0?7,

‘ L
2 bea
L/

ay

BEAAquaLogic®
Data Service
Platform

Client Application
Developer’s Guide

Note: Product documentation may be revised post-release and
made available from the following BEA e-docs site:

http://e-docs.bea.com/aldsp/docs30/index.html

Version: 3.0
Document Date: June 2005
Revised: January 2008

http://e-docs.bea.com/aldsp/docs30/index.html

Contents

1. Introducing Data Services for Client Applications

Introduction.c.oe i 1-2
What IsaData Service?ot 1-2
What is an ALDSP Client Application?.ttt 1-3
Choosing a Client Programming Modelcoiiiiiitiiiiiiiiiiieeeennnns 1-5
Introducing Service Data Objects (SDO)c.vvviriii i e 1-6
Introducing The Data Service Mediator APTttt 1-7
Typical Client Application Development Processoovviiiiiiiiiieiiineenn. 1-7
Security Considerations in Client Applications............... ... i, 1-8
Performance Considerations...............co.oiiiiiiiiiiiii i 1-8
Client Classpath Settings.ovvti i e e e s 19

Java Mediator APT CLientsouinti e 19

Web Services CIENES.ot 1-10

JMX Mbean Management API Client Classpathcoviiiiene.... 1-10

ALDSP JDBC API Client Classpath.ottt 1-11
Backward Compatibility.ccoo i e 1-11

2. Data Programming Model and Update Framework

INtrodUCHION. . . oottt 2-2

ALDSP and SDOottt 2-2

Client Application Developer's Guide iii

Static and Dynamic Data Object APIS. ...t s 2-4

Static Data Object APL o i 2-4
XML Schema-to-Java Type Mapping Referencecoooiiiinn, 2-7
Dynamic Data Object APIL.o ii i e 2-8
Role of the Mediator APTand SDO ... 2-14

3. Invoking Data Services from Java Clients

Introducing the Mediator AP i e i 3-2
What is SDO?o 3-2
What is the Mediator API? 3-3
Dynamic and Static Mediator APISot 3-3
APT OVEIVIEW . . ettt e e e i 3-4
SUMMATY . . . oot e e e e e e e e e 3-5

Getting Started.t 3-6
BasiC S . . v vt e 3-6
Setting the CLASSPATHo e 3-7

Static Java Mediator API Client CLASSPATH.t 3-7
Dynamic Java Mediator API Client CLASSPATHot 3-7
Running the Sample Applications.............c.oiiiiiiii i 3-7

Sample Static Mediator Applicationo i 3-8
Setting Up the Sample Data Service ..., 3-8
Generating the Mediator Client JARFile........... ..., 3-14
Setting Up the Java Project 3-14
Running and Testing the Code........... .o e 3-17
Examining the Sample Code.t e 3-18

Importing Packages. . ..o e 3-19
Obtaining a Data Access Service Handleo, 3-19
Retrieving Data from the Service............ ... 3-20

iv Client Application Developer's Guide

Obtaining a DataObject fromthe Result oiiiiiii... 3-20

Disposing the Result Object 3-20
Modifying the DataObject e i 3-21
Returning Changes tothe Server, 3-21
Sample Dynamic Mediator Applicationttt 3-22
Setting Up and Running the Sample Code............ ..., 3-22
Sample Java Client Code (Dynamic Mediator APT)cccoviiviin... 3-22
Examining the Sample Codec.oviiiiiiiiiiiii e e 3-24
IMPOrting ClasSes\ vvt ettt e e 3-24
Obtaining a DataAccessService Handleo, 3-24
Retrieving Data from the Serviceo i 3-2b
Obtaining a DataObject fromthe Result oiiiiii... 3-25
Disposing the Result Object 3-26
Modifying the DataObjectt e i 3-26
Returning Changes tothe Server i, 3-26
Creating New DataObjects.vviitin i i i e e 3-27
Creating a New DataObject with the StaticAPT, 3-27
Setting Up and Running the Sample., 3-27
Importing Packagesooviiii i e 3-29
Obtaining a Data Access Service Handle................... ... oiiin... 3-30
Creating a DataFactoryo i e 3-30
Create and Name the DataObject. ..., 3-30
Modifying the DataObjectt e i i 3-31
Returning New DataObject tothe Server., 3-31
Returning the New DataObject Keyt 3-32
Creating a New DataObject with the Dynamic APL. 3-32
Running the Sample. ...t i e 3-32
Importing Packagescooviri i e 3-35

Client Application Developer's Guide

Creating a DataFactory.............ooiiiiiiii i e 3-3b

Create and Name the DataObjectt 3-36
Modifying the DataObject. i i e i 3-36
Returning New DataObject tothe Server..............cooiiiiiii i, 3-37
Returning the New DataObject Key. 3-37
Mediator API Basicsoovvuiii i 3-38
Beyond the Sample Applications. 3-38
More on the Static Mediator API. ... 3-39
More on the Dynamic Mediator APT i 3-39
Invoking Data Service Operations.c.ccoviiiiiiiieee .. 3-39
Gettersand Setters...... ..o 3-39
Naming Conventions for Generated Classes.cocoviiiiiiiiiieeninnnnns 3-40
Mediator Client JAR Naming Convention................coviiiiinieeiiinnn. 3-40

Web Services Mediator Client JAR Naming Convention........................ 3-40
Understanding DASReSULLttt i e i 3-40
Overview of DASResult 3-40
Disposing of DASResult Objects.ooviiet e 3-41
Dynamic Mediator APIs and DASResult............... ..o, 3-42
Static Mediator APIs and DASResultooooiiiiiiiino 3-42
Retrieving an Array of Objects. ... 3-43
Obtaining the WebLogic JNDI Context for ALDSP....................cviiiiie... 3-43
Working with Data Objectst i e 3-44
Enabling Data Objects for Change Tracking.o, 3-44
Modifying Data Object Properties ...t 3-45
Creating a New Data Object........ ..o 3-45
Mapping Data Service TypestoJava Types. 3-46
Conversion of SIMple TYPeso vvt i e e e 3-46
Conversion of Date/Time Typesoovii i e e 3-48

vi Client Application Developer's Guide

Quantified Return Typesovvriiiiii i i e e e 3-49
What is AUtobOXINg?ttt e e 3-49
Web Services SUPPOTt.o vttt e e 3-50
AVaNCEd TOPICS . o o vttt e 3-50
Schema Management.outut it e 3-51
SN S0P . . oot e 3-51
SchemaDownload ... 3-52

Schema Cache Managementc.vueiiitiiiiiiiii e, 3-52

Support for Stateless Operations ...ttt i 3-b3
Cache Managementuuuettniiii ettt e 3-54
Forcing Data Cache Read-through and Update..................... ..ot 3-b4
Specifying XPath Expressions as Arguments. ..., 3-bb
Making Ad HOC QUETIESttt e e s 3-56
Understanding Transaction Behavior. i, 3-56
Transaction Behavior for Read/Write Operations....................coiiiiiiiiis, 3-56
Transaction Behavior for Read-Only Operations.ccooviiiiiiiin, 3-57

4. Invoking Data Services Through Web Services

OVBIVIBW. . . ottt e 4-1
Before You Begin. 4-3
Getting Startedo e 4-3
BasiC SDS . oot e 44
Setting the CLASSPATHot e 4-5
Running the Sample Applications.t 4-5
Sample Static Mediator Application.o 4-6
Setting Up the Sample Data Service., 4-6
Creatinga Web Service Map File......... ..o e 4-6

Client Application Developer's Guide vii

Generating the Web Services Mediator Client JARFileoo. 0. 4-7

Setting Up the Java Project e e 4-8
Running and Testing the Codecoo i 4-11
Examining the Sample Code.ooiiiiiiiiiiii i i e 4-12
Importing Packages.couiiiiiiiii i e 4-12
Obtaining a Data Access Service Handlecooiiiiiiinn... 4-13
Retrieving Data from the Service............ ... i i i 4-13
Obtaining a DataObject from the Result.o .., 4-14
Disposing the Result Object. 4-14
Modifying the DataObject. e i 4-14
Returning Changes tothe Server., 4-14

Sample Dynamic Mediator Application.ttt 4-15
Setting Up and Running the Sample Codecoiiiiiiiiiiiiiiiiiinn... 4-15
Sample Java Client Code (Dynamic Mediator APT).............ccovviviviininnnn, 4-15
Examining the Sample Code.t i e e i 4-17
IMPOrting ClasSesvvvvt ittt e e e 4-17
Obtaining a DataAccessService Handlecoiiiiiiiiinn... 4-18
Retrieving Data from the Service............. ..o i i 4-18
Obtaining a DataObject from the Result.co ... 4-19
Disposing the Result Object. 4-19
Modifying the DataObject. e e 4-19
Returning Changes to the Server. ..., 4-19
Transaction Behavior and Web Services..............ooviiiiiiiiiiiiiiiiiii i, 4-20
Securing Your Web Services Application ...ttt 4-21

5. Using SQL to Access Data Services

Introducing SQL Access to Data Services.vvvvvriniiiiiiii i, 5-2

Features of the ALDSP JDBC Driver.coovviiiiii i 5-4

viii Client Application Developer's Guide

Exploring ALDSP and JDBC Artifactscooiviiiiii i, b-4

JDBC and SQL Support in ALDSP. e 5-b
JDBO SUPDPOTt .« .ottt e 5-b
SQL SUD PO .+ vttt ettt e 5-12

Supported SQL Statements e 5-12
Supported SQL Functionso 5-12
Table Parameter SUpport.oovviiiiii i i i i e e 5-17
Additional Details and Limitations. ... 5-18

Preparing to Use SQL to Access Data Servicesccvvviiiiiiieeniiiiinnnn.. 5-19
Publishing Data Service Operations.............c.oviiiiiiiiiiiireeiiiinna.. 5-19
Configuring the ALDSP JDBCDriver.........ovvvviiii i 5-19

Accessing Data Services Using SQL From a Java Application........................... 5-21

Obtaining a Connection.ttt e e 5-21
Using the PreparedStatement Interface i, 5-23
Using the CallableStatement Interfacet 5-23

Advanced Features..........o.ovuiniiii i 5-24

Using Table Parametersovueitiiiiiiiii i i e 5-24
When to Use Table Parameters..............ooovviiiiiiiiiiiiiiniin, 5-24
Setting Table Parameters Using JDBC. ..., 5-2b

Accessing Custom Database Functions Using JDBC................ ..., 5-30

Accessing Data Services Using SQL-Based Applicationscovviiivnn... 5-30
Accessing Data Services Using SQL Explorer ..., 5-31
Connecting to the ALDSP Client Using OpenLink ODBC-JDBC Bridge 5-34
Using OpenLink with Reporting Toolsot 5-36

Crystal Reports XI.vutiii i e e e 5-36
Business Objects XI-Release 2 (ODBC) vvvi it 5-38
Microsoft Access 2003-ODBC . ..ot 5-42
Microsoft Excel 2003-ODBC.oovviiiiiii i 5-43

Client Application Developer's Guide ix

6. Using Excel to Access Data Services

Introducing the Excel Add-in........ ..o i e e 6-2
Installing the Excel Add-in.oo i i 6-2
System Requirementsoviiriiiii e i 6-2
Installation Instructions.coo i 6-2
Accessing Excel Add-in Documentation....................cooieiiiiiiia. 6-5
Preparing to Use the Excel Add-in.ccooiiii e 6-6
Accessing the Data Service Using Excel 6-8
/. Supporting ADO.NET Clients

Overview of ADO.NET Integration in ALDSPt 7-2
Understanding ADO.NETttt e e 7-2
ADO.NET Client Application Development Tools.ccovvvvveeiiiinnn. 7-3
Understanding How ALDSP Supports ADO.NET Clients.ccvvviinnnn... 7-4
Supporting Java CLHentsouiuiiiiii i e e 7-6
Enabling ALDSP Support for ADONET Clients...........ccooviieiieeiiiiiinnnn... 7-7
Generating an ALDSP Web Services Mapperoovviiiineeeeeeiiiiinnne... T-7
Viewing an ADO.NET-Enabled WSDLt 7-9
Creating a Web Reference in ADO.NET Client by Providing the ALDSP WSDL URL..... 7-11
Adapting ALDSP XML Types (Schemas) for ADO.NET Clients 7-11
Approaches to Adapting XML Types for ADONET. ..., 7-12
XML Type Requirements for Working With ADO.NET DataSets.................. 7-13
Referencesouuiiii i 7-15
Creating a Data Service Based on an RPC-Style Web Service 7-16
Generated Artifacts Reference. ... 7-17
XML Schema Definition for ADO.NET Types DataSet.............................. 7-17
Web Services Description Language (WSDL) File for Microsoft ADO.NET Clients 7-18

X Client Application Developer's Guide

3. Advanced Topics

Accessing Metadata Using Catalog Servicesovviiiiiieeeniiiiineeeeennns 8-1
Installing Catalog ServiCesouurterrteii i 8-2
Using Catalog SErviCes vutvt et e 8-3

Application (application.ds)vvuiiiiii i 8-3
DataService (DataService.ds)ovuuviiiiiiii i e 8-4
DataServiceRef (DataServiceRef.ds)coovviiiini i 8-5
Folder (folder.ds)vuuvt e e e e 8-7
Function (Function.ds)coovvutii e 8-8
Relationship (Relationship.ds)............cooiviiiiiiiii i 8-11
Schema (Schema.ds)vvvrtit i e e 8-14

Filtering, Sorting, and Fine-tuning Query Resultso .. 8-16

UsING FALtersot e e e e 8-17
Specifying Filter Effects. 8-19
Ordering and Truncating Data Service Results................... ..ot 8-21
Using Ad Hoc Queries to Fine-tune Results from the Client 8-22

Client Application Developer's Guide Xi

Xii Client Application Developer's Guide

CHAPTERa

Introducing Data Services for Client
Applications

This chapter provides an overview of ALDSP for client application developers. It includes the
following topics:

e Introduction

What Is a Data Service?

What is an ALDSP Client Application?

Choosing a Client Programming Model

e Introducing Service Data Objects (SDO)

Introducing The Data Service Mediator API

Typical Client Application Development Process

Security Considerations in Client Applications

Client Classpath Settings

Performance Considerations

Client Application Developer’s Guide 1-1

Introducing Data Services for Client Applications

Introduction

BEA Agqualogic Data Services Platform (ALDSP) brings data access into the world of
service-oriented architecture (SOA). ALDSP enables organizations to consolidate, integrate,
transform, and service-enable disparate data sources scattered throughout their enterprise,
making enterprise data available as an easy-to-access, reusable commaodity: a data service.

From the perspective of a client application, a data service typically represents a distinct business
entity, such as a customer or order. Behind the scenes, the data service may aggregate the data
that comprises a single view of the data, for example, assembling it from multiple sources and
transforming it in a number of ways. A data service may be related to other data services, and it
is easy to follow these relationships in ALDSP. Data services insulate the client application from
the details of the composition of each business entity. The client application only has to know the
public interface of the data service.

With ALDSP, client applications can use heterogeneous data through a unified service layer
without having to contend with the complexity of working with distributed data sources using
various connection mechanisms and data formats. For client developers, ALDSP provides a
uniform, consolidated interface for accessing and updating heterogeneous back-end data. It
enables a services-oriented approach to information access using data services.

This document describes how to create ALDSP-aware client applications. It explains the various
client access mechanisms that ALDSP supports and its main client-side data programming
model, including Service Data Objects (SDO). It also describes how to create update-capable data
services using the ALDSP update framework.

e For information about server-side aspects of creating and managing data services, see the
Data Services Developer’s Guide.

e For information on administering data services, including metadata, cache, and security
management, see the ALDSP Administration Guide.

What Is a Data Service?

1-2

From a high-level perspective, a data service defines a distinct business entity such as a customer
and the customer’s orders. The data service defines a unified view of the business entity by
aggregating data from any number of sources — relational database management systems
(RDBMS), web services, enterprise applications, flat files, and XML files, for example. Data
services can also transform data from the original sources as needed.

Client Application Developer's Guide

../datasrvc/index.html
../admin/index.html

What is an ALDSP Client Application?

In order to use data services as a client, you need know only a few details, such as:
e The name of the data service.
e The functions and procedures exposed by the data service.

e The data types associated with the data service.

Data service client applications can use data services in the same way that a web service client
application invokes the operations of a web service.

For detailed information on developing data services, see the Data Services Developer’s Guide.

What is an ALDSP Client Application?

An ALDSP client application is any application that invokes data service routines. Client
applications can include Java programs, non-Java programs such as Microsoft ADO.NET
applications, BEA Workshop for WebLogic applications, JDBC/ODBC, or web-service based
applications in any programming language.

e Java client applications can use data service functions and procedures through the Data
Services Mediator API (also known simply as the Mediator API).

e Java-based web service applications can use the Mediator API.

e Workshop for WebLogic applications (such as portals, business processes, and Web
applications) can leverage data services by means of Data Service controls. (Controls are
reusable Java components that can be used in Workshop for WebLogic applications.) Data
Service controls can be used as the basis of many ALDSP-enabled application scenarios.
For example:

— Data Service controls can be added to web services, portal projects, and Web projects.

— Data Service controls can be used to generate web services that can make ALDSP
services available to a wide variety of WebLogic and non-WebLogic applications and
integration channels.

— Data Service controls can be used within a JPD (Java process definition, a workflow
component).

e The ALDSP JDBC driver provides JDBC clients, such as reporting tools, with SQL-based
read access to ALDSP data. (ODBC clients can use a JDBC bridge to connect to the data.)

e Other web-service based applications can access data service operations through ALDSP’s
web services API.

Client Application Developer's Guide 1-3

../datasrvc/index.html

Introducing Data Services for Client Applications

Figure 1-1 provides an overview of these multiple access methods.

Figure 1-1 Accessing ALDSP Services

client
applications

Mediator Data service

Web services
API control v JbBC

ALDSP Services Layer (SDO)

data sources

o O°° 5

Regardless of the client type, ALDSP provides a uniform, service-oriented mechanism for
accessing and modifying distributed, heterogeneous data. Developers can focus on business logic
rather than on the details of various data source connections and formats.

In your client application code, a client simply invokes the data service routine; in turn, ALDSP:
e Gathers data from the appropriate sources (via XQuery).
e Integrates and instantiates the results as data objects.

e Returns the materialized data objects to your client application.

The ALDSP data objects conform to the Service Data Object (SDO 2.1) specification, a
Java-based API for data programming that is the result of joint effort by BEA, IBM, Oracle, SAP,
and others.

1-4 Client Application Developer's Guide

Choosing a Client Programming Model

Choosing a Client Programming Model

Application developers can choose from among several client APl models for accessing ALDSP
services. The model chosen will depend on the desired access mechanism. Each access method
has its own advantages and uses. Table 1-2 provides a description of each of these access methods
and summarizes the advantages of the various programming models for accessing ALDSP data

services.

Table 1-2 Summary of Techniques for Exposing Data Services to Clients

Data Access Description Advantages Other Details
Technique

Java Data Instantiate a remote data service Full read/write access to Requires adequate
Service interface and invoke public data. Java programming
Mediator methods on the interface. skills.

See Chapter 3, “Invoking Data
Services from Java Clients.”

Web services

Data services can be directly
mapped to web services. Clients
have access to data through SOAP
messages and/or SDOs.

See Chapter 4, “Invoking Data
Services Through Web Services.”

Read/write access to data.

Industry standard.

N/A

SQL

Data service functions first need to
be published as SQL objects.
These SQL objects are then
available to your application
through JDBC.

See Chapter 5, “Using SQL to
Access Data Services.”

Accepted by commonly
used reporting tools.

Read-only, and for
use SQL-based
clients only.

Client Application Developer's Guide 1-5

Introducing Data Services for Client Applications

Table 1-2 Summary of Techniques for Exposing Data Services to Clients

Excel The ALDSP Excel add-in lets you Real-time data can be Requires Data
invoke data service operations quickly rendered in the Services Studio
from Microsoft® Excel®. familiar Microsoft Excel
See Chapter 6, “Using Excel to format.

Access Data Services.”

ADO.NET Allows interoperability between Enables ALDSP data Specific to
ALDSP data services and services to be used in ADO.NET
ADO.NET. Microsoft ADO.NET applications.

See Chapter 7, “Supporting client applications.

ADO.NET Clients.”

Introducing Service Data Objects (SD0)

1-6

Service Data Objects (SDO), a specification proposed jointly by BEA, IBM, Oracle, SAP, and
others, is a Java-based API for data programming. SDO simplifies data programming against data
sources of different types. It simplifies data access, giving data consumers a consistent, uniform
approach to using data whether it comes from a database, web service, application, or any other
system.

SDO uses the concept of disconnected data. Under this architecture, a client gets a copy of
externally persisted data in an SDO data object or data graph, which is a structure for holding
data. The client operates on the data remotely; that is, while disconnected from the data source.

If the client makes data changes that need to be saved to the data source, a connection to the
source is re-acquired later. Keeping connections active for the minimum time possible maximizes
scalability and performance of web and service-oriented applications.

To SDO clients, the data has a uniform appearance no matter where it originated or what its
underlying source format is. Enabling this unified view of data in the SDO model is the concept
of a data mediator. The mediator is the intermediary between data clients and back-end systems.
It allows clients to access data services and invoke their functions to acquire data or submit data
changes. ALDSP implements such an SDO mediator.

For details on SDO, see Chapter 2, “Data Programming Model and Update Framework.”

Client Application Developer's Guide

Introducing The Data Service Mediator API

Introducing The Data Service Mediator API

The SDO specification allows for many types of mediators, each intended for a particular type of
query language or back-end system. ALDSP provides a Data Service Mediator API, a server-side
component of the ALDSP XQuery processing engine that serves as the intermediary between
data services and client applications or processes.

The Data Service Mediator facilitates access and updates to the various data sources that
comprise any data service. The Mediator is also the core mechanism for the data service update
framework. For details on using the Mediator API for web services clients and for Java clients,
see:

e Chapter 3, “Invoking Data Services from Java Clients”

e Chapter 4, “Invoking Data Services Through Web Services”

Typical Client Application Development Process

Developing an ALDSP-enabled client applications encompasses these steps:

1.

3.

Identify the data services you want to use in your application. The Data Services Platform
Console can be used to find all services available on your WebLogic Server. The DSP
Console serves as a data service registry within the ALDSP architecture; it shows available
data services, including the specific functions and procedures that each data service provides.

Choose the data access approach that best suits your needs. (Table 1-2, “Summary of
Techniques for Exposing Data Services to Clients,” on page 1-5 describes the advantages of
the different access mechanisms.) The approach you choose also depends on how the data
service has been deployed.

For example, if the data service has been mapped out as a web service, you can develop a
Web service client application using Java in conjunction with the service’s WSDL file.

Similarly, if the data service is incorporated in a portal, business process, or Web
application, your client application development process may take place entirely in the
context of the server, as a set of pageflows or other server-side artifacts, using a control.

Obtain the required JAR files. (See specific chapters in this guide for JAR file requirements.)

Client Application Developer's Guide 1-1

Introducing Data Services for Client Applications

Security Considerations in Client Applications

ALDSP administrators can control access to deployed ALDSP resources through role-based
security policies. ALDSP leverages and extends the security features of the underlying WebL ogic
platform. Roles can be set up in the WebLogic Administration Console. (See the ALDSP
Administration Guide for detailed information about the DSP Console.)

Access policies for resources can be defined at any level — on all data services in a deployment,
individual data services, individual data service functions, or even on individual elements
returned by the functions of a data service.

For information on ALDSP security, see “Securing Aqualogic Data Services Platform
Resources,” in the ALDSP Administration Guide. For complete information on WebLogic
security, see Programming WebLogic Security on e-docs.

Performance Considerations

1-8

Data service performance is the result of the end-to-end components that make up the entire
system, including:

e Data service design. The number, types, and capabilities of data sources, complexity of
logical data source aggregation, and other data service design considerations can affect
performance.

o Number of clients accessing the data service. The number of simultaneous clients can
affect performance.

e Performance of the underlying data sources. Since data services access underlying data,
the performance and availability of those systems can affect performance.

e Hardware resources. The number of servers, processing power, memory, network
structure, and other factors for each and every platform throughout the system, client and
server alike, can affect performance.

Before creating a client application for a data service, it is recommended that you be aware of the
performance of each underlying data source and benchmark the performance of the data services
as you develop them. Use load-testing tools to determine the maximum number of clients that
your deployed data services can support.

You can use ALDSP’s auditing capabilities to obtain performance profile information that you
can use to identify and resolve performance problems if they occur. For detailed information on
ALDSP audit capabilities see ALDSP Administration Guide.

Client Application Developer's Guide

../admin/index.html
../admin/index.html
http://e-docs.bea.com/wls/docs92/security/index.html
../admin/security.html
../admin/security.html
../admin/index.html
../admin/index.html

Client Classpath Settings

Client Classpath Settings

The following tables provide classpath requirements for:
e Java mediator API client (dynamic and static)
e \Web Service client (dynamic and static)
e JMX Mbean Management API client
e JDBC API Client

Java Mediator API Clients

Client applications using the ALDSP Mediator API need one of the following classpath settings:

Listing 1-1 Static Java Mediator API Client Classpath

CLASSPATH=
<app-static-client>_jar <= this iIs generated static client jar
<ALDSP_HOME>/l11ib/sdo.jar
<ALDSP_HOME>/lib/ld-client_jar
<WL_HOME>/common/lib/apache_xbean.jar
<WL_HOME>/server/lib/weblogic.jar

Listing 1-2 Dynamic Mediator API Classpath

CLASSPATH=
<ALDSP_HOME>/l1ib/sdo. jar
<ALDSP_HOME>/lib/ld-client.jar
<WL_HOME>/common/1ib/apache_xbean.jar
<WL_HOME>/server/lib/weblogic.jar

Client Application Developer's Guide 1-9

Introducing Data Services for Client Applications

Web Services Clients

Client applications using the ALDSP Native Web Services feature need one of the following
classpath settings:

Listing 1-3 Static Web Service Client Classpath

CLASSPATH=
<app-static-client>_jar <= this Is generated static client jar
<ALDSP_HOME>/lib/sdo. jar
<WL_HOME>/common/lib/apache_xbean.jar
<WL_HOME>/server/lib/weblogic. jar

Listing 1-4 Dynamic Web Service Clients

CLASSPATH=
<ALDSP_HOME>/lib/sdo. jar
<ALDSP_HOME>/lib/ld-client.jar
<WL_HOME>/common/1ib/apache_xbean.jar
<WL_HOME>/server/lib/weblogic.jar

JMX Mbean Management API Client Classpath

The JIMX Mbean Management API needs the following classpath settings:

Listing 1-5 JMX Mbean Management API Client Classpath

CLASSPATH=
<ALDSP_HOME>/l1ib/1d-server-core.jar
<ALDSP_HOME>/lib/ld-client.jar
<WL_HOME>/common/lib/apache_xbean.jar
<WL_HOME>/server/lib/weblogic. jar

1-10 Client Application Developer's Guide

Backward Compatibility

ALDSP JDBC API Client Classpath

The ALDSP JDBC API client needs the following classpath settings:

Listing 1-6 ALDSP JDBC API Client Classpath

CLASSPATH=
<ALDSP_HOME>/l1ib/1djbc.jar
<ALDSP_HOME>/lib/ld-client.jar
<WL_HOME>/server/lib/weblogic. jar

Backward Compatibility

ALDSP 2.5 provided an interoperability JAR file (wls90interop.jar) that allowed WebLogic
Server 9.2 clients to access ALDSP 2.x data services. After upgrading to ALDSP 3.0, you need
to remove all uses of wis90interop.jar from both the WLS 9.2 based client CLASSPATH and the
ALDSP 2.5 client CLASSPATH.

Client Application Developer's Guide 1-1

Introducing Data Services for Client Applications

1-12 Client Application Developer's Guide

CHAPTERa

Data Programming Model and Update
Framework

BEA Aqualogic Data Services Platform (ALDSP) implements Service Data Objects (SDO) as
its data client-application programming model. This chapter discusses SDO concepts and APIs
that are of interest to ALDSP client application developers.

e Introduction
e ALDSP and SDO

e Role of the Mediator APl and SDO

Client Application Developer's Guide 2-1

Data Programming Model and Update Framework

Introduction

SDO is an architecture and set of APIs for working with data objects while disconnected from
their source. In ALDSP, SDO-compliant data objects— whether typed or untyped data objects —
are obtained from data services through Mediator APIs or through Data Service controls. (See
also “Introducing Service Data Objects (SDO)” on page 1-6.)

Client applications manipulate the data objects as required for the business process at hand, and
then submit changed objects to the data service, for propagation to the underlying data sources.
Although the SDO specification does not define one, it does discuss the need for mediator
services, in general, that can send and receive data objects; the specification also discusses the
need for handling updates to data sources, again, without specifying an implementation: The
SDO specification leaves the details up to implementors as to how mediator services are
implemented, and how they should handle updates to data objects.

As discussed in “Introducing The Data Service Mediator API” on page 1-7, ALDSP’s Data
Service Mediator is the process that not only handles the back-and-forth communication between
client applications and data services, it also facilitates updates to the various data sources that
comprise any data service.

This chapter includes information about ALDSP’s implementation of the SDO data programming
model, as well as its update framework.

ALDSP and SDO

2-2

When you invoke a data service’s read operation through the Data Service Mediator API, a data
object is returned. Data objects are the fundamental artifacts of the SDO data programming
model.

Tip: Forinformation on the Mediator API, see Chapter 3, “Invoking Data Services from Java
Clients.”

Data objects represent the contents of a complex type. A data object contains properties, which
represent elements and attributes. The properties can be of simple or complex types. In SDO, a
simple type property is called a datatype property, while a complex type property contains a data
object (which in turn has properties).

Data objects can be defined to contain a special kind of property called a change summary. A
change summary is used to track changes to the data object. As changes are made to the properties

Client Application Developer's Guide

ALDSP and SDO

(or properties of nested descendant data objects), the changes are captured in the change
summary.

The change summary is used by the Mediator to derive the update plan and ultimately, to update
data sources. The change summary submitted with each changed SDO remains intact, regardless
of whether or not the update function succeeds, so it can support rollbacks when necessary.

A datagraph is a built-in data object type that is defined to have a change summary property. Thus
it is convenient to use a datagraph to encapsulate change tracking. The datagraph has one
immediate data object child, and a change summary that can track changes to this data object.
Figure 2-1 shows the structure of a datagraph.

Figure 2-1 Structure of a DataGraph

CUSTOMERDataGraph

— CUSTOMER "\
. ., N\
CUSTOMERID = 'CUSTOMERO \
clientApp.java 3
i LAST_NAME = "smith" Q;\.
; A
ORDERS*
[— ORDERID = 2251
- A .
A ITEMS*
e ¥
CHANGESUMMARY _ ©
CUSTOMER
— LAST_NAME "
. i [EMAIL_ADDRESS 4
r o : 3 A"

. _ >
Data Service Mediator - - =P

Data Services Layer

Data Sources ‘

Client Application Developer's Guide 2-3

Data Programming Model and Update Framework

Static and Dynamic Data Object APIs

SDO specifies both static (typed) and dynamic (untyped) interfaces for data objects:

e Static. The static data object API is an XML-to-Java API binding that contains methods
that correspond to each element of the data object returned by the data service. These
generated interfaces provide both getters and setters: getCustomer() and setCustomer().
For examples see Table 2-4, “Static (Typed) Data Object API Getters and Setters,” on
page 2-6.

e Dynamic. The dynamic data object API provides generic getters and setters for working
with data objects. Elements are passed as arguments to the generic methods. For example,
get("'Customer'™) or set(*'"Customer™).

The dynamic data object API can be used with data types that have not yet been deployed at
development time.

Table 2-2 summarizes the advantages of each approach.

Tahle 2-2 Static and Dynamic Data Object APIs

Data Model Advantages...

Static Data Object API e Easy-to-implement interface; code is easy to read and maintain.
e Compile-time type checking.
* Enables code-completion in Data Services Studio.

Dynamic Data Object APl < Dynamic; allows discovery.
* Runtime type checking.
« Allows for a general-purpose coding style.

Static Data Object API

SDO’s static data object APl is a typed Java interface generated from a data service’s XML
schema definition. It is similar to JAXB or XMLBean static interfaces. The interface files,
packaged in a JAR, are typically generated by the data service developer.

2-4 Client Application Developer's Guide

ALDSP and SDO

The generated interfaces extend the commonj.sdo.DataObject interface and provide typed getters
and setters for all properties of the XML datatype.

An interface is also generated for each complex property (such as CREDIT and ORDER shown
in Figure 2-3), with getters and setters for each of the properties that comprise the complex type.

For many-valued properties, a get method is generated that returns a java.util.List object. A
many-valued property corresponds to an XML schema element that has maxOccurs greater than
one. The List returned by a get method for a many-valued property is “live.” This means that if
you modify the List object, the changes are reflected directly and immediately in the containing
data object.

As an example of how static data object APIs are generated, given the CUSTOMER data type
shown in Figure 2-3, generating typed client interfaces results in CUSTOMER, CREDIT,
ORDER, and POITEM interfaces, each of which includes getters, setters, and factory classes (for
instantiating static data objects and their properties).

Figure 2-3 CUSTOMER Return Type Displayed in DSP Console’s Metadata Browser

General ‘ Dependencies | Withere Used | Properties | Return Type

This shows the return type of XDS function

CUSTOMER
@ CUSTOMERID xsint

CUSTOMERMNAME xs:string
CREDIT*

@ CREDITSCORE xsiint
(@ CREDITRATING xs:string
ORDER ™

2 ORDERID xs:int

) CUSTOMERID xsint
(@ POITEM *

ORDERID xs:int

KEY xs:int
ITEMNUMBER ? ssiint
el QUANTITY 7 xs:int

When you develop Java client applications that use SDQO’s static data object APIs, you will
import these typed interfaces into your Java client code. For example:

import appDataServices.AddressDocument;

Client Application Developer's Guide 2-5

Data Programming Model and Update Framework

Table 2-4 lists static data accessor and related API methods. These methods are generated using
names that match the schema names with the first letter in the name forced to be upper-case. The

generated names cannot conflict with standard Java naming rules.

Table 2-4 Static (Typed) Data Object API Getters and Setters

Static Data Object APl (Generated)

Description

Examples

Type getpPropertyName()

Returns the value of the
property. Generated for
boolean-valued properties.

String name = getLAST_NAMEQ)

List<Type> getpPropertyName()

For multiple occurrence
elements, returns all
PropertyName elements.

List<ORDER> orders = getORDER()

void setPropertyName(Type
newValue)

Sets the value of the property
to the newValue.

setLAST_NAME(’Smith™)

boolean ispPropertyName()

Determines whether the
PropertyName element or
attribute exists in the data
object.

ISSPECIAL_DELIVERY(Q)

void createPropertyName()

Generated only for
non-datatype properties.
Creates a data object for the
specified property. The
(created) data object is
initialized with no values in its
properties.

createORDER(Q)

boolean isSetpPropertyName()

Determines whether the
property is set to some value.

iSSetLAST NAMEQ)

void unsetPropertyName()

Unsets the property. The
property is then considered not
to be set.

unsetLAST_NAMEQ)

2-6 Client Application Developer's Guide

XML Schema-to-Java Type Mapping Reference

ALDSP client application developers can use the Data Services Platform Console to view the
XML schema types associated with data services (see Figure 2-3, “CUSTOMER Return Type
Displayed in DSP Console’s Metadata Browser,” on page 2-5). The Return Type tab indicates the
data type of each element—string, int, or complex type, for example. The XML schema data
types are mapped to corresponding Java types using the data type mappings shown in Table 2-5.

Table 2-5 XML Schema to Java Data Type Mapping

ALDSP and SDO

XML Schema Type SDO Java Type XML Schema Type SDO Java Type
xs:anyType commonj.sdo.DataObject xs:integer java.math.BigInteger
xs:anySimpleType java.lang.Object xs:language String

xs:anyURI String xs:long long or java.lang.Long
xs:base64Binary byte[] xs:Name String

xs:boolean boolean or java.lang.Boolean xs:NCName String

xs:byte byte or java.lang.Byte xs:negativelnteger java.math.BigInteger
xs:date String xs:NMTOKEN String

xs:dateTime String xs:NMTOKENS List<String>
xs:decimal java.math.BigDecimal xs:nonNegativelnteger java.math.Biglnteger
xs:double double or java.lang.Double xs:nonPositivelnteger java.math.BigInteger
xs:duration String xs:normalizedString String

xs:ENTITIES List<String> xs:NOTATION String

xs:ENTITY String xs:positivelnteger java.math.Biglinteger
xs:float float or java.lang.Float xs:QName String

xs:gDay String xs:short short or java.lang.Short
xs:gMonth String xs:string String

xs:gMonthDay String xs:time String

xs:gYear String xs:token String

Client Application Developer's Guide 2-1

Data Programming Model and Update Framework

Table 2-5 XML Schema to Java Data Type Mapping (Continued)

XML Schema Type SDO Java Type XML Schema Type SDO Java Type
xs:gYearMonth String xs:unsignedByte short or java.lang.Short
xs:hexBinary byte[] xs:unsignedint long or java.lang.Long
xs:1D String xs:unsignedLong java.math.BigInteger
xs:IDREF String xs:unsignedShort int or java.lang.Integer
xs:IDREFS List<String> xs:keyref String

xs:int int or java.lang.Integer

2-8

Dynamic Data Object API

Every static (typed) data object implements the Data Object interface; therefore, you can use the
DataObject (dynamic) methods as well as the static API. This API provides generic property
getters and setters for specific Java data types (String, Date, List, Biginteger, and BigDecimal,
for example). Table 2-6 lists representative APIs from SDO’s dynamic Data Object API. The
propertyName argument indicates the name of the property whose value you want to get or set;
propertyValue is the new value. The dynamic Data Object API also includes methods for setting
and getting a DataObject’s property by indexValue. This includes methods for getting and setting
properties as primitive types, which include setint(), setDate(), getString(), and so on.

As an example, assuming that you have a reference to a CUSTOMER data object, you can use
the dynamic Data Object API to get the LAST_NAME property as follows:

String lastName = customer.getString("'LAST_NAME");

The SDO APIs are standard implementations. You can read the full SDO specification, “SDO for
Java Specification V2.1 here:

http://www.osoa.org/display/Main/Service+Data+Objects+Specifications
See also Service Data Objects on dev2dev.

Table 2-6 lists dynamic Data Object API getters and setters.

Client Application Developer's Guide

http://www.osoa.org/display/Main/Service+Data+Objects+Specifications
http://dev2dev.bea.com/pub/a/2005/11/sdo.html

Table 2-6 Dynamic (Untyped) Data Object APl Getters and Setters

ALDSP and SDO

Dynamic Data Object API

Description

Example

get(int Propertylndex)

Returns the PropertyName child
element at the specified index.

get(5)

set(int Propertylndex,
Object newvalue)

Sets the value of the property to
the newValue.

set(5, CUSTOMER3)

set(String PropertyName,
Object newvalue)

Sets the value of the
PropertyName to the newValue.

set("'LAST_NAME™, *"Nimble'™)

set(commonj .sdo.Property
property, Object newValue)

Sets the value of Property object
to the newValue.

set(LASTNAME, "Nimble')

getType(String
PropertyName)

Returns the value of the
PropertyName. Type indicates
the specific data type to obtain.

getBigDecimal ("'CreditScore'™)

unset(int Propertylndex) Unsets the property. The unset(5)
property is then considered not
to be set.
unset(commonj .sdo.Property Unsets the property. The unset(LASTNAME)

property)

property is then considered not
to be set.

unset(String PropertyName)

Unsets the property. The
property is then considered not
to be set.

unset(*'LAST_NAME™)

createDataObject(commonj .
sdo.Property property)

Returns a new DataObject for
the specified containment
Property.

createDataObject(LASTNAME)

createDataObject(String

Returns a new DataObject for

createDataObject(*'LAST_NAME')

PropertyName) the specified containment

property.
createDataObject(int Returns a new DataObject for createDataObject(5)
Propertylndex) the specified containment

property.

Client Application Developer's Guide 2-9

Data Programming Model and Update Framework

Table 2-6 Dynamic (Untyped) Data Object API Getters and Setters

Dynamic Data Object API Description Example

createDataObject(String Returns a new DataObject for createDataObject(""LAST_NAME",""
PropertyName, String the specified containment http://namespaceURI_here",
namespaceURI, String property. "String™)

typeName)

delete() Removes the object from its delete(CUSTOMER)

container and unsets all
writeable properties.

2-10

XPath Expressions in the Dynamic Data Object API

ALDSP supports a limited subset of XPath expressions called SDO path expressions. SDO path
expressions offer flexibility in how you locate data objects and attributes in the dynamic Data
Object API’s accessors. For example, you can filter the results of a get() method invocation
based on data elements and values:

company . get(*'CUSTOMER[1]/PO 1 TEMS/ORDER [ORDER 1D=3546353]"")

The SDO path implementation augments XPath 1.0 support by adding zero-based array index
notation (“.index_from_0") to XPath’s standard bracketed notation ([n]). As an example,
Table 2-7 compares the XPath standard and SDO augmented notations to refer to the same
element, the first ORDER child node under CUSTOMER (Table 2-7).

