

Common Audit Properties

Query Audit Properties

Table 9-3 Setting Individual Audit Properties

Level Description

Always In this setting, the audit information of the property is always collected.

Never In this setting, the audit information of the property is always ignored.

At Default Level This setting configures the property at the default level.

Note: This option is available only for the Select All Properties audit
property.

At Info Level In this setting, the audit information is collected if the global threshold level is
Information or lower.

At Warning Level In this setting, the audit information is collected if the global threshold level is
Warning or lower.

At Failure Level In this setting, the audit information is collected if the global threshold level is
Failure or lower.

At Debug Level In this setting, the audit information is collected if the global threshold level is
Debug.

Aud i t ing

Administration Guide 9-7

Update Audit Properties

Admin Audit Properties
The audit information in this section pertains to the information exchanged while performing
administration tasks such as configuration and application deployment. Only changes to the
application made in the ALDSP Administration Console are collected during audit.

Common Audit Properties
The common audit information provides the generic transaction related information. It includes
generic information on the event, such as event type, application name, user id, user access rights,
date, and time.

Table 9-4 Administrator Properties

Property Description

Configuration

notification Records notification of deployed access control resource. For example:

notification: jmx.attribute.change
property: MAXNUMBEROFQUERYPLANCACHED
value: 101

property Records any instance of the property that was changed in the ALDSP
Console. For example:

notification: jmx.attribute.change

value Records a new value instance, for example:

value: 101

Dataspace Note: This information is displayed in the audit log by default. You cannot
change the audit level for this property.

name Records the name of the dataspace

operation Records create, modify, delete operations for a dataspace

updatediff Records changes from the last configuration update.

Work ing Wi th Aud i t and Log In fo rmat i on

9-8 Administration Guide

Table 9-5 Common Properties

Property Description

Application

eventkind Records the type of event or operation, it could be a query or an update and so
on. For example:

eventkind: evaluation

exception Records the exception message, if one occurred. For example:

exception:
ld:DataServices/ApparelDB/CUSTOMER_ORDER_LINE_ITEM.ds,
line 77, column 7: {err}FORG0005: expected exactly one
item, got 0 items

name Records the deployed application name. For example:

name: RTLApp

principals Records the groups to which the user belongs. For example:

principals:
weblogic
Administrators
IntegrationAdministrators
PortalSystemAdministrators

server Records the application server’s unique id. For example:

server: cgServer

transactionid Records the unique transaction id for the event or operation.

user Records the user id, for example:

user: weblogic

Resources

tempfile

createtime Records the time and date when the file was created.

deletetime Records the time and date when the file was deleted.

file Records the name of the temporary file where the data is stored.

Aud i t ing

Administration Guide 9-9

size Records the size of the temporary file (in bytes), before it is deleted.

source Records information about the operator because of which the data was spilled.

Security

Access

decision Records the security access settings for the application, for example:

decision: PERMIT

resource Records the request for resource identifier. For example:
resource: <ld
type="function"><app>RTLApp</app><ds>ld:DataServices/Cu
stomerDB/ADDRESS.ds</ds><res>{ld:DataServices/CustomerD
B/ADDRESS}ADDRESS:0</res></ld>

resourcetype Records the type of resource used, such as dataservice, application, submit and
so on. For example:

resourcetype: function

Session

query

invocation

blocksize Records the size of the returned serialized data block, in bytes

duration Records the duration or the time required to compute the next block of the result,
in milliseconds.

time Records the time of call for the next data block.

Session

SQL

Invocation

time Records the date and time of the call to the next () method on the server side of
the JDBC driver.

Table 9-5 Common Properties

Property Description

Work ing Wi th Aud i t and Log In fo rmat i on

9-10 Administration Guide

Query Audit Properties
The audit information in this section pertains to all the information collected during query
evaluation. The information includes the query itself, its result, the execution time, and details on
the data source queried.

Note: When using the streaming APIs, or when using the RequestConfig.OUTPUT_FILENAME
feature, the results of the query are not audited because they are presumed to be very
large. This means the AuditEvent dispatched to the audit provider, as well as the
DataServiceAudit returned to the client, will not contain a value for the audit property
Query/Service/results.

duration Records the duration or the time required to compute the next block of the result,
in milliseconds.

blocksize Records the size of the returned serialized data block, in bytes.

Time

duration Records the time used to complete the audit event, in milliseconds. Calculates the
time difference from initiation of the audit to its completion. For example:

duration: 2834

timestamp Records the time when the audit event was initiated, for example:

timestamp: Tue Feb 14 09:21:02 IST 2006

Table 9-6 Query Properties

Property Description

Adhoc

query Records the query that was executed.

result Records the results obtained after execution of the query.

variablenames Records names of the variables passed to the query.

variables Records the external parameters or variables passed to the query.

Table 9-5 Common Properties

Property Description

Aud i t ing

Administration Guide 9-11

Cache

Data

forcedrefresh Boolean value where TRUE indicates the data is from a current data source or
FALSE if it is from a cache.

functionid Records the name of the function.

remainttl Indicates the time remaining, in seconds, before the query cache is refreshed.

retrieved Indicates whether the data was obtained from the query cache or not.

time Indicates the duration of the cache retrieval operation.

Queryplan Note: Queryplan audit properties are not collected when a function is
executed from the Test view. This is because the function cache is not
utilized for functions executed in the Test view.

flushed True and set when the query plan was flushed

found Indicates whether the query plan cache has been located or not.

inserted Indicates whether the query plan cache has been inserted or not.

type Indicates the type of the query plan such as XQUERY_PLAN_CACHE,
SQL_PLAN_CACHE, or STORED_PROC_CACHE.

Failover

exception In the event of a failover, this records the exception that caused it.

function Records the function name which can be either fn:bea:timeout or
fn:bea:fail-over. For example:

function:
{http://www.bea.com/xquery/xquery-fncts}timeout-with-l
bl

label Records the user-defined label, if any. For example:

label: lab

sourcecolumn Records the source column of the function call. For example:

sourcecolumn: 2

Table 9-6 Query Properties

Property Description

Work ing Wi th Aud i t and Log In fo rmat i on

9-12 Administration Guide

sourcefile Records the source file of the function call. For example:

sourcefile: [ad-hoc]

sourceline Records the source line of the function call. For example:

sourceline: 4

timeout Records the time-out that was exceeded, if applicable. For example:

timeout: 0

Function Note: Function audit properties are collected only when the individual
functions of a data service are selected for auditing. See
Function-level Auditing for more information.

name Records the name of the audited function. For example:

name: {ld:DataServices/CustomerDB/CUSTOMER}getCustomer

parameters Records the parameters passed through the audited function. For example:

parameters: CUSTOMER1

result Records the result after executing the audited function. For example:

result: <ns0:CUSTOMER

Performance

compiletime Records the query compilation time, in milliseconds. For example:

compiletime: 19

evaltime Records the query evaluation time, in milliseconds. For example:

evaltime: 90

Service

arity Records the number of arguments for the invoked function.

dataservice Records the name of the data service, for example:

dataservice: ld:DataServices/RTLServices/ApplOrder.ds

function Records the function name of the data service, for example:

function: getCustomer

Table 9-6 Query Properties

Property Description

Aud i t ing

Administration Guide 9-13

parameters Records the parameters passed through the query, for example:
parameters:

1
foo

query Records the complete text of the executed query on the data service, for
example:
query:

import schema namespace t1 = "urn:retailerType" at
"ld:DataServices/RTLServices/schemas/ApplOrder.xsd";

declare namespace
ns0="ld:DataServices/RTLServices/ApplOrder";

result Records the results of the executed query, for example:

ORDER_10_0
CUSTOMER0
2001-10-01
GROUND

SQL

Procedure

name Records the name of the SQL procedure.

parameters Records the parameters associated with the SQL procedure.

parametertypes Records the types of the parameters.

Statement

parameters Records the parameters of the query.

parametertypes Records the parameter types of the query.

query Records the text of the query.

Wrappers

File

Table 9-6 Query Properties

Property Description

Work ing Wi th Aud i t and Log In fo rmat i on

9-14 Administration Guide

exception Records an exception, if any, when a function invoked belongs to a data service
created over a File data source. For example:
exception:
com.bea.ld.wrappers.df.exceptions.DFException:
{bea-err}DF0004: [ld:DataServices/Demo/Valuation.csv]:
Expected end of line at (row:2, column:3).

name Records the unique function name. For example:

name: ld:DataServices/Demo/Valuation.csv

time Records the time taken to query, in milliseconds. For example:

time: 20000

Java

exception Records an exception, if any, when a function invoked belongs to a data service
created over a Java class. For example:

exception:
{ld:DataServices/Demo/Java/Physical/PRODUCTS}getFirstP
roduct:0, line 4, column 5: {bea-err}JFW0401: Class or
Method not found exception :
{ld:DataServices/Demo/Java/Physical/PRODUCTS}getFirstP
roduct

name Records the name of the service. It is always recorded if an exception property
was added. For example:
name: public static int
Demo.Java.JavaSource4West.echoInt(int)

parameters Records the external parameters passed to the service. For example:

parameters: 11

result Records the results of the executed query. For example:

result: 11

time Records the time taken to execute the query, in milliseconds. For example:

time: 20000

Procedure

Table 9-6 Query Properties

Property Description

Aud i t ing

Administration Guide 9-15

datasource Records the name of the data source, for example:

datasource: newDS

exception Records an exception, if any, when a function invoked belongs to a data service
created over a stored procedure. For example:
exception:
weblogic.xml.query.exceptions.XQueryDynException:
{err}XP0021: "-ss": can not cast to
{http://www.w3.org/2001/XMLSchema}decimal}

name Records the procedure identifier. It is always recorded if an exception property
was added. For example:

name: WIRELESS.SIDEEFFECT_REG_PACKAGE.READ2

parameters Records the external parameters passed to the data service method. For
example:

parameters: s 2.2 22.0 ss

rows Records the number of rows returned after execution of the procedure, for
example:

rows: 0

time Records the time taken to execute the procedure, in milliseconds. For example:

time: 170

Relational

basesql Records the base SQL statement text.

exception Records the relational database query exception, if any. For example:
exception:
com.bea.ld.wrappers.rdb.exceptions.RDBWrapperException
:...

parameters Records the external parameters passed through to the data service method, for
example:
parameters:

ORDER_10_0
ORDER_10_1

Table 9-6 Query Properties

Property Description

Work ing Wi th Aud i t and Log In fo rmat i on

9-16 Administration Guide

rows Records the number of rows returned from the relational database, for example:

rows: 60

source Records the database source name. It is always recorded if an exception
property was added. For example:

source: cgDataSource1

sql Records the SQL statement used for the query, for example:

sql:
SELECT '1' AS c15, t2."LINE_ID" AS c16, t2.
FROM "RTLAPPLOMS"."CUSTOMER_ORDER_LINE_ITEM" t2
WHERE ((? = t2."ORDER_ID") OR (? = t2."ORDER_ID")

substitutionname Records the name of the substituted SQL, if used.

time Records the time spent executing the query, in milliseconds. For example:

time: 5000

WS

exception Records an exception, if any, when a function invoked belongs to a data service
created over a web service. For example:
exception: {bea-err}WSW0101: Unable to create Call :
{ld:DataServices/ElectronicsWS/getCustomerOrderRespons
e}getCustomerOrder

operation Records the data service method that is executed. For example:

operation: getCustomerOrder

parameters Records the parameters passed through to the data service method. For
example:
parameters: <ns0:getCustomerOrder
xmlns:ns0="http://www.openuri.org/">

Table 9-6 Query Properties

Property Description

Aud i t ing

Administration Guide 9-17

Update Audit Properties
The audit information in this section pertains to all the information related to performing an
update function. It includes information on the time taken to update the source, when it was
started, the unique transaction id and so on.

result Records the result returned after the query is executed. For example:
result: <ns:getCustomerOrderResponse
xmlns:ns="http://www.openuri.org/">
<CustOrders
xmlns="http://temp.openuri.org/SampleApp/CustOrder.xsd
">
<ORDER>
<ORDER_ID>ORDER_1_0</ORDER_ID>
<CUSTOMER_ID>CUSTOMER1</CUSTOMER_ID>

time Records the time spent executing the query, in milliseconds. For example:

time: 50000

wsdl Records the web service description. For example:

wsdl:
http://localhost:7001/ElWS/cntrls/ElDBTest.jws?WSDL

Table 9-7 Update Properties

Property Description

 Error

Fault

exception Records the value of the tostring() of the update exception.

exceptionobject Records the exception object for dataspace audit update error.

status Records the status of the update.

updateid Records the globally-unique update identifier.

Table 9-6 Query Properties

Property Description

Work ing Wi th Aud i t and Log In fo rmat i on

9-18 Administration Guide

Error

Procedure

arity The arity of the update procedure.

dataservice The data service of the update procedure.

id The index of the update procedure invocation.

name The name of the update procedure.

parameters The parameters of the update procedure invocation.

result The result of the update procedure invocation.

status Status of the procedure executed by this update.

xid The xid of the update procedure invocation.

Extension

id Records the id of the source being updated.

time Records the time spent, in milliseconds, for the update.

Procedure

name Records the name of the audit procedure.

parameters Records the parameters passed to the audited procedure.

result Records the results of update procedure execution.

Relational

exception Records the update exception, if any.

parameters Records the parameters passed during the update of the relational database.

rowsmodified Records the number of rows updated in the relational database, on successful
completion.

source Records the data source name. It is always recorded if an exception property
was added.

Table 9-7 Update Properties

Property Description

Aud i t ing

Administration Guide 9-19

Function-level Auditing
By default, auditing for all directly invoked functions can be enabled through the /query/service
record for the dataspace using the Audit tab. However, to limit auditing to specific functions, set
all properties of the /query/service record to NEVER and then enable audit for individual
functions. To do so:

1. Acquire the lock and select the System Administration category.

2. Navigate to the data service level.

3. Select the Audit tab as shown in Figure 9-3.

sql Records the SQL statement used during the update of the relational database.

time Records the time spend, in milliseconds, in updating the relational database.

