
Space Details
Key: datasrvc

Name: Data Services Developer's Guide

Description:

Creator (Creation Date): tkatz (Aug 31, 2007)

Last Modifier (Mod. Date): tkatz (Dec 29, 2007)

Available Pages

• Contents
• Building XQueries

• Add a Where Clause to a Query
• Understanding Data Service Annotations

• Creating and Updating Physical Data Services
• Accessing a Relational Data Source
• Accessing a Web Service
• Adding Operations to an Existing Data Service
• Creating Data Source Metadata
• Database-specific Catalog and Schema Considerations
• Filtering SQL Objects Using Search
• How To Create a Physical Data Service from a Delimited File
• How to Create a Physical Data Service from a Web Service

• Add an External Function to an Existing Physical Data Service
• How To Create a Physical Data Service from an XML File
• How To Create Physical Data Services Based on Database Functions
• How To Create Physical Data Services Based on SQL Statements
• How To Create Physical Data Services from Relational Tables and Views
• How To Create Physical Data Services from Stored Procedures
• How To Create SOAP Handlers for Imported WSDLs
• Selecting SQL Table and View Objects for Import
• Selecting Stored Procedure Objects for Import
• Selecting Web Service Operations to Import
• Setting Characteristics of Imported Web Service Operations
• Setting Properties for New Data Service Operations
• Setting Properties for New Library Functions
• Setting the Data Service Name
• Setting Up the Import Wizard for Relational Objects
• Setting Up the Import Wizard for Tables and Views
• Setting Up the Physical Data Service Creation Wizard
• Stored Procedure Configuration Reference
• Support for Stored Procedures in Popular Databases
• Terms Commonly Used When Discussing Stored Procedures

Document generated by Confluence on Jan 10, 2008 16:26 Page 1

• Update physical data service metadata
• Verifying Data Service Composition
• XML Name Conversion Considerations

• Data Service Annotations
• Data Service Annotations Schema

• Designing Logical Data Services
• Add a Complex Child Element to a Return Type
• Add a Library Function or Procedure
• Add a Read Function
• Building Logical Entity Data Services
• Check Namespaces in Return Types
• Configure Security for Web Services Applications
• Create a Data Service with a Flat Return Type
• Create a Logical Data Service with a Group By Clause
• Create a Return Type
• Create Conditional Elements in Return Types
• Create Logical Data Service Keys
• Data Service Keys
• Declare a Security Resource
• Entity Data Service Right-click Menu Options
• XML Types and Return Types
• XQuery Source of a Logical Entity Service

• Developing and Managing Dataspace Projects
• ALDSP Functions and Procedures
• Create, Build, Clean, and Delete Dataspace Projects
• Data Service File Validation During Deployment
• Dataspace Projects Cheatsheet
• Deploy, Publish, Configure, and Remove Dataspace Projects
• Export Dataspace Project Artifacts
• Export Dataspace Projects or Project Folders
• Handle Error Conditions in a Dataspace Project
• Import a Dataspace Project
• Validate, Build, Export, and Package Dataspace Projects from the

Command Line
• XQuery Functions

• index

• About this Guide
• Introduction to Data Services

• ALDSP - Roles and Responsibilities
• ALDSP Start Menu
• Configure the Retail Dataspace Sample Application
• Create Your First Data Services
• Data in the 21st Century
• Data Service Types and Functions

Document generated by Confluence on Jan 10, 2008 16:26 Page 2

• Getting the Most from the ALDSP Eclipse Framework
• Typical Data Service Development Process

• Managing Update Maps
• Add a Condition
• Add Update Map Procedures
• Cast Using a Built-In XQuery Function
• Cast Using a Custom XQuery Function
• Change a Mapping
• Handle Disabled Procedures in Underlying Data Sources
• Handle Non-Unique Joins
• Handle Non-Unique Values
• Handle Unmapped Required Values
• Recognize When Something is Wrong
• Remove a Mapping
• Revert Customizations
• Test an Update Map Cast
• The XQuery Expression Editor
• Understand Mappings with Different Data Types
• Understanding Update Maps

• Modeling Data Services Relationships
• Create Your First Data Services Model
• Generate a Relationship Modeler Report
• Model Diagram Rules
• Notable Relationship Modeler Properties
• Relationship Between Data Services and Models
• Relationship Modeler Options
• Relationship Models in Source View
• Work with Large Models

• Preparing Services for Clients
• Generate a Mediator Client JAR File
• Generate a Web Service Map from a Data Service
• Generate a Web Services Mediator Client JAR File
• Web Services Map File Reference

• Testing Data Services
• Brief Overview of Service Data Objects
• Enable Optimistic Locking
• Test a Create or Delete Procedure
• Test a Read Function and Simple Update
• Test an Update Procedure

• Understanding Query Plans
• Query Plan Overview

• Working with XQueries in Source View
• Use the Source Editor
• XQuery Language Version Support

Document generated by Confluence on Jan 10, 2008 16:26 Page 3

Contents

This page last changed on Jan 08, 2008 by tkatz.

Sections

• Introduction to Data Services
• Developing and Managing Dataspace Projects
• Creating and Updating Physical Data Services
• Designing Logical Data Services
• Modeling Data Services Relationships
• Building XQueries
• Testing Data Services
• Understanding Query Plans
• Managing Update Maps
• Preparing Services for Clients
• Data Service Annotations

Home

Sections and Topics

Introduction to Data Services

Concepts
Introduction - Data in the 21st Century
Typical Data Service Development Process
Getting the Most from the ALDSP Eclipse Framework
ALDSP - Roles and Responsibilities

How-to...
... Configure the Retail Dataspace Sample Application

Example
Creating Your First Data Services

Reference
ALDSP Start Menu
Data Service Types and Functions

Related Topics
Create a Data Service with a Flat Return Type

Developing and Managing Dataspace Projects

Document generated by Confluence on Jan 10, 2008 16:26 Page 4

http:/
http:/

Concepts
Data Service File Validation During Deployment

Reference
Dataspace Projects Cheatsheet

How-to...
... Create, Build, Clean, and Delete Dataspace Projects
... Deploy, Publish, Configure, and Remove Dataspace Projects
... Export Dataspace Projects or Project Folders
... Export Dataspace Project Artifacts
... Import a Dataspace Project
... Handle Error Conditions in a Dataspace Project
... Validate, Build, Export, and Package Dataspace Projects from the Command Line

Related Topics
How-to...
... Create Your First Data Services

Creating and Updating Physical Data Services

Concepts
Creating Data Source Metadata

How To Create Physical Data Services...
... from relational tables and views
... from stored procedures
... based on SQL statements
... based on database functions
... from web services
... from XML files
... from delimited files

How-to...
... Enable Optimistic Locking of Relational Objects
... Update Physical Data Service Metadata

Reference
Stored Procedure Configuration

Related Topics
How-to...
... Enable Optimistic Locking
... Add an External Function to an Existing Physical Data Service

Designing Logical Data Services

Document generated by Confluence on Jan 10, 2008 16:26 Page 5

http:/
http:/

Concepts
Building Logical Entity Data Services
Data Service Keys
XML Types and Return Types

How-to...
... Add a Read Function
... Add a Library Function or Procedure
... Create Logical Data Service Keys
... Declare a Security Resource in Data Services Studio

Example
Create a Logical Data Service with a Group By Clause
Create a Data Service with a Flat Return Type

Reference
XQuery Source of a Logical Entity Service

Related Topics
How to...
... Create Your First Data Services
... Create a Return Type
... Add a Complex Child Element to a Return Type
... Check Namespaces in Return Types
... Create Conditional Elements in Return Types
... Test a Read Function and Simple Update
... Test a Create or Delete Procedure

Concepts
Data Service Types and Functions

Modeling Data Services Relationships

Concepts
Relationship Between Data Services and Models

How-to...
... Create Your First Data Services Model
... Work with Large Models
... Generate a Relationship Modeler Report

Reference
Relationship Modeler Options
Model Diagram Rules
Notable Relationship Modeler Properties
Relationship Models in Source View

Building XQueries

Document generated by Confluence on Jan 10, 2008 16:26 Page 6

http:/
http:/

How-to...
... Create a Return Type
... Add a Complex Child Element to a Return Type
... Check Namespaces in Return Types
... Create Conditional Elements in Return Types
... Add a Where Clause to a Query
... Use the Source Editor

Reference
XQuery Language Version Support
Built-in XQuery Functions

Related Topics
How-to...
... Create Your First Data Services
... Test a Read Function and Simple Update
... Test a Create or Delete Procedure
... How To Develop Good XQSEs

Concepts...
Understanding Data Service Annotations

Reference...
XQuery Scripting Extensions

Testing Data Services

Concepts
Test Update Procedures Using SDO Data Graphs

How-to...
... Test an Update Procedure

Related Topics
How-to...
... Test a Create or Delete Procedure
... Test a Read Function and Simple Update
... Test an Update Map Cast
... Enable Optimistic Locking of Relational Objects

Understanding Query Plans

Concepts
Understanding Query Plans

Managing Update Maps

Document generated by Confluence on Jan 10, 2008 16:26 Page 7

http://edocs.bea.com/aldsp/docs30/dsp30wiki/How%20To%20Develop%20Good%20XQSEs
http://edocs.bea.com/aldsp/docs30/xquery/xqse.html
http:/
http:/
http:/

Concepts
Understanding Update Maps
... The target box
... For each blocks
... Update blocks
... The return key block
... Customization

Customizing Update Maps
How-to...
... Change a Mapping
... Remove a Mapping
... Revert Customizations
... Edit XQuery Expressions
... Add a Condition to an Update Block
... Add Update Map Procedures

Handling Errors and Warnings
How-to...
... Recognize When Something is Wrong
... Understand Mappings with Different Data Types
... Cast Using a Built-In XQuery Function
... Cast Using a Custom XQuery Function
... Test an Update Map Cast
... Handle Disabled Procedures in Underlying Data Sources
... Handle Non-Unique Joins
... Handle Non-Unique Values
... Handle Unmapped Required Values

Testing Update Maps
How-to...
... Enable Optimistic Locking
... Test a Read Function and Simple Update
... Test an Update Procedure

Preparing Services for Clients

How-to...
... Generate a Mediator Client JAR File
... Generate a Web Services Mediator Client JAR File
... Generate a Web Service Map from a Data Service
... Configure Security for Web Services Applications

Reference
Web Services Map File Reference

Data Service Annotations

Document generated by Confluence on Jan 10, 2008 16:26 Page 8

http:/
http:/

Concepts
Understanding Data Service Annotations

Reference
Data Service Annotations Schema

Home

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 9

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Building XQueries

This page last changed on Jan 03, 2008 by tkatz.

Building XQueries

How-to...
... Create a Return Type
... Add a Complex Child Element to a Return Type
... Check Namespaces in Return Types
... Create Conditional Elements in Return Types
... Add a Where Clause to a Query
... Use the Source Editor

Reference
XQuery Language Version Support
Built-in XQuery Functions

Related Topics
How-to...
... Create Your First Data Services
... Test a Read Function and Simple Update
... Test a Create or Delete Procedure
... How To Develop Good XQSEs

Concepts...
Understanding Data Service Annotations

Reference...
XQuery Scripting Extensions

Document generated by Confluence on Jan 10, 2008 16:26 Page 10

http:/
http://edocs.bea.com/aldsp/docs30/dsp30wiki/How%20To%20Develop%20Good%20XQSEs
http://edocs.bea.com/aldsp/docs30/xquery/xqse.html

Add a Where Clause to a Query

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Add a Where Clause to a Query

This topic describes several ways of adding XQuery where clauses to queries to join relational data
sources.

• Define the Condition
• Join Tables with a Where Clause
• Use an XQuery Function in a Where Clause
• See Also

Define the Condition

A where clause in XQuery specifies criteria defining some return data. This is a simple XQuery where
clause:

where $CUSTOMER/CUSTOMER_ID = "1111"

A where clause is usually part of an XQuery FLWOR (for-let-where-order by-return) expression. The
where clause can be any XQuery expression, including another FLWOR expression. A common use of a
where clause is to join two relational data sources, for example:

for $CUSTOMER_ORDER in cus1:CUSTOMER_ORDER()
where $CUSTOMER/CUSTOMER_ID eq $CUSTOMER_ORDER/C_ID
return
... xml elements here ...

The where clause here specifies a condition that defines a subset of results to return. The SQL statement
ALDSP generates from this XQuery expression creates a left outer join between two tables:

SELECT t1."CUSTOMER_ID" AS c1, t1."FIRST_NAME" AS c2, t1."LAST_NAME" AS c3, t1."SSN" AS c4,
t2."C_ID" AS c5, t2."ORDER_ID" AS c6, t2."STATUS" AS c7, t2."TOTAL_ORDER_AMT" AS c8

FROM "RTLCUSTOMER"."CUSTOMER" t1
LEFT OUTER JOIN "RTLAPPLOMS"."CUSTOMER_ORDER" t2
ON (t1."CUSTOMER_ID" = t2."C_ID")
ORDER BY t1."CUSTOMER_ID" ASC

Before you add a where clause to a logical data service, think about how to structure it. If you want to
join two data sources, you can only do so on a key field that appears in both. In this example, the
CUSTOMER table has a primary key named CUSTOMER_ID joined to a CUSTOMER_ORDER table with a
foreign key named C_ID.

Document generated by Confluence on Jan 10, 2008 16:26 Page 11

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

Join Tables with a Where Clause

The simplest way to create a where clause between two relational data sources is to map it in Query Map
view.

To map the where clause:

1. Open a logical data service in Studio.
2. Click Query Map.
3. Drag the read functions of at least two physical data sources from Project Explorer to the Query

Map view.

4. In Query Map view, drag from a key element in the first data source to the corresponding key
element in the second.

If you click the second data source, you see the XQuery where clause in the expression editor:

Where $CUSTOMER/CUSTOMER_ID eq $CUSTOMER_ORDER/C_ID

Use an XQuery Function in a Where Clause

A where clause can also contain an XQuery function, including any built-in or BEA-defined functions
available from the Design Palette. The where clause is defined on an element within a For node.

To create a where clause with an XQuery function:

1. Click Query Map.
2. Click the For title bar of the node that contains the element.

Document generated by Confluence on Jan 10, 2008 16:26 Page 12

http://kmwiki.bea.com/download/attachments/7382/read-function-icon-2.gif
http://kmwiki.bea.com/download/attachments/7382/Ready to Join.gif
http://kmwiki.bea.com/download/attachments/7382/After Join.gif

3. Click Add Where Clause to insert the where clause.

4. Open the Design Palette (Window > Show View > Design Palette).
5. Expand XQuery Functions, then choose a function (for example: Duration, Date, and Time Functions

> fn:year-from-date).
6. Drag the function to the expression editor.
7. Delete $arg in the function, then click the element in the For node that you want to add.
8. Add an operator and a value to complete the expression.

fn:year-from-date($CUSTOMER/CUSTOMER_SINCE) < 2000

You can use any of the XQuery operators available in Design Palette > XQuery Operators.

9. Click Save .

In Source view, the where clause in the read function looks like this:

declare function tns:read() as element(tns:CUSTOMER_PROFILE)*{
for $CUSTOMER in cus1:CUSTOMER()
where fn:year-from-date($CUSTOMER/CUSTOMER_SINCE) < 2000
return
... xml elements here ...

10. Test the query in Test view, preferably on sample data, to make sure the results are what you
expect.

See Also

How Tos

• Test a Read Function and Simple Update
• Test a Create or Delete Procedure

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 13

http://kmwiki.bea.com/download/attachments/7382/Where Icon Small.gif
http://kmwiki.bea.com/download/attachments/7382/Save Icon Small.gif
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Understanding Data Service Annotations

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Understanding Data Service Annotations

This section describes the syntax and semantics of annotations in data service documents developed
within ALDSP's Data Services Studio. Data service documents define collections of XQuery functions
and/or XQSE functions or procedures. Annotations are XML fragments comprising the character content of
XQuery pragmas.

There are two types of annotations:

• Global annotations. These pertain to the entire entity or library data service document. Global
annotations are also referred to as XDS or XFL annotations respectively.

• Local annotations. These pertain to a particular function. Local annotations are also referred to as
function annotations.

Topics

• XDS Annotations
• Function Annotations
• XFL Annotations

See also:
Data Service Annotations Schema

XDS Annotations

There is a single XDS ("XQuery Data Service") annotation per entity data service document, which
appears before all function annotations. The identifier for the pragma carrying the XDS annotation is xds.
The qualified name of the top level element of the XML fragment corresponding to an XDS annotation has
the local name xds and the namespace URI:

urn:annotations.ld.bea.com

Each entity data service is associated with a unique target type. The prime type of the return type of
every read function must match its target type. The target type of an entity data service is an element
type whose qualified name is specified by the targetType attribute of the xds element. It is defined in a
schema file associated with the entity data service.

Document generated by Confluence on Jan 10, 2008 16:26 Page 14

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

The contents of the top-level xds element is a sequence of the following blocks of properties:

• General Properties
• Data Access Properties
• Target Type Properties
• Key Properties
• Relationship Properties
• Update Properties
• Security Properties

The following excerpt provides an example of an XDS annotation. In this case, the target type
t:CUSTOMER associates the entity data service with a t:CUSTOMER type in a schema file.

(::pragma xds <x:xds xmlns:x="urn:annotations.ld.bea.com" targetType="t:CUSTOMER"
xmlns:t="ld:oracleDS/CUSTOMER">

<author>Joe Public</author>
<relationalDB name="OracleDS"/>

<field type="xs:string" xpath="FIRST_NAME">
<extension nativeFractionalDigits="0" nativeSize="64"

nativeTypeCode="12" nativeType="VARCHAR2"
nativeXpath="FIRST_NAME"/>
<properties nullable="false"/>

</field>

<field type="xs:string" xpath="LAST_NAME">
<extension nativeFractionalDigits="0" nativeSize="64"

nativeTypeCode="12" nativeType="VARCHAR2"
nativeXpath="LAST_NAME"/>

<properties nullable="false"/>
</field>

<field type="xs:string" xpath="CUSTOMER_ID">
<extension nativeFractionalDigits="0" nativeSize="64"

nativeTypeCode="12" nativeType="VARCHAR2"
nativeXpath="CUSTOMER_ID"/>

<properties nullable="false" nativeKey="true"/>
</field>

<field type="xs:dateTime" xpath="CUSTOMER_SINCE">
<extension nativeFractionalDigits="0" nativeSize="7"

nativeTypeCode="93" nativeType="DATE"
nativeXpath="CUSTOMER_SINCE"/>

<properties nullable="false"/>
</field>

<field type="xs:string" xpath="EMAIL_ADDRESS">
<extension nativeFractionalDigits="0" nativeSize="32"

nativeTypeCode="12" nativeType="VARCHAR2"
nativeXpath="EMAIL_ADDRESS"/>

<properties nullable="false"/>
</field>

<key name="CUSTOMER_ID"/>

<relationshipTarget roleName="CUSTOMER_ORDER" roleNumber="2"
XDS="ld:oracleDS/CUSTOMER_ORDER.xds" minOccurs="0"
maxOccurs="unbounded" opposite="CUSTOMER"/>

</x:xds>::-)

General Properties

There are two types of general XDS properties:

Document generated by Confluence on Jan 10, 2008 16:26 Page 15

• Standard Document Properties
• User-Defined Properties

Standard Document Properties

You can specify a set of standard document properties consisting of optional XML elements containing
information pertaining to the author, creation date, or version of the document. You can also use the
optional element named "documentation" to specify related documentation. The names and types of the
elements in the standard document properties block, as well as examples of their use, are shown in the
table below.

Standard Document Properties

Element Name Element Type Optional Example Instance

author xs:string Yes
<author>J.
Public</author>

creationDate xs:date Yes
<creationDate>2004-05-31</creationDate>

version xs:decimal Yes
<version>2.2<version>

documentation xs:string Yes
<documentation>
Models an online
Customer
</documentation>

User-Defined Properties

In addition to the standard properties, you can specify custom properties pertaining to the entire data
service document using a sequence of zero (0) or more "property" elements. Each property element must
be named using its "name" attribute and may contain any string content. For example:

<property name="data-refresh-rate">week</property>

Data Access Properties

A data service may be used to model access to an external data source or to model a transformation on
top of one or more data sources or other transformations. Data services modeling external data sources
are referred to as physical. Transformation data services not representing a particular data source are
referred to as logical.

The block of data access properties allows each data service to define whether it is physical or not. When
a data service is physical, the data access annotation describes the type of the external source being

Document generated by Confluence on Jan 10, 2008 16:26 Page 16

accessed by its external functions (there may be a single external source per data service) and its
connection properties. When a data service is logical, the data service is designated as a user-defined
view, and no connection information is required.

The following types of physical data services are supported:

• Relational
• Web service
• Java function
• Delimited content
• XML content

The following sections describe the data access annotation for the physical data service types, as well as
for data services that are designated as user-defined views. You can specify only one of these
annotations in each data service. If no annotation is provided, the data service is considered a
user-defined view.

Relational Data Service Annotations

The data access annotation for a relational data service consists of the element relationalDB with two
required attributes, described in the following table:

Required Attributes for the relationalDB Element

Attribute Description

name The JNDI name by which the external relational
data source has been registered with the
application server.

providerId The identifier of the ALDSP relational provider in
use for the specified relational data source.

<relationalDB name="OracleDS" providerId="Oracle-9"/>

In addition, the relationalDB element can contain the following optional parts:

• An optional element, named "properties", that exposes relational provider-specific attributes, such
as the values of specific settings of the Relational Database Management System (RDBMS)
represented by the relational source.

• An optional attribute, named sourceBindingProviderClassName, that specifies the transformation
used to determine the relational source that should be used at system runtime in the place of the
statically defined source.

Source Binding Provider

The value of the optional sourceBindingProviderClassName attribute should be bound to the fully-qualified
name of a user-defined Java class implementing the interface:

Document generated by Confluence on Jan 10, 2008 16:26 Page 17

com.bea.ld.bindings.SourceBindingProvider

defined by the following:

package com.bea.ld.bindings;
public interface SourceBindingProvider
{

public String getBinding(String genericLocator, boolean isUpdate);
}

The user-defined implementation should provide the transformation that, given the statically configured
relational source name (parameter genericLocator) and a Boolean flag indicating whether the relational
source is accessed in query or update mode (parameter isUpdate), determines the name of the relational
source name used by the system at runtime.

You can use this transformation mechanism to perform credential mapping. In this case, a single set of
query or update operations to be performed in the name of two distinct users U1 and U2 against the
same statically-configured relational source R0, is executed against two distinct relational sources R1 and
R2 respectively (where all sources R0, R1, R2 represent the same RDBMS and the security policies
applied to the connection credentials used for R1 and R2 correspond to the security policies applied to the
application credentials of user U1 and U2, respectively).

You should set the source binding provider name uniformly across all relational data services
sharing the same relational source JNDI name. Although this restriction is not enforced, its
violation could result in unpredictable behavior at runtime.

Web Service Data Service Annotations

The data access annotation for a data service based on a Web service consists of the empty element
webService with two required attributes, described in the following table:

Required Attributes for the webService Element

Attribute Description

wsdl A valid http: or ld: URI pointing to the location of
the WSDL file containing the definition of the
external Web service source.

targetNamespace A valid URI that is identical to the
targetNamespace URI of the WSDL.

Example:

<webService targetNamespace="urn:GoogleSearch"
wsdl="ld:google/GoogleSearch.wsdl"/>

In addition, if the physical data service models an ALSB proxy service, the webService element can carry
the following optional attributes:

Document generated by Confluence on Jan 10, 2008 16:26 Page 18

Optional Attributes for the webService Element

Attribute Description

sbProxyServiceName The name of the ALSB proxy service.

sbTransportProtocol The name of the protocol used by the proxy
service. Valid values are: t3, iiop, http, t3s, iiops
or https.

Java Function Data Service Annotations

The data access annotation for a Java function data service consists of the empty element javaFunction
with a single required attribute named class, whose value should be set to the fully qualified name of the
Java class serving as the external source.

Example:

<javaFunction class="com.example.Test"/>

Delimited Content Data Service Annotations

The data access annotation for a delimited content data service is the empty element delimitedFile,
accepting the optional attributes described in the following table:

Optional Attributes for the delimitedFile Element

Attribute Description

file A valid URI pointing to the location of the
delimited file.

schema A valid URI pointing to the location of the XML
schema file defining the type (structure) of the
delimited contents. If absent, the schema is
derived based on the contents.

inferredSchema Specifies whether the schema was inferred or
provided by the user. The default value is false.

delimiter The string used as the delimiter. If absent, the
fixedLength attribute should be present.

fixedLength The fixed length of the tokens contained in fixed
length content. If absent, the delimiter attribute
should be present.

hasHeader A Boolean flag indicating whether the first line of
the content should be interpreted as a header. The
default value is false.

Example:

Document generated by Confluence on Jan 10, 2008 16:26 Page 19

<delimitedFile schema="ld:df/schemas/ALL_TYPES.xsd" hasHeader="true"
delimiter="," file="ld:df/ALL_TYPES.csv"/>

XML Content Data Service Annotations

The data access annotation for an XML content data service is the empty element xmlFileaccepting the
attributes described in the following table:

Attributes for the xmlFile Element

Attribute Description

file (Optional) A valid URI pointing to the location of
the XML file.

schema A valid URI pointing to the location of the XML
schema file defining the type (structure) of the
XML contents.

Example:

<xmlFile schema="ld:xml/somewhere/CUSTOMER.xsd"
file="ld:xml/CUSTOMER_NESTED.xml"/>

User Defined View XDS Annotations

The data access annotation for a user-defined view data service is also known as a logical data service. It
consists of the single empty element:

userDefinedView

Example:

<userDefinedView/>

Target Type Properties

The optional block of target type properties enables you to annotate simple valued fields in the target
type of the entity data service with native type information pertaining to the following:

• The type of the corresponding field in the underlying external source (applicable only to data source
data services)

• Information about the field's properties with respect to its update behavior. Each annotated field is
represented by the element named "field"with two required attributes, described in the following
table:

Document generated by Confluence on Jan 10, 2008 16:26 Page 20

Required Attributes for the field Element

Attribute Description

xpath An XPath value pointing to the field

type The qualified name of the field's simple XML
schema or XQuery type.

The following excerpt provides an example of a field element definition:

<field type="xs:string" xpath="FIRST_NAME">
<extension nativeSize="64" nativeTypeCode="12" nativeType="VARCHAR2"

nativeXpath="FIRST_NAME"/>
<properties nullable="false"/>

</field>

Native Type Properties

Each "field" element can contain an optional "extension" element that accepts the optional attributes
described in the following table:

Optional Attributes for the extension Element

Attribute Description

nativeXpath A native XPath value pointing to the corresponding
native field in the external source.

nativeType The native name of the native type of the
corresponding native field, as it is known to the
external source.

nativeTypeCode The native type code of the native type of the
corresponding native field, as it is known to the
external source. In the case of relational sources,
this is the type code as reported by JDBC.

nativeSize The native size of the native type of the
corresponding native field, as it is known to the
external source. In the case of relational sources,
this is the size as reported by JDBC.

nativeFractionalDigits The native scale of the native type of the
corresponding native field, as it is known to the
external source. In the case of relational sources,
this is the scale as reported by JDBC.

nativeKey A Boolean value indicating whether the field
participates in the native record's key. The default
is false.

Update-related Type Properties

Each "field" element can also contain an optional "properties" element that accepts the optional attributes

Document generated by Confluence on Jan 10, 2008 16:26 Page 21

described in the following table:

properties Element Optional Attributes

Attribute Description

immutable A Boolean value specifying whether the field is
immutable (read-only) or not. The default value is
false.

nullable A Boolean value specifying whether the field
accepts null values or not. The default value is
false.

Key Properties

The optional block of key properties enables you to specify an identity constraint (key) on the entity data
service target type. An identity constraint for an entity data service is represented by the element "key"
along with an XML schema specifying the key type.

The "key" element accepts a required attribute "type", whose value should be bound to the qualified
name of the element type defining the locations of the data fields comprising the key. The key type
should in turn be specified by an XML schema imported by the data service.

The "key" element may also carry the following optional attributes:

key Element Optional Attributes

Attribute Description

name Serves as the key alias. Might be used as a
user-friendly description of the semantic
constraints expressed by the key.

inferred A Boolean value specifying whether the key was
auto-derived or user-defined. The default is true.

inferredSchema A Boolean value specifying whether the key
schema was auto-derived or user-defined. The
default is true.

In most cases, the identity constraint refers to the collection of data bindings returned by the entity data
service's read functions, with each binding's type being the data service target type. In the case that a
data service returns an XML document, the collection on which the identity constraint may be specified is
normally defined by some element nested within the document element. In such a case, the "key"
element contains an optional "selector" element that is used to specify the collection. The "selector"
element carries a required "xpath" attribute, whose value is an XPath value pointing to the nested
element defining the collection root. The XPath forms accepted by this attribute are simplified XPaths,
using only the element or attribute axes and no predicates.

The following excerpt provides an example of a "key" element definition:

Document generated by Confluence on Jan 10, 2008 16:26 Page 22

<key name="CUSTOMER_ID"/>
<selector xpath="CUSTOMER"/>

</key>

Relationship Properties

The optional block of relationship properties enables you to specify a set of relationship targets. A
relationship target of an entity data service is an entity data service with which first service maintains a
unidirectional or bidirectional relationship. Unidirectional relationships are realized through one or more
navigatefunctions in the first data service that returns one or more instances of objects of the second
service target type. Bidirectional relationships require that reciprocal functions are present in the second
data service as well.

A relationship target is represented by the element relationshipTarget that accepts the attributes
described in the following table:

Attributes for the relationshipTarget Element

Attribute Description

roleName A string that uniquely identifies the relationship
target inside the data service.

roleNumber (Optional) Either 1 or 2 (default is 1). The
roleNumber specifies the index of the relationship
target within the relationship.

XDS The AquaLogic Data Services Platform URI of the
data service serving as the relationship target.

minOccurs (Optional) The minimum cardinality of relationship
target instances participating in this relationship.
Possible values are all non-negative integers and
the empty string. The default value is the empty
string.

maxOccurs (Optional) The maximum cardinality of relationship
target instances participating in this relationship.
Possible values are all positive integers, the string
unbounded, and the empty string. The default is
the empty string.

opposite (Optional) String attribute that indicates the
reciprocal relationship target in the case of
bidirectional relationships. The value of this
attribute is the identifier used to identify this data
service as a relationship target in the data service
identified by the value of the XDS attribute.

Additionally, the relationshipTarget element can itself contain the element "relationship" which in turn
contains the nested element "description" that contains a human readable description about the
relationship.

Document generated by Confluence on Jan 10, 2008 16:26 Page 23

The following excerpt provides an example of a relationshipTarget element definition:

<relationshipTarget roleName="CUSTOMER_ORDER" roleNumber="2"
XDS="ld:oracleDS/CUSTOMER_ORDER.xds" minOccurs="0"
maxOccurs="unbounded" opposite="CUSTOMER"/>

Update Properties

The optional block of update properties enables you to specify a set of properties that establish certain
policies about updating an entity data service's underlying sources. In particular, you can specify the
following policies:

• The fields to use for optimistic locking purposes.

Optimistic Locking Fields

SDO update assumes optimistic locking transactional semantics. The data service being updated can
specify the fields that should be checked for updates during the interim using the empty element
optimisticLockingFields that accepts one of the following as its content:

• An empty element, named updated, to specify only updated fields.
• An empty element, named projected, to specify all projected fields.
• One or more elements, named "field", that accept a required string-valued attribute named name to

specify user-specified fields.

The following excerpt provides an example of a functionForDecomposition element definition:

<optimisticLockingFields>
<updated/>

</optimisticLockingFields>

Security Properties

You can use a data service to define one or more user-defined, logical protected resources.
The element secureResources, containing one or more string-valued elements named secureResource,
can be used for this purpose.
For example:

<secureResources>
<secureResource>MyResource</secureResource/>
<secureResource>MyOtherResource</secureResource/>

</secureResources>

You can link a logical resource defined using this syntax to a user-provided security policy using the
AquaLogic Data Services Console. Query content can inquire about a user's ability to access a logical
resource using the built-in function isAccessAllowed().

Document generated by Confluence on Jan 10, 2008 16:26 Page 24

Function Annotations

There is a single function annotation per data service function or procedure, which appears before the
function or procedure declaration in the document. The identifier for the pragma carrying the function
annotation is "function". The qualified name of the top level element of the XML fragment corresponding
to a function annotation has the local name "function" and the namespace URI
urn:annotations.ld.bea.com.

Modeling Kind

Each entity data service function or procedure is classified using one of the following categories:

• Create procedure
• Read function
• Update procedure
• Delete procedure
• Navigate function
• Library function or procedure

The classification of a data service method is determined by the value of the optional attribute "kind" in
the function element, which accepts the values create, read, update, delete, navigate, or library to
denote the corresponding categories. The default value is library.

Each library data service function or procedure is always of kind library.

The prime type of the return type of a read function must match the target type of the entity data
service. In addition, the function element for a navigate function must carry a string-valued attribute
returns whose value must match the role name of a relationship target defined in the data service.
Moreover, the prime type of the return type of a navigate function must match the target type of the data
service serving as the relationship target.

An operation designated as a procedure has in the general case side-effects. In other words, its
invocation entails modifications of the state of the affected data sources. Therefore, a procedure may not
be referenced by AquaLogic Data Services Platform functions.

A library function residing in a relational database function library data service file is always external. It
may not be invoked directly by clients. Instead, it should be referenced by other data service functions or
ad-hoc queries.

Visibility

Functions or procedures may also be classified based on their visibility using one of the following
categories:

• Public
• Protected

Document generated by Confluence on Jan 10, 2008 16:26 Page 25

• Private

The classification of a data service method is determined by the value of the optional attribute "visibility"
in the function element, which accepts the values public, protected, or private to denote the
corresponding categories. The default value is protected.

Public methods are accessible by ALDSP dataspace clients as well as other data services within the
dataspace.

Protected methods are not accessible by ALDSP dataspace clients but can be accessed by other data
services within the dataspace.

Private methods may be accessed only by other methods within the data service in which they are
defined.

Primary

The optional boolean attribute "isPrimary" may also be used to classify entity data service methods as
primary or non-primary. The default value is false.

This property is applicable only to create, update and delete procedures or read functions.

In the case of a procedure, when this property is set to true, it denotes that the procedure should be the
one to be automatically used by the update maps of logical data services directly depending on the data
service defining the procedure, in order to perform the corresponding update operation (i.e. create,
update or delete).

In the case of a read function, when this property is set to true, it denotes that the read function should
be the one to be used to infer the data service update map.

There may exist at most one primary method of each kind specified within an entity data service.

URI

Finally, the namespace URIs of the qualified names of all the functions and/or procedures in a data
service must specify the location of the data service document in the ALDSP repository. For example:

ld:{directory path to data service folder}/{data service file name without extension}

The function element accepts the additional optional attributes described in the table below:

Optional Attributes for the function Element

Attribute Description

nativeName Applicable to data source functions or procedures,
nativeName is the name of the function or

Document generated by Confluence on Jan 10, 2008 16:26 Page 26

procedure as it is known to the external source. In
the case of relational sources, for example, it
corresponds to the table name.

nativeLevel1Container Applicable to data source functions or procedures
that represent external sources employing
hierarchical containment schemes;
nativeLevel1Container is the name of the top-level
native container, as it is known to the external
source.In the case of relational sources, for
example, it corresponds to the catalog name,
whereas, in the case of Web service sources, it
corresponds to the service name.

nativeLevel2Container Applicable to data source functions or procedures
that represent external sources employing
hierarchical containment schemes;
nativeLevel2Containeris the name of the
second-level native container, as it is known to the
external source. In the case of relational sources,
for example, it corresponds to the schema name.
In the case of Web service sources, it corresponds
to the port name.

nativeLevel3Container Applicable to data source functions or procedures
that represent external sources employing
hierarchical containment schemes;
nativeLevel3Containeris the name of the top-level
native container, as it is known to the external
source. In the case of relational sources, for
example, it corresponds to the stored procedure
package name.

style Applicable to data source functions or procedures,
style is a native qualifier by which the function is
known to the external source (e.g. table, view,
storedProcedure, or sqlQuery for relational
sources; rpc or document for Web services).

roleName Applicable to navigate functions, roleName should
match the value of the roleName attribute of the
relationshipTarget implemented by the function.

The content of the top-level function element is a sequence of the following blocks of properties:

• General Properties
• UI Properties
• Cache Properties
• Transaction Properties
• Behavioral Properties
• Signature Properties
• Native Properties
• Implementation Properties

The following excerpt provides an example of a function annotation:

Document generated by Confluence on Jan 10, 2008 16:26 Page 27

(::pragma function
<f:function xmlns:f="urn:annotations.ld.bea.com" kind="read" nativeName="CUSTOMER"
nativeLevel2Container="RTL" style="table">
<nonCacheable/>
</f:function>::-)

General Properties

All standard document properties and user-defined properties defined in Standard Document Properties
and User-Defined Properties are applicable to function annotations.

UI Properties

A set of user interface properties may be introduced by the XQuery Editor to persist location information
about the graphical components representing the expression in the function body. UI properties are
represented by the element uiProperties which accepts a sequence of one or more elements, named
component, as its content. Each "component" element accepts the attributes described in the following
table.

Attributes for the component Element

Attribute Description

identifier An identifier for the UI component.

minimized A Boolean flag indicating whether the UI
component has been minimized or not.

x The x-coordinate for the UI component.

y The y-coordinate for the UI component.

w The width of the UI component.

h The height of the UI component.

viewPosX The x-coordinate of the scrollbar position of the
component.

viewPosY The y-coordinate of the scrollbar position of the
component.

In addition, each "component" element may optionally contain one or more treeInfo elements containing
information about the tree representation of the types pertaining to the component. In the absence of the
above property, the query editor uses the default layout.

Cache Properties

You can use the optional block of cache properties to specify whether a function can be cached or not.
You should specify a function whose results for the same set of arguments are intrinsically highly volatile
as non-cached. On the other hand, you should specify a function whose results for the same set of
arguments are either fixed or remain unchanged for a period of time as cacheable.

Document generated by Confluence on Jan 10, 2008 16:26 Page 28

This property of a function is represented by the empty element nonCacheable. In the absence of the
nonCacheable element, a function is considered to be potentially cacheable. The following excerpt
provides an example:

<nonCacheable/>

Transaction Properties

You can use the optional block of transaction properties to specify whether a procedure can participate in
a transaction or not. This property is applicable only to physical procedures bound to external data
sources of type Java or ALSB proxy service. A transactional procedure should rollback its effects if the
overall transaction, in which it participates, fails.

This property is represented by the empty element nonTransactional. In the absence of the
nonTransactional element, a procedure is considered to be transactional. The following excerpt provides
an example:

<nonTransactional/>

Behavioral Properties

The optional block of behavioral properties allows you to provide information related to known
associations between a function's input and its output, or across two or more functions. In particular, the
user may specify the following:

• Inverse Functions
• Equivalent Transforms

Inverse Functions

Given an XQuery function f, the optional block of inverse functions may be used in order to denote a
function g, defined over the range of f, that, when composed with f (i.e. g(f)), renders one of the
parameters of f. If f has multiple parameters, an inverse function may be defined for each one of its
parameters.

The inverse functions block is represented by an optional element, named inverseFunctions, which
accepts as its content a sequence of empty elements, named inverseFunction. Each inverseFunction
element accepts the following attributes:
parameterIndex. Optional attribute denoting the index of the parameter for which the inverse function
is defined. The index of the first parameter is assumed to be 1. It may be omitted if the function being
annotated has a single parameter.

• name. Required attribute denoting the fully-qualified name of the inverse function.

Both the annotated and the inverse function must be either built-in or external XQuery functions.

The following excerpt provides an example of an inverseFunctions element definition:

Document generated by Confluence on Jan 10, 2008 16:26 Page 29

<inverseFunctions>
<inverseFunction parameterIndex="2" name="p:MyInverse" xmlns:p ="urn:test"/>

</inverseFunctions>

Equivalent Transforms

Given an XQuery function: f, the optional block of equivalent transforms may be used in order to denote
a pair of functions_C_ and C' with identical signatures and equivalent semantics, that accept f as one of
their parameters. In simple terms, the equivalence is perceived to mean that each occurrence of
C(...,f,...) may be safely substituted with: C'(...,f,...).

The equivalent transforms block is represented by an optional element, named equivalentTransforms,
which accepts as its content a sequence of empty elements, named pair. Each pair element accepts the
following required attributes:

• source. Denotes the fully qualified name of the source transform (i.e.: C).
• target. Denotes the fully qualified name of the target transform (i.e.: C').
• arity. Denotes the (common) arity of the source and target transforms.

The source transform may be either a built-in or external function. Both source and target
transforms must not be defined as invertible functions.

The following excerpt provides an example of an equivalentTransforms element definition:

<equivalentTransforms>
<pair source="p:sourceFunction_1" target="p:targetFunction_1" arity="1" xmlns:p

="urn:test1"/>
<pair source="q:sourceFunction_2" target="q:targetFunction_2" arity="3"

xmlns:q="urn:test2"/>
</equivalentTransforms>

Polymorphic Functions

A library function residing in a relational database function library data service may be designated as
polymorphic if its actual return type can be determined from the actual type of one of its parameters. A
polymorphic function is annotated by an optional element, named isPolymorphic, which accepts as its
content an empty element, named parameter. The parameter element accepts the following optional
attribute:

index. Denotes the index of the parameter whose actual type determines the function's actual return
type. The index of the first parameter is assumed to be 1. It may be omitted if the function being
annotated has a single parameter.

The following excerpt provides an example of an equivalentTransforms element definition:

<sPolymorphic>
<parameter index = "2"/>

</sPolymorphic>

Document generated by Confluence on Jan 10, 2008 16:26 Page 30

Signature Properties

You can use the optional block of signature properties to annotate the parameters of a data service
function or procedure with additional information to that provided by the function signature. These
properties are applicable to physical data service functions or procedures.

The signature properties block is represented by the element params which accepts a sequence of one or
more elements, named param, as its content. Each param element is an empty element that accepts the
optional attributes described in the following table:

param Element Optional Attributes

Attribute Description

name The name of the parameter, as it is known to the
external source.

nativeType The native type of the parameter, as it is known to
the external source.

nativeTypeCode The native type code of the parameter, as it is
known to the external source.

xqueryType The qualified name of the XML Schema or XQuery
type used for the parameter.

kind One of the following values: unknown, in, inout,
out, return or result (applicable to stored
procedures).

The following excerpt provides an example of a params element definition:

<params>
<param nativeType="java.lang.String"/>
<param nativeType="java.lang.int"/>

</params>

Native Properties

You can use native properties to further annotate a data source function or procedure based on the type
of the external source that it represents. There are two types of native properties pertaining to relational
and Web service sources respectively:

• SQL query properties
• SOAP handler properties

SQL Query Properties

The function annotation element of a function that represents a user-defined SQL query has its style
attribute set to sqlQuery and accepts a nested element, named "sql". The sql element accepts string
content that corresponds to the statement of the (possibly parameterized) SQL query that the function

Document generated by Confluence on Jan 10, 2008 16:26 Page 31

represents.

If required, the statement can be escaped inside a CDATA section to account for reserved XML characters
(e.g. <, >, &). The sql element also accepts the optional attribute isSubquery whose boolean value
indicates whether the SQL statement may be used as a nested SQL sub-query. If the attribute is absent,
its value defaults to true.

The following excerpt provides an example of a sqlQuery element definition:

<sql isSubquery="true">
SELECT t.FIRST_NAME FROM RTLALL.dbo.CUSTOMER t</sql>

SOAP Handler Properties

The "function" annotation element of a function or procedure that represents a Web service call accepts a
nested element, named interceptorConfiguration. The interceptorConfiguration element accepts two
required attributes, as described below:

Required Attributes for the interceptorConfiguration Element

Attribute Description

fileName The location of the file containing the configuration
of the SOAP handler chains that are applicable to
the Web service.

aliasName The alias name by which the SOAP handler chain
has been configured.

Implementation Properties

You can use implementation properties to specify that an external create, update or delete procedure is
implemented by the update map of the data service in which it is defined.

The optional element "implementation" accepts the required empty element "updateTemplate" as its
content.

The following excerpt provides an example:

<implementation>
<updateTemplate/>

</implementation>

XFL Annotations

There is a single XFL ("XQuery Function Library") annotation per library data service document, which
appears before any function annotation in the document. The identifier for the pragma carrying the XFL

Document generated by Confluence on Jan 10, 2008 16:26 Page 32

annotation is "xfl". The qualified name of the top level element of the XML fragment corresponding to an
XFL annotation has the local name:

xfl

and the namespace URI:

urn:annotations.ld.bea.com

The contents of the top-level xfl element is a sequence of the following blocks of properties.

• General Properties
• Data Access Properties

The following sections provide detailed descriptions of each block of properties, while the following
excerpt provides an example of a XFL annotation, which may serve as a reference.

(::pragma xfl <x:xfl xmlns:x="urn:annotations.ld.bea.com">
<creationDate>2005-03-09T17:48:58</creationDate>
<webService targetNamespace="urn:GoogleSearch"

wsdl="ld:google/GoogleSearch.wsdl"/>
</x:xfl>::-)

General Properties

The general properties applicable to an library data service document are identical to the general
properties for an entity data service document, as described in General Properties.

Data Access Properties

Each library data service document defines one or more XQuery functions and/or XQSE functions or
procedures that serve as library operations that can be used either inside other entiry or library data
service documents.

Since library data service documents do not have a target type, the return types of the library functions
found inside these document may differ from each other. In particular, a function inside a library data
service document may return a value having a simple type (or any other type). Library data service
functions can be external data source functions or user-defined.

The following types of library data service documents are supported:

• Relational (physical)
• Web service (physical)
• Java function (physical)
• Relational database function (physical)
• User-defined view (logical)

Document generated by Confluence on Jan 10, 2008 16:26 Page 33

You can specify only one of the annotations in each library data service. If no annotation is provided, the
library data service is considered a user-defined view.

The data access properties for Relational, Web service, Java function, and user-defined view library data
service documents are the same as the corresponding properties for entity data service documents, as
described above.

A relational database function library data service contains native functions, either database
vendor-provided or user-defined in the database, from one or more relational data sources, modeled as
external XQuery functions.

The data access annotation for a relational database function library data service comprises an element
named customNativeFunctions with a single child element, named relational, whose content is a sequence
of one or more elements named dataSource. Each dataSource element contains a single text value, which
should be set to the JNDI name by which the external relational source has been registered with the
application server.

Here is an example:

<customNativeFunctions>
<relational>

<dataSource>oracleDS1</dataSource>
<dataSource>oracleDS2</dataSource>
</relational>

</customNativeFunctions>

Security Properties

The same as in entity data services.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 34

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Creating and Updating Physical Data Services

This page last changed on Jan 09, 2008 by tkatz.

Creating and Updating Physical Data Services

Concepts
Creating Data Source Metadata

How To Create Physical Data Services...
... from relational tables and views
... from stored procedures
... based on SQL statements
... based on database functions
... from web services
... from XML files
... from delimited files

How-to...
... Enable Optimistic Locking of Relational Objects
... Update Physical Data Service Metadata

Reference
Stored Procedure Configuration

Related Topics
How-to...
... Enable Optimistic Locking
... Add an External Function to an Existing Physical Data Service

Document generated by Confluence on Jan 10, 2008 16:26 Page 35

http:/

Accessing a Relational Data Source

This page last changed on Aug 31, 2007 by tkatz.

Accessing a Relational Data Source

Only relational data sources that have set up through the BEA WebLogic Administration Console are
available to an ALDSP application or project.

In order for the BEA WebLogic Server used by AquaLogic Data Services Platform to access a particular
relational data source you need to set up a JDBC connection pool and a JDBC data source.

• For details on setting up a JDBC connection pool see:
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_jdbcconnectionpool_config_general.html*

• For details on setting up a JDBC data source see:
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_jdbcdatasource_config.html

Data sources supplied with the ALDSP sample include:

• dspDataSource
• dspDataSource-NonXA
• samplesDataSource

Document generated by Confluence on Jan 10, 2008 16:26 Page 36

http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_jdbcconnectionpool_config_general.html*
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_jdbcdatasource_config.html

Accessing a Web Service

This page last changed on Nov 09, 2007 by tkatz.

Accessing a Web Service

Once you select web service as your data source, you will be given the option of selecting a URI or WSDL
file.

Selecting Web Service as a Data Source

There are several ways to access a specific web service:

• From a Web Service Description Language (WSDL) file located in your current ALDSP project.
• From a WSDL accessible via a URL.
• Through a local proxy service such as is used for AquaLogic Service Bus.

You can test the ability to create a physical data service based on a web service using the
following WSDL (available as of this writing):

http://www.whitemesa.net/wsdl/r2/base.wsdl

Importing Metadata from a WSDL

The Service Bus Local Proxy Option

To access web services through AquaLogic Service Bus you need to:

• Provide access and credential information to AquaLogic Service Bus.
• Select a local proxy (if there is more than one).

AquaLogic Service Bus access requires providing the following:

• Server name
• Port number
• User name

Document generated by Confluence on Jan 10, 2008 16:26 Page 37

http:/
http://kmwiki.bea.com/download/attachments/7382/Selecting Web Service as a Data Source.gif

• Password

This information should be available from your AquaLogic Service Bus administrator.

Once the required information is provide, the WSDL will become available using the name of the selected
proxy service.

Steps in Importing a Web Service

1. Enter a Web service URL, local WSDL, or ALSB proxy.
2. Click Next.

Document generated by Confluence on Jan 10, 2008 16:26 Page 38

Adding Operations to an Existing Data Service

This page last changed on Jan 10, 2008 by tkatz.

Adding Operations to an Existing Data Service

You can add SQL statement or stored procedure operations based on the same data source to an existing
physical data service based a stored procedure.

Add an External Function to an Existing Physical Data Service

Adding a Stored Procedure or SQL Statement to a Data Service

Document generated by Confluence on Jan 10, 2008 16:26 Page 39

http:/
http://kmwiki.bea.com/download/attachments/2166972/Adding a Stored Procedure or SQL Statement to a Data Service.gif

Creating Data Source Metadata

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Creating Physical Data Services by Importing
Source Metadata

In ALDSP metadata around a particular data source is developed during the process of creating a physical
data service. For example, a list of the tables and columns in a relational database is metadata. A list of
operations in a Web service is metadata.

In ALDSP, a physical data service is typically primarily based on metadata describing the structure of
those physical data sources.

Physical data services are the building blocks for the creation of logical data services.

Data Source Support for Creating Physical Data Services

Source Type Venue

Relational (including tables, views, stored
procedures, and SQL)

JDBC

Web services (WSDL files) URI, UDDI, WSDL

Delimited (CSV files) File-based data, such as spreadsheets.

Java functions (.java) Programmatic

XML (XML files) File- or data stream-based XML

When information about physical data is developed during the creation of physical data services, two
things happen:

• A physical data service (extension .ds) is created in your ALDSP-based project.
• A companion schema of the same name (extension.xsd), is created. This schema describes quite

exactly the XML type of the data service. Such schemas are placed in a directory named schemas
which is a sub-directory of your newly created data service.

Source View

The introspection process is done through the Physical Data Service Creation wizard. This wizard
introspects available data sources and identifies data objects that can be rendered as operations for
either entity or library data services. Once created, physical data services become the building-blocks for
queries and logical data services through a series of pragmas created in the query source.

Document generated by Confluence on Jan 10, 2008 16:26 Page 40

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

For example, the following source resulted from importing a Web service operation:

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com" kind="read"
nativeName="getCustomerOrderByOrderID"
nativeLevel1Container="ElecDBTest" nativeLevel2Container="ElecDBTestSoap" style="document"/>:

declare function f1:getCustomerOrderByOrderID($x1 as element(t1:getCustomerOrderByOrderID))
as schema-element(t1:getCustomerOrderByOrderIDResponse) external;

Notice that the imported Web service is described as a "read" function in the pragma. "External" refers to
the fact that the schema is in a separate file.

For some data sources such as web services imported metadata represents functions which typically
return void (in other words, these functions do something other than return data). Such routines are
sometimes called side-effecting functions or procedures.

The following source resulted from importing Web service metadata that includes an operation that has
been identified as a side-effecting procedure:

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
kind="hasSideEffects" nativeName="setCustomerOrder" style="document"/>:

declare function f1:setCustomerOrder($x1 as element(t3:setCustomerOrder)) as
schema-element(t3:setCustomerOrderResponse) external;

In the above pragma the function is identified as "hasSideEffects".

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 41

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Database-specific Catalog and Schema Considerations

This page last changed on Aug 31, 2007 by tkatz.

Database-specific Catalog and Schema
Considerations

Database vendors variously support database catalogs and schemas.

Vendor Support for Catalog and Schema Objects

Vendor Catalog Schema

Oracle Does not support catalogs. When
specifying database objects, the
catalog field should be left blank.

Typically the name of an Oracle
user ID.

DB2 If specifying database objects,
the catalog field should be left
blank.

Schema name corresponds to
the catalog owner of the
database, such as db2admin.

Sybase Catalog name is the database
name.

Schema name corresponds to
the database owner.

Microsoft SQL Server Catalog name is the database
name.

Schema name corresponds to
the catalog owner, such as dbo.
The schema name must match
the catalog or database owner
for the database to which you
are connected.

Informix Does not support catalogs. If
specifying database objects, the
catalog field should be left blank.

Not needed.

PointBase PointBase database systems do
not support catalogs. If
specifying database objects, the
catalog field should be left blank.

Schema name corresponds to a
database name.

Document generated by Confluence on Jan 10, 2008 16:26 Page 42

Filtering SQL Objects Using Search

This page last changed on Sep 25, 2007 by tkatz.

Filtering SQL Objects Using Search

The Search option available when creating a physical data service can be especially useful when:

• You know specific names of the data source objects you want to turn into data services.
• Your data source may be so large that a filter is needed.
• You may be looking for objects with specific naming characteristics such as:

%audit2003%

The above search command retrieves all objects that contain the enclosed string.

Using JDBC Syntax to Search SQL Objects

You can search through available SQL objects using standard JDBC wildcard syntax.

• An underscore (_) creates a wildcard for an individual character.
• A percentage sign (%) indicates a wildcard for a string. Entries are case-sensitive.

Another example:

CUST%, PAY%

entered in the Tables/Views field the above search string returns all tables and views starting with either
CUST or PAY.

Special Considerations When Searching Stored Procedures

If no items are entered for a particular field, all matching items are retrieved. For example, if no filtering
entry is made for the Procedure field, all stored procedures in the data object will be retrieved.

Document generated by Confluence on Jan 10, 2008 16:26 Page 43

http:/

How To Create a Physical Data Service from a Delimited File

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Create a Physical Data Service from a
Delimited File

Spreadsheets offer a highly adaptable means of storing and manipulating information, especially
information which needs to be changed quickly. You can easily turn such spreadsheet data into a data
services.

Spreadsheet documents are often referred to as CSV files, standing for comma-separated values.
Although CSV is not a typical native format for spreadsheets, the capability to save spreadsheets as CSV
files is very common.

The following topics cover the actions necessary to create physical data services from delimited files.

Topics

• Setting Up the Physical Data Service Creation Wizard
• Setting Up the Import Wizard for Relational Objects
• Specifying Delimited File Information
• Setting Properties for New Library Functions
• Verifying Data Service Composition
• Delimited File Import Sample

You can use the the physical data service creation wizard to:

• Select a delimited file as the Data Source type.
• Select either a schema file or a file with delimited data.
• Specify whether the information has a header or not.
• Specify delimiter.
• Specify a fixed width value for each column.

Physical Data Service Creation Wizard

Document generated by Confluence on Jan 10, 2008 16:26 Page 44

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://kmwiki.bea.com/download/attachments/7382/Physical Data Service Creation Wizard.gif

Setting Up the Physical Data Service Creation Wizard

Physical data services are created using a wizard.

Physical Data Service Creation Wizard

Starting the Wizard

To start the physical data service creation wizard:

1. Right-click on your dataspace project or any folder in your project.
2. Choose New > Physical Data Service

Creating a New Physical Data Service

Specifying Delimited File Information

A Library data service based on delimited data requires:

1. Schema in your project and/or a
2. Location of the delimited data file

Import Delimited File Data Wizard

Document generated by Confluence on Jan 10, 2008 16:26 Page 45

http:/
http://kmwiki.bea.com/download/attachments/7382/Physical Data Service Creation Wizard.gif
http://kmwiki.bea.com/download/attachments/7382/Creating a New Physical Data Service.gif

The schema and data file must be available in your dataspace.

Providing a Document Name, a Schema Name, or Both

There are several approaches to developing metadata around delimited information, depending on your
needs and the nature of the source.

• Provide a delimited document name only. If you supply the import wizard with the name of a
valid CSV file, the wizard will automatically create a schema based on the columns in the document.
All the columns will be of type string, although you can later modify the generated schema with
more accurate type information. The generated schema will have the same name as the source file.

• Providing a schema name only. This option is typically used when the source file is dynamic; for
example, when data is streamed.

• Providing both a schema and a document name. Providing a schema with a CSV file gives you
the ability to more accurately type information in the columns of a delimited document.

Locating the CSV File

Using the import wizard you can browse to any file in your project. You can also import data from any
CSV file on your system using an absolute path prepended with:

file:///

For example, on Windows systems you can access an XML file such as Orders.xml from the root C:
directory using the following URI:

file:///<c:/home>/Orders.csv

On a UNIX system, you would access such a file with the URI:

file:///<home>/Orders.csv

Import Delimited Data Options

• Header. Indicates whether the delimited file contains header data. Header data is located in the
first row of the spreadsheet. If you check this option, the first row will not be treated as imported
data.

• Delimited or Fixed Width. Data in your file is either separated by a specific character (such as a
comma) or is of a fixed width (such as 10 spaces). If the data is delimited, you also need to provide
the delimited character. By default the character is a comma.

Additional Considerations

• The number of delimiters in each row must match the number of header columns in your source

Document generated by Confluence on Jan 10, 2008 16:26 Page 46

minus one (# of columns-1). If subsequent rows contain more than the maximum number of
delimiters (fields), subsequent use of the data service will not be successful.

• If the delimited file has rows with a variable number of delimiters (fields), you can supply a schema
that contains optional elements for the trailing set of extra elements.