Table 2-7 XPath Standard and SDO Augmented Notation
XPath Standard Notation SDO Augmented Notation

get(""CUSTOMER/ORDER[1]""); get ("CUSTOMER/ORDER.0") ;

Zero-based indexing is convenient for Java programmers who are accustomed to zero-based
counters, and may want to use counter values as index values without adding 1.

ALDSP fully supports both the traditional index notation and the augmented notation.

Client Application Developer's Guide

ALDSP and SDO

Keep in mind these other points regarding ALDSP’s XPath support:
e Expressions with double adjacent slashes ("//"") are not supported. As specified by XPath
1.0, you can use an empty step in a path to effect a wildcard. For example:
("'CUSTOMER//POITEM'™)

In this example, the wildcard matches all purchase order arrays below the CUSTOMER
root, which includes either of the following:

CUSTOMER/ORDERS/POITEM
CUSTOMER/RETURNS/POITEM

Because this notation introduces type ambiguity (types can be either ORDERS or
RETURNS), it is not supported by the ALDSP SDO implementation.

e In SDO Path, "@" has no significance and is ignored. Elements and attributes in XML
Schema both map to properties in SDO, and "@", the notation for denoting an attribute,
can be used with any property; however, the "@" will be ignored. Moreover, attributes can
be referenced in SDO Path simply with the attribute name, without an "@". For example,
the ID attribute of the following element:

<ORDER 1D="3434">
is accessed with the following path:
ORDER/@1D, or with
Order/ID
See also “Specifying XPath Expressions as Arguments” on page 3-55.

Obtaining Type Information about Data Objects

The dynamic Data Object API returns generic data objects. To obtain information about the
properties of a data object, you can use methods available in SDO’s Type interface. The Type
interface (located in the commonj . sdo package) provides several methods for obtaining
information, at runtime, about data objects, including a data object’s type, its properties, and their
respective types.

According to the SDO specification, the Type interface (see Table 2-8) and the Property interface
(see Table 2-9) comprise a minimal metadata API that can be used for introspecting the model of
data objects. For example, the following obtains a data object’s type and prints a property’s value:

DataObject o = ...;

Type type = o.getType();

if (type.getName().equals(*"CUSTOMER™) {
System.out.printin(o.getString(""CUSTOMERNAME™)); }

Client Application Developer's Guide 2-11

Data Programming Model and Update Framework

Once you have an object’s data type, you can obtain all its properties (as a list) and access their
values using the Type interface’s get Properties() method, as shown in Listing 2-1.

Listing 2-1 Using SDO’s Type Interface to Obtain Data Object Properties

public void printDataObject(DataObject dataObject, int indent) {
Type type = dataObject._getType();
List properties = type.getProperties();
for (int p=0, size=properties.size(); p < size; p++) {
if (dataObject.isSet(p)) {
Property property = (Property) properties.get(p);
// For many-valued properties, process a list of values
if (property.isMany()) {
List values = dataObject.getList(p);
for (int v=0; count=values.size(); v < count; v++) {
printValue(values.get(v), property, indent);
¥
else { // For single-valued properties, print out the value
printValue(dataObject.get(p), property, indent);

}

Table 2-8 lists other useful methods in the Type interface.

Table 2-8 Type Interface Methods

Method Description

java.lang.Class getlnstanceClass() Returns the Java class that this type represents.
jJava.lang.String getName() Returns the name of the type.
java.lang.List getProperties Returns a list of the properties of this type.

2-12 Client Application Developer's Guide

Tahle 2-8 Type Interface Methods

ALDSP and SDO

Method

Description

Property getProperty(
Java.lang.String propertyName)

Returns from among all Property objects of the specified
type the one with the specified name. For example,
dataObject.get("'name™) or
dataObject.get(dataObject.getType().getProperty(*"name"))

jJava.lang.String getURI()

Returns the namespace URI of the type.

boolean islnstance(
jJava.lang.Object object)

Returns True if the specified object is an instance of this
type; otherwise, returns false.

Table 2-9 lists the methods of the Property interface.

Tahle 2-9 Property Interface Methods

Method

Description

Type getContainingType()

Returns the containing type of this property.

jJava.lang.Object getDefault()

Returns the default value this property will have in a
data object where the property has not been set

java.lang.String getName ()

Returns the name of the property.

Type getType()

Returns the type of the property.

boolean isContainment()

Returns True if the property represents by-value
composition.

boolean isMany()

Returns True if the property is many-valued.

Client Application Developer's Guide 2-13

Data Programming Model and Update Framework

Role of the Mediator APl and SDO

2-14

In ALDSP, data objects are passed between data services and client applications: when a client
application invokes a read function on a data service, for example, a data object is sent to the
client application. The client application modifies the content as appropriate—adds an order to a
customer order, for example—and then submits the changed data object to the data service. The
Data Service Mediator is an API that receives the updated data objects and propagates changes
to the underlying data sources.

The Data Service Mediator is the linchpin of the update process. It uses information from
submitted data objects (change summary, for example) in conjunction with other artifacts to
derive an update plan for changing underlying data sources. For relational data sources, updates
are automatic. The artifacts that comprise ALDSP’s update framework, including the Mediator,
and how the default update process works, are described in more detail in “Managing Update
Maps” in the Data Services Developer’s Guide.

For detailed information on using the Mediator APIs for web services clients and Java clients,
see:

e Invoking Data Services from Java Clients

e Invoking Data Services Through Web Services

Client Application Developer's Guide

../datasrvc/Managing+Update+Maps
../datasrvc/Managing+Update+Maps
../datasrvc/index.html

CHAPTERa

Invoking Data Services from Java
Clients

This chapter discusses the Data Services Mediator API, a Java API for invoking data service
operations from Java applications. This chapter explains in detail how to use the Mediator API
and includes working sample applications to help you get started.

Using the Mediator API is one of several techniques for invoking data services from client
applications. See Chapter 1, “Introducing Data Services for Client Applications” for a summary
of these techniques.

This chapter includes these topics:
e Introducing the Mediator API
e Getting Started

Sample Static Mediator Application

Sample Dynamic Mediator Application

Creating New DataObjects
e Mediator API Basics

Mapping Data Service Types to Java Types
e \Web Services Support

e Advanced Topics

Client Application Developer's Guide 3-1

Invoking Data Services from Java Clients

Introducing the Mediator API

3-2

The Mediator API is the Java API for retrieving Service Data Object (SDO) artifacts from a data
service and returning them to their source. In your Java client, you call Mediator APl methods to
connect to a data service, invoke data service methods, and send updated data objects back to the
server. You use SDO APl methods to manipulate the data objects within your Java client.

For example, you might call a Mediator API method getAllCustomers() to retrieve a collection
of customer data objects from the data service. Then, you could call an SDO method such as
setCustomerName() to modify a customer object. Finally, you might call another Mediator API
method, such as updateCustomers() to return the modified data object to the data source on the
server.

Topics in this section include:
e What is SDO?
e What is the Mediator API?
e Dynamic and Static Mediator APIs

e Summary

What is SD0?

The Java programming model provided by ALDSP for invoking data service operations is based
on Service Data Objects (SDO). SDO, a specification proposed jointly by BEA, IBM, Oracle,
SAP, and others, is a Java-based architecture and API for data programming. ALDSP lets
programmers uniformly access data objects from heterogeneous data sources, including
relational databases, XML data sources, web services, and enterprise information systems.

Tip: See “Introducing Service Data Objects (SDO)” on page 1-6 for a general overview of
SDO. For a more in-depth discussion of SDO, see “Data Programming Model and
Update Framework” on page 2-1. Finally, see the dev2dev article Service Data Objects,
which provides links to the SDO specifications and Javadoc.

Client Application Developer's Guide

http://dev2dev.bea.com/pub/a/2005/11/sdo.html

Introducing the Mediator API

What is the Mediator API?

While the SDO specification does not specify a mechanism for updating data objects, it does
discuss the need for update services, called mediator services. The Mediator API is an ALDSP
implementation of a mediator service. The Mediator API lets you gain access to SDO-compliant
objects, called DataObjects, and return them to their source data store.

The important points to remember are that the Mediator API lets you connect to a data service
and invoke data service operations. Results are returned as SDO-compliant data objects. Using
methods of the SDO API, you can then change or manipulate the data objects. Finally, you use
the Mediator API to perform the update.

See “ALDSP and SDO” on page 2-2 for a general overview of SDO data objects and other
artifacts.

Dynamic and Static Mediator APIs

The ALDSP Mediator APl comprises two main interfaces: dynamic and static. As an application
developer, you need to choose one of these approaches.

e The Dynamic Mediator API is useful for programming with data services that are unknown
or do not exist at development time. This API is useful, for example, for developing tools
and user interfaces that work across data services. The Dynamic Mediator API lets you
invoke data service operations directly by name. Clients that use the Dynamic Mediator
API are not bound to use specific data services: a dynamic client can use any available data
service. See “Sample Dynamic Mediator Application” on page 3-22.

e The Static Mediator extends the Dynamic Mediator with pre-generated Java classes that
have type-safe named methods for accessing data service operations. A Static Mediator
API must be explicitly generated using either the Data Services Studio or a command line
utility. The generated API classes are placed in a JAR file that must be accessible by your
client application. See “Sample Static Mediator Application” on page 3-8.

Tip: For most use cases, the Static Mediator API is your best choice. The Static Mediator
inherits from the Dynamic Mediator and therefore includes all of the functionality of the
Dynamic Mediator API. In addition, the static API is type-safe at compile-time.
Generally speaking, the static API is simpler and more convenient to use than the
Dynamic Mediator API.

Client Application Developer's Guide 3-3

Invoking Data Services from Java Clients

3-4

API Overview

The Dynamic Mediator API consists of the classes and interfaces listed in Table 3-1. Refer to the

Javadoc on e-docs for more information on these classes and interfaces.

Table 3-1 Aqualogic Data Services Platform Mediator API

Interface or Class Name

Description

DataAccessService

The interface for interacting with a data service. The invoke()
method of this interface is used to call data service operations. If a
data service operation returns a result, the invoke() method returns a
DASResult object-a collection of SDO data objects or simple types.
(Package: com.bea.dsp.das)

DASResult

The Mediator APIs that return data sets return an object called
DASResult (Data Access Service Result). DASResult is similar to a
Java Iterator. See “Understanding DASResult” on page 3-40.
(Package: com.bea.dsp.das)

PreparedExpression

The interface for preparing and executing ad hoc queries. An ad hoc
query is one that is defined in the client program, not in the data
service. See “Making Ad Hoc Queries” on page 3-56. (Package:
com.bea.dsp.das)

DataAccessServiceFactory

The factory class for creating local interfaces to data services. Can
be used for dynamic data service instantiation and ad hoc queries.
(Package: com.bea.dsp.das)

HelperContextCache

ALDSP maintains a global cache of SDO HelperContext objects.
These objects can be used, for instance, to create new data objects.
This class contains methods that let you query and manipulate this
cache. See “Creating New DataObjects” on page 3-27. (Package:
com.bea.dsp.das)

Client Application Developer's Guide

Introducing the Mediator API

Table 3-1 AquaLogic Data Services Platform Mediator API (Continued)

Interface or Class Name Description

RequestConfig This class encapsulates a collection of attributes that control how a
data service method is to be invoked from a client. This class also
serves as a way to return arbitrary information to the client.
(Package: com.bea.dsp)

SDOULl This utility class contains methods for manipulating SDO data
objects in the context of ALDSP. While not part of the Mediator
API, this utility class is commonly used in programs that use the
Mediator API. (Package: com.bea.dsp.sdo)

Sample of both Static and Dynamic Mediator clients applications are provided. See “Sample
Static Mediator Application” on page 3-8 and “Sample Dynamic Mediator Application” on
page 3-22.

Summary

It may be confusing at first discussing SDO and the mediator APIs together. You can think of
SDO as the standard enabling technology that allows client applications to access and update data
through ALDSP data services. SDO has a Java API for handling DataObjects and collections of
DataObjects. SDO DataObijects can be either dynamic or static.

The SDO APIs are standard implementations. You can read the full SDO specification, “SDO for
Java Specification V2.1” here:

http://www.osoa.org/display/Main/Service+Data+Objects+Specifications
The mediator APIs, on the other hand, are ALDSP-specific implementations. The mediator APIs
are designed to let you access SDO DataObjects and return them to the server. For more

information on the how ALDSP uses SDO, see Chapter 2, “Data Programming Model and
Update Framework.”

Client Application Developer's Guide 3-5

http://www.osoa.org/display/Main/Service+Data+Objects+Specifications

Invoking Data Services from Java Clients

Getting Started

This section lists the basic steps to get started writing a Java client application that interacts with
a data service.

3-6

Topics in this section include:

e Basic Steps
e Setting the CLASSPATH

e Running the Sample Applications

Basic Steps

These are the basic steps to follow when developing a Java client that uses the Mediator APIs.

1.

The first thing you need is a data service to call. To use a data service, you need to know its
name and the names and signatures of its operations. The mediator APl method signatures
will be the same as the signatures for the data service operations.

Decide whether to use the Static or Dynamic Mediator API to interact with the data service
from your Java client. See “Dynamic and Static Mediator APIs” on page 3-3 for a summary
of each API. To use the Static Mediator API, you need to generate or obtain the Static
Mediator Client JAR file. For instructions on generating a Static Mediator Client JAR, see the
Data Services Developer’s Guide.

Tip: The Static Mediator API is generally recommended for most use cases. The static API
is type safe and generally easier to use than the Dynamic Mediator API.

Set up your Java build environment. You need certain JAR files in your CLASSPATH. See
“Setting the CLASSPATH” on page 3-7 for details.

Write and test your client application. This document provides working sample applications
that demonstrate both the Static and Dynamic Mediator API. See “Running the Sample
Applications” on page 3-7.

Client Application Developer's Guide

../datasrvc/index.html

Getting Started

Setting the CLASSPATH

CLASSPATH settings depend on whether you are using the Static or Dynamic Mediator API.

Static Java Mediator API Client CLASSPATH

The following JARs must be in the CLASSPATH of your Java application if you are using the
Static Mediator API.

e <Static Mediator Client File> jar

Note: This first entry is only required if you are using the Static Mediator API. This entry
must precede the other entries listed below. For instructions on generating a Static
Mediator Client JAR, see the Data Services Developer’s Guide. Typically, this file is
generated by a data services developer.

o <ALDSP_HOME>/lib/sdo.jar

e <ALDSP_HOME>/lib/Id-client.jar

o <WEBLOGIC_HOME>/common/lib/apache_xbean.jar
o <WEBLOGIC_HOME>/server/lib/weblogic.jar

Dynamic Java Mediator API Client CLASSPATH

The following JARs must be in the CLASSPATH of your Java application if you are using the
Dynamic Mediator API.

e <ALDSP_HOME>/lib/sdo.jar

e <ALDSP_HOME>/lib/Id-client.jar

e <WEBLOGIC_HOME>/common/lib/apache_xbean.jar
e <WEBLOGIC_HOME>/server/lib/weblogic.jar

Running the Sample Applications

A good way to get started is to run the sample application code that is provided in this chapter.
Samples that use both the Static and the Dynamic Mediator APIs are included. The samples
illustrate simple but common use cases: retrieving data, modifying it, and updating it. See
“Sample Static Mediator Application” on page 3-8 and “Sample Dynamic Mediator Application”
on page 3-22.

Client Application Developer's Guide 3-7

../datasrvc/index.html

Invoking Data Services from Java Clients

Sample Static Mediator Application

3-8

This section presents a simple Java program that you can copy, compile, and run. The program
uses the Static Mediator API to perform these basic tasks: authenticating the client, retrieving
data, modifying data, and updating data on the server. For a basic overview of the Static Mediator
API, see “Dynamic and Static Mediator APIs” on page 3-3. See also “Mediator API Basics” on
page 3-38 and “Advanced Topics” on page 3-50.

Topics include:

Setting Up the Sample Data Service

Generating the Mediator Client JAR File

Setting Up the Java Project

e Running and Testing the Code

e Examining the Sample Code

Setting Up the Sample Data Service

Before you can build and test the sample Java application, you need to set up an ALDSP data
service. The instructions assume that you are familiar with using the AqualLogic Data Services
Studio.

Note: The sample Java client that is presented in this section calls operations in this sample data
service. The sample Java code is designed to work with this specific data service.

1. Install ALDSP.

2. In Data Services Studio, create a server that uses the ALDSP samples domain. The samples
domain is: <ALDSP_HOME>/samples/domain/aldsp.

3. Start the server.
4. Create an ALDSP Dataspace called MediatorSamples.

5. Copy the sample data service (Listing 3-1, “CUSTOMER.ds,” on page 3-9) into a file called
MediatorSamples/Retail/ CUSTOMER.ds.

Client Application Developer's Guide

Sample Static Mediator Application

6. Copy the schema file (Listing 3-2, “CUSTOMER_KEY.xsd,” on page 3-12) into a file called
MediatorSamples/Retail/schemas/CUSTOMER_KEY.xsd.

7. Copy the schema file (Listing 3-3, “CUSTOMER.xsd,” on page 3-13) into a file called
MediatorSamples/Retail/schemas/CUSTOMER.xsd.

Figure 3-2 shows the resulting Dataspace configuration:

Figure 3-2 Sample Dataspace Configuration

L7 Project Explorer 22 =8
==
= 1M MediatorSamples
*-[= DSP-INF
== Retail
== schemas

*- | M| CUSTOMER_KEY .xsd
*- M| CUSTOMER., xsd
+-4Fy CUSTOMER. ds
|H] xguery-types,xsd

Note: Listing 3-1 is a simple data service file, containing the XQuery code that defines the
service and its operations. Listing 3-2 and Listing 3-3 are schema files that are required
by the data service. The Mediator API lets you invoke the data service operations from a
Java client. For more information on data services, see Data Services Developer’s Guide.

Listing 3-1 CUSTOMER.ds

xquery version "1.0" encoding "UTF-8";

(::pragma xds <x:xds targetType="t:CUSTOMER"
xmIns:x="urn:annotations.ld.bea.com" xmIns:t="ld:Retail/CUSTOMER">
<creationDate>2007-11-08T17:13:51</creationDate>
<relationalDB name="dspSamplesDataSource" providerld="Pointbase'/>
<field xpath="CUSTOMER_ID" type="xs:short'>
<extension nativeXpath="CUSTOMER_ID" nativeTypeCode="5"
nativeType="SMALLINT" nativeSize="5" nativeFractionalDigits="0"
nativeKey=""true">
<autoNumber type="identity'/>
</extension>
<properties nullable="false"/>

Client Application Developer's Guide 3-9

../datasrvc/index.html

Invoking Data Services from Java Clients

</field>

<field xpath="FIRST_NAME" type="'xs:string">
<extension nativeXpath="FIRST_NAME" nativeTypeCode="12"
nativeType="VARCHAR" nativeSize="64" nativeFractionalDigits="0"/>
<properties nullable="false"/>

</field>

<field xpath="LAST_NAME" type="'xs:string">
<extension nativeXpath="LAST_NAME" nativeTypeCode="12"
nativeType="VARCHAR" nativeSize="64" nativeFractionalDigits="0"/>
<properties nullable="false"/>

</field>

<field xpath="CUSTOMER_SINCE" type="xs:date'>
<extension nativeXpath="CUSTOMER_SINCE" nativeTypeCode="91"
nativeType="DATE" nativeSize="10" nativeFractionalDigits="0"/>
<properties nullable="false"/>

</field>

<field xpath="EMAIL_ADDRESS" type="'xs:string">
<extension nativeXpath="EMAIL_ADDRESS" nativeTypeCode="12"
nativeType="VARCHAR" nativeSize="32" nativeFractionalDigits="0"/>
<properties nullable="false"/>

</field>

<field xpath="TELEPHONE_NUMBER" type="'xs:string'>
<extension nativeXpath="TELEPHONE_NUMBER" nativeTypeCode="12"
nativeType="VARCHAR" nativeSize="32" nativeFractionalDigits="0"/>
<properties nullable="false"/>

</field>

<field xpath="SSN" type="xs:string">
<extension nativeXpath="SSN" nativeTypeCode="12" nativeType="VARCHAR"
nativeSize="16" nativeFractionalDigits="0"/>
<properties nullable="true"/>

</field>

<field xpath="BIRTH_DAY" type="'xs:date">
<extension nativeXpath="BIRTH_DAY" nativeTypeCode="91" nativeType="DATE"
nativeSize="10" nativeFractionalDigits="0"/>
<properties nullable="true"/>

</field>

<field xpath="DEFAULT_SHIP_METHOD" type="xs:string">
<extension nativeXpath="DEFAULT_SHIP_METHOD" nativeTypeCode="12"
nativeType="VARCHAR" nativeSize="16" nativeFractionalDigits="0"/>
<properties nullable="true"/>

</field>

3-10 Client Application Developer's Guide

Sample Static Mediator Application

<field xpath="EMAIL_NOTIFICATION" type="xs:short">
<extension nativeXpath="EMAIL_NOTIFICATION" nativeTypeCode="5"
nativeType="SMALLINT" nativeSize="5" nativeFractionalDigits="0"/>
<properties nullable="true"/>

</field>

<field xpath="NEWS_LETTTER" type="'xs:short">
<extension nativeXpath="NEWS_LETTTER" nativeTypeCode="5"
nativeType="SMALLINT" nativeSize="5" nativeFractionalDigits="0"/>
<properties nullable="true"/>

</field>

<field xpath="ONLINE_STATEMENT" type='"xs:short'>
<extension nativeXpath="ONLINE_STATEMENT" nativeTypeCode="5"
nativeType="SMALLINT" nativeSize="5" nativeFractionalDigits="0"/>
<properties nullable="true"/>

</field>

<field xpath="LOGIN_ID" type="xs:string">

<extension nativeXpath="LOGIN_ID" nativeTypeCode="12" nativeType=""VARCHAR"

nativeSize="50" nativeFractionalDigits="0"/>
<properties nullable="true"/>

</field>

<key name=""CUSTOMER_O_SYSTEMNAMEDCONSTRAINT__ PRIMARYKEY"

type=""cus:CUSTOMER_KEY" inferredSchema="true"

xmIns:cus="1d:Retail/CUSTOMER" />

</x:xds>::)

declare namespace f1 = "ld:Retail/CUSTOMER";

import schema namespace tl = "ld:Retail/CUSTOMER" at
""1d:Retai l/schemas/CUSTOMER . xsd";

import schema "ld:Retail/CUSTOMER"™ at "ld:Retail/schemas/CUSTOMER_KEY.xsd";
(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
visibility="public" kind="read" isPrimary="false" nativeName="CUSTOMER"
nativelLevel2Container="SAMPLECUSTOMER" style="table">

<nonCacheable/> </f:function>::)

declare function f1:CUSTOMER() as schema-element(tl:CUSTOMER)* external;

Client Application Developer's Guide 3-11

Invoking Data Services from Java Clients

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
visibility="public" kind="create" isPrimary="true" nativeName="CUSTOMER"
nativelLevel2Container="SAMPLECUSTOMER" style="table">

<nonCacheable/> </f:function>::)

declare procedure fl:createCUSTOMER($p as element(tl:CUSTOMER)*)as
schema-element(t1:CUSTOMER_KEY)* external;

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
visibility="public" kind="update" isPrimary="true" nativeName="CUSTOMER"
nativelLevel2Container="SAMPLECUSTOMER" style="table">

<nonCacheable/> </f:function>::)

declare procedure f1:updateCUSTOMER($p as changed-element(tl:CUSTOMER)*) as
empty() external;

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
visibility="public" kind="delete" isPrimary="true" nativeName="CUSTOMER"
nativelLevel2Container="SAMPLECUSTOMER" style="table">

<nonCacheable/> </f:function>::)

declare procedure fl:deleteCUSTOMER($p as element(tl:CUSTOMER)*) as empty()
external;

Listing 3-2 CUSTOMER_KEY.xsd

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema targetNamespace="1d:Retail/CUSTOMER"
xmIns:xs="http://www.w3.0rg/2001/XMLSchema'">
<xs:element name=""CUSTOMER_KEY"'>
<xs:complexType>
<xs:sequence>
<xs:element name="CUSTOMER_ID" type="'xs:short"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

3-12 Client Application Developer's Guide

Listing 3-3 CUSTOMER.xsd

Sample Static Mediator Application

<xs:schema targetNamespace="1d:Retail/CUSTOMER""

xmIns:xs="http://www.w3.

org/2001/XMLSchema*>

<xs:element name="CUSTOMER">

<xs:complexType>

<Xs:sequence>
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element

name=""CUSTOMER_ID" type="xs:short" minOccurs="0"/>
name="FIRST_NAME" type=''xs:string"/>
name="LAST_NAME" type=''xs:string'/>
name=""CUSTOMER_SINCE" type="'xs:date'/>
name="EMAIL_ADDRESS" type="xs:string"'/>
name=""TELEPHONE_NUMBER" type=''xs:string"/>
name=""SSN"* type="'xs:string"” minOccurs="0"/>
name="BIRTH_DAY" type='xs:date" minOccurs="0"/>

<xs:element name="DEFAULT_SHIP_METHOD"
type="'xs:string” minOccurs="0"/>
<xs:element name="EMAIL_NOTIFICATION" type="xs:short" minOccurs="0"/>

<xs:element
<xs:element
<xs:element
</Xs:sequence>
</xs:complexType>
</xs:element>
</Xs:schema>

name=""NEWS_LETTTER" type="xs:short" minOccurs="0"/>
name=""ONLINE_STATEMENT" type="'xs:short"™ minOccurs="0"/>
name="LOGIN_ID" type="xs:string" minOccurs="0"/>

Client Application Developer's Guide 3-13

Invoking Data Services from Java Clients

3-14

Generating the Mediator Client JAR File

The sample Java application listed later in this section requires that you first generate a Mediator
Client JAR from the data service. The classes in this JAR contain type-safe methods that call the
data service functions and procedures. The generated Java methods have the same names as their
corresponding data service functions and procedures.

Tip: You can generate a Mediator Client JAR file using the Data Services Studio, the ALDSP
Console, or an Ant script. These methods are described in detail in the Data Services
Developer’s Guide. For this example, we will use Data Services Studio.

To generate a mediator client JAR file using Data Services Studio:

1. Select File > Export.

2. Inthe Select dialog, select AqualLogic Data Services Platform > Mediator Client JAR File and
click Next.

3. Complete the Mediator Client JAR File dialog as follows:

e Select the Dataspace project to export. For this example, the Dataspace project is called
MediatorSamples.

e Specify a directory in which to place the exported JAR file. You can select any location on
your system. By default, the exported JAR will be named: MediatorSamples-dsp-client.jar.

4. Click Finish.

Tip: For detailed information on how generated class names in the JAR file are derived, see
“Naming Conventions for Generated Classes” on page 3-40.

Setting Up the Java Project

Listing 3-5 lists the sample Java program that uses the Static Mediator API. The application
simply retrieves a DataObject from a data store, modifies the object, and returns it to the data
store. This example assumes you are using Data Services Studio, but you can use the IDE or build
environment of your choice. For this example, we set up a Java project called MediatorClient.

Client Application Developer's Guide

../datasrvc/index.html
../datasrvc/index.html

Sample Static Mediator Application

To set up the project:
1. Create a Java project called MediatorClient.

2. Set up your Java Build Path to include the JAR files listed in “Setting the CLASSPATH” on
page 3-7. To do this, select Project > Properties > Java Build Path. Be sure to include the
Mediator Client JAR file, as discussed in “Generating the Mediator Client JAR File” on
page 3-14.

3. Create a package called com.bea.dsp.sample in your Java project. To do this, right-click the
Java project in the Package Explorer and select New > Package.

4. Create a Java class called StaticSampleApp.java in the package. To do this, right-click the
package in the Package Explorer and select New > Class.

5. Delete the default contents of the new source file and copy the entire file listed in Listing 3-4
into the source file.

6. Save the file. Figure 3-3 shows the completed project configuration.

Figure 3-3 Completed Project Configuration

i Package Explorer X Hierarchy =0

Java Project — | &= MediatorClient

B JRE System Library [jdk150_10]
| Id-client. jar - C:ibealaldsp_3.00ib
| MediatorSamples-dsp-client.jar - Cbealaldsp_3.04lib
sdo.jar - Ciibealaldsp_3.0%ib
wiclient. jar - C:ibeaiweblogicoZiserverlib
api.jar - CibeaiweblogicoZiserverlib
apache_xbean.jar - C:\bealweblogica2commonilib
- =13 Mediatorsamples
(= DSP-INF
= (= Retail
=l schemas
X| CUSTOMER_KEY.xsd
¥| CUSTOMER. xsd
3 CUSTOMER..ds
X| xquery-types,xsd

L3

4
i
i
i
i
i

T

L3155 5151

Dataspace Project

Note: The imported classes CUSTOMERDAS and CUSTOMER (see Listing 3-4) are located
in the Static Mediator Client JAR file, which must be in the CLASSPATH.

Client Application Developer's Guide 3-15

Invoking Data Services from Java Clients

3-16

Listing 3-4 StaticSampleApp.java

package com.bea.dsp.sample;

import das.ejb.retail .CUSTOMERDAS;
import retail.customer.CUSTOMER;

import com.bea.dsp.das.DASResult;
import com.bea.dsp.sdo.SDOUtil;

import java.util_.Hashtable;
import javax.naming.Context;
import javax.naming.lInitialContext;

public class StaticSampleApp {
public static void main(String[] args) throws Exception {

// Create InitialContext for mediator

Hashtable<String, String> hash = new Hashtable<String, String>();

hash.put(Context. INITIAL_CONTEXT_FACTORY,
“weblogic.jndi.WLInitialContextFactory');

hash.put(Context.PROVIDER_URL,"t3://localhost:7001");

hash.put(Context.SECURITY_PRINCIPAL, "weblogic™);

hash.put(Context.SECURITY_CREDENTIALS,"weblogic');

Context ctx = new InitialContext(hash);

// Create DataAccessService handle with Context and dataspace name
CUSTOMERDAS das = CUSTOMERDAS.getlnstance(ctx, "MediatorSamples™);

// Invoke the basic "get all customers®™ function
DASResult<CUSTOMER> result = das.CUSTOMERQ);

// Obtain the first CUSTOMER DataObject - also be sure to
// always dispose() any DASResults

try {
CUSTOMER customer = result.next();

// Enable change-tracking for that CUSTOMER
Sboutil.enableChanges(customer);

Client Application Developer's Guide

Sample Static Mediator Application

// Modify customer
customer.setFIRST_NAME("'New First Name™);
customer.setEMAIL_ADDRESS("first_name@example.com');

// Send changes back to DSP - update function takes an array
// of CUSTOMERs
das.updateCUSTOMER(new CUSTOMER[] { customer });

¥

finally {
result.dispose();

¥

Running and Testing the Code

To test the application:
1. Start the server.

2. Run the Java client as a Java application. In Data Services Studio, this is commonly done by
right-clicking the Java file and selecting Run As > Java Application.

To verify that the Java client worked, simply test the data service:
1. Open the data service in the Data Service editor.

2. Click the Test tab (see Figure 3-4).

w

Select an operation from the drop down menu. For this example, select the CUSTOMER()
operation.

&

Click Run (see Figure 3-4).

o

Inspect the first row of the data table. The client application changes the first customer’s name
and email address to “New First Name” and “first_name@example.com” as shown in
Figure 3-4.

Client Application Developer's Guide 3-17

Invoking Data Services from Java Clients

3-18

Figure 3-4 Testing the Client

“Fy CUSTOMER.ds 52 . [S] CUSTOMER. xsd
Select operation: < CUSTOMER() =

Parameters:

Mo Parameters

% Settings:

Run button —— [run
Result: (O Tree () Text (5) Tabular Iz Result is valid.

|J] StaticSampledpp.java >

EMAIL_A ELEPHON
firsk_name@example.com 214513411
JOHN_2@yahon.c 46796

U3 — = TAST_MAME | CUSTOMER_SINGCE
Updated data New First Name Black 2001-10-01

2 Greenberg 2001-10-01

3 Eritt lerce OoT-10-01 JOHM_Si@att, com

4 Steve Ling 2001-10-02 JOHM_di@att, com

5 Michael Sniow 2001-10-01 JOHN_S@aol.com

& Don Johnson 2001-10-01 JOHN_e@hotmail.com

7 Tim Floyd 2001-10-01 JOHM_7@vyahoo,com

g Mikin Gupka 2001-10-01 JOHM_g@att. com

9 Hormer Simpson 2001-10-01 JOHM_9@vyahoo,com

10 Kevin Smith 2001-10-01 Kevin@aol.com

Test tab e wery-Map—Rlar- | Test | Source

Examining the Sample Code

This section examines the parts of the Java sample in Listing 3-4. This section discusses:

Importing Packages

Obtaining a Data Access Service Handle
Retrieving Data from the Service
Obtaining a DataObject from the Result
Disposing the Result Object

Modifying the DataObject

Returning Changes to the Server

Client Application Developer's Guide

QZEFTILIES
866015249
415046001
512893720
206261640
602548375
T02371917
405532025

Sample Static Mediator Application

Importing Packages

The first two classes are located in the generated Mediator Client JAR file, which must be in your
build path. The CUSTOMERDAS class is the generated DataAccessService class for the data
service. This class contains type-safe methods that map to the actual data service operations. The
CUSTOMER class provides the SDO interface for manipulating DataObjects returned from the
data service.

import das.ejb.retail .CUSTOMERDAS;
import retail.customer.CUSTOMER;

import com.bea.dsp.das.DASResult;
import com.bea.dsp.sdo.SDOUtil;

import java.util_Hashtable;
import javax.naming.Context;
import javax.naming.lnitialContext;

Obtaining a Data Access Service Handle

A DataAccessService object lets you call methods on a data service. See the Javadoc for more
information on this class. For the Static Mediator API, DataAccessService (DAS) classes have a
factory method named getinstance() to return the handle.

The getinstance() method requires two parameters to return the handle:

e A WebLogic JNDI Context object. The Context object allows the Java client to connect to
the data service running through WebLogic Server. See “Obtaining the WebLogic JNDI
Context for ALDSP” on page 3-43. For more information on WebLogic JNDI context
objects, see Programming WebLogic JNDI on e-docs.

e The name of the Dataspace project in which the data service is deployed. In this sample,
the project is called MediatorSamples.

Hashtable<String, String> hash = new Hashtable<String, String>();

hash.put(Context. INITIAL_CONTEXT_FACTORY,
"weblogic.jndi._WLInitialContextFactory");

hash_put(Context.PROVIDER_URL,"t3://localhost:7001");

hash.put(Context.SECURITY_PRINCIPAL,"weblogic™);

hash.put(Context.SECURITY_CREDENTIALS,"weblogic™);

Context ctx = new InitialContext(hash);

CUSTOMERDAS das = CUSTOMERDAS.getlnstance(ctx, '"MediatorSamples™);

Client Application Developer's Guide 3-19

http://e-docs.bea.com/wls/docs92/jndi/jndi.html

Invoking Data Services from Java Clients

3-20

Retrieving Data from the Service

The generated DataAccessService method CUSTOMER() retrieves the result set from the data
service. This method returns all customer objects from the data service. The return type is a
DASResult object, which works like an iterator. For more information on this return type, see
“Understanding DASResult” on page 3-40.

DASResult<CUSTOMER> result = das.CUSTOMERQ);

Note: The method CUSTOMER() is mapped directly from the original no-argument data
service operation of the same name. The operation definition as specified in the data
service file looks like this:

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
visibility="public” kind="read" isPrimary="false" nativeName="CUSTOMER"
nativelLevel2Container="SAMPLECUSTOMER" style=""table">
<nonCacheable/> </f:function>::)

declare function f1:CUSTOMER() as schema-element(tl:CUSTOMER)* external;

The entire data service file is shown in Listing 3-1.

Obtaining a DataObject from the Result

The DASResult.next() method works very much like the Java method Iterator.next(). It returns
the next CUSTOMER, which is an SDO DataObject. SDO is a Java-based data programming
model (API) and architecture for accessing and updating data. For details on SDO, see Using
Service Data Objects (SDO) in the ALDSP Concepts Guide.

CUSTOMER customer = result.next();

Disposing the Result Object

You must call DASResult.dispose() whenever you are finished iterating through a result object.
For more information on dispose(), see “Disposing of DASResult Objects” on page 3-41.

result.dispose();

Tip: Placing the dispose() call in a try/finally block is a recommended best practice.

Client Application Developer's Guide

../concepts/sdo.html
../concepts/sdo.html

Sample Static Mediator Application

Modifying the DataObject

After you obtain a DataObject, you can modify it; however, if you intend to submit these changes
back to the ALDSP server, you must enable change-tracking on the DataObject before making
any modifications. The SDOUtil.enableChanges() method lets you enable change-tracking for a
single DataObject or an array of DataObjects. For more information on this method, see
“Working with Data Objects” on page 3-44. After the customer object has change-tracking
enabled, the generated setters are called to modify certain values in the customer object.

Tip: Note that the set method below is called on an SDO DataObject. Technically, such
methods are part of the SDO API, not the Mediator API. See Chapter 2, “Data
Programming Model and Update Framework” for information on SDO.

Sboutil.enableChanges(customer);

// Modify customer
customer.setFIRST_NAME("'New First Name™);
customer.setEMAIL_ADDRESS(*'first_name@example.com™);

Returning Changes to the Server

Finally, the generated DataAccessService.updateCUSTOMER() method is called with a single
parameter: an array of CUSTOMER objects. The method calls its equivalent data service
operation to update the database with the newly modified row of data.

das.updateCUSTOMER(new CUSTOMER[] { customer });

Tip: Inthis example, the update method generated by ALDSP accepts an array of
DataObjects. It accepts an array because the data service operation (created by the data
service developer) accepts an array of data objects. If the data service developer had
created an additional update method that accepted a single CUSTOMER, it would not be
necessary to put the customer DataObject into an array.

Client Application Developer's Guide 3-21

Invoking Data Services from Java Clients

Sample Dynamic Mediator Application

3-22

This section presents a simple example that you can copy, compile, and run. This example uses
the Dynamic Mediator API to perform these basic tasks: authenticating the client, retrieving data,
modifying data, and updating data on the server.

The topics in this section include:
e Setting Up and Running the Sample Code
e Sample Java Client Code (Dynamic Mediator API)

e Examining the Sample Code

Setting Up and Running the Sample Code

To set up and run this sample code, follow the basic instructions in “Sample Static Mediator
Application” on page 3-8. The procedures for creating a sample data service, setting up the Java
project, and running the program are the same as the Static Mediator sample; however, when
using the Dynamic Mediator API, you do not need to generate or reference the Static Mediator
Client JAR file. Use the sample Java code shown in Listing 3-5 in your project.

Sample Java Client Code (Dynamic Mediator API)

Listing 3-5 DynamicSampleApp.java

package com.bea.dsp.sample;

import com.bea.dsp.das.DataAccessServiceFactory;
import com.bea.dsp.das.DataAccessService;

import com.bea.dsp.das.DASResult;

import com.bea.dsp.sdo.SDOUtil;

import commonj.sdo.DataObject;

import java.util _Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

public class DynamicSampleApp {

Client Application Developer's Guide

Sample Dynamic Mediator Application

public static void main(String[] args) throws Exception {
// Create InitialContext for mediator
Hashtable<String, String> hash = new Hashtable<String, String>(Q);
hash_put(Context. INITIAL_CONTEXT_FACTORY,

"weblogic.jndi._WLInitialContextFactory");

hash_put(Context.PROVIDER_URL,"t3://localhost:7001");
hash_put(Context.SECURITY_PRINCIPAL,"weblogic™);
hash_put(Context.SECURITY_CREDENTIALS,"weblogic™);
Context ctx = new InitialContext(hash);

// Create DataAccessService handle with Context, dataspace

// name, and data service URI

DataAccessService das = DataAccessServiceFactory.newDataAccessService
(ctx, "MediatorSamples', "ld:Retail/CUSTOMER™");

// Invoke the basic "get all customers®™ function, which takes
// no arguments
DASResult<Object> result = das.invoke(""CUSTOMER", new Object[0]);

// Obtain the first CUSTOMER DataObject - also be sure to
// always dispose() any DASResults

try {
DataObject customer = (DataObject) result.next();

// Enable change-tracking for that CUSTOMER
Sboutil.enableChanges(customer);

// Modify customer
customer.set(""FIRST_NAME", "DynamicClient™);
customer.set(""EMAIL_ADDRESS", "dynamic@example.com™);

// Send changes back to DSP - update function takes an array
// of CUSTOMERs
das. invoke("'updateCUSTOMER", new Object[] { customer });

¥
finally { result.dispose(); }

Client Application Developer's Guide 3-23

Invoking Data Services from Java Clients

Examining the Sample Code

This section examines the parts of the Java sample in Listing 3-5. This section discusses:

e Importing Classes

Obtaining a DataAccessService Handle

Retrieving Data from the Service

Obtaining a DataObject from the Result

Disposing the Result Object

Modifying the DataObject

Returning Changes to the Server

Importing Classes

These classes are required by the sample. For detailed information on the classes, refer to the
Javadoc on e-docs.

import com.bea.dsp.das.DataAccessServiceFactory;
import com.bea.dsp.das.DataAccessService;

import com.bea.dsp.das.DASResult;

import com.bea.dsp.sdo.SDoOUtil;

import commonj.sdo.DataObject;

import java.util_Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

Obtaining a DataAccessService Handle

A DataAccessService object lets you call methods on a data service. See the Javadoc for more
information on this class. The DataAccessServiceFactory class requires three parameters to
return the handle:

e A WebLogic JNDI Context object. The Context object allows the Java client to connect to
the data service running through WebLogic Server and provides security attributes. See
“Obtaining the WebLogic JNDI Context for ALDSP” on page 3-43. For more information
on WebLogic JNDI context objects, see Programming WebLogic JNDI on e-docs.

e The name of the Dataspace project in which the data service is deployed.