Service

arity Records the number of arguments associated with the invoked function.

dataservice Records the data service used for the update.

parameters Records the parameters passed to the update procedure.

procedure Records the data service fully qualified procedure name.

result Records the results of the update.

script Records the complete text of the executed script.

sdocount Records the number of top level SDOs that were submitted for the update.

time Records the total execution time, in milliseconds, for the update.

Table 9-7 Update Properties

Property Description

Work ing Wi th Aud i t and Log In fo rmat i on

9-20 Administration Guide

Figure 9-3 Enabling Auditing for Individual Functions

If auditing for a function is enabled, all external calls to this function are audited. If the Enable
Audit of Indirect Calls check box is selected, all calls originating from other data services are
also audited.

Note: Enabling audit of indirect calls may disable query optimization for that function, and
decrease performance.

Retrieving Audit Information
You can record the audit information collected in the following ways.

WebLogic Server Security Framework. Each audit event is by default reported to the
WebLogic Server Security Framework.

ALDSP Client API. You can create a ALDSP client API to record the information
collected during audit.

ALDSP Performance Profiling. You can use the ALDSP audit provider for performance
profiling by recording audit events generated by a dataspace.

Values of the audit properties are represented as Java objects of types: String, Integer,
java.util.Date, Boolean, or String [].

Aud i t ing

Administration Guide 9-21

WebLogic Server Security Framework
Each audit event is sent to the WebLogic Server Security Framework as an instance of the
weblogic.security.spi.AuditEvent interface. Table 9-8 describes each event.

Depending on the configuration, each event can be sent to the WebLogic Server audit API
asynchronously and buffered by the ALDSP application.

The weblogic.security.spi.AuditEvent interface is implemented in the
ld.server.audit.DSPAuditEvent interface, which collects all the information in the form of a list,
where each entry is an instance of com.bea.dsp.DSPAuditEvent.

DSPAuditEvent adds the interface described in Table 9-9.

Table 9-8 WebLogic Server Audit Events

Event Description

getEventType() Returns the event type, in this case DSPaudit.

getFailureException(
)

Returns the exception type, if one is encountered.

getSeverity() Returns the event severity level.

toString() Returns the audit event details in an XML formatted representation.

Table 9-9 AquaLogic Data Services Platform AuditEvent API

AuditEvent API Description

getAllRecords() Returns all records as a list of com.bea.ld.DSPAuditRecord.

getRecords(String
recordType)

Returns all records of a particular type as a list of
com.bea.ld.DSPAuditRecord.

getProperty(String
propertyId)

Returns all values for a particular property, across multiple records.

getApplication() Returns the ALDSP application identifier.

getUser() Returns the user name of the application server user.

getTimeStamp() Returns the time when the event was created.

Work ing Wi th Aud i t and Log In fo rmat i on

9-22 Administration Guide

com.bea.ld.DSPAuditRecord has the interface shown in Table 9-10.

A sample security services audit provider is included that demonstrates use of this API.

ALDSP Client API
You can use the com.bea.ld.DataServiceAudit client side instance as part of the
com.bea.dsp.RequestConfig class, to collect the audit information from the client API. This class
collects the audit information and returns it when the operation is successful. If the operation fails
for any reason, the com.bea.ld.QueryException class can be used to collect the information as part
of the exception thrown.

Note: When using Streaming APIs, auditing will not be complete until the returned
XMLInputStream has its close() method called. This means that the AuditEvent will not
be dispatched to the audit provider by the server, and the
RequestConfig.getDataServiceAudit() method will return null, until close() is called.

Following are the four steps, with code examples, that need to be performed in order to retrieve
audit information.

Initializing the RequestConfig Class
You need to initialize the RequestConfig class as shown in the following code example:
RequestConfig requestCfg = new RequestConfig();
requestCfg.enableFeature(RequestConfig.RETURN_DATA_SERVICE_AUDIT);

getEventKind() Returns the event type, which can be EVALUATION_EVENT,
CONFIGURATION_EVENT or UPDATE_EVENT.

getVersion() Returns the event version, for example 2.1 for the ALDSP 2.1 release.

Table 9-10 ALDSP AuditRecord API

AuditRecord API Description

getRecordType() Returns the type of record, for example common/time/duration.

getAuditProperties() Returns all properties in the record. Maps from String identifier to
Object value.

Table 9-9 AquaLogic Data Services Platform AuditEvent API

AuditEvent API Description

Aud i t ing

Administration Guide 9-23

requestCfg.enableFeature(RequestConfig.RETURN_AUDIT_PROPERTIES);
requestCfg.setStringArrayAttribute(RequestConfig.RETURN_AUDIT_PROPERTIES,
new String[]
{"query/service/dataservice"});

Passing the RequestConfig Object
You need to pass the RequestConfig object to the invoked operation. The code example below
uses getCustomer as the invoked operation.

CUSTOMERDocument [] custDocRoot1 = (CUSTOMERDocument

[])custDS.invoke("getCustomer", params, requestCfg);

Filtering Audit Data
You need to filter the data and ensure there is no unsecured access to it. Only those audit
properties that are configured in the AquaLogic Data Services Platform Administration Console
to be allowed to return to the client, will be returned to the client application.

Retrieving Data Service Audit
You need to retrieve the data service audit from the RequestConfig object, as shown in the code
example below:

DataServiceAudit query = requestCfg.retrieveDataServiceAudit();

Retrieving Audit Properties
RequestConfig.RETURN_AUDIT_PROPERTIES is an array of string identifiers for audit
properties. If you set this request attribute those specified properties will be collected for this
particular evaluation even if they are not configured to be collected through the administration
console. They will be returned only if it is allowed. If the RETURN_DATA_SERVICE_AUDIT
request attribute is not enabled, only those properties will be returned.

RequestConfig.RETURN_DATA_SERVICE_AUDIT configures all collected audit information
(that is allowed to be returned to the client application) to be returned.

ALDSP Performance Profiling
Performance profiling allows you to store select audit information in a relational database.
Relational databases supported by the ALDSP audit provider are: Oracle, DB2, PointBase,
Sybase, and MS SQL.

Work ing Wi th Aud i t and Log In fo rmat i on

9-24 Administration Guide

Information about audit events are stored as records in a table. A table can be used to record audit
events for ALDSP dataspaces running on a server, or for dataspaces running on shared servers in
a cluster.

You can deploy the ALDSP audit provider for performance profiling using the WebLogic
Administration Console and configure it using the ALDSP Profiler MBean. Configuration
parameters you need to set at the time of deployment are described in Table 9-11.

Creating a Performance Profiler
This section lists the steps needed to create a performance profiler.

1. Create a table to store the following audit properties:

Table 9-11 Configuration Parameters for Performance Profiling

Parameter Description

Data Source Name of the JDBC data source.

Table Name of the table in the JDBC data source that logs query execution
information.

Source Table Name of the table in the JDBC data source that logs source access
information.

Summary Table Name of the table in the JDBC data source that logs aggregated
information (summary).

Event Buffer Size of the internal event buffer. Determines the number of events a
buffer stores before the profiler starts processing events.

Collect Execution
Aggregate

Stores aggregates (by function) of individual query executions in
memory; eventually writes the aggregate to the database.

Aggregate Group Size Number of events processed by the profiler before the aggregates are
written to the database. Default value is 10.

Collect Execution Detail Writes a row to the database for every query execution, including
aggregate of source access within the query. Useful in application
development environment.

Collect Source Detail Writes a row to the database for every source access in a query.
Collect Execution Detail needs to be configured for this parameter
to take effect.

Aud i t ing

Administration Guide 9-25

– common/time/timestamp

– query/service/function

– query/performance/evaltime

– common/application/user

– common/application/name

– common/application/server

In addition to the above mentioned properties, you will also need to store:

– information about the audit event exception, if any.

– audit event severity level, which can be of types I (Information), W (Warning), S
(Success), E (Error), F (Failure).

2. Modify the CLASSPATH to include a pointer to the JAR file.

3. Start WebLogic Server.

4. In the Audit page, configure the database tables as required.

5. In the Security Providers page of the WebLogic Administration Console, configure a ALDSP
audit provider. See Table 9-11, “Configuration Parameters for Performance Profiling,” on
page 9-24 for details.

6. Restart your WebLogic Server.

7. Run the data service application and use the applicable database visualizer to view the results.

Using the Sample Performance Profiler
A ALDSP audit provider sample file profiler.zip, is available in the ALDSP root installation
directory. The zip file contains the following files:

README.txt lists steps to use the sample audit provider).

dsp_profile.sql files – Contains table definitions.

build.xml – Defines build configurations.

DSPProfilerMBean.xml – MBean definition file for the ALDSP profiling auditor.

DSPProfilerImpl.java – Sample java code that implements the
weblogic.security.spi.AuditProvider and weblogic.security.spi.AuditChannel interfaces.

Work ing Wi th Aud i t and Log In fo rmat i on

9-26 Administration Guide

Monitoring the Server Log
Server log files contain information about the time spent to compile and execute a query. The log
is in the following location:

<BeaHome>\user_projects\domains\<domainName>\<serverName>\<server>.log

For more information about WebLogic Server logs, see Viewing the WebLogic Server Logs.

You can configure the log levels, by application, using the General application configuration
page. For more information, see “Configuring the Cache and Log for a Dataspace” on page 4-1.
The log levels include:

Error. Runtime exceptions.

Notice. Possible errors that do not affect runtime operation, as well as error level events.

Information. Start/stop events, unsuccessful access attempts, query execute times, and so
on, as well as error and notice level events.

Debug logging occurs by default for any server in development mode. Client applications can
contribute to the server log through the WebLogic Logger facility. For more information, see
Using WebLogic Logging Services.

Query strings are echoed in the server log as a debug-level log message when the log level is set
to Information in the ALDSP Console and the WebLogic Administration Console is set to log
debug messages to stdout.

Monitoring a WebLogic Domain
You can use the WebLogic Server Administration Console to monitor the health and performance
of the domain in which WebLogic is deployed, including resources such as servers, JDBC
connection pools, JCA, HTTP, the JTA subsystem, JNDI, and Enterprise Java Beans (EJB).

The domain log is located in the following directory:

<BeaHome>\user_projects\domains\<domainName>\<domainName>.log

For more information, see “Monitoring a WebLogic Server Domain” in Configuring and
Managing WebLogic Server.

http://e-docs.bea.com/wls/docs92/i18n/app_logging.html
http://edocs.bea.com/wls/docs92/ConsoleHelp/pagehelp/Corecoredomaindomainmonitorserverstitle.html
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/logging/ViewServerLogsFromTheConsole.html

Us ing Othe r Moni to r ing Too ls

Administration Guide 9-27

Using Other Monitoring Tools
You can use performance monitoring tools, such as the OptimizeIt and JProbe profilers, to
identify ALDSP application “hot spots” that result in either high CPU utilization or high
contention for shared resources.

For more information, see “Tuning WebLogic Server Applications.” For a complete list of
performance monitoring resources, see “Related Reading” in WebLogic Server Performance and
Tuning.

http://e-docs.bea.com/wls/docs92/perform/WLSTuning.html
http://e-docs.bea.com/wls/docs92/perform/appa_reading.html

Work ing Wi th Aud i t and Log In fo rmat i on

9-28 Administration Guide

Administration Guide 10-1

C H A P T E R 10

Extending Database Support

This chapter explains how to extend the database support of AquaLogic Data Services Platform
(ALDSP). Extensions let you provide immediate, dynamic support for unsupported databases and
new versions of supported databases. This chapter explains how to extend database support using
a feature called the Configurable Relational Provider.

Tip: A sample Configurable Relational Provider file is provided in this chapter. You can copy
the sample and use it as a starting point for creating your own customized provider. See
“Sample Configurable Relational Provider File” on page 10-8 for the complete listing.

This chapter assumes that you are familiar with XQuery and SQL, especially for more advanced
use cases. For suggested background on these subjects with respect to ALDSP, see “Related
Reading” on page 10-7.

This chapter includes these topics:

Introduction

Sample Configurable Relational Provider File

Using the Configurable Relational Provider

Configurable Relational Provider Format Description and Reference

Database Matching

Specifying SQL Syntax for Functions

Ex tending Database Suppor t

10-2 Administration Guide

Default SQL Syntax for Functions

Translating Built-In XQuery Operators Into SQL

Standard and ALDSP Namespaces for Functions and Types

Function and Type Name Resolution Process

Abstract SQL Providers

Introduction
The Configurable Relational Provider lets you extend the database support and functionality of
ALDSP. The Configurable Relational Provider lets you add or modify database support by
configuring an XML file, called a “provider.” You can configure the XML provider to extend
database support for all but a few advanced cases. See “Using the Configurable Relational
Provider” on page 10-13 for details.

This section describes the overall framework for extending ALDSP database support, defines
general terms, and lists several use cases for the extension framework.

This section includes these topics:

General Use Cases

Overview of the Extension Framework Architecture

Relational Providers Included With ALDSP

Supported Features

Importing Relational Source Metadata

Related Reading

General Use Cases
This section explains cases where you might consider extending database support using the
Configurable Relational Provider.

Case 1: Adding extended RDMBS support for your database or, if extended support is
provided, customizing or extending that support further.

If you are using ALDSP with base platform database support (see “Relational Providers
Included With ALDSP” on page 10-5), it is possible that the database itself can handle

In t roduct ion

Administration Guide 10-3

more complex constructs, such as expressions and clauses, than are generated by the base
platform provider. In this case, users might experience reduced performance. To solve this
problem, you can configure an Configurable Relational Provider.

Case 2: Adding support for a new version of a core database.

If a new version of a core database is released, ALDSP by default treats it the same as the
previously supported version. Obviously, with a new release, there may be features that
you want to use, such as improved SQL pushdown. In this case, you can update the
database support by extending the relational provider for the core database using the
Configurable Relational Provider to add the new pushdown features.

Case 3: Adding support for a new database that has fewer capabilities than the base
platform or is not supported by the core databases.

Note: This use case is uncommon.