• Not all characters are handled the same way. Some charactters may need special escape sequences
before spreadsheet data can be accessed at runtime.

Setting Properties for New Library Functions

This general topic applies to setting properties for all types of library data service functions.

Use the Review New Data Service Operations page to:

• Change the function name.
• Set the Public option (check if you want your function to be available to client applications).
• Set the kind of function (in some cases only one option will be available).
• Set the Primary option (check if you want your function to be the primary of its type).

In some cases this option may not be available.

• Select a common XML namespace for the entire data service.
• Set the target namespace.

The root element, which is read only, is also displayed.

Verifying Data Service Composition

On the Review New Data Service(s) page you can set, confirm or, optionally, change suggested data
service names depending on the type of physical data service you are creating.

Default Physical Data Service Names

The nominated name for a new data service is, wherever possible, the same as the source object name.
In some cases, however, names are adjusted to conform with XML naming conventions.

XML Name Conversion Considerations

About Automatic Data Service Name Changes

Name conflicts occur when there is a data service of the same name present in the target directory.
Name conflicts are highlighted in red.

There are several situations where you will need to change the name of your data service:

• There already is a data service of the same name in your application.

Document generated by Confluence on Jan 10, 2008 16:26 Page 47

http:/
http:/

• You are trying to create multiple data services with the same name.

Data services always have the file extension:

.ds

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 48

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

How to Create a Physical Data Service from a Web Service

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Create a Physical Data Service from a
Web Service

A Web service is a self-contained, platform-independent unit of business logic that is accessible through
application adaptors, as well as standards-based Internet protocols such as HTTP or SOAP.

Web services greatly facilitate application-to-application communication. As such they are increasingly
central to enterprise data resources. A familiar example of an externalized Web service is a
frequent-update weather portlet or stock quotes portlet that can easily be integrated into a Web
application.

Similarly, a Web service can be effectively used to track a drop shipment order from a seller to a
manufacturer.

Topics

• Setting Up the Physical Data Service Creation Wizard
• Accessing a Web Service
• Selecting Web Service Operations to Import
• Setting Characteristics of Imported Web Service Operations
• Setting the Data Service Name
• Generally Available Test WSDLs
• Implementation Notes
• See Also

Setting Up the Physical Data Service Creation Wizard

Physical data services are created using a wizard.

Physical Data Service Creation Wizard

Document generated by Confluence on Jan 10, 2008 16:26 Page 49

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http:/

Starting the Wizard

To start the physical data service creation wizard:

1. Right-click on your dataspace project or any folder in your project.
2. Choose New > Physical Data Service

Creating a New Physical Data Service

Accessing a Web Service

Once you select web service as your data source, you will be given the option of selecting a URI or WSDL
file.

Selecting Web Service as a Data Source

There are several ways to access a specific web service:

• From a Web Service Description Language (WSDL) file located in your current ALDSP project.

Document generated by Confluence on Jan 10, 2008 16:26 Page 50

http://kmwiki.bea.com/download/attachments/7382/Physical Data Service Creation Wizard.gif
http://kmwiki.bea.com/download/attachments/7382/Creating a New Physical Data Service.gif
http:/
http://kmwiki.bea.com/download/attachments/7382/Selecting Web Service as a Data Source.gif

• From a WSDL accessible via a URL.
• Through a local proxy service such as is used for AquaLogic Service Bus.

You can test the ability to create a physical data service based on a web service using the
following WSDL (available as of this writing):

http://www.whitemesa.net/wsdl/r2/base.wsdl

Importing Metadata from a WSDL

The Service Bus Local Proxy Option

To access web services through AquaLogic Service Bus you need to:

• Provide access and credential information to AquaLogic Service Bus.
• Select a local proxy (if there is more than one).

AquaLogic Service Bus access requires providing the following:

• Server name
• Port number
• User name
• Password

This information should be available from your AquaLogic Service Bus administrator.

Once the required information is provide, the WSDL will become available using the name of the selected
proxy service.

Steps in Importing a Web Service

1. Enter a Web service URL, local WSDL, or ALSB proxy.
2. Click Next.

Selecting Web Service Operations to Import

From the list of available webservice operations grouped by serviceName and portname, choose the
operation that you want to turn into data service operation.

Selecting Web Service Operations

Document generated by Confluence on Jan 10, 2008 16:26 Page 51

http:/

During the import process you will be choosing the operations you want to import, setting names
and other characteristics. These choices will determine whether a Library or Entity data service
will be created. Thus a familiarity with the operations of your Web service is needed.

Adding Operations to an Existing Data Service

You can add operations to an existing physical data service based a web service by adding an external
function from the same WSDL.

Add an External Function to an Existing Physical Data Service

Adding an External Operation to a Data Service

Steps Involved in Selecting Web Service Operations

1. Select the operations you want to turn into data services or library data service functions.
2. Click Next.

Setting Characteristics of Imported Web Service Operations

Document generated by Confluence on Jan 10, 2008 16:26 Page 52

http://kmwiki.bea.com/download/attachments/7382/Selecting Web Service Operations to Import.gif
http://kmwiki.bea.com/download/attachments/2166972/Adding an External Operation to a Data Service.gif
http:/

The following table describes available options for each operation you have selected to import.

Options Available for Imported Web Service Operations

Characteristic Options Comment

Operation name adjust as needed You can change the nominated
name to any legal XML name
using the built-in line editor.

Public Boolean By default Web service-derived
operations are protected. A
checkbox allows you to mark any
function or procedure as public.
(Once in a data service,
operations can be marked
private as needed.)

Kind
• Read
• Create
• Update
• Delete
• Library function
• Library procedure

Operations determined to return
void are automatically marked as
library procedures.
You can change the nominated
function type. wizard attempts to
correctly set the function type
dur being imported.

Operations marked as
create, update, or delete
functions will be
packaged in an Entity
data service. Otherwise,
the resulting data service
will be of type Library.

is Primary Boolean Not applicable for web service
operations.

Root Element Root element of the operation For complex data types the
topmost element is listed. In
case of RPC-style web services
the top-most generated element
is listed.

Target Namespace imported value This represents the target
namespace of the generated
data service.

Setting Characteristics of Imported Web Service Operations

Document generated by Confluence on Jan 10, 2008 16:26 Page 53

Setting the Data Service Name

You can change the name of your data service to any legal name that does not conflict with another
name in the current data space.

In addition, if there already is a data service in your project based on the same WSDL an option to add
the new operation to the existing data service appears.

When importing a web service operation that itself has one or more dependent (or referenced)
schemas, the wizard creates second-level schemas according to internal naming conventions. If
several operations reference the same secondary schemas, the generated name for the secondary
schema may change if you re-import or synchronize with the Web service.

Generally Available Test WSDLs

As of this writing the following sample URIs can be used for experimentation with importing WSDLs as
data services:

• http://ws.strikeiron.com/SwanandMokashi/StockQuotes?wsdl
• http://www.whitemesa.net/wsdl/std/echoheadersvc.wsdl

Implementation Notes

This section contains implementation notes.

Special Considerations when Creating a Data Service Based on a RPC-Style Web
Service

In case of RPC-style web services, results are return as qualified or unqualified based on the setting of
the schema attribute:

Document generated by Confluence on Jan 10, 2008 16:26 Page 54

http://kmwiki.bea.com/download/attachments/7382/setting characteristics of imported web service operations.gif
http:/
http://ws.strikeiron.com/SwanandMokashi/StockQuotes?wsdl
http://www.whitemesa.net/wsdl/std/echoheadersvc.wsdl

elementFormDefault

In the general case of web services, elementFormDefault can be overridden by setting the form attribute
for any child element. However, such individual settings are ignored for RPC-style web services since only
the global setting (qualified or unqualified) is taken into account.

For example:

<s:schema elementFormDefault="qualified"
targetNamespace="http://temp.openuri.org/SampleApp/CustomerOrder.xsd"
xmlns:s0="http://temp.openuri.org/SampleApp/CustomerOrder.xsd"
xmlns:s="http://www.w3.org/2001/XMLSchema">
<s:complexType name="ORDER">

<s:sequence>
<s:element minOccurs="0" maxOccurs="1" form="unqualified" name="ORDER_ID"

type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" form="unqualified" name="CUSTOMER_ID"

type="s:string"/>
</s:sequence>

</s:complexType>
</s:schema>

In the above code the global element is qualified but a child element (ORDER_ID) is unqualified.

In the standard case, the special setting of "unqualified" for ORDER_ID will be honored. In the case of
RPC-style web services, however, the runtime will generate "qualified" attributes for all the elements,
including ORDER_ID.

RPC-style web services such as those generated by ADO.NET may contain child elements with
"form" attributes which do not match the schema's elementFormDefault declaration. In order for
such web services to be turned into executable data service operations, make sure that all form
element attributes and the elementFormDefault attribute are in agreement (either "qualified" or
"unqualified").

Multi-dimensional Arrays in RPC Mode

Multi-dimensional arrays in RPC mode are not supported.

See Also

How To Create SOAP Handlers for Imported WSDLs

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 55

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Add an External Function to an Existing Physical Data Service

This page last changed on Dec 12, 2007 by tkatz.

How To Add an External Function to a Existing Physical Data
Service

You can add qualified external operations (functions and procedures) from the same data source to
existing physical data services based on:

• Relational
• Web service
• Java functions

This is a very convenient way of enhancing a data service based on changes in underlying data or other
business needs.
The steps involved in adding an external function to a qualified data service are:

1. Open the data service in Project Explorer.
2. Select Overview mode.
3. Right click > Add External Function...
4. A wizard appropriate to the data service type will appear. Complete the steps as you would when

creating a data service. For example, select from the set of currently unselected operations in the
WSDL that underlies a web service-based data service.

Adding an External Function to a Data Service

External operations cannot be added to physical data services based on:

• XML data
• Delimited data

Qualified Operation and Physical Data Service Type Matrix

Artifact Physical Data Service Type Comment

Operation Web Service Only visible operations will be

Document generated by Confluence on Jan 10, 2008 16:26 Page 56

http://kmwiki.bea.com/download/attachments/2166972/Adding an External Function to a Data Service.gif

from the WSDL that underlies
the physical data service.

Function Java Only functions from the Java
class defined by the underlying
data service will be visible.

Stored Procedure Relational Only stored procedures from the
same data source defined by the
underlying data service will be
visible.

SQL Statement Relational Query must be to the same
database as that underlying the
data service.

Additional Constraints

• Table-based functions cannot be added to data services.
• Only library operations can be added to library data services.
• Read or primary create-update-delete functions can be added to entity data services as long as the

entity data services constraints are not violated.

Document generated by Confluence on Jan 10, 2008 16:26 Page 57

How To Create a Physical Data Service from an XML File

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Create a Physical Data Service from
XML Data

XML files are a convenient means of handling hierarchical data. XML files and associated schemas are
easily turned into library data service functions.

The following topics cover the actions necessary to create physical data services from XML data.

Topics

• Topics
• Setting Up the Physical Data Service Creation Wizard
• Specifying XML Data Schema and File
• Setting Properties for New Library Functions
• Verifying Data Service Composition
• XML File Import Sample

You can use the the physical data service creation wizard to:

• Select XML Data as the Data Source type.
• Select a schema file and option data file.
• Create a Library data service based on the XML data.

Physical Data Service Creation Wizard

Setting Up the Physical Data Service Creation Wizard

Physical data services are created using a wizard.

Document generated by Confluence on Jan 10, 2008 16:26 Page 58

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://kmwiki.bea.com/download/attachments/7382/Physical Data Service Creation Wizard.gif
http:/

Physical Data Service Creation Wizard

Starting the Wizard

To start the physical data service creation wizard:

1. Right-click on your dataspace project or any folder in your project.
2. Choose New > Physical Data Service

Creating a New Physical Data Service

Specifying XML Data Schema and File

A physical data service based on XML data requires identification of a valid XML schema and, optionally, a
data source.

Import XML Data Wizard

The scheme must be available in your dataspace.

The data source can be:

• File-based
• URI-based

Document generated by Confluence on Jan 10, 2008 16:26 Page 59

http://kmwiki.bea.com/download/attachments/7382/Physical Data Service Creation Wizard.gif
http://kmwiki.bea.com/download/attachments/7382/Creating a New Physical Data Service.gif

In most cases the XML data will be available at runtime, through a URI.

However, in cases where the XML data is also in your project you can specify an absolute location for the
file. You can also import data from any XML file on your system using an absolute path prepended with
the following:

file:///

For example, on Windows systems you can access an XML file such as Orders.xml from the root C:
directory using the following URI:

file:///c:/Orders.xml

On a UNIX system, you would access such a file with the following URI:

file:///home/Orders.xml

Setting Properties for New Library Functions

This general topic applies to setting properties for all types of library data service functions.

Use the Review New Data Service Operations page to:

• Change the function name.
• Set the Public option (check if you want your function to be available to client applications).
• Set the kind of function (in some cases only one option will be available).
• Set the Primary option (check if you want your function to be the primary of its type).

In some cases this option may not be available.

• Select a common XML namespace for the entire data service.
• Set the target namespace.

The root element, which is read only, is also displayed.

Verifying Data Service Composition

On the Review New Data Service(s) page you can set, confirm or, optionally, change suggested data
service names depending on the type of physical data service you are creating.

Default Physical Data Service Names

The nominated name for a new data service is, wherever possible, the same as the source object name.
In some cases, however, names are adjusted to conform with XML naming conventions.

Document generated by Confluence on Jan 10, 2008 16:26 Page 60

http:/
http:/

XML Name Conversion Considerations

About Automatic Data Service Name Changes

Name conflicts occur when there is a data service of the same name present in the target directory.
Name conflicts are highlighted in red.

There are several situations where you will need to change the name of your data service:

• There already is a data service of the same name in your application.
• You are trying to create multiple data services with the same name.

Data services always have the file extension:

.ds

XML File Import Sample

An XML file import sample can be found in the sample RTLApp directory:

DataServices/Demo

Testing the Import Wizard with an XML Data Source

When you create metadata for an XML data source but do not supply a data source name, you will need
to identify the URI of your data source as a parameter when you execute the data service's read function.

The identification takes the form of:

<uri>/path/filename.xml

where uri is representative of a path or path alias, path represents the directory and filename.xml
represents the filename. The .xml extension is required.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 61

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

How To Create Physical Data Services Based on Database Functions

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Create Physical Data Services Based
on Database Functions

You can create library physical data services based on two types of database functions:

• Functions that are provide with your database.
• Custom functions that you have created and stored in your database.

A library data service created based on database functions is restricted to that type of function.
For example, a library function based on a stored procedure cannot be added to a library data
service that contains database functions.

Topics

• Setting Up the Physical Data Service Creation Wizard
• Setting Up the Import Wizard for Relational Objects
• Providing Database Function Details
• Verifying Data Service Composition

You can use the the physical data service creation wizard to:

• Select relational as the Data Source type.
• Select a data source from available relational sources.
• Choose a database type. Database types listed would be drawn from the list of available database

providers for your data source. By default GenericSQL, the base platform provider, and Pointbase
are provided.

• Select the Database function option.

Setting Up the Physical Data Service Creation Wizard

Physical data services are created using a wizard.

Physical Data Service Creation Wizard

Document generated by Confluence on Jan 10, 2008 16:26 Page 62

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http:/

Starting the Wizard

To start the physical data service creation wizard:

1. Right-click on your dataspace project or any folder in your project.
2. Choose New > Physical Data Service

Creating a New Physical Data Service

Setting Up the Import Wizard for Relational Objects

When importing a relational object available options include the ability to:

1. Set a location for your new data service to be saved within your project.
2. Select a data source from the dropdown listbox.
3. Select the database type for the selected source (PointBase for the sample RDBMS) from the

dropdown listbox.
4. Select among the relational source types listed in the following table.

Types of available relational data sources

Relational Type Description

Tables and Views Displays all public tables and views in the selected
data source.

Stored Procedures Displays all public stored procedures in the
selected data source.

Document generated by Confluence on Jan 10, 2008 16:26 Page 63

http://kmwiki.bea.com/download/attachments/7382/Physical Data Service Creation Wizard.gif
http://kmwiki.bea.com/download/attachments/7382/Creating a New Physical Data Service.gif
http:/

SQL Statement Allows creation of a SQL statement for extracting
relational data from the data source.

Database Function Allows creation of an XQuery function in a library
data service based on build-in or custom database
functions.

1. In the Select a Data Source dialog choose Database function.
2. Click Next.

Importing Database Function Metadata

Providing Database Function Details

1. Select a data source from the dropdown list of data sources available to your server. You should
identify a data source that contains the built-in or user-defined database functions you want to
access through your data services.

2. Enter the information necessary to identify your database function.
3. Complete the function definition including identifying parameters in Source view.

Entering Database Function Information

Database Function Information Dialog Options

Option Action Comment/Reference

Catalog: Enter catalog name, if needed
by your RDBMS

Schema: Enter schema name, if
needed by your RDBMS

Package: Enter package name, if

Document generated by Confluence on Jan 10, 2008 16:26 Page 64

http://kmwiki.bea.com/download/attachments/7382/Entering Database Function Information.gif

needed by your RDBMS

Function name: Database function name Required.

XQuery function XQuery function name Required; will invoke the
database function.

Public Select, if you want to make
your operation public

Default for created XQuery
functions is protected.

Click Next

Review Enter library data service
name

If the name of an existing library
data service is provided.

There is no type checking or other type of verification regarding external function parameters.

Verifying Data Service Composition

On the Review New Data Service(s) page you can set, confirm or, optionally, change suggested data
service names depending on the type of physical data service you are creating.

Default Physical Data Service Names

The nominated name for a new data service is, wherever possible, the same as the source object name.
In some cases, however, names are adjusted to conform with XML naming conventions.

XML Name Conversion Considerations

About Automatic Data Service Name Changes

Name conflicts occur when there is a data service of the same name present in the target directory.
Name conflicts are highlighted in red.

There are several situations where you will need to change the name of your data service:

• There already is a data service of the same name in your application.
• You are trying to create multiple data services with the same name.

Data services always have the file extension:

.ds

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 65

http:/
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

How To Create Physical Data Services Based on SQL Statements

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Create Physical Data Services Based
on SQL Statements

The following topics cover the actions necessary to create physical data services from SQL statements.

Topics

• Setting Up the Physical Data Service Creation Wizard
• Setting Up the Import Wizard for Relational Objects
• Entering a SQL Statement
• Setting Properties for New Library Functions
• Verifying Data Service Composition

Setting Up the Physical Data Service Creation Wizard

Physical data services are created using a wizard.

Physical Data Service Creation Wizard

Starting the Wizard

To start the physical data service creation wizard:

1. Right-click on your dataspace project or any folder in your project.
2. Choose New > Physical Data Service

Document generated by Confluence on Jan 10, 2008 16:26 Page 66

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http:/
http://kmwiki.bea.com/download/attachments/7382/Physical Data Service Creation Wizard.gif

Creating a New Physical Data Service

Setting Up the Import Wizard for Relational Objects

When importing a relational object available options include the ability to:

1. Set a location for your new data service to be saved within your project.
2. Select a data source from the dropdown listbox.
3. Select the database type for the selected source (PointBase for the sample RDBMS) from the

dropdown listbox.
4. Select among the relational source types listed in the following table.

Types of available relational data sources

Relational Type Description

Tables and Views Displays all public tables and views in the selected
data source.

Stored Procedures Displays all public stored procedures in the
selected data source.

SQL Statement Allows creation of a SQL statement for extracting
relational data from the data source.

Database Function Allows creation of an XQuery function in a library
data service based on build-in or custom database
functions.

Entering a SQL Statement

You can build library data service functions based on SQL statements. The XQuery engine uses the
statement to retrieve metadata which is, in turn, formulated into a function that can be used by other
data services or made public.

After selecting the SQL Statement option the next page of the wizard allows you to enter a SELECT
statement and any necessary parameters.

Document generated by Confluence on Jan 10, 2008 16:26 Page 67

http://kmwiki.bea.com/download/attachments/7382/Creating a New Physical Data Service.gif
http:/

SQL Statement Entry Dialog

You can type or paste your SELECT statement into the SELECT statement box, indicating parameters with
a question-mark symbol.

?

Using one of the ALDSP samples, the following SELECT statement can be used:

SELECT * FROM RTLCUSTOMER.CUSTOMER WHERE CUSTOMER_ID = ?

For the parameter field, you would need to select a data type. In this case, CHAR or VARCHAR.

1. Click Add to insert a new row into the parameter table, which indicates a parameter for the SQL
statement.

2. Select Parameter Type from the drop-down combo box.

Notes:
• When you run your query under Test View, you will need to supply the parameter in order

for the query to run successfully.
• ALDSP needs to be able to refer to the columns of the result of your SQL statement by

name. To ensure that this is possible, you should use aliases as needed to ensure that
computed columns indeed have usable names.

• The position of the parameter is significant.

3. In Test view run your query, supplying a parameter such as CUSTOMER3.

Adding Operations to an Existing Data Service

You can add SQL statement or stored procedure operations based on the same data source to an existing
physical data service based a SQL statement.

Add an External Function to an Existing Physical Data Service

Adding a Stored Procedure or SQL Statement to a Data Service

Document generated by Confluence on Jan 10, 2008 16:26 Page 68

Setting Properties for New Library Functions

This general topic applies to setting properties for all types of library data service functions.

Use the Review New Data Service Operations page to:

• Change the function name.
• Set the Public option (check if you want your function to be available to client applications).
• Set the kind of function (in some cases only one option will be available).
• Set the Primary option (check if you want your function to be the primary of its type).

In some cases this option may not be available.

• Select a common XML namespace for the entire data service.
• Set the target namespace.

The root element, which is read only, is also displayed.

Verifying Data Service Composition

On the Review New Data Service(s) page you can set, confirm or, optionally, change suggested data
service names depending on the type of physical data service you are creating.

Default Physical Data Service Names

The nominated name for a new data service is, wherever possible, the same as the source object name.
In some cases, however, names are adjusted to conform with XML naming conventions.

XML Name Conversion Considerations

About Automatic Data Service Name Changes

Document generated by Confluence on Jan 10, 2008 16:26 Page 69

http://kmwiki.bea.com/download/attachments/2166972/Adding a Stored Procedure or SQL Statement to a Data Service.gif
http:/
http:/

Name conflicts occur when there is a data service of the same name present in the target directory.
Name conflicts are highlighted in red.

There are several situations where you will need to change the name of your data service:

• There already is a data service of the same name in your application.
• You are trying to create multiple data services with the same name.

Data services always have the file extension:

.ds

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 70

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

How To Create Physical Data Services from Relational Tables and Views

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Create Physical Data Services from
Relational Tables and Views

You can use the the physical data service creation wizard to:

• Select relational as the Data Source type.
• Select a data source from available relational sources.
• Choose a Database Type. For example, ALDSP samples use the Pointbase database.
• Select the Table and Views option.

Topics

• Setting Up the Physical Data Service Creation Wizard
• ° Starting the Wizard
• Setting Up the Import Wizard for Relational Objects
• Selecting SQL Table and View Objects for Import
• ° Filtering SQL Objects
• Setting Properties for New Data Service Operations
• ° Default Naming Conventions
• Verifying Data Service Composition
• ° Default Physical Data Service Names

° About Automatic Data Service Name Changes

Setting Up the Physical Data Service Creation Wizard

Physical data services are created using a wizard.

Physical Data Service Creation Wizard

Document generated by Confluence on Jan 10, 2008 16:26 Page 71

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http:/
http://kmwiki.bea.com/download/attachments/7382/Physical Data Service Creation Wizard.gif

Starting the Wizard

To start the physical data service creation wizard:

1. Right-click on your dataspace project or any folder in your project.
2. Choose New > Physical Data Service

Creating a New Physical Data Service

Setting Up the Import Wizard for Relational Objects

When importing a relational object available options include the ability to:

1. Set a location for your new data service to be saved within your project.
2. Select a data source from the dropdown listbox.
3. Select the database type for the selected source (PointBase for the sample RDBMS) from the

dropdown listbox.
4. Select among the relational source types listed in the following table.

Types of available relational data sources

Relational Type Description

Tables and Views Displays all public tables and views in the selected
data source.

Stored Procedures Displays all public stored procedures in the
selected data source.

SQL Statement Allows creation of a SQL statement for extracting
relational data from the data source.

Database Function Allows creation of an XQuery function in a library
data service based on build-in or custom database
functions.

Selecting SQL Table and View Objects for Import

Document generated by Confluence on Jan 10, 2008 16:26 Page 72

http://kmwiki.bea.com/download/attachments/7382/Creating a New Physical Data Service.gif
http:/
http:/

To create a physical data service based on a relational table or view:

1. Select the Tables and Views option
2. Click Next.

A list of available database table and view SQL objects appears.

Objects are grouped based on the relational data sources catalog and/or schema.

In the example of an RTLCUSTOMER catalog, the ADDRESS and CUSTOMER tables both become physical
data services.

Database-specific Catalog and Schema Considerations

Simply check the desired objects or their container, which will select all enclosed tables or views.

Table and View Objects Selected for Import

If you click on an individual object such as ADDRESS or CUSTOMER, information describing the
database's primary key(s), column name, type and nullability appears. For example the CUSTOMER table
contains a CUSTOMER_ID field of type VARCHAR. That column is not nullable, meaning that it must be
supplied with any updates.

Physical Data Service Properties

Unable to render {include} Couldn't find a page to include called: Filtering SQL Objects

Setting Properties for New Data Service Operations

Each new entity data service is created with a Read function that contains all the metadata elements
identified during data service creation. It can be thought of as comparable to the following construct in

Document generated by Confluence on Jan 10, 2008 16:26 Page 73

http://kmwiki.bea.com/download/attachments/2166972/Physical Data Service Properties.gif
http:/

the relational world:

select * from <table>

Use the Properties dialog to:

• Optionally modify the operation name.

• Set the Public option (check if you want your function to be available to client applications).
• Set the kind of operation (in some cases only Read will be available).
• Set the Primary option (check if you want your function to be the primary of its type).

In some cases this option may not be available.

• Select a common XML namespace for the entire data service or individual target namespaces for
specific operations.

• Set the target namespace.

The root element, which is read-only, is also displayed.

Initially the root element name matches the name of the data service.

Setting Properties for New Data Service Functions

Default Naming Conventions

There are several default naming conventions associated with new data services:

• When a table, view, or other data source object is the source for a data service, the nominated
name is wherever possible the same as the source object name. In some cases, however, names
are adjusted to conform with XML naming conventions.

• Initially the root element name matches the name of the data service.

XML Name Conversion Considerations

Verifying Data Service Composition

Document generated by Confluence on Jan 10, 2008 16:26 Page 74

http://kmwiki.bea.com/download/attachments/7382/Setting Properties for New Data Service Functions.gif
http:/

On the Review New Data Service(s) page you can set, confirm or, optionally, change suggested data
service names depending on the type of physical data service you are creating.

Default Physical Data Service Names

The nominated name for a new data service is, wherever possible, the same as the source object name.
In some cases, however, names are adjusted to conform with XML naming conventions.

XML Name Conversion Considerations

About Automatic Data Service Name Changes

Name conflicts occur when there is a data service of the same name present in the target directory.
Name conflicts are highlighted in red.

There are several situations where you will need to change the name of your data service:

• There already is a data service of the same name in your application.
• You are trying to create multiple data services with the same name.

Data services always have the file extension:

.ds

Database-specific Catalog and Schema
Considerations

Database vendors variously support database catalogs and schemas.

Vendor Support for Catalog and Schema Objects

Vendor Catalog Schema

Oracle Does not support catalogs. When
specifying database objects, the
catalog field should be left blank.

Typically the name of an Oracle
user ID.

DB2 If specifying database objects,
the catalog field should be left
blank.

Schema name corresponds to
the catalog owner of the
database, such as db2admin.

Sybase Catalog name is the database
name.

Schema name corresponds to
the database owner.

Microsoft SQL Server Catalog name is the database Schema name corresponds to

Document generated by Confluence on Jan 10, 2008 16:26 Page 75

name. the catalog owner, such as dbo.
The schema name must match
the catalog or database owner
for the database to which you
are connected.

Informix Does not support catalogs. If
specifying database objects, the
catalog field should be left blank.

Not needed.

PointBase PointBase database systems do
not support catalogs. If
specifying database objects, the
catalog field should be left blank.

Schema name corresponds to a
database name.

XML Name Conversion Considerations

When a source name is encountered that does not fit within XML naming conventions, default generated
names are converted according to rules described by the SQLX standard. Generally speaking, an invalid
XML name character is replaced by its hexadecimal escape sequence (having the form xUUUU).

For additional details see section 9.1 of the W3C draft version of this standard:

http://www.sqlx.org/SQL-XML-documents/5WD-14-XML-2003-12.pdf

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 76

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

How To Create Physical Data Services from Stored Procedures

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Create Physical Data Services from
Stored Procedures

Stored procedures are database objects that group an executable set of SQL and native database
programming language statements together to perform a specific task locally. Advanced DBMS systems
utilize stored procedures to improve query performance, manage and schedule data operations, enhance
security, and so forth.

In ALDSP you can, for specifically supported databases, create physical data services based on stored
procedures.

It is often convenient to leverage independent routines as part of managing enterprise information
through a data service. An obvious example would be to leverage standalone update or security functions
through data services. Such functions have no XML type; in fact, they typically return nothing (or void).

Stored procedures are very often side-effecting from the perspective of the data service, since they
perform internal operations on data. In such cases all you need to do is identify the stored procedures as
a data service procedure when your physical data service is created.

After you have identified the stored procedures that you want to add to your data service, you also have
an opportunity to identify which of these should be identified as data service procedures.

Each stored procedure that is imported becomes a separate data service. In other words, if you have five
stored procedures, you will create five data services.

References

• Configuration Information
• Terms Commonly Used When Discussing Stored Procedures
• For details on creating and managing stored procedures in your database, see the

documentation provided with the DBMS.

Topics

• Importing Stored Procedure Metadata Using the Physical Data Service Creation Wizard
• Setting Up the Physical Data Service Creation Wizard
• Setting Up the Import Wizard for Relational Objects
• Selecting Stored Procedure Objects for Import

Document generated by Confluence on Jan 10, 2008 16:26 Page 77

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/platform/suppconfigs/aqualogic/aldsp30.html

• Configuring Selected Stored Procedures
• Stored Procedure Configuration Reference
• Setting Properties for New Data Service Operations
• Verifying Data Service Composition
• Adding Operations to an Existing Data Service
• Support for Stored Procedures in Popular Databases

Importing Stored Procedure Metadata Using the Physical Data
Service Creation Wizard

The following topics cover the actions necessary to create physical data services from relational stored
procedures.

Setting Up the Physical Data Service Creation Wizard

Physical data services are created using a wizard.

Physical Data Service Creation Wizard

Starting the Wizard

To start the physical data service creation wizard:

1. Right-click on your dataspace project or any folder in your project.
2. Choose New > Physical Data Service

Creating a New Physical Data Service

Document generated by Confluence on Jan 10, 2008 16:26 Page 78

http:/
http://kmwiki.bea.com/download/attachments/7382/Physical Data Service Creation Wizard.gif

Setting Up the Import Wizard for Relational Objects

When importing a relational object available options include the ability to:

1. Set a location for your new data service to be saved within your project.
2. Select a data source from the dropdown listbox.
3. Select the database type for the selected source (PointBase for the sample RDBMS) from the

dropdown listbox.
4. Select among the relational source types listed in the following table.

Types of available relational data sources

Relational Type Description

Tables and Views Displays all public tables and views in the selected
data source.

Stored Procedures Displays all public stored procedures in the
selected data source.

SQL Statement Allows creation of a SQL statement for extracting
relational data from the data source.

Database Function Allows creation of an XQuery function in a library
data service based on build-in or custom database
functions.

Selecting Stored Procedure Objects for Import

To create physical data services based on stored procedures:

1. Select the Stored Procedures option.
2. Click Next.

A list of available stored procedures appears.

Objects are grouped based on the relational data sources catalog and/or schema.

Document generated by Confluence on Jan 10, 2008 16:26 Page 79

http://kmwiki.bea.com/download/attachments/7382/Creating a New Physical Data Service.gif
http:/
http:/

You can use wildcards to support importing metadata on internal stored procedures. For example,
entering the following string as a stored procedure filter:

%TRIM%

retrieves metadata on the system stored procedure:

STANDARD.TRIM

In such a situation you may want to make a "nonsense" entry in the Table/View field in order to avoid
retrieving all tables and views in the database.

Database-specific Catalog and Schema Considerations

Simply check the desired objects or their container, which will select all enclosed stored procedures.

Stored Procedure Objects Selected for Import

Unable to render {include} Couldn't find a page to include called: Filtering SQL Objects

Configuring Selected Stored Procedures

When ALDSP introspects a stored procedure, the process may not be complete. For example, a required
item of information such as a schema file or type cannot be determined. When such introspection
problems occur, the stored procedure in question is highlighted in red. This setting means that additional
information about the procedure must be provided by the user before the data service can be created.

Your goal in correcting an "<unknown>" condition associated with a stored procedure is to bring the
metadata obtained by the import wizard into conformance with the actual metadata of the stored
procedure. In some cases this will be by correcting the location of the return type. In others you will need
to adjust the type associated with an element of the procedure or add elements that were not found
during the initial introspection of the stored procedure.

Configure Stored Procedure Dialog

When several stored procedures are selected at the same time for physical data service creation, all the

Document generated by Confluence on Jan 10, 2008 16:26 Page 80

http://kmwiki.bea.com/download/attachments/7382/Configure Stored Procedure Dialog.gif

selected procedures must be adequately configured before any data services based on the procedures
can be created.

An alternative to configuring a incomplete stored procedure before proceeding is to use the wizard
Back button to de-select the procedure in question.

Here are the steps involved in editing a set of stored procedures that will be imported as data services:

1. Scroll through the list of selected procedures.
2. For each procedure in red type, use the Edit button to correct the configuration settings.
3. Make any other changes. (In some cases the data architect may know of requirements that are not

identified during the introspection process.)
4. Click Next when all the procedures in the selected set are valid.

If a stored procedure has only one return value and the value is either simple type or a RowSet
which is mapping to an existing schema, no schema file is created. This stored procedure by
definition become a library data service.

Editing Stored Procedure Configurations

Stored procedure configuration can be complicated. An understanding of the characteristics of the stored
procedure in your database is an essential prerequisite. This section describes stored procedure options in
detail.

Stored Procedure Metadata Editing Options

Document generated by Confluence on Jan 10, 2008 16:26 Page 81

Once in stored procedure configuration edit mode, options are available in three general areas:

• Parameters. Stored procedures requiring complex parameters can only be turned into data
services once a schema has been identified. In addition, retrieved information on parameters
required by a stored procedure may be incorrect. For example, additional parameters may be
needed.

• Return type. Stored procedures returning complex data require a local schema to handle data
returned from the call. In addition, retrieved information on stored procedure return types may be
incorrect or it may be the case that no returned data is wanted.

• Row set. A row set identifies a schema and its associated library data service to hold information
returned by a stored procedure. In some cases multiple row sets may need to be specified.

Stored Procedure Editing Options

Category Option Settings Discussion

Parameters Name Parameter name Editable.

Mode on/out/inout

Type XQuery type May be derived from the
stored procedure.
Primative XQuery type
settings are also
available.

Schema location XSD file Schema file must be in
the project.

Return type Type XQuery type or global
type from selected
schema

Schema location XSD file Schema file must be in
the project.

Row set Type Data service Derived from selected
schema.

Schema location XSD file Schema file must be in
the project.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Stored Procedure Configuration Reference

The following topics provide detailed information regarding various configuration options associated with
creating data services based on stored procedures.

In Mode, Out Mode, Inout Mode

In, Out, and Inout mode settings determine how a parameter passed to a stored procedure is handled.

Document generated by Confluence on Jan 10, 2008 16:26 Page 82

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http:/

Parameter Mode Effect

In Parameter is passed by reference or value.

Inout Parameter is passed by reference.

Out Parameter is passed by reference. However the
parameter being passed is first initialized to a
default value. If your stored procedure has an OUT
parameter requiring a complex element, you may
need to provide a schema.

Procedure Profile

Each element in a stored procedure is associated with a type. If the item is a simple type, you can simply
choose from the pop-up list of types. If the type is complex, you may need to supply an appropriate
schema. Click on the schema location button and either enter a schema pathname or browse to a
schema. The schema must reside in your application.

After selecting a schema, both the path to the schema file and the URI appear.

Complex Parameter Types

Complex parameter types are supported under only three conditions:

• As the output parameter
• As the Return type
• As a rowset

About Rowsets

A rowset type is a complex type.

The rowset type contains a sequence of a repeatable elements (for example called CUSTOMER) with the
fields of the rowset.

In some cases the wizard can automatically detect the structure of a rowset and create an element
structure. However, if the structure is unknown, you will need to provide it.

All rowset-type definitions must conform to this structure.

The name of the rowset type can be:

• The parameter name (in case of a input/output or output only parameter).
• An assigned name.
• The referenced element name (result rowsets) in a user-specified schema.

Not all databases support rowsets. In addition, JDBC does not report information related to defined

Document generated by Confluence on Jan 10, 2008 16:26 Page 83

rowsets.

Using Rowset Information

In order to create data services from stored procedures that use rowset information, you need to supply
the correct ordinal (matching number) and a schema. If the schema has multiple global elements, select
the one you want from the Type column. Otherwise the type used match the first global element in your
schema file.

The order of rowset information is significant; it must match the order in your data source. Use the Move
Up / Move Down commands to adjust the ordinal number assigned to the rowset.

XML types in data services generated from stored procedures do not display native types.
However, you can view the native type in the Source editor; it is located in the pragma section.

Stored Procedure Version Support

Only the most recent version of a particular stored procedure can be imported into ALDSP. For this
reason you cannot identify a stored procedure version number when creating a physical data service
based on a stored procedure. Similarly, adding a version number for your stored procedure in the Source
editor will result in a query exception.

Supporting Stored Procedures with Nullable Input Parameter(s)

If you know that an input parameter of a stored procedure is nullable (can accept null values), you can
change the signature of the function in Source View to make such parameters optional by adding a
question mark at end of the parameter.

For example (question-mark (?) shown in bold):

function myProc($arg1 as xs:string) ...

would become:

function myProc($arg1 as xs:string?) ...

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Setting Properties for New Data Service Operations

Each new entity data service is created with a Read function that contains all the metadata elements
identified during data service creation. It can be thought of as comparable to the following construct in
the relational world:

Document generated by Confluence on Jan 10, 2008 16:26 Page 84

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html
http:/

select * from <table>

Use the Properties dialog to:

• Optionally modify the operation name.

• Set the Public option (check if you want your function to be available to client applications).
• Set the kind of operation (in some cases only Read will be available).
• Set the Primary option (check if you want your function to be the primary of its type).

In some cases this option may not be available.

• Select a common XML namespace for the entire data service or individual target namespaces for
specific operations.

• Set the target namespace.

The root element, which is read-only, is also displayed.

Initially the root element name matches the name of the data service.

Setting Properties for New Data Service Functions

Default Naming Conventions

There are several default naming conventions associated with new data services:

• When a table, view, or other data source object is the source for a data service, the nominated
name is wherever possible the same as the source object name. In some cases, however, names
are adjusted to conform with XML naming conventions.

• Initially the root element name matches the name of the data service.

XML Name Conversion Considerations

Verifying Data Service Composition

On the Review New Data Service(s) page you can set, confirm or, optionally, change suggested data

Document generated by Confluence on Jan 10, 2008 16:26 Page 85

http://kmwiki.bea.com/download/attachments/7382/Setting Properties for New Data Service Functions.gif
http:/

service names depending on the type of physical data service you are creating.

Default Physical Data Service Names

The nominated name for a new data service is, wherever possible, the same as the source object name.
In some cases, however, names are adjusted to conform with XML naming conventions.

XML Name Conversion Considerations

About Automatic Data Service Name Changes

Name conflicts occur when there is a data service of the same name present in the target directory.
Name conflicts are highlighted in red.

There are several situations where you will need to change the name of your data service:

• There already is a data service of the same name in your application.
• You are trying to create multiple data services with the same name.

Data services always have the file extension:

.ds

Adding Operations to an Existing Data Service

You can add SQL statement or stored procedure operations based on the same data source to an existing
physical data service based a stored procedure.

Add an External Function to an Existing Physical Data Service

Adding a Stored Procedure or SQL Statement to a Data Service

Document generated by Confluence on Jan 10, 2008 16:26 Page 86

http:/

Support for Stored Procedures in Popular Databases

Each database vendor approaches stored procedures differently. ALDSP support limitations generally
reflect JDBC driver limitations.

General Restrictions

There are several restrictions that apply to stored procedures generally:

• ALDSP does not support rowset as an input parameter.
• Only data types supported by ALDSP can be imported as part of stored procedures.

For a list of database types supported by ALDSP XQuery-SQL Mapping Reference

Oracle Stored Procedure Support

The following table describes data service creation support for Oracle stored procedures.

Term Usage

Procedure types
• Procedures
• Functions
• Packages

Parameter modes
• Input only
• Output only
• Input/Output
• None

Parameter data types Any Oracle PL/SQL data type except:

• ROWID

Document generated by Confluence on Jan 10, 2008 16:26 Page 87

http://kmwiki.bea.com/download/attachments/2166972/Adding a Stored Procedure or SQL Statement to a Data Service.gif
http:/
http://edocs.bea.com/aldsp/docs25/xquery/xquery_sql_mapping_reference.html

• UROWID

When defining function signatures, note
that the Oracle %TYPE and %ROWTYPE
types must be translated to XQuery types
that match the true types underlying the
stored procedure's %TYPE and %ROWTYPE
declarations. %TYPE declarations map to
simple types; %ROWTYPE declarations
map to rowset types.

Data returned from a function Oracle supports returning PL/SQL data types such
as NUMBER, VARCHAR, %TYPE, and %ROWTYPE
as parameters.

Comments The following identifies limitations associated with
importing Oracle database procedure metadata.

• The data service creation process can only
detect the data structure for cursors that
have a binding PL/SQL record. For a dynamic
cursor you need to manually specify the
cursor schema.

• Data from a PL/SQL record structure cannot
be retrieved due to an Oracle JDBC driver
limitations.

• The Oracle JDBC driver supports rowset
output parameters only if they are defined as
reference cursors in a package.

• The Oracle JDBC driver does not support
NATURALN and POSITIVEN as output only
parameters.

Sybase Stored Procedure Support

The following table describes data service creation support for Sybase stored procedures.

Term Usage

Procedure types
• Procedures
• Grouped procedures
• Functions are categorized as a scalar or inline

table-valued and multi-statement
table-valued function. Inline table-valued and
multi-statement table-valued functions return
rowsets.

Parameter modes
• Input only
• Output only

Parameter data types For a list of database types supported by ALDSP

Document generated by Confluence on Jan 10, 2008 16:26 Page 88

see the XQuery-SQL Mapping Reference.

Data returned from a function Sybase functions supports returning a single value
or a table. Procedures return data in the following
ways:

• As output parameters, which can return
either data (such as an integer or character
value).

• As return codes, which are always an integer
value.

• As a rowset for each SELECT statement
contained in the stored procedure or any
other stored procedures called by that stored
procedure.

• As a global cursor that can be referenced
outside the stored procedure supports,
returning single value or multiple values.

Comments The following identifies limitations associated with
importing Sybase database procedure metadata:

• The Sybase JDBC driver does not support
input/output or output only parameters that
are rowsets (including cursor variables).

• The Jconnect driver and some versions of the
BEA Sybase driver cannot detect the
parameter mode of the procedure. In such a
case, the return mode will be UNKNOWN,
preventing importation of the metadata. To
proceed, you need to set the correct mode.

IBM DB2 Stored Procedure Support

The following table describes data service creation support for IBM DB2 stored procedures.

Term Usage

Procedure types
• Procedures
• Functions
• Packages where each function is also

categorized as a scalar, column, row, or table
function.
Here are additional details on function
categorization:

• A scalar function returns a single-valued
answer each time it is called.

• A column function is one which conceptually
is passed a set of like values (a column) and
returns a single-valued answer (AVG()).

• A row function is a function that returns one
row of values.

• A table function is a function that returns a

Document generated by Confluence on Jan 10, 2008 16:26 Page 89

http://edocs.bea.com/aldsp/docs30/xquery/xquery_sql_mapping_reference.html

table to the SQL statement that referenced it.

Parameter modes
• Input only
• Output only
• Input/output

Parameter data types For a list of database types supported by ALDSP
see the XQuery-SQL Mapping Reference. For a list
of database types supported by ALDSP see the
XQuery-SQL Mapping Reference.

Data returned from a function DB2 supports returning a single value, a row of
values, or a table.

Comments The following identifies limitations associated with
creating physical data services based on DB2
stored procedures:

• Column type functions are not supported.
• Rowsets as output parameters are not

supported.
• The DB2 JDBC driver supports float, double,

and decimal input only and output only
parameters. Float, double, and decimal data
types are not supported as input/output
parameters.

Microsoft SQL Server Stored Procedure Support

The following table describes data service creation support for Microsoft stored procedures.

Term Usage

Procedure types SQL Server supports procedures, grouped
procedures, and functions. Each function is also
categorized as a scalar or inline table-valued and
multi-statement table-valued function. Inline
table-valued and multi-statement table-valued
functions return rowsets.

Parameter modes SQL Server supports input only and output only
parameters.

Parameter data types SQL Server procedures/functions support any SQL
Server data type as a parameter. For a list of
database types supported by ALDSP see the
XQuery-SQL Mapping Reference.

Data returned from a function SQL Server functions supports returning a single
value or a table. Data can be returned in the
following ways:

• As output parameters, which can return
either data (such as an integer or character

Document generated by Confluence on Jan 10, 2008 16:26 Page 90

http://edocs.bea.com/aldsp/docs30/xquery/xquery_sql_mapping_reference.html
http://edocs.bea.com/aldsp/docs30/xquery/xquery_sql_mapping_reference.html
http://edocs.bea.com/aldsp/docs30/xquery/xquery_sql_mapping_reference.html

value) or a cursor variable (cursors are
rowsets that can be retrieved one row at a
time).

• As return codes, which are always an integer
value.

• As a rowset for each SELECT statement
contained in the stored procedure or any
other stored procedures called by that stored
procedure.

Comments The following identifies limitations associated with
importing SQL Server procedure metadata.

• Result sets returned from SQL server (as well
as those returned from Sybase) are not
detected automatically. Instead you will need
to manually add parameters as a result.

• The Microsoft SQL Server JDBC driver does
not support rowset input/output or output
only parameters (including cursor variables).

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 91

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

How To Create SOAP Handlers for Imported WSDLs

This page last changed on Nov 27, 2007 by tkatz.

Creating SOAP Handlers for Imported WSDLs

When you import metadata from web services for AquaLogic Data Services Platform, you can create
SOAP handler for intercepting SOAP requests and responses. The handler will be invoked when a web
service method is called. You can chain handlers that are invoked one after another in a specific sequence
by defining the sequence in a configuration file.

To create and chain handlers, the following steps are involved:

1. Create a Java Class Implementing the Generic Handler Interface
2. Compile your intercept handler into a JAR file
3. Define a Configuration File
4. Define the Interceptor Configuration
5. Concluding Actions

Create a Java Class Implementing the Generic Handler
Interface

The GenericHandler interface is:

javax.xml.rpc.handler.GenericHandler

Code Sample: Intercept Handler

The following code illustrates an example of implementing a generic handler.

Example:
Intercept Handler
For detailed information on how to write handlers, refer to Creating and Using Client-Side SOAP
Message Handlers in Weblogic 9.2 documentation.

Compile your intercept handler into a JAR file.

The steps are to compile your intercept handler and JAR the class file.

Define a Configuration File

The configuration file specifies the handler chain and the order in which the handlers will be invoked.

Document generated by Confluence on Jan 10, 2008 16:26 Page 92

http://kmwiki.bea.com/download/attachments/7757/Intercept+Handler.txt?version=1
http://e-docs.bea.com/wls/docs92/webserv/client.html#wp226934
http://e-docs.bea.com/wls/docs92/webserv/client.html#wp226934

Configuration File Schema
XML Schema for the Client-Side Handler Configuration File

The following is an example of the handler chain configuration. The handler-class attribute specifies the
fully-qualified name of the
handler.

Code Sample: Handler Chain Configuration

<weblogic-wsee-clientHandlerChain
xmlns="http://www.bea.com/ns/weblogic/90"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:j2ee="http://java.sun.com/xml/ns/j2ee">
<handler>

<j2ee:handler-name>sampleHandler</j2ee:handler-name>
<j2ee:handler-class>WShandler.WShandler</j2ee:handler-class>
<j2ee:init-param>

<j2ee:param-name>ClientParam1</j2ee:param-name>
<j2ee:param-value>value1</j2ee:param-value>

</j2ee:init-param>
</handler>
</weblogic-wsee-clientHandlerChain>

Define the Interceptor Configuration

In your ALDSP application, define the interceptor configuration for the method in the data service to
which you want to attach the handler.

Code Sample: Intercept Configuration

datasrvc:Intercept Configuration

In the attached file the aliasName attribute specifies the name of the handler chain to be invoked and the
fileName attribute specifies the location of the configuration file.

Concluding Actions

• Place the JAR file that was based on the intercept handler (created above) in your project's
dsp-inf/lib folder.

• Compile and run your application. Your handlers will be invoked in the order specified in the
configuration file.

Document generated by Confluence on Jan 10, 2008 16:26 Page 93

http://e-docs.bea.com/wls/docs92/webserv/client.html#wp215197
http://kmwiki.bea.com/download/attachments/7757/Intercept+Configuration.txt?version=1

Selecting SQL Table and View Objects for Import

This page last changed on Dec 03, 2007 by tkatz.

Selecting SQL Table and View Objects for Import

To create a physical data service based on a relational table or view:

1. Select the Tables and Views option
2. Click Next.

A list of available database table and view SQL objects appears.

Objects are grouped based on the relational data sources catalog and/or schema.

In the example of an RTLCUSTOMER catalog, the ADDRESS and CUSTOMER tables both become physical
data services.

Database-specific Catalog and Schema Considerations

Simply check the desired objects or their container, which will select all enclosed tables or views.

Table and View Objects Selected for Import

If you click on an individual object such as ADDRESS or CUSTOMER, information describing the
database's primary key(s), column name, type and nullability appears. For example the CUSTOMER table
contains a CUSTOMER_ID field of type VARCHAR. That column is not nullable, meaning that it must be
supplied with any updates.

Physical Data Service Properties

Document generated by Confluence on Jan 10, 2008 16:26 Page 94

http:/
http://kmwiki.bea.com/download/attachments/2166972/Physical Data Service Properties.gif

Document generated by Confluence on Jan 10, 2008 16:26 Page 95

Selecting Stored Procedure Objects for Import

This page last changed on Oct 31, 2007 by tkatz.

Selecting Stored Procedure Objects for Import

To create physical data services based on stored procedures:

1. Select the Stored Procedures option.
2. Click Next.

A list of available stored procedures appears.

Objects are grouped based on the relational data sources catalog and/or schema.

You can use wildcards to support importing metadata on internal stored procedures. For example,
entering the following string as a stored procedure filter:

%TRIM%

retrieves metadata on the system stored procedure:

STANDARD.TRIM

In such a situation you may want to make a "nonsense" entry in the Table/View field in order to avoid
retrieving all tables and views in the database.

Database-specific Catalog and Schema Considerations

Simply check the desired objects or their container, which will select all enclosed stored procedures.

Stored Procedure Objects Selected for Import

Document generated by Confluence on Jan 10, 2008 16:26 Page 96

http:/

Selecting Web Service Operations to Import

This page last changed on Dec 13, 2007 by tkatz.

Selecting Web Service Operations to Import

From the list of available webservice operations grouped by serviceName and portname, choose the
operation that you want to turn into data service operation.

Selecting Web Service Operations

During the import process you will be choosing the operations you want to import, setting names
and other characteristics. These choices will determine whether a Library or Entity data service
will be created. Thus a familiarity with the operations of your Web service is needed.

Adding Operations to an Existing Data Service

You can add operations to an existing physical data service based a web service by adding an external
function from the same WSDL.

Add an External Function to an Existing Physical Data Service

Adding an External Operation to a Data Service

Steps Involved in Selecting Web Service Operations

Document generated by Confluence on Jan 10, 2008 16:26 Page 97

http:/
http://kmwiki.bea.com/download/attachments/7382/Selecting Web Service Operations to Import.gif
http://kmwiki.bea.com/download/attachments/2166972/Adding an External Operation to a Data Service.gif

1. Select the operations you want to turn into data services or library data service functions.
2. Click Next.

Document generated by Confluence on Jan 10, 2008 16:26 Page 98

Setting Characteristics of Imported Web Service Operations

This page last changed on Nov 09, 2007 by tkatz.

Setting Characteristics of Imported Web Service Operations

The following table describes available options for each operation you have selected to import.

Options Available for Imported Web Service Operations

Characteristic Options Comment

Operation name adjust as needed You can change the nominated
name to any legal XML name
using the built-in line editor.

Public Boolean By default Web service-derived
operations are protected. A
checkbox allows you to mark any
function or procedure as public.
(Once in a data service,
operations can be marked
private as needed.)

Kind
• Read
• Create
• Update
• Delete
• Library function
• Library procedure

Operations determined to return
void are automatically marked as
library procedures.
You can change the nominated
function type. wizard attempts to
correctly set the function type
dur being imported.

Operations marked as
create, update, or delete
functions will be
packaged in an Entity
data service. Otherwise,
the resulting data service
will be of type Library.

is Primary Boolean Not applicable for web service
operations.

Root Element Root element of the operation For complex data types the
topmost element is listed. In
case of RPC-style web services
the top-most generated element
is listed.

Target Namespace imported value This represents the target
namespace of the generated
data service.

Document generated by Confluence on Jan 10, 2008 16:26 Page 99

http:/

Setting Characteristics of Imported Web Service Operations

Document generated by Confluence on Jan 10, 2008 16:26 Page 100

http://kmwiki.bea.com/download/attachments/7382/setting characteristics of imported web service operations.gif

Setting Properties for New Data Service Operations

This page last changed on Dec 12, 2007 by tkatz.

Setting Properties for New Data Service Operations

Each new entity data service is created with a Read function that contains all the metadata elements
identified during data service creation. It can be thought of as comparable to the following construct in
the relational world:

select * from <table>

Use the Properties dialog to:

• Optionally modify the operation name.

• Set the Public option (check if you want your function to be available to client applications).
• Set the kind of operation (in some cases only Read will be available).
• Set the Primary option (check if you want your function to be the primary of its type).

In some cases this option may not be available.

• Select a common XML namespace for the entire data service or individual target namespaces for
specific operations.

• Set the target namespace.

The root element, which is read-only, is also displayed.

Initially the root element name matches the name of the data service.

Setting Properties for New Data Service Functions

Default Naming Conventions

There are several default naming conventions associated with new data services:

• When a table, view, or other data source object is the source for a data service, the nominated
name is wherever possible the same as the source object name. In some cases, however, names
are adjusted to conform with XML naming conventions.

Document generated by Confluence on Jan 10, 2008 16:26 Page 101

http:/
http://kmwiki.bea.com/download/attachments/7382/Setting Properties for New Data Service Functions.gif

• Initially the root element name matches the name of the data service.

XML Name Conversion Considerations

Document generated by Confluence on Jan 10, 2008 16:26 Page 102

Setting Properties for New Library Functions

This page last changed on Dec 03, 2007 by tkatz.

Setting Properties for New Library Functions

This general topic applies to setting properties for all types of library data service functions.

Use the Review New Data Service Operations page to:

• Change the function name.
• Set the Public option (check if you want your function to be available to client applications).
• Set the kind of function (in some cases only one option will be available).
• Set the Primary option (check if you want your function to be the primary of its type).

In some cases this option may not be available.

• Select a common XML namespace for the entire data service.
• Set the target namespace.

The root element, which is read only, is also displayed.

Document generated by Confluence on Jan 10, 2008 16:26 Page 103

http:/

Setting the Data Service Name

This page last changed on Oct 31, 2007 by tkatz.

Setting the Data Service Name

You can change the name of your data service to any legal name that does not conflict with another
name in the current data space.

In addition, if there already is a data service in your project based on the same WSDL an option to add
the new operation to the existing data service appears.

When importing a web service operation that itself has one or more dependent (or referenced)
schemas, the wizard creates second-level schemas according to internal naming conventions. If
several operations reference the same secondary schemas, the generated name for the secondary
schema may change if you re-import or synchronize with the Web service.

Document generated by Confluence on Jan 10, 2008 16:26 Page 104

http:/

Setting Up the Import Wizard for Relational Objects

This page last changed on Dec 03, 2007 by tkatz.

Setting Up the Import Wizard for Relational Objects

When importing a relational object available options include the ability to:

1. Set a location for your new data service to be saved within your project.
2. Select a data source from the dropdown listbox.
3. Select the database type for the selected source (PointBase for the sample RDBMS) from the

dropdown listbox.
4. Select among the relational source types listed in the following table.

Types of available relational data sources

Relational Type Description

Tables and Views Displays all public tables and views in the selected
data source.

Stored Procedures Displays all public stored procedures in the
selected data source.

SQL Statement Allows creation of a SQL statement for extracting
relational data from the data source.

Database Function Allows creation of an XQuery function in a library
data service based on build-in or custom database
functions.

Document generated by Confluence on Jan 10, 2008 16:26 Page 105

http:/

Setting Up the Import Wizard for Tables and Views

This page last changed on Sep 12, 2007 by tkatz.

Setting Up the Import Wizard for Tables and Views

Steps for Setting Tables and Views Option

1. Right-click on the dataspace of choice.
2. Choose:New > Physical Data Service
3. Accept or change the save location.
4. Choose Relational as the Data Source type.
5. Select a data source from among available relational sources.

Accessing a Relational Data Source

6. Choose a Database Type. For example, the ALDSP samples use Pointbase.
7. Select the Tables and Views option.

Importing Tables and Views Dialog

Document generated by Confluence on Jan 10, 2008 16:26 Page 106

http:/
http://kmwiki.bea.com/download/attachments/7382/importing tables and views dialog.gif

Setting Up the Physical Data Service Creation Wizard

This page last changed on Dec 03, 2007 by tkatz.