3-24 Client Application Developer's Guide

http://e-docs.bea.com/wls/docs92/jndi/jndi.html

Sample Dynamic Mediator Application

e The name of the data service as based on its location in the Dataspace’s folder hierarchy.
Here is the code:

Hashtable<String, String> hash = new Hashtable<String, String>(Q);

hash.put(Context. INITIAL_CONTEXT_FACTORY,
"weblogic.jndi._WLInitialContextFactory");

hash._put(Context.PROVIDER_URL,"t3://localhost:7001");

hash.put(Context.SECURITY_PRINCIPAL, "weblogic™);

hash.put(Context.SECURITY_CREDENTIALS,"weblogic™);

Context ctx = new InitialContext(hash);

DataAccessService das = DataAccessServiceFactory.newDataAccessService
(ctx, "MediatorSamples™, *"ld:Retail/CUSTOMER™);

Retrieving Data from the Service

In this example, the invoke() method calls the data service CUSTOMER operation. This
operation returns all customer objects from the data service. The invoke() method returns a
DASResult object, which works like an iterator. For more information on this return type, see
“Understanding DASResult” on page 3-40. Note that the CUSTOMER operation takes no
arguments.

DASResult<Object> result = das.invoke(""CUSTOMER", new Object[0])

Note: The generic type parameter for DASResult is <Object> because data of any type can be
returned by the invoke() method of the Dynamic Mediator API.

Obtaining a DataObject from the Result

The DASResult.next() method works very much like the Java method Iterator.next(). It returns
the next object in the result set. Because the CUSTOMER data service method returns
SDO-compliant DataObjects, you can cast the return value to DataObject. SDO is a Java-based
data programming model (API) and architecture for accessing and updating data. For details on
SDO, see Using Service Data Objects (SDO) in the ALDSP Concepts Guide. See also “What is
SDO?” on page 3-2.

DataObject customer = (DataObject) result.next();

Client Application Developer's Guide 3-25

../concepts/sdo.html

Invoking Data Services from Java Clients

3-26

Disposing the Result Object

You must call DASResult.dispose() whenever you are finished iterating through a result object.
For more information on dispose(), see “Disposing of DASResult Objects” on page 3-41.

result.dispose();

Tip: Placing the dispose() call in a try/finally block is a recommended best practice.

Modifying the DataObject

After you obtain a DataObject, you can modify it; however, if you intend to submit these changes
back to the ALDSP server, you must enable change-tracking on the DataObject before making
any modifications. The SDOUtil.enableChanges() method lets you enable change-tracking for a
single DataObject or an array of DataObjects. For more information on this method, see
“Working with Data Objects” on page 3-44. After the customer object has change-tracking
enabled, the Dynamic SDO set() method is called to modify certain values in the customer object.
For more information on SDO methods, see Chapter 2, “Data Programming Model and Update
Framework.”

Sboutil.enableChanges(customer);

customer.set(""FIRST_NAME"™, "DynamicClient");
customer.set(""EMAIL_ADDRESS", "dynamic@example.com™);

Returning Changes to the Server

Finally, the DataAccessService method invoke() calls the update method on the data service with
a single parameter: an array of CUSTOMER objects. The data service operation updates the
database with the newly modified row of data.

das. invoke("'updateCUSTOMER", new Object[] { customer });

Tip: Inthis example, the update method accepts an array of DataObjects. It accepts an array
because the data service operation (created by the data service developer) accepts an
array of data objects. If the data service developer had created an additional update
method that accepted a single CUSTOMER, it would not be necessary to put the
customer DataObject into an array.

Client Application Developer's Guide

Creating New DataObjects

Creating New DataObjects

This section explains how to use the Data Services Mediator and SDO APIs to create new data
objects and submit them to the ALDSP server. As with previous examples, both the static and
dynamic APIs are illustrated.

Creating a New DataObject with the Static API

The Java program in Listing 3-6 creates a new DataObject, modifies it, and updates it on the
ALDSP server.

Setting Up and Running the Sample

The sample code in Listing 3-6 is designed to work in the same Java project and with the same
data service project that are described in “Sample Static Mediator Application” on page 3-8. You
can run the sample code presented here by following the setup instructions in that section. When
you test the data service, you will see a new row has been added to the table.

Listing 3-6 StaticCreateSample.java

package com.bea.dsp.sample;

import das.ejb.retail .CUSTOMERDAS;
import retail.customer.CUSTOMER;
import retail.customer.CUSTOMER_KEY;

import com.bea.dsp.das.DASResult;
import com.bea.dsp.sdo.SDOUtil;

import commonj.sdo.helper._HelperContext;
import commonj.sdo.helper.DataFactory;

import java.util_.Hashtable;
import javax.naming.Context;
import javax.naming.lInitialContext;

public class StaticCreateSample {
public static void main(String[] args) throws Exception {
// Create InitialContext for mediator
Hashtable<String, String> hash = new Hashtable<String, String>();

Client Application Developer's Guide 3-21

Invoking Data Services from Java Clients

hash.put(Context. INITIAL_CONTEXT_FACTORY,

"weblogic.jndi._WLInitialContextFactory");
hash_put(Context.PROVIDER_URL,"t3://localhost:7001");
hash_put(Context.SECURITY_PRINCIPAL,"weblogic™);
hash_put(Context.SECURITY_CREDENTIALS,"weblogic™);
Context ctx = new InitialContext(hash);

// Create DataAccessService handle with Context and dataspace name
CUSTOMERDAS das = CUSTOMERDAS.getlnstance(ctx, "MediatorSamples');

// Obtain the SDO HelperContext for this dataspace

HelperContext hctx = das.getHelperContext();

// Could also use:

// HelperContext hctx = HelperContextCache.get(*'MediatorSamples™);

// Get DataFactory from HelperContext
DataFactory factory = hctx.getDataFactory();

// Create an "empty" CUSTOMER DataObject by naming the XML

// schema *type*. For schema global elements that do not

// explicitly specify a type, their type name will be the same

// as the element name.

CUSTOMER customer = (CUSTOMER) factory.create
(""1d:Retail/CUSTOMER", "CUSTOMER™);

// Have to provide this DataObject with its own name. Note

// that this is the XML schema *name*, not the *type* -

// although as noted, when the global element does not

// explicitly specify a type, the type that is provided for it

// has the same name as the element.
Sboutil.setElementName(customer, "ld:Retail/CUSTOMER", "CUSTOMER™");

// Note that you must NOT enable change-tracking for this

// DataObject using enableChanges(). Change-tracking is only
// for tracking changes to data originally received from the
// DSP server.

// Set fields on new DataObject. Don"t set auto-generated
// fields, such as CUSTOMER_ID. May omit optional fields or
// those with default values

customer .setFIRST_NAME("'New First Name™);

3-28 Client Application Developer's Guide

Creating New DataObjects

customer .setLAST_NAME("'New Last Name'™);

customer .setCUSTOMER_SINCE(''2007-10-18");
customer.setEMAIL_ADDRESS("first_name@example.com');
customer .setTELEPHONE_NUMBER(*'867-5309") ;

// Send new DataObject to DSP - create function takes an array
// of CUSTOMERs, and returns CUSTOMER_KEYs
DASResult<CUSTOMER_KEY> result =

das.createCUSTOMER(new CUSTOMER[] { customer });

// Can obtain new customer ID from the returned key - also be
// sure to always dispose() any DASResults.
try {
CUSTOMER_KEY key = result_next();
System.out.printIn(*'New customer key: " + key.getCUSTOMER_IDQ));

¥

finally {
result.dispose();

¥

// Note that the created DataObject is NOT automatically

// updated based on the generated key values. If you want to
// get a DataObject populated with the new CUSTOMER_ID, you
// need to re-read. This is easier if the data service

// architect provides a getByID() function on the data

// service.

Importing Packages

Two SDO classes are required by this program. A HelperContext provides access to a consistent
set of instances of SDO helpers. It represents a helper execution context. The set of helpers
returned by the methods in this interface have visibility to the same SDO metadata, that is, they
execute in the same “scope.” A DataFactory is a helper for the creation of DataObjects. The
created DataObjects are not connected to any other DataObjects. Only Types with DataType false
and abstract false may be created.

Client Application Developer's Guide 3-29

Invoking Data Services from Java Clients

3-30

Obtaining a Data Access Service Handle

A DataAccessService object lets you call methods on a data service. See the Javadoc for more
information on this class. For the Static Mediator API, DataAccessService (DAS) classes have a
factory method named getinstance() to return the handle.

The getinstance() method requires two parameters to return the handle:

e A WebLogic JNDI Context object. The Context object allows the Java client to connect to
the data service running through WebLogic Server. See “Obtaining the WebLogic JNDI
Context for ALDSP” on page 3-43. For more information on WebLogic JNDI context
objects, see Programming WebLogic JNDI on e-docs.

e The name of the Dataspace project in which the data service is deployed. In this sample,

the project is called MediatorSamples.

Hashtable<String, String> hash = new Hashtable<String, String>();

hash.put(Context._ INITIAL_CONTEXT_FACTORY,
“weblogic.jndi.WLInitialContextFactory");

hash_put(Context.PROVIDER_URL,"t3://localhost:7001");

hash_put(Context.SECURITY_PRINCIPAL, "weblogic™);

hash.put(Context.SECURITY_CREDENTIALS,"weblogic™);

Context ctx = new InitialContext(hash);

CUSTOMERDAS das = CUSTOMERDAS.getlnstance(ctx, ‘"‘MediatorSamples™);

Creating a DataFactory
To create a DataFactory, you need to first obtain a HelperContext object for the Dataspace.

HelperContext hctx = das.getHelperContext();
DataFactory factory = hctx.getDataFactory();
You could also use this call to return the HelperContext:

HelperContext hctx = HelperContextCache.get(''"MediatorSamples');

Create and Name the DataObject

After you create a DataObject, you must explicitly name it. The factory.create() method takes two
String parameters. The first is a URI, the location of the data service in the Dataspace project. The
second parameter is the XML schema type of the DataObject you are creating. For schema global
elements that do not explicitly specify a type, their type name will be the same as the element
name.

Client Application Developer's Guide

http://e-docs.bea.com/wls/docs92/jndi/jndi.html

Creating New DataObjects

CUSTOMER customer = (CUSTOMER) factory.create(''ld:Retail/CUSTOMER", "CUSTOMER');

Next, you must provide the new DataObject with a name. The SDOULtil.setElementName()
method takes these parameters: the DataObject, the namespace URI of the element QName, and
the local part of the element QName.

Note that this name is the XML schema name, not the type. However, as noted, for global
elements that do not specify a type, the type that is provided has the same name as the element.

Sbouti Il .setElementName(customer, "ld:Retail/CUSTOMER", '""CUSTOMER™);

Modifying the DataObject

After you create a new DataObject, you can modify it before submitting it to the server.

Note: You must not enable change-tracking in this new DataObject using the
SDOUtil.enableChanges() method. Change-tracking is only used for tracking changes to
data that was originally received from the ALDSP server.

customer.setFIRST_NAME('New First Name™);
customer.setLAST_NAME(*'New Last Name');
customer.setCUSTOMER_SINCE(*'2007-10-18T12:27:41Z2"");
customer.setEMAIL_ADDRESS(*'first_name@example.com™);
customer.setTELEPHONE_NUMBER(*'867-5309") ;

Tip: You can omit optional fields or fields with default values.

Returning New DataObject to the Server

After the new object is created, the data service operation createCUSTOMER is called from the
Static Mediator API. The data service create operation takes an array of objects as input. The
Mediator APl method returns a CUSTOMER_KEY objects in a DASResult.

DASResul t<CUSTOMER_KEY> result = das.createCUSTOMER(new CUSTOMER[] { customer });

Client Application Developer's Guide 3-31

Invoking Data Services from Java Clients

3-32

Returning the New DataObject Key

To return the CUSTOMER_KEY for the new CUSTOMER object, call the next() method on the
DASResult object. Be sure to dispose the DASResult object (result) after it is returned. Placing
dispose() in a try/finally block is a recommended best practice.

try {
CUSTOMER_KEY key = result.next();

System.out.printIn("*"New customer key: " + key.getCUSTOMER_ID(Q));

3
finally {
result.dispose();

}

Tip: The newly created local copy of the DataObject (customer, in this example) is not
automatically updated with generated keys such as CUSTOMER _ID. If you want to
obtain a DataObject populated with CUSTOMER_ID, you need to retrieve the new
DataObject from the server by invoking the data service’s read operation. This is easier
if the data service developer provides a getBylD() operation on the data service.

Creating a New DataObject with the Dynamic API

The Java program in Listing 3-6 creates a new DataObject, modifies it, and updates it on the
ALDSP server.

Running the Sample

The sample code in Listing 3-7 is designed to work in the same Java project and with the same
data service project that are described in “Sample Dynamic Mediator Application” on page 3-22.
You can run the sample code presented here by following the setup instructions in that section.

Listing 3-7 DynamicCreateSample.java

package com._bea.dsp.sample;

import com.bea.dsp.das.DataAccessService;

import com.bea.dsp.das.DataAccessServiceFactory;
import com.bea.dsp.das.DASResult;

import com.bea.dsp.das.HelperContextCache;
import com.bea.dsp.sdo.SDOUtil;

Client Application Developer's Guide

import
import
import

import
import

import

public

Creating New DataObjects

commonj .sdo._helper_HelperContext;
commonj .sdo._helper_DataFactory;
commonj.sdo.DataObject;

jJava.util _Hashtable;
Javax.naming.Context;

Javax.naming. InitialContext;

class DynamicCreateSample {

public static void main(String[] args) throws Exception {

// Create InitialContext for mediator

Hashtable<String, String> hash = new Hashtable<String, String>();

hash.put(Context. INITIAL_CONTEXT_FACTORY,
"weblogic.jndi._WLInitialContextFactory");

hash_put(Context.PROVIDER_URL,"t3://localhost:7001");

hash_put(Context.SECURITY_PRINCIPAL,"weblogic™);

hash_put(Context.SECURITY_CREDENTIALS,"weblogic™);

Context ctx = new InitialContext(hash);

// Obtain the SDO HelperContext for this dataspace. As with
// StaticCreateSample, 1 could obtain this from the
// DataAccessService. However, here I"m demonstrating how to
// create an all-new DataObject prior to creating any
// DataAccessService instance. In this case, since I"m using
// the dynamic mediator, | need to first ensure that the
// global HelperContext cache is populated with the schemas
// for my data service.
HelperContextCache. loadSchemasForDataspace

(ctx, "MediatorSamples", "ld:Retail/CUSTOMER™);

// Now that the schemas are loaded, 1 can get the
// HelperContext for the dataspace
HelperContext hctx = HelperContextCache.get(*'MediatorSamples™);

// Get DataFactory from HelperContext
DataFactory factory = hctx.getDataFactory();

// Create an "empty" CUSTOMER DataObject by naming the XML

// schema *type*. For schema global elements that do not

// explicitly specify a type, their type name will be the same
// as the element name.

Client Application Developer's Guide 3-33

Invoking Data Services from Java Clients

DataObject customer = factory.create("'ld:Retail/CUSTOMER", "CUSTOMER'");

// Have to provide this DataObject with its own name. Note

// that this is the XML schema *name*, not the *type* -

// although as noted, when the global element does not

// explicitly specify a type, the type that is provided for it

// has the same name as the element.
Sboutil.setElementName(customer, "ld:Retail/CUSTOMER", "CUSTOMER");

// Note that you must NOT enable change-tracking for this

// DataObject using enableChanges(). Change-tracking is only
// for tracking changes to data originally received from the
// DSP server.

// Set fields on new DataObject. Don"t set auto-generated
// fields, such as CUSTOMER_ID. May omit optional fields or
// those with default values

customer.set(""FIRST_NAME", "‘Dynammic');

customer .set("'LAST_NAME", "Mediator'™);

customer .set(""CUSTOMER_SINCE", '2007-10-18");
customer.set(""EMAIL_ADDRESS", "dynamic@example.com™);
customer .set(""TELEPHONE_NUMBER', ''867-5309");

// Create DataAccessService handle with Context and dataspace name
DataAccessService das = DataAccessServiceFactory.newDataAccessService
(ctx, "MediatorSamples', "ld:Retail/CUSTOMER™");

// Send new DataObject to DSP - create function takes an array
// of CUSTOMERs, and returns CUSTOMER_KEYs
DASResult<Object> result =

das. invoke(*'createCUSTOMER"™, new Object[] { customer });

// Can obtain new customer ID from the returned key. Always be

// sure to dispose() any DASResults you get.

try {
DataObject key = (DataObject) result.next();
System.out.printIn(*'New customer key: " + key.get("'CUSTOMER_ID'™));

¥

finally {
result.dispose();

¥

3-34 Client Application Developer's Guide

Creating New DataObjects

// Note that the created DataObject is NOT automatically

// updated based on the generated key values. If you want to
// get a DataObject populated with the new CUSTOMER_ID, you
// need to re-read. This is easier if the data service

// architect provides a getByID() function on the data

// service.

Importing Packages

Three SDO classes are required by this program. A DataObject is a representation of some
structured data. It is the fundamental component in the SDO (Service Data Objects) package. A
HelperContext provides access to a consistent set of instances of SDO helpers. It represents a
helper execution context. The set of helpers returned by the methods in this interface have
visibility to the same SDO metadata, that is, they execute in the same “scope.” A DataFactory is
a helper for the creation of DataObjects. The created DataObjects are not connected to any other
DataObjects. Only Types with DataType false and abstract false may be created.

This example also uses the com.bea.dsp.das.HelperContextCache class, which provides access to
the global cache of SDO HelperContext objects maintained by ALDSP. The use of
HelperContextCache is described in the next section “Creating a DataFactory” on page 3-35.

Creating a DataFactory

As with the static mediator example discussed previously, we need to obtain the SDO
HelperContext for this Dataspace. In the static example, we created the HelperContext from the
DataAccessService. However, in this example, we create a new DataObject before we create the
DataAccessService instance. To do this, you need to ensure that the global HelperContext cache
is populated with the data service schemas.
HelperContextCache . loadSchemasForDataspace

(ctx, "MediatorSamples™, *"ld:Retail/CUSTOMER™);

// Now that the schemas are loaded, get the HelperContext for the dataspace.
HelperContext hctx = HelperContextCache.get("'MediatorSamples™);

DataFactory factory = hctx.getDataFactory();

Tip: For detailed information on HelperContextCache, refer to the Javadoc.

Client Application Developer's Guide 3-35

Invoking Data Services from Java Clients

3-36

Create and Name the DataObject

When you create a DataObject, you must explicitly name it. The factory.create() method takes
two String parameters. The first is a URI, the location of the data service in the Dataspace project.
The second parameter is the XML schema type of the DataObject you are creating. For schema
global elements that do not explicitly specify a type, their type name will be the same as the
element name.

DataObject customer = factory.create(*'ld:Retail/CUSTOMER", "CUSTOMER'");

Next, you must provide the new DataObject with a name. The SDOULtil.setElementName()
method takes these parameters: the DataObject, the namespace URI of the element QName, and
the local part of the element QName.

Note that this name is the XML schema name, not the type. However, as noted, for global
elements that do not specify a type, the type that is provided has the same name as the element.

Sboutil .setElementName(customer, "ld:Retail/CUSTOMER", '""CUSTOMER™);

Modifying the DataObject

After you create a new DataObject, you can modify it before submitting it to the server.

Note: You must not enable change-tracking in this new DataObject using the
SDOUtil.enableChanges() method. Change-tracking is only used for tracking changes to
data that was originally received from the ALDSP server.

customer.set("FIRST_NAME"™, "New First Name');
customer.set(""LAST_NAME"™, "New Last Name™);

customer .set(""CUSTOMER_SINCE"™, *2007-10-18T12:27:41Z");
customer.set(""EMAIL_ADDRESS", "first_name@example.com);
customer .set(""TELEPHONE_NUMBER', '867-5309");

Tip: You can omit optional fields or fields with default values.

Client Application Developer's Guide

Creating New DataObjects

Returning New DataObject to the Server

You need a DataAccessService handle to call methods on the data service. A DataAccessService
object lets you call methods on a data service. See the Javadoc for more information on this class.
The DataAccessServiceFactory class requires three parameters to return the handle:

o A WebLogic JNDI Context object. The Context object allows the Java client to connect to
the data service running through WebLogic Server and provides security attributes. See
“Obtaining the WebLogic JNDI Context for ALDSP” on page 3-43. For more information
on WebLogic JNDI context objects, see Programming WebLogic JNDI on e-docs.

e The name of the Dataspace project in which the data service is deployed.

e The name of the data service as based on its location in the Dataspace’s folder hierarchy.
The DataAccessServiceFactory returns the handle.

// Create DataAccessService handle with Context and dataspace name

DataAccessService das = DataAccessServiceFactory.newDataAccessService

(ctx, "MediatorSamples™, "ld:Retail/CUSTOMER™);
The DataAccessService.invoke() method is used to call the createCUSTOMER data service
operation on the server. Note that the createCUSTOMER data service operation is designed to
take an array of objects as input. The function returns a CUTOMER_KEYS objects in the
DASResult object.

DASResult<Object> result =
das. invoke(*'createCUSTOMER", new Object[] { customer });

Returning the New DataObject Key

To return the key for the new CUSTOMER obiject, call the next() method on the DASResult
object. Be sure to dispose the DASResult object (result) after it is returned. Placing dispose() in
a try/finally block is a recommended best practice.

try {
DataObject key = (DataObject) result.next();

System.out.printIn(""New customer key: " + key.get(''CUSTOMER_ID"));
}
finally {
result.dispose();

}

Client Application Developer's Guide 3-37

http://e-docs.bea.com/wls/docs92/jndi/jndi.html

Invoking Data Services from Java Clients

Tip: The newly created local copy of the DataObject (customer, in this example) is not
automatically updated with generated keys such as CUSTOMER _ID. If you want to
obtain a DataObject populated with CUSTOMER_ID, you need to retrieve the new
DataObject from the server by invoking the data service’s read operation. This is easier
if the data service developer provides a getBylD() operation on the data service.

Mediator API Basics

3-38

This section discusses various Mediator API topics.

Beyond the Sample Applications
More on the Static Mediator API

More on the Dynamic Mediator API

e Naming Conventions for Generated Classes

Understanding DASResult

Obtaining the WebLogic JNDI Context for ALDSP

Working with Data Objects

Beyond the Sample Applications

It is recommended that you review and run the sample applications provided in this chapter:
e “Sample Static Mediator Application” on page 3-8

e “Sample Dynamic Mediator Application” on page 3-22

Although the sample code is very basic, it demonstrates common use cases of retrieving,
modifying, and updating data. The samples also include details to help you understand the code.

The rest of this chapter discusses additional features of the APIs as well as advanced topics and
important reference material.

Client Application Developer's Guide

Mediator APl Basics

More on the Static Mediator API

When called through the Static Mediator API, data service operations that return empty() or that
return a single item do not return DASResult; instead, they return void or the single item. See also
“Understanding DASResult” on page 3-40.

More on the Dynamic Mediator API

This section provides additional information on the Dynamic Mediator API.
e Invoking Data Service Operations

e Getters and Setters

Invoking Data Service Operations

The invoke(String method, Object[] args) method dynamically invokes data service operations.
When an operation is invoked (getCustomerByCustID(), for example), it returns a DASResult
object. All data service functions return a DASResult when called through the Dynamic Mediator
API. See also “Understanding DASResult” on page 3-40.

You can see the invoke() method in use in the Dynamic Mediator APl sample in Listing 3-5,
“DynamicSampleApp.java,” on page 3-22;

DASResult<Object> result = das.invoke("'updateCustomer™, new Object[0]);

More information on the invoke() method is available in Javadoc on e-docs.

Getters and Setters

SDO provides generic getters and setters for working with data objects. The SDO API can be used
with data types that have not yet been deployed at development time. XPath expressions are
passed as arguments to the generic methods. For example:

customer.set(""EMAIL_ADDRESS", "first_name@example.com™);
or
String name = customer.get("EMAIL_ADDRESS™);

See also “Specifying XPath Expressions as Arguments” on page 3-55 and Chapter 2, “Data
Programming Model and Update Framework.”

Client Application Developer's Guide 3-39

Invoking Data Services from Java Clients

3-40

Naming Conventions for Generated Classes

When you generate a Mediator Client JAR file or a Web Services Mediator Client JAR file, the
generated DataAccessService subclasses and packages are named according to the following
conventions:

Mediator Client JAR Naming Convention

Generated DataAccessService subclasses are named <Data_Service_Name>DAS.class. For
example, if you generate a Mediator Client JAR file from a data service called Customer.ds, a
class called CustomerDAS.class is generated in the JAR file. Package names contain das.ejb.

Web Services Mediator Client JAR Naming Convention

Generated DataAccessService subclasses are named <Data_Service_ Name>DAS.class. For
example, if you generate a Web Services Mediator Client JAR from a web service map file called
Customer.ws, a class called CustomerDAS.class is generated in the JAR file. Package names
contain das.ws.

Understanding DASResult

The mediator APIs that return data sets return an object called DASResult (Data Access Service
Result). DASResult is similar to a Java Iterator.

This section includes these topics:

o Overview of DASResult

Disposing of DASResult Objects

Dynamic Mediator APIs and DASResult
Static Mediator APIs and DASResult

e Retrieving an Array of Objects

Overview of DASResult

By default, data is returned to the Mediator from the ALDSP server in small blocks. This
“streaming” behavior means that large result sets are never held in memory all at once on either
the ALDSP server or the client application, which optimizes memory utilization. However, this
requires that resources on the server be held open until all results have been returned to the client.
See “Support for Stateless Operations” on page 3-53.

Client Application Developer's Guide

Mediator APl Basics

For example, the signature for the invoke() method is:
DASResult<Object> invoke(String operation, Object[] args) throws DASEXxception;

Like an Iterator object, DASResult is forward-only; there is no way to return to a previous item
nor to restart the iteration.

DASResult includes these standard Java Iterator methods:

e Object next() throws DASEXxception;

e boolean hasNext();

Note: The Java Iterator remove() method is not included because DASResult is a read-only
object.

All complex XML items in the DASResult object are represented as DataObjects. All simple
items (which can be returned from library data service operations) in the result are represented by
a corresponding Java object, such as Integer, Long, and so on. For information on how types are
mapped to schema types, see “Mapping Data Service Types to Java Types” on page 3-46. See
also “Making Ad Hoc Queries” on page 3-56.

Tip: All mediator methods that return DASResult never return NULL; if the data service
function returns no results, then the DASResult iterates through zero items. That is,
hasNext() immediately returns false and next() returns NULL.

Disposing of DASResult Objects

The server is required to hold open resources such as database handles until the code finishes
iterating through all of the results. Therefore, you are required to dispose of returned DASResult
objects to tell the server to release the resources.

DASResult includes the following methods:
void dispose() — Disposes of resources required by DASResult on the ALDSP server.
boolean isDisposed() — Returns whether the connection to the ALDSP server has been closed.

Note: You must call dispose() when you are finished iterating through a DASResult. If you call
dispose() on a result object that has already been disposed, nothing happens, and no error
is generated.

Client Application Developer's Guide 3-41

Invoking Data Services from Java Clients

3-42

The dispose() method is automatically called for you in the following two cases:

e You use the FETCH_ALL_IMMEDIATELY feature of the RequestConfig object. For more
information this feature, see “Support for Stateless Operations” on page 3-53.

e You use the DASResult.getltems() method. For more information, see “Retrieving an
Array of Objects” on page 3-43.

Dynamic Mediator APIs and DASResult

All Dynamic Mediator APl methods that return XQuery results return a DASResult object. These
methods include:

e The basic invoke() method

e The form of invoke() that takes a RequestConfig object. See “API Overview” on page 3-4
for information on RequestConfig.

e All forms of PreparedExpression.executeQuery() for ad-hoc queries. For details on forming
ad-hoc queries, see “Using Ad Hoc Queries to Fine-tune Results from the Client” on
page 8-22.

Static Mediator APIs and DASResult

In the Static Mediator API, all generated methods for data service operations that have plural
results are declared to return a DASResult<T>. Plural results are results of data service operations
whose XQuery return type is type* (zero or more instances of the type) or type+ (one or more
instances of the type). T is the class of DataObjects that are returned by the DASResult.next().

Generated methods for data service operations that have a maximum of one return value (that is,
data service operations whose XQuery return type is type or type?) will be declared to return
the corresponding Java type directly, rather than a DASResult object. In addition, a data service
operation whose return type is empty() will generate a static mediator method with a return type
of void. See “Mapping Data Service Types to Java Types” on page 3-46 for more information.

Client Application Developer's Guide

Mediator APl Basics

Retrieving an Array of Objects

DASResult includes a method T[] getltems(). This method returns the results as an array. This
method immediately disposes the DASResult. See “Disposing of DASResult Objects” on
page 3-41.

e You must call getltems() before any calls to DASResult.next(). If you call getltems() after
any calls to next() an IllegalStateException is thrown.

o If you call next() after calling getltems(), an lllegalStateException is thrown.

e When you call getltems(), all results are materialized in memory on the client at once.

Obtaining the WebLogic JNDI Context for ALDSP

Java client applications use JNDI to access named objects, such as data services, on a WebLogic
Server. To use any of the Mediator APIs, you need to obtain the WebLogic Server JNDI context
for ALDSP. This context allows the mediator APIs to call data service operations and acquire
information from data services. For more information on WebLogic JNDI context objects, see
Programming WebLogic JNDI on e-docs.

Use the following call to obtain the JNDI context. The hashtable parameter is explained below.
InitialContext jndiCtxt = new InitialContext(hashtable);
Table 3-5 lists the keys and values that you can insert into the hashtable parameter.

Table 3-5 JNDI Context Keys and Values

Key Value

Context. INITIAL_CONTEXT_FACTORY weblogic. jndi._WLInitialContextFactory

Context.PROVIDER_URL URL of the WebLogic Server hosting ALDSP. For
example: t3://1ocalhost:7001.

Context.SECURITY_PRINCIPAL (optional) A username

Context.SECURITY_CREDENTIALS (optional) A password

Client Application Developer's Guide 3-43

http://e-docs.bea.com/wls/docs92/jndi/jndi.html

Invoking Data Services from Java Clients

Listing 3-8 shows example code for obtaining the JNDI context.

Listing 3-8 Obtaining the JNDI Context

Hashtable h = new Hashtable();
h._put(Context. INITIAL_CONTEXT_FACTORY,
"weblogic.jndi._WLInitialContextFactory');
h.put(Context.PROVIDER_URL,"t3://machinename:7001"");
h.put(Context.SECURITY_PRINCIPAL,<username>);
h.put(Context.SECURITY_CREDENTIALS, <password>);
InitialContext jndiCtxt = new InitialContext(h);

Working with Data Objects

When you invoke a data service operation using the Mediator API, a collection of
SDO-compliant data objects is returned in a DASResult object. (See also “Understanding
DASResult” on page 3-40.)

This section discusses working with DataObjects within the context of a Java client. For more
details on SDO data objects and the SDO API, see Chapter 2, “Data Programming Model and
Update Framework.”

Enabling Data Objects for Change Tracking

Before you make any changes to a DataObject, you must enable it for change tracking. To do this,
pass the DataObject to the com.bea.dsp.sdo.SDOULtil.enableChanges() method. For example:

Sbouti l.enableChanges(customer);

There are two forms of enableChanges(). One takes a DataObject and the other takes an array of
DataObjects:

com.bea.dsp.sdo.SDOUtil.enableChanges(DataObject);
com._bea.dsp.sdo.SDOUtil.enableChanges(DataObject[]);

3-44 Client Application Developer's Guide

Mediator APl Basics

Tip: When a DataObject that is enabled for changes is returned to the server, it contains its
original data and its changed data. The mechanics of handling changed data is somewhat
complex; therefore, the SDOULtil.enableChanges() utility method was created to handle
those details.

Modifying Data Object Properties

After you pass a DataObject to enableChanges(), you can make any allowable modifications to
the DataObject using the standard SDO APIs. See Chapter 2, “Data Programming Model and
Update Framework” for detailed information on the SDO API interfaces.

SDO provides static (typed) and dynamic (untyped) interfaces. For details, see “Static Data
Object API” on page 2-4 and “Dynamic Data Object API” on page 2-8.

Example static (typed) method call:
customer.setFIRST_NAME("'New First Name'™);

Example dynamic (untyped) method call:
customer.set(""FIRST_NAME"™, "New First Name');

After an SDO object is enabled for change and modified, it can be passed as an argument to an
update method. ALDSP then handles the details of performing the update. For example, from
Listing 3-4, “StaticSampleApp.java,” on page 3-16:

das.updateCUSTOMER(new CUSTOMER[] { customer });

Creating a New Data Object

You can use the API to create a completely new data object. In RDBMS terms this would be
considered creating a new record. Data object creation is an advanced topic. For detailed
information, see “Creating New DataObjects” on page 3-27.

Client Application Developer's Guide 3-45

Invoking Data Services from Java Clients

Mapping Data Service Types to Java Types

This section explains how types in data services are mapped to Java types by the Mediator API.
For example, the Static Mediator API generator makes these type conversions when creating a
Mediator Client JAR file. This section also helps you understand how argument types passed to
Mediator APl methods are mapped to corresponding XQuery types.

Topics in this section include:
e Conversion of Simple Types
e Conversion of Date/Time Types
e Passing Empty Sequence Arguments
e Quantified Return Types
e What is Autoboxing?

Conversion of Simple Types

Table 3-6 specifies how simple XQuery types are converted to Java types by the Mediator API.
For example, a data service operation that returns xs:int produces a Java method that returns a
Java Integer object. An operation that returns xs:int* (zero or more ints) returns a
DASResult<Integer> object. (See also “Static Mediator APIs and DASResult” on page 3-42.)

Note: Simple types in are mapped to Java Objects when returned from the mediator in a manner
that is identical to the SDO for Java Specification V2.1. You can find this specification
online at: www.osoa.org/display/Main/Service+Data+Objects+Specifications.

Table 3-6 Simple XQuery to Java Type Conversion

XQuery Type Mediator Accepts Mediator Returns
xs:boolean Boolean Boolean

xs:byte Byte Byte

xs:short Short Short

xs:int Integer Integer

xs:long Long Long

3-46 Client Application Developer's Guide

http://www.osoa.org/display/Main/Service+Data+Objects+Specifications

Table 3-6 Simple XQuery to Java Type Conversion

Mapping Data Service Types to Java Types

xs:integer Biglnteger Biglnteger
xs:negativelnteger Biglnteger Biginteger
xs:positivelnteger

xs:nonNegativelnteger

xs:nonPositivelnteger

Xs:unsignedByte Short Short
xs:unsignedShort Integer Integer
xs:unsignedint Long Long
xs:unsignedLong Biglnteger Biglnteger
xs:float Float Float
xs:double Double Double
xs:decimal BigDecimal BigDecimal
Xs:string String String
xs:anyURI String, java.net.URI String
xs:base64Binary byte[] byte[]
xs:hexBinary byte[] byte[]
xs:QName javax.xml.namespace.QName String

This string is formed by concatenating a
URI, a # symbol, and the local name of
the QName. Input can be a string of that
form or a QName object.

Client Application Developer's Guide 3-41

Invoking Data Services from Java Clients

3-48

Conversion of Date/Time Types

The mediator APIs handle date/time conversions in a manner that is consistent with the SDO

specification. In the SDO for Java Specification V2.1, all date/time values are mapped to Java
Strings. You can find this specification online at:
www.o0soa.org/display/Main/Service+Data+Objects+Specifications.

Note:

The form of these Strings is the same as the canonical lexical representation of the

corresponding schema type according to the XML Schema specification.

Table 3-7 XQuery Date/Time Types to Java Conversions

XQuery Type Mediator Accepts Mediator Returns

xs:date String, java.sql.Date String

xs:time String, java.sql.Time String

xs:dateTime String, java.sql. Timestamp, String
java.util.Date, java.util.Calendar

xs:duration, xs:gDay, String String

xs:gMonth, xs:gMonthDay,
xs:gYear, xs:gYearMonth

Passing Empty Sequence Arguments

If a data service operation takes an optional argument (for example CUSTOMER?), you can pass a
NULL parameter to a Static or Dynamic Mediator method. You can pass NULL in these

situations:

e As an entry in the Object[] of arguments passed to methods such as
DataAccessService.invoke() or as one of the arguments to the Static Mediator method.

e As avalue to PreparedExpression.bindObject(QName variable, Object value).

Client Application Developer's Guide

http://www.osoa.org/display/Main/Service+Data+Objects+Specifications

Mapping Data Service Types to Java Types

Quantified Return Types

In the Static Mediator API, quantified return types from data service operations are generated
based on the following rules:

Any data service parameters that are quantified with * or + (for example, xx: int*) have static
mediator methods that are declared to return DASResult<type>.

For example, a data service operation with the following signature:

declare function tl:someFunc($a as xs:int*, $b as xs:double+) as xs:int*
external;

is converted to a method like this:
DataObject<java. lang. Integer> someFunc(Integer[] a, Double[] b);

Data service operations that return unquantified or ?-quantified types have Static Mediator
methods that are declared to return the type directly. In the case of ?, it is possible that the result
of the operation will be 0 instances of the type, in which case the static mediator method returns
NULL.

What is Autoboxing?

Autoboxing is a Java 1.5 language feature that can help simplify your code when working with
Java primitive types and their object wrappers. Autoboxing automatically casts between object
wrappers such as Integer and their primitive countertypes. With autoboxing, for instance, you can
use an Integer object returned from a Mediator APl method in a mathematical expression and you
can pass an int to a Mediator APl method that takes an Integer object. For detailed information
on autoboxing, refer to the Sun’s Java documentation.

In Listing 3-9, an Integer object is retrieved from a DASResult is auto-cast to an int.

Note: If you use an Integer returned from a static mediator method as an int, but the static
mediator method actually returns null, you will get a NullPointerException. This can
only occur from a data service operation that is declared to return xs: int? —that is, 0 or
1 integers. (This is not unique to int, but to any use of autoboxing.)

Client Application Developer's Guide 3-49

Invoking Data Services from Java Clients

Listing 3-9 Autoboxing Example

CustomerDAS custdas = CustomerDAS.getlnstance(..);
// Invoke a O-argument procedure that returns xs:int*
DASResult<Integer> result = custdas.getlDs();
while (result.hasNext()) {
int cust = result.next(); // Note use of autoboxing.

}

result.dispose();

Web Services Support

The ALDSP native web services feature lets you map data services to web services directly.
Client applications access data through web services using the Mediator API. Both the Dynamic
and Static Mediator APIs support native web services. See Chapter 4, “Invoking Data Services
Through Web Services” for detailed information on the native web services feature.

Advanced Topics

3-50

This section includes these topics:
e Schema Management

e Support for Stateless Operations

Cache Management

Specifying XPath Expressions as Arguments

Making Ad Hoc Queries

Client Application Developer's Guide

Advanced Topics

Schema Management

SDO provides a series of APIs that assist with schema management. These APIs include:
o XMLHelper — Creates DataObjects from XML.
e DataFactory — Creates DataObjects from scratch.
o XSDHelper — Loads the SDO type system with schemas.

e HelperContext — Obtains instances of all the various helpers.

Schema Scope

A HelperContext object represents SDO’s concept of scope; all schemas loaded into a particular
XSDHelper are available and used when creating DataObjects from the XMLHelper or
DataFactory of the same HelperContext.

.A Dataspace represents the basic unit of scope for schemas. A Dataspace will not contain any
schemas with conflicting type declarations.

For the web services-based mediator, the scope is defined by the WSDL. All schemas necessary
for all operations in a WSDL are included in that WSDL, so the WSDL itself forms a reasonable
scope for schemas. See Chapter 4, “Invoking Data Services Through Web Services” for more
information.

The Mediator automatically keeps a global cache of HelperContexts, and the key to that cache
will be either the Dataspace name or, for the web services case, the WSDL URL. The Mediator
will automatically use the HelperContext for the appropriate Dataspace/WSDL when creating
new DataObjects for the return values of operations. You can obtain the HelperContext for a
given Dataspace/WSDL and use this HelperContext to create your own DataObjects, query the
type system, and so on. See “Schema Cache Management” on page 3-52 for more information on
the HelperContext API.