It is possible that you require access to a database that is not supported by ALDSP core
database set (see Table 10-1) and that cannot consume SQL generated by the base platform
provider. In this case, you can use the Configurable Relational Provider and either disable
unsupported features or add new features as desired.

Overview of the Extension Framework Architecture
The Relational Wrapper Extension Framework lets you add or modify relational database support
for ALDSP. This framework supports the Configurable Relational Provider, which lets you
extend database support by editing a configuration file. Figure 10-1 illustrates the architecture of
the Relational Wrapper Extension Framework.

Figure 10-1 Database Extension Framework Architecture

Ex tending Database Suppor t

10-4 Administration Guide

This framework includes a component called a Relational Wrapper that exposes XQuery views
of relational sources and executes queries against them. The Relational Wrapper includes the
Relational Database Provider Registry, which manages chains of components called relational
providers.

Tip: The Configurable Relational Provider, which is discussed in detail in this chapter, is an
example of a relational provider that you can easily configure and deploy by editing a file.
The Configurable Relational Provider is the primary means by which you can extend
database support.

Defines the SQL and runtime capabilities of a specific database.

Allows ALDSP to handle different databases and their SQL dialects.

Returns information about runtime and SQL generation capabilities of the database
supported by the provider.

Can be extended to add support for new databases and customize support for existing ones.

Inside the provider registry, relational providers are organized into chains. These chains delegate
to one another and allow method invocations to be intercepted and processed along the way. Each
provider either answers a request or delegates the request to its parent provider. A provider’s
parent is specified by the <parent> element of the provider’s deployment descriptor (see
“Configurable Relational Provider Format Description and Reference” on page 10-15).

As shown in Figure 10-1, the first chain is assembled from three providers: provider_1,
provider_2 and provider_3. When the relational wrapper calls this chain, provider_1 first
receives the call and has a choice of either answering it or delegating to its parent provider
(provider_2). If provider_1 delegates to provider_2 then it is the responsibility of provider_2
to handle the request. In turn, provider_2 can decide to delegate processing to provider_3. This
chain architecture increases system flexibility by supporting modular provider definitions and
facilitating easy assembly.

Tip: Typically, when you create a provider using the Configurable Relational Provider, you
specify a parent provider. The parent provides some features that the child provider can
either accept by default or override. The child provider inherits the features of the parent;
however, you can also add features to the child provider that are not implemented in the
parent. Usually, one of the abstract providers serves as the parent of the first provider in
a chain. See “Abstract SQL Providers” on page 10-50.

In t roduct ion

Administration Guide 10-5

By default, the Relational Wrapper Extension Framework supports a core set of databases. See
“Relational Providers Included With ALDSP” on page 10-5 for a complete list. Extensibility
allows for full support of databases that are not in the core set and allows for support of new
versions of the core databases. For example, a new version of a core database might provide new
pushdown capabilities that are not currently recognized by ALDSP. You can use the extension
framework to add the required database support immediately by editing and deploying a
Configurable Relational Provider.

Relational Providers Included With ALDSP
Table 10-1 lists the set of standard relational providers that are included with ALDSP. Standard
providers are implemented using the Relational Wrapper Extension Framework and are
registered by default. You can use these providers as a basis for configuring the Configurable
Relational Provider.

Table 10-1 Relational Providers Included With ALDSP

Provider ID Supported Database Type and
Version(s)

Base Database Version (Decimal)

Oracle-8 Oracle >= 8 8

Oracle-9 Oracle >= 9 9

MSSQL-2000 Microsoft SQL Server >= 2000 8

Version 8 is the product version
returned by the JDBC drivers for
SQL Server 2000.

DB2-8 IBM DB2 >= 8 8

Sybase-12.5.2 Sybase >= 12.5.2 12.52

Pointbase Pointbase >= 5.1 5.1

Ex tending Database Suppor t

10-6 Administration Guide

Tip: The Base Database Version is calculated by the framework. This value specifies the
minimum version of a database that a provider can handle. Matching rules are used to
determine the value when you pick a provider that best matches your database. For more
information on this calculation, see “Database Matching ” on page 10-30.

Supported Features
The Configurable Relational Provider supports the following features found in the core relational
providers:

Database matching

Standard JDBC type mapping

Join pushdown specification

Clause pushdown specification

Function and operator pushdown

Cast pushdown

Access Microsoft Access 2003

Microsoft Access support is
implemented using the Configurable
Relational Provider described in
“Using the Configurable Relational
Provider” on page 10-13.

4

AbstractSQL,
AbstractSQL89,
AbstractSQL92

These abstract providers provide base
functionality to the Configurable
Relational Provider. See “Configurable
Relational Provider Format
Description and Reference” on
page 10-15 for details. See also
“Abstract SQL Providers” on
page 10-50.

Not applicable.

The abstract providers do not
match any databases, and
therefore do no return a base
version.

Table 10-1 Relational Providers Included With ALDSP

Provider ID Supported Database Type and
Version(s)

Base Database Version (Decimal)

In t roduct ion

Administration Guide 10-7

Auto-generation of fields (usually keys)

Stored procedure configuration

A subset of runtime properties

Some features defined by the Relational Wrapper Extension Framework are not supported by the
Configurable Relational Provider. In such cases, the Configurable Relational Provider delegates
the request to its parent provider, which answers it.

The unsupported features include:

Data type mapping

Data type based matching when pushing down functions and cast operations

SQL expression kind matching when pushing down functions and cast operations

Importing Relational Source Metadata
You can import metadata on the data sources needed by your application using the AquaLogic
Data Services Platform Metadata Import wizard. This wizard introspects available data sources
and identifies data objects that can be rendered as data services and functions. The relational
provider registry returns a list of providers that best match the database. You can then pick one
of these providers (typically, the best match or one close to the best match) from a drop down
menu. The best match appears at the top of the drop down menu. Once created, physical data
services become the building-blocks for queries and logical data services. For detailed
information on using the Metadata Import wizard, see Creating and Updating Physical Data
Services in the Data Services Developer’s Guide. For information on how matching is performed,
see “Rules for Database Matching” on page 10-30.

Related Reading
Refer to the following ALDSP documentation for more information on ALDSP database,
XQuery, and SQL support:

XQuery Engine and SQL in the XQuery and XQSE Developer’s Guide.

XQuery-SQL Mapping Reference in the XQuery and XQSE Developer’s Guide

“Supported Relational Database Management Systems” in ALDSP Supported
Configurations

../xquery/xquery_sql_mapping_reference.html
http://edocs.bea.com/platform/suppconfigs/aqualogic/aldsp30.html
http://edocs.bea.com/platform/suppconfigs/aqualogic/aldsp30.html
../xquery/sql_pushdown.html
../datasrvc/Creating and Updating Physical Data Services.html
../datasrvc/Creating and Updating Physical Data Services.html

Ex tending Database Suppor t

10-8 Administration Guide

Sample Configurable Relational Provider File
Listing 10-1 shows a sample Configurable Relational Provider file. This sample demonstrates a
possible way to configure a custom Microsoft Access provider. You can also find the sample
Microsoft Access provider in your ALDSP installation here:

ALDSP_HOME\samples\RelationalAdapter\MS-Access

Tip: Copy this sample provider to use as a starting point for creating your own customized
provider. Reference information in this chapter explains all of the configurable elements
of this XML file. To get started, see “Using the Configurable Relational Provider” on
page 10-13.

Listing 10-1 Sample Configurable Relational Provider File for a Microsoft Access Database

<?xml version="1.0"?>

<aldsp-rdb-extension xmlns="http://www.bea.com/ns/aldsp/rdb/extension">

 <name>MS Access XML Provider</name>

 <vendor>BEA</vendor>

 <implementation-version>1.0</implementation-version>

 <description> MS Access Relational Wrapper Extension </description>

 <rdb-provider>

 <id>MS-Access-2003</id>

 <description>XMLProvider MS Access 2003</description>

 <parent>AbstractSQL</parent>

 <factory

class="com.bea.dsp.wrappers.rdb.providers.custom.XMLCustomizableProviderFactory>

 <custom-rdb-provider

 xmlns="http://www.bea.com/ns/aldsp/rdb/extension/custom"

 xmlns:fn="http://www.w3.org/2004/07/xpath-functions"

 xmlns:fn-bea="http://www.bea.com/xquery/xquery-functions"

 xmlns:op-bea="http://www.bea.com/xquery/xquery-operators"

 xmlns:op="http://www.w3.org/2004/07/xpath-operators"

 xmlns:xdt="http://www.w3.org/2004/07/xpath-datatypes"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

Sample Conf igurab le Re la t i ona l P rov ide r F i l e

Administration Guide 10-9

 <database-kind>

 <match-database>

 <![CDATA[

 (jdbc:getDatabaseProductName() eq "ACCESS") and

 (jdbc:getDatabaseMajorVersion() ge 4)

]]>

 </match-database>

 <base-version>4</base-version>

 </database-kind>

 <database-objects>

 <catalog quote=""" separator="." />

 <schema quote=""" separator="." />

 <table quote=""" qualified-name-parts="catalog schema table" />

 </database-objects>

 <joins inner-join="true" outer-join="true">

 <sql92 right-trees="true">

 <inner-join-syntax>

 {0} INNER JOIN {1} ON {2}

 </inner-join-syntax>

 </sql92>

 </joins>

 <orderby column="true" expression="true" aggregate="true" null-order="low"/>

 <groupby column="true" expression="true" constant="true"/>

 <subqueries in-from="true" in-where="true" />

 <case supported="false" />

 <functions>

 <!-- String Functions -->

 <function name="fn:concat" supported="true" infix="true" >&</function>

 <function name="fn:string-length" arity="1">LEN({0})</function>

 <function name="fn:lower-case"

arity="1">IIF(ISNULL(LCASE({0})),'',LCASE({0}))</function>

 <function name="fn:upper-case" supported="true" >

Ex tending Database Suppor t

10-10 Administration Guide

IIF(ISNULL(UCASE({0})),'',UCASE({0}))</function>

 <function name="fn:substring" arity="2" >

IIF(ISNULL(MID({0},{1})),'',MID({0},{1}))</function>

 <function name="fn:substring" arity="3" >

IIF(ISNULL(MID({0},{1},{2})),'',MID({0},{1},{2}))</function>

 <function name="fn-bea:left" >LEFT({0},{1})</function>

 <function name="fn-bea:right" >RIGHT({0},{1})</function>

 <function name="fn-bea:repeat" supported="false" />

 <function name="fn-bea:trim" arity="1" >TRIM({0})</function>

 <function name="fn-bea:trim-left" arity="1" >LTRIM({0})</function>

 <function name="fn-bea:trim-right" >RTRIM({0})</function>

 <function name="fn-bea:sql-like" arity="2" >({0} LIKE {1})</function>

 <function name="fn-bea:sql-like" arity="3" supported="false" />

 <function name="fn:starts-with" supported="false" />

 <function name="fn:ends-with" supported="false" />

 <function name="fn:contains" supported="false" />

 <function name="op-bea:string-not-equal" arity="2" >({0} <>

{1})</function>

 <!-- Numeric Functions -->

 <function name="fn:abs" supported="true" arity="1" >ABS({0})</function>

 <function name="fn:ceiling" supported="false" />

 <function name="fn:floor" supported="false" />

 <function name="fn:round" >ROUND ({0})</function>

 <!-- Aggregate Functions -->

 <function name="fn:count" supported="true" arity="1" >COUNT({0})</function>

 <function name="fn:avg" >AVG({0})</function>

 <function name="fn:min" arity="1" >MIN({0})</function>

 <function name="fn:max" supported="true" arity="1" >MAX({0})</function>

 <function name="fn:sum" arity="1" >

IIF(ISNULL(SUM({0})),0,SUM({0}))</function>

 <!-- DateTime Functions -->

 <function name="fn:day-from-date" arity="1" >DAY({0})</function>

 <function name="fn:month-from-date" >MONTH({0})</function>

 <function name="fn:year-from-date" >YEAR({0})</function>

 <function name="fn:day-from-dateTime" arity="1" >DAY({0})</function>

 <function name="fn:month-from-dateTime" >MONTH({0})</function>

 <function name="fn:year-from-dateTime" >YEAR({0})</function>

Sample Conf igurab le Re la t i ona l P rov ide r F i l e

Administration Guide 10-11

 <function name="fn:hours-from-dateTime" >HOUR({0})</function>

 <function name="fn:minutes-from-dateTime" arity="1" >MINUTE({0})</function>

 <function name="fn:seconds-from-dateTime" >SECOND({0})</function>

 <function name="fn:current-date" supported="false"/>

 <function name="fn:current-time" supported="false"/>

 <function name="fn:current-dateTime" supported="false"/>

 </functions>

 <casts>

 <cast from="xs:string" from-subtypes="true" to="xs:int">

 CINT({0})

 </cast>

 <cast from="xs:double" from-subtypes="true" to="xs:int">

 CINT({0})

 </cast>

 <cast from="xs:float" from-subtypes="true" to="xs:int">

 CINT({0})

 </cast>

 <cast from="xs:decimal" from-subtypes="true" to="xs:int">

 CINT({0})

 </cast>

 <cast from="xs:string" from-subtypes="true" to="xs:double">

 CDBL({0})

 </cast>

 <cast from="xs:decimal" from-subtypes="true" to="xs:double">

 CDBL({0})

 </cast>

 <cast from="xs:string" from-subtypes="true" to="xs:float">

 CDBL({0})

 </cast>

 <cast from="xs:decimal" from-subtypes="true" to="xs:float">

 CDBL({0})

 </cast>

 <cast from="xs:string" from-subtypes="true" to="xs:dateTime">

 CDATE({0})

 </cast>

Ex tending Database Suppor t

10-12 Administration Guide

 <cast from="xs:float" from-subtypes="true" to="xs:string" >

 CSTR({0})

 </cast>

 <cast from="xs:double" from-subtypes="true" to="xs:string" >

 CSTR({0})

 </cast>

 <cast from="xs:decimal" from-subtypes="true" to="xs:string" >

 CSTR({0})

 </cast>

 <cast from="xs:boolean" from-subtypes="true" to="xs:string" >

 CSTR({0})

 </cast>

 <cast from="xs:dateTime" from-subtypes="false" to="xs:string" >

 CSTR({0})

 </cast>

 </casts>

 <limit>

 <select-top />

 </limit>

 <insert>

 <auto-column-generator kind="sql-post" >

 select @@identity

 </auto-column-generator>

 </insert>

 <properties

 supports-multiple-active-queries-per-connection="false"

 supports-cancel-query="false"

 supports-query-timeout="false" />

 </custom-rdb-provider>

 </factory>

 </rdb-provider>

</aldsp-rdb-extension>

Using the Conf igu rable Re la t iona l P rov ider

Administration Guide 10-13

Using the Configurable Relational Provider
This section explains how to use the Configurable Relational Provider. The Configurable
Relational Provider lets you configure a new relational provider by editing an XML configuration
file.