Setting Up the Physical Data Service Creation Wizard

Physical data services are created using a wizard.

Physical Data Service Creation Wizard

Starting the Wizard

To start the physical data service creation wizard:

1. Right-click on your dataspace project or any folder in your project.
2. Choose New > Physical Data Service

Creating a New Physical Data Service

Document generated by Confluence on Jan 10, 2008 16:26 Page 107

http:/
http://kmwiki.bea.com/download/attachments/7382/Physical Data Service Creation Wizard.gif
http://kmwiki.bea.com/download/attachments/7382/Creating a New Physical Data Service.gif

Stored Procedure Configuration Reference

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Stored Procedure Configuration Reference

The following topics provide detailed information regarding various configuration options associated with
creating data services based on stored procedures.

In Mode, Out Mode, Inout Mode

In, Out, and Inout mode settings determine how a parameter passed to a stored procedure is handled.

Parameter Mode Effect

In Parameter is passed by reference or value.

Inout Parameter is passed by reference.

Out Parameter is passed by reference. However the
parameter being passed is first initialized to a
default value. If your stored procedure has an OUT
parameter requiring a complex element, you may
need to provide a schema.

Procedure Profile

Each element in a stored procedure is associated with a type. If the item is a simple type, you can simply
choose from the pop-up list of types. If the type is complex, you may need to supply an appropriate
schema. Click on the schema location button and either enter a schema pathname or browse to a
schema. The schema must reside in your application.

After selecting a schema, both the path to the schema file and the URI appear.

Complex Parameter Types

Complex parameter types are supported under only three conditions:

• As the output parameter
• As the Return type
• As a rowset

About Rowsets

Document generated by Confluence on Jan 10, 2008 16:26 Page 108

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http:/

A rowset type is a complex type.

The rowset type contains a sequence of a repeatable elements (for example called CUSTOMER) with the
fields of the rowset.

In some cases the wizard can automatically detect the structure of a rowset and create an element
structure. However, if the structure is unknown, you will need to provide it.

All rowset-type definitions must conform to this structure.

The name of the rowset type can be:

• The parameter name (in case of a input/output or output only parameter).
• An assigned name.
• The referenced element name (result rowsets) in a user-specified schema.

Not all databases support rowsets. In addition, JDBC does not report information related to defined
rowsets.

Using Rowset Information

In order to create data services from stored procedures that use rowset information, you need to supply
the correct ordinal (matching number) and a schema. If the schema has multiple global elements, select
the one you want from the Type column. Otherwise the type used match the first global element in your
schema file.

The order of rowset information is significant; it must match the order in your data source. Use the Move
Up / Move Down commands to adjust the ordinal number assigned to the rowset.

XML types in data services generated from stored procedures do not display native types.
However, you can view the native type in the Source editor; it is located in the pragma section.

Stored Procedure Version Support

Only the most recent version of a particular stored procedure can be imported into ALDSP. For this
reason you cannot identify a stored procedure version number when creating a physical data service
based on a stored procedure. Similarly, adding a version number for your stored procedure in the Source
editor will result in a query exception.

Supporting Stored Procedures with Nullable Input Parameter(s)

If you know that an input parameter of a stored procedure is nullable (can accept null values), you can
change the signature of the function in Source View to make such parameters optional by adding a
question mark at end of the parameter.

For example (question-mark (?) shown in bold):

Document generated by Confluence on Jan 10, 2008 16:26 Page 109

function myProc($arg1 as xs:string) ...

would become:

function myProc($arg1 as xs:string?) ...

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 110

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Support for Stored Procedures in Popular Databases

This page last changed on Nov 30, 2007 by tkatz.

Support for Stored Procedures in Popular Databases

Each database vendor approaches stored procedures differently. ALDSP support limitations generally
reflect JDBC driver limitations.

General Restrictions

There are several restrictions that apply to stored procedures generally:

• ALDSP does not support rowset as an input parameter.
• Only data types supported by ALDSP can be imported as part of stored procedures.

For a list of database types supported by ALDSP XQuery-SQL Mapping Reference

Oracle Stored Procedure Support

The following table describes data service creation support for Oracle stored procedures.

Term Usage

Procedure types
• Procedures
• Functions
• Packages

Parameter modes
• Input only
• Output only
• Input/Output
• None

Parameter data types Any Oracle PL/SQL data type except:

• ROWID
• UROWID

When defining function signatures, note
that the Oracle %TYPE and %ROWTYPE
types must be translated to XQuery types
that match the true types underlying the
stored procedure's %TYPE and %ROWTYPE
declarations. %TYPE declarations map to
simple types; %ROWTYPE declarations
map to rowset types.

Document generated by Confluence on Jan 10, 2008 16:26 Page 111

http:/
http://edocs.bea.com/aldsp/docs25/xquery/xquery_sql_mapping_reference.html

Data returned from a function Oracle supports returning PL/SQL data types such
as NUMBER, VARCHAR, %TYPE, and %ROWTYPE
as parameters.

Comments The following identifies limitations associated with
importing Oracle database procedure metadata.

• The data service creation process can only
detect the data structure for cursors that
have a binding PL/SQL record. For a dynamic
cursor you need to manually specify the
cursor schema.

• Data from a PL/SQL record structure cannot
be retrieved due to an Oracle JDBC driver
limitations.

• The Oracle JDBC driver supports rowset
output parameters only if they are defined as
reference cursors in a package.

• The Oracle JDBC driver does not support
NATURALN and POSITIVEN as output only
parameters.

Sybase Stored Procedure Support

The following table describes data service creation support for Sybase stored procedures.

Term Usage

Procedure types
• Procedures
• Grouped procedures
• Functions are categorized as a scalar or inline

table-valued and multi-statement
table-valued function. Inline table-valued and
multi-statement table-valued functions return
rowsets.

Parameter modes
• Input only
• Output only

Parameter data types For a list of database types supported by ALDSP
see the XQuery-SQL Mapping Reference.

Data returned from a function Sybase functions supports returning a single value
or a table. Procedures return data in the following
ways:

• As output parameters, which can return
either data (such as an integer or character
value).

• As return codes, which are always an integer
value.

• As a rowset for each SELECT statement

Document generated by Confluence on Jan 10, 2008 16:26 Page 112

http://edocs.bea.com/aldsp/docs30/xquery/xquery_sql_mapping_reference.html

contained in the stored procedure or any
other stored procedures called by that stored
procedure.

• As a global cursor that can be referenced
outside the stored procedure supports,
returning single value or multiple values.

Comments The following identifies limitations associated with
importing Sybase database procedure metadata:

• The Sybase JDBC driver does not support
input/output or output only parameters that
are rowsets (including cursor variables).

• The Jconnect driver and some versions of the
BEA Sybase driver cannot detect the
parameter mode of the procedure. In such a
case, the return mode will be UNKNOWN,
preventing importation of the metadata. To
proceed, you need to set the correct mode.

IBM DB2 Stored Procedure Support

The following table describes data service creation support for IBM DB2 stored procedures.

Term Usage

Procedure types
• Procedures
• Functions
• Packages where each function is also

categorized as a scalar, column, row, or table
function.
Here are additional details on function
categorization:

• A scalar function returns a single-valued
answer each time it is called.

• A column function is one which conceptually
is passed a set of like values (a column) and
returns a single-valued answer (AVG()).

• A row function is a function that returns one
row of values.

• A table function is a function that returns a
table to the SQL statement that referenced it.

Parameter modes
• Input only
• Output only
• Input/output

Parameter data types For a list of database types supported by ALDSP
see the XQuery-SQL Mapping Reference. For a list
of database types supported by ALDSP see the
XQuery-SQL Mapping Reference.

Document generated by Confluence on Jan 10, 2008 16:26 Page 113

http://edocs.bea.com/aldsp/docs30/xquery/xquery_sql_mapping_reference.html
http://edocs.bea.com/aldsp/docs30/xquery/xquery_sql_mapping_reference.html

Data returned from a function DB2 supports returning a single value, a row of
values, or a table.

Comments The following identifies limitations associated with
creating physical data services based on DB2
stored procedures:

• Column type functions are not supported.
• Rowsets as output parameters are not

supported.
• The DB2 JDBC driver supports float, double,

and decimal input only and output only
parameters. Float, double, and decimal data
types are not supported as input/output
parameters.

Microsoft SQL Server Stored Procedure Support

The following table describes data service creation support for Microsoft stored procedures.

Term Usage

Procedure types SQL Server supports procedures, grouped
procedures, and functions. Each function is also
categorized as a scalar or inline table-valued and
multi-statement table-valued function. Inline
table-valued and multi-statement table-valued
functions return rowsets.

Parameter modes SQL Server supports input only and output only
parameters.

Parameter data types SQL Server procedures/functions support any SQL
Server data type as a parameter. For a list of
database types supported by ALDSP see the
XQuery-SQL Mapping Reference.

Data returned from a function SQL Server functions supports returning a single
value or a table. Data can be returned in the
following ways:

• As output parameters, which can return
either data (such as an integer or character
value) or a cursor variable (cursors are
rowsets that can be retrieved one row at a
time).

• As return codes, which are always an integer
value.

• As a rowset for each SELECT statement
contained in the stored procedure or any
other stored procedures called by that stored
procedure.

Comments The following identifies limitations associated with
importing SQL Server procedure metadata.

Document generated by Confluence on Jan 10, 2008 16:26 Page 114

http://edocs.bea.com/aldsp/docs30/xquery/xquery_sql_mapping_reference.html

• Result sets returned from SQL server (as well
as those returned from Sybase) are not
detected automatically. Instead you will need
to manually add parameters as a result.

• The Microsoft SQL Server JDBC driver does
not support rowset input/output or output
only parameters (including cursor variables).

Document generated by Confluence on Jan 10, 2008 16:26 Page 115

Terms Commonly Used When Discussing Stored Procedures

This page last changed on Sep 12, 2007 by tkatz.

Terms Commonly Used When Discussing Stored Procedures

Term Usage

ALDSP Function An ALDSP function returns one or more values to
the caller. The value can be a simple type, a row
type, or a complex user defined type.

ALDSP Procedure Typically a routine which has side effects but does
not return data. An example would be a routine
callable from a data service which writes
information to a log file.

Package A package is a group of related procedures and
functions, together with the cursors and variables
they use, stored together in a database for
continued use as a unit. Similar to standalone
procedures and functions, packaged procedures
and functions can be called explicitly by
applications or users.

Stored Procedure A sequence of programming commands written in
an extended SQL (such as PL/SQL or T-SQL), Java
or XQuery, stored in the database where it is to be
used to maximize performance and enhance
security. The application can call a procedure to
fetch or manipulate database records, rather than
using code outside the database to get the same
results. Stored procedures do not return values.

Rowset The set of rows returned by a procedure or query.

Result set JDBC term for rowset.

Parameter mode Stored procedures can have three modes: IN,
OUT, and INOUT. These roughly correspond to
"write", "read", and "read/write".

Document generated by Confluence on Jan 10, 2008 16:26 Page 116

Update physical data service metadata

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Update Physical Data Service Metadata

When you first create a physical data service its underlying metadata is, by definition, consistent with its
data source. Over time, however, your metadata may become "out of sync" for several reasons:

• The structure of underlying data sources may have changed, in which case it is important to be able
to identify those changes so that you can determine when and if you need to update your metadata.

• You have modified schemas or added relationships to your data service.

In some cases relationships between data services will be preserved during metadata update. See Using
the Update Source Metadata Wizard, for details.

Topics

• Scope of Metadata Update
• Important Considerations When Updating Source Metadata
• Using the Update Source Metadata Wizard
• Inspecting and Reverting Changes Using Local History

In Project Explorer you can use the right-click menu option Update metadata to see if there are any
differences between your source metadata files and the underlying source.

Update Metadata Option in Project Explorer

The Update metadata option can be used with:

Document generated by Confluence on Jan 10, 2008 16:26 Page 117

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://kmwiki.bea.com/download/attachments/2166972/Update Metadata Option in Project Explorer.gif

• Relational table and view associated with changes to the relational database including providerID,
the sourceBindingProviderClassName, columns, and optimistic locking fields.

• Web services
• Java functions
• Delimited files

Metadata update cannot be applied to data services based on:

• Relational stored procedures
• XML files

Scope of Metadata Update

When you run the Metadata update option, differences between your physical data service and the
underlying data source are categorized according to the following scheme:

Category Meaning

Objects added The data source contains one or more objects that
are not currently represented in the physical data
service. From the perspective of the data source,
information from the existing data service is added
back after the metadata update. Another way to
look at this is from the perspective of the data
service. In this view, certain artifacts are retained.
A typical example is a relationship with another
data service. Existing relationships are identified
and retained, the metadata is updated to reflect
the current data source, and the relationships are
added back to the data service.

Objects deleted One or more objects in the physical data service is
not found in the underlying data source. A typical
artifact that will be marked for deletion would be a
schema that is referenced by an operation (such
as a relationship function) in the data service.
Objects marked for delete generally appear
together.

You should carefully inspect the update
wizard for items marked for deletion. In
the case of schemas, in particular, a
prudent course of action would be to retain
the schema (uncheck the delete option)
unless you are certain that it is not needed
by an operation in your data service.
Deleting a needed schema will make your
data service invalid and undeployable.

Objects changed One or more objects in the physical data service
and the underlying data source do not match and
an adjustment will be made. An example of an
artifact that will be marked as changed would be if

Document generated by Confluence on Jan 10, 2008 16:26 Page 118

the relational providerID underlying the data
source has changed or is unavailable.

Source unavailable The data source underlying the physical data
service could not be accessed.

If there are no differences between your metadata and the underlying source, the Update metadata
wizard will report up-to-date for each data service being verified.

In the case of an unavailable data source, the issue likely relates to connectivity or permissions. In the
case of the other types of discrepancies, you need to determine when and if to update data source
metadata to conform with the underlying data sources.

Important Considerations When Updating Source Metadata

The update metadata operation can have both direct and indirect consequences.

Source metadata should be updated with care by someone who is quite familiar with the underlying data
source. For example, if you have added a relationship between two physical data services, updating your
source metadata may remove the relationship from both data services. If the relationship appears in a
model diagram, the relationship line will appear in red, indicating that the relationship is no longer
described by the respective data services.

Direct and Indirect Effects

Direct effects apply to physical data services. Indirect effects occur to logical data services, since such
services are themselves based — at least indirectly — on physical data services.

For example, if you have created a new relationship between a physical and a logical data service (not a
recommended practice), updating the physical data service can invalidate the relationship. In the case of
the physical data service, there will be no relationship reference. The logical data service will retain the
code describing the relationship but it will be invalid if the opposite relationship notations is no longer be
present.

Using the Update Source Metadata Wizard

The Update metadata wizard allows you to update your source metadata.

Before attempting to update source metadata you should make sure that your build project has
no errors.

You can perform a metadata update on your entire dataspace project, folders from the project, or any
qualified data service. Generally speaking, metadata updates should be performed as specifically as
possible.

Use Shift-click or Ctrl-click to select multiple data services or folders in a single dataspace.

Document generated by Confluence on Jan 10, 2008 16:26 Page 119

After you select your target(s), the wizard identifies the metadata that will be verified and any differences
between your metadata and the underlying source.

You can select/deselect any data service listed in the dialog using the checkbox to the left of the name.
You can also choose to select/deselect specific changes for the data service using the checkbox to the left
of the change description.

The following screen capture is from a Update Metadata command for the ElectronicsWS project in the
sample application.

Details related to the changes that will be made when the metadata is updated appear in the lower panel
of the window.

Original Source and Refactored Source Details

The upper portion of the Update metadata plan shows the changes to be performed. In some cases items
are presented and selected (checked). In other cases items are presented but unchecked.

In the details view, the left-hand side shows the current source (called Original Source). The right-hand
side shows what the result will be after metadata update (called Refactored Source).

Your only options in the dialog are to select or deselect specific changes using the adjacent checkboxes.

Up/down arrows are available on the Update Metadata titlebar to move through the possible changes.
(The Filter Changes option icon next to the arrows is not applicable to metadata update and is not active.

Update Metadata Wizard Navigation Arrows

Document generated by Confluence on Jan 10, 2008 16:26 Page 120

http://kmwiki.bea.com/download/attachments/2166972/Update metadata for selected objects.gif
http://kmwiki.bea.com/download/attachments/2166972/Original Source and Refactored Source Details.gif

Inspecting and Reverting Changes Using Local History

You can use the Local History option provided with Eclipse to review changes that have been made
through the Metadata Update Wizard.

Here are the steps involved:

1. In the Project Explorer right-click on your data service.
2. Select:

Compare With > Local History...

The Compare With Local History window will open. If there have been several changes made, each
will be identified through a timestamp.

It is also often possible to revert a metadata update using a similar mechanism:

1. In the Project Explorer right-click on your data service.
2. Select:

Replace With > Local History...

The Replace With Local History window will open. If there have been several changes made, each
will be identified through a timestamp.

If you just want to revert to the immediate previous change, use the right-click option:

Replace With > Previous from Local History...

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 121

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Verifying Data Service Composition

This page last changed on Dec 13, 2007 by tkatz.

Verifying Data Service Composition

On the Review New Data Service(s) page you can set, confirm or, optionally, change suggested data
service names depending on the type of physical data service you are creating.

Default Physical Data Service Names

The nominated name for a new data service is, wherever possible, the same as the source object name.
In some cases, however, names are adjusted to conform with XML naming conventions.

XML Name Conversion Considerations

About Automatic Data Service Name Changes

Name conflicts occur when there is a data service of the same name present in the target directory.
Name conflicts are highlighted in red.

There are several situations where you will need to change the name of your data service:

• There already is a data service of the same name in your application.
• You are trying to create multiple data services with the same name.

Data services always have the file extension:

.ds

Document generated by Confluence on Jan 10, 2008 16:26 Page 122

http:/

XML Name Conversion Considerations

This page last changed on Sep 12, 2007 by tkatz.

XML Name Conversion Considerations

When a source name is encountered that does not fit within XML naming conventions, default generated
names are converted according to rules described by the SQLX standard.

Generally speaking, an invalid XML name character is replaced by its hexadecimal escape sequence
(having the form xUUUU).

For additional details see section 9.1 of the W3C draft version of this standard:
http://www.sqlx.org/SQL-XML-documents/5WD-14-XML-2003-12.pdf

Document generated by Confluence on Jan 10, 2008 16:26 Page 123

Data Service Annotations

This page last changed on Jan 09, 2008 by tkatz.

Data Service Annotations

Concepts
Understanding Data Service Annotations

Reference
Data Service Annotations Schema

Document generated by Confluence on Jan 10, 2008 16:26 Page 124

http:/

Data Service Annotations Schema

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Data Service Annotations Schema

<?xml version="1.0"?>
<xs:schema targetNamespace="urn:annotations.ld.bea.com" xmlns:tns="urn:annotations.ld.bea.com"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="unqualified"
attributeFormDefault="unqualified">

<!--==================-->
<!-- XDS annotation -->
<!--==================-->
<xs:element name="xds">

<xs:complexType>
<xs:sequence>

<!-- document properties -->
<xs:element name="author" type="xs:string" minOccurs="0"/>
<xs:element name="comment" type="xs:string" minOccurs="0"/>
<xs:element name="creationDate" type="xs:dateTime" minOccurs="0"/>
<xs:element name="documentation" type="xs:string" minOccurs="0"/>
<xs:element name="version" type="xs:decimal" minOccurs="0"/>
<!-- user defined properties -->
<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="property">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="name" type="xs:string"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

</xs:element>
</xs:sequence>
<!-- data access properties -->
<xs:choice>

<!-- choice 1: java functions -->
<xs:element name="javaFunction">
<xs:complexType>

<xs:attribute name="class" type="xs:string" use="required"/>
</xs:complexType>

</xs:element>
<!-- choice 2: web services -->
<xs:element name="webService">
<xs:complexType>

<xs:attribute name="wsdl" type="xs:anyURI" use="required"/>
<xs:attribute name="targetNamespace" type="xs:anyURI" use="required"/>
<xs:attribute name="sbProxyServiceName" type="xs:string"/>
<xs:attribute name="sbTransportProtocol" type="tns:SBTransportProtocolType"/>

</xs:complexType>
</xs:element>
<!-- choice 3: relational sources -->
<xs:element name="relationalDB">
<xs:complexType>

<xs:sequence>
<xs:element name="properties" minOccurs="0">

<xs:complexType>
<xs:anyAttribute processContents="lax" />

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="providerId" type="xs:string" />
<xs:attribute name="dbType" type="xs:string"/>
<xs:attribute name="dbVersion" type="xs:string"/>
<xs:attribute name="driver" type="xs:string"/>

Document generated by Confluence on Jan 10, 2008 16:26 Page 125

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

<xs:attribute name="uri" type="xs:string"/>
<xs:attribute name="username" type="xs:string"/>
<xs:attribute name="password" type="xs:string"/>
<xs:attribute name="SID" type="xs:string"/>
<xs:attribute name="sourceBindingProviderClassName" type="xs:string"/>

</xs:complexType>
</xs:element>
<!-- choice 4: delimited files -->
<xs:element name="delimitedFile">
<xs:complexType>

<xs:attribute name="file" type="xs:anyURI"/>
<xs:attribute name="schema" type="xs:anyURI"/>
<xs:attribute name="inferredSchema" type="xs:boolean" default="false"/>
<xs:attribute name="delimiter" type="xs:string"/>
<xs:attribute name="fixedLength" type="xs:positiveInteger"/>
<xs:attribute name="hasHeader" type="xs:boolean" default="false"/>

</xs:complexType>
</xs:element>
<!-- choice 5: XML files -->
<xs:element name="xmlFile">
<xs:complexType>

<xs:attribute name="file" type="xs:anyURI"/>
<xs:attribute name="schema" type="xs:anyURI" use="required"/>

</xs:complexType>
</xs:element>
<!-- choice 6: user defined view -->
<xs:element name="userDefinedView" minOccurs="0"/>
<!-- choice 7: nothing, defaults to userDefinedView -->
<xs:sequence/>

</xs:choice>
<!-- field annotations -->
<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="field">
<xs:complexType>

<xs:sequence>
<xs:element name="extension" minOccurs="0">

<xs:complexType>
<xs:sequence minOccurs="0">

<xs:element name="autoNumber">
<xs:complexType>

<xs:attribute name="type" type="tns:autoNumberType" use="required"/>
<xs:attribute name="sequenceObjectName" type="xs:string"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="nativeXpath" type="xs:string"/>
<xs:attribute name="nativeType" type="xs:string"/>
<xs:attribute name="nativeTypeCode" type="xs:int"/>
<xs:attribute name="nativeSize" type="xs:int"/>
<xs:attribute name="nativeFractionalDigits" type="tns:scaleType"/>
<xs:attribute name="nativeKey" type="xs:boolean" default="false"/>
<!-- relational: autoNumber -->
<!-- relational: native column names and types -->

</xs:complexType>
</xs:element>
<xs:element name="properties">

<xs:complexType>
<xs:attribute name="immutable" type="xs:boolean" default="false"/>
<xs:attribute name="nullable" type="xs:boolean" default="false"/>
<xs:attribute name="transient" type="xs:boolean" default="false"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="xpath" type="xs:string" use="required"/>
<xs:attribute name="type" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<!-- keys -->
<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="key">
<xs:complexType>

<xs:sequence>
<xs:element name="selector" minOccurs="0"> <!-- defaults to . -->

<xs:complexType>
<xs:sequence>

<xs:element name="extension" minOccurs="0">

Document generated by Confluence on Jan 10, 2008 16:26 Page 126

<xs:complexType>
<xs:attribute name="nativeXpath" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="xpath" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="name" type="xs:string"/>
<xs:attribute name="type" type="xs:QName"/>
<xs:attribute name="inferred" type="xs:boolean" default="true"/>
<xs:attribute name="inferredSchema" type="xs:boolean" default="true"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<!-- relationships -->
<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="relationshipTarget">
<xs:complexType>

<xs:sequence>
<xs:element name="relationship" minOccurs="0">

<xs:complexType>
<xs:sequence>

<xs:element name="description" type="xs:string" minOccurs="0"/>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="roleName" type="xs:string" use="required"/>
<xs:attribute name="roleNumber" type="tns:roleType" default="1"/>
<xs:attribute name="XDS" type="xs:string" use="required"/>
<xs:attribute name="minOccurs" type="tns:allNNI" default="1"/>
<xs:attribute name="maxOccurs" type="tns:allNNI" default="1"/>
<xs:attribute name="opposite" type="xs:string"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<!-- SDO elements -->
<xs:element name="functionForDecomposition" minOccurs="0">

<xs:complexType>
<xs:attribute name="name" type="xs:QName" use="required"/>
<xs:attribute name="arity" type="xs:int" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="javaUpdateExit" minOccurs="0">

<xs:complexType>
<xs:attribute name="className" type="xs:string" use="required"/>
<xs:attribute name="classFile" type="xs:string"/>

</xs:complexType>
</xs:element>
<xs:element name="optimisticLockingFields" minOccurs="0">

<xs:complexType>
<xs:choice>

<xs:element name="updated">
<xs:complexType/>

</xs:element>
<xs:element name="projected">

<xs:complexType/>
</xs:element>
<xs:element name="field" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:attribute name="name" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:choice>
</xs:complexType>

</xs:element>
<!-- security -->
<xs:element name="secureResources" minOccurs="0">

<xs:complexType>
<xs:sequence>

<xs:element name="secureResource" type="xs:NCName" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>

Document generated by Confluence on Jan 10, 2008 16:26 Page 127

<xs:element name="readOnly" minOccurs="0">
<xs:complexType/>

</xs:element>
</xs:sequence>
<xs:attribute name="targetType" type="xs:QName" use="required"/>

</xs:complexType>
</xs:element>
<!--==================-->
<!-- XFL annotation -->
<!--==================-->
<xs:element name="xfl">

<xs:complexType>
<xs:sequence>

<!-- document properties -->
<xs:element name="author" type="xs:string" minOccurs="0"/>
<xs:element name="comment" type="xs:string" minOccurs="0"/>
<xs:element name="creationDate" type="xs:dateTime" minOccurs="0"/>
<xs:element name="documentation" type="xs:string" minOccurs="0"/>
<xs:element name="version" type="xs:decimal" minOccurs="0"/>
<!-- user defined properties -->
<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="property">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="name" type="xs:string"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

</xs:element>
</xs:sequence>
<!-- data access properties -->
<xs:choice>

<!-- choice 1: java functions -->
<xs:element name="javaFunction">
<xs:complexType>

<xs:attribute name="class" type="xs:string" use="required"/>
</xs:complexType>

</xs:element>
<!-- choice 2: web services -->
<xs:element name="webService">
<xs:complexType>

<xs:attribute name="wsdl" type="xs:anyURI" use="required"/>
<xs:attribute name="targetNamespace" type="xs:anyURI" use="required"/>
<xs:attribute name="sbProxyServiceName" type="xs:string"/>
<xs:attribute name="sbTransportProtocol" type="tns:SBTransportProtocolType"/>

</xs:complexType>
</xs:element>
<!-- choice 3: relational sources -->
<xs:element name="relationalDB">
<xs:complexType>

<xs:sequence>
<xs:element name="properties" minOccurs="0">

<xs:complexType>
<xs:anyAttribute processContents="lax" />

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="providerId" type="xs:string" />
<xs:attribute name="dbType" type="xs:string"/>
<xs:attribute name="dbVersion" type="xs:string"/>
<xs:attribute name="driver" type="xs:string"/>
<xs:attribute name="uri" type="xs:string"/>
<xs:attribute name="username" type="xs:string"/>
<xs:attribute name="password" type="xs:string"/>
<xs:attribute name="SID" type="xs:string"/>
<xs:attribute name="sourceBindingProviderClassName" type="xs:string"/>

</xs:complexType>
</xs:element>
<!-- choice 6: user defined view -->
<xs:element name="userDefinedView" minOccurs="0"/>
<!-- choice 7: nothing, defaults to userDefinedView -->
<xs:sequence/>
<!-- choice 8: custom native functions -->
<xs:element name="customNativeFunctions">
<xs:complexType>

Document generated by Confluence on Jan 10, 2008 16:26 Page 128

<xs:choice>
<xs:element name="relational">

<xs:complexType>
<xs:sequence>

<xs:element name="dataSource" type="xs:string" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:choice>
</xs:complexType>

</xs:element>
</xs:choice>
<!-- field annotations -->
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="field">

<xs:complexType>
<xs:sequence>

<xs:element name="extension" minOccurs="0">
<xs:complexType>

<xs:sequence minOccurs="0">
<xs:element name="autoNumber">

<xs:complexType>
<xs:attribute name="type" type="tns:autoNumberType"

use="required"/>
<xs:attribute name="sequenceObjectName" type="xs:string"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="nativeXpath" type="xs:string"/>
<xs:attribute name="nativeType" type="xs:string"/>
<xs:attribute name="nativeTypeCode" type="xs:int"/>
<xs:attribute name="nativeSize" type="xs:int"/>
<xs:attribute name="nativeFractionalDigits" type="tns:scaleType"/>
<!-- relational: autoNumber -->
<!-- relational: native column names and types -->

</xs:complexType>
</xs:element>
<xs:element name="properties">

<xs:complexType>
<xs:attribute name="immutable" type="xs:boolean" default="false"/>
<xs:attribute name="nullable" type="xs:boolean" default="false"/>
<xs:attribute name="transient" type="xs:boolean" default="false"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="xpath" type="xs:string" use="required"/>
<xs:attribute name="type" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>

<xs:element name="secureResources" minOccurs="0">
<xs:complexType>
<xs:sequence>

<xs:element name="secureResource" type="xs:NCName" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>
<!--=======================-->
<!-- function annotation -->
<!--=======================-->
<xs:element name="function">

<xs:complexType>
<xs:sequence>

<!-- standard properties -->
<xs:element name="author" type="xs:string" minOccurs="0"/>
<xs:element name="comment" type="xs:string" minOccurs="0"/>
<xs:element name="version" type="xs:decimal" minOccurs="0"/>
<xs:element name="documentation" type="xs:string" minOccurs="0"/>

<!-- user defined properties -->
<xs:sequence minOccurs="0" maxOccurs="unbounded">

Document generated by Confluence on Jan 10, 2008 16:26 Page 129

<xs:element name="property">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="name" type="xs:string"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

</xs:element>
</xs:sequence>

<!-- UI properties -->
<xs:element name="uiProperties" minOccurs="0">

<xs:complexType>
<xs:sequence maxOccurs="unbounded">

<xs:element name="component">
<xs:complexType>

<xs:sequence>
<xs:element name="treeInfo" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="collapsedNodes" minOccurs="0">
<xs:complexType>

<xs:sequence>
<xs:element name="collapsedNode" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="id" type="xs:string"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="identifier" type="xs:string"/>
<xs:attribute name="minimized" type="xs:boolean" default="false"/>
<xs:attribute name="x" type="xs:int"/>
<xs:attribute name="y" type="xs:int"/>
<xs:attribute name="w" type="xs:int"/>
<xs:attribute name="h" type="xs:int"/>
<xs:attribute name="viewPosX" type="xs:int"/>
<xs:attribute name="viewPosY" type="xs:int"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>

<!-- sql statement -->
<xs:element name="sql" minOccurs="0">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="isSubquery" type="xs:boolean" default="true"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

<!-- cache -->
<xs:element name="nonCacheable" minOccurs="0">

<xs:complexType/>
</xs:element>

<!-- transactions -->
<xs:element name="nonTransactional" minOccurs="0">

<xs:complexType/>
</xs:element>

<!-- optimization -->
<xs:element name="outputIsOrderedBy" minOccurs="0">

<xs:complexType>
<xs:sequence>

<!-- absent for parameters whose order in the function signature
coincides with their order in the order by list -->

<xs:element name="parameter" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

Document generated by Confluence on Jan 10, 2008 16:26 Page 130

<!-- 1, 2, ... -->
<xs:attribute name="index" type="xs:int" use="required"/>
<!-- overrides default -->
<xs:attribute name="mode" type="tns:orderingModeType"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="mode" type="tns:orderingModeType" use="required"/>

</xs:complexType>
</xs:element>

<xs:element name="inverseFunctions" minOccurs="0">
<xs:complexType>
<xs:sequence>

<xs:element name="inverseFunction" minOccurs="1" maxOccurs="unbounded">
<xs:complexType>

<!-- 1, 2, ... -->
<xs:attribute name="parameterIndex" type="xs:int"/>
<xs:attribute name="name" type="xs:QName" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="equivalentTransforms" minOccurs="0">

<xs:complexType>
<xs:sequence>

<xs:element name="pair" minOccurs="1" maxOccurs="unbounded">
<xs:complexType>

<xs:attribute name="source" type="xs:QName" use="required"/>
<xs:attribute name="target" type="xs:QName" use="required"/>
<xs:attribute name="arity" type="xs:int" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>

<!-- polymorphism -->
<xs:element name="isPolymorphic" minOccurs="0">

<xs:complexType>
<xs:choice>

<xs:element name="parameter">
<xs:complexType>

<xs:sequence/>
<!-- optional: defaults to 1 -->
<xs:attribute name="index" type="xs:nonNegativeInteger"/>

</xs:complexType>
</xs:element>

</xs:choice>
</xs:complexType>

</xs:element>

<!-- signature: used by java functions and stored procedures -->
<xs:element name="params" minOccurs="0">

<xs:complexType>
<xs:sequence maxOccurs="unbounded">

<xs:element name="param">
<xs:complexType>

<xs:attribute name="name" type="xs:string"/>
<xs:attribute name="nativeType" type="xs:string"/>
<xs:attribute name="nativeTypeCode" type="xs:int"/>
<xs:attribute name="xqueryType" type="xs:QName"/>
<xs:attribute name="kind" type="tns:paramKindType"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
<!-- interceptor configuration: used by webservice SOAP interceptors -->
<xs:element name="interceptorConfiguration" minOccurs="0">

<xs:complexType>
<xs:attribute name="aliasName" type="xs:string" use="required"/>
<xs:attribute name="fileName" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

Document generated by Confluence on Jan 10, 2008 16:26 Page 131

<!-- implementation -->
<xs:element name="implementation" minOccurs="0">

<xs:complexType>
<xs:choice>

<xs:element name="updateTemplate">
<xs:complexType/>

</xs:element>
</xs:choice>

</xs:complexType>
</xs:element>

</xs:sequence>

<xs:attribute name="visibility" type="tns:functionVisibilityType" default="protected"/>
<xs:attribute name="kind" type="tns:functionKindType" default="library"/>
<xs:attribute name="isPrimary" type="xs:boolean" default="false"/>
<xs:attribute name="roleName" type="xs:string"/>
<xs:attribute name="nativeName" type="xs:string"/>
<xs:attribute name="nativeLevel1Container" type="xs:string"/>
<xs:attribute name="nativeLevel2Container" type="xs:string"/>
<xs:attribute name="nativeLevel3Container" type="xs:string"/>
<xs:attribute name="style" type="tns:functionStyleType"/>

</xs:complexType>
</xs:element>
<!--================-->
<!-- common types -->
<!--================-->
<xs:simpleType name="functionVisibilityType">

<xs:restriction base="xs:string">
<xs:enumeration value="public"/>
<xs:enumeration value="protected"/>
<xs:enumeration value="private"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="functionKindType">

<xs:restriction base="xs:string">
<xs:enumeration value="read"/>
<xs:enumeration value="navigate"/>
<xs:enumeration value="create"/>
<xs:enumeration value="update"/>
<xs:enumeration value="delete"/>
<xs:enumeration value="library"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="functionStyleType">

<xs:restriction base="xs:string">
<xs:enumeration value="table"/>
<xs:enumeration value="view"/>
<xs:enumeration value="storedProcedure"/>
<xs:enumeration value="sqlQuery"/>
<xs:enumeration value="document"/>
<xs:enumeration value="rpc"/>

</xs:restriction>
</xs:simpleType>
<!-- used by stored procedures -->
<xs:simpleType name="paramKindType">

<xs:restriction base="xs:string">
<xs:enumeration value="unknown"/>
<xs:enumeration value="in"/>
<xs:enumeration value="inout"/>
<xs:enumeration value="out"/>
<xs:enumeration value="return"/>
<xs:enumeration value="result"/>

</xs:restriction>
</xs:simpleType>
<!-- used by maxOccurs in relationship -->
<xs:simpleType name="allNNI">

<xs:union memberTypes="xs:nonNegativeInteger">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:enumeration value="unbounded"/>
<xs:enumeration value=""/>

</xs:restriction>
</xs:simpleType>

</xs:union>
</xs:simpleType>
<!-- used by relationships -->
<xs:simpleType name="roleType">

Document generated by Confluence on Jan 10, 2008 16:26 Page 132

<xs:restriction base="xs:nonNegativeInteger">
<xs:enumeration value="1"/>
<xs:enumeration value="2"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="autoNumberType">

<xs:restriction base="xs:string">
<xs:enumeration value="identity"/>
<xs:enumeration value="sequence"/>
<xs:enumeration value="userComputed"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="nullSortOrderType">

<xs:restriction base="xs:string">
<xs:enumeration value="high"/>
<xs:enumeration value="low"/>
<xs:enumeration value="unknown"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="scaleType">

<xs:union memberTypes="xs:int">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:enumeration value="null"/>

</xs:restriction>
</xs:simpleType>

</xs:union>
</xs:simpleType>
<xs:simpleType name="orderingModeType">

<xs:restriction base="xs:string">
<xs:enumeration value="ascending"/>
<xs:enumeration value="descending"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="stringListType">

<xs:list itemType="xs:string"/>
</xs:simpleType>
<xs:simpleType name="dataSourcesType">

<xs:restriction base="tns:stringListType">
<xs:minLength value="1"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="SBTransportProtocolType">

<xs:restriction base="xs:string">
<xs:enumeration value="t3"/>
<xs:enumeration value="iiop"/>
<xs:enumeration value="http"/>
<xs:enumeration value="t3s"/>
<xs:enumeration value="iiops"/>
<xs:enumeration value="https"/>

</xs:restriction>
</xs:simpleType>

</xs:schema>

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 133

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Designing Logical Data Services

This page last changed on Jan 09, 2008 by tkatz.

Designing Logical Data Services

Concepts
Building Logical Entity Data Services
Data Service Keys
XML Types and Return Types

How-to...
... Add a Read Function
... Add a Library Function or Procedure
... Create Logical Data Service Keys
... Declare a Security Resource in Data Services Studio

Example
Create a Logical Data Service with a Group By Clause
Create a Data Service with a Flat Return Type

Reference
XQuery Source of a Logical Entity Service

Related Topics
How to...
... Create Your First Data Services
... Create a Return Type
... Add a Complex Child Element to a Return Type
... Check Namespaces in Return Types
... Create Conditional Elements in Return Types
... Test a Read Function and Simple Update
... Test a Create or Delete Procedure

Concepts
Data Service Types and Functions

Document generated by Confluence on Jan 10, 2008 16:26 Page 134

http:/

Add a Complex Child Element to a Return Type

This page last changed on Jan 10, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Add a Complex Child Element to a
Return Type

This topic describes how to add a complex child element to a return type, in AquaLogic Data Services
Studio or in the XML source of the return type.

• Add the Child Element Visually
• Edit the XML Source
• See Also

Add the Child Element Visually

Once you create a return type, you can add a complex type as a child of any element, in Query Map view.
The complex child element must represent a physical data service. The parent element can have a
one-to-many or one-to-one relationship with the child, depending on how you want the result data
returned.

A Simple Return Type Before Adding a Child Element

To add a complex child element to a return type visually:

1. Open the logical data service in Data Services Studio.
2. Check Project Explorer. Be sure that your dataspace project has a physical data service for the

complex child element you want to add. If it does not, add one

Document generated by Confluence on Jan 10, 2008 16:26 Page 135

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://kmwiki.bea.com/download/attachments/7382/Return Type Simple.gif

File > New > Physical Data Service

3. Click the Query Map tab.
4. In the return type, right-click the new parent element, and choose Add Complex Child Element.

5. For the Schema File field, browse (...) to the schema of the physical data service that represents the
complex child element.

6. For Type, choose a complex type from the schema, then click OK.
7. From Project Explorer, drag the primary read function of the physical data service to the Query

Map.
8. Starting from the child element's For block, drag the zone icon to the child element in the return

type.
9. Starting from the child element's For block, drag the parent type of the complex element to the

return type.
This step maps all of the elements in the complex child to the return type.

10. Right-click the title bar of the return type, and choose Save and Associate XML Type.
11. Click the Overview tab, and expand the schema to view the complex child in the return type.

You can also right-click the schema and choose Edit Schema to view the XML source.

Edit the XML Source

Document generated by Confluence on Jan 10, 2008 16:26 Page 136

http://kmwiki.bea.com/download/attachments/7382/Add Complex Child Element.gif
http://kmwiki.bea.com/download/attachments/7382/read-function-icon-2.gif
http://kmwiki.bea.com/download/attachments/7382/zone icon orange.gif
http://kmwiki.bea.com/download/attachments/7382/Mapping in Query Map.gif
http://kmwiki.bea.com/download/attachments/7382/Return Type Schema Complex.gif

Adding the complex child element to the return type in the XML source accomplishes the same thing as
adding it visually.

To add a complex child element to a return type in XML source:

1. Open the logical data service in Studio.
2. Check Project Explorer. Be sure that your dataspace project has a physical data service for the

complex child element you want to add. If it does not, add it:

File > New > Physical Data Service

3. Click the Overview tab.
4. Right-click the return type schema in the center, and choose Edit Schema.

You see the schema for the logical data service, without the child element:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="ld:logical/MyCustomer" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="CUSTOMER">
<xs:complexType>
<xs:sequence>

<xs:element name="CUSTOMER_ID" type="xs:string"/>
<xs:element name="FIRST_NAME" type="xs:string"/>
<xs:element name="LAST_NAME" type="xs:string"/>
<xs:element name="CUSTOMER_SINCE" type="xs:date"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

5. In Project Explorer, right-click the schema file of the physical data service that represents the child
element, and choose Open With.
You see the schema of the child element.

6. Copy the complex type from the physical data service schema to the logical data service schema.
Take only the complex type:

<xs:complexType>
<xs:sequence>

<xs:element name="ADDR_ID" type="xs:string"/>
<xs:element name="CUSTOMER_ID" type="xs:string"/>
<xs:element name="FIRST_NAME" type="xs:string"/>
<xs:element name="LAST_NAME" type="xs:string"/>
<xs:element name="STREET_ADDRESS1" type="xs:string"/>
<xs:element name="STREET_ADDRESS2" type="xs:string" minOccurs="0"/>
<xs:element name="CITY" type="xs:string"/>
<xs:element name="STATE" type="xs:string"/>
<xs:element name="ZIPCODE" type="xs:string"/>
<xs:element name="COUNTRY" type="xs:string"/>
<xs:element name="DAY_PHONE" type="xs:string" minOccurs="0"/>
<xs:element name="EVE_PHONE" type="xs:string" minOccurs="0"/>
<xs:element name="ALIAS" type="xs:string" minOccurs="0"/>
<xs:element name="STATUS" type="xs:string" minOccurs="0"/>
<xs:element name="IS_DEFAULT" type="xs:short"/>

</xs:sequence>
</xs:complexType>

7. Right-click in the schema, and choose Validate.

See Also

How Tos

Document generated by Confluence on Jan 10, 2008 16:26 Page 137

• Create a Return Type
• Check Namespaces in Return Types
• dsp30:Design the XML Schema of a Return Type

Other Resources

• XML Schema Tutorial (W3Schools)
• XML Schema Part 1: Structures (W3C)
• XML Schema Part 2: Datatypes (W3C)

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 138

http://kmwiki.bea.com/display/dsp30/Design+the+XML+Schema+of+a+Return+Type
http://www.w3schools.com/schema/default.asp
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Add a Library Function or Procedure

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Add a Library Function or Procedure

This topic describes how to add a library function or procedure to a data service using AquaLogic Data
Services Studio.

• Overview
• Add the Function or Procedure
• Test in Studio
• See Also

Overview

Library functions and procedures are utility operations that you can add to any service, physical, logical,
or library. Library functions and procedures:

• Have a kind of library
• Are not marked as primary or non-primary
• Have a visibility of public, protected or private

A library function can return values, but has no side effects. A library procedure can return values and
can have side effects.

You can declare a library function or procedure visually in Data Services Studio, but you must still write
the function body in the Source tab using XQuery. Alternatively, you can write the entire function or
procedure and its pragma statement in XQuery.

You can call a library function or procedure from the service, the dataspace project, or from a client
application, depending on the visibility level you set.

Add the Function or Procedure

The example in this section is a library function that casts a value from xs:integer to xs:string.

1. Open the service and click the Overview tab.
2. Right-click at the left, right, or top, and choose Add Operation.
3. Select a value at Visibility (public = call from anywhere; protected = from the same dataspace;

private = from the same data service).
4. At Kind, choose libraryFunction or libraryProcedure.

Document generated by Confluence on Jan 10, 2008 16:26 Page 139

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

5. Give your function or procedure a name.
6. At Return Type, click Edit and choose a simple or complex return type. Click OK.
7. At Parameters, click Edit. Enter a parameter name, and choose a simple or complex return type.

Click OK.
8. Click Empty Function Body, then OK.
9. Click the Source tab.

ALDSP has generated a pragma statement and an empty function or procedure body, like this:

(::pragma function <f:function kind="library" visibility="public" isPrimary="false"
xmlns:f="urn:annotations.ld.bea.com"/>::)

declare function cus2:integerToString($theInt as xs:positiveInteger) as xs:string* {
$var-bea:tbd

};

10. In the function body, delete $var-bea:tbd and add your own XQuery code, for example:

declare function cus2:integerToString($theInt as xs:positiveInteger) as xs:string* {
xs:string($theInt)

};

Test in Studio

You can test the library function or procedure directly in Studio, before you use it from a client
application.

1. Open the service, and click the Test tab.
2. At Select Operation, choose the library function or procedure you want to test.
3. Enter a value in the Parameters box.
4. (Optional) Expand Settings and enter new values for results, transactions, and authentication.
5. Click Run.

If the function or procedure works, you see valid results.

Document generated by Confluence on Jan 10, 2008 16:26 Page 140

http://kmwiki.bea.com/download/attachments/7382/Add Library Function.gif

If not, you see an exception message that provides details, so that you can correct the error.

See Also

How Tos

• Add a Read Function
• Add Update Map Procedures

Reference

• Data Service Types and Functions

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 141

http://kmwiki.bea.com/download/attachments/7382/Valid Results.gif
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Add a Read Function

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Add a Read Function

This topic describes how to add a read function to a logical entity service visually, in AquaLogic Data
Services Studio.

• Overview
• Create the Function in Studio
• See Also

Overview

A read function in a logical entity service retrieves data from underlying data sources, either physical or
logical, and returns XML elements in the shape of the service's return type. You can build a logical service
without a read function. However, the service must have at least one read function, marked primary, to
have an update map. Only one read function in a service can be primary.

A read function is associated with exactly one XML schema, which is the service's return type. The read
function must return the return type, but cannot take any other actions or have any side effects.

When you create a primary read function visually in Data Services Studio, ALDSP generates a pragma
annotation and XQuery source. The pragma looks something like this:

(::pragma function <f:function kind="read" visibility="public" isPrimary="true"
xmlns:f="urn:annotations.ld.bea.com"/>::)

The initial XQuery source, before you map data types in Query Map view, shows that the read function
returns an instance of the service's return type:

declare function tns:read() as element(tns:CustomerAndAddress)*{
<tns:CustomerAndAddress>

<CUSTOMER>
<CUSTOMER_ID></CUSTOMER_ID>
<FIRST_NAME></FIRST_NAME>
<LAST_NAME></LAST_NAME>
<SSN?></SSN>
{

<ADDRESS>
<ADDR_ID></ADDR_ID>
<CUSTOMER_ID></CUSTOMER_ID>
<FIRST_NAME></FIRST_NAME>
<ZIPCODE></ZIPCODE>
<COUNTRY></COUNTRY>

</ADDRESS>

Document generated by Confluence on Jan 10, 2008 16:26 Page 142

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

}
</CUSTOMER>

</tns:CustomerAndAddress>
};

At this point, the return type has no values. The values are added after you map data sources to the
return type in Query Map view:

declare function tns:read() as element(tns:CustomerAndAddress)*{
for $CUSTOMER in cus1:CUSTOMER()
return

<tns:CustomerAndAddress>
<CUSTOMER>

<CUSTOMER_ID>{fn:data($CUSTOMER/CUSTOMER_ID)}</CUSTOMER_ID>
<FIRST_NAME>{fn:data($CUSTOMER/FIRST_NAME)}</FIRST_NAME>
<LAST_NAME>{fn:data($CUSTOMER/LAST_NAME)}</LAST_NAME>
<SSN?>{fn:data($CUSTOMER/SSN)}</SSN>
{

for $ADDRESS in add:ADDRESS()
return
<ADDRESS>

<ADDR_ID>{fn:data($ADDRESS/ADDR_ID)}</ADDR_ID>
<CUSTOMER_ID>{fn:data($ADDRESS/CUSTOMER_ID)}</CUSTOMER_ID>
<FIRST_NAME>{fn:data($ADDRESS/FIRST_NAME)}</FIRST_NAME>
<ZIPCODE>{fn:data($ADDRESS/ZIPCODE)}</ZIPCODE>
<COUNTRY>{fn:data($ADDRESS/COUNTRY)}</COUNTRY>

</ADDRESS>
}

</CUSTOMER>
</tns:CustomerAndAddress>

};

Create the Function in Studio

1. Create a logical entity service.

Create Your First Data Services

2. In the Overview tab, right-click at the left, right, or top, and choose Add Operation.

3. At Visibility, choose an access level.
Public means the procedure can be called from the same dataspace and from client APIs; protected,
only from the same dataspace; private, only from the same data service.

4. At Kind, choose read.
5. Enter a name for the function.
6. At Return Type, click Edit.
7. Click Complex Type, and choose a schema file.

Document generated by Confluence on Jan 10, 2008 16:26 Page 143

http://kmwiki.bea.com/download/attachments/7382/Creating a Primary Read Function.gif

8. At Kind, choose element.
9. At Occurrence, choose Zero or More.

10. Select Primary, and click OK.

See Also

How Tos

• Create a Return Type
• Test a Read Function and Simple Update

Concepts

• Data Service Types and Functions

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 144

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Building Logical Entity Data Services

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Building Logical Entity Data Services

This topic introduces you to logical entity data services.

• The Benefits of Logical Services
• Design View
• Query Map View
• Update Map View
• Test View
• See Also

The Benefits of Logical Services

The benefit of data services is the ability to combine multiple data sources of different types into
service-oriented architectures. Enterprise data is often stored in relational databases, non-relational
databases, packaged applications (such as SAP, PeopleSoft, Siebel, and others), custom applications, or
files of various types. You might also be accessing data from web services.

The goal is to create a new loosely coupled architecture by piecing together the data assets you already
have. In a practical sense, this means combining data from relational data sources, web services, XML
files, other files, or Java functions. Logical data services are of two types, entity and library.

Logical entity services allow you to design, model, and create a data view from many underlying data
sources. Logical library services are simply a collection of related functions and procedures within a data
service container. This topic introduces logical entity services.

On a tangible level, a logical entity service is an XQuery source file with functions and procedures that act
on data. A logical entity service has:

• Exactly one XML schema that represents the data the service returns (its return type).
• Any number of create, update, or delete procedures, where up to one of each type is primary.
• Any number of library functions and procedures.
• Any number of relationships with other entity services.

In addition, a logical entity service must have a primary read function if you want the service to have an
update map.

Design View

Document generated by Confluence on Jan 10, 2008 16:26 Page 145

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

Logical data services have their foundation in XML web services. The backbone of a logical data service is
its return type, which is a combination of data you design expressed as an XML schema.

You can see the return type in the Overview tab in AquaLogic Data Services Studio.

Design View of a Logical Data Service

The logical service's return type is shown in the center. You can right-click it to see the XML schema
source. On the left, you see the defined for the service. On the right, you see other data services that
underly the logical data service.

ALDSP Functions and Procedures

The underlying data services can be physical or logical.

The beauty of a logical data service is that a return type is a model. Logical models capture the
complexity of data integration once, and allow you to write clients that remain the same even when
underlying physical data sources change.

The structure of a return type does not need to match the structure of the underlying data sources. Here,
the CUSTOMER element has a 1-to-many relationship with its child element ADDRESS, and a 1-to-1
relationship with its other child element, CREDITRATING. Each complex element represents a separate
physical data source.

The Return Type Schema

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema targetNamespace="ld:logical/CustomerProfile"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="CUSTOMER_PROFILE">
<xs:complexType>
<xs:sequence>

<xs:element name="CUSTOMER">
<xs:complexType>
<xs:sequence>

<xs:element name="CUSTOMER_ID" type="xs:string"/>
<xs:element name="FIRST_NAME" type="xs:string"/>
<xs:element name="LAST_NAME" type="xs:string"/>
<xs:element name="EMAIL_ADDRESS" type="xs:string"/>
<xs:element name="ADDRESS" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="ADDR_ID" type="xs:string"/>
<xs:element name="CUSTOMER_ID" type="xs:string"/>
<xs:element name="STREET_ADDRESS1" type="xs:string"/>
<xs:element name="STREET_ADDRESS2" type="xs:string" minOccurs="0"/>
<xs:element name="CITY" type="xs:string"/>
<xs:element name="STATE" type="xs:string"/>
<xs:element name="ZIPCODE" type="xs:string"/>
<xs:element name="COUNTRY" type="xs:string"/>

Document generated by Confluence on Jan 10, 2008 16:26 Page 146

http://kmwiki.bea.com/download/attachments/7382/Data Service Overview.gif

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="CREDITRATING" maxOccurs="1">

<xs:complexType>
<xs:sequence>

<xs:element name="CUSTOMER_ID" type="xs:string"/>
<xs:element name="RATING" type="xs:int" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

However, this structure is only by design. You could also have designed the return type with fewer
elements, or in a flat structure, depending on how you want the service to return data.

The Primary Read Function

The functions and procedures in a logical entity service are implemented in XQuery, which queries XML
data much as SQL queries relational data. You can get information about any function or procedure by
right-clicking it in the Overview tab.

A read function, for example, often takes no parameters and returns an instance of the return type.

Viewing the Signature of a Read Function

In a logical entity service, you can designate one read function as primary. A primary read function
captures the main data integration logic in the service. ALDSP generates the create, update, and delete
procedures and the update map from the primary read function.

You can see the source code of the primary read function in the Source tab.

Checking the Primary Read Function Source

declare function tns:read() as element(tns:CUSTOMER_PROFILE)*{

Document generated by Confluence on Jan 10, 2008 16:26 Page 147

http://kmwiki.bea.com/download/attachments/7382/Edit Read Function Signature.gif

for $CUSTOMER in cus1:CUSTOMER()
return

<tns:CUSTOMER_PROFILE>
<CUSTOMER>

<CUSTOMER_ID>{fn:data($CUSTOMER/CUSTOMER_ID)}</CUSTOMER_ID>
<FIRST_NAME>{fn:data($CUSTOMER/FIRST_NAME)}</FIRST_NAME>
<LAST_NAME>{fn:data($CUSTOMER/LAST_NAME)}</LAST_NAME>
<EMAIL_ADDRESS>{fn:data($CUSTOMER/EMAIL_ADDRESS)}</EMAIL_ADDRESS>
{

for $ADDRESS in add:ADDRESS()
where $CUSTOMER/CUSTOMER_ID eq $ADDRESS/CUSTOMER_ID
return
<ADDRESS>

<ADDR_ID>{fn:data($ADDRESS/ADDR_ID)}</ADDR_ID>
<CUSTOMER_ID>{fn:data($ADDRESS/CUSTOMER_ID)}</CUSTOMER_ID>
<STREET_ADDRESS1>{fn:data($ADDRESS/STREET_ADDRESS1)}</STREET_ADDRESS1>
<STREET_ADDRESS2?>{fn:data($ADDRESS/STREET_ADDRESS2)}</STREET_ADDRESS2>
<CITY>{fn:data($ADDRESS/CITY)}</CITY>
<STATE>{fn:data($ADDRESS/STATE)}</STATE>
<ZIPCODE>{fn:data($ADDRESS/ZIPCODE)}</ZIPCODE>
<COUNTRY>{fn:data($ADDRESS/COUNTRY)}</COUNTRY>

</ADDRESS>
}
{

for $CREDITRATING in cre:CREDITRATING()
where $CUSTOMER/CUSTOMER_ID eq $CREDITRATING/CUSTOMER_ID
return
<CREDITRATING>

<CUSTOMER_ID>{fn:data($CREDITRATING/CUSTOMER_ID)}</CUSTOMER_ID>
<RATING?>{fn:data($CREDITRATING/RATING)}</RATING>

</CREDITRATING>
}

</CUSTOMER>
</tns:CUSTOMER_PROFILE>

};

This read function returns a CUSTOMER_PROFILE element with a nested CUSTOMER element. Each
CUSTOMER element has some number of ADDRESS elements and some number of CREDITRATING
elements, where the CUSTOMER_ID in ADDRESS or CREDITRATING matches the CUSTOMER_ID in
CUSTOMER. (The XQuery where clauses create table joins; see Add a Where Clause to a Query).

Create, Update, and Delete Procedures

A logical entity service also typically has create, update, and delete procedures that act on underlying
data sources. (The difference between a function and a procedure is that a procedure can have side
effects, while a function cannot; see Data Service Types and Functions).

The CustomerProfile service has one create procedure, one update procedure, and two delete procedures.
It also has a library procedure named stringToShort, which casts between two data types.

Viewing Functions and Procedures

Document generated by Confluence on Jan 10, 2008 16:26 Page 148

http://kmwiki.bea.com/download/attachments/7382/Functions and Procedures.gif

Query Map View

The Query Map view maps elements in data sources to the return type.

Mapping Data Sources to the Return Type

You can see the data sources on the left and the return type on the right. The blue lines map elements
from the data sources to elements in the return type, showing how the return type receives data.

The green dashed lines between the data source blocks create joins, which become where clauses in the
XQuery source, for example:

for $ADDRESS in add:ADDRESS()
where $CUSTOMER/CUSTOMER_ID eq $ADDRESS/CUSTOMER_ID
return

If you click a data element (not a container element) in the return type, you see its XQuery expression in
the expression editor.