Client Application Developer's Guide 3-51

Invoking Data Services from Java Clients

Schema Download

This section describes the process of downloading schemas for DataAccessService objects
instantiated from data services and WSDLs (web services).

Note: Schemas are only downloaded when creating a dynamic DataAccessService. Creating an
instance of the Static Mediator APl never downloads schemas, because the schemas are
already compiled into the Static Mediator Client JAR file.

e Data Services Case — When a DataAccessService is instantiated for a data service, a
HelperContext object is automatically populated with all schemas imported by the data
service (and all schemas imported or included by those schemas, recursively).

e WSDL Case — When a DataAccessService is instantiated for a WSDL, the mediator
automatically populates the HelperContext for that WSDL with all schemas in that WSDL.

Schemas are only loaded if they have not previously been loaded. You can set an optional boolean
flag on the newDataAccessService() method that requests the mediator not to download schemas.
Use this flag if you intend to download schemas manually using methods described in the next
section, or if you plan to load them manually using SDO XSDHelper methods.

Tip: The schema download feature ensures that you do not need to worry about schemas. The
default behavior ensures that schemas are available to clients at the appropriate times.

Schema Cache Management

Use the following methods for querying and manipulating the mediator cache of HelperContexts.
These are static methods on the class com.bea.dsp.das.HelperContextCache.

e HelperContext get(String key) — Returns (or creates, if necessary) the HelperContext for
the given Dataspace name/WSDL URL. You may wish to obtain this object to load
schemas that are only available on the client. For example, this technique is useful if you
have a schema for the return type of an ad-hoc query that you intend to execute.

e void flush(String key) — Instructs the mediator to remove the HelperContext for the given
Dataspace name/WSDL URL from its cache All DataAccessServices created in the future
will use a new HelperContext. You can use this technique if you know the state of schemas
has changed on the ALDSP server.

Note: It is not possible in SDO 2.1 to “unload” schemas from a HelperContext; therefore
the only way to change schema information is to create an entirely new
HelperContext.

3-52 Client Application Developer's Guide

Advanced Topics

e boolean loadSchemasForDataspace(Context ctx, String dataspace, String dsname) —
Instructs the Mediator to download all appropriate schemas for the given Dataspace and
data service. This download mechanism is similar to the one used by the Mediator when
creating a DataAccessService instance. This method allows you to “pre-load” schemas, for
instance, so you do not have to create a DataAccesssService instance just to obtain the
schemas to create DataObjects. (See also “Creating New DataObjects” on page 3-27.) This
method is also the only way to achieve server schema download when you intend to use
PreparedExpression for executing an ad-hoc query. Finally, if you pass NULL for the data
service name, this method automatically downloads schemas for all data services in the
Dataspace. This may be slow, but is useful for certain ad-hoc query circumstances.

e boolean loadSchemasForWSDL (String wsdl) — Instructs the mediator to load all schemas
from the WSDL into the corresponding HelperContext. This download mechanism is
similar to the one used by the Mediator when creating a DataAccessService instance. As
ad-hoc queries are not feasible over the web service transport, this method is typically not
used.

Note: Both loadSchemasForDataspace() and loadSchemasForWSDL () return a boolean
indicating whether they actually loaded any schemas; they return false if the schemas for
the requested data service or WSDL were previously loaded.

Support for Stateless Operations

By default, the Mediator API holds resources on the ALDSP server open while data is being
returned. As discussed in “Understanding DASResult” on page 3-40, data objects are returned
through DASResult one object at a time. ALDSP refers to this strategy as stateful.

Generally, stateful operations are desirable. Stateful behavior allows both the client and the server
to minimize memory consumption. The ALDSP server will only hold open resources as long as
is absolutely necessary, and the client will not use more network round trips than are necessary
to transfer data to the server.

However, in some cases, you may want to guarantee that the client uses exactly one network
round trip. For instance, if your network connection to the ALDSP server is highly latent or
potentially unreliable, using one round trip minimizes response time and ensures that there is no
possibility of resources being left open on the server longer than necessary.

To override the default stateful behavior and return results immediately, use the RequestConfig
flag FETCH_ALL_IMMEDIATELY. When this flag is specified, the Mediator uses exactly one
network round trip to retrieve all the results at once. In addition, server resources are closed
immediately.

Client Application Developer's Guide 3-53

Invoking Data Services from Java Clients

Note: The client must have enough memory to materialize the entire result set immediately. In
addition, the ALDSP server will need to fully materialize the result set in memory when
this flag is specified. Therefore, it is very important to use this flag when there is any
possibility that the result set cannot be held comfortably in memory on both the client and
the server.

Note: WebLogic Server specifies a maximum amount of data which can be sent in a single
network operation. By default, this amount is 10 MB. If you use
FETCH_ALL_IMMEDIATELY and the results are larger than this block size, you may
receive a weblogic.socket.MaxMessageSizeExceededException. You can change this 10
MB limit in the WebLogic Server Console by selecting:

Environment > Servers > (server) > Protocols > General > Maximum Message Size

When this flag is enabled, all methods that return a DASResult will return one which is already
disposed, as explained in “Disposing the Result Object” on page 3-20.

If you use FETCH_ALL_IMMEDIATELY, you can still use the normal iterator methods of
DASResult, or use getltems() to read all the results at once.

Cache Management

This section discusses API features that let you manage data caching through the Mediator APIs.

Forcing Data Cache Read-through and Update

Data retrieved by data service operations can be cached for quick access. This is known as a data
caching. (See “Configuring the Query Results Cache”, in the ALDSP Administration Guide for
details.) Assuming the data changes infrequently, it’s likely that you’ll want to use the cache
capability.

When the RequestConfig.GET_CURRENT_DATA attribute is set to true:

o All data cache access is bypassed in favor of the physical data source. Function values are
recalculated based on the underlying data and the cache is refreshed. If a call involves
access to several cacheable functions, all will be refreshed with current data.

e The audit property:
evaluation/cache/data/forcedrefresh

indicates that a GET_CURRENT_DATA operation has been invoked.
e The REFRESH_CACHE_EARLY attribute property setting is ignored.

3-54 Client Application Developer's Guide

../admin/cache.html

Advanced Topics

SETTING the REFRESH_CACHE_EARLY Attribute
You can control the data cache using the RequestConfig.REFRESH_CACHE_EARLY attribute.

If the RequestConfig.GET_CURRENT_DATA property is not enabled, you can use the
RequestConfig.REFRESH_CACHE_EARLY property to control whether cached data is used
based on the remaining TTL (time-to-live) available for the function’s data cache.

The REFRESH_CACHE_EARLY attribute is of type integer. It is set by invoking the
RequestConfig.setIntegerAttribute() method. The setting of REFRESH_CACHE_EARLY to a
particular value requires that a cached record must have at least n seconds of remaining TTL
before it can be used. If the record is set to expire in less than n seconds, it will not be retrieved.
Instead its value is recalculated based on the underlying data and the data cache associated with
that function is refreshed. The same REFRESH_CACHE_EARLY value applies to all cache
operations during a query evaluation.

Note: The supplied integer value of REFRESH_CACHE_EARLY should always be positive.
Negative values are ignored.

Specifying XPath Expressions as Arguments

ALDSP supports a limited subset of XPath expressions called SDO path expressions. SDO path
expressions offer flexibility in how you locate data objects and attributes in the dynamic data
API’s accessors.

SDO path uses only SDO property names (which can be different from the element/attribute
name from schema/xml) in the selector. If there are alias names assigned, those are also used to
match. Each step of the path before the last must return a single DataObject.

For example:
customer.get(""CUSTOMER_PROFILE[1]/ADDRESS[AddressID=\""ADDR_10_1\""]"")

The example gets the ADDRESS at the specified path with the specified addressID. If element
identifiers have multiple values, all elements are returned.

The get() method returns an Object. If the result of the expression is a property that isMany, the
method returns a List of DataObjects.

You can get a data object’s containing parent data object by using the get() method with XPath
notation:

myCustomer .get(*'..")

Client Application Developer's Guide 3-55

Invoking Data Services from Java Clients

You can get the root containing the data object by using the get() method with XPath notation:
myCustomer .get(*'/™)
This is similar to executing myCustomer.getRootObject().

ALDSP fully supports both the traditional index notation and the augmented notation. See
“XPath Expressions in the Dynamic Data Object API” on page 2-10 for details.

Making Ad Hoc Queries

The DataAccessServiceFactory.prepareExpression() method lets you create ad hoc queries
against the data service. Listing 3-10 shows an example of the preparedExpression() method. For
more information on ad hoc queries, see “Using Ad Hoc Queries to Fine-tune Results from the
Client” on page 8-22.

Listing 3-10 Example of preparedExpression Method

PreparedeExpression pe = DataAccessServiceFactory.prepareExpression
(ctx, appname, "18 + 25'");

DASResult<Object> result = pe.executeQuery();

int answer = (int) result.next();

result.dispose();

Understanding Transaction Behavior

This section discusses the transaction behavior of read/write and read-only operations and
queries.

Transaction Behavior for Read/Write Operations

The ALDSP server always creates a new transaction if necessary when executing read/write
operations, such as create, update, or delete.

3-56 Client Application Developer's Guide

Understanding Transaction Behavior

Transaction Behavior for Read-0nly Operations

By default, read operations make use of a transaction if one is currently active on the client;
however, if no transaction is open, one will not be created. You can change this default by setting
an attribute on RequestConfig and passing RequestConfig as a parameter to invoke(). (For
detailed information on invoke() see the Javadoc.) The attribute
RequestConfig.ReadTransactionMode lets you set one of the following values to configure
transaction behavior of read-only operations.

e SUPPORTS - Read operations will make use of a transaction if one is active on the client.
If no transaction is open, however, one will not be created. This is the default setting.

e REQUIRED - Read operations will make use of a transaction if one is active on the client.
If no transaction is open on the client, one will be created on the server for the duration of
the read operation.

e NOT_SUPPORTED - Read operations will not use a transaction if one is active on the
client, and no transaction will be created.

Use the RequestConfig.setEnumAttribute() method to set the ReadTransactionMode attribute.
For example, the following code sets the ReadTransactionMode mode to SUPPORTS.

RequestConfig config = new RequestConfig();
config.setEnumAttribute(RequestConfig.ReadTransactionMode .SUPPORTS);

Client Application Developer's Guide 3-57

Invoking Data Services from Java Clients

3-58 Client Application Developer's Guide

CHAPTERa

Invoking Data Services Through Web
Services

This chapter explains how to expose data services as industry-standard web services and how to
create client applications that invoke data services through those web services.

This chapter includes these topics:
e Overview

e Before You Begin

Getting Started

Sample Static Mediator Application

Sample Dynamic Mediator Application

Transaction Behavior and Web Services

Securing Your Web Services Application

Overview

The ALDSP Native Web Services feature lets you map data services to web services directly.
Client applications access data through web services with the Data Services Mediator API.

Tip: Chapter 3, “Invoking Data Services from Java Clients,” discusses the Mediator API in
detail. We recommend that you review that chapter before you develop web
service-enabled applications.

Client Application Developer's Guide 4-1

Invoking Data Services Through Web Services

When you expose data services as web services, your information assets become accessible to a
wide variety of client types, including other Java web service clients, Microsoft ADO.NET, other
non-Java applications, and other web services. Figure 4-1 illustrates the various approaches that
client application developers can take to integrating data services and web services. Web service
WSDL operations map directly to data service operations on the server.

Tip: For detailed information on creating data service operations (read, create, update, delete,
libraryFunction, and libraryProcedure) see the Data Services Developer’s Guide.

Figure 4-1 Web Services Enable Access to ALDSP-Enabled Applications from a Variety of Clients

=y Microsoft NET Web
Services Client
= Applications
Data Service Platform

WebLogic Server

9 @

@
Java Web T “Customer” Data Service
Services Client
Applications @
’ . Read
< Create K
We.b « Update
service
. Delete 9
_ Other [, O libraryFunction
 Remote Client ..+ ’ : « libraryProcedure
‘Applications - g

;

Other
Web Services
Applications

W=t

4-2 Client Application Developer's Guide

../datasrvc/index.html

Before You Begin

Before You Begin

This chapter is intended for Java developers who wish to write client applications that invoke data
services through web services.

We recommend that:

e You have a basic understanding of web service technology and terms such as WSDL (Web
Service Description Language) and SOAP (Simple Object Access Protocol).

Tip: Ifyou are unfamiliar with web services, you can refer to the WebLogic Server
document “WebLogic Web Services: Getting Started” on e-docs. This document
provides a thorough introduction to web services as well as detailed information on
developing web services for WebLogic Server.

e You are a Java programmer (the Data Service Mediator APIs you will use are Java APIs).

e You review Chapter 3, “Invoking Data Services from Java Clients.” This chapter discusses
the Data Services Mediator API and related topics in detail.

e You review the basics of the SDO (Service Data Object) standard. SDO provides APIs for
manipulating data objects and is central to the client programming model adopted by
ALDSP. See Chapter 2, “Data Programming Model and Update Framework,” for
information on SDO.

e You are familiar with XML.

Getting Started

This section lists the basic steps to get started writing a Java client application that interacts with
a data service.

e Basic Steps
e Setting the CLASSPATH

e Running the Sample Applications

Client Application Developer's Guide 4-3

http://e-docs.bea.com/wls/docs100/webserv/index.html

Invoking Data Services Through Web Services

44

Basic Steps

These are the basic steps to follow when developing a Java client that invokes data service
functions through web service operations.

1.

The first thing you need is a data service to call. Someone (typically a data service developer)
creates the data service.

A Web Service Map file must then be generated from the data service. The map file is
typically generated by a data service developer. The procedure for generating a Web Service
Map file, see the Data Services Developer’s Guide.

Deploy and test the web service.

Decide whether to use the Static or Dynamic Mediator API to interact with the web service

from your Java client. See “Dynamic and Static Mediator APIs” on page 3-3 for a summary
of each API. To use the Static Mediator API, you need to generate or obtain the Web Services
Mediator Client JAR file. For instructions on generating a Web Services Mediator Client JAR,
see the Data Services Developer’s Guide.

Tip: The Static Mediator API is generally recommended for most use cases. The Static
Mediator APl is type safe and generally easier to use than the Dynamic Mediator API.

Set up your Java build environment. You need certain JAR files in your CLASSPATH. See
“Setting the CLASSPATH” on page 4-5 for details.

Learn the WSDL operations that are available to you for accessing data service functions. The
operations have the same names and parameters as the data service from which they were
generated.

Write and test your client application. See the sample applications provided in this document:
“Sample Static Mediator Application” on page 4-6 and “Sample Dynamic Mediator
Application” on page 4-15.

Client Application Developer's Guide

../datasrvc/index.html
../datasrvc/index.html

Getting Started

Setting the CLASSPATH
CLASSPATH settings depend on whether you are using the Static or Dynamic Mediator API.
Static Java Mediator API Client CLASSPATH

The following JARs must be in the CLASSPATH of your Java application if you are using the
Static Mediator API.

e <\Web Services Mediator Client File> jar

Note: This first entry is only required if you are using the Static Mediator API. This entry
must precede the other entries listed below. For instructions on generating a Web
Services Mediator Client JAR, see the Data Services Developer’s Guide. Typically,
this file is generated by a data services developer.

o <ALDSP_HOME>/lib/sdo.jar
o <WEBLOGIC_HOME>/common/lib/apache_xbean.jar
o <WEBLOGIC_HOME>/server/lib/weblogic.jar

Dynamic Java Mediator API Client CLASSPATH

The following JARs must be in the CLASSPATH of your Java application if you are using the
Dynamic Mediator API.

o <ALDSP_HOME>/lib/sdo.jar

e <ALDSP_HOME>/lib/ld-client.jar

o <WEBLOGIC_HOME>/common/lib/apache_xbean.jar
o <WEBLOGIC_HOME>/server/lib/weblogic.jar

Running the Sample Applications

A good way to get started is to run the sample application code that is provided in this chapter.

Samples that use the Static and the Dynamic Mediator APIs are included. The samples illustrate
simple but common use cases: retrieving data, modifying it, and updating it. See “Sample Static
Mediator Application” on page 4-6 and “Sample Dynamic Mediator Application” on page 4-15.

Client Application Developer's Guide 4-5

../datasrvc/index.html

Invoking Data Services Through Web Services

Sample Static Mediator Application

46

This section presents a simple Java program that you can copy, compile, and run. The program
uses the Static Mediator API to invoke WSDL operations to perform the following basic tasks:
authenticating the client, retrieving data, modifying data, and updating data on the server. For an
overview of the Static Mediator API, see “Dynamic and Static Mediator APIs” on page 3-3.

Topics include:

e Setting Up the Sample Data Service

Creating a Web Service Map File

Generating the Web Services Mediator Client JAR File

Setting Up the Java Project

Running and Testing the Code

e Examining the Sample Code

Setting Up the Sample Data Service

The sample application presented here is designed to work with a sample data service. You need
to create this data service and configure a sever before continuing. For detailed instructions on
creating the data service that is required by this sample application, see “Setting Up the Sample
Data Service” on page 3-8.

Creating a Weh Service Map File

To run the example, you need to generate a Web Service Map file. You can do this easily using
Data Services Studio. See the Data Services Developer’s Guide for detailed instructions.

To create the file using Data Services Studio:
1. Right-click the data service project and select New > Web Service Map.

2. Follow the wizard to create the map file. For this example, name the file
Physical CUSTOMER.ws.

3. Drag the data service file, Physical CUSTOMER.ds onto the Web Service Mapper editor.
4. Save the file.

Client Application Developer's Guide

../datasrvc/index.html

Sample Static Mediator Application

5. Deploy and test the web service. To do this, right-click the Physical CUSTOMER.ds file and
select Test Web Service.

Tip: You can generate a Web Services Map file using Data Services Studio, the ALDSP
Console, or an Ant script. These methods are described in detail in the Data Services
Developer’s Guide.

Generating the Weh Services Mediator Client JAR File

The sample Java application listed later in this section requires that you first generate a Web
Services Mediator Client JAR file. The classes in this JAR contain type-safe methods that call
WSDL operations.

Tip: You can generate a Web Services Mediator Client JAR file using Data Services Studio,
the ALDSP Console, or an Ant script. These methods are described in detail in the Data
Services Developer’s Guide. For this example, we will use Data Services Studio.

To generate a Web Services Mediator Client JAR file using Data Services Studio:

1. Generate the Web Service Map file, as discussed previously in “Creating a Web Service Map
File” on page 4-6.

2. Select File > Export.

3. Inthe Select dialog, select AquaLogic Data Services Platform > Web Services Mediator
Client JAR File and click Next.

4. Complete the Web Services Mediator Client JAR File dialog as follows:

o In the left panel, select the Dataspace project that contains the .ws file(s) to export. For this
example, the Dataspace project is called MediatorTest.

e In the right panel, select the Web Service Map file to export. You can select one or more
.ws files. For this example, be sure Physical CUSTOMER.ws is selected.

e Specify a directory in which to place the exported JAR file. You can select any location on
your system. By default, the exported JAR will be named: MediatorTest-ws-client.jar.

Client Application Developer's Guide 4-7

../datasrvc/index.html
../datasrvc/index.html
../datasrvc/index.html
../datasrvc/index.html

Invoking Data Services Through Web Services

4-8

5.
6.

Click Finish.

After you generate the JAR file, you must place it in the CLASSPATH for your Java build
environment. See “Setting the CLASSPATH” on page 4-5 for more information.

Tip: Generated classes in the JAR file are named according to the conventions described in

“Naming Conventions for Generated Classes” on page 3-40.

Setting Up the Java Project

Listing 4-1 lists the sample Java client that uses the Static Mediator API to call WSDL operations.
The application simply retrieves a DataObject from a data store, modifies the object, and returns
it to the data store. This example assumes you are using Data Services Studio, but you can use
the IDE or build environment of your choice. For this example, we set up a Java project called
MediatorWSClient.

To run the sample:

1.
2.

Create a Java project called MediatorWSClient.

Set up your Java Build Path to include the JAR files listed in “Setting the CLASSPATH” on
page 4-5. To do this, select Project > Properties > Java Build Path. Be sure to add the
generated Web Services Mediator Client JAR file.

Create a package called com.bea.ws.sample in your Java project. To do this, right-click the
Java project in the Package Explorer and select New > Package.

Create a Java class called StaticWSSampleApp.java in the package. To do this, right-click the
package in the Package Explorer and select New > Class.

Delete the default contents of the new source file and copy the entire file listed in Listing 4-1
into the source file.

Save the file. Figure 4-2 shows the completed project configuration.

Client Application Developer's Guide

Figure 4-2 Completed Project Configuration

Dataspace Project

Java Project

Sample Static Mediator Application

Hierarchy

=122 MediatarTest

(= DaP-INF
== PhysicalDss
== schemas

X| PhysicalCUSTOMER _KEY . xsd
X| PhysicalCUSTOMER. xsd
3 PhysicalCUSTOMER. ds
[& PhysicalCUSTOMER, ws
X| xquery-types,xsd
Bl Vedi jent
=3 com.bea.ws.sampls
= m StaticwsSampledpp. java
= @, StaticwsSampledpp
& maingStringl[1)
B JRE System Library [jdk150_10]
oy Mediator Test-ws-client. jar - Cibealaldsp_3.0ilib
ld-client.jar - Ci\bealaldsp_3.0%ib
sdo.jar - Ciibeataldsp_3.0%ib
weblogic.jar - C:ibealweblogic92servertlib
wiclient. jar - C:ibeaiweblogic9Ziserverilib

[
Bq B Dq B

Note: The imported classes Physical CUSTOMERDAS and Physical CUSTOMER are taken
from the Web Services Mediator Client JAR file, which must be in the CLASSPATH.

Listing 4-1 StaticWSSampleApp.java

package com.bea.ws.sample;

import das.ws.ld.PhysicalCUSTOMERDAS;
import physicaldss.physicalcustomer.Physical CUSTOMER;

import com.bea.dsp.das.DASResult;
import com.bea.dsp.sdo.SDOUtil;

import java.util_.Hashtable;
import javax.naming.Context;

import javax.naming.lnitialContext;

public class StaticWSSampleApp {

public static void main(String[] args) throws Exception {

Client Application Developer's Guide

Invoking Data Services Through Web Services

4-10

// Create InitialContext for mediator

Hashtable<String, String> hash = new Hashtable<String, String>(Q);

hash.put(Context. INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory");

hash.put(Context.SECURITY_PRINCIPAL,"weblogic™);

hash._put(Context.SECURITY_CREDENTIALS,"weblogic™);

Context ctx = new InitialContext(hash);

String wsdlURL =
"http://localhost:7001/MediatorTest/Physical CUSTOMER.ws?WSDL";

// Create DataAccessService handle with Context and dataspace name
Physical CUSTOMERDAS das = Physical CUSTOMERDAS.getlnstance(ctx, wsdlURL);

// Invoke the basic "get all customers®™ function
DASResult<Physical CUSTOMER> result = das.PhysicalCUSTOMERQ);

// Obtain the first PhysicalCUSTOMER DataObject
PhysicalCUSTOMER customer = result.next();

// When finished interating through results, always call dispose().
result.dispose();

// Enable change-tracking for that Physical CUSTOMER
sboutil.enableChanges(customer);

// Modify customer
customer.setFIRST_NAME(''StaticWSMediator™);
customer.setEMAIL_ADDRESS("'staticwsmediator@example.com™);

// Send changes back to DSP - update function takes an array
// of PhysicalCUSTOMERs
das.updatePhysical CUSTOMER(new PhysicalCUSTOMER[] { customer });

Client Application Developer's Guide

Sample Static Mediator Application

Running and Testing the Code

To test the application, simply start the server and run the Java client as a Java application. In
Data Services Studio, this is commonly done by right-clicking the Java file and selecting Run As
> Java Application.

To verify that the Java client worked, re-test the data service:

1.
2.

Open the data service in the Data Service editor.
Click the Test tab (see Figure 4-3).

Select an operation from the drop down menu. For this example, select the
Physical CUSTOMER() function.

Click Run (see Figure 4-3).

Inspect the first row of the data table. The client application changes the first customer’s name
and email address to “StaticWSMediator” and “staticwsmediator@example.com” as shown
in Figure 4-3.

Figure 4-3 Testing the Client

|J] StaticwsSarmpledpp.java iy X =0
Select operation: | PhysicalCUSTOMER() v e
Parameters: ¥

Mo Parameters

Settings: 3
Run
button Result: |§ Result is valid. O Tree O Text (&) Tabula
CUSTOMEE — e TAST TIEE | CUSTOMER — TELEPHOME_f
U p d ate d STOMER 1 StaticWwSMediator Black, 2001-10-01T00:00:00 skaticwsmediator@example.cond 2145134119
L Greenberg 2001-10-01T00:00:00 JOHM_2 F6E07467964
d ata CUSTOMERS Eritt Pierce OOT-TO-01TO0:00:00 JOHMN_3@atk, com 9287731259
CUSTOMER4 Skeve Ling 2001-10-02T00:00:00 JOHMN_s@atk. com 660152496
CUSTOMERS Michael Snow 2001-10-01T00:00:00 JOHN_S@aol.com 4150460017
CUSTOMERG Dan Johnson 2001-10-01T00:00:00 IOHN_6@hotmail.com 5128937204
CUSTOMERT Tim Floyd 2001-10-01T00:00:00 JOHN_7@yahoo.com 2062616409
CUSTOMERS Mikin Gupka 2001-10-01T00:00:00 JOHMN_S@atk. com B025483757
CUSTOMERS Hormmer Simpson 2001-10-01T00:00:00 JOHN_9@yahoo,com 7023719179
CUSTOMERD Kewvin Smith 2001-10-01T00:00:00 Kevin@aol.com 4085320283
v
< ¥
Test vk er-Pap—Plar Test | Source
tab

Client Application Developer's Guide 4-1

Invoking Data Services Through Web Services

4-12

Examining the Sample Code

This section discusses the parts of the Java sample in Listing 4-1. This section examines the
following components of the sample code:

e Importing Packages

Obtaining a Data Access Service Handle

Retrieving Data from the Service

Obtaining a DataObject from the Result

Modifying the DataObject

Returning Changes to the Server

Disposing the Result Object

Importing Packages

Note that the first two imported classes come from the generated Web Services Mediator Client
JAR file.

The Physical CUSTOMERDAS class is the generated DataAccessService class that contains Java
methods to call the WSDL operations. Method names are the same as their corresponding WSDL
operations. This class contains type-safe methods that map to the actual WSDL operations. The
Physical CUSTOMER class provides the SDO interface for manipulating DataObjects returned
from the data service.

import das.ws.Physical CUSTOMERDAS;
import physicaldss.physicalcustomer.Physical CUSTOMER;

import com.bea.dsp.das.DASResult;
import com.bea.dsp.sdo.SDOUtil;

import java.util_.Hashtable;

import javax.naming.Context;
import javax.naming.lnitialContext;

Client Application Developer's Guide

Sample Static Mediator Application

Obtaining a Data Access Service Handle

A DataAccessService object lets you call methods on a data service. See the Javadoc for more
information on this class. For the Static Mediator API, DataAccessService (DAS) classes have a
factory method named getinstance() to return the handle.

The getinstance() method requires two parameters to return the handle:

e A WebLogic JNDI Context object. The Context object holds properties, such as certain
security attributes. See “Obtaining the WebLogic JNDI Context for ALDSP” on page 3-43.
For more information on WebLogic JNDI context objects, see Programming WebLogic
JNDI on e-docs. For information on security settings, see “Securing Your Web Services
Application” on page 4-21.

e A WSDL URL the specifies the address of the web service to access.

Hashtable<String, String> hash = new Hashtable<String, String>();

hash.put(Context. INITIAL_CONTEXT_FACTORY,
"weblogic.jndi._WLInitialContextFactory');

hash_put(Context.SECURITY_PRINCIPAL, "weblogic™);

hash_put(Context.SECURITY_CREDENTIALS,"weblogic™);

Context ctx = new InitialContext(hash);

String wsdlURL =
"http://localhost:7001/MediatorTest/Physical CUSTOMER .ws?WSDL";

// Create DataAccessService handle with Context and dataspace name

Physical CUSTOMERDAS das = Physical CUSTOMERDAS.getlInstance(ctx, wsdlURL);

Note: Both the Static and Dynamic Mediator APIs accept either a file or a WSDL URL. For
example:

file:///C:/RTLApp/DataServices/RTLServices/Customer.wsdl

where Customer.wsdl is the WSDL file located on the local hard drive.

Retrieving Data from the Service

The generated DataAccessService method Physical CUSTOMER() retrieves the result set from
the data service. This method returns all customer objects from the data service. The return type
is a DASResult object, which works like an iterator. For more information on this return type, see
“Understanding DASResult” on page 3-40.

DASResult<PhysicalCUSTOMER> result = das.PhysicalCUSTOMERQ);

Client Application Developer's Guide 4-13

http://e-docs.bea.com/wls/docs92/jndi/jndi.html
http://e-docs.bea.com/wls/docs92/jndi/jndi.html

Invoking Data Services Through Web Services

4-14

Obtaining a DataObject from the Result

The DASResult.next() method works very much like the Java method Iterator.next(). It returns
the next Physical CUSTOMER, which is an SDO DataObject. SDO is a Java-based data
programming model (API) and architecture for accessing and updating data. For details on SDO,
see Using Service Data Objects (SDO) in the ALDSP Concepts Guide.

PhysicalCUSTOMER customer = result.next();

Disposing the Result Object

You must call DASResult.dispose() whenever you are finished iterating through a result object.
For more information on dispose(), see “Disposing of DASResult Objects” on page 3-41.

result.dispose();

Modifying the DataObject

After you obtain a DataObject, you can modify it; however, if you intend to submit these changes
back to the ALDSP server, you must enable change-tracking on the DataObject before making
any modifications. The SDOUtil.enableChanges() method lets you enable change-tracking for a
single DataObject or an array of DataObjects. For more information on this method, see
“Working with Data Objects” on page 3-44. After the customer object has change-tracking
enabled, the generated setters are called to modify certain values in the customer object.

Tip: Note that the getters and setters are part of the SDO API, not the Mediator API. See
Chapter 2, “Data Programming Model and Update Framework” for information on SDO.

SDouti Il .enableChanges(customer);

customer.setFIRST_NAME('StaticWSMediator™);
customer.setEMAIL_ADDRESS("'staticwsmediator@example.com™);

Returning Changes to the Server

Finally, the generated DataAccessService.updatePhysical CUSTOMER() method is called with a
single parameter: an array of Physical CUSTOMER objects. The method calls its equivalent data
service function to update the database with the newly modified row of data.

das.updatePhysical CUSTOMER(nhew PhysicalCUSTOMER[] { customer });

Client Application Developer's Guide

../concepts/sdo.html

Sample Dynamic Mediator Application

Sample Dynamic Mediator Application

This section presents a simple example that you can copy, compile, and run. This example uses
the Dynamic Mediator API to perform these basic tasks: authenticating the client, retrieving data,
modifying data, and updating data on the server.

e Setting Up and Running the Sample Code
e Sample Java Client Code (Dynamic Mediator API)

e Examining the Sample Code

Setting Up and Running the Sample Code

To run this sample code, follow the basic setup instructions in “Sample Static Mediator
Application” on page 4-6. The procedures for creating a sample data service, setting the
CLASSPATH, and running the program are the same as the Static Mediator sample; however,
when using the Dynamic Mediator API, you do not need to generate or reference the Web
Services Mediator Client JAR file.

Sample Java Client Code (Dynamic Mediator API)

Listing 4-2 DynamicWSSampleApp.java

package com._bea.ws.sample;

import com.bea.dsp.das.DataAccessServiceFactory;
import com.bea.dsp.das.DataAccessService;

import com.bea.dsp.das.DASResult;

import com.bea.dsp.sdo.SDOUtil;

import commonj.sdo.DataObject;
import java.util _Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;
public class DynamicWSSampleApp {

public static void main(String[] args) throws Exception {
// Create InitialContext for mediator

Client Application Developer's Guide 4-15

Invoking Data Services Through Web Services

Hashtable<String, String> hash = new Hashtable<String, String>();

hash.put(Context. INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory");

hash_put(Context.SECURITY_PRINCIPAL,"weblogic™);

hash_put(Context.SECURITY_CREDENTIALS,"weblogic™);

Context ctx = new InitialContext(hash);

String wsdIURL =
"http://localhost:7001/MediatorTest/Physical CUSTOMER.ws?WSDL";

// Create DataAccessService handle with Context, dataspace

// name, and data service URI

DataAccessService das = DataAccessServiceFactory.newDataAccessService
(ctx, wsdIURL);

// Invoke the basic "get all customers®™ function, which takes
// no arguments
DASResult<Object> result = das.invoke(*'Physical CUSTOMER", new Object[0]);

// Obtain the first PhysicalCUSTOMER DataObject
DataObject customer = (DataObject) result.next();

// When finished interating through results, always call dispose().
result.dispose();

// Enable change-tracking for that Physical CUSTOMER
sSboutil.enableChanges(customer);

// Modify customer
customer.set("FIRST_NAME", "DynamicWSMediator™);
customer.set(""EMAIL_ADDRESS", "dynamicwsmediator@bea.com™);

das. invoke("'updatePhysical CUSTOMER", new Object[] { customer });
result.dispose();

4-16 Client Application Developer's Guide

Sample Dynamic Mediator Application

Examining the Sample Code

This section discusses the parts of the Java sample in Listing 4-2. This section examines the
following components of the sample code:

Importing Classes

Obtaining a DataAccessService Handle

Retrieving Data from the Service

Obtaining a DataObject from the Result

Disposing the Result Object

Modifying the DataObject

Returning Changes to the Server

Importing Classes
These classes are required by the sample. For detailed information on the classes, refer to the
Javadoc on e-docs.

import com.bea.dsp.das.DataAccessServiceFactory;
import com.bea.dsp.das.DataAccessService;

import com.bea.dsp.das.DASResult;

import com.bea.dsp.sdo.SDOUtil;

import commonj.sdo.DataObject;
import java.util_.Hashtable;

import javax.naming.Context;
import javax.naming.lnitialContext;

Client Application Developer's Guide 4-11

Invoking Data Services Through Web Services

4-18

Obtaining a DataAccessService Handle

A DataAccessService object lets you call methods on and submit changes to a data service. The
DataAccessServiceFactory requires two parameters to return the handle.

e A WebLogic JNDI Context object. The Context object holds properties, such as certain
security attributes. See “Obtaining the WebLogic JNDI Context for ALDSP” on page 3-43.
For more information on WebLogic JNDI context objects, see Programming WebLogic
JNDI on e-docs. For more information on security, see “Securing Your Web Services
Application” on page 4-21.

e A WSDL URL that specifies the address of the web service to access.

Hashtable<String, String> hash = new Hashtable<String, String>();

hash_put(Context. INITIAL_CONTEXT_FACTORY,
“weblogic.jndi.WLInitialContextFactory™);

hash_put(Context.SECURITY_PRINCIPAL, "weblogic™);

hash_put(Context.SECURITY_CREDENTIALS,"weblogic™);

Context ctx = new InitialContext(hash);

String wsdIURL =
"http://localhost:7001/MediatorTest/Physical CUSTOMER .ws?WSDL";

// Create DataAccessService handle with Context, dataspace

// name, and data service URI

DataAccessService das = DataAccessServiceFactory.newDataAccessService
(ctx, wsdIURL);

Note: Both the Static and Dynamic Mediator APIs accept either a file or a WSDL URL. For
example:

file:///C:/RTLApp/DataServices/RTLServices/Customer.wsdl

where Customer.wsdl is the WSDL file located on the local hard drive.

Retrieving Data from the Service

In this example, the invoke() method calls the WSDL operation Physical CUSTOMER. This
method returns all customer objects from the data service. The method returns a DASResult
object, which works like an iterator. For more information on this return type, see “Understanding
DASResult” on page 3-40. Note that the Physical CUSTOMER operation takes no arguments.
This signature corresponds to the data service function that the WSDL operation calls.

DASResult<Object> result = das.invoke("'PhysicalCUSTOMER", new Object[0])

Client Application Developer's Guide

http://e-docs.bea.com/wls/docs92/jndi/jndi.html
http://e-docs.bea.com/wls/docs92/jndi/jndi.html

Sample Dynamic Mediator Application

Obtaining a DataObject from the Result

The DASResult.next() method works very much like the Java method Iterator.next(). It returns
the next object in the result set. Because the Physical CUSTOMER data service method returns
SDO-compliant DataObjects, you can cast the return value to DataObject. SDO is a Java-based
data programming model (API) and architecture for accessing and updating data. For details on
SDO, see Using Service Data Objects (SDO) in the ALDSP Concepts Guide. See also “What is
SDO?” on page 3-2.

DataObject customer = (DataObject) result.next();

Disposing the Result Object

You must call DASResult.dispose() whenever you are finished iterating through a result object.
For more information on dispose(), see “Disposing of DASResult Objects” on page 3-41.

result.dispose();

Modifying the DataObject

After you obtain a DataObject, you can modify it; however, if you intend to submit these changes
back to the ALDSP server, you must enable change-tracking on the DataObject before making
any modifications. The SDOUtil.enableChanges() method lets you enable change-tracking for a
single DataObject or an array of DataObjects. For more information on this method, see
“Working with Data Objects” on page 3-44. After the customer object has change-tracking
enabled, the set method is called to modify certain values in the customer object.

// Enable change-tracking for that Physical CUSTOMER

Sbouti Il .enableChanges(customer);

// Modify customer
customer.set("FIRST_NAME'"™, "DynamicWSMediator™);
customer.set(""EMAIL_ADDRESS", "dynamicwsmediator@bea.com™);

Returning Changes to the Server

Finally, the DataAccessService method invoke() is called with the update WSDL operation. The
operation takes a single parameter: an array of Physical CUSTOMER objects. The data service
function updates the database with the newly modified row of data.

das. invoke(*'updatePhysical CUSTOMER", new Object[] { customer });

Client Application Developer's Guide 4-19

../concepts/sdo.html

Invoking Data Services Through Web Services

Transaction Behavior and Web Services

4-20

Transactions are not propagated from the client to the server through web services, because there
is no way for a client transaction to be sent through the web services interface. If a failure occurs
and there is a transaction on the client side, the transaction will be rolled back, depending on how
the client handles the failure; however, the transaction is not propagated to the server.

You can configure how transactions are handled on the server by setting attributes on the static
com.bea.dsp.RequestConfig.Read TransactionMode object:

o |f set to REQUIRED and you invoke a read operation, a transaction is started on the server.

o |[f set to SUPPORTS (the default), a currently running transaction on the server will
continue. If there is no currently running transaction, a new one is not created.

A third attribute, NOT_SUPPORTED, is not supported for web service operations. For a detailed
discussion of transaction behavior with the Mediator API, see “Understanding Transaction
Behavior” on page 3-56.

Listing 4-3 shows how to set the com.bea.dsp.RequestConfig.ReadTransactionMode attribute.

Listing 4-3 Setting the ReadTransactionMode Attribute

RequestConfig config = new com.bea.dsp.RequestConfig();
RequestConfig requestConfig = request.getConfig();

if(readTransactionRequired) {
config.setEnumAttribute(RequestConfig.ReadTransactionMode .REQUIRED) ;
}

Client Application Developer's Guide

Securing Your Web Services Application

Securing Your Web Services Application

ALDSP Native Web Services supports the following security features:
e Basic authentication (Web Application Security)
e Transport level security (HTTPS)

e Message level security (Web Services Security)

Tip: For detailed information on configuring these security options, see “Configure Security
for Web Services Applications” in the Data Services Developer’s Guide.

Typically, security configuration is performed on the server side by an administrator or data
services developer. As a client developer, you need to pass the required values to the server to
satisfy the required authentication. See Listing 4-4 for one example.

Note: The Native Web Services feature supports only the HTTP and HTTPS transport
protocols. If you wish to use another transport protocol, you must use ALDSP's
Aqualogic Service Bus transport. This transport allows ALDSP data services to be
exposed through ALSB.

If basic authentication is enabled, you must pass the following properties through the Mediator
API using the context object. For more information on WebLogic JNDI context objects, see
Programming WebLogic JNDI on e-docs.

e DSPWebServicesProperties. USER_NAME

o DSPWebServicesProperties. PASSWORD

Listing 4-4 illustrates one possible way to set up a web service security for a data access service.
In this case, a client-side BinarySecurityToken credential provider is created that uses the public
key infrastructure standard X.509 for identity. The credential provider is then set as a property in
the Context object, which is used to create the data access service. The credential provider,

security token, username token, and trust manager are standard web service security properties.

For more information refer to the WebL ogic Service documentation on web services security. See
also see “Configure Security for Web Services Applications” in the Data Services Developer’s
Guide.