Tip: Be sure to review the section “Introduction” on page 10-2 before continuing.

This section includes these topics:

Summary of Basic Configuration Steps

Deploying the Relational Provider

Summary of Basic Configuration Steps
This section lists the basic steps required to develop and deploy an Configurable Relational
Provider. The basic process of creating a new provider is also shown in Figure 10-2.

Figure 10-2 Custom Provider Development Process

1. Choose a base parent provider, such as one of the Abstract providers discussed in “Abstract
SQL Providers” on page 10-50. The base provider represents the first provider in a provider
chain. Subsequent providers in the chain can extend or override features of a parent provider.
See “Overview of the Extension Framework Architecture” on page 10-3 for information
about provider chains.

Configure XML
Provider(s) Deploy

Test

Choose a Base
Parent Provider

Ex tending Database Suppor t

10-14 Administration Guide

2. Configure one or more Configurable Relational Providers. Configurable Relational Providers
are configured in an XML file in which you specify all of the properties of the Configurable
Relational Provider(s). See “Sample Configurable Relational Provider File” on page 10-8.
The sample is a good starting point for developing your own customized provider.

3. Deploy the provider. A command line script is provided to deploy your customized provider.
See “Deploying the Relational Provider” on page 10-14.

4. Test the provider.

Deploying the Relational Provider
A command-line deployment tool, described in this section, is provided with ALDSP. Use this
tool to add and remove relational providers. To use this deployment tool, your provider’s
deployment descriptor must be packaged in a JAR file. See “Deploying the Relational Provider”
on page 10-14.

Note: When ALDSP loads an extension, the deployment descriptor is read and validated. If a
provider section of the description is determined to be invalid, it is ignored.

Note: Before running the scripts listed in this section, you must first run the following script to
set certain environment variables:

<DOMAIN_HOME>/bin/setDomainEnv.[cmd/sh]

Adding a Provider
The command syntax for adding a provider is:

<ALDSP_HOME>/bin/update-providers.[cmd/sh] -add <provider.jar>

The fully-qualified path to the provider relational wrapper extension JAR file is required. When
a new provider is added, it is copied into the <ALDSP_HOME>/providers directory.

Note: Adding or removing a provider requires that you restart the IDE or the server.

Removing a Provider
The command syntax for removing a provider is:

<ALDSP_HOME>/bin/update-providers.[cmd/sh] -remove <provider.jar>

Specify the filename of the provider JAR file located in the <ALDSP_HOME>/providers
directory. When an existing provider is removed, it is deleted from the
<ALDSP_HOME>/providers directory.

Conf igurab le Re la t iona l P rov ide r Fo rmat Descr ip t ion and Refe rence

Administration Guide 10-15

Note: Adding or removing a provider requires that you restart the IDE or the server.

Configurable Relational Provider Format Description and
Reference

This section describes the format, elements, and configurable properties of an Configurable
Relational Provider.

Note: A complete provider example is listed in “Sample Configurable Relational Provider File”
on page 10-8.

This section includes:

Overview of Primary XML Elements – This section provides an overview of the top-level
elements of the Configurable Relational Provider.

Overview of the <custom-rdb-provider> Element – This section provides an overview of
the <custom-rdb-provider> element. This element contains all of the sub-elements and
properties that define a Configurable Relational Provider.

Configurable Relational Provider Reference – This section describes all of the elements of
the <custom-rdb-provider> element.

Overview of Primary XML Elements
This section describes each of the primary elements in an Configurable Relational Provider file.
This file is a deployment descriptor that is used to specify the properties of the relational provider
extension.

Tip: The file must be packaged and deployed in a JAR file. The JAR must only contain one
deployment descriptor; however, the descriptor can define and configure one or more
providers. See “Deploying the Relational Provider” on page 10-14.

The following list describes the primary elements of a relational provider deployment descriptor.

Note: You must name the deployment descriptor file aldsp-rdb-extension.xml.

<name> – The name of the provider.

<vendor> – (Optional) The name of the vendor of the provider.

<implementation-version> – (Optional) A version number for the provider.

Ex tending Database Suppor t

10-16 Administration Guide

<description> – (Optional) A brief description of the extension.

<id> – The provider ID. This ID is used to register the provider in the provider registry.

<description> – (Optional) A brief description of the provider.

<parent> – (Optional) The <id> element of a parent provider.

Tip: In the sample file in “Sample Configurable Relational Provider File” on page 10-8,
the class specified by the <parent> element is AbstractSQL. See “Abstract SQL
Providers” on page 10-50 for detailed information on this abstract provider parent
class.

<modifier> – (Optional) Either abstract or final. If set to abstract, the provider
cannot be referred to by any data service; however, an abstract provider can be extended
(be the parent of another provider). If set to final, the provider cannot be extended by any
other providers.

<factory> – (Optional) This element specifies a factory class that instantiates the
provider. The Configurable Relational Provider uses the default factory class,
,XMLCustomizableProviderFactory.

Tip: In the sample file in “Sample Configurable Relational Provider File” on page 10-8,
the <factory> element explicitly specifies the default factory class,
XMLCustomizableProviderFactory.

<custom-rdb-provider> – A sub-element that specifies the namespace of the
Configurable Relational Provider and its full configuration. The default namespace is:
http://www.bea.com/ns/aldsp/rdb/extension/custom.

Tip: For details on configuring the <custom-rdb-provider> element, see “Sample
Configurable Relational Provider File” on page 10-8 and “Configurable Relational
Provider Format Description and Reference” on page 10-15.

Note: When ALDSP loads an extension, the deployment descriptor is read and validated. If a
provider section of the description is determined to be invalid, it is ignored.

Conf igurab le Re la t iona l P rov ide r Fo rmat Descr ip t ion and Refe rence

Administration Guide 10-17

Overview of the <custom-rdb-provider> Element
Listing 10-2 shows the basic configuration of the <custom-rdb-provider> element in an
Configurable Relational Provider. This configuration is based on a schema file that is provided
with ALDSP.

Each of the properties are described in greater detail in “Configurable Relational Provider
Reference” on page 10-19. For a complete example, see “Sample Configurable Relational
Provider File” on page 10-8.

Listing 10-2 Overview of the <custom-rdb-provider> Element

<custom-rdb-provider xmlns="http://www.bea.com/ns/aldsp/rdb/extension/custom">

 <database-kind>

 <match-database>

 XQuery expression that uses a predefined external function to

 Access JDBC metadata. Result type: boolean
 </match-database>

 <base-version>

 Base database version supported by this provider (decimal)

 </base-version>

 <matched-version>

 XQuery expression returning matched version. Result type: decimal

 </matched-version>

 </database-kind>

 <database-objects>

 <catalog quote?="string" separator?="string"/>

 <schema quote?="string" separator?="string" />

 <table quote?="string" separator?="string"

 qualified-name-parts="string*"/>

 <column quote?="string" />

 <procedure quote?="string" qualified-name-parts="string*"/>

 </database-objects>

 <joins inner-join="boolean" outer-join="boolean">

 <sql92 right-trees="boolean(:=true)" /> or

 <sql89 outer-join-kind?="columnModifier|tableModifier"

 outer-join-modifier?="string" />

Ex tending Database Suppor t

10-18 Administration Guide

 </joins>

<orderby column?="boolean" expression?="boolean" aggregate?="boolean"

 null-order?="low|high|first|last|undefined"

 style?="ordering-expression|ordering-expression-with-projection|

position-in-project-list" />

 <groupby column?="boolean" constant?="boolean" expression?="boolean" />

 <subqueries in-from?="boolean" in-where?="boolean" />

 <case supported?="boolean(:=true)" />

 <functions default-syntax-for-empty-input="lax|strict|strict-coalesce">

 <function name="QName" arity?="integer" supported?="boolean(:=true)"

 infix?="boolean(:=false)">

 SQL expression which uses {0},{1},…{n} for input expressions

 (string)

 </function>

 </functions>

 <casts>

 <cast from="QName" from-subtypes?="boolean(:=false)" to="QName"

 supported?="boolean(:=true)">

 SQL expression which uses {0} for input expression

 </cast>

 </casts>

 <limit supported?="boolean(:=true)">

 <top parameter="true|false" composable="true|false"/> or

 <rownum kind="project_first|filter_first">

 ROWNUM

 </rownum>

 </limit>

 <insert>

 <key-gen kind?="jdbc|sql-pre|sql-post">

 SQL statement

 </key-gen>

 </insert>

Conf igurab le Re la t iona l P rov ide r Fo rmat Descr ip t ion and Refe rence

Administration Guide 10-19

 <properties

 supports-query-timeout = "boolean"

 supports-cancel-query = "boolean"

 supports-multiple-active-queries-per-connection = "boolean"

 />

</custom-rdb-provider>

Configurable Relational Provider Reference
Table 10-2 describes each of the sub-elements and properties of the <custom-rdb-provider>
element of an XML Customization Provider configuration file.

For a summary of the file format, see “Overview of the <custom-rdb-provider> Element” on
page 10-17. For a complete example, see “Sample Configurable Relational Provider File” on
page 10-8.

Tip: Most of the settings listed in Table 10-2 are optional. Any settings that are specified in
the configuration file override default settings provided by the parent provider. The
parent provider is specified with the <parent> element of the descriptor. If no setting is
provided for an attribute, then the request is delegated to the parent provider. See
“Overview of the Extension Framework Architecture” on page 10-3 for a description of
the way in which providers delegate to parent providers in a “chains.”

Table 10-2 Configuration Elements and Attributes Description

Element(s) and

• Sub-element(s)

Attribute(s) Description of Element or Attribute

<match-database>

<matched-version>

These elements contain XQuery expressions that can
access JDBC database metadata through predefined
external functions. See “Database Matching ” on
page 10-30.

There are no default values for these elements. Default
values are inherited from the parent provider.

<database-objects> Sub-elements of this element specify various properties
of database object identifiers in the generated SQL.

Ex tending Database Suppor t

10-20 Administration Guide

<database-objects>
• <catalog>
• <schema>
• <table>
• <column>
• <procedure>

quote The quote attribute specifies the identifier quote for the
corresponding database object.

Example: <catalog quote=”’” />
To specify open and close quotes, specify first the open
quote, then the close quote.
Example: <table quote=”[]” />
The general rule is: if the number of characters in the
specified quote string is even – then it is assumed that
open and close quotes are different. The first half of the
specified string is the open quote; the second half is the
close quote. If the number of characters in the specified
string is odd then it is assumed that the open and close
quotes are the same and equal to the whole string.

<database-objects>
• <catalog>
• <schema>
• <table>
• <procedure>

separator The separator attribute specifies the separator character
between object identifiers in the fully qualified object
name.
Example: <schema separator=”.”/>

If this attribute is not specified, the parent provider’s
value is used by default.

<table>

<procedure>

qualified-name-parts The qualified-name-parts attribute specifies a list of
object kinds that specify how a fully qualified name is
constructed for this database object.

Note: Object kinds in the list must be separated by a
space character.

Example: <table qualified-name-parts=”catalog schema
table” />
Example: <procedure qualified-name-parts=”schema
procedure”/>

If this attribute is not specified, the parent provider’s
value is used by default.

Table 10-2 Configuration Elements and Attributes Description (Continued)

Element(s) and

• Sub-element(s)

Attribute(s) Description of Element or Attribute

Conf igurab le Re la t iona l P rov ide r Fo rmat Descr ip t ion and Refe rence

Administration Guide 10-21

<joins> inner-join

outer-join

These attributes are booleans that specify whether the
database supports inner and outer joins respectively.
The exact join syntax is defined by the sql92 and sql89
child elements of the joins element.
Example: <joins inner-join=”true” outer-join=”true”>

If these attributes are not specified, the parent provider’s
values are used by default.

<joins>
• <sql92>

The sql92 sub-element specifies that the database uses
SQL-92 syntax for joins. For example: SELECT ...
FROM a INNER JOIN | LEFT OUTER JOIN b ON ...

<joins>
• <sql92>

right-trees This attribute is a boolean that determines whether
parenthesis can be used to control the order of joins in the
join clause.
Default: true

<joins>
• <sql92>

inner-join-syntax (Optional) Defines the syntax for an inner join. {0} is
used for the left branch source, {1} for the right branch
source, and {2} for a join condition expression.
Example: {0} JOIN {1} ON {2}

<joins>
• <sql92>

outer-join-syntax (Optional) Defines the syntax for a left outer join. {0} is
used for the left branch source, {1} for the right branch
source, and {2} for the join condition expression.
Example: {0} LEFT OUTER JOIN {1} ON {2}

<joins>
• <sql89>

The sql89 sub-element specifies that the database uses
SQL-89 syntax for joins. For example: SELECT ...
FROM a,b WHERE ...

<joins>
• <sql89>

inner-join-syntax (Optional) Defines the syntax for a left inner join. {0} is
used for the left branch source, {1} for the right branch
source.
Default: {0}, {1}

Table 10-2 Configuration Elements and Attributes Description (Continued)

Element(s) and

• Sub-element(s)

Attribute(s) Description of Element or Attribute

Ex tending Database Suppor t

10-22 Administration Guide

<joins>
• <sql89>

outer-join-syntax (Optional) Defines the syntax for a left outer join. {0} is
used for the left branch source, {1} for the right branch
source.