Mapping Data in an XQuery Expression

Notice that the mapping expressions use the built-in XQuery function fn:data, which extracts the data
value from an XML element.

As you map elements visually in the Query Map, ALDSP creates XQuery source (for example, the read
function shown above). The XQuery source is later converted to SQL queries, which you can see in Plan
view.

Viewing a SQL Query in Plan View

Document generated by Confluence on Jan 10, 2008 16:26 Page 149

http://kmwiki.bea.com/download/attachments/7382/Query Map View.gif
http://kmwiki.bea.com/download/attachments/7382/Expression Editor.gif

In this query plan, you see the left outer join between the CUSTOMER and ADDRESS relational tables.
This was created by the green dashed line drawn between the Customer and Address blocks in Query
Map view.

When you build XQuery functions and procedures visually in Query Map view or by editing in Source view,
you can test and run them on an ALDSP server. During server runtime, the functions and procedures are
compiled into an executable query plan. Examine the query plan before you finalize the queries. Query
Plan view gives you a peek into a query's execution logic and flags potential performance and memory
problems. Building XQuery functions is an iterative process of test, view plan, and edit.

Update Map View

While Query Map view shows how a service reads from data sources, Update Map view shows how the
service writes data to them.

Checking Update Map View

The data sources are on the left, with updates coming from the return type on the right. The return type
is available to client applications, where users update data.

The blocks on the left are update blocks. Each mapped element in an update block has an XQuery
expression that defines how the element is updated. You can see the expression in the expression editor
below the mapping area.

Viewing an XQuery Update Expression

Document generated by Confluence on Jan 10, 2008 16:26 Page 150

http://kmwiki.bea.com/download/attachments/7382/Query Plan.gif
http://kmwiki.bea.com/download/attachments/7382/Update Map View.gif
http://kmwiki.bea.com/download/attachments/7382/Update Expression.gif

ALDSP generates the update map for you when you create a logical data service under these conditions:

• Your service has a primary read function

• You are using relational data sources

(If you are using other data source types, you must edit the update template.)

You can then customize the update map and test it in Test view, without programming.

An application client uses the Service Data Objects programming model to update data sources. SDO is
an application framework that allows you to update data sources while disconnected from them, using a
flexible, optimistic concurrency model. You use only one API, the SDO API, to update multiple data
sources -- relational, web service, XML files, and so on.

Test View

The Test view available in Data Services Studio works like a built-in client where you can easily test any
function or procedure in the data service, before you build a custom client.

Choosing a Function or Procedure to Test

Testing a read function, for example, returns data as the service would to a client, in the shape of the
return type.

Reading Customer Profile Data

To test a simple update, click the Edit button, edit some data in the result, then click Submit. When you
test the read function again, the results show the change.

You can also test an SDO update by submitting a datagraph with a change summary (see Test an Update
Procedure).

Document generated by Confluence on Jan 10, 2008 16:26 Page 151

http://edocs.bea.com/appdev/sdo.html
http://kmwiki.bea.com/download/attachments/7382/Choosing Before Test.gif
http://kmwiki.bea.com/download/attachments/7382/Reading Customer Profile Data.gif

See Also

Concepts

• Understanding Update Maps

How Tos

• Create a Return Type
• Create Your First Data Services
• Add a Where Clause to a Query

Reference

• XQuery Source of a Logical Entity Service

Other Sources

• Introdution to Service Data Objects (ibm.com)

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 152

http://www.ibm.com/developerworks/java/library/j-sdo/
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Check Namespaces in Return Types

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Check Namespaces in Return Types

This topic shows you how to make sure the namespaces used in your return type are correct.

• Check Prefix Bindings
• Edit the Namespace
• See Also

Check Prefix Bindings

In the return type, a child element must be in the same namespace as its parent. If a return type uses
elements in different namespaces, you cannot deploy the logical data service to the server or test it from
AquaLogic Data Services Studio.

The exception to this rule is when the parent and child are in different namespaces, but both namespaces
have the same prefix binding. Check prefix bindings first, and then edit the namespace, if needed.

To check prefix bindings in the Overview tab:

1. Click the Overview tab.
2. Click the Properties tab (if it's not visible, choose Window > Show View > Properties).

To check prefix bindings in Source:

1. Click the Source tab.
2. Look for the XQuery namespace statements:

import schema namespace myc="ld:logical/MyCustomer" at "ld:logical/schemas/MyCustomer.xsd";
declare namespace cus= "ld:physical/CUSTOMER";
import schema namespace myc1="ld:logical/MyCustomer" at
"ld:logical/schemas/MyCustomer_KEY.xsd";

In both these examples, the myc and myc1 namespaces have the same prefix binding. You can have a

Document generated by Confluence on Jan 10, 2008 16:26 Page 153

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://kmwiki.bea.com/download/attachments/7382/Prefix Bindings 2.gif

parent element in one and a child element in another. But if you have a parent element in myc and a
child in cus, you need to change one namespace in the return type.

Edit the Namespace

Once you check the prefix binding, you can check a namespace used in a return type and change it in the
Query Map or Source view.

To edit a namespace in Query Map view:

1. Click the Query Map tab.
2. Select the parent element in the return type, then click it.

Be sure to select and then click; do not double-click.

3. Select the child element in the return type, then click it.
4. If the child element is in a different namespace, change it to the namespace of the parent.
5. Right-click the title bar of the return type, and choose Save and Associate XML Type.

6. Enter the correct location, namespace, and root element name for the return type. Click OK.

To edit a namespace in Source view:

1. Click the Source tab.
2. Expand the primary Read function:

3. Locate the namespace of the child element and change it to the namespace of the parent, both in
the start and end elements:

declare function myc:read() as element(myc:CUSTOMER)*{
for $CUSTOMER in cus:CUSTOMER()
return

<myc:CUSTOMER>
...
{

for $ADDRESS in add:ADDRESS()
where $CUSTOMER/CUSTOMER_ID eq $ADDRESS/CUSTOMER_ID

Document generated by Confluence on Jan 10, 2008 16:26 Page 154

http://kmwiki.bea.com/download/attachments/7382/Edit Return Type 300.gif
http://kmwiki.bea.com/download/attachments/7382/Save and Associate XML Type.gif

return
<myc:ADDRESS >
...
</myc:ADDRESS>

}

4. Save the changes.

See Also

How To

• Create a Return Type
• Add a Complex Child Element to a Return Type

Other Resources

• XML Schema Tutorial at W3Schools
• XML Schema Part 1: Structures
• XML Schema Part 2: Datatypes

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 155

http://www.w3schools.com/schema/default.asp
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Configure Security for Web Services Applications

This page last changed on Jan 10, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Configure Security for Web Services
Applications

ALDSP Native Web Services supports the following security features:

• Basic authentication (Web Application Security)
• Transport level security (HTTPS)
• Message level security (Web Services Security)

Configuring Basic Authentication

To use basic authentication, set the Basic Auth Required property of the web services map file to true. For
more information, see Web Services Map File Reference.

Configuring Transport Level Security (HTTPS)

Use the web service map file property editor to change the Transport Type to HTTPS. HTTP is the default.
For more information, see Web Services Map File Reference.

For HTTPS, you can configure either 1-way or 2-way SSL. For detailed information on transport level
security, see the WebLogic Server document Configuring Security: Configuring Transport-Level Security
on e-docs.

Configuring Web Services Security (WSS)

WSS provides message level security. For WSS, ALDSP Native Web Services supports the same standards
that are supported by WebLogic Server. For detailed information on WSS, see the WebLogic Server
document, Configuring Security: Updating a Client Application to Invoke a Message-Secured Web Service
on e-docs.

The supported standards include:

• SOAP Message Security
• Username Token Profile
• X.509 Certificate Token Profile

Document generated by Confluence on Jan 10, 2008 16:26 Page 156

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/wls/docs92/webserv/security.html
http://edocs.bea.com/wls/docs92/webserv/security.html

• SAML Token Profile

To use Web Services Security with an ALDSP web services application:

1. Choose the type of web services security you want to use with your ALDSP application.
2. Configure security policies through the appropriate policy file(s). See the WebLogic Server document

Configuring Security : Overview of Web Services Security for detailed information on configuring
policy files for each type of web services security.

3. Edit the web services mapping file to include your policy file(s). You can associate policies with an
entire mapping file or for specific operations within the file. See "Specifying Policies" below for
details.

Specifying Policies

You can specify policies for a map file or for individual operations in a map file.

Specifying Global Policies

To specify a policy for web services security for a map file:

1. Create the policy file. See the WebLogic Server document: "WebLogic Web Services: Security" for
detailed information on configuring policy files for each type of web services security.

2. Import the policy file into your ALDSP project. The easiest way to do this is to use the IDE to import
the file as a resource. The policy file must reside in the DSP-INF/policies directory.

3. Configure the web services map file to include the policy.

The following listing shows an example .ws file that includes the optional, top-level policies element. Each
policy element describes one policy file. The policies element can contain one or more policy elements.
The locator attribute contains either an ALDSP locator for the policy file or a fixed URI that describes the
location of the standard WLS policy file.

ALDSP supports three security policy types. Their URIs are: policy: Auth, policy: Encrypt, policy: Sign.
These are abstract policy files provided by WebLogic Server that describe authentication, encryption, and
digital signature policies. These policy files do not have to physically reside in DSP project repository.

The policy element contains a required attribute Direction. This attribute represents at which direction the
security policy will apply. The policy direction can be: REQUEST, RESPONSE, or REQUEST_RESPONSE.

• REQUEST - The policy applies only to the inbound request message.
• RESPONSE - The policy applies only to the response message.
• REQUEST_RESPONSE - The policy applies to both inbound request and the response message.

Refer to the schema definition for detailed information on the structure of the map file (see the topic Web
Services Map File Reference).

Sample Map File

Document generated by Confluence on Jan 10, 2008 16:26 Page 157

http://edocs.bea.com/wls/docs92/webserv/security.html

<?xml version="1.0" encoding="UTF-8"?>
<web:WebServicesMap targetNamespace="ld:myMapper.ws" soapVersion="SOAP_1.1"
transportType="HTTP" ADODotNETEnabled="false" basicAuthRequired="false"
xmlns:web="http://www.bea.com/dsp/management/configuration/webservices">

<web:policies>
<web:policy locator="ld:mypolicy.xml">
<web:policy direction="REQUEST_RESPONSE">

</web:policies>
<web:dataServices>

<web:dataService locator="ld:CUSTOMER.ds">
<web:function name="deleteCUSTOMER" arity="1" operation="deleteCUSTOMER"

returnInHeader="false">
<web:parameterMapping>

<web:parameter name="p" wsdlMapping="SOAP_BODY"/>
</web:parameterMapping>

</web:function>
<web:function name="updateCUSTOMER" arity="1" operation="updateCUSTOMER"

returnInHeader="false">
<web:parameterMapping>

<web:parameter name="p" wsdlMapping="SOAP_BODY"/>
</web:parameterMapping>

</web:function>
</web:dataService>

</web:dataServices>
</web:WebServicesMap>

Specifying Policies for a Function

To specify policies for a function in a map file:

1. Follow the same basic instructions for specifying a policy for a web service map file, described
previously.

2. In the .ws file, add the policies element to the function element. The policies element contains one
or more policy element. A policy element represents the security policy that applies to the WSDL
operation. The optional child element ParameterMapping for the function element contains a list of
parameters that are mapped to the SOAP header.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 158

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Create a Data Service with a Flat Return Type

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Create a Data Service with a Flat
Return Type

This topic shows you how to create an update map from a logical data service with a flat, non-nested
return type, using the sample database that ships with AquaLogic Data Services Platform.

• Overview
• Create a Dataspace Project
• Create the Return Type
• Create Physical Data Services
• Create a Logical Data Service
• Create the Query Map
• Test the Service
• See Also

Overview

A return type can be non-nested, or flat, even if it joins two relational tables, where one table has a
one-to-many relationship with the other table . An example is one customer in a CUSTOMER table with
many Orders in an ORDERS table. One approach to the return type is to nest an Orders element of
multiple cardinality beneath the Customer element.

A Nested Customer-and-Orders Schema

Because you can design a logical data service with any structure, regardless of the underlying data
sources, it is just as valid to define a flat return type to model the relationship between Customers and
Orders.

Document generated by Confluence on Jan 10, 2008 16:26 Page 159

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://kmwiki.bea.com/download/attachments/7382/Nested Schema Visual.gif

A Flat Customer-and-Orders Schema

Create a Dataspace Project

First, create a new dataspace project to contain your physical and logical data services:

1. In AquaLogic Data Services Studio, choose File > New > Dataspace Project.
2. Enter a project name such as FlatReturnType, then click Finish.
3. Right-click the new dataspace project name, and choose New > Folder.
4. Create folders named physical and logical. Within logical, create a folder named schemas.

Using separate folders for physical and logical services helps separate the physical and logical
integration layers.

Adding a New Dataspace Project

Create the Return Type

The return type the logical data service uses combines data from the CUSTOMER table and the ORDERS
table. It has a non-nested XML structure, even though the data shows that customers and orders have a
one-to-many relationship.

You can define the return type by creating an XML schema (XSD) file. In an XML editor, create a schema
file like this one:

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema targetNamespace="ld:logical/FlatReturnType"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

Document generated by Confluence on Jan 10, 2008 16:26 Page 160

http://kmwiki.bea.com/download/attachments/7382/Flat Schema Visual.gif
http://kmwiki.bea.com/download/attachments/7382/Creating a New Dataspace Project 2.gif

<xs:element name="CUSTOMERS_AND_ORDERS">
<xs:complexType>

<xs:sequence>
<xs:element name="CUSTOMER_ID" type="xs:string"/>
<xs:element name="FIRST_NAME" type="xs:string"/>
<xs:element name="LAST_NAME" type="xs:string"/>
<xs:element name="EMAIL_ADDRESS" type="xs:string"/>
<xs:element name="ORDER_ID" type="xs:string"/>
<xs:element name="ORDER_DT" type="xs:date"/>
<xs:element name="TOTAL_ORDER_AMT" type="xs:decimal"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Be sure to:

• Define targetNamespace to make sense for your dataspace project.
Make sure you have only one top-level element of the name you choose (here,
CUSTOMERORDER) in your target namespace. You can give the targetNamespace the same name as
the dataspace project, but you are not required to.

• Save the schema file in the logical/schemas folder within your dataspace project.

Note that the cardinality of all elements uses the default values, minOccurs="1" and maxOccurs="1".
Each customer has many orders, but there is only one combination of customer and order, so the
cardinality of the order elements (ORDER_ID, ORDER_DT, and TOTAL_ORDER_AMT) is still 1.

Create Physical Data Services

Now, create physical data services based on the sample database or your own physical data sources.

1. In Project Explorer, right-click the physical folder in your dataspace project.
2. Choose New > Physical Data Service.
3. Choose Relational for Data source type and dspSamplesDataSource for Data source, then click Next.
4. Expand RTLCUSTOMER and select CUSTOMER.
5. Expand RTLAPPLOMS and select CUSTOMER_ORDER, then click Next.
6. Select Public for both CUSTOMER and CUSTOMER_ORDER, then click Next.
7. Click Finish.
8. When asked if you want to open the new data services, click No.

Adding Physical Data Services

Document generated by Confluence on Jan 10, 2008 16:26 Page 161

http://kmwiki.bea.com/download/attachments/7382/Creating a Physical Data Service.gif

Create a Logical Data Service

Now that you have physical data services and a schema for the return type, you can create the logical
data service.

1. Right-click the logical folder, then choose New > Logical Data Service.
2. Enter a name for the service, such as FlatCustomersAndOrders.
3. Make sure Entity Data Service is selected, then click Finish.

Now associate a return type with the service:

1. Right-click in the Overview tab and choose Associate XML Type.
2. Select the schema and click OK.

A New Logical Data Service with a Return Type

You also need to define a primary Read function, in order to create both the query map and update map.

1. Right-click in the service name bar at the top, and choose Add Operation.
2. Make sure Kind is set to read, then enter a function name, such as read.
3. Make sure Primary is selected, then click OK.

Creating a Primary Read Function

Create the Query Map

Now you need to create the query map visually in Data Services Studio, which in turn generates an
update map.

1. Click the Query Map tab.
2. In Project Explorer, expand the physical data services CUSTOMER.ds and CUSTOMER_ORDER.ds.

Document generated by Confluence on Jan 10, 2008 16:26 Page 162

http://kmwiki.bea.com/download/attachments/7382/Logical Data Service with Return Type.gif
http://kmwiki.bea.com/download/attachments/7382/Creating a Primary Read Function.gif

3. Drag the Read function -- like this: -- from each physical service to the

mapping area.
Notice that you cannot scope the CUSTOMER_ORDER block to a subtype in the return type, because
the return type has no subtypes.

4. Drag mappings from the CUSTOMER block on the left to the return type for CUSTOMER_ID,
FIRST_NAME, LAST_NAME, and EMAIL_ADDRESS.

5. Drag mappings from the CUSTOMER_ORDER block on the left to the return type for ORDER_ID,
ORDER_DT, and TOTAL_ORDER_AMT.

6. In the For blocks, drag from CUSTOMER/CUSTOMER_ID to CUSTOMER_ORDER/CUSTOMER_ID.
This creates a join between the two data sources.

At this point, the query map looks like this. You can see the mappings to the return type, as well as the
join (the dotted line) between CUSTOMER and CUSTOMER_ORDER.

A Query Map with Mappings and a Join

If you click the Source tab and expand the Read function, you see XQuery code like this:

declare function tns:read() as element(fla:CUSTOMERS_AND_ORDERS)*{
for $CUSTOMER_ORDER in cus1:CUSTOMER_ORDER()
for $CUSTOMER in cus:CUSTOMER()
where $CUSTOMER/CUSTOMER_ID eq $CUSTOMER_ORDER/C_ID
return

<fla:CUSTOMERS_AND_ORDERS>
<CUSTOMER_ID>{fn:data($CUSTOMER/CUSTOMER_ID)}</CUSTOMER_ID>
<FIRST_NAME>{fn:data($CUSTOMER/FIRST_NAME)}</FIRST_NAME>
<LAST_NAME>{fn:data($CUSTOMER/LAST_NAME)}</LAST_NAME>
<EMAIL_ADDRESS>{fn:data($CUSTOMER/EMAIL_ADDRESS)}</EMAIL_ADDRESS>
<ORDER_ID>{fn:data($CUSTOMER_ORDER/ORDER_ID)}</ORDER_ID>
<ORDER_DT>{fn:data($CUSTOMER_ORDER/ORDER_DT)}</ORDER_DT>
<TOTAL_ORDER_AMT>{fn:data($CUSTOMER_ORDER/TOTAL_ORDER_AMT)}</TOTAL_ORDER_AMT>

</fla:CUSTOMERS_AND_ORDERS>

};

Notice that the XQuery code has a for statement nested directly within another for statement.
This creates an inner join between the two tables in SQL. To confirm the SQL that is created:

1. Click the Test tab.
2. At Select operation, make sure the primary Read function is selected.
3. Click Run (saving your data service as necessary).

You should see an XQuery FLWOR statement node. If you expand it, you should see a SQL query like this,
showing an inner join:

SELECT t1."ORDER_DT" AS c1, t1."ORDER_ID" AS c2, t1."TOTAL_ORDER_AMT" AS c3,

Document generated by Confluence on Jan 10, 2008 16:26 Page 163

http://kmwiki.bea.com/download/attachments/7382/read-function-icon.gif
http://kmwiki.bea.com/download/attachments/7382/Query Map.gif

t2."CUSTOMER_ID" AS c4, t2."EMAIL_ADDRESS" AS c5, t2."FIRST_NAME" AS c6, t2."LAST_NAME" AS c7
FROM "RTLAPPLOMS"."CUSTOMER_ORDER" t1
JOIN "RTLCUSTOMER"."CUSTOMER" t2
ON (t2."CUSTOMER_ID" = t1."C_ID"

The inner join is created because the logical data service has a flat return type. When you mouse over
the SQL query, you see this message:

Generated SQL query does not have a WHERE clause. This may cause the query to take longer to
finish and use excessive memory resources.

Test the Service

Once the update map is enabled, you can deploy it to the server and test it against sample data. When
you test an update in Test view, you are using the service's primary update procedure.

1. Click the Test tab.
2. At Select operation, choose the service's primary Read function.
3. Click Run.

Each data row returned is a combination of one Customer and one Order, uniquely identified by the
ORDER_ID.

Sample Data Returned

To test the update map, update some data:

1. Click a row in the sample data, then click Edit.
2. Expand a node of data.
3. Edit a field (such as EMAIL_ADDRESS), then click Submit.
4. Make sure the primary Read function is still selected and look for your change.

If you change a value in the CUSTOMER data, it appears in all rows for that customer.

See Also

• Create Your First Data Services

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 164

http://kmwiki.bea.com/download/attachments/7382/Sample Data.gif
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Create a Logical Data Service with a Group By Clause

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How to Create a Logical Data Service with a
Group By Clause

This topic shows how to add a group by clause to a logical data service, using the BEA extensions to
XQuery.

• Overview
• Design the Return Type Schema
• Create the Logical Data Service
• Create the Group By Node
• Create the For Node
• Add an Aggregate Function
• Test the Service
• See Also

Overview

In relational data sources, a SQL GROUP BY statement is used with aggregate functions to group
retrieved data by one or more columns. If you want to retrieve a list of distinct customers and the total
amount of all orders each customer has placed from a relational data source, you might use a SQL
statement like this:

SELECT CUSTOMER_ID, SUM(TOTAL_ORDER_AMOUNT) FROM ORDERS
GROUP BY CUSTOMER_ID

The output produced groups all orders by customer and then totals the order amounts for each:

CUSTOMER_ID TOTAL_OF_ALL_ORDERS

Customer0 9155.10

Customer1 5336.5

Customer2 11245.05

Customer3 1419.95

ALDSP logical data services use XQuery 1.0 to query data. XQuery, as defined by the W3C standard, does
not support group by clauses. However, ALDSP has extended XQuery to allow a group by clause in an
XQuery FLWOR statement:

Document generated by Confluence on Jan 10, 2008 16:26 Page 165

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://www.w3.org/TR/xquery/
http://www.idealliance.org/proceedings/xml04/papers/229/XQueryExtensionsFinal.html#S3.1

declare function tns:read() as element(ord1:ORDER_GROUP_BY)*{
for $CUSTOMER_ORDER in cus:CUSTOMER_ORDER()
group $CUSTOMER_ORDER as $CUSTOMER_ORDER_group by $CUSTOMER_ORDER/CUSTOMER_ID as
$CUSTOMER_ID_group
return ...

You can add the XQuery group by statement to a logical data service visually in AquaLogic Data Services
Studio. You should first make sure the service has a return type that supports the group by.

Suppose that after you retrieve all customer orders, group them by customer, and find the total amount
of all orders each customer has placed, you also want a list of order IDs for each customer. You can
design a logical data service to do this, doing part of the work in the mapping editor (in Studio) and part
in the XQuery source.

Design the Return Type Schema

The return type schema needs an element to group by, such as a customer ID, and an element to hold an
aggregate value, such as a sum or an average. The return type can also have a complex element that
contains additional elements that provide information. This example provides the list of order IDs that are
totalled for each customer, as one element with multiple cardinality within a complex element.

Return Type Schema for a Group By

If you want to design the schema top down using an XML editor, you can start with code like this and
refactor it for your use case:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="ld:logical/OrderGroupBy">

<xs:element name="ORDER_GROUP_BY">
<xs:complexType>

<xs:sequence>
<xs:element name="CUSTOMER_ID" type="xs:string"/>
<xs:element name="TOTAL_FOR_THIS_CUSTOMER" type="xs:decimal"/>
<xs:element name="ORDERS">

<xs:complexType>
<xs:sequence>

<xs:element name="ORDER_ID" type="xs:string"
maxOccurs="unbounded" form="unqualified" />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

You can also create the return type bottom up, as you design the query map (see Create Your First Data
Services).

Document generated by Confluence on Jan 10, 2008 16:26 Page 166

http://kmwiki.bea.com/download/attachments/7382/Group By Schema.gif

Create the Logical Data Service

Once you have defined the return type, create the logical data service and add the group by statement
visually, using the mapping editor.

1. Create a new data space and import physical data sources (see Create Your First Data Services).
2. Create a new logical data service.
3. Click Overview, right-click the name bar, choose Associate XML Type, and select the schema file for

the return type.
4. Create a primary Read function.
5. Click Query Map. Drag the primary Read function from the relevant physical data source.

At this point, do not draw additional mapping lines from the For block to the return type.

Create the Group By Node

Now create the group by node visually:

1. Right-click the element in the For block that you want to use as a grouping element, and select
Create Group By.
A Group By node is created, and mappings are automatically drawn to it. The lower section of the
Group By block shows the grouping element.

2. Drag a mapping from the grouping element in the By section of the Group By node to the grouping
element in the return type (here, from GroupBy CUSTOMER_ID to Return CUSTOMER_ID).

3. Drag a mapping from the appropriate element in the top section of the Group By node to the
aggregate element in the return type (here, from Group By TOTAL_ORDER_AMOUNT to Return
TOTAL_FOR_THIS_CUSTOMER).

Document generated by Confluence on Jan 10, 2008 16:26 Page 167

http://kmwiki.bea.com/download/attachments/7382/Adding a Group By Node.gif
http://kmwiki.bea.com/download/attachments/7382/Mapping from the Group By Node.gif

Create the For Node

To map the information element, edit the XQuery code in the Source tab.

1. In the Source tab, add an XQuery for clause to the correct node in the primary Read function (here,
the ORDERS node):

declare function tns:read() as element(ord1:ORDER_GROUP_BY)*{
for $CUSTOMER_ORDER in cus:CUSTOMER_ORDER()
group $CUSTOMER_ORDER as $CUSTOMER_ORDER_group by $CUSTOMER_ORDER/CUSTOMER_ID as
$CUSTOMER_ID_group
return

<ord1:ORDER_GROUP_BY>
<CUSTOMER_ID>{fn:data($CUSTOMER_ID_group)}</CUSTOMER_ID>

<TOTAL_FOR_THIS_CUSTOMER>{fn:data($CUSTOMER_ORDER_group/TOTAL_ORDER_AMOUNT)}</TOTAL_FOR_THIS_CUSTOMER>
<ORDERS> {

for $order in $CUSTOMER_ORDER_group/ORDER_ID
return
<ORDER_ID>{fn:data($order)}</ORDER_ID>

}
</ORDERS>

</ord1:ORDER_GROUP_BY>

};

The for statement declares a variable (here $order) and then looks for an element
($CUSTOMER_ORDER_group/ORDER_ID) in the first group the group by statement declares
(CUSTOMER_ORDER_group). The for clause then returns the value of the element using the fn:data
function.

2. Click Query Map. Notice that a For node has been added.

Add an Aggregate Function

Last, add an aggregate function to the aggregate element in the return type (here,
TOTAL_FOR_THIS_CUSTOMER).

1. In Query Map, click the aggregate element in the return type.
Notice that it uses the fn:data function, for example:

{fn:data($CUSTOMER_ORDER_group/TOTAL_ORDER_AMOUNT)}

2. Click in the expression. Make sure the Save and Cancel icons are enabled.

3. Click the Design Palette (Window > Show View > Design Palette).
4. Expand XQuery Functions, then Aggregate Functions.

Document generated by Confluence on Jan 10, 2008 16:26 Page 168

http://kmwiki.bea.com/download/attachments/7382/Adding a For Node to a Group By.gif
http://kmwiki.bea.com/download/attachments/7382/Save and Cancel Icons.gif

5. Choose a function (here, the fn:sum function with one argument) and drag it to the expression
editor. Leave the existing expression there.

6. Edit the expression to use the existing expression as an argument to the aggregate function, for
example:

{fn:sum(fn:data($CUSTOMER_ORDER_group/TOTAL_ORDER_AMOUNT)) }

7. Click Save .

Test the Service

The only way to test a logical data service with a group clause is to run the primary Read function in the
Test tab. This type of data service does not have an update map, so you cannot edit data and submit it or
test an Update procedure. Likewise, you cannot test a Create procedure.

1. Click Test.
2. At Select Operation, choose the primary Read function.
3. Click Run.

You should see data grouped by the grouping element, with a result for the aggregate element, and
containing a number of information elements.

Results of a Group By Statement

See Also

Examples

• Create Your First Data Services

Other Resources

• W3C XQuery Language Specification
• Extending XQuery for Grouping, Duplicate Elimination, and Outer Joins

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 169

http://kmwiki.bea.com/download/attachments/7382/Save Icon.gif
http://kmwiki.bea.com/download/attachments/7382/Group By Results.gif
http://www.w3.org/TR/xpath-functions/
http://www.idealliance.org/proceedings/xml04/papers/229/XQueryExtensionsFinal.html#S3.1
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Document generated by Confluence on Jan 10, 2008 16:26 Page 170

Create a Return Type

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Create a Return Type

This topic describes the basics of creating return types for logical entity data services in the Query
Mapper and directly in XML.

• Choose a Technique
• Write a Return Type Schema
• Generate a Schema File
• See Also

Choose a Technique

Data services use both XML types and return types.

XML types represent the shape of a logical data service, in the form of an XML schema. They are
templates from which return types are created, comparable to a Java class. You use an XML type when
you first create a logical entity service and add an XML schema to define its shape.

Adding an XML Type to a Service

Return types represent the shape of data that a query produces when it is run. They are specific
instances of an XML type, comparable to a Java object. Return types are the R in an XQuery FLWOR
clause. For example, a service's primary read function returns a return type.

Checking the Return Type of a Read Function

Document generated by Confluence on Jan 10, 2008 16:26 Page 171

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://kmwiki.bea.com/download/attachments/7382/XML Type.gif

An XML type is the backbone of a logical data service, because it defines the data the service returns. The
XML schema that represents the XML type can combine any elements from any data sources the logical
data service uses, including relational sources, web services, XML files, text files, and Java methods.

The schema for the logical data service is designed as a separate layer of the dataspace project,
regardless of the actual structure of the underlying physical data sources. The schema is not required to
use all elements in, or the same structure as, the physical data sources.

You can create a return type schema, an XSD file, in two ways:

• Top down, in an XML editor, either one built in to Data Services Studio or a standalone editor.
• Bottom up, by building the service visually in Query Map view and then using the Save and

Associate XML Type command.

You should create the XSD file in the logical layer of your dataspace project, as it belongs to the logical
data service. Data Services Studio provides several XML editors, which you can see if you right-click an
XSD file in the Project Explorer and choose Open With.

Choosing an XML Editor in Studio

Write a Return Type Schema

To create the schema in an XML editor in Data Services Studio:

Document generated by Confluence on Jan 10, 2008 16:26 Page 172

http://kmwiki.bea.com/download/attachments/7382/Edit Read Function Signature.gif
http://kmwiki.bea.com/download/attachments/7382/Schema Open With.gif

1. Choose a location for logical data service schemas in your dataspace project.
You may want to create a folder for schemas in the logical layer of your project (for example,
MyDataSpace/logical/schemas) separate from the schemas folder that ALDSP auto-generates for
physical data services.

2. Choose File > New > Other.
3. Choose XML > XML Schema, and click Next.
4. Choose a folder, enter a file name that ends in .xsd, and click Finish.

The generated schema looks something like this:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.example.org/MySchema"
xmlns:tns="http://www.example.org/MySchema" elementFormDefault="qualified">

</schema>

5. In the XML editor, change the URL of targetNamespace to one within your dataspace project:

targetNamespace="ld:logical/CustomerAndAddress"

The targetNamespace URL should start with the prefix ld:, and logical indicates that the schema
resides in the folder named logical in your dataspace project. The identifier that follows (here,
CustomerAndAddress) defines the namespace.

6. Delete the namespace definition for xmlns:tns, if your service binds tns to a different namespace.
You can check this by clicking the Overview tab, then the Properties tab.

At this point, your schema file should like this:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="ld:logical/CustomersAndOrders"
elementFormDefault="qualified">

</schema>

7. Continue adding complex types, elements, and attributes using the XML editor.

Document generated by Confluence on Jan 10, 2008 16:26 Page 173

http://kmwiki.bea.com/download/attachments/7382/Schema Folders.gif
http://kmwiki.bea.com/download/attachments/7382/Tns Namespace.gif

8. Save the file, then right-click anywhere in it and choose Validate.

You can also create the return type schema using an XML editor outside Studio and then move the XSD
file to your Studio dataspace project.

Generate a Schema File

You can also have ALDSP generate the return type schema after you build the query map visually.

To generate the schema in Data Service Studio, follow these instructions (or see Create Your First Data
Services for detailed instructions):

1. Create a dataspace.
2. Create physical data services in the dataspace.
3. Also in the dataspace, create a logical data service (File > New > Logical Data Service).
4. Create a Read function in the logical data service (Overview tab, right-click, Add Operation).
5. Drag the Read functions of the physical services you want to use to the Query Map tab.
6. Click Overwrite , and drag the root element in the For box to the root element in the Return

type.
7. Right-click on the complex element in the Return type, and choose Expand Complex Mapping.
8. Right-click the return type box, and choose Save and Associate XML Type.

For Location, select the correct folder for logical schemas. In Namespace, enter a namespace that
starts with ld:logical, such as ld:logical/MyCustomer. Be sure that the name of the root element
(here, CUSTOMER) is unique within the namespace. (The ld namespace refers to the original name
of ALDSP, Liquid Data).

9. Click OK.
10. Save the file, then right-click anywhere in it and choose Validate.

See Also

How Tos

• Add a Complex Child Element to a Return Type
• Create Your First Data Services

Other Resources

Document generated by Confluence on Jan 10, 2008 16:26 Page 174

http://kmwiki.bea.com/download/attachments/7382/overwrite_mapping_icon.gif
http://kmwiki.bea.com/download/attachments/7382/Save and Associate XML Type.gif

• XML Schema Tutorial at W3Schools
• XML Schema Part 1: Structures
• XML Schema Part 2: Datatypes

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 175

http://www.w3schools.com/schema/default.asp
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Create Conditional Elements in Return Types

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Create Conditional Elements in Return
Types

This topic describes how to add a condition to a return type and determine the elements that are
returned when the condition is true or false.

• Add the Condition
• Create the Expression
• See Also

Add the Condition

A condition in a return type defines two groups of elements: those returned when an expression is true,
and those returned when an expression is false. When you add a condition to a return type, you see two
groups of return type elements.

To add a condition to the return type:

1. Click the Query Map tab.
2. Right-click an element in the return type, and choose Make Conditional.

The conditional element is now duplicated.

Create the Expression

You must add the conditional expression, that determines which element is returned, in the XQuery
source. You cannot add a conditional expression in the expression editor.

1. Click the Source tab.
The primary Read function now has an if..else clause:

declare function tns:read() as element(cus:CustomerOrder)*{

Document generated by Confluence on Jan 10, 2008 16:26 Page 176

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://kmwiki.bea.com/download/attachments/7382/Conditional Return Type.gif

for $CUSTOMER in cus1:CUSTOMER()
return

if (true()) then
<cus:CustomerOrder>

...
</cus:CustomerOrder>

else
<cus:CustomerOrder>

...
</cus:CustomerOrder>

};

The expression after the if statement is evaluated, and the service returns either the first or second
set of elements. The XQuery true() function simply returns the Boolean value true.

2. In the XQuery source, replace true() with another XQuery expression, for example:

if (fn:data($CUSTOMER/LAST_NAME) = "Black") then

You can use any XQuery expression that returns a value of true or false. In this example, if a
customer has the last name Black, the first element group is returned. If not, the second element
group is returned.

To add the value of an element in a For block, use the XQuery fn:data function, which takes the
value of an element:

<LAST_NAME>Black</LAST_NAME>

3. Click the Query Map tab.
4. In the return type, add or delete elements in either group to create the return groups you want.

Remember that the first group is returned if the expression is true, and the second group if the
expression is false.

5. Click the Test tab. Choose the Read function, and click Run. Check that the results are what you
intend.
In this example, the full group of elements is only returned for customers with the last name Black.
For other customers, only the CUSTOMER_ID is returned.

Document generated by Confluence on Jan 10, 2008 16:26 Page 177

http://kmwiki.bea.com/download/attachments/7382/New Return Groups.gif

See Also

How Tos

• Create a Return Type
• Add a Complex Child Element to a Return Type
• Test a Read Function and Simple Update

Other Resources

• Introduction to XQuery
• XQuery Tutorial
• XQuery 1.0 Specification

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 178

http://kmwiki.bea.com/download/attachments/7382/Testing a Condition.gif
http://www.devx.com/xml/Article/8046/0/page/3
http://www.w3schools.com/xquery/default.asp
http://www.w3.org/TR/xquery/
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Create Logical Data Service Keys

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Create Logical Data Service Keys

This topic describes how to create a key for a logical data service.

• Overview
• Generate a Key
• Select Elements for a Key
• Select a Key Schema File
• View and Map a Key
• See Also

Overview

A logical data service key uniquely identifies a data record the logical service defines. Because a logical
service combines data from various physical and logical services, its key can combine or be different from
the keys defined on underlying data sources.

For example, you might have a logical data service with a flat return type that combines data from two
relational tables, CUSTOMER and ORDER. These tables have keys CUSTOMER_ID and ORDER_ID,
respectively. In your logical data service, each data record is a unique combination of Customer and
Order, so you create a composite key that combines CUSTOMER_ID and ORDER_ID.

Create procedures return a key to identify the data record that was inserted. Update and Delete
procedures act on the data record the key identifies. A logical data service can have one key, although
you can have multiple key schema files from which you select the key. You can have ALDSP
auto-generate the key, choose the elements you want in the key, or select an available schema (XSD) file
to use for the key. The key definition requires specific knowledge of your data and the update map the
service uses.

You can create a key for any logical data service that has a primary Read function. Once you create the
key, you can view it in an update map and test it from AquaLogic Data Services Studio.

Generate a Key

For an auto-generated key, ALDSP uses elements from the return type of the primary Read function that
are designated as keys in the underlying data sources and have single (1..1) cardinality.

To auto-generate the key:

Document generated by Confluence on Jan 10, 2008 16:26 Page 179

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

1. Be sure the logical data service has a primary Read function.
2. Open the logical data service in Studio, and click the Overview tab.
3. Right-click in the service name bar, or at the left or right of the screen, and choose Manage Key.
4. Select Generate a New Schema.
5. Accept the default key name, or give your key a name ending in .xsd.
6. Click Next.
7. Select Auto Generate the Key, then click Finish.

Auto-Generating a Logical Data Service Key

You can now use the key as an argument or return type to an update map procedure, such as a Create,
Update, or Delete procedure.

If you create a key, then delete it and create another one, you need to edit the signature of your Create
procedure to return the new key:

Overview tab > right-click > Edit Signature

Select Elements for a Key

When you select elements for a key, you can add any element with single (1..1) or zero (0..1) cardinality,
whether or not it is a key element in the underlying data source. An element with zero cardinality is
optional and might contain null values, but you can use it as a key element. This allows you to create a
wider variety of keys.

For example, you might have two data sources, one using a Social Security Number to identify records,
and the other, a tax identification number. Your logical data service might have a return type that joins
the two sources, so that a data record has either a social security number or a tax ID number. In the
return type, both the social security number and the tax ID number are optional. The key can use either
element to identify the record.

You cannot select an element that has multiple (0..m or 1..m) cardinality to be part of a key.

To create a key with elements that you select:

Document generated by Confluence on Jan 10, 2008 16:26 Page 180

http://kmwiki.bea.com/download/attachments/7382/Manage Keys.gif

1. Be sure the logical data service has a primary Read function.
2. Open the logical data service in Data Services Studio
3. Click the Overview tab.
4. Right-click in the service name bar, or the left or right of the screen, and choose Manage Keys.
5. Click Generate a New Schema.
6. Give your key schema a name ending in .xsd.
7. Click Manually select the fields that make up the key.
8. Select the key fields you want, then click Finish.

Selecting Elements for a Key

Select a Key Schema File

You can also select an existing schema (XSD) file to use as the key:

1. Be sure the logical data service has a primary Read function.
2. Open the logical data service in Studio
3. Click the Overview tab.
4. Right-click in the service name bar, or the left or right of the screen, and choose Manage Key.
5. Click Select an existing schema type, then Browse.

The Manage Keys dialog shows you the key schema's global element and selector element.
6. Click Finish.

The schema in the Overview tab now displays a key icon next to the current key element or elements.

Selecting the Key Schema

Document generated by Confluence on Jan 10, 2008 16:26 Page 181

http://kmwiki.bea.com/download/attachments/7382/Manage Keys Manually.gif

View and Map a Key

Once you create the key (whether by auto-generating, identifying key fields, or selecting a key schema
file), you can see the key elements in the service's update map, at the lower left.

Viewing the Key in the Update Map

The Return Key block represents the key elements a Create procedure returns when a new data record is
added. In most cases, the key fields are automatically mapped to elements in the data sources on the
left. If they are not mapped, you can add a mapping.

1. Locate the Update block on the left that contains the key element.
2. Drag from the key element in the Update block to the key element in the Return Key block.

Mapping a Key Element from an Update Block to the Return Key

Map the key element from an update block on the left, not from the return type on the right. If

Document generated by Confluence on Jan 10, 2008 16:26 Page 182

http://kmwiki.bea.com/download/attachments/7382/Select Key.gif
http://kmwiki.bea.com/download/attachments/7382/Update Map Key.gif
http://kmwiki.bea.com/download/attachments/7382/Key Element Mapped.gif

you map the key from the return type on the right, you allow the key value to be updated from
data a user enters.

Once the key element is mapped, you can test it (preferably using sample data):

1. Click the Test tab.
2. At Select operation, choose one of the service's Create procedures.
3. Enter data in the XML template in the Parameters box.
4. Click Run.

The key value is returned in the Result box:

You can also view the key schema file by locating the key in the Project Explorer, right-clicking, and
choosing an XML editor to open the file. A key schema looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="ld:logical/CustomerOrder"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="CustomersAndOrders_KEY">
<xs:complexType>
<xs:sequence>

<xs:element name="CUSTOMER_ID" type="xs:string"/>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

In the key schema, all elements must be in the same namespace as the root element. In the previous
example, the namespace of the root element is:

ld:logical/CustomerOrder

A key schema cannot contain elements in different namespaces.

If you have key schema files from a previous version of ALDSP that you want to reuse, be sure
that all elements within the schema are in the same namespace.

See Also

Concepts

• Data Service Keys

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 183

http://kmwiki.bea.com/download/attachments/7382/Key Value Returned.gif
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Document generated by Confluence on Jan 10, 2008 16:26 Page 184

Data Service Keys

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Data Service Keys

This topic describes what data service keys are and how they are used.

• Overview
• Parts of a Key
• Composite Keys
• See Also

Overview

You are probably familiar with the concept of keys from relational databases, where a key is a set of one
or more columns whose combined values are unique among all occurrences in a table.

When you create a physical data service, ALDSP computes keys by introspecting the physical data
sources. A physical data service key can have one or more fields, which are elements taken from the
service's return type. Tangibly, a key is defined as an XML schema in an XSD file.

You can see the physical data service keys in your dataspace project in AquaLogic Data Services Studio.
They appear in schema files with names such as:

datasource_KEY.xsd

Physical Data Service Keys in Studio

Document generated by Confluence on Jan 10, 2008 16:26 Page 185

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://kmwiki.bea.com/download/attachments/7382/Keys.gif

In the generated XSD file, a key for a physical data service looks something like this.

Key for the CUSTOMER Table

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema targetNamespace="ld:physical/CUSTOMER" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="CUSTOMER_KEY">
<xs:complexType>

<xs:sequence>
<xs:element name="CUSTOMER_ID" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

In this case, CUSTOMER_ID is the primary key in a relational table named CUSTOMER.

In a logical data service, a key also uniquely defines a data record. However, the data in the record can
originate from multiple data sources of different types and can have a structure unlike the underlying
physical data sources.

For a logical entity service, you must create the key. You can choose one of these options:

• Have ALDSP generate the key based on the service's primary read function. ALDSP generates a
minimal key.

• Select the fields that make up the key. The elements that comprise the key must have a cardinality
of 0 or 1 in the service's return type (with maxOccurs="1" or maxOccurs="0", but not
maxOccurs="unbounded").

Parts of a Key

Suppose a logical service has a nested return type where a parent element with single cardinality can
have multiple child elements, say one CUSTOMER element with many CUSTOMER_ORDER child elements.

A Nested Return Type with a One-to-Many Relationship

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema targetNamespace="ld:logical/CustomersAndOrders"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="CustomersAndOrders">
<xs:complexType>
<xs:sequence>

<xs:element name="CUSTOMER">
<xs:complexType>
<xs:sequence>

<xs:element name="CUSTOMER_ID" type="xs:string"/>
<xs:element name="FIRST_NAME" type="xs:string"/>
<xs:element name="LAST_NAME" type="xs:string"/>
<xs:element name="SSN" type="xs:string" minOccurs="0"/>
<xs:element name="CUSTOMER_ORDER" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="ORDER_ID" type="xs:string"/>
<xs:element name="C_ID" type="xs:string"/>

</xs:sequence>

Document generated by Confluence on Jan 10, 2008 16:26 Page 186

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

This is the key that ALDSP auto-generates from this return type, from the unique CUSTOMER_ID field:

An Auto-Generated Simple Key

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="ld:logical/CustomerOrder"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="CustomersAndOrders_KEY">
<xs:complexType>
<xs:sequence>

<xs:element name="CUSTOMER_ID" type="xs:string"/>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

If you choose to select the key fields, you need to use a unique field or fields with single cardinality. You
can choose CUSTOMER_ID or SSN, or both. You cannot define the key on ORDER_ID or C_ID, because
they belong to the CUSTOMER_ORDER element, which has multiple cardinality.

If you choose SSN, the key schema file looks like this.

A Manually Selected Key

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="ld:logical/CustomerOrder"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="CustomersAndOrders_KEY">
<xs:complexType>
<xs:sequence>

<xs:element name="SSN" maxOccurs="1" minOccurs="0" type="xs:string"/>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

A data service key has distinct parts:

• A selector. A key selector identifies a collection of data records. A key's selector is the element that
contains the key field in the service's return type. You can see a key's selector in the Manage Key
dialog when you create the key (below, it's the CUSTOMER element):

Document generated by Confluence on Jan 10, 2008 16:26 Page 187

You can see that the CUSTOMER element is the root element of the return type:

• The key fields. The fields that make up the key uniquely identify an element in the collection. For
example, one customer identified by a CUSTOMER_ID value. Within ALDSP, a key field is stored as a
path which must not contain any repeating elements. Therefore, you cannot use elements with
multiple cardinality in keys.

Composite Keys

With a logical service, a key can also be a composite key of multiple elements, as long as the elements
have single cardinality in the return type. This is especially easy with a flat return type.

A Flat, Non-Nested Return Type

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema targetNamespace="ld:logical/MyFlatOne" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="CUSTOMERORDER">
<xs:complexType>
<xs:sequence>

<xs:element name="CUSTOMER_ID" type="xs:string"/>
<xs:element name="FIRST_NAME" type="xs:string"/>
<xs:element name="LAST_NAME" type="xs:string"/>
<xs:element name="EMAIL_ADDRESS" type="xs:string"/>
<xs:element name="ORDER_ID" type="xs:string"/>
<xs:element name="ORDER_DT" type="xs:date"/>
<xs:element name="TOTAL_ORDER_AMT" type="xs:decimal"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

ALDSP auto-generates a composite key using the key fields from the underlying physical data sources (in
this example, CUSTOMER_ID and ORDER_ID). The composite key generated from this return type is

Document generated by Confluence on Jan 10, 2008 16:26 Page 188

http://kmwiki.bea.com/download/attachments/7382/Select Key.gif
http://kmwiki.bea.com/download/attachments/7382/CustomerAndCreditRating Schema.gif

shown below.

An Auto-Generated Composite Key

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="ld:logical/MyFlatOne" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="MyFlatOne_KEY">
<xs:complexType>
<xs:sequence>

<xs:element name="CUSTOMER_ID" type="xs:string"/>
<xs:element name="ORDER_ID" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

This key allows you to identify a unique combination of Customer and Order, that is, one order for one
customer.

See Also

How Tos

• Create Logical Data Service Keys

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 189

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Declare a Security Resource

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Declare a Security Resource in Data
Services Studio

This topic describes how to add a security resource to a data service, so that the service returns data only
if the caller has proper access.

• Choose a Technique
• Create the Security Resource
• Use the Security Resource in XQuery
• Assign Security Resources
• Test Security
• See Also

Choose a Technique

You can add a security resource to a data service in two ways:

• The first way is to use the ALDSP Console to set elements and attributes that should be secured
based on a security policy set by an administrator. This technique works in most cases for which you
want to add a security policy.

• The other way, described here, is to create a custom security resource for an entity or library data
service in Data Services Studio. The custom security resource is used directly in an XQuery
expression to secure all or part of the service's return type. You can use the same custom security
resource more than once in a single data service.

You can add a security resource to any data service, physical or logical, entity or library.

Create the Security Resource

You add a security resource to a logical entity service in Data Services Studio and then activate it using
the ALDSP Console.

You can follow these steps on a physical or logical entity service. Be sure the service has a query
map and a primary read function.

To create a security resource:

Document generated by Confluence on Jan 10, 2008 16:26 Page 190

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/admin/security.html

1. Open the service in Data Services Studio.
2. Make sure the Properties tab is displayed:

Window > Show View > Properties

3. Click Overview, then Properties.
4. Expand the schema in the center. Locate the element you want to add the security resource to.
5. In the Properties tab, locate Security Resources.
6. Click the Add New field below it, then click .

7. In the Value column, enter the name of the element you want to secure.

Use just an element name (CUSTOMER), not a pathname (CUSTOMER_PROFILE/CUSTOMER) or a
variable ($CUSTOMER). You can use a simple element, a complex element, or the root element of
the return type.

8. If needed, add more security resources and elements.
9. Click the Source tab.

The pragma statement at the top of the XQuery source file shows the new security resource:

(::pragma xds <x:xds targetType="cus:CustomerOrder" xmlns:x="urn:annotations.ld.bea.com"
xmlns:cus="ld:logical/CustomerOrder">
<creationDate>2007-10-22T13:36:48</creationDate>
<userDefinedView/>
<key name="DefaultKey" inferred="true" inferredSchema="true" type="cus:CustomersAndOrders_KEY">

<selector xpath="CUSTOMER"/>
</key>
<secureResources>

<secureResource>CUSTOMER</secureResource>
</secureResources>
</x:xds>::-)

Use the Security Resource in XQuery

The next step is to add a condition to the return type so that it is returned only if the caller has access.
To do this, make changes visually in the Query Map. You want to add a conditional statement to the
service's primary read function, something like this:

declare function tns:read() as element(cus:CustomerOrder)*{
for $CUSTOMER in cus1:CUSTOMER()
return

<cus:CustomerOrder>
{
if (add-authentication-expression-here) then

<CUSTOMER>
return type here ..

</CUSTOMER>
else

<CUSTOMER>{return nothing here}</CUSTOMER>
}

</cus:CustomerOrder>

To add the conditional statement, you need to:

Document generated by Confluence on Jan 10, 2008 16:26 Page 191

http://kmwiki.bea.com/download/attachments/7382/plus icon.gif
http://kmwiki.bea.com/download/attachments/7382/Security Resource.gif

• Create an if .. else conditional statement.
• In the if clause, add an expression to check if the caller is authenticated and define what is

returned.
• In the else clause, define which elements are returned if the caller is not authenticated.

The following example shows how to create a security resource on an element in the return type, using
the primary read function.

Create the If Condition

1. Click the Query Map tab.
2. At Select Operation, choose the primary read function.

3. In the return type, right-click the element for which you created a security resource in the
Properties tab. Choose Make Conditional.
A node named Conditional is added to the return type.

4. Click the Conditional node.
You see the default conditional expression, (true), in the expression editor.

5. Make sure the Design Palette is displayed (Window > Show View > Design Palette), then click it.
6. Expand:

XQuery Functions > Data Services Access Control Functions

7. In the mapping area, click the double arrow icon to open the expression editor.

8. Click the expression label in the editor.
9. Double-click (true), then delete it.

10. Drag the function fn-bea:is-access-allowed from the Design Palette to the editor.

fn-bea:is-access-allowed($label, $data_service)

11. For the $label argument, enter the name of your security resource as a string within quotes.
Use the same name you used in the Properties tab.

12. For the $data_service argument, enter the namespace-qualified name of your data service as a
string within quotes:

Document generated by Confluence on Jan 10, 2008 16:26 Page 192

http://kmwiki.bea.com/download/attachments/7382/Select Read Operation.gif
http://kmwiki.bea.com/download/attachments/7382/Conditional Return Type Customer.gif
http://kmwiki.bea.com/download/attachments/7382/Security Resource Before.gif
http://kmwiki.bea.com/download/attachments/7382/Up Arrow.gif

fn-bea:is-access-allowed("CUSTOMER", "ld:logical/CustomersAndOrders.ds")

13. Click the Source tab, and check the read function. Make sure it has no errors.
Notice that the new expression is added to the if expression in the read function:

declare function tns:read() as element(cus:CustomerOrder)*{
for $CUSTOMER in cus1:CUSTOMER()
return

<cus:CustomerOrder>
{

if (fn-bea:is-access-allowed("CUSTOMER", "ld:logical/CustomersAndOrders.ds")) then
<CUSTOMER>

...
</CUSTOMER>

else
<CUSTOMER>

...
</CUSTOMER>

}

14. Click Save .

You now need to define what is returned in the else clause.

Create the Else Condition

1. Click the Query Map tab.
2. In the return type, click the second conditional element.

3. In the expression editor, enter "NA", and click Save .

4. Click the Source tab.
The read function now shows the return value for the else clause as the string "NA".

declare function tns:read() as element(cus:CustomerOrder)*{
for $CUSTOMER in cus1:CUSTOMER()
return

<cus:CustomerOrder>
{
if (fn-bea:is-access-allowed("CUSTOMER", "ld:logical/CustomersAndOrders.ds")) then

<CUSTOMER>
<CUSTOMER_ID>{fn:data($CUSTOMER/CUSTOMER_ID)}</CUSTOMER_ID>
<FIRST_NAME>{fn:data($CUSTOMER/FIRST_NAME)}</FIRST_NAME>
<LAST_NAME>{fn:data($CUSTOMER/LAST_NAME)}</LAST_NAME>
<SSN?>{fn:data($CUSTOMER/SSN)}</SSN>
...

</CUSTOMER>
else

<CUSTOMER>{"NA"}</CUSTOMER>
}

</cus:CustomerOrder>
}

Assign Security Resources

Document generated by Confluence on Jan 10, 2008 16:26 Page 193

http://kmwiki.bea.com/download/attachments/7382/Save Icon Small.gif
http://kmwiki.bea.com/download/attachments/7382/Second Conditional Element.gif
http://kmwiki.bea.com/download/attachments/7382/Save Icon Small.gif

The next step is to use the ALDSP console to create a security policy.

Securing AquaLogic Data Services Platform Resources

All you need to do in the ALDSP console is create a security policy. You have already created a custom
security resource and added it to an XQuery function or procedure.

Test Security

Once you establish security resources, you should test security in Test view.

To test a security resource:

1. Open the service in Data Services Studio.
2. Click the Test tab.
3. At Select Operation, choose the function you want to test.
4. Enter any parameters the function requires.
5. Expand Settings and enter the authentication credentials you want to use.
6. Click Run.

Check that the function returns either valid results if the authentication credential passes the security
policy, or the string NA if it is not.

See Also

How Tos

• Add a Read Function

Other Resources

• Securing ALDSP Resources

Document generated by Confluence on Jan 10, 2008 16:26 Page 194

http://edocs.bea.com/aldsp/docs30/admin/security.html
http://kmwiki.bea.com/download/attachments/7382/Testing a Read Function.gif
http://edocs.bea.com/aldsp/docs30/admin/security.html#wp1113597

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 195

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Entity Data Service Right-click Menu Options

This page last changed on Sep 10, 2007 by tkatz.

Entity Data Service Right-click Menu Options

The following table describes ALDSP-specific menu options available for Entity data services.

Entity Data Service Menu Options

Option Usage

Add Function... Accesses the Add Function wizard

Add Function (Empty)... Adds a function without a return type to the data
service. This facility is typically used to create data
space library functions and library procedures.

Add External Function... Adds an external function such as a stored
procedure or SQL statement to the data service.

Add Relationship Access the Relationship Modeler wizard

Associate XML Type Associates a schema with the current data
service.

Manage Key Accesses the Associate Schema for the Key wizard
where you can reformulate the schema defining
the data service key.

Delete Key Deletes any existing key associated with the data
service.

Document generated by Confluence on Jan 10, 2008 16:26 Page 196

http://kmwiki.bea.com/download/attachments/7382/Entity Data Service Menu Options.gif

XML Types and Return Types

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

XML Types and Return Types

In entity data services there are two types of types:

• Return types
• XML types

XML types and return types are very closely related. In data service operations involving entity data
services, XML types define the shape of the data service.

Physically XML Types are represented a global elements in XML schemas (XSD files.) In other words, the
XML types represents in hierarchical form the shape of the data service.

A way to think of these two artifacts is to first consider the class and the instance of the class in such
languages as Java.

XML types can be thought of as a class from which objects in the form of functions are created. In many
cases the information needed by these functions is either:

• A subset of the overall XML types -- for example, a function that returns last name and address but
not first name or social security number.

• In need of further specification -- for example, adjusting a query to list all orders inside each
customer rather than to repeat customer information each time.

Return and XML types can be see in action in the following example:
Creating Your First Data Services

Where XML Types are Used

ALDSP uses XML types in its model diagrams, entity data services, query editor, update mapper, and
metadata browser.

Where Return Types are Used

Return types are sometimes called target schemas.

Return types can be thought of as the backbone of both data services and data models.
Programmatically, return types are the "r" in FLWR (for-let-where-return) queries.

Document generated by Confluence on Jan 10, 2008 16:26 Page 197

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

Return types have the following main purposes:

• Provide a template for the mapping of data from a variety of data sources and, in the case of
updates, back to those data sources.

• Help determine the arrangement of the XML document generated by the XQuery.

Return types describes the structure or shape of data that a query produces when it is run.