Client Application Developer's Guide 41

http://e-docs.bea.com/wls/docs92/jndi/jndi.html
../datasrvc/Configure Security for Web Services Applications.html
../datasrvc/Configure Security for Web Services Applications.html
../datasrvc/index.html
../datasrvc/index.html
../datasrvc/index.html

Invoking Data Services Through Web Services

Listing 4-4 Example X.509 Certificate Token Profile Setup

Hashtable h = new Hashtable();
h.put(Context. INITIAL_CONTEXT_FACTORY, "weblogic.jndi.WLInitialContextFactory');

// Create emtpy list of credential providers.
List credProviders = new ArrayList();

// Create a client-side BinarySecurityToken credential provider that uses
// X.509 for identity, based on certificate and keys parameters.
CredentialProvider cp = new ClientBSTCredentialProvider(cert, key);
credProviders.add(cp);

String userid = "weblogic";

String password = "weblogic";

// Create a client-side UsernameToken credential provider based on username
// and password parameters.

cp = new ClientUNTCredentialProvider(userid.getBytes(), password.getBytes());
credProviders.add(cp);

h.put(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders);
h.put(WSSecurityContext.TRUST _MANAGER, userTrustMgrimpl);

Context context = new InitialContext(h);

4-22 Client Application Developer's Guide

CHAPTERa

Using SQL to Access Data Services

This chapter explains how to use SQL to access data services and how to set up and use the ALDSP
JDBC driver. The chapter covers the following topics:

e Introducing SQL Access to Data Services

e JDBC and SQL Support in ALDSP

e Preparing to Use SQL to Access Data Services

e Accessing Data Services Using SQL From a Java Application
o Advanced Features

e Accessing Data Services Using SQL-Based Applications

Client Application Developer's Guide 5-1

Using SQL to Access Data Services

Introducing SQL Access to Data Services

5-2

Many reporting tools, such as Crystal Reports, Business Objects, Microsoft Access, and Microsoft
Excel, can access data using SQL. SQL can also be useful in other contexts. Java applications, for
example, can access data using SQL. You can also run ad hoc SQL queries using development tools
such as Data Tools Platform (DTP) or SQL Explorer.

The ALDSP JDBC driver enables JDBC and ODBC clients to access information from data services
using SQL. The ALDSP JDBC driver thereby increases the flexibility of the ALDSP integration layer by
enabling access from a range of database applications and reporting tools.

For the client, the ALDSP integration layer appears as a relational database, with each data service
operation comprising a table or a stored procedure. Internally, ALDSP translates SQL queries into
XQuery. Figure 5-1 illustrates SQL access to data using the ALDSP JDBC driver.

As Figure 5-1 shows, source data can be consolidated, integrated, and transformed using ALDSP data
services. The source data itself can come from disparate sources throughout the enterprise, including
relational databases and Web services, among others.

You can then, in turn, expose the data service operations as a relational data source accessible using
SQL queries. This enables JDBC clients to access data consolidated through ALDSP.

Note that the ALDSP JDBC driver does impose the following constraints on data services:

e You can use the ALDSP JDBC driver to access data only through data services that have a flat
data shape, which means that the data service type cannot have nesting. SQL provides a
traditional, two-dimensional approach to data access, as opposed to the multi-level, hierarchical
approach defined by XML.

e The ALDSP JDBC driver exposes non-parameterized flat data service operations as tables
because SQL tables do not have parameters. Parameterized flat data services are exposed as
SQL stored procedures.

Client Application Developer’s Guide

Introducing SQL Access to Data Services

Figure 5-1 SQL Access to Data Services

Java JDBC REPORTING QUERY |
APPLICATIONS APPLICATIONS TooLs |

| ALDSP JDBC DRIVER |

JDBC
ACCESS

SQL ViEw
TABLES

empinfo contact

empid | name | salary | options street | city | state | zip | work | home

STORED PROCEDURES
GETBYSALARY(in minSal)

PUBLISHED
DATA
LoGicAL DATA SERVICES PHYSICAL DATA SOURCES |

<empinfo empid= ...> RDBMS TABLES
<name> </name>
<salary> </salary> EMPLINFO
<options> </options> EMPID | EMPNAME | CURSALARY
</empinfo>
<contact empid= ...>
<address> i
<street> </street> data services
<city> </city>
<state> </state> <
Data service <zip> </zip>
operations </address>
published for <phone> ADDRPHONE
SQL access <work> </work> EMPLID | STREET | CITY | STATE | ZIP | WORK | HOME
<home> </home>
</phone>
</contact>

Source data
consolidated as

GetBySalary(minSal)

WEB SERVICES
stock:GetOptionsValue(empid)

Client Application Developer’s Guide 5-3

Using SQL to Access Data Services

Features of the ALDSP JDBC Driver

The ALDSP JDBC driver implements the java.sql.* interface in JDK 1.5x to provide access to an ALDSP
server through the JDBC interface. The driver has the following features:

o Supports SQL-92 SELECT statements

e Implements the JDBC 3.0 Application Programming Interface (API)
e Supports ALDSP with JDK 1.5

e Supports both Java and ODBC bridge software clients

e Supports table parameters, an extension to SQL-92.

o Allows metadata access control at the JDBC driver level

Using the ALDSP JDBC Driver, you can control the metadata accessed through SQL based on the
access rights set at the JDBC driver level. This access control ensures that users can view only those
tables and procedures that they are authorized to access.

However, to use this feature, the ALDSP console configuration should be set to check access control.
For more information, refer to the “Securing Data Services Platform Resources” section in the
Administration Guide.

Exploring ALDSP and JDBC Artifacts

The ALDSP views data retrieved from a database in the form of data sources and operations. Table 5-1
shows the equivalent terminology.

Table 5-1 ALDSP and JDBC Driver Artifacts

ALDSP JDBC

Dataspace Project JDBC connection parameter (Driver URL)
Operation with parameters Stored procedure

Operation without parameters Table or stored procedure

For example, if you have a project SQLHowTo and a data service EmpInfo.ds with an operation
getAl1 (), you can use SQL Mapper to expose it as IDBCdemo . empData.empinfo. The JDBC driver
would then see a table called empinfo with schema empData and catalog JDBCdemo.

5-4 Client Application Developer’s Guide

../admin/security.html#wp1094964

JDBC and SQL Support in ALDSP

This section describes the JDBC and SQL support in the ALDSP JDBC driver

JDBC Support

The ALDSP JDBC driver implements the following interfaces from the java.sql package as
specified in JDK 1.5x:

- java.
- java.
e java.
- java.
- java.

sql
sqgl

sql

-Blob

.CallableStatement
sql.
.DatabaseMetaData
sql.

Connection

ParameterMetaData

JDBC and SQL Support in ALDSP

< java.sql.PreparedStatement
< java.sql .ResultSet
e java.sql.ResultSetMetaData
< java.sql.Statement

The ALDSP JDBC driver supports the following methods:

Table 5-2 ALDSP JDBC Driver Methods

Interface Supported Methods

jJava.sql .Blob e getBinaryStream position
- getBytes truncate
< length

jJava.sql .CallableStatement e clearParameters setFloat
= executeQuery setint
= setAsciiStreanm setLong
= setBigDecimal setNull
= setBoolean setObject
= setByte setShort
= setBytes setString
= setCharacterStream setTime
= setDate setTimestamp
= setDouble

Client Application Developer’s Guide 5-5

Using SQL to Access Data Services

Tahle 5-2 ALDSP JDBC Driver Methods

Interface

Supported Methods

jJava.sql .Connection

= clearWarnings

e close

= createStatement

e getAutoCommit

= getCatalog

e getHoldability

e getLogPrintWriter
= getMetaData

= getSchema

e getTransaction
Isolation

getTypeMap
getWarnings
isClosed
isReadOnly
nativeSQL
prepareCall
prepareStatement
setAutoCommit
setCatalog
setHoldability
setReadOnly

jJava.sql .DatabaseMetaData

e allProceduresAre
Callable

e allTablesAre
Selectable

e dataDefinitionCauses
TransactionCommit

= dataDefinitionlgnored
InTransactions

e deletesAreDetected

« doesMaxRowSizelnclude
Blobs

e getAttributes

= getBestRowldentifier

= getCatalogs

= getCatalogSeparator

e getCatalogTerm

e getColumnPrivileges

= getColumns

= getConnection

= getCrossReference

= getDatabaseMajor
Version

= getDatabaseMinor
Version

getDatabaseProduct
Name

getDatabaseProduct
Version

getDefault
Transaction
Isolation

getDriverMajor
Version

getDriverMinor
Version

getDriverName
getDriverVersion
getExportedKeys
getExtraName
Characters
getldentifierQuote
String
getlmportedKeys
getlindexInfo
getJDBCMajor
Version

getJDBCMinor
Version

5-6

Client Application Developer’s Guide

Tahle 5-2 ALDSP JDBC Driver Methods

JDBC and SQL Support in ALDSP

Interface Supported Methods
jJava.sql .DatabaseMetaData = getMaxBinaryLiteral getSchemas
(Continued) Length getSchemaTerm
= getMaxCatalogName getSearchString
Length Escape
= getMaxCharLiteral getSQLKeywords
Length getSQLStateType
< E§§22§ColumnName getStringFunctions
etSuperTables
= getMaxColumnsin 9 P
GroupBy getSuperTypes
= getMaxColumnsinlndex getSystemF?n?tlons
- getMaxColumnsin getTablePrivileges
OrderBy getTables

getMaxColumnsinSelect
getMaxColumnsinTable
getMaxConnections

getMaxCursorName
Length

getMaxIndexLength

getMaxProcedureName
Length

getMaxRowSize

getMaxSchemaName
Length

getMaxStatementlLength
getMaxStatements
getMaxTableNameLength
getMaxTablesInSelect
getMaxUserNamelLength
getNumericFunctions
getPrimaryKeys
getProcedureColumns
getProcedures
getProcedureTerm

getResultSet
Holdability

getTableTypes
getTimeDateFunctions
getTypelnfo
getUDTs

getURL

getUserName
getVersionColumns
insertsAreDetected
isCatalogAtStart
isReadOnly
locatorsUpdateCopy

nul IPlusNonNull
IsNull

nul IsAreSortedAtEnd

nul IsAreSortedAt
Start

nul IsAreSortedHigh
nullsAreSortedLow
othersDeletesAre
Visible
otherslnsertsAre
Visible
othersUpdatesAre
Visible

Client Application Developer’s Guide 5-7

Using SQL to Access Data Services

Tahle 5-2 ALDSP JDBC Driver Methods

Interface Supported Methods
Java.sql .DatabaseMetaData ownDeletesAreVisible supportsColumn
(Continued) ownlnsertsAreVisible Aliasing
ownUpdatesAreVisible supportsConvert
storesLowerCase supportsCoreSQL
Identifiers Grammar
storesLowerCase supportsCorrelated
Quotedldentifiers Subqueries
storesMixedCase supportsData
Identifiers DefinitionAndData
storesMixedCaseQuoted Manipulation
Identifiers Transactions
storesUpperCase supportsData
Identifiers Manipulation
TransactionsOnl
storesUpperCaseQuoted _ y
Identifiers supportsDifferent
TableCorrelation
supportsAlterTable Names
WithAddColumn _
supportsAlterTable SupportsExpressions
- InOrderB
WithDropColumn N Z tendedsQL
supportsExtende
SupportsANSI192Entry G bp
rammar
LevelSQL tsFulTout
supportsFul I0uter
supportsANS192Ful ISQL Jo?gs
?uiportiéNingL supportsGetGenerated
ntermediateSQ Keys
supportsBatchUpdates SUppPOrtsGroupBy
;ugpﬁrt§Cafalqgsln supportsGroupBy
atalantpuiation BeyondSelect
?uzpogtian:!ogsln supportsGroupBy
ndexDefini :ons Unrelated
supportsCatalogs -
Inggivile e 9 supportsintegrity
Definiti 9 Enhancement
efinitions Facility
Suppo;tngt?:ogsln supportsLikeEscape
roce urz a Is Clause
supportsCatalogsin -
I supportsLimited
TableDefinitions outerJoins
5-8 Client Application Developer’s Guide

Tahle 5-2 ALDSP JDBC Driver Methods

JDBC and SQL Support in ALDSP

Interface Supported Methods
jJava.sql .DatabaseMetaData e supportsMinimumSQL supportsResultSet
(Continued) Grammar Type
= supportsMixedCase supportsSavepoints
Identifiers supportsSchemasin
= supportsMixedCase DataManipulation
Quotedldentifiers supportsSchemasin
e supportsMultipleOpen IndexDefinitions
Results supportsSchemasin
e supportsMultiple Privilege
ResultSets Definitions
e supportsMultiple supportsSchemasin
Transactions ProcedureCalls
= supportsNamed supportsSchemasin
Parameters TableDefinitions
= supportsNonNullable supportsSelectFor
Columns Update
= supportsOpenCursors supportsStatement
AcrossCommit Pooling
= supportsOpenCursors supportsStored
AcrossRol Iback Procedures
= supportsOpen supportsSubqueriesin
StatementsAcross Comparisons
Commit supportsSubqueriesin
e supportsOpen Exists
StatementsAcross supportsSubqueries
Rol Iback Inlns
= supportsOrderBy supportsSubqueriesin
Unrelated Quantifieds
= supportsOuterJoins supportsTable
= supportsPositioned CorrelationNames
Delete supportsTransaction
= supportsPositioned IsolationLevel
Update supports
= supportsResultSet Transactions
Concurrency supportsUnion
= supportsResultSet supportsUnionAll

Holdability

Client Application Developer’s Guide 5-9

Using SQL to Access Data Services

Tahle 5-2 ALDSP JDBC Driver Methods

Interface

Supported Methods

jJava.sql .DatabaseMetaData
(Continued)

updatesAreDetected

usesLocalFilePer
Table

usesLocalFiles

jJava.sql .ParameterMetaData close = getParameterTypeName
getParameterClassName < getPrecision
getParameterCount < getScale
getParameterMode < isNullable
getParameterType < isSigned

jJava.sql .PreparedStatement addBatch < setCharacterStream
clearParameters = setDate
close = setDouble
execute = setFloat
executeQuery = setint
getMetaData = setlLong
getParameterMetaData < setNull
setAsciiStream e setObject
setBigDecimal e setShort
setBlob e setString
setBoolean - setTime
setByte = setTimestamp
setBytes

Java.sql .ResultSet clearWarnings = getDouble
close < getFetchDirection
findColumn = getFetchSize
getAsciiStreanm e getFloat
getBigDecimal e getint
getBlob = getlLong
getBoolean = getMetaData
getByte e getObject
getBytes = getRow
getCharacterStream e getShort
getConcurrency = getStatement
getDate e getString

5-10 Client Application Developer’s Guide

Tahle 5-2 ALDSP JDBC Driver Methods

JDBC and SQL Support in ALDSP

Interface Supported Methods
jJava.sql .ResultSet e getTime setFetchDirection
(Continued) - getTimestamp setFetchSize
- getType setMaxRows
e getWarnings wasNull
= next
jJava.sql .ResultSetMetaData e close getSchemaName
= getCatalogName getTableName
e getColumnClassName isAutolncrement
e getColumnCount isCaseSensitive
= getColumnDisplaySize isCurrency
e getColumnLabel isDefinitelyWritable
e getColumnName isNullable
e getColumnType isReadOnly
= getColumnTypeName isSearchable
e getPrecision isSigned
= getScale isWritable
jJava.sql .Statement < cancel getResultSet
= clearWarnings Concurrency
« close getResultSet
- execute Holdability
- executeQuery getResultSetType
- getConnection getUpdateCount
- getFetchDirection getWarnings
- getFetchSize setCursorName
- getGeneratedKeys setEscapeProcessing
- getlogPrintWriter setFetchDirection
- getMaxFieldSize setFetchSize
- getMaxRows setMaxFieldSize
e getMoreResults setMaxRows
setQueryTimeout

e getQueryTimeout
e getResultSet

Client Application Developer's Guide 5-11

Using SQL to Access Data Services

5-12

SQL Support

This section outlines SQL-92 support in the ALDSP JDBC driver, and contains the following sections:
e Supported SQL Statements
o Supported SQL Functions

e Table Parameter Support

Supported SQL Statements

The ALDSP JDBC driver provides support for the SQL-92 SELECT statement. The INSERT, UPDATE,
and DELETE statements are not supported. Additionally, the driver does not support DDL (Data
Definition Language) statements.

Supported SQL Functions

The ALDSP JDBC driver supports functions that you can use to access and process data. This section
describes the following supported ALDSP SQL-92 query language functions:

e Numeric Functions
e String Functions

e Datetime Functions
e Aggregate Functions

e JDBC Metadata Search Patterns

Client Application Developer’s Guide

JDBC and SQL Support in ALDSP

Numeric Functions
The ALDSP JDBC driver supports the numeric functions described in Table 5-3.

Table 5-3 Numeric Functions

Function Signature Comment

ABS numeric ABS (numeric n) ABS returns the absolute value of n. If n is NULL,
the return value is NULL.

CEIL numeric CEIL(numeric n) CEIL returns the smallest integer greater than or

equal to n. If n is NULL, the return value is NULL.

FLOOR numeric FLOOR(numeric n) FLOOR returns largest integer equal to or less
than n. If n is NULL, the return value is NULL.

ROUND numeric ROUND (numeric n) ROUND returnsz rounded to 0 decimal places. If
7 is NULL, the return value is NULL.

String Functions
The ALDSP JDBC driver supports the string functions described in Table 5-4.

Table 5-4 String Functions

Function Signature Comment

CUNCAT varchar CONCAT(Varchar sl , varchar CONCAT returns s/ concatenated with s2. If
s2) any argument is NULL, it is considered to be

equivalent to the empty string.

Left varchar left (varchar s, numeric n) Left returns the left n characters of s.

LENGTH numeric LENGTH(varchar s) LENGTH returns the length of s. The function
returns 0 if s is NULL.

LOWER varchar LOWER(varchar s) LOWER returns s, with all letters lowercase.
If s is NULL, the function returns an empty
string.

LPAD varchar Ipad(varchar v, numeric n, LPAD returns v, with n characters of an

varchar p) infinitely repeating p appended to the left.

LTRIM varchar LTRIM(varchar s) LTRIM trims leading blanks from s. If s is

NULL, the function returns NULL.

Client Application Developer’s Guide 5-13

Using SQL to Access Data Services

Table 5-4 String Functions (Continued)

Function Signature

Comment

right (varchar s, numeric n)

Right returns the right n characters of s.

Right varchar
RPAD varchar
varchar

rpad(varchar v, numeric n,

p)

RPAD returns v, with n characters of an
infinitely repeating p appended to the right.

RTRIM varchar

RTRIM(varchar s)

RTRIM trims trailing blanks from s. If s is
NULL, the function returns NULL.

SUBSTR varchar

SUBSTR(varchar s, numeric

SUBSTR with two arguments returns substring

start) of s starting at start, inclusive. The first
character in s is located at index 1. If s is
NULL, the function returns an empty string.
TRIM varchar TRIM(varchar s) TRIM trims leading and trailing blanks from
s. If s is NULL, TRIM returns NULL.
UPPER varchar UPPER(varchar s) UPPER returns s, with all letters uppercase.

If s is NULL, UPPER returns the empty string.

Datetime Functions
The ALDSP JDBC driver supports the datetime functions described in Table 5-5.

Table 5-5 Datetime Functions

Function Signature Comment

DAYS numeric DAYS(T value) DAYS returns the days component from
value. T can be a date, timestamp, or
duration. Ifvalue is NULL, the result is NULL.

HOUR numeric HOUR(T value) HOUR returns the hour component from
value. T can be one of time, timestamp, or
duration. Ifvalue is NULL, the result is NULL.

MINUTE numeric MINUTE(T value) MINUTE returns the minute component from
value. T can be a time, timestamp, or
duration. Ifvalue is NULL, the result is NULL.

MONTH numeric MONTH(T value) MONTH returns the month component from

value. T can be one of date, timestamp, or
duration. Ifvalue is NULL, the result is NULL.

5-14 Client Application Developer’s Guide

Table 5-5 Datetime Functions (Continued)

JDBC and SQL Support in ALDSP

Function Signature Comment

SECOND numeric SECOND(T value) SECOND returns the seconds component
from value. T can be a time, timestamp, or
duration. Ifvalue is NULL, the result is NULL.

YEAR numeric YEAR(T value) YEAR returns the year component from

value. T can be one of date, timestamp, or
duration. Ifvalue is NULL, the result is NULL.

Aggregate Functions

The ALDSP JDBC driver supports the aggregation functions described in Table 5-6.

Tahle 5-6 Aggregate Functions

Function Signature Comment

COUNT numeric COUNT(ROWS r) COUNT returns the number of rows in 7.

AVG T AVG(T) AVG returns the average values of all values in
r. T can be a numeric or duration type.

SUM T SUM(T r) SUM returns the sum of all values in7. T can be

a numeric or duration type.

MAX T MAX(T 1) MAX returns a value from r that is greater than
or equal to every other value inr. T can be a
numeric, varchar, date, timestamp, or duration
type.

MIN T MINCT 1) MIN returns a value from r that is less than or

equal to every other value inr. T can be a
numeric, varchar, date, timestamp, or duration

type.

Client Application Developer’s Guide 5-15

Using SQL to Access Data Services

5-16

JDBC Metadata Search Patterns
The ALDSP JDBC driver supports standard JDBC API search patterns, as shown in Table 5-7.

Table 5-7 JDBC Driver Metadata Search Patterns

Pattern Purpose

“string” Matches the identified string,

Uses the default catalog/schema.

“%" Wildcard; equivalent to * in regular expressions.

Matches a single character; equivalent to . (period) in regular expressions.

null Wildcard; same as “%"

Note: For more information about using the JDBC metadata API, refer to the Java documentation
at:

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
DatabaseMetaData.html

Assuming that the default_catalog is catalogl and default_schema is schemal, Table 5-8 shows some
common matching patterns.

Tahle 5-8 JDBC Driver Metadata Search Patterns

Pattern Matching Example

“AquaLogic” Matches the identified string, AquaLogic.

“ahc%d” Matches:
e abclOd
e abcd
e abc_practically anything_d
But not:
e abclOe
e abclOdef

Client Application Developer’s Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/DatabaseMetaData.html

JDBC and SQL Support in ALDSP

Tahle 5-8 JDBC Driver Metadata Search Patterns (Continued)

Pattern Matching Example

ahc%d_ Matches:
= abclod
= abcd
e abc_practically anything_d
= abcl0dg
But not:
< abclOdgh
< abclOdgPattern

“r A call to:

and DBDatabaseMetadata.getTables(““,null,”abc%™)

nul would return all tables starting with abc under catalog 1.

Table Parameter Support

The ALDSP JDBC driver extends the standard SQL-92 parameter model by providing the ability to add
table parameters to SQL FROM clauses. For example, in SQL you might encounter a situation where
it is necessary to specify a list of parameters (highlighted) in a query.

In the following query, JDBCdemo . empData.empinTfo is the entire customer table.

SELECT emp.empid, emp.name, emp.salary

FROM JDBCdemo.empData.empinfo emp

WHERE emp.empid in (?, ?, ?, -..)

or emp.name in (?, ?, ?, -..)
If the number of parameters can vary, you need to specify a query for each case. Table parameters
provide an alternative by enabling you to specify that the query accept a list of values (the list can be
of variable length). The following query uses table parameters (highlighted):

SELECT emp.empid, emp.name, emp.salary

FROM JDBCdemo.empData.empinfo emp

WHERE emp.empid in (SELECT * FROM ? as emp(empid))
or emp.name in (SELECT * FROM ? as emp(empname))

Client Application Developer’s Guide 5-11

Using SQL to Access Data Services

5-18

The table parameter is specified using the same mechanism as a parameter; a question mark ("?") is

used in place of the appropriate table name.

Note: You can only pass a table with a single column as a table parameter. If you specify more than

one column, an exception is thrown.

For more information about using table parameters, see Using Table Parameters.

Additional Details and Limitations

When using the ALSDSP JDBC driver, each connection points to one ALDSP dataspace. Table 5-9
notes the ALDSP JDBC driver limitations that apply to SQL language features.

Tahle 5-9 ALDSP JDBC Driver Limitations Applying to SQL Language Features

Feature Comments

Example

Assignment in select Not supported.

SELECT MYCOL = 2
FROM VTABLE
WHERE COL4 1S NULL

The CORRESPONDING The SQL-92 specified default
BY construct with the column ordering in the set

set-Operations operations ¢s supported.
(UNION, INTERSECT Both the table-expressions (the
and EXCEPT) operands of the set-operator)

must conform to the same
relational schema.

(SELECT NAME, CITY FROM
CUSTOMER1) UNION CORRESPONDING
BY (CITY, NAME) (SELECT CITY,
NAME FROM CUSTOMER2)

The supported query is:

(SELECT NAME, CITY FROM
CUSTOMER1) UNION (SELECT NAME,
CITY FROM CUSTOMER2)

Client Application Developer’s Guide

Preparing to Use SQL to Access Data Services

Preparing to Use SQL to Access Data Services

This section describes the tasks you need to perform prior to using SQL to access data services, and
contains the following topics:

e Publishing Data Service Operations

e Configuring the ALDSP JDBC Driver

Publishing Data Service Operations

To access data services using SQL, you first need to publish the data service operations as SQL objects
within the AquaLogic Data Services Platform-enabled project. These SQL objects include tables,
stored procedures, and functions.

Note: SQL objects published through ALDSP need to be enclosed in double quotes when used in an
SQL query, if the object name contains a hyphen. For example SELECT “col-name” FROM
“table-name”.

To publish data service operations as SQL Objects, perform the following steps:
1. Publish the data service operations to a schema that models the operations as SQL objects.

2. Build and deploy the ALDSP dataspace.

After the dataspace is deployed, the newly created SQL objects are available to the dataspace through
the ALSDSP JDBC driver.

Configuring the ALDSP JDBC Driver

The ALDSP JDBC driver is located in the Idjdbc. jar file, which is available in the
<ALDSP_HOME>/lib directory after you install BEA AquaLogic Data Services Platform. To use the
ALDSP JDBC driver on a client computer, you need to configure the classpath, class name, and the
URL for the JDBC driver.

Note: You will need gateway software to enable connectivity between the JDBC driver and DSP to
configure the JDBC driver. For more information, refer to the section entitled Accessing Data
Services Using SQL Explorer.

Client Application Developer’s Guide 5-19

Using SQL to Access Data Services

5-20

To configure the driver on a client computer, perform the following steps:

1.

2.
3.

Copy the Idjdbc. jar and weblogic.jar (in the <ALDSP_HOME>/1ib and
<WL_HOME>/server/lib directories respectively) to the client computer.

Add 1djdbc. jar and weblogic. jar to the classpath on the client computer.

Set the appropriate supporting path by adding %JAVA_HOME%/ jre/bin to the path on the client
computer.

To set the JDBC driver, do the following;

a. Set the driver class name to the following:

com.bea.dsp.jdbc.driver _DSPJDBCDriver
b. Set the driver URL to the following:

Jjdbc:dsp@<DSPServerName>:<ALDSPServerPortNumber>/<DataspaceName>
For example the driver URL could be:
jdbc:dsp@localhost:7001/Test_DataSpace

Alternatively, set the default catalog name and schema name in the URL while connecting
to the JDBC driver using the following syntax:

Jjdbc:dsp@<DSPServerName>:<ALDSPServerPortNumber>/<DataspaceName>/
<catalogname>/<schemaname>

Note: If you do not specify the CatalogName and SchemaName in the JDBC driver URL, then
you need to specify the three-part name for all queries. For example:

select * from <catalogname>.<schemaname>.CUSTOMER

c. Optionally, enable debugging using the logFi Ie property. To log debugging information, use
the following JDBC driver URL syntax:

jdbc:dsp@localhost:7001/test; logFile=c:\output.txt

In this case, the log file is created in the c:\output.txt file. You can also specify the debug
property separately instead of specifying it with the URL.

Note: If you build an SQL query using a reporting tool, the unqualified JDBC function name is
used in the generated SQL. Consequently, to enable application developers to invoke an
database function, the default catalog and schema name must be defined in the JDBC
connection URL. It is also a requirement that any JDBC connection utilize those
functions available from a single SQL catalog:schema pair location.

Client Application Developer’s Guide

Accessing Data Services Using SQL From a Java Application

The following is an example URL defining a default catalog and schema for a JDBC connection:
Jjdbc:dsp@localhost:7001/myDataspace/myCatalog/mySchema

Note: You can specify the default schema and catalog name using the default_catalog and
default_schema property fields in case you do not specify it in the properties.
If dataspace, default_catalog, or default_schema appears in both the
connection properties and the URL, the variable in the URL takes precedence.

To configure the connection object for the ALDSP dataspace, you can specify the configuration
parameters as a Properties object or as a part of the JDBC URL.

For more information, see Configuring the Connection Using the Properties Object or
Configuring the Connection in the JDBC URL respectively.

Accessing Data Services Using SQL From a Java
Application

You can have a Java application access information from data services using SQL through the ALDSP
JDBC driver.

To access the data from a Java application, perform the following steps:

1.

Obtain a connection to the ALDSP dataspace.

For more information, see Obtaining a Connection.

Specify and submit an SQL query to the JDBC datasource.

You can use either the PreparedStatement or CallableStatement interface to specify and submit
the query to the datasource. For more information, see Using the PreparedStatement Interface
and Using the CallableStatement Interface respectively.

Obtaining a Connection

A JDBC client application can connect to a deployed ALDSP dataspace by loading the ALDSP JDBC
driver and then establishing a connection to the dataspace. In the database URL, use the ALDSP
dataspace name as the database identifier with “dsp” as the sub-protocol, using the following form:

Jjdbc:dsp@<WLServerAddress>:<WLServerPort>/<DataspaceName>
(/default catalog/default schema;
param(=valuel; param2=value2;)?

Client Application Developer’s Guide 5-21

Using SQL to Access Data Services

5-22

For example:

jdbc:dsp@localhost:7001/Test_DataSpace
The name of the ALDSP JDBC driver class is:

com.bea.dsp.jdbc.driver DSPJDBCDriver

Configuring the Connection Using the Properties Object
You can establish a connection to an ALDSP dataspace using the Properties object as follows:

Properties props = new Properties();
props.put(user', "weblogic');
props.put(*password", "weblogic');
props.put(application”, "TestProjectDataSpace™);

// Load the driver
Class.forName(*'com.bea.dsp.jdbc.driver _DSPJDBCDriver™);

// Get the connection
Connection con = DriverManager.getConnection(*'jdbc:dsp@localhost:7001",

props);
Alternatively, you can specify the ALDSP dataspace name, TestProjectDataSpace, in the
connection object itself, as shown in the following segment:
Properties props = new Properties();

props.put(*user”™, "weblogic'™);
props.put(‘'password', "weblogic');

// Load the driver
Class.forName(*'com.bea.dsp.jdbc.driver _DSPJDBCDriver™);

// Get the connection
Connection objConnection = DriverManager.getConnection(
"jdbc:dsp@localhost:7001/TestProjectDataSpace',props);

Configuring the Connection in the JDBC URL
You can also configure the JDBC driver connection without creating a Properties object, as shown in
the following segment:

// Load the driver
Class.forName(*'com.bea.dsp.jdbc.driver _DSPJDBCDriver™);

// Get the connection

Connection objConnection = DriverManager.getConnection(
"jdbc:dsp@localhost:7001/TestProjectDataSpace; logFile=
c:\output.txt; ", <username>, <password>);

Client Application Developer’s Guide

Accessing Data Services Using SQL From a Java Application

Using the PreparedStatement Interface

You can use the preparedQueryWithParameters method to specify a query to the JDBC
datasource using the connection object (conn), obtained earlier. The connection object is obtained
through the java.sqgl .Connection interface to the WebLogic Server, which hosts ALDSP.

Note: You can create a preparedStatement for a non-parametrized query as well. The statement is
used in the same manner.

In this query, the data service function getAl1 () in the data service EmpInfo.ds under the
SQLHowTo project is mapped using SQL Mapper to JDBCdemo . empData.empinfo.

public ResultSet preparedQueryWithParameters(Connection conn) throws
jJava.sql .SQLException {
PreparedStatement ps = conn.prepareStatement(''SELECT *
FROM JDBCdemo.empData.empinfo emp WHERE emp.salary >= ?');
ps.setint(1,275000);
ResultSet rs = ps.executeQuery();
return rs;

}
In the SELECT query, JDBCdemo is the catalog name, empData is the schema name, and empinfo is
the table name.

Note: For more information about how to map data service operations to SQL objects, refer to
“Publishing Data Service Operations” on page 5-19.

Using the CallableStatement Interface

After you establish a connection to a server where ALDSP is deployed, you can call a data service
operation to obtain data using a parameterized data service operation call.

The following example shows how to call a stored query with a parameter (where conn is a connection
to the ALDSP server obtained through the java.sql .Connection interface). In the segment, a
stored query named getBySalary is called passing a parameter with a value of 275000.

public ResultSet storedQueryWithParameters(Connection conn) throws
Jjava.sql .SQLException {
CallableStatement ps =
conn._prepareCall(*'call JDBCdemo.empData.getBySalary(?)");
ps.setlnt(1,275000);
ResultSet rs = ps.executeQuery();
return rs;

}

Note: You can also use the prepareCal l method as follows:

conn._prepareCall (""{call JDBCdemo.empData.getBySalary(?)}'");

Client Application Developer’s Guide 5-23

Using SQL to Access Data Services

Advanced Features

5-24

This section describes advances features and uses of the ALDSP JDBC driver and contains the
following sections

o Using Table Parameters

e Accessing Custom Database Functions Using JDBC

Using Table Parameters

This section describes how to use the ALDSP JDBC driver to pass table parameters to data services.

When to Use Tahle Parameters

Consider the case in which a data service contains consolidated information of all employee contact
information. A manager further has a consolidated list of all government employees in European
countries. The goal is to use a data service to obtain contact information for that specific subset of
employees.

The scenario is a common one involving the need for a join between the manager’s employee list and
contact information. However, if the manager’s employee list is long and not already available through
a database, it is convenient to pass a list of values as if it were a column in a table.

In the SQL cited above, a list of employees is passed in as a table with a single column. The clause
? as emp(empid)
provides a virtual table value (emp) and a virtual column name (empid).

Note: You should alias all table parameters since the default table/column names are undefined
and may produce unexpected name conflicts.

Client Application Developer’s Guide

Advanced Features

Setting Table Parameters Using JDBC

The ALDSP JDBC driver passes table parameters to data services through its TableParameter class.
The class (shown in its entirety in Listing 5-1) represents an entire table parameter and the rows it
represents.

Listing 5-1 Table Parameter Interface

public class TableParameter implements Serializable
*x
/* Constructor
*
* @schema the schema for the table parameter
*
pugl ic TableParameter(ValueType[] schema);

/**
* Creates a new a row and adds it to the list of rows in this
* table parameter

*/
public Row createRow();
/**
* Gets the rows of this table parameter
*/
public List/*Row*/ getRows();
/**
* Gets the schema of this table parameter
*/
public ValueType[] getSchema();
/**
* Represents a row in the table parameter
*/
public class Row implements Serializable {
/**
* Sets a value to a particular column
* @param colldx the index of the column to set, always 1
* @param val the value for the column
* @exception if index is out of bounds
*/

public void setObject(int colldx,Object val) throws SQLException;
Object getObject(int colldx);

Client Application Developer’s Guide 5-25

Using SQL to Access Data Services

5-26

Creating Table Parameters

The following steps show how to create a TableParameter instance and populate the instance with
data:

1.

3.
4.

Instantiate a TableParameter with the schema of your table.

Note: At present only one column is supported for table parameters.

Call the createRow() method on TableParameter to create a new Row object representing a
tuple in the table.

Use the setObject(1,val) call to set the column on the Row object.

Call createRow() again to create as many rows as the table requires.

JDBC Usage

You can pass table parameters through JDBC just like any other parameter, using the
PreparedStatement interface.

To pass table parameters using the PreparedStatement interface:

L.

Create a PreparedStatement with the query, as shown in the following:

PreparedStatement ps = c.prepareStatement(*'SELECT * " +
"FROM ? as EMP(empid), JDBCdemo.empData.contact CONTACT " +
"WHERE CONTACT.empid = EMP.empid AND CONTACT.zip=?");

Set the value of the normal parameter on the PreparedStatement, as shown in the following:
ps.setObject(2,98765");
Create a table parameter of a specific type, as shown in the following:

ValueType[] tableType = new ValueType[1];
tableType[0] = ValueType.REPEATING_INTEGER_TYPE;
TableParameter p = new TableParameter(tableType);

Fill the table parameter by reading rows from a file or other input stream, as shown in the
following:

String empidlist = FileUtils_slurpFile(empidlist._txt"™);
StringTokenizer empids = new StringTokenizer(empidlist,' \n");
while(empids.hasMoreTokens()) {

TableParameter.Row r = p.createRow();
r.setObject(l,new Integer(empids.nextToken()));

}
ps.setObject(l,p);

Client Application Developer’s Guide

Advanced Features

5. Set the table parameter as a property of the prepared statement, as shown in the

ps.setObject(1,p);

Table Parameter Example

The following simplified example illustrates the use of a table parameter. The supporting JDBC code
is shown in Listing 5-2:

Listing 5-2 JDBC Code Supporting Table Parameter Example

import java.sql.DriverManager;
import java.sql.ResultSet;

import java.sql.PreparedStatement;
import java.sql.Connection;

import java.sql.Driver;

import java.util _Properties;
import java.util_StringTokenizer;

import com.bea.ld.sql .types.ValueType;
import com.bea.ld.sqgl .data.TableParameter;

import weblogic.xml.query.util _FileUtils;
public class TableParameterTest {

/**
* Establish a connection to the ALDSP JDBC driver and return it
*/
protected static Connection connect() throws Exception {
// Attempt to locate the JDBC driver
Class.forName(''com.bea.dsp.jdbc.driver .DSPJDBCDriver');
Driver driver =
DriverManager.getDriver("jdbc:dsp@localhost:7001");
if{driver == null)
throw new lllegalStateException(*'Unable to find driver.™);

//Set the connection properties to the driver
Properties props = new Properties();
props.setProperty(“'user™, "weblogic™);
props.setProperty(*'password”, "weblogic'™);
props.setProperty(*application', ""SQLHowTo');

Client Application Developer’s Guide 5-27

Using SQL to Access Data Services

// Try to connect to the driver using the properties set above
Connection c =
driver.connect(*jdbc:dsp@localhost:7001", props);
if(c == null)
throw new IllegalStateException("'Unable to establish a
connection.");
return c;

}

/**
* Prints a result set to system out
* @param rs the result set to print
*/
protected static void printResultSet(ResultSet rs)
throws Exception{
while(rs.next(Q)) {
for(int i = 1; i < rs.getMetaData() .getColumnCount()+1; i++) {
rs.getObject(i);
System.err._print(rs.getObject(i) + " ");
}
System.err._printin(Q);

rs.close();

public static void main(String args[]) throws Exception {
Connection ¢ = connect();

// Create the query

PreparedStatement ps = c.prepareStatement("'SELECT * " +
"FROM ? as EMP(empid), JDBCdemo.empData.contact CONTACT
"WHERE CONTACT.empid = EMP.empid AND CONTACT.zip=?");

+

// Set the normal parameter
ps.setObject(2,'98765");

// Create the table parameter

ValueType[] tableType = new ValueType[l];
tableType[0] = ValueType.REPEATING_INTEGER_TYPE;
TableParameter p = new TableParameter(tableType);

// Create the rows of the table parameter from values in a file
String empidlist = FileUtils._slurpFile(empidlist.txt");
StringTokenizer empids = new StringTokenizer(empidlist,'\n");
while(empids.hasMoreTokens()) {

TableParameter._.Row r = p.createRow();

r.setObject(1,new Integer(empids.nextToken()));

3
ps.setObject(1,p);

5-28 Client Application Developer’s Guide

Advanced Features

// Run the query and print the results
ResultSet rs = ps.executeQuery(Q);
printResultSet(rs);

}
}

Table Parameter ValueTypes
Table 5-10 lists the table parameter ValueTypes supported by the ALDSP JDBC driver.

Table 5-10 TahleParameter ValueTypes

Type Name Type Value Java Type
ValueType.REPEATING_SMALLINT 16 bit signed integer Short
ValueType.REPEATING_INTEGER 32 bit signed integer Integer
ValueType.REPEATING_BIGINT 64 bit signed integer Long
ValueType.REPEATING_REAL 32 bit floating point Float
ValueType.REPEATING_DOUBLE 64 bit floating point Double
ValueType.REPEATING_DECIMAL decimal BigDecimal
ValueType.REPEATING_VARCHAR string String
ValueType.REPEATING_DATE date java.sql.Date
ValueType.REPEATING_TIME time java.sql.Time
ValueType.REPEATING_TIMESTAMP datetime java.sql.Timestamp
ValueType.REPEATING_BLOB byte array char|[]
ValueType.REPEATING_BOOLEAN Boolean Boolean

ValueType.REPEATING_YMINTERVAL

year month interval

weblogic.xml.query.datetime.
YearMonthDuration

ValueType.REPEATING_DTINTERVAL

day time interval

weblogic.xml.query.datetime.
DayTimeDuration

ValueType.REPEATING_INTERVAL

both year month & day

time interval

weblogic.xml.query.datetime.
Duration

Client Application Developer’s Guide 5-29

Using SQL to Access Data Services

Accessing Custom Database Functions Using JDBC

Several relational database management systems provide mechanisms to extend the library of
built-in, standard SQL functions with user-defined, custom functions, defined using another language,
such as PL/SQL, that can be directly embedded in SQL statements.