Example: {0}, OUTER {1}

Default: empty (left outer join is not supported)

<joins>
• <sql89>

outer-join-right-branch-
column-modifier

(Optional) Specifies the transformation to be applied to
the columns on the right side of a left outer join. {0} is
used to specify the right-side column.

Example: {0}(+)

Default: empty (no transformation is required)

<orderby> column
expression

This boolean attribute specifies whether the database
supports orderby column and other expressions.

If these attributes are not specified, the parent provider’s
values are used by default.

<orderby> aggregate This boolean attribute specifies whether the database
supports orderby aggregate.

<orderby> null-order This attribute specifies one of the following values:
• low – NULL values are sorted low.
• high – NULL values are sorted high.
• first – NULL values are sorted at the start regardless

of sort order.
• last – NULL values are sorted at the end regardless of

sort order.
• undefined – NULL values are sorted by ALDSP

(“order by” is not pushed to the database in this case).
If this attribute is not specified, the parent provider’s
values are used by default.

Table 10-2 Configuration Elements and Attributes Description (Continued)

Element(s) and

• Sub-element(s)

Attribute(s) Description of Element or Attribute

Conf igurab le Re la t iona l P rov ide r Fo rmat Descr ip t ion and Refe rence

Administration Guide 10-23

<orderby> style Style of the orderby expressions that will be generated:
• position-in-project-list – Generates ORDER BY n,

where 'n' is a position of the ordering expression in
the SELECT clause. The ordering expression is
automatically added to the SELECT clause if
necessary.

• ordering-expression-with-projection – Generates
ORDER BY <expr> where <expr> is automatically
added to the SELECT clause if necessary.

• ordering-expression – Generates ORDER BY <expr>
where <expr> is not automatically added to the
SELECT clause.

There is no default value for this attribute. The parent
provider’s value is used if not specified.

<groupby> column
constant
expression

These boolean attributes specify whether the group by
clause can operate on columns, constants, and expression.
If these attributes are not specified, the parent provider’s
values are used by default.

<subqueries> in-from

in-where

These boolean attributes specify whether subqueries are
supported in FROM and WHERE clauses. ALDSP
generates only a subquery in the WHERE clause only
when translating a semi-join.
Example: ”WHERE EXITS(...))”)
If these attributes are not specified, the parent provider’s
values are used by default.

<case> supported This boolean attribute specifies whether the CASE
expression is supported.
Default: true

<functions> This element defines SQL syntaxes for functions.

Table 10-2 Configuration Elements and Attributes Description (Continued)

Element(s) and

• Sub-element(s)

Attribute(s) Description of Element or Attribute

Ex tending Database Suppor t

10-24 Administration Guide

<functions> default-syntax-for-
empty-input

An enumeration of strings that define which default
syntax to use in the presence of NULL input. NULL (an
empty sequence in XQuery) input is usually handled
differently by SQL and XQuery functions. In SQL,
NULL is usually propagate to the output of a function.
For example: f(NULL)=NULL). In XQuery, however,
NULL is usually replaced with a value. For string
functions, such as
f(()) = ””, sum(())=0, and so on. This setting specifies
how to deal with such situations when choosing default
SQL syntax for a function.
This attribute must specify one of the following values:
• strict – Follow XQuery semantics. Do not push down

if the input can be empty.
• strict–coalesce – (Default) Follow XQuery

semantics. Push down with the help of the
COALESCE function in SQL. Only use this value if
the database supports the COALESCE function.

• lax – Do not follow XQuery semantics. Generate
SQL without the COALESCE function, such that
f(NULL) -> NULL.

See “Default SQL Syntax for Functions” on page 10-35.
Default: strict-coalesce

Table 10-2 Configuration Elements and Attributes Description (Continued)

Element(s) and

• Sub-element(s)

Attribute(s) Description of Element or Attribute

Conf igurab le Re la t iona l P rov ide r Fo rmat Descr ip t ion and Refe rence

Administration Guide 10-25

<functions>
• <function>

This sub-element defines the translation of an XQuery
function(operator) into SQL.
The contents of this sub-element is a SQL expression that
must be generated for the named function. Parameters are
specified as {0}, {1}, … {n}.
A variable number of parameters is supported. See
“Specifying SQL Syntax for Functions” on page 10-33
for more information on the format.
This element is not required if the supported attribute is
set to false.
The contents of this element can be empty. In this case,
the default syntax for this function is used for SQL
generation. A list of default syntaxes is provided in
“Default SQL Syntax for Functions” on page 10-35.
For examples, see “Sample Configurable Relational
Provider File” on page 10-8.

<functions>
• <function>

name (Required) Specifies the QName of a function. See
“Function and Type Name Resolution Process” on
page 10-49.

<functions>
• <function>

arity Specifies the arity of the named function. Can be omitted
if function name is non-ambiguous.

<functions>
• <function>

supported (Boolean) specifies whether the function pushdown is
supported or not. Disables the pushdown of a function
defined by the parent provider.
Default: true

<functions>
• <function>

infix (Boolean) Specifies whether or not to use infix formatting
style for this function. A SQL expression in the
sub-element contents specifies the only infix operation in
this case. Parameters are processed automatically.

<casts> This element defines cast operations for push down.

Table 10-2 Configuration Elements and Attributes Description (Continued)

Element(s) and

• Sub-element(s)

Attribute(s) Description of Element or Attribute

Ex tending Database Suppor t

10-26 Administration Guide

<casts>
• <cast>

Defines translation for cast operations to SQL for a
particular combination of types.
The content of this element is the SQL expression that
must be generated for this cast operation. The parameter
is specified as {0}.
This element is not required if the supported attribute is
false.
For examples, see “Sample Configurable Relational
Provider File” on page 10-8.

<casts>
• <cast>

to
from

These attributes specify the QNames of input and target
XQuery types. If only a local name is specified, ALDSP
searches for the type in well-known namespaces.
For examples, see “Sample Configurable Relational
Provider File” on page 10-8. See also “Standard and
ALDSP Namespaces for Functions and Types” on
page 10-49.

<casts>
• <cast>

from-subtypes (Boolean) Specifies whether the matching input type
must also match its subtypes (according to XQuery type
hierarchy).
Default: false.
For examples, see “Sample Configurable Relational
Provider File” on page 10-8.

<casts>
• <cast>

supported (Boolean) Specifies whether this cast operation is
supported. Intended usage is to disable cast pushdown of
the parent provider.
Default: true

<limit> This element defines the pushdown of fn:subsequence().
This element must have one child element specified. To
disable pushdown of this function, set supported to false.

<limit> supported (Boolean) Specifies whether the database supports
fn:subsequence() pushdown.
Default: true

Table 10-2 Configuration Elements and Attributes Description (Continued)

Element(s) and

• Sub-element(s)

Attribute(s) Description of Element or Attribute

Conf igurab le Re la t iona l P rov ide r Fo rmat Descr ip t ion and Refe rence

Administration Guide 10-27

<limit>
• <select-top>

Specifies that fn:subsequence() must be pushed down
using the TOP modifier of the SELECT clause. For
example: SELECT TOP n FROM ...
The content of the select-top element defines SQL syntax
for the select clause modifier. {0} is bound to the length
expression.
Default content value: TOP {0}

<limit>
• <select-top>

parameter (Boolean) Specifies whether the TOP value can be a
parameter. For example, whether SELECT TOP ? FROM
... is supported by the database.
Default: false

<limit>
• <select-top>

composable If set to true, specifies whether to stop SQL generation
after processing fn:subsequence(). If set to false,
continues by creating a subquery for a SELECT TOP ...
statement.
Default: false

<limit>
• <row-number-

function>

Specifies that the fn:subsequence() is a pushdown using a
ROWNUM-like function.
The content of this element defines the SQL syntax for
ROWNUM-like functions supported by the database.
The content portion is optional.
Default content: ROW_NUMBER() Over(...)

<limit>
• <row-number-

function>

explicit-order-by (Boolean) Determines whether ORDER BY ordering
expressions will be passed as arguments to the
ROW_NUMBER function.

<limit>
• <row-number-

function>

split-range-filter (Boolean) Determines whether the range test should be
split between subqueries. (Oracle ROWNUM pattern)
Default: false

Table 10-2 Configuration Elements and Attributes Description (Continued)

Element(s) and

• Sub-element(s)

Attribute(s) Description of Element or Attribute

Ex tending Database Suppor t

10-28 Administration Guide

<limit>
• <limit-clause>

Specifies that fn:subsequence() should be translated into
SQL as a LIMIT-like clause added at the end of a SQL
query.

Content of the <limit-clause> element defines SQL
syntax for this clause, where {0} and {1} placeholder
bindings depend on the @style attribute (see below).

Content value is optional.

Default content value: LIMIT {0} OFFSET {1}

<limit>
• <limit-clause>

kind Defines kind of the accepted subsequence() function:
• Range - default - both start and length expression are

used. In this case limit clause syntax has {0}
parameter bound to the start expression and {1} to the
length expression

• Top - only top-like subsequence() is accepted for
pushdown. start expression has to be constant 1. In
this case limit clause syntax has only {0} parameter
which is bound to the length expression

Default value: range

<limit>
• <limit-clause>

parameter (Boolean) Specifies whether SQL parameters can be used
in limit clause (as start and/or length expressions)

Default value: true

<limit>
• <limit-clause>

composable (Boolean) Specifies whether SQL generation should stop
after processing fn:subsequence() (when set to false), or
can continue by creating subquery for SELECT …
LIMIT statement (when set to true).

Default: false

<limit>
<limit-clause>

start-base Integer. 0 or 1. Defines whether start expression is 0 or 1
- based. Only applicable when @style = range

Default: 0

Table 10-2 Configuration Elements and Attributes Description (Continued)

Element(s) and

• Sub-element(s)

Attribute(s) Description of Element or Attribute

Conf igurab le Re la t iona l P rov ide r Fo rmat Descr ip t ion and Refe rence

Administration Guide 10-29

<insert>
• <auto-column-

generator>

Defines a strategy to access auto-generated columns
when inserting data into the database.

Strategy kind is defined by the kind attribute.

The content of this element is a SQL expression for
certain kinds and empty for others.

Example:

 <insert> <auto-column-generator
kind="sql-post">

 SELECT LAST_INSERT_ID()

 </auto-column-generator></insert>

<insert>
• <auto-column-

generator>

kind A string constant (enumeration) that defines the key
generation strategy. This attribute must specify one of the
following values:
• jdbc – (Default) Defines the key generation strategy

through the JDBC API. Content of the key-gen
element must be empty in this case.

• sql-pre – Run a specified SQL statement to get the
auto-generated key before issuing an INSERT
statement. For example, use this attribute to get a key
from a sequence-like database object. In this case, the
content of the key-gen element is the SQL statement
that can use {0} as a placeholder for the sequence
object name (specified by the dataservice’s
annotation).

• sql-post – Run a specified SQL statement to get the
auto-generated key after an INSERT statement. The
content of the key-gen element is the SQL statement
that must be executed.

properties The attributes of this element contain various SQL
generation and execution properties. These properties do
not have default values; the parent’s value is used if a
property is not set.

<properties> multiple-active-queries-
per-connection-supported

(Boolean) Specifies whether the database supports
multiple active statements open on the same connection.

Table 10-2 Configuration Elements and Attributes Description (Continued)

Element(s) and

• Sub-element(s)

Attribute(s) Description of Element or Attribute

Ex tending Database Suppor t

10-30 Administration Guide

Database Matching
This section describes how ALDSP determines the best database match for a given provider.
Database matching logic is specified as an XQuery expression that can access JDBC database
metadata through predefined XQuery external functions.

Matching expressions are specified in the Configurable Relational Provider elements
(Table 10-2, “Configuration Elements and Attributes Description,” on page 10-19) and are
evaluated by the ALDSP XQuery engine. Expressions can use standard XQuery functions
supported by the ALDSP XQuery engine as well as additional functions defined by the
Configurable Relational Provider. Database matching XQuery expressions return an xs:boolean
value.

Another use of matching XQuery expressions is to compute the matched database version (in this
case the result must be xs:decimal).

This section includes these topics:

Rules for Database Matching

JDBC Metadata Methods to XQuery Functions Mapping

Additional External XQuery Functions

Rules for Database Matching
The framework employs matching rules to determine if a given provider is compatible with a
database. During the metadata import process (see “Importing Relational Source Metadata” on
page 10-7) the relational provider registry determines which providers support the database being

<properties> cancel-query-supported (Boolean) Specifies whether the
jdbc.sql.Statement.cancel() method is supported by the
database and driver.

<properties> query-timeout-supported (Boolean) Specifies whether the
jdbc.sql.Statement.setQueryTimeout() method is
supported by the database and driver.

Table 10-2 Configuration Elements and Attributes Description (Continued)

Element(s) and

• Sub-element(s)

Attribute(s) Description of Element or Attribute

Database Match ing

Administration Guide 10-31

imported. For successful matches, the base version offset is also obtained. The base version offset
is calculated as:

Base version offset (decimal) = (matched db version – base db version returned by the provider)

Base version decimals for the standard providers are listed in Table 10-1 in the section
“Relational Providers Included With ALDSP” on page 10-5.

The Datasource Import Wizard uses the base version offset to display providers when there are
multiple matches. The wizard’s drop down menu contains providers with the minimum base
version offset (that is, the closest version to the database). The best match appears at the top of
the drop down menu. For information on the Datasource Import Wizard, see Creating and
Updating Physical Data Services in the Data Services Developer’s Guide.

For example, consider the standard DB2 relational provider. This provider matches all DB2
versions starting from 8. Its base version is 8. Assume that a new DB2 provider is created with
the Configurable Relational Provider that matches DB2 9 with base version 9. During metadata
import of a table from the DB2 9 instance, both providers will match the database. However, for
the first provider, the base version offset is 1, but the second one is be 0. Therefore, the second
provider will be preferred over the first one.

JDBC Metadata Methods to XQuery Functions Mapping
This section describes the mapping of a java.sql.DatabaseMetaData instance to a set of XQuery
functions that can be used by a database matching expression.