In order to maintain the integrity of AquaLogic Data Services Platform queries used by your
application, it is important that the query return type match the XML type in the containing data
service. Thus if you make changes in the return type, you should use the XQuery Editor's "Save
and associate schema" command to make the data service's XML type consistent with query-level
changes. Alternatively, create a new data service based on your return type. For details see
Creating a Simple Data Service Function.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 198

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

XQuery Source of a Logical Entity Service

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

XQuery Source of a Logical Entity Service

This topic shows sample XQuery source code for a logical entity data service.

Topics

• Source Code
• See Also

Source Code

xquery version "1.0" encoding "UTF-8";

(::pragma xds <x:xds targetType="cus:CUSTOMER_PROFILE" xmlns:x="urn:annotations.ld.bea.com"
xmlns:cus="ld:logical/CustomerProfile">

<creationDate>2007-10-05T10:29:01</creationDate>
<userDefinedView/>
<key name="DefaultKey" inferred="true" inferredSchema="true"

type="cus:CustomerProfile_KEY">
<selector xpath="CUSTOMER"/>

</key>
</x:xds>::)

import schema namespace cus="ld:logical/CustomerProfile" at
"ld:logical/schemas/CustomerProfile.xsd";

declare namespace cus1= "ld:physical/CUSTOMER";

declare namespace add= "ld:physical/ADDRESS";

declare namespace cre= "ld:physical/CREDITRATING";

import schema namespace cus2="ld:logical/CustomerProfile" at
"ld:logical/schemas/CustomerProfile_KEY.xsd";

declare namespace tns="ld:logical/CustomerProfile";

declare function tns:stringToShort($theString) as xs:short {
xs:short($theString)

};

(::pragma function <f:function kind="read" visibility="public" isPrimary="true"
xmlns:f="urn:annotations.ld.bea.com">

<uiProperties>
<component identifier="returnNode" minimized="false" x="842" y="11" w="244" h="601">

<treeInfo id="0">
<collapsedNodes>

<collapsedNode>CUSTOMER_PROFILE\CUSTOMER</collapsedNode>
<collapsedNode>CUSTOMER_PROFILE\CUSTOMER\ADDRESS</collapsedNode>
<collapsedNode>CUSTOMER_PROFILE\CUSTOMER\CREDITRATING</collapsedNode>

Document generated by Confluence on Jan 10, 2008 16:26 Page 199

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

</collapsedNodes>
</treeInfo>

</component>
<component identifier="CUSTOMER" x="44" y="56" h="300" w="219" minimized="false"/>
<component identifier="ADDRESS" x="303" y="216" h="336" w="193" minimized="false"/>
<component identifier="CREDITRATING" x="547" y="485" h="102" w="170"

minimized="false"/>
</uiProperties>

</f:function>::)

declare function tns:read() as element(tns:CUSTOMER_PROFILE)*{
for $CUSTOMER in cus1:CUSTOMER()
return

<tns:CUSTOMER_PROFILE>
<CUSTOMER>

<CUSTOMER_ID>{fn:data($CUSTOMER/CUSTOMER_ID)}</CUSTOMER_ID>
<FIRST_NAME>{fn:data($CUSTOMER/FIRST_NAME)}</FIRST_NAME>
<LAST_NAME>{fn:data($CUSTOMER/LAST_NAME)}</LAST_NAME>
<EMAIL_ADDRESS>{fn:data($CUSTOMER/EMAIL_ADDRESS)}</EMAIL_ADDRESS>
{

for $ADDRESS in add:ADDRESS()
where $CUSTOMER/CUSTOMER_ID eq $ADDRESS/CUSTOMER_ID
return
<ADDRESS>

<ADDR_ID>{fn:data($ADDRESS/ADDR_ID)}</ADDR_ID>
<CUSTOMER_ID>{fn:data($ADDRESS/CUSTOMER_ID)}</CUSTOMER_ID>
<STREET_ADDRESS1>{fn:data($ADDRESS/STREET_ADDRESS1)}</STREET_ADDRESS1>
<STREET_ADDRESS2?>{fn:data($ADDRESS/STREET_ADDRESS2)}</STREET_ADDRESS2>
<CITY>{fn:data($ADDRESS/CITY)}</CITY>
<STATE>{fn:data($ADDRESS/STATE)}</STATE>
<ZIPCODE>{fn:data($ADDRESS/ZIPCODE)}</ZIPCODE>
<COUNTRY>{fn:data($ADDRESS/COUNTRY)}</COUNTRY>

</ADDRESS>
}
{

for $CREDITRATING in cre:CREDITRATING()
where $CUSTOMER/CUSTOMER_ID eq $CREDITRATING/CUSTOMER_ID
return
<CREDITRATING>
<CUSTOMER_ID>{fn:data($CREDITRATING/CUSTOMER_ID)}</CUSTOMER_ID>
<RATING?>{fn:data($CREDITRATING/RATING)}</RATING>
</CREDITRATING>

}
</CUSTOMER>

</tns:CUSTOMER_PROFILE>

};

(::pragma function <f:function kind="delete" visibility="public" isPrimary="true"
xmlns:f="urn:annotations.ld.bea.com">

<nonCacheable/>
<implementation>

<updateTemplate/>
</implementation>

</f:function>::)

declare procedure tns:deleteCUSTOMER_PROFILE($arg as element(tns:CUSTOMER_PROFILE)*) as empty()
external;

(::pragma function <f:function kind="create" visibility="public" isPrimary="true"
xmlns:f="urn:annotations.ld.bea.com">

<nonCacheable/>
<implementation>

<updateTemplate/>
</implementation>

</f:function>::)

declare procedure tns:createCUSTOMER_PROFILE($arg as element(tns:CUSTOMER_PROFILE)*) as
element(tns:CustomerProfile_KEY)* external;

(::pragma function <f:function kind="update" visibility="public" isPrimary="true"
xmlns:f="urn:annotations.ld.bea.com">

<nonCacheable/>
<implementation>

Document generated by Confluence on Jan 10, 2008 16:26 Page 200

<updateTemplate/>
</implementation>

</f:function>::)

declare procedure tns:updateCUSTOMER_PROFILE($arg as changed-element(tns:CUSTOMER_PROFILE)*) as
empty() external;

(::pragma function <f:function kind="delete" visibility="public" isPrimary="false"
xmlns:f="urn:annotations.ld.bea.com"/>::)

declare procedure tns:deleteByKey($arg0 as element(tns:CustomerProfile_KEY)){
do return ();
};

See Also

Concepts

• Building Logical Entity Data Services

How Tos

• Create Your First Data Services

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 201

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Developing and Managing Dataspace Projects

This page last changed on Jan 08, 2008 by tkatz.

Developing and Managing Dataspace Projects

Concepts
Data Service File Validation During Deployment

Reference
Dataspace Projects Cheatsheet

How-to...
... Create, Build, Clean, and Delete Dataspace Projects
... Deploy, Publish, Configure, and Remove Dataspace Projects
... Export Dataspace Projects or Project Folders
... Export Dataspace Project Artifacts
... Import a Dataspace Project
... Handle Error Conditions in a Dataspace Project
... Validate, Build, Export, and Package Dataspace Projects from the Command Line

Related Topics
How-to...
... Create Your First Data Services

Document generated by Confluence on Jan 10, 2008 16:26 Page 202

http:/

ALDSP Functions and Procedures

This page last changed on Nov 26, 2007 by tkatz.

ALDSP Functions and Procedures

Data Services support fundamentally two types of functional operations: functions and procedures. Both
Entity data services and Library data services can have these types of operations.

A key concept is an operation with (or without) side-effects. In this context a side-effect should be
understood to mean that the operation could have an effect other than returning data in a particular XML
shape.

Operations Without Side Effects

Operations that have no side effects are declared as 'functions'. A function can be implemented in three
ways:

• XQuery language
• XQSE language
• External

An additional qualifier is added to function declaration to denote the language implementation for the
function. Lack of this qualifier means that the function is implemented in XQuery language. In other
words, XQuery is the default language implementation for functions.

XQuery and XQSE function Interaction

A function 'A' can invoke any other function 'B'. The language of implementation of function 'B' is not
relevant. However, a function cannot invoke a procedure.

Prototype Function Declarations

Here are several prototypes of function declarations:

declare function foo(....) {...};

declare XQSE function foo(....);

Document generated by Confluence on Jan 10, 2008 16:26 Page 203

declare function foo(....) external;

Prototype Procedure Declarations

Functional operations that may have side effects must be declared as procedures. A procedure can be
implemented by XQSE language or external. A procedure can invoke other procedures or functions. Here
are two examples of procedure declarations:

declare procedure foo(...) {...};

declare procedure foo(...) external;

Document generated by Confluence on Jan 10, 2008 16:26 Page 204

Create, Build, Clean, and Delete Dataspace Projects

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Create, Build, Clean, and Delete
Dataspace Projects

A dataspace project is developed in the Data Services Studio and deployed to a local server. While the
development process typically is an iterative cycle of modification and deployment, it is important to keep
in mind that the existence of a project in Studio is only loosely coupled with its deployed status. This
loose coupling has implications for several types of operations:

• Development and deployment to the server
• Publishing to the server
• Configuring projects on the server
• Removal of the project from Data Services Studio
• Removal of the project from the server

Topics

• Creating a Dataspace Project
• Building a Dataspace Project
• Cleaning a Dataspace Project
• Deleting a Dataspace Project

Creating a Dataspace Project

When the Data Services Studio plugin is active in Eclipse, you can create a new dataspace projects using
the File menu.

File > New > Dataspace Project

Steps in Creating a Dataspace Project

Building a Dataspace Project

In Data Services Studio it is often a good practice to set your project to be built automatically every time
you modify a file in your project. You can establish this setting through the Studio Project menu:

Document generated by Confluence on Jan 10, 2008 16:26 Page 205

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

Project > Build Automatically

A checkbox appears when this option is selected.

Cleaning a Dataspace Project

Applying a "clean" to a project clears out any existing build problems and build states. If your build runs
into error conditions or other problems, cleaning and redeploying your project is a recommended first
step.

Project > Clean...

A dataspace project can only be deployed when no other process has an editing lock on the ALDSP
configuration that contains your dataspace. The ALDSP configuration can be locked through the
ALDSP Administration Console (Lock and Edit), by a client process (MBean API or WLST script), or
during deployment from Eclipse/Workshop.

Deleting a Dataspace Project

Dataspace projects are both created and deleted through the Project Explorer.

To delete a project:

1. Right-click on the project's name in the Project Explorer.
2. Select Delete.

You will be given two options:

• Delete content from the file system? If you choose:

Do not delete content

you will be able to import the project at a later time.

• Delete the dataspace on the server? The deployed dataspace will be removed from the server. If
this option is not selected, the dataspace will remain in one of two states, depending on selected
options:

° Available to be configured on the server
° Configured on the server

Data services can also be removed from their server through the ALDSP Administration Console.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 206

http://edocs.bea.com/aldsp/docs30/admin/index.html
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Document generated by Confluence on Jan 10, 2008 16:26 Page 207

Data Service File Validation During Deployment

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Data Service File Validation During Deployment

In the Eclipse IDE a dataspace project's data service (.ds) files are validated automatically according to
the following deployment model:

• When a user wants to deploy a dataspace project to a WebLogic server using the Deploy Project
option, all the Java projects referenced by the dataspace project are built.

• The output files are packaged in JAR files (one per referenced Java project) in the dataspace
project's DSP-INF/lib directory during deployment.

• The deploy action validates the dataspace project.
• All the project's artifacts are collected.
• The collected artifacts are deployed to the server.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 208

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Dataspace Projects Cheatsheet

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Dataspace Projects Cheatsheet

Task Location Action Comments

Build a project with
every save

Project menu Build Automatically

Clean selected
project

Project menu Clean

Close a project Project Explorer Right-click > Close
Project

Close a project Project menu Project > Close Project

Close unrelated
projects

Project Explorer Right-click > Close
Unrelated Projects

Copy-Paste a project Project Explorer Right-click on project
name > Copy-Paste

Create a new project File menu File > New > Dataspace
Project

Delete selected
project from a
workspace

Project Explorer Right-click > Delete

Deploy a project to
the server

Project Explorer Right-click > Deploy
Project

Export selected
project

File menu Export

Import selected
project into a
workspace

File menu Import

Open selected project Project Explorer Open

Project properties Project menu Right-click > Properties

Project properties File menu Properties

Publish all the
projects in a
workspace

Server window Right-click > Publish

Refactor
Rename-Remove

Project Explorer Right-click > Refactor >
Rename-Remove

Refactor provides for
"safe" renaming or
deleting of projects or
project components.

Document generated by Confluence on Jan 10, 2008 16:26 Page 209

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

Refresh Data Service
Studio display

Project Explorer Right-click > Refresh
File > Refresh

Remove a previously
deployed
(configured) project
from the server

Server window Right-click > Delete >
Yes > Yes to 'Delete the
dataspace on the
server?'

Rename a project File menu Rename See Safely rename...

Rename a project
safely

Project Explorer Right-click > Refactor >
Rename...

Safely delete selected
project from a
workspace

Project Explorer Right-click > Refactor >
Delete...

See Safely delete...

Search for a project
in a workspace

Search menu
• Search ...
• Ctrl-h

See dataspaces
currently deployed on
the server

Server window Click the + next to the
name of the running
server.

Show project
explorer

Window menu Show View > Project
Explorer

Show project in
Service Assembly
Modeler

Project Explorer Right-click > Show in
Service Assembly
Modeler

Submit a project to
the AquaLogic
Enterprise Repository

Project Explorer Right-click > Submit ...
to repository

Undeploy a project Server window Right-click > Delete >
Yes > Yes to 'Delete the
dataspace on the
server?'

Update a project's
metadata

Project Explorer Right-click > Update
metadata

Validate project
artifacts

Project Explorer Right-click > Validate ...

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 210

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Deploy, Publish, Configure, and Remove Dataspace Projects

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How to Deploy, Publish, Configure, and
Remove Dataspace Projects

Dataspace projects are created in the Data Services Studio Eclipse plugin framework. A project that
builds successfully is ready to be made available from a local supported version of WebLogic server.

Several terms can be used to describe the process of managing a server's dataspace projects.

• Deploy. Dataspace projects can be deployed to their server on an individual basis.
• Publish. All projects associated with a server can be deployed at once.
• Available. These are projects that have been deployed or published and are available to be

configured on the server. A project must both present on the server and configured before it can be
access by client applications. A project with an Available status can be thought of as staged.

• Configured. A configured project is available to authorized calling applications. A project with
Configured status on the server can be thought of as released.

Use the Add and Remove Projects dialog to move projects between Available and Configured stati.

Topics

• Deploying an ALDSP Project
• Publishing Server Projects
• Configuring Server Projects
• Removing Dataspace Projects from a Server

Deploying an ALDSP Project

You can deploy a dataspace project from Project Explorer by:

1. Right-clicking on the project name.
2. Selecting Deploy Project.

A confirmation message appears after your project deploys successfully. If deployment cannot be
completed, you can use the Problems and Errors windows to determine the problem and corrective
action.

Document generated by Confluence on Jan 10, 2008 16:26 Page 211

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

Results of the effort are placed in a log file:

Window > Show View > Error Log

In addition, Data Services Studio will report whether the deployment was successful or not.

A successful deployment automatically configures the dataspace project on the server. You can
use the Add and Remove Projects... dialog to change the deployed status from Configured to
Available to be configured.

A dataspace project can only be deployed when no other process has an editing lock on the ALDSP
configuration that contains your dataspace. The ALDSP configuration can be locked through the
ALDSP Administration Console (Lock and Edit), by a client process (MBean API or WLST script), or
during deployment from Eclipse/Workshop.

Publishing Server Projects

Sometime it is convenient to publish all the dataspace projects associated with a workspace.

The Publish option applies to all projects in the workspace.

Right-clicking on the name of your server in the Servers window and selecting Publish.

Publishing Server Projects

The state in the Servers window will be changed to Republish.

Publishing or republishing a set of projects does not affect the configuration status of each project on the
server. You can modify the configuration status through the Add and Remove Projects... dialog.

Configuring Server Projects

Projects on a server are considered either configured on the server or available to be configured on the
server. Configuration status is managed either through the Add and Remove Projects... dialog or directly
from the Servers window.

Document generated by Confluence on Jan 10, 2008 16:26 Page 212

http://kmwiki.bea.com/download/attachments/2166972/Publishing Server Projects.gif

Only configured projects are available to client applications.

Managing Configured Projects Through Dialog

To access the dialog:

1. Right-click on the name of the server in the Servers window.
2. Select Add and Remove Projects...

Add and Remove Projects Dialog

Managing Configured Projects Through the Servers Window

You can also change a project's configuration status through the Servers window.

Server and Projects

1. Click on the + symbol next to the server name.
2. Right-click on the project you wish to unconfigure.
3. Select Remove.

Alternatively, just select your project and click the Delete key.

You can use the Add and Remove Projects Dialog to change the configuration status of your
project..

Removing Dataspace Projects from a Server

Document generated by Confluence on Jan 10, 2008 16:26 Page 213

http://kmwiki.bea.com/download/attachments/7382/Add and Remove Projects Dialog.gif
http://kmwiki.bea.com/download/attachments/7382/Local Projects and Server Association.gif

You can permanently remove a project from the server through the right-click menu Delete option in the
Project Explorer.

Deleting a Dataspace Project

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 214

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Export Dataspace Project Artifacts

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Exporting Dataspace Project Artifacts Using
ALDSP Export Wizards

This section describes the various types of export operations available for ALDSP dataspace projects.

Topics

• Exporting Dataspace Artifacts
• Generating a Data Service Definitions and Artifacts JAR
• Generating a Mediator Client JAR File
• Generating a JAR File Containing Data Service-to-Web Service Maps

Exporting Dataspace Artifacts

The ALDSP export wizards can be accessed using the File > Export menu, then expand on the ALDSP
export wizard category.

File > Export... > AquaLogic Data Services Platform

Artifacts can only be exported from deployable dataspace projects; if your project is not
deployable, the export operation will not succeed.

Exporting a Dataspace Project

Document generated by Confluence on Jan 10, 2008 16:26 Page 215

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

In the ALDSP category there are three wizards. Each generates a specific type of JAR file.

Types of ALDSP JAR File Export Operations

Export Type Effect

Data service definitions and artifacts All ALDSP deployable artifacts are bundled into a
JAR file.

Mediator client A Java interface for accessing data services is
created.

Web services mediator client A web services interface for accessing data
services is created.

Any dataspace projects pre-selected in the Project Explorer will automatically be selected in the
export wizard.

Generating a Data Service Definitions and Artifacts JAR

An exported JAR file containing a single project's server-deployable definitions and artifacts. Such a file
can be imported into another ALDSP-enabled version of Eclipse. In addition, the definitions and artifacts
JAR can be useful:

• As a means of transporting a dataspace from one application to another.
• In conjunction with certain refactoring operations.
• For deployment on multiple servers (clusters) at a later time.
• For debugging purposes.

Export Data Service Definitions and Artifacts

Document generated by Confluence on Jan 10, 2008 16:26 Page 216

http://kmwiki.bea.com/download/attachments/7382/Export Wizard for a Dataspace Project.gif

In the wizard, the contents you identify using their adjacent checkbox will be exported. For example if
you check the box next to the project name, all of that projects server-deployable components will be
selected.

You can fine-tune your selection by clicking on a folder. The folder's contents will appear in the right-hand
column where you can use a checkbox to control which artifact will be exported.

Actions Associated with Generating a Data Service Definitions and Artifacts JAR

Item Recommended Setting or
Action

Details - Comments

Export Data Service
Definitions and Artifacts Page

Check folders or their contents
that you want to export

Deselect All Convenience if more than one
project is selected.

To Directory:
/user_projects/helloworld

JAR file can be exported
anywhere on the system.

Filename:
-artifacts.jar

Example:

mySpace-dsp-client.jar

Use default filename option Selected When selected editing of the
generated filename is not
allowed.

Overwrite existing file without
warning option

Unselected If unselected you will be asked if
you want to overwrite any
existing file of the same name.

Success message Finish Identifies project and target
name.

Generating a Mediator Client JAR File

This wizard presents a list of open ALDSP projects to select from, and it generates an ALDSP mediator

Document generated by Confluence on Jan 10, 2008 16:26 Page 217

http://kmwiki.bea.com/download/attachments/7382/Export Data Service Definitions and Artifacts.gif

client JAR file from the currently selected project. Projects are exported one at a time.

Java programs access data services through the ALDSP Mediator API. This API is generated from the
ALDSP Eclipse platform and is based on a project that can be successfully built and deployed.

Accessing Data Services from Java Clients

Export Mediator Client JAR Wizard

Steps Associated with Generating a Mediator Client API JAR File

Item Recommended Setting or
Action

Details - Comments

Select the Mediator Client
JAR File export wizard

Type: Mediator Client JAR File

Select a Dataspace Project
Page

Next

Pick a dataspace project mySpace Only one project at a time can
be exported.

Deselect All Convenience if more than one
project is selected.

To Directory:
/user_projects/helloworld

JAR file can be exported
anywhere on the system.

Filename:
-dsp-client.jar

Example:

mySpace-dsp-client.jar

Use default filename option Selected When selected editing of the
generated filename is not
allowed.

Overwrite existing file without
warning option

Unselected If unselected you will be asked if
you want to overwrite any
existing file of the same name.

Success message Finish Identifies project and target
name.

Document generated by Confluence on Jan 10, 2008 16:26 Page 218

http://edocs.bea.com/aldsp/docs30/appdev/ejbclt.html
http://kmwiki.bea.com/download/attachments/7382/Export Mediator Client JAR Wizard.gif

Generating a JAR File Containing Data Service-to-Web Service
Maps

After you have created a web service map of one or more data services you can create an exported JAR
file containing these maps.

Then the created JAR file can be used as your applications web service interface to available data
services.

Only publicly available operations can be turned into web service operations. You can adjust
access level to a data service function through the Properties window.

Exporting a Web Services Mediator Client JAR File

Actions Associated with Generating a Web Services Mediator Client JAR File

Item Recommended Setting or
Action

Details - Comments

Export Web Services
Mediator Client JAR File

Check folders or their contents
that contain web service maps

Select folder Click on the exportable
dataspace folder to located
selected WS file.

Deselect All Convenience if more than one
project is selected.

To Directory:
/user_projects/helloworld

JAR file can be exported
anywhere on the system.

Filename:
-ws-client.jar

Example:

mySpace-ws-client.jar

Use default filename option Selected When selected editing of the
generated filename is not

Document generated by Confluence on Jan 10, 2008 16:26 Page 219

http://kmwiki.bea.com/download/attachments/7382/Exporting a Web Services Mediator Client JAR File.gif

allowed.

Overwrite existing file without
warning option

Unselected If unselected you will be asked if
you want to overwrite any
existing file of the same name.

Success message Finish Identifies project and target
name.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 220

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Export Dataspace Projects or Project Folders

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Exporting Dataspace Projects or Project
Folders

ALDSP dataspace projects or their component folders can be exported in EAR (archive) format using
standard Eclipse mechanisms. The export target is the local file system.

If an entire project is exported as an EAR, it constitutes a back-up of the project which can then be
re-imported into an Eclipse-compatible IDE.

To create an archive file of a dataspace project:

1. In Project Explorer right-click on your project (or folder).
2. Navigate to:

Export > General > Archive File

3. In the Archive File wizard select the entire project or one or several folders.
4. Select from available export options.
5. Click Finish.

Creating an EAR File for a Dataspace Project

See Eclipse Help for general information about the Export operation.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 221

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://kmwiki.bea.com/download/attachments/7382/Creating an EAR File for a Dataspace Project.gif
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Handle Error Conditions in a Dataspace Project

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Handle Error Conditions in a Dataspace
Project

During the course of creating your project there are times when the project will be in an error condition.
There are many reasons for this. Generally speaking the way to handle such conditions is to either:

• Go forward because you understand why the condition has occurred.
• Revert using Undo.

There may be some cases, however, when the error condition comes as a surprise and/or there is no
easy way to revert. Information about such conditions can be found in two places.

Problem Reporting in Dataspace Projects

Tabular window Purpose

Problems (Window > Show View > Problems) Collects and displays errors in the data service
source file.

Error Log (Window > Show View > Error Log) Collects and displays project-related error
conditions.

Problem and Error Log Tabs in a Dataspace

The error log contains several types of messages; icons are used to differentiate their type.

Error Log Icons and Their Meaning

Icon Meaning

Error.

Error with log or stack trace.

Document generated by Confluence on Jan 10, 2008 16:26 Page 222

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://kmwiki.bea.com/download/attachments/7382/Problem and Error Log Tabs in a Dataspace.gif

Warning.

Informational.

Process icon.

Double-clicking on each line in the Error Log window will open a separate dialog that will allow you to see
more information. Examples:

• Double-clicking or an error might open a dialog that will contain the related stack trace.
• Double-clicking on each line in the Problems view will, if possible, open the file having errors and

highlight the error.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 223

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Import a Dataspace Project

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Importing a Dataspace Project

ALDSP uses standard Eclipse import mechanisms. You can import a JAR file project or an open
(file-based) project.

Importing a JAR File Project

A JAR file containing an ALDSP project can be imported into your workspace.

1. Create a dataspace project, naming it appropriately. (Alternatively you may be able to use an
existing project if there are no naming conflicts.)

File > New > Dataspace Project

2. Click on your new project.
3. Choose:

File > Import > General > Archive File

4. Next.
5. Browse to the directory location of your JAR file.
6. Open.
7. Answer Yes to All to the question regarding overwriting xquery-types.xsd.
8. Finish.
9. Deploy your project to verify a successful build and deployment.

Importing a File-based Project

A project in an accessible file system can be imported into the Eclipse workshop. You can import one or
several projects at the same time.

1. Choose:

File > Import... > General > Existing Projects into Workspace

2. Browse to your dataspace project directory.
3. Select the project or projects you wish to import.

Document generated by Confluence on Jan 10, 2008 16:26 Page 224

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 225

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Validate, Build, Export, and Package Dataspace Projects from the Command
Line

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Validate, Build, Export, and Package
Dataspace Projects from the Command Line

This section describes how to validate, build, export and package ALDSP dataspace projects from the
command line.

Topics

• Data Service File Validation During Deployment
• Dataspace Packaging from the Command-line
• Syntax Summary
• Command-Line Ant Build Targets
• Command-line Examples using Ant and Java

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Data Service File Validation During Deployment

In the Eclipse IDE a dataspace project's data service (.ds) files are validated automatically according to
the following deployment model:

• When a user wants to deploy a dataspace project to a WebLogic server using the Deploy Project
option, all the Java projects referenced by the dataspace project are built.

• The output files are packaged in JAR files (one per referenced Java project) in the dataspace
project's DSP-INF/lib directory during deployment.

• The deploy action validates the dataspace project.
• All the project's artifacts are collected.
• The collected artifacts are deployed to the server.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

The ALDSP Export mechanism allows for a dataspace project's artifacts to be packaged in a JAR the
contents of which are identical to what would be generated from the IDE for deployment to a WebLogic
server.

Document generated by Confluence on Jan 10, 2008 16:26 Page 226

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Dataspace Packaging from the Command-line

There is also an occasional need for operations such as validate, build, export, and package to be
available in a scripting environment. This section describes an Ant script file, cmdline_build.xml, provided
in the "bin" directory under the ALDSP installation that can be invoked by a user to:

• Validate a dataspace project
• Generate a deployment JAR file of a dataspace project

For those not wishing or able to use Ant, Java equivalent command-line options are also
described.

Syntax Summary

Command Syntax

help help [{cmd} | dsp30:all]

validate-project validate-project {project}

export-mediator-client export-mediator-client {project} {jardir}
[jarname[dsp30:.jar]]

export-ws-client export-ws-client {project} {jardir}
[jarname[dsp30:.jar]] [dsp30:ws_locator,...]

export-artifacts export-artifacts {project} {jardir}
[jarname[dsp30:.jar]]

Command-Line Ant Build Targets

This section describes available ALDSP ant build targets.

Build XML File

The build XML file:

cmdline_build.xml

will be provided in the directory:

<dsp_home>/bin

To see a list of build targets with short descriptions in the Ant build XML file, invoke the command below
at the prompt window:

Document generated by Confluence on Jan 10, 2008 16:26 Page 227

ant -f <bea_home>/aldsp_3.0/bin/cmdline_build.xml -projecthelp

Notes

• It is assumed that Ant is available on your computer and is on your path. Some targets
require:

° ECLIPSE_HOME environment variable points to the Eclipse installation directory.
° javac be available on the PATH variable.

• Commands other than "help" involving an Eclipse project requires specification of the Eclipse
workspace directory that contains the project.

° For Java commands the directory is specified via the "-data" option.

• ° For Ant command, it is specified as the "-Dworkspace" property.

"help"

The "help" target is the default build target. It shows a list of available ALDSP commands and the syntax
needed to invoke the command in Java.

Command Syntax

help help [{cmd} | dsp30:"all"]

Build Invocation Syntax via Java

Note that the syntax shows the portion starting with "aldsp_command" below. However, the full syntax to
be entered for Java at the prompt window is:

java -cp <eclipse_home_dir>/startup.jar org.eclipse.core.launcher.Main -data <workspace_dir>
-application com.bea.dsp.ide.app.runCmdline <aldsp_command> <cmd_param> ...

Build Invocation Syntax via Ant

If invoked via Ant, ALDSP command parameters should be specified as Ant properties. For example, to
get help about the "export-artifacts" command, enter:

ant -f <aldsp_install_dir>/bin/cmdline_build.xml help -Dcmd=export-artifacts

To get help on all ALDSP commands, specify the following property:

-Dcmd=all

Document generated by Confluence on Jan 10, 2008 16:26 Page 228

or omit the optional -Dcmd property completely:

ant -f <aldsp_install_dir>/bin/cmdline_build.xml help all

"validate-project"

The "validate-project" target validates the data service (.ds) files in the specified dataspace project. Data
service error messages that would show up in the Eclipse IDE's Problems view are sent to stdout when
this target is invoked. A "fail" status is returned by this target if any error exists in a .ds data service file
in the project.

ant -f <aldsp_install_dir>/bin/cmdline_build.xml -Dworkspace=/bea/projects/myworkspace
-Dproject=MyFirstDspProject validate-project

Command Syntax

validate-project validate-project {project}

"export-mediator-client"

The export-mediator-client target is for generating an ALDSP mediator client JAR file of a dataspace
project.

The default value of the output JAR file name is:

<project>-dsp-client.jar

Command Syntax

export-mediator-client export-mediator-client {project} {jardir}
[dsp30:jarname.jar]

"export-ws-client"

The export-ws-client target generates a web services mediator client JAR file from the specified
comma-separated list of wsmap file locators in a dataspace project.

The default value of the output JAR filename is:

<project>-ws-client.jar

The default value of the ws_locators is all wsmap file locators in the project.

Document generated by Confluence on Jan 10, 2008 16:26 Page 229

An example of a wsmap file locator is:

ld:logical/wsmaps/CUSTOMER.ws

Command Syntax

export-ws-client export-ws-client {project} {jardir}
[jarname[dsp30:.jar]] [dsp30:ws_locator,...]

"export-artifacts"

The "export-artifacts" target creates a JAR file containing the definitions and artifacts of the dataspace
project. The content would be identical to the artifact JAR file created in the IDE. By default , the name
of the artifact JAR file is:

<project>-artifacts.jar

Command Syntax

export-artifacts export-artifacts {project} {jardir}
[jarname[dsp30:.jar]]

Notes

Referenced Java Projects

Since a dataspace project may reference other Java projects in the same Eclipse workspace, you
should make certain that:

• Referenced projects in your build script are also built.
• The resulting JAR files and dependent JAR files are copied to the dataspace project's

DSP-INF/lib directory.

This needs to be done prior to exporting a deployable JAR file using the export-artifacts command
in order for all referenced/required JAR files to be included in the artifact JAR file.

Invoking Build Commands Without Ant

The Ant targets described in the previous sections are actually implemented in Java. So the
actual implementation can be invoked at the prompt window using Java directly -- or any script
process -- instead of Ant.

Command-line Examples using Ant and Java

This section contains several examples of invoking the ALDSP command using Ant and Java.

Document generated by Confluence on Jan 10, 2008 16:26 Page 230

Getting the help text of all the commands using Ant and Java at the prompt window

Ant:

ant -f <bea_home>\aldsp_3.0\bin\cmdline_build.xml help -Dcmd=all

Java:

java -cp <eclipse_home>/eclipse/startup.jar org.eclipse.core.launcher.Main -application
com.bea.dsp.ide.app.runCmdline help all

Getting the help text of a specific command using Ant and Java at the prompt window

Ant:

ant -f <bea_home>\aldsp_3.0\bin\cmdline_build.xml help -Dcmd=export-artifacts

Java:

java -cp <eclipse_home>/startup.jar org.eclipse.core.launcher.Main -application
com.bea.dsp.ide.app.runCmdline help export-artifacts

Exporting the artifacts of a dataspace project

This example exports the project:

DspProj

in workspace:

/MyWorkspace

to:

/temp

directory using the default JAR file name:

Document generated by Confluence on Jan 10, 2008 16:26 Page 231

<project>-artifacts.jar

Ant:

ant -f <bea_home>\aldsp_3.0\bin\cmdline_build.xml -Dworkspace=/MyWorkspace
-Dproject=DspProj -Djardir=/temp export-artifacts

Java:

java -cp <eclipse_home>/startup.jar org.eclipse.core.launcher.Main -data /MyWorkspace -application
com.bea.dsp.ide.app.runCmdline export-artifacts DspProj /temp

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 232

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

XQuery Functions

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

XQuery Functions in Data Services Studio

Data Services Studio provides numerous XQuery functions in the Design Palette. If it is not visible you
can access it with:

Window > Show View > Design Palette

XQuery functions can be utilized in both Query and Update Map views.

XQuery Functions in the Design Palette

Document generated by Confluence on Jan 10, 2008 16:26 Page 233

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

• For information on fn-bea XQuery functions, see the XQuery and XQSE Developer's Guide.
• For information on standard XQuery functions, see the W3C XQuery 1.0 and XPath 2.0

Functions and Operators specification.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 234

http://e-docs.bea.com/aldsp/docs30/xquery/index.html
http://www.w3.org/TR/2001/WD-xquery-operators-20011220/
http://www.w3.org/TR/2001/WD-xquery-operators-20011220/
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

index

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

BEA AquaLogic(R) Data Services Platform

Data Services Developer's Guide

Contents
Table of
contents page.
Topics in
sections are
arranged by
concepts, how
to, reference,
and related
topics.

Developing
and Managing
Dataspace
Projects
Create, deploy,
and remove
dataspace
projects from
Data Services
Studio and
command line.

Designing
Logical Data
Services
XML Types,
Returns types,
and data service
keys are among
the topics; also,
declaring a
security
resource.

Introduction
to Data
Services
Concepts and
the getting
started tutorial:
Create Your First
Data Services

Creating and
Updating
Physical Data
Services
Metadata import
and update
wizards for
various data
sources.

Modeling Data
Services
Relationships
Data service
relationships
through models.
Includes the
tutorial: Create
Your First Data
Services Model.

Document generated by Confluence on Jan 10, 2008 16:26 Page 235

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

Building
XQueries
Graphical and
XQuery source
editor, building
up return types,
and creating
conditional
elements.

Understanding
Query Plans
Query Plan view
including
components
tracked and a
summary of
informational
and warning
messages.

Preparing
Services for
Clients
Generation of
mediator client
JAR and web
service maps for
use by client
applications.

Testing Data
Services
Test View to
validate update
procedures
using SDO data
graphs; test an
update
procedure.

Managing
Update Maps
Update maps,
customization
options, and
error condition
handling.

Data Service
Annotations
Data service
annotation
schema with
data service,
function, and
library service
syntax and
semantics.

About this Guide

Version: 3.0

Document Date: January 2008

Revision: January 2008

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 236

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

About this Guide

This page last changed on Jan 10, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

This guide was originally wiki-based. You will notice that the format and presentation are different than
other guides in the documentation set. Feedback is welcome.

Icon legend

Icon Typical Use

Related information

Note

Warning

Quick start or primary topic in a set

Make my day

Tip

01-10-08 3:45 p.m.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 237

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Introduction to Data Services

This page last changed on Jan 08, 2008 by tkatz.

Introduction to Data Services

Concepts
Introduction - Data in the 21st Century
Typical Data Service Development Process
Getting the Most from the ALDSP Eclipse Framework
ALDSP - Roles and Responsibilities

How-to...
... Configure the Retail Dataspace Sample Application

Example
Creating Your First Data Services

Reference
ALDSP Start Menu
Data Service Types and Functions

Related Topics
Create a Data Service with a Flat Return Type

Document generated by Confluence on Jan 10, 2008 16:26 Page 238

http:/

ALDSP - Roles and Responsibilities

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

ALDSP: Roles and Responsibilities

The following summarizes typical roles and responsibilities related to creating and maintaining data
services.

Physical Data Service Development. Any team member can quickly create a set of physical data
services from enterprise data sources.

Entity Data Service Development. A data architect with knowledge of the relationships between
enterprise data sources can then create data services based on physical and previously developed logical
data services.

Query Development. Once data services are created, an IT team member can create reusable query
functions using the graphical XQuery Editor. The editor is directly tied to a Source View that facilitates
code-based modifications to automatically-generated designs.

Deployment. Once data services are developed, they can be deployed from the IDE or by an
administrator through the ALDSP Administration Console.

Application Development. Application designers can use data service query functions in their BEA
WebLogic applications. Through Service Data Objects (SDO) and the Mediator API or an ALDSP Workshop
Control, applications can retrieve and update data, yet remaining insulated from the complexities of
managing the underlying data interaction.

Metadata Management. Administrators, architects, and designers can use the Service Explorer for
real-time introspection of disparate data source metadata that has been developed through AquaLogic
Data Services Platform.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 239

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

ALDSP Start Menu

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

ALDSP Start Menu Artifacts

The ALDSP Start menu provides easy access to components used to develop ALDSP data services. Access
is from the Windows Start menu:

Start > ALDSP

ALSDP Start Menu

The following table describes the menu options available from the main ALDSP menu.

ALDSP Start Menu Options

Option Usage

Examples Provides access to the Examples Menu.

Tools Provides access to the WebLogic Configuration
Wizard where you can create a new ALDSP-based
domain or extend an existing domain to support
ALDSP.

ALDSP Administrator's Guide

Data Services Studio ALDSP Eclipse-based IDE

Document generated by Confluence on Jan 10, 2008 16:26 Page 240

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://e-docs.bea.com/aldsp/docs30/admin/index.html

Eclipse Eclipse used by ALDSP. May be the version of
Eclipse installed with ALDSP or the default version
in you did not choose to install Eclipse with ALDSP
(custom install).

Online Documentation The ALDSP e-docs home page.

QuickStart Provides links to help get started with installed
BEA products

SmartUpdate Used in conjunction with your BEA Support ID to
download any applicable patches and maintenance
packs.

Uninstall BEA AquaLogic Uninstalls ALDSP.

Examples Menu

The ALDSP Examples menu provides access to server, console, and database operations used by the
RTLApp sample application.

ALDSP Examples Menu

The following table describes the ALDSP Examples menu options.

ALDSP Examples Menu Options

Option Usage

AquaLogic Data Services Console Provides access to the HTML ALDSP Administration
Console.

ALDSP Administrator's Guide

PointBase Console Provides access to the PointBase Console. The
PointBase database drives the sample data in the
RTLApp demo.

Start Examples Server Starts the examples server provided with ALDSP.
The server can also be started from within Eclipse.

Stop Examples Server Stops the examples server provided with ALDSP.
The server can also be stopped from within
Eclipse.

WebLogic Server Admin Console Provides access to the WebLogic Admin Console
where some ALDSP data sources are identified and

Document generated by Confluence on Jan 10, 2008 16:26 Page 241

http://e-docs.bea.com/aldsp/docs30/admin/index.html

some security configuration is managed.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 242

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Configure the Retail Dataspace Sample Application

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Configure the Retail Dataspace Sample
Application

This topic describes how to set up the Retail Dataspace Sample Application after completing the
installation of ALDSP.

Topics

• Prerequisites
• About Data Services Studio and Eclipse
• Start Data Services Studio
• Configure the ALDSP-enabled Server Environment
• Start the Server
• See Also

Prerequisites

A prerequisite to configuring the retail dataspace sample application is to have the ALDSP Data Services
Studio installed on a supported platform.

ALDSP Installation Guide

About Data Services Studio and Eclipse

This tutorial uses the version of Eclipse that is installed with ALDSP.

The Eclipse framework often provides multiple ways of achieving same result. In many cases
there is no "correct" or "better" way. In other words, there are often many paths to the same
results.

Start Data Services Studio

Document generated by Confluence on Jan 10, 2008 16:26 Page 243

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/install/index.html

Open the Data Services Studio using the following Windows Start menu command:

Start > All Programs > BEA Products > AquaLogic Data Services Platform 3.0 > Data Services Studio

In some cases the AquaLogic Data Services Platform 3.0 option may not be nested in the BEA
Products section. If this is the case just proceed; it is not a problem.

Select a Workspace

ALDSP projects are called dataspace projects. These projects in turn are located in a workspace folder.

The first step in creating a dataspace is to select a workspace.

1. Use the default location:

C:\bea92mp2\aldsp_3.0\samples\workspaces\aldsp

2. Click .

Selecting a Workspace

If this is the first time you have opened Studio, the ALDSP Welcome screen appears.

Data Services Studio Welcome Page

In the Install Sample Application section click on:

Document generated by Confluence on Jan 10, 2008 16:26 Page 244

http://kmwiki.bea.com/download/attachments/7382/Selecting a Workspace.gif
http://kmwiki.bea.com/download/attachments/7382/Data Services Studio Welcome Page.gif

Retail Dataspace Sample

Retail Dataspace Sample Dialog

Important
Make sure your domain changed from the Workshop sample domain to the ALDSP samples
domain, as shown in the steps in the table below.

Configure the ALDSP-enabled Server Environment

Some simple domain server configuration is required. These steps are described in the following table.
(The path information in the table below may be truncated in your browser. Click and select to view the
entire path.

Configuring Actions

Step Dialog Field Action Comment

1. Retail Database
Sample -
Server
Configuration

Server runtime: click Installed
Runtimes...

2. Installed Server
Runtime
Environments

click Add...

3. New Server
Runtime

Type of runtime: select BEA
WebLogic Server
v9.2

4.

5. Define a
WebLogic
Runtime

WebLogic Home:

6. Browse For
Folder

Folder locate and select
the WebLogic
home directory:

Example:

Document generated by Confluence on Jan 10, 2008 16:26 Page 245

http://kmwiki.bea.com/download/attachments/7382/Retail Dataspace Sample Dialog2.gif

<BEA_HOME>/weblogic92c:\bea92mp2\weblogic92

7.

8. Define a
WebLogic
Runtime

9. Installed Server
Runtime
Environments

10. Retail Dataspace
Sample -
Server
Configuration

Domain home: The Workshop
domain is to be
replaced by the
ALDSP sample
domain.

11. Browse For
Folder

Select domain
home

Locate and click on
the ALDSP Sample
domain:

<ALDSP_HOME>/samples/domains/aldsp

Example:

c:\bea92mp2\aldsp30\samples\domains\aldsp

12.

13. Retail Dataspace
Sample -
Server
Configuration

Workspace is built
(this may take a
few minutes).

Your server should now be properly configured for ALDSP and ready to be started.

Start the Server

An ALDSP-enabled server is a version of WebLogic Server with additional functionality to support ALDSP
deployment and runtime. The ALDSP server must be running in order to access sample data and to
deploy your project.

To start your server from Studio:

1. Locate the Servers window. If it isn't visible, use the following option command:

Window > Show View > Servers

2. In the Server window locate BEA WebLogic Server v 9.2@localhost (this may be the only server
listed). Its status is: stopped.

3. Right-click on the server name and select Start. (The start-up operation can take several minutes.)

Document generated by Confluence on Jan 10, 2008 16:26 Page 246

Notice the running log of server startup actions in the Console window.

Server Window

1. After your project has automatically deployed (assuming default settings of Data Services Studio),
the dataspace deployment status dialog is displayed. Click:

See Also

Create Your First Data Services

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 247

http://kmwiki.bea.com/download/attachments/7382/Server Window1.gif
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Create Your First Data Services

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Create Your First Data Services

Creating a data service from scratch — as you will if you follow this tutorial — is a good way to get the
feel of working with Data Services Studio, as well as other aspects of data services. In the process a
logical data service you will also automatically create several physical data services. Physical data
services represent physical data sources.

Topics

• Goal of the Tutorial
• Creating a Dataspace Project
• Creating Physical Data Services
• Creating a Logical Data Service
• Creating, Saving, and Associating the XML Type
• Testing Your Data Service Function
• Adding Create-Update-Delete Functions to Your Data Service
• Updating Your Results
• Reviewing the Query Plan
• Reviewing the Update Map
• Archiving Your Project
• Summary

Goal of the Tutorial

The goal of this tutorial is to illustrate an approach to creating a logical data service, including creating an
XML Type (schema), using Data Services Studio. Along the way you will use many of Studio's facilities:

• Drag-and-drop Query Map
• Source Editor
• Test Editor
• Query Plan
• Update Map

This example uses data provided with the Retail Dataspace Sample Application (RTLApp).

Requirements

Document generated by Confluence on Jan 10, 2008 16:26 Page 248

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

The requirement for the demonstration project are to develop a logical data service from several physical
data services. When run by a client, the data service will return a consolidated view of a particular
customer's orders, as well as all the items in each order.

Before You Begin

Before you can begin the tutorial make sure you:

• Properly install ALDSP.

Reference:
ALDSP Installation Guide

• Configure the Retail Dataspace Sample Application.

Configure the Retail Dataspace Sample Application

• Have the ALDSP-enable WebLogic 9.2MP2 server running.

Also describe in Configure the Retail Dataspace Sample Application.

Creating a Dataspace Project

Data services are created within Data Services Studio as Eclipse projects, called dataspace projects. With
the ALDSP-enabled server running, the first step is to create a new dataspace project.

1. From the ALDSP menu select:

File > New > Dataspace Project

2. Give your project a name such as:

myDataspace

Creating a New Dataspace Project

Document generated by Confluence on Jan 10, 2008 16:26 Page 249

http://e-docs.bea.com/aldsp/docs30/install.html

Tip:
Click on image to view it enlarged in a separate window.

Set Up a Folder for Physical Data Services

Data services are typically created inside project folders. The recommended first step in creating one or
several data services is to create containers (folders).
In this tutorial two folders will be created:

• One for physical data services.
• One for logical data services.

1. In the Project Explorer window right-click on myDataspace, choose:

New > Folder

2. Name your folder:

logical

3. Create another folder under myDataspace named:

physical

Physical data services represent physical data such as tables in relational databases or web services.
Logical data services are build upon existing physical or logical data services.

• Creating and Updating Physical Data Services
• Designing Logical Data Services

Creating a New Folder

Document generated by Confluence on Jan 10, 2008 16:26 Page 250

http://kmwiki.bea.com/download/attachments/7382/Creating a New Dataspace Project4.gif

1. Right-click on your new physical folder and choose:

New > Physical Data Service

Creating Physical Data Services

Physical data services are based on existing data sources.

Whenever you create physical data services, you must first identify the data source. Available options
include:

• Relational
• Web Service
• Java Function
• Delimited Data
• XML Data

To take advantage of sample data provided with the sample application, a relational data source is used.

The sample databases RTLAPPLOMS and RTLCUSTOMER provided with the Retail Sample Application
contain a total of five tables. In this section you will create physical data services corresponding to those
tables.

Data Sources and Data Services

Data Source Name Table Data Service

RTL Appliance Order
Management System

RTLAPPOMS
• CUSTOMER_ORDER
• CUSTOMER_ORDER_LINE_ITEM
• PRODUCT

• CUSTOMER_ORDER.DS
• CUSTOMER_ORDER_LINE_ITEM.DS
• PRODUCT.DS

RTL Customer Data RTLCUSTOMER
• ADDRESS
• CUSTOMER

• ADDRESS.DS
• CUSTOMER.DS

Document generated by Confluence on Jan 10, 2008 16:26 Page 251

http://kmwiki.bea.com/download/attachments/7382/Creating a New Folder.gif

Select a Data Source

The select a data source dialog initially allows you to select a data source type (such as relational or web
service). Once that selection is made, additional options appears. The following table lists the actions
required to select the relational data sources that will be used throughout this tutorial.

Format similar to that shown in the table below is used to describes the steps needed to work
through multi-page wizards.

Setting Up Sources for Data Services

Step Dialog Field/Column Action Comment

Select Data
Source

Save in: none Use default
(/myDataspace/physical).

1. Data source type: select Relational From dropdown
list.

2. Data source: select
dspSamplesDataSource

3.

4. Select SQL
Sources

Select SQL
objects: • checkbox

next to
RTLAPPLOMS

• checkbox
next to
RTLCUSTOMER

Expand (+ symbol
to left of data
source name) to
see tables in the
data sources.

5. The information
retrieved through
introspection of
relational data
sources is
represented as the
potential creation
of the five primary
Read operations,
as well as their
containing data
services.

6. Review
New/Updated
Data Service
Operation(s)

Public mark each
operation Public
by clicking the
checkbox in the
Public column

Public operations
are available to
any authorized
calling application.

Note:

Document generated by Confluence on Jan 10, 2008 16:26 Page 252

http://kmwiki.bea.com/download/attachments/2166972/Select Data Source Dialog.gif
http://kmwiki.bea.com/download/attachments/7382/Selected SQL Objects.gif

The
Primary
option only
applies to
create,
update,
and delete
functions.

7. Select Common
XML Type
Namespace...
button

click the button Because you are
building up an XML
Type for your
logical data service
from several
physical data
services that each
have an underlying
XML type, it is
necessary for each
type to share a
namespace.

8. XML Type
Namspace

Select XML Type
Namespace:

enter
custOrdersItems

9. Notice that the
target namespace
column now shows
the new
namespace for
your operations.

10. Review
New/Updated
Data Service
Operation(s)

11. Review New
Data Service(s)

It is necessary to
modify names
when:

• A data
service of the
same name
already exists
in the
specified
folder.

• You are
attempt to
import two
data sources
with the
same
name.In this

Document generated by Confluence on Jan 10, 2008 16:26 Page 253

http://kmwiki.bea.com/download/attachments/7382/Initial Physical Data Service Settings.gif
http://kmwiki.bea.com/download/attachments/2166972/Setting a Common Namespace.gif

example,
however,
there are no
name
conflicts and
no changes
are needed.

12. Open Data
Service Files

Option to open
each new physical
data service in
Studio

select No

Your new data services appear in your physical folder in the Project Explorer.

Newly Created Data Services

If you expand your new data services you will see that each of your physical data services has been
created with functions corresponding to standard relational operations. For example the CUSTOMER.ds
data service contains the following operations:

• createCUSTOMER(CUSTOMER)
• CUSTOMER()
• deleteCUSTOMER(CUSTOMER)
• getADDRESS(CUSTOMER)
• updateCUSTOMER(CUSTOMER)

Some relationship operations (such as getADDRESS(CUSTOMER)) have been created
automatically. This operation returns an ADDRESS type when it is passed a CUSTOMER type as a
parameter. The operation can be inferred during the data service creation process because
ADDRESS contains a foreign key that that is a unique custID in the CUSTOMER data service (and
underlying source). Relationship functions are described in detail in the Modeling Data Services
Relationships section.

Schemas Directory

A schemas directory contains schema files created during the metadata import process. For relational

Document generated by Confluence on Jan 10, 2008 16:26 Page 254

http://kmwiki.bea.com/download/attachments/7382/Newly Created Data Services2.gif

sources, schemas are created for both the data source (table or view) and the primary keys found during
the introspection of the relational source. For example:

• CUSTOMER.xsd
• CUSTOMER_KEY.xsd

If you look in the schemas directory you will see that for each physical data service created, two schemas
were created. One representing the physical data service and the other to describe the primary keys in
the data source.

Expanded View of Project Explorer

When a logical entity data service is created, it is either:

• Associated with an existing schema or
• A return type associated with a function becomes the basis of a generated XML type that is then

associated with the data service.

Deploy Your Dataspace Project

You deploy your dataspace project to a server when it is ready to be accessed through a web browser.
Deployment is also useful during the project development phase because in its default configuration,
when you deploy an ALDSP application in Studio, your project is automatically built. The build process
identifies error conditions, if any.

To deploy your application:

1. Right-click on the myDataspace project name in Project Explorer.
2. Choose Deploy Project.

A message indicating successful deployment should appear.

Creating a Logical Data Service

Document generated by Confluence on Jan 10, 2008 16:26 Page 255

http://kmwiki.bea.com/download/attachments/7382/Expanded View of Project Explorer2.gif

A logical data service can be thought of as a "virtual" data source. Logical data services are built upon
existing physical or logical data services. To create a logical data service:

1. Right-click on the folder named logical that you previously created.
2. Select:

New > Logical Data Service

3. Set the Data service name to:

CUST_ORDER_ITEMS

After making these selections, an overview of your new entity data service appears with Overview mode
selected.

Since no functions have yet been added to your data service, the work area of the data service is empty.

Options available for creating and testing your new data service appear at the bottom of the workspace.
In addition to Overview, you will see the following tabs:

• Query Map
• Update Map
• Plan
• Test
• Source

Attempt To Deploy Your Dataspace Project

There are times when attempts to deploy your data service under development will not be successful.
This is expected since as you create your query in the Query Map, source is created simultaneously.
(When a data service is in such a state, you will notice a red x on its associated icon in Project Explorer.)

You can get the feel of this system if you try to deploy your project now.

1. Right-click on the myDataspace project name in Project Explorer.
2. Choose Deploy Project.

Unlike the previously successful deployment, you will now get a message indicating that your project
contains build errors and cannot be deployed.

In this case your newly created ORDERS_AND_ITEMS data service is invalid. You can verify this several
ways after clicking .

• Inspect your code by clicking on the Source tab.

Document generated by Confluence on Jan 10, 2008 16:26 Page 256

• Double-click on the error reported in the Problems window.
• Inspect the contents of the Error log window.

Incomplete Logical Data Service Validation Error

Although an error condition exists, you can continue creating on your data service.

Bottom Up or Top Down

Data services can be designed from the top-down or bottom-up. The following table compares these two
approaches.

Data Services Design Models

Data Service Design Model Description

Top-down The new data service is based on an existing XML
Type (schema) that is either drawn from an
existing data service or developed externally.

Bottom-up The new data service is created by:

• Identifying one or more data sources.
• Building up a Return type in the Query Map.
• Saving your data service and associating it

with the schema created from the newly
designed Return type.

This tutorial uses a bottom-up design.

Add an Operation to CUST_ORDERS_ITEMS

The next step is to add a read function to your new data service that will return a document containing all
the orders placed by a particular customer, and all the items in each order.

To add your new function:

1. Select the Overview tab.
2. Right-click in the CUST_ORDERS_ITEMS data service's work area.
3. Choose Add Operation... from available options.

Document generated by Confluence on Jan 10, 2008 16:26 Page 257

http://kmwiki.bea.com/download/attachments/7382/Incomplete Logical Data Service Validation Error.gif

Creating a New Operation

The next steps will create a publicly available Read function for your new data service.

Add Operation Dialog Options

Step Option Action Comment/Reference

Visibility none Options are private
(internal to data
service), protected
(from public), and
public. Default setting is
public.

Kind none All operations are
functions other than
library procedures. The
Read function simply
retrieves information
from your data source.
Default operation is
read.

1. Name custOrdersItemsByCustIDAny valid XML name can
be entered; spaces are
not allowed.

Return Type: none Bottom-up designs of a
data service create the
Return type in the
Query Map.

Parameters: none Can be added here or in
the Query Map. Leave
unselected.

Options: Primary none Defines function as the
Primary Read function
in the entity data
service. Default is
selected.

Options: Empty
Function Body

none Default is not selected.

2.

Document generated by Confluence on Jan 10, 2008 16:26 Page 258

http://kmwiki.bea.com/download/attachments/7382/Creating a New Function.gif

Add Operation Dialog

Every artifact and artifact element in Overview has properties. In some cases these properties —
such as name and type — are either directly editable or adjustable through dropdown list boxes.
The Properties window is, by default, visible in the Studio perspective. If the Properties window is
not visible you can retrieve it using the command:

Window > Reset Perspective

New Data Service Operation and Properties

Building Your Query

Click on the custOrdersItemsByCustID function name in the work area to enter Query Map mode.

Initial Query View

Changes made in the Query Map editor are immediately reflected in source and vice-versa. When
there is an error is source, the Query map may not be available. You can typically correct such a
condition when it occurs using the Undo menu option or Ctrl-Z. Alternatively, click the Source tab

Document generated by Confluence on Jan 10, 2008 16:26 Page 259

http://kmwiki.bea.com/download/attachments/7382/Add Function Dialog2.gif
http://kmwiki.bea.com/download/attachments/7382/New Data Service Operation and Properties.gif
http://kmwiki.bea.com/download/attachments/7382/Initial Query View2.gif

and edit as needed.

Build Your FLWR Statement Graphically

XQueries are often described as being build upon "FLWR" statements:

• For/Let
• Where
• Return

As needed, you can edit directly in source and these changes will automatically be rendered
graphically in the query map.

Adding Data Sources to Query View - the For/Let Statements

It is through the Query Map that you can bring together representations of existing data sources and
associate their elements with the Return type of a new data service.

In the current example your new data service is to provide a consolidated view drawn from the
CUSTOMER, CUSTOMER_ORDER, and CUSTOMER_ORDER_LINE_ITEM data services. The Read functions
from these physical data services therefore need to be represented in the work area of the new data
service.

Expanded Project Explorer View

Follow these steps to add these representations to your Query map:

1. In the physical folder expand the following data services:
• CUSTOMER.ds
• CUSTOMER_ORDER.ds
• CUSTOMER_ORDER_LINE_ITEM.ds

2. Drag and drop the Read operations of the following data services CUSTOMER, CUSTOMER_ORDER,
and CUSTOMER_ORDER_LINE_ITEM into the query work area. Read operations are identified by the
a white-arrow-with-green-ball icon as shown below.

Each of these operational building blocks will become for statements in the XQuery description of your
new data service.