You can make these built-in or custom functions in your database available through data services by
registering the function with ALDSP through a library. After registering the functions, you can use
them in SQL statements submitted to the ALDSP JDBC driver. The following example shows the use
of the custom function myLower () in a SELECT statement:

select * from CUSTOMER where ? = myLower(LAST_NAME)

Note that the following conditions must be met to enable ALDSP to use database-specific or
user-defined functions:

e The function must accept at least one argument using the standard syntax
myFunction(argl, arg2). This argument must be from the data source for which the
function is defined. Remaining arguments, however, may be constants or arguments from
another type of data service, such as a web service.

e ALDSP does not support functions of the form TRIM(TRAILING " " FROM $column) as
custom database functions.

e ALDSP does not support special columns such as SYSDATE, ROWNUM, or similar columns as
parameters to custom database functions.

e You must explicitly expose ALDSP artifacts in the SQL Map for the dataspace.

Accessing Data Services Using SQL-Based Applications

You can access data services using both SQL-based applications and applications that connect to the
ALDSP JDBC driver through an ODBC-JDBC bridge. This section describes how to configure SQL and
ODBC-based applications to access data services, and contains the following sections:

e Accessing Data Services Using SQL Explorer
e Connecting to the ALDSP Client Using OpenLink ODBC-JDBC Bridge

e Using OpenLink with Reporting Tools

Note: You can also use the ALDSP JDBC driver with the Eclipse Data Tools Platform (DTP) plug-in.
To use DTP, download the DTP software using the following link:

http://wiki.eclipse.org/index.php/Getting_ Started with DTP

5-30 Client Application Developer’s Guide

http://wiki.eclipse.org/index.php/Getting_Started_with_DTP

Accessing Data Services Using SQL-Based Applications

Accessing Data Services Using SQL Explorer

You can use the ALDSP JDBC driver with Eclipse SQL Explorer to access data services. This section
describes how to configure SQL Explorer to use the ALDSP JDBC driver and how to specify the
connection settings. This section assumes that you have already defined your web server and
dataspace project in Eclipse.

Note: SQL Explorer does not support stored procedures and, therefore, data services exposed as
stored procedures through the ALDSP JDBC driver do not appear in SQL Explorer. For more
information, refer to the Eclipse SQL Explorer web site at:

http://eclipsesql .sourceforge.net

To use SQL Explorer, perform the following steps:

1. Download the SQL Explorer software from the following link:
http://sourceforge.net/projects/eclipsesql

2. After you have downloaded the SQL Explorer zip file, extract two folders, Features and Plug-Ins.

3. Copy the SQL Explorer files in the Features folder into the Eclipse Features folder.

4. Copy the SQL Explorer files in the Plug-ins folder into the Eclipse Plug-ins folder.

5. Launch Eclipse in the AquaLogic Perspective. Start the web server within Eclipse and open the
dataspace (project).

6. Choose Window — Preferences, expand SQL Explorer in the left margin, and select JDBC Drivers.
Click Add and type the driver name, URL, and class name, as follows:

— Type a name for the JDBC Driver, such as aldsp_jdbc_driver.
— Set the example URL to:

Jdbc:dsp@<DSPServerName>:<DSPServerPortNumber>/<DSPDataspaceName>

Client Application Developer’s Guide 5-31

http://sourceforge.net/projects/eclipsesql
http://eclipsesql.sourceforge.net

Using SQL to Access Data Services

Figure 5-2 Create New Driver Dialog

= Create New Driver

Create New Driver
|

Provide the details For the new driver

Drriver
Marme My _JDBC_Driver

Example URL | jdbc:dsp@ <DSPServerMame=: <DSPServerPortMumber =/ <DSPDataspacelame =

Java Class Path | Extra Class Path

Ci\bealweblogic92iserveriliblweblogic. jar N N
Ci\bealweblogic92ialdsp_3.04libi|djdbe. jar

Driver Class Mame | com.bea,dsp.jdbe. driver DSPIDBC Driver Ev3

@ [oK H Cancel]

7. Click the Extra Class Path tab and then click Add. Enter the paths for two JAR files, as follows:
— <ALDSP_HOME>/weblogic92/aldsp_3.0/lib/1djdbc.jar
— <ALDSP_HOME>/weblogic92/server/lib/weblogic.jar
where <ALDSP_HOME> is the home directory of the ALDSP installation. Click OK.
8. Set the Driver Class Name to the following:
com.bea.dsp.jdbc.driver _DSPJDBCDriver

Click OK twice.

9. Open the SQL Explorer perspective by choosing Open Perspective — Other — SQL Explorer.
Click OK.

10. Click on the far left icon under Connections to create a new connection. Enter a name for the new
connection and choose ALDSP JDBC Driver from the drop-down list. Enter the URL for the JDBC
Driver, then enter the user name and password, and click OK

5-32 Client Application Developer’s Guide

Accessing Data Services Using SQL-Based Applications

Figure 5-3 Create New Connection Profile Dialog

- -

= Create New Connection Profile
Create New Connection Profile 7
Create a new alias

Marme My_MNew _IDBC_Driver_Connection

Drriver My _JDBC_Driver v

LRL jdbc:dsp@localhost: 7001 /My _Data

User Mame weblogic

Passwaord |

Auto Logon |:|

Open on Startup

@ [OK] [Cancel]

11. Right-click the new JDBC Driver connection and choose Edit to ensure that you have the correct
connect profile for the JDBC driver.

12. Right-click on JDBC Driver connection and choose Connect. Verify that the connection profile is
correct in the Connection dialog, then click OK.

Figure 5-4 Connection Dialog

=~ Connection

Connection

Insert Password

Connection Profile IMy_Mew_IDEC_Driver_Connection

Drriver My_JDBC_Driver

Ll jdbc:dsp@localhost: 7001 /My _Data

User weblogic

Password [anad

AutoCommit

@ [[s]4 H Cancel]

The data displays in the Database Structure and Database Detail window.

13. If the JDBC Driver window is not open, choose Window — Show View — Other — SQL Explorer
Database Structure — OK to display the client data.

Client Application Developer’s Guide 5-33

Using SQL to Access Data Services

14. If you get an exception message, add the catalog name and schema name to the JDBC Connection
URL, as follows:

Jdbc:dsp@<DSPServerName>:<DSPServerPortNumber>/<DSPDataspaceName>
/<Your_CatalogName>/<Your_SchemaName>

Figure 5-5 Change Connection Profile Dialog

= Change Connection Profile

Change Connection Profile
9 (/
Modify the alias

Marme My_MNew _IDBC_Driver_Connection

Drriver My _JDBC_Driver w [Mew Drriver. ..

LRL jdbc:dsp@<D3PServeriame = <D3PServerPortNumber = <D3PDataspacename =/ <Your_Cataloghame =/ <Your_SchemalMame >
User Mame weblogic|

Passwaord kA

Auto Logon |:|
Open on Startup

[:‘:7:] [OF H Cancel]

Connecting to the ALDSP Client Using OpenLink ODBC-JDBC
Bridge
You can use an ODBC-JDBC bridge to connect to the ALDSP JDBC driver from non-Java applications.

This section describes how to configure the OpenLink ODBC-JDBC bridge to connect to the ALDSP
JDBC driver.

You can use the Openlink ODBC-JDBC driver to interface with the ALDSP JDBC driver to query
ALDSP dataspaces with client applications such as Crystal Reports, Business Objects XI, Microsoft
Access 2003, and Microsoft Excel 2003.

5-34 Client Application Developer’s Guide

Accessing Data Services Using SQL-Based Applications

To use the OpenLink bridge, you need to install the bridge and create a system DSN using the bridge.
The following describes the steps to complete these two tasks:

1.

Install the OpenLink ODBC-JDBC bridge (called ODBC-JDBC-Lite).

For information on installing OpenLink ODBC-JDBC-Lite, refer to the OpenLink Software

download page for the Single-Tier (Lite Edition) ODBC to JDBC Bridge Driver (Release 6.0) for

use on Windows systems. The page can be accessed at:
http://download.openlinksw.com/download/login.vsp?pform=2&pfam=1&pca
t=1&prod=odbc-jdbc-bridge-st&os=1686-generic-win-32&0s2=1686-generic
-win-32&release-dbms=6.0-jdbc

WARNING: For Windows platforms, be sure to save the value of your CLASSPATH before
installation.

Create a system DSN and configure it for your ALDSP dataspace. Ensure that the CLASSPATH
contains the following JAR files required by ODBC-JDBC-Lite, Idjdbc. jar and weblogic. jar.
A typical CLASSPATH might look as follows:

<ALDSP_HOME>/1ib/1djdbc.jar;
<WL_HOME>/server/lib/weblogic.jar;

Update the system path to include the jvm.d11 file, which should be in the
<ALDSP_HOME>/%javaroot%/jre/bin/server directory.

Note: Do not include the file name jvm.d11 in the system path.

4.

Launch Control Panel — Administrative Tools — Data Sources (ODBC). The ODBC Data Source
Administrator window displays.

Click the System DSN tab and then click Add.
Select JDBC Lite for JDK 1.5 (6.0) and click Finish.
Specify the DSN name, for example, openlink-aldsp.

Click Next. Then on the next screen, enter the following next to the JDBC driver:
com._bea.dsp.jdbc.driver_DSPJIDBCDriver.

Type the following in the URL string field:

Jjdbc:dsp@<machine_name>:<port>/<dataspace_name>/<catalog_name>/
<schema_name>

Client Application Developer’s Guide 5-35

http://download.openlinksw.com/download/login.vsp?pform=2&pfam=1&pcat=1&prod=odbc-jdbc-bridge-st&os=i686-generic-win-32&os2=i686-generic-win-32&release-dbms=6.0-jdbc

Using SQL to Access Data Services

5-36

10. Select the “Connect now to verify that all settings are correct” checkbox. Type the login ID and
password to connect to the ALDSP WebLogic Server, and click Next.

11. Select any additional parameters, and click Next.

12. Click Next and specify the connection compatibility parameters.

13. Click Next, and then click Test Data Source. Verify that the setup was successful.
14. Click Finish.

Using OpenLink with Reporting Tools

This section describes how to configure and use the following reporting tools with the ALDSP
ODBC-JDBC driver:

o (Crystal Reports XI

o Business Objects XI-Release 2 (ODBC)
o Microsoft Access 2003-ODBC

e Microsoft Excel 2003-ODBC

Note: Some reporting tools issue multiple SQL statement executions to emulate a scrollable cursor
if the ODBC-JDBC bridge does not implement one. Some drivers do not implement a
scrollable cursor, so the reporting tool issues multiple SQL statements, which can affect
performance.

Crystal Reports XI

This section describes the steps to connect Crystal Reports to the ALDSP JDBC driver along with
information about standard configuration files that are available with ALDSP installation. It also
describes the limitations of using Crystal Reports with ALDSP and includes the following topics:

o Configuring Crystal Reports
e Limitations

e Connecting to Crystal Reports Using JDBC

Client Application Developer’s Guide

Accessing Data Services Using SQL-Based Applications

Configuring Crystal Reports

Before you start using Crystal Reports with ALDSP, you must modify the default Crystal Reports
configuration file, CRConfig.xml to ensure that Crystal Reports is able to access data services
through JDBC. The configuration file is located in the following directory:

<Drive>\Program Files\Business Objects\Common\3.5\java
A modified sample CRConfig.xml file and an associated CR_Readme . txt file are available at:

<ALDSP_HOME>/samples/ReportingTools/config/Crystal Reports

The CR_Readme . txt file contains instructions on how to apply DSP-specific rules in an existing
Crystal Reports installation and how to modify the CRConfig.xml file.

Limitations
Before you use Crystal Reports to access data services, consider the following information:

o (Crystal Reports is not able to invoke stored procedures with parameters for any ALDSP XQuery
function that has the parameters defined using a built-in data type keyword, such as $integer.
To resolve this issue, change the parameter name in the XQuery function.

e Crystal Reports supports all XML types that are supported by ALDSP JDBC driver except the
following:

— yearMonthDuration

— dayTimeDuration
e Certain JDBC functions used by Crystal Reports are not supported by ALDSP. Refer to the
“Supported SQL Functions” on page 5-12 for a list of supported functions.

Connecting to Crystal Reports Using JDBC

This section assumes that you have successfully completed the following:

o Installed Crystal Reports 11 using the Update Manager in Eclipse. For more information, refer
to the instructions at the following location:

http://diamond.businessobjects.com/node/432

e Modified the CRConfig.xml file (see Configuring Crystal Reports),
e Built your Crystal Reports Project

o Started your Weblogic92 server running on Eclipse.

Client Application Developer’s Guide 5-37

Using SQL to Access Data Services

5-38

To connect Crystal Reports to the JDBC driver and access data to generate reports, perform the
following steps:

1. Using the Crystal Reports perspective in Eclipse, create a new connection to the JDBC driver by
clicking on the New Connection icon in the menu bar of the Database Explorer window.

2. Specify the Connection parameters for the JDBC interface of Crystal Reports. The New
Connection window displays.

3. Check the box under Connection Identification if you want to use the default naming convention.
Otherwise, leave the checkbox and associated field blank.

4, Select the driver from the drop-down list next to the JDBC Driver, or select Database Manager
from the drop-down window in the left margin.

5. Type the JDBC Driver Class name, the Class Location, and the URL for the JDBC Driver.

6. Under User Information, type your user ID and password, then click Test Connection. If the
connection is successful, click Next. The Filter dialog displays.

7. Select a predicate and type a value. Alternatively, indicate whether to include or exclude a
selection of items.

8. If you do not want a filter, check the Disable Filter box and click Finish.

9. The data is displayed in the Database Explorer.

Business Objects XI-Release 2 (ODBC)

Business Objects enables you to create a Universe and generate reports based on the specified
Universe. In addition, you can execute pass-through SQL queries against Business Objects that do not
need the creation of a Universe.

This section provides information on configuring Business Objects to access the ALDSP JDBC driver.
It includes the following topics:

o Configuring Business Objects
e Prerequisites and Limitations

e Generating a Business Objects Report

Client Application Developer’s Guide

Accessing Data Services Using SQL-Based Applications

Configuring Business Objects
There are two Business Objects configuration files, odbc . prm and odbc . sbo, available with the
standard Business Objects installation.

When you install Business Objects, these files are copied to the following location:

<Business_Objects_Home>/BusinessObjects Enterprise 11.5/
win32_x86/dataAccess/connectionServer/odbc

An ALDSP installation includes samples of these configuration files along with an associated
BO_Readme . txt file, available at the following location:
<ALDSP_HOME>/samples/ReportingTools/config/BusinessObjects

You can edit the Business Objects configuration files according to the instructions in the readme file.

Tip: When first getting started using Business Objects with ALDSP, use the included configuration
file to verify the ability to access data services through JDBC.

Table 5-11 identifies some restrictions and specifies configuration changes you may want to make to
your Business Objects configuration files when accessing data using the ALDSP JDBC driver.

Table 5-11 Business Objects Configuration File Support for ALDSP

Configuration File Discussion

ODBC.PRM Specifically supported:
e EXT_JOIN (outer join)
e QUALIFIER (table prefix)
e DISTINCT
e ANSI_92
Not supported:
e INTERSECT
e INTERSECT_IN_SUBQUERY
e MINUS
e MINUS_IN_SUBQUERY

ODBC.SBO Set Transactional Available option to YES

Client Application Developer’s Guide 5-39

Using SQL to Access Data Services

5-40

Prerequisites and Limitations
Before you start using Business Objects to access data services, consider the following information:

o To generate a report using Business Objects, all the data sources need to be from the same
catalog. This requirement implies that in WebLogic Workshop, the same project should be used
to publish the data services for SQL use. This catalog needs to be defined as the default catalog
when connecting to ALDSP. However, the catalog can contain arbitrary number of schemas.

e Business Objects does not generate qualified names for tables. When you connect Business
Objects to ALDSP using OpenLink, you need to specify the default catalog and schema names in
the ALDSP JDBC driver URL when configuring OpenLink. If you do not specify the default
catalog and schema names, then an error similar to the following is generated:

com.bea.ld.sqgl .compiler.ast.SQLTypeCheckingException: Invalid table
reference. No such table null.Xtreme.CUSTOMER found.

at

com.bea.ld.sqgl.compiler.ast.TableRSN. inferSchemaAndCheck(Lcom/bea/ld
/

sql/context/SQLContext;Lcom/beas1d/sql/types/Schemalndex;)V(TableRSN
-java:-149)
For details about configuring OpenLink, “Connecting to the ALDSP Client Using OpenLink
ODBC-JDBC Bridge” on page 5-34. Business Objects supports all XML types that are supported by
AquaLogic Data Services Platform JDBC driver except the following:

yearMonthDuration

dayTimeDuration

Xxs:boolean

— Xs:hexBinary
Generating a Business Objects Report
To generate a report, perform the following steps:

1. Create a Universe by Running the Business Objects Designer application and clicking Begin in the
Quick Design Wizard window.

2. Type a name for your Universe and choose the appropriate DSN connection from the drop-down
list.

3. If the DSN you want to use does not appear in the list (which happens if you are using the
application for the first time), then click New to create a new connection.

Client Application Developer’s Guide

10.

11.

12.
13.

Accessing Data Services Using SQL-Based Applications

In the Define a New Connection wizard, select Generic ODBC3 Datasource as the middleware.
Click Next.

Specify the user name and password to connect to WebLogic Server and select openlink-aldsp as
the DSN.

For details about configuring the OpenLink ODBC-JDBC bridge, refer to “Connecting to the
ALDSP Client Using OpenLink ODBC-JDBC Bridge” on page 5-34.

Click Next and test if the connection with the server is successful. Follow the instructions in the
wizard to complete creating the connection.

After creating the connection, specify this connection in the Universe and click OK. A new blank
panel is displayed.

Choose Table from the Insert menu. After the list of tables is shown in the Table Browser, double
click the tables that you want to put in the Universe.

Save the Universe and exit.

To create a new report, run the Desktop Intelligence application. Click New to open the New
Report Wizard.

Select the report layout and report data and click Begin. Select a universe and click Next.
Highlight the universe you want to use.

If you want to make the selected universe the default universe, check the box next to Set as my
Default universe. Click Finish.

On the left pane, you should see the tables and their fields (columns) on expansion.
Double-click a column (table-field) in the left pane to select it in the result.

Click Run to execute the query.

You can also run the pass-through queries using the Desktop Intelligence application.

To run pass-through queries, perform the following steps:

1.
2.
3.

In the Desktop Intelligence application, click New to create a new report.
In the New Report Wizard, choose Others instead of Universe.
Choose Free-hand SQL and click Finish.

Select the connection you created using Designer.

Client Application Developer’s Guide 5-41

Using SQL to Access Data Services

5-42

5. 'Type in the SQL query and click Run to generate the report.

Note: If you need to specify a four part name in a SELECT list (such as,
<catalogname>.<schemaname>. <tablename>.<columnname>), define a table alias
using the FROM clause, and then use only two parts <tableal ias>.<columnname> in the
SELECT list. ALDSP JDBC driver extracts only the last two parts from the SELECT list item,
and ignores the rest.

For example:
SELECT E.Name FROM JDBCdemo.empData.empinfo E

where

JDBCdemo is the catalog name
empData is the schema name
empinfo is the table name
Name is the column name

E is the table alias for empinfo

Microsoft Access 2003-0DBC

This section describes the procedure to connect Microsoft Access 2003 to ALDSP through an
ODBC-JDBC bridge. It includes the following topics:

o Generating Reports Using Microsoft Access
e Limitations and Usage Notes
Generating Reports Using Microsoft Access
To connect MS Access to the bridge, perform the following steps.

1. Run MS Access, choose File—0Open, then select ODBC Databases as the file type. The Select Data
Source dialog displays.

2. Click Cancel to close the Select Data Source dialog.

3. Click Queries, then Design.

4. Close the Show Table dialog box. The Select Query window should be visible.
5. Right-click in the window and choose SQL Specific—Pass-Through.

6. Type the SQL query and click Run.

7. Click the Machine Data Source tab in the dialog that appears, and select openlink-aldsp to
connect to the ALDSP JDBC driver and generate the report.

Client Application Developer’s Guide

Accessing Data Services Using SQL-Based Applications

Limitations and Usage Notes

e The Microsoft Jet database engine, shipped with MS-Access, maps SQL_DEC IMAL and
SQL_NUMERIC fields to the closest Jet numeric data type, depending upon the precision and
scale of the ODBC field. In certain cases, this mapping results in a map to a non-exact (floating
point) numeric Jet data type, such as Double or a Text field. For details, refer to the following
Microsoft article:

http://support.microsoft.com/kb/214854/en-us

This implicit type conversion by MS Access causes some errors when retrieving data from
ALDSP using MS Access.

e In MS Access, to sort data retrieved from ALDSP, select a Unique Record Identifier when you
link tables imported from ALDSP. If you do not select the Unique Record Identifier, then an
exception occurs when you try to sort data.

Microsoft Excel 2003-0DBC

This section describes the procedure for connecting Microsoft Excel 2003 to ALDSP through an
ODJB-JDBC bridge using OpenLink.

To connect MS Excel to ALDSP, perform the following steps:

1. Launch Data Services Studio and then start the WebLogic Server.
2. Build and deploy the ALDSP dataspace.

3. Start Microsoft Excel and open a new worksheet.

4, Click Data — Import External Data — New Database Query. The Choose Data Source dialog box
displays.

5. Select openLink-aldsp from the list of data sources and then click OK.

The Query Wizard - Choose Columns dialog box displays. For details on configuring the JDBC
driver using OpenLink, refer to “Connecting to the ALDSP Client Using OpenLink ODBC-JDBC
Bridge” on page 5-34.

6. Select the tables that you want to use to generate the report and click Next.

7. Follow the Query Wizard instructions and in the Query Wizard - Finish dialog box, select Return
Data to Microsoft Office Excel.

8. Click Finish and import the data in a new MS Excel spreadsheet. The query results display in the
spreadsheet.

Client Application Developer’s Guide 5-43

http://support.microsoft.com/kb/214854/en-us

Using SQL to Access Data Services

5-44

Limitations

When passing a generated SQL string to Excel, there are situations where Excel inserts single quotes
around an alias, resulting in an exception from the ALDSP JDBC driver. Here is an example:

SELECT Sum(EMP.SALARY) AS "Salary Cost® FROM JDBCdemo.empData.empinfo emp

Although you can edit your query post-generation, another option is to install a patch from Microsoft
that is designed to address the problem. The current URL for accessing information on this problem
and patch is listed below:

http://support.microsoft.com/kb/298955/en-us

Client Application Developer’s Guide

http://support.microsoft.com/kb/298955/en-us

CHAPTERa

Using Excel to Access Data Services

This chapter introduces the AquaLogic Data Services Platform™ Excel Add-in, and describes how to
install and use the add-in to access data service operations.

The chapter covers the following topics:
e Introducing the Excel Add-in
o Installing the Excel Add-in
e Preparing to Use the Excel Add-in

e Accessing the Data Service Using Excel

Client Application Developer's Guide 6-1

Using Excel to Access Data Services

Introducing the Excel Add-in

You can use the AquaLogic Data Services Platform Excel Add-in to invoke data service operations from
Microsoft® Excel®. This has multiple uses, including the following;

o Data service integration of real-time data can be quickly rendered in the familiar Microsoft
Excel format.

e Inclusion of Web service results in worksheets without programming; just drag-and-drop.
o Flexibility and scalability through the BEA AquaLogic Service Registry.

o Extensible development platform, with access to the Excel Add-in API.

Installing the Excel Add-in

This section describes the ALDSP Excel Add-in system requirements and how to install the add-in.

System Requirements
The ALDSP Excel Add-in adds the following system requirements:

e Microsoft Excel 2002 (SP2) or Excel 2003 (SP1)

e Windows XP (with Service Pack 2)

o Disk space: 43MB (only 6 MB if Microsoft .NET Framework with SP1 is already installed)
o RAM: 256K MB or more recommended

Installation Instructions

The AquaLogic Data Services Platform Excel Add-in is provided with AquaLogic Data Services
Platform as a separate installation program. The Excel Add-in installs on your local machine and is
accessible from Excel as a menu item.

6-2 Client Application Developer’s Guide

http://www.bea.com/framework.jsp?CNT=index.htm&FP=/content/products/aqualogic/service_registry/

Installing the Excel Add-in

Preparing To Install

Before installing the Excel Add-in, uninstall any previous versions of the add-in by clicking Start —
All Programs — BEA AquaLogic Data Services Platform Excel Add-In 3.0 — Unload Add-in from
Excel.

Installing the Add-in

This section describes how to install the AquaLogic Data Services Platform Excel Add-in.

Note: Microsoft .NET with SP1 is required for the ALDSP Excel Add-in installation. If Microsoft
.NET Framework is not installed on your system, or you have .NET 1.1 or earlier without SP1,
the Excel Add-in prompts you to confirm its installation from the Microsoft Web site. Once
the correct .NET install is complete, the system proceeds with the ALDSP Excel Add-in
installation. (The installation of .NET could take up to 10 minutes for download and
configuration.)

To install the Excel Add-in, complete the following steps:

1. Launch the Excel plug-in installation program by double-clicking the following file:
aldsp_excel_addin_300_win32.exe
You can find this file in the following directory:
<bea_home>/aldsp_3.0/excel-addin

where <bea_home> is the location of the BEA installation on your system. The installation
program displays the welcome screen shown in Figure 6-1.

Client Application Developer’s Guide 6-3

Using Excel to Access Data Services

Figure 6-1 Excel Add-in Installation

i BEA Aqual ogic Data Services Platform Excel Add-in - InstallShield Wiz... rz|

zbea
BEA Aqual.ogic
Data Services Platform Excel Add-in
Version 3.0
[Mewt= [Cancel

2. Click Next to continue.

3. Ifyou do not already have Microsoft .NET Framework 1.1 installed on your system, you will need
to install it. You can do this using the Excel Add-in installation dialog.

4, Determine the user of the application. (Typically anyone with access to your system would be able
to use the Add-in.)

5. Determine the location of the Add-in.

By default the Add-in is installed in the following directory:

C:\Program Files\BEA\AqualLogic Data Services Platform Excel Add-in
6. Complete the installation, and optionally launch Excel.

The ALDSP Excel Add-in adds a new item, My Data, to the Excel main menu.

6-4 Client Application Developer's Guide

Installing the Excel Add-in

Accessing Excel Add-in Documentation

After you have completed the installation, you can reference the Excel Add-in documentation,
available in the following document:

AquaLogic Data Excel User Guide.pdf
This file is, by default, located in the following directory:

C:\Program Files\BEA\AqualLogic Data Services Platform Excel
Add-in\Documentation

The documentation includes the following topics:
o Installation and uninstallation of the Excel add-in
o Using the Add-in
e Managing Web Services
o Refreshing Web Service Data in Excel

e Troubleshooting

Tip: Information on using the Add-in is also available from the Excel MyData menu option (see
Figure 6-2).

Client Application Developer’s Guide 6-5

Using Excel to Access Data Services

Preparing to Use the Excel Add-in

Before accessing data service operations using Excel, you must determine the WSDL URL for the web
service.

To prepare to use the Excel Add-in, complete the following steps:

1. Create a Web Service Map for the dataspace you want to access using Excel, if one does not already
exist.

To create a Web Service Map, do the following:

a. Launch the ALDSP Data Services Studio.

b. Right-click the dataspace in the Project Explorer and choose New — Web Service Map.
c. Type a file name for the map and click Finish.

d. Drag-and-drop the services you want to include in the newly-created map.

2. Set the listen address of the WebLogic server to the host name or IP address of the machine
hosting the web services.

The Excel Add-in requires that the host or IP address specified in /definitions/service/
port/soap:address/@location in the WSDL file match the host name or IP address in the
WSDL URL.

To set the listen address of the server, do the following:

a. Using ALDSP Data Services Studio, double-click the server and click the Open WebLogic
Server Admin Console link.

b. Log in to the WebLogic Admin Console and click Servers in the Environment section.
c. Click the server in the list.

d. Click the Lock & Edit button.

6-6 Client Application Developer’s Guide

Preparing to Use the Excel Add-in

e. Type the host name or IP address of the machine hosting the web services in the Listen
Address field.

f. Click Save.
g. Click the Activate Changes button.
h. Restart the server.

3. Using ALDSP Data Services Studio, right-click the Web Service Map in the Project Explorer and
choose Copy WSDL URL.

You can paste the WSDL URL into the Web Services Setup dialog, as explained in the section
Accessing the Data Service Using Excel.

Alternatively, you can manually set the host name or IP address of the server in the WSDL URL when
specifying the value in Microsoft Excel.

To determine the host name or IP address of the server, do the following:

1. Using ALDSP Data Services Studio, right-click the Web Service Map for the dataspace in the
Project Explorer and choose View WSDL. The application displays the WSDL file.

2. Right-click in the WSDL file and choose Properties. A dialog appears showing the WSDL URL,
among other information.

Use the host name or IP address that appears in the WSDL URL when specifying the value in
Microsoft Excel

Client Application Developer’s Guide 6-7

Using Excel to Access Data Services

Accessing the Data Service Using Excel

This section describes how to access a data service operation using Excel.

Note: This assumes that you have installed the Excel Add-in on a local copy of Excel. For more

information about installing the Excel Add-in, see Installing the Excel Add-in.

To access a data service using Excel, complete the following steps:

1. Launch Microsoft Excel and choose My Data — Web Services Setup from the menu, as shown in
Figure 6-2.

Figure 6-2 Setting Up a Web Service for the Excel Add-in

Microsoft Excel - DataServiceToExcel.xls

E_] File Edit Wew Insert Format Tools Data Window Help Adobe PDF | My Data Type a question for help = 2
leHl'Q) Eg,qrid <10 z| B I O|=E==F| % Wweb Services Setup...),é,
H— = Favorites 3
- S ‘ Configure Internet Connection

B | c | D | E | E | G StrikeIron Marketplace y | K .
; ! Help 3
| 3 |
£
| 5 |
| B |
La |
| 8 |
| 9 |
10
[11]
[12]
[13]
| 14
15|
16 v
4 4 » M]\Sheetl / Sheet? f Sheets / < |
Ready

2. Click New in the Web Service Definitions dialog.

6-8 Client Application Developer's Guide

Accessing the Data Service Using Excel

3. Specify the WSDL information by completing the following:
a. Type a name (alias) for the WSDL in the top left field.

The example in Figure 6-3 uses retailWs as the name.

b. Paste the WSDL URL in the top right field.

This is the WSDL URL that you copied by right-clicking Web Service Map in the ALDSP Data
Services Studio Project Explorer and choosing Copy WSDL URL, as described in Preparing

to Use the Excel Add-in.
c. Click OK.

Figure 6-3 Entering a WSDL Location and an Alias Name for the New Web Service

‘tia Select a new Web service for use with AquaLogic Data Services Platform Excel Add-in =
Enter & WSDL:
Enter a Mame, and the WSDL location of the \web service you would lke to use:
retailus| hittp:f flocslhosk: 7001 [Ret siDataspace/Ratailapplicstion webServices [RetailWehServices, wePWSDL
OR
Search Aqualogic Service Registry
<enter search term here> Url of Registry: v
OR Show Strikelron Marketplace Web
services
Name Providsr Service Location Description
<] >
A

Client Application Developer’s Guide

6-9

Using Excel to Access Data Services

4, Double-click the alias name of the new service to open the operation editor, as shown in Figure 6-4.

Figure 6-4 Web Service Operation Editor in Excel Add-in

<us Edit - getCustomerByCustlD of retailWs g

Operation | Options | Set Input | Set Output

Service location:
hitp: fflocalhost: 7001 {RetailDat aspace Retalapplication/WebServices RetalwebServices. wsTWSDL

Service EndPoint:

hitp: fflocalhost: 7001 {RetalDat aspace ALDSPWebService /RetalApplication/WebServices RetalwebServices.v

Digital Certificate Issusr:

MNote: Only one operation can be used per service definition,

Service: Operation:
RetailWebServicesSoapService 8] et stomersycust -
Then:

1) Set the desired bshavior options using the "Options" tab.
2) Select the input figlds using the "Set Input” tab,

3) Select the output fields using the "Set Output” tab.

Close

5. Choose the operation using the Operation drop-down menu.

In the example shown in Figure 6-4, the parameterized getCustomerByCustlD operation
(which is also the name of the underlying data service function) is selected.

6. Click the Set Input tab.

7. Expand the operation by clicking the + symbol to the left of the entry.

6-10 Client Application Developer’s Guide

Accessing the Data Service Using Excel

8. Select the appropriate input parameter.

In the example shown in Figure 6-5, the cust1D input parameter is selected.

Figure 6-5 Selecting an Input Parameter

‘ti Edit - getCustomerByCustiD of retailWs
Operation | Options | Setlnput | Set Qutput

The input fields For the operation you have sslected are shown below. Drag the Input graup to

the desired location in your spreadshiest. You may then move individual fields around the

workbook as desired using the standard Excel drag/drap actions or cubfpaste commands.

= & mput X .
= [7] getCustomerBycustin (& Fields right, data below
-] jeustD]
O Fields down, data to right

Name:
retailt's
Service:
RetaiwebServicesSoapService
Operation:
getCustomerByCustiD

K| |

9. Drag the input parameter icon to the spreadsheet. A label and input field appears in the
spreadsheet. If you mouse over the input field, the full parameter path is displayed.

10. Move the cursor to another field in the spreadsheet.

11. In the Excel Add-in Web service dialog, click the Set Output tab.

Client Application Developer's Guide 6-11

Using Excel to Access Data Services

12. Expand the layers of the operation by clicking the + symbol to display the data elements that the
operation can retrieve, as shown in Figure 6-6.

Figure 6-6 Selecting a Field for Display in Excel

‘ti Edit - getCustomerByCustiD of retailWs =
Operation | Options | Setlnput| Set Output
The output fields for the operation you have selected are shown below, Drag individual or group
fields to the desired location in your spreadsheet., You may then move the individual fields
around the workbook as desired using the standard Excel dragfdrop actions or cutfpaste
commands.
S @ Output o
= [F] getCustomerByCustiDRespanse @ Fields right, data below
=[] PROFIE[] ‘
= [%] PROFILE [
=[] PROFILE ‘
% | CustomerID
% K& Firsthiame <) Fields down, data to right
 JH] LastName
% [Customersince
% [Emailaddress
% JH] Telephonehumber
] s
=[] BirthDay N
% K& Defaulshipmentiethod ame:
% K& Emailiatification rekaitifs
3 g orlineStatement Service:
) LoginId
@£ Loan RetaiwebServicessoapService
%[%] ADDRESS[]
%[%] CREDIT_CARD[] Operation:
getCustomerByCustiD
K| b

13. Drag the required output elements to the spreadsheet.

14. In the spreadsheet, type a valid value in the input cell.
For example, you could type CUSTOMER2 as the customer ID value.

15. Press Enter.

16. Choose My Data — Refresh Web Service Data — <web_service> from the menu (or right-click on
any field in the spreadsheet to access the option).

6-12 Client Application Developer’s Guide

Accessing the Data Service Using Excel

17. View and optionally reformat or rearrange the resulting information

Figure 6-7 shows an example of formatted results.

Figure 6-7 Formatted Results

@ Microsoft Excel - Book1 E]@
(E] Fle Edt Wiew Insert Format Tools Data Window Help MyData - & X
NS S5 B8 s 0 @ A
idaabl| [Hiee o G P a0 CB R a8 A

OnDernandB3... = £ CUSTOMERZ

. [B8] c VIS e
o)

| 4]

1 5 | CustomerlD: CUSTOMERZ

| 6 | FirstMame: Jerry

| 7 | LastMarme: Greenberg

| 6)

| 3 |

10 v
4 4 » n]\Sheetl {Shest? f Shest3 / 1<l i | B
Ready MM

Client Application Developer’s Guide 6-13

Using Excel to Access Data Services

6-14 Client Application Developer’s Guide

Supporting ADO.NET Clients

This chapter describes how to enable interoperability between BEA AquaLogic Data Services Platform
and ADO.NET client applications. With support for ADO.NET client applications, Microsoft Visual
Basic and C# developers who are familiar with Microsoft’s disconnected data model can leverage
ALDSP data services as if they were ADO.NET Web Services.

From the Microsoft ADO.NET developers’ perspective, support is transparent: you need do nothing
extraordinary to invoke ALDSP operations (functions and procedures)—all the work is done on the
server-side. ADO.NET-client-application developers need only incorporate the ALDSP-generated web
service into their programming environments, as you would when creating any Web Service client
application.

Information about how ALDSP achieves ADO.NET integration is provided in this chapter, along with
the server-side operations required to enable it. The chapter includes the following sections:

o Overview of ADO.NET Integration in ALDSP

e Enabling ALDSP Support for ADO.NET Clients

e Adapting ALDSP XML Types (Schemas) for ADO.NET Clients
e (reating a Data Service Based on an RPC-Style Web Service

e Generated Artifacts Reference

Note: The details of ADO.NET development are described on Microsoft’s MSDN Web site
(http://msdn.microsoft.com). See this site for information about developing
ADO.NET-enabled applications.

Client Application Developer's Guide 1-1

Supporting ADO.NET Clients

Overview of ADO.NET Integration in ALDSP

1-2

Functionally similar to the service data object (SDO), ADO.NET (Active Data Object) is data-object
technology for Microsoft ADO.NET client applications. ADO.NET provides a robust, hierarchical, data
access component that enables client applications to work with data while disconnected from the data
source. Developers creating data-centric client applications use C#, Visual Basic.NET, or other
Microsoft .NET programming languages to instantiate local objects based on schema definitions.

These local objects, called DataSets, are used by the client application to add, change, or delete data
before submitting it to the server. Thus, ADO.NET client applications sort, search, filter, store pending
changes, and navigate through hierarchical data using DataSets, in much the same way as SDOs are
used by ALDSP client applications.

See Role of the Mediator and SDOs on page 2-16 for more information about working with SDOs in a
Java client application. Developing client applications to use ADO.NET DataSets is roughly analogous
to the process of working with SDOs.

Although functionally similar on the surface, as you might expect with two dissimilar platforms (Java
and .NET), the ADO.NET and SDO data models are not inherently interoperable. To meet this need,

ALDSP provides ADO.NET-compliant DataSets so that ADO.NET client developers can leverage data
services provided by the ALDSP, just as they would any ADO.NET-specific data sources.

Enabling a ALDSP data service to support ADO.NET involves the following steps:

e Generating an ALDSP Web Services Mapper
o Creating a Web Reference in ADO.NET Client by Providing the ALDSP WSDL URL

Understanding ADO.NET

ADO.NET is a set of libraries included in the Microsoft .NET Framework that help developers
communicate from ADO.NET client applications to various data stores. The Microsoft ADO.NET
libraries include classes for connecting to a data source, submitting queries, and processing results.

The DataSet also includes several features that bridge the gap between traditional data access and
XML development. Developers can work with XML data through traditional data access interfaces.

Note: Although ADO.NET supports both connected (direct) and disconnected models, only the
disconnected model is supported in the ALDSP.

Client Application Developer's Guide

Overview of ADO.NET Integration in ALDSP

ADO.NET Client Application Development Tools

ADO.NET client applications are typically created using Microsoft Windows Forms, Web Forms, C#, or
Visual Basic. Microsoft Windows Forms is a collection of classes used by client application developers
to create graphical user interfaces for the Windows .NET managed environment.

Web Forms provides similar client application infrastructure for creating web-based client
applications. Any of these client tools can be used by developers to create applications that leverage
ADO.NET for data sources.

Figure 7-1 ADO.NET Clients Supported via Weh Services

ADO.NET client application Data Service Platform
Weblogic Server

Import the WSDL on the
Client Side to Access the
Data Services Application

“Customer” Data Service

Generate Web Service
» | Web Service | 4. Mapper Files
instantia

wsDL
Dynamically
Generated

<xs:schema

&

S < Use WSDL to Generate Client Proxy . xmins:mstns="http:
= Code and Include in Client //
Applications Development temp.openuri.org/
schemas/

Customer.xsd"

<xs:element
msdata:IsDataset="
true”
name="CustomerData
Set's

Once the WSDL URL is available, your client can invoke data service operations and you can invoke
functions on the data service and manipulate the DataSet objects in your code as you normally would.

Note: The process of generating the WSDL and server-side artifacts is described in “Generating an
ALDSP Web Services Mapper” on page 7-7.

Client Application Developer's Guide 1-3

Supporting ADO.NET Clients

7-4

Understanding How ALDSP Supports ADO.NET Clients

BEA AquaLogic Data Services Platform supports ADO.NET at the data object level. That is, the ALDSP
maps inbound ADO.NET DataSet objects to SDO DataObjects, and maps outbound SDOs to DataSets.
The mapping is performed transparently on the server, and is bidirectional.
Table 7-2 ADO.NET and SDO Data Objects Compared

ADO.NET SDO Microsoft .NET Description

DataSet DataObject Disconnected data models. Queries return
results conforming to this data model.