Mapped interface: java.sql.DatabaseMetaData

Function namespace:

prefix = jdbc

uri = http://www.bea.com/ns/aldsp/extensions/rdb/providers/custom/jdbc

Requirements for mapped methods:

No parameters

Return type of: boolean, string, or int

Table 10-3 lists the java.sql.DatabaseMetaData methods that satisfy these requirements and their
corresponding JDBC methods and XQuery functions.

../datasrvc/Creating and Updating Physical Data Services.html
../datasrvc/Creating and Updating Physical Data Services.html

Ex tending Database Suppor t

10-32 Administration Guide

Exception handling:

SQLException, RuntimeException – Rethrows the exception.

LinkageError – Returns an empty sequence. This exception occurs if the driver is compiled
against older version of JDBC API.

Additional External XQuery Functions
This section describes additional functions that are available in the database matching expression,
but are not directly mapped from the jdbc.sql.DatabaseMetaData interface.

Function namespace:

prefix = cxp

uri = http://www.bea.com/ns/aldsp/extensions/rdb/providers/custom/

Table 10-4 lists and describes the function signatures.

Table 10-3 Java Method to XQuery Function Mapping

Java Method XQuery Function

int getDatabaseMajorVersion() jdbc:getDatabaseMajorVersion() as xs:int?

int getDatabaseMinorVersion() jdbc:getDatabaseMinorVersion() as xs:int?

String getDatabaseProductName() jdbc:getDatabaseProductName() as xs:string?

String getDatabaseProductVersion() jdbc:getDatabaseProductVersion() as xs:string?

int getDriverMajorVersion() jdbc:getDriverMajorVersion() as xs:int?

int getDriverMinorVersion() jdbc:getDriverMinorVersion() as xs:int?

String getDriverName() jdbc:getDriverName() as xs:string?

String getDriverVersion() jdbc:getDriverVersion() as xs:string?

String getURL() jdbc:getURL()as xs:string?

Spec i f y ing SQL Syntax fo r Funct ions

Administration Guide 10-33

Specifying SQL Syntax for Functions
This section discusses the SQL syntax for functions specified in the Configurable Relational
Provider deployment descriptor. See also “Configurable Relational Provider Reference” on
page 10-19 and the example descriptor in “Sample Configurable Relational Provider File” on
page 10-8.

This section includes these topics:

Syntax Overview

Setting the infix Attribute

Using a Variable Length Placeholder

Syntax Overview
Function SQL syntax is specified as a string with placeholders for each parameter. The syntax
defines a SQL fragment to be generated by the relational wrapper when translating the
corresponding XQuery function into SQL. It is specified as the content of the <function>
element.

Table 10-4 Function Signatures

Function signature Description

cxp:getDatabaseVersion() as
xs:decimal

Returns the database version as xs:decimal. The version is
computed based on java.sql.DatabaseMetaData as follows:
1. Try to detect the version from the string returned by the

getDatabaseProductVersion() method. Search for a format:
n1.n2.n3. n1, n2, n3 must be non-negative integers and n3
is optional. The resulting decimal version is
n1+max(n2,99)*0.01+max(n3,999)*0.00001

2. If Step 1 fails and if getDatabaseMajorVersion(),
getDatabaseMinorVersion() are implemented by the
driver, then the result is: major + max(minor,99)*0.01

cxp:getDriverVersion() as xs:decimal Same as approach 1, but uses the following functions from
jdbc.sql.DatabaseMetaData: getDriverVersion(),
getDriverMajorVersion(), getDriverMinorVersion().

Ex tending Database Suppor t

10-34 Administration Guide

Example:

<function name=”fn:lower”>LOWER({0})</functions>

Parameter placeholders start with 0. There can be more than one placeholder with the same index
which means that the argument must be replicated in the generated SQL.

Example:

<function name=”fn:substring” arity=”2”>SUBSTR({0}, {1}, LENGTH({0})-{1}+1)

</function>

Functions with a variable number of arguments can be specified in two different ways:

By setting the infix attribute and specifying only a delimiter as the function syntax

By using a variable length placeholder: {...}

These methods are described in the next two sections.

Setting the infix Attribute
The infix attribute of the function element is set as follows:

<function name=”fn:concat” infix=”true”>||</function>

The generated SQL for this example is:

arg1 || arg2 || arg3 || ... || argN

Using a Variable Length Placeholder
During SQL generation the variable length placeholder {...} is replaced with the remaining
arguments separated by commas.

<function name=”fn:concat”>CONCAT({...})</function>

The generated SQL is:

CONCAT(arg1,arg2,arg3,….,argN)

If another delimiter is required, it must be specified inside the variable length placeholder as
follows:

{...DELIMITER}

For example:

<function name=”fn:concat”>COALESCE({... || }, ””)</function>

Defaul t SQL Syntax fo r Funct ions

Administration Guide 10-35

The generated SQL is:

COALESCE(arg1 || arg2 || arg3 || … || argN, ””)

Note: In this case the delimiter is “|| “.

Default SQL Syntax for Functions
The default syntax for a function is used when the function is specified in the <functions>
section of the Configurable Relational Provider configuration file (Table 10-2), but its syntax is
not provided by the user (the <function> element content is empty). For some functions in this
case, the relational provider chooses default syntax based on the
default-syntax-for-empty-input attribute. See “Configurable Relational Provider
Reference” on page 10-19 for information on the default-syntax-for-empty-input
attribute.

This section lists the default syntaxes used for the three possible values of the
default-syntax-for-empty-input attribute.

Functions for which the default SQL syntax depends on the default-syntax-for-empty-input
attribute are denoted with an asterisk (*) in Table 10-5, Table 10-6, and Table 10-7. These
functions are:

fn:concat

fn:substring with 2 parameters

fn:substring with 3 parameters

fn:string-length

fn:lower-case

fn:upper-case

Attribute Described In

strict Table 10-5

strict-coalesce Table 10-6

lax Table 10-7

Ex tending Database Suppor t

10-36 Administration Guide

fn:sum

If default syntax is not defined for a function, then you must specify the syntax of the function
when you use it. Otherwise, it is an error.

Table 10-5 default-syntax-for-empty-input = strict-coalesce

XQuery function Default SQL syntax Pushdown requirements

op:numeric-add {0} + {1}

op:numeric-multiply {0} * {1}

op:numeric-divide {0} / {1}

op:numeric-mod MOD({0}, {1})

fn:abs ABS({0})

fn:ceiling CEILING({0})

fn:floor FLOOR({0})

fn:round FLOOR({0} + 0.5)

fn-bea:sql-round ROUND({0})

* fn:concat COALESCE({0} || {1} || … || {n}, ‘’)

COALESCE is not used if at
compile-time it is determined that
input can never be empty (NULL).

Arguments are not of type CLOB or
LONG VARCHAR.

* Functions for which the default SQL syntax depends on the default-syntax-for-empty-input
setting.

Defaul t SQL Syntax fo r Funct ions

Administration Guide 10-37

* fn:substring ($str, $pos) if $pos is a subtype of xs:integer

COALESCE(SUBSTRING({0}
FROM {1}), ‘’)

else

COALESCE(SUBSTRING({0}
FROM CAST({1}+0.5 AS
INTEGER)), ‘’)

COALESCE is not used if at
compile-time it is determined that
input can never be empty (NULL).

First argument is not of type CLOB or
LONG VARCHAR.

* fn:substring($str, $pos,
$len)

if $pos and $len are subtypes of
xs:integer

COALESCE(SUBSTRING({0}
FROM {1} FOR {2}), ‘’)

else

COALESCE(SUBSTRING({0}
FROM CAST({1}+0.5 AS
INTEGER) FOR CAST({2}+0.5 AS
INTEGER)), ‘’)

COALESCE is not used if at
compile-time it is determined that
input can never be empty (NULL).

First argument is not of type CLOB or
LONG VARCHAR.

* fn:string-length COALESCE(CHAR_LENGTH({0}),
0)

COALESCE is not used if at
compile-time it is determined that
input can never be empty (NULL).

Argument is not of type CLOB or
LONG VARCHAR.

* fn:lower-case COALESCE(LOWER({0}), ‘’)

COALESCE is not used if at
compile-time it is determined that
input can never be empty (NULL).

Argument is not of type CLOB or
LONG VARCHAR.

Table 10-5 default-syntax-for-empty-input = strict-coalesce

XQuery function Default SQL syntax Pushdown requirements

* Functions for which the default SQL syntax depends on the default-syntax-for-empty-input
setting.

Ex tending Database Suppor t

10-38 Administration Guide

* fn:upper-case COALESCE(UPPER({0}), ‘’)

COALESCE is not used if at
compile-time it is determined that
input can never be empty (NULL).

Argument is not of type CLOB or
LONG VARCHAR.

fn:contains,

fn:starts-with,

fn:ends-with

LIKE with the ESCAPE clause and ‘|’
as the escape character.

The first argument is not of type
CLOB or LONG VARCHAR.

The second argument is SQL constant
or parameter.

fn:year-from-dateTime,

fn:year-from-date

EXTRACT(YEAR FROM {0})

fn:month-from-dateTime

fn:month-from-date

EXTRACT(MONTH FROM {0})

fn:day-from-dateTime

fn:day-from-date

EXTRACT(DAY FROM {0})

fn:hours-from-dateTime,

fn:hours-from-time

EXTRACT(HOUR FROM {0})

fn:minutes-from-dateTime,

fn:minutes-from-time

EXTRACT(MINUTE FROM {0})

fn:seconds-from-dateTime,

fn:seconds-from-time

CAST(EXTRACT(SECOND FROM
{0}) AS DECIMAL)

op:hexBinary-equal {0} = {1}

op-bea:hexBinary-not-equal {0} != {1}

fn:empty {0} IS NULL

Table 10-5 default-syntax-for-empty-input = strict-coalesce

XQuery function Default SQL syntax Pushdown requirements

* Functions for which the default SQL syntax depends on the default-syntax-for-empty-input
setting.

Defaul t SQL Syntax fo r Funct ions

Administration Guide 10-39

fn:exists {0} IS NOT NULL

(or as EXISTS if subqueries in the
WHERE clause are supported)

fn:count COUNT (with COUNT DISTINCT
support)

* fn:sum COALESCE(SUM({0}), 0)

COALESCE is not used if at
compile-time it is determined that
input can never be empty (NULL).

fn:min MIN({0})

fn:max MAX({0})

fn:avg AVG({0})

fn-bea:sql-like($str, $pattern) {0} LIKE {1} Arguments are not of type CLOB or
LONG VARCHAR.

fn-bea:sql-like($str, $pattern,
$escape)

{0} LIKE {1} ESCAPE {2} Arguments are not of type CLOB or
LONG VARCHAR.

fn-bea:left LEFT({0}, {1}) First argument is not of type CLOB or
LONG VARCHAR.

fn-bea:right RIGHT({0}, {1}) First argument is not of type CLOB or
LONG VARCHAR.

fn-bea:trim LTRIM(RTRIM({0})) Argument is not of type CLOB or
LONG VARCHAR.

fn-bea:trim-left LTRIM({0}) Argument is not of type CLOB or
LONG VARCHAR.

Table 10-5 default-syntax-for-empty-input = strict-coalesce

XQuery function Default SQL syntax Pushdown requirements

* Functions for which the default SQL syntax depends on the default-syntax-for-empty-input
setting.

Ex tending Database Suppor t

10-40 Administration Guide

fn-bea:trim-right RTRIM({0}) Argument is not of type CLOB or
LONG VARCHAR.

fn-bea:repeat REPEAT({0}) Argument is not of type CLOB or
LONG VARCHAR.

Table 10-5 default-syntax-for-empty-input = strict-coalesce

XQuery function Default SQL syntax Pushdown requirements

* Functions for which the default SQL syntax depends on the default-syntax-for-empty-input
setting.

Table 10-6 default-syntax-for-empty-input = strict

XQuery function Default SQL syntax Pushdown requirements

op:numeric-add {0} + {1}

op:numeric-multiply {0} * {1}

op:numeric-divide {0} / {1}

op:numeric-mod MOD({0}, {1})

fn:abs ABS({0})

fn:ceiling CEILING({0})

fn:floor FLOOR({0})

fn:round FLOOR({0} + 0.5)

fn-bea:sql-round ROUND({0})

* fn:concat {0} || {1} || … || {n} Arguments are not of type CLOB or
LONG VARCHAR.

Arguments must be non–nullable (as
detected by the compiler).

* Functions for which the default SQL syntax depends on the default-syntax-for-empty-input
setting.

Defaul t SQL Syntax fo r Funct ions

Administration Guide 10-41

* fn:substring ($str, $pos) if $pos is a subtype of xs:integer

SUBSTRING({0} FROM {1})

else

SUBSTRING({0} FROM
CAST({1}+0.5 AS INTEGER))

First argument is not of type CLOB or
LONG VARCHAR.

First argument must be non–nullable (as
detected by the compiler).

* fn:substring($str, $pos, $len) if $pos and $len are subtypes of
xs:integer

SUBSTRING({0} FROM {1}
FOR {2})

else

SUBSTRING({0} FROM
CAST({1}+0.5 AS INTEGER)
FOR CAST({2}+0.5 AS
INTEGER))

First argument is not of type CLOB or
LONG VARCHAR.

First argument must be non–nullable (as
detected by the compiler).

* fn:string-length CHAR_LENGTH({0}) Argument is not of type CLOB or LONG
VARCHAR.

Argument must be non–nullable (as
detected by the compiler).

* fn:lower-case LOWER({0}) Argument is not of type CLOB or LONG
VARCHAR

Argument must be non–nullable (as
detected by the compiler).

* fn:upper-case UPPER({0}) Argument is not of type CLOB or LONG
VARCHAR

Argument must be non–nullable (as
detected by the compiler).

fn:contains,

fn:starts-with,

fn:ends-with

LIKE with the ESCAPE clause
and ‘|’ as escape character.

The first argument is not of type CLOB
or LONG VARCHAR.

The second argument is SQL constant or
parameter.

Table 10-6 default-syntax-for-empty-input = strict

XQuery function Default SQL syntax Pushdown requirements

* Functions for which the default SQL syntax depends on the default-syntax-for-empty-input
setting.