Document generated by Confluence on Jan 10, 2008 16:26 Page 260

http://kmwiki.bea.com/download/attachments/7382/Expanded Project Explorer View.gif

Data Source Representations in Work Area

The Data Source Representations in Work Area graphic shows the work area containing artifacts useful in
tailoring your query:

• Data sources are represented in three XQuery For statements.
• The 'empty' element in the Return type is a placeholder for the elements that will eventually be

projected.
• The lines from the three statements to the empty global element in the Return type represents

current scopings. By adjusting these lines when a Return type is populated you can alter the
arrangement of information returned by your query. (Described below.)

Source of CUST_ORDERS_ITEMS After Addition of Read Functions

xquery version "1.0" encoding "UTF-8";

(:: pragma ... ::)

declare namespace cus2= "ld:physical/CUSTOMER";
declare namespace cus1= "ld:physical/CUSTOMER_ORDER";
declare namespace ust= "custOrdersItems";
declare namespace cus= "ld:physical/CUSTOMER_ORDER_LINE_ITEM";
declare namespace tns="ld:logical/CUST_ORDERS_ITEMS";

(:: pragma ... ::)

declare function tns:custOrdersItemsByCustID($custID as xs:string) {
for $CUSTOMER_ORDER_LINE_ITEM in cus:CUSTOMER_ORDER_LINE_ITEM()
for $CUSTOMER_ORDER in cus1:CUSTOMER_ORDER()
for $CUSTOMER in cus2:CUSTOMER()
return

()
};

Add a Parameter

Parameters can be added when your operation is created or in the Query Map. Parameters can be of
simple (primitive) type or complex, such as the XMLtype from another data service.

In this case you create a single xs:string parameter that will allow retrieval of one or more records by
customer ID.

To add a parameter:

1. In the Query Map work area right-click in a blank area and select:

Document generated by Confluence on Jan 10, 2008 16:26 Page 261

http://kmwiki.bea.com/download/attachments/7382/Data Source Representations in Work Area2.gif

Edit Signature...

2. If asked to save modified resources click .

3. In the Parameters section click Add.
4. Complete the Edit Function Signature... dialog.

Edit Function Signature Dialog Options

Step Field Action Comment/Reference

1. Parameter name custID This is the primary key
of the CUSTOMER table.

Parameter type none xs:string is the default
primitive type.

Occurance none Default is One.

2.

3. In the Edit Function
Signatures dialog.

Add New Parameter Dialog

The custID parameter appears in the work area.

Map Elements to the Return Type

Three icons associated with projecting elements to the Return type appear centered above the Query Map
work area.

Mapping Mode Icons

Icon Mapping Mode Keyboard equivalent Description

Document generated by Confluence on Jan 10, 2008 16:26 Page 262

http://kmwiki.bea.com/download/attachments/7382/Add New Parameter Dialog.gif

Value None. Maps simple or complex
elements to identical
values in the Return
type. For example, a
simple element can be
projected to a
comparable simple
element in the Return
type.

Overwrite Ctrl-Drag object Overwrites simple or
complex element in the
Return type with the
selected simple or
complex element.

Append Ctrl-Shift-Drag object Maps simple or complex
object as a child to the
Return type element it
is associated with.

You will use these options to map representations of source data to the Return type of your new data
service.

Populating the Return Clause

1. From the three mapping icons in the Select operation line at the top of the query map select the
center icon, Overwrite mapping ().

2. Drag the CUSTOMER complex element:

CUSTOMER*

over the global element placeholder labeled "empty" in the Return type.

Mapping Complex Element to Return Type

Document generated by Confluence on Jan 10, 2008 16:26 Page 263

1. Right-click on the new CUSTOMER element in the Return type and select:

Expand Complex Mapping

Expanding Complex Mapping

Document generated by Confluence on Jan 10, 2008 16:26 Page 264

This gesture is a shortcut for drawing lines from each element in the for statement to the Return type.
This gesture is also necessary if you want to add a complex child element to the type. Notice that
individual mapping lines now connect each element in the For: node with an element in the Return type.
Individual mappings can be added or deleted using drag-and-drop or the Delete key, respectively.

The next steps will add elements from the CUSTOMER_ORDER data service to your Return type.

1. Select Append Mapping mode ().

2. Drag the CUSTOMER_ORDER complex element:

CUSTOMER_ORDER*

over the CUSTOMER element in the Return type. Notice that the CUSTOMER_ORDER global element
and the names of its children now appear after the CUSTOMER elements.

3. Expand complex mapping for the CUSTOMER_ORDER global element.
4. From the work area drag the CUSTOMER_ORDER_LINE_ITEM complex element over the

CUSTOMER_ORDER element in the Return type.
5. Expand complex mapping for these elements.

Adding Child Elements to Return Type

Document generated by Confluence on Jan 10, 2008 16:26 Page 265

Set Statement Scoping

Click the Source tab to inspect your generated code. Notice that the Return type contains all three For:
statements.

Source View of the Function cust_orders_items_byCustomer($custID as xs:string)

declare function tns:custOrdersItemsByCustID($custID as xs:string) {
for $CUSTOMER_ORDER_LINE_ITEM in cus:CUSTOMER_ORDER_LINE_ITEM()
for $CUSTOMER_ORDER in cus1:CUSTOMER_ORDER()
for $CUSTOMER in cus2:CUSTOMER()
return

<ust:CUSTOMER>
<CUSTOMER_ID>{fn:data($CUSTOMER/CUSTOMER_ID)}</CUSTOMER_ID>
<FIRST_NAME>{fn:data($CUSTOMER/FIRST_NAME)}</FIRST_NAME>
<LAST_NAME>{fn:data($CUSTOMER/LAST_NAME)}</LAST_NAME>
<CUSTOMER_SINCE>{fn:data($CUSTOMER/CUSTOMER_SINCE)}</CUSTOMER_SINCE>
<EMAIL_ADDRESS>{fn:data($CUSTOMER/EMAIL_ADDRESS)}</EMAIL_ADDRESS>
<TELEPHONE_NUMBER>{fn:data($CUSTOMER/TELEPHONE_NUMBER)}</TELEPHONE_NUMBER>
<SSN?>{fn:data($CUSTOMER/SSN)}</SSN>
<BIRTH_DAY?>{fn:data($CUSTOMER/BIRTH_DAY)}</BIRTH_DAY>
<DEFAULT_SHIP_METHOD?>{fn:data($CUSTOMER/DEFAULT_SHIP_METHOD)}</DEFAULT_SHIP_METHOD>
<EMAIL_NOTIFICATION?>{fn:data($CUSTOMER/EMAIL_NOTIFICATION)}</EMAIL_NOTIFICATION>
<NEWS_LETTTER?>{fn:data($CUSTOMER/NEWS_LETTTER)}</NEWS_LETTTER>
<ONLINE_STATEMENT?>{fn:data($CUSTOMER/ONLINE_STATEMENT)}</ONLINE_STATEMENT>
<LOGIN_ID?>{fn:data($CUSTOMER/LOGIN_ID)}</LOGIN_ID>
{

<ust:CUSTOMER_ORDER>
<ORDER_ID>{fn:data($CUSTOMER_ORDER/ORDER_ID)}</ORDER_ID>
<C_ID>{fn:data($CUSTOMER_ORDER/C_ID)}</C_ID>
<ORDER_DT>{fn:data($CUSTOMER_ORDER/ORDER_DT)}</ORDER_DT>
<SHIP_METHOD_DSC>{fn:data($CUSTOMER_ORDER/SHIP_METHOD_DSC)}</SHIP_METHOD_DSC>
<HANDLING_CHRG_AMT>{fn:data($CUSTOMER_ORDER/HANDLING_CHRG_AMT)}</HANDLING_CHRG_AMT>
<SUBTOTAL_AMT>{fn:data($CUSTOMER_ORDER/SUBTOTAL_AMT)}</SUBTOTAL_AMT>
<TOTAL_ORDER_AMT>{fn:data($CUSTOMER_ORDER/TOTAL_ORDER_AMT)}</TOTAL_ORDER_AMT>
<SALE_TAX_AMT>{fn:data($CUSTOMER_ORDER/SALE_TAX_AMT)}</SALE_TAX_AMT>
<SHIP_TO_ID>{fn:data($CUSTOMER_ORDER/SHIP_TO_ID)}</SHIP_TO_ID>
<SHIP_TO_NM>{fn:data($CUSTOMER_ORDER/SHIP_TO_NM)}</SHIP_TO_NM>
<BILL_TO_ID>{fn:data($CUSTOMER_ORDER/BILL_TO_ID)}</BILL_TO_ID>
<ESTIMATED_SHIP_DT>{fn:data($CUSTOMER_ORDER/ESTIMATED_SHIP_DT)}</ESTIMATED_SHIP_DT>
<STATUS>{fn:data($CUSTOMER_ORDER/STATUS)}</STATUS>
<TRACKING_NO?>{fn:data($CUSTOMER_ORDER/TRACKING_NO)}</TRACKING_NO>
<DATE_INT?>{fn:data($CUSTOMER_ORDER/DATE_INT)}</DATE_INT>
{

<ust:CUSTOMER_ORDER_LINE_ITEM>
<LINE_ID>{fn:data($CUSTOMER_ORDER_LINE_ITEM/LINE_ID)}</LINE_ID>
<ORDER_ID>{fn:data($CUSTOMER_ORDER_LINE_ITEM/ORDER_ID)}</ORDER_ID>
<PROD_ID>{fn:data($CUSTOMER_ORDER_LINE_ITEM/PROD_ID)}</PROD_ID>
<PROD_DSC>{fn:data($CUSTOMER_ORDER_LINE_ITEM/PROD_DSC)}</PROD_DSC>
<QUANTITY>{fn:data($CUSTOMER_ORDER_LINE_ITEM/QUANTITY)}</QUANTITY>
<PRICE>{fn:data($CUSTOMER_ORDER_LINE_ITEM/PRICE)}</PRICE>
<STATUS>{fn:data($CUSTOMER_ORDER_LINE_ITEM/STATUS)}</STATUS>

</ust:CUSTOMER_ORDER_LINE_ITEM>

Document generated by Confluence on Jan 10, 2008 16:26 Page 266

http://kmwiki.bea.com/download/attachments/7382/Adding Child Elements to Return Type.gif

}
</ust:CUSTOMER_ORDER>

}
</ust:CUSTOMER>

};

This is — in relational terminology — an outer join. Each line item will be listed with its order information.

The goal of this project, however, is to list all orders for each customer and all order items for each order.
This is requires an inner join.

Using the Query Map you can adjust this quite easily by changing the scoping of the subordinate data
services in the Return type, as shown in the following steps.

Adjusting Scoping Rules in the Return Type

1. Return to Query Map mode.
2. With your mouse select the zone icon () in the node:

For: $CUSTOMER_ORDER()

3. Drag the zone icon over the corresponding CUSTOMER_ORDER element in the Return type.
Notice that the zone line from the CUSTOMER_ORDER node moves to the subordinate complex type
(CUSTOMER_ORDER).

4. Drag the zone icon of CUSTOMER_ORDER_LINE_ITEM to its corresponding element in the Return
type.

Nested Zoning in the Return Type

Switch to Source view to verify that the for statements are nested in the Return clause. Now when the
custID parameter is passed with the operation, a single instance of customer will be returned which
contains orders and line items associated with that customer.

Document generated by Confluence on Jan 10, 2008 16:26 Page 267

http://kmwiki.bea.com/download/attachments/7382/Adjusting Scoping Rules in the Return Type.gif
http://kmwiki.bea.com/download/attachments/7382/Nested Zoning in the Return Type2.gif

Source View of Return Type with Nested Return Types

for $CUSTOMER in cus2:CUSTOMER()
return

<ust:CUSTOMER>
<CUSTOMER_ID>{fn:data($CUSTOMER/CUSTOMER_ID)}</CUSTOMER_ID>
<FIRST_NAME>{fn:data($CUSTOMER/FIRST_NAME)}</FIRST_NAME>
<LAST_NAME>{fn:data($CUSTOMER/LAST_NAME)}</LAST_NAME>
<CUSTOMER_SINCE>{fn:data($CUSTOMER/CUSTOMER_SINCE)}</CUSTOMER_SINCE>
<EMAIL_ADDRESS>{fn:data($CUSTOMER/EMAIL_ADDRESS)}</EMAIL_ADDRESS>
<TELEPHONE_NUMBER>{fn:data($CUSTOMER/TELEPHONE_NUMBER)}</TELEPHONE_NUMBER>
<SSN?>{fn:data($CUSTOMER/SSN)}</SSN>
<BIRTH_DAY?>{fn:data($CUSTOMER/BIRTH_DAY)}</BIRTH_DAY>
<DEFAULT_SHIP_METHOD?>{fn:data($CUSTOMER/DEFAULT_SHIP_METHOD)}</DEFAULT_SHIP_METHOD>
<EMAIL_NOTIFICATION?>{fn:data($CUSTOMER/EMAIL_NOTIFICATION)}</EMAIL_NOTIFICATION>
<NEWS_LETTTER?>{fn:data($CUSTOMER/NEWS_LETTTER)}</NEWS_LETTTER>
<ONLINE_STATEMENT?>{fn:data($CUSTOMER/ONLINE_STATEMENT)}</ONLINE_STATEMENT>
<LOGIN_ID?>{fn:data($CUSTOMER/LOGIN_ID)}</LOGIN_ID>
{

for $CUSTOMER_ORDER in cus1:CUSTOMER_ORDER()
return
<ust:CUSTOMER_ORDER>

<ORDER_ID>{fn:data($CUSTOMER_ORDER/ORDER_ID)}</ORDER_ID>
<C_ID>{fn:data($CUSTOMER_ORDER/C_ID)}</C_ID>
<ORDER_DT>{fn:data($CUSTOMER_ORDER/ORDER_DT)}</ORDER_DT>
<SHIP_METHOD_DSC>{fn:data($CUSTOMER_ORDER/SHIP_METHOD_DSC)}</SHIP_METHOD_DSC>
<HANDLING_CHRG_AMT>{fn:data($CUSTOMER_ORDER/HANDLING_CHRG_AMT)}</HANDLING_CHRG_AMT>
<SUBTOTAL_AMT>{fn:data($CUSTOMER_ORDER/SUBTOTAL_AMT)}</SUBTOTAL_AMT>
<TOTAL_ORDER_AMT>{fn:data($CUSTOMER_ORDER/TOTAL_ORDER_AMT)}</TOTAL_ORDER_AMT>
<SALE_TAX_AMT>{fn:data($CUSTOMER_ORDER/SALE_TAX_AMT)}</SALE_TAX_AMT>
<SHIP_TO_ID>{fn:data($CUSTOMER_ORDER/SHIP_TO_ID)}</SHIP_TO_ID>
<SHIP_TO_NM>{fn:data($CUSTOMER_ORDER/SHIP_TO_NM)}</SHIP_TO_NM>
<BILL_TO_ID>{fn:data($CUSTOMER_ORDER/BILL_TO_ID)}</BILL_TO_ID>
<ESTIMATED_SHIP_DT>{fn:data($CUSTOMER_ORDER/ESTIMATED_SHIP_DT)}</ESTIMATED_SHIP_DT>
<STATUS>{fn:data($CUSTOMER_ORDER/STATUS)}</STATUS>
<TRACKING_NO?>{fn:data($CUSTOMER_ORDER/TRACKING_NO)}</TRACKING_NO>
<DATE_INT?>{fn:data($CUSTOMER_ORDER/DATE_INT)}</DATE_INT>
{

for $CUSTOMER_ORDER_LINE_ITEM in cus:CUSTOMER_ORDER_LINE_ITEM()
return
<ust:CUSTOMER_ORDER_LINE_ITEM>

<LINE_ID>{fn:data($CUSTOMER_ORDER_LINE_ITEM/LINE_ID)}</LINE_ID>
<ORDER_ID>{fn:data($CUSTOMER_ORDER_LINE_ITEM/ORDER_ID)}</ORDER_ID>
<PROD_ID>{fn:data($CUSTOMER_ORDER_LINE_ITEM/PROD_ID)}</PROD_ID>
<PROD_DSC>{fn:data($CUSTOMER_ORDER_LINE_ITEM/PROD_DSC)}</PROD_DSC>
<QUANTITY>{fn:data($CUSTOMER_ORDER_LINE_ITEM/QUANTITY)}</QUANTITY>
<PRICE>{fn:data($CUSTOMER_ORDER_LINE_ITEM/PRICE)}</PRICE>
<STATUS>{fn:data($CUSTOMER_ORDER_LINE_ITEM/STATUS)}</STATUS>

</ust:CUSTOMER_ORDER_LINE_ITEM>
}

</ust:CUSTOMER_ORDER>
}

</ust:CUSTOMER>
};

Creating Joins - the Where Clauses

Where clauses satisfy either specific conditions (such as where $i=5) or join conditions such as:

where $CUSTOMER_ORDER/ORDER_ID eq $CUSTOMER_ORDER_LINE_ITEM/ORDER_ID

1. Return to Query Map mode.
2. To establish join conditions among your data sources, drag the specified element in one For:

statement to the specified element in the target For statement:

Source and element Target and element

Document generated by Confluence on Jan 10, 2008 16:26 Page 268

$CUSTOMER/CUSTOMER_ID $CUSTOMER_ORDER/C_ID

$CUSTOMER_ORDER/ORDER_ID $CUSTOMER_ORDER_LINE_ITEM/ORDER_ID

You may need to move the For: nodes around in the work area to expose the elements.

Setting Up a Join Condition

You can verify your first join clause by clicking on target (CUSTOMER_ORDER) object. Alternatively, you
can look in Source view to verify that the new where clause is modifying the
CUSTOMER_ORDER_LINE_ITEM type.

for $CUSTOMER_ORDER in cus1:CUSTOMER_ORDER() where $CUSTOMER/CUSTOMER_ID eq
$CUSTOMER_ORDER/C_ID return

Associate a Parameter with a For Node

An additional necessary where condition that directs the query results to a single customer can be
created by adding a parameter to an element in a node. Parameters can be simple or complex.

This project requires use of a single parameter: custID.

• In the Query Map drag the element:

string string

in the $custID parameter over the CUSTOMER_ID element in the CUSTOMER node.

A line connecting the parameter to the node will appear. This will also be reflected in the Query Map
Expression editor when you click on the CUSTOMER For: node.

Mapped Parameter and Where Clause

Document generated by Confluence on Jan 10, 2008 16:26 Page 269

http://kmwiki.bea.com/download/attachments/7382/Setting Up a Join Condition2.gif

The results of this operation can also be viewed in the Source tab.

declare function tns:custOrdersItemsbyCustID($custID as xs:string) { for $CUSTOMER in
cus2:CUSTOMER() where $custID eq $CUSTOMER/CUSTOMER_ID return ...

In Source you will also notice that the for statements now contain where clauses based on your graphical
gestures.

for $CUSTOMER in cus2:CUSTOMER()
where $custID eq $CUSTOMER/CUSTOMER_ID
return
...

for $CUSTOMER_ORDER in cus1:CUSTOMER_ORDER()
where $CUSTOMER/CUSTOMER_ID eq $CUSTOMER_ORDER/C_ID
return

...
for $CUSTOMER_ORDER_LINE_ITEM in cus:CUSTOMER_ORDER_LINE_ITEM()
where $CUSTOMER_ORDER/ORDER_ID eq

$CUSTOMER_ORDER_LINE_ITEM/ORDER_ID
return

...

Creating, Saving, and Associating the XML Type

Since this entity data service is being created "bottom up", it is not yet associated with an XML Type
(schema).

Now that you have a Return type, however, you create a valid XML Type by saving your Return type and
associating it with a namespace that is unique to the project.

1. Go to Query Map.
2. Right-click on the Return type's title bar.
3. Select Save and Associate XML type.

4. If asked if you want to save modified resources, choose .

Document generated by Confluence on Jan 10, 2008 16:26 Page 270

http://kmwiki.bea.com/download/attachments/7382/Mapped Parameter and Where Clause.gif
http://kmwiki.bea.com/download/attachments/7382/Save and Associate XML Type3.gif

5. In the Save and Associate XML Type dialog change the Name of the Return type global element
from:

CUSTOMER

to:

CUST_ORDERS_ITEMS

6. Leave the Update references option selected. (This option — which is by default selected — means
that XML Type references in source will be updated to reflect the changes you are making.)

Save and Associate XML Type

1. Click Preview. This mode shows what changes will be performed by the name change (refactoring)
operation. In this case a new schema file will be created and the target type will be renamed to
CUST_ORDER_ITEMS.

2. Click:

3. Notice that the target type (root element) in your Return type has been renamed.
4. Click Overview; you will see that your entity data service is now associated with an XML type.

Newly Associated XML Type

1. Deploy your project. This deployment should be successful.

Modifying the XML Type

When an XML Type is generated, complex elements by default return a single instance of their type (for
example, one CUSTOMER_ORDER will be returned even if there are many).

Document generated by Confluence on Jan 10, 2008 16:26 Page 271

http://kmwiki.bea.com/download/attachments/7382/Save and Associate XML Type2.gif
http://kmwiki.bea.com/download/attachments/7382/Newly Associated XML Type.gif

In order to return all customer orders and all of each orders' line items minor changes to the data
service's XML type are needed. The XML markup for this is:

maxOccurs="unbounded"

In other words, the element returns "n", any number of document fragments that meet the criteria.

To modify your new CUST_ORDERS_ITEMS XML Type:

1. Click on the Overview tab, if it is not already selected.
2. Right-click on the topmost element in the XML type: CUST_ORDER_ITEMS.
3. Select Edit Schema. The Eclipse schema editor opens.
4. Click the schema editor's Source tab (below the editor's work area).
5. Locate the first qualified element: CUSTOMER_ORDER.
6. Place your cursor where you want to add the statement (just before the closing angle bracket at the

end of the line)
7. Enter a space.
8. Activate the code assistant with the combination:

Ctrl + spacebar

You will get a code completion dialog.

9. Perform the Ctrl+space operation twice, once for the max_occurs, and again to add the unbounded
statement. The line now appears as:

<xs:element form="qualified" name="CUSTOMER_ORDER" maxOccurs="unbounded">

10. Follow Steps 5-9 for the second qualified element, CUSTOMER_ORDER_LINE_ITEM.
11. Save the CUST_ORDERS_ITEMS.xsd file.

File > Save

The modified schema file appears below.

12. Close the file.

File > Close

CUST_ORDERS_ITEMS Schema (XSD File)

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="custOrdersItems" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="CUST_ORDERS_ITEMS">
<xs:complexType>
<xs:sequence>

<xs:element name="CUSTOMER_ID" type="xs:string"/>
<xs:element name="FIRST_NAME" type="xs:string"/>

Document generated by Confluence on Jan 10, 2008 16:26 Page 272

<xs:element name="LAST_NAME" type="xs:string"/>
<xs:element name="CUSTOMER_SINCE" type="xs:date"/>
<xs:element name="EMAIL_ADDRESS" type="xs:string"/>
<xs:element name="TELEPHONE_NUMBER" type="xs:string"/>
<xs:element name="SSN" maxOccurs="1" minOccurs="0" type="xs:string"/>
<xs:element name="BIRTH_DAY" maxOccurs="1" minOccurs="0" type="xs:date"/>
<xs:element name="DEFAULT_SHIP_METHOD" maxOccurs="1" minOccurs="0" type="xs:string"/>
<xs:element name="EMAIL_NOTIFICATION" maxOccurs="1" minOccurs="0" type="xs:short"/>
<xs:element name="NEWS_LETTTER" maxOccurs="1" minOccurs="0" type="xs:short"/>
<xs:element name="ONLINE_STATEMENT" maxOccurs="1" minOccurs="0" type="xs:short"/>
<xs:element name="LOGIN_ID" maxOccurs="1" minOccurs="0" type="xs:string"/>
<xs:element form="qualified" name="CUSTOMER_ORDER" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="ORDER_ID" type="xs:string"/>
<xs:element name="C_ID" type="xs:string"/>
<xs:element name="ORDER_DT" type="xs:date"/>
<xs:element name="SHIP_METHOD_DSC" type="xs:string"/>
<xs:element name="HANDLING_CHRG_AMT" type="xs:decimal"/>
<xs:element name="SUBTOTAL_AMT" type="xs:decimal"/>
<xs:element name="TOTAL_ORDER_AMT" type="xs:decimal"/>
<xs:element name="SALE_TAX_AMT" type="xs:decimal"/>
<xs:element name="SHIP_TO_ID" type="xs:string"/>
<xs:element name="SHIP_TO_NM" type="xs:string"/>
<xs:element name="BILL_TO_ID" type="xs:string"/>
<xs:element name="ESTIMATED_SHIP_DT" type="xs:date"/>
<xs:element name="STATUS" type="xs:string"/>
<xs:element name="TRACKING_NO" maxOccurs="1" minOccurs="0" type="xs:string"/>
<xs:element name="DATE_INT" maxOccurs="1" minOccurs="0" type="xs:long"/>
<xs:element form="qualified" name="CUSTOMER_ORDER_LINE_ITEM"

maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>
<xs:element name="LINE_ID" type="xs:string"/>
<xs:element name="ORDER_ID" type="xs:string"/>
<xs:element name="PROD_ID" type="xs:string"/>
<xs:element name="PROD_DSC" type="xs:string"/>
<xs:element name="QUANTITY" type="xs:integer"/>
<xs:element name="PRICE" type="xs:decimal"/>
<xs:element name="STATUS" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Testing Your Data Service Function

Having created a parameterized read function for your logical data service, you can now test it.

1. Click the Test tab.
2. Using the dropdown in the Select operation field, choose the function:

custOrdersItemsByCustID(string)

3. Enter:

CUSTOMER3

as the custID parameter.

Document generated by Confluence on Jan 10, 2008 16:26 Page 273

4. Click Run. Your project should redeploy successfully and your data then appear.
5. Click the + to the left of CUST_ORDERS_ITEMS to view your data in Tree format. Notice that all

customer orders are listed under the customer. If you open CUSTOMER_ORDER you will see that
items for each order are also listed.

Testing a Parameterized Query

View Test Run Results

Test results from this function can be viewed in two ways:

• Tree
• Text

The Tabular option is only available for flat (non-nested) results.

Test Run Results in Tree Style Format

Review Test Run Information

When a query is run in the Test editor, you will often be able to access information on your query's
performance and the generated SQL (in the case of relational data). Even if a test is unsuccessful, the
attempted execution may generate useful audit event statistics.

Query Statistics in the Console Window

Document generated by Confluence on Jan 10, 2008 16:26 Page 274

http://kmwiki.bea.com/download/attachments/7382/Testing a Parameterized Query.gif
http://kmwiki.bea.com/download/attachments/7382/Test Run Results in Tree Format.gif

The Console window will always contain information on a successfully executed query. Access the Console
with:

Window > Show View > Other... > General > Console

Sample console output is shown below.

Query Details in the Console Window

Adding Create-Update-Delete Functions to Your Data Service

You can also edit results in the Test area. In other words, you can update your data.

To do this an update procedure based on your data service must exist. Until then, the Edit, Submit and
Cancel buttons at the bottom of the Test mode work area () will be grayed out.

The easiest way to create an update procedure for your logical data service is to generate a default
update map procedure. When you do this you will also be given the option of creating delete and insert
procedures.

To add the new procedures:

1. In the Overview tab, right-click in the work area choose Add Update Map Procedures...

Document generated by Confluence on Jan 10, 2008 16:26 Page 275

http://kmwiki.bea.com/download/attachments/7382/Query Details in the Console Window.gif

2. Leave the default Add and Primary checkbox options selected for each function.

Notice that the procedures are added to your data service.

Update Map Procedures

Updating Your Results

Now that you have an updateCUST_ORDERS_ITEMS procedure, you can update data -- either through
the Test tab or through authorized client applications. Here are the steps:

1. Click on the Test tab and scroll to the top of the window.
2. From the Select operation dropdown select the

createCUST_ORDERS_ITEMS(CUST_ORDERS_ITEMS() operation to review the generated type.
3. From the Select operation dropdown select the read function custOrdersItemsByCustID().
4. Run the function using CUSTOMER3 as the custID.
5. Click Edit. (Your project may redeploy.)
6. Expand the top element in the CUST_ORDERS_ITEMS tree.
7. Change the customer's first name from Britt to Sachin using the built-in line editor.
8. Click the Submit button at the bottom of the work area. A message indicating that your data has

been successfully submitted appears.

Changing an Element in Test View

Document generated by Confluence on Jan 10, 2008 16:26 Page 276

http://kmwiki.bea.com/download/attachments/7382/Add Update Map Procedures2.gif
http://kmwiki.bea.com/download/attachments/7382/Update Map Procedures2.gif

Re-run your function to see that the first name field reflects the changes you made.

Reviewing the Query Plan

Once a data service has been successfully deployed, the query plan for the service's read functions can
be examined through the Plan tab. The plan can be display in tree or text mode.

1. Click the Plan tab.
2. Choose the custOrdersItemsByCustID function from the Select operation dropdown.
3. Click Show Query Plan.

Tree View of Query Plan

Reviewing the Update Map

After an entity data service is successfully deployed and contains an update function, its update map can
be inspected and, as necessary, edited.

• Click the Update Map tab.

CUST_ORDERS_ITEMS Update Map

Document generated by Confluence on Jan 10, 2008 16:26 Page 277

http://kmwiki.bea.com/download/attachments/7382/Changing an Element in Test View.gif
http://kmwiki.bea.com/download/attachments/7382/Tree View of Query Plan.gif

For more information see:
Understanding Update Maps

Archiving Your Project

You can save your entire project to a ZIP file. Then, when you need to load it again, you can do so with a
simple Import operation.

Other examples in the ALDSP documentation use this or similar examples, so having this project
available will be make it easier to experiment with other ALDSP faculties.

1. In Project Explorer, click on the myDataspace Project.
2. From the Eclipse menu choose:

File > Export...

3. In the Export dialog choose:

General > Archive File

Saving Project to a ZIP File

Document generated by Confluence on Jan 10, 2008 16:26 Page 278

http://kmwiki.bea.com/download/attachments/7382/CUST_ORDERS_ITEMS Update Map.gif

1. In the Archive file dialog the myDataspace project is pre-selected. Browse to the location where you
want to put your archive file.

2. Name your file:

myDataspace

Leave all other options unchanged.

Creating the Archive File

A file myDataspace.zip will be created in the directory you specified.

Summary

Congratulations! In just a few minutes you have:

• Started ALDSP.
• Created several physical data services based on existing data.
• Created a logical data service based on elements from three physical sources.

Document generated by Confluence on Jan 10, 2008 16:26 Page 279

http://kmwiki.bea.com/download/attachments/7382/Saving Project to a JAR File.gif
http://kmwiki.bea.com/download/attachments/7382/Creating the Archive File.gif

• Build a function to retrieve based on a unique customer ID information on a customer, the
customer's orders, and each item in each order.

• Created an XML Type based on the Return type of your function.
• Modified the XML Type to better support a master-detail arrangement of information.
• Tested your results.
• Edited your results.
• Viewed the query plan and the updated map.
• Create an archive file of your dataspace.

About 150 lines of XQuery have been generated.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 280

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Data in the 21st Century

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Data in the 21st Century

In modern enterprises data is generally readily available. While this has reduced that need to move
physical data into data warehouses, data marts, data mines, or other costly replications of existing data
structures, the problems of dynamic data integration, immediate secured access and update, data
transformation, and data synchronization remain some of the most vexing challenges facing the IT world.

ALDSP provides a comprehensive approach to this challenge by:

• Providing a unified means of importing metadata representing the structure of any data source
using its Metadata Import wizard.

• Allowing for the creation of hierarchical data structures from tradition column-row data.
• Providing a query-driven interface to extend the physical model so data specialists can create

powerful transformations of existing data and queries.
• Automatically creating data models that introspect physical data structures (and their contents) in

situ, normalizes representation of diverse data, and allow the representation of the relationship of
physical and logical data.

• Maintaining the accuracy of metadata through automated updates from the data source.

ALDSP can be used to create, refine, and validate logical data structures through a process of importing
data sources, creating physical and logical models, and designing queries for use by applications in an
infrastructure that provides for easy maintenance, while enhancing security and performance.

Through standardized Service Data Objects (SDO) technology, web-based applications can automatically
read and update relational data. Through simple Java programs ALDSP update capabilities can be
extended to support any logical data source.

Data Access Integration Architecture

In contemporary enterprise computing, data typically passes through multiple processing and storage
layers. While enterprise data can easily be accessed, turning that data into useful information
economically and efficiently, particularly updateable information, remains a difficult and
high-maintenance task.

Document generated by Confluence on Jan 10, 2008 16:26 Page 281

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

ALDSP approaches the problem of creating integration architectures by building logical data services
around physical data sources and then allowing business logic to be added as part of easily maintained,
graphically designed XML query functions (also called XQueries).

Using standard protocols such as JDBC, ALDSP automatically introspects data sources, creating physical
data services and corresponding schemas that model a physical data source. Optional model diagrams
capture relationships between relational data sources, such as primary and foreign keys.

Any WebLogic Workshop application can include ALDSP-based projects. And any application can access
ALDSP queries — including update functions — through a mediator API or a ALDSP Control. In the case of
relational data, updates can be performed automatically through Service Data Objects (SDO) (For details
see Programming with Service Data Objects in the AquaLogic Data Services Platform Client Application
Developer's Guide.)

Document generated by Confluence on Jan 10, 2008 16:26 Page 282

ALDSP provides for the development of integrated queries within any WebLogic Workshop application.
Each application can contain multiple ALDSP-based projects, as well as any other types of projects
offered by WebLogic Workshop.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 283

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Data Service Types and Functions

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Data Service Types and Functions

ALDSP functions can have a number of attributes. This section describes those attributes and the
conditions under which they are applicable.

ALDSP Data Service Types and Attributes

Types and function attributes are mutually exclusive. For example, function access can be set to public,
protected, or private. Similarly, a data service type can be logical or physical, not both. Other
characteristics are simply inapplicable. For example, create-update-delete routines always operate as
procedures, not functions.

Data Service Characteristics

The following table describes the characteristics of ALDSP data services. Data service characteristics are
defined in the XQuery source pragma.

Data Service Characteristics

Document generated by Confluence on Jan 10, 2008 16:26 Page 284

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

Characteristic Description

Type There are two types of data services:

• Physical. The data service is directly based
on metadata imported from underlying data
sources. Physical data services are created
during the metadata import process.

• Logical. The data service is based wholly or
partially on data derived from other data
services. Logical data services are created
either through the Query Map Editor or in
source.

Shape The shape of a data service is determined by its
XML type, or underlying schema, if any. Shapes
are:

• Entity. An entity data service is associated
with an XML type. For example, physical data
services based on relational tables are entity
data services. For any given entity data
service, all read functions return information
in the shape of the primary XML type.

• Library. A library data service is not
associated with an XML type. Library data
services contain routines that can be used by
other library or entity data services.

Building XQueries

Operational Characteristics

The following table describes the characteristics that can be used to describe functional routines in
ALDSP. These characteristic descriptions are also part of the function's signature, visible in data service
Souce editor.

ALDSP Operations Characteristics

Characteristic Description

Access Access or visibility to a functional routine can be
set as:

• Public. A public operation can be called
from:

° any operation in the same data space
and

° from an ALDSP client API. Public
operations are the only ones that can be
called from client APIs such as Web
services or the Java Mediator API.

Document generated by Confluence on Jan 10, 2008 16:26 Page 285

• Protected. An operation with protected
visibility can be called from any operation in
the same data space. Protected operations
cannot be accessed from ALDSP client APIs.
An operation in the data space can access
the function. Functions in physical data
services are, by default, protected.

• Private. The function can only be accessed
by other functions in its data service.
Operations with private visibility are also
off-limits to client APIs.

Primacy Every logical entity data service identifies a single
primary function for each kind of function. For
example, if there are several read functions, one
will be set as primary.
In the case of read functions, the data service
relies on the primary read function in the data
service to determine the shape of the Return type.
For create, update, and delete functions, the
primacy setting is used by update templates of
component data services.
In an entity data service, a function can be set as
primary. Other functions of a similar type are
automatically considered non-primary.

Library functions have no Return type and
are not categorized as primary or
non-primary.

Kind ALDSP has several kinds of functions. For physical
data services, the kind of function is inferred
during the data service creation process, when
metadata is imported.
Four of the functions are actually CRUD
(create-read-update-delete) procedures, which
operate on the underlying data.

• Read. Returns data from an underlying data
source.

• Create. Creates one or several records.
• Update. Updates one or several records.
• Delete. Deletes one or several records.

Other kinds of functions include:
• Navigate. Navigate function have the

current data service Return type as one of
the input parameters; it typically returns a
sequence of the return schema element from
the related data Service. Example: Return
type Order instead of Return type Customer.

• Library. Functions, which are independent of
the data service XML type. Library functions
can appear in either data services and library
data services

Document generated by Confluence on Jan 10, 2008 16:26 Page 286

Operation There are two types of operations:

• Functional. General-purpose data service
functions are designed to retrieve data for
clients. Functions cannot have side-effects.
Functions can be defined through XQuery or
XQSE. If XQSE is used, the fact that the
routine is identified as a function means that
it does not have side effects.

• Procedural. The purpose of a procedural
function (also called a procedure or
side-effecting procedure) is to affect external
processes. A classic example of a
side-effecting procedure is an RDBMS stored
procedure that modifies underlying data.
When a stored procedure is invoked, it
operates on the data in the RDBMS without
necessarily returning anything to the caller.
Similarly, in ALDSP, a procedural function will
primarily invoke an external process.
Create-update-delete operations are, by
definition, procedural.
Note: There is an important distinction
between functions and procedures from the
perspective of the data service optimizing
engine. Procedures are always considered to
have side-effects and are therefore never
optimized by the XQuery engine in such a
way that they do not independently execute.
While a delete() function might not be
executed (i.e., "optimized away"), a delete()
procedure will always be called.

Functions with and Without Side Effects (click to see
full size)

Green boxes represent functions without side
effects; red boxes represent functions that
may have side effects; boxes with both colors
represent functions which can optionally
contain side-effects.

Implementation Functions can be implemented in the following
ways:

• XQuery. The most common means of
implementing an ALDSP function is through

Document generated by Confluence on Jan 10, 2008 16:26 Page 287

http://kmwiki.bea.com/download/attachments/7382/kinds of dsp functions.gif

XQuery. Of course the data service itself is
implemented in XQuery.

• XQSE. The XQuery Scripting Extension
provides a procedural language to extend
XQuery to support certain kinds of
operations.

• Template-based. An update template
defines the data flow and order for update
operations for a logical data service. The
update engine in the ALDSP server executes
a procedure based on a template; is typically
a Java routine used to manage updates of
non-relational data. The same template is
used by create, update, and delete routines.

• External. External functions are based on
physical sources such as Java, web services,
XML, flat files, or relational sources. External
functions can be created in entity or library
data services.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 288

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Getting the Most from the ALDSP Eclipse Framework

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Getting the Most from the Data Services Studio
Eclipse Plugin Framework

ALDSP dataspaces are initially created as projects in the Data Services Studio Eclipse plugin framework.
The Eclipse IDE is a rich, open development environment.

While some aspects of Eclipse are described in this section, no attempt is made to replicate the large
body of documentation available for Eclipse developers.

References

• Eclipse home site
• Eclipse Help documentation
• Eclipse user guides

Data Services Studio

AquaLogic Data Services Studio is the basis of the ALDSP IDE. The Studio run inside the Eclipse
framework.

Data Services Studio Artifacts in the ALDSP Perspective

Artifact Purpose

Project Explorer Contains project artifacts including data services
and their functions.

Properties editor Contains read/write and read only properties
associated with the selected artifact. For example
a function may be set to public, protected, or
private through its Properties editor.

Outline manager Provides a scrollable view of your model, query, or
update mapper. This is particularly useful in large
projects since the work area may not be large
enough to show all the artifacts.

Console The console appears whenever the server is
accessed.

Servers tab Display the status of the ALDSP server which in

Document generated by Confluence on Jan 10, 2008 16:26 Page 289

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://www.eclipse.org/
http://help.eclipse.org/help32/index.jsp
http://www.eclipse.org/documentation/

turn provides clients with access to data services
and their underlying data sources.

Problems tab Displays problems encountered by the project.

Error Log tab Displays errors associated with the project.

The Windows > Show View menu option can be used to add additional windows to the perspective.

In addition, several ALDSP Perspective menu options are provided under:

File > New

These allow you to, first, create an ALDSP dataspace project and then to add various types of data
services, models and web service mapper.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 290

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Typical Data Service Development Process

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Typical Data Service Development Process

The following steps summarize a typical ALDSP-based project development cycle.

1. Create your project. Create a ALDSP-based project in a new or existing WebLogic Workshop
application.

2. Create physical data services. Metadata representing physical data sources can be obtained for
any data source that is available through your local application or BEA WebLogic Server. This may
include relational data, Web service data, delimited files (spreadsheet data), custom Java functions,
and XML files.

3. Create a data model. You can optionally build a data model that shows the relationships and
cardinality between the data services you have selected (see Modeling Data Services for details).
Through the data model, you can also modify and extend relationships between various data
services as well as their return type.

4. Develop data services. You can elaborate on existing physical data through queries that span
multiple physical and/or logical data services. The built-in Query editor ncludes standard XQuery
functions and language construct prototypes. Using the editor you can map source elements or
transformations to a return type. Queries and data service logic are maintained in a single, editable
source file that is fully integrated with your data service (Working with XQuery Source).

5. Test your function. You can select any query in the current data service, add a simple or complex
parameter (if required), run the query, and see the results. You can also update source data
through Test View and create ad hoc queries and procedures.

6. Review your query plan. You can view the query plan prior to or after running your query. The
query plan describes the generated statements used to retrieve and update data. Execution time
statistics are also available.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 291

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Managing Update Maps

This page last changed on Dec 20, 2007 by tkatz.

Managing Update Maps

Concepts
Understanding Update Maps
... The target box
... For each blocks
... Update blocks
... The return key block
... Customization

Customizing Update Maps
How-to...
... Change a Mapping
... Remove a Mapping
... Revert Customizations
... Edit XQuery Expressions
... Add a Condition to an Update Block
... Add Update Map Procedures

Handling Errors and Warnings
How-to...
... Recognize When Something is Wrong
... Understand Mappings with Different Data Types
... Cast Using a Built-In XQuery Function
... Cast Using a Custom XQuery Function
... Test an Update Map Cast
... Handle Disabled Procedures in Underlying Data Sources
... Handle Non-Unique Joins
... Handle Non-Unique Values
... Handle Unmapped Required Values

Testing Update Maps
How-to...
... Enable Optimistic Locking
... Test a Read Function and Simple Update
... Test an Update Procedure

Document generated by Confluence on Jan 10, 2008 16:26 Page 292

http:/

Add a Condition

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Add a Condition to an Update Block

This topic describes how to add a condition to an update block in an update map.

• Overview
• Example
• See Also

Overview

In the update map, you can override an Update block by defining conditions in the expression editor that
determine when the block is updated.

A Condition in the Expression Editor

A condition is a Boolean expression based on XQuery functions and values defined in the update map, for
example:

fn-bea:value($CUSTOMER/CUSTOMER_ORDER/TOTAL_ORDER_AMT) > 1000

For example, you might have a logical data service with a return type that combines Customer, Order,
and CreditRating data. Each customer can have multiple orders and one credit rating.

Return Type with Customer, Order, and CreditRating Data

Document generated by Confluence on Jan 10, 2008 16:26 Page 293

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://kmwiki.bea.com/download/attachments/7382/Update Configuration with Dependencies 2.gif

Example

In the update map, you may want to set a condition that a customer's credit rating can only be updated if
the customer places an order with an amount greater than 1000.00.

To set an update map condition:

1. Click the Update Map tab.
2. Click the update block on the left that contains the element for which you want to set the condition

(for example, the CREDITRATING box for the CREDITRATING/RATING element).
You can now enter a condition in the expression editor.

3. Enter a condition in the Condition box, for example:

fn-bea:value($CUSTOMER/CUSTOMER_ORDER/TOTAL_ORDER_AMT) > 1000.00

4. Save the data service.
5. Click the Test tab.

The logical data service returns data that looks like this:

6. Run a read function, then click Edit and attempt to submit a value for the element that has the
condition.
When you test the update map, you can only update the CREDITRATING data source if
TOTAL_ORDER_AMT for any of the customer's orders is greater than 1000.00.

Document generated by Confluence on Jan 10, 2008 16:26 Page 294

http://kmwiki.bea.com/download/attachments/7382/Return Type for Dependency.gif
http://kmwiki.bea.com/download/attachments/7382/Entering a Condition.gif
http://kmwiki.bea.com/download/attachments/7382/Credit Rating Data.gif

See Also

Concepts

• Understanding Update Maps
• The XQuery Expression Editor

How Tos

• Test a Read Function and Simple Update

Other Resources

• W3Schools XQuery Tutorial

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 295

http://www.w3schools.com/xquery/default.asp
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Add Update Map Procedures

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Add Update Map Procedures

This topic describes how to add a create, update, or delete procedure to a logical entity service.

• Overview
• Generate Default Procedures
• Design Custom Procedures
• See Also

Overview

In a logical entity service, you can add create, update, and delete procedures (called update map
procedures) that act on underlying data sources. A procedure is an operation that can have side effects,
for example, a create procedure that adds a new record to a database table and returns a key value.

You can create update map procedures visually in AquaLogic Data Services Studio and have the
framework generate XQuery pragma statements and source code, or you can write the source code
directly in XQuery or XQSE.

The XQuery pragma statement looks something like this:

(::pragma function <f:function kind="create" visibility="public" isPrimary="true"
xmlns:f="urn:annotations.ld.bea.com">

This statement defines a create procedure, with public visibility, that is primary. Even though the pragma
statement uses the keyword function, the operation you define is a procedure, as you can see from the
declaration:

declare procedure cus:createCustomerAndAddress($arg as element(cus:CustomerAndAddress)*) as
element(cus:CustomerAndAddress_KEY)* external;

This line declares the procedure with the name createCustomerAndAddress, defines one argument with
the service's return type, and specifies a key as a return value.

Generate Default Procedures

When you generate default update map procedures, they have these parameters and return values:

Document generated by Confluence on Jan 10, 2008 16:26 Page 296

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

Type Parameters Return Value

Create The current key The service's return type

Update The service's return type None

Delete The service's return type None

Before you create update map procedures, especially create procedures, add a key to your service. A
primary create procedure must return a key, and an update or delete procedure can accept a key as an
argument.

To generate a default update map procedure:

1. Create a key for your service.
2. In the Overview tab, right-click at the left, right, or top, and choose Add Update Map Procedures.

3. Select Add to indicate which procedures to add.
4. Add names in the Name fields.
5. Mark Primary to indicate if each procedure should be primary.
6. Click OK.

7. In the Overview tab, right-click a procedure name and choose Edit Signature.

8. Make any necessary changes to the procedure signature in the dialog box.

Document generated by Confluence on Jan 10, 2008 16:26 Page 297

http://kmwiki.bea.com/download/attachments/7382/Add Update Map Procedures.gif
http://kmwiki.bea.com/download/attachments/7382/Update Map Procedures.gif
http://kmwiki.bea.com/download/attachments/7382/Create Procedure Signature.gif

Design Custom Procedures

You can also create procedures with the arguments and return types you choose. This is useful for
procedures in addition to the primary create, update, and delete procedures.

To design custom procedures:

1. Click Overview.
2. Right-click at the top, left, or right, and choose Add Operation.
3. Choose a value for Visibility.
4. At Kind, choose create, update, or delete.
5. At Name, enter a procedure name.

6. (Optional) At Return Type, click Edit. Choose a primitive or complex type, then click OK.
7. At Parameters, click Add.
8. Choose a primitive or complex type from an XML or XSD file, then click OK.
9. At Kind, choose a value.

Choose element to use the exact XML element you selected as a parameter; changed-element, if
values in the element must be updated; schema-element, if the element must be validated
according to an XML schema.

10. At Occurrence, choose a value.
11. Click OK in both dialog boxes.

See Also

Concepts

• Data Service Keys

How Tos

• Add a Read Function
• Create Logical Data Service Keys
• Test a Create or Delete Procedure
• Test an Update Procedure

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 298

http://kmwiki.bea.com/download/attachments/7382/Add Operation Delete.gif
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Document generated by Confluence on Jan 10, 2008 16:26 Page 299

Cast Using a Built-In XQuery Function

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Cast Using a Built-In XQuery Function

This topic describes how to use a built-in XQuery function to cast values of different data types in an
update map.

• Example
• See Also

Example

You can cast an element from one data type to another using a built-in XQuery cast function when:

• Type promotion does not occur.
• The data comes from a variable or an other source that is not a constant
• A built-in function that performs the cast you want is available in the Design Palette.

To cast using a built-in XQuery function:

1. Click the Update Map tab.
2. Click the disabled element in an update block on the left.

In the expression editor, you see an expression that uses fn-bea:value() to map from the return
type on the right, for example:

fn-bea:value($CUSTOMER/CUSTOMER_SINCE)

This expression represents a dateTime value coming from the return type.

3. Open the Design Palette

Window > Show View > Design Palette

4. Expand XQuery Functions, then a category (for example, Duration, Date, and Time Functions).
5. Drag the function you want to the expression editor (for example, fn-bea:date-from-dateTime),

leaving the existing expression there.
6. If feasible, use the existing expression as an argument to the function, for example:

fn-bea:date-from-dateTime(fn-bea:value($CUSTOMER/CUSTOMER_SINCE))

Here the original value is used as the $dateTime argument to fn-bea:date-from-dateTime().

Document generated by Confluence on Jan 10, 2008 16:26 Page 300

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

7. Test the update map cast to make sure it works as you expect.

See Also

Concepts

• Understand Mappings with Different Data Types

How To

• Cast Using a Custom XQuery Function

• Test an Update Map Cast

Other Resources

• XQuery Tutorial at W3Schools

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 301

http://www.w3schools.com/xquery/default.asp
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Cast Using a Custom XQuery Function

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Cast Using a Custom XQuery Function

This topic describes how to write a custom XQuery function to cast between elements of different data
types in an update map.

• Example
• See Also

Example

An example of a custom XQuery cast function is one that casts from integer to string. Suppose the logical
data service's return type uses xsd:integer for the TELEPHONE_NUMBER element, while the underlying
data source uses xsd:string.

Mapping from Integer to String

The mapping between the two TELEPHONE_NUMBER elements is initially disabled. The value from the
return type is something like 4155551212, which can easily be converted between xsd:integer and
xsd:string. Check the type casting chart in the XQuery 1.0 specification to make sure the cast you want
to perform is allowed.

When you test the cast function, you also need to perform the opposite cast (in this case,
xsd:string to xsd:integer).

To write a custom XQuery cast function:

1. Click the Source tab.
2. Write an XQuery function that takes an argument of the data type you are casting from and returns

a value of the data type you are casting to, for example:

declare function tns:intToString($theint as xs:integer) as xs:string {
xs:string($theint)

};

Document generated by Confluence on Jan 10, 2008 16:26 Page 302

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://kmwiki.bea.com/download/attachments/7382/Mapping from Integer to String.gif
http://www.w3.org/TR/xpath-functions/#casting-from-primitive-to-primitive

Assign your function to an XML namespace your logical data service uses. Be sure both the
parameter and return type are valid XML Schema data types. Then, write a statement that performs
the cast.

3. In the Update Map tab, click the element in the data source on the left.
At this point, the element is disabled: . Its value is taken from the

return type, so its XQuery expression looks something like this:

fn-bea:value($CUSTOMER/TELEPHONE_NUMBER)

Remember that the value from the return type is an xs:integer.

4. Add your new cast function, using the existing expression as its argument, for example:

tns:intToString(fn-bea:value($CUSTOMER/TELEPHONE_NUMBER))

At this point, the update map should be completely enabled.

5. If the disabled icon on the element does not disappear immediately, click another element in the
update map.

6. Test the update map cast to make sure it works as you expect.

See Also

Concepts

• Understand Mappings with Different Data Types

How To

• Cast Using a Built-In XQuery Function
• Test an Update Map Cast

Other Resources

• XQuery 1.0 Specification
• Primitive type casting chart (scroll down)

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 303

http://kmwiki.bea.com/download/attachments/7382/Disabled Element Telephone Number.gif
http://www.w3.org/TR/2007/REC-xpath-functions-20070123/
http://www.w3.org/TR/xpath-functions/#casting-from-primitive-to-primitive
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Change a Mapping

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Change a Mapping

This topic describes how to change a mapping in a default update map generated in AquaLogic Data
Services Studio.

• Overview
• Example
• See Also

Overview

Once you have generated an update map, you can customize it by adding or removing mappings,
changing an XQuery expression, adding dependencies, or changing the return type--all in Studio.

A Sample Update Map

Initially, an update map is generated from the primary read function of a logical data service and changes
with the read function.

Once you customize an update map, it is no longer linked to the primary read function. If you change the
primary read function after customizing the update map, either in a dialog box or in the Source tab, the
update map does not change as a result. To re-link the update map to the primary read function, you
must revert customizations.

Example

To change a mapping:

1. Click the Update Map tab.
2. Right-click an existing mapping line, and choose Delete.

Document generated by Confluence on Jan 10, 2008 16:26 Page 304

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://kmwiki.bea.com/download/attachments/7382/Sample Update Map.gif

3. Drag from an element in the return type on the right to a new element in a data source on the left.
4. Make sure that the Create, Update, and Delete procedure icons (on both the right and left sides) are

still enabled and not disabled .

5. Test the new mapping in the Test tab.

The CustomerOrderLineItem Service

In this service, you can draw a new mapping between elements of the same type.

1. Click the Update Map tab.
2. Right-click the mapping line between CUSTOMER_ORDER/STATUS in the return type and

CUSTOMER_ORDER/STATUS in the update block, and choose Delete.

3. Drag a new mapping from CUSTOMER_ORDER_LINE_ITEM/STATUS, the child element in the return
type, to CUSTOMER_ORDER/STATUS in the update block.
These elements have the same data type.

4. Make sure that the procedure icons are enabled.
5. Click CUSTOMER_ORDER/STATUS on the left, and check the new mapping in the expression editor.

6. Click the Test tab.
7. Run a read function, then click Edit.
8. Choose a CUSTOMER_ORDER element, then change the value of the first

CUSTOMER_ORDER_LINE_ITEM/STATUS child element.
9. Click Submit.

10. Run the read function again, then check that the value of CUSTOMER_ORDER/STATUS has changed.

In this example, the child element (CUSTOMER_ORDER_LINE_ITEM) has a multiple cardinality, while the
parent element (CUSTOMER_ORDER/STATUS) has a single cardinality. You can see this by checking the
XML return type in the Overview tab. By default, the first child element value is read to update the data
source. You can override this behavior by adding a dependency or writing a custom update function.

When you map one element to another, be sure that the elements have the same or compatible data
types. To be compatible, data types must be in the same type hierarchy in the XML Schema DataTypes

Document generated by Confluence on Jan 10, 2008 16:26 Page 305

http://kmwiki.bea.com/download/attachments/7382/Deleting Status Mapping.gif
http://kmwiki.bea.com/download/attachments/7382/New Status Mapping.gif
http://kmwiki.bea.com/download/attachments/7382/New Mapping Expression.gif

specification, such as xs:integer and xs:decimal. These types are cast automatically. If you draw a
mapping between two elements of different types and hierarchies, you must cast one data type to the
other, using a built-in cast function or a custom cast function.

See Also

Concepts

• Understanding Update Maps

How Tos

• Create Your First Data Services
• The XQuery Expression Editor

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 306

http://www.w3.org/TR/xmlschema-2/#built-in-datatypes
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Handle Disabled Procedures in Underlying Data Sources

This page last changed on Jan 08, 2008 by tkatz.

How To Handle Disabled Procedures in
Underlying Data Sources

This topic explains how to enable an update map for a logical data service when an underlying data
source has disabled procedures.

• Check the Data Sources
• Resolve the Disabled Procedures
• See Also

Check the Data Sources

If a Create, Update, or Delete procedure is disabled in a data source that your logical data service uses,
part of the update map is disabled as well. Specifically, the update block that maps to the data source is
disabled.

For example, you might have a physical data service that is missing a Create, Update, or Delete
procedure.

Physical Data Service with No Create or Delete Procedure

As a result, the update block that maps to this data source has its Create and Delete procedures disabled.

Update Block with Disabled Create and Delete Procedures

Document generated by Confluence on Jan 10, 2008 16:26 Page 307

http://kmwiki.bea.com/download/attachments/7382/Data Source with Disabled Functions.gif

When you mouse over the disabled procedure icons, you see tooltips telling you that create and delete
operations are not possible for the service.

Resolve the Disabled Procedures

You need to resolve the disabled procedures so that you can deploy the service to the server. To resolve
them, you can:

1. Disable the update block that contains the disabled procedures.
2. Enable the procedures in the underlying data source.
3. Change the XML schema of the return type. For example, you can remove the XML element that

maps to the disabled data source.

The solution you choose depends on your needs.

Disable the Update Block

If you do not need to use the procedures that are disabled in the underlying data source, you can disable
the entire update block:

1. Click Update Map.
2. Right-click the update block, and choose Disable.

Document generated by Confluence on Jan 10, 2008 16:26 Page 308

http://kmwiki.bea.com/download/attachments/7382/Disabled Create and Delete Procedures.gif
http://kmwiki.bea.com/download/attachments/7382/Totally Disabled Update Block.gif

Disabling the block might also disable procedures or key elements in other blocks.
3. Resolve any mappings that become disabled.

Add or Enable Procedures in the Underlying Data Source

You can also enable procedures in or add them to the underlying data source. For example, to add a
procedure to a physical data service:

1. Open the physical data service, and click the Overview tab.
2. Right-click near the top, and choose Add Operation.

3. Choose the Visibility and Kind of the procedure, then enter a name.
4. Click Add to add a parameter. Enter a Parameter Name, then choose a Type, Kind, and Occurrence.

Click OK.
5. Select Primary if you want the procedure to be primary for its type.
6. Click the Update Map tab.
7. Right-click in the update map, then choose Revert Customizations.

Be sure that the procedures in the update block that maps to the underlying data source is enabled.

Change the XML Return Type

You can also change the XML schema the logical data service uses for its return type. For example, you
might remove the element that attempts to update the disabled data source. You can even do this
dynamically, while you are viewing the data service in AquaLogic Data Services Studio.