DiffGram ChangeSummary Mechanisms for tracking changes made to
data objects by a client application.

As shown in Figure 7-3, the ADO.NET typed DataSet is submitted to and returned by ALDSP. At
runtime, when a Microsoft .NET client application makes a SOAP invocation to the ADO.NET-enabled
Web Service, the Web Service intercepts the object, converts the .NET Dataset to an SDO Data Object,
and passes it to Data Services.

Client Application Developer's Guide

Figure 7-3 ALDSP and .NET Integration

Overview of ADO.NET Integration in ALDSP

DataSet

ADO.NET

DataSet

Strongly Typed

C#, VB, or other
CLR Client
Application

Web Form,
Windows Form

Enabled

ADO.NET-
Web Service

h 4

DataSet

Data Service

Engine

Data Services Platform ‘
/{\ WebLogic Platform

e

@
|

I

-

Web Services Database

\

Other Data Sources

Client Application Developer's Guide

1-5

Supporting ADO.NET Clients

Mapping, transformation, and packaging processes are transparent to client application developers
and data services developers. Only the items listed in Table 7-4 are exposed to data service developers.

Table 7-4 ALDSP—IJava and ADO.NET-Enabled Artifacts

Name Example

Description

Data Service Customer.ds

An XQuery file that instantiates operations
such as read functions, navigation
functions, procedures, and update
functionality at runtime.

Data Service Schema Customer .xsd

The schema associated with the XML type
of the original data service.

DataSet Schema CustomerDataSet.xsd

The typed DataSet schema that conforms to
Microsoft requirements for ADO.NET data
objects.

Note that dataset xsd is not physically
generated into a dataspace project. It is
dynamically generated at WSDL generation
time when WSDL and its imported schema
files are accessed in .NET client.

Web Service Map CustomerNET.ws

Web Services mapper file that maps data
service operations to web service
operations.

Supporting Java Clients

The WSDL generated by ALDSP from an ADO.NET-enabled web services map is specific for use by
Microsoft ADO.NET clients. Exposing data services as Web Services that are usable by Java clients is
generally the same, although the actual steps (and the generated artifacts) are specific to Java.

1-6 Client Application Developer's Guide

Overview of ADO.NET Integration in ALDSP

Enabling ALDSP Support for ADO.NET Clients

The process of providing ADO.NET clients with access to data services is a server-side operation that
is initially enabled in Eclipse and takes place in the context of an application and the ALDSP Data
Services Studio.

The instructions in this section assume that you have created a dataspace project and that you want
to provide an ADO.NET client application with access to data services. (For information about
designing and developing data services, see the Data Services Developer’s Guide.)

Enabling a ALDSP application to support ADO.NET clients involves doing the following:
o Generating an ALDSP Web Services Mapper
e (reating a Web Reference in ADO.NET Client by Providing the ALDSP WSDL URL

In some cases, of course, there will already be existing operations that you want to make available to
an ADO.NET client.

Generating an ALDSP Web Services Mapper

You need to generate an ALDSP Web Services Mapper that maps data service functions to Web Service
operations.

To generate a Web Services Mapper, do the following;

1. Right-click the project folder and select New > Web Service Mapper. Enter a filename for your .WS
map file.

You can then drag and drop data service files and functions from the Project Explorer into your
mapper.

Client Application Developer's Guide 1-1

../datasrvc/index.html

Supporting ADO.NET Clients

Figure 7-5 Creating your Web Service Mapper

2 Aqualegic - My, [Designar] - Eclipse SOK 8]
Fle [dt Havigste Search Frojct Run Window Helo
Q- @S iG-D L
{2 profest Explorsr 0[] My, Mspper.ws [Designer] £ 01 [entine | B Console 7 Databise Sinsture =0l
8% " 54 My_Mapperavs Weh Serve Magger] i I
@ T2 my_Crymal prapeet Oriey 26 cris Dt Sarvice Flas s Functions from <oct 8, 2007 3 BN PDT> <Hotices <Lidel
S My Dot L the man. «det 5, 2007 PH POT> <Noticer <lic
® 3 s <0ct 8, 2007 3:35:36 PR PDT> <Moticer <Lic
* (= DPDE <0t E, 2007 3:3IErIE PM PDT> <Motiser <Lic
& My physcel_Space <¥5 data binding ercor>Ignoring slement de
L sthamas U5 data binding ereorIgROEIng element de
® IE noverss.ce WS data binding ercor:Ignoring element de
w1 omentr_cann g <US data binding eeeorsTgeoring element de
® IE crntiRaTinG & <¥S data binding errornlgnoring element de
e 28 CUSTOMER_ORDER LINE_JTEM.ds <US data binding eeeorsTgeoring element de
w® { CUSTOMER_ORDER: LINE_ITEMZ ds <¥5 data binding ercor>Ignoring element de
w22 CUSTOMER_ORDER. & <3 data binding ereorsTgroring =lement de
® 1 CUSTOMER_ORDER2 ds <¥5 data binding ercor>Ignoring element de
@ IE customER.de <¥3 data binding errorrIgnoring element de
My Mapper s <¥E dava binding errceslgroring element de
@ IE mroouct.d <¥3 data binding ercorrIgnoring element de
I PRODUCTZ & <¥S data binding ereorTgROEIng element de
6] query-types.sd <¥S data binding error:Ignoring elemsnt de

<5 data BAnAing ereor>IgROEing element de
V5 data binding ercorrIgnoring &lement de
et 5, PR OPDTr <Motices <Lic
woet 5, PH PDT> <Notices <Lic
<ot 5, PR OPDTr <Motices <Lic
<ot 5, 2007 FH FDT> <Noticer <Lig
<Oct 5, 2007 3 PR PDT <Motices <Lic
<ot 5, 2007 FH FDT> <Noticer <Log
<oct §, 2007 PR POT> <Noticer <Vel
«det 5, 2007 PH PDT> <Moticer <Vek
<oct 8, 2007 FH PDT> <Noticer <Sel
<] = et 5, 2007 3 PN PDT> <Notices <Ser
— woet §, 2007 3 PR POT> <Noticer <der
i Workshop Palette e = = |coer 5, 2007 3 FM FDT» cMotices <iek

A gttt vadoble. .mm:nmw Error bog | TG = = = 0Olleoer 5, 2007 1 FE PDT> <Warnings <3¢
Server St <Oet 5, 2007 3 PR PDT <Barnings <S¢
5 o 05 Webloge Server v5.2 @ koshost B started <0et 5, 2007 PH PDT> <Notices <ve

<Oct §, 2007 3 BN PDT: <Motices <Usk-
<WSEE>Varning: JM5 gueve ‘weblogic.wsee.De
gt IME queus ! gie. wsme . De
<USEEsVarning: JMS gueve ‘weblogic.wsee.De
g: JNS queue wsee.De
<USEEsVarning: JMS gueve ‘weblogic.wsee.De
<USEE>VATRing: JNS gueue weblogic.wsse.De
-
<] 1€l s

2. Select Windows > Show View > Properties to display the properties for the Web Service Mapper,
and the operations that you put into your Web Service mapper.

1-8 Client Application Developer's Guide

Overview of ADO.NET Integration in ALDSP

3. Click on the Mapper Bar and on the value across from ADO-NET-enabled. Then, select true for the

ADO.NET-enabled option.

= Properties &3 Servers | Errar Log

Property

= General
ADO.net Enabled
Basic Auth Required
Map Mame
SOAP Yersion
Target Mame Space
Transport Type

= Policies
Add Policy

<

OES- R

Yalue

true| ¥
false

My_Mapper.ws

1.1

Id:My_Mapper.ws
HTTP

>

4, Redeploy your project by right-clicking on the project name and checking Deploy Project.

Viewing an ADO.NET-Enabled WSDL

The system automatically generates a Web Services Description Language (WSDL) file that can be
used by Web Service clients to invoke operations on the ADO.NET-enabled Web Service:

1. Right-click on the Web Service Mapper file created in “Generating an ALDSP Web Services

Mapper.”
2. Select View WSDL.

Client Application Developer's Guide 1-9

Supporting ADO.NET Clients

Figure 7-6 Generated WSDL in AquaLogic Data Services Studio

-
il A 4 i@ P
B E0 [o |fR[w2 &
[Project Explorer £2 = O || ty_Mapper.ws [Designer]] bg = O | [outine | Bl console &2 Database 5t
g%~ || BEA Weblogic Server v9.2 _localhost [BEr
o] " <?wml version="1.0" encoding="UTF-8" 7=] % RE 2 C
5= My_Crystal_Project . . . (2
5 My Data - «definitions targetNamespace="ld:My_Mapper.ws' <Ot S, 2007 3:35:36 FM Pl
P name="My_Mapper" zmins="http://schemas.xmlsoap.org/wsdl/"
y_Mapp p p.org
5 5L Map K . " <0ct §, 2007 3:35:36 PH Pl
g et L BT <oot 5, 2007 3:35:36 FM P
(& DSP-INF zmins:zs="http:/ /veww .w3.0rg/2001/XMLSchema" .
(= My_Physical_Space zmins: snap="http://schemas.xmlsoap.org/wsdl/soap/"> e ZUE_'T ?'35'36 LLV]
= schemas <documentation>Aqualogic Data Services Web RN CLEC SRR OS IS S]
% 412 ADDRESS.ds Service</documentations phifCEat e SO e
{2 CREDIT_CARD.ds <import namespace="1d:CUSTOMER_ORDER_LINE_ITEM" s C e n T TG EEC ELTo
4 CREDITRATING.ds location="DSP_DOT_NET_SCHEMAS/schemas/CUSTOMER_ORDER_LI[| <W? data hinding error>Im
2 CUSTOMER_ORDER_LINE_ITEM.ds <import namespace="ld:CUSTOMER" <W5 data binding error>Im
=4 CUSTOMER_ORDER_LINE_ITEMZ.ds location="DSP_DOT_NET_SCHEMAS /schemas/CUSTOMER/CUSTOMEF | <W? data hinding error>Im
® {2 CUSTOMER_ORDER ds =import namespace="ld:CUSTOMER" <W5 data binding error>Im
{2 CUSTOMER_ORDERZ.ds location="DSP_DOT_NET_SCHEMAS/schemas/CUSTOMER_KEY/CUST | <WS data binding error>Im
+ I8 cusToMER. ds <import namespace="ld:CUSTOMER_ORDER" <W5 data binding error>Igm
%MY_MGDDELWS location="DSP_DOT_NET_SCHEMAS/schemas/CUSTOMER_ORDER_KE <WS data binding errorsIm
+ 2 PRODUCT ds <import namespace="ld:CUSTOMER_ORDER" <WS data binding error:Im
48 proDUCTZ.ds location="DSP_DOT_NET_SCHEMAS/schemas/CUSTOMER_ORDER/CL | <WS data binding error>Ig
[xquery-types.xsd <import namespace="ld:CUSTOMER_ORDER_LINE_ITEM2" <03 data binding error>Ig
location="DSP_DOT_NET_SCHEMAS /schemas/CUSTOMER_ORDER_LII <WS data binding error>Ig
<import namespace="ld:PRODUCT" <WS data binding error>Im
location="DSP_DOT_NET_SCHEMAS/schemas/PRODUCT_KEY /PRODU <WS data binding error>Im
<import namespace="ld:PRODUCT" <Oct 5, 2007 3:35:39 FM Pl
location="DSP_DOT_NET_SCHEMAS /schemas/PRODUCT/PRODUCTDa <Ozt §, 2007 3:35:39 PHM PI
<import namespace="ld:ADDRESS" <Opt 5, 2007 3:35:39 PH Pl
location="DSP_DOT_NET_SCHEMAS/schemas/ADDRESS /ADDRESSDa <Oct 5, 2007 3:35:39 PH Pl
<import namespace="ld:CUSTOMER" <tet 5, 2007 3:35:39 FH PI
location="D8P_DOT_MNET_SCHEMAS/schemas/CUSTOMER.xsd" /= <Oct 5§, 2007 3:35:39 PH Pl
- =typess . . <Oct 5, 2007 3:35:40 FM Pl
- axsischema targetNam?space— Ir::MnyappEr.ws <Oct 5, 2007 3:35:40 PH PI
- S e\ernentfnrrr:?ﬂei:u\t;qual L | <cet 5, 2007 3:35:42 P PI
- Hminsistnes AMy Mannar.we 5 <Oct 5, 2007 3:35:42 PH Pl
& Workshop Palette 52 =08 <Oct 5, 2007 3:35:42 FM Pl
= . =
f i [l Properties 2 . Servers | Error Lag i ¥ 7 8] coct 5, 2007 3:35:42 PH P
& palette is not available,
<oot 5, 2007 3:35:42 FM B
pv— e <0ct §, 2007 3:35:42 PH Pl
<oot 5, 2007 3:35:42 FM B
<0ct §, 2007 3:35:42 PH Pl
<WSEE»Warning: JHS queus
<WSEE>Warning: JHS queue
<WSEE»Warning: JHS queus
<WSEE>Warning: JHS queue
<WSEE»Warning: JHS queus
<WSEE>Warning: JHS queue
<
0 Done

o See “Web Services Description Language (WSDL) File for Microsoft ADO.NET Clients” on
page 7-18 for information about the format of the WSDL.

Note: The building of RPC-style Web services on top of ALDSP is not supported. For this reason
RPC-style Web services built on cannot be created from ADO.NET clients utilizing ALDSP.

1-10 Client Application Developer's Guide

Adapting ALDSP XML Types (Schemas) for ADO.NET Clients

Creating a Weh Reference in ADO.NET Client by Providing
the ALDSP WSDL URL

From your ADO.NET client application, specify the path to locate the WSDL. The example uses
VisualStudio as a client application.

1. Right-click on Web Reference to import the WSDL.
2. Add “Web Ref.”

3. In the window, enter the URL for the WSDL.
http:// host:port/dataspace project name/ folder/.../mapperfile.ws?WSDL

For example, the web services mapper file created in Data Services Studio:
http://1ocalhost:7001/NewProject/TestMapper .ws?WSDL
4. Click Go.

Once you have imported the WSDL you will be able to execute its data service operations assuming
that the ALDSP-enabled server is running and your application has sufficient access privileges.

Adapting ALDSP XML Types (Schemas) for ADO.NET
Clients

Fundamentally, Microsoft’s ADO.NET DataSet is designed to provide data access to a data source that
is—or appears very much like—a database table (columns and rows). Although, later adapted for
consumption of Web services, ADO.NET imposes many design restrictions on the Web service data
source schemas.

Due to these restrictions, ALDSP XML types (also called schemas or XSD files) that work fine with
data services may not be acceptable to ADO.NET's DataSet.

Client Application Developer's Guide 1-11

Supporting ADO.NET Clients

This section explains how you can prepare XML types for consumption by ADO.NET clients. It covers
both read and update from the ADO.NET client side to the ALDSP server, specifically explaining how
to:

o Read a ALDSP query result as a ADO.NET DataSet via SDO (since query results are presented
as SDO DataObjects within ALDSP).

e Update ALDSP data sources using an ADO.NET DataSet's diffgram that is mapped to an SDO
data graph with a Change Summary.

Note: See the Data Services Developer’s Guide for detailed information related to creating and
working with XML types.

Approaches to Adapting XML Types for ADO.NET

There are several approaches to adapting XML types for use with an ADO.NET DataSet:

e Develop ADO.NET-compatible data services above the physical data service layer. You can
develop data services on top of physical data sources that are specifically intended to be
consumed by ADO.NET clients. (Details are described in “XML Type Requirements for Working
With ADO.NET DataSets” on page 7-13.)

Note: Any ADO.NET-compatible data service XML types also can be used by non-ADO.NET
clients.

o Develop ADO.NET-compatible data services above a logical data service layer. If existing logical
data services that are not ADO.NET-compatible must be reused, you can build an additional
layer of ADO.NET-compatible data services on top of the logical data services.

Note: This approach may increase the likelihood of having to work with inverse functions and
custom updates.

1-12 Client Application Developer's Guide

../datasrvc/index.html

Adapting ALDSP XML Types (Schemas) for ADO.NET Clients

XML Type Requirements for Working With ADO.NET DataSets

The following guidelines are provided to help you develop ADO.NET DataSet-compatible XML types
(schemas) by providing pattern requirements for various data service artifacts.

Requirements for Complex Types
Requirements for supporting a complex type in an ADO.NET DataSet include:

e Define the entire XML type in a single schema definition file. This means not using include,
import, or redefine statements.

e Define one global element in the XML type and all other complex types as anonymous complex
types within that element. Define one global element in the schema and define all other
complex types as anonymous complex types within the element. Do not define any of the
following:

— global attribute
— global attributeGroup
— global simple type

e Be sure that the name of an element in the anonymous complex type is unique within the
entire schema definition.

Note: The name of an element of simple type need not be unique, unless the occurrence of the
element is unbounded.

Requirements for Recurring References

Since ADO.NET does not support true recurring references among complex types, the requirements
noted in Requirements for Complex Types should be followed when simulating schema definitions
utilizing such constructs as the following:

e Nested complex types
e Recurring references among complex types

e Multiple references from different complex type to a single complex type

Client Application Developer's Guide 1-13

Supporting ADO.NET Clients

As an example, if an address complex type has been referred to by both Company and Department,

there should be two element definitions, CompanyAddress and DepartmentAddress, each with an
anonymous complex type.

The following code illustrates this example:

<xsd:schema targetNamespace=""urn:company.xsd"
xmlns:xsd="http://www._.w3.0rg/2001/XMLSchema’*>
<xsd:element name="Company'>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="'Name" type="'xsd:string'/>
<xsd:element name="CompanyAddress''>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="City" type='xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Department'>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Name" type="'xsd:string"/>
<xsd:element name=""DepartmentAddress''>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="City" type="'xsd:string'/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

1-14 Client Application Developer's Guide

Adapting ALDSP XML Types (Schemas) for ADO.NET Clients

Requirements for Simple Types
Requirements for supporting simple types in an ADO.NET DataSet include the following:

o Use xs:dateTime type in the XML type rather than xs:date, or xs:time, or any gXXX type, such as
gMonth, etc. (If a physical date source uses gXXX type, you should rely on the use of an inverse
function to handle the type for update. For gXXX types, you should rely on the use of a ALDSP
update override function to handle the update.)

e Base64Binary type should be used, rather than hexBinary type.

e Avoid using List or Union type.

e Avoid using xs:token type.

o Avoid defining default values in your XML type.

e The length constraining facet for 'String' should not be used.
Requirements for Target Namespace and Namespace Qualification
Requirements for using target namespaces and namespace qualification include:

o Your XML type must have a target namespace defined. Everything in the type should be under a
single namespace.

o Set the elementFormDefault and attributeFormDefault to unqualified for the entire XML type.
(As these are the default setting of a schema document, you can generally leave these two
attributes of xs:schema unspecified.)

References

Further information regarding XML schemas can be found at the following site:

http://www.w3.org/TR/xmlschema-0

Client Application Developer's Guide 1-15

http://www.w3.org/TR/xmlschema-0

Supporting ADO.NET Clients

Creating a Data Service Based on an RPC-Style Web
Service

For RPC-style web services, results are return as qualified or unqualified based on the setting of the
schema attribute:

elementFormbDefault

In general, for web services, you can override the elementFormDefault by setting the form
attribute for any child element. However, these individual settings are ignored for RPC-style web
services since only the global setting (qualified or unqualified) is taken into account.

For example:

<s:schema elementFormDefault="qualified"
targetNamespace=""http://temp.openuri .org/SampleApp/CustomerOrder.xsd"
xmIns:s0=""http://temp.openuri.org/SampleApp/CustomerOrder.xsd"
xmIns:s="http://www.w3.0rg/2001/XMLSchema’">
<s:complexType name="ORDER"'>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" form="unqualified"”
name=""ORDER_ID" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" form="unqualified"”
name=""CUSTOMER_ID" type="s:string"/>
</s:sequence>
</s:complexType>
</s:schema>

In this code sample, the global element is qualified but a child element (ORDER_1D) is unqualified.

In the standard case, the special setting of unqualified for ORDER_ 1D is honored. In the case of
RPC-style web services, however, the runtime generates qualified attributes for all of the elements,
including ORDER__ID.

Note: RPC-style web services such as those generated by ADO.NET may contain child elements with
form attributes which do not match the schema’s elementFormDefault declaration. To
turn these web services into executable data service operations, make sure that all form
element attributes and the e lementFormDefaul t attribute are in agreement (either
qualified or unqualified).

Multi-dimensional arrays in RPC mode are not supported.

1-16 Client Application Developer's Guide

Generated Artifacts Reference

Generated Artifacts Reference

The process of creating a ADO.NET-enabled Data Service and Web Service generates two
ADO.NET-specific artifacts:

e Typed DataSet Schema file - This file is not located in the dataspace project physically like the
web services mapper file. It is dynamically generated on the server and sent to the .NET client
when WSDL and its imported xsd are retrieved on the client side

o ADO.NET Enabled Web Services Map File

Technical specifications for these artifacts are included in this section.

XML Schema Definition for ADO.NET Types DataSet

The Typed DataSet schema file is referred to in the dynamically-generated WSDL. The schema file is
retrieved by the NET client dynamically during web reference creation.

In the generated schema, the root element has the IsDataSet attribute (qualified with the Microsoft
namespace alias, msdata) set to True, as in:
msdata: IsDataSet=""true"

In keeping with Microsoft’s requirements for ADO.NET artifacts, the generated target schema of the
data service and all schemas upon which it depends are contained in the same file as the schema of
the typed DataSet. As you select functions to add to the control, WebLogic Workshop obtains the
associated schemas and copies the content into the schema file.

In addition, the generated schema includes:

o Areference to the Microsoft-specific namespace definition, as follows:
xmIns:msdata="'urn:schemas-microsoft-com:xml-msdata"

o Namespace declaration for the original target schema (the schema associated with the ALDSP
data service)

Listing 7-1 shows an excerpt of a schema—CustomerDS . xsd—for a typed DataSet generated from
an ALDSP Customer schema.

Client Application Developer's Guide 1-11

Supporting ADO.NET Clients

1-18

Listing 7-1 Example of a Typed DataSet (ADO.NET) Schema

<xs:schema xmlns:mstns=""http://temp.openuri.org/schemas/Customer.xsd"
xmIns:msdata=""urn:schemas-microsoft-com:xml-msdata"
xmIns="http://temp.openuri.org/schemas/Customer .xsd"
targetNamespace="http://temp.openuri.org/schemas/Customer.xsd"
id=""CustomerDS" xmlns:xs="http://www.w3.0rg/2001/XMLSchema"">
<xs:element msdata: IsDataSet=""true" name="'CustomerDataSet">
<xs:complexType>
<xs:choice maxOccurs="unbounded'>
<xs:element ref="CUSTOMER"/>
</xs:choice>
</xs:complexType>
</xs:element>
<xs:element name="CUSTOMER"'>
</xs:element>
</xs:schema>

Web Services Description Language (WSDL) File for
Microsoft ADO.NET Clients

The WSDL generated from the mapper file contains import statements that correspond to each typed
DataSet. Each of the import statements is qualified with the namespace of its associated DataSet
schema, as in the following example:

<import namespace="http://temp.openuri.org/schemas/Customer.xsd"
location=""LDTestiNET/CustomerDataSet.xsd"/>

In addition, the WSDL includes the ADO.NET compliant wrapper type definitions. The wrappers’ type
definitions comprise complex types that contain sequences of any type element from the same
namespace as the typed DataSet, as follows:

<s:complexType name='"'"CustomerDataSetWrapper'>
<s:sequence>
<s:any namespace="http://temp.openuri.org/schemas/Customer.xsd"/>
</s:sequence>
</s:complexType>

Client Application Developer's Guide

Generated Artifacts Reference

Below is a sample CUSTOMER_VIEW DataSet.xsd file:

<?xml version="1.0" encoding=""utf-8"7?>
<xs:schema xmlns:msdata="'urn:schemas-microsoft-com:xml-msdata"
xmlns:tns="1d:logicalDS/CUSTOMER_VIEW"
targetNamespace="1d: logicalDS/CUSTOMER_VIEW"
1d="CUSTOMER_VIEWDataSet" xmlns:xs="http://www,w3,0rg/2001/XMLSchema’">
<xs:element msdata: IsDataSet=""true"
name=""CUSTOMER_VIEWDataSet'">
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element ref=""tns:CUSTOMER_VIEW" />
<xs:choice>
<xs:complexType>
<xs:element>
<xs.element name="CUSTOMER_VIEW">
<xs:complexType>
<xs:sequence>
<xs:element name=""CUSTOMER_ID" type='"'xs.string" />
<xs:element name="FIRST_NAME" type="'Xxs.string" />
<xs:element name="LAST_NAME"™ type="'Xs.string" />
<xs:element name="CUSTOMER_SINCE" type="'xs.dateTime" />
<xs:element name="EMAIL_ADDRESS" type="xs.string" />
<xs:element name="TELEPHONE_NUMBER" type="'xs.string" />
<xs:element minOccurs="0"name=""SSN" type=''xs.string" />
<xs:element minOccurs="0"name="BIRTH_DAY" type="'xs.dateTime" />
<xs:element minOccurs="0"name=""DEFAULT_SHIP_METHOD"Type="xs.string"/>
<xs:element minOccurs="0"name="EMAIL_NOTIFICATION"Type=""Xs. integer'/>
<xs:element minOccurs="0"name="NEWS_LETTER"Type="xs. integer"/>
<xs:element minOccurs="0"name="ONLINE_STATEMENT"Type="'xs. integer"/>
<xs:element minOccurs="0"name="CREDIT_LIMIT"Type=""xs.decimal'/>

Client Application Developer's Guide 1-19

Supporting ADO.NET Clients

<xs:element name="ORDERS">

<xs.complexType>
<Xs.sequence>

<xs.element minOccurs="0" maxOccurs="unbounded''name="0RDER"">
<xs.complexType>

<Xs.sequence>

<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element

name="CUSTOMER_ID" type=''xs.string" />
name="0RDER_ID" type='xs.string" />
name=""ORDER_DATE" type="'xs.dateTime" />
name=""SHIP_METHOD" type=""xs.string" />
name=""HANDL ING_CHARGE" type="'xs.decimal" />
name=""SUBTOTAL" type="'xs.decimal* />
name="TOTAL_ORDER_AMOUNT" type="xs.decimal" />
name=""SUBTOTAL" type="'xs.decimal™ />
name=""SALE_TAX" type='"'xs.decimal" />
name=""SHIP_TO" type="'xs.string" />
name=""SHIP_TO_NAME" type="xs.string" />
name="BILL_TO" type='xs.string" />
name=""ESTIMATED_SHIP_DATE" type=''xs.dateTime" />
name="STATUS" type=''xs.string" />

<xs:element minOccurs="0"name="TRACKING_NUMBER"type="'xs.string"/>

<xs.sequence>
<xs.complexType>
<xs:element>
<Xs.sequence>
<xs.complexType>
<xs:element>
<xs.sequence>
<xs.complexType>
</xs.schema>

1-20 Client Application Developer's Guide

Generated Artifacts Reference

Below is a sample CUSTOMER_VIEW_Net WSDL file:

<?xml version="1.0" encoding=""utf-8"7?>
<definitions xmlns:tns="1d"LogicalDSs/Customer_view_net.ws"
xmlns:soap= "http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="1d:LogicalDSs/Customer_view_net.ws"
xmIns="http://schemas.xmlsoap.org/wsdl/">
<documentation>AquaLogic Data Services Web Service</documentation>
<import namespace="1d:logicalDS/CUSTOMER_VIEW"
location=DSP_DOT_NET_SCHEMAS/LogicalDSs/schemas/CUSTOMER_VIEW
/CUSTOMER_VIEW DataSet.xsd/>
<types>
<xs:schema xmlns:stns="1d:logicalDS/customer_view_net.ws"
xmIns:dsnsO=""1d: logicalDS/CUSTOMER_VIEW"
elementFormDefault="qualified"
targetNamespace=""1d: logicalDSs/customer_view_net.ws">
<xs:element name="'getFirst'>
<xs:complexType>
<Xs:sequence/>
</xs:complexType>
</xs:element>
<xs:element name="getFirstResponse'>
<xs:complexType>
<Xs:sequence>
<xs:element minOccurs="0" name='getFirstResult"
type=""stns:CUSTOMER_VIEWDataSetWrapper" />
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name=""createCUSTOMER_VIEW">
<xs:complexType>
<xs:sequence>
<XS:ELEMENT NAME="P"'>
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="unbounded"
ref="dsns0:CUSTOMER_VIEW" />

Client Application Developer's Guide 1-21

Supporting ADO.NET Clients

</Xs:sequence>
</xs:complexType>
</xs:element>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="createCUSTOMER_VIEWResponse'>
<xs:complexType>
<xs:sequence />
</xs:complexType>
</xs:element>
<xs:element name="'updateCUSTOMER_VIEW'">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="0" name="p"
type=""stns:CUSTOMER_VIEWDataSetWrapper" />
<xs:sequence>
<xs:complexType>
</xs:element>
<xs:element name="updateCUSTOMER_VIEWResponse''>
<xs:complexType>
<xXs:sequence />
</xs:complexType>
</xs:element>
<xs:element name=""deleteCUSTOMER_ VIEW">
<xs:complexType>
<Xs:sequence>
<xs:element name="p"">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="unbounded"
ref="dsns0:CUSTOMER_VIEW" />
</Xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

1-22 Client Application Developer's Guide

Generated Artifacts Reference

<xs:element name="deleteCUSTOMER_VIEWResponse'>
<xs:complexType>
<xs:sequence />
</xs:complexType>
</xs:element>
<xs:element name="getAll">
<xs:complexType>
<xs:sequence />
</xs:complexType>
</xs:element>
<xs:element name="'getAl IResponse''>
<xs:complexType>
<xs:sequence>
<xs.element minOccurs="0" name="‘getAl IResult"
type=""stns:CUSTOMER_VIEWDataSetWrapper"'>
<Xs.sequence>
</xs:complexType>
</xs:element>
<xs:complexType name=""CUSTOMER_VIEWDataSetWrapper">
<Xs:sequence>
<xs:any namespace=""1d:logicalDS/CUSTOMER_VIEW" />
</Xs:sequence>
</xs:complexType>
</xs.schema>
</types>
<message name='‘getAllIn">
<part name="'parameters” element="tns:getAll" />
</message>
<message name="‘getAllOut">
<part name="parameters' element="tns:getAllResponse" />
</message>
<message nhame='‘getFirstin'>
<part name="parameters' element="tns:getFirst" />
</message>
<message name="'getFirstOut'>
<part name="parameters" element=""tns:getFirstResponse" />
</message>
<message name="‘createCUSTOMER_VIEWIn">

Client Application Developer's Guide 1-23

Supporting ADO.NET Clients

<part name="parameters”™ element="tns:createCUSTOMER_VIEW" />
</message>

<message name="‘createCUSTOMER_VIEWOut'>

<part name="'parameters” element=""tns:createCUSTOMER_VIEWResponse" />
</message>

<message name="'updateCUSTOMER_VIEWIn'">

<part name="parameters” element=""tns:updateCUSTOMER_VIEW" />
</message>

<message name="‘updateCUSTOMER_VIEWOut'>

<part name="'parameters” element=""tns:updateCUSTOMER_VIEWResponse" />
</message>

<message name="'deleteCUSTOMER_VIEWIn">

<part name="parameters” element="tns:deleteCUSTOMER_VIEW" />
</message>

<message name="'deleteCUSTOMER_VIEWOut'>

<part name="'parameters’ element=""tns:deleteCUSTOMER_VIEWResponse" />
</message>

<portType name="‘Customer_view_netPT">
<operation name="getAll'>
<input message='""tns:getAlllIn" />
<output message=""tns:getAllOut" />
</operation>
<operation name="getFirst'>
<input message=""tns:getFirstin" />
<output message="tns:getFirstOut" />
</operaton>
<operation name="'createCUSTOMER_VIEW">
<input message=''tns:createCUSTOMER_VIEWIn" />
<output message=""tns:createCUSTOMER_VIEWOut" />
</operaton>
<operation name="updateCUSTOMER_VIEW">
<input message=""tns:updateCUSTOMER_VIEWINn" />
<output message=""tns:updateCUSTOMER_VIEWOut"™ />
</operaton>
<operation name="deleteCUSTOMER_VIEW">
<input message=""tns:deleteCUSTOMER_VIEWIN" />
<output message=""tns:deleteCUSTOMER_VIEWOut" />

1-24 Client Application Developer's Guide

Generated Artifacts Reference

</operaton>
</portType>
<binding name+"Customer_view_netSoapBinding"
type=""tns:Customer_view_netPT">
<soap:binding
transport="http://schemas.xmlsoap.org/soap/http" />
<operation name="getAll">
<soap:operation
soapAction="1d:LogicalDSs/Customer_view_net.ws/getAll"
style=""document" />
<input>
<soap:body use="literal™ />
</ input>
<output>
<soap:body use="literal" />
</output>
</operation>
<operation name="'getFirst'>
<soap:operation
soapAction="1d:LogicalDSs/Customer_view_net.ws/getFirst"
style="document" />
<input>
<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />
</output>
</operation>
<operation name="createCUSTOMER_VIEW">
<soap:operation
soapAction=""1d:LogicalDSs/Customer_view_net.ws/createCUSTOMER_VIEW"
style="document" />
<input>
<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />
</output>

Client Application Developer's Guide 1-25

Supporting ADO.NET Clients

1-26

</operation>
<operation name="updateCUSTOMER_VIEW">
<soap:operation
soapAction="1d:LogicalDSs/Customer_view_net.ws/updateCUSTOMER_VIEW"
style="document" />
<input>
<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />
</output>
</operation>
<operation name="deleteCUSTOMER_VIEW">
<soap:operation
soapAction=""1d:LogicalDSs/Customer_view_net.ws/deleteCUSTOMER_VIEW"
style="document" />
<input>
<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />
</output>
</operation>
</binding>
<service name="Customer_view_netSoapService'>
<port name="Customer_view_netSoapPort"
binding="tns:Customer_view_netSoapBinding"
<soap:address
location="http://172.16.38.38:7001/RTLApp/ALDSPWebService/LogicalDSds/
Customer_view_net.ws" />
</port>

</service>
</definitions>

Client Application Developer's Guide

Advanced Topics

This chapter describes miscellaneous features that are related to client programming with BEA
AquaLogic Data Services Platform. It includes the following topics:

o Accessing Metadata Using Catalog Services

e Filtering, Sorting, and Fine-tuning Query Results

Accessing Metadata Using Catalog Services

BEA AquaLogic Data Services Platform maintains metadata about data services, application,
functions, and schemas through Catalog Services, which is a system catalog-type data service. Catalog
services provide a convenient way for client-application developers to programmatically obtain
information about AquaLogic Data Services Platform applications, data services, schemas, functions,
and relationships.

Catalog Services are also data services; you can view them using the AquaLogic Data Services Console,
the AquaLogic Data Services Platform Palette, and Data Service controls.

Some advantages of using Catalog Services are as follows:

e (Client application developers can use the Catalog Services in the same way as they use any
other data service in AquaLogic Data Services Platform.

e Application developers can create dynamic applications based on the metadata underlying the
data service applications that have been deployed.

Client Application Developer's Guide 8-1

Advanced Topics

8-2

o For enterprise, third-party, and other developers, Catalog Services leverage the development of
dynamic, metadata driven, query-by-form (QBF) applications.

e (atalog Services enable interoperability with other metadata repositories.

This section provides details about installing and using Catalog Services to access metadata for any
AquaLogic Data Services Platform application. It includes the following topics:

o Installing Catalog Services

e Using Catalog Services

Installing Catalog Services

You can install Catalog Services as a project for an AquaLogic Data Services Platform application or
as a JAR file that is added to the Library folder in Data Services Studio. The Catalog Services project
(_catalogservices) contains data services that provide information about the application, folders, data
services, functions, schemas, and relationships available with the application.

DataServiceRef and SchemaRef are additional data services that consist of functions that retrieve the
paths to the data services and schemas available with the AquaLogic Data Services Platform
application. For more information about the data services and functions available with Catalog
Services, refer to “Using Catalog Services” on page 8-3.

To install Catalog Services as a project:
1. Right-click the AquaLogic Data Services Platform application in Data Services Studio.

2. Select the Install Catalog Services (Expanded) option if you want to use the catalog services for
development, as shown in Figure 8-1. If you need catalog services only during runtime then select
Install Catalog Services (Jar) option.

Figure 8-1 Installing Catalog Services

|| Application x|

3 AnotherSampl ‘ |
ﬁj anothersa @ Find in Files. .
£ Modules

[13
[C) Libraries
[Security Ry
Build Application
Clean Application Install Catalog Services (Jar)
Dieployment » Update Portal Libraries
Portal
Import Project. .. .
Commerce Services
Build SDO Mediator Clisnt Pipeline Services
Broperties Controls »

Client Application Developer's Guide

Accessing Metadata Using Catalog Services

Using Catalog Services

After installing Catalog Services, the catalog services project, _catalogservices, is created for the
AquaLogic Data Services Platform application. All the data services associated with catalog services
are available under this project. You can invoke the data service functions to access metadata. The
client Mediator API is used to invoke the Catalog Service methods.

The data services available under _catalogservices include:

Application (application.ds)

DataServiceRef (DataServiceRef.ds)

Folder (folder.ds)

Function (Function.ds)

Relationship (Relationship.ds)

Schema (Schema.ds)

o The following table provides the declaration and description for the functions available in
Schema.dsSchemaRef (SchemaRef.ds)

Note: To use data service functions available with Catalog services, refer to the code samples
available at:

http://dev2dev.bea.com/wiki/pub/CodeShare/Samplel/catalogsrv_output
.zIip

Application (application.ds)

The following table provides the declaration and description for the getApplication(Qfunction in
Application.ds.

Table 8-2 Functions in Application.ds

Function Declaration Description

getApplicationQ as This function returns the name of the AquaLogic Data

schema-element(tl:Application) external; Services Platform application. It does not take any
parameters.

Client Application Developer's Guide 8-3

http://dev2dev.bea.com/wiki/pub/CodeShare/Sample1/catalogsrv_output.zip

Advanced Topics

DataService (DataService.ds)

Table 8-3 provides declaration and description information for the functions available in

DataService.ds.

Table 8-3 Functions in DataService.ds

Function Description Sample Input
Declaration
getDataService This function returns the <urn:DataService kind="javaFunction"

Ref($arg as
element(md:Dat
aService)) as
element(md:Dat

path of the data service
associated with the
function.

For this function, you need

xmlns:acc="1d:RTLAppDataServices/Custome
rDB/Customer"
xmlns:urn="urn:metadata.ld.bea.com">

<urn:DataServiceRef>

aServiceRef . . <id>Ild: i
Sara/nd- Dazas to specify the following: N cl) ze :(-jdzl'l;,:\ggDataSe rvices/CustomerDB/Cus
erviceref} * Pathofthe data service </urn:DataServiceRef>
* Pathofthe S(j‘hema for <returnType name="CUSTOMER" kind="read"
the data service quantifier="*"
e Function ID of the schemald="1d:RTLAppDataServices/Customer
function for whichyou =~ DB/schemas/CUSTOMER.xsd" />
need the data service <1--Zero or more repetitions:-->
reference <key>
<!--1 or more repetitions:-->
<path>1d:RTLAppDataServices/CustomerDB/C
ustomer .ds</path>
</key>
<!--Zero or more repetitions:-->
<urn:Functionld name="CUSTOMER"
arity="0"/>
</urn:DataService>
getDataService This function returns the <DataServiceRef
($x1 as attributes of the specified xmIns="urn:metadata. ld.bea.com">
element(tl:Dat data service such as the <id
aServiceRef)) schemapath, functions,and xmlns=""">ld:DataServices/CustomerDB/CUST
as relational data source.

schema-element
(tl:DataServic
e)? external

Specify the path of the data
service to retrieve the
required result.

OMER.ds</i1d>
</DataServiceRef>

8-4 Client Application Developer's Guide

Accessing Metadata Using Catalog Services

DataServiceRef (DataServiceRef.ds)

The following table provides the declaration and description for the functions available in

DataServiceRef.ds.

Table 8-4 Functions in DataService

Function Declaration

Description

Sample Input

getDataServiceRefsByFold
er($x1 as xsd:string, $x2
as xsd:boolean) as
schema-element(tl:DataSe
rviceRef)* external

This function returns the data
services that exist within a folder
in the project. You need to specify
the path of the project folder and
set the boolean value to true for
this function.

String parameter =
1d:RTLAppDataServices/Cust
omerDB/

Boolean = true

getDataServiceRefs() as
schema-element(tl:DataSe
rviceRef)* external

This function returns the path to
all the data services in the project.
It does not require any
parameters.

No input required.

getDependents($x1l as
element(tl:DataServiceRe
), $x2 as xsd:boolean)
as
schema-element(tl:DataSe
rvicRef)* external

This function returns the path of
the data services on which the
specified data service depends.