Ex tending Database Suppor t

10-42 Administration Guide

fn:year-from-dateTime,

fn:year-from-date

EXTRACT(YEAR FROM {0})

fn:month-from-dateTime

fn:month-from-date

EXTRACT(MONTH FROM
{0})

fn:day-from-dateTime

fn:day-from-date

EXTRACT(DAY FROM {0})

fn:hours-from-dateTime,

fn:hours-from-time

EXTRACT(HOUR FROM {0})

fn:minutes-from-dateTime,

fn:minutes-from-time

EXTRACT(MINUTE FROM
{0})

fn:seconds-from-dateTime,

fn:seconds-from-time

CAST(EXTRACT(SECOND
FROM {0}) AS DECIMAL)

op:hexBinary-equal {0} = {1}

op-bea:hexBinary-not-equal {0} != {1}

fn:empty {0} IS NULL

fn:exists {0} IS NOT NULL

(or as EXISTS if subqueries in
the WHERE clause are
supported)

fn:count COUNT (with COUNT
DISTINCT support)

* fn:sum SUM({0}) Argument must be non–nullable (as
detected by the compiler).

fn:min MIN({0})

fn:max MAX({0})

Table 10-6 default-syntax-for-empty-input = strict

XQuery function Default SQL syntax Pushdown requirements

* Functions for which the default SQL syntax depends on the default-syntax-for-empty-input
setting.

Defaul t SQL Syntax fo r Funct ions

Administration Guide 10-43

fn:avg AVG({0})

fn-bea:sql-like($str, $pattern) {0} LIKE {1} Arguments are not of type CLOB or
LONG VARCHAR.

fn-bea:sql-like($str, $pattern,
$escape)

{0} LIKE {1} ESCAPE {2} Arguments are not of type CLOB or
LONG VARCHAR.

fn-bea:left LEFT({0}, {1}) First argument is not of type CLOB or
LONG VARCHAR.

fn-bea:right RIGHT({0}, {1}) First argument is not of type CLOB or
LONG VARCHAR.

fn-bea:trim LTRIM(RTRIM({0})) Argument is not of type CLOB or LONG
VARCHAR.

fn-bea:trim-left LTRIM({0}) Argument is not of type CLOB or LONG
VARCHAR.

fn-bea:trim-right RTRIM({0}) Argument is not of type CLOB or LONG
VARCHAR.

fn-bea:repeat REPEAT({0}) Argument is not of type CLOB or LONG
VARCHAR.

Table 10-6 default-syntax-for-empty-input = strict

XQuery function Default SQL syntax Pushdown requirements

* Functions for which the default SQL syntax depends on the default-syntax-for-empty-input
setting.

Table 10-7 default-syntax-for-empty-input = lax

XQuery function Default SQL syntax Pushdown requirements

op:numeric-add {0} + {1}

op:numeric-multiply {0} * {1}

* Functions for which the default SQL syntax depends on the default-syntax-for-empty-input
setting.

Ex tending Database Suppor t

10-44 Administration Guide

op:numeric-divide {0} / {1}

op:numeric-mod MOD({0}, {1})

fn:abs ABS({0})

fn:ceiling CEILING({0})

fn:floor FLOOR({0})

fn:round FLOOR({0} + 0.5)

fn-bea:sql-round ROUND({0})

* fn:concat {0} || {1} || … || {n} Arguments are not of type CLOB or LONG
VARCHAR.

* fn:substring ($str, $pos) if $pos is a subtype of
xs:integer

SUBSTRING({0} FROM {1})

else

SUBSTRING({0} FROM
CAST({1}+0.5 AS
INTEGER))

First argument is not of type CLOB or
LONG VARCHAR.

* fn:substring($str, $pos,
$len)

if $pos and $len are subtypes of
xs:integer

SUBSTRING({0} FROM {1}
FOR {2})

else

SUBSTRING({0} FROM
CAST({1}+0.5 AS
INTEGER) FOR
CAST({2}+0.5 AS
INTEGER))

First argument is not of type CLOB or
LONG VARCHAR.

Table 10-7 default-syntax-for-empty-input = lax

XQuery function Default SQL syntax Pushdown requirements

* Functions for which the default SQL syntax depends on the default-syntax-for-empty-input
setting.

Defaul t SQL Syntax fo r Funct ions

Administration Guide 10-45

* fn:string-length CHAR_LENGTH({0}) Argument is not of type CLOB or LONG
VARCHAR.

* fn:lower-case LOWER({0}) Argument is not of type CLOB or LONG
VARCHAR.

* fn:upper-case UPPER({0}) Argument is not of type CLOB or LONG
VARCHAR.

fn:contains,

fn:starts-with,

fn:ends-with

LIKE with ESCAPE clause
and ‘|’ as escape character

The first argument is not of type CLOB or
LONG VARCHAR.

The second argument is SQL constant or
parameter.

fn:year-from-dateTime,

fn:year-from-date

EXTRACT(YEAR FROM
{0})

fn:month-from-dateTime

fn:month-from-date

EXTRACT(MONTH FROM
{0})

fn:day-from-dateTime

fn:day-from-date

EXTRACT(DAY FROM {0})

fn:hours-from-dateTime,

fn:hours-from-time

EXTRACT(HOUR FROM
{0})

fn:minutes-from-dateTime,

fn:minutes-from-time

EXTRACT(MINUTE FROM
{0})

fn:seconds-from-dateTime,

fn:seconds-from-time

CAST(EXTRACT(SECOND
FROM {0}) AS DECIMAL)

op:hexBinary-equal {0} = {1}

op-bea:hexBinary-not-equal {0} != {1}

fn:empty {0} IS NULL

Table 10-7 default-syntax-for-empty-input = lax

XQuery function Default SQL syntax Pushdown requirements

* Functions for which the default SQL syntax depends on the default-syntax-for-empty-input
setting.

Ex tending Database Suppor t

10-46 Administration Guide

fn:exists {0} IS NOT NULL

(or as EXISTS if subqueries in
the WHERE clause are
supported)

fn:count COUNT (with COUNT
distinct support)

* fn:sum SUM({0})

fn:min MIN({0})

fn:max MAX({0})

fn:avg AVG({0})

fn-bea:sql-like($str, $pattern) {0} LIKE {1} Arguments are not of type CLOB or LONG
VARCHAR.

fn-bea:sql-like($str, $pattern,
$escape)

{0} LIKE {1} ESCAPE {2} Arguments are not of type CLOB or LONG
VARCHAR.

fn-bea:left LEFT({0}, {1}) First argument is not of type CLOB or
LONG VARCHAR.

fn-bea:right RIGHT({0}, {1}) First argument is not of type CLOB or
LONG VARCHAR.

fn-bea:trim LTRIM(RTRIM({0})) Argument is not of type CLOB or LONG
VARCHAR.

fn-bea:trim-left LTRIM({0}) Argument is not of type CLOB or LONG
VARCHAR.

fn-bea:trim-right RTRIM({0}) Argument is not of type CLOB or LONG
VARCHAR.

fn-bea:repeat REPEAT({0}) Argument is not of type CLOB or LONG
VARCHAR.

Table 10-7 default-syntax-for-empty-input = lax

XQuery function Default SQL syntax Pushdown requirements

* Functions for which the default SQL syntax depends on the default-syntax-for-empty-input
setting.

Trans la t ing Bu i l t - In XQuery Operato rs In to SQL

Administration Guide 10-47

Translating Built-In XQuery Operators Into SQL
The XQuery Functions and Operators specification defines built-in operators into which
arithmetic and comparison operations are translated. For some operations ALDSP defines
additional operators that it uses for evaluation. These additional operators can also be used for
specifying XQuery to SQL translation.

Tip: For references to the XQuery specifications, see Supported XQuery Specifications in the
XQuery and XQSE Developer’s Guide.

For each of the following arithmetic operations, ALDSP defines more specific operations for the
following types: integer, decimal, double, float. These specific operations can be used to specify
a better type match when defining a SQL generation rule.

Tip: The function operation prefixes used in the expanded operations (such as op-bea) are
discussed in “Standard and ALDSP Namespaces for Functions and Types” on
page 10-49.

op:numeric-add

op:numeric-subtract

op:numeric-multiply

op:numeric-divide

op:numeric-integer-divide

op:numeric-mod

For example, the following four operations are defined for op:numeric-add:

op-bea:integer-add

op-bea:decimal-add

op-bea:float-add

op-bea:double-add

Comparison operations in the XQuery are defined by three operators:

op:<type>-equals

Ex tending Database Suppor t

10-48 Administration Guide

op:<type>-less-than

op:<type>-greater-than

ALDSP adds three more operations for each type:

op-bea:<type>-not-equals

op-bea:<type>-less-than-or-equals

op-bea:<type>-greater-than-or-equals

For numeric types, each operator op-bea:numeric-<comparison_op> is further expanded into
four numeric types:

op-bea:integer-<comparison_op>, op-bea:decimal-<comparison_op>,
op-bea:double-<comparison_op>, op-bea:float-<comparison_op>.

Additional numeric comparisons added by ALDSP follow the same pattern. For example

op-bea:numeric-not-equals is expanded into:

op-bea:integer-not-equals

op-bea:decimal-not-equals

op-bea:double-not-equals

op-bea:float-not-equals

All six string comparison operators are defined as ALDSP specific operators:

op-bea:string-equals

op-bea:string-less-than

op-bea:string-greater-than

op-bea:string-not-equals

op-bea:string-less-than-or-equals

op-bea:string-greater-than-or-equals

Standard and ALDSP Namespaces fo r Funct i ons and Types

Administration Guide 10-49

Standard and ALDSP Namespaces for Functions and
Types

Table 10-8 lists the standard and ALDSP namespaces for functions and types. Table 10-9 lists
and describes each of the type namespaces.

Function and Type Name Resolution Process
The Relational Wrapper Extension Framework looks up functions, operators, and types by name
as follows:

1. Attempt a lookup using the specified QName. If the object is found, return it.

Table 10-8 Function and operators namespaces

Prefix Namespace Description

fn http://www.w3.org/2004/07/xpath-functions Standard XQuery functions

op http://www.w3.org/2004/07/xpath-operators Standard XQuery operators

fn-bea http://www.bea.com/xquery/xquery-functions ALDSP extension functions

op-bea http://www.bea.com/xquery/xquery-operators ALDSP extension operators

Table 10-9 Type namespaces

Prefix Namespace Description

xs http://www.w3.org/2001/XMLSchema XML Schema types

xdt http://www.w3.org/2004/07/xpath-datatypes Additional XQuery types

dt-bea http://www.bea.com/xquery/xquery-datatypes Additional ALDSP types. Currently
only one: dt-bea:numeric (common
numeric type)

Ex tending Database Suppor t

10-50 Administration Guide

2. If the namespace is empty or the prefix is not specified, loop through all commonly used
namespaces for this object kind (see “Standard and ALDSP Namespaces for Functions and
Types” on page 10-49) and try to find the object in each of these namespaces.

For example, suppose the following function definition exists:

<function name=”round”>ROUND({0})</function>

First, that name is resolved to a QName in the default element namespace and looked up. Suppose
then that the XQuery function with this name is not found (for example, if there was no default
namespace used in the XML document). Then the system will try start searching for the following
functions (in this order): fn:round, op:round, fn-bea:round, op-bea:round. The system will find
fn:round and register it with the specified SQL syntax.

A similar lookup process is applied for types when reading cast operation definitions. For types,
the system automatically searches in xs, xdt and dt-bea namespaces.

Note that the arity attribute is also optional and only required to disambiguate between
functions with the same name, for example, a substring with 2 and 3 arguments.

Abstract SQL Providers
ALDSP provides a group of three abstract base classes that provide functionality to the
Configurable Relational Provider. The AbstractSQLProvider class is the default parent class of
the Configurable Relational Provider. You can specify an abstract provider class in the
Configurable Relational Provider’s deployment descriptor with the parent element. See “Using
the Configurable Relational Provider” on page 10-13.

This section discusses the abstract relational provider classes, and contains these sections:

AbstractSQLProvider

AbstractSQL89Provider

AbstractSQL92Provider

AbstractSQLProvider
AbstractSQLProvider is an abstract base class. All other abstract and concrete relational provider
classes extend this class. This class is used as a parent provider when the parent is not specified
in the deployment descriptor of a provider; therefore, this class is not explicitly registered in the
provider registry.

Table 10-10 summarizes the level of SQL support provided by AbstractSQLProvider:

Abst rac t SQL P rov ide rs

Administration Guide 10-51

Table 10-11 lists the supported functions and operators for AbstractSQLProvider.

Table 10-10 AbstractSQLProvider Features

Feature Status

Standard JDBC datatypes Supported

Trivial select-project queries (for example: select ... from ...
where)

Supported

Joins, group by, and order by Not supported

Catalogs and schemas when addressing tables Not supported

Catalog, schema, and table quotes Set to “empty string”

Catalog and schema separator Set to ‘.’ (although
separators are not used for
queries generated by this
provider)

Runtime properties All set to false.

Table 10-11 Supported Functions and Operators for AbstractSQLProvider

XQuery function SQL Syntax Pushdown Requirements /
Comments

and, or, fn:not AND, OR, NOT None.

op:numeric-equal

op:numeric-less-than

op:numeric-greater-than

op-bea:numeric-less-than-or-equal

op-bea:numeric-greater-than-or-equal

op-bea:numeric-not-equal

=, <, >, <=, >=, !=

Ex tending Database Suppor t

10-52 Administration Guide

op-bea:string-equal

op-bea:string-less-than

op-bea:string-greater-than

op-bea:string-less-than-or-equal

op-bea:string-greater-then-or-equal

op-bea:string-not-equal

=, <, >, <=, >=, != Both arguments are not CLOB or
LONG VARCHAR

op:dateTime-equal

op:dateTime-less-than

op:dateTime-greater-than

op-bea:dateTime-less-than-or-equal

op-bea:dateTime-greater-than-or-equal

op-bea:dateTime-not-equal

=, <, >, <=, >=, != None.

op:date-equal

op:date-less-than

op:date-greater-than

op-bea:date-less-than-or-equal

op-bea:date-greater-than-or-equal

op-bea:date-not-equal

=, <, >, <=, >=, != None.

op:time-equal

op:time-less-than

op:time-greater-than

op-bea:time-less-than-or-equal

op-bea:time-greater-than-or-equal

op-bea:time-not-equal

=, <, >, <=, >=, != None.

op:hexBinary-equal

op-bea:hexBinary-not-equal

=, != Only if both arguments are
BINARY or VARBINARY.