To change the return type from Studio:

1. Open the logical data service, and click the Overview tab.
2. Right-click the schema, then choose Edit Schema.
3. Remove the entire element, between the <xs:element> and </xs:element> tags.
4. Click the Query Map tab.
5. Right-click the return type, then choose Show Type Difference.

You should see the removed elements in blue.

Document generated by Confluence on Jan 10, 2008 16:26 Page 309

http://kmwiki.bea.com/download/attachments/7382/Add Operation Dialog.gif

6. Right-click the removed element, and choose Remove Element.
7. Click the Update Map tab.
8. Resolve any disabled elements or procedures.

See Also

Concepts

• Understanding Update Maps

• Recognize When Something is Wrong

How Tos

• Test a Read Function and Simple Update

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 310

http://kmwiki.bea.com/download/attachments/7382/Show Type Difference.gif
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Handle Non-Unique Joins

This page last changed on Jan 10, 2008 by tkatz.

How To Handle Non-Unique Joins

This topic shows how to enable an update map when a logical data service uses a non-unique join
between relational data sources.

• Understand the Join
• Correct the Block Scope
• Correct the Table Join
• Enable Update Blocks and Procedures
• Test a Non-Unique Join
• See Also

Understand the Join

In a logical data service, you can join tables visually in the Query Map by dragging from a key element in
one data source to a corresponding key element in another data source.

Joining Tables in the Query Map

You can also create a join by adding an XQuery WHERE statement in the expression editor or the Source
tab:

where $CUSTOMER/CUSTOMER_ID eq $CREDIT_CARD/CUSTOMER_ID

If both tables are in the same database, the XML return type is nested, and you are joining on a unique
key, ALDSP creates a left outer join. You can see the SQL in the query plan for the service (click the Plan
tab, then Show Query Plan):

SELECT ...
FROM "RTLCUSTOMER"."CUSTOMER" t1
LEFT OUTER JOIN "RTLCUSTOMER"."ADDRESS" t2

Document generated by Confluence on Jan 10, 2008 16:26 Page 311

http://kmwiki.bea.com/download/attachments/7382/JoinedTables.gif

ON (t1."CUSTOMER_ID" = t2."CUSTOMER_ID")

If the XML return type is flat, ALDSP creates an inner join, and the SQL looks like this:

SELECT ...
FROM "RTLAPPLOMS"."CUSTOMER_ORDER" t1
JOIN "RTLCUSTOMER"."CUSTOMER" t2
ON (t2."CUSTOMER_ID" = t1."C_ID")

A left outer join returns rows from the left (meaning, the first) table, even if they do not match any rows
in the right (second) table.

An inner join requires that a value in the left table match a value in the right table in order for the left
values to be included in the result. For example, you might match one customer to many orders, creating
a joined table like this:

CUSTOMER_IDFIRST_NAME LAST_NAMEEMAIL_ADDRESSORDER_ID ORDER_DTTOTAL_ORDER_AMT

CUSTOMER1 Jack Black jack@yahoo.comORDER_1_0 2001-10-01 156.39

CUSTOMER1 Jack Black jack@yahoo.comORDER_1_1 2002-02-17 596.65

CUSTOMER1 Jack Black jack@yahoo.comORDER_1_2 2002-07-07 656.65

Here, CUSTOMER_ID is a unique key and has one row in the relational source. However, in the joined
table, CUSTOMER1 has three orders and three rows. If you update information for CUSTOMER1 such as
FIRST_NAME in the joined table, where each customer has multiple rows, the value to use to update the
underlying data source is ambiguous.

With a non-unique join, all or part of the update map is temporarily disabled and looks like this:

A Disabled Update Block

When you click View Generate Log in the update map, you see a message like this one:

The primary read function has a non-unique join involving this data source.

In your function or procedure code, in the Source tab, you might see for statements directly nested

Document generated by Confluence on Jan 10, 2008 16:26 Page 312

http://kmwiki.bea.com/download/attachments/7382/Disabled For Each Block.gif

within each other, without an intervening WHERE clause:

for $CUSTOMER in ns1:CUSTOMER()
for $CREDIT_CARD in ns2:CREDIT_CARD()
return

Or, you might see XML elements directly nested within each other without intervening SQL statements:

<ns7:CUSTOMER_PROFILE>
<CUSTOMER>

...
{

<CREDIT_CARD>
...

</CREDIT_CARD>
}
</CUSTOMER>

</ns7:CUSTOMER_PROFILE>

These are all symptoms of a non-unique join. You need to enable the update map so that you can deploy
the service, test it, and make it available to client applications.

In an update map, the most common causes of a non-unique join are:

• A logical data service with a flat (non-nested) return type.
• An incorrect block scope in the query map.
• An incorrect table join, or no table join, in the query map.
• An attempt to join on a field other than a key field.

Correct the Block Scope

If your logical data service has a nested XML return type, scope the data sources to XML blocks within the
return type.

1. In Query Map, click the zone icon of a data source.
2. Drag the zone icon from the data source to the nested element in the return type.
3. Mouse over the zone icon in the data source. Verify that only the nested element is highlighted in

the return type.

Checking the Scope in the Return Type

Document generated by Confluence on Jan 10, 2008 16:26 Page 313

Correct the Table Join

You might also get a non-unique join if the data sources are not joined correctly. You can join the tables
either visually in the Query Map or by entering a WHERE clause in the expression editor or the Source
tab. Be sure to join tables on a key element, marked like this:

To join tables visually:

1. Click the Query Map tab.
2. Drag from a key element in one data source to the same key element in another data source (for

example, $CUSTOMER/CUSTOMER_ID to $ADDRESS/CUSTOMER_ID).
3. Click the Source tab and expand the read function to check the location of the WHERE clause. For

example, if your XML return type is nested, the XQuery code should also be nested:

for $CUSTOMER in ns1:CUSTOMER()
return

...
for $CREDIT_CARD in ns2:CREDIT_CARD()
where $CUSTOMER/CUSTOMER_ID eq $CREDIT_CARD/CUSTOMER_ID
return
...

To use the expression editor:

1. Click the Query Map tab.
2. Click the For block of the data source you are joining to.
3. In the expression editor, click Add Where Clause .

4. After the Where keyword, add the elements to be joined (for example, $CUSTOMER/CUSTOMER_ID
eq $CREDIT_CARD/CUSTOMER_ID).

5. Click Save .

6. Check the WHERE clause in the Source tab, as described above.

Remember that ALDSP creates a left outer join if both tables are in the same database and the XML
return type is nested. If the XML return type is flat, ALDSP creates an inner join.

Document generated by Confluence on Jan 10, 2008 16:26 Page 314

http://kmwiki.bea.com/download/attachments/7382/Highlighting a Zone.gif
http://kmwiki.bea.com/download/attachments/7382/Key Element.gif

Enable Update Blocks and Procedures

If your service has a return type with a flat structure, you may get a non-unique join, even if the join is
correct in the Query Map and the Source tab.

If this happens, or if all or part of the update map is disabled for any reason, you can enable an update
block or the Create-Update-Delete procedures within the block.

To enable a disabled (yellow) update block:

1. Right-click in the block, and choose Enable.
The update block should now have a white (enabled) background. The Create, Update, or Delete
procedure icons might still appear red or yellow, if they are disabled. However, you should be able
to test the primary read function.

2. Click the Test tab.
3. At Select Operation, choose the primary read function, and click Run.

To enable an update map procedure:

1. If an element is marked with a Warning icon indicating that a mapping is required, select it.

2. In the expression editor, give the element a value with the correct data type. For example of values
to enter, see Editing an XQuery Expression.

3. Continue for all disabled elements.
4. In the Test tab, test an update procedure to ensure that the value overrides you have entered do

what you want.

Test a Non-Unique Join

Let's go back to the sample joined table data (which we can see in the Test tab, by choosing the primary
read function and clicking Run):

CUSTOMER_IDFIRST_NAME LAST_NAMEEMAIL_ADDRESSORDER_ID ORDER_DTTOTAL_ORDER_AMT

CUSTOMER1 Jack Black jack@yahoo.comORDER_1_0 2001-10-01 156.39

CUSTOMER1 Jack Black jack@yahoo.comORDER_1_1 2002-02-17 596.65

CUSTOMER1 Jack Black jack@yahoo.comORDER_1_2 2002-07-07 656.65

In this case, the XML return type is flat, and ALDSP has created an inner join between the CUSTOMER
and CUSTOMER_ORDER tables in underlying relational data sources. In the joined table view, one
customer has many orders. The CUSTOMER_ID can appear multiple times, but the ORDER_ID is unique.

Once the update map is enabled, you can update data in either the CUSTOMER or CUSTOMER_ORDER
table in the data sources:

1. Click a row in the joined table data, then click Edit.
2. Locate the correct node in the XML tree data, and expand it.
3. Click the value you want to change, then edit it.

Document generated by Confluence on Jan 10, 2008 16:26 Page 315

http://kmwiki.bea.com/display/dsp30/Customize+an+Update+Map#CustomizeanUpdateMap-EditinganXQueryExpression

4. Click Submit.

If you update TOTAL_ORDER_AMT, from the CUSTOMER_ORDER table, the amount changes in one row of
the joined table view.

However, if you update EMAIL_ADDRESS, the email address changes in one row of the data source table
and in all rows for that customer in the joined table view.

See Also

Concepts

• Recognize When Something is Wrong

How Tos

• Test a Read Function and Simple Update

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 316

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Handle Non-Unique Values

This page last changed on Jan 08, 2008 by tkatz.

How To Handle Non-Unique Values

This topic describes how to handle an update map that is disabled because two values in a return type
map to one value in a data source.

• Example
• See Also

Example

In a query map, you might attempt to map one value in a data source to two values in an XML return
type. When the update map is generated and the flow is reversed, two values map from the return type
to one in the data source, which creates an update error.

An Error from a Non-Unique Value

The cause of the error is that two values are attempting to update one in the data source. This creates a
build error in the logical data service, and you cannot deploy or test it. You cannot right-click and enable
the update block either. The update doesn't work unless you write a custom update function in XQSE.

The best solution is to disable the multiple mapping in the Query Map tab:

1. Click Query Map.
2. Delete the mapping line from the data source to the second, duplicate element in the return type.

This should reverse the error.
3. Save the data service and click Update Map to check the change.
4. If the error still exists, right-click and choose Revert Customizations.

See Also

Concepts

Document generated by Confluence on Jan 10, 2008 16:26 Page 317

http://kmwiki.bea.com/download/attachments/7382/Value Uniqueness Constraint.gif

• Understanding Update Maps
• Recognize When Something is Wrong

How Tos

• Change a Mapping
• Remove a Mapping
• Revert Customizations

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 318

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Handle Unmapped Required Values

This page last changed on Jan 08, 2008 by tkatz.

How To Handle Unmapped Required Values

This topic describes how to enable an update map when the data sources on the left have required
elements that are not mapped from the return type on the right.

• Overview
• Draw the Mapping
• Cast a Constant
• See Also

Overview

When required mappings are missing, the Create-Update-Delete procedures for the update block are
disabled. That means you cannot create, update, or delete the underlying data sources. In AquaLogic
Data Services Studio, the update map looks like this.

Required Mappings Are Missing

Missing mappings in an update map can be caused by:

• A mapping that was deleted from or did not exist in the query map.
• An XML return type that does not contain all required elements. This can be valid, especially if you

do not want to expose all elements in your data sources to a client application.

If an element is required but does not have a value, it is marked with a Warning icon .

In either case, the Create, Update, or Delete procedures do not work, so you need to resolve the error.
You can do either of these:

• Draw the mapping in Query Map view.
• Enter an override value (either an expression or a constant) in the expression editor.

Document generated by Confluence on Jan 10, 2008 16:26 Page 319

http://kmwiki.bea.com/download/attachments/7382/Required Values Missing.gif

Draw the Mapping

To draw the mapping in the Query Map tab:

1. Click Query Map.
2. Drag from an element in a data source on the left to the matching element in a return type on the

right.

Make sure the elements have the same data types or similar data types that are cast implicitly.

Cast a Constant

If you enter a constant to override the missing mapping, it is only used with Create procedures, to insert
data into the data source. Update procedures ignore the override values you enter and leave the data
source unchanged. (Of course, Delete procedures delete a record from the data source, so override
values are not relevant to them.)

When you enter an override value, make sure the value you enter has the data type the element in the
physical data source requires. You can enter a constant like "44" or "2007-01-01" and cast it to an XML
Schema data type such as xs:integer or xs:date, using either of these:

• A built-in XQuery cast function
• The parentheses cast operator, as in xs:date("string"), to invoke an XML Schema type constructor

function

The parentheses cast operator uses any XML Schema data type outside the parentheses and a string that
is appropriate for the data type you are casting to within the parentheses. For example, you can perform
these casts:

xs:date("2007-01-01")
xs:dateTime("2007-01-01T16:44:44")
xs:integer("44")

But you cannot perform these:

xs:date("2007-01-01T16:44:44")
xs:dateTime("date")
xs:integer("text")

To cast a constant in the expression editor:

1. Click the Update Map tab.
2. Click an unmapped element in a data source on the left.
3. In the expression editor, enter a constant that has the data type the element requires. For example,

for an element of type xs:string, you might enter:

"Bob"

Document generated by Confluence on Jan 10, 2008 16:26 Page 320

If the element has another data type, enter a string within a cast expression, for example:

xs:integer("44")
xs:dateTime("2007-07-17T09:00:00")

4. Continue for all disabled elements.
5. In the Test tab, test an update using Run - Edit - Submit to make sure the value overrides work as

you expect.

See Also

Concepts

• Recognize When Something is Wrong

How Tos

• Cast Using a Built-In XQuery Function
• Cast Using a Custom XQuery Function
• Test an Update Map Cast

Other Resources

• XML Schema Datatypes Specification (W3C)

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 321

http://www.w3.org/TR/xmlschema-2/
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Recognize When Something is Wrong

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Recognize When Something Is Wrong

This topic describes why an update map might appear disabled and points you to solutions.

• Understand the Symptoms
• Check the Problems Tab
• Resolve Errors and Warnings
• See Also

Understand the Symptoms

The signs of a disabled update map appear on the update map itself, in the Generate Log, and in the
Problems tab.

In the update map, you may see disabled (or yellow) update blocks. When an update block is completely
or partially disabled, updates do not occur in the data source the block maps to.

A Disabled Update Block

An update map procedure that is disabled has a yellow or red status indicator at the upper right.

Disabled Procedure Icons

Create Update Delete

Document generated by Confluence on Jan 10, 2008 16:26 Page 322

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://kmwiki.bea.com/download/attachments/7382/Totally Disabled Update Block.gif

You might also see a message with a link to view the Generate Log.

A View Generate Log Message

Clicking the link displays the Update Map Generate Log window.

Update Map Generate Log

Check the Problems Tab

If you see disabled procedure icons or other symptoms, you should also check the Problems tab for
detailed Error and Warning messages. The Problems tab shows errors and warnings that the View
Generate Log message does not. For example, this update map shows two errors and three warnings.

The Problems Tab for a Disabled Update Map

Errors prevent you from deploying the update map to the ALDSP server and testing it. Warnings tell you
that something is not supported in the update map, but the update will proceed.

To sort the Problems tab, as shown above:

1. Click the Problems tab.
2. Click the triangle icon at the upper right, and choose Sorting.
3. Sort first by Resource, then by Severity and Description.

Resolve Errors and Warnings

Document generated by Confluence on Jan 10, 2008 16:26 Page 323

http://kmwiki.bea.com/download/attachments/7382/Update Map Generate Log New.gif
http://kmwiki.bea.com/download/attachments/7382/Umbrella Message.gif
http://kmwiki.bea.com/download/attachments/7382/Triangle Icon.gif

You may have a valid reason to use a certain logical data service design that initially generates an update
map with constraints. This is fine. You can find workarounds and resolve most disabled update map
conditions.

Disabled Update Blocks

When you encounter a disabled, or yellow, update block, you can right-click it and choose Enable. The
most likely reasons an update block is disabled are shown below.

Reason Meaning Solution

A non-unique join A join in the primary read
function is non-unique, possibly
causing duplicate values in the
result.

Handle Non-Unique Joins

Once you enable the update block, you will likely see:

• Elements that have warnings

• Disabled Create-Update-Delete procedure icons

Disabled Procedure Icons

When you see disabled procedure icons, check the update blocks on the left. The procedure icons in the
return type on the right naturally result from those on the left.

In general, the status indicators for update map procedures are:

• Green if the update map will work at run time as you have designed it, even if parts of it are

disabled
• Yellow if some parts of the update map will work at run time, but you might see run-time errors

on other parts
• Red if the update map will not work at run time

If you want to correct an update map before run time, a red or yellow status indicator on the left can
have any of the following meanings. If you mouse over the

Status Type of Procedure Meaning Solution

Red Create, Update, Delete The data service does
not have a primary
procedure of that type.

Create a primary
procedure
(Overview tab,
right-click, Add Update
Map Procedures, select
Primary)

Red Update, Delete The data service does
not have a key.

Create Logical Data
Service Keys

Document generated by Confluence on Jan 10, 2008 16:26 Page 324

http://kmwiki.bea.com/download/attachments/7382/Disabled CUD Icons.gif

Red Create The update block has
missing mappings or
mappings of the wrong
data type

Understand Mappings
with Different Data
Types
Handle Unmapped
Required Values

Red Create The return type contains
non-element or
non-attribute XML items
that are not allowed.

Handle an Unsupported
Node Constructor Error

Red Create, Update, Delete The update block
references a variable
from another disabled
update block.

Right-click the disabled
block, and choose
Enable.
See any topics in See
Also.

Red Update, Delete The data service has a
key, but one or more
key fields have missing
mappings, mappings of
the wrong data type, or
mappings to invalid
items in the return type.

Handle Unmapped
Required Values

Yellow Update, Delete The update block has
missing mappings,
mappings of the wrong
data type, or mappings
to invalid items in the
return type.

Understand Mappings
with Different Data
Types
Handle Unmapped
Required Values

See Also

Concepts

• Understand Mappings with Different Data Types

How Tos

• Create a Return Type
• Handle Disabled Procedures in Underlying Data Sources
• Handle Non-Unique Joins
• Handle Non-Unique Values
• Handle Unmapped Required Values
• Understand Mappings with Different Data Types

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 325

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Remove a Mapping

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Remove a Mapping

This topic describes how to remove a mapping from an update map.

• Overview
• Example
• See Also

Overview

An update map shows mappings for required, optional, and key elements. In an update map, optional
elements are displayed with a question mark, and key elements with a key symbol. A key element is
usually required.

Optional and Key Elements in an Update Map

If you remove a mapping from a key element, it becomes disabled with a warning icon .

Mappings to LINE_ID and PROD_ID Deleted

Removing a mapping might also cause create, update, or delete procedures to become disabled
. However, you can correct either of these conditions, by handling unmapped required values.

Document generated by Confluence on Jan 10, 2008 16:26 Page 326

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://kmwiki.bea.com/download/attachments/7382/Optional Element.gif
http://kmwiki.bea.com/download/attachments/7382/Key Element.gif
http://kmwiki.bea.com/download/attachments/7382/Deleting a Mapping.gif
http://kmwiki.bea.com/download/attachments/7382/Disabled CUD Icons.gif

Example

If you need to remove a mapping, you can do so in either the update map or query map.

To remove a mapping in the update map:

1. Click the Update Map tab.
2. Right-click the mapping line, then choose Delete.
3. If the element becomes disabled in the update block on the left, resolve it.

To remove a mapping in the query map:

1. In the Query Map tab, right-click the mapping, then choose Delete.
2. Handle any required unmapped values in the update map.

See Also

Concepts

• Understanding Update Maps

How Tos

• Change a Mapping
• Revert Customizations
• Handle Unmapped Required Values

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 327

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Revert Customizations

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Revert Customizations

This topic describes how remove anything you have changed in an update map, regenerating the update
map from the primary read function.

• Example
• See Also

Example

You can undo all changes you have made to an update map. Undoing changes creates a new update map,
generating it from the primary read function. When you choose Revert Customizations, all changes you
have made to the update map are lost, even changes that you have previously saved.

If the update map had errors or warnings that your changes corrected, the errors or warnings will
reappear.

To undo changes and generate a new update map:

1. Click the Update Map tab.
2. Right-click and choose Revert Customizations.

3. Correct any warnings, errors, or disabled procedure icons that appear.

See Also

Concepts

• Understanding Update Maps

How Tos

Document generated by Confluence on Jan 10, 2008 16:26 Page 328

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://kmwiki.bea.com/download/attachments/7382/Revert Customizations.gif

• Change a Mapping
• Remove a Mapping
• Recognize When Something is Wrong

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 329

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Test an Update Map Cast

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Test an Update Map Cast

This topic describes how to test a cast between elements of different data types in an update map.

• Example
• See Also

Example

The easiest way to test an update map cast function is to use Read-Edit-Submit from the Test tab in
AquaLogic Data Services Studio.

Suppose you are casting from xs:integer to xs:string. To test the cast function, you need to retrieve data
from the data source as xs:string and display it in the Test tab as xs:integer, so you also need to cast in
the reverse direction. The primitive types casting chart in the XQuery 1.0 specification shows that you
can always cast from xs:integer to xs:string, but you can only cast from xs:string to xs:integer in some
cases.

To test an update map cast using Read-Edit-Submit, you first edit the source code of the primary Read
function to do a comparable cast when the data is read from the data source. For example, suppose you
want to cast from dateTime to date during an update. To test, you must first cast the date value to
dateTime when you read it from the data source.

Before you use this test method, check the casting chart in the XQuery specification to make sure the
XQuery cast you want to perform works in both directions. In the example given here, the cast is from
xs:dateTime to xs:date in the update map and from xs:date to xs:dateTime in the primary Read function.
Both casts must be valid in XQuery.

1. Click the Source tab.
2. Locate the primary Read function, which looks something like this:

declare function tns:read() as element(cus:CUSTOMER)*{
for $CUSTOMER in cus1:CUSTOMER()
return

<cus:CUSTOMER>
<CUSTOMER_ID>{fn:data($CUSTOMER/CUSTOMER_ID)}</CUSTOMER_ID>
<FIRST_NAME>{fn:data($CUSTOMER/FIRST_NAME)}</FIRST_NAME>
<LAST_NAME>{fn:data($CUSTOMER/LAST_NAME)}</LAST_NAME>
<CUSTOMER_SINCE>{fn:data($CUSTOMER/CUSTOMER_SINCE}</CUSTOMER_SINCE>
<EMAIL_ADDRESS>{fn:data($CUSTOMER/EMAIL_ADDRESS)}</EMAIL_ADDRESS>
<TELEPHONE_NUMBER>{fn:data($CUSTOMER/TELEPHONE_NUMBER)}</TELEPHONE_NUMBER>
<SSN?>{fn:data($CUSTOMER/SSN)}</SSN>
<BIRTH_DAY?>{fn:data($CUSTOMER/BIRTH_DAY)}</BIRTH_DAY>

Document generated by Confluence on Jan 10, 2008 16:26 Page 330

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://www.w3.org/TR/xpath-functions/#casting-from-primitive-to-primitive

<DEFAULT_SHIP_METHOD?>{fn:data($CUSTOMER/DEFAULT_SHIP_METHOD)}</DEFAULT_SHIP_METHOD>
<EMAIL_NOTIFICATION?>{fn:data($CUSTOMER/EMAIL_NOTIFICATION)}</EMAIL_NOTIFICATION>
<NEWS_LETTTER?>{fn:data($CUSTOMER/NEWS_LETTTER)}</NEWS_LETTTER>
<ONLINE_STATEMENT?>{fn:data($CUSTOMER/ONLINE_STATEMENT)}</ONLINE_STATEMENT>
<LOGIN_ID?>{fn:data($CUSTOMER/LOGIN_ID)}</LOGIN_ID>

</cus:CUSTOMER>
};

3. Locate the element you want to cast and add a XQuery cast expression to it. For example, this casts
an xs:date to an xs:dateTime in the CUSTOMER_SINCE element:

<CUSTOMER_SINCE>{ xs:dateTime(fn:data($CUSTOMER/CUSTOMER_SINCE)) }</CUSTOMER_SINCE>

To cast an xs:string to an xs:integer in TELEPHONE_NUMBER, enter this:

<TELEPHONE_NUMBER>{xs:integer(fn:data($CUSTOMER/TELEPHONE_NUMBER)) }</TELEPHONE_NUMBER>

4. Click the Test tab.
5. At Select Operation, choose the service's primary Read function and click Run.

In the Result pane, you might see that the values have been cast, if the new type looks different.
6. Click a customer record, then Edit.
7. Change one of the values you have just cast.

If you are working with xs:date and xs:dateTime, change the date portion of the value, rather than
the time. The time is truncated when you store the value in the data source as an xs:date. When
you read it back as an xs:dateTime, it looks like 00:00:00.

8. Click Submit.
You should see this message:

Data has been submitted

9. Click Run again to verify the change.

See Also

How To

• Cast Using a Built-In XQuery Function
• Cast Using a Custom XQuery Function

Other Resources

• XQuery 1.0 Specification

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 331

http://www.w3.org/TR/2007/REC-xpath-functions-20070123/
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

The XQuery Expression Editor

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Edit XQuery Expressions

This topic describes how to edit XQuery expressions in the expression editor in AquaLogic Data Services
Studio.

• Overview
• The fn-bea:value Function
• See Also

Overview

You can edit the generated XQuery expressions in an update map using the expression editor.

The Expression Editor in an Update Map

The update map expression language is a subset of XQuery syntax. In an update map, you can use any
of the following XQuery constructs.

Type Description Example

Variable A variable already defined in a
For Each or Update block in the
update map.
$$root is a special predefined
variable that refers to the root of
the service's XML type.

$ORDER_WITH_LINE_ITEM
$CUSTOMER

Constant A numeric, string, or other
constant.

"a"
"12345"

Constant Cast A constant cast to another XSD
data type using the parentheses
operator.

xsd:date("2007-01-01")

Function A call to any XQuery function.
You can see the built-in and
BEA-provided functions in the
Design Palette. You can use a

fn-bea:value($CUSTOMER/FIRST_NAME)

Document generated by Confluence on Jan 10, 2008 16:26 Page 332

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://kmwiki.bea.com/download/attachments/7382/Update Expression Editor.gif

variable, path, or constant as an
argument to a function.

Path An expression that locates an
XML element in a tree using
variables, elements, and
attributes. The syntax is:
$VARIABLE_NAME
/elementName
@attributeName

$ORDER_WITH_LINE_ITEM/CUSTOMER_ORDER/ORDER_ID

Namespace prefixes are declared in the data service's XQuery source, which you can see in the Source
tab. If a namespace is only used in the update map, and not in the logical data service, you must declare
it. If a namespace cannot be resolved, it is shown with the prefix ns?.

The most common ways you use the expression editor are to:

• Add a constant to an unmapped element
• Cast a constant to an XSD data type, especially to resolve update block elements with no mappings
• Use an XQuery function available in the Design Palette to cast a value
• Use a custom XQuery cast function you have written

The fn-bea:value Function

A mapping between an element in a return type and an element in an update block uses the fn-bea:value
function with a path name, for example:

fn-bea:value($CUSTOMER/CUSTOMER_ID)

An update mapping should always use fn-bea:value, whether ALDSP auto-generates the mapping or you
draw it. If you remove the fn:bea:value function from the expression and simply use an XQuery path
expression ($CUSTOMER/CUSTOMER_ID), the element becomes disabled in the update map and you see
this error message:

The expression does not match the expected type for this element
The expression assigned to this element is not valid
Hint: did you forget to use the value function?

The fn-bea:value function is required, because an update map updates a Service Data Object (SDO) and
requires a special XML structure called a datagraph that includes a change summary showing both the old
and new values. The fn-bea:value function handles the update to the SDO correctly.

If you do not use fn-bea:value, ALDSP throws an exception when you attempt to update the value.

See Also

Concepts

Document generated by Confluence on Jan 10, 2008 16:26 Page 333

http://dev2dev.bea.com/pub/a/2004/05/sdo_beatty.html

• Understanding Update Maps

How Tos

• Handle Unmapped Required Values (includes Cast a Constant)
• Cast Using a Built-In XQuery Function
• Cast Using a Custom XQuery Function

Other Sources

• W3Schools XQuery Tutorial

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 334

http://www.w3schools.com/xquery/default.asp
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Understand Mappings with Different Data Types

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Understand Mappings with Different
Data Types

This topic describes casts between elements of different data types in an update map.

• Overview
• Built-In Cast Functions
• Custom Cast Functions
• See Also

Overview

In an update map, you may need to map elements of different data types between a return type and an
underlying data source.

For example, a return type might contain an xsd:dateTime element that maps to an xs:date element in
the data source. When data types differ, you need to cast between them in order to enable the update
map. Type differences occur because a logical data service design can differ from actual physical data
sources or because data types used by an underlying data source are unknown at design time.

When the update map is first generated, the element in the data source has no mapping and a warning
icon.

The Element Initially with No Mapping

If you draw a mapping line in Update Map view, from the xsd:dateTime value in the return type to the
xsd:date value in the update block, the element becomes disabled.

An Error Due to Data Type Mismatch

You can fix this type of error by using different techniques to cast, according to the data types you are

Document generated by Confluence on Jan 10, 2008 16:26 Page 335

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://kmwiki.bea.com/download/attachments/7382/Disabled Element Yellow.gif
http://kmwiki.bea.com/download/attachments/7382/Element Data Type Disabled.gif

casting.

First, review the built-in datatypes chart in the XML Schema Datatypes specification to understand the
hierarchies of data types used in XML Schema. The type xs:string and its subtypes belong to one type
hierarchy, and the type xs:decimal and its subtypes belong to another.

Casts between elements of different types are handled in one of three ways:

1. Type promotion. If both data types are in the same type hierarchy and the cast moves up the
hierarchy, ALDSP casts them implicitly. This is known as type promotion. For example, xs:token is
promoted to xs:string and xs:integer is promoted to xs:decimal. Implicit casts are implemented in
ALDSP according to the XQuery 1.0 specification.

2. Built-in cast function. If the types do not use a cast up the same type hierarchy and type
promotion does not occur, you can use a built-in XQuery function available from the Design Palette.

3. Custom cast function. If a built-in XQuery function is not available, you can write your own
custom cast function in the Source tab of your primary logical data service or in a specialized library
data service that performs casting.

Built-In Cast Functions

If a built-in function provides the cast you need, you can simply drag it from the Design Palette to the
expression editor and enter argument values.

Built-In XQuery Casting Functions

Custom Cast Functions

Before you write a custom XQuery cast function, make sure that XQuery allows the cast you want to
perform. Check the casting section in the XQuery 1.0 specification to understand the rules for casting
between types in XQuery, especially the chart that describes casting between primitive types.

Remember these general guidelines:

• The primitive type chart shows which casts can be performed between primitive types. For example,
an integer (such as 44) can always be cast to a string ("44"). However, a string can only be cast to
an integer in some cases. The string "55" can be cast to the integer 55, but the string "hello" cannot
be cast to an integer.

Document generated by Confluence on Jan 10, 2008 16:26 Page 336

http://www.w3.org/TR/xmlschema-2/#built-in-datatypes
http://www.w3.org/TR/xpath-functions/
http://kmwiki.bea.com/download/attachments/7382/XQuery Functions.gif
http://www.w3.org/TR/xpath-functions/#casting
http://www.w3.org/TR/2007/REC-xpath-functions-20070123/#casting-from-primitive-to-primitive

• If both the source and target types are derived from the same primitive type, you can cast between
them.

• If the source and target types are derived from different primitive types, you are casting across the
type hierarchy. In general, you need to cast the source type up the hierarchy to its primitive type;
then, cast from the primitive type of the source to the primitive type of the target; and last, cast
from the primitive type of the target to the target type (see the rules in the XQuery 1.0
specification).

Once you write the cast function, you can test it in AquaLogic Data Services Studio, before you run it with
a client application.

See Also

How To

• Cast Using a Built-In XQuery Function
• Cast Using a Custom XQuery Function
• Test an Update Map Cast

Other Resources

• Built-in datatypes chart
• Primitive types casting chart (scroll down)
• XML Schema Datatypes Specification
• XQuery 1.0 Specification

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 337

http://www.w3.org/TR/2007/REC-xpath-functions-20070123/#casting-across-hierarchy
http://www.w3.org/TR/xmlschema-2/#built-in-datatypes
http://www.w3.org/TR/xpath-functions/#casting-from-primitive-to-primitive
http://www.w3.org/TR/xmlschema-2/#built-in-datatypes
http://www.w3.org/TR/xpath-functions/
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Understanding Update Maps

This page last changed on Jan 10, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Understanding Update Maps

An update map allows you to easily update your logical entity data service without having to write Java or
XQSE code. This overview provides a foundation for understanding what an update map is and how you
can use one.

BEA XQuery Scripting Extension (XQSE)

ALDSP generates a default update map automatically when you create a logical entity data service with a
primary read function. You can see the update map associated with a data service by clicking the "Update
Map" tab at the bottom of the screen (see the example that follows; click to enlarge image).

Example: a simple update map

In this overview, as a running example we use an
update map for a data service that joins together
customers and orders. This example may be
downloaded if you wish to know the details of the
data service that are not covered here.

CustomerOrders.zip

The image to the left shows the update map for
the data service (CustomerOrders.ds). The orange
arrow identifies the location of the "Update Map"
tab.

An update map procedure is a create, update, or delete procedure that is implemented by an update
map. The update map maps values from the input to the update map procedure to the inputs of the
procedures in the underlying data services. These underlying data services that the logical entity data
service is composed of are referred to as the source data services. In the previous example, the input is
mapped to the two source data services CUSTOMER and ORDERS. The blue arrows in the update map show
how the values are mapped.

A logical entity data service has a target type that describes the entity that the data service is about. All
read functions in the data service must return instances of the target type and all update map procedures
must accept instances of the target type as input. For example, say that we have an entity data service
about customers. The read functions of this data service must return customers and update map
procedures must take customers as input.

Document generated by Confluence on Jan 10, 2008 16:26 Page 338

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/xquery/xqse.html
http://edocs.bea.com/aldsp/docs30/xquery/xqse.html
http://kmwiki.bea.com/download/attachments/2167918/Customer Orders Update Map.png
https://codesamples.projects.dev2dev.bea.com/servlets/Scarab?id=S395
https://codesamples.projects.dev2dev.bea.com/servlets/Scarab?id=S395
http://kmwiki.bea.com/download/attachments/2167918/Customer+Orders+Update+Map.png?version=1

The Target Box

The target box displays the data type of the input to the update map procedures and the procedure icons.
There is always exactly one target block in an update map and it is displayed on the right.

Example: the target box

The image to the left shows the update map for
the data service CustomerOrders.ds. The target
box is identified by the orange rectangle on the
right. The procedure icons are in the upper-right
corner of the target box. In this case they all
contain a green check which indicates that the
create, update, and delete update map procedures
will function correctly. The input type to the
procedures is shown below the procedure icons.

The input type
The input type (or, target type) is the type of the data that is passed to the update map procedures.
Elements and attributes from the input type are mapped to the update blocks on the left.

Procedure icons
The create , update , and delete procedure icons indicate the status of the corresponding update
map procedures. They appear in the upper-right corner of the target box. Each icon may have a green
check, a yellow exclamation or a red 'X'. A green check indicates that the procedure should function
correctly. A yellow exclamation indicates that you can invoke the procedure, but there may be
problems at runtime. A red 'X' indicates there is a serious problem and the procedure may not be used
until it is corrected. Any time that there is a red 'X' or a yellow exclamation on the icon, you can hover
the mouse pointer over the icon to get a tool tip providing more information (see the image below).

For Each Blocks

A for each block loops over elements in the input to the update map procedure. A for each block is
associated with a variable and a path expression. The path expression defines the sequence to iterate
over and the variable binds to elements in the sequence. The variable may be referenced by expressions
inside the for each block.

Example: for each blocks

Document generated by Confluence on Jan 10, 2008 16:26 Page 339

http://kmwiki.bea.com/download/attachments/2167918/The Target Box.png
https://codesamples.projects.dev2dev.bea.com/servlets/Scarab?id=S395
http://kmwiki.bea.com/download/attachments/2167918/Green Create.png
http://kmwiki.bea.com/download/attachments/2167918/Green Update.png
http://kmwiki.bea.com/download/attachments/2167918/Green Delete.png

The image to the left shows the update map for
the data service CustomerOrders.ds. The two
orange arrows identify the two for each blocks in
the map. The blocks are grey and have the title
"For Each" followed by the variable name.

The second for each block titled "For Each $order"
is currently selected (to select a for each block,
click on it). The orange rectangle identifies the
properties of the currently selected for each block.
In this case we see that it defines the variable
$order which iterates over the sequence
$customer/order. $customer is a variable
defined by the upper for each block.

Update Blocks

An update block invokes the primary create, update, or delete procedure of a source data service. It will
invoke a procedure every iteration of the for each block that contains it. The contents of the update block
represent the type of the input given to the procedure. Each element and attribute in the update block is
assigned a mapping expression that determines what its value will be when the procedure is invoked. You
can select an element or attribute to view or change the expression that determines what value it
receives when the procedure is invoked (see the example below).

Procedure icons
Like the target box, an update block also has a procedure status icon. Here the icons indicate the status
of the primary create, update, and delete procedures of the source data service corresponding to the
update block. Otherwise, the meaning of the icons is the same as it is for the target box.

Output variable
A primary create procedure may return a key. If the update block invokes a primary create procedure, it
will bind the returned key to the output variable. The purpose of having the output variable available is
for cases when the key value is generated automatically by an external source but is not part of the
input. For example, your source data service is a wrapper for a customers relational database table. Say
that the key of this table is an attribute CUSTOMER_ID which is an auto-generated number. If you are
inserting a customer and some orders at the same time, you may need the auto-generated value for
CUSTOMER_ID to pass to the input of the create procedure for ORDERS.

Condition
An update block can optionally have a condition. The condition is a Boolean expression that determines if
the update block should be invoked or not. If there is no condition, then the update block will always be
invoked (see the example below).

Dependencies
When two or more update blocks appear within the same for each block, it may be desirable to specify
dependencies between them. If update block A depends on update block B, it means that update block B

will execute before update block A. Dependencies between update blocks that are not within the same for
each block are not necessary as the order is implicit (the outermost update block executes first).

Document generated by Confluence on Jan 10, 2008 16:26 Page 340

http://kmwiki.bea.com/download/attachments/2167918/For Each Blocks.png
https://codesamples.projects.dev2dev.bea.com/servlets/Scarab?id=S395

Disabling an update block
An update block can be disabled so that it will never be invoked at runtime. You can disable an update
block by right clicking on it and selecting "Disable" The update block should then appear yellow instead of
white to indicate that it has been disabled. Disabling an update block is effectively the same as adding a
condition that is always false.

Example: update blocks

The images to the left show the update map for
the data service CustomerOrders.ds. In the first
image, the two orange arrows identify the two
update blocks in the map. One update map is for
the source data service CUSTOMER and the other is
for ORDERS.

In this case, the ORDERS update block is selected
and its details are identified by the orange
rectangle (select an update block by clicking on
it). We can see that the output variable for this
update operation is $ORDERS_key. The condition is
set to fn-bea:value($order/status) eq "OPEN"

which means that this update block will only be
executed when the input element status has the
value "OPEN". $order is a variable that is defined
by the for each block containing the update block
("For Each $order").

In the second image, the orange arrow identifies
the ORDER_TOTAL element of the ORDERS update
block. The orange rectangle identifies the mapping
expression ($fn-bea:value($order/total)) for
ORDER_TOTAL which is displayed because
ORDER_TOTAL is currently selected. The
ORDER_TOTAL element will receive the value of the
total element when the source data service
procedure is invoked.

The Return Key Block

The key block describes what will be returned by the update map create procedure. If the data service
does not have a key specified, then there will not be a key block and there will never be more than one
key block for an update map.

Example: the return key block

Document generated by Confluence on Jan 10, 2008 16:26 Page 341

http://kmwiki.bea.com/download/attachments/2167918/Update Blocks.png
https://codesamples.projects.dev2dev.bea.com/servlets/Scarab?id=S395
http://kmwiki.bea.com/download/attachments/2167918/Update Block Element.png

The image to the left shows the update map for
the data service CustomerOrders.ds. The orange
arrow identifies the key block in the update map.
The key specified for the CustomerOrders data
service is the element CID so the key block
constructs the CID element to be returned and
uses the output variable of the CUSTOMER update
block to get the value.

Customization

ALDSP generates a default update map automatically when you create a logical entity data service with a
primary read function. This default update map is generated based on the primary read function of the
data service. As you change the primary read function, the update map will be regenerated automatically.
However, if you customize (change) the update map then it will no longer be regenerated. In other
words, a customized update map will no longer change along with the primary read function.

There are many different ways to customize an update map. See the following topics for more
information:
Change a Mapping
Remove a Mapping
Revert Customizations
Edit XQuery Expressions
Add a Condition to an update block

Example

The image to the left shows the update map for
the data service CustomerOrders.ds. The orange
arrow identifies the "customized" symbol that
appears after something in the update map has
been changed. In this case, it is the mapping
expression for ORDER_STATUS that has been
modified.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 342

http://kmwiki.bea.com/download/attachments/2167918/The Return Key Block.png
https://codesamples.projects.dev2dev.bea.com/servlets/Scarab?id=S395
http://kmwiki.bea.com/download/attachments/2167918/Customize.png
https://codesamples.projects.dev2dev.bea.com/servlets/Scarab?id=S395
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Modeling Data Services Relationships

This page last changed on Nov 26, 2007 by tkatz.

Modeling Data Services Relationships

Concepts
Relationship Between Data Services and Models

How-to...
... Create Your First Data Services Model
... Work with Large Models
... Generate a Relationship Modeler Report

Reference
Relationship Modeler Options
Model Diagram Rules
Notable Relationship Modeler Properties
Relationship Models in Source View

Document generated by Confluence on Jan 10, 2008 16:26 Page 343

http:/

Create Your First Data Services Model

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Modeling Data Services

This section provides a basic overview of modeling in ALDSP and a tutorial.

Topics

• Introduction
• Building a Simple Data Service Relationship Model
• Setting Relationship Properties
• Configuring Navigation Functions

Introduction

Using ALDSP, you can create and maintain models of your enterprise data services. A model diagram is a
graphical representation of a data model supported by ALDSP.

Through data models you can:

• Model a high-level, visual view of data resources.
• View and extend relationships between data services.
• Access and create a data service.
• Add operations to a data service.
• Change the XML type (schema) associated with a data service.

In model diagrams, a relationship can be created by the gesture of drawing a line from one data service
to another. In some cases (such as relational data services) relationships and the lines representing the
relationship can be automatically inferred. In other cases, you need to create the relationship.

A visual representation of a relationship between two data services conveys a considerable amount of
information:

• Cardinality. Is the relationship one-to-zero (customers and promotional offers), one-to-one
(customer and primary email), one-to-many (customers and orders), or many-to-many (customer
orders and ordered items)?

• Direction. Arrows indicate possible navigation paths. Is there an originating entity associated with a
subordinate entity (such as orders and order items) or is the relationship bidirectional (such as
customers and orders)?

Document generated by Confluence on Jan 10, 2008 16:26 Page 344

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

• Roles. A name matching the name of the adjacent data services navigation function (see below).
Does the assigned relationship name capture the purpose of the navigation function it represents?

Navigation functions are visible as properties of each data service in a binary relationship. Navigation
functions also appear as mouse-over text over each endpoint of the relationship line.

Types shown in model diagrams are XML schema types.

For more information on data service modeling concepts see Modeling and a Service-Oriented
Architecture in the ALDSP 2.5 Concepts Guide.

Model Diagram of Physical Data Services

Building a Simple Data Service Relationship Model

You can create a sample data service relationship model by selecting a dataspace project and choosing:

File > New > Relationship Modeler

You can locate your model diagram anywhere in your project. Any legal filename can be used.

About the Data Services

This example assumes that you are using the ALDSP RTLApp as a data source.

The physical data services used in this sample are:

• CUSTOMER
• CUSTOMER_ORDER
• CUSTOMER_ORDER_LINE_ITEM

Creating and Updating Physical Data Services

Adding Data Services to the Modeler

Document generated by Confluence on Jan 10, 2008 16:26 Page 345

http://edocs.bea.com/aldsp/docs25/concepts/modeling.html
http://kmwiki.bea.com/download/attachments/7382/Model Diagram of Physical Data Services.gif

You can add data services to your model using simple drag-and-drop from the Project Explorer. In the
Project Explorer you can multi-select data services using either:

• Shift-click (contiguous services) or
• Control-click (individual services)

If you drag a set of data services into a model diagram, existing relationships to other data services in
the model will be shown.

Populating the Relationship Modeler

Since the data services in this example are representations of relational sources, a several bidirectional
relationships between CUSTOMER_ORDER and CUSTOMER_ORDER_LINE_ITEMS were inferred:

• The role named CUSTOMER_ORDER has a 1-to-1 relationship with CUSTOMER_ORDER_LINE_ITEM,
meaning that a line item can only belong to one order.

• The role named CUSTOMER_ORDER_LINE_ITEM has a 0-to-n relationship with CUSTOMER_ORDER,
meaning meaning that there can be many line items associated with an order.

Creating an Additional Relationship

A next step could be to create a relationship between CUSTOMER and CUSTOMER_ORDER.

1. Right-click on CUSTOMER_ORDER node.
2. Select Create Relationship to another data service.
3. Select CUSTOMER as the target data service.
4. Click OK.

The Relationship Properties wizard appears.

Setting Relationship Properties

Relationship properties can be uni- or bi-directional.

Setting Relationship Options

Document generated by Confluence on Jan 10, 2008 16:26 Page 346

http://kmwiki.bea.com/download/attachments/7382/Populating the Relationship Modeler.gif

Relationship Properties Dialog Options

Option Action Comment/Reference

Set directionality Select the directions to be
supported in the relationship.
The example is bidirectional
so the default checked
condition for the following
relationships need not be
changed:

• CUSTOMER_ORDER ->
CUSTOMER

• CUSTOMER ->
CUSTOMER_ORDER

Creating relationships in a model
automatically creates
relationship functions between
data services. Bi-directional
settings mean that "get"
functions for the related data
service will be created on both
sides of the relationship. By
default, relationships are
bidirectional.

Target Role Name Enter the name of the role
function. In the example,
default names can be used:

• CUSTOMER
• CUSTOMER_ORDER

By default the name will be
based on the name of the related
data service. It can be changed
to any unique and legal name in
your dataspace project.

Set maximum and minimum
occurances

Enter cardinality settings for
the respective function. For
the example the following
settings are used:

• CUSTOMER_ORDER ->
CUSTOMER: 1-to-1

• CUSTOMER ->
CUSTOMER_ORDER 0-to-n

The minimum and maximum
occurrence settings definite the
nature of the relationship
between the two services.

Click Next.

Configuring Navigation Functions

Each navigation function (one or two) being created also needs to be configured. Configuration includes:

Document generated by Confluence on Jan 10, 2008 16:26 Page 347

http://kmwiki.bea.com/download/attachments/7382/Setting Relationship Options.gif

• Setting a name for the navigation function
• Selecting a function from the newly related data service.
• Mapping input parameters
• Building a WHERE clause

Configuring a Navigation Function

Specifying Relationship Wizard Function Name, Parameters, and Where Clauses

Element Purpose

Navigation function name By default, the navigation function name is the
name of the target data service with "get"
prepended, as in "getCustomer". If a function of
that name exists, numbers will be appended to the
function name as in getCustomer1.

When you invoke the Relationship wizard
through a model diagram the opposite data
service is determined by the gesture of
drawing a line from one data service to
another. In such cases the option of
selecting a navigation function name is not
present.

Related data service function By default, the root function in the target data
service is selected. However, you can select any
available read function in the target data service.

Map input parameters If the related function has input parameters, the
name and type of the available parameters
appear. You can then use a pulldown menu to
select an element from the target data service to
map as the input parameter.

Build WHERE clause Where clauses can be added to the function using
pulldown menus that allow you to select join
elements from each side of the relationship.

Add or Remove Allows you to add additional where clauses or
delete an identified where clause.

Document generated by Confluence on Jan 10, 2008 16:26 Page 348

http://kmwiki.bea.com/download/attachments/7382/Configuring a Navigation Function.gif

Next When the relationship between data services is
bidirectional clicking Next changes the focus to the
second data service, where you can identify a
navigation function name, parameters, and add
where clauses for the second side of the
relationship.

Customer-Order-Item Model

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 349

http://kmwiki.bea.com/download/attachments/7382/Customer-Order-Item Model.gif
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Generate a Relationship Modeler Report

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Generating Reports on Your Models

Both summary and detailed reports are available from the currently selected relationship model.

To create a report:

1. Right-click in any blank space in your model diagram.
2. Select:

Generated Report > Detailed or Generate Report > Summary

3. Select a filename and location.
4. Click Finish.

Summary and Detailed Report Categories Compared

Type Description

Summary Report Provides general information related the model
including:

• Location of each data service in the model
• Type: logical or physical
• Allows updates: true/false
• Data source type
• Data source name
• Owner (if any)
• Comment (if any)
• Date created
• Date last modified

Detailed Report A detailed model report contains all summary
information listed above and, for each relationship
between data services, the following additional
information:

• Return type fully qualified name (the qname)
• Details on each Read function including

Return type, description, and comments
• Details on the data service relationships

including role name, target data service,
minimum and maximum occurrences,
opposite role name, navigation functions

Document generated by Confluence on Jan 10, 2008 16:26 Page 350

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

including Return type, description, comment
and user-defined properties

• Dependencies — a list of all dependent data
services

When you choose the Create a Model Report right-click option you are asked to select a name for the
HTML document that is generated. By default, the name of the summary report is:

<model_name>_md_summary.html

and the name of the detail report is:

<model_name>_md_detail.html

You can save the report to any location in your application, including to a new folder.

Model Report Format

The model report is in HTML format.

Print your report from any browser or application that supports HTML printing.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 351

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Model Diagram Rules

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Rules Governing Model Diagrams

Model diagrams follow a set of rules:

• Each entity in the model has a title which is the local name of the data service (the fully-qualified
name is visible as a mouse-over).

• Associated Read functions can be displayed, with or without signatures.
• Model diagrams do not "own" data services, but simply reference them. Multiple models can,

without limit, contain representations of the same data service or relationships between data
services.

• Models are not nested. That is, a model diagram cannot reference another.
• Multiple models can be defined and located anywhere in your project.
• Changes made to a model diagram can be reversed using the Edit Undo command. However it is

important to keep in mind that changes to any underlying files such as schemas (XML types) or data
services made through the model will not be undone. Instead, edit the data service directly or close
and reopen your application before saving your changes.

Changes to a model diagram that affect data services such as when a new relationship is created
are only made permanent in WebLogic Workshop after you do a File > Save All

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 352

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Notable Relationship Modeler Properties

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Notable Model Diagram Properties

Properties both reflect and define relationships created in the model diagram.

Notable Data Modeling Properties

Scope Property Settings Comments

Data Service Properties described in
Managing Your Data
Service.

Relationships Nodes Read only Shows names of the
related data services
and their respective
roles. Roles are
assigned as source data
service and target data
service, but these
assignments are
arbitrary in the case of
bidirectional
relationships.

Source and Target
Cardinality

Drop down Value can be 0-to-1,
0-to-many, 1-to-1,
1-to-many, and
many-to-many.

Operations Properties described in
Managing Your Data
Service.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 353

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Relationship Between Data Services and Models

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Relationship Modelling

In large enterprises modeling is — or at least should be — an early task in developing a data services
layer. By starting with a graphical representation of data resources it is easier to view data resources
globally, leveraging existing information in interesting and useful ways. It is also easy to see
opportunities for creating additional business logic in the form of logical services.

Model diagrams are quite flexible; they can be based on existing data services (and corresponding
underlying data sources), planned data services, or a combination. You can also create and modify data
services and data service XML types directly from the model.

Relationships can be surfaced through the Relationship Modeler in several ways:

• Automatically. By dragging two or more relational-based data services into a model diagram
simultaneously. In such cases primary/foreign key relationships -- already available in the
respective data service -- appear.

• Graphically. Through gestures you make in your model diagram or through the right-click menu*.*
• Programmatically. Through a data service Source editor.

Relationship functions allows data associated with one data service (such as Customer) to serve as a
complex parameter for a related data service (such as Orders). Models can represent any combination of
logical and physical data services.
A visual representation of a relationship between two data services can convey a considerable amount of
information:

• Cardinality. Is the relationship one-to-zero (customers and promotional offers), one-to-one
(customer and primary email), one-to-many (customers and orders), or many-to-many (customer
orders and ordered items)?

• Direction. Arrows indicate possible navigation paths. Is there an originating entity associated with a
subordinate entity (such as orders and order items) or is the relationship bidirectional (such as
customers and orders)?

• Roles. A name matching the name of the adjacent data services navigation function (see below).
Does the assigned relationship name capture the purpose of the navigation function it represents?

Many data service-related operations can be performed from the relationship modeler including:

• Modeling a high-level, visual view of data resources
• Viewing and adding to the relationships between data services
• Accessing or creating a data service
• Add operations to a data service
• Change the XML type (schema) associated with a data service

Document generated by Confluence on Jan 10, 2008 16:26 Page 354

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

Navigation functions are visible as properties of each data service in the binary relationship. They can be
fully inspected in the Source editor for each data service. Navigation functions also appear as mouse-over
text over each endpoint of the relationship line.

By default, types shown in model diagrams are XML schema types, but you can change this to display
native data source types in the case of physical data services.

For more information on data service modeling concepts see Modeling and a Service-Oriented
Architecture in the ALDSP 2.5 Concepts Guide.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 355

http://edocs.bea.com/aldsp/docs25/concepts/modeling.html
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Relationship Modeler Options

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Relationship Modeler Options

This section describes some of the common operations you will use when working with the relationship
modeler.

Model Right-click Menu Options

You can edit your model using a combination of right-click menu options and the model Property Editor.
Table 5-14 describes right-click options based on the functional area of the model diagram that is in
scope.

Notable Data Model Options

Scope Command Meaning

Data Model New Data Service Allows you to create a
new data service. After
selecting a name and
physical location for the
data service, the service
is created and placed on
the diagram.

Find Data Service Locates a data service
within your model.

Select Router Type Adjusts visual
presentation of
relationship lines based
on the Manhattan model
or shortest-path model.

Generate Report Creates either a
Summary or Detail
report in an Eclipse
HTML-based page. The
report describes data
services in your model,
their bilateral
relationships, and a
description of each data
service.

Data Service Open Opens the currently

Document generated by Confluence on Jan 10, 2008 16:26 Page 356

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

selected data service in
Design View (see
Creating a Data
Service).

Create Relationship
to Another Data
Service

Dialog allows you to
select from a list of data
services in the model
diagram. As with
drawing a line between
two data services, this
option brings up the
Relationship wizard.
(See Using the
Relationship Wizard to
Create Navigation
Functions.

Add Related Data
Service

The Add Related
command is available
when one or several
data services are
selected in the model.
Add Related lists data
services that contain
navigation functions
referencing your
currently selected data
source. Click on the
service you want to add
and then repeat the
process to add other
available related
services, if any.

Remove from
Diagram

Removes the selected
data service from the
model diagram.
Alternatively, use the
Delete key.

This operation
does not affect
the underlying
data service.

Refactor Provides for either safe
delete or renaming of
the currently selected
data service. This is
comparable to
operations available for
a data service from the
Overview tab.

Associate XML Type Provides a dialog where

Document generated by Confluence on Jan 10, 2008 16:26 Page 357

a different schema
(XSD) file can be
selected from the
current project.

Changing a
schema type for
a data service
can affect its
functions as well
as its
relationships to
other data
services.

Manage Key... Opens the Manage Key
dialog box, allowing for
modification of the key
associated with the
current data service.

Delete Key... Deletes any key
asociated with the
current data service.

Add Operation Adds an operation
(function or procedure)
to the currently selected
data service.

Show/Hide Native
XML Types

Optionally
displays/hides native
types for elements
representing physical
objects associated with
simple data types.
Example:
VARCHAR(25).

Show Function
Signatures

Displays/hides full read
function signatures such
as: getAddress() as
element(Address)

Relationship lines connecting data services can be deleted by first selecting the line, then pressing
Delete.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 358

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Relationship Models in Source View

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Generated Relationship Declarations in Source
View

An example of a navigation function in the underlying source is:

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com" kind="navigate"
roleName="ADDRESS"/>::-)

This specifies a relationship to the Address data service from the Customer data service.

Data services also contain declarations describing the nature of the relationship; this information is the
source for the role names and cardinality values that appear in your model diagram.

For example, the data service Address contains the following relationship declarations:

<relationshipTarget roleName="CUSTOMER" roleNumber="1"
XDS="ld:DataServices/CustomerDB/CUSTOMER.ds" opposite="ADDRESS"/>

For each data service, a relationship is created which identifies its role name, cardinality, opposite data
service, and a unique (to the data service) role number.

In the above example, a navigation function is automatically created that retrieves customer information
based on the customerID.

In the case of the relationship between Customer and Address, the relationship is 0-to-n for the Address
role (it can make and appearance any number of times or not at all) based on CustomerID being a
foreign key in Address and a primary key in the Customer data service (and the underlying relational data
sources respectively).
Since the relationships are bilateral, Customer's opposite is Address while Address's opposite is
Customer.

If your data model is composed of both physical and logical data services, you should keep in mind that a
metadata update on any underlying physical data services will remove any relationships you have created
involving those data services.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 359

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Work with Large Models

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Work with Large Model Diagrams

Model diagrams can hold any number of data services. The only limitation is that each data service must
reside in the same dataspace.

Some tools are available in cases where very large models have been created.

Search

You can locate any data services in your model diagram.

1. Right-click in the white space (not on a data service representation) and select Find Data Service.
2. Type in the name of your data service using standard search options available in the dialog.

A dialog will appear containing a dropdown list of matching data services. The data service you select will
be appear.

Outline Mode

For larger models you can use Outline view which will allow you to scroll through your model.

Window > Show View > Outline

Model Diagram Outline View

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 360

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://kmwiki.bea.com/download/attachments/7382/Model Diagram Outline View.gif
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Preparing Services for Clients

This page last changed on Nov 26, 2007 by tkatz.