For this function, you need to
specify the path of the data service
whose dependents you need to
determine. For example, if you
need to find out the dependents
for CUSTOMER.ds then specify the
path of the data service as:

ld:DataServices/Custom
erDB/CUSTOMER.ds

<urn:DataServiceRefdat
xmIns:urn="urn:metadata.ld
.bea.com">
<id>ld:DataServices/Custom
erDB/CUSTOMER .ds</1id>

</urn:DataServiceRef>

getDependencies($x1l as
element(tl:DataServiceRe
), $x2 as xsd:boolean)
as
schema-element(tl:DataSe
rviceRef)* external

This function returns the
dependencies for the specified
data service.

For this function, you need to
specify the path of the data service
whose dependencies you need to
determine.

<urn:DataServiceRef
xmIns:urn="urn:metadata.ld
.bea.com">
<id>ld:DataServices/Demo/C
ustomerProfile.ds</id>

</urn:DataServiceRef>

Client Application Developer's Guide 8-5

Advanced Topics

Table 8-4 Functions in DataService

Function Declaration

Description

Sample Input

getFunctions($xl as
element(tl:DataServiceRe
f)) as
schema-element(tl:Functi
on)* external

This function returns the list of

data service functions and their
attributes such as function kind,
arity, and schema path.

For this function, specify the path
of the data service as input.

<DataServiceRef
xmIns=""urn:metadata. ld.bea
.com'>

<id
xmlns=""">1d:RTLAppDataServ
ices/CustomerDB/CUSTOMER.d
s</id>

</DataServiceRef>

getRelationships($xl as
element(tl:DataServiceRe
f)) as
schema-elemen43t(tl:Rela
tionship)* external

This function retrieves the path of
data services which have any
relationship with the specified
data service. You need to specify
the path of the data service, such
as
1d:RTLAppDataServices/
CustomerDB/CUSTOMER .ds

DataServiceRef
xmIns=""'urn:metadata. ld.bea
.com">

<id
xmlns=""">1d:RTLAppDataServ
ices/CustomerDB/CUSTOMER.d
s</id>

</DataServiceRef>

getSchemaRefs($arg as
element(tl:DataServiceRe
), $transitive as
xs:boolean) as
element(tl:SchemaRef)*
external

For this function, enter the path of
the data service and set the
boolean value to true for retrieving
the list of associated schemas. This
function also lists the paths of
schemas for data services, which
have a relationship with the
specified data service.

<urn:DataServiceRef
xmIns:urn="urn:metadata. Id
.bea.com">
<id>ld:RTLAppDataServices/
CustomerDB/CUSTOMER.ds</id
>

</urn:DataServiceRef>

Enter true as the boolean
parameter.

getDataService($x1l as
element(tl:DataServiceRe
f)) as
schema-element(tl:DataSe
rvice)? external

This function returns the
attributes of the specified data
service such as the schema path,
functions, and relational data
source.

Specify the path of the data service
to retrieve the required result.

<urn:DataServiceRef
xmIns:urn="urn:metadata. Id
.bea.com">

<id
xmlns=""">1d:RTLAppDataServ
ices/CustomerDB/CUSTOMER.d
s</id>
</urn:DataServiceRef>

8-6 Client Application Developer's Guide

Folder (folder.ds)

Accessing Metadata Using Catalog Services

The following table provides the declaration and description for the functions available in Folder.ds.

Table 8-5 Functions in Folder.ds

Function Declaration

Description

Sample Input

getFolder() as
schema-element(tl:Fol
der)* external

This function provides a list of
paths of folders and data
services that exist within the
AqualLogic Data Services
Platform project. It does not
require any parameters.

No input required.

getFolder($x1 as
xsd:string, $x2 as
xsd:boolean) as
schema-element(tl:Fol
der)* external

This folder returns the paths of
all the data services that exists
within a specified folder. You

need to specify two parameters

for this function, which include:

e Path of the folder such as
Id:RTLAppDataServi
ces/CustomerDB

e Boolean value (usually set
to true)

e Parameter 1 (string) =
1d:RTLAppDataServices/Custo
merDB

e Parameter 2 (boolean) = true

getDataServiceRefs($x
1 as
element(tl:Folder))
as
schema-element(tl:Dat
aServiceRef)*
external

This function also provides the
paths of the data services that
exist within a folder. To retrieve
this information, specify the
path of the folder as input.

<Folder
xmIns=""urn:metadata.ld.bea.com
>

<id
xmlns=""">1d:RTLAppDataServices
/CustomerDB</id>

</Folder>

Client Application Developer's Guide 8-7

Advanced Topics

Function (Function.ds)

The following table provides the declaration and description for the functions in Function.ds.

Table 8-6 Functions in Function.ds

Function Declaration

Description

Sample Input

getFunctionByld($x1
as
element(tl:Function
1d)) as
schema-element(tl:F
unction) external4

This function returns the
path of the data service and
schema along with function
arity, function kind and
return type information

about the specified function.

For this function, specify the
function ID and arity as
input.

<Functionld name=" cus:CUSTOMER "
arity="0"
xmIns:cus="1d:RTLAppDataServices/Cu
stomerDB/CUSTOMER"
xmIns=""urn:metadata. ld.bea.com"/>

getDataService($arg
as
element(md:Function
)) as
element(md:DataServ
ice

This function returns the
function arity and physical
data source information for
the specified function.

For this function, you need
to specify the function ID,
path of the data service and
schema.

<?xml version="1.0"
encoding="UTF-8" ?>

<urn:Function kind="read"
xmIns:acc="1d:RTLAppDataServices/Cu
stomerDB/CUSTOMER™

xmIns:urn="urn:metadata. Id.bea.com"
>

<urn:Functionld arity="0"
name=""acc:getAll"></urn:Functionld>

<returnType Kkind="element"
name="'urn:Account" quantifier="1"
schemald=""1d:RTLAppDataServices/Cus
tomerDB/schemas/CUSTOMER . xsd"">
</returnType>

<urn:DataServiceRef>
<id>ld:RTLAppDataServices/CustomerD
B/CUSTOMER .ds</id>
</urn:DataServiceRef>
</urn:Function>

8-8 Client Application Developer's Guide

Tahle 8-6 Functions in Function.ds

Accessing Metadata Using Catalog Services

Function Declaration Description Sample Input

getRelationship($ar This function returns the <?xml version="1.0"

g as relationship target and path encoding=""UTF-8" ?>
element(md:Function of the data services with <urn:Function kind="navigate"

)) as which the navigation xmlIns:acc="1d:RTLAppDataServices/Cu

element(md:Relation
ship) external
getFunctionQrelati
onship function

function has a relationship.

Specify the function ID, path
of the data service and
schema as input.

Note: This function is
applicable to
navigation

functions only.

stomerDB/Customer"
xmIns:urn="urn:metadata.ld.bea.com"
>

<urn:Functionld arity="1"
name=""acc:getDISCOUNT">
</urn:Functionld>

<returnType kind="element"
name=""'urn:getDISCOUNT"
quantifier="1"
schemald=""1d:RTLAppDataServices/Cus
tomerDB/schemas/CUSTOMER . xsd"">

</returnType>
<parameter name="arg'’>

<type kind="navigate"
name=""urn:DISCOUNT" quantifier="*"
schemald=""1d:RTLAppDataServices/Cus
tomerDB/CUSTOMER . xsd"">

</type>
</parameter>
<urn:DataServiceRef>

<id>ld:RTLAppDataServices/CustomerD
B/CUSTOMER .ds</id>

</urn:DataServiceRef>
<roleName>DISCOUNT</roleName>
</urn:Function>

Client Application Developer's Guide 8-9

Advanced Topics

Table 8-6 Functions in Function.ds

Function Declaration Description

Sample Input

getSchemaRefs($x1 For this function, specify the

as

function ID and path of the

element(tl:Function data service to retrieve the
), $x2 as path of the schemas
xsd:boolean) as associated with the data
schema-element(tl:S gervice.

chemaRef)* external

<urn:Function kind="navigate"
xmIns:acc="1d:RTLAppDataServices/Cu
stomerDB/CUSTOMER"
xmIns:urn="urn:metadata.ld.bea.com"
>

<urn:Functionld
name=""acc:getDISCOUNT" arity=""1"/>

DataServicesRef_ <returnType name="DISCOUNT"
kind="element" quantifier="*"
schemald=""1d:RTLAppDataServices/Cus
tomerDB/schemas/CUSTOMER .xsd"" />

<I--Zero or more repetitions:-->

<parameter name="arg'>

<type name=""DISCOUNT"

kind="element" quantifier="*"
schemald=""1d:RTLAppDataServices/Cus
tomerDB/schemas/CUSTOMER . xsd"' />

</parameter>

<urn:DataServiceRef>
<id>ld:RTLAppDataServices/CustomerD
B/Customer.ds</id>

</urn:DataServiceRef>

<I--Optional:-->

<roleName>DISCOUNT</roleName>
</urn:Function>

8-10 Client Application Developer's Guide

Accessing Metadata Using Catalog Services

Relationship (Relationship.ds)

The following table provides the declaration and description for the functions available in

Relationship.ds.

Note: The functions in Relationship.ds can be used to access metadata only for navigation

functions.

Table 8-7 Functions in Relationship.ds

Function Description
Declaration

Sample Input

getFunctions This function returns
($arg as the attributes of the
element(md:R function that you
elationship) specify as input. You

) as need to specify the
element(md:F following parameters
unction) for this function:
e Stringparameter=
Path of the data
service

e Function ID

e Values for
minOccurs and
maxQOccurs

<urn:Relationship
xmIns:acc=""1d:RTLAppDataServices/CustomerDB/C
USTOMER™ xmlIns:urn="urn:metadata.ld.bea.com">

<I--1 to 2 repetitions:-->

<relationshipTarget roleName=""DISCOUNT"
minOccurs="1" maxOccurs="1" description=""">

<urn:DataServiceRef>

<id>1d:RTLAppDataServices/CustomerDB/CUSTOMER
.ds</id>
</urn:DataServiceRef>
<I--Zero or more repetitions:-->
<urn:Functionld name="acc:getDISCOUNT"
arity="1"/>
</relationshipTarget>
</urn:Relationship>

Client Application Developer's Guide 8-11

Advanced Topics

Tahle 8-7 Functions in Relationship.ds

Function Description Sample Input

Declaration

getDataServi Youneed tospecifythe <urn:Relationship

ceRefs($x1 following parameters xmIns:acc="1d:RTLAppDataServices/CustomerDB/C
as for this function: USTOMER"™ xmlIns:urn="urn:metadata.ld.bea.com">
element(tl:R gy inonarameter= <!--1 to 2 repetitions:-->

elationship) Path of the data <relationshipTarget roleName=""DISCOUNT"

) as service minOccurs="1" maxOccurs="1" description=""">

schema-eleme
nt(tl:DataSe

e Function ID

<urn:DataServiceRef>

rviceRef) e Values for } _
minOceurs and <id>ld:RTLAppDataServices/CustomerDB/CUSTOMER
maxOccurs -ds</id>
</urn:DataServiceRef>
<!--Zero or more repetitions:-->
<urn:Functionld name="acc:getDISCOUNT"
arity="1"/>
</relationshipTarget>
</urn:Relationship>
8-12 Client Application Developer's Guide

Tahle 8-7 Functions in Relationship.ds

Accessing Metadata Using Catalog Services

Function Description Sample Input
Declaration
getDataServi This function returns <?xml version="1.0" encoding="UTF-8" ?>

ces($arg as
element(md:R
elationship)
) as
element(md:D
ataService)

the attributes, such as
relational datasource
and function arity, of
the navigation function
of the data service. For
this function, you need
to specify the following
parameters:

e Stringparameter=
Path of the data
service

e Stringparameter=
Path of the schema

e Values for
maxOccurs and
minOccurs

e FunctionID

<urn:Relationship
xmIns:acc=""1d:RTLAppDataServices/CustomerDB/C
USTOMER™ xmlIns:urn="urn:metadata.ld.bea.com">

<relationshipTarget description=""
maxOccurs="1" minOccurs=""1"
roleName=""DISCOUNT"">

<urn:DataServiceRef>
<id>1d:RTLAppDataServices/CustomerDB/CUSTOMER
.ds</id>

</urn:DataServiceRef>

<urn:Functionld arity="1"
name=""acc:getDISCOUNT">

</urn:Functionld>
</relationshipTarget>

<relationshipTarget description=""
maxOccurs="1" minOccurs="1"
roleName=""DISCOUNT""
xmIns:acc=""1d:RTLAppDataServices/CustomerDB/C
USTOMER"">

<urn:DataServiceRef>

<id>ld:RTLAppDataServices/CustomerDB/CUSTOMER
.ds</id>

</urn:DataServiceRef>

<urn:Functionld arity="1"
name=""acc:getDISCOUNT ">

</urn:Functionld>
</relationshipTarget>
</urn:Relationship>

Client Application Developer's Guide 8-13

Advanced Topics

Schema (Schema.ds)

The following table provides the declaration and description for the functions available in
Schema.dsSchemaRef (SchemaRef.ds)

Table 8-8 Functions in Schema.ds

Function Declaration

Description

Sample Input

getSchema($x1l as
element(tl:SchemaRef))
as
schema-element(tl:Schema
)* external

This functions returns the schema
attributes of the schema
associated with the data service.
You need to specify the path of the
schema which you need to access
as string parameter. For example:
1d:RTLAppDataServices/

CustomerDB/schemas/CUS
TOMER . xsd

<urn:SchemaRef
xmIns:urn="urn:metadata. Id
.bea.com">
<id>ld:RTLAppDataServices/
CustomerDB/schemas/CUSTOME
R.xsd</id>
</urn:SchemaRef>

getSchemaRef($x1 as
element(tl:Schema)) as
schema-element(tl:Schema

Ref)

This function returns the path of
the schema of the data service.

Specify the schema path to get the
reference to the schema. For
example:
1d:RTLAppDataServices/

CustomerDB/schemas/CUS
TOMER_TABLE . xsd

<urn:Schema
xmIns:urn="urn:metadata. Id
-bea.com'>

<urn:SchemaRef>
<id>ld:RTLAppDataServices/
CustomerDB/schemas/CUSTOME
R_TABLE.xsd</id>

</urn:SchemaRef>

</urn:Schema>

8-14

Client Application Developer's Guide

Accessing Metadata Using Catalog Services

The following table provides the declaration and description for the functions available in

SchemaRef.ds.

Table 8-9 Functions in SchemaRef.ds

Function Declaration

Description

Sample Input

getDependencies($x1l as
element(tl:SchemaRef),
$x2 as xs:boolean) as
schema-element(tl:Schema
Ref)* external

This function returns the
dependencies of the specified data
service.

You need to specify the path of the
schema for the data service as a
string parameter. For example:
Id:DataServices/Demo/s

chemas/CustomerProfile
.xsd

<urn:SchemaRef
xmIns:urn="urn:metadata. Id
.bea.com">

<id
xmIns="">ld:DataServices/D
emo/schemas/CustomerProfil
e.xsd</id>

</urn:SchemaRef>
The second parameter is boolean and

the value can be either true or
false.

getSchema($xl as
element(md:SchemaRef))
as
schema-element(md: Schema
)* external

This functions returns the
schemas associated with the data
service.

You need to specify the path of the
schema for the data service as a
string parameter. For example:
1d:RTLAppDataServices/

CustomerDB/schemas/CUS
TOMER . xsd

<urn:SchemaRef
xmIns:urn="urn:metadata. Id
.bea.com">

<id>ld:RTLAppDataServices/
CustomerDB/schemas/CUSTOME
R.xsd</id>

</urn:SchemaRef>

Client Application Developer's Guide

8-15

Advanced Topics

Filtering, Sorting, and Fine-tuning Query Results

The Filter API enables client applications to apply filtering conditions to the information returned by
data service functions. In a sense, filtering allows client applications to extend a data service interface
by allowing them to specify more about how data objects are to be instantiated and returned by
functions.

The Filter API alleviates data service designers from having to anticipate every possible data view that
their clients may require and to implement a data service function for each view. Instead, the designer
may choose to specify a broader, more generic interface for accessing a business entity and allow
client applications to control views as desired through filters.

Only objects in the function return set that meet the condition are returned to the client. (The
evaluation occurs at the server, so objects that are filtered are not passed over the network. Often,
objects that are filtered out are not even retrieved from the underlying sources.) A filter is similar to
a WHERE clause in an XQuery or SQL statement—it applies conditions to a possible result set. You
can apply multiple filter conditions using AND and OR operators. Other operators that be applied to
filter conditions are listed in Table 8-10.

Table 8-10 Filter Operators

Operator Usage Note or Example

LESS_THAN Can also use "<". For example:
myFilter.addFilter("CUST/CUST_ORDER/ORDER",
"CUST/CUST_ORDER/ORDER/ORDER_AMOUNT", "<",
"1000");

myFilter.addFilter("CUST/CUST_ORDER/ORDER",
"CUST/CUST_ORDER/ORDER/ORDER_AMOUNT",
FilterXQuery.LESS_THAN, "1000");

GREATER_THAN Can also use ">".
LESS_THAN_EQUAL Can also use "<=".
GREATER_THAN_EQUAL Can also use ">=".
EQUAL Can also use "=".
NOT_EQUAL Can also use "!=".
matches Tests for string equality.

8-16 Client Application Developer's Guide

Using Filters

Table 8-10 Filter Operators (Continued)

Operator Usage Note or Example

sql-like Tests whether a string contains a specified pattern.

OR Compound operator that can apply to more than one filter.
NOT Compound operator that can apply to more than one filter.
AND Compound operator that can apply to more than one filter.

Note: Filter API Javadoc, and other AquaLogic Data Services Platform APIs are available on e-docs.

Using Filters

Filtering capabilities are available to Mediator and Data Service control client applications. You use
filter conditions to specify the data you want returned, how to sort the data, or a limit on the number
of records returned. To use filters in a mediator client application, import the appropriate package
and use the supplied interfaces for creating and applying filter conditions. Data service control clients
get the interface automatically. When a function is added to a control, a corresponding "WithFilter"

function is added as well.

The filter package is named as follows:

com._bea.ld.filter_FilterXQuery;

To use a filter, perform the following steps:

1. Create an FilterXQuery object, such as:

FilterXQuery myFilter

new FilterXQuery(Q);

2. Add a condition to the filter object using the addFilter() method. With this method you can specify
the node your filter condition should apply to, and can specify the number of records to be
returned, based on a limit; for example, you can specify that the filter should apply only to
customer orders with an amount over a specified value, which will be returned.

Client Application Developer's Guide 8-11

Advanced Topics

The addFilter() method has several signatures with different parameters, including the
following:

public void addFilter(jJava.lang.String appliesTo,
java.lang.String field,
jJava.lang.String operator,
jJava.lang.String value,
jJava.lang.Boolean everyChild)

This version of the method takes the following arguments:

— appliesTo indicates the node that filtering affects. That is, if a node specified by the field
argument does not meet the condition, appliesTo nodes are filtered out.

field is the node against which the filtering condition is tested.

operator and value together compose the condition statement. The operator
parameter specifies the type of comparison to be made against the specified value. See
Table 8-10, “Filter Operators,” on page 8-16 for information about available operators.

— everyChild is an optional parameter. It is set to false by default. Specifying true for this
parameter indicates that only those child elements that meet the filter criteria will be
returned. For example, by specifying an operator of GREATER_THAN (or ">") and a value of
1000, only records for customers where all orders are over 1000 will be returned. A
customer that has an order amount less than 1000 will not be returned, although other
order amounts might be greater than 1000.

Following is an example of an add filter method where those orders with an order amount
greater than 1000 will be returned (note that everyChild is not specified, so order amounts
below 1000 will be returned):

myFilter.addFilter(""CUSTOMERS/CUSTOMER/ORDER",
""CUSTOMERS/CUSTOMER/ORDER/ORDER_AMOUNT"",
nom

“1000");
3. Use the Mediator API call setFilterCondition() to add the filter to a data service, passing the
FilterXQuery instance as an argument. For example,

CUSTOMER custDS = CUSTOMER.getlnstance(ctx, "RTLApp'):
custDS._setFilterCondition(myFilter);

4, Invoke the data service function. (For more information on invoking data service functions, see
Chapter 3, “Invoking Data Services from Java Clients.”)

8-18 Client Application Developer's Guide

Using Filters

Specifying Filter Effects

If a filter condition applied to a specified element value resolves to false, an element is not included
in the result set. The element that is filtered out is specified as the first argument to the addFilter()
function.

The effects of a filter can vary, depending on the desired results. For example, consider the
CUSTOMERS data object shown in Figure 8-1. It contains several complex elements (CUSTOMER and
ORDERS) and several simple elements, including ORDER_AMOUNT. You can apply a filter to any
elements in this hierarchy.

Figure 8-11 Nested Value Filtering

ORDERS *
ORDER_AMOUNT

In general, with nested XML data, a condition such as “CUSTOMER/ORDER/ORDER_AMOUNT >
1000” can affect what objects are returned in several ways. For example, it can cause all CUSTOMER
objects to be returned, but filter ORDERS that have an amount less than 1000.

Alternatively, it can cause only CUSTOMER objects to be returned that have at least one large order,
and all ORDER objects are returned for every CUSTOMER. Further, it can cause only CUSTOMER
objects to be returned for which every ORDER is greater than 1000. For example,

FilterXQuery myFilter = new FilterXQuery(Q;

myFilter.addFilter("CUSTOMERS/CUSTOMER",
""CUSTOMERS/CUSTOMER/ORDER/ORDER_AMOUNT"",
FilterXQuery.GREATER_THAN, "1000", true);

Note that in the optional fourth parameter everyChild = true, by default this attribute is false.
By setting this parameter to true, only those CUSTOMER objects for which every ORDER is greater
than 1000 will be returned.

Client Application Developer's Guide 8-19

Advanced Topics

8-20

The following examples show how filters can be applied in several different ways:

e Returns all CUSTOMER objects but only their large ORDER objects:

FilterXQuery myFilter = new FilterXQuery(Q;

Filter f1 = myFilter.createFilter(
""CUSTOMERS/CUSTOMER/ORDER/ORDER_AMOUNT"",
FilterXQuery.GREATER_THAN,"1000");

myFilter.addFilter(""CUSTOMERS/CUSTOMER/ORDER", f1);

e Returns only CUSTOMER objects that have at least one large order but view all ORDER objects
for such CUSTOMER:

FilterXQuery myFilter = new FilterXQuery(Q;
myFilter.addFilter(""CUSTOMERS/CUSTOMER",
""CUSTOMERS/CUSTOMER/ORDER/ORDER_AMOUNT"",
FilterXQuery.GREATER_THAN,""1000") ;

e Returns only CUSTOMER objects that have at least one large order and return only large
ORDER objects:

FilterXQuery myFilter = new FilterXQuery(Q;

myFilter.addFilter(""CUSTOMERS/CUSTOMER",
""CUSTOMERS/CUSTOMER/ORDER/ORDER_AMOUNT"",
FilterXQuery.GREATER_THAN,"1000"");

myFilter._.addFilter(""CUSTOMERS/CUSTOMER/ORDER",
""CUSTOMERS/CUSTOMER/ORDER/ORDER_AMOUNT"",
FilterXQuery.GREATER_THAN,""1000"");

The last example is a compound filter; that is, a filter with two conditions. Listing 8-1 uses the AND
operator to apply a combination of filters to a result set, given a data service instance customerDS.

Listing 8-1 Example of Combining Filters by Using Logical Operators

FilterXQuery myFilter = new FilterXQuery(Q);

Filter f1 = myFilter.createFilter("'"CUSTOMER_PROFILE/ADDRESS/ ISDEFAULT",
FilterXQuery . NOT_EQUAL,"0");

Filter f2 = myFilter.createFilter(""CUSTOMER/ADDRESS/STATUS",
FilterXQuery.EQUAL,
"\"ACTIVE\""");

Filter f3 = myFilter.createFilter(fl,f2, FilterXQuery.AND);

Customer customerDS = Customer.getlnstance(ctx, "RTLApp™);

CustomerDS.setFilterCondition(myFilter);

Client Application Developer's Guide

Using Filters

Ordering and Truncating Data Service Results

Another type of filter you can use in client application code is an ordering condition—you specify the
order (descending, ascending) in which results should be returned from the data service. The method
(addOrderBy(), in the FilterXQuery class), takes a property name as the criterion upon which the
ascending or descending decision is based. Listing 8-2 provides an example of creating a filter that will
return customer profiles in ascending order, based on the date each person became a customer.

Listing 8-2 Example of Applying an Ordering Filter

FilterXQuery myFilter = new FilterXQuery(Q;
myFilter.addOrderBy(""CUSTOMER_PROFILE",

""CustomerSince" ,FilterXQuery.ASCENDING);
ds.setFilterCondition(myFilter);
DataObject objArrayOfCust = (DataObject) ds.invoke(''getCustomer, null);

Similarly, you can set the maximum number of results that can be returned from a function. The
setLimit() function limits the number of elements in an array element to the specified number. And
on a repeating node, it makes sense to specify a limit on the results to be returned. (Setting the limits
on non-repeating nodes does not truncate the results.)

Listing 8-3 shows how to use the setLimit() method. It limits the number of active address in the result
set (filtering out active addresses) to 10 given a data service instance ds.

Listing 8-3 Example of Applying a Filter that Truncates (Limits) Results

FilterXQuery myFilter = new FilterXQuery(Q;

Filter f2 = myFilter.createFilter(""CUSTOMER_PROFILE/ADDRESS",
FilterXQuery.EQUAL, " \"INACTIVE\""");

myFilter.addFilter("'CUSTOMER_PROFILE", f2);

myFilter.setLimit(""CUSTOMER_PROFILE"™, '"10');

ds.setFilterCondition(myFilter);

Client Application Developer's Guide 8-21

Advanced Topics

8-22

Using Ad Hoc Queries to Fine-tune Results from the Client

An ad hoc query is an XQuery function that is not defined as part of a data service, but is instead
defined in the context of a client application. Ad hoc queries are typically used in client applications
to invoke data service functions and refine the results in some way. You can use an ad hoc query to
execute any valid XQuery expression against a data service. The expression can target the actual data
sources that underlie the data service, or can use the functions and procedures hosted by the data
service.

To execute an XQuery expression, use the PreparedExpression interface, available in the Mediator
API. Similar to JDBC PreparedStatement interface, the PreparedExpression interface takes the
XQuery expression as a string in its constructor, along with the JNDI server context and application
name. After constructing the prepared expression object in this way, you can call the executeQuery()
method on it. If the ad hoc query invokes data service functions or procedures, the data service’s
namespace must be imported into query string before you can reference the methods in your ad hoc
query.

Listing 8-4 shows a complete example; the code returns the results of a data service function named
getCustomers(), which is in the namespace:

Id:DataServices/RTLServices/Customer

Listing 8-4 Invoking Data Service Functions using an Ad Hoc Query

import com.bea.ld.dsmediator.client.PreparedExpression;

String queryStr =

"declare namespace nsO=\"ld:DataServices/RTLServices/Customer\";" +

"<Results>" +

{ for $customer_profile in nsO:getCustomer()" +
return $customer_profile }" +

"'</Results>";
PreparedExpression adHocQuery =

DataServiceFactory.prepareExpression(context, ""RTLApp",queryStr);
XmlObject objResult = (XmlObject) adHocQuery.executeQuery();

Client Application Developer's Guide

Using Filters

AquaLogic Data Services Platform passes information back to the ad hoc query caller as an XMLObject
data type. Once you have the XMLObject, you can downcast to the data type of the deployed XML
schema. Since XMLObject has only a single root type, if the data service function returns an array, your
ad hoc query should include a root element as a container for the array.

For example, the ad hoc query shown in Listing 8-4 specifies a <Results> container object to hold the
array of CUSTOMER_PROFILE elements that will be returned by the getCustomer() data service

function.

Security policies defined for a data service apply to the data service calls in an ad hoc query as well.
If an ad hoc query uses secured resources, the appropriate credentials must be passed when creating
the JNDI initial context. (For more information, see Obtaining a WebLogic JNDI Context for ALDSP

page 3-8.)

As with the PreparedStatement interface of JDBC, the PreparedExpression interface supports
dynamically binding variables in ad hoc query expressions. PreparedExpression provides several
methods (bindType() methods; see Table 8-12), for binding values of various data types.

Table 8-12 PreparedExpression Methods for Bind Variables

To hind data type of... Use hind method...

Binary bindBinary(jJavax.xml .namespace.QName gname,
byte[] abyteO)

BinaryXMmL bindBinaryXML(Javax.xml .namespace.QName gname,
byte[] abyte0)

Boolean bindBoolean(Javax.xml .namespace.QName gname,
boolean flag)

Byte bindByte(javax.xml .namespace.QName gname, byte
byte0)

Date bindDate(Javax.xml _namespace.QName gname,
java.sql .Date date)

Calendar bindDateTime(Javax.xml .namespace.QName gname,
jJava.util.Calendar calendar)

DateTime bindDateTime(Javax.xml _namespace.QName gname,
jJava.util_Date date)

DateTime bindDateTime(Javax.xml _.namespace.QName gname,

jJava.sqgl .Timestamp timestamp)

Client Application Developer's Guide

8-23

Advanced Topics

Tahle 8-12 PreparedExpression Methods for Bind Variables (Continued)

To hind data type of... Use hind method...

BigDecimal bindDecimal (Javax.xml .namespace.QName gname,
Java.math.BigDecimal bigdecimal)

double bindDouble(Javax.xml .namespace.QName gname,
double d)
Element bindElement(Javax.xml .namespace.QName gname,

org.w3c.dom.Element element)

Object bindElement(Jjavax.xml .namespace.QName gname,
jJava.lang.String s)

float bindFloat(Javax.xml _.namespace.QName gname,
float f)

int bindInt(Javax.xml _namespace.QName gname, int i)

long bindLong(Javax.xml.namespace.QName gname, long
D

Object bindObject(javax.xml .namespace.QName gname,

jJava.lang.Object obj)

short bindShort(Javax.xml .namespace .QName gname,
short word0)

String bindString(Javax.xml .namespace.QName gname,
java.lang.String s)

Time bindTime(Javax.xml _namespace.QName gname,
jJava.sql.Time time)

URI bindURI (Javax.xml ._.namespace.QName gname,
jJava.net._URI uri)

To use the bindType methods, pass the variable name as an XML qualified name (QName) along with
its value; for example:

adHocQuery.bindInt(new QName(*'i'"),94133);

Listing 8-5 shows an example of using a bindInt() method in the context of an ad hoc query.

8-24 Client Application Developer's Guide

Using Filters

Listing 8-5 Binding a Variable to a QName (Qualified Name) for use in an Ad Hoc Query

PreparedExpression adHocQuery = DataServiceFactory.preparedExpression(
context, "RTLApp",
"declare variable $i as xs:int external;
<result><zip>{fn:data($i)}</zip></result>");

adHocQuery.bindInt(new QName(*'i'"),94133);
XmlObject adHocResult = adHocQuery.executeQuery();

Note: For more information on QNames, see:
http://www.w3.org/TR/xmlschema-2/#QName

Listing 8-6 shows a complete ad hoc query example, using the PreparedExpression interface and
QNames to pass values in bind methods.

Listing 8-6 Sample Ad Hoc Query

import com.bea.ld.dsmediator.client._DataServiceFactory;
import com.bea.ld.dsmediator.client.PreparedExpression;
import com.bea.xml_XmlObject;

import javax.naming.lnitialContext;

import javax.naming.NamingException;

import javax.xml_namespace.QName;

import weblogic.jndi.Environment;

public class AdHocQuery

{

public static InitialContext getlnitialContext() throws NamingException {
Environment env = new Environment();

env.setProviderUrl (*'t3://localhost:7001");
env.setlnitialContextFactory(*"weblogic.jndi.WLInitialContextFactory');
env.setSecurityPrincipal (""'weblogic™);
env.setSecurityCredentials(""weblogic');

return new InitialContext(env.getlnitialContext().getEnvironment());

}

public static void main (String args[]) {
System.out.printIn(’========== Ad Hoc Client =========="");
try {
StringBuffer xquery = new StringBuffer();
xquery.append(*'declare variable $p_firstname as xs:string external; \n");

Client Application Developer's Guide 8-25

http://www.w3.org/TR/xmlschema-2/#QName

Advanced Topics

xquery.append(*'declare variable $p_lastname as xs:string external; \n");

xquery . append(

"declare namespace nsl=\"ld:DataServices/MyQueries/XQueries\'"; \n");
xquery .append(

"declare namespace nsO=\"ld:DataServices/CustomerDB/CUSTOMER\"; \n\n'");

xquery .append(*'<ns1:RESULTS> \n"");
xquery.append(*'{ \n");
xquery .append(** for $customer in ns0:CUSTOMER(Q) \n'");
xquery .append (" where ($customer/FIRST_NAME eq $p_firstname \n");
xquery.append (" and $customer/LAST_NAME eq $p_lastname) \n");
xquery .append(** return \n*");
xquery .append (" $customer \n"");
xquery.append(*" } \n");
xquery .append(*'</ns1:RESULTS> \n'");

PreparedExpression pe = DataServiceFactory.prepareExpression(
getlnitialContext(), "RTLApp", xquery.toString());

pe.bindString(new QName("'p_Ffirstname'), "Jack');

pe.bindString(new QName(*'p_lastname'™), "Black'™);

XmlObject results = pe.executeQuery();

System.out.printin(results);

} catch (Exception e) {
e._printStackTrace();
}

8-26 Client Application Developer's Guide

	Introducing Data Services for Client Applications
	Introduction
	What Is a Data Service?
	What is an ALDSP Client Application?
	Choosing a Client Programming Model
	Introducing Service Data Objects (SDO)
	Introducing The Data Service Mediator API
	Typical Client Application Development Process
	Security Considerations in Client Applications
	Performance Considerations
	Client Classpath Settings
	Java Mediator API Clients
	Web Services Clients
	JMX Mbean Management API Client Classpath
	ALDSP JDBC API Client Classpath

	Backward Compatibility

	Data Programming Model and Update Framework
	Introduction
	ALDSP and SDO
	Static and Dynamic Data Object APIs
	Static Data Object API
	XML Schema-to-Java Type Mapping Reference
	Dynamic Data Object API

	Role of the Mediator API and SDO

	Invoking Data Services from Java Clients
	Introducing the Mediator API
	What is SDO?
	What is the Mediator API?
	Dynamic and Static Mediator APIs
	API Overview
	Summary

	Getting Started
	Basic Steps
	Setting the CLASSPATH
	Static Java Mediator API Client CLASSPATH
	Dynamic Java Mediator API Client CLASSPATH

	Running the Sample Applications

	Sample Static Mediator Application
	Setting Up the Sample Data Service
	Generating the Mediator Client JAR File
	Setting Up the Java Project
	Running and Testing the Code
	Examining the Sample Code
	Importing Packages
	Obtaining a Data Access Service Handle
	Retrieving Data from the Service
	Obtaining a DataObject from the Result
	Disposing the Result Object
	Modifying the DataObject
	Returning Changes to the Server

	Sample Dynamic Mediator Application
	Setting Up and Running the Sample Code
	Sample Java Client Code (Dynamic Mediator API)
	Examining the Sample Code
	Importing Classes
	Obtaining a DataAccessService Handle
	Retrieving Data from the Service
	Obtaining a DataObject from the Result
	Disposing the Result Object
	Modifying the DataObject
	Returning Changes to the Server

	Creating New DataObjects
	Creating a New DataObject with the Static API
	Setting Up and Running the Sample
	Importing Packages
	Obtaining a Data Access Service Handle
	Creating a DataFactory
	Create and Name the DataObject
	Modifying the DataObject
	Returning New DataObject to the Server
	Returning the New DataObject Key

	Creating a New DataObject with the Dynamic API
	Running the Sample
	Importing Packages
	Creating a DataFactory
	Create and Name the DataObject
	Modifying the DataObject
	Returning New DataObject to the Server
	Returning the New DataObject Key

	Mediator API Basics
	Beyond the Sample Applications
	More on the Static Mediator API
	More on the Dynamic Mediator API
	Invoking Data Service Operations
	Getters and Setters

	Naming Conventions for Generated Classes
	Mediator Client JAR Naming Convention
	Web Services Mediator Client JAR Naming Convention

	Understanding DASResult
	Overview of DASResult
	Disposing of DASResult Objects
	Dynamic Mediator APIs and DASResult
	Static Mediator APIs and DASResult
	Retrieving an Array of Objects

	Obtaining the WebLogic JNDI Context for ALDSP
	Working with Data Objects
	Enabling Data Objects for Change Tracking
	Modifying Data Object Properties
	Creating a New Data Object

	Mapping Data Service Types to Java Types
	Conversion of Simple Types
	Conversion of Date/Time Types
	Passing Empty Sequence Arguments
	Quantified Return Types
	What is Autoboxing?

	Web Services Support
	Advanced Topics
	Schema Management
	Schema Scope
	Schema Download
	Schema Cache Management

	Support for Stateless Operations
	Cache Management
	Forcing Data Cache Read-through and Update

	Specifying XPath Expressions as Arguments
	Making Ad Hoc Queries

	Understanding Transaction Behavior
	Transaction Behavior for Read/Write Operations
	Transaction Behavior for Read-Only Operations

	Invoking Data Services Through Web Services
	Overview
	Before You Begin
	Getting Started
	Basic Steps
	Setting the CLASSPATH
	Running the Sample Applications

	Sample Static Mediator Application
	Setting Up the Sample Data Service
	Creating a Web Service Map File
	Generating the Web Services Mediator Client JAR File
	Setting Up the Java Project
	Running and Testing the Code
	Examining the Sample Code
	Importing Packages
	Obtaining a Data Access Service Handle
	Retrieving Data from the Service
	Obtaining a DataObject from the Result
	Disposing the Result Object
	Modifying the DataObject
	Returning Changes to the Server

	Sample Dynamic Mediator Application
	Setting Up and Running the Sample Code
	Sample Java Client Code (Dynamic Mediator API)
	Examining the Sample Code
	Importing Classes
	Obtaining a DataAccessService Handle
	Retrieving Data from the Service
	Obtaining a DataObject from the Result
	Disposing the Result Object
	Modifying the DataObject
	Returning Changes to the Server

	Transaction Behavior and Web Services
	Securing Your Web Services Application

	Using SQL to Access Data Services
	Introducing SQL Access to Data Services
	Features of the ALDSP JDBC Driver
	Exploring ALDSP and JDBC Artifacts

	JDBC and SQL Support in ALDSP
	JDBC Support
	SQL Support
	Supported SQL Statements
	Supported SQL Functions
	Table Parameter Support

	Additional Details and Limitations

	Preparing to Use SQL to Access Data Services
	Publishing Data Service Operations
	Configuring the ALDSP JDBC Driver

	Accessing Data Services Using SQL From a Java Application
	Obtaining a Connection
	Using the PreparedStatement Interface
	Using the CallableStatement Interface

	Advanced Features
	Using Table Parameters
	When to Use Table Parameters
	Setting Table Parameters Using JDBC

	Accessing Custom Database Functions Using JDBC

	Accessing Data Services Using SQL-Based Applications
	Accessing Data Services Using SQL Explorer
	Connecting to the ALDSP Client Using OpenLink ODBC-JDBC Bridge
	Using OpenLink with Reporting Tools
	Crystal Reports XI
	Business Objects XI-Release 2 (ODBC)
	Microsoft Access 2003-ODBC
	Microsoft Excel 2003-ODBC

	Using Excel to Access Data Services
	Introducing the Excel Add-in
	Installing the Excel Add-in
	System Requirements
	Installation Instructions
	Accessing Excel Add-in Documentation

	Preparing to Use the Excel Add-in
	Accessing the Data Service Using Excel

	Supporting ADO.NET Clients
	Overview of ADO.NET Integration in ALDSP
	Understanding ADO.NET
	ADO.NET Client Application Development Tools

	Understanding How ALDSP Supports ADO.NET Clients
	Supporting Java Clients
	Enabling ALDSP Support for ADO.NET Clients
	Generating an ALDSP Web Services Mapper
	Viewing an ADO.NET-Enabled WSDL
	Creating a Web Reference in ADO.NET Client by Providing the ALDSP WSDL URL

	Adapting ALDSP XML Types (Schemas) for ADO.NET Clients
	Approaches to Adapting XML Types for ADO.NET
	XML Type Requirements for Working With ADO.NET DataSets

	References

	Creating a Data Service Based on an RPC-Style Web Service
	Generated Artifacts Reference
	XML Schema Definition for ADO.NET Types DataSet
	Web Services Description Language (WSDL) File for Microsoft ADO.NET Clients

	Advanced Topics
	Accessing Metadata Using Catalog Services
	Installing Catalog Services
	Using Catalog Services
	Application (application.ds)
	DataService (DataService.ds)
	DataServiceRef (DataServiceRef.ds)
	Folder (folder.ds)
	Function (Function.ds)
	Relationship (Relationship.ds)
	Schema (Schema.ds)

	Filtering, Sorting, and Fine-tuning Query Results
	Using Filters
	Specifying Filter Effects
	Ordering and Truncating Data Service Results
	Using Ad Hoc Queries to Fine-tune Results from the Client