Table 10-11 Supported Functions and Operators for AbstractSQLProvider (Continued)

XQuery function SQL Syntax Pushdown Requirements /
Comments

Abst rac t SQL P rov ide rs

Administration Guide 10-53

AbstractSQL89Provider
AbstractSQL89Provider extends AbstractSQLProvider (see “AbstractSQLProvider” on
page 10-50). This class adds support for additional clauses, functions, and updates. The
AbstractSQL89Provider class includes these features:

Supports SQL89-style inner joins (for example, select … from A,B where A.<x> =
B.<x>).

Supports order by column (null order is assumed to be ‘low’).

Supports group by column (and aggregate functions).

Schemas are used for table addressing (using dot as a separator).

Supports subqueries in where clause.

Table 10-12 lists the supported functions and operators for AbstractSQL89Provider. These
functions and operators are in addition to the ones provided by the parent class,
AbstractSQLProvider.

Table 10-12 Supported Functions and Operators for AbstractSQL89Provider

XQuery function SQL Syntax Pushdown Requirements / Comments

op:numeric-add

op:numeric-subtract

op:numeric-multiply

op:numeric-divide (except
op-bea:integer-divide)

+, -, *, / None.

fn:exists {0} IS NOT NULL

(EXISTS in the WHERE
clause is not supported)

None.

fn:empty {0} IS NULL None.

fn:count COUNT (with COUNT
DISTINCT support)

None.

Ex tending Database Suppor t

10-54 Administration Guide

AbstractSQL92Provider
AbstractSQL92Provider extends AbstractSQL89Provider (see “AbstractSQL89Provider” on
page 10-53). This class adds support for SQL92-style joins (inner and outer), subqueries, and
other features. The AbstractSQL92Provider class supports:

Inner and outer-joins

Subqueries in from clause

Order by and group by expression

Case expressions

Updates (update/identity-fetch – JDBC kind)

fn:sum SUM({0}) Note that this function does not match
XQuery semantics. For empty (NULL)
input, the function returns empty
(NULL) instead of 0.

XQuery specifies that SUM(())=0; where
() is an empty sequence. This provider
translates the function to SQL as
SUM(...). However, in SQL,
SUM(NULL)=NULL, which is
equivalent to () in XQuery.

fn:min MIN({0}) None.

fn:max MAX({0}) None.

fn:avg AVG({0}) None.

fn-bea:sql-like($str, $pattern) {0} LIKE {1} First argument is not CLOB or LONG
VARCHAR.

Second (and third) arguments are a SQL
constant or parameter.

fn-bea:sql-like($str, $pattern,
$escape)

{0} LIKE {1} ESCAPE
{2}

None.

Table 10-12 Supported Functions and Operators for AbstractSQL89Provider (Continued)

XQuery function SQL Syntax Pushdown Requirements / Comments

Abst rac t SQL P rov ide rs

Administration Guide 10-55

Table 10-13 lists the supported functions and operators for AbstractSQL92Provider. These
functions and operators are in addition to the ones provided by the parent class,
AbtractSQL89Provider.

Table 10-13 Supported Functions and Operators for AbstractSQL92Provider

XQuery function SQL Syntax Pushdown Requirements /
Comments

fn:concat COALESCE({0} || {1} || … ||
{n}, ‘’)

COALESCE is not used if at
compile-time it is determined
that input can never be empty
(NULL).

Arguments are not of type CLOB
or LONG VARCHAR.

fn:upper-case COALESCE(UPPER({0},’’)

COALESCE is not used if at
compile-time it is determined
that input can never be empty
(NULL).

Argument is not of type CLOB or
LONG VARCHAR.

fn:lower-case COALESCE(LOWER({0},’’)

COALESCE is not used if at
compile-time it is determined
that input can never be empty
(NULL).

Argument is not of type CLOB or
LONG VARCHAR.

fn:substring ($str, $pos) if $pos is a subtype of xs:integer

COALESCE(SUBSTRING({0}
FROM {1}), ‘’)

else

COALESCE(SUBSTRING({0}
FROM CAST({1}+0.5 AS
INTEGER)), ‘’)

COALESCE is not used if at
compile-time it is determined
that input can never be empty
(NULL).

First argument is not of type
CLOB or LONG VARCHAR.

Ex tending Database Suppor t

10-56 Administration Guide

fn:substring($str, $pos, $len) if $pos and $len are subtypes of
xs:integer

COALESCE(SUBSTRING({0}
FROM {1} FOR {2}), ‘’)

else

COALESCE(SUBSTRING({0}
FROM CAST({1}+0.5 AS
INTEGER) FOR CAST({2}+0.5
AS INTEGER)), ‘’)

COALESCE is not used if at
compile-time it is determined
that input can never be empty
(NULL).

First argument is not of type
CLOB or LONG VARCHAR.

fn:string-length COALESCE(CHAR_LENGTH(
{0}), 0)

COALESCE is not used if at
compile-time it is determined
that input can never be empty
(NULL).

Argument is not of type CLOB or
LONG VARCHAR.

fn:contains,

fn:starts-with,

fn:ends-with

LIKE with ESCAPE clause and
‘|’ as escape character

The first argument is not of type
CLOB or LONG VARCHAR.

The second argument is SQL
constant or parameter.

fn:year-from-dateTime,

fn:year-from-date

EXTRACT(YEAR FROM {0})

fn:month-from-dateTime

fn:month-from-date

EXTRACT(MONTH FROM
{0})

fn:day-from-dateTime

fn:day-from-date

EXTRACT(DAY FROM {0})

fn:hours-from-dateTime,

fn:hours-from-time

EXTRACT(HOUR FROM {0})

Table 10-13 Supported Functions and Operators for AbstractSQL92Provider (Continued)

XQuery function SQL Syntax Pushdown Requirements /
Comments

Abst rac t SQL P rov ide rs

Administration Guide 10-57

Table 10-14 lists the cast operations that are pushed down by AbstractSQL92Provider.

fn:minutes-from-dateTime,

fn:minutes-from-time

EXTRACT(MINUTE FROM
{0})

fn:seconds-from-dateTime,

fn:seconds-from-time

CAST(EXTRACT(SECOND
FROM {0}) AS DECIMAL)

fn:sum COALESCE(SUM({0}), 0)

COALESCE is not used if at
compile-time it is determined
that input can never be empty
(NULL).

SUM(DISTINCT …) is
supported

fn:min MIN(DISTINCT …) supported

fn:max MAX(DISTINCT …) supported

fn:avg AVG(DISTINCT …) supported

fn-bea:left SUBSTRING({0} FROM 1 FOR
{1})

Argument is not of type CLOB or
LONG VARCHAR.

fn-bea:trim TRIM (BOTH ‘ ‘ FROM {0}) Argument is not of type CLOB or
LONG VARCHAR.

fn-bea:trim-left TRIM(LEADING ‘ ‘ FROM
{0})

Argument is not of type CLOB or
LONG VARCHAR.

fn-bea:trim-right TRIM(TRAILING‘ ‘ FROM
{0})

Argument is not of type CLOB or
LONG VARCHAR.

fn-bea:date-from-dateTime CAST({0} AS DATE)

Table 10-13 Supported Functions and Operators for AbstractSQL92Provider (Continued)

XQuery function SQL Syntax Pushdown Requirements /
Comments

Ex tending Database Suppor t

10-58 Administration Guide

Table 10-14 Supported Cast Operations for AbstractSQL92Provider

Source Type Target Type SQL Syntax Comments

subtypes of xs:int xs:string CAST({0} AS
VARCHAR(11))

xs:string xs:double CAST({0} AS DOUBLE
PRECISION)

Argument is not of type
CLOB or LONG
VARCHAR.

subtypes of numeric xs:double

xs:string xs:float CAST({0} AS REAL) Argument is not of type
CLOB or LONG
VARCHAR.

subtypes of numeric xs:float

xs:string xs:int CAST({0} AS INT) Argument is not of type
CLOB or LONG
VARCHAR.

subtypes of numeric xs:int

xs:string xs:short CAST({0} AS
SMALLINT)

Argument is not of type
CLOB or LONG
VARCHAR.

subtypes of numeric xs:short

xs:dateTime xs:date CAST({0} AS DATE)

	Overview of ALDSP Administration
	Administering ALDSP
	Securing Data
	Caching Query Results
	Viewing Metadata

	Understanding ALDSP-Enabled WLS Domains
	Understanding the Relationship between ALDSP and WebLogic Domains
	Creating a New Domain
	Provisioning an Existing Domain for ALDSP

	Understanding Console Users

	Introducing the ALDSP Administration Console
	ALDSP Administration Console Components

	Server Classpath Settings

	Getting Started with ALDSP Administration
	Updating the ALDSP License
	Starting and Stopping WebLogic Server
	Starting the Server
	Stopping the Server

	Launching ALDSP Administration Console
	Exploring ALDSP Administration Console
	Using the Navigation Pane
	Change Center and Configuration Locking
	Navigation Tree and Category List

	Using the Workspace Content Area

	Deploying Dataspaces
	Introduction
	Creating a New Dataspace
	Deleting a Dataspace
	Deploying Dataspaces on a Target Server
	Deploying a Dataspace
	Deploying a Web Service Map on a Cluster

	Importing Dataspace Artifacts
	Exporting Dataspace Artifacts

	Configuring ALDSP Resources
	Configuring the Cache and Log for a Dataspace
	Using the Physical Sources Category
	Viewing Physical Data Source Locations
	Modifying Data Source End Points
	Substituting SQL Statements
	How SQL Statement Substitution Works
	Requirements for SQL Statement Substitution
	Creating Substitute SQL Query Statements
	SQL Statement Substitution Example

	Setting the Server Thread Count
	Item-based Memory Management
	Using Administrative Properties
	Monitoring Active Queries and Updates
	Setting the Transaction Isolation Level

	Securing ALDSP Resources
	Introduction to ALDSP Security
	Understanding Runtime Security Policies
	Definition of a Securable Resource
	Allowing Anonymous Access

	Creating and Applying Runtime Security Policies
	Configuring Dataspace-Level Security
	Working with XQuery Functions for Security
	Creating an XQuery Function for Security
	Applying an XQuery Function for Security

	Understanding and Using Service Accounts
	Creating a Service Account

	Exporting Access Control Resources

	Configuring Data Service and Operation-Level Security
	Creating Data Service Runtime Security Policies
	Creating and Configuring Security Policies for Operations
	Configuring Data Elements-level Security
	Securing Native Web Services
	Creating Security Policies for User-Defined Security Resources

	Working with Administrative Access Control Policies
	Assigning Entitlements
	Gaining Administrative Access After a System Lockout

	Taking Lock and Edit Capability

	Viewing Native Web Services
	Viewing Native Web Service Artifacts
	Using the General Tab
	Test the Generated Web Service
	View the WSDL
	Export the Static JAR File

	Using the Operations Tab
	Using the Data Lineage Tab

	Generating a Web Services Mediator Client JAR File
	Generating a Mediator Client JAR File

	Viewing Metadata Using the Service Explorer
	Introducing Service Explorer
	Using the Service Explorer
	Web Browser Requirements for Data Lineage Graph
	Analyzing and Viewing Data Services Metadata
	Viewing Data Service Functions Metadata
	Cyclic Dependency

	Viewing Web Service Metadata

	Searching Metadata
	Search Guidelines
	Performing a Basic Metadata Search
	Performing an Advanced Metadata Search
	Generating Reports

	Configuring Query Results Cache
	Understanding Results Caching
	Caching API

	Setting Up Caching
	Step 1: (Optional) Run the SQL Script to Create the Cache Tables
	Modifying the Cache Table Structure

	Step 2: Create the JDBC Data Source for the Cache Database
	Step 3: Specify the Cache Data Source and Table
	Step 4: Enabling Caching by Function
	Caching Identity Keys for Security

	Monitoring and Purging Data Cache
	Purging Data Cache
	Purging the Cache for a Dataspace
	Purging the Cache for a Function

	Working With Audit and Log Information
	Auditing
	Setting Global Audit Properties
	Auditing Severity Levels

	Setting Individual Auditing Properties
	Admin Audit Properties
	Common Audit Properties
	Query Audit Properties
	Update Audit Properties

	Function-level Auditing
	Retrieving Audit Information
	WebLogic Server Security Framework
	ALDSP Client API
	ALDSP Performance Profiling

	Monitoring the Server Log
	Monitoring a WebLogic Domain
	Using Other Monitoring Tools

	Extending Database Support
	Introduction
	General Use Cases
	Overview of the Extension Framework Architecture
	Relational Providers Included With ALDSP
	Supported Features
	Importing Relational Source Metadata
	Related Reading

	Sample Configurable Relational Provider File
	Using the Configurable Relational Provider
	Summary of Basic Configuration Steps
	Deploying the Relational Provider

	Configurable Relational Provider Format Description and Reference
	Overview of Primary XML Elements
	Overview of the <custom-rdb-provider> Element
	Configurable Relational Provider Reference

	Database Matching
	Rules for Database Matching
	JDBC Metadata Methods to XQuery Functions Mapping
	Additional External XQuery Functions

	Specifying SQL Syntax for Functions
	Syntax Overview
	Setting the infix Attribute
	Using a Variable Length Placeholder

	Default SQL Syntax for Functions
	Translating Built-In XQuery Operators Into SQL
	Standard and ALDSP Namespaces for Functions and Types
	Function and Type Name Resolution Process
	Abstract SQL Providers
	AbstractSQLProvider
	AbstractSQL89Provider
	AbstractSQL92Provider