Preparing Services for Clients

How-to...
... Generate a Mediator Client JAR File
... Generate a Web Services Mediator Client JAR File
... Generate a Web Service Map from a Data Service
... Configure Security for Web Services Applications

Reference
Web Services Map File Reference

Document generated by Confluence on Jan 10, 2008 16:26 Page 361

http:/

Generate a Mediator Client JAR File

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Generate a Mediator Client JAR File

To use the Static Mediator API in a client application, you must generate a Mediator Client JAR file. This
JAR file contains the Static Mediator API interfaces, plus all the necessary SDO-compiled schemas for a
dataspace.

One Java method is generated for each mapped data service operation. Method names match the
mapped data service operation names. Client developers access data service operations by calling these
methods.

This section explains how to generate a Mediator Client JAR by these two methods:

• Using the IDE
• Using the Command-Line Tool

Tip: You can also generate a Mediator Client JAR using the Administration Console. See the ALDSP
Adminstration Guide for details.

Using the IDE

To generate a mediator client JAR file using the IDE:

1. Select File > Export.
2. In the Export dialog, select AquaLogic Data Services Platform > Mediator Client JAR File.
3. Click Next.
4. Complete the Mediator Client JAR File dialog as follows:

• Select a Dataspace project to export. You can only select one Dataspace project at a time.
• Specify a directory in which to place the exported JAR file. You can use the drop down list to select a

recently specified directory or use the Browse button to locate one.
• Unselect the Use default name checkbox if you want to enter a name for the JAR file.
• Click Finish to create the JAR file.

The ALDSP Console view displays the export task status and any errors that may have occurred.
You can click the Cancel button to cancel the export task before it has completed.

Using the Command-Line Tool

Document generated by Confluence on Jan 10, 2008 16:26 Page 362

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/admin/index.html
http://edocs.bea.com/aldsp/docs30/admin/index.html

This section explains how to generate a Mediator Client JAR file using the command-line tool. Before
using the command-line tool, be sure you have the following:

• WSL 9.2 MP1 or MP2 installed with ALDSP installed in the default location BEA_HOME/aldsp_3.0.
• A Dataspace project on your local filesystem that contains data service (.ds) and schema (.xsd)

files. Miscellaneous IDE files within the project folder are allowed and will not affect the export.
• Ant installed and in your path.

To generate the client JAR, use this Ant command:

ant -Dapproot=PROJECT_HOME -f BEA_HOME/aldsp_3.0/bin/sdo_dspclientgen.xml

where PROJECT_HOME is the full path to the Data Space project's root folder, and BEA_HOME is the root
path for your WebLogic installation.

For example (all on one line):

ant -Dapproot=/home/myprojects/myapp -f /home/bea/aldsp_3.0/bin/sdo_dspclientgen.xml

This Ant script produces a file named PROJECTNAME-dsp-client.jar in PROJECT_HOME, where
PROJECTNAME is the name of the directory PROJECT_HOME (as opposed to the full path to that
directory). For example, the above script produces the Mediator Client JAR file:

/home/myprojects/myapp/myapp-dsp-client.jar.

Optional command-line features include:

• Your environment must contain a WL_HOME environment variable, pointing to the WLS 9.2
installation. If it does not, you can provide an alternate by adding -Dwl.home=/path to specify the
WLS root directory.

• Your ALDSP 3.0 installation must be in the default directory BEA_HOME/aldsp_3.0. If it is not, you
can provide an alternate by adding -Ddsp.home=/path to specify the directory.

• To specify a full directory path for the output, add -Doutdir=/dirpath to the Ant command. You must
provide an absolute path; a relative path, including ".", will not work, as it is assumed to be relative
to PROJECT_HOME.

• To specify a different name for the JAR file, add -Dsdojarname=name.jar.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 363

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Generate a Web Service Map from a Data Service

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Generate a Web Service Map from a
Data Service

If you intend to access a data service through web services using the Data Services Mediator API, you
must generate a web service map file first. A web service map file maps data service functions to web
service operations. The map file is also used for setting and configuring security policies for web services
applications.

This section includes these topics:

• Creating a Map File
• Examining the Generated WSDL
• Testing the Generated WSDL
• Modifying the Map File

Creating a Map File

This section describes the basic steps that are required to create a map file. You can accomplish all of
these tasks using the ALDSP Eclipse IDE. The procedure assumes that you have created or have access to
a valid data service (.ds) file.

For information on the contents of the web service map file, see Web Services Map File Reference.

There are two ways to create a web service map file (.ws file):

Method 1:

1. Obtain access to the Data Service project that you wish to access from a web service and import it
into your Dataspace project.

2. Right-click on the data service name in Project Explorer and select Create Web Service Map. The
map file (.ws file) is created with the same name as the data service file, and the map file is opened
in the editor.

Method 2:

1. Obtain access to the Data Service project that you wish to access from a web service and import it
into your Dataspace project.

2. Right-click on the data service name in Project Explorer and select New > Web Service Map.

Document generated by Confluence on Jan 10, 2008 16:26 Page 364

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

3. Use the dialog to create an empty web service map file with a name of your choosing. The empty
map file opens in the editor.

4. Drag either an entire data service file onto the map file or drag individual data service operations.

Only the data service functions that are mapped in the map file are available to clients. Only
public data service operations can be mapped.

The following figure shows a data service file called CUSTOMER.ds added to a map file called
myMapper.ws (created using Method 2).

Adding a Data Service to a Web Services Map File

Examining the Generated WSDL

You can examine the generated WSDL file. See Web Services Map File Reference for details.

Testing the Generated WSDL

You can test the generated WSDL file. See Web Services Map File Reference for details.

Modifying the Map File

This section describes additional ways to add data services and operation to a map, and how to delete
operations from an existing map.

Adding Data Services and Operations

You can drag and drop either an entire data service or individual data service operations from the Project
Explorer onto an existing map file in the map file editor.

You can right-click in the map editor and select Add Data Services/Operations to Map. Use the Select
Resources to Add to Map dialog to add data service resources to the map.

Deleting Data Services and Operations from a Map File

To delete one or more operations, select the operations and right-click on the selected operations, and

Document generated by Confluence on Jan 10, 2008 16:26 Page 365

http://kmwiki.bea.com/download/attachments/7382/mapperCreate-1.gif

then select Delete.

To delete all operations that are related to a .ds dataservice, right-click on the .ds dataservice box and
select Delete.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 366

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Generate a Web Services Mediator Client JAR File

This page last changed on Jan 10, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Generate a Web Services Mediator
Client JAR File

This section explains how to generate a Web Services Mediator Client JAR file. This JAR is required by
developers writing Java clients that access data services through web services using the Static Mediator
API.

This section includes these topics:

• Overview
• Using Data Services Studio
• Using the Command-Line Tool

Overview

To use the Static Mediator API in a web services-enabled client application, you must generate a Web
Services Mediator Client JAR file. This JAR file contains the Static Mediator API interfaces, plus all the
necessary SDO-compiled schemas for a dataspace.

One Java method is generated for each data service function that is mapped to a WSDL operation.
Method names match the mapped WSDL operation name. Client developers access data service functions
through the web service by calling these methods. If the web service requires message-level security,
you can add a credential provider and trust manager through initial context properties. For more
information on security, see Configure Security for Web Services Applications.

This topic explains how to generate a Web Services Mediator Client JAR file using these methods:

• Overview
• Using Data Services Studio
• Using the Command-Line Tool

Tip: You can also generate a Mediator Client JAR using the Administration Console. See the ALDSP
Adminstration Guide for details.

Using Data Services Studio

To generate a Web Services Mediator Client JAR file using Data Services Studio:

Document generated by Confluence on Jan 10, 2008 16:26 Page 367

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

1. Select File > Export.
2. In the Export dialog, select AquaLogic Data Services Platform > Web Services Mediator Client JAR

File, and click Next.
3. Complete the Web Services Mediator Client JAR File dialog as follows, and click Finish.
4. In the left panel, select the Dataspace project that contains the .ws file(s) to export. You can only

export .ws files in one Dataspace project at a time. Checking/unchecking the checkbox next to a
project or a folder automatically checks/unchecks all the sub-folders and .ws files under that
project/folder.

5. In the right panel, select the Web Service Map file to export. You can select one or more .ws files.
To see and selectively check the .ws files in a sub-folder, you will need to expand and click on the
folder on the left panel. The message under the right panel shows the total number of .ws files
currently checked for export.

6. Specify a directory in which to place the exported JAR file. You can select any location on your
system. You can use the dropdown list to select a recently specified directory or use the Browse
button to locate one. By default, the exported JAR will be named:
<data_space_name>-ws-client.jar.

7. Unselect the Use default name checkbox if you want to enter a name for the JAR file.

The ALDSP Console view displays the export task status and any errors that may have occurred. You can
click the Cancel button to cancel the export task before it has completed.

Using the Command-Line Tool

This section explains now to generate the Web Services Mediator Client JAR file using Ant and presents
example Ant commands. Before using the command-line tool, be sure you have the following:

• WSL 9.2 MP1 or MP2 installed with ALDSP installed in the default location BEA_HOME/aldsp_3.0.

• A Dataspace project on your local filesystem that contains data service (.ds) and schema (.xsd)
files. Miscellaneous IDE files within the project folder are allowed and will not affect the export.

• Ant installed and in your path.

To generate the JAR file, run this Ant command:

ant -Dapproot=PROJECT_HOME -Dwslocator=locator -f BEA_HOME/aldsp_3.0/bin/sdo_dspclientgen.xml

Where:

• PROJECT_HOME is the path to the Dataspace project. You must specify a full path for the values of
BEA_HOME and PROJECT_HOME.

• The locator option takes one of these values:
° d:URI - Specifies a URI (or a semicolon-separated or space-separated list of URIs) to a .ws file

in the Dataspace project from which to generate the JAR file. For example:

ld:MediatorTestDataServices/CustomerWeb.ws

° ALL - Generates the JAR for all .ws files in the dataspace.

Document generated by Confluence on Jan 10, 2008 16:26 Page 368

The result of executing this Ant script is a file named PROJECT-ld-client.jar in PROJECT_HOME,
where PROJECT is the name of the directory PROJECT_HOME (as opposed to the full path to
that directory).

Additional Ant Task Options

This section lists several optional features that you can use with the Ant tasks described in the
previously:

• Your environment must contain a WL_HOME environment variable, pointing to the WLS 9.2
installation. If it does not, you can provide an alternate by adding -Dwl.home=/path to specify the
WLS root directory.

• Your ALDSP 3.0 installation must be in the default directory BEA_HOME/aldsp_3.0. If it is not, you
can provide an alternate by adding -Ddsp.home=/path to specify the directory.

• To specify a full directory path for the output, add -Doutdir=/dirpath to the Ant command. You must
provide an absolute path; a relative path, including ".", will not work, as it is assumed to be relative
to PROJECT_HOME.

• To specify a different name for the JAR file, add -Dsdojarname=name.jar.

Example 1

This example specifies multiple .ws files. The command must be entered on one line.

ant -Dapproot=/home/myprojects/myapp -Dwslocator='ld:MediatorTestDataServices/CustomerWeb.ws;
ld:MediatorTestDataServices/OtherCustomerWeb.ws' -f
/home/bea/aldsp_3.0/aldsp_3.0/bin/sdo_dspclientgen.xml

Example 2

This example generates a JAR that includes all of the .ws files in the dataspace. The command must be
entered on line line.

ant -Dapproot=/home/myprojects/myapp -Dwslocator=ALL -f
/home/bea/aldsp_3.0/aldsp_3.0/bin/sdo_dspclientgen.xml

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 369

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Web Services Map File Reference

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Web Services Map File Reference

The web services map file is an XML file that provides an explicit mapping between ALDSP data service
functions and web service operations. The map file is the basis for generating the WSDL that describes
the web services interface for a data service. This section discusses the configurable parts of the map file
in detail. For details on creating a map file, see the topic Generate a Web Service Map from a Data
Service.

Topics

• Map File-Level Properties
• Operation Level Properties
• Map File XML Schema Definition
• How Data Service Types Map to WSDL Message Types
• Examining the Generated WSDL
• Testing the Generated WSDL
• Copying and Saving a WSDL Generated from a Map

Map File-Level Properties

The ALDSP Eclipse IDE lets you create the web services map file (as explained in Generate a Web Service
Map From a Data Service) and configure the map file. The New Web Service Map wizard creates a .ws file
in a specified location within the Dataspace project. This section describes the configurable map file
properties. To configure these properties, use the Properties editor in the IDE.

The following figure shows a sample map file that maps functions from a data service called Customer.ds.
To view properties for a map file, select the map file in the IDE and select Window > Show View >
Properties.

Map File-Level Properties

Document generated by Confluence on Jan 10, 2008 16:26 Page 370

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

The following table describes each of the map file properties.

Map File Properties

Property Description

ADO.net Enabled If enabled, a .NET style WSDL is generated. This
WSDL includes .NET datasets in the WSDL
construct. Disabled by default. For more
information on ADO.NET, see the Client
Application Developer's Guide.

Basic Auth Required If true, basic authentication is required to access
the WSDL operations.

Map Name (Read-only) The name of the map file.

SOAP Version SOAP 1.1 and 1.2 are supported. The version is
used by ALDSP to decide which kind of SOAP
binding to create during WSDL generation. The
default is 1.1. SOAP 1.2 encoding is not
supported. Encoding is an optional feature defined
by the SOAP 1.2 specification.

Target Name Space The default value is generated from the web
service based on the location of the map file and
the file name.

Transport Type HTTP and HTTPS are the only supported types.
Default is HTTP.

Policies Lets you specify security policies that apply to all
the functions in the map. For information on
policies, see the topic Configure Security for Web
Services Applications.

Operation Level Properties

This section describes the operation-level properties that you can modify in the IDE. Operations match up
with data service functions. Each data service function maps to a WSDL operation. Operation-level
properties apply to the specific operation only.

Document generated by Confluence on Jan 10, 2008 16:26 Page 371

http://kmwiki.bea.com/download/attachments/7382/mapperProps-1.gif

The following figure shows the properties displayed for a selected data service function. To view
properties for a data service operation, select the operation in the IDE and select Window > Show View >
Properties.

Operation-Level Properties

The following table describes each of the operation properties.

Map File Properties

Property Description

Data Service Name Read-only.

Function Name Read-only.

Operation Name The WSDL operation name that is used to
generate a WSDL. This name has to be unique
within the map file.

Return Type Maps the WSDL operation return type to either a
SOAP header or body.

Parameters Lists all parameters for the operation and lets you
map each parameter to either a SOAP header or
body.

Policies Lets you specify security policies that apply to the
operation. For information on policies, see the
topic Configure Security for Web Services
Applications.

Map File XML Schema Definition

The following listing shows the schema file for the map (.ws file) definition.

Web Services Map File Schema Definition

Document generated by Confluence on Jan 10, 2008 16:26 Page 372

http://kmwiki.bea.com/download/attachments/7382/mapperProps-2.gif

<xs:schema
targetNamespace="http://www.bea.com/dsp/management/configuration/webservices"
xmlns:tns="http://www.bea.com/dsp/management/configuration/webservices"
xmlns="http://www.bea.com/dsp/management/configuration/webservices"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

<xs:element name="WebServicesMap">
<xs:complexType>
<xs:sequence>

<xs:element name="policies" type="PoliciesType"
minOccurs="0"/>

<xs:element name="dataServices"
type="DataServicesType"/>

</xs:sequence>
<xs:attribute name="targetNamespace" type="xs:anyURI"

use="required"/>
<xs:attribute name="soapVersion" type="SoapVersionType"

default="SOAP_1.1"/>
<xs:attribute name="transportType" type="TransportTypeType"

default="HTTP"/>
<xs:attribute name="ADODotNETEnabled" type="xs:boolean"

default="false"/>
</xs:complexType>

</xs:element>

<xs:simpleType name="SoapVersionType">
<xs:restriction base="xs:string">
<xs:enumeration value="SOAP_1.1"/>
<xs:enumeration value="SOAP_1.2"/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="TransportTypeType">
<xs:restriction base="xs:string">
<xs:enumeration value="HTTP"/>
<xs:enumeration value="HTTPS"/>

</xs:restriction>
</xs:simpleType>

<xs:complexType name="PoliciesType">
<xs:sequence>
<xs:element name="policy" type="PolicyType" minOccurs="1"

maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="PolicyType">
<xs:attribute name="locator" type="xs:string" use="required"/>
<xs:attribute name="direction" type="PolicyDirectionType"

default="REQUEST_RESPONSE"/>

</xs:complexType>

<xs:simpleType name="PolicyDirectionType">
<xs:restriction base="xs:string">
<xs:enumeration value="REQUEST"/>
<xs:enumeration value="RESPONSE"/>
<xs:enumeration value="REQUEST_RESPONSE"/>

</xs:restriction>
</xs:simpleType>

<xs:complexType name="DataServicesType">
<xs:sequence>
<xs:element name="dataService" type="DataServiceType"

minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="DataServiceType">
<xs:sequence>
<xs:element name="function" type="FunctionType" minOccurs="1"

maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="locator" type="xs:string" use="required"/>

</xs:complexType>

Document generated by Confluence on Jan 10, 2008 16:26 Page 373

<xs:complexType name="FunctionType">
<xs:sequence>
<xs:element name="policies" type="PoliciesType" minOccurs="0"/>
<xs:element name="parameterMapping" type="ParameterMappingType"

minOccurs="0"/>
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="arity" type="xs:integer" use="required"/>

<xs:attribute name="operation" type="xs:string" use="required"/>
<xs:attribute name="returnInHeader" type="xs:boolean"

default="false"/>
</xs:complexType>

<xs:complexType name="ParameterMappingType">
<xs:sequence>
<xs:element name="parameter" type="ParameterType" minOccurs="1"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="ParameterType">
<xs:attribute name="name" type="xs:string" use="required"/>

<xs:attribute name="wsdlMapping" type="WSDLMappingType"
use="required"/>

</xs:complexType>

<xs:simpleType name="WSDLMappingType">
<xs:restriction base="xs:string">
<xs:enumeration value="SOAP_HEADER"/>
<xs:enumeration value="SOAP_BODY"/>
</xs:restriction>

</xs:simpleType>
</xs:schema>

How Data Service Types Map to WSDL Message Types

This section explains how data service types are mapped to WSDL message types when you map a data
service function to a WSDL operation.

• Two Schema Elements Per Function
• Mapping of Update Functions with DataGraphs
• Overloading Data Service Functions

Two Schema Elements Per Function

For each data service function, two WSDL schema elements are generated. The first element is the name
of the request message, and it is the same as the data service function name that is mapped to the
WSDL message. The second represents the response message. The response message name is the same
as the function name with "Response" appended to it. The following listing shows an example schema
where getCustomer is the request name and getCustomerResponse is the response name. The response
element contains the return type of the data service function, which can be complex or simple.

Operation Element and Return Element

<types>
<xsd:schema targetNamespace="ld:DataServices/RTLServices/Customer.ws"

xmlns:dsns0="urn:retailerType">
<xsd:import namespace="urn:retailerType"/>

Document generated by Confluence on Jan 10, 2008 16:26 Page 374

<xsd:element name="getCustomer">
<xsd:complexType>
<xsd:sequence/>

</xsd:complexType>
</xsd:element>

<xsd:element name="getCustomerResponse">
<xsd:complexType>
<xsd:sequence>

<xsd:element ref="dsns0:CUSTOMER_PROFILE" minOccurs="0"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</types>

Mapping of Update Functions with DataGraphs

This section explains how a data service update operation's parameters and return type are mapped to a
WSDL schema definition.

Consider the following data service definition for an operation called updateADDRESS:

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
visibility="public" kind="update" isPrimary="true" nativeName="ADDRESS"
nativeLevel2Container="RTLCUSTOMER" style="table">

<nonCacheable/> </f:function>::)

declare procedure f1:updateADDRESS($p as changed-element(t1:ADDRESS)*) as empty() external;

Note that the operation's parameter type is changed-element(UserType). In this case the element is
ADDRESS. The changed-element type is translated to a DataGraph in the WSDL schema. The WSDL
schema must also include a schema definition for the DataGraph. The following listing shows the
translated updateADDRESS operation and the schema definition for the DataGraph.

WSDL Schema for an Update Operation

<xs:element name="updateADDRESS">
<xs:complexType>
<xs:sequence>
<xs:element name="p">
<xs:complexType>
<xs:sequence>

<xs:element ref="dsns0:ADDRESSDataGraph" minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="updateADDRESSResponse">
<xs:complexType>

<xs:sequence />
</xs:complexType>
</xs:element>

...
<xs:schema targetNamespace="ld:ADDRESS" xmlns:dsns0="ld:ADDRESS" xmlns:sdo="commonj.sdo">

<xs:import namespace="commonj.sdo"
schemaLocation="http://www.osoa.org/sdo/2.1/schemas/datagraph.xsd" />

<xs:element name="ADDRESSDataGraph" type="dsns0:ADDRESSDataGraphType" />

Document generated by Confluence on Jan 10, 2008 16:26 Page 375

<xs:complexType name="ADDRESSDataGraphType">
<xs:complexContent>
<xs:extension base="sdo:BaseDataGraphType">
<xs:sequence>

<xs:element ref="dsns0:ADDRESS" />
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:schema>

...

Overloading Data Service Functions

Data service functions can be overloaded, meaning that two functions in the same data service have the
same name but a different number of parameters. For example, in the following listing two
getCustomer() functions are declared, each with a different parameter set. To support WSDL generation
for overloaded data service functions, the web services map requires the overloaded function to be
mapped to a different WSDL operation. In other words, if you drag two functions with the same name
from a data service onto a web service map file, ALDSP generates different WSDL operation names for
the two functions. You can accept the default names or change them.

Overloaded Functions

declare function ns9:getCustomer() as element(ns2:CUSTOMER_PROFILE)*

declare function ns9:getCustomer($customerID as xs:string) as element(ns2:CUSTOMER_PROFILE)*

Examining the Generated WSDL

You can examine the generated WSDL file. The dataspace project's associated WebLogic server must be
started and the dataspace project be deployed to the server to view the WSDL or test the Web Service.

1. Right-click on the web service file name (example: CUSTOMER.ws)
2. Choose:

View WSDL

The WSDL will appear in its own window in the work area.

View of Generated WSDL

You can also request the WSDL for a deployed project by entering the following URL:

Document generated by Confluence on Jan 10, 2008 16:26 Page 376

http://kmwiki.bea.com/download/attachments/7382/View of Generated WSDL.gif

http://host:port/dataSpaceProjectName/folderName/.../mapFileName.ws?WSDL

For example:

http://localhost:7001/myDataSpace/myWSMapper.ws?WSDL

Testing the Generated WSDL

You can test the generated WSDL file using these steps. The dataspace project's associated WebLogic
server must be started and the dataspace project be deployed to the server to view the WSDL or test the
Web Service.

1. Right-click on the web service file name (example: CUSTOMER.ws)
2. Choose:

Test Web Service

The WSDL will appear in its own window.

View of Tested Web Service

Copying and Saving a WSDL Generated from a Map

You can copy or save a WSDL by right-clicking the map file and selecting Copy WSDL URL or Save WSDL
As.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 377

http://kmwiki.bea.com/download/attachments/7382/View of Tested Web Service.gif
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Testing Data Services

This page last changed on Dec 29, 2007 by tkatz.

Testing Data Services

Concepts
Test Update Procedures Using SDO Data Graphs

How-to...
... Test an Update Procedure

Related Topics
How-to...
... Test a Create or Delete Procedure
... Test a Read Function and Simple Update
... Test an Update Map Cast
... Enable Optimistic Locking of Relational Objects

Document generated by Confluence on Jan 10, 2008 16:26 Page 378

http:/

Brief Overview of Service Data Objects

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Test Update Procedures Using SDO Data
Graphs

This topic is a brief overview of Service Data Objects and data graphs, which you use to test update
procedures in Data Services Studio.

• Key Points
• Updates in Test View
• Optimistic Locking
• See Also

Key Points

• To test an Update procedure in Test view, you must submit a data graph as an argument.
• A data graph is an XML structure that contains the data you are changing, as well as the original

data.
• When you update a relational data source, ALDSP uses optimistic locking. The data source is locked

at update, not when the data is initially retrieved.

Updates in Test View

When you test an Update procedure in Test view, you are actually updating a Service Data Object (SDO)
from within Studio.

Selecting an Update Procedure in Test View

SDO is a programming model for Java platforms that unifies data programming across many types of

Document generated by Confluence on Jan 10, 2008 16:26 Page 379

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://dev2dev.bea.com/pub/a/2004/05/sdo_beatty.html
http://kmwiki.bea.com/download/attachments/7382/Selecting Update Procedure.gif

data sources. SDO is based on data objects, which are simply object instances that contain data. You can
update the data objects using either static or dynamic data APIs. With a static API, the shape of the data
is defined in advance. However, with a dynamic data API, you can update properties at run time that are
not known at development time.

The SDO model is based on data graphs, which are collections of tree-structured data, usually XML. A
client retrieves a data graph from a data source, modifies it, and applies the data graph back to the data
source.

A data graph contains a <changeSummary> element with the original data you are updating. It also
contains an XML element with the new data. When both the old and new data are passed back to the
data object, the object can be updated.

A Data Graph with Old and New Data

<sdo:datagraph xmlns:sdo="commonj.sdo">
<changeSummary>

<sim:SIMPLE_CUSTOMER sdo:ref="#/sdo:datagraph/sim:SIMPLE_CUSTOMER"
xmlns:sim="ld:logical/SimpleCustomer">

<CUSTOMER_SINCE>1999-01-01T00:00:00</CUSTOMER_SINCE>
</sim:SIMPLE_CUSTOMER>

</changeSummary>
<sim:SIMPLE_CUSTOMER xmlns:sim="ld:logical/SimpleCustomer">

<CUSTOMER_ID>CUSTOMER7</CUSTOMER_ID>
<CUSTOMER_SINCE>2007-11-11T00:00:00</CUSTOMER_SINCE>

</sim:SIMPLE_CUSTOMER>
</sdo:datagraph>

Optimistic Locking

When an SDO updates a relational source, it uses optimistic locking to avoid change conflicts. With
optimistic locking, the data source is not locked after the client acquires the data. Later, when an update
is needed, the data in the source is compared to a copy of the data taken when it was acquired. If any of
the underlying data was changed before the client applies the changes, the update is rejected, and the
client must recover.

The optimistic locking policy is set for each relational data source.

See Also

How To

• Test an Update Procedure
• Enable Optimistic Locking in Relational Objects

Concepts

• Data Programming Model and Update Framework (in depth, for client applications)

Document generated by Confluence on Jan 10, 2008 16:26 Page 380

http://edocs.bea.com/aldsp/docs30/appdev/sdo.html#wp1229492

Other Resources

• Introducing SDO
• Next-Generation Data Programming: Service Data Objects

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 381

http://dev2dev.bea.com/pub/a/2004/05/sdo_beatty.html
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Enable Optimistic Locking

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Enable Optimistic Locking

This topic describes how to enable optimistic locking in order to update a physical relational data source.

• Set the Locking Policy
• Select the Locking Fields
• See Also

Set the Locking Policy

Define the optimistic locking policy on the physical data sources that support your logical data service
before you attempt to test an update in Test view or use an update map. Optimistic locking is used with
physical data sources that are relational.

The current value of optimistic locking is defined in the Optimistic Locking Fields property. You can see
this property in the Properties tab in Data Services Studio Overview mode.

Checking the Optimistic Locking Policy

Updates to relational data sources use a special XML structure called a data graph. The root element of
data graph is <sdo:datagraph>, and the data graph also has a <changeSummary> element.

You can use any of these values for Optimistic Locking Fields. They describe how the elements in the data
graph compare to fields in the relational data source.

Value of Optimistic Locking Fields Effect

PROJECTED All elements in the data graph are mapped to the
data source to verify whether it can be updated.
Default value.

UPDATED Only elements that have changed in your data
graph are used to verify whether the data source
has changed.

Document generated by Confluence on Jan 10, 2008 16:26 Page 382

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://kmwiki.bea.com/download/attachments/7382/Optimistic Locking Properties.gif

SELECTED FIELDS Selected elements are used to verify whether the
data source has changed. The elements must be
non-key elements.

To set the locking policy:

1. Open a physical data service in Studio.
2. Click the Overview tab, then below it, the Properties tab.
3. At Optimistic Locking Fields, click in the Value column, then choose a value.

Select the Locking Fields

If you choose SELECTED FIELDS, you must also select the fields used to verify changes in the data
source. You can select any number of non-key fields. The key fields are used to identify the data records
to be updated. If you select a complex element, its child elements also become selected elements.

You can also disable a field once it is selected.

Choosing Fields for Optimistic Locking

To select the fields used for optimistic locking:

1. Click the Overview tab.
2. Right-click a non-key element in the return type.

Key elements are marked with .

3. Choose Enable Optimistic Locking.

When you enable optimistic locking for a field, its icon (in the return type in the Overview tab) changes to
. You can also see the optimistic locking fields in the pragma statement at the top of the service's

Source tab:

(::pragma xds <x:xds targetType="t:CREDITRATING" xmlns:x="urn:annotations.ld.bea.com"
xmlns:t="ld:physical/CREDITRATING"> ... <optimisticLockingFields> <field name="RATING"/>
</optimisticLockingFields>

Document generated by Confluence on Jan 10, 2008 16:26 Page 383

http://kmwiki.bea.com/download/attachments/7382/Enable Optimistic Locking.gif
http://kmwiki.bea.com/download/attachments/7382/Key Icon.gif
http://kmwiki.bea.com/download/attachments/7382/Locked Icon.gif

See Also

How To

• Test an Update Procedure

Concepts

• Brief Overview of Service Data Objects (for Studio)
• Data Programming Model and Update Framework (in depth, for client applications)

Other Resources

• Introducing SDO
• Next-Generation Data Programming: Service Data Objects

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 384

http://edocs.bea.com/aldsp/docs30/appdev/sdo.html
http://dev2dev.bea.com/pub/a/2004/05/sdo_beatty.html
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Test a Create or Delete Procedure

This page last changed on Jan 08, 2008 by tkatz.

How To Test a Create or Delete Procedure

This topic describes how to test a create procedure or delete procedure in a logical data service from
within AquaLogic Data Services Studio.

• Overview
• Edit a Complex Parameter in Test View
• Use the Result of a Read Function
• See Also

Overview

Testing a create or delete procedure shows you how data is inserted into or deleted from physical data
sources. A create or delete can insert data into or delete it from multiple physical data sources, of the
same or different types. If possible, you should test a create or delete procedure on sample data first,
before you test on live physical data sources.

A create procedure usually takes a complex type argument of the service's return type, and returns a key
value as a result. You can see the procedure's argument and return type by right-clicking the procedure
in the Overview tab and choosing Edit Signature.

A Create Procedure Signature

You can see the element (or elements) defined in the return key in the update map.

The Return Key of a Create Procedure

Document generated by Confluence on Jan 10, 2008 16:26 Page 385

http://kmwiki.bea.com/download/attachments/7382/Create Procedure Signature.gif

For relational sources, the return key value is generated using either identity or sequence, depending on
how the relational table was created.

A delete procedure also takes a complex argument, usually the service's return type or a key, but it often
does not return a value.

A Delete Procedure Signature

ALDSP sequences the updates done by create and delete procedures to ensure referential integrity, in
that:

• Child elements are deleted before parent elements
• Parent elements are inserted before child elements

Edit a Complex Parameter in Test View

To test the create or delete procedure, you can edit the fields of the XML complex type provided in Test
view, or you can browse for an XML document that contains a template with the required data.

To test a create or delete procedure using an XML template:

1. Click the Test tab.
2. At Select Operation, choose the create or delete procedure.
3. Enter data in the Parameters box by doing one of the following:

• Enter data values directly in the XML template.
• Click Browse to locate an XML document that contains the data.

4. Expand Settings and check the authentication credentials.
5. Click Run.

Document generated by Confluence on Jan 10, 2008 16:26 Page 386

http://kmwiki.bea.com/download/attachments/7382/Return Key.gif
http://kmwiki.bea.com/download/attachments/7382/Delete Procedure Signature.gif

If you are testing a Create procedure, you will see the key data displayed in the Result pane.

The Returned Key Value

When You Enter Data

Whether you edit data values directly in the XML template provided in the Test tab or browse for an XML
document, be careful to:

1. Use data of the correct data type for each element.

String values do not need quotation marks.

2. Add a value for each required element in the complex parameter.
3. Delete optional elements for which you do not provide values, for example:

<!--Optional:-->
<STREET_ADDRESS2>string</STREET_ADDRESS2>

4. Be sure that the prefix binding and namespace used in the XML argument are correct for your data
service, for example:

<cus:CUSTOMER_PROFILE xmlns:cus="ld:logical/CustomerProfile">

The default template that ALDSP usually has the correct namespace binding. You can also check the
bindings by clicking the Overview tab, then Properties.

5. Respect referential integrity constraints. In other words, if an element refers to a key value in
another relational table, be sure to enter a valid key value.

Use the Result of a Read Function

If the XML argument is complex and you do not want to enter all necessary values in the Test tab or
create an XML document, you can also run one of the service's Read functions and copy the data from the
result.

To test a create or delete procedure using the result of a read function:

1. Click the Test tab.
2. Run a read function (see Test a Read Function and Simple Update).
3. Click the Text radio button.
4. Scroll down in the results to locate the data record you want.
5. Copy it to the clipboard.
6. In Test view, choose a create procedure.

Document generated by Confluence on Jan 10, 2008 16:26 Page 387

http://kmwiki.bea.com/download/attachments/7382/Key Value Returned.gif

7. Paste the XML data in the argument box.
8. Edit the data, then click Run.
9. Run the Read function again, to check that the data record was inserted or deleted.

This is an example of a data record returned by a Read function, which you can copy from the Text view:

<?xml version="1.0" encoding="UTF-8"?>
<cus:CUSTOMER_PROFILE xmlns:cus="ld:logical/CustomerProfile">

<CUSTOMER>
<CUSTOMER_ID>CUSTOMER9</CUSTOMER_ID>
<FIRST_NAME>Hommer</FIRST_NAME>
<LAST_NAME>Simpson</LAST_NAME>
<EMAIL_ADDRESS>JOHN_9@yahoo.com</EMAIL_ADDRESS>
<ADDRESS>

<ADDR_ID>ADDR_9_0</ADDR_ID>
<CUSTOMER_ID>CUSTOMER9</CUSTOMER_ID>
<STREET_ADDRESS1>179 Rose Avenue</STREET_ADDRESS1>
<STREET_ADDRESS2>NULL</STREET_ADDRESS2>
<CITY>Las Vegas</CITY>
<STATE>NV</STATE>
<ZIPCODE>89502</ZIPCODE>
<COUNTRY>USA</COUNTRY>

</ADDRESS>
<CREDITRATING>

<CUSTOMER_ID>CUSTOMER9</CUSTOMER_ID>
<RATING>600</RATING>

</CREDITRATING>
</CUSTOMER>

</cus:CUSTOMER_PROFILE>

Be sure to remove:

• The XML declaration at the top:

<?xml version="1.0" encoding="UTF-8"?>

• Any optional elements for which you do not supply values:

<!--Optional:-->
<STREET_ADDRESS2>string</STREET_ADDRESS2>

See Also

Concepts

• Understanding Update Maps

How Tos

• Test a Read Function and Simple Update
• Test an Update Procedure

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 388

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Document generated by Confluence on Jan 10, 2008 16:26 Page 389

Test a Read Function and Simple Update

This page last changed on Jan 08, 2008 by tkatz.

How To Test a Read Function and Simple
Update

This topic describes how to test any Read function in an entity data service (either logical or physical) in
Test view.

• Adjust Settings
• Run the Read Function
• Perform a Simple Update
• See Also

Adjust Settings

A read function fetches data.

A physical or logical data service usually has at least one read function. You can test a read function with
either sample data or real-time data, from the Test tab in AquaLogic Data Services Studio. Testing a read
function ensures that:

• You can read data from the physical data sources.
• The returned data has the structure you want, especially for a logical data service.
• The query performs well.

The returned data is displayed in the Test tab.

Checking the Data Returned by a Read Function

When you test a read function, Studio deploys the service to the server if it is not yet deployed, or if it
has changed since it was last deployed.

A read function allows you to specify various settings.

Document generated by Confluence on Jan 10, 2008 16:26 Page 390

http://kmwiki.bea.com/download/attachments/7382/Checking Read Data.gif

Settings You Can Change for the Read Function

You might want to test with a smaller result set. Select

Limit Elements in Array Results To

to limit the result to a specific number of elements of the return type, to specific child elements in the
return type, or both.

Use Start Client Transaction to query multiple relational sources using XA transaction drivers (if selected,
ALDSP uses the Required transaction mode to query data sources; if not, ALDSP uses the NonSupported
EJB transaction method).

Run the Read Function

A read function optionally can have parameters. It is quite common for a read function to have no
parameters, with a name something like read() or ADDRESS().

If you are working with a logical service, the update map must be completely enabled before you can run
a read function in Test view. If the update map has yellow update blocks or disabled procedures

, you must resolve thembefore you can test a Read function.

To test a Read function:

1. Open an entity data service in Data Services Studio.
2. Click the Test tab.
3. At Select Operation, choose the name of the read function you want to test.
4. Expand the Settings tab.
5. Choose values for Limit Elements in Array Results To, Start Client Transaction, and Use Default

Authentication.
6. Click Run.

If the results are correct, you see this: . You can

now click Tree, Text, or Tabular to inspect the returned data.

Perform a Simple Update

The easiest way to test that you can update a data source is to use the Edit and Submit buttons in Test
view.

Document generated by Confluence on Jan 10, 2008 16:26 Page 391

http://kmwiki.bea.com/download/attachments/7382/Read Function Settings.gif
http://kmwiki.bea.com/download/attachments/7382/Disabled CUD Icons.gif

Before you test an update, be sure that:

• The service has a primary update procedure. You can check this by right-clicking an update
procedure in the Overview tab and making sure Primary is selected. You can also check for

isPrimary="true"

in the procedure's pragma statement in the Source tab, for example:

(::pragma function <f:function kind="update" visibility="public" isPrimary="true"
xmlns:f="urn:annotations.ld.bea.com"> ... ::)

• The update map is fully enabled for a logical entity service that has an update map. If the update
map is not, see Recognize When Something is Wrong. If you are updating a logical data service, you
are actually testing an update map. The update will work on any underlying data sources that you
have permission to update.

To update data after running a Read function:

1. Click Edit, and edit the field you choose.
2. Click Submit.

If the data is submitted correctly, you see this message:

The data has been submitted.

See Also

Concepts

• Recognize When Something is Wrong

How Tos

• Test an Update Procedure
• Enable Optimistic Locking

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 392

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Test an Update Procedure

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

How To Test an Update Procedure

This topic describes how to test an Update procedure in Test view in AquaLogic Data Services Studio.

• Configure Audit Properties
• Capture the Data Graph
• Submit the Update
• See Also

Configure Audit Properties

To test an Update procedure in Studio, you must submit a data graph in the Parameters box in Test view.
A data graph is an XML structure with a root element of <sdo:datagraph> and a <changesummary>
element. The easiest way to submit a data graph is to capture one from an audit.

First, configure audit properties in the ALDSP Console.

Configuring Audit Properties in the ALDSP Console

To configure audit properties so that ALDSP generates data graphs:

1. Open the ALDSP Console and log in.
2. Click the name of a data space project.
3. Click the Audit Properties tab.
4. Click Lock & Edit in the upper left pane.
5. Navigate to the Update > Service node (be careful not to move to Update > Error > Procedure).
6. For Name, Parameters, and Result, choose Always from the Is Audited menu.
7. Click Save.
8. Click Activate Changes in the upper left pane.

Capture the Data Graph

Document generated by Confluence on Jan 10, 2008 16:26 Page 393

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://kmwiki.bea.com/download/attachments/7382/Configure Audit Properties.gif
http://localhost:7001/dspconsole/

You can then capture a data graph from the audit messages displayed in the Studio Console tab, and edit
the data graph to submit to the Update procedure in Test view.

Viewing a Data Graph in the Studio Console Tab

To capture a data graph:

1. Open a logical data service in Studio.
2. Click the Test tab.
3. Choose the service's primary Read function, then click Run.
4. Click Edit, edit a value, then click Submit.
5. (Optional) Check the Studio Console tab.

If you see the WebLogic Server console data, not the ALDSP console data, click the drop-down
arrow next to the console icon , and choose ALDSP Console.

6. Scroll up in the Studio Console tab until you locate the data graph, right-click, and copy it.

Submit the Update

When you update relational sources, the SDO update mechanism uses optimistic locking to avoid change
conflicts. With optimistic locking, the data source is not locked when the SDO client acquires the data.
Later, when the client wants to update, the data in the source is compared to a copy of the data at a time
when it was acquired. If there are discrepancies, the update is not committed. Before you submit the
data graph to the Update procedure, be sure that optimistic locking is enabled in the underlying data
source you are updating.

You can then submit the data graph to the Update procedure. However, you may need to edit it, as the
data graph you captured from the Studio Console tab reflected the last change you made, not the change
you are presently submitting to the Update procedure.

Submitting the Data Graph to the Update Procedure

The data graph you submit to the Update procedure takes the place of the return type as an argument,
even if you are updating only some of the elements in the return type.

To submit the data graph to an Update procedure:

1. Enable optimistic locking on any physical relational data sources the data graph is updating.
2. Open a data service in Studio, and click the Test tab.
3. At Select Operation, choose an Update procedure.

Document generated by Confluence on Jan 10, 2008 16:26 Page 394

http://kmwiki.bea.com/download/attachments/7382/Console Data Graph.gif
http://kmwiki.bea.com/download/attachments/7382/Eclipse Console Icon.gif
http://kmwiki.bea.com/download/attachments/7382/Entering a Data Graph.gif

4. Copy a data graph you have captured from the Studio Console tab to the Parameters box.
5. Edit the data graph for the change you want to make.

The data graph you captured applies to a change made in the visual interface. Update the change
summary to the values the object presently has, and the remaining elements to the new values you
want to set. For example, this is a change summary captured from the Studio Console tab:

<sdo:datagraph xmlns:sdo="commonj.sdo">
<changeSummary>

<sim:SIMPLE_CUSTOMER sdo:ref="#/sdo:datagraph/sim:SIMPLE_CUSTOMER"
xmlns:sim="ld:logical/SimpleCustomer">

<CUSTOMER_SINCE>1999-01-01T00:00:00</CUSTOMER_SINCE>
</sim:SIMPLE_CUSTOMER>

</changeSummary>
<sim:SIMPLE_CUSTOMER xmlns:sim="ld:logical/SimpleCustomer">

<CUSTOMER_ID>CUSTOMER7</CUSTOMER_ID>
<CUSTOMER_SINCE>2007-11-11T00:00:00</CUSTOMER_SINCE>

</sim:SIMPLE_CUSTOMER>
</sdo:datagraph>

This version has been updated in the Parameters box (note the difference in the CUSTOMER_SINCE
dates):

<sdo:datagraph xmlns:sdo="commonj.sdo">
<changeSummary>

<sim:SIMPLE_CUSTOMER sdo:ref="#/sdo:datagraph/sim:SIMPLE_CUSTOMER"
xmlns:sim="ld:logical/SimpleCustomer">

<CUSTOMER_SINCE>2007-11-11T00:00:00</CUSTOMER_SINCE>
</sim:SIMPLE_CUSTOMER>

</changeSummary>
<sim:SIMPLE_CUSTOMER xmlns:sim="ld:logical/SimpleCustomer">

<CUSTOMER_ID>CUSTOMER7</CUSTOMER_ID>
<CUSTOMER_SINCE>2008-04-04T00:00:00</CUSTOMER_SINCE>

</sim:SIMPLE_CUSTOMER>
</sdo:datagraph>

6. Click Run. You should see this message in Test view:

Operation was successful.

See Also

Concepts

• Brief Overview of Service Data Objects (for Studio)
• Data Programming Model and Update Framework (in depth, for client applications)

How Tos

• Enable Optimistic Locking for Relational Objects

Other Resources

• Introducing SDO
• Next-Generation Data Programming: Service Data Objects

Document generated by Confluence on Jan 10, 2008 16:26 Page 395

http://edocs.bea.com/aldsp/docs30/appdev/sdo.html#wp1229492
http://dev2dev.bea.com/pub/a/2004/05/sdo_beatty.html

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 396

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Understanding Query Plans

This page last changed on Nov 26, 2007 by tkatz.

Understanding Query Plans

Concepts
Understanding Query Plans

Document generated by Confluence on Jan 10, 2008 16:26 Page 397

http:/

Query Plan Overview

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Understanding Query Plans

You can obtain a query plan for any function in your data service. Simply select the Query Plan tab and
select a function, just as you would in Test View. In addition, as a convenience, you can obtain an ad hoc
query plan for XQuery or SQL.

Using Query Plan View

The interface for Query Plan View is quite similar to that used for testing your query functions. You select
a function or procedure from a drop down list and then click the Show Query Plan button.

A query plan identifies the following query components:

• Joins
• Outer join
• Select statements
• Data sources
• Custom function calls
• Order-bys
• Remove duplicates

There are several ways that a query plan can be viewed:

• Tree view. A collapsible graphical presentation of the query plan.
• Text view. Presents the information as text.

custOrdersItems Query Plan

Document generated by Confluence on Jan 10, 2008 16:26 Page 398

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://kmwiki.bea.com/download/attachments/2166972/custOrdersItems Query Plan.gif

Query Plan Information and Warnings

The query plan shows both informational and warning messages. When a section of the plan is flagged
with a warning, the plan segment is highlighted in red. If you mouse over the segment, the warning
message appears.

Informational messages also can appear with plan segments. Such segments are highlighted in yellow.

Informational and Warning Messages Associated With Query Plans

Warning Message Type Informational Message Type

• XQuery compiler: Typematch. Typematch
issues will be resolved by the compiler (may
affect performance)

• Audit. Auditing has been set for this
particular function (will affect performance).

• XQuery compiler: No where clause. There
is no predicate associated with the query
function (will affect performance).

• Cache. Function is cached (may enhance
performance).

• XQuery compiler: Untyped data. Possible
untyped atomic data found in the node
constructor.

• SQL pushdown generation details.

• XQuery compiler: No such element. The
element (name provided) is not found in
in-scope schemas.

• SQL generation: missing key. Underlying
table/view does not have a key.

• SQL generation: cannot generate
subquery. isSubquery property is set to
false on the data service. (See the "Function
Annotations" section of the Understanding
Data Services Platform Annotations section of
the XQuery Developer's Guide.

• SQL generation: cannot generate SQL for
join expression. Unable to translate join
condition.

• SQL generation: cannot generate SQL for
aggregate expression (named). Function
does not operate on a sequence.

Document generated by Confluence on Jan 10, 2008 16:26 Page 399

http://edocs.bea.com/aldsp/docs30/xquery/index.html

• SQL generation: fn:string() function
encountered. Use xs:string() instead since
xs:string() can be pushed down to the
database for processing.

Printing or Saving Your Query Plan

There are two right-click options associated with query plans:

• Prints the plan
• Saves the plan

The default file name for the saved file will appear in the form:

<dataServiceName_qp>

If you right-click on the root element of the plan, Plan A right-mouse option on the root element in the
plan allows you to print a query plan to a printer or a file. Right-click on any node in the plan and select
either the print or print to a file option.

If you print to a file the filename will be of type XML. The name of the file will be the function name
followed by the letters _qp, as in: getCustomerView_qp.xml
The file can be saved anywhere in your application.

Loading a Previously Saved Query Plan

You can load a previously saved query plan using the following steps:

1. Select

<Load from file...

from the plan drop down box.

2. In the Browse File dialog locate an existing query plan in the current project.
3. Click Open.

The selected query plan will be appear.

Analyzing a Sample Query

Assume a query returns data related to order details after it is passed an order ID and a customer ID.

The following is a "pseudocode" description of the query:

Document generated by Confluence on Jan 10, 2008 16:26 Page 400

for electronic orders matching CustomerID and OrderID
return order information and ship-to information
for credit card information matching an AddressID
return credit information and bill-to address information
for electronic line item information matching the line item in the order

return line item information

The statements represent mappings or projections in the data service. This can be useful when trying to
trace performance issues.

The join conditions are identified in the plan as a left-outer join driven by a complex parameter. By
definition, joins have left and right sides, each of which can contain additional joins. One of the best uses
of the query plan is to see how the query logic works up the various data threads to return results.

Working With a Query Plan

Two options are available in Query Plan:

• Expand All. This right-click menu option expands the currently selected element and any children.
If applied to the top-most element in the plan, all elements are expanded.

• Match highlighting. When you click on a variable name any elements (open or closed) containing
a match for that variable are highlighted. This feature helps you trace variables in the query plan.

Identifying Problematic Conditions Through the Query Plan

When you show a query plan for a particular function, you may notice red or yellow highlighting of
particular routines. These correspond to warnings or informational messages from the plan interpreter.
For example, if a for statement is missing a where clause (potentially leading to slow performance or
retrieval of a massive amount of data) a red warning will appear adjacent to the statement. Simply
mouse-over the highlighted section of the plan to view the information or warning.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 401

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

Working with XQueries in Source View

This page last changed on Nov 26, 2007 by tkatz.

Working with XQueries in Source View

How-To
... Use the Source Editor
Concepts
XQuery Language Version Support

Document generated by Confluence on Jan 10, 2008 16:26 Page 402

http:/

Use the Source Editor

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

Use the Source Editor

This section describes the ALDSP Source editor and highlights its editing features. The following topics are
included:

• What is the Source Editor?
• Searching Source
• Navigating to Specific Functions
• Color Coding
• Code Completion

What is the Source Editor?

The Source editor is available from a tab in the ALDSP Eclipse perspective. As you build up your data
service, the underlying source is always available from this editor.

Data service source typically:

• References a schema as the data service's XML type (for Entity data services).
• Defines functions in the data service.
• Declares namespaces for referenced data services.
• Contains pragma directives to the query engine.

In addition, data services created from physical data sources contain physical source metadata. For
example, data services based on relational data describe the XML type (such as xs:string), the XPath,
native size, native type, null-ability setting and so forth.

In developing data services there are many occasions when it is necessary or convenient to view and/or
modify source.

The Source editor allows you to directly edit data service source code, as well as schemas. Changes to
source are immediately reflected in other data service modes such as the Query view editor; similarly,
source is immediately updated when changes are made through the Query editor or in Overview mode.

When a data service is created the root level of your dataspace has "ld:" as its namespace. ld
referred to the original name of ALDSP, Liquid Data.

declare namespace ns4= "ld:Update/PhysicalDSs/SDO_WLCO_SET";

Document generated by Confluence on Jan 10, 2008 16:26 Page 403

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html

Data Service Annotations

Searching Source

Eclipse offers several types of search.

• You can find all occurrences of a string in Source view using Eclipse Search menu. Each instance of
the term in your project will be highlighted.

• You can use page search (Ctrl-F). search to find the next occurrence of a term. Standard
search/replace functionality is available.

File Search in Eclipse

Navigating to Specific Functions

To open Source View to a particular query function in Overview mode, first select the function, then click
the Source tab.

Color Coding

XQuery documents in Source View are color-coded according to the following scheme:

Color Meaning

Blue Keywords

Dark gray Comments

Magenta Variable

Dark green XML markup

Red Error conditions

Code Completion

Document generated by Confluence on Jan 10, 2008 16:26 Page 404

http://kmwiki.bea.com/download/attachments/7382/File Search in Eclipse.gif

Code completion is available for XPath built-in and user-defined functions. Similarly, function completion
is invoked when you type a namespace prefix followed by a colon.

Function Completion from Namespace

XPath Completion in Source View

Selecting from Available XQuery Functions

Error Identification

Syntax errors that occur in source either as a result of editing or as a result of changes made in the
XQuery Editor appear in the Problems tab.

Windows > Show View > Problems

Induced Error Condition in Source View

Document generated by Confluence on Jan 10, 2008 16:26 Page 405

http://kmwiki.bea.com/download/attachments/7382/Function Completion from Namespace.gif
http://kmwiki.bea.com/download/attachments/7382/XPath Completion in Source View.gif
http://kmwiki.bea.com/download/attachments/7382/Selecting from Available XQuery Functions.gif
http://kmwiki.bea.com/download/attachments/7382/Induced Error Condition in Source View.gif

Tips

• Click on the error condition in the Problems tab, your cursor will be placed on the relevant
line of code.

• Mouse over the error indicator in the Source editor, the complete error condition will appear.
• Right-click on the left margin of Source view several options appear including the option to

make line numbering active.
• Right-click anywhere in Source view to access Source editor Preferences including

permanently displaying line numbering.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 406

http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

XQuery Language Version Support

This page last changed on Jan 09, 2008 by tkatz.

eDocs Home > BEA AquaLogic Data Services Platform 3.0 Documentation > Data Services Developer's
Guide

XQuery Language Version Support

ALDSP supports the XQuery language as specified in XQuery 1.0: An XML Query Language, W3C Working
Draft of July, 23, 2004. You can use any feature of the language described by the specification.

ALDSP supplements the base XQuery syntax with a set of elements and directives that appear in Source
View as pragmas. Pragmas are a standard XQuery feature that give implementors and vendors a way to
include custom elements and directives within XQuery code.

The BEA implementation of XQuery also contains some extensions to the language and additional
functions. BEA extensions to XQuery and links to W3C documentation are described in the XQuery and
XQSE Developer's Guide.

Contact BEA | Feedback | Privacy | (c) 2008 BEA Systems

Document generated by Confluence on Jan 10, 2008 16:26 Page 407

http://edocs.bea.com
http://edocs.bea.com/aldsp/docs30/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/datasrvc/index.html
http://edocs.bea.com/aldsp/docs30/xquery/index.html
http://edocs.bea.com/aldsp/docs30/xquery/index.html
http://www.bea.com/contact/index.shtml
http:/mailto:aqualogic_doc@bea.com
http://www.bea.com/framework.jsp?CNT=privacy.htm&FP=/content/legal/
http://edocs.bea.com/copyright.html

	Available Pages
	Contents
	Building XQueries
	Add a Where Clause to a Query
	Understanding Data Service Annotations

	Creating and Updating Physical Data Services
	Accessing a Relational Data Source
	Accessing a Web Service
	Adding Operations to an Existing Data Service
	Creating Data Source Metadata
	Database-specific Catalog and Schema Considerations
	Filtering SQL Objects Using Search
	How To Create a Physical Data Service from a Delimited File
	How to Create a Physical Data Service from a Web Service
	Add an External Function to an Existing Physical Data Service

	How To Create a Physical Data Service from an XML File
	How To Create Physical Data Services Based on Database Functions
	How To Create Physical Data Services Based on SQL Statements
	How To Create Physical Data Services from Relational Tables and Views
	How To Create Physical Data Services from Stored Procedures
	How To Create SOAP Handlers for Imported WSDLs
	Selecting SQL Table and View Objects for Import
	Selecting Stored Procedure Objects for Import
	Selecting Web Service Operations to Import
	Setting Characteristics of Imported Web Service Operations
	Setting Properties for New Data Service Operations
	Setting Properties for New Library Functions
	Setting the Data Service Name
	Setting Up the Import Wizard for Relational Objects
	Setting Up the Import Wizard for Tables and Views
	Setting Up the Physical Data Service Creation Wizard
	Stored Procedure Configuration Reference
	Support for Stored Procedures in Popular Databases
	Terms Commonly Used When Discussing Stored Procedures
	Update physical data service metadata
	Verifying Data Service Composition
	XML Name Conversion Considerations

	Data Service Annotations
	Data Service Annotations Schema

	Designing Logical Data Services
	Add a Complex Child Element to a Return Type
	Add a Library Function or Procedure
	Add a Read Function
	Building Logical Entity Data Services
	Check Namespaces in Return Types
	Configure Security for Web Services Applications
	Create a Data Service with a Flat Return Type
	Create a Logical Data Service with a Group By Clause
	Create a Return Type
	Create Conditional Elements in Return Types
	Create Logical Data Service Keys
	Data Service Keys
	Declare a Security Resource
	Entity Data Service Right-click Menu Options
	XML Types and Return Types
	XQuery Source of a Logical Entity Service

	Developing and Managing Dataspace Projects
	ALDSP Functions and Procedures
	Create, Build, Clean, and Delete Dataspace Projects
	Data Service File Validation During Deployment
	Dataspace Projects Cheatsheet
	Deploy, Publish, Configure, and Remove Dataspace Projects
	Export Dataspace Project Artifacts
	Export Dataspace Projects or Project Folders
	Handle Error Conditions in a Dataspace Project
	Import a Dataspace Project
	Validate, Build, Export, and Package Dataspace Projects from the Command Line
	XQuery Functions

	Introduction to Data Services
	ALDSP - Roles and Responsibilities
	ALDSP Start Menu
	Configure the Retail Dataspace Sample Application
	Create Your First Data Services
	Data in the 21st Century
	Data Service Types and Functions
	Getting the Most from the ALDSP Eclipse Framework
	Typical Data Service Development Process

	Managing Update Maps
	Add a Condition
	Add Update Map Procedures
	Cast Using a Built-In XQuery Function
	Cast Using a Custom XQuery Function
	Change a Mapping
	Handle Disabled Procedures in Underlying Data Sources
	Handle Non-Unique Joins
	Handle Non-Unique Values
	Handle Unmapped Required Values
	Recognize When Something is Wrong
	Remove a Mapping
	Revert Customizations
	Test an Update Map Cast
	The XQuery Expression Editor
	Understand Mappings with Different Data Types
	Understanding Update Maps

	Modeling Data Services Relationships
	Create Your First Data Services Model
	Generate a Relationship Modeler Report
	Model Diagram Rules
	Notable Relationship Modeler Properties
	Relationship Between Data Services and Models
	Relationship Modeler Options
	Relationship Models in Source View
	Work with Large Models

	Preparing Services for Clients
	Generate a Mediator Client JAR File
	Generate a Web Service Map from a Data Service
	Generate a Web Services Mediator Client JAR File
	Web Services Map File Reference

	Testing Data Services
	Brief Overview of Service Data Objects
	Enable Optimistic Locking
	Test a Create or Delete Procedure
	Test a Read Function and Simple Update
	Test an Update Procedure

	Understanding Query Plans
	Query Plan Overview

	Working with XQueries in Source View
	Use the Source Editor
	XQuery Language Version Support

